
Measuring the Impact of
Packet Reordering on

Internet Protocol Networks

Colin Michael Arthur

A thesis submitted for the degree of Doctor of Philosophy to
the Department of Electronic & Electrical Engineering

University of Strathclyde

December 2008

This thesis is the result of the author's original research. It has been

composed by the author and has not been previously submitted for

examination which has lead to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of
Strathclyde Regulation 3.50. Due acknowledgement must always be

made of the use of any material contained in, or derived from, this thesis.

Signed: L4ý/" Date: 3.0 / IZ log

i

Abstract
Packet Reordering in IP networks is a phenomenon which is becoming increasingly
important in network performance analysis. Reordering is a consequence of network
equipment manufacturers increasing switch and link level parallelism within
networks, in the quest for performance, reliability and fiscal gains. Wireless

technologies are also expected to increase the amount of packet reordering
observable in an end-to-end path.

This thesis addresses the issue of measuring the impact of packet reordering on
Internet traffic, by proposing a number of measurement methodologies and metrics.
Previous techniques assume that packet reordering does not often occur, or make

assumptions which severely limit the results obtained. This thesis proposes a two-

point passive measurement technique, which improves on previous methods by

allowing lightweight measurement of the amount and extent of reordering observed
in a TCP flow, and classification of the cause of each reordering-induced packet
retransmission. A large testbed measurement study performed using this technique
indicated that TCP is tolerant to large percentages of reordered packets, providing
that the delay of these packets is maintained below a threshold relative to Round-
Trip-Time. This study further indicated that the effects of TCP packet reordering are
not always negative. In specific scenarios reverse-path reordering can increase the
overall throughput of a flow. This thesis further proposes a mid-point passive
Measurement Technique and Visualisation Metric of TCP packet reordering,
designed to classify out of sequence packets for many thousands of concurrent TCP
flows. This technique is lightweight to implement and does not require symmetric
TCP connections to operate. Finally, this thesis argues that future packet reordering
metrics must correlate reordering observed at the network layer, with the resulting
impacts observed at the application layer. An example of an application-specific
metric is developed for MPEG-4 video over UDP traffic, and this metric is used to
describe the effects of packet reordering on streamed video traffic.

ii

Acknowledgements
I would like to sincerely thank David Harle, without whose constant support and
encouragement throughout, I would not have been able to complete this work.

I also am greatly indebted to Andrew Lehane - for his mentorship, his critique and
his energy. Andrew has helped me in many ways throughout my short research
career, and I can only hope that in the future, I can help others as he has helped me.

I am indebted to many people at Strathclyde University throughout my period as a
PhD student and a Research Assistant - all were very generous with their time, their
ideas and their encouragement; Demessie Girma, Robert Atkinson, Alisdair
McDiarmid, John Bush, Ian Robertson, Ian Armstrong, Kurian Oommen, Omar
Tayan, Christos Tachtatzis, Kostas Sasloglou, Joan Cortes, Stefan Martin and
Gordon Morison.

I would also like to thank my new colleagues within the Measurement Research
Laboratory at Agilent Labs for their support, and for always allowing me to learn
from them; Frankie Garcia, Alex Tudor, Martin Curran-Gray, Kevin Mitchell, Tony
Kirkham, Kathy Graham and Lance Tatman.

I am indebted to my friends, whose constant motivation and support was greatly
appreciated during the unrelenting write-up months; Elizabeth Watson, Alastair
Davis, Brian Turnbull, Euan Robertson, Catalina Aguirre, Kevin McClenaghan and
Ryan Tumilty.

Swee deserves a special mention; her consistent help and encouragement, throughout
the highs and the lows, was very important to me in the latter stages of writing up.

Finally, I would like to thank my Mum, my Dad, my Gran and my Sis Laura. I am
lucky to have a family that supports me in everything that I do, and I am sure that
this PhD has been as traumatic for them as it has been for me. My Gran has a greater
belief in my abilities than I ever will, and for that, I am truly grateful.

iii

List of Publications

C. M. Arthur, D. Girma, "Unified Method for Video Traffic Modelling on IP

Networks". IEE Electronics Letters, Vol. 38 No. 10, pp 492-494, May 2002.

C. M. Arthur, D. Girma, "An Experimental Platform for Video Traffic Analysis over

Lossy IP Networks". Fifth IEE European Personal Mobile Communications

Conference (EPMCC), April 2003, Glasgow.

C. M. Arthur, D. Girma, D. Harle, A. Lehane, "The Effects of Packet Reordering in

a Wireless Multimedia Environment". First International Symposium on Wireless

Communication Systems, September 2004, Mauritius.

C. M. Arthur, A. Lehane, M. Curran-Gray, D. Girma, "Real Time Monitoring of
TCP Flows", UK Patent Application GB2430577, Filed September 2005, Published

March 2007. US Patent Office Application 20070070916, Published March 2007.

C. M. Arthur, A. Lehane, D. Harle, "Keeping Order: Determining the Effect of TCP

Packet Reordering", Second International Workshop on Internet Packet Dynamics,

IPDy 2007, June 2007, Greece. Winner Best Paper Award.

iv

Contents

Chapter 1 Introduction ..
1

1.1 The Increase of Internet Parallelism
2

1 .2
Characterising Packet Reordering ...

3

1 .3
Thesis Organisation ..

5

Chapter 2 The Internet Protocol Suite 6

2.1 Introduction
...

6

2.2 The Internet Protocol Suite ...
7

2.2.1 Internet Standardisation
..

8

2.2.2 Internet Protocol version 4 ...
9

2.2.2.1 Addressing
...

10

2.2.2.2 Fragmentation
...

11

2.2.3 IPv4 Header Format .. 11

2.3 User Datagram Protocol
..

13

2.4 Transmission Control Protocol
..

13
2.4.1 Reliable Transmission

..
14

2.4.2 TCP Header Format
.. 15

2.4.3 Sequence Numbers and Acknowledgements
.........................

16

2.4.4 Establishing a Connection
..

17

V

2.4.5 Retransmission Timeout ...
18

2.4.6 TCP Congestion Control ..
19

2.4.6.1 Slow Start ...
21

2.4.6.2 Congestion Avoidance
...

21

2.4.6.3 Fast Retransmit ...
22

2.4.6.4 Fast Recovery ..
23

2.4.6.5 Limited Retransmit ...
23

2.4.7 Loss Recovery Mechanisms
..

24

2.4.7.1 Partial Acknowledgements ..
24

2.4.7.2 Selective Acknowledgements ..
24

2.5 The Problem of Reordering
..

25

2.5.1 Forward path reordering ...
26

2.5.2 Reverse Path Reordering ...
27

2.5.3 Combined Path Reordering ..
27

2.6 Internet Measurement ..
28

2.6.1 Quality of Service ...
28

2.6.2 Service Level Agreements ...
29

2.7 Metrics and Measurements ..
29

2.7.1 Packet Latency ..
30

2.7.2 Packet Loss ...
30

2.7.3 Packet Jitter and Delay Variation ...
32

2.7.4 Packet Throughput ..
32

2.7.5 Packet Ordering
...

33

2.8 Measurement Bases
...

34

2.8.1 Flow-based Measurements
..

34

2.8.2 Interface, Link and Node-based Measurements
34

2.8.3 Node-pair-based ...
35

2.8.4 Path-based ...
35

2.8.5 Local and End-to-End Measurements
36

2.9 Measurement Methodologies ..
37

V1

2.9.1 Passive Measurements
... 37

2.9.1.1 Passive Measurement Examples
...

37

2.9.2 Active Measurements
..

38

2.9.2.1 Active Measurement Examples
..

39

2.10 Limitations of Current Techniques
....................................

39

2.11 Summary
...

41

Chapter 3 Measuring Packet Reordering 42

3.1 Introduction ...
42

3.2 Active Packet Reordering Measurements
44

3.2.1 Limitations of Active Reordering Measurements 44

3.2.2 Paxson ... 46

3.2.3 Bennett .. 48

3.2.4 Loguinov ... 50

3.2.5 Bellardo ... 51

3.2.6 Tsinghua
..

55

3.2.7 Delft ...
57

3.2.8 Hong Kong Pointer ...
58

3.2.9 Perkins
...

62

3.2.10 Summary
... 64

3.3 Pa ssive Packet Reordering Measurements
65

3.3.1 Limitations of Passive Reordering Measurements
65

3.3.2 Mid-point Passive Measurements
3.3.3 Jaiswal TCPFIows

.. 67

3.3.3.1 Passive Estimation of RTT ...
69

3.3.3.2 Jaiswal Running RTT Estimation Technique 70

3.3.3.3 Jaiswal Classification Results ... 71

3.3.3.4 Evaluation ... 72

3.3.4 Rewaskar ... 74

3.3.4.1 SYN/ACK RTT Estimation
... 75

vi'

3.3.4.2 Rewaskar Classification Results ..
75

3.3.5 Tstat Torino Algorithm ...
76

3.3.6 Summary ...
79

3.4 Packet Reordering Metrics ...
80

3.4.1 IP Performance Metrics Standardisation
80

3.4.2 RFC 4737 ..
81

3.4.2.1 A Reordered Packet Singleton Metric,
Type-P-Reordered ..

81

3.4.2.2 Sample Metrics ..
82

3.4.2.3 Evaluation ...
82

3.4.2.4 Results ..
83

3.4.3 RFC 5236 ..
83

3.4.3.1 Reorder Density ..
84

3.4.3.2 Reorder Buffer Density ...
84

3.4.3.3 Results ..
84

3.5 Comparison of Techniques ...
85

3.6 Comparison of Measurement Results
86

3.7 Conclusions ..
88

Chapter 4A Two-Point Passive Packet Reordering
Measurement Technique

90

4.1 Introduction
...

90

4.1.1 Drivers of Packet Reordering
...

91

4.1.2 Measuring the Impact of Reordering
94

4.1.3 Fixing Packet Reordering
..

98

4.1.4 The Motivation for Measuring the Effects of Reordering.... 99

4.2 Experimental Methodology ...
101

4.2.1 Core Transit Network Reordering Equivalence
101

4.2.2 An Open Extensible Router
...

103

4.2.2.1 The Click Modular Router ..
103

viii

4.2.2.2 Installing a Click Router
..

104

4.2.2.3 ElementClass `Reorder'
...

105

4.2.2.4 Click Language Configuration
..

105

4.2.3 Gigabit Network Testbed
...

107

4.2.3.1 MMap Extensions
..

109

4.2.4 Defining Metrics for Packet Reordering
109

4.2.5 Packet Probe `Out of Sequence' Code
..................................

111

4.2.6 Automated Distributed Measurement System
115

4.2.6.1 Distributed Measurement System State Machine
116

4.2.7 Post-processing of Results
..

118

4.3 Results ...
120

4.3.1 Experiment Validation ..
121

4.3.2 Measuring Forward Path Packet Reordering
126

4.3.2.1 50 msec Round Trip Time ..
126

4.3.2.2 150 msec Round Trip Time ..
133

4.3.2.3 300 msec Round Trip Time
..

137

4.3.3 Reverse Path Reordering Results ...
139

4.3.3.1 150 msec Round Trip Time ..
140

4.3.3.2 200 msec Round Trip Time ..
146

Combined ..
146

4.3.4 Forward and Reverse Reordering, 100ms RTT
146

4.3.5 Comparison of Methods to Combat Reordering 147

4.3.6 Conclusions
...

149

Chapter 5 Mid-Point Passive Monitoring of TCP
Flows .. 153

5.1 Introduction ... 153

5.2 Large Scale Monitoring of TCP Flows
............................

155

5.2.1 Single Point Measurement Techniques
.................................

155

5.2.2 Goodput .. 156

ix

5.2.3 Jaiswal
..

158

5.2.4 Summary
...

158

5.3 A Passive Mid-Point Monitoring Technique
..................

159

5.3.1 Development of a Passive Mid-Point Software Probe........ 159

5.3.2 Insertion of Packet Records into Flow Traces 162

5.3.3 Calculation of Expected Position
..

163

5.3.4 Calculation of Relative Sequencing.. 165

5.3.5 The Arthur "Out of Sequence" Classification Algorithm .. 167

5.3.5.1 Result 1 .. 169

5.3.5.2 Result 2 .. 169

5.3.5.3 Result 3 .. 169

5.3.5.4 Result 4 .. 170

5.3.5.5 Result 5 .. 170

5.3.5.6 Result 6 .. 171

5.3.5.7 Result 7 .. 171

5.3.5.8 Result 8 .. 172

5.4 Out of Sequence Classification Example
........................

172

5.4.1 Dealing with Duplicates ..
177

5.5 Implementation of Algorithm
...

178

5.5.1 Comparison with Jaiswal ... 179
5.5.2 Experimental Setup ..

180
5.5.3 Results and Comparison

...
180

5.5.4 Conclusions
...

183

5.6 Network Measurement Visualisation
...............................

184
5.6.1 Visualisation of TCP .. 185
5.6.2 Visualisation of TCP Packet Reordering

...............................
186

5.6.2.1 RFC 5236 - Improved Packet Reordering Metrics........ 189

5.6.2.2 Reorder Density
.. 189

5.6.2.3 Assigning receive index Values
.. 190

5.6.2.4 Reorder Buffer-Occupancy Density
................................

191

X

5.6.3 The Arthur Visualisation Technique
.....................................

192

5.6.3.1 Results and Comparison
..

193

5.7 Conclusions
..

199

Chapter 6 Measuring the Impact of Packet
Reordering ... 203

6.1 Introduction ... 203

6.1.1 Wireless as a Driver for Packet Reordering
205

6.1.2 The Effects of Reordering on Video
206

6.1.3 Video over UDP .. 207

6.2 Experimental Methodology
...

208

6.2.1 Microsoft Windows Media ...
208

6.2.2 Video Traffic Generation .. 209

6.2.3 Reordering of Video Packets
..

210

6.2.4 Instrumentation of Receiver ...
212

6.3 Results and Perceptual Quality
...

213

6.3.1 Packet Arrival Bit Rates ...
216

6.3.2 Buffer Occupancy ..
218

6.4 Conclusions
..

222

Chapter 7 Conclusions and Future Work 224

7.1 Introduction
...

224

7.2 Thesis Summary
..

226

7.3 Main Contributions ... 232
7.3.1 A Two-Point Passive Measurement Technique

...................
232

7.3.2 Development of Testbeds
...

233

7.3.3 Large scale measurement studies of packet reordering....... 233

7.3.4 A Passive Mid-Point Classification Algorithm of
TCP Reordering ... 235

xi

7.3.5 An Improved Visualisation Technique and Metric

of TCP Packet Reordering
..

235

7.3.6 A client-side estimator of video QoS
....................................

235

7.3.7 Packet Reordering Measurement Taxonomy
.......................

236

7.4 Future Directions
..

237

7.4.1 Packet Reordering as a tool for SLA Compliance
237

7.4.2 Software Routers as Measurement Instruments
238

7.4.3 Extending the Arthur Classification and Visualisation
Algorithm .. 240

7.4.4 Cross-layer Correlation of Packet Reordering Metrics........ 241

7.5 Concluding Remarks
...

243

Bibliography .. 244

Appendix ... 263

X11

List of Figures

Figure 1- The Internet Protocol Suite
...

7

Figure 2- IPv4 Header Format ...
12

Figure 3- TCP Header Format ...
15

Figure 4- TCP 3-way Handshake ...
18

Figure 5- TCP Cumulative Acknowledgements
18

Figure 7- Congestion Avoidance ...
20

Figure 8- Adjusting Slow Start Threshold ..
22

Figure 9- Forward Path Reordering ..
26

Figure 10 - Reverse Path Reordering
...

26

Figure 11 - Bellardo Single Connection Test ...
52

Figure 12 - Bellardo Dual Connection Test ..
52

Figure 14 - Tsinghua reorder-judging algorithm
55

Figure 15 - Pointer ACM Test ...
59

Figure 16 - Hong Kong Poly SAM1 Test ..
60

xiii

Figure 18 - Perkins relation of reordering

and packet rate [GharO4] .. . 64

Figure 19 - Jaiswal's Out of Sequence Classification Algorithm........ . 68

Figure 20 - Jaiswal Running RTT Estimation Technique
70

Figure 22 - Packet Reordering Measurement Taxonomy
85

Figure 23 - Link-Level and Switch / Local Parallelism 92

Figure 24 - Network Equivalence Diagram
...

101

Figure 25 - Click Element Configuration
...

106

Figure 26 - Gigabit Network Testbed
..

108

Figure 27 - Out of Sequence FSM
...

112

Figure 28 - OOS Packet Callback Algorithm
113

Figure 29 - Example Packet Capture Output
114

Figure 30 - Measurement System State Machine
116

Figure 31 - OOS Parser Algorithm
...

119

Figure 32 - Mean transmission time of 10 Megabytes, 90% C. I.,

F50(various, various, 0,0) ...
128

Figure 33 - Percentage Reordered Packets, 90% C. I.,

Fso(various, various, 0,0)
...

129

Figure 34 - Percentage Retransmissions by Cause, 90% C. I.,

F50(5%, various, 0,0) ...
130

Figure 35 - Percentage Retransmissions by Cause, 90% C. I.,

F50(10%, various, 0,0) ...
131

Figure 36 - Percentage Retransmissions by Cause, 90% C. I.,

F50(15%, various, 0,0) ...
131

Figure 37 - Percentage Retransmissions by Cause, 90% C. I.,

F50(20%, various, 0,0) ... 132

Figure 38 - Percentage Retransmissions by Cause, 90% C. I.,

F50(25%, various, 0,0) ... 132

xiv

Figure 40 - Percentage Reordered Packets, 90% C. I.,

F150(various, various, 0,0) ... 134

Figure 41 - Percentage Retransmissions by Cause, 90% Cl,

F150(5%, various, 0,0) ..
135

Figure 42 - Percentage Retransmissions by Cause, 90% C. I.,

F150(10%, various, 0,0) ..
135

Figure 43 - Percentage Retransmissions by Cause, 90% C. I.,

F150(15%, various, 0,0) ..
136

Figure 44 - Percentage Retransmissions by Cause, 90% C. I.,

F150(20%, various, 0,0)
..

136

Figure 45- Percentage Retransmissions by Cause, 90% C. I.,

F150(25%, various, 0,0) ..
137

Figure 46 - Mean transmission time of 10 Megabytes, 90% C. I.,

F300(various, various, 0,0) ...
138

Figure 48 - Mean transmission time of 10 Megabytes, 90% C. I.,

F150(0,0, various, various) ...
140

Figure 49 - Percentage Retransmissions by Cause, 90% C. I.,

F150(O, 0,5%, various) ...
143

Figure 50 - Percentage Retransmissions by Cause, 90% C. I.,

F150(O, 0,10%, various) ..
144

Figure 51 - Percentage Retransmissions by Cause, 90% C. I.,

F150(O, 0,15%, various) ..
144

Figure 52 - Percentage Retransmissions by Cause, 90% C. I.,

F150(O, 0,20%, various) ..
145

Figure 53 - Percentage Retransmissions by Cause, 90% C. I.,

F150(0,0,25%, various) .. 145

Figure 55 - Mean transmission time of 10 Megabytes, 90% Cl,

F, oo(various, various, 0,0) ... 147

xv

Figure 56 -Transmission time of 10 Megabytes, SACK-Enabled,

F150(various, various, 0,0)
...

148

Figure 57 Transmission time of 10 Megabytes, D-SACK-Enabled,

F150(various, various, 0,0)
...

148

Figure 58 - Transmission time of 10 Megabytes, tcp_reordering =3

Enabled, F150(various, various, 0,0)
148

Figure 59 - Mid Point Network Monitoring
..

156

Figure 60 - Example Flow Trace
..

160

Figure 61 - Example Packet Record ..
161

Figure 62 - Expected Position Calculation ..
164

Figure 63 - Post Processing Flowchart
...

166

Figure 64 - Arthur Out of Sequence Classification Algorithm 168

Figure 65 - Stevens' TCP Time-Sequence Graph
185

Figure 66 - Ostermann Time-Sequence Graph
186

Figure 67 - Zoomed Ostermann Time-Sequence Graph
186

Figure 68 - Arthur Visualisation of TCP Reordering
192

Figure 69 - Reorder Density ..
193

Figure 70 - Reorder Buffer Density
..

193

Figure 71 - 20 msec RTT, 10% Reordering,

1 msec Reordering Delay
..

195

Figure 72 - Reorder Density, DT=3
..

196

Figure 73 - Reorder Density, DT=10
..

196

Figure 74 - Reorder Buffer Density
..

196

Figure 75 - 20 msec RTT, 10% Reordering,

10 msec Reordering Delay
..

197

Figure 77 - Reorder Density, D. i. =10 ..
198

Figure 78 - Reorder Buffer Density
..

198

Figure 79 - Video Reordering Experimental Testbed
.......................

209

xvi

Figure 80 - Packet Disrupter Architecture
...

210

Figure 81 - WM Player Instrumentation .. 212

Figure 83 - Reordering Probability P. = 1%, for varying D 216

Figure 84 - Reordering Probability PR = 10%, for varying D 217

Figure 85 - Reordering Probability PR = 25%, for varying D, 218

Figure 86 - pdf Under-Run Number
..

220

Figure 88 - pdf Under-Run Number
...

221

Figure 89 - pdf Under-Run Time
..

222

xvii

List of Tables

Table 1- RFC4737 Sample Reordering Metrics
82

Table 2- Comparison of Measurement Results
87

Table 3- Linux Kernel Variables
..

117

Table 5- Pseudo code of Packet Record Sorting
...............................

163

Table 6- Example TCP Stream Capture ... 173

Table 7- Flow Trace 1- 10.0.0.2: 1789 to 10.0.0.6: 35427 174

Table 8- Flow Trace 2- 10.0.0.6: 35427 to 10.0.0.2: 1789
175

Table 9- Packet Sequencing Analysis
..

175

Table 10 - Rate of Change Analysis
...

176

Table 11 - Jaiswal Classification Results
...

181

Table 12 - Arthur Classification Results
...

181

Table 13 - RFC 4737 Reordering Extent ...
187

Table 14 - RFC 4737 n-Reordering ..
188

Table 15 - Reorder Density Example
... 189

Table 16 - Reorder Buffer-Occupancy Density Example
191

Table 17 - Subjective Grading Descriptions
.. 214

xviii

Acronyms and Abbreviations

Ack TCP Acknowledgement Number
ADSL Asymmetric Digital Subscriber Line
AS Autonomous System
ASF Microsoft Advanced Systems Format
ATM Asynchronous Transfer Mode

awnd TCP Receiver's Advertised Window
BDP Bandwidth Delay Product
BER Bit Error Rate
CPU Central Processing Unit
cwnd TCP Congestion Window
DARPA Defence Advanced Research Projects Agency
DEC Digital Equipment Corporation
DiffServ Differentiated Services
dupthresh TCP Fast Retransmission Duplicate Acks Threshold
ECN Explicit Congestion Notification
EP Expected Position
FDDI Fibre Distributed Digital Interface
FIFO First In First Out
FIN TCP Finish Flag
FSM Finite State Machine
FTP File Transfer Protocol
GPS Global Positioning System
GPU General Purpose Processing Unit
HDTV High-definition television
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IHL Internet Header Length
IOS Cisco Internetwork Operating System
IP Internet Protocol version 4

xix

IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IPFIX Internet Protocol Flow Information Export
IPID IP Identification Field
IPMON Sprint IP Monitoring Project
IPPM IP Performance Metrics Working Group
IPTV Internet Protocol Television
ISN Initial Sequence Number
ISP Internet Service Provider
L3 VPN Layer 3 Virtual Private Networks
LAN Local Area Network
MANET Mobile Ad-hoc Network
MIB Management Information Base
MMAP Memory Map Extensions
MMS Microsoft Media Services
MOS Mean Opinion Score
MPEG Moving Pictures Experts Group
MPLS Multiprotocol Label Switching
MSS Maximum Segment Size
MTU Maximum Transmission Unit
NACK Negative Acknowledgement
NEM Network Equipment Manufacturer
NESN Next Expected Sequence Number
NIST National Institute of Standards and Technology
NMS Network Management System
NS-2 Network Simulator version 2
NTP Network Time Protocol
OOS Out Of Sequence
OP Observation Position
OSI Open Systems Interconnection
PSTN Public Switched Telephone Network
QCIF Quarter Common Intermediate Format
QoE Quality of Experience
QoS Quality of Service
RBD Reorder Buffer Density
RD Reorder Density
RED Random Early Detection
RFC Request For Comments
RIPE Reseaux IP Europeens
RSH Remote Shell
RST TCP Reset Flag
RSVP Resource ReSerVation Protocol

xx

RTO Retransmission Timeout
RTP Real-time Transport Protocol
RTT Round Trip Time
rwnd TCP Receiver's Advertised Window
SACK TCP Selective Acknowledgement
SDK Software Development Kit
Seq TCP Sequence Number
SLA Service Level Agreement
SLS Service Level Specification
SMSS Sender Maximum Segment Size
SNMP Simple Network Management Protocol
SONET Synchronous Optical Networking
SPAN Switched Port Analyser

ssthresh TCP Slow Start Threshold
Syn TCP Synchronise Flag
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol / Internet Protocol
TTL Time To Live
UDP User Datagram Protocol
VoIP Voice over Internet Protocol
VPN Virtual Private Network
WM Microsoft Windows Media

xxi

Chapter 1

Introduction

In December 1999 the IEEE/ACM Transactions on Networking published a paper

entitled "Packet Reordering is Not Pathological Network Behavior" [Benn99]. Bennett

et al. had intended to prove the hypothesis that the reordering of packets in the Internet

is an ever increasing phenomenon. The results of their study, performed in January

1998, indicate that the probability of a session, running through the US MAE-East

exchange, experiencing packet reordering was over 90%. Intuitively, Bennett et al. cited

that the reason for the large proportion of flows experiencing reordering was the

presence of parallelism on the routes taken by the packets flowing through the network.

However, the reason for this reordering, and the parallelism which caused it, was not

immediately obvious. Bennett discovered that much of the packet reordering observed

is not, as was first expected, due to multi-path routing or broken network equipment

causing packets to traverse different logical paths, but occurred as a result of switch and
link-level parallelism. This included link-level striping and switches that allow packets

1

travelling between the same source and destination to take different paths through the

internal switch hardware.

Bennett's work represented a significant contribution to the field of network science

since packet reordering can have a measurable impact on both network and application

performance. For example, out-of-order arrival of packets can cause apparent loss of

data in real time flows, such as voice over packet and video streams. Reordering is also

detrimental to Transmission Control Protocol (TCP), causing it to use available capacity

less effectively, and lose the TCP self-clocking property, resulting in irregular data

transmission.

1.1 The Increase of Internet Parallelism

It is clear from the literature that the level of parallelism in network paths is on the

increase, although what overall impact this will have on packet reordering is less clear.

Load balancing in network switches introduces local parallelism, which can allow

packets flowing between the same source and destination to take different paths within

the switch. Simple economics also has a bearing; it is often more cost effective to put

two components in parallel than to use one component that has twice the

speed[Benn99]. For example, when purchasing long-haul serial links many tariffs offer
link bandwidths that are multiples of each other. Parallel links are also a very useful way

to improve reliability; if the parallel links follow different physical paths, the virtual link

they implement is generally less vulnerable to single-point failures. Large businesses,

Internet Service Providers (ISPs) and their vendors are therefore aggressively promoting

parallel links. In a survey of 38 major ISPs conducted in mid-1997 [Gare97], only two of

the smaller ISPs did not have parallel uplink paths between nodes.

Bennett's paper explains how packet reordering can impact network performance, by

exemplifying TCP during packet reordering. In the presence of forward path reordering,
TCP has great difficulty opening its congestion window and makes inefficient use of

available link capacity through unnecessary retransmissions. During reverse path

reordering events (reordering of acknowledgments), TCP loses self-clocking and data

2

transmission becomes very irregular, with a large quantity of short duration data bursts

instead of more evenly loaded flows. However, the impact of packet reordering is not

limited to TCP. Any protocol that is reliant on the ordered arrival of packets can be

affected by this phenomenon. For example, RTP flows, based upon UDP, will not be

immune to packet reordering. The impact on TCP is to slow traffic and reduce

throughput. However, the impact upon real-time flows is often far more severe. Even

low levels of reordering increase the buffer memory requirements at the receiver as well

as increasing processing related latencies. However, as reordering becomes even more

prevalent buffering becomes ineffective; the result is degradation in the quality of the

delivered service. For example, in applications such as voice over packet there is no time

to retransmit data, and so the supposedly missing, but in reality late information, has to

be replaced at the application level by 'white noise' thus causing loss of intelligibility.

Bennett et al. also found that one of the challenges of understanding this form of

reordering is that this type of parallelism is not easily measured. During Paxson's

measurement experiments with reordering in end-to-end routing, the different network

paths taken by packets were clearly indicated by the different addresses of the routers

they traversed [Paxs96]. However, in link and local parallelism, the only indication of the

existence of parallel links, may be that a particular hop exhibits varying levels of delay.

1.2 Characterising Packet Reordering

There have been several proposals to create protocols that can either adapt, or are

robust, to packet reordering. However, evaluating their effectiveness requires a good

understanding of the dynamics of the reordering processes prevalent in the Internet.

Unfortunately, Internet packet sequencing is still a poorly characterised and under-

studied behaviour. Measurement studies in this field are, to some extent, contradictory,

including two papers presented at the Internet Measurement Workshop 2002

"Measuring Packet Reordering" [Bell02] and "Classification of Out-of-Sequence Packets

in a Tier-1 IP Backbone" QaisO2]. Both papers describe in detail, how packet reordering

can impact network performance and attempt to measure the problem using simple

active and passive measurements techniques. Unfortunately, their measurement results

3

on live Internet traffic do not correlate with Bennett [Benn99]. Bellardo and Savage

[Bell02] used a single active probe based in UCSD testing 40 different destinations over

a 20 day period. Bellardo's results show some level of reordering on over 40% of paths

tested and 15% of individual measurements with out-of-sequence packets. Bellardo's

study indicates that the amount of packet reordering varies upon a daily basis and can

range from 5% to 25% of packets appearing out-of-sequence.

Conversely Jaiswal et al. gais021, who passively observed TCP flows at a single point in

the middle of the Sprint backbone, measured only 13.6% of flows with some form of

reordering present and 5% out-of-sequence packets. These conflicting findings might be

due to different network topologies, switch architectures, underlying link layer protocols

or the measurement techniques used, but both studies are sufficiently different in nature

that drawing conclusions without further work is difficult, thus providing an ideal

stimulus for further research into measuring and understanding this phenomena.

In November 2006, the IETF IPPM Working Group published "Packet Reordering

Metrics" RFC 4737 [MortO6], after thirteen drafts of the metric has been proposed and

discussed. This metric was strongly contested by Jayasumana et al., who published

"Improved Packet Reordering Metrics' QayaO8] in June 2008, thus indicating that there

remains disagreement in the research community on defining a metric which

meaningfully, accurately and unambiguously characterises packet reordering.

Clearly, further exploration of link and local level parallelism, how it drives packet

reordering and impacts on network performance is important. Previously, there has

been little work published approaching this problem from first principles, investigating

how parallelism drives packet reordering, and then correlating this with the resulting

performance impacts, on reasonably large scale networks.

4

1.3 Thesis Organisation

This thesis is organised as follows. Chapter 2 discusses the Internet Protocol Suite and

the various options and additions to the protocol and current implementations. The

effects of Packet Reordering on TCP are discussed, and an overview of Internet

Measurement techniques is presented.

Chapter 3 presents the prior art in this area, by presenting a taxonomy of Metrics and
Methods used to characterise Packet Reordering in the Internet, and the results obtained
by using these methods. The taxonomy classifies these metrics and methods as active or

passive techniques, and discusses the advantages and limitations of each technique.

Chapter 4 presents a methodology for simulating Packet Reordering, and the

development of a testbed and experimental network to empirically measure packet

reordering. A two-point passive measurement technique is designed and prototyped,

which improves on previous methods by allowing lightweight measurement of the

amount and extent of reordering observed in a TCP flow, and classification of the cause

of each reordering-induced packet retransmission. A large testbed study of over 30,000

TCP flows is performed to investigate and measure the behaviour of TCP during

reordering.

Chapter 5 presents an investigation and the development of a mid-point passive

measurement technique of TCP Packet Reordering, which allow improved classification

of out of sequence packets, an improved measure of TCP Goodput, and a Visualisation

Metric for indicating the performance of TCP throughout the lifetime of a flow.

Chapter 6 presents a case-study of non-TCP traffic and how it is affected by Packet

Reordering; an example of an application-specific packet reordering metric is developed

for MPEG-4 video over UDP traffic, and this metric is used to describe the effects of

packet reordering on streamed video traffic.

Chapter 7 presents conclusions and proposals for future work.

5

Chapter 2

The Internet Protocol Suite

2.1 Introduction

The growth of the Internet has been well documented [Hobb97], from the very first

networking research carried out by the US Advanced Research Projects Agency in 1957,

through to the exponential growth of connected hosts experienced and measured in the

last decade. [HobbO6]

A significant part of this exceptional growth rate is due to the research conducted in the

1970s into the first host-to-host protocols, which resulted in the development of the

Transmission Control Protocol [Post8lb] over Internet Protocol [Post8la] (TCP/IP)

Suite. This has allowed a multitude of heterogeneously interconnected systems, all with

6

diverse characteristics, vendors and operating systems, to communicate seamlessly with

each other, over various communications channels.

This chapter provides an overview of the TCP/IP protocol suite, discussion of the

various enhancements which have been added to TCP since its initial development, an

overview of Network Measurement Science, and discussion of the effects of Packet

Reordering on TCP flows.

2.2 The Internet Protocol Suite

Fhe `Internet Protocol Suite', often generically referred to as 'TCP/IP' is considered to

be a 4-layer system [Stev94] [Bra89] as illustrated in Figure 1, with each layer responsible

for a particular aspect of the transmission system: -

Figure 1- The Internet Protocol Suite

The Application Layer is responsible for providing service to particular applications on

an end host, such as Web, Email, and file transfer systems, through application layer

`Messages'.

The Transport Layer provides additional functionality above the Network Layer, to

provide a particular type of service between two hosts. For the vast majority of Internet

traffic, the two main transport protocols in use are 1'CP (Transmission Control

Protocol) [Post8lb], and l'DP (User Datagram Protocol) [Post8O], discussed in greater

detail later in this chapter. Protocol Units at this layer of the suite are termed as

`Segments' when discussing TCP, and `Datagrams' when discussing UDP [Soco91].

7

The Network Layer is responsible for the routing of packets around the network,

fragmentation of packets if required, and the structures for addressing in the Internet.

The network layer must [Brad89] implement both Internet Protocol (IP) [Post8la] and

the Internet Control Message Protocol [Post8lc], which provides the routing, diagnostic

and error capabilities in the IP suite. Protocol units in this layer are described as

"Datagrams' [Soco9l] when referring to the end-to-end unit of data passed from

network layer to link layer, and IP `Packets' when referring to mid-point forwarding.

Due to fragmentation, an IP Datagram may be transmitted as a single, or multiple, IP

Packets.

The Link Layer is the network interface layer, and is normally considered to be the

device driver in the operating system and the corresponding network interface cards in

the end hosts. End hosts handle the details of physically interfacing with the relevant

transmission media. Protocol units at this layer of the stack are usually termed `Frames'.

Figure 1 illustrates the `Hourglass Analogy' [Deer01] which has been argued to be the

main factor in the success of the Internet Protocol. The `thin waistline' provided by IP,

allows physical network independence, by presenting a ubiquitous interface between the

application and link layers, thus allowing application layer services on different

machines, to communicate directly with application layers on other machines, over a

multitude of per-hop link media, creating one `end-to-end' [Salt81] path.

2.2.1 Internet Standardisation

Internet Standardisation is a loosely defined process, driven by volunteers from

academia and industry, in four main organisations; the Internet Society, the Internet

Architecture Board, the Internet Engineering Task Force (IETF), and the Internet

Research Task Force. The majority of standardisation work is carried out by the IETF

and published in the form of incremental documents called Request for Comments'

(RFC) [Malk93]. RFCs can describe protocols standards, describe best practice, or be

informational. When describing protocol standards, an RFC will describe a protocol as

either Standard, Draft Standard, Proposed Standard, Experimental, Informational or

Historical, with various aspects and features of each protocol, marked with various

8

requirement levels[Brad97a].

It should be noted though, that standardisation itself is a lengthy process - the

Transmission Control Protocol is planned to move from `Proposed Standard' to

`Standard' in October 2008 [Allm07], over 20 years since original conception. Indeed, it

is worth noting that once a standard is documented in an RFC, there are no formal

methods to enforce compliance, and misbehaving implementations [Chen07] [Sava99]

are commonly observed [Medi05] in the Internet.

2.2.2 Internet Protocol version 4

The Internet Protocol version 4 (IP) [Post8l a], commonly referred to as ̀ RFC 791', was

created in September 1981 and describes the DARPA Internet Protocol Specification,

for transmitting a packet across a packet-switched communications network.

RFC 791 is specifically limited in discussion so as to only describe the two basic

functions of addressing and fragmentation. Therefore there are no mechanisms to allow

end-to-end data reliability, flow control not sequencing, and it is assumed that IP will be

used in conjunction with other higher-layer protocols in the Suite to provide these

additional functionalities. IP is considered to be a `best effort' unreliable, datagram

delivery service. Sources and Destinations are identified by fixed length addresses, with

mid-point hosts given the ability to perform fragmentation and reassembly of packets

over intermediate networks with varying Maximum Transmission Units (MTU).

The standard describes how packets are to be moved by passing from one `Internet

Module' in a host, to another, until the final destination address is reached[Post8lb]. A

host which is implemented and designed for the specific task of forwarding IP packets

is called an IP `router' [Soco9l] [Bake95]. Each datagram must be considered

independently of all others; there are no connections or logical circuits, and there are

specifically no guarantees of reliability, flow control, or datagram sequencing. This

allows a light-weight and simple implementation in mid-point routers; a router does not

record state information to maintain a connection, and it is acceptable for a router to

randomly drop packets from its input queue should congestion occur. A router is also

9

allowed to output packets travelling between the same source destination pair through

different output paths, and therefore no guarantees can be made on packet sequencing

at the destination host[Benn99].

The basic functionalities of Addressing and Fragmentation performed by the IP layer

are now discussed.

2.2.2.1 Addressing

The purpose of addressing is to provide an interface between the local network

addressing structure, and Internet-wide routing. Addressing avoids the complexity of

naming, separately carried out by Domain Names [Mock87], or an end user being

required to specify routes between nodes.

Upon receipt of a packet [Bake95], the router will validate the IP header, process any

relevant IP options specified in the header, and then examine the IP Destination

Address in order to make a forwarding decision. An IP address can be partitioned into

two constituent parts; a Network Prefix, and a host number. The Network Prefix is

compared with the router's routing table, and the next hop IP address for the packet

and relevant output interface are determined. This continues until reaching a router

capable of mapping the Destination IP address to a local network address, whereupon

the packet is delivered to the end host.

IPv4 addresses, are of a standardised [Post8la] fixed length of 32 bits, with a

convention [Soco9l] of writing each of the 4 bytes in decimal, separated by a period.

The original specification has undergone significant developments, through Classless

Inter Domain Routing [Fu 193], and Network Address Translation [Sris0l]. Although

the IPv4 address space is limited, thus motivating the development of IPv6 [Deer98], a

number of challenges [WaddO2] have slowed actual deployment of Ipv6, and it is

expected that IPv4 will remain the predominant addressing technique for the

foreseeable future.

10

2.2.2.2 Fragmentation

The purpose of Fragmentation is to allow the transmission of IP packets across an end-

to-end path, through constituent intermediate networks, with varying sizes of MTU.

This is particularly common when a source host is located on an 802.3 Ethernet

network, where the size of each packet could be as large as 1500 bytes. All IP compliant

hosts must be able to forward a packet of 68 bytes without performing further

fragmentation (60 bytes maximum header size, and 8 byte minimum fragment

size)[Post8la]. Additionally, every host must have the capability of receiving at least a

576 byte IP packet, either in one single packet, or in multiple packet fragments.

Fragmentation is performed transparently to higher layers, and re-assembly of fragments

is only performed at the destination host in a connection - individual fragments of

packets are each routed individually, and therefore may transit differing disjoint paths

prior to arrival at the destination.

Fragments are reassembled using the Identification Field (IPID) in the IP header, in

conjunction with the Fragment Offset Field, Length Field and More Fragments Field.

The IPID uniquely identifies each packet sent by a host, and is used together with the

source and destination addresses and protocol fields, to identify datagram fragments for

reassembly. The sending host must therefore ensure that the IPID is unique for each

source/destination pair, and protocol, for the time that IP packet or its fragments, are

alive in the Internet. Most TCP/IP Linux implementations increment a Kernel variable

each time an IP datagram is sent [Stev94]. The IPID, therefore, normally increments

predictably each time a datagram is sent, and is often exploited in IP header

compression techniques[West06].

2.2.3 IPv4 Header Format

Figure 2 illustrates the format of the IPv4 Datagram Header applied to packets upon

leaving an Internet host. Bit positions are illustrated along the top of the header and it

should be noted that IP packets will always be 32 bit aligned for optimum performance

11

on commodity hardware. Each field of the header is populated as follows: -

Pv4-
header

048 12 16 19 32

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address
Options + Padding

"

Data ý-`

Figure 2- IPv4 Header Format

" Version indicates the version of the internet header, which for RFC 791 - IPv4,

is the value 4, thereby specifying the format of the following fields.

" IHL is the length of the internet header in 32 bit words, and thus a pointer to

the beginning of the data. A correctly formed IPv4 header will have a minimum

value of 5, corresponding to the minimum header length of 160 bits.

" The Type of Service field historically provided an indication of the Quality of

Service desired [A1gm92], which was examined by mid-point routers when

determining an onward path. Currently, it is used as either the Differentiated

Services (DiffScrv) Field [Nich98] in DiffServ networks [Blak98], or Explicit

Congestion Notification (ECN) Field [Rama0l] on compatible hosts.

" Total Length is the total length of the datagram, measured in octets, including

the packet header. A 16 bit field allows a datagram of up to 65,535 octets.

" Identification, Flags and Fragment Offset are variables set by the sender to

allow packet fragmentation, as discussed in Section 2.2.2.2.

" TTL indicates the maximum time that the datagram is allowed to remain in the

12

Internet system, and is decremented by each host processing that packet. The

current recommended default value is 64 [Brad89]

" Protocol indicates the next type of protocol header which will appear in the

packet following the IPv4 header. The values for various protocols are specified

in the Assigned Internet Protocol Numbers list [IanaO7].

" Header Checksum is performed across the Header only, recomputed and

verified at each point where the Header is processed.

" Source and Destination Addresses are as discussed in Section 2.2.2.1

" Options are a number of optional types which implement less common

functions such as Security, Loose Source Routing, Strict Source Routing, Route

Record and Internet Timestamps. These functions may not be implemented, in

which case zero-bit padding is applied to ensure that the Header ends on a 32

bit boundary. It is permitted for hosts to silently ignore options which they do

not understand.

2.3 User Datagram Protocol

UDP is a connectionless transport protocol [Post80], and provides a simple interface to

IP when a connection-oriented guaranteed delivery service is not required. A UDP

header consists of a Source and Destination Port Numbers, to allow multiplexing of

packet flows between hosts, a Length header and a Checksum header.

UDP provides a very simple service with no congestion or flow control, and no method

of retransmitting lost packets. For non-real-time applications where reliable transport is

important, TCP would be the protocol of choice.

2.4 Transmission Control Protocol

Transmission Control Protocol (TCP) [Post8lb] is the predominant transport-layer

protocol operating in the Internet [Medi05], and provides a reliable full-duplex

connection, across an end-to-end path, between two Internet hosts. TCP is used in

13

applications where accuracy and completeness of data take precedence over latency, and

is therefore suited to applications such as E-mail, Web traffic and file transfer.

2.4.1 Reliable Transmission

TCP operates a `sliding window' over a continuous byte stream of data from the

application layer, packetising this data into Segments. A Sequence Number is

conceptually assigned to every byte transmitted, and positive Acknowledgements (Acks)

are required from the receiving host, thus indicating that each byte has been successfully

received. Expiration of a timer at the sending host, before an Ack is received, indicates

that the segment has been lost and that a retransmission should be scheduled.

Upon arrival at the receiving host, TCP specifies that the Sequence Numbers should be

used to correctly reorder segments that may have arrived out of order and to reveal

duplicates. TCP is therefore able to accommodate the loss, damage, duplication or

reordering of packets that may be caused by any of the underlying networks along the

end-to-end path.

Flow control is performed in TCP, allowing the receiving TCP to control the rate at

which the sender transmits data, by returning a Window with every Ack, indicating

available space in the receiver buffer. This `Receiver Advertised Window' (Hund) is flow

control governed by the Receiving TCP based on the Receiver's buffering and

processing capabilities. Flow control performed at the Sending TCP is discussed in

Section 2.4.6.

Multiplexing is achieved in TCP through the use of Port Numbers on each host which,

when concatenated with the host address, are termed as a `Socket'. A pair of `Sockets'

uniquely identify each `Connection', and thereby allows multiple TCP connections to

terminate on any host.

14

2.4.2 TCP Header Format

Figure 3 illustrates the TCP header, with fields defined as follows:

IPv4
header

TCP
header

Data

0 4--,,
-

8 12 16 20 24
_

32

IP Header

Source Port Destination Port

Sequence Number
Acknowledgement Number

Data
Offset Reserved C 0 Window

Checksum Urgent Pointer

Options Padding

Data

Figure 3- TCP Header Format

" Source Port is the 16 bit source port on the source host.

" Destination Port is the 16 bit destination port on the destination host.

" Sequence Number is the 32 bit Sequence Number of the first data octet in the

segment's payload (except when the SYN flag is present). If SYN is present the

sequence number is the Initial Sequence Number (ISN) of the connection, and

the first data octet is TSN+1.

" Acknowledgment Number field is valid only if the ACK control bit is set, and

contains the 32 bit Next Sequence Number that is expected at the destination

host.

" Data Offset is the 4 bit indicator of the number of 32 bit words in the TCP

header. The TCP header is always 32 bit aligned.

" Reserved is 6 bits reserved and must be zero, or, if Explicit Congestion

Notification [Rama0l] is enabled, are used as described in RFC3168 [Rama0l]

15

and RFC3540 [Spri03].

" Control Bits are 6 single-bit control flags as follow: -
URG - Urgent Pointer flag.

ACK - Acknowledgement flag.

PSH - Push function flag.

RST - Reset connection flag.

SYN - Synchronise sequence numbers flag.

FIN - Request connection termination flag.

" Window is a 16 bit field signalling the number of data bytes, starting with the

byte indicated in the Acknowledgement field in this segment, which the

receiving host is willing to accept.

" Checksum is the 16 bit checksum of the payload and data, which is mandatory

in all TCP packets[Brad89]

" Urgent Pointer is a 16 bit field which points to urgent data following the

current segment. The pointer points to the sequence number of the octet

following the urgent data.

" Options may appear at the end of the TCP header and are multiples of 8 bits in

length, with Padding to ensure that the packet is 32 bit aligned. Options may

indicate Timestamp options [Post8lb], Maximum Receive Segment Size (MSS),

Selective Acknowledgements (SACK) [Math96], or other options. It is specified

that a TCP must be able to receive an option in any segment, and ignore without

error any option not implemented [Brad89].

2.4.3 Sequence Numbers and Acknowledgements

The idea of Sequence Numbers is important in TCP as, conceptually, each octet of data

is assigned a sequence number. Once the `sliding window' has isolated a stream of octets

to form into a segment, it is the sequence number of the first octet of data in a segment

that is used as the sequence number for the complete packet; termed the `Segment

Sequence Number'. The Segment Sequence Number is placed in the Sequence Number

field of the TCP header.

16

In the reverse direction, segments carry an Acknowledgement number, placed in the

Acknowledgement Number field of the TCP header, with the ACK flag set, so as to

mark the field as being valid. An Acknowledgement number in TCP is the sequence

number of the octet that the receiver is next expecting to receive. Therefore, in a simple

scenario, the Acknowledgement of a packet would be the (Sequence Number + Packet

Length) of the most recent packet received.

Acknowledgements in TCP are cumulative as illustrated in Figure 5. A Receiver may

operate the `Delayed Ack' algorithm [Clar82], in which case a Sender, receiving

acknowledgement of sequence number x, should interpret this to mean that the

Receiver has correctly received all bytes up to but not including x. Cumulative Acks can

substantially reduce protocol overhead [Brad89], but excessive delays can disturb the

round-trip sampling and packet `clocking' algorithms Jaco88].

2.4.4 Establishing a Connection

A connection is established through a three-way handshake mechanism, as illustrated in

Figure 4, where the TCP modules of the Sender and Receiver synchronise on each

other's Initial Sequence Numbers (ISN). Each TCP selects their ISN through an

implementation dependent mechanism, and transmit a packet with the SYN

(Synchronise) flag enabled. Once each TCP has positively acknowledged the ISN of the

other TCP, by transmitting Acks, the connection is established and data transmission

can begin.

For sequence number purposes, the SYN packet sent to establish a connection, is

considered to occur before the first actual data octet of the segment in which it occurs,

while the FIN packet, sent to signal the end of a connection, is considered to occur after

the last actual data octet in a segment in which it occurs.

17

Sender Receiver Sender Receiver

SYN Seq 1234
(Seq=X)

Ack 5

Seq 5,6,7,8
SYN ACK

(sec -Y
ACK-X-1

Ack9

Seq 9,10,11,12

ACK
(SEQ=X+1,

-ý ACK=Y+1;

Ack 13

Figure 4- TCP 3-way Handshake Figure 5- TCP Cumulative Acknowledgements

Closing a connection can happen in two ways [Brad89] - either party can signal they

wish to close by sending a FIN handshake, or an `abort' can be sent when a RST

segment is sent, and the connection is discarded by both parties.

2.4.5 Retransmission Timeout

TCP reliability is implemented through the use of retransmissions, should loss be

detected in the network. A TCP sender will maintain a copy of each transmitted

segment, and a timer is initialised which will count until an acknowledgement is received

which encompasses the sequence number of that segment. Should an acknowledgement

not be received before a `Retransmission Timeout' (RTO) value is reached, the Sender

will assume that the segment has been lost and will initiate the retransmission process.

To enable this loss detection, the TCP sender requires a method of calculating the

Round Trip Time of connections, which must be calculated on a per source-destination
basis, and must be dynamically updated to ensure that any rime-varying effects of the

end-to-end path are considered.

18

All TCP hosts must [Brad89] [PaxsOO] implement Kam's algorithm [Karn87] for

selecting non-spurious RTT measurements that could corrupt the smoothed RTT

measurement, and Jacobson's algorithm Uaco88] for computing the smoothed RTI', to

calculate the retransmission timeout. Traditionally, TCP implementations will take one

RTT measurement at a time (typically once per RTI)[PaxsOO]. For connections where

there are no current RTO samples, the RTT is initially set to 3 seconds, and during

calculation it should always be rounded up to a minimum value of at least 1

second[PaxsOO].

2.4.6 TCP Congestion Control

TCP Congestion Control is the process of applying flow control on the Sending TCP

host, by probing the network path capability, and governing transmission so as not to

overwhelm the intermediate nodes. Congestion Control [Allm99] [Al m07] is specified

by four closely related algorithms; Slow Start, Congestion Avoidance, Fast Retransmit

and Fast Recovery Qaco88] Qaco9O]. [Brad89] mandates that a TCP Sender must

implement Slow Start and Congestion Avoidance, with Fast Retransmit and Fast

Recovery later optionally introduced in [Allm99].

TCP maintains three variables per connection at the Sending TCP host:

" The Congestion Window (cwnd) is a sliding window, which limits the amount

of data a Sending TCP can transmit into a network, before receiving an

Acknowledgement.

The Receiver's Advertised Window (rwnd) is flow control from the Receiving

TCP, indicating a window size of data the receiver is willing to accept.

" The Slow Start Threshold (ssthresh) is a value used to decide whether the
Sending TCP is transmitting packets using the Slow Start or Congestion

Avoidance algorithm, and if the cwnd variable should be adjusted.

19

The minimum of cwnd and nvnd controls the amount of data a TCP sender can transmit

into a network, before an Ack is received from the recipient.

The aim of TCP Congestion Control is that transmission should be `self-clocking'

Daco90], where the Sending TCP uses feedback in the form of rick packets, to strobe

packets into the network, as other packets leave the network. Before this equilibrium

can be reached, termed the Congestion Avoidance phase, the Sender must aggressively

probe the network in order to find the end-to-end capacity of the path - termed the

Slow Start phase.

The Slow Start algorithm is used to govern transmission when twnd < ssthresh, and the

Congestion Avoidance algorithm is used to govern transmission when cwnd > ssthresh.

Sender

ä

O
-0 3

4

0
N5

(D 6
0)7
C8
0
U

Receiver Sender

Figure 6- Slow Start

2

ä
Z3

U

3:
0

a

0

0)5
C
0
U

6

20

Receiver

Figure 7- Congestion Avoidance

2.4.6.1 Slow Start

During Slow Start, the Sending TCP will increment cwnd by one `sender maximum

segment size' (SMSS), each time an Ack is received as illustrated in Figure 6. This

results in an exponential rise of segments injected into the network, and cwnd growing

rapidly. Slow Start ends when cwnd is greater than ssthresh, or congestion is observed.

RFC 2581 defines the slow start algorithm in terms of segments rather than bytes, but

there are many TCP implementations which increase csvnd by exactly SMSS bytes

whenever an Ack covering any new data, whatever size, is received,. This is known as

`Ack Division' [Sava99]. This, and other `mis-behaving' TCP implementations [Sava99]

are widespread in the Internet today.

2.4.6.2 Congestion Avoidance

Eventually the sender will reach a threshold where cwnd has grown too large, and the

end-to-end network connection is unable to sustain that number of packets in flight

simultaneously. At this point, packet loss will occur; indicated at the Sending TCP by

either a segment RTO or, as discussed in Section 2.4.6.3, the receipt of duplicate Acks

and the triggering of Fast Retransmit.

When congestion is indicated, the Sending TCP will set its ssthresh variable to one-half of

the current window size (the minimum of civnd and nvnd). Additionally, if the congestion
is indicated by a RTO, cwnd is set to one segment and Slow Start will commence.

Once retransmission has occurred, the sending TCP will continue to transmit. When the

congestion window has grown to cwnd > ssthrerh, the Congestion Avoidance algorithm

will regulate transmission, and will increment cwnd by approximately 1 SMSS per RTT,

no matter how many Acks are received in that period. This results in a continued

growth of cwnd, but in a linear fashion, as illustrated in Figure 7. The process of probing

the path and the continuous adjustment of ssthresh is illustrated in Figure 8, where three

losses each require a halving of the ssthresh value, and transmission restarting using the

Slow Start algorithm.

21

U

O
v

c O
U) (L)
rn
c O
U

Loss

Loss
(RTO)

---- Slow Start Threshold Loss
(SSlhresh) (RTO

Slow Slow ow
Start Start art fart

Figure 8- Adjusting Slow Start Threshold

2.4.6.3 Fast Retransmit

The Fast Retransmit algorithm operates on the principle that Receiving TCP hosts are

required [Brad89] to generate an immediate Ack each time they receive an out-of-order

TCP segment. This Ack is termed a `Duplicate Ack' of the last in-order segment

successfully received, and signals to the Sending host that segments are still successfully

arriving at the end host, but are arriving out of order, indicating that there is loss in the

segment sequence at the receiving end. It is acknowledged [AHm07] that the reaction to

the arrival of duplicate Acks varies widely in TCP implementations.

A TCP sender should [AUm07] use the Fast Retransmit algorithm to detect and repair

loss, by using the arrival of 3 duplicate ricks, by default, as an indication that loss has

occurred - that is, a total of four packets with the same acknowledgement field.

The arrival of 3 duplicate Acks should cause the srihresh to be set to one-half of the

current wund. Once the lost segment has been retransmitted, cwnd is inflated to (ssthresh +

3xSMSS) to account for the segments that have left the network.

The value of 3 was chosen since the Sending TCP does not know if the duplicate Acks

are caused by packet loss or packet reordering over the path and, when the algorithm

was developed in 1990UJaco9O], it was assumed that if `the consecutive duplicates

22

threshold is set high enough, we can reasonably assume that duplicate ticks mean

dropped packets', as the usual cause of out-of-order packets at the receiver was assumed

to always be due to a missing packet.

TCP hosts which implement the Slow Start, Congestion Avoidance and Fast Retransmit

algorithms are termed `TCP Tahoe' variants.

2.4.6.4 Fast Recovery

After a Fast Retransmission occurs and the Sender has sent what appeared to be the lost

segment, the Fast Recovery algorithm controls the Sending TCP until new data is

successfully Acknowledged by performing Congestion Avoidance, rather than entering

Slow Start. When the next Ack arrives acknowledging new data, cwnd is set to ssthresh,

and transmission of new data continues, at half the rate at which packet loss occurred.

The Fast Recovery algorithm assumes that, although packet loss has occurred, the

duplicate Acks indicate that other packets were successfully leaving the network and so

there is no need to abruptly close cwnd and re-start the connection with Slow Start. This

allows the `Ack Clock' to be preserved Uaco88], and the TCP algorithm to remain

stable.

TCP hosts which implement the Slow Start, Congestion Avoidance, Fast Retransmit

and hast Recovery algorithms are termed `TCP Reno' variants.

2.4.6.5 Limited Retransmit

The fast retransmit and fast recovery algorithms can be implemented using the Limited

Retransmit algorithm [Allm0l], where on the first and second duplicate ricks, a TCP

should send a segment of previously unsent data, as the duplicate Acks indicate that data

is leaving the network.

23

2.4.7 Loss Recovery Mechanisms

Congestion control loss recovery mechanisms represent a popular research area, where

investigations attempt to build on the mandatory Fast Retransmit and Fast Recovery

algorithms to illustrate improvements in performance, although comparison of these

techniques can be difficult [Floy07]. The predominant methods [Medi05] live in the

current Internet are now discussed.

2.4.7.1 Partial Acknowledgements

The NewReno modification to TCP's Fast Recovery algorithm [Floy04] is motivated by

the fact that simulations illustrate TCP Reno performs poorly [Fall96] when multiple

packets are lost in a single packet `flight'. Multiple packet losses will trigger a Fast

Retransmit, but this will only result in a `Partial Acknowledgements' from the Receiver -

an Ack which does cover previously unacknowledged data, but not all the data

outstanding when loss was detected, thus revealing that more than one loss has

occurred.

During the Fast Retransmission phase, NewReno examines Acks received after the Fast

Retransmit has sent the retransmitted packet. If the ack acknowledges all data, up to the

highest sequence number transmitted by the Sender, then the Fast Retransmit is

assumed to have successfully completed loss recovery. If the Ack does not acknowledge

all data sent by the Sender, up to the highest sequence number transmitted, the Ack is a

Partial-Ack. On identification of a Partial-Ack, the segment indicated by that Ack is

retransmitted - without waiting for any more duplicates, and hopefully before an R'1'O

occurs.

2.4.7.2 Selective Acknowledgements

With the limited information available from cumulative acknowledgements, a Sender

can only learn about one lost packet per RTT. The TCP Selective Acknowledgements

option [Math96] allows the Receiving TCP to inform the sender what segments have

24

arrived successfully, so that only the actually lost segments need to be retransmitted.

The Receiving TCP uses the TCP Options header to inform the Sender of the non-

contiguous blocks of data that have been successfully received, but are queued until all

sequence gaps have been filled. As retransmission from the Sender fills gaps in the

holes, the Ack field is increased in the usual way, to Acknowledge successful receipt of

the data.

RFC 2883 [FloyOO] extends the use of SACK by specifying that when duplicated packets

are received, the SACK options header can be used to report the Sequence number of

the duplicated packet, in order to allow the TCP sender to infer the order of packets

received, and infer when unnecessary retransmissions have been sent. This could be

useful in environments where reordering, lick loss, duplication or early retransmit

timeouts occur frequently.

2.5 The Problem of Reordering

As illustrated by the development of the Fast Retransmit algorithm, later additions to

TCP were made, based on the assumption that packet reordering on the Internet was a

pathological behaviour -a phenomenon that was very unlikely to occur. Discussion of

the degree of reordering measured in the Internet is presented in Chapter 3, and a

measurement study of the true effects of packet reordering is presented in Chapter 4.

As discussed in Chapter 1, a significant contribution of Bennett's original paper in 1999,

was to question the assumptions made by protocol designers that packets will traverse

the Internet in-order. The following section presents the effects of reordering on TCP

as hypothesised by Bennett, and the resulting effects that Bennett argued would be

measurable on TCP performance [Benn99]. These assumptions have been assumed to

be correct in many of the later studies of packet reordering [Bel102][BlanO2].

Bennett hypothesised that, due to the asymmetric nature of the Internet, connections

will frequently only experience reordering in one direction, and therefore there are three

25

types of packet reordering that can be considered; forward-path reordering or data

reordering, reverse-path reordering or Ack reordering, and a combination of both

forward and reverse path. Each type of reordering was argued to have very different

effects on the overall TCP connection.

2.5.1 Forward path reordering

In forward path reordering, TCP data segments arrive out-of-sequence at the receiver as

shown in Figure 9. Bennett hypothesised that this would result in the five effects of

unnecessary retransmissions, difficulty growing (wnd and ssihresh, actual losses being

obscured, poor R'IT estimation, and reduced efficiency at the receiving TCP.

Sender

Seq 1

Ack 2

Seq 3

Ack 2

Seq 4

Ack2

Seq 5

Ack 2

Re-tx 2

Sender Receiver

Seq 1,2,3,4

ACK 5

Seq 5,6,7,8

Seq 9,10,1

ÄCK13
Large amount of data

ACK'd at once

Ack

Figure 9- Forward Path Reordering Figure 10 - Reverse Path Reordering

When data arrives out of order, the receiving TCP sends a duplicate acknowledgement

of the last in-order byte received or, if SACK is implemented, the ack will acknowledge

both the last in-order byte and the new out-of-order data.

Upon receiving an out-of-sequence packet, through either loss or reordering, the TCP

26

Receiver

receiver's request for retransmission will require the sender to infer that the path is

congested. This will result in an unnecessary re-transmission, but additionally will initiate

unnecessary congestion avoidance, thereby further reducing the potential throughput of

the link.

2.5.2 Reverse Path Reordering

In reverse path reordering, the acknowledgments travelling back to the sender are

reordered, as shown in Figure 10. Data travelling in the forward path may be arriving in

sequence, but the asymmetric nature of the Internet may cause the receiver's cumulative

Acks to appear out of sequence. Bennett hypothesised that reverse reordering would

cause significant problems with the self-clocking property of TCP, leading to highly

bursty transmission patterns [Benn99].

2.5.3 Combined Path Reordering

Combined path reordering occurs when packet reordering is observed in both the
forward and reverse paths. This could occur when a TCP connection is symmetric and

passing through the same routers in both directions, although some studies have noted

[GharO4], that packet reordering on specific network paths and routers can be

asymmetric in nature.

During Combined Path Reordering, Bennett hypothesised that TCP will alternate in

behaviour between the effects of both forward and reverse path. This causes a

combination of symptoms, depending on the degree of reordering experienced in both

directions.

Packet Reordering therefore has an instinctively negative effect on the performance of

TCP, and therefore the majority of the current metrics and measurement studies have

focussed on characterising the movement of packets within a flow, rather than

measuring the resulting performance of a connection during reordering. Few papers in

the literature [Laor021 have actually measured the performance of TCP, or questioned

27

Bennett's arguments of TCP's behaviour when undergoing reordering. A measurement

study of the true effects of reordering on TCP application performance is therefore

carried out in Chapter 4.

2.6 Internet Measurement

Network measurement science is motivated by a number of factors in order to develop

the tools and techniques to allow accurate characterisation and modelling of live

network traffic currently transported in the Internet today. Measurement is important

for provider operations, such as capacity planning, billing, and fulfilling local Lawful

Intercept requirements, and also from a scientific perspective of evaluating current

protocols and architectures, in order to develop new technologies and standards.

As the Internet evolves and new technologies such as voice, video and data 'Triple-

Play'[HensO8] are deployed, there will be an increasing requirement to develop and

implement Service Quality support in IP networks. To perform the traffic engineering

required for this support, protocols such as RSVP [Brad97b] require more sophisticated

characterisation of traffic flows, in order to allow network carriers to make provision for

perhaps millions of concurrent connections, with diverse traffic characteristics and

requirements[RaghO7], while at all times maintaining a guaranteed level of Quality of

Service (QoS) [Info07].

2.6.1 Quality of Service

Quality of Service and Traffic Engineering [AwduO2] are becoming dominant in

Internet access technologies[InfoO7], as business users move from traditional ATM

leased line installations to Virtual Private Networks (VPN)[InfoO7]. This new

technology provides many cost benefits to the user, as there is no longer the

requirement to install expensive point-to-point leased lines but, as a result, the level of

service and traffic characteristics are no longer guaranteed. There is, therefore, an
increasing requirement for Service Level Agreements with accurate methods, to police

and measure compliance of the end user service experience, and to ensure that the

28

network is providing the Quality of Service that is expected.

2.6.2 Service Level Agreements

A Service Level Agreement (SLA) is a contract which documents the level of service

between a user and a network provider [Mart02]. The SLA describes the business terms

of the agreement, the network provider and the users' responsibilities, and the penalties

to be imposed should the agreement be broken. Examples of SLAs are widely available

[Pipe07] [AttO7], as they are used by providers as key differentiators to attract new

customers. The Service Level Specification (SLS) [Nich01] of the SLA is a set of

parameters and their values, defining quantitative characteristics, and the bounds on

these characteristics, that the provider is committing to deliver. A wide variety of

characteristics may be included, such as delay, loss, Delay Variation and availability;

these characteristics, and the methods used to measure these characteristics, are

documented and agreed upon before a provider will make provision for each new

customer.

2.7 Metrics and Measurements

The term `Metric' is used to describe the computation of a measurement, and results in

some quantifiable value that characterises a feature of the network.

The term `Measurement' is used to describe the process by which the metric is obtained

or retrieved and, therefore, could be one of several methods to perform a measurement

that will result in the same metric. Performing a Measurement requires `Instrumentation'

of the network, at an `Observation Point' (OP), for the given time-base of the metric.

The following section discusses the common measurements and metrics that are used in

current Internet monitoring[Brow0l]. A number of metrics are in common use, but

their definitions are not necessarily standardised, resulting in problems when comparing

one set of metrics with others.

29

2.7.1 Packet Latency

An accurate measure of latency is important as many applications, such as voice and

video, do not perform well over network paths with high levels of delay. TCP will suffer
degraded performance, as the round-trip-time estimator will measure a very high value,

resulting in the poor performance of loss recovery and congestion control algorithms.

The `One Way Delay' measurement as defined by the IETF IPPNI Working Group, in

Standards Track RFC 2679 [Alme99a], is the time measured between a host transmitting

a packet, and the destination host receiving it. `Network Latency' is the term used to

describe the round-trip delay[Alme99b], and is a function of the time taken to travel

along the physical links (transport time), the time to pass through routers (queuing and

transmission time), and the time for the receiving host to process the packet and

generate and Acknowledgement (server response time). When measuring network

latency, the transmission time component of the measurement may be asymmetric, as

forward and reverse measurements may travel over disjoint paths.

Latency can be measured using simple ICMP Echo Request 'ping' messages, or TCP

resets, although using ICMP may not always result in accurate network

measurements[WenwO7]. Measuring forward and reverse path delays separately, requires

instrumentation at both ends of a connection, with appropriate hardware and software

agents. RFC 2679 [Alme99a] describes a One-Way Delay metric, where both hosts have

highly-synchronised clocks, and specially constructed packets with timestamps are

transmitted to allow delay calculation in each direction.

2.7.2 Packet Loss

Network loss measurements are important because many applications do not perform

well when end-to-end packet loss is high. Many services, such as voice over IP, are
designed to tolerate some packet loss but, over a threshold value the service quality
decays quickly. TCP actually requires packet loss in networks, in order to probe network

capacity and adjust its transmission rate accordingly, and so an accurate measure of one

way loss [Alme99c] and round trip loss are important network characteristics. Packet

30

loss may vary due to network load and time, and may exhibit bursty behaviour.

Therefore, loss patterns [Koo02] and loss distribution are key parameters which

determine the performance observed by the users for certain real-time applications.

A definition for Packet Loss is provided by the IETF IPPM Working Group, in

Standards Track RFC 2680 [Alme99c], `A One-Way Packet Loss Metric for IPPM'. Loss

is defined simply as the number of packets transmitted from sender to receiver, which

have been lost in transit. This can be expressed as a percentage over a set period of

time. If a packet arrives, but any part of it is corrupted, RFC 2680 defines that packet to

be counted as lost. If a packet arrives very late, a method is required to differentiate

between packet loss and those very late packets; RFC 2680 suggests an upper bound of

255 seconds, as defined by the theoretical TTL lifetime of an IP packet. Packets which

arrive later than 255 seconds are to be counted as lost. If a packet is duplicated along the

path, so that multiple non-corrupt copies arrive at the destination, RFC 2680 defines the

packet to be counted as received. If the packet is fragmented, and for whatever reason,

it is not reassembled correctly at the destination, RFC 2680 defines that packet to be

counted as lost.

The main difficulty with current loss measurement techniques, is that it is difficult to

isolate an end-to-end loss measurement to a particular network node or path.

Additionally, RFC 2680 comments that packet loss may occur asymmetrically across a

network, and therefore loss measurements should be considered `one-way'. Loss

measurements would be more useful for providers if they isolated a particular

malfunctioning node or path. Loss measurements are also based on active probing

techniques, which may result in packet probes traversing different intermediate routes

between source and destination, thus measuring different paths. Therefore, routing and

switching anomalies must be considered when performing these measurements,

especially if it is impossible to gain knowledge of the interior gateway routing protocols

in use.

31

2.7.3 Packet Jitter and Delay Variation

The IETF IPPM Standards Track RFC 3393 [DemiO2], 'IP Packet Delay Variation

Metric for IP Performance Metrics', defines a metric for the variation in delay of packets

across Internet paths. This metric is based on the variance of the one-way-delay, as

defined by RFC 2680, of two or more selected packets.

RFC 3393 establishes that terminology in this area of measurement lacks

standardisation, and that the variation in packet delay is sometimes called `Jitter'. `Jitter'

commonly has two meanings; the first being the variation of a signal with respect to a

clock signal, where the arrival of a specified signal is expected to coincide with the

arrival of that clock signal. This definition of `Jitter' is similar to a metric called `Wander'

[DemiO2] and is specific to networks such as ATM. The second meaning of `Jitter', as

defined in RFC 3393, is related to the variation of a metric (e. g. delay) with respect to

some reference metric (e. g. the average delay). RFC 3393 recommends discontinuation

of the word `Jitter', and use of the more specific term 'IP Packet Delay Variation. '

`Delay Variation' is defined [PoreO6] as the absolute value of the difference between the

arrival delay variation of two consecutive packets belonging to the same stream, and is

therefore indicated by packets exhibiting a differential delay, positive or negative,

compared to the other packets in the stream. Delay Variation can be caused by multi-

path routing, route fluttering, or packets of the same stream traversing different queues

inside a router. Delay Variation is an important metric for determining queuing and

buffering capacities at mid-points and end-points in a network, as applications such as

video require a constant flow of packets. Therefore Delay Variation must be smoothed

by appropriately sized buffers.

2.7.4 Packet Throughput

Throughput is defined [Brad91] as the maximum rate, measured in bits or packets per

second, at which none of the offered packets are dropped by a network device.

32

Throughput therefore describes the number or rate of delivered packets to a network

device or end host. Throughput as a metric has many applications in terms of capacity

planning and traffic engineering, but is also extended to discuss `Goodput'. Goodput is

the number or rate of useful packets delivered, and therefore is a function of the

throughput with respect to loss and retransmissions. Goodput is discussed further in

Chapter 5.

2.7.5 Packet Ordering

In-sequence delivery is a good indicator of the health of a connection, as it indicates that

there are no large variations in transmission time or Delay Variation, and that the

receiving host is receiving data in the order by which it was intended. In protocols such

as TCP, extremely late packets may result in the Receiver assuming that a loss has

occurred, and that the Sender has chosen to retransmit that packet due to RTO. These

extremely late packets may also result in the Receiver signalling to the Sender for Fast

Retransmission, perhaps unnecessarily resulting in packet retransmission, and perhaps

resulting in unnecessary Sender congestion avoidance. In Negative-Acknowledgement

based protocols, such as the RFC 3940 NACK-Oriented Reliable Multicast Protocol

[AdamO4], extremely late packets would result in the Receiver signalling to the Sender

for unnecessary retransmission.

Packet Ordering will also have an overhead, associated with the re-sequencing packets at

the Receiver, before presentation of these packets to higher network layers.

A review of both Metrics and Measurement Techniques for IP packet ordering is the

subject of Chapter 3.

33

2.8 Measurement Bases

Measurements can be classified on the basis of where and at which level of traffic

aggregation the traffic data is gathered, and a number of Measurement Bases are

defined[Lai03]. The observation point may be a probe on a line card of a router, or a

software probe in the IP stack of a particular host. The exact location of the observation

point may also have an effect on the observation measurement time. The concept of

`wire time' and `host time' are therefore important, and are affected by the specific

instance of probe. Wire time is defined [Alme99a] as the moment when a test packet

leaves the network interface of the source, and the moment when it arrives completely

at the destination. Host time is the timestamp taken from the sending/receiving hosts

kernel, when the probe requests a timestamp.

2.8.1 Flow-based Measurements

Flow-based measurements are primarily used on interfaces at routers, and are used to

collect detailed information about a particular, or group of, IP flows. A flow is identified

by the source and destination IP addresses, port numbers, and protocol numbers, and

once a flow has been identified, a variety of the measurements described in Section 2.7

can be performed. On core network routers, measurement of every flow through a

router interface is extremely challenging due to the number of source/destination pairs

which could be identified, and the large number of measurement records that are

created and then associated with each flow. This can result in large amounts of

measurement data that may be difficult to process in real-time, without adversely

affecting the network node's performance.

2.8.2 Interface, Link and Node-based Measurements

The purpose of these measurements is to characterise the behaviour of the particular

network element or interface, and is typically performed by a single-point passive

34

technique as discussed in Section 2.9.1. This type of measurement may be used to

describe the traffic aggregation across a particular router interface, such as the maximum

packet throughput that a card will sustain, without giving attention to particular flows or

their source and destinations.

The Simple Network Management Protocol (SNMP) [Case90] is an example of an

interface, link or node based measurement protocol, which uses passive monitoring to

collect data, typically in the form of packet counters, byte counters, packet discards and

errors. These metrics are organised in hierarchies and stored in Management

Information Bases (MIB)s, and are reported by the SNMP agent to the Network

Management System as required. These measurements would typically not be able to

reconstruct a flow of packets between sender and receiver and, as discussed with flow

based measurements, may require monitoring of thousands of concurrent flows and the

generation of large amounts of measurement data, which would require significant post-

processing to generate practical results.

2.8.3 Node-pair-based

Node-pair measurements concern the measurement made between two predefined

network elements. This is usually the case for active measurements, such as Ping or

Traceroute as discussed in Section 2.9.2. Alternatively, it could be derived from the

records generated from a flow-based measurement through post-processing of

source/destination pairs. Due to multi-path routing and asymmetric paths, node-pair

measurements can be difficult to perform in IP networks.

2.8.4 Path-based

Path-based measurements are performed over a path between a number of network

nodes. This may be a strictly defined MPLS path, or simply a multi-hop route across

several nodes. These measurements describe the characteristics of the aggregate traffic

of the path and could be retrieved, based on one observation point to passively monitor

throughput, or based on multiple observation points to actively monitor the delay.

35

2.8.5 Local and End-to-End Measurements

The observation point required to perform a measurement must be defined when

reporting the results of any Internet measurement, and can be described as being either

a Local Measurement or an End-to-End Measurements.

" Local Measurements describe measurements which can be made from a single

observation point, such as interface-based and node-based measurements. Path and

flow based measurements can also be made locally if the correct observation point is

chosen, although as discussed in previous sections, these measurements are more

challenging to implement.

" End-to-End Measurements are those which require more than one observation

point. This facilitates path-based and node-pair based measurements, over multiple

hops across an end-to-end Internet path.

In addition, Internet measurements may be described as being absolute or derived: -

" Absolute Measurements provide an accurate representation of a metric without

calculation of any statistics. An example of an Absolute Measurement is a count of

the number of packets discarded by a router.

" Derived Measurements are computed from simple measurements, such as the

delay of a single packet in a stream and, from a series of several measurements,

derive a subjective measurement result - such as the Mean Opinion Score of a video

playback.

36

2.9 Measurement Methodologies

There are two primary techniques when performing both local and end-to-end

measurements; Passive measurement methods and Active measurement methods. These

passive or active methods can both be applied across local or end-to-end points, to

compute a number of metrics.

2.9.1 Passive Measurements

Passive measurements are performed on live user traffic by monitoring the normal

operational packet load from an observation point. The observation point applies a

mask on the packets travelling through the instrumented device, and copies these

packets of interest into the measurement probe, to perform metric calculation and

possible storage.

Passive measurements may be applied across a single or multiple observation points. A

single-point measurement allows monitoring of traffic load and protocol statistics or, if

the packet flows contain timestamps such as RTP, then metrics such as delay, Delay

Variation and packet loss can be calculated. With multiple observation points, a passive

measurement approach can perform delay measurements without timestamps, provided

that both observation points are synchronised, as discussed in Section 2.10.

Passive measurements do not add further traffic to the network but, in general, require

more computation than active measurements and can result in very large datasets

requiring to be processed in order to obtain relatively simple metrics.

2.9.1.1 Passive Measurement Examples

Cisco IOS NetFlow [Clai04] was a proprietary passive measurement technique to

perform flow measurement on Cisco routers. For each interface on the router, NetFlow

maintains tables of `Flow Records' of each connection passing through the interface,

37

based on source and destination IP addresses and ports. At specified intervals, NetFlow

data records would be sent by UDP from the router, to a NMS for processing.

NetFlow Version 9 [LeinO4] is the basis for the emerging IETF standard `Internet

Protocol Flow Information eXport' (IPFIX), to create a common format for IP flow

information, to be used in accounting, billing and network management systems.

There are several methods and tools to collect and analyse NetFlow data, such as Flow-

tools[Fu]107]. Flow-tools is an open-source collection of tools to process and generate

reports from NetFlow-enabled devices. Other router manufacturers provide similar

functionality to Cisco NetFlow. Juniper Networks provide Jflow statistics

collection[uni07J, and Huawei Technologies provide a similar feature called

NetStream[HuawO7].

2.9.2 Active Measurements

Active measurements operate by injecting controlled test packets through the network,

in order to observe how these packets, with their characteristics known a-priori, are

affected by the network. Active measurements therefore require two elements in the

network; the sending host must generate the test packets, and the receiving host must

either perform the measurement, or return specific information to the sending host.

Active test traffic may be simple ICMP Echo Request probes, such as those sent by

Ping or Traceroute, or may be synthetic packets, typically carrying timestamp and

sequence numbers to allow delay and Delay Variation measurements to be calculated.

Active measurements are intrusive on the network and will add to the overall load that

the network must process, but are commonly used as the method for monitoring SLAs

[Bt07] and for basic site connectivity testing. There is also the possibility that the

synthetic traffic may be treated differently from other live traffic on the

network[Wenw07], or that the traffic may be processed by a router's `slow path' control-

plane, thus generating non-representative results.

38

2.9.2.1 Active Measurement Examples

Ting', the Packet Internet Groper [NU 183] was the first single-point active measurement

tool, which transmits ICMP echo request packets to a specified host and measures the

round-trip time of the response. The advantage of Ping is that ICMP packets are

handled inherently by a hosts' IP kernel, and so no additional endpoint equipment is

required. ICMP is used less often now for internet measurement, for the reasons

discussed above, and because of the increased likelihood of firewalls blocking these

messages.

The IPPM Periodic Stream Measurement [RaisO2] transmits equally sized packets at

regular intervals to simulate a constant bit-rate multimedia stream, and to quantify the

delay and Delay Variation experienced. This method provides a way to perform

measurements irrespective of the QoS mechanisms employed by the IP network.

`Cisco IOS IP SLAs' is a tool which runs as embedded software within Cisco routers

and network entities, to provide active monitoring of delay, loss and Delay Variation

between the router device and other devices. Service Assurance Agents are installed on

each Cisco device, which is polled by test traffic (simulating a particular IP network

traffic type), and the response measured. As the name suggests, this is a key tool for

network operators to ensure SLA compliance.

2.10 Limitations of Current Techniques

Many of the limitations of current measurement techniques have been highlighted

throughout the previous discussion. The greatest difficulty with passive measurements is

the positioning of the observation point, to ensure that all of the traffic of interest is

measured. Additionally, passive measurements are likely to create large amounts of
logging data, which require storage, transmission from the observation point to a NMS,

and significant computation to produce the required results. Active measurement
techniques require instrumentation of more than one host, and ensuring that the

39

receiving host is capable of processing the synthetic traffic as required. Active

measurements consume valuable network resources as a part of their procedure and, if

ICMP is used, they may also be handled differently from normal traffic - thus

generating spurious results.

Positioning of network probes is another difficulty with current techniques. Should the

technique require specialist logging or processing capabilities, it may not be possible to

place this on a particular piece of network hardware. The use of SPAN ports on

switches [Cisc07] can only monitor low numbers of links and low utilisation levels. The

use of fibre taps can have a detrimental effect on the distance the fibre would normally

be able to span.

Time Synchronisation is critical in many of these metrics, as many techniques, both

active and passive, require the ability to timestamp measurements at geographically

separate points in the network. It is widely accepted [Paxs98] that Network Time

Protocol (NTP) is not sufficiently accurate for network measurements, as the clock

accuracy is affected by the delays of the paths used by the NTP peers. Currently, the

most common method of time synchronisation for network measurement is Global

Positioning System (GPS). GPS systems are in wide use in telecoms applications to

provide a reference site clock to a local site, that is then shared within that site using
NTP.

IEEE-1588 [Ieee07] is an emerging standard that defines a protocol which can

synchronise heterogeneous systems, across a LAN, to nanosecond levels of resolution

and accuracy on a Gigabit Ethernet. This protocol performs measurement of time

offsets between devices on a LAN, and then the synchronisation of those devices to a

master device - which would normally be connected to a GPS receiver. Standardisation

work has now been completed on the protocol, but at the present time, there are very
few devices available with 1588 capability.

40

2.11 Summary

This chapter has provided an introduction to the Internet Protocol Suite, and

specifically the operation of the Transmission Control Protocol. The various loss

recovery mechanisms and congestion control algorithms have been presented, with the

motivation and operational assumptions of these improvements discussed.

An overview of network measurement science has discussed the common metrics and

measurements that are used on the Internet today, and the two main methodologies of

active and passive techniques have been shown. Examples of these techniques, and their

limitations have been presented.

The effects of packet reordering on TCP flows has been discussed, and it has been

argued that packet reordering will have a significantly detrimental effect on overall

performance. In-sequence packet delivery is a good indicator of the health of a

connection, as it indicates that there are no large variations in transmission time or

Delay Variation, and that the receiving host is receiving data in the order it was
intended. Chapter 3 will continue this theme by presenting the current state of the art in

packet reordering measurement research, by discussing the various proposed

measurement techniques, and the results of recent measurements performed on live

Internet networks.

41

Chapter 3

Measuring Packet

Reordering

3.1 Introduction

It has recently become clear to the networking community that the traditional metrics

and measurements used to characterise an IP flow, namely latency, loss, Delay Variation

and throughput, do not convey sufficient information to fully describe flow

performance across an entire end-to-end path. Recent work [Benn99] has indicated that

TCP's design assumption, that packet reordering occurs infrequently, may be invalid and

42

may be subject to increase further as the Internet grows. This may be further

exacerbated by the increase of parallel links and the predominance of other new

technologies, such as IP multihoming, and the increasing use of wireless technology.

Since Paxson's first work in 1995[Paxs96] to characterise the degree and severity of

packet reordering in the Internet, there have been several attempts to develop a metric

and measurement methodology to describe IP packet reordering. These studies are so

diverse in their techniques and assumptions, that it is very difficult to compare results

across the literature. The lack of a standard experimental measurement methodology,

and the lack of a standard reordering metric, has been argued [Benn99] to be a

significantly limiting factor in understanding the effect, impact and prevalence of packet

reordering in today's Internet.

It is also important to note, that TCP itself is not the only protocol within the IP suite

which is susceptible to packet reordering [GharO4]. Any protocol which mimics ' TCP-

Friendly' behaviour, where the packet transmission rate is divided over the square root

of the packet loss rate, or, has tight constraints on packet arrival times, may be

susceptible to the effects of reordering, and thus this lack of understanding could affect

a large proportion of the traffic on the Internet.

This chapter presents the prior art of the area, by presenting a taxonomy of metrics and

measurement methodologies which have been developed to characterise packet

reordering in the Internet, and the results obtained by using these methods.

Firstly, a survey of active and passive reordering measurement techniques are discussed

and evaluated, which have been proposed to measure the degree of packet reordering

occurring on an end-to-end path.

Secondly, a number of packet reordering metrics are discussed, which have been

proposed in order to numerically describe the amount of packet reordering that is

occurring on a flow.

Thirdly, a comparison of these techniques is presented, and a comparison of the

43

measurement results obtained using these techniques. This Chapter concludes with

discussion of the difficulties of measuring both the impact and degree of packet

reordering, and the drivers that should motivate further research in this area.

3.2 Active Packet Reordering Measurements

As previously discussed in Chapter 2, active measurement techniques are commonly

used for SLA compliance monitoring [SommO7], and operate by injecting synthetic

traffic into the network in order to emulate the performance characteristics endured by

a real traffic flow. Passive measurement techniques are unable to characterise the end-

to-end performance of a packet from an arbitrary single point, and therefore active

packet probes are required. Active probes are, of course, not without their own

problems, and it has been argued [SchoO4] that results obtained by active probes are low

in accuracy and high in packet probing overhead, and often do not correlate [Barf04]

with router-based passive measurements.

Nevertheless, due to the complexity associated with designing a passive measurement

technique for packet reordering, as discussed in Section 3.3, the majority of packet

reordering measurement techniques are based on active methods. This section reviews

these techniques, and summaries the results obtained when tests have been performed

on live Internet networks.

3.2.1 Limitations of Active Reordering Measurements

Designing active packet probes which can be injected into a network and generate

meaningful performance metrics, which are representative of real network behaviour, is

a challenging process, and has been shown to produce results [BarfO4], which do not

correlate with other passive measurements made by protocols such as SNMP. In many

circumstances, intrusive measurements using active probe packets is the only option

available [SchoO4]. There are many practical issues when conducting large scale Internet

measurements that must be addressed [PaxsO4], such as including relevant meta-data

with results, dealing with large amounts of data, ensuring results are reproducible and

44

accurate, and making datasets publicly available.

Additionally, there are many limitations imposed by the operation of Internet nodes

which may affect measurement. Not all implementations interpret standards consistently

[Fang03], and this must be considered when designing measurement experiments which

operate on live networks. Individual link measurements may not correlate with a user's

end-to-end path experience, and it can be difficult to know what to measure. SNMP can

provide a great deal of data about the status of each management network element, but

this can be difficult to correlate with overall user experience[Hust031.

Round-trip probes such as Ping and Traceroute are useful active measurements to

measure a total network path, but these cannot measure the characteristics of a single

component in that path. One-way measurement packet probing techniques [Luck0l] are
being developed to perform these measurements, but require strict clock

synchronisation between sender and receiver in order to calculate accurate results.

The Internet does not lend itself well to being measured. `Middleboxes' [Allm03b] are

intermediate network devices which do not follow the standard partitioning of

functionality as defined by the OSI model Therefore `multilayer switches', `layer 4

routers', `layer 4-7 switches' or `content switches' are all devices which provide the basic

functionality of packet switching but, in addition, may inspect higher OSI layers to

provide additional functionality, such as firewalling, intrusion detection services, web-

server load balancing or network address translation. These additional network

elements, which may appear transparent to a normal data connection, can have adverse

affects on active packet probes, as many violate traditional networking assumptions that

packets flow from source to destination essentially unchanged[Medi05].

Many publications of active Internet measurements rely on unusual or uncommon parts

of specifications, in order to construct measurement packets. Approximately 40% of
hosts do not operate SACK correctly, Explicit Congestion Notification has been

measured in only 2.1% of connections, and less than 36% of end hosts support IP

Options such as Timestamps[Medi05]. It is common for Middleboxes to simply drop

packets with unknown IP options, and indeed, some Middleboxes deploy

45

countermeasures termed `fingerprint scrubbers' [SmarOO] [MediO5] to manipulate TCP

options, thus preventing identification of TCP end hosts. Any active packet probe risks
being identified as a Denial of Service attack, and should at least expect additional
latency due to further analysis by intermediate IDS entities.

With these limitations considered, a review of active packet reordering measurements is

now presented.

3.2.2 Paxson

Between December 1994 and December 1995, Vern Paxson performed the first large

scale studies of Internet packet behaviour from an end-to-end perspective[Paxs97], with

the aim of investigating how routing dynamics translate into perceived quality by the

end user[Paxs97a]. Paxson investigated `pathological conditions', such as routing
behaviour and routing asymmetry, and discovered that both packet reordering and route

asymmetry were much more common than was previously assumed.

Paxson's work was important due to the sheer scale of the measurement methodology
involved. 37 end hosts around the world [Paxs96] were instrumented as active probes,

and 40,000 end-to-end ICMP `Traceroutes' were performed and post-processed for

analysis. The results from these Traceroutes questioned many of the commonly held IP

networking assumptions, such as in-order packet delivery, FIFO queueing, and path

symmetries.

Paxson extended this work [Paxs97b] [Paxs99] by performing 20,000 100-KByte TCP

bulk transfers between 35 probe sites and, using Tcpdump [TcpdO8] to record the

output at both ends, performed the largest one-way measurement [Hust03] to date,

using TCP rather than UDP or ICMP. In subsequent offline post-processing, each

tcpdump file was traced using `Tcpanaly' [Paxs97c], a tool to parse Sequence Numbers,

follow the congestion control specifics of each TCP implementation, and to generate

statistics.

Paxson developed his own metric for packet reordering. As each packet arrives, it is

46

checked against the last `non-reordered packet'. If the sequence number is greater than

the last non-reordered packet, then that packet is marked as being in-order, and

becomes the new non-reordered packet. Therefore, in a sequence of arriving packets 1,

6,2,3,4,5, packets 1 and 6 are marked `in-order', while the other 4 packets are marked

`reordered'. This simple metric highlights packets which arrive `late', rather than marking

`early' packets as those which have undergone reordering.

The results from these measurements concluded that packet reordering is highly

prevalent in the Internet. During the two measurement periods, over 36% and over

12% of the TCP sessions included at least one packet which was delivered out of order,

with the fraction of packets that were reordered measured as 2% and 0.3% in the

forward direction, and 0.6% and 0.1% in the reverse. Paxson argued that the larger

number of data packets being reordered in the forward direction results from the

cumulative-ack function, resulting in data packets being sent closer together and, thus,

requiring a smaller difference in transit time to cause reordering. Paxson questioned

further assumptions on network behaviour by observing that Network Replication of

packets was extremely rare, and that packet corruption was also negligible, measured in

0.02% of data packets, and 1 in 1.6 million ack packets.

Packet reordering was also found to be both highly site-dependent and asymmetric; one

particular site exhibited 15% packet reordering, which was significantly higher than the

average 2%. Of this 15% reordering, only 1.5% of data packets sent forward to that site

were reordered; the majority of reordering was measured on data packets travelling away

from the site.

The major shortcoming of this, and of other active techniques, is the requirement to run

code on end hosts; therefore this measurement methodology cannot scale to multitudes

of arbitrary hosts. Furthermore, the use of 100 kbyte TCP transfers may not be

sufficient data to allow the sender's congestion window to fully open, thus making

comparison with other bulk transfer measurements difficult [LaorO2] [FengO7].

The ability to instrument the end-points across so many diverse hosts, to measure live

TCP traffic rather than packet probes, to perform one-way unidirectional measurements

47

between each source-destination pair, and to perform offline post-processing of the

results are compelling advocates for the use of Paxson's measurement methodology.

The scale of these measurements, performed nearly 10 years ago, generated results

which questioned many protocol design assumptions on packet reordering and

duplication, and stimulated further attempts to measure and characterise these features.

Paxson himself notes that these measurements may not be representative numbers for

the whole Internet, but surmises that specific Internet paths may be subject to a high

incidence of reordering, and that this incidence is site dependent and correlated with

route fluttering.

3.2.3 Bennett

In 1999, Bennett [Benn99] questioned Paxson's conclusion that packet reordering was a

`pathological behaviour', mainly caused by route fluttering, router update events and

incorrect or malfunctioning networking components. The fact that packet reordering

did occur on the Internet was not a revelation from Paxson's work, as this had been a

design assumption of the Fast-Retransmit algorithm, but Bennett argued that a recent

significant increase in `local parallelism' within Internet components, was causing packet

reordering under normal operation. Bennett asserted that packet reordering was no

longer a pathological behaviour, and that the incidence of packet reordering was

substantially higher than had been previously reported.

Bennett performed a number of active measurements at MAE-East[MaeO8]; the largest

Internet Exchange Point in the world in terms of bits per second of traffic, equipped

with a core DEC Gigaswitch multiport FDDI crossbar switch. Between December 1997

and January 1998, Bennett chose 140 hosts that were topologically close to the

Exchange, and sent a burst of 5 ICMP Ping packets, to prime for route cache misses,

followed by a back-to-back burst of 50 ICMP Ping packets each of 56 bytes. The

number of hosts to successfully receive the first 10 packets was recorded, and then the

number to receive these first 10 packets in order was also recorded. This measurement

was then repeated for the first 20 packets.

Results from these initial tests indicated that the probability of a session experiencing

48

reordering was over 90%. To better understand the characteristics of reordering, a

second site test was performed on a specific host which had exhibited high degrees of

reordering, in order to investigate the effect of traffic load and reordering. This host was

sent a 100-packet burst of 512-byte packets every minute for four days, and the degree

of reordering was measured by calculating the average number of SACK blocks required

to cover the out-of-order Ping replies received if the session had been a TCP

connection. From publicly-available traffic statistics of MAE-East, Bennett was able to

plot his SACK-block metric against the load of the Gigaswitch, and conclude that

packet reordering, specifically at MAE-East, was a function of core network load.

The concept of `local parallelism' introduced by Bennett, was exemplified by discussion

of the DEC Gigaswitch and its feature of `Hunt Groups', whereby multiple FDDI ports

operate as a single virtual link, thus allowing that switch port to "load stripe" across dual

parallel physical links for increased bandwidth capacity. Bennett argued that prior to

mid-1997, the Gigaswitch operated at loads where the "Hunt Groups" features would

not cause packet reordering, but, due to the explosive growth in traffic by 1998, packet

reordering was now a common feature. Bennett notes, though, that local parallelism is

not a problem with just this particular switch. In order to achieve the multi-gigabit

performance which users demand, the use of load balancing, link striping, and local

parallelism within nodes will also have to increase. Packet reordering is therefore a

complex phenomenon, and Bennett concludes that it is a function of the existence of

parallel links between nodes on a path, of the exact configuration of the hardware and

software in nodes on the path, and of the traffic load of the nodes on the path.

Bennett's packet reordering technique is important as the use of ICMP Pings allows

measurement against arbitrary hosts, thus negating the need for instrumentation of the

endpoints. There are, though, some limitations to this technique. It is known that

network operators often filter or rate-limit ICMP traffic [Be]102] [WenwO7] and, if the

measurement end-point is a switch or router, the packet will be processed on the `slow

path' by the router's GPU. Secondly, it is not possible to infer if the ICMP packets were

reordered on either the forward or reverse path. The use of the `SACK blocks' metric is

dependent on the end-host supporting this TCP extension. It has also been argued
QaisO7] that the use of back to back ICMP packets may exacerbate the amount of

49

reordering observed, as the inter-packet gaps are small, and unlike TCP, the send rates is

not reduced upon detecting congestion.

3.2.4 Loguinov

Loguinov's active measurement study of video traffic [Logu021 in 2002, across 16

thousand ten-minute MPEG-4 sessions over seven months, is a significant large scale

real-time measurement study of loss, delay and packet reordering, and provides an

insight into the behaviour of low-bitrate streaming sessions. Based on connections to

commercial dial-up ISPs, the experiments consisted of streaming video sequences to

unicast home users, using UDP as the transport mechanism, and a simple NACK-based

retransmission scheme to recover lost packets before their decoding deadlines.

Two video streams were encoded at 14 kb/s and 25 kb/s, and split into 576 byte IP

packets of roughly 5000 each. In the first set, three clients performed 16783 connection

attempts by long distance PSTN modem calls to ISPs and completed 8429 successful

streaming sessions. For the second set, 17465 calls were placed, resulting in 8423

successful streaming sessions. Results unexpectedly indicated that, despite the very low

bitrates of the streams downloaded, certain paths experienced consistent reordering

although at a very small degree.

The percentage of reordered packets was calculated relative to the total number of

missing packets. The average reordering rate was measured to be 6.5% of the number of

missing packets, or 0.04% of the number of sent packets, which although only 10% of

that measured by Paxson, is explained by the authors due to the lower bit rates. Of the

total number of transfers, 9.5% experienced at least one reordering, although specific

paths exhibited up to 35% of connections (and 0.2% of sent packets) experienced

reordering.

Loguinov defined two metrics to describe reordering. The packet reordering delay, D� is

the delay from the time when a reordered packet was declared as missing to the time

when the reordered packet arrived at the client. Packet reordering distance d� is the

number of packets (including the very first out-of-sequence packet, but not the

50

reordered packet itself), received by the client during reordering delay Dr

Across the two sets of experiments, the largest reordering distance d,, was measured as
10 packets, and the largest reordering delay D,, was 20 seconds, although this was seen

on only one packet. 90% of d, measurements were below 150ms, 97% below 300ms,

and 99% below 500ms.

The Reordering Distance was used in order to measure the effectiveness of TCP's Fast

Retransmit mechanism. By plotting the pdf of D,
,

91.1% of reordered packets were

seen to have moved by less than 3 packets, and 95.7% of packets were reordered less

than 4 packets.

3.2.5 Bellardo

In 2002, Bellardo [Be]102] developed a suite of active measurement tools named `Sting'

[Bell03] to measure one-way end-to-end packet reordering rates; aiming to improve on

Bennett's `SACK block' measurement and Paxson's ICMP measurements by negating

the need to instrument end-point nodes. Bellardo uses a `packet-pair approach'
[Hust03], where a packet `train' is sent to an arbitrary TCP endpoint, and the response

to this packet-pair allows a one-way packet reordering measurement to be performed.

Figure 11 illustrates the `Single Connection Test', whereupon after the normal 3-way

handshake has been completed, the first data packet to be sent, Seq 2, is exactly one

segment size higher in sequence number than that expected by the receiver. The end

host will acknowledge this packet by sending Ack 1, indicating that the first data packet

appears to have been lost. The measurement probe responds by sending the first and

third data packets, Seq 1 and Seq 3. By priming a `hole' in the receiver's window of

acknowledged packets, and then by measuring the response to this packet-pair, it is

possible to differentiate from the resulting Acks if packet reordering is occurring on the

forward path, reverse path or in both directions.

The Single Connection Test provides a simple method of identifying reordering, but will
fail if the end node implements the delayed acknowledgement algorithm, whereby a

51

receiving host will delay acknowledgements for a period before sending a cumulative

acknowledgement covering several segments of data[Clar82]. On many TCP

implementations, the arrival of Seq 1 and Seq 3 in close succession will result in a single

Ack 4 being sent.

Ce SQ
'1 V7

P-.

PV . S,

"v -

M"ý Pcw

onwrd PAN ' Rýwnw Ci Forwvd b
N. RwrCannp R

=np
Rs.: -g

RRwrw Pag
Rw dýnq

Figu re 11 - Bellard o Single Connecti on Test

'

PA

H1 I

F. -. a Rs. P. N
ReorCen Z

R.. ng

Figure 12 - Bellardo Dual Connection Test

To address this limitation, Bellardo's `Dual Connection Test' establishes two

simultaneous TCP connections from the measurement probe to the end host, as

illustrated in Figure 12. Each TCP connection primes the end point in a fashion similar

to the Single Connection Test, by sending a Sequence Number exactly one segment size

greater than that expected. The Dual Connection Test assumes that the IPID field will

increase monotonically across TCP connections to the same end host destination, and

therefore the IPID can be examined in the returning Acks, to indicate the presence of

reordering in the forward or reverse paths. The authors acknowledge that this

assumption is not without its own problems, and that this test will fail completely

should the end host be hidden behind a MZiddlebox, such as a transparent load balancer.

The TCP SYN test, illustrated in Figure 13, assumes that any Middlebox will perform

load balancing by hashing the four-tuple addresses and ports viewed in the IP header,

and that by sending a packet pair of identical Syns that differ only slightly in the starting

sequence number, the end host will reply with a Syn-Ack to the first Syn, and a Reset

(Rst) to the second Syn. As with the previous tests, evaluation of the replies from the

end host allows the probe to infer the presence of reordering in either direction. As with

the Dual Connection Test, this measurement requires the end host's TCP

52

implementation to respond in a specific way, to a part of the TCP specification which

may not be consistently implemented, and therefore cannot be assumed to be reliable in

all cases. Additionally, many Middleboxes assume multiple roles, including that of

Intrusion Detection Systems (IDS), and therefore this measurement technique may

wrongly be identified as a 'SYN Flood' Denial-of-Service attack, resulting in unreliable

measurements.

r.,, S"1

\ > 45
$� Sr 5

>

pt

No ßearEenrp Forward PAM R.. ýr Pam ForwaN 8
Rauode Pam Rýordmrq Reardenrp

Reo Mnnp

Figure 13 - Bellardo Syn Test

As a fourth test, Bellardo described the `TCP Data Transfer test', a simple HTTP GET

request to a web server. By generating Acks for the largest Seq number recorded, even

when data is lost, and also by advertising a small Maximum Segment Size (MSS), it is

possible to generate enough data to fill at least two packets and thereby measure the

reverse path reordering.

Bellardo chose 50 random hosts across the Internet and, from a single probe machine

located at University of California San Diego, cycled through all four tests on each host

over 20 days, resulting in 850 measurements per host, where each individual

measurement consisted of 15 samples. Bellardo observed that over 40% of the hosts

measured experienced some reordering during the 20 day period, with more than 15%

of measurements having at least one reordered sample, and with forward path

reordering significantly more prevalent than reverse path reordering.

Bellardo found that during periods of significant reordering, the TCP data transfer tests

produced significantly lower estimates of reordering than the other techniques. From all

the metrics available in their experiments, they chose to report reordering as the

53

probability that a pair of back-to-back packets are reordered over a given time interval

Bellardo suggested that this inaccuracy was most likely due to the fact that in the TCP

test, the size of data packets would be 1500 bytes, whereas the other tests would consist

of 40 byte packets. Therefore, the extra delay required to serialise the data for

transmission, results in a much larger delay between the leading edges of the data

packets, thus reducing the probability of the packets being reordered if they are assigned

to different queues.

Bellardo concludes that since packet reordering is related to `local parallelism' and that

queues within a switch will likely drain at a constant rate, the likelihood of reordering is

related to the inter-arrival time between two packets. A large inter-packet gap can

tolerate a greater queue imbalance than those packets which are closer together. During

experiments to vary the inter-packet gap between test probes, Bellardo measured that

minimum-sized back-to-back packets are reordered more than 10% of The time, but

with an additional 50 µsec delay between packets, reordering decreases to less than 2%,

and approaches 0% after 250 µsec. From this relationship, Bellardo proposes that it is

therefore possible to infer an application's behaviour when undergoing reordering. For

example, during bulk data transfer, full-sized data packets are less likely to be reordered

than acknowledgement packets.

Bellardo's conclusions contribute to the discussion on packet reordering prevalence, but

the measurement technique makes assumptions on the characteristics of end host TCP

implementation, and assumes it will respond in certain ways. This limitation, and the

difficulties that would be experienced when determining which method to use, and
determining if Middlebox interaction is affecting performance, indicate deficiencies with

this particular metric.

54

3.2.6 Tsinghua

In 2004, Wang [WangO4] presented an active end-point technique, to analyse TCP

streams arriving at a measurement probe, and to correlate measurements of packet

reordering with network topology. Using traceroute to map the routes to various web

server endpoints, and Wget [Wget08] to initiate downloads from those servers, the

arriving data packets are analysed using a simple decision algorithm which classifies

packets as Normal, Duplicated, Retransmitted or Reordered, as illustrated in Figure 14.

A packet is determined to be out-of-sequence if the Sequence number is less than that

of a previous packet; similar to Paxson's metric where `early' packets are considered

`Normal'. Out-of-sequence packets are classified as Duplicates if they share the same

Seq and IPID fields. In order to guard against wrapping of the 4 bit IPID field, a time

lag threshold of 300 msec is set, to distinguish between reordered packets, and

retransmitted packets with wrapped IPID.

-Greater than

0

Figure 14 - Tsinghua reorder-judging algorithm

55

This algorithm classifies late packets as reordered, but some deficiencies can be

identified upon inspection of Figure 14. Consider the sequence of packets 1,2,5,3,4,6.

Packets 1 and 2 arrive in-order and therefore increase the `largest Seq seen' variable in

each case, and are marked as `Normal Packets'. Packet 5 subsequently arrives, and is

seen to be the highest Sequence number seen, thus being marked as a Normal packet

and increasing the `largest Seq seen' variable to 5. Upon arrival of packets 3 and 4, these

packets are seen to be lower in Sequence number than 5, and as they exhibit different

IPID fields, are wrongly marked as Retransmissions. This wrong classification of `late'

reordered packets may also hold true during IPID wrap, as packets 3 and 4 may arrive

within the 300 msec threshold. Additionally, this algorithm could be improved by the

simple addition of a `Spurious Retransmissions' category, for the case when a packet

with the same Seq number but with higher IPID is received.

From a measurement host based in the Chinese Education Research Network, Wget

[Wget08] was used to measure forward path reordering twice a day for three weeks in

May 2003, across 10647 web sites. Of the 208,000 connections and 3.3 million packets

measured, 3.187% of all packets were reordered, with 5.79% of all web sites

experiencing reordering at least once. Their results indicate that packet reordering is

highly site dependent. During subsequent intensive measurement of the 5.79% reorder

exhibiting sites at 3 hour intervals, the reordering rate of packets was measured between

2.9% and 3.6% with a mean of 3.187%, compared to a random sample of non-

reordering sites, which were constantly measured below 0.04% with a mean of 0.06%.

Surprisingly, 20% of the 5.79% reordering sites, exhibited a reordering frequency higher

than 80% ! Based on the TIT, values, reorder-exhibiting sites are typically those located

further away, with average hop count of 13.8, compared to those with less reordering

and average hop count of 12.9.

In order to distinguish between a reordered and a retransmitted packet, the authors

studied the time lag of the packet arrival. 90% of reordered packets arrived at the

receiver with a time lag of less than 5.1 msec, whereas only 3.5% of retransmitted

packets arrive within this interval. Within 22.1 msec, 50% of retransmitted packets and
99.6% reordered packets have arrived. Empirical measurements suggest that 12.8 msec
is a useful threshold for determining between reordering and retransmissions, where

56

95% of reordered and only 8.3% retransmitted packets will have arrived.

The authors further investigated the degree of reordering places that packets will move

when undergoing reordering. 86.5% of reordered packets were lagging by 1 place, and

95.3% of packets were within 2 places late. Approximately 78.8% of retransmitted

packets appeared 3 or more packets late. The conclusion drawn was that there is a small

probability of reordered packets triggering the fast retransmit algorithm, and that this 3

position boundary provides a useful method for differentiating reordering and loss.

In order to infer the locations where packet reordering is occurring, Traceroute was

used to build a tree of forward-paths from the 10,647 websites to their measurement

host, assuming that both forward and reverse paths will be symmetric. Based on this

tree, a metric is defined for each router, termed the reorder ratio which is the ratio of

teordering-websites to total-websites passing through that router. This simple method

may help to pinpoint reorder generating routers in some cases, although the authors

acknowledge that this approach is extremely limited if the reorder generating router is

close to the root of the tree.

3.2.7 Delft

In 2004, Zhou [ZhouO4], analysed end-to-end UDP traces between 12 hosts in the

RIPE Test Traffic Measurement project [RipeO8]. 50 100-byte UDP `probe streams'

were continuously transmitted, interspersed with 30 second gaps, resulting in

approximately 360 probe-streams in 3 hours. The experiments were later repeated with

100 packets per probe-stream. To limit the effects of packet loss, only probe-streams

which received at least 90% packets were analysed. This study is distinctive from other

measurements it its use of UDP to generate probe packets.

The authors define a number of metrics in order to explain their results. The Reordered

Probe-Stream ratio defines the total number of streams having at least one reordered

packet, against the total number of streams received. In the first experiment of 50

packets per probe-stream, approximately 56% of the probe-streams included at least

one packet delivered out of sequence, equivalent to 6% of the total packets received.

57

This increased in the 100 packet per probe-stream measurements to 66% of the probe-

streams, and 5.6% of the total packets being received out of sequence. This metric

indicated that packet reordering is highly site-dependent. Two specific hosts, in Australia

and the UK, were measured to exhibit reordering in over 70% of streams in the first

test, and 80% of streams in the second test. This suggests that those sites, or

intermediate networks towards those sites, were inducing high degrees of reordering.

The Reordered Packet Lag, PL and the Reordered Time Lag TL were defined to predict

whether a reordered packet would arrive in time at a receiver, in order to be useful to

the application, or so as not to expire a finite buffer. In the sequence 1,2,4,5,3, PL =2

for the third packet, and TL is the time difference between the delay of the reordered

packet and its expected delay without reordering. Plotting the probability density

function of PL indicated a heavy tail, suggesting that most reordered packets move only a

small number of positions, and that each packet in a sequence had the same probability

of being reordered, indicating reordering is a Poisson process. Further analysis of the

probability of a reordered stream affecting the probability of the next stream being

reordered, suggested that with 30 second gaps between probe-streams, there was no

conditional probability and that reordering is a Poisson process which affects bursts at

random. The pdf of the normalised TL
, showed that the 90th percentile was 5% of the

one-way delay, suggesting that the time lag induced by packet reordering is very small in

most cases.

A final investigation was to measure the degree of asymmetry in reordered probe-

streams, by comparing the Reordered Probe Stream Ratio in each direction. The authors

observed that asymmetry is present on all measurements, but varies significantly from

host to host, and conclude that reordering may be caused by routing policies of the

nodes on a path.

3.2.8 Hong Kong Pointer

In 2005, Luo [Luo05] developed a tool call Pointer (Packet reOrderINg tesTER), which
implements three methods to measure forward and reverse path end-to-end packet

reordering. The measurement is based on TCP data packets; avoiding the use of ICMP

58

and TCP Syn packets, and therefore decreasing the likelihood that these measurements

will be affected by Middleboxes. The three methods differ in the mechanisms used to

trigger responses from specific end host TCP implementations, as different

implementations respond to unacceptable Sequence Numbers and unacceptable

Acknowledgement Numbers in different ways.

Iý. p Pý `
Qi

KS fS

Ger gý ,., c. Get
g ý q A 2q 2. q .

! zs as " aýý.
S

S,. r ý. z . ý, ýat A

kS3 A A q... CAS.

`:
Dyer _ r.

52. P
. aý C z

Fo rward Path Reverse Path Forward &
No Reordering

. �___. ____
Reverse Path Reverse

- rteoraanng

Figure 15 - Pointer ACM Test

The ACM (A(, knowledgment based Measurement) Test sends a probing message pair

to test a server's response to an unacceptable Ack message. As illustrated in Figure 15,

the measurement host establishes a connection with the remote host, by sending a SYN

indicating a small advertised TCP window Hund, thus ensuring that the remote server will

adopt the same small window, and making future returning packet sizes from the server

predictable.

The measurement host then sends an HTTP GET request. This request is

acknowledged with a Pure lick (which does not acknowledge any new data), and then

responded to with the first data packet. The data packet is acknowledged by the

measurement host but, due to the small Hund and the therefore predictable size of the

next data packet, the measurement host is able to construct and send a 'vet-to-receive'

acknowledgement packet, Pure Ack S3, A3. This pair of ricks forms the test probing

59

pair, as indicated below the dashed red line. Comparison of the resulting pair of

messages to be received at the measurement host, can then be used as shown in Figure

15, to differentiate between forward, reverse, and combined path reordering.

This method relies on the fact that a TCP host, receiving an unacceptable Ack number,

as shown in the case for Forward Path Reordering, will generate a Pure Ack, and as

noted by the authors, this is the case for Windows, Mac BSD and Solaris operating

systems. For other operating systems, where the receipt of an unacceptable Ack may

cause the packet to be silently dropped, other measurement techniques are required.

SlA ,. oS A-"S A

f5
a2 AS

, -", q 1- 11° s2 Aý_ 11" ýýýr_ 11-, `s-"q

L-1 -H

ýýaý° S Pý I I---H
Forward Path Reverse Path Forward 8

No Reordering Reordering Reordering
Reverse Path

Reordering

Figure 16 - Hong Kong Poly SAM! Test

The SAM1 (Seq number and Ack based Measurement) tests the response of an end-host

to an unacceptable Seq Number, and is designed for use on Linux systems which will

drop the segment and respond with a Pure Ack.

As with the previous method, the probing message pair, sent after the red dashed line in

Figure 16, consists of a second HTTP GET request message, and a Pure Ack, which

acknowledges a `yet-to-receive' data segment. Should no reordering occur on the

forward path, the probe pair will arrive in order and result in two data packets being

sent by the end host. Should reordering occur, the Pure Ack will fail the Sequence

Number Check at the receiving side and cause the end host to generate a pure . eck in

60

response. Differentiation of the resulting Data and Ack messages received at the

measurement host, as shown in Figure 16, allows tests for forward, reverse and

combined path reordering to be considered.

SYnS, YnS, SYn
S'

Sin
S A A .A

der SýY+ S2A7

ý ý
ýa SS A-

ta SS A-
asý

F
ac,

ý
ýa da o. d D

Gej S Gei S 3.
-, S,, Ge, 5

3. O Gee 53 G" S3 2,

ý

3.2>pryq .2
q

"2ýOv

Aaý�, V
a s' SAP ý __ ,c ý, .

o Reordering
Forward Path Reverse Path

�___ý____

Forward
Path Reverse Pa

-- neoraenng

Figure 17 - Hong Kong Poly SAM2 Test

The third method implemented by the authors, the SAN12 Method, allows measurement

against HP-lit and VM TCP end hosts, which do not generate responses to either

unacceptable Sequence or Acknowledgement numbers. Whereas the ACM method tests

the response to an unacceptable Sequence Number, and the SAM1 method tests the

response to an unacceptable Acknowledgement, the SAM2 test is constructed to test the

end host response to an out-of-order segment. Figure 17 illustrates the two HTTP GET

commands sent as the probing message pair. In this case, the Sequence numbers of both

packets are offset by a small value, which results in both messages containing

unexpected but acceptable Sequence Numbers. The packets are deemed by the receiving

host to have been received out-of-order. This method exploits the fact that a TCP

should send an immediate Duplicate-Ack upon receiving what it perceives to be an out-

of-order segment.

In live Internet trials, the authors performed tests on 100 randomly selected web

servers, and sent 500 measurement tests to each server. Their measurements indicated

that more than 35% of the paths measured experienced forward-path reordering at least

once and 10% of the paths exhibited reverse path reordering. The forward-path

61

reordering rate was also more prevalent in terms of the percentage of reordering events.

The clear benefits of these techniques are that any end host web server can be used as a

measurement host and that the measurements themselves are carried out using TCP

data packets. Unfortunately if a measurement packet is lost, it may be extremely difficult

to differentiate this at the receiving end, which may skew the reordering results. In order

to mitigate these errors, the authors propose setting a deadline for receiving responses

from the end server.

3.2.9 Perkins

In 2004 [GharO4], Gharai and Perkins performed active UDP measurements in order to

determine the effect of reordering on a TCP-friendly rate control system for HDTV

RTP streams [PerkO2]. Using IPerf v1.1.1 [Tiru05] to generate forward and reverse

measurements between three test sites on the DARPA SuperNet, the authors

investigated whether an increase in data rate, achieved by maintaining a constant packet

size and increasing the packet rate, thus causing a reduction in packet inter-arrival time,

would result in measurable increased packet reordering.

Each UDP test flow was of one minute duration, with rates varied between 1 and 900

Mbps, and packet sizes of 500,1500 and 4500 bytes. An optical splitter at each traffic

generation host would copy all packets using a modified version of tcpdump [Tcpd08],

allowing for further offline analysis of the complete packet traces; thereby allowing loss

to be distinguished from reordering.

Perkins defined two metrics to describe packet reordering. The Monotonic Increasing

Sequence Metric is similar to previous methods QaisO2] [Paxs99] where packets should

monotonically increase in sequence number. Otherwise, packets are classified reordered

until a packet arrives with a sequence number larger than the last classified `in-order'

packet received. The number of reordering events is recorded as a percentage of the

total number of packets in a flow.

Perkins second metric, the TCP-like Packet Reordering Metric, counts the number of

62

reordering events which would likely cause a triple-duplicate Ack and probably cause the

Fast Retransmission algorithm to activate. This simple algorithm compares a series of

three consecutive packets, and establishes whether all three have arrived after a

reordered late' packet, thus signalling triple-duplicate Acks.

Traceroute was used to confirm that flows were taking the same paths between source-

destination pairs, but the authors note that forward and reverse paths exhibit highly

asymmetrical properties, which was blamed on the effects of cross-traffic.

Of the 155 flows that were analysed and 60 million packets sent, only 22 packets were

measured to be lost during their experiments. The authors argue that the absence of loss

indicates that network capacity is available, and that TCP should be able to maintain a

high throughput. 73 flows (47%) contained at least one out of order packet and, of

those, 48 flows saw more than 0.01% of packets reordered by the monotonic metric.

Exhibiting the largest amount of reordering was the Pittsburg to Los Angeles route

which experienced 1.65% of reordered packets.

To investigate the correlation between reordering, packet size and inter-arrival time,

Iperf [Tiru05] was used to vary the sides of transmitted packets. The majority of flows

with packet size 500 octets experienced reordering at rates of 200Mbps and higher,

while flows of 1500 octet packets experience reordering at 600 Mbps and higher. None

of the flows with packet sizes of 4500 octets, and therefore inter-arrival times greater

than 0.04 msec, experienced any packet reordering. The authors argue that there is a

threshold, coinciding with a inter-arrival rate of approximately 0.02 msec, beyond which

packet reordering will increasingly occur.

The authors summarise that the relative frequency of packet reordering increases as the

inter-packet arrival time in the network core is reduced. Therefore, flows with small

inter-arrival rates, or flows with high packet rates, will be more seriously affected by

reordering than low-rate flows, as illustrated in Figure 18; Future protocol designs

should be wary of these implications.

It is acknowledged that the two metrics proposed are non-linear, and that it is not

63

possible to predict the behaviour of a TCP flow based on the percentage of packets

reordered, unless that metric also describes the effects of the pattern of reordering. In

one particular example, from Los Angeles to Pittsburgh, the monotonic metric

measured 0.04% on both forward and reverse paths, but the TCP-like metric measured

0 in the forward and 30 in the reverse paths. It was found that the monotonic metric

would indicate consistent results in both directions, but highly asymmetric

measurements using the TCP-like measurement in the reverse direction.

Reordering I

Packet Rate

Figure 18 - Perkins relation of reordering and packet rate [Ghar04]

3.2.10 Summary

Section 3.2 has discussed the current field in active measurements of packet reordering,

and illustrated the range of numerical results which have been obtained by using these

measurements. Comparison and analysis of these measurements is presented in Sections

3.5 and 3.6, where they are presented in context with similar passive measurement

results.

64

3.3 Passive Packet Reordering Measurements

As discussed in Chapter 2, passive measurement techniques provide many advantages

over their active equivalents, and allow for characterisation of live, rather than synthetic

traffic. The main advantage of passive techniques is that there is no requirement to

instrument both endpoints of every connection and measurements obtained are based

on real user data, thus providing results more representative of user experience.

Positioning of a passive probe is important too; a mid-point probe may have the ability

to monitor many thousands of concurrent connections simultaneously, across a diverse

array of endpoints.

This section reviews the prior art of passive packet reordering measurements and
discusses and comments upon their results.

3.3.1 Limitations of Passive Reordering Measurements

The advantages of a passive approach to TCP monitoring are well documented and the

literature includes many examples of these measurement methodologies. However, a

large number of these methodologies and metrics have been designed on the same

assumption as the Fast Retransmission algorithm, that packet reordering does not often

occur. There are, therefore, many examples where passive measurements simply ignore

the effects of packet reordering, which can lead to errors in the results obtained by these

methods.

In work by Benk [BenkO2][BenkO4], a passive mid-point method for estimating end-to-

end TCP packet loss is presented which, by observing sequence numbers and using

heuristics, attempts to infer the state machines of the sending and receiving TCPs. A

packet loss before the measurement point is determined by observation of an out-of-

order TCP segment that `fills a hole' in the data sequence. Similarly, a repeated sequence

number suggests that a retransmission has been sent due to a loss after the measurement

point. When packet reordering occurs, the algorithm erroneously assumes that the holes

65

in sequence numbers indicate packet loss before the measurement point. In order to

mitigate this problem, the authors suggest using the IPID field in order to detect when

packet reordering is occurring.

A method for calculating TCP `Goodput' is presented by Love [Love06], where

Goodput is defined as the ratio of useful data divided by total data, thus presenting a

ratio of the degree of retransmissions a network is exhibiting. In this passive mid-point

algorithm, the Sequence number of each arriving packet is examined and assumed to be

monotonically increasing. When a packet arrives with a lower sequence number than

those seen previously, it is immediately assumed to be a TCP retransmission, resulting in

a retransmission counter being incremented and the goodput calculation being adversely

affected.

Implementing a passive measurement technique in itself is not particularly challenging;

the difficulty is trying to explain observed events, based on the limited information

available at that observation point. Visibility of out of sequence packets at an

observation point can infer a number of possible scenarios, but without knowledge of

the TCP state machines at either the sender or receiver, the challenge is to determine the

toot cause of the observed event.

The following section reviews the state-of-the-art in passive packet reordering

measurements and presents results obtained using these methods.

3.3.2 Mid-point Passive Measurements

In 2003, Jaiswal QaisO7] performed a large scale study of packet reordering, by

instrumenting a mid-point of a Tier-1 IP backbone, as part of the Sprint IP Monitoring

(IPMON) [Fra03] project. A passive mid-point measurement has the advantage of

allowing very large scale measurement studies to be carried out, without requiring

instrumentation of sender and receiver hosts. The sheer scale of this measurement

study, namely several-hour packet-level traces from a set of OC-12 and OC-48 links for

29 million TCP connections generated in nearly 7600 unique ASes, and the fact that the

study is performed passively on live TCP traffic, make this paper an important

66

contribution in the measurement of packet reordering.

Performing passive TCP monitoring at a mid-point is not without its challenges. A

packet can easily be identified as being out-of-sequence when it is observed as having a

sequence number smaller than or equal to that of a previously observed packet at that

measurement point. Explanation of the cause of the packet appearing out-of-sequence is

challenging, as many variables, such as the state machines at the sending and receiving

hosts, can only be inferred from the packets observed at the mid-point, and therefore a

set of heuristics are required in order to examine the packet events observed.

Additionally, several of these inferences will require an estimation of the sending host's

congestion control, RTO and RTT values, for every source-destination pair, throughout

the lifetime of every connection. These may also vary significantly over time. Tracking

the RTT calculation and congestion control mechanisms of a sending host, from a mid-

point position, is extremely challenging and techniques to perform this are discussed in

Section 3.3.3.1. The major contribution of mid-point measurement algorithms such as

Jaiswal, is explaining why these out-of-sequence events have occurred based purely on

the analysis of the previously and subsequently observed packets.

3.3.3 Jaiswal TCPF1ows

Jaiswal's TCPF1ows algorithm, as illustrated in Figure 19, allows the classification of out-

of-sequence packets as either Sender Retransmissions, Network Duplicates or Packet

Reordering. During evaluation of the algorithm Uais07], Jaiswal argues that it was

possible to classify almost all observed packets using this algorithm, with between 1%

and 4% of packets being classified in the Unknown category.

At the measurement point on each of the links monitored, two probes are used to

capture the first 44 bytes of IP and TCP packet headers in both the forward and reverse

directions. Sequence Numbers, Acknowledgement Numbers, IPID field and

observation time are used in the algorithm. Post-processing of the traces is carried out

offline where, firstly, the traces are filtered to consider only the TCP connections where
both the forward data path and reverse Ack path have passed through the same

67

measurement point and have been logged entirely. Out-of-sequence packets, those

which have sequence numbers less than or equal to a previously observed packet in that

connection, are then classified using the rules in Figure 19.

, fives-

T
No

Yes

,. y

Retnmmmron obx d-
brigbel packet bet bebn. n

Sende led Prob.

No

As Figure 19 illustrates, a number of variables are used in the classification algorithm

which must be inferred from the data and Ack packets as seen from the mid-point of

each connection. In order to classif- those retransmissions which do not have distinct

IPIDs, nor occur within the R'I'O period, the Jaiswal algorithm sets two variables

InVastRecovery and SndFiigh, in order to cater for retransmissions sent during a sender's

Fast Recover- phase. When recovering from multiple packet losses in one flight of

68

Figure 19 - Jaiswal's Out of Sequence Classification Algorithm

packets, a TCP NewReno sender will, upon receiving three duplicate-Acks, trigger Fast

Recovery, and set the Sequence Number of the most recently sent data packet in the

variable sndHigh. It will then retransmit the lost packet but, in addition, will immediately

retransmit any packet for which any partial-Acks are received between the triple

duplicate-Ack and the sndHigh sequence number, thus allowing faster recovery from

multiple packet losses. Therefore, upon measuring triple duplicate-Acks in the reverse

path, the Jaiswal algorithm will set the boolean InFastRecovey and the value of sndHigh;

thus retransmissions sent during the sender's Fast Recovery phase will be classified

appropriately.

Figure 19 also indicates the requirement of the algorithm to have a current estimation of

both the RTO and RTT of each connection, thereby allowing differentiation between

Retransmissions, Reorderings and Network Duplicates. A packet is classified as a

Retransmission if its time lag is greater than the RTO, while a packet is classified as a

Reordering or Network Duplicate if its time lag is less than RTT. The authors argue that

this is a compromise and so, rather than require that the interval be less than RTO

which is subject to a large degree of uncertainty, take a more conservative approach and

require that the Reordering interval be less than one RTT.

3.3.3.1 Passive Estimation of RTT

Passive mid-point estimation of a TCP flow's RTT is a non-trivial task. The loss of Data

or Ack packets, either before or after the measurement probe, has various actions on

the state machine of the Sending TCP which are difficult to infer, based on the sub-set

of packets actually observed at any intermediate point. Previous techniques UianO2] have

estimated RTT during the initial SYN-ACK handshake at the start of a connection or

on the time difference between subsequent window transmissions at the start of a

connection [Mart00].

69

3.3.3.2 Jaiswal Running RTT Estimation Technique

The `Running RTT Estimation Technique' LJaisO4], used by the jaiswal Out of Sequence

Classification Algorithm, is illustrated in Figure 20. The addition of observation times tl

and 12, allow for inference of the TCP Sender's RTT estimation. The argued benefit of

this technique compared to previous methods, is that it allows calculation of RYE

throughout the lifetime of the connection rather than on just one sample at the start.

Under some circumstances, this method will compute one RTT sample for every

`round' of packets sent by the sender which will equal the number of samples used by

the Sender itself to calculate RIT.

m
a
m
N

N

Senner nnia-roint Irrobe Receiver

Figure 20 - Jaisw"al Running RTT Estimation Technique

The problem is not as simple as it first appears. In order to operate, this technique

requires the ability to correlate from a mid-point position, the particular , eck packet that

has triggered the transmission of each data packet observed. This, in turn, requires

knowledge of the sender's current cwnd size which is a function of the particular TCP

congestion control algorithm operating on the Sending host. The WIT estimation

technique must be able to stop the WIT estimation during loss recovery, in order to

emulate a transmitting TCP session which also does not compute R"1T during loss

recovery. In order to do this, knowledge of the state of the Sending TCP and an

estimation of that TCP's cwnd is required.

70

The Jaiswal RTT estimation technique estimates the sender's cwnd by constructing a

replica TCP Finite State Machine (FSM) for each connection and, based on mid-point

observations of Acknowledgements and inferred Sender Timeouts Uais03], the FSM is

progressed through its various states. The algorithm performs TCP fingerprinting by

observing the packets sent after a loss and Fast Retransmit has occurred, thus relating

this inferred cxnd to the behaviour of either a Tahoe, Reno or NewReno host. Later in

their work, the authors acknowledge that 97.05% of all TCP Senders and hence 67.51%

of data packets sent, were indistinguishable using this fingerprinting technique, as it will

only operate under a specific simple loss pattern.

3.3.3.3 Jaiswal Classification Results

Jaiswal's results focus on four packet traces collected on November 21" 2002; two

across OC-12 (622 Mb/s) links to a Content Distribution Network and a Tier-1 ISP,

and two across OC-48 (2.5Gb/s) links to the East coast of the USA. Overall nearly 30

million TCP connections of nearly 500 million data packets are measured, originating in

7664 unique Autonomous Systems.

Jaiswal measured that the number of out-of-sequence packets was limited to

approximately 4% of all TCP packets in each TCP connection. Only 8.8. % of all the

studied TCP connections experienced any out of sequence packets, but these

connections consist of a significant fraction of all the data packets (48%). Longer

connections would be expected to experience more out-of-sequence packets.

The majority of out-of-sequence packets were due to Retransmissions. Across the four

links monitored, this was identified as the cause between 64% and 79% of the time.

Note that a source may send more than one packet to repair a loss and thus this metric

does not correlate directly with packet loss. Unneeded Retransmissions, varying between

11 and 15% are the second highest cause of out-of-sequence packets.

Network Duplicates were found to be negligible and the cause of approximately 0.1%

of out-of-sequence packets. Packet Reordering was measured as the cause of 7.04%,

71

25.89%, 16.06% and 16.57% of out-of-sequence packets across the four monitored

links. This indicates that reordering affects between 0.17 and 0.96% of all data packets,

and that between 0.6 and 5.1% of TCP connections experience packet reordering.

In the four traces, approximately 93% of the reordered packets have a packet lag of less

than 3 and, therefore, Packet Reordering will have a minimal impact on a connection's

performance. 92% of all reordered packets have a time lag of less than 50 msec, and

88% of all reordered packets have a time lag less than 50 ursec and a packet lag of less

than 1. The authors argue that, when compared to the delayed acknowledgement

timeout of between 50-100 msec, packet reordering will have a minimal effect on end-

user performance.

From further examinations of Acks, it was possible to suggest, from the measurements,

when reordering or duplication may be occurring between the measurement probe and

the receiver. Assuming that duplicate-Acks from previously classified events and

unneeded retransmissions have been filtered out, it is possible to infer that any

remaining duplicate Acks are indications of reordering between probe and receiver. This

ignores the possibility that duplicate Acks may be sent to communicate updates of rwnd,

or that delayed acknowledgements from the receiver would prevent duplicate Acks from

being sent. By applying this analysis to the four monitored links, the computed estimate

for end-to-end reordering and duplication was estimated to be 1.13%, 1.75%, 1.02%

and 1.29% respectively.

3.3.3.4 Evaluation

There are clearly a number of issues with this measurement methodology which must be

considered when discussing the results obtained. Firstly, the requirement that both the

forward and reverse paths pass through the measurement point is highly unlikely due to

the asymmetric nature of the Internet, resulting in some experiments where only 9.2%

of the TCP connections could be analysed. Secondly, the authors acknowledge that if a

SYN is lost before the measurement point, or an entire window of packets is lost before

the measurement point, it will go completely unnoticed by the classification algorithm.

72

There are also clear deficiencies with the classification algorithm itself. Reverse-path Ack

reordering and cumulative Acks have not been considered, which could cause the

algorithm to wrongly classify packets as Unneeded Retransmissions. The algorithm does

also not acknowledge that these packets could also have been delayed Network

Duplicates. The Retransmission category could easily be extended to identify the cause

of retransmissions; either as a result of Fast Retransmission, or correlated with those

retransmissions resulting from Fast Recovery.

Finally, the RTT Estimation algorithm also has clear deficiencies. Since RTO calculation

is subject to some uncertainty, the authors use RTT as their method of differentiating

original packets from reordered packets. This requires a degree of accuracy and,

although the authors claim QaisO4] that connections do not experience large RTT

variations and that for 80-85% of connections the ratio between the 95'h percentile and

5th percentile RTT value is less than 3, other recent work [Aika03] has measured that

RTT values can vary widely over the lifetime of a connection. Furthermore, the value of

11 can be affected by delayed Acknowledgements, while the value of t2 can be affected if

the sender receives an Ack, but does not have any data immediately ready to send.

RTT estimation is a problem which affects most mid-point measurement techniques, as

it is accepted that a single estimate will not characterise network variability across the

lifetime of a connection. An extension of Jaiswal's work, proposed by But [But05],

simply estimates t1 in each direction, thus negating the need to estimate t2 and avoiding

errors induced by delayed Acks. This technique does, however, require observation of

full duplex TCP connections. Although all TCP connections are full duplex, many

operate in a half duplex fashion, and are highly asymmetric in the volumes of data

carried. For example, in a typical Active FTP session, a full duplex control connection is

established on server port 21 for infrequent control commands, and individual half-

duplex TCP connections are established for each PUT or GET command. But's

technique therefore requires every observed TCP connection to operate in full duplex,

and to each have sufficient data ready to be sent, from both sides of every connection.

Should there be a lack of data to send from either side of a connection, the Delayed Ack

algorithm may interfere with the RTT estimate observed. Other techniques [Veal05]

[YanO4] have used TCP Timestamps in order to increase accuracy of mid-point RTT

73

estimation, although some have argued [Nledi05] that this option is not in common use

and so is not appropriate on the majority of passively monitored connections.

Although Jaiswal's work represents the most powerful mid-point packet reordering

methodology to date, the limitation that only 9.2% of paths were symmetric and that

97% of TCP flavours were unidentifiable by the fingerprinting method, question how

representative of the whole Internet these results actually are. Therefore, although

Jaiswal concludes that a relatively constant 4% of packets in the Internet are out of

sequence and that the majority are retransmissions with only a small percentage due to

reordering, these results must be considered in the context of the limitations identified

above.

3.3.4 Rewaskar

In 2006, Rewaskar [Rewa06a] [RewaO6b] developed a passive mid-point probe

classification tool for out-of-sequence packets. This extends the work of Jaiswal by

considering variations across TCP implementations and explicit analysis of the cause of

each retransmission. The authors argue that there are diverse and undocumented

features of stack implementations which affect TCP behaviour and that significant

numbers of retransmissions on the Internet are unnecessary.

The main purpose of this algorithm is to classify the TCP mechanism which caused

each packet retransmission, and to indicate if that retransmission was required or

unnecessary. Data and Ack streams from each connection are parsed by replica partial

TCP state machines augmented with extra state and logic about all previously

transmitted packets; each retransmission is then classified as needed or unneeded and

further classified as caused by RTO, Triple Duplicate Ack, Partial Ack, Selective Ack or

Implicit. The replica state machines include the implementation details of four

prominent TCP stacks (Windows XP, Linux 2.4.2, FreeBSD 4.10, and Solaris), such as

initial RTO, the RTO estimation algorithm, the number of duplicate ACKs that trigger

Fast Retransmit and the responses to partial ACKs and SACKS. Many of these features

are specific to the implementation or, in the case of SACK responses, non-standardised.

74

Packets are classified as Reordered if they appear within 0.75 of that connection's

minimum RTT after the segment with the next higher sequence number or, in the IP ID

field of the packets seen from that source. Duplication is also identified using IP ID.

Each potential indicator of packet loss, as identified from the Ack stream, will only

trigger tentative changes in each state machine until a retransmission is confirmed in the

data stream.

To process results from experiments, each connection is parsed using all four state

machines; the state machine which can explain and classify the most packets in that

trace is selected and the results are stored.

3.3.4.1 SYN/ACK RTT Estimation

RTT estimation for each flow is partially based on the SYN SYN/ACK handshake at

the initiation of each connection. During the initial three-way handshake, the

measurement probe to Sender RTT is estimated. This estimate is added to repeated

samples, from the data and ack flows, of the measurement probe to Receiver RTT

estimate. The authors argue that the initial value obtained from the three way handshake

is a good approximation of the minimum probe to Sender RTT [Aika03] and, that if

subsequent delays vary significantly, this would not greatly affect results. RTO is used as

a minimum threshold for the differentiation between the original packet and a

retransmission. Therefore, a value lower than RTO would simply lower the threshold,

but would still be able to correctly identify retransmissions that occur due to timeouts.

The authors do not discuss how variations in their RTT calculation could affect the

differentiation of reordered packets.

3.3.4.2 Rewaskar Classification Results

Seven tracesets were analysed; three of which were compared with Jaiswal's algorithm.

In two tracesets, between 13% and 14% of out-of-sequence packets were classified as

the result of network reordering between the sender and monitoring probe. The

majority of reordering events were measured to be within 5ms. The small fraction of out

75

of sequence packets with large delays was said to occur in connections with large

minimum RTTs. A significant number of retransmissions, between 3% and 19%, were

shown to be unneeded, suggesting that retransmissions should not always be considered

as indicators of packet loss.

Comparison with results from Jaiswal's algorithm was favourable. Of the three tracesets

where both algorithms were applied, Jaiswal reported 0.8,13.8 and 0.27% of out of

sequence packets were due to reordering, while Rewaskar reported 0.2,12.9 and 0.2% of

events due to reordering. This suggests that, from a reordering classification perspective,

there is little additional merit in considering TCP implementation specific features.

For each of the seven tracesets, between 25 - 35% of connections exhibited at least one

packet which could not be classified correctly. The authors acknowledge that in more

than 50% of these traces, this was due to more than one state machine claiming to be

able to explain every packet in the trace; resulting in these traces having to be discarded.

As with the Jaiswal algorithm, Rewaskar has a requirement that all packets, from both

forward and reverse paths, are fully recorded at the measurement probe. Rewaskar has

the additional requirement that each connection must be analysed and recorded directly

from initialisation, in order to sample the three-way handshake and generate a measure

of the RTT value from probe to sender. The results presented using the Rewaskar

algorithm are based on pre-recorded publicly available traces. Therefore, application of

this algorithm on a real probe on a live network, in order to illustrate the percentage of

flows which might not be asymmetric and, therefore, unclassifiable, has not been tested.

3.3.5 Tstat Torino Algorithm

In 2006, the Jaiswal classification algorithm was extended by Mellia [MellO6] to allow the

classification and root cause analysis of additional modes of out of sequence packets.

As with Jaiswal, the algorithm is designed as a mid-point technique and therefore

assumes visibility of both data and Ack paths. `Anomalous events', such as either

duplicates or out-of-sequence packets, are classified using the algorithm shown in Figure

76

21. The algorithm maintains a number of variables in order to parse each packet.

RTTýýý,
\

is the minimum RTT since the flow commenced. RT Recovery Time is the time

elapsed between the time the current anomalous segment has been observed and the

time the segment with the largest sequence number has been received. AT is the

invertedpacketgap - the difference between the observation time of the current anomalous

event and of the previously received segment. RTO is the sender Retransmission Timer

value, computed by observation from the midpoint, as defined in RFC 2988.

Yes-

Ves

®

No

1
-Yes-0- -Yes r-No-- 44*0

Dw eo FM
N Control

rN

Ný

F®Yes

Yes
No

logo r- 41
&1 0

Figure 21 - Torino Algorithm

The algorithm extends Jaiswal in a number of ways. Firstly, all packets with the same

IPID are immediately defined as Network Duplicates, regardless of arrival time.

Secondly, the algorithm accounts for the `Window Probing' feature of Flow Control,

whereby a TCP sender will retransmit its last segment, in order to force transmission of

an Ack, thus measuring if the Hund has increased from zero. These window probe

packets are easily identifiable; the Sequence number appears to repeat the last byte of

the previous segment, but payload is empty (zero).

The algorithm does not attempt to model the sender side state machine as other

77

Yes

D. b Fad Re-b

classification methods have done. Therefore, retransmissions sent during the Fast

Recovery phase are, unlike Jaiswal, not explicitly identified as such. Retransmissions are

classified as those which occur if RT is greater than RTTMmJ and, by comparing the RT

with the estimated RTO, retransmissions are distinguished between RTO, Fast

Recovery or Unknown. If RT is less than RTTMIN and the inverted packet gap is less than

RTTM, N, the packet is classified as Reordered.

RTT is calculated from the mid-point throughout the lifetime of the connection using a

moving average estimator which is argued to provide more classification accuracy than

the average RTT as used by Jaiswal; the approximation of minimum WIT is

conservative resulting in many packets being classed as Unknown. The method of

calculating probe-to-receiver and probe-to-sender RIT measurements is the same

method as Jaiswal and thus may incur the same inaccuracies due to cumulative

acknowledgements or lack of data from the sender.

Three datasets were analysed. The first, a4 hour long trace from the Abilene Internet

backbone, on June 1" 2004, at the OC192c Packet-over-SONET link from Internet2's

Indianapolis node towards Kansas City. The second was obtained by the authors

themselves on the GARR backbone OC48 Packet-over-SONET network in August

2005 while the third was sourced from the egress router of the Politecnico di Tornio

campus LAN OC4 ATM link. While the two traces collected by the authors near their

University campus showed 100% routing symmetry, the authors noted that the

backbone Abilene trace indicated that only 46% of paths on a large Internet backbone

may be symmetric. Where both directions of the traffic have not been captured, the

authors discard the trace.

Of the backbone packets analysed, between 5% and 8% of all packets were measured to

be out of sequence. Of these out of sequence packets, 10.5% were classified as packet

reordering, 19% as Unknown, and nearly 70% as retransmissions triggered by RTO.

The remaining < 1% was accounted for by the other classifications.

By normalising the breakdown of out-of-sequence packets against traffic load and by

analysing the results over a month, the authors argue that the percentage of anomalies

78

appeared to be independent of the load. This contrasts with other findings which

suggest loss and reordering as a function of applied load on a router [Benn99]. The

authors argue that, due to the greedy nature of TCP even during off-peak periods when

the average offered load is lower, TCP will grow to consume as much bandwidth as

possible and so reordering rates will appear constant. On certain connections, including

some very long connections, no reordering would occur at all, suggesting that reordering

is path dependent.

The Torino algorithm has clear comparisons with Jaiswal's classification algorithm, but

also shares many of the same issues. The requirement for symmetric paths, the

deficiencies in calculating an estimate of RTT and the very large number of

classifications which resulted in Unknowns, question the value of the results. The

additional complexity in the algorithm to classify less than 1% of the packets is difficult

to justify and, therefore, the contribution beyond Jaiswal's work is questionable. The

conclusions from the authors suggest that, although the absolute amount of out-of-

sequence events is highly dependent on the link load, the relative amount compared to

the total traffic and the classification breakdown are independent of the current load.

This suggestion, that packet reordering could be independent of offered load requires

further consideration.

3.3.6 Summary

Section 3.3 has discussed the current state of the art in passive packet reordering

measurement techniques, and the range of numerical results obtained. Clearly mid-point

observation affords many benefits in the number of connections which can be

monitored, but results in increased complexity and the requirement to calculate an

estimate of RTT per flow. Further comparison of these techniques is presented in

Section 3.6.

79

3.4 Packet Reordering Metrics

As discussed in Chapter 2, Internet standardisation is a loosely defined process, defined

by RFC documents which can be produced by IETF working groups, or individual

parties. The IP Performance Metrics (IPPM) working group produced RFC 4737 in

November 2006, which defines whether a network has maintained packet order, on a

packet-by-packet basis and the context information required for all metrics. In June

2008, an individual contribution has resulted in RFC 5236, `Improved Metrics for

Packet Reordering'.

The authors of both RFCs agree on the requirements for packet reordering metrics.

Packet reordering metrics must have relevance to an application, be computable `on the

fly', be relevant to TCP and real-time performance and allow for the concatenation of

separate segments to estimate the reordering of an entire path. This section discusses

and compares the proposed metrics and illustrates some results from the limited

number of deployments documented in the literature.

3.4.1 IP Performance Metrics Standardisation

The IP Performance Metrics Working Group is charted by the IETF to define metrics

and measurement methodologies for network performance evaluation. IPPM has

defined metrics for measuring connectivity RFC2678, one-way delay RFC2679, one-way

packet loss RFC2680, round-trip delay RFC2681, bulk transfer capacity measurements

RFC3148, one-way loss patterns RFC3357, IP packet delay variation RFC3393, a one-

way active measurement protocol RFC4656, Network Capacity RFC5136 and recently

packet reordering metrics RFC4737.

Current research involves producing standards for a Two-way Active Measurement

Protocol and a One-way Packet Duplication Metric.

80

3.4.2 RFC 4737

RFC 4737 highlights that packet reordering may be present on a steady-state basis,

which is easily detectable by minimising spacing between test packets, or the reordering

may be on a transient basis as a result of network instability. The standard therefore

defines a method to determine a `reordered singleton' - an atomic metric to indicate

whether or not packet order has been maintained. It then defines multiple sample

metrics to quantify the degree of reordering in terms of frequency and distance between

events, since one metric that quantifies a key aspect of one receiver's behaviour may be

completely irrelevant to another.

As with other IPPM metrics, RFC4737 is an active measurement protocol. In order to

provide the context in which the measurement was made, RFC2330 defines a packet `of

type-p', which ensures that the constructed probe packets are designed so as not to

receive any different packet treatment from any other data packets on the Internet and

that their specific construction is reported in the context of the measurement.

Additionally, the sending stream parameters must be reported with the metric, so as to

document if the probe stream is periodic as in RFC3432, TCP-like as in RFC3148, or

Poissonian as in RFC2330.

3.4.2.1 A Reordered Packet Singleton Metric, Type-P-Reordered

The metric to identify if packets are arriving in sequence requires the implementation of

a sender which produces a series of monotonically increasing identifiers at the source on

each packet in order to establish the original order of transmission.

At the destination, a method is required to examine the `Next Expected' packet number,

which may either be computed by the destination, or transmitted to the destination

offline for correlation. In a TCP scenario, the value of Next Expected would be the

sequence number of the previous packet plus payload size.

If Sequence Number of received packet is >= Next Expected, then Type-P-Reordered

81

= False, else Type-P-Reordered = True. Packets with a Sequence Number > Next

Expected are considered as a special case of in-order delivery, caused by packet loss or

reordering. A SequenceDiscontinuity metric is calculated for these gaps in sequence

numbers, using either packets, bytes or time.

3.4.2.2 Sample Metrics

A number of sample metrics are defined to assess the degree to which a packet is

reordered with respect to other packets in the flow. These are illustrated in Table 1.

Name Unit Description

Reordered Packet Ratio Percentage Count of packets with Type-P-
Reordered=True/Total # of packets

Reordering Extent Packets The maximum distance, in packets, from a reordered
packet to the earliest packet received that has a larger
sequence number.

Reordering Late Time Time Indication of lateness in terms of the buffer time

Offset that a receiver requires to accommodate a reordered
packet.

Reordering Byte Offset Bytes Indication of lateness in terms of the storage bytes
required that a receiver must possess to
accommodate a reordered packet.

Gaps between multiple Packets or The distance between successive reordering
Reordering Discontinuities Time discontinuities.
Reordering-Free Runs Packets The count of consecutive in-order packets between

reordered packets.
TCP-Relevant Metric Percentage The percentage of packets which are reordered by a

distance >_ n packets, where, if n=3, a NewReno
sender would consider this packet lost for purposes
of congestion control.
3 is the default threshold for Stream Control
Transport Protocol RFC2960, and the Datagram
Congestion Control Protocol RFC4340 when used
with Control ID 2: TCP-like Congestion Control
RFC4341.

Table 1- RFC4737 Sample Reordering Metrics

3.4.2.3 Evaluation

The sample metrics provided by RFC4737 are relatively simplistic and do not attempt to

explain the cause of packet reordering. The Type-P-Reordered non-reversing order

criterion means that packet losses alone do not cause subsequent packets to be classified

as reordered and the criterion results in only `late' arriving packets being classified. It is

noted by the authors that determining reordering extents and gaps will be exceptionally

82

difficult when there are overlapping or nested reordering events occurring.

In scenarios where a user wishes to apply these metrics to a normal TCP data stream,

the authors suggest that, since the sequence numbers are based on the byte stream with

varying packet sizes, care must be taken to not declare retransmissions as reordered and

that the TCP timestamp field [RFC1323] should be used.

3.4.2.4 Results

There are few reports in the literature of successful measurement studies using

RFC4737. Ciavattone and Morton [Ciav03] utilised a pre-RFC4737 Internet Draft of

packet reordering, using a Poissonian probe, with Reordering Extent characterised in

units of time, position and octets. The measurement was carried out on a Tier 1 ISP

backbone by AT&T Laboratories. The metrics were used to analyse a Blender' -

transient routing loops that occur when a router does not have correct forwarding

information and sends packets on a path that loop back to that router; a loop that

continues until a routing update corrects the problem. This results in short bursts of

reordered packets with varying RTTs. For this particular event, they measured 79

reordered packets, with maximum reordering extent 85 and maximum late time offset

64ms, over seven separate sequence discontinuities.

3.4.3 RFC 5236

In June 2008, Jayasumana published RFC 5236, the culmination of several packet

reordering metric publications [PiraO8]. RFC 5236 argues that the metrics described in

RFC 4737 are difficult to implement and interpret and suffer complexity, lack of

robustness and issues when attempting to evaluate in real-time. A packet arriving early

can be classified as reordered only if receiving packets are not lost. Similarly a late

arriving packet may not be reordered if there are earlier copies of the same packet

[PiraO8J. Two metrics for packet reordering are defined; Reorder Density and Reorder

Buffer Density. Reorder Density aims to capture the characteristics of reordering.

Reorder Buffer Density aims to evaluate the packet sequence from the recovery

perspective. A threshold is set in order to bound when a packet is designated as lost, so

83

as to bound the number of packets in a trace that are required for comparison and thus

simplify storage and calculation requirements.

3.4.3.1 Reorder Density

Reorder Density (RD) is defined as the distribution of displacements of packets from

their original positions, normalised with respect to the number of packets. An early

packet corresponds to a negative displacement while a late packet corresponds to a

positive displacement. RD measured on individual subnets can be combined by

convolution, in order to predict the end-to-end reordering of the network.

3.4.3.2 Reorder Buffer Density

Reorder Buffer Density (RBD) is the normalised histogram of the occupancy of a

hypothetical buffer, that would allow the recovery from out-of-order delivery of

packets. As packets are analysed, they are added to this hypothetical buffer until

sufficient other packets arrive, such that all can be released in order to the receiving

application. The occupancy of this buffer at any given time is used to describe the

reordering.

3.4.3.3 Results

As with RFC4737, there are few results published in the literature that make use of the

metrics defined in RFC5236 on a live internet network. Ye [Ye06] used RD to passively

measure 5 tcpdump traces of HTTP traffic downloaded to an observation point at

Colorado State University in August 2005, each over 2 megabytes in size. The threshold

defined, beyond which an early or late packet is deemed to be lost, was set to 25. The

histogram plotted of displacement, between -25 and +25, and RD, shows that the

majority of packets are grouped between -15 and +10, with RD approximately 0.030.

No particular dominating features are present and it is difficult to evaluate from the

histogram if such behaviour exhibited by the network is either good or bad.

84

3.5 Comparison of Techniques

Figure 22 presents a classification taxonomy of the current methodologies and metrics

which can be used to measure packet reordering. Previous classifications ll, uo05] have

classified active measurements as bulk-transport measurements and packet-tram

measurements; this method will not highlight the potential for adverse Middlebox

interaction. Figure 22 classifies active measurements as Control-Plane packets and Data-

Plane packets, in order to highlight the potential additional latencies which control-plane

measurement techniques might endure. The Hong-Kong Pointer method is classified as

a control-plane technique because, although the measurements themselves are

performed on data packets, the method relies on less well defined parts of the TCP

specification where the processing of these data packets may lead to some uncertainty.

The Paxson and Tsinghua techniques are highlighted as techniques which may lead to

the most representative techniques for inferring TCP behaviour during reordering. The

UDP-based measurements may not fully characterise TCP congestion window-like

behaviour when dealing with the effects of packet loss and other cross traffic.

Figure 22 - Packet Reordering Measurement Taxonomy

85

Inspecting the passive measurements indicates the necessity for all mid-point

measurements to obtain an accurate estimation of the sender's calculated RTI', for every

TCP connection, throughout the entire lifetime of that connection. Clearly this is a

challenging task, which will introduce large degrees of uncertainty in each of the

classification algorithms. RFC 5236 avoids this uncertainty, but is primarily an end-point

measurement and does not attempt to classify the cause of each packet reordering event.

Clearly, some notion of the cause of packet reordering in a network, in addition to a

numerical value of the degree and scale of reordering taking place, would be important

to network operators and providers.

3.6 Comparison of Measurement Results

As discussed in Section 3.1, the methodologies used to measure packet reordering in the

literature are diverse, so as to make comparison difficult. Nevertheless, those

measurements which do appear comparable are presented in Table 2.

As shown in Table 2, there is no simple answer as to the degree of packet reordering

that is experienced on the Internet. Numerical results vary between 0.6% and 66% of

connections experiencing at least one packet reordering during their lifetime, and that a

total of between 0.1% and 90% of packets will experience reordering.

Clearly, the limitations of each of the metrics, as discussed throughout this chapter,

impose limits on the conclusions which can be drawn from these results. There does

appear to be some consistency in the conclusions drawn by various authors as to the

cause and type of reordering.

Reordering appears to be highly asymmetric and path dependent. This questions many

of the measurement studies, as no studies performed measurements on both forward

and reverse paths. At present, there is little in the literature which considers reverse path

reordering, its effect on TCP flows and how it can be measured.

86

Name % Connections Amount of Conclusions as to the Cause

Experiencing Reordering

Reordering
Paxson Over 36% and Over 2% and 0.3% The large number of data reorderings instead of ack, is due

12% forward direction, to the cumulative-ack function
0.6 and 0.1%
reverse Highly-site dependent, Highly asymmetric, Highly path

dependent

Bennett Not Comparable Over 90% Reordering is a function of local parallelism and network
load

Loguinov 9.5% 0.04% of all packets
Bellardo Over 15% Forward path reordering significantly more prevalent than

reverse path.

Packet sizes (1500 bytes) gives different measurements to
40 bytes

Reordering is related to inter-packet gap (with
experimental proof)

Tsinghua 5.79% 3.187% of all Strongly site dependent.
packets

Delft 56% and 66% 6% and 5.6% Highly site dependent, and asymmetric

Reordering is a Poisson process which affects bursts at
random

Hong Kong 35% of forward paths, Not Comparable
Pointer 10% reverse paths
Perkins 47% 0.01% Highly asymmetric

The relative frequency of packet reordering increases as
the inter-packet arrival time is reduced.

aiswal Between 0.6 and 5.1% Between 7 and 26%

Rewaskar Not Comparable Between 0.2 and
12.9%

Tstat Not Comparable 10.5%

Table 2- Comparison of Measurement Results

Reordering appears to be related to the inter-packet gap of packets in a connection. This

intuitively appears logical; packets which are spaced close together, will require less delay

in order to be moved out of sequence. Packets with larger inter-packet gaps, will have to

be significantly delayed in order to be moved behind the next packet in the connection.

Comparison of the measurement results also serves to highlight that, although some

metrics claim to emulate TCP-like behaviour in their assessment of reordering, this is

often simplified to mean that they evaluate the number of packets appearing more than

3 packets out of sequence. This simplistic notion is unlikely to be sufficient to

characterise the complex effects that reordering will have on a sending TCP congestion

window and, thus, the performance of the flow. Further assessment of the impact of

reordering is considered in Chapter 4.

87

3.7 Conclusions

Chapter 3 has presented a taxonomy of the current state of the art in packet reordering

measurement research and has discussed a number of key issues which affect both

passive and active techniques in this field. In addition, a number of measurement studies

of packet reordering have been surveyed and those results which are comparable have

been presented and discussed.

A number of conclusions can be drawn from the generated taxonomy. There are few

active measurement techniques, which perform their measurements by using TCP-like

data packets. Section 3.2.1 has discussed the effects of Middleboxes on reordering

measurements. The use of such boxes is likely to increase, and their presence is difficult

to detect. This will make it difficult to perform measurements, or will interfere with the

results that are produced.

The Paxson and Tsinghua measurements are highlighted in the taxonomy as the

methodologies which may generate the most representative results of real network

traffic. Results obtained using these two techniques, as shown in Table 2, differ in their

report of the percentage of connections experiencing reordering by over 30%, but direct

comparison of these approaches is not possible, as they were not applied over the same

datasets.

Passive measurements have also been classified in the taxonomy and differentiated by

their observation point and their ability to generate RTT estimates. The clear benefits of

passive monitoring techniques have been discussed in Section 3.3.1, the most important

features being their ability to measure real network traffic and the ability to potentially

monitor thousands of concurrent flows. Although two of the passive methods discussed

enjoy these benefits, the difficulties in generating an accurate mid-point estimate of RTT

coupled with the unrealistic expectation that both forward and reverse paths will flow

symmetrically, highlight serious limitations with these methods. The resulting

measurements obtained by these methods vary by over 20% in their estimation of the

88

total amount of packets undergoing reordering in the Internet.

The drivers of packet reordering have been discussed during comparison of the

measurement results. There is agreement in the literature that reordering appears to be

highly asymmetric and path dependent, which is consistent with Bennett's hypothesis

that reordering is an effect of local parallelism within nodes. Clearly, as multipath routes,

the use of end-to-end wireless technologies such as WiFi and WiMax and local

parallelism at multiple layers all increase, increased packet reordering becomes much

more likely.

Finally, although many metrics have claimed to emulate TCP-like behaviour in their

assessment of packet reordering, their simplistic approach focuses on identifying the

number of packets which have been reordered by 3 or more positions. None of the

proposed metrics for packet reordering have been correlated with a measure of real

TCP Goodput, thus providing a metric that truly is characteristic of receiver behaviour.

Indeed, the literature is extremely limited [Laor021 when discussing the actual effect of

packet reordering on TCP performance and such assumptions as the behaviour of TCP

during reverse path reordering, have been hypothesised [Benn99], but never investigated

by experiment or simulation. This would suggest that much of the recent work [LeunO7]

focussed on simulating TCP and providing patches to the congestion control algorithms

to mitigate reordering, is premature and much of the recent work lacks an

understanding of the problem.

Chapter 4 continues by investigating the effects of packet reordering, and presents

results illustrating the true behaviour of TCP during reordering, which any effective

reordering metric should attempt to characterise.

89

Chapter 4

A Two-Point Passive Packet

Reordering Measurement

Technique

4.1 Introduction

It is clear that, given recent efforts to design both metrics and methodologies to

characterise the degree of reordering along an end-to-end path, packet reordering is a

phenomenon which is becoming increasingly important in network performance

90

measurement and analysis.

It has been proposed [Benn99] [Ligh01] [PrzyO5] that packet reordering is a consequence

of Network Equipment Manufacturers (NEMs) increasing switch and link level

parallelism on the Internet, whilst seeking performance, reliability and economy

improvements. It is therefore likely that the degree of packet reordering prevalent on

the Internet is on the increase. Although many methods to both measure and mitigate

reordering have recently been proposed, limited consideration has been given to

measuring and understanding the true drivers of packet reordering, and correlating these

measurements with the effect that they actually have on a user's application. It is only

through this correlation of measurements that it will be possible to ascertain if packet

reordering will affect the users perceived Quality of Service, and then allow for the

design of appropriate metrics and mitigations.

In this chapter, an investigation of the drivers of packet reordering is presented; a

methodology for emulating and measuring TCP reordering is described, that allows

empirical measurement of the true performance of TCP and provides an insight into the

complex behaviours of the congestion and retransmission algorithms. A novel two-

point packet reordering measurement methodology is presented, followed by a

description of algorithms developed which measure and demonstrate the effect that

reordering may have on application performance. Results of these measurements are

presented and then methods to mitigate the effects of packet reordering are discussed.

4.1.1 Drivers of Packet Reordering

Bennett [Benn99] hypothesised that much of the reordering observed during his

experimentation was, not as previously expected due to multi-path routing or broken

equipment, but as a result of `Switch and Link-level parallelism'.

Multi-path routing suggests that there is already an inherent degree of parallelism in

existence in the Internet; it is well known that packets travelling between the same

source-destination pair may experience `route flutter' due to transient effects at the

intermediate routers along each path. Figure 23 illustrates the additional concepts of

91

Link-level Parallelism and Switch or Local Parallelism, all of which have been argued to

play an even greater role as drivers of future packet sequencing issues.

Multi paths
between routes

Multi paths
between nodes

Multi-Path Routing Link-Level Parallelism I _ý!

Multi paths inputs Proc. s. IngQwuw o, npoi
inside nodes

Switch / Local Parallelisn

Figure 23 - Link-Level and Switch / Local Parallelism

Link-level Parallelism, includes mechanisms such as link striping and load balancing. It

is often more cost effective for network providers to aggregate the throughput of

several smaller links, rather than leasing a single high throughput connection. Such

parallelism may provide additional benefits in terms of increased flexibility, capacity

planning and redundancy. 'Zany NEIN1s implement 1.2 link striping on a per-packet basis

[Be1102] and, therefore, since queues drain at a constant rate, packet flows with small

inter-arrival times are likely to suffer reordering.

Switch Parallelism describes elements of network hardware which allow packets,

potentially from the same end-to-end connection, to take different paths within the

internal hardware architecture. Switch Parallelism is therefore an intentional design

feature and is a result of decisions made by NFMs in order to attain multi-Gigabit

switching speeds. In such architectures, several parallel processing queues may have

been implemented, potentially at multiple stages throughout the switch, in order to

aggregate high overall throughput [Thom02]. Empirical observations have shown that

these design compromises can result in packet ordering issues ILighO1ý.

Consider a high speed router design that makes use of parallel processors and queues to

92

switch p2ckcts. Upon cntcring the router, rackets are dhpcrscd over thcsc multiple

Piro queues of varying occupancies and it is very difficult to guarantee that sequencing

will be nuintained. Despite there having always Uren some degree of parallelism on the

Internet due to multi-path routing, it is this 'embedded parallelism' Which has been

argued by Bennett to be the real driver of 'I'CI' reordering. \1 ctlicr or not this
deliberate addition of parallelism and the resultant reordering,, represents a fair

performance trade-off against the extra retransmissions that current '1 C1' mechanisms

will cause, is worthy of further investigation.

With such link and Switch embedded parallelism, it is impossible to identify these

Parallel links from a logical overview of the network. Consequently, rackets within the

same TCh connection, despite appearing to have trarcllcd the sane layer 2/3 path, will

in fact have experienced varying transmission delays. 'I1ºc result will be increased Dclay

Variation and, in the worst cascs, loss of packet sequence. l? xtctnal identification of the

source of racket reordering is therefore difficult; the only indication may he that it

particular hop exhibits varying levels of May. While the majority of routers will count

packet losses and export these values through an SNAftº 4\1111, reordering is invisible it)

routers and is not recorded or measured (l. aotO21. Uctccting and isolating routers that

cause packet reordering [Miizr06], is therefore likely to become an important feature in

future Internet architectures. It is worthwhile to note that neu flow-utyrntcd routing

technologies, such as MI US and 1.3 VPN, arc not necessarily immune to this

phenomenon since the parallelism occurs inside the nodes.

Recent papers have suggested that the continued drive to increase fouler pcrfumuance
for multi-gifiabit throughput will lead to increased link and local level parallelism. While

CPU computing setad doubles every 18 months, recent ucnds inJicatc that nctwotk

link speeds will double every nine monthsjllarcO7j, 'Iltis, combined With the ever.

increasing sizes of routing tables, will result in an increase Of the amount of processing

to be performed within routers, thus causing a bottleneck unlace highly 1parahlcliscd

architectures arc developed. Although approaches have been develop d1 to mitig; atc

switch reordering f PiraOG)jKandO7j, both input sorting and output re. icglucncing result
in design complexities with severe processing ovcthcads, resulting b, incteaici latency at
intcrmcdiitc nodcs.

93

The effects of Packet Reordering may be cumulative [LaorO2]. Across an entire end-to-

end path, there may be multiple links and switches with individual degrees of parallelism

which, each in turn, contribute to the overall level of packet reordering. These

cumulative effects are not currently understood and are difficult to predict. Cumulative

reordering at multiple intermediate points may either cancel out the effects, or

exacerbate the problem further.

The degree of multiplexing on a backbone switch may also be a factor in packet

reordering. Given that the types of switches which implement highly parallelised

architectures, such as the juniper M160 Quni08], will be core network devices

multiplexing many millions of concurrent flows, the probability of an individual flow

experiencing packet reordering is low[LaorO2]. It is unclear though how future traffic

demands will affect the degree of reordering and other work [Benn99] has measured a

correlation between packet reordering and switch load.

The various measurement studies presented in Chapter 3 indicate that the only

conclusion to which all agree is that packet reordering is highly site or link dependent.

Trends indicate that the drivers of packet reordering are likely to become more

prevalent in future devices and links across the Internet. At present, it is unclear how

much there is, or what its effects will be.

Further exploration of local level parallelism, packet reordering and its impact on the

performance of TCP/IP is therefore important for future design considerations of

Internet switching equipment architectures.

4.1.2 Measuring the Impact of Reordering

Packet Reordering has an instinctively negative effect on the performance of TCP and

therefore the majority of the current metrics and measurement studies have focussed on

characterising the movement of packets within a flow, rather than measuring the

resulting overall performance of a connection during reordering.

94

On closer examination, it is clear that many of the assumptions regarding the

performance of TCP during reordering have not been tested, but rely on the

assumptions of Bennett's seminal paper in 1999.

Bennett hypothesised that, due to the asymmetric nature of the Internet, connections

will frequently only experience reordering in one direction, and that the following

characteristics will be observed. During forward path reordering, the five effects of

unnecessary retransmissions, difficulty growing cwnd and ssthresh, actual losses being

obscured, poor RTT estimation, and reduced efficiency at the receiving TCP will all be

prevalent. On the reverse path, a loss of self-clocking and a highly bursty transmission

pattern will be observed.

The literature indicates that many of Bennett's assertions have not actually been

measured or observed on real networks, nor has there been any correlation between a

metric for packet reordering and the resulting effects on application performance. There

is, therefore, a need to carry out this study in order to evaluate the relevance of packet

reordering metrics, and the accuracy of proposed reordering solutions.

In `Is TCP Packet Reordering Always Harmful? ' [NeglO4], Neglia performs a series of

NS-2 Simulations that indicate that a limited amount of reordering can actually improve

network performance in terms of throughput and delay. In wireless links, where the

steady-state dropping probability is independent of link congestion, TCP performance

has been observed to improve due to random losses preventing link saturation. In

simulations, 8.4% reordering was measured equivalent to 0.18% loss, and 14.2%

reordering to 0.69% loss; all were found to result in increased link utilisation and

decreased queuing delay. At very high reordering levels, loss was found to outperform

reordering, as the unnecessary retransmissions due to reordering were beginning to

consume a larger proportion of the link utilisation.

The main reason for Neglia. 's measured improvement is due to a better operation of the

RED algorithm in the simulated mid-point routers. In simulations, a specific equilibrium

was found where the sending TCP algorithm and the mid-point RED algorithm were

interacting so as to increase overall throughput.

95

Whilst this is a specific degenerative case, this paper does serve as the only one in the

literature to propose that reordering is not necessarily harmful. Neglia notes that the

improvement measured is highly dependent on having a uniform reordering (or

dropping) probability, that the improvement would not happen for short-lived or

reverse-path reordering, and that the amount of `helpful' reordering depends on the

specific network scenario - the same probability may be extremely harmful for a

different network configuration.

A further study on the effect of reordering and dropping TCP packets over a slow

wireless link is carried out by Nehme[Nehm03]. Using NS-2, a 9.6 kbps GSM link is

simulated and buffer exhaustion induced at the Basestation. Only one packet is

reordered at a time, and it is found that if reordering occurs at the beginning of a

connection, an RTO is more likely to happen, because RTT estimates are not yet

inflated by a large cwnd. The effects of reordering are negligible when loss rates are

high, as the cwnd is already extremely small.

A study on the effects of packet reordering on the subjective quality of broadband

digital television [Spir06], measured that the subjective quality becomes unacceptable

when more than 0.12% of packets are reordered on an IPTV network between a video

server and a set-top-box. Although a metric similar to the Type-P-Reordered-Ratio-

Stream is used, there is no detail as to how packets were reordered or how late a

reordered packet would arrive. The effects of packet reordering and subjective video

quality are further discussed in Chapter 6.

In `Shall we worry about Packet Reordering' [Przy05], Przybylski used a UDP traffic

generator to send test streams across the GEANT network [Gean08] between seven

hosts across Europe. It was found that the streams of packets of the same size were not

affected by reordering. The tolerance of specific applications to reordering will be

affected by transmission rate, packet size, transport protocol used and receive buffers.

The most vulnerable applications are those that generate small packets followed closely

by large packets in a single stream. During experiments, Przybylski regularly observed

reordering exceeding three packets over many European links.

96

Laor [Laor02] investigated the effects of reordering on application performance over a

backbone link, where multiple TCP flows were multiplexed onto a single link, to

investigate various operating systems, delay values and flow mixes. Laor argues that,

with higher throughput in backbone links and higher throughput in technologies such as

ADSL, along with larger delay values, there will be a significant increase in the

bandwidth-delay product of many TCP connections and, therefore, also in TCP window

size.

Using an Agilent QA Robot, Laor was able to reorder one packet at a time (the amount

currently supported by a QA-Robot), and measure the throughput of several operating

systems, such as Windows 2000, Windows NT, Solaris and Linux. Laor found that

applying a small percentage of reordering resulted in a drop in application throughput;

between 0 and 1% (depending on the delay) can start to have effects. At around 8-10%

reordering, the throughput of affected applications approaches minimum utilisation.

Laor discovered that long flows are affected most by packet reordering, as they have

sufficient time to open their congestion window. In fact, packet reordering can be

advantageous for short flows, as it causes longer flows to behave in a more TCP-

friendly manner.

The main limitation of Laor's experiment is that in each case where packet reordering is

applied, it is done so by a fixed number of packet positions. This does not allow for a

range of experiments to be carried out, where the timing of such parameters as the RTT

can be compared with the additional latency applied to a reordered packet.

There is some discussion that packet reordering will have a measurable impact on high-

speed TCP variants [FengO7], which modify the cwnd algorithm to be more aggressive,

yet still rely on Fast Retransmit and Fast Recovery for packet loss indication. Feng

discusses how the current packet reordering models in simulators such as NS-2, are

extremely limited in that they cause a block of packets to be reordered at the same time,

or make it difficult to relate a specific property of packet reordering to observed TCP

performance. Feng finds that when the reordering interval is very small, high-speed TCP

97

variants suffer significantly from packet reordering even with very small reordering delay

times and block sizes.

4.1.3 Fixing Packet Reordering

A significant number of recent publications [LeunO7] have suggested methods to

mitigate the effects of packet reordering on TCP. As Bellardo comments [Bell02],

despite the limitations of existing measurement studies, several researchers have used

them to justify modifications to TCP, designed to better tolerate packet reordering.

Bellardo comments that all projects would benefit from access to more empirical data,

since additional patches to TCP cannot be validated without understanding the

prevalence of reordering in the current Internet.

A significant number of the methods to mitigate the effects of packet reordering on

TCP, require adjusting the to-reordering variable in Linux, which controls the number of

duplicate Acks allowed before a packet is declared as lost. Lee [Lee02], Blanton

[Blan02], Zhang [ZhanO3], Ma [Ma04a] [MaO4b], Bhandarkar [Bhan03] [BhanO6], all

propose different methods of dynamically altering the dupthresh during the lifetime of a

TCP connection. Other methods, such as TCP-PR [Boha03], perform retransmission by

timeout, rather than by dupthresh, based on RTT estimation in order to trigger Fast

Retransmission and Fast Recovery. Reordering Notifying TCP, RN-TCP [Sath05] and

Robust TCP, TCP-R, [Sath05b], require the involvement of intermediate routers along

the path to distinguish reordering from loss.

It has been argued [PiraOG] that little attention has been paid to understanding the

nature of reordering and its cause-and-effect relationships. Substantial quantitative

results have been produced to show that packet reordering does occur in the Internet

but, as others have argued [LeunO7], there are few studies which have measured the

impact of packet reordering and provided a quantitative assessment of the effects of

reordering on a connection.

The effects of reverse path reordering have been particularly poorly investigated in the

past; much of Bennett's hypothesis on the impact of reordering remains untested but is

98

assumed to be correct. It has been argued that there has been a rush within the

networking research community [Be]102] [LeunO7] to provide yet more patches for TCP

congestion control algorithms, without actually understanding how TCP will behave

during reordering. Although adjusting the to-reordering variable will allow for fewer

spurious fast retransmissions, it is not known if fast retransmissions are the cause of

performance degradation, nor what the effects will be for these algorithms for

interactive applications or during normal packet loss.

4.1.4 The Motivation for Measuring the Effects of
Reordering

The literature clearly indicates that there is a lack of understanding of the effects of

packet reordering. The majority of work has focussed on simulations, where the

methods to induce reordering are non-standardised, resulting in work which is difficult

to evaluate and compare. Simulations often suffer from lack of credibility and there is

now a clear trend in network research to move towards the development of testbeds, to

allow simulations to be based on credible empirical measurements.

Several papers have explicitly said that there is a lack of appreciation of the cause and

effects of reordering, with the majority of Bennett's early assumptions about reordering,

not actually having been measured in the real world.

There is, therefore, a need to build a testbed to emulate packet reordering, and to

determine the parameters which have the greatest influence on the performance

degradation of a TCP stream. A testbed allows emulation of large amounts of network

traffic, where all variables can be tightly controlled and the real effects of packet

reordering can be instrumented and characterised. Although performance

measurements of real world networks, such as those discussed in Chapter 3, are useful

to gauge the amount of reordering in occurrence, they do not allow for the controlled

environment in which the effects of reordering on individual flows can be measured and

analysed.

The investigation presented in this Chapter details the construction and methodology of

99

an experimental measure of the effects of packet reordering on a typical FTP

application. Previous measurements of TCP Reordering have been based on simplistic

simulation models [BlanO2], or on large scale production networks

[LaorO2] QaisO7] [Bell02]. The only measurement study of reordering has been based on

moving packets by position, rather than in time [Laor021. They do not allow for

measurement of TCP algorithms in a controlled environment, where all nodes can be

instrumented, and aspects such as the cause of retransmissions (for example Fast

Retransmit requests with respect to RTT timeout), can be investigated.

The use of FTP provides a simple method for illustrating TCP behaviour during single

long-lived connections and is not intended to be representative of all Internet traffic.

However, such an application provides an excellent first approximation to gain a better

understanding of the protocol's characteristics under a variety of conditions. This

Chapter discusses the effects of reordering as perceived by the user and illustrates the

degree of service quality degradation that a user could expect in situations of severe

reordering.

This chapter discusses work which was presented at the Second International Workshop

on Internet Packets Dynamics, IPDy 2007, and has been invited to appear in the IARIA

International Journal on Advances in Internet Technology.

100

4.2 Experimental Methodology

From the previous discussion, it is clear that the effects of packet reordering could be

cumulative across an end-to-end path as a flow traverses several reordering-inducing

components and links. Figure 24 illustrates a network equivalence diagram upon which

the testbed network is designed.

4.2.1 Core Transit Network Reordering Equivalence

It is assumed that a flow is traversing from the cloud on the left to the cloud on the

right, passing through edge devices such as low capacity routers, through a core transit

network, towards the destination. It is the cumulative effects of reordering within the

core transit network that the testbed will emulate.

Source / Measurement Tap Transit Network Measurement Tap Source /
Destination Point Point Destination

Corporate Corporate
Network Network
soHC Core Network 50HO

User PC Edge Device Edge Device User PC
End Device End device V.

_
If

r

Tap Network Emulator - Tap
Linux Host introduces Delay, Linux Host

Loss, Jitter and
Packet reordering

Figure 24 - Network Equivalence Diagram

The purpose of this study is to emulate these cumulative effects of reordering on a

single TCP stream and measure the resulting performance characteristics. Previous

101

studies to measure specific touter architectures [LighO1] do not allow for consideration

of multiple reordering-inducing components, and thus do not accommodate the range

of reordering measurements supported by this testbed.

It is worth noting further, that the cumulative effects of reordering could be positive or

negative at each device. That is to say that packet reordering occurring at a first device,

may be `undone' by a second device. This phenomenon and its effects on a single TCP

stream are not well understood or documented.

The problem of reordering can therefore be refined into the following components.

" P,. is defined as ̀ Reordering Probability'- the percentage probability of a packet

undergoing reordering as it traverses the core transit network, separately defined

for both forward and reverse directions.

"d (ursec) is defined as ̀ Reordering Delay' - the additional time delay applied to

packets which have been selected to undergo packet reordering, relative to the

normal transit time across the core transit network, separately defined for both

forward and reverse directions.

"L (msec) is defined as `Line Length' - the emulated Round Trip Time of the

flow, which is induced by applying a standard delay of L/2 to all packets in each

direction, to allow various round-trip distances to be emulated.

Figure 24 illustrates that a network emulator is required to introduce the various levels

of packet reordering that are to be investigated. Two Linux hosts provide the de-facto

implementations of TCP which will be measured. Network tap points are required

between the Linux hosts and the network emulator to allow for a two-point

measurement methodology to be developed and to allow correlation of the results from

both sides of the network, before and after reordering has been induced.

102

4.2.2 An Open Extensible Router

Router NEMs are moving towards building products based on standardised Linux

kemels[InfoO8], thus allowing multiple services such as firewalls, border controllers and

deep packet inspection, to run on a single ̀ Network Virtualised' device.

At present, commercial routers are difficult to modify or to extend due to specialised

hardware and some proprietary code. There is therefore a requirement to find an open

source extensible software router, which can run on standardised Intel server hardware,

to allow the programmability required for network emulation of packet reordering.

4.2.2.1 The Click Modular Router

The Click Modular Router Project [ClicO8] at M. I. T. and U. C. L. A, aims to develop a

software architecture for building flexible and configurable routers. A Click software

router [KohlOO] employs a simple declarative language to describe a router's

configuration, allowing full control of packet processing within the router, such as

packet modification, queuing, dropping and scheduling, and providing the flexibility

required for the testbed packet reordering experimentation.

Click routers are assembled from packet processing modules called `Elements'. An

Element represents a basic unit of processing that would occur inside any router -

example Elements include decrementing a TM counter, checking the value of an IP

checksum or counting packets as they pass a point in the configuration. Click schedules

the router's CPU with a task queue, one element at a time. Each task in the task queue is

an Element requiring access to CPU time, and so each Click Element represents both

Click's unit of packet processing as well as its unit of CPU scheduling.

Each Element belongs to one Element Class, which specifies the piece of C++ code

which should be executed when a packet is passed to that Element. Each Element

specifies a number of ports; packets are passed from the output port of one Element to

the input port of another.

103

A user can then define a configuration for the router, by using the Click declarative

language to describe a directed graph, with Elements at the vertices, and packets flowing

across the edges of the graph. Declarations are used to instantiate Elements, while

Connections described how each of the Elements should be connected together.

Depending on the endpoint ports of each graph edge, a particular Connection may be

push or pull. Push processing is used when a packet arrives from a device, such as a

packet arriving and being loading into a Queue Element. Pull connections are used

when an Element is controlling the time of packet processing, such as a Scheduling

Element loading packets from the Queue Element.

4.2.2.2 Installing a Click Router

Once a Configuration has been described, the router configuration is run in the context

of a Linux driver, either at user level or in the Linux kernel. The user level driver

operates on the Linux networking stack using Berkeley packet filters, whereas the in-

kernel driver offers much increased performance. The kernel thread runs the router

driver, which loops over the Click task queue and runs each task in turn. The Click

language file is passed to the kernel driver, checked for errors, each Element is

initialized, and the router is put online.

The idea of modular routers is not new. However, finding the right level of abstraction

to achieve high performance and flexibility is difficult. If the building blocks are very

fine-grained, with expensive packet transfers between blocks, then performance will be

poor. Creating monolithic blocks can reclaim this performance, but at the expense of

flexibility. Click has explored a particular region within this spectrum and has

demonstrated impressive packet forwarding speeds whilst retaining a degree of

modularity. On conventional PC hardware, a Click router has been measured to achieve

a maximum loss-free forwarding rate of 333,000 64-byte packets per second [Kohl00].

An otherwise idle Click IP router has been measured to forward 64-byte packets with a

one-way latency of 29 microseconds. Minimum sized packets stress the router greater

than larger packets, as the CPU and other processing resources are consumed in

proportion to the number of packets forwarded, not in proportion to bandwidth. Each

104

Element has a processing cost associated with it, although even substantial Elements

such as ChecklPHeader and DecIPTTL have been measured to have very low

processing times of 457 nanoseconds and 119 nanoseconds respectively.

For the experimentation carried out on the testbed, it will be shown that any extra

processing latency induced by Click is negligible in proportion to the reordering delays

and round trip times induced.

4.2.2.3 ElementClass ̀Reorder'

A new Element and corresponding ElementClass were created called `Reorder', to allow

for the selective delay and reordering of packets passing through the Click router.

Reorder uses two queues to simulate packet reordering. Packets traversing the first

queue will pass with no additional delay, whereas packets randomly selected to traverse

the second queue will have an additional delay applied to them.

The Reorder Element is passed two variables from the Click configuration language. P�

the Reordering Probability, is a value between 0 and 1, where 0.2 is equivalent to 20% of

the packets being selected for reordering. d (msec) Reordering Delay, is the delay applied

to the first queue within the Reorder Element. The random is self-weighting, so that

every packet in the direction of interest has equal opportunity of being selected to be

reordered.

4.2.2.4 Click Language Configuration

A Click language script was implemented to make use of the new Reorder ElementClass

as illustrated in Figure 25. The figure illustrates two separate directed graphs; reordering

occurs asymmetrically, both forward and reverse paths must be treated independently in

the testbed and so the Click language script must instantiate two separate graphs.

105

FromDevice II FtomDevice

CheckiPHeader II Check]PHeader

Ot SetTimestamp ý-I SetTimestamp
ToHos I To Host

Reorder II Reorder

Delay i Delay

ToHost II ToHost

Figure 25 - Click Element Configuration

Upon arriving at a network interface card, a packet is pushed from the FromDevice

Element to the ChecklPHeader Element. In this particular configuration,

ChecklPHeader initially checks if a packet is IP or not; non-IP packets are passed to the

ToHost Element and they are permitted to traverse the test network freely; IP packets

are checked for valid IP length, address and checksum fields, and if correct, are passed

to SetTimestamp. SetTimestamp records locally the time at which each packet arrived at

the Click router. The packet is then pushed to the Reorder Element and processed as

discussed in the previous section. Finally, each packet is pushed to the Delay element,

where the additional delay L/2 (msec) is applied to each packet, thus allowing emulation

of multiple Round Trip Times. L/2 is applied rather than L, to emulate the router as a

mid-point device, thus ensuring that, for non-reordered packets, both forward and

reverse paths induce the same overall path delay.

106

4.2.3 Gigabit Network Testbed

A network testbed was constructed as illustrated in Figure 26 using fibre-based gigabit

Ethernet components. The use of full-duplex fibre avoids local Ethernet contention or

other transient network effects which may influence the measurements made.

The testbed consists of a number of servers and networking components, which were

rack mounted and configured in a single unit.

" Quoyloo is an HP NetServer LPr, installed with two Netgear GA620 fibre-based

Gigabit networking cards. Quoyloo was installed with Fedora Linux 2.4.18, with

a recompiled Kernel to support Click kernel extensions and to allow Click to run

as a Kernel module for improved performance. A version of the Click script

described in Section 4.2.2.4 was installed on Quoyloo for each experiment.

" Raasay and Stroma are two HP Kayak XU workstations, each with Netgear

GA620 fibre Ethernet cards, and Fedora Linux 2.4 installed. During

experimentation, Raasay performed 10 Megabyte FTP upload sessions to

Stroma.

" Yell is a Datum TymServe GPS NTP Server, which provided synchronisation

between all the machines on the testbed. Yell itself was connected via coaxial

cable to a GPS Antenna located on the roof of the building.

" Isay is a Dell Poweredge server, used for offline processing of results, as

discussed in Section 4.2.7.

" Missouri was an additional Netserver LPr, which acted as the testbed

commander, providing real time indication of the progress of experiments.

" Hoy was a HP Netserver LPr with two Netgear GA620 cards, used to probe the

107

Gigabit network using the two Agilent Passive Optical Taps connected at the

two points shown in Figure 26.

PCI

I

GPS Antenna

on building root

1 Full duplex GbE Link

GbE NIC
Agilent Passive

Optical Tap

c, g

NTP Server
evn

cm ýý

"-

Is

".. r=ý.

Quoyloo
Oof7

u Click Router

Offline Storage and Results
=
W

Processing
G°

1 Full duplex 10/100
Missouri Link

"
ProCurve 10/100

Switch

Test Controller

1 Full duplex GbE Link
PCI i

GbE

ftzý

DWDM Fibre

Agilent Passive
Optical Tap

Figure 26 - Gigabit Network Testbed

Figure 26 indicates that, in addition to the Full duplex Gigabit Ethernet link between

Raasay, Quoyloo and Stroma, each element in the testbed was connected via a 10/100

electrical Ethernet switch to allow for setup and control of each experiment.

During experimentation on the Gigabit Ethernet testbed, the network maximum

transfer unit on each workstation was set to 1500 bytes, thereby disabling Gigabit

Jumbo Frame support, and allowing simulation of the standard packet size observed in

the Internet[MediO5].

108

4.2.3.1 A Map Extensions

Raasay, Stroms and Hoy arc all based on fedora l inux 2.4.18 kernels, which have been

recompiled and patched to support Memory Alan Extensions. The use of Linux Kernel

Ring Buffers [Dcri04] allows for a much improved performance in passive racket

capture. The patch allows creation of a circular buffer for racket capture, where

captured packets arc copied by the driver into the ring and the write pointer moved

forward; userspace applications can then access the circular buffer by calling A! Alap to

obtain a pointer to the buffer, read the packet, then move the read pointer forward. '11tis

avoids the time required to delete captured rackets from Kernel memory structures

when they arc read (new packets simply overwrite old rackets in the ring,), and avoids

the latencies induced when moving a racket from the adaptor to the user space through

the kernel data structures and queues. Libpcap-MMap (WVoo 1081 is a modified version

of Libpcap, which exploits the AMAiap system calls for passing rackets into user space

and was used on the packet capture code, developed and installed on ltaasay, Struma

and troy.

4.2.4 Defining Metrics for Packet Reordering

A method was required to be able to measure the amount of racket reordering that each

packet had undergone, when observed at either of the two tar points in the trrtbed. A

C++ packet probe was developed using Libpcap. MMap, which was designed with the

ability to record the arrival sequence of rackets as observed at the probe, and

additionally monitor and log all packets in text Glos. Of both forward and rev crsc
directions, for later parsing and analysis.

In ordcr to calculate the distancc by which a racket has been reordcrcd, a method is

rcquircd to differentiate the order in which the rackets were sent. compared with the

order in which they were observed by the probe. 111c I1'II) (kid mithin the II' packet
header was used to provide a sending sequence number. I1/ is designed to support
fragmentation and rc-assembly of packets when traversing various layers of the OS! that

may have differing maximum transmission unit (M'I'U) "ires. 'I11c IW'I[) fide is inserted

109

by the sender into each packet as it is transmitted. The IPID is then copied into each

segment at fragmentation and can then be used by routers for re-assembly of the

datagrams back into the originally transmitted packet.

The traditional method of implementing IPID is using a simple counter incremented on

a per packet basis on each Ethernet interface. On the testbed setup only one concurrent

flow was active on each gigabit interface; each of the hosts on the test network were

controlled using separate interfaces on the 100baseT electrical network. Using this setup

the IPID increased by only one on each packet sent on each of the test streams. The

IPID therefore provided a simple and effective 'packet counter' from both the sender

and receiver and provided a means of identifying the outbound sequence in which the

packets had been transmitted. Each flow's initial packet's IPID was used to normalise

this 'sending sequence' number as recorded by the packet probes.

The packet probes were deployed either side of the Click router, depending on their

direction, forward or reverse, to capture packets after they had been reordered. As each

packet was captured, the sniffer would record the arrival order of packets within the

flow using an integer counter, which would indicate the arrival sequence of the packets

at their destinations. This was the 'receiving sequence' number.

Comparison of the 'receiving sequence' number with the 'sending sequence' number

provided a very effective real-time method of measuring the "Absolute Reordering" of

the packet. Previous methods have relied upon calculating the next IP sequence number

based on the previous sequence number plus payload length. This method becomes

extremely complex under high degrees of reordering and loss, as it can be difficult to

calculate the next expected sequence numbers and the distance a packet has been

reordered.

Therefore, a simple metric can be defined that can be applied at probes on either side of

the Click router, to define if packet reordering has occurred and the severity of the

reordering observed.

110

For packet P,, where i is the index position of that packet in the arrival stream of

packets, j is the observed IPID of the packet, and k is the first IPID observed in that

stream of packets, the packet can be defined as out of order if Equation 1 is satisfied.

Vi, j, k: i<(j-k) or i>(j-k) P, isoutof order

Equation 1- Reordered Packet Metric

For a packet P; which has been defined as out of order, the extent of the reordering can

be defined by Equation 2, where the result is the number of packet positions that a

Reordered packet has arrived, early or late.

Vi, j, k: if P, = is out of order, i- (j - k) Reordering Extent

Equation 2- Reordering Extent Metric

When implementing these metrics, it is important to note that, as discussed in Chapter

2, the IPID field in the IP header is limited to two bytes. Therefore, the counter will

recycle after 65,535 iterations. Code implementation of Equations 1 and 2 requires a

check in order to test if counter recycling has occurred, and if so, to normalise the value

of j to zero on the packet at which this occurs.

4.2.5 Packet Probe `Out of Sequence' Code

The C++ packet probe operated as illustrated in Figure 27. A filter is specified at run

time; in this case, the filter was to capture all packets between IP addresses 10.0.0.2

(Raasay) and 10.0.0.6 (Stroma), which did not appear on port 21. Port 21 is the control

port for FTP sessions and, through the use of Active rather than Passive 1 FP, it is

known in advance that a separate data session will be created from 10.0.0.2 to 10.0.0.6,

which forms the data transfer and the basis for the measurement.

111

Figure 27 shows that as each packet which matches the filter criteria arrives, it is passed

to a callback function for processing. This continues until the code receives a SIUINT

signal from the Linux kernel, indicating that the packet capture should cease, and the

results should be flushed to disk.

Cannot open Port

or Invalid Filter

Packet Processed

0

Packet Received
Matching Filter

Signal 2 or Signal 15
Received from Kernel

Fun on

Figure 27 - Out of Sequence FSM

Figure 28 illustrates the algorithm implemented by the called function as each new

packet arrives at the probe. The packet is read in network byte order and byte masks, in

the form of structs, are applied in order to delimit the Ethernet Header and IP Header.

If the packet is not IPv4, as indicated in the Version field, it is silently dropped.

The 4-tuple of IP source and destination addresses and ports, are then used to define a

TCP connection. If the header has the TCP SYN flag set, the current IPII) is used as

the norrnaliser applied to successive packet's IPID in order to calculate the `Sending

Sequence' of the packets.

112

The Initial IPID value may be reset during the lifetime of a connection if it is detected

that the IPID value has recycled from 65535 to 0. In this instance, it is assumed that the

IPID counter on the sending Network Interface Card has recycled and therefore the

Out of Sequence code follows suit. This occurrence will not have any adverse effect on

the calculation of packet reordering, as the normalising IPID will reset to zero, and

Equation 1 and Equation 2 remain valid.

0ý-

0ýý

m

No

Figure 28 - OOS Packet Callback Algorithm

113

An example capture output from the probe software is illustrated in Figure 29.

B CD EF GH I J K LMN 0

1 1218632117 649377 10.0.0 2 4094 10.0.0.6 5720 0 0 1677880416 0 22492 0 SYN 5840
2 1218632117 649441 10 0.0 6 5720 10.0.0.2 4094 0 0 2165394042 1677880416 00 SYN 5792
3 1218632117 799834 10.0.0.2 4094 10006 5720 1 1 1677880416 2165394042 22493 0 5840
4 1218632118 18821 10.0.0 2 4094 10.0.0.6 5720 2 2 1677880416 2165394042 22494 1448 5840
5 1218632118 19273 10.0.0.2 4094 10 0.0.6 5720 3 3 1677881864 2165394042 22495 1448 5840
6 1218632118 106245 10 0.0 6 5720 10.0.0.2 4094 28727 1 2165394042 1677881864 28727 0 8688
7 1218632118 106277 10.0.0.6 5720 10.0.0.2 4094 1 2 2165394042 1677883312 28728 0 11584
8 1218632118 256771 10.0.0.2 4094 10.0.0 6 5720 4 4 1677883312 2165394042 22498 1448 5840
9 1218632118 257169 10002 4094 10006 5720 6 5 1677886208 2165394042 22498 1448 5840

10 1218632118 257170 10.0 0.2 4094 10.0 0.6 5720 7 6 1677887656 2165394042 22499 1448 5840
11 1218632118 334777 10 0.0.2 4094 10.0.0 6 5720 5 7 1677884760 2165394042 22497 1448 5840
12 1218632118 346230 10.0.0.6 5720 10.0.0 2 4094 2 3 2165394042 1677884760 28729 0 14480
13 1218632118 34625710.0.0.6 5720 10.0.0.2 4094 3 4 2165394042 1677884760 28730 0 14480
14 1218632118 346270 10,0.0.6 5720 10.0.0.2 4094 4 5 2165394042 1677884760 28731 0 14480
15 1218632118 346300 10.0.0 6 5720 10.0 0.2 4094 5 6 2165394042 1677889104 28732 0 17378

16 1218632118 496600 10 0.0.2 4094 10.0 0.6 5720 8 8 1677889104 2165394042 22500 1448 5840
17 1218632118 496965 10 0.0.2 4094 10.0 06 5720 9 9 1677890552 2165394042 22501 1448 5840

18 1218632118 496967 10.0.0.2 4094 10.0.0 6 5720 10 10 1677884760 2165394042 22502 1448 5840
19 1218632118 497365 10.0 0.2 4094 10.006 5720 11 11 1677892000 2165394042 22503 1448 5840
20 1218632118 586223 10 0.0.6 5720 10.0 0.2 4094 6 7 2165394042 1677890552 28733 0 20272
21 1218632118 586252 10 0.0.6 5720 10 0 0.2 4094 7 8 2165394042 1677892000 28734 0 23168
22 1218632118 586266 10 0.0.8 5720 10.0.0.2 4094 8 9 2165394042 1677892000 28735 0 23168
23 1218632118 586290 10.0.0 6 5720 10.0.0.2 4094 9 10 2165394042 1677893448 28738 0 26064
24 1218632118 736775 10.0.0.2 4094 10.0.0.6 5720 12 12 1677893448 2165394042 22504 1448 6840
25 1218632118 737158 10 0.0.2 4094 10.0.0 6 5720 13 13 1677894896 2165394042 22505 1448 5840

28 1218632118 737160 10 0 0.2 4094 10006 5720 15 14 1677897792 2165394042 22507 1448 5840
27 1218632118 737162 10.0.0.2 4094 10.0.0.6 5720 18 15 1677899240 2165394042 22508 1448 5840
28 1218632118 814781 10 0.0.2 4094 10.00.6 5720 14 16 1677896344 2165394042 22506 1448 5840
29 1218632118 826217 10.0.0.6 5720 10.0.0.2 4094 10 11 2165394042 1677894896 28737 0 28960
30 1218632118 826245 10.0 06 5720 10.0.0.2 4094 11 12 2185394042 1677896344 28738 0 31858
31 1218632118 826262 10.0 06 5720 10.0.0 2 4094 12 13 2165394042 1677896344 28739 0 31856
32 1218632118 826274 10 0.0.6 5720 10.0.0.2 4094 13 14 2165394042 1677896344 28740 0 31856
33 1218632118 826320 10.0.0.6 5720 10.0.0.2 4094 14 15 2165394042 1677900688 28741 0 34752
34 1218632118 976731 10.0.0.2 4094 10.0.0.8 5720 17 17 1677900688 2165394042 22509 1448 5840

35 1218632118 977055 10 0 0.2 4094 10.0.0.6 5720 18 18 1677902136 2165394042 22510 1448 5840

36 1218632118 977056 10.0.0.2 4094 10.0.0 6 5720 19 19 1677903584 2165394042 22511 1448 5840

37 1218632118 977058 10.0.0.2 4094 10.0 0.8 5720 21 20 1677906480 2165394042 22513 1448 5840
38 1218632118 977454 10.0.0.2 4094 10.0.0.6 5720 23 21 1677909376 2165394042 22515 1448 5840
39 1218632119 55079 10.0.0.2 4094 10.0.0.6 5720 20 22 1677905032 2165394042 22512 1448 5840
40 1218632119 55453 10.0 0.2 4094 10.0.0.6 5720 22 23 1677907928 2165394042 22514 1448 5840
41 1218632119 55455 10.0.0.2 4094 10.0.0 6 5720 24 24 1677910824 2165394042 22518 1448 5840
42 1218632119 66215 10.0.0.6 5720 10 0.0.2 4094 15 16 2165394042 1677902136 28742 0 37648
43 1218632119 66245 10.0.0.6 5720 10.0.0.2 4094 16 17 2165394042 1677903584 28743 0 40544
44 1218632119 66268 10006 5720 10.0.0.2 4094 17 18 2165394042 1677905032 28744 0 43440
45 1218632119 66285 10.0.0.6 5720 10.0.0.2 4094 18 19 2165394042 1677905032 28745 0 43440
46 1218632119 66298 10.0.0 6 5720 10.0.0.2 4094 19 20 2165394042 1677905032 28748 0 43440
47 1218632119 66327 10006 5720 10.0 0.2 4094 20 21 2165394042 1677907928 28747 0 46336
48 1218632119 66340 10 008 5720 10.0 0.2 4094 21 22 2165394042 1677910824 28748 0 49232
49 1218632119 66353 10 0.0.6 5720 10 0.0.2 4094 22 23 2165394042 1677912272 28749 0 52128

13176 1218632183 885123 10006 5720 10.0.0 2 4094 6161 6162 2165394042 1687841208 34888 0 65160
13177 1218832183 885141 10 0.0 8 5720 10.0.0 2 4094 6162 6163 2165394042 1887873064 34889 0 65160
13178 1218632184 35411 10 0 0.2 4094 10 0.0.8 5720 7013 7013 1687873064 2165394042 29505 1448 5840
13179 1218632184 35424 10.0 0.2 4094 10.0 0.6 5720 7014 7014 1687874512 2165394042 29506 1448 5840
13180 1218632184 35803 10.0 0.2 4094 10.0 0.6 5720 7015 7015 1687875960 2165394042 29507 1448 5840
13181 1218632184 35805 10.0.0 2 4094 10.0 0.6 5720 7016 7016 1687877408 2165394042 29508 1448 5840
13182 1218632184 35807 10.0.0.2 4094 10.0.0 6 5720 7017 7017 1687878856 2165394042 29509 1448 5840

13183 1218632184 35809 10.0.0 2 4094 10 0.0.6 5720 7018 7018 1687880304 2165394042 29510 112 FIN 5840

Figure 29 - Example Packet Capture Output

In Figure 29, Column A indicates line number. Column B and C indicate the timestamp

of the arrival of the packet, which is achieved with microsecond resolution. Columns D

to G indicate the four-tuple by which each connection is defined. It should be noted

that a connection is defined as a single direction, and therefore the packet probe will

treat data and ack paths separately for the purposes of computing the reordering.

114

Column I indicates the `Receiving Sequence' number, which can be seen to increment

monotonically for each of the 10.0.0.2 to 10.0.0.6 and 10.0.0.6 to 10.0.0.2 connections.

Column H illustrates the `Sending Sequence' number which, in this particular example,

with little reordering, is seen on the forward path to match the `Receiving Sequence'

until row nine, where the packet with Sending Sequence 5 is reordered by two positions

and arrives late at position 7. Column j indicates the Seq number, column K indicates

the Ack, Column L the IPID and Column M the payload size. Finally, set flags are

indicated in Column N, and Column 0 indicates the nvnd advertised by the packet.

4.2.6 Automated Distributed Measurement System

In order to perform the substantial number of experiments and measurements that

would be required to accurately measure the effects of packet reordering on the testbed,

a distributed system of code components and actions was implemented in order to parse

test plans, control and schedule measurement runs, configure the programmable router

and initiate the FTP sessions to be measured. These code components were written in a

variety of languages and controlled from the test commander Missouri.

Each experiment can be defined by 6 variables:

o The Reordering Probability in both the forward and reverse directions.

o The Reordering Delay in both the forward and reverse directions.

o The Line Length emulated round-trip distance of the experiment.

o Finally, the iteration number of the experiment.

Each experiment consisted of a 10 Megabyte FTP transfer, typically each experiment

capturing approximately 13000 packets, equating to a 1.9 Megabyte text capture file. In

order to manage the large amounts of data that were created, each capture file was

named with the format Forward %-FonvardDelay-Reverse%-ReverseDelay-LineLength-

Iterations-Direction. txt, where the Direction variable is enumerated F or R, thus indicating

if the capture is from the TCP Forward path (between Quoyloo and Stroma), or the

TCP Reverse path (between Quoyloo and Raasay).

115

4.2.6.1 Distributed Measurement System State Machine

The state machine of the distributed Measurement System is illustrated in Figure 30.

The state machine executes on the test command station Missouri. A perl script, called

MakeMyClick was developed, in order to automate the process of generating a Click

configuration for each experiment. An experimental run is initialised by loading the 6

run variables, and MakeMyClick is called on Quoyloo to configure the Reorder

ElementClass and Delay elements appropriately in a Click language file. The Click

language file is checked for correctness, and the click router on Quoyloo is configured

with the file.

" "

On Raasay and Stroma, an rsh call is made to restart the TCP/IP networking stack, and

to flush all variables from previous experiments using the net. ipv4. route. flush sysctl

command. Upon restarting the TCP/IP stacks, a number of variables are loaded into

the stacks from bash scripts files, thus ensuring that the kernel settings are consistent

across experimental runs. Table 3 illustrates some of these variables, which are loaded

through Kernel SysCtl calls.

116

The values in Table 3 illustrate the TCP stack tuning applied in order to maximise

throughput from the sending and receiving robots, thus stressing the reorder inducing

router as much as possible. The TCP tuning parameters are based on values used in the

NASA Engineering and Research Network [NasaO8], and involve setting 100 Megabyte

networking send and receive buffers, disabling timestamps for performance, and

allowing the TCP advertised window to grow to its full size of 65535 bytes. The use of

tcß_no metrics save ensures that the TCP congestion state variables, such as ssthresh, are

flushed between experiments.

net. ipv4. ip_forward=0

net. ipv4. ipfrag high thresh=262144
net. ipv4. ipfrag_low_thresh=196608

net. ipv4. ipfrag_time=30

net. ipv4. ip_local port_range="1024 4999"
net. ipv4. tcp abort_on overflow=0
net. ipv4. tcp_adv win scale=2
net. ipv4. tcp_app_win=31
net. ipv4. tcp_dsack=0
net. ipv4. tcp_ecn=0
net. ipv4. tcp_fack=0
net. ipv4. tcp_fin_timeout=60
net. ipv4. tcp_keepalive_intvl=75
net. ipv4. tcp_keepaliveprobes=9
net. ipv4. tcp_keepalive_time=7200
net. ipv4. tcp_max_orphans=8192
net. ipv4. tcp max_syn backlog=256

net. ipv4. tcp_max_twbuckets=16384
net. ipv4. tcp_mem-"23552 24064 24576"
net. ipv4. tcp_orphanretries=0
net. ipv4. tcp reordering=0
net. ipv4. tcp_retrans_collapse=1
net. ipv4. tcp_retriesl-3
net. ipv4. tcp_retries2=15
net. ipv4. tcp rfc1337=0
net. ipv4. tcp_sack=0
net. ipv4. tcp_stdurg=0
net. ipv4. tcp_synack_retries=5
net. ipv4. tcp_synretries=5
net. ipv4. tcp_timestamps-0
net. ipv4. tcp tw_recycle=0
net. ipv4. tcp_window_scaling=0
net. core. rmem_default=65535
net. core. wmem_default=65535
net. core. rmem_max=104857600
net. core. wmem_max=104857600
net. ipv4. tcp_rmem-"4096 524288 104857600"
net. ipv4. tcp_wmem="4096 524288 104857600"
net. core. netdev_max_backlog=30000
net. ipv4. tcp nc metrics_save=l

Table 3- Linux Kernel Variables

The majority of experiments involve setting to-sack, tp dsack, to- fack, and to-reordering

off, although experiments with these options activated are discussed in Section 0.

Upon checking that the correct kernel variables have been set in sending and receiving

117

hosts, the test commander initialises the packet probes as discussed in Section 4.2.5.

Missouri then calls a bash script on Raasay to commence the active FTp session, and

upload a standard 10 Megabyte file. Raasay signals completion of this upload to

Missouri, which then sends a Linux kernel kill signal to the packet probes, forcing them

to flush their contents to disk. Missouri then calls Quoyloo to uninstall the Click router

configuration, compress the captured packet traces using a zip algorithm, and then

prepare to initiate the next experiment run.

4.2.7 Post-processing of Results

Upon completion of a batch of experiments, a Perl program called `Oos Parser' was

developed to parse the traces of out-of-sequence packets, and generate statistics on what

was observed. The main algorithm implemented in `Oos Parser' is illustrated in Figure

31, which illustrates the unique ability of this measurement to be able to correlate packet

captures at two points, thus improving the ability to differentiate the cause of

retransmissions as a result of packet reordering.

The algorithm initially parses the packet traces recorded from the Forward probe; that

is, those packets which have already undergone reordering on the Forward path and are

observed at the probe between Quoyloo and Stroma. Observation of packets at this

position facilitates the assumption that this is the order at which they will appear at the

receiving host of the FTp session and that this is the order and relative timing at which

the packets will be received. As each data packet in the trace is analysed, a data hash for

that connection is created, keyed by the Sequence Numbers observed, and a count

maintained for the number of occurrences of that Sequence Number.

The packet trace recorded from the Reverse probe is then parsed and, in a similar

technique, a data hash is created keyed by Acknowledgement Numbers observed and a

count maintained for the number of occurrences of each Acknowledgement Number.

Using Equation 1, packets that are defined to be Reordered, have their relevant

Reordering Extent calculated as defined by Equation 2.

118

CýD
Zý-, -R,

-.,. --7-
Fa Each Packet

in Trace

eM Toý
Counter

Number against
Ka1' ýQý

Hash

ReverseRead
File

FaEýý
in Trace

Increment Total
Packets Counter

Kay Adc Number Adc seen Add Adc Numtxr
agaimt Hash before? No

to Hash

ncremem
Observed Count

yes

Figure 31 - OOS Parser Algorithm

119

A count of the number of packets defined as Reordered is maintained. An additional

hash is created, keyed on the distance by which packets have been reordered, thus

allowing a histogram to be plotted of this metric. Finally, a retransmissions counter is

maintained, based on the number of times that the same Sequence Number is observed

on the Forward path probe. These Sequence Numbers are then keyed against the hash

of Acknowledgement Numbers, thereby providing a metric for explicitly measuring the

number of Fast Retransmissions that have occurred during a connection.

4.3 Results

A total of approximately 30,000 10 Megabyte FTP transfers were performed with

various reordering delays and reordering probabilities, on forward, reverse and

combined path experiments, over a six month period.

P, is defined as ̀ Reordering Probability' - the percentage probability of a packet entering

the Click router and being selected to traverse the slow queue, and d (msec) as

`Reordering Delay' - the additional delay applied to packets travelling through that slow

queue. L (msec) - `Line Length' - describes the RTT of the connection, induced by

applying a standard delay of L/2 to all packets in each direction, to allow various round-

trip distances to be simulated.

To describe a particular test flow, henceforth the following notation as shown in

Equation 3 is used.

FL (Pr Forward ,
dForward, Pr Reverse ,

dReverse)

Equation 3- Notation to describe an Experiment

Each of the experiments discussed was conducted using a single FTP over TCP, which

although it does not account for competing cross traffic and varying traffic patterns,

makes it possible to gauge the ideal performance of TCP algorithms in a controlled

environment.

120

Finally, the experiments were performed such that no packet loss would occur.

Therefore, all retransmissions measured were caused by packet reordering.

Multiple tests were carried out under varying conditions; the aim was to demonstrate the

effects of forward path, reverse path, and combined forward and reverse reordering. In

each experimental run, a fixed reordering delay was applied. These were increased at

intervals between 0 and up to 5x RTT, with the likelihood of a packet being selected

varied from random samples with probability 5%, 10%, 15%, and 25%.

The results illustrate typical data obtained for Reno TCP source and destinations, with

TCP maximum window size of 65 kilobytes and with the results plotted as the mean

over five experimental runs with 90% Confidence Intervals. The choice of 90% and five

experimental runs is important, as the purpose of these experiments is to measure TCP

over a wide range of conditions in order to gain an understanding of the complexities of

the protocol, within a reasonable timescale. Testbed emulation requires significantly

longer time periods and requires significant storage for captured data, as when

compared to other simulation studies of TCP. The results reported in this chapter

represent six months of experimental data measured on a single testbed, and over

30,000 individual FTP transfers

4.3.1 Experiment Validation

In such large scale experiments, there are clearly many opportunities for external

influences which may affect the validity of the results obtained. As the main

contribution of this study compared with previous studies [LaorO2] is that the method

of packet reordering is induced via time periods, rather than by packet position

movements, it is important to consider all parts of the experiment which may influence

time measurements in any way.

Secondly, as discussed in Chapter 2, all two-point measurement techniques require a

highly accurate notion of time at all probes in an Internet. In this particular experiment,

all machines were synchronised to the NTP server at the start of each experiment, but in

this particular set up where both network taps reside in Hoy, synchronisation between

121

the tap points is therefore known to be exact. If this technique was applied in a wider

context where one machine could not operate as both taps simultaneously, a more

accurate method of synchronisation between taps would be required.

The use of the dedicated GPS receiver Yell, as a NTP Stratum 1 server, and the

immediate proximity of each machine to this server, allows the assumption that all

machines in the testbed are synchronised with an accuracy better than 1 microsecond. 1

microsecond is the limit to which LibPcap can perform packet time-stamping on the

particular hardware architectures of the machines in the testbed, and therefore clock

synchronisation is not considered to be a limitation of this experiment.

The clock resolution of the software-configurable-router is another area which could

introduce errors, as it is this timer which introduces both the RTT delay and Reordering

Delay applied in each experiment. With the particular 64-bit hardware architecture used

in these experiments, and the version of Click installed, Click has the ability to operate

at I microsecond resolutions and, therefore, all Line Lengths are Reordering Delays are

specified in units of microseconds. To confirm that these time resolutions were as

expected, a simple independent test was performed as detailed in Table 4.

Table 4 illustrates initial experiments that were carried out using 200 ICMP packets to

measure the additional delay placed on traffic due to the use of the Click router, in both

directions, for a variety of emulated RTT paths. In each experiment, the standard Click

Language installation file was used with all Elements instantiated in the router, but with

Reordering Probability set to zero. Although Click was shown to cause a slight increase

in RTT of approximately 0.15ms in each direction, this is insignificant in comparison to

the additional RTT that would be intentionally introduced by the click script. This

additional latency is shown in Table 4 to be relatively consistent across all RTT paths,

and therefore will have a consistent effect on the measurements made.

122

Round-Trip-Time Measurement (msec)

Minimum Average Maximum Standard Packet
Deviation Loss (%)

(1/2) = Raasay-> 0.206 0.319 0.519 0.057 0
0 Stroma

(Ü2) = Stroma-> 0.210 0.320 0.475 0.053 0
0 Raasay

(L/2) = Raasay-> 50.262 50.327 50.417 0.132 0
0.025 Strome

(L12) = Stroma-> 50.207 50.316 50.485 0.247 0
0.025 Raasay

(U2) = Raasay-> 100.216 100.321 100.425 0.426 0
0.05 Stroma

(1J2) = Stroma-> 100.214 100.318 100.430 0.328 0
0.05 Raasay

(L/2) = Raasay-> 150.215 150.323 150.431 0.088 0
0.075 Stroms

(U2) = Stroma-> 150.208 150.315 150.498 0.351 0
0.075 Raasay

(1.12) = Raasay-> 200.239 200.339 200.466 0.490 0
0.1 Stroma

(1J2) = Stroma- 200.256 200.312 200.392 0.574 0
0.1 >Raasay

(U2) = Raasay-> 300.216 300.298 300.406 0.598 0
0.15 Stroma

(112) = Stroma-> 300.267 300.353 300.598 0.631 0
0.15 Raasay

Table 4- Latency Test of Click Router

Competing flows may also account for inaccuracies in the measurements obtained. In

each case, all initialisation, setup and processing of results took place over the electrical

network; only the FTP session to be measured was carried out on the fibre gigabit

network. Network adaptors on the electrical network were prefixed with Class C subnet

156.141.122. x, while adaptors on the gigabit network were prefixed with Class C subnet

10.0.0. x. Each experiment consisted of a single active FTP session, with Raasay as client

and Stroms as FTP server. Once the FTP session had been established on port 21,

Stroma would issue a single Put command to upload the 10 Megabyte file. This would

result in a second TCP connection being established on random high port numbers. By

adding a filter to each packet probe to ignore port 21 traffic, it was only this second flow

of FTP traffic which would be captured.

123

The throughput of the entire end-to-end path is another factor which can be used to

validate the correctness of this experiment. The Bandwidth Delay Product (BDP),

illustrated in Equation 4, describes the amount of data that can be in transit in the

network. BDP is important for windowing protocols such as TCP, as BDP describes the

amount of `un-acknowledged' data which can be in-flight in the network at any one time

and, therefore, the maximum throughput that a TCP host can achieve. The results

reported in this Chapter allow the receiving host to advertise the full 65kbyte rwnd using

the 2 byte TCP header; the optional TCP Window Scaling feature Qaco92] is not

considered, as it is not enabled as standard in current modem operating

systems [MicrO8].

BDP (bytes) = total available link capacity (kbytes/sec) x RTT (ursec)

Equation 4- Bandwidth Delay Product

For a RTT of 50ms, where the rwnd and, therefore, the BDP are limited to 65160, the

total available capacity of the link can be calculated as 1311 kbytes/sec.

The limitations of TCP throughput have been described by Mathis et al [Math97}; for

loss rates less than 1%, the maximum achievable throughput of a TCP connection is

limited by Equation 5, where rwnd is the receiver host's advertised window, RIT is the

sending host's evaluation of RTT, andp is the probability of packet loss.

Throughput <_
M Rý d)

x ý1-
yp

Equation 5- Mathis TCP Throughput Limitation

In the experiments reported in this chapter, no packet loss is induced and it is assumed

that all packets will eventually reach the destination. Equation 5 illustrates that the

Mathis Throughput limitation does not account for this case, as the 1/Jp term would be

expected to tend towards 00. However, it should be noted that although no packet loss

was specifically induced in the network, the effects of extremely late packets are

equivalent to those of lost packets; a factor that the Mathis formula also does not

124

account for. For experiments where no packet loss was induced, and no packet

reordering is induced, the 1/'p term can be simplified to 1, and the maximum

throughput rate during a 50ms R1T experiment can be calculated to be 65160 bytes /

0.05 seconds, equalling 1311 kbytes/second.

For a file size of exactly 10 Megabytes, it can therefore be calculated that the ideal

transmission time, assuming no loss and no packet reordering, over a 50 msec RTT is

7.6 seconds. Clearly, this is the ideal throughput and this simplified formula does not

consider the slow start algorithm, which for short-lived flows will dominate a large

proportion of the transmission time. The packet capture trace illustrated in Figure 29 is

illustrated with more detail in the Appendix. The Appendix clearly shows the operation

of the flow control and congestion control algorithms at the start of a TCP connection.

Column 0 indicates the receiver's Hund, which does not grow to the full 65 kbytes until

packet 64 in the trace. Column M indicates the payload size of each packet; analysis of

the bursts of data packets indicates operation of the sender congestion control

algorithm and linear growth as larger bursts of packets are injected into the network. In

this capture trace, the sending TCP does not launch a full volley of its 45 packet

maximum cwnd until 680 packets into the trace, 6 seconds after the data transfer has

commenced. This 6 second period of initial window growth, combined with the 7.6

second maximum throughput limit, combine favourably with the initial result plotted in

Figure 32 indicating that the mean average to transfer 10 Mbytes was 19.49 seconds.

Finally, all experiments are performed on the basis that no packet loss will be induced

by the network. A ping flood was performed from Raasay to Stroms at the maximum

sending rate possible by the machine, which indicated 0% packet loss. It can therefore

be concluded that all three of the network nodes, Quoyloo, Raasay and Stroma have the

capacity to process the maximum sending rate which can be generated by Raasay and

that packet loss will not occur during experiments.

125

4.3.2 Measuring Forward Path Packet Reordering

The primary purpose of these experiments is to characterise the effect of packet

reordering, and to correlate these effects with a metric which describes the amount of

reordering occurring in a network. In order to describe the impact that packet

reordering has on a TCP flow and on the assumption that in every experiment, exactly

the same amount of data was to be transferred, the overall throughput of each

experiment is described in the form of the `Transmission Time' of 10 Megabytes.

This metric was chosen for a number of reasons. Previous methods of articulating the

throughput of a link are inaccurate when the effects of packet reordering are considered.

As will be discussed in Chapter 5, accepted methods to calculate TCP Goodput are
incorrect when packet reordering occurs. Traditional Goodput and Throughput

measurements often confuse reordered packets with retransmissions, or are unable to

differentiate those retransmissions which have occurred as a result of packet reordering.

Transmission Time serves as a simple metric which fully describes the Quality of

Experience that a user will experience during packet reordering. Coupled with the

packet capture functionalities described in the testbed, it is possible to measure

Transmission Time to microsecond resolution. Transmission Time can then be

correlated with the other metrics of packet reordering, described in Equation 1 and
Equation 2, to correlate these metrics with their effects.

4.3.2.1 50 msec Round Trip Time

Figure 32 plots a number of experiments performed on an emulated 50 msec RTT, with

forward path Reordering Delay plotted on the y axis, and the percentage of forward

path Reordering Probabilities plotted as the coloured series as indicated by the legend.

The range of Reordering Delays, between 0 to 5x RTT illustrate the surprisingly large

range over which TCP can operate, without serious degradation in Transmission Time.

Although the range of Reordering Delays up to 0.25 seconds may appear unlikely, it is

important to note that a wide range of Reordering Delays may be observed in a

126

production network and, therefore, this wide range of values allows full characterisation

of the behaviour of TCP under a variety of conditions.

Figure 32 indicates that there are three distinct regions of the graph, which appear as a

function of Reordering Delay, regardless of Reordering Probability. This is also

prevalent in Figure 39, which illustrates the same features, but for a slightly longer RTT

of 150 msec. Figure 32 clearly indicates that between 0 and 0.117 msec Reordering

Delay, the effects of Packet Reordering are marginal, with only a very small increase in

Transmission Time observed between these two points. At 0.126 msec, there is a step

change in performance, where the mean Transmission Time for all connections rises to

over 75 seconds. This defines the start of the second period of the graph, between 0.126

msec and 0.198 msec. Here, the effects of Reordering Probability are more obvious, as

the 5% series maintains the lowest Transmission Time. However, the difference in

performance between the various Reordering Probabilities is not significant and the

confidence intervals widen for all, indicating that the performance of all flows has

become less predictable. The third region of Figure 32 is evident beyond 0.2 msec,

where confidence intervals widen further and the overall Transmission Time for all

Reordering Probabilities rises steeply. Within this region, the effects of reordering are

extremely difficult to predict, although it is important to consider that the width of the

confidence intervals indicates a wildly varying behaviour, with flows alternating

drastically between high and low performance. This can be explained by the fact that

under these higher degrees of reordering, it would be reasonable to expect large blocks

of packets to all be chosen to be delayed by the Reorder Element in the router (whilst

retaining relative sequence), therefore being unlikely to cause further spurious

reordering retransmissions and also allowing time for congestion control mechanisms to

recover from the last reordering event

The confidence intervals on Figure 32 illustrate the unusual behaviour of packet

reordering on TCP flows, when compared to previously well documented anomalies

such as loss. As the reordering delay is increased, the mean transmission time tends also

to increase, but with a significantly larger error range. This indicates that, unlike

percentage loss which guarantees retransmissions and invocation of congestion control,

packet reordering is a complicated function of buffer sizes, control algorithms and

127

Delay Variation, which may or may not have a significant effect on a TCP flow. This

variance is significant as it indicates that the effects of reordering are much more

difficult to predict than the effects of loss.

t 5% Reordering U 10% Reordering 15% Reordering - 20% Reordering -U- 25% Reordering

500 ,

400 +
--

350

300 -
E

250 1

E
200

'S

Figure 32 - Mean transmission time of 10 Megabytes, 90% C. I., Fso(various, various, 0,0)

The three distinct regions are an important illustration of TCP's behaviour when

undergoing reordering. The transition from the first to the second region, indicates that

there is a point where reordering will always cause an unnecessary fast retransmission

and therefore resulting a halving of the congestion window. Once this spurious fast

retransmission has been triggered, the sending rate is reduced in a uniform fashion and,

after this point within the second region, reordering has little additional effect. 'Ehe

important observation which can be made on this transition from the first to second

regions, is that Figure 32 suggests that it occurs independently from the Reordering

Probability. The step change is observed to occur at the same Reordering Delay point

for all Reordering Probabilities. This observation is of significance, as it suggests that

large amounts of packet reordering can be permitted - up to 25°, % of packets - but by

ensuring that Reordering Delay is maintained below the step change, the effects of

reordering on QoE will be negligible.

128

o-- T-- --, -r- - .-.. T,,

oha oo;
e "'

oo+ zp`' ooHp
e'4" *

od o "', "'
oýtib .

"oýeP
"'Pee I'll Qý, I!

T
I* Ile oýyh oryý oýaý oryyti

Reordering Delay (meat)

Figure 33 illustrates the percentage of packets which have appeared out of sequence, for

the same experiments as plotted in Figure 32. `Out of Sequence' is termed as any packet

where `receiving sequence number' and `sending sequence number' do not match, as

defined in Equation 1. Therefore, this percentage metric includes both `late' packets and

the resulting `early' packets.

--5% Reordering -9- 10% Reordering 15% Reordering -n-- 20% Reordering -*-25% Reordering

100

90

80

70

60

IL 50

Y
ö 40

30

20

10

Figure 33 - Percentage Reordered Packets, 90% C. I., Fso(various, various, 0,0)

Correlation of Figure 32 with Figure 33 allows evaluation of this metric, and other

percentage metrics of packet reordering which have been proposed, such as Type-P-

Reordering in RFC4737, Paxson, Bennett, Loguinov, Bellardo, Tsinghua and Perkins.

Although each method relies on a slightly different approach for calculating the

percentage of reordered packets, each method relies on reporting their results in the

same way.

Figure 33 suggests that it is impossible to predict the effects of packet reordering, based

on a percentage reordering metric. The key transition in Figure 32 from the first to

second regions of the graph at 0.126 msec, is in no way differentiable from the series

plotted in Figure 33. For each Reordering Probability, the percentage of Out-of-

Sequence packets rises steeply and is relatively consistent throughout all Reordering

Delays. As discussed for Figure 32, it is Reordering Delay which has the most dramatic

129

0

o

pppa
O �0

OprL'1 op.
'(ý Oy

OpyC' Odo'ý ppKV ppRý po°' Oppý°' p^06 pýq1 O^ý6 p,
\'S`'

O^Pý' p^yý OqCýý" pq1^ pß.
0

p, `0ý' p, `00 Oryp'ý le 11V le 14 I'll,

Reordering Delay (maec)

effect on TCP behaviour, leading to the conclusion that percentage reordering metrics

are not particularly useful in describing the QoS of a connection.

Figure 34 to Figure 38 illustrate results obtained during the same 50 msec RTT

experiments, which analyse the cause of packet retransmissions observed and classified

by the Oos Parser code. Each Reordering Probability is plotted separately, with

Reordering Delay plotted on the x axis, and Retransmissions by cause, plotted as the

percentage number of total packets sent in the connection.

 RTO Retransmissions Fast Retransmissions

45

4

3.5

3

2.5

E

2

15

1

05

Figure 34 - Percentage Retransmissions by Cause, 9O% C. I., Fso(5%, various, 0,0)

130

ký

00 015 0 03 0 045 006 0 075 009 0105 0.12 0 135 0.15 0 165 0 16 0.195 021 0225 0 24
Reordering Delay (msec)

 RTO Retransmissions Fast Retransmissions

4.5

4

3.5

3

25ö

E
E 21

rv
C

1.5

1

0.5

0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 015 0165 0.18 0.195 0.21 0.225 0.24

Reordering Delay (msec)

Figure 35 - Percentage Retransmissions by Cause, 90% C. I., Fso(10%, various, 0,0)

4.5

3.5

3

ö 2.5
h

E2

1.5

0.5

0 0.015 0.03 0.045 006 0.075 0.09 0105 012 0135 015 0165 0 18 0195 021 0225 024
Reordering Delay (msec)

Figure 36 - Percentage Retransmissions by Cause, 90% C. L, Fso(15%, various, 0,0)

131

a RTO Retransmissions Fast Retransmissions

 RTO Retransmissions Fast Retransmissions

4.5

3.5

3

0 2.5

I
E
E2

1,5

1

0.5

0 0015 003 0.045 0.06 0075 0.09 0.105 0.12 0135 0.15 0.165 0.18 0.195 0.21 0.225 024

Reordering Delay (msee)

Figure 37 - Percentage Retransmissions by Cause, 90% C. I., Fso(20%, various, 0,0)

 RTO Retransmissions Fast Retransmissions

45-

35

X
a

25
ä

E
il 2

1,5

051

11I tlilýI_ýý! ýýý
1

0 0.015 003 0045 0.06 0075 0 09 0.105 012 0135 0.15 0.165 0.18 0.195 021 0225 0.24
Reordering Delay (msec)

Figure 38 - Percentage Retransmissions by Cause, 90% C. I., Fso(25%, various, 0,0)

132

It is clear that retransmissions are predominantly caused by triple duplicate Acks

initiating the Fast Retransmit algorithm, rather than sender-side timeout retransmissions.

For 5,10,15 and 20% Reordering Probability, RTO Retransmissions do not occur until

the higher Reordering Delays of 0.207 and beyond. It was found that for all line lengths,

the majority of retransmissions were due to fast-retransmission requests rather than

time-out at the sender. This would suggest that a more conservative approach to the

Fast-Retransmit threshold, with a more relaxed method of reducing the sender

congestion window, will cause a significant improvement in TCP's ability to handle

reordering.

4.3.2.2 150 msec Round Trip Time

To allow investigation of the effects of forward path packet reordering, with respect to

varying RTT values, experiments were performed on an emulated 150 msec RTT and

illustrated in Figure 39 - Figure 45.

t 5% Reordering - 10% Reordering 15% Reordering - 20% Reordenng -4- 25% Reordering

400

350

300

250

200

E

150

, 00

50

Figure 39 - Mean transmission time of 10 Megabytes, 90% C. I., Fiso(various, various, 0,0)

In Figure 39, the mean transmission time for 10 Megabytes is plotted for various

Reordering Probabilities and Delays, over a set of experiments with 150 ursec RTT.

Figure 39 indicates similarities with Figure 32, where three distinct regions are visible as

133

o+ TTT -T r-ý - ýý- -ýr T TT TTTT ýT
, AO^0o. ý10ný6o P. Öý

oOýO

öý1 öý^0 öý ö^Oý^^O^ ö^'j ö^ o^hö^6o^1^p^Q^0Ö^0 Öry0öl^ötiryöry Örybö
tiyöy6^0`LÖ. y1

öti0OOo

Reordering Delay (msee)

discussed in the previous section. The move from the first to second regions of the

graph, where the Reordering Delay has caused an unnecessary Fast Retransmission,

occurs at 0.171 msec and therefore the increase in RTT has increased the point at which

this transition occurs.

Figure 40 illustrates the Percentage Reordered Packets for the 150 msec RTT, which as

discussed in the previous section, can be difficult to relate to the effects of reordering.

Each Reordering Probability results in a relatively constant percentage number of

reordered packets - 5% Reordering Probability results in 55% of packets being

measured as reordered, whereas 25%/o Reordering Probability results in between 90 and

100% of packets being measured as reordered.

Correlating Figure 39 and Figure 40 is more successful at this RTT of 150 msec than in

the previous discussion of 50 msec RTT. The transition from the first to second region

occurs at 0.171 msec on Figure 39; this coincides with a very slight rise in the percentage

of reordered packets in Figure 40, where at 0.171 msec a step increase can be observed,

most noticeable for the higher Reordering Probabilities. In order to test this observation

further, measurements for a 300 msec RTT are plotted in the next section.

t 5% Reordering f 10% Reordenng 15% Reordering - -k-- 20% Reordenng i- 25% Reoroenng

100

90

80

70

60
"

w a 50
0

"
40

30

20

10

Figure 40 - Percentage Reordered Packets, 90% C. I., Fiso(various, various, 0,0)

134

o
O

O' 0^0 p`L1 p"`ý CPO ee (e00 01ry 00^ pý9 ci' ^ý ^^^ ^ý ^Oy ^ý ^y0 ^ýOry ^1^ p^0 ^09 ^°ý `L01 ry^O 'lýO ry'i , LPO , L61' , LO^ p`L1 `L1ý' , yYý'L01 Y'' , y^0 ̂ ý'a O' O" O' O' O' OO' o' O' O' O' oopO' o' o' OO' O' O' O' O" O' O' OO' O' O' O' O' O' O'
Reordering Delay (msec)

Figure 41 to Figure 45 perform retransmission analysis on the various Reordering

Probabilities for a 150 msec RTT.

 RTO Retransmissions Fast Retransmissions

4.5,

4

35

25

E
2

1,5

11

0511

0
0 0015 003 0 045 0 06 0.075 0.09 0.105 0.12 0.135 0.15 0.165 0.18 0 195 021 0225 024 0255 027 0285 0.3 0.315

Reordering Delay (msec)

Figure 41 - Percentage Retransmissions bý Cause, 90% C. I., Flso(5%, various, 0,0)

 RTO Retransmissions Fast Retransmissions

4.5

4

3.5

3

2,5

E
c2

15

0.5 i

0
11.

-
t

0 0.015 0 03 0.045 0.06 0 075 0.09 0.105 0 12 0.135 0.15 0.165 0.18 0.195 0 21 0 225 0 24 0 255 0 27 0 285 0.3 0 315

Reordering Delay (msee)

Figure 42 - Percentage Retransmissions by Cause, 90% C. I., F130(10%, various, 0,0)

1 35

 RTO Retransmissions Fast Retransmissions

4.5 -- --

4- ------

3.5 -----

3

2.5
0

2

1.5

0.5 1J

0IJ
0 0.015 0 03 0.045 0 06 0 075 0.09 0.105 0.12 0.135 0.15 0.165 0.18 0195 0.21 0.225 0.24 0 255 0 27 0.285 0.3 0.315

Reordering Delay (msee)

Figure 43 - Percentage Retransmissions by Cause, 90% C. I., Fiso(15%, various, 0,0)

 RTO Retransmissions Fast Retransmissions

4.5 -- --- -

35

25
V

--- -- ------- -'------
0

E

1,5

1

0.5 TIT
ý7} 1I

TT1"`TtTjTT'l

1___-t-

0 0015 003 0045 0 06 0 075 0 09 0105 012 0135 0.15 0 165 018 0195 0.21 0 225 024 0 255 027,0 285 030 315
Reordering Delay (msec)

Figure 44 - Percentage Retransmissions by Cause, 9O% C. I., Fiso(20%, various, 0,0)

136

4.5-

4

35+

3 ---

2.5

E
2

K

1.51

,1

05

RTO Retransmissions 6 Fast Retransmissions

Figure 45- Percentage Retransmissions by Cause, 90% C. I., Fnso(25%, various, 0,0)

It is clear that, as for the shorter RTT variations, Fast Retransmissions make up the

predominant number of retransmissions observed. For the higher percentage

Reordering probabilities, there is a clear indication of an increase in the number of

retransmissions at approximately 0.243 ursec. This correlates with Figure 39, where at

the same Reordering Delay, the graph transitions from the second region to third region

and Transmission Time increases rapidly.

4.3.2.3 300 msec Round Trip Time

There is some concern [Laor02] that packet reordering will have serious effects in high

bandwidth-delay-product networks, such as satellite communications, where the high

number of in-flight packets will offer greater opportunities for reordering to occur.

In Figure 46, forward path reordering is performed on an emulated link of 300 msec

RYI'. Note that the range over which Reordering Delays have been applied has been

increased in order to find the regions where the effects of reordering can be measured.

Figure 47 plots the percentage of reordered packets as defined by Equation 1.

137

0 .. cr+ r... -ýý_ý"-a>---___ý_'ý_ý- ---, -. ý. u.. nýýzz., iazfii+-r s.. r uu+z utiiii
00 015 0 03 0 045 006 0.075 0 09 0 105 0 12 0.135 0 15 0 165 0.18 0.195 0.21 0.225 0.24 0 255 0.27 0.285 030 315

Reordering Delay (maee)

t 5% Reordering

180 -

160 ,

140

120

100

80

40

-. 10%Reordenng 15% Reordering -- 20% Reordering -*-25% Reordering

20 1
0.

^0ý 1Ba ^ah , ýo^ 1ý 0, y,,
ý''0le0, p

0 y'ý^ , y'1^ , yap''0, yaa0,00'
Ile" 0,

y"0e0lp
00,0* 01§10,

boa0, $^h
010 0.11

Q,
0 ̂ y'1 11§1 0 ̂ 6h 0^1 I'll 0 0000000

Reordering Delay (ursec)

Figure 46 - Mean transmission time of 10 Megabytes, 90% C. I., Fioo(various, various, 0,0)

t 5% Reordering t 10% Reordering 15% Reordering -+ý 20% Reordering mot- 25% Reordering

100 -

ayITTT
90 4 T1

so
V4

70

60

IL 50
v

40

30 {

20 --. -. -

10

0 --' - --- - -- - '--

p
^y5 , y°ý Croy , 1'` , 11 , 00 , ý09 "y1

O41
J`

Ory01 11ý0 'lip O$ O1,
'51

lip O' .p
le 0,

LOS
O* O, l1'O' ,1 O1P05 O' , ýo,

ý
O1661 O,

5
O' OOOOOOO' ''

i"

Reordering Delay (matt)

Figure 47 - Percentage Reordered Packets, 90% C. I., F3no(various, various, 0,0)

Comparison of Figure 46 with previous Transmission 1'i-ne graphs over shorter R'1"1'

distances indicates that the behaviour is more predictable, with significantly smaller

confidence intervals. As previously discussed, the degree of Reordering Probability has

little further effect on the degradation of the Transmission Time, despite Figure 47

indicating that for 25°% packet reordering, over 90% of packets are always reordered.

138

In Figure 46, it can be seen that as in Figure 32 and Figure 39, there ate three distinct

regions visible. It is clear that the move from the second to the third region, where

Reordering Delay has caused an unnecessary Fast Retransmission, occurs at 0.24 msec

where the mean transmission time for all reordering probabilities rises from 90 seconds

to greater than 105 seconds. The third region of the graph, from 0.243 msec upwards,

indicates that the mean of each Reordering Probability remains relatively constant,

regardless of increased Reordering Delay. Figure 46 indicates that in the first region of

the graph from 0 msec to 0.204 msec, there are unusually large confidence intervals

compared with the relative flatness observed in the second region between 0.204 msec

and 0.24 msec. Analysis of the raw packet traces between the values of 0.183 msec and

0.201 msec indicated that it was only the 10% Reordering Probability experiments

which were exhibiting these wide confidence intervals, due to one set of unusually long

experiments, where each run would take approximately 115 seconds to complete. As the

results in Figure 46 illustrate the mean of 5 runs with 90% confidence intervals, one

particularly long experiment can have a significant effect on the results. Analysis of the

packet headers of these 7 particularly long experiments, indicated that the set of 10%

runs between 0.183 and 0.201 msec occurred at around 1 am. One hypothesis to

describe these results, in that at around 1 am each morning, each Linux server will

perform daily housekeeping tasks on its disks and logs. Due to the number of FTP and

SSH sessions that occurred on the testbed each day, this would generate extremely large

logs which would have required several minutes of processing to parse. This processing,

on either Raasay, Stroma or Quoyloo, may have resulted in these 7 unusually long FTP

sessions, which are not characteristic of others observed in this scenario.

4.3.3 Reverse Path Reordering Results

Reverse path TCP packet reordering, or Acknowledgement reordering, has received

very little attention in the literature. Previous studies have concentrated on the data path

as it is expected that this is where the majority of packet reordering effects will be

observed. It has been hypothesised by Bennett that the major effect of reverse path

reordering is an increase in burstiness, although this has never been confirmed in the

literature by measurement or simulation.

139

Continuing the methodology developed for the Forward Path experiments discussed in

the previous section, multiple experiments were performed to measure the effects of

Reverse Path reordering over a number of emulated WIT, for various reverse path

Reordering Probabilities and Reordering Delays.

For RYI' emulations of 50 msec and 100 msec, the effects of reverse path reordering for

a wide range of Reordering Delays, were found to be negligible. In these experiments,

the 10 Megabyte TCP connection would quickly grow to fill the bandwidth delay

product of the link, and the Transmission Time would complete in close to the Matthis

ideal throughput for that particular RTT. For short RTT connections, it can be assumed

that the effects of reverse path TCP packet reordering are negligible.

4.3.3.1 150 msec Round Trip Time

Figure 48 illustrates the Transmission Time for 150 msec RTT connections emulated

with various degrees of reverse path Reordering Delav s, and Reordering Probabilities.

150 msec is chosen to allow comparison with the equivalent forward path reordering

results illustrated in Section 4.3.2.2.

t 5% Reordering -. - 10% Reordenng 15% Reordenn9 -w-- 20% Reordenng -*- 25% Reoreenng

40

39

38

E

ö 37

E
w

r 36

35

Figure 48 - Mean transmission time of 10 Megabytes, 90% C. I. 9 F1so(0,0, various, various)

140

34
O phA pia a0A yý ý` ye p eýý ýe 1ý ý4,9, ýQA 5p ap pti9 of

O' O' O' O' O O' O' O O' O' O' O' O' O' O' 1O O' Q. OOOOOO O' Ob Oe OOOO Oe
R. ord. ring DNay (ms. c)

This graph illustrates a number of surprising results which have not been measured or

observed previously.

Firstly, for this emulated experiment of RTT 150 msec, it can be observed that

Transmission Time is relatively constant between 0.2 and 0.6 msec Reordering Delays.

Although Bennett hypothesised that reverse path reordering would cause highly bursty

behaviour, it should be noted that TCP is already a bursty protocol - evaluation of

packet traces indicates that volleys of packets are launched into the network by a

sending TCP, sometimes as many as 45 at a time, and the responding

Acknowledgements (each acknowledging approximately 6 packets) would also arrive

close together. This behaviour was observed at all reordering probabilities, both forward

and reverse.

Secondly, even if the burstiness of the connection has increased, it is clear that this has

had no effect on the Transmission Time of TCP. Between 0.2 and 0.6 msec, the

Transmission Time for each particular Reordering Probability remain relatively constant.

The worst case 25% Reordering Probability with 0.6 msec Reordering Delay results in a

less than 1 second increase in Transmission Time from 0% Reordering Probability and

the ideal Bandwidth Delay Product of the link.

Thirdly, perhaps the most surprising behaviour indicated in Figure 48, is the suggestion

that a specific amount of reverse path Reordering Delay, can actually improve the

performance of TCP.

Between Reordering Delays 0.130 msec and 0.219 msec, Figure 48 indicates a decrease

in Transmission Time for each Reordering Probability. Although the confidence

intervals widen significantly, the mean Transmission Time for each Reordering

Probability is seen to decrease - the larger Reordering Probabilities are measured to

decrease further than the lower Reordering Probabilities.

This phenomenon has not been observed elsewhere in the literature. All but one

publication [Neg104] have been based on the assumption that either forward or reverse

path TCP packet reordering will result in a degradation of service quality, and that it is

141

something which should be avoided when possible. Neglia's [NeglO4] NS-2 simulation

demonstrated that specific degrees of forward path reordering resulted in improved

performance, but these were due to the specific RED configuration simulated within the

mid-point routers, thus correlating reordering with the effects of loss and resulting in an

improved performance of the RED algorithm.

The reason for this improvement in performance can be explained by examination of

the packet traces in these experiments. These indicate that when Acknowledgement

reordering occurs, the self-clocking control loop of TCP quickly breaks down. At the

points in Figure 48 where the Transmission Time has decreased, this is because the

Acknowledgement Reordering has allowed a larger Acknowledgement to arrive before

the previous smaller Acknowledgement, signalling to the sending TCP that it is

permitted to launch a large volley of packets into the network. The result of this is that

the Congestion Window at the sending TCP is effectively allowed to grow much faster

than it otherwise would, and so the sending TCP is able to grow to the Bandwidth

Delay product of the link much faster.

As discussed in Section 4.3.1, it can take as long as seven seconds for the sending TCP

to probe the Bandwidth Delay Product of the link during normal operation. Reordered

Acknowledgements resulted in the sending TCP growing its congestion window to 45

packets in under 3 seconds, during the periods of improved performance. In this

particular set of experiments, with a RTT of 150 msec and the mean Transmission Time

in normal circumstances of approximately 38 seconds, this time saving in achieving the

maximum link throughput results in a measurable performance improvement of TCP.

Figure 49 to Figure 53 perform retransmission analysis on the 150 msec RTT reverse

path reordering experiments, indicating that Retransmissions are caused exclusively by

timeout at the Sender, rather than Fast Retransmissions. This is also an interesting

observation and assists in explaining why the Transmission Times illustrated in Figure

48 remain constant over a high range of Reordering Probabilities and Delays. As only

reverse path reordering is being applied, packets are arriving at the receiving TCP in

order. Therefore, all Acknowledgements are being generated in order too. As

Acknowledgements pass through the Click router they are being reordered, some to a

142

very large delay, but not to the extent that they are moved more than 3 positions out of

sequence thus causing a Fast Retransmission. The fact that no Fast Retransmissions are

being signalled results in the Sending TCP assuming that there is loss, but no

congestion, on the end-to-end path. Therefore, the sending TCP does not implement

the Fast Recovery algorithm and scale back the congestion window and steady state

threshold. The sending TCP continues transmission of packets at its full congestion

window bandwidth delay product.

 RTO Retransmissions Fast Retransmissions

4.5i

4

3.51

2.5

2

15

1
as

Figure 49 - Percentage Retransmissions by Cause, 90% C. L, Fiso(0,0,5%, various)

143

p0 p°ý ̂ ý, 1a" ̂ yý ̂ ýp , 0A ry°p ry°A L'a ry"A ryý ryýA rye' spe tip ý'A ° ý6A ý0' ýýe P' Aya oP' AyA pia a0n cp° ce yý ya° 5Fp yýý qAe 6pe ps OOOO' O OOO' O' O' O' OO' OO' OO OO' O' OOOOO' OO' OO' OOO O' O'
Reordering Delay (msee)

 RTO Retransmissions Fast Retransmissions

4.5

4

35

3

25

E
2

1.5

1

0.5

4.5

4

3.5

3

2.5

E
2

1.5

1

0.5

Figure 50 - Percentage Retransmissions by Cause, 90% C. I., Fi (0,0,10%, various)

 RTO Retransmissions 8 Fast Retransmissions

Figure 51 - Percentage Retransmissions by Cause, 90% C. I., Fiso(0,0,15%, various)

144

o-

00e �C , tip g§, e 4l60 ee `' ti° '?: ae ae >e °' y% j> aP° c, ýa c,, p o°a 0 'po0
{P0 yo , gyp' �e , e° , yo" el0 e , y°'0 e ti'°j 000000 00 0000000000000.0 00000

Reordering Delay (mf. c)

o T_, ýýyYuiY"ýY". ýy... y.. "ý. "-----"---"--rrT---ý r_ý-r-T-T-. _r_"-r "'. 'r`""ý.. "'Y"""1`. " Y_ýiiiuai"aý-T

4,4ý
'q Oý O,

ry
O,

p
O,

y
O^1 0,0 Ory0 Otis z1, Otip Oti Oti Oti O Oý'ý Oýý Oý Oß'6 Off' Off' Opt Ö

Opp '31' Op^
e' -, y, ýO"O

Oy9
09

Reordering Delay (msee)

 RTO Retransmissions IS Fast Retransmissions

4.5

4i

3.5

2.5 0

EZ

1.5
ýrr..

t r
i.

11

0.5 ;.. ,,.

0
O

_e0 Opýro ̂ 10ý ^AP , 4ý0 ^"ýP ^0°j ýpP ry"ý0 ry^JP ßb0 ryQ,
b

ry, ý0 . yOP ýOý' ýýLP . ý'jý' ýý, ýP x(00 ý0b X90 A'ýb P1ýi PAb A50 P, ýP A00 ypP yý0 y^ýA ýýi yF,
A

y, ýýi hp)P 6pN
OV O' OOOO' OO' OO' O' O' OO' OOOO' OOOO OOO' O' O' OOO' O' O' O' O' O'

Reordering Delay (ursec)

Figure 52 - Percentage Retransmissions by Cause, 90% C. I., Fiso(0,0,20%, various)

4.5

4

3.5 -

3 --- -- -

ö_ 25ý

17 III II
Ii

I

0

'I

O ýy pjo ^ý ,, pP , y9 ,, ý" ,, 09 , yo°' , y.
ý

, yý°' , ya9 , y6' , yý9 . ya°' ýO°j ýti°' ýýý ýh°' ý6ý . ý0' ýaý ate' ptiý an" py9 aua aye yp> yß,
9

y'ý yp9 yý' yý9 y,
>

bp9
OOO' OO' O' OO' O' O' O' O" O' OO O' O' OO' O' O' OO- OOO' OOO' O' OO" OO' OReordering

Delay (ursec)

Figure 53 - Percentage Retransmissions by Cause, 90% C. I., Fiso(0,0,25%, various)

145

 RTO Retransmissions Fast Retransmissions

4.3.3.2 200 msec Round Trip Time

t 5% Reordenng -i- 10% Reordering 15% Reordenng - 20% Reordering -*- 25% Reordering

42,

41

40

N_ 39

ä 38

37

- -- 36

35 --- - -- - --- -- -

34 -r- --T -_ý -- , O do ýL
^ryö . ýL

1. ý0 1ý eh cg' ro'1' 60 1a N0 'OrO N'l' . ýý , yfý' o'L^ , yob . y'lý' , y'L0 , y'ýOrya ryarO , tiy'L , L50 , ýp ry1 1'° 01" ge 00' oý , ýý(o
'b 0

, rya
O' O' o" O' O' OO O' O' O' o' O O' O, O. C3. oO o' o' O" o' o"C O oý ory Ory oti o O' o o'

Reordering Delay (msec)

Figure 54 - Mean transmission time of 10 Megabytes, 9O% C. I., F2oo(0,0, various, various)

Figure 54 illustrates the mean transmission time during reverse path reordering over a

200 msec RTT. This figure serves to illustrate that reverse path reordering does not

always incur a performance improvement; nonetheless, it does not incur performance

degradation either. Over a wide range of Reordering Probabilities and Delays, the

Transmission Time remains relatively constant, with the mean of the worst case

Transmission Time only 1 second greater than the ideal Transmission 'l'ime.

4.3.4 Combined Forward and Reverse Reordering,
100ms RTT

The effects of combined forward and reverse path reordering were investigated. Figure

55 illustrates Transmission Time for a 100 ursec R'I71', where a constant reverse path

reordering of 15° o Reordering Probability at 0.34 ursec Reordering Delay was applied.

146

100 msec is illustrated as it demonstrates the mid-range performance, allowing for

comparison with 50 msec and 150 msec forward path reordering results.

t5% Reordering t10% Reordering 15% Reordering -- 20% Reordering --25% Reordering

1400 i

1200

1000

Y

E 800

0

600

400

z00

Figure 55 - Mean transmission time of 10 Megabytes, 90% C. I., Fioo(various, various, 0,0)

As can be seen, the effects of forward path reordering dominate the behaviour of the

TCP transmission. This suggests that when considering the effects of packet reordering,

it is the reordering on the forward path which has the potential for severe degradation

of service quality. As illustrated in the previous Section, reverse path reordering,

whether in isolation or combined with forward path, will not result in the significant

throughput losses that forward path reordering could incur.

4.3.5 Comparison of -Methods to Combat Reordering

A number of extensions to'I'CP have been proposed in order to mitigate the effects of

packet reordering. In this section, a brief investigation is carried out on three of these

potential methods.

Figure 56 to Figure 58 illustrate the Transmission Time for forward path packet

reordering over a 150 msec RIT path.

147

00000000000000000000000000
Reordering Delay (msec)

Figure 56 -Transmission time of 10 Megabytes, SACK-
Enabled, Fiso(various, various, 0,0)

Figure 58 - Transmission time of 10 Megabytes, tcp_reordcring =3 Enabled,
Fiso(various, various, 0,0)

Figure 56 illustrates performance when Selective Acknowledgements are enabled. This

may be compared with Figure 39 in order for comparison of a similar RYF, but when

SACK is disabled. Figure 56 suggests that there is little improvement in performance for

all Reordering Probabilities at low Reordering Delays, until the threshold where a Fast

Retransmission will always be invoked at 0.243 mscc. Both graphs display the same step

change in Transmission Time, suggesting that SACK is not able to perform any better

than Rcno TCP during the extreme reordering tests applied in this study.

Figure 57 illustrates a 150 ursec RIT with D-SACK (DSAC08J enabled. D-SACK

allows a receiver to communicate to a sender when a retransmission was unnecessary

and, therefore, tune the TCP dupthresh variable to avoid false fast retransmits. I figure 57

suggests that there is little improvement achieved by D-SACK compared with standard

SACK, under extreme reordering conditions.

Figure 58 illustrates a 150 ursec R 'ff with the Linux kernel variable tc
_"ordertng set to 3.

148

Figure 57 -Transmission time of 10 Megabytes, D-SACK-
Enabled, Fiso(various, various, 0,0)

This variable effectively increases the dupthresh value for Fast Retransmissions, by

allowing an additional packet buffer of 3, before the Fast Retransmission algorithm is

triggered. Figure 58 suggests that, for low values of Reordering Delay, this is the most

effective method to minimise Transmission Time.

4.3.6 Conclusions

This Chapter has made a number of contributions in the field of packet reordering

measurement, in a variety of different areas.

The first contribution is methodological. A method for emulating TCP packet

reordering has been demonstrated, and through the development of software for a

configurable router, a testbed has been built to allow the demonstration and

measurement of packet reordering on real TCP flows. This has been done to provide an

insight into the behaviours of the congestion and retransmission algorithms, thereby

demonstrating that reordering can have both positive and negative effects on TCP

performance.

A two point passive measurement technique has been developed, which has allowed

more accurate measurement than previous studies of packet reordering, by exploiting

the use of the IPID field as a method to determine the sending sequence of a TCP

connection. Simple metrics have been developed that exploit this IPID field, thereby

allowing determination if a packet has been reordered and the extent by which that

packet has moved. Under the high degrees of reordering measured in the testbed, this

method has provided a lightweight and simple method for determining the Absolute

Reordering of a packet and avoids the calculation of future Sequence Number based on

current payload lengths. Although this method may not be applicable in the wider

Internet where fragmentation may occur, it does allow a method for reordering in a

controlled environment and could have future applications in the testing of specific

reorder-inducing routers or paths.

The two point measurement technique has allowed determination of the cause of

retransmissions, which are the by-product of packet reordering effects on TCP. By

149

correlating the packet traces obtained at two points, it has been possible to investigate

and classify each retransmission, thus providing a more complete analysis of the effects

of packet reordering, compared to previous measurement studies [Laor02].

The second contribution of this chapter is the measurements obtained using this two

point methodology. Separate investigations have been performed on the effects of

Forward Path, Reverse Path and combined forward and reverse path reordering.

Transmission Time has been chosen to be the metric used to describe the Quality of

Experience that a user could expect under each packet reordering environment.

The study of forward path packet reordering has indicated that the effects of packet

reordering are negligible with respect to Reordering Probability. Reordering Delay is the

dominant factor in determining the effect of packet reordering on a particular TCP

connection. The sudden drop in throughput measured during these experiments is an

important feature of TCP's tolerance to reordering. The drop in throughput is

continuous and sustained for all reordering probabilities above a threshold reordering

delay, regardless of additional reordering applied, providing an insight into the

behaviour of TCP's control algorithms. As the reordering delay is increased, the mean

transmission time tends also to increase, but with a significantly larger error range. This

indicates that, unlike percentage loss which guarantees retransmissions and invocation

of congestion control, packet reordering is a complicated function of buffer sizes,

control algorithms and Delay Variation, which may or may not have a significant effect

on a TCP flow.

These results compare favourably with previous reported investigations into packet

reordering [Blan02], where a command was implemented in NS-2 to swap two elements

of a router's input queue at a given time. Their results illustrated a similarly initial steep

decline in throughput as a function of queue swaps, with little additional impact caused

by increasing the frequency of reordering events, and an eventual flattening out of

throughput. Forward path reordering experiments in this chapter also indicate this

behaviour, which can be attributed to there being a point where reordering always

causes a needless fast retransmit and a halving of the congestion window. Once a

spurious fast retransmit is triggered, the sending rate is reduced in a uniform fashion

150

and, after this point, reordering has little additional effect.

In the only other measurement study of TCP reordering [LaorO2], the authors used an

Agilent QA Robot to randomly delay packets by 3 positions. This does not allow

investigation of the Reordering Delay, nor investigation of the Reordering Delay with

respect to RTT.

For every RTT, it has been found that there is a forward path maximum reordering
delay threshold which can be applied to packets, regardless of percentage reordering,
below which reordering has negligible effects. Determination of this threshold, on a

specific path, is key to ensuring that a specific switch or router does not introduce

reordering to such an extent that it causes unnecessary retransmissions and an

associated reduction in throughput.

This chapter has performed the first measurement study of reverse path packet

reordering and has demonstrated surprising results. Contrary to assumptions in the

literature, it has been measured that reverse path reordering has little additional negative

effect on the throughput of a connection. Indeed, it has been measured that in specific

circumstances, as a function of the RTT, a function of the amount of data to be

transmitted in the flow and a function of reordering delay, reverse path reordering can

actually be beneficial for a connection. This phenomenon was explained due to the loss

of self-clocking during Acknowledgement resequencing, thus allowing the sending TCP

cwnd to grow faster than normal.

The first measurement study of combined path reordering has also been performed,

which has illustrated that the effects of forward path reordering dominate the behaviour

of the connection.

The use of percentage reordered packets as a metric, has been shown to be difficult to

correlate with the actual performance of a TCP connection. This suggests that many of

the metrics proposed in the literature, such as RFC 4737, are difficult to apply in the

context of Quality of Experience. Percentage Retransmissions, as a function of

Reordering Delay, has been demonstrated as a more effective technique of representing

151

the performance of a connection. This, combined with Transmission Time, both

illustrate the Reordering Delay at which a measurable effect in performance will occur.

In forward path reordering measurements, it was found that for all RTT, the majority of

retransmissions were due to Fast Retransmission requests sent by the receiver. This

suggests that a more conservative approach to adjusting the dupthrrsh Fast Retransmit

threshold, would result in significant improvements during reordering. This hypothesis

was confirmed by investigation of the tcp rrordering variable, which was demonstrated as

shown in Figure 58, to provide a near 20% performance improvement when compared

to SACK and D-SACK, at low levels of reordering.

This Chapter has performed one of the largest studies of TCP packet reordering to date,

emulating over 30,000 FTP sessions over a six month period. It has presented the need

to develop an autonomous measurement system to perform such a large study and

demonstrated the methods to perform data management and processing of such large

amounts of packet captures.

Clearly there is motivation for NEMs and Operators to increase the amount of

parallelism prevalent on the internet. This study has shown that percentage reordering

itself does not cause problems on a TCP connection; Reordering Delay is the method

which should be used to measure if a particular piece of equipment is likely to cause

problems with the efficient operation of TCP.

152

Chapter 5

Mid-Point Passive

Monitoring of TCP Flows

5.1 Introduction

The classification taxonomy presented in Chapter 3 describing the current

methodologies and metrics which can be used to measure packet reordering, has

illustrated the range of techniques that have been developed by previous work and
described in the literature. The diversity of these techniques has made it difficult to

153

compare the various measurement studies, and this has then led to an incomplete

picture of the extent of packet reordering observable in the Internet today.

Chapter 4 is a study on the effects of packet reordering on a TCP connection and has

argued that, for any metric of packet reordering to be useful, it must be able to

characterise the effects that will be experienced by a real flow. Chapter 4 has further

demonstrated that it is difficult to correlate percentage reordering metrics with the

measurable effects of packet reordering.

The taxonomy in Chapter 3 indicates the two main classifications of all Internet

measurements; active and passive techniques. Chapter 2 has argued the benefits of

passive measurements while Chapter 3 has presented examples of these. Clearly the

significant benefit of using a passive measurement methodology is that it can be used to

measure the behaviour of many thousands of concurrent flows; in order to achieve this

and to allow observation of large volumes of traffic, the passive measurement must be a

mid-point technique.

Jaiswal, Rewaskar and Tstat have each presented mid-point passive measurement

techniques, which have been evaluated in Chapter 3. Both Rewaskar and Tstat are

subsets of the work of Jaiswal and design classification algorithms which each classify

out-of-sequence packets based on inferred knowledge observed around that packet.

Each of the mid-point passive packet reordering techniques proposed in the literature,

makes several assumptions that could significantly affect their operation. Each assumes

the ability to be able to calculate the RTT of every concurrent flow observed.

Additionally, each also assumes the ability to observe and correlate both Data and

Acknowledgement packets, in order to be able to explain each out-of-sequence event.

This requirement for symmetric data and acknowledgement paths, has been

acknowledged by the authors themselves as a significant limitation of their

research JaisO7].

This chapter discusses the challenge of developing a mid-point passive real time

monitor of TCP flows which does not require Data and Ack symmetry, nor estimation

154

of RTT. A lightweight, mid-point methodology and classification algorithm is developed

and applied to live Internet traffic in order to gauge performance when compared with

JaiswaL Finally, a technique for the visualisation of a TCP flow's performance is

presented. This proposed technique is superior to others; it allows simple evaluation of

the degree of resequencing occurring within a TCP connection over time, improving on

the metrics presented in RFC 5237.

5.2 Large Scale Monitoring of TCP Flows

The Internet and its millions of users now depend upon the reliable operation of TCP.

Clearly, some mechanism for large-scale monitoring of TCP would be extremely

valuable in ensuring that performance is optimised, faults are easily identifiable, service

level agreements are maintained by Internet Service Providers and end users can expect

a guaranteed high Quality of Service.

There are, however, several difficulties when performing large scale mid-point

monitoring of TCP flows. Firstly, the majority of flows are often short-lived. Secondly,

there will be many millions of concurrent active flows observable from a mid-point

position. Thus, any monitoring technique should be simple and lightweight to

implement, should not consume costly processing and memory resources and should

also be scalable, so that it can be applied to many simultaneous concurrent flows and

deployed in many places around the Internet, without causing additional overhead itself.

5.2.1 Single Point Measurement Techniques

A single point measurement technique is desirable from a network monitoring

perspective. Multi-path routing and link parallelism will cause an asymmetry in TCP

flows, where the outgoing data packets may choose a different route from the resulting

Acknowledgement packets, as illustrated in Figure 59. Therefore, a single point

measurement technique should allow measurement of either Data or Ack packets at

geographically separate points, without the need to correlate these measurements for

processing and analysis. Furthermore, single point measurements should have no

155

requirement for time synchronisation between measurement probes and, therefore, are

advantageous as they avoid the computationally expensive and bandwidth intensive real-

time correlation of measurement data between probes. Time synchronising a large

number of measurement devices over a very wide area and, to a high degree of accuracy,

is a significant burden that should be avoided.

/a R2

. .. . 6R3 i rim

"
R1! R4 ý" R5

"

"
"

""

"ý R6 R7 i

DDDO I U Ip DO

Figure 59 - Mid Point Network Monitoring

5.2.2 Goodput

The traditional measure used to monitor "I'CP performance is "Goodput", which is

defined as the amount of data received versus the amount transmitted; in this work, the

amount transmitted includes retransmissions caused by losses in the network. (; oodput

provides a simple method of indicating the health of a '1'(; P connection, as

retransmissions are an excess overhead on the network that should be avoided.

Goodput is recorded by measuring the volume of all the transmitted '1'(; P payloads in a

given flow by recording the first and last sequence numbers for a given direction in a

flow. This provides the amount of traffic successfully transmitted and received during;

156

the lifetime of that flow. The calculation is adjusted to make allowance for the SYN and

FIN signalling packets that signal the start and end of the flow and increase the

sequence number without transmitting any payload.

The conventional measure of TCP retransmission takes the sum of all TCP packet

lengths actually transmitted and subtracts the goodput figure, giving a value for

retransmitted packets. By making this measurement near the TCP source it produces an

accurate measure of the retransmissions caused by packet loss 'downstream' from that

point in the flow. However, if the measurement is made at a point where some packets

may have already been lost, then the retransmission measurement will under-report the

value by the amount of the loss.

A standardised methodology for single point measurement of retransmission, loss, and

goodput of TCP flows, currently in use throughout many network monitoring products

deployed on the Internet, is proposed by Love[Love06]. For each TCP connection

being monitored, a Next Expected Sequence Number value (NESN) is maintained and

compared with the actual sequence number of a packet seen in that flow. If the

sequence number is less than the NESN, a retransmission count is incremented by the

size of the retransmitted TCP payload; if it is greater then the NESN, a loss counter is

incremented by the size of the lost TCP payload.

This technique, using analysis of the Sequence numbers, enables an observer at an

arbitrary monitoring point on a TCP connection to estimate the traffic that was

originally sent by the transmitting node, even though some of this traffic may have

already been lost. However, this thesis has demonstrated that TCP traffic is not

guaranteed to arrive at the observation point in the same order as which it was

transmitted. Therefore out-of-sequence packets can be caused by a loss followed by

retransmission or packet reordering. Clearly, when taking measurements at the

transmission source, before the packets traverse a switching device, no packet re-

ordering can have occurred and the traditional Love calculation for retransmission

based upon subtracting goodput from throughput will suffice. However, any

measurements using this method at subsequent later points in the network, after the

packets have passed through multiple routers and switches, are likely to over-estimate

157

the amount of loss and retransmission by the amount of packet reordering that has

occurred.

5.2.3 Jaiswal

Jaiswal's algorithm, as reviewed in Section 3.3.3, classifies out-of-sequence packets by

observing properties of the forward path packets carrying the TCP segments observed,

such as time of observance, the packet's IP ID field, the existence of the segments

reverse path ACK packets, and some derived measures, such as the time difference

between two occurrences of the same TCP segment. Each out-of-sequence packet is

classified into one of five types; Retransmission, Unneeded Retransmission, Network

Duplicate, Reordering and Unknown.

However, as part of the algorithm, Jaiswal relies on two important properties that can

severely limit the number of flows which can be analysed at any particular mid-point.

They must first observe the return path Ack packets, and secondly they require an

accurate estimation of the senders RTO and RTT for every single observed flow. There

are simply too many complex heuristics used in this method to make a simple,

lightweight and reliable measurement. Jaiswal acknowledges that only approximately

13% of the monitored flows on the Sprint Tier-1 backbone were found to be

symmetrical and therefore 87% of packets were not processed by the Jaiswal algorithm.

5.2.4 Summary

There is clear motivation for the development of accurate single point measurements of

TCP loss, goodput, retransmission and reordering. The technique described by Love is

clearly lightweight, simple to implement, and can perform measurement entirely on the

data path of a connection, but will grossly overestimate retransmission count during

periods of packet reordering. The Jaiswal algorithm will provide a much improved

determination of loss and retransmissions, but the requirement to observe both Data

and Acknowledgement packets and perform RTT estimation for every concurrent flow,

makes this technique infeasible for the majority of network monitoring applications.

158

This chapter presents the development of a lightweight method for real time monitoring

of TCP flows, which seeks to improve on the issues associated with the work by Jaiswal

and Love. The work presented in this chapter has been filed for patent, "Real Time

Monitoring of TCP Flows", UK Patent Application GB2430577, Filed September 2005,

Published March 2007, and US Patent Application 20070070916, Published March

2007.

5.3 A Passive Mid-Point Monitoring
Technique

This section describes the development of a passive mid-point monitoring technique

and out-of-sequence packet classification algorithm, which were developed in order to

classify TCP data packets from an arbitrary point in a network, without the requirement

of observing symmetrical Acknowledgement packets, nor performing estimation of

RTT.

5.3.1 Development of a Passive Mid-Point Software
Probe

A capture device and software probe are clearly necessary to collect the relevant

information required, in order to passively monitor and collect enough relevant

information, to then infer why a packet has been reordered and how it should be

classified.

At any point in the network where TCP flows can be observed, the probe monitors the

packets that pass by. Whenever a packet is observed that matches specific criteria

relating to the measurements of interest, the time that the packet is observed is noted

and the packet is copied to the packet capture buffer for analysis.

Measurement is performed on a per-flow basis. For each flow, a "Flow Trace" is

159

created; the trace consists of a series of "Packet Records" where each record consists of

information about each packet in the flow.

Each TCP connection is uniquely identifiable using the IP addresses of the source and

destination nodes and the port numbers on those nodes between which the connection

has been established. Figure GO illustrates part of a TCP packet header that provides the

identification by which each packet Record is stored and defines a Flow 't'race. For each

Flow "Trace, packet records arc formed for all packets that relate to that flow trace and

the packet records arc stored in the memory of the probe, although the memory could

be located elsewhere if required.

0
0

0 0
S f

0
t t

ý
0

1
]

1
f { t t

S
0

3 3
S

S
f

] 3
{

]
{

S
1

]] f
0

t

Source IP Address

Destination IP Address

TCP source port TCP destination port

Figure 60 - Example Flow Trace

For each TCP flow, starting with the SYN packet in forward direction flows, and the

SYN-ACK in re-, -ersc direction flows, the packet's headers are examined and a packet

record is added to the flow trace. On each packet arrival, a new packet FCCO)rd is added

to the flow trace for that connection.

Figure 61 illustrates the contents of a TCP packet record. The packet record consists of

14 bytes and comprises a sequence number, the 11) 11) of the packet, the timestamp of

its arrival at the net-, v'ork probe, an incrementing sequence number, called the

'Observation Position' (OP) and the packet length.

160

e
a ý ý a x e

ý
e e

x ý x x x
ý ý ý

x o

Optional Tr tartp (1o^-8 secs)

IP ID observation Position (0P)

Packet Length

Figure 61 - Example Packet Record

The OP is provided by an integer counter within the probe device, which is used to

record the arrival position of each packet obscn"ed in the flow at the measurement

position. The counter is initialised to zero when a new Flow Trace is created and is then

incremented by one on the arrival of each new packet for a given direction within that

flow. Separate OP counters are maintained for each Flo-, k, 't'race and for each direction

within the flow currently being monitored by the network probe.

The optional timestamp measures the time elapsed between the current packet's arrival,

and the arrival of the previous packet. For example, if this time was recorded in 10's of

nanoseconds, an inter-packet gap of just under 43 seconds could be accommodated.

The OP counter, IP ID and Packet Length may be 16 bit numbers with a range () toi

65535. The 11) II) can be arbitrarily set by the sender, but should change on each packet

transmitted, thereby providing a method for identifying netwoork duplicates of packets

with identical Sequence and _1ck numbers. The OP counter may recycle back toi O after

reaching 65535. Since this number is used to determine packet sequencing and packets

are unlikely to arrive at more than a few tens of positions MIt of sequence, the 65535

limit is adequate for most connections. If measurements over a very long flow arc

required, a larger counter could be used.

Each "I'CP packet sequence number is a 32 bit number. Storage could be

further reduced by minimising the memory storage requirements for each flow record

161

by normalising the sequence numbers, with respect to the start of the sequence numbers

for that flow for a given direction. Monitoring certain applications may require a longer

timestamp period to accommodate longer inter packet arrival times, for example, to

support protocols that contain natural pauses in the TCP connection. In this instance, a

larger timestamp, for example 40 bits (5 bytes) long would provide slightly over 3 hours

of timestamps. This change, coupled with the 24 bit sequence number, would align the

packet record on a4 byte storage boundary, which can be useful on certain commodity

hardware. The length of the various elements in the packet record can be adapted to suit

the type of protocols being monitored, the type of hardware resources available on the

probe, and the requirements to minimise the processing footprint on the hardware

device.

5.3.2 Insertion of Packet Records into Flow Traces

On arrival each packet record is inserted into a flow trace. However, the insertion does

not occur in arrival order. Insertion occurs in a sorted order keyed against the Sequence

Number and IP ID. The sort is characterised in pseudo code as the function shown in

Table 5, where each Packet Record has a structure of the type previously described in

Figure 61. Using this sort function, a packet record will be placed in the Flow Trace,

ordered from the lowest Sequence Number to the largest Sequence Number. For

packets with the same Sequence Number, the IP ID is used for differentiation, although

packets could just as easily be sorted against the Sequence Number, only. Using both

numbers gives an increased level of differentiation between those packets that are

retransmissions and those that were caused by network duplication.

As each packet is inserted into the Flow Trace, it is assigned an OP. The OP indicates

the actual arrival order of the packets within the flow and the Sequence Number

provides the order that the packets were actually transmitted.

162

boolean sort(Record a, Record b) {

if (a. sequenceNumber == b. sequenceNumber) {

return a. ipid < b. ipid;

} else {

return a. sequenceNumber < b. sequenceNumber;

}

Table 5- Pseudo code of Packet Record Sorting

When either a FIN or a RST is sent, or in case these are missed, after a suitable timeout

period, the whole of the captured Flow Trace can be analysed. If the processing

resources are not available at the probe, the Flow Trace could be sent to a network

management station for analysis. Any results generated are either stored and displayed

via the probe, or via the network management station.

The analysis of the flow trace (when finished, reset or after the timeout) starts with a

calculation of an "Expected Position" (EP) number for each packet record within the

flow trace. The calculation of EP for each packet record is described in further detail in

Figure 62.

5.3.3 Calculation of Expected Position

Figure 62 illustrates the calculation of an "Expected Position" (EP) number for each

packet record within the Flow Trace. Upon completion of the packet capture, all packet

records within the flow trace have been entered in sorted order keyed against "Sequence

Number" and "IP ID". The steps to calculate EP are as follows:

The first data packet record in the Flow Trace is found. This is identified as having a

Sequence Number identical to the original flow SYN packet, but with different IP ID

fields and a packet length not equal to zero.

163

The first data packet is assigned the initial EP number. For example, the initial EP could

be set to the same as the OP of the first data packet, thus allowing simple comparison

between the two values, and initially, before any retransmissions occur, thereby allowing

EP==OP as an indication of perfect sequencing.

Start

Identify first data
packet in flow trace

Set first data packet
to initial EP

Calculate EP

. cur = (EP. prev +1

All records
processed?

Yes

Sort flow trace
by OP

End

No

oes Seq. No - Yes
previous Seq

No ?

No
Move to next packet
record in flow trace

Figure 62 - Expected Position Calculation

Result -
Network
Duplicate

No

Does IP ID =
revious IP ID?

Yes

The algorithm then loops around all records in the flow trace until all have been

processed.

Calculate EP
EP. cur - (EP. prev)

Result -
Retransmission

164

Each packet record is then tested by Sequence Number, to compare it with the

Sequence Numbers of previous packet record. If the Sequence Numbers are different,

the EP value of the current packet record is calculated as the EP value of the previous

packet record plus 1.

If two packet records have the same Sequence Number, the IP ID value of the current

packet record is tested with respect to the IP ID value of the previous packet record.

This allows differentiation between a Retransmission and a Network Duplicate, allowing

a simple count to be maintained of each, which provides a more accurate measure of

Goodput than the method described by Love. The EP value of the current packet

record is then set to the same value as the EP value of the previous packet record.

Once all packets reordered within the Flow Trace have been processed, they are then

sorted are re-inserted into the Flow Trace by OP.

The benefit of recording an entire Flow Trace and then sorting by Sequence Number

and IPID, is that it does not require calculation of an NESN for each packet, as

described in the Love algorithm. However, if the probe is located at a point where data

packets from a single TCP connection may traverse different paths, resulting in some

packets not passing through the measurement probe, the Flow Trace will be incomplete

for that connection, and neither the sorting method nor NESN would be able to

evaluate the correct EP values for the Flow Trace.

5.3.4 Calculation of Relative Sequencing

Figure 63 illustrates the processing carried out in order to define the amount of re-

sequencing which has occurred within a flow trace. Once each packet record has been

assigned an OP and EP value, the algorithm steps through all OP numbers and

performs a series of calculations, on the EP (EP. cur) and OP (OP. cur) values of the

current packet record, with respect to the EP (EP. prev) and OP (OP. prev) values of the

previous packet record.

165

Start

Read first packet record in
flow trace, with initial OP

Calculate
aEP=EP. cur - EP. prev,

3OP=OP. cur - OP. prev,

No
All packets
rocessed?

Yes

Find packet with next OP
number

For all packet records,
plot 8EP-3OP by OP

End

Figure 63 - Post Processing Flowchart

Equation 6 and Equation 7 calculate the rate of change between the current packet

record and the previous packet record, where in an ideal scenario with perfect network

sequencing, both would increment monotonically each time. Equation 8 performs rate

of change analysis, by allowing definition of a simple metric to test if a packet is out of

sequence. If Equation 8 yields zero, then perfect network behaviour is being observed.
If Equation 8 gives any other value, then the packet is flagged as Out-of-Sequence and

will be classified as such by the algorithm.

166

. EP = EP. cur - EP. prev

Equation 6- Expected Position Rate of Change

OOP = OP. cur - OP. prev

Equation 7- Observed Position Rate of Change

aEP-OOP

Equation 8" Rate of Change Analysis

5.3.5 The Arthur "Out of Sequence" Classification
Algorithm

With the packet records reinserted in the flow trace by OP and calculation of all EP

numbers complete, it is then possible to parse the flow trace and evaluate each packet

record using the algorithm presented in Figure 64.

Figure 64 illustrates the steps of capturing the TCP stream, inserting the packets into the

flow trace as discussed in Section 5.3.2, calculating EP as discussed in 5.3.3, and then

comparing EP and OP for each packet as illustrated by Equations 6,7 and 8.

Each packet is then classified using the algorithm as illustrated in Figure 64 and the

following steps are used in the algorithm to allow interpretation of the results: -

167

Start

Insert packet into flow trace.

Calculate OP.

Calculate EP for each packet.

Compare EP and OP for each packet.

Any Seq

-'Do duplicates with
same Seq # also have

identical IP ID's? i
Yes No Yes Is packet OOS?

Result 3

>3 packets OOS?

Result 511 Result 611 Result 4

Result I

Result 2

Is the duplicate Yes
with the lower IPID --ýResult7
>3 packets OOS?

No
i Result 81

Figure 64- Arthur Out of Sequence Classification Algorithm

168

5.3.5.1 Result 1

Result 1- Network Duplicate Packets.

Packets that are duplicated in the flow record and share the same Sequence Number and

IP ID are marked as network duplicates; a count of the number of network duplicates is

maintained.

5.3.5.2 Result 2

Result 2- Retransmitted Packet, due to Packet Reordering Upstream or Downstream,

or Packet Loss & Retransmission Downstream from Measurement Point

Packets that are duplicated in the Flow Trace, sharing the same Sequence Number, but

which are not network duplicates, as determined by differing IP ID fields, are

retransmissions of packets and a count of such packets is maintained. The cause of this

retransmission is a result of

" Packet reordering either upstream or downstream from the measurement point.

or

" Packet loss downstream from the measurement point due to network

congestion or malfunction of the network.

5.3.5.3 Result 3

Result 3- Packet Reordering, or Packet Loss & Retransmission Upstream from

Measurement Point

Packets that are Out-Of-sequence and are not duplicated in the flow record will be due

either to:

169

" Packet reordering upstream from the measurement point.

or

" Packet loss upstream from the measurement point due to network congestion or

malfunction, which has resulted in a subsequent retransmission of the lost

packet.

5.3.5.4 Result 4

Result 4- Perfect Network Behaviour

If no flow record Sequence Number duplicates are detected and the packet is not

measured to be out of sequence by Equation 8, then Perfect Network Behaviour is

observed.

5.3.5.5 Result 5

Result 5- Packet Loss Upstream & Retransmission, or Packet Reordering

Packets that are categorised as being out-of-sequence and are significantly out-of-

sequence but do not share a duplicate packet in the flow record, can be assumed to be

caused by:

" Packet loss upstream from the measurement point, as a significantly late arrival

of the packet will have triggered either a Fast-Retransmit from the receiver, or a
Round-Trip-Timeout at the sender. This would be the case for packets that are

significantly more than 3 positions Out-of-Sequence, as a large delay would be

incurred whilst a retransmission was transmitted.

or

" Packet reordering upstream and downstream from the measurement point,

170

which has not been to a large enough degree to cause a retransmission through

RTT or Fast-Retransmit, but indicates significant disruption in network

behaviour and should be measured as such.

The degree to which packets are being measured out-of-sequence should be maintained,

as significant numbers of packets arriving more than 3 positions out-of-sequence, is an

indicator of unhealthy network performance.

5.3.5.6 Result 6

Result 6- Packet Reordering Upstream from the Measurement Point

Packets that are categorised as being Out-Of-Sequence, but are less than three packets

Out-Of-Sequence are a result of packet reordering upstream from the measurement

point. This is indicative of unhealthy network performance and a count of this measure

should be maintained, but these packets do not indicate problems with network

performance as serious as those categorised under Result 5, as they are unlikely to cause

unnecessary retransmissions.

5.3.5.7 Result 7

Result 7- Packet Retransmission, caused by Fast Retransmission

Packets that are categorised as Result 2 and have duplicate packet records, but where the

packet record with the lower IPID value is mote than three packets out-of-sequence, are

retransmissions that are likely to be the result of the TCP receiver receiving three

duplicate Acks and determining that the packet must be retransmitted. This is the

amount of fast retransmission occurring in the flow and a count of such events should

be maintained.

171

5.3.5.8 Result 8

Result 8- Packet Retransmission, caused by RTO or Reverse Path Reordering or

Reverse Path Loss

Packets that are categorised as sharing the same Sequence Number, but not being

network duplicates, but where the packet record with the lower IP ID value is less than

three packets Out-of-Sequence, are retransmissions that could have been caused either
by:

" The TCP transmitter's RTO (retransmit timer) firing. This is the amount of

sender RTO retransmission occurring in the flow and a count of this events

should be maintained

or

" Reverse-Path reordering or loss, resulting in Acks not arriving at the transmitter

as expected, and causing retransmissions.

5.4 Out of Sequence Classification Example

Table 6 illustrates an example of both directions of a single TCP flow capture, with the

respective OP measurement calculated. Analysis of this sequence of packets, would be

carried out using two separate flow traces, one for each direction:

" Flow Trace 1- 10.0.0.2: 1789 to 10.0.0.6: 35427

Flow Trace 2- 10.0.0.6: 35427 to 10.0.0.2: 1789

Upon termination of the connection, when Flow Trace 1 is observed transmitting a RST

or FIN, the results are processed and the EP numbers are calculated (as demonstrated

in Figure 62).

172

Timestamp
Secs Usecs

1125264298 160003

1125264298 160007

1125264298 275604

1125264298 275636

1125264298 277983

1125264298 278330

1125264298 278332

1125264298 278334

1125264298 395590

1125264298 395619

1125264298 395641

1125264298 395671

1125264298 398070

1125264298 398427

1125264298 398428

1125264298 398430

1125264298 398432

1125264298 398434

1125264298 515588

-1125264298
515616

1125264298 515638

1125264298 515661

1125264298 515673

1125264298 515700

1125264298 517947

1125264298 518325

1125264298 518327

"1125264298
518329

1125264298 518330

1125264298 518725

1125264298
635583

1125264298
635611

0 1125264298
635634

1125264298
635657

1125264298 635685

1125264298 637902

1125264298 638254

1125264298 638622

1125264298
638624

1125264298
638626

1125264298
638628

1125264298
638630

1125264298
638631

1125264298
638633

Source Destination OP
Address Port Address Port

10.0.0.2 1789 10.0.0.6 35427 1 3E

10.0.0.2 1789 10.0.0.6 35427 2 3E

10.0.0.6 35427 10.0.0.2 1789 1 3E

10.0.0.6 35427 10.0.0.2 1789 2 3E

10.0.0.2 1789 10.0.0.6 35427 3 3E

10.0.0.2 1789 10.0.0.6 35427 4 3E

10.0.0.2 1789 10.0.0.6 35427 5 3E

10.0.0.2 1789 10.0.0.6 35427 6 3E

10.0.0.6 35427 10.0.0.2 1789 3 3E

10.0.0.6 35427 10.0.0.2 1789 4 3E

10.0.0.6 35427 10.0.0.2 1789 5 38

10.0.0.6 35427 10.0.0.2 1789 6 38

10.0.0.2 1789 10.0.0.6 35427 7 38

10.0.0.2 1789 10.0.0.6 35427 8 38

10.0.0.2 1789 10.0.0.6 35427 9 38

10.0.0.2 1789 10.0.0.6 35427 10 38

10.0.0.2 1789 10.0.0.6 35427 11 38

10.0.0.2 1789 10.0.0.6 35427 12 38

10.0.0.6 35427 10.0.0.2 1789 7 38

10.0.0.6 35427 10.0.0.2 1789 8 38

10.0.0.6 35427 10.0.0.2 1789 9 38

10.0.0.6 35427 10.0.0.2 1789 10 38

10.0.0.6 35427 10.0.0.2 1789 11 38

10.0.0.6 35427 10.0.0.2 1789 12 38

10.0.0.2 1789 10.0.0.6 35427 13 38

10.0.0.2 1789 10.0.0.6 35427 14 38

10.0.0.2 1789 10.0.0.6 35427 15 38
10.0.0.2 1789 10.0.0.6 35427 16 38

10.0.0.2 1789 10.0.0.6 35427 17 38

10.0.0.2 1789 10.0.0.6 35427 18 38

10.0.0.6 35427 10.0.0.2 1789 13 38

10.0.0.6 35427 10.0.0.2 1789 14 38
10.0.0.6 35427 10.0.0.2 1789 15 38
10.0.0.6 35427 10.0.0.2 1789 16 38

10.0.0.6 35427 10.0.0.2 1789 17 38

10.0.0.2 1789 10.0.0.6 35427 19 38

10.0.0.2 1789 10.0.0.6 35427 20 38
10.0.0.2 1789 10.0.0.6 35427 21 38

10.0.0.2 1789 10.0.0.6 35427 22 38

10.0.0.2 1789 10.0.0.6 35427 23 38

10.0.0.2 1789 10.0.0.6 35427 24 38

10.0.0.2 1789 10.0.0.6 35427 25 38

10.0.0.2 1789 10.0.0.6 35427 26 38

10.0.0.2 1789 10.0.0.6 35427 27 38

Table 6- Example TCP Stream Capture

Seq Ack IPID
116962545 3811057447 43099
116963993 3811057447 43100
111057447 3816963993 36800
111057447 3816965441 36801
116965441 3811057447 43101
116966889 3811057447 43102
116969785 3811057447 43104
116968337 3811057447 43103
111057447 3816966889 36802
111057447 3816968337 36803
111057447 3816968337 36804
111057447 3816971233 36805
16971233 3811057447 43105
16972681 3811057447 43106
16974129 3811057447 43107

116975577 3811057447 43108
116968337 3811057447 43109
16977025 3811057447 43110
111057447 3816972681 36806

, 11057447 3816974129 36807

, 11057447 3816975577 36808
11057447 3816977025 36809
11057447 3816977025 36810
11057447 3816978473 36811
16978473 3811057447 43111
16979921 3811057447 43112
16981369 3811057447 43113
16982817 3811057447 43114
16984265 3811057447 43115
16985713 3811057447 43116
11057447 3816979921 36812
11057447 3816981369 36813
11057447 3816982817 36814
11057447 3816984265 36815
11057447 3816987121 36816
16987121 3811057447 43117
16990017 3811057447 43119
16988569 3811057447 43118
16991465 3811057447 43120
16992913 3811057447 43121
16994361 3811057447 43122
16995313 3811057447 43123
16998209 3811057447 43125
16996761 3811057447 43124

173

Table 7 and Table 8 illustrate the TCP packet records that would be generated by the

packet sequencing analysis using the TCP stream capture data illustrated in Table 6.

Timestamp Timestamp
OP Packet

(secs) (usecs) Length

1125264298 160003 1 3816962543 43099 1448

1125264298 160007 2 3816963993 43100 1448

1125264298 277983 3 3816965441 43101 1448
1125264298 278330 4 3816966889 43102 1448
1125264298 278332 5 3816969785 43104 1448
1125264298 278334 6 3816968337 43103 1448

1125264298 398070 7 3816971233 43105 1448

1125264298 398427 8 3816972681 43106 1448

1125264298 398428 9 3816974129 43107 1448
1125264298 398430 10 3816975577 43108 1448
1125264298 398432 11 3816968337 43109 144$
1125264298 398434 12 3816977025 43110 1448

1125264298 517947 13 3816978473 43111 1448

1125264298 518325 14 3816979921 43112 1448
1125264298 518327 IS 3816981369 43113 1448

1125264298 518329 16 3816982817 43114 1448
1125264298 518330 17 3816984265 43115 1448
1125264298 518725 18 3816985713 43116 1408
1125264298 637902 19 3816987121 43117 1448

1125264298 638254 20 3816990017 43119 1448
1125264298 638622 21 3816988569 43118 1448
1125264298 638624 22 3816991463 43120 1448
1125264298 638626 23 3816992913 43121 1448
1125264298 638628 24 3816994361 43122 952
1125264298 638630 25 3816995313 43123 1448
1125264298 638631 26 3816998209 43125 1448
1125264298 638633 27 3816996761 43124 144$

Table 7- Flow Trace 1- 10.0.0.2: 1789 to 10.0.0.6: 35427

Table 9 illustrates the results of performing EP calculation using Flow Trace 1. It can be

seen that the packet with Expected Position 6 was reordered during transmission and

was observed arriving at position 7. The degree of sequence loss was sufficient to cause

a retransmission; this can be observed as the packet arriving at Observed Position 12.

174

Timestamp Timestamp Up Ack IPID Packet
(secs) (usecs) Length

1125264298 275604 1 3816963993 36800 0
1125264298 275636 2 3816965441 36801 0
1125264298 395590 3 3816966889 36802 0
1125264298 395619 4 3816968337 36803 0
1125264298 395641 S 3816968337 36804 0
1125264298 395671 6 3816971233 36805 0
1125264298 515588 7 3816972681 36806 0
1125264298 515616 8 3816974129 36807 0
1125264298 515638 9 3816975577 36808 0
1125264298 515661 10 3816977025 36809 0
1125264298 515673 11 3816977025 36810 0
1125264298 515700 12 3816978473 36811 0
1125264298 635583 13 3816979921 36812 0
1125264298 635611 14 3816981369 36813 0
1125264298 635634 15 3816982817 36814 0
1125264298 635657 16 3816984265 36815 0
1125264298 635685 17 3816987121 36816 0

Table 8- Flow Trace 2 -10.0.0.6: 33427 to 10.0.0.2: 1789

Timestamp Timestamp Op Seq Irin Packet EP (secs) (usecs) Length
1125264298 159999 1 3816961097 43098 1448 1
1125264298 160003 2 3816962545 43099 1448 2
1125264298 160007 3 3816963993 43100 1448 3
1125264298 277983 4 3816965441 43101 1448 4
1125264298 278330 5 3816966889 43102 1448 5
1125264298 278332 6 3816969785 43104 1448 7
1125264298 278334 7 3816968337 43103 1448 6
1125264298 398070 8 3816971233 43105 1448 8
1125264298 398427 9 3816972681 43106 1448 9
1125264298 398428 10 3816974129 43107 1448 10
1125264298 398430 11 3816975577 43108 1448 11
1125264298 398432 12 3816968337 43109 1448 6
1125264298 398434 13 3816977025 43110 1448 12
1125264298 517947 14 3816978473 43111 1448 13
1125264298 518325 15 3816979921 43112 1448 14
1125264298 518327 16 3816981369 43113 1448 IS
1125264298 518329 17 3816982817 43114 1448 16
1125264298 518330 18 3816984265 43115 1448 17
1125264298 518725 19 3816985713 43116 1408 18
1125264298 637902 20 3816987121 43117 1448 19
1125264298 638254 21 3816990017 43119 1448 21
1125264298 638622 22 3816988569 43118 1448 20
1125264298 638624 23 3816991465 43120 1448 22
1125264298 638626 24 3816992913 43121 1448 23
1125264298 638628 25 3816994361 43122 952 24
1125264298 638630 26 3816995313 43123 1448 23
1125264298 638631 27 3816998209 43125 1448 27
1125264298 638633 28 3816996761 43124 1449 26

Table 9- Packet Sequencing Analysis

175

Table 10 illustrates the results for a Packet Sequence Rate of Change Analysis as applied

to the packets from Table 7 and the resulting classifications as applied by the Arthur

classification algorithm. Empirical observation has indicated that a good indicator of the

health of a TCP connection is the rate of change of sequence numbers. TCP receivers

expect to receive packets from a flow in order and so an out-of-sequence packet,

whatever the cause, indicates a breakdown which causes additional overhead to the

connection.

Arthur

O E eo eE UP- Timestamp Timestamp Packet Algorithm

p P P P SOP (secs) (usecs) Seq 1PIn Length (Figure 64)
Classification

Results
1 1 1 1 0 1125264298 159999 3816961097 43098 1448 4

2 2 1 1 0 1125264298 160003 3816962545 43099 1448 4

3 3 1 1 0 1125264298 160007 3816963993 43100 1448 4

4 4 1 1 0 1125264298 277983 3816965441 43101 1448 4

5 5 1 1 0 1125264298 278330 3816966889 43102 1448 4

6 7 1 2 1 1125264298 278332 3816969785 43104 1448 3,6

7 6 1 -1 -2 1125264298 278334 3816968337 43103 1448 2.8

8 8 1 2 1 1125264298 398070 3816971233 43105 1448 3.6

9 9 1 1 0 1125264298 398427 3816972681 43106 1448 4

10 10 1 1 0 1125264298 398428 3816974129 43107 1448 4

11 11 1 1 0 1125264298 398430 3816975577 43108 1448 4

12 6 1 -5 -6 1125264298 398432 3816968337 43109 1448 2.8

13 12 1 6 5 1125264298 398434 3816977025 43110 1448 3,6

14 13 1 1 0 1125264298 517947 3816978473 43111 1448 4

15 14 1 1 0 1125264298 518325 3816979921 43112 1448 4

16 15 1 1 0 1125264298 518327 3816981369 43113 1448 4

17 16 1 1 0 1125264298 518329 3816982817 43114 1448 4

18 17 1 1 0 1125264298 518330 3816984265 43115 1448 4

19 18 1 1 0 1125264298 518725 3816985713 43116 1408 4

20 19 1 1 0 1125264298 637902 3816987121 43117 1448 4

21 21 1 2 1 1125264298 638254 3816990017 43119 1448 3.6

22 20 1 -1 -2 1125264298 638622 3816988569 43118 1448 3,6

23 22 1 2 1 1125264298 638624 3816991465 43120 1448 3.6

24 23 1 1 0 1125264298 638626 3816992913 43121 1448 4

25 24 1 1 0 1125264298 638628 3816994361 43122 952 4

26 25 1 1 0 1125264298 638630 3816995313 43123 1448 4

27 27 1 2 1 1125264298 638631 3816998209 43125 1448 3,6

28 26 1 -1 -2 1125264298 638633 3816996761 43124 1448 3,6

Table 10 - Rate of Change Analysis

By performing this analysis, in an ideal case EP should increase by exactly I per packet -

every packet received should be that predicted from the previous packet. 'I'lierefore, if

applied across a sequence of more than two packets sorted by their observed position, if

176

Equation 8 does not equal zero, the connection is shown to have suffered sequencing

problems and is, therefore, unhealthy. This Packet Sequence Rate of Change Analysis

can measure the effects of packet reordering, by highlighting the points at which the

observed sequence changes, rather than identifying packets as being either in or out of

sequence. Even minor loss of sequence would suggest that a connection is unhealthy as

the change in sequence could be misinterpreted as loss by the receiver, in which case a

retransmission would be caused and congestion avoidance would begin.

From the timestamp data within each packet record, the rate of change of inter-packet

arrival times can also be calculated. The difference in inter-arrival times, differentiated

over a distance of packets, selected in a method similar to that described for rate of

sequence change, would allow for an indication of the burstincss of the data. If both

forward and reverse flow traces were obtained, comparison of these would allow for

measurements of reverse path reordering and how it had affected the forward path's

burstiness.

5.4.1 Dealing with Duplicates

Table 10 further illustrates the use of the SEP, c)OP, and)EP-DOP when

retransmissions occur in a flow trace. It is important to note that there arc situations

when multiple packet records in the flow trace will be assigned identical EP numbers.

This will occur when retransmitted packets arc allocated EP numbers that are identical

to the original `lost' packet. This will also occur when there arc multiple retransmissions

of a lost packet, or where reordering occurs to such an extent that the receiver has

assumed the packet to be lost, and thus requested retransmission. Meanwhile, the OP

counter will increase linearly for each packet arrival, which after a retransmission event

when the flow has returned to correct sequencing, will have resulted in the OP counter

being ahead of the EP counter by the number of packet retransmissions that have

occurred.

Therefore, calculating the change in EP and OP between packets provides a measure of

sequence change that is relevant in situations where retransmissions will affect the

expected sequence of arriving packets. Calculation of oOP will always result in a value

177

of 1 when calculated over 2 packet records, as OP increases linearly during packet

capture. Therefore, when calculating DEP - OOP, a value of anything other than 0 is an

indication of sequence breakdown. For example, in Table 10 a sequence gap is detected

at OP 6 where EP 6 has undergone packet reordering, and arrives in OP 7. In this

example, the reordering was sufficient to cause a retransmission of the packet at EP 6

which is observed again at OP 12. In the intervening time between OP 9 and OP 11,

packet sequencing is maintained as expected, with EP==OP, and so OEP - £3OP would

indicate good network behaviour for this part of the flow.

After the anomaly of the retransmission at OP 12, tiEP - COP from OP 14 onwards

indicates that the flow trace is back in perfect sequence - despite OP and EP becoming

'out of step' due to the additional retransmission. Calculation of m-P-)OP therefore

mitigates this effect in addition to providing a simple measure of how late or early a

packet has been measured as arriving with respect to the expected sequence of arrival.

Positive numbers indicate early packets, while negative numbers indicate late packets.

For example, in Table 10, OP 6 is calculated as having 8EP-0OP=1, indicating that the

packet has arrived 1 position earlier than what it should be expected to be. Calculation

of oEP-aOP on OP 7=-2, indicating that the packet has arrived 2 positions late.

Calculation of ZIEP-öOP on OP 12=-6, indicating that the packet is 6 positions late and

with an EP of 6(which has also been assigned to the packet with OP 7) indicates that

this is a retransmission, caused by either downstream packet loss or packet reordering.

5.5 Implementation of Algorithm

In order to compare this mid-point classification algorithm with Jaiswal, a software

prototype of the algorithm was implemented in C++ and Pcrl. Using the Libpcap-

MMap extensions on a Linux platform, the C++ code performs passive sniffing of a

Gigabit Ethernet Interface Card which, when used with a passive optical tap, can be

used to perform mid-point monitoring of a fibre-based gigabit Ethernet connection.

For each packet received, the C++ code evaluates the 4-tuple ports and addresses of the

178

source and destination, to define a Connection object. This Connection object is then

used as a key into a hash of MeasuredSequence objects. Each MeasuredSequence object

is a sorted `Packet Record' of the format described in Figure 61.

The length of a packet capture can be specified at run time; in this case, the C++ code

executes until a defined number of flows have been captured and then, prior to exit,

flushes each MeasuredSequence object to output files. Example MeasuredSequence

objects, for each flow, are illustrated in Table 7 and Table 8.

At this point, further processing must be performed in Perl. A single txt capture file is

generated by the C++ application, but with all MeasuredSequence objects, for every

flow observed, written into that file. A Perl script was developed to parse these text files

and perform the Expected Position calculation as defined in Figure 62, and the Rate of

Change Analysis as defined in Table 10. This results in a separate text file output, for

each flow trace, with summary statistics generated of the number of packets classified by

each rule in Figure 64.

5.5.1 Comparison with Jaiswal

One of the significant contributions of Jaiswal's work was the ability to access packet

captures from the Sprint IP Monitoring project and, therefore, perform real-time

analysis of Tier-1 trans-continental 2.5 Gb/s network links.

As is common with many ISPs, for security and privacy concerns, access to such real
data is not publicly available and therefore the packet captures used by Jaiswal are not

available in the form of packet headers that can be processed by the Arthur

classification algorithm. Therefore, in order to provide comparison between this mid-

point classification algorithm and the Jaiswal algorithm, a set of experiments were
devised to generate new data in the formats which both algorithms could analyse and

classify, thus allowing comparison of results from both techniques.

The source code for the Jaiswal Out-of-Sequence Classification algorithm was obtained
from Sharad Jaiswal and was compiled and tested. Jaiswal's classification tool,

179

`TCPFlows', can read packet traces either by live capture through a DAG card or by

reading packets that have been captured and saved in the form of tcpdump files.

5.5.2 Experimental Setup

In order to capture packet traces of live Internet traffic across a reasonably large

Internet backbone connection, an experiment was performed using a HP NetServer

LPr. The NetServer was compiled with the C++ code developed in this chapter, which

performed its own capture and logging of Flow Traces into text files. Additionally,

tcpdump was simultaneously run on the same gigabit interface, in order to capture the

same packets which were logged by the C++ code and written in the tcpdump file

format for later processing by Jaiswal TCPFlows. Both the C++ code and tcpdump

perform packet capture using Libpcap and were found to operate on the same interface

on the same machine with no performance overheads. Tcpdump was configured to

capture only the first 96 bytes of each packet to avoid disk space exhaustion.

The NetServer was located beside an egress router at the Agilent Technologies South

Queensferry facility. This router, a Cisco Catalyst 3620, is one of two used to route a

variety of different IP traffic, from general office web and email, to experimental IP test

traffic from the Agilent Laboratories Test Network. This router was chosen because it

operates in parallel with a second identical router to connect, via 1000-Base-SX over
fibre Gigabit, to one of the site core routers for 45 Mb/sec uplink to the Agilent

Technologies MPLS cloud.

5.5.3 Results and Comparison

A total of 331649 flows were measured over a6 hour period, and were classified using

the Jaiswal algorithm as illustrated in Table 11, and the Arthur algorithm in Table 12. It

should be noted that a flow can traverse in either direction and, for the purposes of the

Arthur algorithm, describes the Data path alone, while for the Jaiswal algorithm defines

both Data and Acknowledgements.

180

Total Data Flows Symmetric Packets Total OOS Network Unneeded Reordered

Packets Flows within OOS Unclassified Dups Retx Before
Symmetric Packets (Ack already Probe

Flows Observed)

51040802 331649 271952 40556286 1262395 0 0 43531 232165
I 1_ 8(81.99%) 1 (79.46%) (2.47%) (3.45%) 18.39%

OOS due to Retransmission - 986699 78.16%
Retx due to RTO Retx due to Fast Retx during Fast Retx during Fast Retx unknown

Retx RTO Recovery Recovery
72551 536880 0 377268 0

(7.35%) (54.41%) (38.24%)

Table 11- Jaiswal Classification Results

OOS Packets
& Sequence

Total Data Number
Packets Flows Duplications

51040802 331649 2728100

Resul-ti - Result 2- Packet Retransmission due Result 3- Packet Reordering, or Result 4-

Network to Reordering, or Packet Loss & Packet Loss & Retransmission Perfect
Duplicate Retransmission Downstream Upstream Network

Behaviour

0 1873658 854442 48312702
(68.68%) (31.32%) (94.67%)

Kesuit i- KeWIE a- Kesua o- racKet rcesuit o-

Retransmission Retransmission Loss Upstream & Packet
likely caused by likely caused by Retransmission, or Reordering

Fast RTO or Reverse Packet Reordering Upstream
Retransmission Path Reordering

or Reverse Path
Loss

1566747 306911 594998 259444
(57.43%) (11.25%) (21.81%) (9.51%)

Table 12 - Arthur Classification Results

The first comparison that can be made between the two techniques is that the flows

observed at this observation point were only slightly asymmetrical, resulting in only 82%

of the flows being parsed by the Jaiswal algorithm. This discrepancy can make

correlation of results across the techniques difficult as the Jaiswal algorithm is operating

over a smaller set of data.

The number of packets reported to be Out-of-Sequence is also shown to be different.

181

This is partially due to the different definitions for this term and the methods by which

both terms are calculated. In Jaiswal, a packet is termed to be Out-of-Sequence if the

Sequence number observed is less than or equal to that of a previously observed

Sequence number in that connection. In the Arthur algorithm, all packets where öEP-

öOP does not equal zero are defined as Out of Sequence. It is important to note that, as

a by-product of this test, öEP-aOP will not equal zero when a packet loss occurs (and a

normal in-order packet then appears to arrive early) and also immediately after a

retransmitted packet has arrived (when again, the immediately successive packet will

appear to have arrived late). It is therefore expected that the Arthur algorithm will

apparently over-classify the number of Out of Sequence packets in a measurement.

The number of measured Retransmissions due to losses downstream from the probe

will be equal in both algorithms; in the Arthur algorithm, a Retransmission is counted as

two packets with the same Sequence number while in the Jaiswal algorithm, it is two

packets with the same Sequence number and different IP ID fields.

From the data packets alone, Retransmissions that result from a loss prior to the

measurement point, are much more difficult to identify. Classifications R2 and R3 of the

Jaiswal algorithm, where a packet has not been observed previously, but either has a

Time Lag > RTO, Duplicate Acks > 3, or is in state InFastßecovey are all straightforward

to identify from the Acknowledgement stream, but are difficult to infer using the Data

stream alone. In these particular scenarios, the Arthur algorithm will classify the packet

as not having observed this Sequence number previously, but also being Out of

Sequence, and therefore Result 3. Result 3 defines packets which are either Reordered,

or Lost and Retransmitted upstream. Without Acknowledgements, it is extremely

difficult to differentiate between these categories and, therefore, the simple rule >3

positions OOS is used to differentiate between Retransmission and Reordering. It is

assumed that if a data packet is more than 3 positions late, a Fast Retransmit will have

been initiated by the receiver; this may be inaccurate if the receiving TCP is using SACK

or the Linux Kernel to-reordering variable. Therefore, although the confidence of

correctly identifying Result 3 is high, the further differentiation between Result 5 and

Result 6 may involve some error, dependent upon the TCP implementations in the

connections measured.

182

Another similar factor that must be considered in the differences between Arthur and
Jaiswal Retransmission measurements, is the ability of the Jaiswal algorithm to

determine the inStateFastRecovery state and, therefore count retransmissions which are

occurring as a function of the Sending TCP entering the Fast Recovery algorithm. These

retransmissions, due to Fast Recovery, will be classified by the Arthur algorithm as

Result 8, as they will be observed as Retransmissions appearing to be more than 3

positions out of sequence and the result will be in an over-estimation of RTO

Retransmissions.

It is unusual that the Jaiswal algorithm classifies Network Duplicates in such a

complicated fashion. Network Duplicates are classified as such if two packets with the

same Sequence Number share the same IP ID, do not have Triple Duplicate Acks, are

not in state InFastRecoveg and have a Time Lag < RTT. In the Arthur algorithm, any

packet with the same Sequence Number and same IP ID are immediately flagged as
Network Duplicates. It is uncertain why the Jaiswal algorithm requires the evaluation of
Time lag < RTT to discern a Network Duplicate, as a Duplicate could appear in the

network at any time and for any time duration (especially if such a duplicate became

stuck in a routing loop). Unfortunately, during this measurement study, no Network

Duplicates were observed, suggesting that these are uncommon phenomena on modern

networks.

5.5.4 Conclusions

There are many challenges encountered when designing a mid-point measurement

algorithm of TCP as such an algorithm must infer the behaviour and state machine of

both TCP end hosts, based only on a small subset of information available in the middle

of the connection. There is, therefore, a degree of error in all classification algorithms

and these potential errors may adversely affect the results obtained.

A similar problem when designing mid-point measurement algorithms, is the validation

of these algorithms to ensure that they classify behaviour as expected. On a large scale

experiment, it is impossible to instrument all end hosts and later correlate the actual

183

behaviour with the mid-point inferred behaviour and, therefore, packet reordering

studies such as Jaiswal may also include inherent errors due to untested feat es of the

algorithm.

Based on the large number of uncertainties which are encountered during this type of

measurement, such as type of end host TCP implementation, the possibility of non-

standard compliant hosts and the many TCP features that could be implemented on

each TCP stream such as SACK, D-SACK, t0,, reordering etc, it is important to err on the

side of caution when designing a mid-point algorithm. The Arthur algorithm requires

only to view data path and adopts simple classification rules, which makes this algorithm

attractive as a tool to analyse the performance of a large number of flows. The methods

to calculate loss and retransmission are significantly more advanced than those

proposed by Love and will therefore not be adversely affected by packet reordering.

Finally, the lightweight nature of the algorithm, in that there is no need to calculate RTT

or infer state machine behaviour, would allow this algorithm to be deployed on a large

number of mid-point nodes, with little additional processing overhead.

5.6 Network Measurement Visualisation

Measurement Visualisation is an important emerging area in the field of network

measurement science and considers techniques to display large multivariate datasets in

ways which reveal insights into the data. Information Visualisation is a form of data

mining and is increasingly important for network monitoring and management; it allows

the characterisation of the overall performance of a vast amount of measurement data.

Chapter 4 has presented the issues encountered when performing any large scale

measurement of network traffic. In order to calculate metrics that are representative of

the traffic's performance, a significant amount of packet captures must be performed.

Chapter 4 has also illustrated that, even when these large amounts of data have been

captured and processed, the resulting metrics that are calculated, such as the percentage

reordered packet metric, may be meaningless in their ability to describe end-user

184

performance. Simple numerical value cannot always describe the complex effects that

the observed traffic may have on end system congestion control algorithms.

Network Visualisation is therefore the process of applying Information Visualisation

techniques to network measurement data, in order to develop methods of displaying

this data in a more intuitive format which is more meaningful to a network manager or

network operator. It is therefore likely to play an important role in future network

performance and diagnosis methods to convey information about the system which

simple numerical metrics alone cannot.

5.6.1 Visualisation of TCP

The most common method of visualising the performance of a TCP connection is

through the use of a TCP Time-Sequence graph. Figure 65 illustrates a Stevens' [Stev94]

TCP Time-Sequence graph, plotted using experimental data obtained from the testbed

in Chapter 4, for a 150 msec RTT link with 15% 0.201 sec forward path packet

reordering. The Stevens' graph plots observed sequence numbers against time and,

therefore, allows simple analysis of the rate of change of sequence numbers. During

periods of throttled congestion control, or retransmission, the gradient of the graph will

decrease, indicating a drop in TCP throughput.

.w
Figure 65 - Stevens' TCP Time-Sequence Graph

A TCP Time-Sequence graph may also be plotted using the Ostermann technique

[Park98], as performed by the TCPTrace tool [OsteO8]. An Ostermann Time-Sequence

graph, as illustrated in Figure 66 and Figure 67, improves on the Stevens' technique by

185

plotting both Acknowledgement Numbers received from the Receiving TCP and also

the rwnd advertised by the Receiving TCP. The latter is drawn at the Sequence Number

value corresponding to the sum of the acknowledgement number and the rwnd

advertised from the last Ack packet received. Tick lines in Figure 67 represent segments

sent and, therefore, vertical groups of tick lines indicate a volley of packets launched

into the network at once.

-.

S

1

I'

1

Figure 66 - Ostermann Time-Sequence Graph Figure 67 - Zoomed Ostermann Time-Sequence Graph

Neither of these techniques are appropriate for analysing TCP during packet reordering.

In Figure 67 at time 6.8 seconds, a segment can be seen to arrive 0.3 seconds later than

the other segments within that congestion window, therefore indicating that packet

reordering has occurred on this segment. This is difficult to observe, unless the graph is

plotted with a very fine resolution and does not intuitively highlight to the network

operator that reordering is occurring in the connection.

5.6.2 Visualisation of TCP Packet Reordering

RFC 5236 Qaya08] defines two metrics to calculate and visualise the degree of packet

reordering which a TCP stream has undergone. As discussed in Section 3.4.3, ̀ Reorder

Density' shows the distribution of displacement of packets from their original positions,

and `Reorder Buffer-Occupancy Density' displays the histogram of the occupancy of a
hypothetical buffer used to re-sequence early arriving packets.

186

The two metrics proposed in RFC 5236 differ significantly from the packet reordering

metrics standardised in RFC 4737 [MortO6]. The reordering metrics in RFC 4737 are as

listed in Chapter 3, Table 1. Each RFC 4737 metric is a `lateness' based metric; that is

packets which arrive `late' are highlighted by this metric, rather than packets which

appear to arrive `early'. This is similar to the Paxson metric for packet reordering

discussed in Section 3.2.2. As each packet arrives, it is checked against the last `non-

reordered packet'. If the sequence number is greater than the last non-reordered packet,

then that packet is marked as being in-order, and becomes the new non-reordered

packet. Consider the sequence of arriving packets 1,6,2,3,4,5,7,8,9,10. Packets 1,6,

7,8,9,10 are marked `in-order', while packets 2,3,4,5 are marked `reordered'. Simply

calculating a percentage of packets by marking them as `in-order' has been illustrated in

Chapter 4 as not sophisticated enough to describe the effects of reordering on TCP.

Therefore, the extent or movement of packets, from their original positions, is

calculated by many of the metrics proposed in Chapter 3. Metrics which quantify this

`offset' in terms of packets, by which a packet is reordered, are useful for determining

the portion of reordered packets that can or cannot be restored to order by the receiving

host's buffer[MortO6].

`Reordering Extent', is defined in RFC 4737 as the maximum distance in packets, from a

late packet until the earliest packet received that has a larger sequence number. It is

therefore similar to the Paxson metric, but additionally measures the number of

positions by which a packet is reordered. Table 13 illustrates the Reordering Extent

calculation for a series of 10 packets. As is shown, if a packet is in order or, if it arrives

early, the Reordering Extent is undefined.

Sent Order 1 2 3 4 5 6 7 8 9 10

Received 1 6 2 3 4 5 7 8 9 10
Order

RFC 4737
Reordering

Un-
defined

Un-
defined

4 3 2 1
Un-

defined
Un-

defined
Un-

defined
Un-

defined

Extent
Table 13 - RFC 4737 Reordering Extent

The `TCP-Relevant' metric defined in RFC 4737, known as the `n-reordering' metric,

187

defines the percentage of packets which are reordered by a distance ?n packets where,

if n=3, a NewReno sender would consider the packet lost for the purposes of

congestion control. N-reordering defines the extent as the maximum distance in

packets, from the reordered packet to the earliest packet that has a larger sequence

number. This metric has been argued to be ambiguous [PiraO8], as packets are

considered in sets. If two or more consecutive packets are late, but maintain position

with respect to each other, then only the first packet is marked as reordered.

A packet is late if one of, or a consecutive set of, its immediate preceding packets have

higher sequence numbers. However, as shown in Table 14, although packets 2,3,4 and

5 are all defined as `Reordered' by the Type-P-Reordered metric, only packet 3 is

defined as n-reordered. Therefore the n-reordering metric is inconsistent with other

metrics in RFC 4737, as it does not correctly identify all late reordered packets.

Sent Order 1 2 3 4 5 6 7 8 9 10

Received 1 6 2 3 4 5 7 8 9 10
Order

RFC 4737 N N Y Y Y Y N N N N
Reordered?

RFC 4737 0 0 4 0 0 0 0 0 0 0
n-reordering

Table 14 - RFC 4737 n-Reordering

It has been argued [PiraO8] that lateness-based packet reordering metrics, as shown in

Table 13 and Table 14, are not appropriate, as early packets should also be identified as

reordered. Consider the arrival sequence in Table 14. If a metric is based on early

arrivals, then packet 6 is identified as reordered. Alternatively, a lateness-based metric

will mark all packets from 2 to 5 to be out of order, even although the most likely cause

of the phenomenon is that the single packet arrived early. The metrics in RFC 4737 are

lateness based metrics, but even these, such as n-reordering, will only capture a subset of

late arriving packets, as sequences of several consecutive late packets will be marked in-

order.

188

5.6.2.1 RFC 5236 - Improved Packet Reordering Metrics

RFC 5236, Improved Packet Reordering Metrics, defines two methods to describe both

late and early reordered packets in a TCP connection; Reorder Density and Reorder

Buffer-Occupancy Density.

5.6.2.2 Reorder Density

Reorder Density (RD) describes the distribution of displacement of packets from their

original positions. As a sequence of packets arrives at a measurement point, a

receive index is assigned to each non-duplicate packet. The receive index is an integer

number assigned to each packet, which is calculated to describe the original order in

which the packets were transmitted. For TCP, this would be calculated using the

Sequence Numbers.

receive index 1 2 3 4 5 6 7 8 9 10

Received 1 6 2 3 4 5 7 8 9 10
Order

Displacement 0 -4 1 1 1 1 0 0 0 0

Table 15 - Reorder Density Example

If the receive index assigned to packet m is (m + dm), with dam, !=0, then a `reorder event'

has occurred and this event is denoted by r(m, d,,). Packet m is late if this offset dm>0,

early if d. <0 and, in order if dm= 0. Therefore, packet reordering in a sequence of

packets is completely represented by the union of reorder events, R, referred to as the

`reorder set': -
R=U{r(m, dm)1 dm #0}

Equation 9- Reorder Density, Reorder Set

Therefore, the Reorder Set for Table 15 is defined by Equation 9 to be

R= {(6, -4), (2,1), (3,1), (4,1), (5,1)}.

189

Reorder Density (RD) is defined as the histogram of the Reorder Set R, normalised with

respect to the total number of packets, adjusted for losses and duplicates. Therefore,

RD for Table 15 can be calculated to be RD [-4] = 1/10, RD [0] = 5/10, RD [1] = 4/10.

5.6.2.3 Assigning receive index Values

One complexity with this technique is the calculation of the receive index values as

packets arrive within a flow. If a flow is short in duration, it is possible to assign

receive index once the flow has completed. However, for real-time monitoring of packet

reordering, receive index values must be assigned to packets as they arrive at the probe.

This is an important consideration when network duplication or retransmissions occur,

as they appear as additional packets in the `Received Order' counter, thus making this

counter out-of-step with the receive indexvalues.

RD uses a threshold, DT to decide when to declare a packet as lost, as in many

applications such as TCP or VoIP, a packet reordered beyond a certain displacement is

considered lost anyway. This same threshold is used to maintain a buffer of early-

arriving packets, to allow identification of network duplicates. If a packet is not received

within DT packets, it is considered to be lost.

Two methods are proposed to assign the DT threshold for monitoring real-time

flows[ayaO8]. The `Go-Back' DT method applies the rules at each packet arrival, and if a

packet that was supposed to arrive DT places ago does not arrive, then the sequence

number is removed from the receive index and RD is recomputed for the previous DT

steps. The `Stay-Back' DT method performs RD calculation by lagging the computation

of arrival packets by DT positions, therefore not requiring any further adjustments, as a

missing packet can be immediately declared as lost.

190

I'
, _.

5.6.2.4 Reorder Buffer-Occupancy Density

Reorder Buffer-Occupancy Density (RBD) is defined in RFC 5236 as the normalised

form of the occupancy of a hypothetical buffer, which could be used by a receiving TCP

to recover from the out-of-order arrival of packets. Packets which appear to arrive

`early', are placed in this buffer until intermediate packets arrive to fill any resulting gaps.

The occupancy of this buffer, measured in packets, is used as a packet reordering

metric.

For the sequence of arrivals illustrated in Table 16, when packet sequence number 6

arrives at position 2, the packet is stored in the hypothetical buffer until packet sequence

number 5 arrives, which then allows the release of packet sequence number 6 to the

application. Therefore, the density of the buffer is calculated as 1, for four packet

arrivals and 0 for all other arrivals: RBD[0]=6/10, RBD[1]=4/10.

Sent Order 1 2 3 4 5 6 7 8 9 10

Received 1 6 2 3 4 5 7 8 9 10
Order

RBD
Buffer 0 1 1 1 1 0 0 0 0 0

Occupan
Table 16 - Reorder Buffer-Occupancy Density Example

RBD requires a similar threshold to RD to define a maximum extent, both late and

early, that a packet can appear before it is assumed to be lost. This is a requirement for

this metric to operate, and to perform calculation in real-time. This threshold Bz.,

describes the maximum number of packets that can be stored in the hypothetical buffer.

If the buffer is already filled to BT, the packet is considered to be delayed more than the

threshold and is considered to be lost. As each packet arrives, the sequence number is

compared with a NESN and the existing contents of the hypothetical buffer. If the

Sequence Number is lower than the NESN, or is identified as a duplicate or

retransmission of a packet in the buffer, it is classified as such, and not considered in the

calculation of RBD.

191

5.6.3 The Arthur Visualisation Technique

Calculation of cEP-cOP during the Arthur Classification Algorithm, provides a useful

method of visualising TCP packet reordering, as demonstrated in Figure 68. The effect

of calculating aEP-8OP is to effectively 'cancel out' the packets that have arrived in

perfect sequence, as these will have cEP-OOP=O. This results in a graph which indicates

only the positions in the Flow Trace where sequence breakdown was apparent and the

magnitude at which these breakdowns have occurred.

6

4

2

Ö 11 2345
R
IL w

-z

-4

-B
Observed Position

4,1111
21 23 24 25 26 27

Figure 68 - Arthur Visualisation of TCP Reordering

Figure 68 plots the Arthur Visualisation for the Flow Trace example discussed in 'f'able

10, over the range of observed OP values. Positions on the graph below the V axis

indicate packets that were considered to have arrived with observed positions 'later' than

their expected positions, as is the case for reordered packets or those that have been

retransmitted. Positions on the graph above the .1 axis indicate packets that were

considered to have arrived with observed positions 'earlier' than their expected

positions.

As discussed in Section 5.6.2, it is important to consider how both early and late packets

192

are reordered; both will have an effect on the receiver's ability to recover from

reordering. The Arthur Visualisation allows this ability. In common with the two

metrics proposed in RFC 5236, it allows identification of both early and late packets, but

additionally allows indication of when the packet reordering occurred during the lifetime

of the connection.

Graphs with many peaks are an indication of poor packet sequencing and hence poor

link quality. Graphs with the majority of points on the 0 line of the i- axis, are an

indication of good packet sequencing and high link quality. The Arthur Visualisation

allows plotting OEP-POP against either OP, or against a measure of time, thereby

allowing consideration of when reordering occurred. This would allow a network

operator to perform later correlation of this Visualisation against other events in the

network, such as link failures or route fluttering.

5.6.3.1 Results and Comparison

Figure 69 and Figure 70 illustrate the RFC 5236 Reorder Density and Reorder Buffer

Density respectively, calculated for the example discussed in 'fable 10.

ýý

____ iLil Figure 69 - Reorder Density Figure 70 - Reorder Buffer Density

Figure 69 indicates that 21 packets were measured with RD1O1,3 packets with R1)ß-1 1,

and 3 packets with RD[l]. Clearly this accounts for only 27 packets out of the 28

illustrated in the same Flow Trace illustrated in Figure 68. The reason being that the

packet at OP 12 in Figure 68 is a retransmission of packet OP 7 (1? P 6), which was

reordered to such an extent so as to cause a retransmission at OP 12. The RL) algorithm

193

discards all retransmissions and duplicates and thus does not consider them when

producing a visualisation of the TCP connection. The RD algorithm identifies RD[-1]

for packets 7,21 and 27, and RD[1] for packets at positions 6,20 and 26. When

comparing these results with Figure 69, it should be noted that the RD algorithm has

discarded packet 12, and therefore RD packet numbering above 12 is one less than that

shown in the Arthur visualisation in Figure 68.

Figure 70 plots the Reorder Buffer Density for the example discussed in Table 10,

'indicating that RBD[0] was measured for 24 packets, and RBD[1] was measured for 3

packets. Similarly with RD, the retransmitted packet 12 has been discarded. RBD[1] was

measured for packets 6,20, and 26. Again consideration must be given to the change in

numbering after the retransmission at 12 and, therefore, 20 and 26 correspond to 21 and

27 in Figure 68.

Comparison of these results suggest that the RBD measure corresponds naturally with

the peaks shown in Figure 68. The peaks in the Arthur Visualisation, identifying early

packets, correspond with the buffered packets identified in the RBD algorithm, but in

addition, three extra `early' packets are identified. The packets at positions 5,13 and 23

are each shown to be arriving early due to oEP-aOP analysis, but the reason for this is

because the preceding packet was measured as arriving late. This causes the öEP

calculation to produce a value which is not a monotonic step, thus producing a result

where ZIEP-OOP 1= 0. This is an additional feature of the Arthur visualisation which

does not occur in the RD algorithm. Despite this packet apparently being in-order, the

additional re-sequencing required at a receiving TCP after a reordering event has

occurred should be captured by any packet reordering metric. All discontinuities, both

early and late, must be considered in order to fully convey the breakdown in sequence

and the possible extra processing required at the receiver, in order to repair this

breakdown. By allowing an immediately succeeding packet to be marked as `early' after a

late packet has arrived, the Arthur algorithm is significantly less computationally

intensive than RD and RBD. Both RD and RBD require the ability to identify and

remove retransmissions or duplicates which, as discussed in Section 5.6.2.2, greatly

increases the complexity when performing measurements in real time.

RD fails to convey the number of retransmissions in a TCP connection visually, which

194

is an important aspect of the health of a connection. RD also relies on the user to

determine the value of D. 1 the value required to differentiate between an upstream

reordered or retransmitted packet. Should the user choose an incorrect value for a

particular TCP connection, the RD algorithm will confuse upstream reordering and

retransmission and will not accurately report either event.

Figure 71 illustrates a further example of OEP-OOP analysis, employed on aI low 't'race

recorded from the midpoint of the experimental testbed described in Chapter 4. The

Flow Trace illustrates transfer of a 10 Megabyte file, over an R'1"1' of 20 msec, with 10°0

reordering applied at 1 msec reordering delay.

20

15

10

II

51I! ' I .I
R

ru
IIýýWýýIýI

IIIý JialiCII IIý 1IIkI
III IU III

5

ý) I}III ý ýýýII

..

I III I'I III Iý

I@`Iýý,

IýII ýI ýý, I ýII

it

-10

------ -15

-20
1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501

Obs. rvsd Position

Figure 71- 20 msec RTr, 10% Reordering, 1 msec Reordering Delay

ßv applying the Arthur Classification Algorithm, a total of 6 packets were classified as

Result 2 (Retransmission due to Reordering), with 3 packets each classified under Result

7 (Retransmission due to Fast Retransmission) and Result 8 (Retransmission due to

R'1'()). Visual inspection of Figure 71 indicates that the ma)orirv of packets appear less

than 3 positions late or early, with significant periods of the flow where perfect

sequencing has been achieved and ?I : P-cOP = 0.

The calculation of PEP-POP also provides an excellent indication of the time periods

during the transmission of the 10 megabyte file, when sequence breakdown occurred,

195

indicating that the reordering appears bursty; there are both periods where sequence

breakdown occurs and other periods where perfect sequencing has been re-established

and maintained.

Comparison of Figure 71 with Figure 72, Figure 73 and Figure 74, allows evaluation of

the Arthur Visualisation, with both RD and RBD calculation for the same "1'CP flow.

Figure 72 and Figure 73 plot RD for various values of 1), in order to demonstrate the

importance of choosing a suitable threshold for determining loss and reordering when

using the RD metric. It is suggested in the literature I 11ira08I that 1) 1=3 should be used

in order to differentiate packets which will cause a New Reno receiver to signal Fast

Retransmit. Figure 73 indicates that there are a significant number of late packets which

are not characterised by Figure 72, due to the low threshold chosen, and which arc then

wrongly classified as retransmissions.

a
ýý

ia',

a)1

oýj

aýý-ýý.

Figure 72 - Reorder Density, Dr=3 Figure 73 - Reorder Density, Dr=10

Figure 74 - Reorder Buffer Density

Figure 74 plots the RBD metric for the data shown in Figure 7 1, where the RIM buffer

limit was set to 10. The graph indicates that the maximum buffer required to store an

early packet was 7 packet positions, which corresponds with Figure 71, where the

196

majority of early and late packets are under 5 packet positions out-of-seyucnce. As

discussed previously, RBD discards retransmitted packets, and therefore, unlike Figure

71, does not provide indication of the number of retransmissions or how late these

retransmissions were with respect to their originally intended positions. It should be

noted that in Figure 74, RBD was calculated to have a Buffer Occupancy of 7 for only 4

packets out of the total of 6911 packets analysed, and therefore RBD171=0.000579. This

highlights another deficiency with the RBD metric, as when plotted in comparison to

RBD[01=0.8256 with 5706 packets, it is very difficult to observe the few outlying highly

reordered packets which could have highly negative effects on a TCP connection.

Figure 75 illustrates a third example of the Arthur Visualisation ('111-001) analysis,

applied to another TCP stream obtained from the testbcd, where Reordering I)cl: nv has

been increased by a factor of 10. Application of the Arthur Classification Algorithm,

indicated that 172 packets were classified as Result 2 Retransmissions, of which 162

were classified as Result 7 Fast Retransmissions.

20

15

10

5

a
0

0
a w

-5

-10

-15

Figure 75 - 20 mscc RTT, 10% Reordering, 10 msec Reordering DeIav

Figure 75 illustrates that the majority of packets in this connection are out of sequence,

with many packets distributed over a large range of PEP-cß01' values. This is reflected in

the range of displacements indicated in the equivalent RD metric, as shown in figure

197

1502001 2501 300' 3501 4001 4501 5001

Obs. rv. d Position

and the equivalent RBD metric, as shown in Figure 78. Figure 76 indicates that the

choice of D=3 is too conservative to describe the range of reordering events which

has been induced in this test stream.

I I

Figure 76 - Reorder Density, Dr=3 Figure 77 - Reorder Density, Dr=10

Figure 78 - Reorder Buffer Density

Figure 75 illustrates a number of properties of the Arthur Visualisation which RI"(' 5236

does not possess. Firstly,, Figure 75 indicates the number of retransmissions which have

occurred as indicated by the peaks appearing below the %- axis as packets which have

arrived very late. Figure 75 indicates that the majority of late packets, including the

majority of retransmissions, arrive within 13 packet positions of their intended original

position.

Figure 75 also illustrates a second important property of the Arthur Visualisation

technique. From discussion in Chapter 4, it is known that packet reordering is a

phenomenon which is path dependent and which can vary rapidly over time. Figure 75

indicates that, even when a fixed amount of reordering is applied, a connection's

performance can degrade, over time as can be seen by the distribution of i 1'. I'-l OP cn er

198

the first third of the graph. During this period, fewer packets are shown to be extremely

late or early, thus providing in an insight into the degenerative nature of packet

reordering on a connection. It should be noted that there are also periods where there is

a relative improvement in the connection's performance, but where fewer

retransmissions occur, and more packets arrive in sequence. At OP 3400, and OP 5600,

there are periods where the graph indicates that the number of retransmissions

decreases and the number of in-order packets increases, indicating that the effects of

packet reordering are not constant throughout a flow. It should be noted that these

changes in measured performance are not an effect of the experiment; a constant 10%

reordering was applied throughout the lifetime of this flow.

On a live Internet, the effects of packet reordering are likely to be even more

changeable over time, due to cross-traffic and route fluttering. In these situations,

although RD and RBD can be calculated in real-time over a rolling window of packets

in a stream, they do not provide the simple identification of changes over time as

illustrated in Figure 75 and are, therefore, lacking in their usefulness as tools to

investigate the cause and effects of packet reordering.

5.7 Conclusions

This Chapter has presented a number of contributions in the field of mid-point passive
TCP measurement.

The taxonomy of packet reordering metrics and methods has been reviewed and the

motivations for the development of passive mid-point measurements have been

discussed. The clear significant benefit of using a passive mid-point measurement, is

that it can be used to measure the behaviour of many thousands of concurrent flows

from a single point in the network. Unfortunately, each of the current proposed mid-

point measurements in the literature make several assumptions which could significantly

affect their operation and the accuracy of results that they produce.

The Love mid-point Goodput measurement has been argued to overestimate the

199

amount of loss and retransmission experienced by a TCP connection, as the algorithm

does not consider the effects of packet reordering. The Jaiswal Out-of-Sequence

Classification algorithm is a significantly more advanced mid-point measurement of

TCP, but has the requirements of symmetrical Data and Ack packets passing through a

single mid-point measurement device, and also the requirement to estimate the RTT and

RTO for every single observed flow. There is clearly a need for accurate, lightweight

single-point measurements of TCP loss, goodput, retransmission and reordering; the

current Love technique is too simplistic, whereas the Jaiswal technique's requirements

result in only a small fraction of connections being analysed.

A passive mid-point monitoring technique has been developed, which is lightweight in

both its storage requirements and processing overhead at the mid-point measurement

probe. The passive mid-point technique has described the capture and storage of Flow

Traces, which can then be analysed to provide an improved measure of Goodput, Loss

and Retransmission.

The Arthur Classification Algorithm has been developed and performs analysis of the

packet Flow Traces captured using the passive mid-point technique, and classifies

packets into eight different results. These results identify Network Duplicate packets,

Retransmitted packets, Lost Packets and Reordered Packets, and attempt to explain the

cause of each event, based entirely on knowledge inferred from the Data path of the

TCP connection. Clearly the ability to perform classification on only the Data path is a

significant contribution beyond the Jaiswal algorithm, as it avoids the need of capturing

and processing Acknowledgement packets at the same network tap. However, working

on such a smaller subset of data limits the number of classifications that can be

performed, as it is impossible to infer certain TCP end host states based only on the

Data packets.

The mid-point measurement technique and classification algorithm have been

implemented in order to perform comparison with Jaiswal during a live Internet traffic

experiment. The difficulties of validating such mid-point algorithms has been discussed;

on a large scale experiment, it is impossible to instrument all end hosts and later

correlate the actual behaviour with the mid-point inferred behaviour. Experiments

200

indicated that although the Arthur Classification Algorithm tended to over-estimate the

number of out-of-sequence packets, this is due to the algorithm reporting packets

immediately after a retransmission as `late' and after a loss as `early'. The number of

Retransmissions measured were found to be similar to Jaiswal, but the ability of the

Jaiswal algorithm to identify retransmission due to Fast Recovery is a feature which the

Arthur algorithm cannot provide. In these instances, the Arthur algorithm will

overestimate the number of retransmissions due to Fast Recovery.

This chapter has argued that there is clearly a trade-off to be made in mid-point

measurements between accuracy and complexity, and that due to the variations in end
host TCP implementation, non standard compliant hosts and many additional TCP

features, building a complex mid-point TCP measurement algorithm that can cater for

these many variables is extremely complex. Therefore, the simplicity of the Arthur

algorithm, the requirement for only Data packets without the necessity for

Acknowledgements, the simple classification rules and the lightweight processing

required at the measurement host, make this an attractive algorithm compared to both

Love and Jaiswal.

Network Visualisation Techniques have been discussed as an important research area

which can describe the overall performance of a network in a more intuitive method

than numerical metrics, and examples of TCP visualisations have been illustrated. The

packet reordering metrics proposed in RFC 5236 have been discussed and compared

with those in RFC 4737; it has been argued that a metric for packet reordering should

describe both late and early packets.

The Arthur Packet Reordering Visualisation Technique has been demonstrated and

compared with both Reorder Density and Reorder Buffer Density. The Arthur

technique improves on the techniques in RFC 5236 by first indicating the number of

retransmissions which have occurred in a connection; retransmissions are the ultimate

indicator of the health of a TCP connection and cannot be ignored. Secondly, the

Arthur technique has illustrated the ability to show packet reordering during the lifetime

of a connection. Through examples it has been shown that despite a constant amount of

reordering applied, the effect on a TCP stream can vary over time. It is therefore very

201

important to be able to correlate a metric of packet reordering with time, in order to

perform investigation of the causes and effects of packet reordering.

Clearly there is a need for future work and development in the area of mid-point passive

packet reordering measurements. As with the development of TCP and the Fast

Retransmit algorithm, network measurement techniques have been developed under the

assumption that TCP packet reordering is a phenomenon which does not often occur.

Although Jaiswal and subsets of his work attempt to address this issue, a passive mid-

point technique must be lightweight and simple in order to be of use to a Network

Operator. This chapter has developed novel patented techniques for the classification

and visualisation of packet reordering, and has progressed the state of the art to address

these issues.

202

Chapter 6

Measuring the Impact of

Packet Reordering

6.1 Introduction

It is clear from Chapter 4 and Chapter 5 that packet reordering on the Internet can have

a measurable effect on the performance of a TCP flow, and that there are many varying

methods proposed in order to measure and describe the amount of reordering occurring

within an end to end path.

Chapter 4 has highlighted one area which has received little attention to date. While

many different methods have been proposed in order to measure and classify the

203

amount of reordering occurring at the packet level as classified in the taxonomy

presented in Chapter 3, very little work in the literature has attempted to correlate across

layers to measure this, and the resulting effects on the end user application. Although it

is argued that many studies are indeed relevant to TCP, such as the RFC 4737 `TCP-

Relevant Metric', the simple notion of regarding a packet greater than three positions

out of sequence as lost, is over-simplistic and requires more detailed investigation.

Chapter 4 has made some advances in understanding the real impact of packet

reordering on a single TCP connection; in this Chapter, a less prevalent, but significantly

more complicated type of network traffic is now considered.

Chapter 4 has also highlighted that the next main driver of packet reordering may be

end-to-end wireless technologies such as WiFi and WiNlax, where parallelism at all

layers is likely to increase. Wireless networks are especially prone to problems due to the

higher levels of link layer retransmissions found in noisy wireless environments.

Wireless links are very different from traditional wired links; the steady-state dropping

and reordering probability are independent from link congestion and, so traditional

assumptions that loss indicates congestion are invalid.

An investigation into the behaviour of video traffic over UDP in situations of high

packet reordering is now considered. Video traffic is significantly more complicated that

a simple TCP session, due to the temporal inter-packet dependencies introduced by the

MPEG video encoding structure.

An experimental investigation into the effects of video packet reordering using the

Windows Media streaming system is presented. A method for invoking packet

reordering is introduced along with a tool for client-side measurements of video quality

is presented. Typical measurements of video performance undergoing reordering are

shown, with a study of buffering occupancy at the client and the potential impact this

could have on video packet reordering is demonstrated.

This chapter discusses a measurement study which was presented at the International

Symposium on Wireless Communications Systems (ISWCS), September 2004, and

development of a testbed which has been published in IEE Electronics Letters, May

204

2002, and European Personal Mobile Communications Conference (EPMCC), April

2003.

6.1.1 Wireless as a Driver for Packet Reordering

In the near future, multimedia traffic is expected to represent a substantial percentage of

the data carried on both mobile and fixed communications systems. Due to the

predictive coding structures employed, video over IP has its own critical timing

characteristics that make it highly susceptible to loss and varying delay. At any point

where inter-packet latency cannot be guaranteed, it will prove exceedingly difficult to

deliver real-time video streaming with guaranteed Quality of Service.

Packet reordering is a symptom not only of fixed networks; the effects of reordering

must also be addressed when considering other types of IP network, for example

wireless. TCP is known to suffer performance degradation in mobile wireless

environments[Xylo99], which typically have high bit error rates (BERs) and mobility

induced disconnections. Moreover, wireless channels are afflicted with significant delay

variations, due to factors such as link-layer retransmissions in radio access networks. In

a wireless environment, a non-optimised TCP or UDP streaming implementation would

mis-interpret a re-transmitted datalink frame as a reordered network layer packet.

Without appropriate cross-layer feedback [Rais02b], TCP may interpret this apparently

reordered packet as lost and would then invoke unnecessary congestion avoidance;

UDP streams could be similarly affected.

Trends towards Mobile Ad-hoc Networks (MANETs) may also prove to be the next

driver of packet reordering. Such networks, with frequent route re-computations and

the absence of a central base station [OlivO2], could cause current TCP and UDP

implementations to misinterpret packet reordering as congestion, resulting in severe

performance degradation. MANETs are also characterised as having high BERs and, as

a result, exhibit frequent packet retransmission behaviours. MANETs also suffer from

long pauses in transmission during the frequent route re-computations and exhibit

regular network re-partitioning, causing packets to be dropped. Furthermore, some

routing algorithms, (e. g. TOR. A [OlivO2]), maintain multiple routes between source-

205

destination pairs and so include actual Layer Three routing parallelism. Mobility

Management protocols such as Mobile-IP, and multi-homed Mobility protocols, such as

NEMO, have been measured [ParkO8] [TsanO8] to cause severe packet reordering

during handovers. Each of these mechanisms, in isolation, can result in extreme loss of

sequence and, therefore, when presented in combination provide motivation to

investigate wireless and packet reordering further.

The literature has focused on the separation of fixed networks from wireless

networks[KoppO2], to seek gains in IP performance by optimising TCP for use in such

error-prone environments. The wireless link is assumed to be the last hop of the

connection, where most of the loss and delay occurs and where reordering would be

most prevalent. It has been shown, though, that packet reordering can affect all parts of

an IP network, and therefore it is important to consider the behaviour of TCP along the

whole connection length. Obviously, the proposed modifications to TCP, do not take

into account the effects of reordering on UDP traffic, which itself may be both time and

sequence sensitive, depending on the type of data being carried.

6.1.2 The Effects of Reordering on Video

Little attention has been performed in the literature to investigate the effects of packet

reordering on other non-TCP traffic. Although TCP is the predominant protocol used

in the Internet today [Medi05], the trends in measurement studies of TCP would suggest

that packet reordering is occurring on many other types of traffic too.

A single study on the effects of packet reordering on the subjective quality of broadband

digital television has been carried out [Spir06]. This study involved several assessment

sessions where human observers were shown the output of broadband digital television,

to examine how users would perceive the audiovisual subjective quality. The study

concluded that current set top box receivers suffer unacceptable quality when more than

0.12% of packets are reordered, on an IPTV network between a video server and a set-

top-box. The study investigated the use of several different types of IPTV set top box,

in order to gauge the performance of each box when a fixed amount of network

reordering was applied using the NIST Net emulator. Test streams in these experiments

206

focussed on very high bit-rates, with video greater than 3 Mbit/sec, and audio at 192

kilobit/sec.

6.1.3 Video over UDP

UDP alone does not provide retransmission or congestion control and, with simple

datagrams, it would be largely unaffected by packet reordering. However, UDP is now

often used to deliver stream-oriented traffic and, with no in-built method of presenting

feedback to the transmitting node, it must be assumed that packets will arrive on time

and in order. Unfortunately when stream-based data, such as encoded video, is

transmitted over UDP, the predictive coding strategies employed in techniques, such as

MPEG-4, place a new set of constraints on traffic sequencing. For example, predictive

coding introduces temporal dependencies into the video data that improve compression

ratios, but can result in greater error propagation in the event of packet loss or late

arrival.

The degree of error introduced by a lost MPEG encoded frame (or one which is so

delayed by reordering as to be assumed to be lost), is governed by the specific temporal

coding dependencies of that affected frame. Codecs such as MPEG-4 make use of I, P

and B frames; each frame having its own characteristics of prediction dependence and

delay constraints. I frames are required for the decoding of subsequent P and B frames.

Therefore all frames must arrive by their `playback time' at the client; additionally some

frames may also have secondary deadlines. For example, an I frame that has been

delayed and missed its individual `playback time', will still be useful when decoding the

subsequent P frames, that are based upon that I frame. Receiving a frame `late' is,

therefore, considerably more useful than not receiving it at all. Hence, the effects of

frame reordering are significantly different from the effects of frame loss.

An improved streaming strategy has been suggested [Wee02] that attempts to reorder

video frames before network transmission. The technique minimises perceptual errors

by exploiting the fact that different late frames result in different degrees of video error.

Work on this and other `Rate-Distortion' optimisation techniques are based on the

principle that each frame is transmitted separately. In modern transmission systems, i. e.

207

those supporting high bit-rate video and many frames-per-second, it is much more likely

that multiple frames will be transmitted in each packet, thereby requiring transmission

scheduling on a per-packet and not a per-frame basis. The Microsoft Advanced Systems

Format (ASF) [N icrO8b] is the most popular video streaming format used on the

Internet today. ASF video packets are of fixed length, and can contain multiple video

frames within each packet. When transmitted over proprietary protocols such as

Microsoft Media Services (MMS), which further package several ASF video packets per

IP MMS packet, it becomes almost impossible to design a scheduling algorithm that can

effectively combat packet reordering.

6.2 Experimental Methodology

The aim of this investigation is to experimentally measure the behaviour of low bit rate

Video over UDP traffic during various degrees of packet reordering in an end-to-end

connection. This will allow for both a better understanding of the mechanisms

employed in video streaming and for better overall QoS prediction.

An experimental set-up was devised to transmit video traffic as UDP IP packets across

an Ethernet network encoded using an ISO-compliant MPEG-4 codec. Clearly, an

Ethernet based system will not exhibit the same behaviour as a wireless network but

instead offers a controlled environment where the effects of reordering can be

measured, and then correlated with the behaviour expected, without the additional

complications associated with wireless networks. A software tool was then developed to

selectively add delay to packets to simulate reordering, and the results obtained from

these experiments are discussed.

6.2.1 Microsoft Windows Media

The Microsoft Windows Media (WM) [MicrO8b] suite of tools is designed for the

authoring and distribution of multimedia content over the Internet; it provides an

excellent controlled testbed for the experimentation of streaming video delivery. The

purpose of this experiment is to inflict varying delays upon video packets streamed over

208

UDP/IP between a client and server, while monitoring the perceptual effects of

reordering on the video display and using an instrumented receiver to correlate

quantitative results on packet arrivals.

6.2.2 Video Traffic Generation

A typical videoconference scenario was simulated via a USB desktop camera. I'sing

Microsoft WM Encoder v7, a simple profile with single unicast video stream was set-up

to encode packets using Microsoft's ISO-compliant MPEG-4 codec at 15 frames per

second. QCIF resolution, using average audience bit rates of 300kbps, was employed.

The encoded video is passed to the Windows 2000 server running WM Services 4.1,

which was configured for MMS streaming over UDP as illustrated in Figure 79

0 ö

C1-- --ý
Real-time Windows 2000 Packet Disrupter

WM WM Streaming Performing Packet
Encoder Server Reordering

Internet r7
i WM Clients

0

Figure 79 - Video Reordering Experimental Testhed

209

6.2.3 Reordering of Video Packets

The Packet Disrupter tool is a C++ application developed for the application of noise

on video packets, transmitted across an IP network. Interfacing through two network

cards, the tool acts as a software router performing Network Address Translation and

allows the addition of noise and errors, as well as changing scheduling, queuing and

dropping behaviours.

Video Packet Disrupter

UDP

TCP:
eordering
Selector

P.

UDP TCP
Dr

Splitter
E

Aggregator

Libpcap Packet. dllj! Libpcap Packet. dlll

Server-side Client-side
receiving NIC transmitting NIC

Figure 80 - Packet Disrupter Architecture

The architecture of the tool, as illustrated in Figure 80, is described as follo s. The

Disrupter was configured as an IP gateway and provided the default route from the

LAN segment containing the Encoder and Streaming Server. Frames containing 11)

packets with a destination IP address of one of the WM1 Clients were copied into the

application using the Libpcap packet capture driver. Packets -,, ere initially filtered

according to their protocol type, with tUDP packets buffered while all others -", -cre

passed immediately up to the application level. In all experiments, video was streamed

210

over UDP and it was therefore assumed that all other packets were control protocols,

required for the start-up and maintenance of the streaming session. The Packet

Disrupter application monitored the number of packets processed, maintained a register

of inter-packet spacing and monitored the overall performance of the tool to ensure that

all packets were serviced in a timely fashion without the risk of dropping. The

application provided a post-processing logging functionality of all packets' arrival and

departure times, which provided a means to measure the degree of reordering that had

taken place.

During experimentation, three metrics are used to characterise the extent of reordering.

The aim is that these should correlate with the effects on video quality perceived by the

end-user. Packet Reordering Delay D, is the additional delay applied to a packet that has

undergone a reordering event. Packet Reordering Distance d,., is the number of packets

(including the very first, apparently one position `early' packet, and also the reordered

multi-position `laxe' packet) that a reordered packet has traversed, after it has undergone

a reordering event. Note that reordering is defined as a function of time and not packet

positions, and therefore dr is entirely dependent upon the instantaneous bit-rate of video

at that time. Packet Reordering Probability P, determines the likelihood of a packet

undergoing a reordering event and being reordered by delay Dr.

Using these metrics, packet reordering can be reduced to a simple dual-queue

scheduling architecture, which is simple to implement within the Packet Disrupter tool.

When leaving the Disrupter, UDP video packets pass through the `Reordering Selector'

which randomly selects packets around a uniform distribution with probability P,; those

selected for reordering pass down a slow queue of length D, seconds, therefore being

reordered a distance dr packets. Queue outputs are aggregated and then transmitted on

the client-side network card.

211

6.2.4 Instrumentation of Receiver

To allow accurate quantitative analysis of video received at the decoder, a client-side

estimator of WM QoS was required; the aim was to compare the measured quantitative

results of packet reordering with the qualitative results displayed after decoding.

An instrumented version of WIN1 Player v7 was developed, as illustrated in Figure 81,

using the WIN1 Software Development Kit[i%licrO8b]. The additional metrics collected

from the player included the current bandwidth, the number of times buffering

occurred during playback, the current video frame rate, the total number of frames

skipped during playback, the number of packets lost and the number of recovered

packets.

"t Arrival Times Received Bit Rate

Number of Packets Total Number of Packets
ved Recovered

Number of Packets Current Video Frame Rate

Number of Skipped Current Buffer Occupancy

Network tatistics-eunenng contro l
-- - --- -- ---

WM IWMPNetwork Interfacý

WM SDK ActiveX COM

Windows Media Player Core-

-- -----------------------
Video Packet Arrivals

Figure 81 - WM Player Instrumentation

In addition, logging was also enabled at the WM Server allowing for measurements of

the amount of time that the client spent rendering the stream, the average bandwidth of

the connection, the number of bytes received by the client, the number of packets that

were not delivered to the client and the number of times the client buffered the stream.

212

6.3 Results and Perceptual Quality

The purpose of these experiments was to measure the effects of packet reordering as

perceived by an end-user. The perceptual performance of digital video systems can be

assessed in either an Objective or Subjective basis. Objective methods attempt to

measure video quality by mathematically comparing a reference video signal, with a

second video signal which has been transmitted over an impaired transmission

network[SpirO6]. Objective methods of assessing video are still in their infancy[Vgeg08],

as they require a reference signal to perform computation of results, and require initial

`training' using a subjective method in order to correlate the mathematical assessment

with a human's perceived performance. It is accepted [Itu02] that it is impossible to fully

characterise a system using entirely Objective means, and therefore Subjective quality

assessment is required to supplement all Objective results. A cross-layer application-

aware metric of video packet reordering is developed in Section 6.3.2. To be able to

correlate this Objective method of video quality measurement, a series of Subjective

experiments are required to be able to gauge the performance of video under a variety

of conditions.

A series of experiments were carried out, based on the recommendations discussed in

ITU BT. 500-11 `Methodology for the subjective assessment of the quality of television

pictures'[ItuO2]. BT. 500-11 describes the `Double-Stimulus Impairment Scale (DSIS)

method', the ITU recommended method of measuring the robustness of a transmission

system to impairments. DSIS was chosen in preference to the `Single Stimulus

Continuous Quality Evaluation' (SSCQE) method, as during each experiment, a fixed

amount of reordering would be applied to the streamed video, which would not vary

over time, and then the overall perception by the human subject during the entire

experiment would be noted. The DSIS method requires a human subject to be shown

an unimpaired reference, and then presented with the impaired video to be measured.

Following this, the subject is asked to vote on the second, based on the reference. The

impaired video to be measured is randomly displayed with various impairments,

interspersed with non-impaired copies of the reference video at frequent points.

The DSIS method recommends grading video on a five-grade measurement scale.

213

Experiments were therefore performed, and each subject was asked to score the quality

of the entire 120 second video clip based on the descriptions in Table 17.

Grading Scale Description

5 Errors Imperceptible

4 Errors Perceptible, but not annoying

3 Slightly annoying

2 Annoying

1 Very annoying

0 Video imperceptible

Table 17 - Subjective Grading Descriptions

A 120 second `head-and-shoulders' typical videoconferencing scenario was recorded

using Windows Media Encoder. The same video recording was used in every

experiment for consistency of results, and was placed on the Windows Media server for

download during each assessment session.

Five human observers volunteered to take part in the series of experiments. The

observers were not experts in technology or multimedia, and varied in age from 19 to

79. The assessment sessions were held in a room conforming to the `Home Viewing

Environment Specifications' and test procedure documented in ITU BT. 500-11 [ItuO2].

Before each assessment began, each observer was given introductory training about the

purpose of the assessment, and the types of video impairments that they may expect to

observe, such as video blockiness or colour artefacts, excessive pauses or freezing of the

screen, and complete `blacking-out' of the screen. The observers were trained in the 0 to

5 scoring system, and understood that the score chosen at the end of each 120 second

recording, was to describe the user's experience throughout the duration of the entire

recording. Before commencing the assessment, a recording was shown with no

reordering induced, a recording with 10% 1 second reordering was shown, and finally a

recording shown with 25% 2 second reordering, thus illustrating to each observer, the

range of qualities that they could expect to observe throughout the experiments.

The assessments lasted approximately 2.5 hours, during which, 60 experiments were

214

shown to each of the five human observers. The 60 experiments introduced reordering

at rates P,. = [1°! o, 10%, 25%], with Dr varied between 0 and 2 seconds in 0.1 second

steps. These were conducted in a random order for each observer. I? arlier

experimentation had shown that for a default WM buffer of 5 seconds, the range over

which reordering could be applied was between 0 and 2 seconds. The Reordering

Probabilities of 1"o, 10°io and 25°'o were chosen as they emulate a wide range of results,

thus providing evaluation of video under a variety of conditions. Figure 82 illustrates the

average score of the 5 observers obtained from each experiment, to attempt to describe

the visual disturbance caused by packet reordering.

-4- Pr=1% --Pr=10% -rPr =25%

5

j4
ö

ö

C 0

02

21

0

Reordering Delay Dr (seconds)

Figure 1. Figure 82 - Average Mean Opinion Scores

Initial results indicated that MMMMS was surprisingly tolerant to varying delays, contrasting

with previous measurements of TCP undergoing similar reordering events. This was

due, in part, to the large pre-roll buffer that was generated at the client player before

streaming commenced which, by default, was set to 5 seconds of real-time audio/video.

During periods when the server maintained its constant encoding bit-rate and did not

attempt to `thin' the stream, visual output remained stable throughout the duration of a

clip. Perceived quality would not alter significantly, with little loss of sharpness, even

during scenes of high motion, and no artefacts appearing as a result of corrupted visual

data. This quality was maintained in all experiments up to a threshold level, where

`frame freezing' would occur due to an underrun at the client input buffer and playback

215

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

would pause on the last correctly displayed frame. Playback would not resume until the

WM client had successfully re-filled the entire contents of the buffer.

6.3.1 Packet Arrival Bit Rates

The instantaneous bit delivery rates were measured over 120-second clips at the

300kbps target encoding rate and varying reordering degrees applied. It should be noted

that this metric is the instantaneous bit-rate as reported by the WM API, and therefore

is an application-layer measurement as reported by the player itself. This cross-layer

metric allows characterisation of the effects of packet reordering as observed by an

application, rather than by any other traditional measurement in the networking stack.

Figure 83, Figure 84 and Figure 85 illustrate typical measurements that show the

behaviour in each scenario. Figure 83 demonstrates reordering applied at Pr. = l""', for

varying reordering delays, which can be seen to have negligible effects on the bit rate for

D,. < 0.5 secs. At time 100 sec for Dr = 0.5 secs, a reordering event can be seen to

affect the throughput although, in this instance, it did not cause a buffer underrun. For

Dr =1 sec, the bit rate is quickly driven down, even with low reordering probability and

it fails to recover for the entire duration of the clip.

0.05 seconds " 0.1 seconds -- 0.5 seconds -1 second

700

600

500

400

CD m

Co 300

pJ

200

C

100

0
0 15 30 45 60 75 90

Time (seconds)

Figure 83 - Reordering Probability PR = 1%, for varying D,

105 120

216

Figure 84 illustrates the behaviour of WM video under degrees of heavy reordering. For

example, at time 15 sec where D, =1 sec the bit rate can be seen to decay rapidly; this

was due to a severe reordering event, which then resulted in buffer underrun and, as a

consequence, freeze frame was observed at the player. At time 24 sec, the player initiates

re-filling of the buffer; this request is achieved by the server sending a burst of high bit

rate UDP video packets - peaking at 700kbps - considerably higher than the standard

300kbps stream. Upon filling the 5 second buffer, playing was resumed at time 30 sec,

and continued successfully until another significant reordering event at 95 sec. Figure 85

demonstrates this behaviour further and illustrates multiple significant reordering

events. Each event had a severe impact on buffer underruns, followed by a period of

recovery where the delivery of high bit rate traffic occurs in an attempt to re-fill the

buffer as quickly as possible.

700

0.05 seconds --0.1 seconds 0.5 seconds -1 second

600

500

d 400

Co 300

200
c
N

100

0
0 15 30 45 60 75 90 105 120

Time (seconds)

Figure 84 - Reordering Probability PR = 10%, for varying D,

Figure 83, Figure 84 and Figure 85 illustrate a number of key points regarding W, NI

video streaming, but are relevant to all types of video transmission. The figures illustrate

that WM's congestion control can breakdown during packet reordering. For example,

once packet reordering has caused a buffer underrun, the WM Player responds by

requesting re-transmissions through N-ACK packets that instruct the WM server to

launch a large amount of traffic into the network in an attempt to fill the 5 second

217

player buffer as quickly as possible. This resultant high bit-rate and large number of

packets, also undergo significant reordering which is often exacerbated due to its greater

share of the bandwidth consumed when compared to other applications on the

network. The subsequent storm of traffic also increases the burstincss of the stream and

is grossly unfair to competing packet flows. Furthermore, this traffic storm on a heavily

loaded network may also increase the reordering probability. Such a congestion control

mechanism could prove costly in a wireless environment, where both high transmission

tariffs and power consumptions must be taken into account.

700

600

y 500
CL a

400

300
N

200

fC
100

0

-#- 0.05 seconds + 0.1 seconds - 0.5 seconds -1 second

0 15 30 45 60 75 90 105 120

Time (seconds)

Figure 85 - Reordering Probability PR = 25%, for varying D,

6.3.2 Buffer Occupancy

Buffer underrun has been previously measured as the most important factor when

determining the performance of WM across an end-to-end network jIDala031. Buffering

is important as it allows an inherently bursty medium, such as video, to be transmitted

over a communications channel at a constant rate. With large enough buffers, it would

be possible to re-sequence any packet (providing it has arrived before the playback

time), but large buffers take a significant amount of time to initially fill, which is

perceived badly by the user. Moreover, large buffers could be costly to implement on

low powered portable devices. Therefore, it is important to decide on an appropriate

218

buffer size that will act effectively to smooth traffic in the event of loss or reordering,

but will also initially fill quickly to provide an effective user experience.

The client was further adapted to measure the occupancy rate of the player's buffer.

This allowed for monitoring of any period where packet arrival was disrupted to the

extent that a freeze frame resulted, so that the time taken to re-fill the buffer to 100%

and resume normal playback could be measured.

A total of 40 experiments were completed for each percentage of 1%, 10% and 25%

reordering. As illustrated in Figure 82, at D, = 0.5 secs, there can be a significant

breakdown in the subjective performance of video quality. Therefore, the examples

shown in Figure 86 - Figure 89, show results obtained at D, = 0.5 secs. The experiments

used the same 120 second video recording as described in Section 6.3. At each point

when a buffer underrun event occurred, the instrumented WM client would log that the

underrun had occurred, and the duration of each underrun event, which would correlate

with the amount of time that the WM client would `freeze-frame'. These two metrics of

`Number of Buffer Underruns' and `Duration of Buffer Underruns' are illustrated in

Figure 86 - Figure 89. To allow correlation of the duration of a Buffer Underrun event

with the effect perceived by a human observer, the duration of underrun events are

illustrated in multiples of 5 seconds, which can be correlated with multiples of the initial

default pre-roll buffer at the WM client.

Figure 86 illustrates the probability density function of buffer underruns that a user

could expect to experience during a clip of 120 seconds duration. Figure 87 plots the

durations of these buffer underrun events and of the durations of the resulting freeze

frames. As can be seen, for P, = 1%, all streams will encounter at least one recorded

underrun event during the initial pre-roll buffering before streaming commences. After

this for P, = 1%, it is over 70% likely that no further buffer underruns will occur at all.

Conversely, at 25% reordering, at least 2 underruns will occur during the same 120 sec

period.

219

As can be seen in Figure 87, the majority of underrun events last approximately 5

seconds - equivalent to the default buffer size in WM Player. Buffer underruns lasting

longer than 5 seconds indicate severe congestion.

Using the SDK, it was possible to alter the amount of buffering time apportioned by the

WM client. Figure 88 and Figure 89 show the results of doubling the buffer to 10

seconds and the resulting effects. As can be seen, the buffer underrun is shifted towards

the middle. Hence the number of smaller pauses has been reduced, but more

importantly, the probability of excessively long pauses is also reduced and the behaviour

of the client is more predictable. The improvement is, in part, due to the extra time

available for packet re-sequencing.

 1% Reordering 10% Reordering Q 25% Reordering

1

0.9

0.8

0.7

CD, 0.6
N

0.5

0.4

0.3

0.2

0.1

0
23456

Number of Buffer Underruns

Figure 86 - pdf Under-Run Number

789 10

220

 1% Reordering

0.9 -

0.8

0.7

0.6

0.5

0.4 -

0.3

0.2

0.1

0

 10% Reordering Q 25% Reordering

-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-1

Buffer Underrun Duration (seconds)

Figure 87 - pdf Under-Run Time

 1% Reordering

1
0.9
0.8

0.7
N
O

0.6
N

2 0.5

v 0.4

0.3

0.2

0.1

0

 10% Reordering 1125% Reordering

f- n
if T

123456789 1(

Number of Buffer Underruns

Figure 88 - pdf Under-Run Number

221

 1% Reordering 10% Reordering Q 25% Reordering

1-

0.9
0.8

0.7

0.6

0.5

0.4

0.3

0.2 1

0.1

0-
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60

Buffer Underrun Duration (seconds)

Figure 89 - pdf Under-Run Time

6.4 Conclusions

This Chapter has made a number of contributions in the field of packet reordering and

its effects on other, non-TCP, traffic.

Reordering has been presented in the context of wireless networks, which are

characterised as having varying delays that could cause loss of packet sequencing. The

peculiar feature of wireless networks, in that the traditional assumption that packet loss

is an indicator of congestion, has been argued to be invalid. Examples of the types of

parallelism which could occur at various layers in a wireless network have been

discussed, and wireless has been argued to be the next real driver of packet reordering,

as end-to-end technologies such as Wil'i and WiMax become prevalent in the

marketplace. It has been argued that little consideration has been given, thus far, to

other time-critical types of network traffic, such as Video over UDP. Indeed, the effects

of packet reordering are even more difficult to predict on such traffic, due to the

temporal inter-packet dependencies introduced by the MPEG video encoding structure.

An experimental testbed has been presented, that offers a controlled environment

222

where the effects of reordering can be measured and then correlated with the behaviour

expected in a wireless environment. The design of a tool for invoking packet reordering

has been described and metrics for packet reordering have been discussed that reduce

reordering to a simple dual-queue scheduling architecture.

A client-side estimator of video QoS was developed, by instrumentation of the

Windows Media Player, to allow quantitative analysis of video quality. WM was seen to

perform well under low degrees of reordering, but significant reordering resulted in

buffer underrun, causing the client to freeze frame.

WM bit-rates were extremely bursty during reordering, due to a congestion control

mechanism which attempted to re-fill the client buffer as quickly as possible, launching a

packet storm that was grossly unfair to competing packet flows. Buffer occupancy

measurements were made to describe the number of underruns that a user would expect

to experience during reordering, thereby providing a more advanced metric of packet

reordering, specific to this particular traffic. Adjustment of the buffer size was found to

enhance the client's ability to perform under significant reordering, by controlling the

number of excessively long pauses a user will experience.

It is clear that the diversity of traffic types prevalent in the Internet today, will require a

range of advanced metrics and measurement methodologies, in order to correlate

measurements made at various layers in the OSI, with the behaviours experienced by

the end user. This thesis has illustrated that, although several attempts have been made

to measure TCP during reordering, a metric is only truly useful if it is designed for a

specific application and specific scenario. The method described in this Chapter, where

the WM SDK was modified in order to expose Buffer Occupancy as a metric of

reordering, is an example of the type of metric required to truly measure the effects of

packet reordering. Clearly as packet reordering becomes more prevalent, and drivers

such as wireless begin to make an impact, there will be clear motivation for network

operators and application developers to build such measurement tools.

223

Chapter 7

Conclusions and

Future Work

7.1 Introduction

This thesis has argued that Packet Reordering in IP networks is an increasingly common

phenomenon, which will require a range of sophisticated measurement methodologies

and metrics in order to characterise the performance impact on various network traffic

types in the future Internet. Packet Reordering has been argued to be the result of

increasing parallelism within networks. The trend towards future end-to-end wireless

links, has further been identified as a key driver of the reordering observable in a path.

224

This thesis has addressed the issue of measuring the impact of packet reordering on

Internet traffic, by proposing a number of measurement methodologies and metrics.

The effects of packet reordering as proposed by Bennett have been discussed. A two-

point passive measurement technique has then been developed, which improves on

previous methods by allowing the lightweight classification of the cause of each

reordering-induced packet retransmission. This technique has been applied to a large-

scale testbed measurement study of packet reordering, which has indicated that TCP is

tolerant to large percentages of reordered packets, providing that the delay of these

packets is maintained below a specific threshold relative to Round-Trip-Time. Packet

reordering metrics, which report percentage reordered packets, have been shown to be

poorly correlated to the measured effects of reordering on TCP. Traditional

assumptions that TCP packet reordering is an intuitively negative phenomenon have

been questioned. Empirical measurements have shown that, in specific scenarios, packet

reordering can actually increase the overall throughput of a flow.

A classification taxonomy of active and passive packet reordering measurement

techniques has been presented. This has identified the key limitations of each technique,

and the range of disparate measurements on the amount of reordering occurring in the

Internet today. A mid-point passive Measurement Technique and Visualisation Metric

of TCP packet reordering has been proposed, designed to classify out-of-sequence

packets for many thousands of concurrent TCP flows. The proposed technique is

lightweight to implement and does not require symmetric TCP connections to operate,

thereby allowing an improved measure of TCP Goodput and simpler classification of

the cause of each out-of-sequence packet. The proposed Visualisation Metric has been

shown to offer an improved method of characterising packet reordering, by being

simple to compute, and by indicating the packet reordering performance throughout the

lifetime of a TCP flow.

Finally, this thesis has argued that future packet reordering metrics must correlate

reordering observed at the network layer with the resulting impacts observed at the

application layer. An example of an application-specific metric is developed for MPEG4

video over UDP traffic, and this metric is used to describe the effects of packet

reordering on streamed video traffic. It has been argued, by this thesis, that this is the

225

type of measurement technique which will be required in the future, in order to describe

the complex cross-layer effects of packet reordering on future complex traffic types.

This chapter provides a summary of the work documented in this thesis, thereby

highlighting the contributions to knowledge which have been achieved. Motivated by

the themes of the work performed, a number of areas of future work are then presented

and discussed, and the motivations for performing these works are documented.

Finally, concluding remarks are presented, thereby completing this chapter and this

thesis.

7.2 Thesis Summary

This thesis has proposed that the Internet is `out-of-order'. That is, there has been an

inherent assumption in the literature that, in general, packet sequencing is maintained

across an end-to-end IP network. The motivation for investigation of packet reordering

in the Internet has been presented, and the pioneering work of Bennett [Benn99] has

been discussed. Bennett argued that packet reordering is not a pathological problem; it

is a naturally occurring phenomenon; it is on the increase, and it is a result of an

increased presence in the degree of parallelism apparent in the Internet. Although it has

been known that there is Internet parallelism due to multi-path routing and broken

network equipment, it was argued by Bennett that switch and link-level parallelism are

the real drivers of reordering and are on the increase. This includes link-level striping

and switches that allow packets travelling between the same source-destination pair to

take different paths through the switch hardware. Parallelism of network paths is on the

increase, due to simple economics and an increase in redundancy. Chapter 1 has

highlighted the importance of Bennett's work and its contribution to the field of

network science, since packet reordering can have a significant impact
on both network

and application performance. For example, out-of-order arrival of packets can cause

apparent loss of data in real time flows, such as voice-over-packet and video streams.

Any protocol that is reliant on the ordered arrival of packets can be affected by this

phenomenon, e. g. RTP flows based on UDP. Reordering is also detrimental to TCP,

226

causing it to use available capacity less effectively, and to lose the TCP self-clocking

property, thus resulting in irregular data transmission. Bennett hypothesised that, due to

the asymmetric nature of the internet, connections will frequently experience reordering

in one direction only, and therefore there are three types of packet reordering that must

be considered; forward-path reordering or data reordering, reverse-path reordering or

Ack reordering, and a combination of both forward and reverse path. Each type of

reordering was argued to have different overall effects on a TCP connection.

IPv4 and TCP have allowed a multitude of heterogeneously interconnected systems, all

with diverse characteristics, vendors and operating systems, to communicate seamlessly

with each other over various communications channels. These protocols have

developed over time with various loss recovery and congestion control enhancements

added and have been slowly adopted by Internet users. The Fast Retransmit algorithm is

an important mandatory algorithm which Chapter 2 has highlighted and has been

developed on the assumption that packet reordering does not often occur. Therefore

any packet delayed by more than three positions, can be assumed to be lost.

There is clearly a need to measure the amount of packet reordering occurring in the

Internet, as the traditional measurement techniques and metrics used in network

performance analysis and presented in Chapter 2, are not capable of describing the

complex effects of packet reordering. Recent measurement work in the field of Internet

packet sequencing is, to some extent, contradictory, as there is a significant variation in

the reported numerical measurements. These conflicting findings may be due to

different network topologies, switch architectures, underlying link protocols, or the

measurement techniques used. However the various studies are sufficiently different in

nature that drawing conclusions without further work is difficult, thereby providing an

ideal stimulus for further research into measuring and understanding these phenomena.

A wide range of both active and passive measurement techniques has been developed in

the literature; some to provide a metric for the amount of reordering that a packet will

undergo; others specifically to describe the performance of reordering on TCP. These

studies are so diverse in their techniques and assumptions, that it is very difficult to

compare results across the literature. The lack of a standard experimental measurement

227

methodology, and the lack of a standard reordering metric, has been argued to be a

significantly limiting factor in understanding the effect, impact and prevalence of packet

reordering in today's Internet. A classification taxonomy of metrics and measurement

methodologies of packet reordering has been presented in Chapter 3. This taxonomy

has classified active measurement Layer 4 techniques as using either Control-Plane

packets or Data-Plane packets in order to highlight the potential Middlebox interactions

which Control-Plane packets may endure. Middleboxes are difficult to detect and will

either prevent active measurements from taking place, or may interfere in the metrics

generated from these measurements. The Paxson and Tsinghua active measurements are

highlighted in the taxonomy as the methodologies which may generate the most

representative results of real network traffic. Unfortunately, their results do not correlate

well, differing in the percentage of reordered connections by over 30%. The taxonomy

has classified passive measurements by their observation point, and their method of

generating RTT estimates. The passive techniques in the literature suffer from

difficulties in generating an accurate mid-point estimate of RTT, and from the

unrealistic expectation that both forward and reverse paths will flow symmetrically. The

Jaiswal and Tstat techniques have been argued to provide the most representative

results, but measurements of the total amount of packets undergoing reordering in the

Internet vary by over 20% in their estimation.

Limited consideration has been given to measuring and understanding the true drivers

of packet reordering, and to correlating these measurements with the effect that they

will actually have on a user's application. It is only through this correlation of

measurements, that it will be possible to ascertain if packet reordering will affect the

user's perceived Quality of Service, and then allow for the design of appropriate metrics

and mitigations. Indeed, the literature is sparse when discussing the actual effects of

packet reordering on TCP performance, and such assumptions as the behaviour of TCP

during reverse-path reordering, have been hypothesised but have not been investigated

and measured. A two-point passive measurement technique has been developed in

Chapter 4, which has allowed more accurate measurement than previous studies of

packet reordering, by exploiting the use of the IPID field as a method to determine the

sending sequence of a TCP connection. Simple metrics have been developed that

exploit this IPID field, thereby allowing determination of whether a packet has been

228

reordered, and of the extent by which that packet has moved. The two-point

measurement technique has allowed determination of the cause of retransmissions,

which are the by-product of packet reordering effects on TCP. By correlating the packet

traces obtained at two points, it has been possible to investigate and classify each

retransmission, thus providing a more complete analysis of the effects of packet

reordering, compared with previous measurement studies. A significant study of over

30,000 FTP sessions during a six month period, of forward, reverse and combined path

reordering has been performed. The study of forward path packet reordering has

indicated that the effects of packet reordering are negligible with respect to the

percentage of reordered packets. But, for every RTT, it has been found that there is a

forward-path maximum reordering delay threshold which can be applied to packets,

regardless of percentage reordering, and below which reordering has negligible effects.

Determination of the value of this threshold, on a specific path, is key to ensuring that a

specific switch or router does not introduce reordering to such an extent that it causes

unnecessary retransmissions and an associated reduction in throughput. The study of

reverse-path packet reordering has demonstrated results, contrary to previous

assumptions in the literature, that reverse path reordering has little additional negative

effect on the throughput of a connection. Indeed, it has been measured that, in specific

circumstances, as a function of the RTT, of the amount of data to be transmitted, and

of the reordering delay, reverse path reordering can actually increase throughput of a

connection. This phenomenon was explained by the loss of self-clocking during

Acknowledgement resequencing, thus allowing the sending TCP cvnd to grow faster

than normal. A measurement study of combined path reordering has also been

performed, and this has illustrated that the effects of forward-path reordering dominate

the behaviour of the connection.

The use of percentage-reordered packets as a metric, has been shown to be difficult to

correlate with the actual performance of a TCP connection. This suggests that many of

the metrics proposed in the literature, such as RFC 4737, are difficult to apply in a way

that meaningfully describes the user's Quality of Experience. More sophisticated

techniques are therefore required, and the classification taxonomy has highlighted the

benefits of using passive techniques which can characterise many thousands of

concurrent flows. Performing passive TCP monitoring at a mid-point, though, is not

229

without its challenges. A packet can easily be identified as being out-of-sequence when it

is observed as having a sequence number smaller than or equal to that of a previously

observed packet at that measurement point. Explanation of the cause of the packet

appearing out-of-sequence is challenging as many variables, such as the state machines

at the sending and receiving hosts, can only be inferred from the packets observed at the

mid-point, and therefore a set of heuristics are required in order to examine the packet

events observed. A passive mid-point monitoring technique has been developed in

Chapter 5. This is lightweight in both its storage requirements and its processing

overhead at the mid-point measurement probe. The passive mid-point technique has

described the capture and storage of Flow Traces, which can then be analysed to

provide an improved measure of Goodput, Loss and Retransmission. A lightweight,

mid-point methodology and classification algorithm is developed, and this was applied

to live Internet traffic in order to gauge performance when compared with Jaiswal. This

mid-point technique improves on previous techniques in the literature, as it does not

require calculation of RTT of every concurrent flow observed, nor does it assume

visibility of symmetric connections. Finally, a technique for the visualisation of a TCP

flow's performance is presented. This technique is superior to others, in that it allows

simple evaluation of the degree of resequencing occurring within a TCP connection

over time, thereby improving on the metrics presented in RFC 5237.

The literature has indicated that packet reordering and parallelism in fixed networks is

on the increase, due to large businesses, ISPs and their vendors aggressively promoting

parallel links. This thesis has argued that wireless and mobility will be the next drivers of

packet reordering in the future Internet. End-to-end wireless technologies such as WiFi

and WiMax, and the use of protocols such as Mobile IP and IP multi-homing, will result

in an increase in parallelism at all layers. Wireless links are very different from traditional

wired links; the steady-state dropping and reordering probability are independent from

link congestion, and so traditional assumptions that loss indicates congestion, are

invalid.

It is clear that the predominant focus in measurement research to date, has been to

attempt to characterise the performance of packet reordering on TCP. The effects of

packet reordering are still in their infancy and, therefore, the literature has concentrated

230

on describing the most predominant type of traffic in the Internet today. This thesis has

proposed that a range of sophisticated measurement techniques will be required in order

to characterise the diverse network traffic types occurring in today's Internet, each of

which must be relevant to the particular application that they are trying to describe. This

thesis has argued that work in the literature has not attempted to correlate

measurements across layers, to measure reordering at the packet layer, and the resulting

effects on the end user application.

The effects of packet reordering are extremely difficult to predict on new complex

traffic, such as video over UDP, due to the temporal inter-packet dependencies

introduced by the MPEG video encoding structure. An experimental investigation into

the effects of video packet reordering using the Windows Media streaming system was

presented. A client-side estimator of video QoS was developed, by instrumentation of

the Windows Media Player, to allow quantitative analysis of video quality. WM was seen

to perform well under low degrees of reordering. Significant reordering resulted in

buffer underrun, and in extremely bursty traffic patterns, due to a poorly designed

congestion control mechanism. Buffer occupancy measurements were made to describe

the number of underruns that a user would expect to experience during reordering,

thereby providing a more advanced metric of packet reordering, specific to this

particular traffic.

It is clear that the diversity of traffic types prevalent in the Internet today, will require a

range of advanced metrics and measurement methodologies, in order to correlate

measurements made at various layers in the OSI with the behaviours experienced by the

end user. This thesis has illustrated that, although several attempts have been made to

measure TCP during reordering, a metric is only truly useful if it is designed for a

specific application and specific scenario. The method developed used Buffer

Occupancy as a metric of reordering, and is an example of the type of metric required to

accurately measure the effects of packet reordering. Clearly, as packet reordering

becomes more prevalent, and drivers such as wireless begin to make an impact, there

will be further motivation for network operators and application developers to develop

similar sophisticated measurement tools.

231

7.3 Main Contributions

The primary contributions of this thesis relate to

o The various measurement techniques and metrics which have been

developed to characterise packet reordering.

o The measurement results that have been obtained using these proposed

techniques.

o The comparisons indicating improvements over previous measurement

techniques.

An additional contribution is the taxonomy of packet reordering measurements and a

review of previous measurement studies performed in the literature.

7.3.1 A Two-Point Passive Measurement Technique

A two-point passive measurement technique has been described in Chapter 4 and

prototyped in software. This has allowed more accurate measurement than previous

studies of packet reordering, by exploiting the use of the IPID field as a method to

determine the sending sequence of a TCP connection. Simple metrics have been

developed that exploit this IPID field, thereby allowing determination of whether a

packet has been reordered, and the extent by which that packet has moved. Under the

high degrees of reordering measured on the testbed, this method has provided a

lightweight and simple method for determining the Absolute Reordering of a packet,

and avoids the calculation of future Sequence Numbers based on current payload

lengths. The two-point measurement technique has allowed determination of the cause

of retransmissions, which are the by-product of packet reordering effects on TCP. By

correlating the packet traces obtained at two points, it has been possible to investigate

and classify each retransmission, thus providing a more complete analysis of the effects

of packet reordering, compared with previous measurement studies.

232

Although this method may not be applicable in the wider Internet, where fragmentation

may occur, it does allow a method for highly accurate measurement of reordering in a

controlled environment, and could have future applications in the testing of specific

reorder-inducing routers or paths.

7.3.2 Development of Testbeds

A number of network testbeds were designed, and implemented to allow for the

measurement of packet reordering in a controlled environment, and to allow the

development and testing of software prototypes of the measurement methodologies and

metrics proposed.

In Chapter 4, a method for emulating TCP packet reordering was demonstrated through

the development of software for a configurable router, the development of software

probes, and the development of a distributed automated measurement architecture, to

perform a large-scale measurement of TCP reordering. This testbed allowed the testing

of the developed software probes and metrics, the actual measurement study to be

performed, and the validation and development of the algorithms presented in Chapter

5. In Chapter 6, a second testbed was built and configured, and this has allowed

measurement of the performance of video traffic during packet reordering. A video

disruptor tool was developed to allow testing of video transmission with varying

reordering and dropping probabilities, thereby allowing development and testing of the

client-side estimator of video QoS.

7.3.3 Large scale measurement studies of packet
reordering

A number of measurement studies were performed during this thesis to evaluate the

impact of packet reordering on TCP, and to develop and validate improved metrics of

TCP packet reordering. In Chapter 4, the passive two-point methodology was used to

measure the effects of Forward Path, Reverse Path and Combined Forward and Reverse

Path reordering. It has performed one of the largest studies of TCP packet reordering to

233

date, emulating over 30,000 FTP sessions over a six month period. It has demonstrated

the need to develop an autonomous measurement system to perform such a large study,

and the methods to perform data management and processing of such large amounts of

packet captures. It has improved on the only other measurement study of TCP

reordering [Laor021, where the authors used an Agilent QA Robot to randomly delay

packets by three positions, but this does not allow investigation of the Reordering

Delay, nor investigation of the Reordering Delay with respect to RTT.

The results obtained have questioned the assumptions that packet reordering is an

intuitively negative phenomenon. The study of forward-path packet reordering has

indicated that, for every RI T, it has been found that there is a forward-path maximum

reordering delay threshold which can be applied to packets, regardless of percentage

reordering, below which reordering has negligible effects The study of reverse-path

reordering has revealed little negative effect on the throughput of a connection. Indeed,

it has been measured that, in specific circumstances, as a function of the RTr, and

amount of data to be transmitted, and reordering delay, reverse path reordering can

actually be beneficial for a connection. The first measurement study of combined path

reordering has also been performed, and this has illustrated that the effects of forward

path reordering dominate the behaviour of the connection.

The use of percentage reordered packets as a metric has been shown in Chapter 4 to be

difficult to correlate with the actual performance of a TCP connection, thus stimulating

the development of the algorithms developed in Chapter 5. The Arthur mid-point

Classification Algorithm developed in Chapter 5 has been prototyped and applied in a

live network environment, thus allowing comparison with the Jaiswal mid-point

technique, and with a measurement study of the out-of-order packets in a live network.

234

7.3.4 A Passive Mid-Point Classification Algorithm of
TCP Reordering

A passive mid-point monitoring technique has been developed in Chapter 5, which has

clear improvements over previous techniques presented in the literature. The Arthur

passive mid-point technique has described the capture and storage of Flow Traces,

which can then be analysed to provide an improved measure of Goodput, Loss and

Retransmission. The classification algorithm developed is lightweight and improves on

the passive mid-point measurement techniques presented in Chapter 3, because it does

not require calculation of RTT for every concurrent flow observed, not does it assume

visibility of symmetric connections.

7.3.5 An Improved Visualisation Technique and Metric
of TCP Packet Reordering

The passive mid-point monitoring technique has been extended in Chapter 5 to provide

an improved technique for the visualisation of a TCP flow's performance. This

technique has been demonstrated to be superior to those proposed in RFC 5237, as it

allows simple evaluation of the degree of resequencing occurring within a TCP

connection over time. The Arthur technique has been developed as a software

prototype, and its lightweight real-time abilities have been demonstrated. It builds on

the benefits discussed in Section 7.3.4, and its usefulness and relevance as a diagnostic

tool for network managers and researchers has been discussed.

7.3.6 A client-side estimator of video QoS

An application-specific metric of packet reordering was developed as an example of the

types of cross-layer techniques that will be required in future communications networks.

In Chapter 6, a client-side estimator of video QoS was prototyped by instrumentation of

the Windows Media Player, to allow quantitative analysis of video quality playback

during packet reordering. A simple metric of packet reordering was defined and

235

measured by using the WM SDK to expose Buffer Occupancy within the player, and

this application-relevant technique was contrasted with packet level reordering

measurements. These measurements have been correlated, thus substantiating the

argument that future metrics of packet reordering should correlate measurements made

at various layers in the OSI, to explain behaviours experienced by the user.

7.3.7 Packet Reordering Measurement Taxonomy

A review and taxonomy of packet reordering measurement techniques and metrics has

been performed, classifying these techniques as Active and Passive, and identifying the

motivation for each, and assumptions made in each. Active techniques were further

classified by Control-Plane and Data-Plane packets, while passive techniques were

classified by their Observation Position, and their method of estimating RTT. This

taxonomy has allowed a survey of the range of packet reordering techniques in the

literature, the advantages and limitations of each one, and has highlighted the true

novelty and value of the work presented in this thesis.

236

7.4 Future Directions

A number of areas of future work can be identified during this thesis; some motivated

as a direct continuation of the work performed thus far, others based along themes and

trends which have been identified.

7.4.1 Packet Reordering as a tool for SLA Compliance

The testbed designed and implemented in Chapter 4 has demonstrated the ability to

perform large numbers of experiments, in an automated fashion, over long periods of

time. There is therefore the possibility of performing many more experiments. These

experiments could emulate reordering over very long satellite-like RTTs, investigate

various congestion control algorithms, or investigate the TCP Window Scaling option.

It can be speculated though, that this work is unlikely to generate more significant

results than those that have already been illustrated. The mandatory Fast Retransmit

algorithm has been shown in this thesis to dominate the effects measured on a TCP

stream.

An interesting application of results from the testbed, would be to investigate the use of

Packet Reordering as a method of mid-point traffic throttling, and therefore SLA

compliance across a network. Chapter 4 has illustrated that packet reordering can have

both positive and negative effects on the throughput of a TCP connection. Forward-

path packet reordering can be used to throttle a connection passing through a mid-

point, by selectively delaying packets and forcing a Fast Retransmit. Reverse-path packet

reordering has been shown to have the ability to grow a Sender's cwad at a faster rate

than normal This allows the unusual feature that, in theory, from a mid-point position,

a Middlebox would be able to both speed-up and slow-down TCP connections.

Rate-limiting Middleboxes, such as the Packeteer PacketShaper [PackO8], perform TCP

rate limiting by artificially altering the rwnd in the Ack packets from a TCP Receiver, as

they pass the PacketShaper at a mid-point in the network. Clearly the processing

237

required to monitor each concurrent flow, to perform deep packet inspection, to delay

each Ack while the header is re-built, and then to re-compute checksums, is highly

significant. Packet Reordering could offer the same ability to rate-limit each concurrent

flow, but with significantly less processing requirement, as packets do not have to be

altered. The additional possibility, that the same Middlebox could also be used to

increase the throughput of specific TCP flows, indicates that this potential technique

has significant commercial opportunities if it could be developed in a lightweight and

robust manner.

Clearly, this proposal would require a number of investigations. Firstly, a rigorous study

on the testbed would have to be performed, to allow modelling of the scenarios where

reverse-path packet reordering can cause an improvement in performance, in terms of

various RTT and congestion control mechanisms. Secondly, a mid-point measurement

technique, similar to that discussed in Chapter 5, would be developed to allow

measurement of the performance of each flow, and a selection algorithm would be

developed, to decide when packet reordering would be applied to a flow, in which

direction and in what amount.

7.4.2 Software Routers as Measurement Instruments

The use of Click in Chapter 4 as a configurable router, has allowed a large-scale

measurement of packet reordering to take place. It is worth noting, though, that

software routers such as Click, are no longer in use only as research tools. Trends

indicate that future routers will be built upon flexible hardware, with open source

Operating Systems. This is expected to be the driver of `Router Virtualisation'

research[Egi07], where a single hardware platform can simultaneously perform the roles

of multiple independent routers. Previously, instrumentation inside a router was

impossible due to the commodity hardware and closed software. This motivated

projects such as NetFPGA[MckeO7], to build open router platforms where

measurements such as the effects of mid-point buffering on TCP [AppeO4] could be

investigated. The authors of Click have already acknowledged [Kohl06] that their

software language could be extended to design mid-point measurement systems and,

therefore, as software routers become more prevalent in production networks, this

238

x; '` affords the opportunity for large scale passive mid-point measurements to be made.

The classification algorithm and visualisation technique presented in Chapter 5 could be

implemented within a software router, to test the scalability and performance of the

algorithm, in a variety of traffic conditions, thus producing a large scale measurement of

empirical traffic. Software routers and virtualisation will allow for mid-point passive

monitoring techniques to be deployed for many different traffic types, and therefore

there is a great deal of motivation to extend the work presented in Chapter 5, to classify

out-of-sequence packets passively, for a variety of traffic types.

The method presented in Chapter 4, whereby the IPID of a TCP flow was used as a

method for measuring the absolute packet reordering within a flow, could also be useful

as a method for router testing. In both hardware and software routers, the Chapter 4

technique provides a lightweight and highly accurate method for measuring packet

displacement. In a software router, this method could be used as a method to monitor,

in real-time, the amount of reordering which that router was inducing. Software probes

on each line-card could correlate IPID values between input and output ports, thus

measuring the degree of reordering induced on each flow.

The use of the IPID field has only recently been proposed as a method to infer network

measurements [Chen05]. This thesis has suggested that the IPID measurement

technique proposed in Chapter 4 could only operate within a testbed network, due to

the variety of methods to increment the IPID field. However, work by Chen [Chen05]

has suggested that packet order in the Internet can be measured in this way. Further

investigation and deployment of the proposed technique on real network traffic, would

be a useful further study.

239

týýý!

ýF t

i% ýiiýý
t

'
i' 7.4.3 Extending the Arthur Classification and

Visualisation Algorithm

A benefit of mid-point passive measurement techniques is that they can be applied as

multiple probes throughout a network. Assuming that the probes can be time-

synchronised to a high degree of accuracy, packet captures can be correlated between

probes thereby allowing end-to-end measurements to be made.

An interesting area of future work would be the development of a Distributed

Measurement Architecture, whereby multiple Arthur out-of-sequence classification

probes would be deployed across a network. Correlation of the Flow Traces created at

various points around the network, would allow development of further heuristics in the

algorithm, to identify the location of reorder-inducing paths and nodes.

A second area of interesting research would be to investigate the design of an out-of-

sequence classification algorithm, based entirely on Flow Traces created by

Acknowledgements observed. This classification algorithm would provide mid-point

analysis of TCP flows, based entirely on information inferred from the

Acknowledgement packets. This is a challenging endeavour. With packets measured in

the forward path, it is possible to calculate the NESN for each Seq observed, thus

allowing simple identification of packet loss. Based entirely on Acknowledgements

alone, it is not possible to predict the next expected packet, thereby making loss

identification difficult. This is complicated further by the use of SACK and Partial-Acks.

Nevertheless, a number of useful metrics could be defined, such as a Fast Retransmit

counter based on observing triple duplicate-Acks.

A third possible interesting extension to the Arthur algorithm, would be to extend the

algorithm to accommodate non-TCP traffic, such as UDP or RTP. A method of

determining the sending sequence of packets would be required, such as the IPID field

240

j'°
if it is seen to increase monotonically from a host. This would also allow extension of
the Arthur Visualisation Technique, which would indicate the lateness or earliness of

packets, and thresholds could be defined which were relevant to the application-traffic

being carried.

7.4.4 Cross-layer Correlation of Packet Reordering
Metrics

This thesis has argued that, for a packet reordering metric to be relevant, it must be

specific to the user application traffic. This thesis has also argued that wireless is likely

to be the next driver of packet reordering, due to parallelism occurring at multiple layers

in a wireless network. Recent work has suggested that TCP can be used effectively on
Multihop Wireless [Fu05] and Wireless Mesh [LiuO7] networks. Worryingly, other work
has argued that IPv6 [BlanO6] and TCP (DunkO4] are both viable for use on Wireless

Sensor Networks 1 TCP is already in use on Wi-Fi and WiMAX networks, on which it

is likely that Mobile-IP will be used to provide session continuity during handover.

Recent research in Mobility Management protocols for multiple interfaces, has

measured [ParkO8] [TsanO8] that wireless multihoming causes severe packet reordering,

significantly degrading the handover performance. There are a range of research topics

in this area; it is clear that packet reordering has not previously been considered by

Mobility Management researchers, and therefore a range of performance studies could

be performed on the various mobility protocols proposed

However, an interesting research approach to this area, would be determining the cross-

layer impacts that wireless packet reordering will have on each upper layer. It is clear

from this thesis that a packet can be defined as in-sequence or out-of-sequence, without

significant difficulty. The difficulty occurs when relating this low-level movement of

packets in a flow, to a measurable event in the user's application-level experience.

Chapter 6 has highlighted this for a specific type of video traffic. In a recent

SIGCOMM paper, Cheng [ChenO7b] attempted to correlate 802.11b Layer 2 metrics of

loss caused by queuing, back-offs and contention, with the Layer 4 TCP performance

241

observed. The result of this work is a graph of TCP Goodput, plotted against various
Layer 2 loss metrics, which indicates the causes of each loss, thereby providing root-

cause analysis of TCP performance.

A similar study is required for packet reordering. Simple metrics can define the amount

of reordering occurring at each Layer of the OSI. But, for a measured drop in TCP

throughput to be explained, this event must be correlated with the packet reordering
metrics obtainable at the various lower layers, to identify the cause-and-effect of

reordering on a particular flow.

242

.;

7.5 Concluding Remarks

The explosive growth of the Internet has allowed a multitude of heterogeneously

interconnected systems to communicate seamlessly with each other, and to carry a
diverse mix of traffic and applications. Simple byte-windowing protocols are being

driven in diverse ways for which they were never intended. The Internet is becoming

more complex and highly parallelised; new wireless technologies, transport protocols

and new applications present a variety of challenges to network designers and operators.

The effects of packet reordering have only recently become apparent; they will get

worse! Many questions will arise around the implications of packet reordering for re-

engineering the future internet. Is a new TCP needed or new router designs? Should

future networks" be reordering-free, or should future protocols be reordering-tolerant?

Never before has network measurement science been so important for the future of the

Internet, to ensure that the high expectations of users can be fulfilled.

It is clear that the diversity of traffic types prevalent in the future Internet, will require a

range of sophisticated metrics and measurement methodologies, in order to explain the

effects of packet reordering on a user's Quality of Experience. This thesis has addressed

the issue of measuring the impact of packet reordering on Internet traffic, by proposing

a number of measurement methodologies and metrics that will be required in order to

describe the complex cross-layer effects of packet reordering on future complex traffic

types.

243

Bibliography

[AdamO4] Adamson, B., Bormann, C., Handley, M., Macker, J., Negative-

acknowledgement (NACK)-Oriented Reliable Multicast (NORM)

Protocol, IETF Network Working Group, Request For Comments

RFC 3940, November 2004.

[AikaO3] Aikat, J., Kaur, J., Smith, F., Jeffay, K., Variability in TCP round-trip

times, In Proceedings ACM SIGCOMM Internet Measurement

Conference, Miami Beach, Florida, Oct. 2003, pp. 279-284.

[Appe041 Appenzeller, G., Keslassy, I., McKeown, N., Sizing Router Buffers, in

Proceedings of ACM SIGCOMM 2004, Portland, August 2004.

[AttO7] AT&T Managed Internet Service, Accessed December 2007,

http: //new. serviceguide. att. com/mis. htm .

244

[AwduO2] Awduche, D., Overview and Principles of Traffic Engineering, IETF

Network Working Group, Request For Comments RFC 3272, May

2002.

[Allm99] Allman, M., Paxson, V., IETF Network Working Group, Request For

Comments RFC 2581, TCP Congestion Control, April 1999.

[Allm01] Allman, M., Enhancing TCP's Loss Recovery Using Limited Transmit

IETF Network Working Group, Request For Comments RFC 3042,

January 2001.

[Allm03] Allman, M., TCP Congestion Control with Appropriate Byte Counting

(ABC), IETF Network Working Group, Request For Comments RFC

3465, February 2003.

[Allm03b] Allman, M., On the Performance of Middleboxes, In Proceedings of

the 3rd ACM SIGCOMM Conference on Internet Measurement,

Florida., USA, 2003, pp. 307-312.

[Allm07] Allman, M., TCP Congestion Control, IETF TCP Maintenance

Working Group, Internet Draft http: //tools. ietf. org/id/draft-ietf-

tcpm-rfc2581bis-03. txt, September 2007.

[Alme99a] Almes, G., A One-way Delay Metric for IPPM, IETF Network

Working Group, Request For Comments RFC 2679, September 1999.

[Alme99b] Almes, G., A Round-trip Delay Metric for IPPM, IETF Network

Working Group, Request For Comments RFC 2681, September 1999.

[Alme99c] Almes, G., A One-way Packet Loss Metric for IPPM, IETF Network

Working Group, Request For Comments RFC 2680, September 1999.

[Algm92] Almquist, P., Type of Service in the Internet Protocol Suite, IETF

Network Working Group, Request For Comments RFC 1349, July

1992.

[Bake95] Baker, F., Requirements for IP Version 4 Routers, IETF Network

Working Group, Request For Comments RFC 1812, June 1995.

[Bare07] Bare, A. A., Jayasumana, A. P., Piratla, N. M., On Growth of Parallelism

within Routers and Its Impact on Packet Reordering, 15th IEEE

Workshop on Local & Metropolitan Area Networks (LANMAN), 10-

13 June 2007, pp. 145-150.

245

[Barf04] Barford, P., Sommers, J., Comparing Probe-and Router-Based Packet-

Loss Measurement, IEEE Internet Computing, vol. 8, no. 5, Sept. -Oct.
2004, pp. 50-56.

[Bhan03] Bhandarkar, S., Narasimha Reddy, A. L., TCP-DCR: Making TCP

Robust to Non-Congestion Events, in Proceedings of Networking

Conference, Athens, Greece, 9-14 May 2004.

[Bhan06] Bhandarkar, S., Narasimha Reddy, A. L., Allman, M., Blanton, E.,

Improving the Robustness of TCP to Non-Congestion Events, IETF

Network Working Group, Request For Comments RFC4653, August

2006.

[Blak98] Blake, S., An Architecture for Differentiated Services, IETF Network

Working Group, Request For Comments RFC2475, December 1998

[Blan02] Blanton, E., Allman, M., On Making TCP More Robust to Packet

Reordering, SIGCOMM Computer Communications Review, Vol. 32,

Issue, pp 20-30, January 2002.

[BohaO3] Bohacek, S., Hespanha, J. P., Lee, J. S., Lim, C. S., Obraczka, K., TCP-

PR: TCP for Persistent Packet Reordering, In Proceedings of 23rd

International Conference on Distributed Computing Systems, 19-22

May 2003, pp. 222-231.

[Blan06] Blanchet, M., IPv6 Primer for Sensor Networks, 2006,

www. viagenie. ca/publications/2006-05-31-sensornetworks-

ipv6primer. pdf Accessed 24th September 2008.

[Be]102] Bellardo, J., Savage, S., Measuring Packet Reordering, In Proceedings

of the 2nd ACM SIGCOMM Workshop on internet Measurement

(Marseille, France, November 06 - 08,2002). IMW'02. ACM, New

York, NY, 97-105.

[Bell03] Sting Tool, version 0.8.1, March 2003

http: //sysnet. ucsd. edu/reordering/index. html

[Benk02] Benko, P., Veres, A., A Passive Method for Estimating End-to-End

TCP Packet Loss, in Proceedings IEEE Global Telecommunications

Conference (GLOBECOM), vo1.3, pp. 2609-2613 vol. 3,17-21 Nov.

2002.

246

[BenkO4] Benko, P., Malicsko, G., Veres, A., A Large-Scale, Passive Analysis of

End-to-End TCP Performance over GPRS, in Proceedings of 23rd

Annual Joint Conference of the IEEE Computer and

Communications Societies INFOCOM 2004,7-11 March 2004, pp.

1882-1892

[Benn99] Bennett, J., Partridge, C., Shectman, N., Packet Reordering is Not

Pathological Network Behaviour, IEEE/ACM Transactions on

Networking, Vol. 7, Issue 6, December 1999, pp. 789-798.

[Brad89] Braden, R., Requirements for Internet Hosts -Communication Layers,

IETF Network Working Group, Request For Comments RFC1122,

October 1989.

[Brad9l] Bradner, S., Benchmarking Terminology for Network Interconnection

Devices, IETF Network Working Group, Request For Comments

RFC1242, July 1991.

[Brad97a] Bradner, S., Key words for use in RFCs to Indicate Requirement

Levels, IETF Network Working Group, Request For Comments

RFC2119, March 1997.

[Brad97b] Braden, R., Resource ReSerVation Protocol (RSVP) -- Version 1

Functional Specification, IETF Network Working Group, Request For

Comments RFC2205, September 1997.

[Brow0l] Brownlee, N., Loosley, C., Fundamentals of Internet Measurement -A

Tutorial, CMG Journal of Computer Resource Management, April

2001

[Bt07] BT Global Services, IP Performance Hourly Network Summary,

Round-Trip Delay and Loss Measurements, http: //ippm. bt. net/,

Accessed 25th September 2007.

[But05] But, J., Keller, U., Kennedy, D., Armitage, G., Passive TCP Stream

Estimation of RTT and Jitter Parameters, in Proceedings of The IEEE

Conference on Local Computer Networks, 30th Anniversary, 15-17

November 2005.

[Case90] Case, J., A Simple Network Management Protocol (SNMP), IETF

Network Working Group, Request For Comments RFC1157, May

1990.

247

[Chen05] Chen, W., Huang, y., Ribeiro, b., Suh, K., Zhang, H., Souza e Silva, E.,

Kurose, J., Towsley, D., Exploiting the IPID field to infer network

path and end-system characteristics, in Proceedings of Passive and
Active Measurement 2005 (PAM2005), Boston.

[ChenO7] Cheng, R., Lin, H., Protecting TCP from A Misbehaving Receiver,

International Journal of Network Management, vol. 17, no. 3, June

2007.

[Chen07b] Cheng, Y., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren,

A. C., Savage, S., and Voelker, G. M. 2007. Automating cross-layer

diagnosis of enterprise wireless networks. ACM SIGCOMM

Computer Communications Review, vol. 37, no, 4, pp 25 - 36,

October 2007.

[CiavO3] Ciavattone, L., Morton, A., Ramachandran, G., Standardized Active

Measurements on A Tier 1 IP Backbone, IEEE Communications

Magazine, vol. 41, no. 6, June 2003, pp. 90-97.

[Cisc07] Cisco Catalyst Switched Port Analyser Configuration Example,

December 2007, http: //www. cisco. com/warp/public/473/41. htm1.

[ClaiO4] Claise, B., Cisco Systems NetFlow Services Export Version 9, IETF

Network Working Group, Request For Comments RFC3954, October

2004.

[Clar82] Clark, D., Window and Acknowledgement Strategy in TCP, IETF

Network Working Group, Request For Comments RFC813, July 1982.

[Clic08] The Click Modular Router Project,

http: //www. pdos. lcs. mit. edu/click/ ,
Accessed 25th September 2008.

[Dala03] Dalal, A. C., Perry, E., A New Architecture for Measuring and

Assessing Streaming Media Quality, in Proceedings of the Passive and

Active Measurement Workshop (PAM 2003), La Jolla, California, 6-8

April 2003.

[Deer98] Deering, S., Hinden, R., Internet Protocol, Version 6 (IPv6)

Specification, IETF Network Working Group, Request For

Comments RFC 2460, December 1998.

[Deer01] Deering, S., Watching the Waist of the Protocol Hourglass, IETF

Meeting 51, Plenary Presentation, London, 30th August 2001.

248

[DemiO2] Demichelis, C., IP Packet Delay Variation Metric for IP Performance

Metrics (IPPM), IETF Network Working Group, Request For

Comments RFC3393, November 2002.

peri04] Deri, L., Improving Passive Packet Capture: Beyond Device Polling, In

Proceedings of the 4th International System Administration and
Network Engineering Conference, Amsterdam, September 2004.

psac08] Reordering Robust DSACK TCP, (RR-TCP),

http: //www. icir. org/bkarp/RR-TCP/index. htrnl, Accessed 25th

September 2008.

[Dunk04] Dunkels, A, Voigt, T., Alonso, J., Making TCP/IP Viable for Wireless

Sensor Networks, In Proceedings of First European Workshop on
Wireless Sensor Networks (EWSN 2004), January 2004, Berlin,

Germany.

[EgiO7] Egi, N.; Greenhalgh, A.; Handley, M.; Hoerdt, M.; Mathy, L.; Schooley,

T., "Evaluating Xen for Router Virtualization, " In Proceedings of 16th

International Conference on Computer Communications and
Networks, 2007. ICCCN 2007., pp. 1256-1261,13-16 Aug. 2007

[Fa1196] Fall, K., Floyd, S., Simulation-Based Comparisons of Tahoe, Reno, and

SACK TCP, ACM Computer Communication Review, vol. 26, no. 3,

July 1996, pp. 5-21.

[Fang03] Fang, F., DeDourek, J., Verifying TCP Implementation, In

Proceedings of Communication Networks and Services Conference

2003, Moncton, Canada, May 15-16 2003.

[FengO7] Feng, J., Ouyang, Z., Xu, L., Ramamurthy, B., Packet Reordering in

High-Speed Networks and its Impact on High-Speec Variants, in

Proceedings of 5th International Workshop on Protocols for Fast

Long-Distance Networks, Los Angeles, California, USA, 7-9 Feb.

2007.
[Fu1107] Fullmer, M, Flow-tools - Tool Set for Working with NetFlow Data,

December 2007, http: //www. splintered. net/sw/flow-

tools/docs/flow-tools. html.

249

[Floy00] Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M., An Extension to the

Selective Acknowledgement (SACK) Option for TCP, IETF Network

Working Group, Request For Comments RFC2883, July 2000.

[FloyO4] Floyd, S., Henderson, T., Gurtov, A., The NewReno Modification to

TCP's Fast Recovery Algorithm, IETF Network Working Group

Request For Comments RFC3782, April 2004.

[FloyO7] Floyd, S., Metrics for the Evaluation of Congestion Control

Mechanisms, IETF Internet Draft, http: //tools. ietf. org/html/draft-

irtf-tmrg-metrics-11, October 2007.

[Fra03] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D.,

Rockell, R., Seely, T., Diot, S. C., Packet-level traffic measurements

from the Sprint IP backbone, IEEE Network, vol. 17, no. 6, pp. 6-16,

Nov. -Dec. 2003.

[Fu05] Fu, Z., Luo, H., Zerfos, P., Lu, S., Zhang, L., Gerla, M., The impact of

multihop wireless channel on TCP performance, IEEE Transactions

on Mobile Computing, vo1.4, no. 2, pp. 209-221, March-April 2005.

[Fu]1931 Fuller, V., Yu, J., Varadhan, K., Classless Inter-Domain Routing

(CIDR): An Address Assignment and Aggregation Strategy, IETF

Network Working Group, Request For Comments RFC1519,

September 1993.

[Gare97] Gareiss, R., Is The Internet in Trouble?, Data Communications

Magazine, September 1997, pp. 36-50.

[GharO4] Gharai, L. and Perkins, C. and Lehman, T., Packet Reordering, High

Speed Networks and Transport Protocol Performance, In 13th

International Conference on Computer Communications and

Networks, Chicago, 11-13 October 2004, pages pp. 73-78.

[Gean08] The GEANT project, http: //www. geant. net/, ,
Accessed 25th

September 2008.

[HensO8] Hens, F., Caballero, J., Triple Play: Building the Converged Network

for IP, VoIP and IPTV, Published by John Wiley & Sons, 2008, ISBN
0470753676.

[Hobb97] Zakon, R., Hobbes' Internet Timeline, IETF Network Working

Group, Request For Comments RFC2235, November 1997.

250

[Hobb06] Zakon, R., Hobbes' Internet Titneline v8.2,

http: //www. zakon. org/robert/internet/timeline/, Accessed 25th

September 2008.

[Huaw07] Huawei Technologies Co. Ltd, Technical White Paper for NetStream,

http: //www. huawei. com/products/datacotnm/pdf/view. do? f=65.,

Accessed 25th September 2008.

[HustO3] Huston, G., Measuring IP Network Performance, The Internet

Protocol Journal, vol. 6, Issue 1, March 2003.

[Iana07] LANA Assigned Protocol Numbers, 12 February 2007,

http: //www. iana. org/assignments/protocol-numbers.

[Ieee07] IEEE 1588TM-2002 Standard for A Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems,

http: //ieeel588. nist. gov/, Accessed 25th September 2008.

[Info07] Howard, M., Ethernet and IP MPLS VPN Growth Continues,

Infonetics Research Report,

http: //searchnetworkingchannel. techtarget. com/generic/0,295582, sid

1004ci1256434,00. html, 25th May 2007.

[Info08] Doman, A., Does Cisco's Switch to Linux Make IOS More Open?,

Information Week, March 2008,

http: //www. informationweek. com/blog/main/archives/2008/03/do

es_ciscos_swi. html, Accessed 20th August 2008.

[Itu02] ITU-R Recommendation BT. 500-1 1, ̀ Methodology for the subjective

assessment of the quality of television pictures', 2002.

Qaco88] Jacobson, V., Congestion Avoidance and Control, ACM Computer

Communication Review, vol. 18, no. 4, Aug. 1988, pp. 314-329.

Qaco90] Jacobson, V., Modified TCP Congestion Avoidance Algorithm,

end2end-interest mailing list, April 30,1990,

ftp: //ftp. isi. edu/end2end/end2end-interest-1990. mail.

Qaco92] Jacobson, V., TCP Extensions for High Performance, IETF Network

Working Group, Request for Comments 1323, May 1992.

251

Uais02] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.,

Measurement and Classification of Out-of-Sequence Packets in a Tier-

1 IP Backbone, In Proceedings of the 2nd Internet Measurement

Workshop, ACM Press, Marseille, France, November 6-8,2002.

gais03] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D., Inferring

TCP Connection Characteristics Through Passive Measurements

(extended version - technical report), Sprint Labs Technical Report

RR03-ATL-070121, Sprint ATL, July 2003.

(JaisO4] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D., Inferring

TCP Connection Characteristics Through Passive Measurements, 23rd

Annual Joint Conference of the IEEE Computer and

Communications Societies INFOCOM 2004, vo1.3,7-11 March 2004,

pp. 1582-1592.

gais07] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.,

Measurement and Classification of Out-of-Sequence Packets in a Tier-

1 IP Backbone, IEEE/ACM Transactions on Networking, vol. 15,

no. 1, Feb. 2007, pp. 54-66.

Jaya03] Jayasumana, A., Piratla, N. M., Bare, A. A., Banka, T., Internet Draft:

Reorder Density Function - Metric for Packet Reordering

Measurement. Tech. rep., IETF, February 2003, draft-jayasumana-

reorder-density-00. txt.

Jaya08] Jayasumana, A., Piratla, N., Banka, T., Bare, A., Whither, R., Improved

Packet Reordering Metrics, IETF Network Working Group, Request

For Comments RFC 5236, June 2008.

QianO2] Jiang, H., Dovrolis, C., Passive Estimation of TCP Round-Trip Times,

ACM SIGCOMM Computer Communications Review, vol. 32, no. 3,

2002, pp. 75-88.

Quni07] Juniper Networks, Configuring Flow-Based Statistics Collection,

http: //www. juniper. net/techpubs/software/erx/junose60/swconfig-

routing-voll/html/ip-j flow-stats-config4. htm1#560916 , Accessed

25th September 2008.

252

Quni08] Juniper Networks, M160 Internet Router Overview, Accessed 19th

August 2008, http: //www. juniper. net/techpubs/software/nog/nog-
hardware/html/m160-router. htmL

[KandO7] Kandula, S., Katabi, D., Sinha, S., and Berger, A., Dynamic Load

Balancing Without Packet Reordering, In ACM SIGCOMM Computer

Communication Review, vol. 37, no. 2, Mar. 2007, pp. 51-62.

[Karn87] Kam, P., Partridge, C., Round Trip Time Estimation, ACM

SIGCOMM-87, August 1987.

[KohlOO] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M. F., The

Click Modular Router, ACM Transactions on Computer Systems

voL18, no. 3, August 2000, pp. 263-297.

[Koh106] Kohler, E., Click for Measurement, UCLA Computer Science

Department Technical Report TR060010, February 2006.

[Koo02] Koodli, R., One-way Loss Pattern Sample Metrics, IETF Network

Working Group, Request For Comments RFC3357, August 2002.

[Kopp021 Kopparty, S., Krishnamurthy, S. V., Faloutsos, M., Tripathi, S. K., Split

TCP for Mobile Ad-hoc Networks, in Proceedings IEEE Global

Telecommunications Conference, GLOBECOM'02, vo1.1, pp. 138-

142,17-21 Nov. 2002.

[LaorO2] Laor, M., Gendel, L., The Effect of Packet Reordering in A Backbone

Link on Application Throughput, IEEE Network, vol. 16, no. 5, pp. 28-

36, Sep/Oct 2002.

[Lai03] Lai, W., Requirements for Internet Traffic Engineering Measurement,

IETF Internet Draft, http: //tools. ietf. org/html/draft-ietf-tewg-

measure-06 July 2003.

[Lee02] Lee, Y., Park, I., Choi, Y., Improving TCP Performance in Multipath

Packet Forwarding Networks, Journal of Communications and
Networks, vo1.4, no. 2, June 2002, pp. 148-157.

[Lein04] Leinen, S., Evaluation of Candidate Protocols for IP Flow Information

Export (IPFIX), IETF Network Working Group, Request For

Comments RFC 3955, October 2004.

253

[LeunO7] Leung, K., Li, V., Yang, D., An Overview of Packet Reordering in

Transmission Control Protocol (TCP): Problems, Solutions, and
Challenges, IEEE Transactions on Parallel and Distributed Systems,

vol. 18, no. 4, April 2007, pp. 522-535.

[Ligh0l] Light Reading (2001), Internet Core Router Test, Accessed 19 August

2008, http: //www. lightreading. com
/document. asp? doc id=4009&page_number=8.

[Liu07] Liu, C., Shen, F., Sun, M., A Unified TCP Enhancement for Wireless

Mesh Networks, in Proceedings of International Conference on

Parallel Processing Workshops, 2007. ICPPW 2007, pp. 71-71,10-14

Sept. 2007

[Logu02] Loguinov, D., Radha, H., End-to-End Internet Video Traffic

Dynamics: Statistical Study and Analysis, In Proceedings of the 21st

Annual Joint Conference of the IEEE Computer and

Communications Societies, INFOCOM 2002, vol. 2,2002, pp. 723-

732.

[Love06] Love, S., Archibald, D. M., Measuring Efficiency of Data

Transmission, United States Patent 7075887, Application Number

09/735607,07 November 2006.

[Luck0l] Luckie, M., McGregor, A., Braun,. H., Towards Improving Packet

Probing Techniques, In Proceedings of the 1st ACM SIGCOMM

Workshop on Internet Measurement, San Francisco, California,

November 1- 2,2001, pp. 145-150.

[Luo05] Luo, X., Chang, R., Novel Approaches to End-to-End Packet

Reordering Measurement, In Proceedings of ACM/SIGCOMM

Internet Measurement Conference, USA, October 2005, pp. 227-238.

[Ma04a] Ma, C. M., Leung, K. C., Improving TCP Reordering Robustness in

Multipath Networks, 29th Annual IEEE International Conference on

Local Computer Networks, 16-18 Nov. 2004, pp. 409-410.

[Ma04b] Ma, C. M., Leung, K. C., Improving TCP Robustness Under Reordering

Network Environment, IEEE Global Telecommunications

Conference, GLOBECOM'04, vol. 2, no., 29 Nov. -3 Dec. 2004, pp.
828-832.

254

[MaeO8] Verizon MAE East, Internet Exchange Point, Accessed 25th

September 2008, http: //www. mae. net/fac/mae-east. htm

[Math97] Mathis, M., Semke, J., and Mahdavi, J., The Macroscopic Behavior of

the TCP Congestion Avoidance Algorithm, ACM SIGCOMM

Computer Communications Review, vol. 27, no. 3, July 1997, pp. 67-

82.

[Mart00] Martin, H. S., McGregor, A., Cleary, J. G., Analysis of Internet Delay

Times, In Proceedings of Passive and Active Measurement Workshop

(PAM 2000), April 2000.

[MZartO2] Martin, J., Nilsson, A., On Service Level Agreements for IP Networks,

IEEE INFOCOM, 2002.

[Ma1k93] Malkin, G., The Tao of IETF -A Guide for New Attendees of the

Internet Engineering Task Force, IETF Network Working Group,

Request For Comments RFC1391, January 1993.

[Math96] Mathis, M., TCP Selective Acknowledgment Options, IETF Network

Working Group, Request For Comments RFC2018, October 1996.

[Mcke07] McKeown, N., Lockwood, J., Naous, J., Gibb, G., Covington, A.,

Hands-on with the NetFPGA to build a Gigabit-rate Router, in

Proceedings of the 15th Annual IEEE Symposium on High-

Performance Interconnects, 2007. HOTI 2007, pp. 7-10,22-24 Aug.

2007

[Medi05] Medina, A., Allman, M., and Floyd, S., Measuring the Evolution of

Transport Protocols in The Internet, ACM SIGCOMM Computer

Communication Review, vol. 35, no. 2, April 2005.

[Mell06] Mellia, M., Meo, M., Muscariello, L., Rossi, D., Passive Identification

and Analysis of TCP Anomalies, in Proceedings of the IEEE

International Conference on Communications, ICC'06., vol. 2, June

2006, pp. 723-728.

[Micr08] Microsoft Corporation, Description of Windows 2000 and Windows

Server 2003 TCP Features, Accessed 23rd August 2008,

http: //support. microsoft. com/kb/224829.

[Micr08b] Microsoft Windows Media, Accessed 12th September 2008,

http: //www. microsoftcom/windows/windowsmedia/.

255

[Mill83] Mills, D. L., Internet Delay Experiments, IETF Network Working

Group, Request For Comments RFC 889, December 1983.

[Mizr06] Mizrak, A. T., Yu-Chung Cheng, Marzullo, K., Savage, S., Detecting

and Isolating Malicious Routers, IEEE Transactions on Dependable

and Secure Computing, vol. 3, no. 3, July-Sept. 2006, pp. 230-244.

[Mock87] Mockapetris, P., Domain Names - Implementation and Specification,

IETF Network Working Group, Request For Comments RFC1035,

November 1987.

[Mort06] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S., Perser, J.,

Packet Reordering Metrics, IETF Network Working Group, Request

For Comments RFC4737, November 2006.

[Nasa08] Nasa Engineering and Research Network, Accessed 22nd August

2008, http: //www. nren. nasa. gov/tcp_tuning. html.

[Neg104] Neglia, G., Falletta, V., Is TCP Packet Reordering Always Harmful?,

Modeling, In Proceedings of IEEE Computer Society's 12th Annual

International Symposium on Analysis, and Simulation of Computer

and Telecommunications Systems (MASCOTS 2004), 4-8 Oct. 2004,

pp. 87-94.

[Nehm03] Nehme, A., Phillips, W., Robertson, W., The effect of Reordering and

Dropping Packets on TCP Over A Slow Wireless Link, IEEE

Canadian Conference on Electrical and Computer Engineering, IEEE

CCECE 2003, vol. 3,4-7 May 2003, pp. 1555-1558.

[Nich98] Nichols, K., Definition of the Differentiated Services Field (DS Field)

in The IPv4 and IPv6 Headers, IETF Network Working Group,

Request For Comments RFC2474, December 1998.

[Nichol] Nichols, K., Definition of Differentiated Services Per Domain

Behaviors and Rules for their Specification, IETF Network Working

Group, Request For Comments RFC3086, April 2001.

[OlivO2] Oliveira, R., Braun, T., TCP in Wireless Mobile Ad Hoc Networks,

Technical Report, LAM-02-003, University of Bern, July 2002.

[OsteO8] Ostermann, S., TCP Trace Website, Retrieved 10th September 2008,

http: //tcptrace. org/index. html.

256

[Pack08] Packeteer PacketShaper, http: //www. packeteer. com/products/
Accessed 24th September 2008.

[Park98] Parker, S., Schmechel, C., Some Testing Tools for TCP Implementers,

IETF Network Working Group, Request for Comments RFC 2398,

August 1998.

[Park08] Park, M., Lee, J., Kim, B., Kim, D., Design of fast handovet

mechanism for multiple interfaces mobile IPv6, in Proceedings of 3rd

International Symposium on Wireless Pervasive Computing, 2008.

ISWPC 2008., pp. 697-701,7-9 May 2008

[Paxs96] Paxson, V., End-to-End Routing Behavior in The Internet, In

Proceedings ACM SIGCOMM, ACM Press, Stanford, CA, pp. 25-39,

1996.

[Paxs97] Paxson, V., Measurements and Analysis of End-to-End Internet

Dynamics, University of California, Berkeley, Ph. D. dissertation, April

1997, ftp: //ftp. ee. lbl. gov/papers/vp-thesis/dis. ps. gz

[Paxs97a] Paxson, V., End-to-End Routing Behavior in The Internet,

IEEE/ACM Transactions on Networking, vol. 5, no. 5, Oct 1997, pp.

601-615.

[Paxs97b] Paxson, V., End-to-End Internet Packet Dynamics, In Proceedings

ACM SIGCOMM, Cannes, France, September 1997.

[Paxs97c] Paxson, V., Automated Packet Trace Analysis of TCP

Implementations, In Proceedings ACM SIGCOMM, Cannes, France,

September 1997.

[Paxs99] Paxson, V., End-to-End Internet Packet Dynamics, IEEE/ACM

Transactions on Networking, vo1.7, no. 3, Jun 1999, pp. 277-292.

[Paxs00] Paxson, V., Computing TCP's Retransmission Timer, IETF Network

Working Group, Request For Comments RFC2988, November 2000.

[Paxs98] Paxson, V., Framework for IP Performance Metrics, IETF Network

Working Group, Request For Comments RFC2330, May 1998.

[Paxs04] Paxson, V., Strategies for Sound Internet Measurement, In

Proceedings of the 4th ACM SIGCOMM conference on Internet

Measurement, Taormina, Siciliy, Italy, 2004, pp. 263-271.

257

[Perk02] Perkins, C. S., Gharai, L., Lehman, T., Mankin, A., Experiments with
Delivery of HDTV Over IP Networks, In Proceedings of 12th

International Packet Video Workshop, Pittsburgh, April 2002.

[PipeO7] Pipex Pipeline Service Level Agreement, December 2007,

http: //www. dial. pipex. com/legal/sla/pipeline. shtral.

[PiraO6] Piratla, N. M., Jayasumana, A. P., Reordering of Packets Due to

Multipath Forwarding - An Analysis, IEEE International Conference

on Communications, ICC'06., vo1.2, June 2006, pp. 829-834.

[Pira08] Piratla, N., Jayasumana, A., Metrics for Packet Reordering -A
Comparative Analysis, International Journal of Communication

Systems, vol. 21, issue 1, January 2008, pp. 99-113.

[PoreO6] Poretsky, S., Terminology for Benchmarking Network-layer Traffic

Control Mechanisms, IETF Network Working Group, Request For

Comments RFC4689, October 2006.

[Post80] Postel, J., User Datagram Protocol, IETF Network Working Group,

Request For Comments RFC768, August 1980.

[Post8l] Postel, J., Internet Control Message Protocol, IETF Network Working

Group, Request For Comments RFC792, September 1981.

[Post8la] Postel, J., Internet Protocol, IETF Standard, Network Working

Group, Request For Comments RFC791, September 1981.

[Post8lb] Postel, J., Transmission Control Protocol, IETF Network Working

Group, Request For Comments RFC793, September 1981.

[Post8lc] Postel, J., Internet Control Message Protocol, IETF Network Working

Group, Request For Comments RFC792, September 1981.

[Przy05] Przybylski, M., Belter, B., Binczewski, A., Shall We Worry About

Packet Reordering?, Computational Methods in Science and

Technology, vol. 11, no. 2,2005, pp. 141-146.

[Ragh07] Raghunath, S., Ramakrishnan, K. K., and Kalyanaraman, S. 2007.

Measurement-based characterization of IP VPNs. IEEE/ACM

Transactions on Networking, vol. 15, no 6, December 2007, ppl428-
1441.

258

[Rama0l] Ramakrishnan, K., The Addition of Explicit Congestion Notification

(ECN) to IP, IETF Network Working Group, Request For Comments

RFC3168, September 2001.

[Rais02] Räisänen, V., Network Performance Measures with Periodic Streams,

IETF Network Working Group, Request For Comments RFC 3432,

November 2002..

[Rais02b] Raisinghani, V. T., Singh, A. K., Iyer, S., Improving TCP Performance

Over Mobile Wireless Environments Using Cross Layer Feedback,

IEEE International Conference on Personal Wireless Communications

2002, New Delhi, India, 15-17 December 2002, pp. 81-85.

[Rais03] Ridsänen, V., Implementing Service Quality in IP Networks, Addison

Wesley, 2003, ISBN 047084793X

[Rewa06a] Rewaskar, S., Kaur, J., Smith, F. D., A Passive State-Machine Based

Approach for Reliable Estimation of TCP Losses, In Proceedings of

the 7th Passive and Active Measurements Conference (PAM'06),

Adelaide, Australia, March 2006.
[Rewa06b] Rewaskar, S., Kaur, J., Smith, F. D., A Passive State-Machine Approach

for Accurate Analysis of TCP Out-of-Sequence Segments, In
Proceedings of ACM Computer Communication Review, vol. 36, issue

3, Jul. 2006, pp. 51-64.
[Ripe08] RIPE Test Traffic Measurements, Accessed 25th September 2008,

http: //www. ripe. net/tt,
[Sath05a] Sathiaseelan, A., Radzik, T., Reorder Notifying TCP (RN-TCP) with

Explicit Packet Drop Notification (EPDN), International Journal of
Communication Systems, Wiley, vol. 19, issue 6,2005, pp. 659 - 678.

[Sath05b] Sathiaseelan, A., Radzik, T., Robust TCP (TCP-R) with Explicit Packet
Drop Notification (EPDN) for Satellite Networks, In Proceedings of
the 4th International Conference on Networking (ICN'05), Reunion

Island, France, LNCS 3421, April 2005, pp. 250-257.

[Sava99] Savage, S., Cardwell, N., Wetherall, D., and Anderson, T., TCP

Congestion Control with A Misbehaving Receiver, ACM SIGCOMM

Computer Communications Review, vol. 29, no. 5, October 1999.

259

[Scam08] IST Scampi Project, A Scalable Monitoring Platform for the Internet,

Accessed 25th September 2008, http: //www. ist-scampi. org/.
[SchoO4] Schormans, J. A., Pitts, J. M., So You Think You Can Measure IP QoS?,

IEE Telecommunications Quality of Services: The Business of
Success, 2004. QoS 2004,2-3 March 2004, pp. 151-155.

[Soco91] Socolofsky, T., Kale, C., IETF Network Working Group, Request For

Comments RFC1180: A TCP/IP Tutorial, January 1991.

[Salt81] Saltzer, J. H., Reed, D. P., Clark, D. G., End-to-End Arguments in

System Design, ACM Transactions on Computer Systems, vol. 2, no. 4,

November 1984.

[Shen97] Shenker, S., Specification of Guaranteed Quality of Service, IETF

Network Working Group, Request For Comments RFC 2212,

September 1997.
[SmarOO] Smart, M., Malan, R., Jahanian, F., Defeating TCP/IP Stack

Fingerprinting, In Proceedings of 9th USENIX Security Symposium,

2000, pp. 229-240.

[Somm07] Sommers, J., Barford, P., Duffield, N., Ron, A., Accurate and Efficient

SLA Compliance Monitoring, ACM SIGCOMM Computer

Communication Review, vol. 37, issue 4, October 2007, pp. 109-120.
[Spir06] S. Spirou, Packet Reordering Effects on the Subjective Quality of

Broadband Digital Television, IEEE 10th International Symposium on

Consumer Electronics, ISCE '06,2006, pp. 1-6.
[Spri03] Spring, N., Robust Explicit Congestion Notification (ECN) Signaling

with Nonces, IETF Network Working Group, Request For

Comments RFC3540, June 2003.
[Sris01] Srisuresh, P., Traditional IP Network Address Translator (Traditional

NAT), IETF Network Working Group, Request For Comments

RFC3022, January 2001.
[Stev94] Stevens, W. R., TCP/IP Illustrated - Volume 1- The Protocols,

Addison Wesley, 1994, ISBN 0201633469.
[Tcpd08] Lawrence Berkeley National Laboratory, Network Research Group,

Accessed 25th September 2008, TCPdump/LibPcap programs,
http: //www. tcpdump. org/

260

[ThomO2] Thomas, T. M., Pavlichek, D., Dwyer, L. H., Chowbay, R., Downing,

W. W., Sonderegger, J., Juniper Networks Reference Guide: JUNOS

Routing, Configuration and Architecture, Addison-Wesley

Professional, October 27,2002, ISBN 0201775921.

[Tiru05] Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K., The IPerf

Project, Accessed 25th September 2008,

http: //dast. nlanr. net/Projects/Iperf/
[Tsan08] Tsang, K., Wang, C., Lau, F. C. M., Handoff Performance Comparison

of Mobile IP, Fast Handoff and mSCTP in Mobile Wireless Networks,

in Proceedings of . International Symposium on Parallel Architectures,

Algorithms, and Networks, 2008. I-SPAN 2008, pp. 45-52,7-9 May

2008

[Veal05] Veal, B., Kang, L, Lowenthal, D., New Methods for Passive

Estimation of TCP Round-Trip Times, In Proceedings of Passive and

Active Measurement, Lecture Notes in Computer Science 3431,

Springer-Verlag, March 2005.

[VqegO8] Video Quality Expert Group, Final report on the Validation of

Objective Models of Multimedia Quality Assessment, Phase 1,

Accessed 21st December 2008, http: //www. its. bldrdoc. gov/vqeg/.
[WaddO2] Waddington, D. G., Fangzhe Chang, Realizing The Transition to IPv6,

IEEE Communications Magazine, vo1.40, no. 6, Jun. 2002, pp. 138-147.
[WangO4] Wang, Y., Guohan, L., Xing, L., A Study of Internet Packet

Reordering, In Proceedings of International Conference on
Information Networking (ICOIN2004), Lecture Notes in Computer

Science 3090, Springer-Verlag, 2004, pp. 350-359.
[Wee02] Wee, S., Tan, W-T, Apostolopoulos, J., Etch, M., "Optimised Video

Streaming For Networks With Varying Delay, " in Proceedings of the
IEEE International Conference on Multimedia and Expo 2002,
Lausanne, Switzerland, August 2002.

[Wenw07] Wenwei, L., Dafang, Z., Jinmin, Y., Gaogang, X., On Evaluating the
Differences of TCP and ICMP in Network Measurement, ACM

Computer Communications, vol. 30, no. 2, January 2007.

261

[WestO6] West, M., McCann, S., TCP/IP Field Behaviour, IETF Network

Working Group, Request For Comments RFC4413, March 2006.

[WoodO8] Wood, P., A Libpcap Version Which Supports MMAP Mode on Linux

Kernels 2. [46], Accessed 25th September 2008,

http: //public. lanl. gov/cpw/
[Xy1o99] Xylomenos, G., Polyzos, G. C., Internet Protocol Performance Over

Networks With Wireless Links, IEEE Network, vo1.13, issue 4, July -

August 1999, pp. 55-63.

[YanO4] Yan, H., Li, K., Watterson, S., Lowenthal, D., Improving Passive

Estimation of TCP Round-Trip Times Using TCP Timestamps, In

Proceedings of IEEE Workshop on IP Operations and Management,

11-13 Oct. 2004, pp. 181-185.

[Ye06] Ye, Y., Jayasumana, A. P., Piratla, N. M., On Monitoring of End-to-End

Packet Reordering Over the Internet, International conference on
Networking and Services, ICNS '06., 2006.

[Zhan03] Zhang, M., Karp, B., Floyd, S., Peterson, L., RR-TCP: A Reordering-

Robust TCP with DSACK, In Proceedings of the 11th IEEE

International Conference on Networking Protocols (ICNP 2003),

Atlanta, GA, November 2003.

[ZhouO4] Zhou, X., Mieghem, R. V., Reordering of IP Packets in Internet, In

Proceedings of Passive and Active Measurement, Lecture Notes in

Computer Science 3015, Springer-Verlag, April 2004, pp. 237-246.

262

Appendix

263

Figure 29, Example Packet Capture Output, extended to illustrate the first 750 packets

of a TCP Flow, thus illustrating the growth of cwnd.

A B C 0 E F G H I J K L MN 0
1 1218632117 649377 10 0.0.2 4094 10.0 06 5720 0 0 1677880416 0 22492 0 SYN 5840
2 1218632117 649441 10 0.0 6 5720 10.0.0 2 4094 0 0 2165394042 1677880416 0 0 SYN 5792
3 1218632117 799834 10 0.0.2 4094 10.0.0 6 5720 1 1 1677880416 2165394042 22493 0 5840
4 1218632118 18821 10.0.0.2 4094 10.0 0.6 5720 2 2 1677880416 2165394042 22494 1448 5840
5 1218632118 19273 10.0.0.2 4094 10.0.0 6 5720 3 3 1677881864 2165394042 22495 1448 5840
6 1218632118 106245 10 0.0.6 5720 10 0.0 2 4094 28727 1 2165394042 1677881864 28727 0 8688
7 1218632118 106277 10 0 0.6 5720 10.0 02 4094 1 2 2165394042 1677883312 28728 0 11584
8 1218632118 256771 10.0.0 2 4094 10.0.0.6 5720 4 4 1677883312 2165394042 22496 1448 5840
9 1218632118 257169 10.0.0 2 4094 10.0 06 5720 6 5 1677886208 2165394042 22498 1448 5840
10 1218632118 257170 10.0 02 4094 10 0 0.6 5720 7 6 1677887656 2165394042 22499 1448 5840
11 1218632118 334777 10.0.0.2 4094 10.0 06 5720 5 7 1677884760 2165394042 22497 1448 5840
12 1218632118 346230 10.0.0 6 5720 10.0 02 4094 2 3 2165394042 1677884760 28729 0 14480
13 1218632118 346257 10006 5720 10.0.0.2 4094 3 4 2165394042 1677884760 28730 0 14480
14 1218632118 346270 10.0.0 6 5720 10 0 0.2 4094 4 5 2165394042 1677884760 28731 0 14480
15 1218632118 346300 10.0 0.6 5720 10.0.0.2 4094 5 6 2165394042 1677889104 28732 0 17378
16 1218632118 496600 10 0.0.2 4094 10 0 0,6 5720 8 8 1677889104 2165394042 22500 1448 5840
17 1218632118 496965 10.0.0.2 4094 10 0.0 6 5720 9 9 1677890552 2165394042 22501 1448 5840
18 1218632118 496967 100-0.2 4094 10.0.0 6 5720 10 10 1677884760 2165394042 22502 1448 5840
19 1218632118 497365 10 0.0 2 4094 10.0.0 6 5720 11 11 1677892000 2165394042 22503 1448 5840
20 1218632118 586223 10 0.0.6 5720 10.0 0.2 4094 6 7 2165394042 1677890552 28733 0 20272
21 1218632118 586252 10.0.0 6 5720 10 0.0.2 4094 7 8 2165394042 1677892000 28734 0 23168
22 1218632118 586266 10 0.0 6 5720 10 0.0 2 4094 8 9 2165394042 1677892000 28735 0 23168
23 1218632118 586290 10.0.0 6 5720 10.0.0.2 4094 9 10 2165394042 1677893448 28736 0 26064
24 1218632118 736775 10.0-02 4094 10 0.0 6 5720 12 12 1677893448 2165394042 22504 1448 5840
25 1218632118 737158 10-00.2 4094 10.0.0 6 5720 13 13 1677894898 2165394042 22505 1448 5840
26 1218632118 737160 10 0 0.2 4094 10.0 0.6 5720 15 14 1677897792 2165394042 22507 1448 5840
27 1218632118 737162 100-0.2 4094 10.0.0 6 5720 16 15 1677899240 2165394042 22508 1448 5840
28 1218632118 814781 10 0.0.2 4094 10.0.0.6 5720 14 16 1677896344 2165394042 22506 1448 5840
29 1218632118 826217 10 0.0.6 5720 10 0.0.2 4094 10 11 2165394042 1677894896 28737 0 28960
30 1218632118 826245 10 0.0 6 5720 10 0 0.2 4094 11 12 2165394042 1677896344 28738 0 31856
31 1218632118 826262 10.0.0 6 5720 10.0.0.2 4094 12 13 2165394042 1677896344 28739 0 31856
32 1218632118 826274 10.0.0.6 5720 10.0.0 2 4094 13 14 2165394042 1677896344 28740 0 31856
33 1218632118 826320 10 0.0 6 5720 10 0.0 2 4094 14 15 2165394042 1677900688 28741 0 34752
34 1218632118 976731 100-0.2 4094 10.0.0 6 5720 17 17 1677900688 2165394042 22509 1448 5840
35 1216632118 977055 10 0.0 2 4094 10.0 0.6 5720 18 18 1677902136 2165394042 22510 1448 5840
36 1218632118 977056 10.0 02 4094 10.0.0 6 5720 19 19 1677903584 2165394042 22511 1448 5840
37
38

1218632118 977058 10.0.0.2 4094 10.0 0.6 5720 21 20 1677906480 2165394042 22513 1448 5840

39
1218632118 977454 10.0 0.2 4094 10.0 0.6 5720 23 21 1677909376 2165394042 22515 1448 5840

40
1218632119
1218632119

55079 10.0.0.2 4094 10.0 0.6 5720 20 22 1677905032 2165394042 22512 1448 5840

41 1218632119
55453 10.0 0.2 4094 10.0.0.6 5720 22 23 1677907928 2165394042 22514 1448 5840

42 1218632119
55455 10 0.0.2 4094 10006 5720 24 24 1677910824 2165394042 22516 1448 5840

43 1218632119
66215 10.0 06 5720 10.0.0.2 4094 15 16 2165394042 1677902136 28742 0 37648

44 1218632119
66245
66268

10006 5720 10.0 02 4094 16 17 2165394042 1677903584 28743 0 40544
45 1218632119 66285

10.0.0.6 5720 10.0 02 4094 17 18 2165394042 1677905032 28744 0 43440
46 1218632119 66298

10 0.0.6 5720 10 0.0.2 4094 18 19 2165394042 1677905032 28745 0 43440
47 1218632119 66327

10.0 06
1000

5720 10.0.0.2 4094 19 20 2165394042 1677905032 28746 0 43440
48 12186321 19 66340 6

10 00 6
5720 10.0 02 4094 20 21 2165394042 1677907928 28747 0 46336

49 1218632119 66353 . 0 100
5720 10002

. 4094 21 22 2165394042 1677910824 28748 0 49232
50 1218632119 216798 - .6 10002

5720 10.0 0.2 4094 22 23 2165394042 1677912272 28749 0 52128
51 1218632119 216807 02 10 0

4094 10 006 5720 25 25 1677912272 2165394042 22517 1446 5840
52 1218632119 217149 . - 10 0 02

4094 10.0.0.6 5720 26 26 1677913720 2165394042 22518 1448 5840
53 1218632119 217151 . 10 00 2

4094 10006 5720 27 27 1677915168 2165394042 22519 1448 5840
54 1218632119 217152 . 0 2 100

4094 10.0 0.6 5720 28 28 1677916616 2165394042 22520 1448 5840
55 1218632119 217154 . - 10 002

4094 100 0,6 5720 29 29 1677918064 2165394042 22521 1448 5840
56 1218632119 217156 . 10.0 02

4094
4094

10 0.0 6 5720 30 30 1677919512 2165394042 22522 1448 5840
57 1218632119 217158 10.0-02 4094

100. ()6
10 0

5720 31 31 1677920960 2165394042 22523 1448 5840
58 1218632119 217549 10002 4094 - -06 1000

5720 32 32 1677905032 2165394042 22524 1448 5840
59 1218632119 217551 10.0 0.2 4094

6
10 00 6

5720 33 33 1677922408 2165394042 22525 1448 5840
60 1218632119 306211 10-0.06 5720 , 10 0 02

5720 34 34 1677923856 2165394042 22526 1448 5840
61 1218632119 306241 10006 5720 . 10 00 2

4094 23 24 2165394042 1677913720 28750 0 55024
62 1218632119 306264 10-00.6 5720 . 10 00 2

4094 24 25 2165394042 1677915168 28751 0 57920
63 1218632119 306287 10.0 0.6 5720 . 10 0 02

4094 25 26 2165394042 1677916616 28752 0 60816
64 1218632119 306311 10 0.0 6 5720 . - 10 0 0 2

4094 26 27 2165394042 1677918064 28753 0 63712

65 1218632119 306335 10.0.0.6 5720 . . 10.0.0 2
4094
4094

27 28 2165394042 1677919512 28754 0 65160

66 1218632119 306347 10.0 06 5720 . 10 0,0 2 4094
28 29 2165394042 1677920960 28755 0 65160

67 1218632119 306360 10.0.0 6 5720 . 100-0 2 4094
29 30 2165394042 1677922408 28756 0 65160

68 1218632119 306373 10006 5720 . 100-0.2 4094
30
31

31 2165394042 1677922408 28757 0 65160

69 1218632119 306384 10 0.0 6 5720 10,0.0,2 4094 32
32 2165394042 1677923856 28758 0 65160

70 1218632119 456629 10002 4094 100-0 6 5720 35
33 2165394042 1677925304 28759 0 65160

71 1218632119 457044 10.0.0.2 4094 . 10006 5720 38
35 1677925304 2165394042 22527 1448 5840

72 1218632119 457046 10 0.0.2 4094 10.0-06 5720 38
36
37

1677926752 2165394042 22528 1448 5840

73 1218632119 457444 10 0.0.2 4094 10.0-06 5720 39 38
1677929648 2165394042 22530 1448 5840

74 1218632119 457446 10.0.0 2 4094 10.0-06 5720 40 39
1677931096
167

2165394042 22531 1448 5840

75 1218632119 457448 10.0.0.2 4094 10-0.06 5720 41 40
7932544

1677933992
2165394042

165
22532 1448 5840

76 1218632119 457450 10.0 0.2 4094 10.0 06 5720 42 41 1677935440
2 394042
2165394042

22533
22534

1448
1448

5840
5840

77 1218632119 457452 10.0.0.2 4094 10.0.0 6 5720 43 42 1677936888 2165394042 22535 1448 5840
78 1218632119 457454 10 0.0.2 4094 10.0.0 6 5720 44 43 1677938336 2165394042 22536 1448 5840
79 1218632119 457456 10.0 0.2 4094 10.0.0 6 5720 45 44 1677939784 2165394042 22537 1448 5840
80 1218632119 457844 10.0.0.2 4094 10.0.0 6 5720 46 45 1677941232 2165394042 22538 1448 5840
81 1218632119 534869 10.0.0.2 4094 10 0.0 6 5720 37 46 1677928200 2165394042 22529 1448 5840
82 1218632119 546202 10.0.0 6 5720 10.0.0 2 4094 33 34 2185394042 1677926752 28760 0 65160
83 1218632119 546231 10.0 06 5720 10002 4094 34 35 2165394042 1677928200 28761 0 65160
84 1218632119 546248 10.0 0.6 5720 10.0.0.2 4094 35 36 2165394042 1677928200 28762 0 65160
85 1218632119 546260 10 0.0 6 5720 10-0.02 4094 36 37 2165394042 1677928200 28763 0 65160

86 1218632119 546270 10.0.0.6 5720 10 0.0.2 4094 37 38 2165394042 1677928200 28764 0 65160
87 1218632119 546281 10.0 06 5720 10.0.02 4094 38 39 2165394042 1677928200 28765 0 65160
88 1218632119 546292 10.0.0 6 5720 10.0.0.2 4094 39 40 2165394042 1677928200 28766 0 65160

264

A B C D E F G H 1 J K L MN 0
89 1218632119 546303 10-00-6 5720 10 0 0.2 4094 40 41 2165394042 1677928200 28767 0 65160

90 1218632119 546314 10.0.0 6 5720 10.0.0 2 4094 41 42 2165394042 1677928200 28768 0 65160

91 1218632119 546324 10.0.0 6 5720 10.0 02 4094 42 43 2165394042 1677928200 28769 0 65160
92 1218632119 546335 10.0.0 6 5720 10002 4094 43 44 2165394042 1677928200 28770 0 65160

93 1218632119 546363 10 0 0.6 5720 10002 4094 44 45 2165394042 1677942680 28771 0 65160

94 1218632119 696601 10.0 0.2 4094 10.0 06 5720 47 47 1677942680 2165394042 22539 1448 5840

95 1218632119 696939 10 0.0.2 4094 10006 5720 48 48 1677944128 2165394042 22540 1448 5840

96 1218632119 696941 10.0.0 2 4094 10.0 06 5720 49 49 1677945576 2165394042 22541 1448 5840

97 1218632119 696942 10.0.0 2 4094 10.0.0 6 5720 50 50 1677947024 2165394042 22542 1448 5840

98 1218632119 697338 10.0 0.2 4094 10006 5720 51 51 1677948472 2165394042 22543 1448 5840

99 1218632119 697339 10002 4094 10006 5720 52 52 1677949920 2165394042 22544 1448 5840

100 1218632119 697341 10.0 02 4094 10 0.0 6 5720 53 53 1677951368 2165394042 22545 1448 5840
101 1218632119 697343 10.0 0.2 4094 10006 5720 54 54 1677928200 2165394042 22546 1448 5840

102 1218632119 697345 10.0.0.2 4094 10006 5720 55 55 1677952816 2165394042 22547 1448 5840
103 1218632119 697738 10002 4094 10.0.0.6 5720 56 56 1677954264 2165394042 22548 1448 5840
104 1218632119 697740 10 0.0 2 4094 10 0.0 6 5720 57 57 1677955712 2165394042 22549 1448 5840
105 1218632119 786196 10.0 06 5720 10.0.0.2 4094 45 46 2165394042 1677944128 28772 0 65160
106 1218632119 786226 10.0 0.6 5720 10 0 0.2 4094 46 47 2165394042 1677945576 28773 0 65160
107 1218632119 786248 10.0 0.6 5720 10.0.0.2 4094 47 48 2165394042 1677947024 28774 0 65160
108 1218632119 786271 10.0.0.6 5720 10.0.0.2 4094 48 49 2165394042 1677948472 28775 0 65160
109 1218632119 786294 10 0 0.6 5720 10.0.0 2 4094 49 50 2165394042 1677949920 28776 0 65160
110 1218632119 786317 10 0.0 6 5720 10.0.0 2 4094 50 51 2165394042 1677951368 28777 0 65160
111 1218632119 786328 10.0.0.6 5720 10.0.0.2 4094 51 52 2165394042 1677952816 28778 0 65160
112 1218632119 786341 10 0.0 6 5720 10.0 02 4094 52 53 2165394042 1677952816 28779 0 65160
113 1218632119 786355 10.0 06 5720 10.0.0 2 4094 53 54 2165394042 1677954264 28780 0 65160
114 1218632119 786367 10.0 0.6 5720 10.0.0.2 4094 54 55 2165394042 1677955712 28781 0 65160
115 1218632119 786378 10.0.0.6 5720 10.0.0.2 4094 55 56 2165394042 1677957160 28782 0 65160
116 1218632119 936656 10.0.0.2 4094 10 0.0.6 5720 58 58 1677957160 2165394042 22550 1448 5840
117 1218632119 937033 10 0.0 2 4094 10 0 0.6 5720 59 59 1677958608 2165394042 22551 1448 5840
118 1218632119 937035 10.0.0.2 4094 10 0 0.6 5720 60 60 1677960056 2165394042 22552 1448 5840
119 1218632119 937037 10 0.0.2 4094 10 0 0.6 5720 61 61 1677961504 2165394042 22553 1448 5840
120 1218632119 937039 10.0.0 2 4094 10 0.0 6 5720 62 62 1677962952 2165394042 22554 1448 5840
121 1218632119 937433 10.0.0.2 4094 10.0.0 6 5720 63 63 1677964400 2165394042 22555 1448 5840
122 1218632119 937435 10 0.0 2 4094 10.0.0.6 5720 64 64 1677965848 2165394042 22556 1448 5840
123 1218632119 937437 10.0 0.2 4094 10.0.0.6 5720 65 65 1677967296 2165394042 22557 1448 5840
124 1218632119 937438 10 0.0.2 4094 10 0.0 6 5720 66 66 1677968744 2165394042 22558 1448 5840
125 1218632119 937527 10.0 0.2 4094 10.0.0 6 5720 67 67 1677970192 2165394042 22559 1448 5840
126 1218632119 937529 10 0.0.2 4094 10.0.0 6 5720 68 68 1677971640 2165394042 22560 1448 5840
127 1218632119 937531 10 0.0.2 4094 10.0 06 5720 69 69 1677973088 2165394042 22561 1448 5840
128 1218632119 937935 10 0 0.2 4094 10.0.0 6 5720 70 70 1677974536 2165394042 22562 1448 5840
129 1218632119 937937 10.0 0.2 4094 10 0.0.6 5720 71 71 1677975984 2165394042 22563 1448 5840
130 1218632119 937939 10.0 0.2 4094 10 0.0.6 5720 72 72 1677977432 2165394042 22564 1448 5840
131 1218632120 26191 10.0 06 5720 10 0.0.2 4094 56 57 2165394042 1677958608 28783 0 65160
132 1218632120 26219 10.0.0 6 5720 10.0.0.2 4094 57 58 2165394042 1677960056 28784 0 65160
133 1218632120 26242 10.0 06 5720 10 0.0 2 4094 58 59 2165394042 1677961504 28785 0 65160
134 1218632120 26265 10.0.0.6 5720 10.0.0.2 4094 59 60 2165394042 1677962952 28786 0 65160
135 1218632120 26288 10.0.0.6 5720 10.0.0 2 4094 60 61 2165394042 1677964400 28787 0 65160
136 1218632120 26309 10.0.0.6 5720 10.0.0.2 4094 61 62 2165394042 1677965848 28788 0 65160
137
138

1218632120
1218632120

26321 10 0.0 6 5720 10.0.0.2 4094 62 63 2165394042 1677967296 28789 0 65160

139 1218632120
26333
26344

10006 5720 10 0.0.2 4094 63 64 2165394042 1677968744 28790 0 65160

140 1218632120 26356
10 0.0 6 5720 10.0 0.2 4094 64 65 2165394042 1677970192 28791 0 65160

141 1218632120 26368
10 0.0 6
10 0 06

5720 10.0.0.2 4094 65 66 2165394042 1677971640 28792 0 65160
142 1218632120 26379 . 10 00 6

5720 10 0.0.2 4094 66 67 2165394042 1677973088 28793 0 65160
143 1218632120 26393 . 10006

5720
5720

10.0.0.2 4094 67 68 2165394042 1677974536 28794 0 65160
144 1218632120 62742 10.0 06 5720

10 0 0.2
10 0

4094 68 69 2165394042 1677977432 28795 0 65160
145 1218632120 176632 10.0 02 4094 . 0.2

10 0
4094 69 70 2165394042 1677978880 28796 0 65160

146 1218632120 177029 10002 4094 . 0.6
10 0 0

5720 73 73 1677978880 2165394042 22565 1448 5840
147 1218632120 177030 10002 4094 . 6

10006
5720 74 74 1677980328 2165394042 22566 1448 5840

148 1218632120 177032 10 0.0 2 4094 10 00 6
5720 75 75 1677981776 2165394042 22567 1448 5840

149 1218632120 177034 10 0.0 2 4094 . 1000 a
5720 76 76 1677983224 2165394042 22568 1448 5840

150 1218632120 177036 10.0.0.2 4094 . 08 10 0
5720 77 77 1677984672 2165394042 22569 1448 5840

151 1218632120 177038 10002 4094 . . 06 10 0
5720 78 78 1677986120 2165394042 22570 1448 5840

152 1218632120 177429 10.0.0.2 4094 . - 10c)06
5720 79 79 1677987568 2165394042 22571 1448 5840

153 1218632120 177431 10.0 0.2 4094 10.0 0 6
5720
5720

80 80 1677989016 2165394042 22572 1448 5840
154 1218632120 177433 100 0.2 4094 . . 10 0.0 6 5720

81 81 1677990464 2165394042 22573 1448 5840
155 1218632120 177434 10002 4094 . 10.0 06 5720

82 82 1677991912 2165394042 22574 1448 5840
156 1218632120 177436 100.0

.2 4094 10.0 06 5720
84
8

83 1677994808 2165394042 22576 1448 5840
157 1218632120 177438 10.0 0.2 4094 . 10.0 0 6 5720

5 84 1677996256 2165394042 22577 1448 5840
158 1218632120 177440 10.0.0.2 4094 . . 10.0.0.6 5720

86
87

85 1677997704 2165394042 22578 1448 5840
159 1218632120 177828 10.0.0 2 4094 10.0 06 5720 8

86 1677999152 2165394042 22579 1448 5840
160 1218632120 177830 10.0.0 2 4094 . 10 0.0.6 5720

8
89

87 1678000600 2165394042 22580 1448 5840

161 1218632120 177832 10.002 4094 10.0.0.6 5720 90
88 1678002048 2165394042 22581 1448 5840

162 1218632120 177833 10.0 02 4094 10.0.0.6 5720 91
89 1678003496 2165394042 22582 1448 5840

163 1218632120 177835 10.0 02 4094 10.0 06 5720 93
90 1678004944 2165394042 22583 1448 5840

164 1218632120 177837 10.0.0.2 4094 06 10.0 5720 94
91 1678007840 2165394042 22585 1448 5840

165 1216632120 177839 10.0.0.2 4094 . 10.0.0.6 5720 95
92
93

1678009288 2165394042 22586 1448 5840

166 1218632120 177841 10.0 0.2 4094 10 0.0 6 5720 96 94
1678010736 2165394042 22587 1448 5840

167 1218632120 178229 10.0.0.2 4094 10.0.0.6 5720 97 95
1678012184 2165394042 22588 1448 5840

168 1218632120 178232 10 0.0.2 4094 10006 5720 98 96
1678013632
1678015080

2165394042 22589 1448 5840

169 1218632120 178233 10.0.0.2 4094 10.0.0.6 5720 99 97 1678016528
2165394042
2165394042

22590
22591

1448
1448

5840
5840

170 1218632120 213222 10.0 0.2 4094 10.0.0.8 5720 100 98 1678017976 2165394042 22592 1448 5840
171 1218632120 213629 10.0.0.2 4094 10.0.0.6 5720 101 99 1678019424 2165394042 22593 1448 5840
172 1218632120 255385 10.0.0.2 4094 10.0.0.6 5720 83 100 1677993360 2165394042 22575 1448 5840
173 1218632120 255727 10.0.0.2 4094 10.0.0.6 5720 92 101 1678006392 2165394042 22584 1448 5840
174 1218632120 266257 10 0.0.6 5720 10.0.0.2 4094 70 71 2165394042 1677987568 28797 0 65160
175 1218632120 266275 10.0 0.6 5720 10.0.0.2 4094 71 72 2165394042 1677990464 28798 0 65160
176 1218632120 266289 10 0.0 6 5720 10.0.0.2 4094 72 73 2165394042 1677993360 28799 0 65160
177 1218632120 266303 10.0.0.6 5720 10.0.0.2 4094 73 74 2165394042 1677993360 28800 0 65160
178 1218632120 266315 10 0.0.6 5720 10.0 0.2 4094 74 75 2165394042 1677993360 28801 0 65160
179 1218632120 266326 10 0.0 6 5720 10.0.0.2 4094 75 76 2165394042 1677993360 28802 0 65160
180 1218632120 266337 10.0.0.6 5720 10.0.0.2 4094 76 77 2165394042 1677993360 28803 0 65160
181 1218632120 266348 10.0.0.6 5720 10.0.0 2 4094 77 78 2165394042 1677993360 28804 0 65160
182 1218632120 266359 10.0.0 6 5720 10.0.0.2 4094 78 79 2165394042 1677993360 28805 0 65160

183 1218632120 266370 10 0.0.6 5720 10.0 02 4094 79 80 2165394042 1677993360 28806 0 65180

184 1218632120 266381 10.0.0.6 5720 10 0.0.2 4094 80 81 2165394042 1677993360 28807 0 65160

265

A S C D E F G H I J K L MN 0
185 1218632120 266394 10 0 0.6 5720 10.0 0.2 4094 81 82 2165394042 1677993360 28808 0 65160

186 1218632120 266406 10006 5720 10 0 0.2 4094 82 83 2165394042 1677993360 28609 0 65160

187 1218632120 266416 10.0 0.6 5720 10 0.0.2 4094 83 84 2165394042 1677993360 28810 0 65160

188 1218632120 266427 10 0 0.6 5720 10.0.0.2 4094 84 85 2165394042 1677993360 28811 0 65160

189 1218632120 266437 10 0.0.6 5720 10.0.0.2 4094 85 86 2165394042 1677993360 28812 0 65160

190 1218632120 266448 10 0.0.6 5720 10 0.0.2 4094 86 87 2165394042 1677993360 28813 0 65160

191 1218632120 266459 10.0 06 5720 10.0 0.2 4094 87 88 2165394042 1677993360 28814 0 65160

192 1218632120 266470 10 0.0 6 5720 10.0 0.2 4094 88 89 2165394042 1677993360 28815 0 65160

193 1218632120 266481 10 0.0 6 5720 10.0.0.2 4094 89 90 2165394042 1677993360 28816 0 65160

194 1218632120 266496 10.0.0.6 5720 10.0 0.2 4094 90 91 2165394042 1678006392 28817 0 65160

195 1218632120 266509 10 0.0 6 5720 10.0 0.2 4094 91 92 2165394042 1678020872 28818 0 65160

196 1218632120 416704 10.0.0.2 4094 10.0.0.6 5720 102 102 1678020872 2165394042 22594 1448 5840

197 1218632120 417124 10.0.0.2 4094 10.0 0.6 5720 103 103 1678022320 2165394042 22595 1448 5840
198 1218632120 417126 10.0 0.2 4094 10.0.0.6 5720 104 104 1678023768 2165394042 22596 1448 5840
199 1218632120 417128 10 0.0.2 4094 10.0.0.6 5720 105 105 1678025216 2165394042 22597 1448 5840
200 1218632120 417130 10.0.0.2 4094 10.0.0.6 5720 106 106 1678026664 2165394042 22598 1448 5840
201 1218632120 417131 10.0.0.2 4094 10.0.0.6 5720 107 107 1678028112 2165394042 22599 1448 5840
202 1218632120 417133 10.0.0 2 4094 10.0 06 5720 108 108 1678029560 2165394042 22600 1448 5840
203 1218632120 417135 10 0.0 2 4094 10.0 06 5720 110 109 1678032456 2165394042 22602 1448 5840
204 1218632120 417525 10 0.0 2 4094 10.0.0.6 5720 111 110 1678033904 2165394042 22603 1448 5840
205 1218632120 417527 10 0.0 2 4094 10.0.0.6 5720 112 111 1678035352 2165394042 22604 1448 5840
206 1218632120 417528 10 0.0.2 4094 10.0.0.6 5720 113 112 1678036800 2165394042 22605 1448 5840
207 1218632120 417530 10.0 0.2 4094 10.0 0.6 5720 114 113 1678038248 2165394042 22606 1448 5840
208 1218632120 417532 10.0 0.2 4094 10.0.0.6 5720 115 114 1678039696 2165394042 22607 1448 5840
209 1218632120 417534 10 0 0.2 4094 10 0.0.6 5720 116 115 1678041144 2165394042 22608 1448 5840
210 1218632120 417536 10 0.0.2 4094 10.0.0 6 5720 117 116 1678042592 2165394042 22609 1448 5840
211 1218632120 417538 10 0.0.2 4094 10.0.0 6 5720 118 117 1678044040 2165394042 22610 1448 5840
212 1218632120 417924 10.0.0.2 4094 10-0.06 5720 119 118 1678045488 2165394042 22611 1448 5840
213 1218632120 417927 10.0.0.2 4094 10.0.0 6 5720 120 119 1678046936 2165394042 22612 1448 5840
214 1218632120 417929 10.0.0.2 4094 10.0 0.6 5720 121 120 1678048384 2165394042 22613 1448 5840
215 1218632120 417930 10.0.0.2 4094 10006 5720 122 121 1678049832 2165394042 22614 1448 5840
216 1218632120 417932 10.0.0.2 4094 10 0 0.6 5720 123 122 1677993360 2165394042 22615 1448 5840
217 1218632120 418323 10 0.0.2 4094 10 0.0 6 5720 124 123 1678051280 2165394042 22616 1448 5840
218 1218632120 418324 10.0.0.2 4094 10.0.0.6 5720 125 124 1678052728 2165394042 22617 1448 5840
219 1218632120 418326 10.0.0.2 4094 10.0 06 5720 126 125 1678054176 2165394042 22618 1448 5840
220 1218632120 418723 10.0 0.2 4094 10-0.06 5720 127 126 1678055624 2165394042 22619 1448 5840
221 1218632120 418724 10 0.0.2 4094 10.0 0.6 5720 128 127 1678057072 2165394042 22620 1448 5840
222 1218632120 418726 10 0.0.2 4094 10.0.0 6 5720 129 128 1678058520 2165394042 22621 1448 5840
223 1218632120 495077 10.0.0.2 4094 10.0 0.6 5720 109 129 1678031008 2165394042 22601 1448 5840
224 1218632120 506183 10.0.0 6 5720 10.0.0.2 4094 92 93 2165394042 1678022320 28819 0 65160
225 1218632120 506214 10.0.0.6 5720 10.0 0.2 4094 93 94 2165394042 1678023768 28820 0 65160
226 1218632120 506237 10.0 0.6 5720 10.0 0.2 4094 94 95 2165394042 1678025216 28821 0 65160
227
228

1218632120 506260 10.0.0.6 5720 10.0 0.2 4094 95 96 2165394042 1678026664 28822 0 65160

229
1218632120
1218632120

506284 10 0.0.6 5720 10.0.0.2 4094 96 97 2165394042 1678028112 28823 0 65160

230 1218632120
506308 10.0.0 6 5720 10.0.0.2 4094 97 98 2165394042 1678029560 28824 0 65160

231 1218632120
506320 10.0.0.6 5720 10.0.0.2 4094 98 99 2165394042 1678031008 28825 0 65160

232 1218632120
506335 10.0.0.6 5720 10.0.0.2 4094 99 100 2165394042 1678031008 28826 0 65160

233 1218632120
506346 10.0.0.6 5720 10.0.0.2 4094 100 101 2165394042 1678031008 28827 0 65160

234 1218632120
506358
506869

10.0 0.6 5720 10.0.0.2 4094 101 102 2165394042 1678031008 28828 0 65160
235 1218632120 506381

10.0.0 6 5720 10.0.0.2 4094 102 103 2165394042 1678031008 28829 0 65160
236 1218632120 506391

10 0.0 6 5720 10002 4094 103 104 2165394042 1678031008 28830 0 65160
237 1218632120 506403

10.0 06 5720 10.0.0.2 4094 104 105 2165394042 1678031008 28831 0 65160
238 1218632120 506414

10 0 0.6 5720 10.0 0.2 4094 105 106 2165394042 1678031008 28832 0 65160
239 1218632120 506425

10.0.0 6 5720 10.0 0.2 4094 106 107 2165394042 1678031008 28833 0 65160
240 1218632120 506436

10.0.0.6
lo 'o 0

5720 10.0 0.2 4094 107 108 2165394042 1678031008 28834 0 65160
241 1218632120 506460 6

10 0 06
5720 10 0.0.2 4094 108 109 2165394042 1678031008 28835 0 65160

242 3 1218632120 506460 . . 10 0 0 6
5720 10 0 0.2 4094 109 110 2165394042 1678031008 28836 0 65160

243 1218632120 506472 . . . 10 00 6
5720 10.0.0 2 4094 110 111 2165394042 1678031008 28837 0 65160

244 1218632120 506483 - - '0006
5720 1000.2 4094 111 112 2165394042 1678031008 28838 0 65160

245 1218632120 506496 10006
5720 10 0.0 2 4094 112 113 2165394042 1678031008 28839 0 65160

246 1218632120 506507 10 00 6
5720 10.0.0.2 4094 113 114 2165394042 1678031008 28840 0 65160

247 1218632120 506518 - . 10006
5720 10 00.2 4094 114 115 2165394042 1678031008 28841 0 65160

248 1218632120 506529 10.0.0.6
5720
5720

100-0.2 4094 115 116 2165394042 1678031008 28842 0 65160
249 1218632120 506541 10 0.0 6 5720

10.0.0 2 4094 116 117 2165394042 1678031008 28843 0 65160
250 1218632120 506552 10.0 06 5720

10.0.0.2 4094 117 118 2165394042 1678031008 28844 0 65160
251 1218632120 506568 10 0.0 6 5720

100-0.2 4094 118 119 2165394042 1678031008 28845 0 65160
252 1218632120 656660 10 0.0.2 4094

10 0.0 2
10 0

4094 119 120 2165394042 1678059968 28846 0 65160
253 1218632120 657019 10.0.0.2 4094 . 06 5720 130 130 1678059968 2165394042 22622 1448 5840
254 1218632120 657021 10 0.0 2 4094

10.0.0.6
10 0 0

5720 131 131 1678061416 2165394042 22623 1448 5840
255 1218632120 657023 10.0.0.2 4094 . .6 10 0

5720 132 132 1678062864 2165394042 22624 1448 5840
256 1218632120 657418 10.0 0.2 4094 .06 10 0

5720 133 133 1678064312 2165394042 22625 1448 5840
257 1218632120 657420 10 0.0 2 4094 . . 0.6

10 006
5720
57

134 134 1678065760 2165394042 22626 1448 5840

258 1218632120 657818 10.0 02 4094 . 10 0 06
20

57
135 135 1678067208 2165394042 22627 1448 5840

259 1218632120 657820 10 0.0.2 4094 . 10 0 06
20

5720
137 136 1678031008 2165394042 22629 1448 5840

260 1218632120 657822 10.0 0.2 4094 . - 10 00 6 5720
138
139

137 1678070104 2165394042 22630 1448 5840

261 1218632120 657824 10.0.0 2 4094 . . 10 00 6 5720 140
138 1678071552 2165394042 22631 1448 5840

262 1218632120 658218 10.0 0.2 4094 . 10 006 5720 141
139 1678073000 2165394042 22632 1448 5840

263 1218632120 658220 10.0 0.2 4094 . 10.0-06 5720 142
140
141

1678074448
16

2165394042 22633 1448 5840

264 1218632120 658222 10.0.0.2 4094 10.0.0 6 5720 143 142
78075896

1678077344
2165394042
2165394042

22634
6

1448 5840

265 1218632120 658224 10.0 0.2 4094 10 0 0.6 5720 144 143 1678078792 2165394042
35 22

22636
1448
1448

5840
5840

266 1218632120 658619 10.0.0.2 4094 10.0-06 5720 145 144 1678080240 2165394042 22637 1448 5840
267 1218632120 658620 10.0.0.2 4094 10.0.0.6 5720 146 145 1678081688 2165394042 22638 1448 5640
268 1218632120 658622 10.0.0.2 4094 10 0.0.6 5720 147 146 1678083136 2165394042 22639 1448 5840
269 1218632120 658624 10.0.0.2 4094 10.0.0.6 5720 148 147 1678084584 2165394042 22640 1448 5840
270 1218632120 735375 10.0.0.2 4094 10 0.0.6 5720 136 148 1678068656 2165394042 22628 1448 5840
271 1218632120 746174 10.0 0.6 5720 10.0.0.2 4094 120 121 2165394042 1678061416 28847 0 65160
272 1218632120 746202 10 0.0.6 5720 10.0 0.2 4094 121 122 2165394042 1678062864 28848 0 65160
273 1218632120 746225 10.0.0.6 5720 10.0.0.2 4094 122 123 2165394042 1678064312 28849 0 65160
274 1218632120 746247 10.0.0.6 5720 100.02 4094 123 124 2165394042 1678065760 28850 0 65160
275 1218632120 746270 10.0.0.6 5720 10.0.0 2 4094 124 125 2165394042 1678067208 28851 0 65160
276 1218632120 746293 10 0.0 6 5720 10.0.0.2 4094 125 126 2165394042 1678068656 28852 0 65160
277 1218632120 746305 10.0.0.6 5720 10 0.0 2 4094 126 127 2165394042 1678068656 28853 0 65160
278 1218632120 746320 10.0.0 6 5720 10.0.0.2 4094 127 128 2165394042 1678068656 28854 0 65160

279 1218632120 746331 10.0.0 6 5720 10.0.0.2 4094 128 129 2165394042 1678068656 28855 0 65160

280 1218632120 746342 10 0.0.6 5720 10.0.0.2 4094 129 130 2165394042 1678068656 28856 0 65160

266

A B C D E F G H I J K L MN 0
281 1218632120 746354 10.0.0 6 5720 10 0.0.2 4094 130 131 2165394042 1678068656 28857 0 65160

282 1218632120 746365 10.0 06 5720 10.0.0.2 4094 131 132 2165394042 1678068656 28858 0 65160

283 1218632120 746376 10006 5720 10002 4094 132 133 2165394042 1678068656 28859 0 65160

284 1218632120 746387 10.0.0 6 5720 10 0.0 2 4094 133 134 2165394042 1678068656 28860 0 65160

285 1218632120 746399 10.0 06 5720 10 0.0.2 4094 134 135 2165394042 1678068656 28861 0 65160

286 1218632120 746410 10.0 06 5720 10.0.0.2 4094 135 136 2165394042 1678068656 28862 0 65160

287 1218632120 746421 10 0 0.6 5720 10.0.0.2 4094 136 137 2165394042 1678068656 28863 0 65160

288 1218632120 746432 10 0.0 6 5720 10.0.0.2 4094 137 138 2165394042 1678068656 28864 0 65160

289 1218632120 746447 10.0 06 5720 10.0.0 2 4094 138 139 2165394042 1678086032 28865 0 65160
290 1218632120 896630 10.0.0.2 4094 10 0.0 6 5720 149 149 1678086032 2165394042 22641 1448 5840
291 1218632120 897014 10.0 0.2 4094 10.0.0 6 5720 150 150 1678087480 2165394042 22642 1448 5840

292 1218632120 897016 10.0 0.2 4094 10.0.0.6 5720 151 151 1678088928 2165394042 22643 1448 5840
293 1218632120 897017 10 0.0.2 4094 10.0.0.6 5720 152 152 1678090376 2165394042 22644 1448 5840
294 1218632120 897019 10.0.0.2 4094 10.0.0.6 5720 153 153 1678091824 2165394042 22645 1448 5840
295 1218632120 897021 10 0.0 2 4094 10.0.0 6 5720 154 154 1678093272 2165394042 22646 1448 5840
296 1218632120 897023 10002 4094 10.0 0.6 5720 155 155 1678094720 2165394042 22647 1448 5840
297 1218632120 897413 10 0.0.2 4094 10.0.0.6 5720 156 156 1678096168 2165394042 22648 1448 5840
298 1218632120 897415 10 0 0.2 4094 10.0 06 5720 157 157 1678097616 2165394042 22649 1448 5840
299 1218632120 897416 10.0 0.2 4094 10.0.0 6 5720 158 158 1678099064 2165394042 22650 1448 5840
300 1218632120 897418 10.0.0.2 4094 10.0.0.6 5720 159 159 1678100512 2165394042 22651 1448 5840
301 1218632120 897420 10 0.0.2 4094 10 0.0 6 5720 160 160 1678101960 2165394042 22652 1448 5840
302 1218632120 897422 10.0.0.2 4094 10006 5720 161 161 1678103408 2165394042 22653 1448 5840
303 1218632120 897815 10.0.0.2 4094 10 0 0.6 5720 162 162 1678104856 2165394042 22654 1448 5840
304 1218632120 897817 10 0 0.2 4094 10.0.0.6 5720 163 163 1678106304 2165394042 22655 1448 5840
305 1218632120 897819 10.0 0.2 4094 10.0.0 6 5720 165 164 1678109200 2165394042 22657 1448 5840
306 1218632120 897821 10.0 0.2 4094 10.0 0.6 5720 166 165 1678110648 2165394042 22658 1448 5840
307 1218632120 897822 10 0 0.2 4094 10.0 0.6 5720 167 166 1678112096 2165394042 22659 1448 5840
308 1218632120 897824 10.0 0.2 4094 10.0.0.6 5720 168 167 1678113544 2165394042 22660 1448 5840
309 1218632120 898213 10 0 0.2 4094 10.0 06 5720 169 168 1678114992 2165394042 22661 1448 5840
310 1218632120 898214 10.0 02 4094 10.0.0.6 5720 170 169 1678116440 2165394042 22662 1448 5840
311 1218632120 898216 10 0 0.2 4094 10.0.0.6 5720 171 170 1678117888 2165394042 22663 1448 5840
312 1218632120 898218 10 0 0.2 4094 10.0 0.6 5720 172 171 1678119336 2165394042 22664 1448 5840
313 1218632120 898220 10 0.0 2 4094 10.0 0.6 5720 173 172 1678120784 2165394042 22665 1448 5840
314 1218632120 975584 10.0.0.2 4094 10.0.0.6 5720 164 173 1678107752 2165394042 22656 1448 5840
315 1218632120 986171 10.0 0.6 5720 10 0.0.2 4094 139 140 2165394042 1678087480 28866 0 65160
316 1218632120 986201 10.0.0.6 5720 10.0 0.2 4094 140 141 2165394042 1678088928 28867 0 65160
317 1218632120 986224 10.0.0.6 5720 10.0 0.2 4094 141 142 2165394042 1678090376 28868 0 65160
318 1218632120 986264 10.0 0.6 5720 10.0 0.2 4094 142 143 2165394042 1678091824 28869 0 65160
319 1218632120 986289 10.0.0 6 5720 10.0.0 2 4094 143 144 2165394042 1678093272 28870 0 65160
320 1218632120 986312 10.0 06 5720 10.0 02 4094 144 145 2165394042 1678094720 28871 0 65160
321
322

1218632120
1218

986325 10 0.0 6 5720 10.0 02 4094 145 146 2165394042 1678096168 28872 0 65160

323
632120

1218632120
986337 10.0.0 6 5720 10 0.0 2 4094 146 147 2165394042 1678097616 28873 0 65160

324 1218632120
986348
986360

10.0.0 6
1

5720 10.0.0 2 4094 147 148 2165394042 1678099064 28874 0 65160
325 1218632120 986371

0 0.0.6 5720 10.0 0.2 4094 148 149 2165394042 1678100512 28875 0 65160
326 1218632120 986382

10006 5720 10 0.0.2 4094 149 150 2165394042 1678101960 28876 0 65160
327 1218632120 986393

10 0.0 6 5720 10.0.0.2 4094 150 151 2165394042 1678103408 28877 0 65160
328 1218632120 986404

100-0.6 5720 10 0 0.2 4094 151 152 2165394042 1678104856 28878 0 65160
329 1218632120 986422

10.0 0.6
10006

5720 10.0.0.2 4094 152 153 2165394042 1678106304 28879 0 65160
330 1218632120 986434 10 00 6

5720 10.0 0.2 4094 153 154 2165394042 1678107752 28880 0 65160
331 1218632120 986446 . . 10006

5720 10.0.0 2 4094 154 155 2165394042 1678107752 28881 0 65160
332 1218632120 986456 10006

5720
5720

10.0.0 2 4094 155 156 2165394042 1678107752 28882 0 65160
333 121 8632120 986467 10006 5720

10.0.0.2 4094 156 157 2165394042 1678107752 28883 0 65160
334 121 8632120 986478 1 0

.0 0
.6 5720

10.0-02 4094 157 158 2165394042 1678107752 28884 0 65160
335 121 8632120 986489 1 0 0 0 6 5720

10 0 0.2
100

4094 158 159 2165394042 1678107752 28885 0 65160
336 121 8632120 986500 10 0.0 6 5720

02
10,002

4094 159 160 2165394042 1678107752 28886 0 65160
337 1218632120 986511 10.0.0 6 5720 . 10 002

4094 160 161 2165394042 1678107752 28887 0 65160
338 1218632120 986526 10.0.0.6 5720 . 10 00 2

4094 161 162 2165394042 1678107752 28888 0 65160
339 1218632121 136587 10.0.0.2 4094 . . 10 00 6

4094 162 163 2165394042 1678122232 28889 0 65160
340 1218632121 136945 10.0 02 4094 . 10 006

5720 174 174 1678122232 2165394042 22666 1448 5840
341 1218632121 137310 100-0.2 4094 10006

5720 176 175 1678125128 2165394042 22668 1448 5840
342 1218632121 137312 10 0.0.2 4094 10 0 06

5720 177 176 1678126576 2165394042 22669 1448 5840
343 1218632121 137314 10 0 0.2 4094 . . 10.0.0 6

5720
5720

178 177 1678128024 2165394042 22670 1448 5640
344 1218632121 137316 10.0.0.2 4094 . 10.0.0 6 5720

179 178 1678129472 2165394042 22671 1448 5840
345 1218632121 137318 10.0.0.2 4094 . 10.0.0 6 5720

180 179 1678130920 2165394042 22672 1448 5840
346 1218632121 137320 1000.2 4094 . 10006 5720

181 180 1678132368 2165394042 22673 1448 5840
347 1218632121 137322 10 0.0 2 4094 10.0 06 5720

182 181 1678133816 2165394042 22674 1448 5840
348 1218632121 137324 10.0.0.2 4094 10.0.0 6 5720

183 182 1678135264 2165394042 22675 1448 5840
349 1218632121 137708 10.0 0.2 4094 . 10006 5720

184 183 1678136712 2165394042 22676 1448 5840
350 1218632121 137710 10 0 0.2 4094 10.0.0 6 5720

185
186

184 1678138160 2165394042 22677 1448 5840
351 1218632121 137712 10.0.0.2 4094 10 0.0.6 5720 187

185 1678139608 2165394042 22678 1448 5840
352 1218632121 137714 10.0.0.2 4094 10.0.0.6 5720 188

186 1678141056 2165394042 22679 1448 5840
353 1218632121 137716 10.0.0.2 4094 10-0.06 5720 189

187 1678142504 2165394042 22680 1448 5840
354 1218632121 137718 10.0.0.2 4094 10-00.6 5720 190

188 1678143952 2165394042 22681 1448 5840

355 1218632121 137720 10.0.0.2 4094 10.0.0 6 5720 191
189 1678145400 2165394042 22682 1448 5840

356 1218632121 137802 10.0.0.2 4094 . 10.0.0 6 5720 192
190
191

1678146848 2165394042 22683 1448 5840
357 1218632121 137805 10 0.0.2 4094 10.0.0.6 5720 193 192

1678148296
1678149744

2165394042 22684 1448 5840

358 1218632121 138208 10.0 0.2 4094 10.0 06 5720 195 193 1678152640
2165394042 22685 1448 5840

359 1218632121 138210 10.0.0.2 4094 10.0.0.6 5720 196 194 1678154088
2165394042
2165394042

22687
2 6

1448 5840

360 1218632121 138212 10.0.0.2 4094 10.0.0.6 5720 197 195 1678155536 2165394042
2 88

22689
1448
1448

5840

361 1218632121 138214 10.0.0.2 4094 10.0.0.6 5720 198 196 1678156984 2165394042 22690 1448
5840
5840

362 1218632121 138216 10.0.0.2 4094 10 0.0 6 5720 199 197 1678158432 2165394042 22691 1448 5840
363 1218632121 138218 10.0 0.2 4094 10.0.0 6 5720 200 198 1678159880 2165394042 22692 1448 5840
364 1218632121 138219 10 0.0.2 4094 10006 5720 201 199 1678161328 2165394042 22693 1448 5840
365 1218632121 138610 10.0.0 2 4094 10.0.0.6 5720 202 200 1678162776 2165394042 22694 1448 5840
366 1218632121 138612 10.0.0.2 4094 10.0 06 5720 203 201 1678164224 2165394042 22695 1448 5840
367 1218632121 138614 10.0.0.2 4094 10.0.0.6 5720 204 202 1678165672 2165394042 22696 1448 5840
368 1218632121 138616 10 0.0.2 4094 10.0.0.6 5720 205 203 1678167120 2165394042 22697 1448 5840
369 1218632121 138618 10.0.0.2 4094 10.0.0 6 5720 206 204 1678168568 2165394042 22698 1448 5840
370 1218632121 136620 10.0.0.2 4094 10.0.0.6 5720 207 205 1678170016 2165394042 22699 1448 5840
371 1218632121 138622 10 0.0.2 4094 10.0.0.6 5720 208 206 1678171464 2165394042 22700 1448 5840
372 1218632121 139009 10 0.0 2 4094 10.0.0.6 5720 209 207 1678172912 2165394042 22701 1448 5840
373 1218632121 139012 10.0.0.2 4094 10.0.0.6 5720 210 208 1678174360 2165394042 22702 1448 5840

374 1218632121 139014 10.0.0.2 4094 10,0.0 6 5720 211 209 1678175808 2165394042 22703 1448 5840

375 1218632121 214756 10 0.0.2 4094 10.0.0.6 5720 175 210 1678123680 2165394042 22667 1448 5840

376 1218632121 215895 10.0.0.2 4094 10.0.0.6 5720 194 211 1678151192 2165394042 22686 1448 5840

267

A 8 C O E F G H 1 J K L MN 0
377 1218632121 226168 10 0 0.6 5720 10.0.0.2 4094 163 164 2165394042 1678123680 28890 0 65160

378 1218632121 226191 10006 5720 10.0.0.2 4094 164 165 2165394042 1678123680 28891 0 65160

379 1218632121 226203 10006 5720 10.0 0.2 4094 165 166 2165394042 1678123680 28892 0 65160

380 1218632121 226214 10 0.0 6 5720 10.0.0.2 4094 166 167 2165394042 1678123680 28893 0 65160

381 1218632121 226225 10 0 0.6 5720 10 0.0.2 4094 167 168 2165394042 1678123680 28894 0 65160

382 1218632121 226237 10.0.0.6 5720 10.002 4094 168 169 2165394042 1678123680 28895 0 65160

383 1218632121 226248 10 0.0 6 5720 10.0 0.2 4094 169 170 2165394042 1678123680 28896 0 65160

384 1218632121 226259 10 0.0 6 5720 10.0.0.2 4094 170 171 2165394042 1678123680 28897 0 65160

385 1218632121 226270 10 0 0.6 5720 10 0 02 4094 171 172 2165394042 1678123680 28898 0 65160

386 1218632121 226281 10 0.0 6 5720 10.0 0.2 4094 172 173 2165394042 1678123680 28899 0 65160
387 1218632121 226292 10.0.0 6 5720 10.0.0.2 4094 173 174 2165394042 1678123680 28900 0 65160
388 1218632121 226303 10.0 06 5720 10.0.0.2 4094 174 175 2165394042 1678123680 28901 0 65160
389 1218632121 226314 10.0 06 5720 10.0.0.2 4094 175 176 2165394042 1678123680 28902 0 65160
390 1218632121 226326 10.0 06 5720 10.0.0.2 4094 176 177 2165394042 1678123680 28903 0 65160
391 1218632121 226339 10.0.0 6 5720 10 0.0.2 4094 177 178 2165394042 1678123680 28904 0 65160
392 1218632121 226350 10006 5720 10.0.02 4094 178 179 2165394042 1678123680 28905 0 65160
393 1218632121 226361 10.0.0 6 5720 10.00-2 4094 179 180 2165394042 1678123680 28906 0 65160
394 1218632121 226372 10.0-06 5720 10.00-2 4094 180 181 2165394042 1678123680 28907 0 65160
395 1218632121 226383 10 0.0 6 5720 10.0.0.2 4094 181 182 2165394042 1678123680 28908 0 65160
396 1218632121 226397 10.0.0.6 5720 10.0.0.2 4094 182 183 2165394042 1678123680 28909 0 65160
397 1218632121 226409 10.0.0.6 5720 10.0.0.2 4094 183 184 2165394042 1678123680 28910 0 65160
398 1218632121 226420 10.0.0 6 5720 10 0.0.2 4094 184 185 2165394042 1678123680 28911 0 65160
399 1218632121 226431 10 0.0 6 5720 10.0.0.2 4094 185 186 2165394042 1678123680 28912 0 65160
400 1218632121 226442 10.0.0.6 5720 10.0 0.2 4094 186 187 2165394042 1678123680 28913 0 65160
401 1218632121 226453 10.0.0.6 5720 10.0.0.2 4094 187 188 2165394042 1678123680 28914 0 65160
402 1218632121 226465 10.0.0 6 5720 10.0.0.2 4094 188 189 2165394042 1678123680 28915 0 65160
403 1218632121 226476 10 0.0 6 5720 10.0.0.2 4094 189 190 2165394042 1678123680 28916 0 65160
404 1218632121 226487 10.0.0 6 5720 10.0.0.2 4094 190 191 2165394042 1678123680 28917 0 65160
405 1218632121 226498 10.0.0 6 5720 10.0.0.2 4094 191 192 2165394042 1678123680 28918 0 65160
406 1218632121 226509 10.0.0 6 5720 10.0.0.2 4094 192 193 2165394042 1678123680 28919 0 65160
407 1218632121 226520 10.0.0 6 5720 10.0.0.2 4094 193 194 2165394042 1678123680 28920 0 65160
408 1218632121 226531 10 0 0.6 5720 10.0.0.2 4094 194 195 2165394042 1678123680 28921 0 65160
409 1218632121 226542 10.0.0 6 5720 10.0 0.2 4094 195 196 2165394042 1678123680 28922 0 65160
410 1218632121 226553 10.0.0 6 5720 10.0.0.2 4094 196 197 2165394042 1678123680 28923 0 65160
411 1218632121 226565 10.0 0.6 5720 10.0.0.2 4094 197 198 2165394042 1678123680 28924 0 65160
412 1218632121 226577 10.0.0 6 5720 10.0.0.2 4094 198 199 2165394042 1678123680 28925 0 65160
413 1218632121 226609 10 0.0.6 5720 10.0.0.2 4094 199 200 2165394042 1678151192 28926 0 65160
414 1218632121 226625 10.0.0 6 5720 10.0.0.2 4094 200 201 2165394042 1678177256 28927 0 65160
415 1218632121 376702 10.0.0.2 4094 10.0.0.6 5720 212 212 1678177256 2165394042 22704 1448 5840
416 1218632121 377106 10.0 0.2 4094 10.0.0 6 5720 213 213 1678178704 2165394042 22705 1448 5840
417
418

1218632121
1218632121

377108 10.0.02 4094 10.0.0 6 5720 214 214 1678180152 2165394042 22706 1448 5840

419 1218632121
377110
377112

10.0.0.2
1

4094 10.0.0 6 5720 215 215 1678181600 2165394042 22707 1448 5840
420 1218632121 377505

0.0 02
1

4094 10.0.0 6 5720 216 216 1678183048 2165394042 22708 1448 5840
421 1218632121 377508

0 0.0.2 4094 10.0.0 6 5720 217 217 1678184496 2165394042 22709 1448 5840
422 1218632121 377510

10 0.0.2 4094 10 0.0 6 5720 218 218 1678185944 2165394042 22710 1448 5840
423 1218632121 377905

10 0.0.2 4094 10-0.06 5720 219 219 1678187392 2165394042 22711 1448 5840
424 1218632121 377907

10 0.0.2 4094 10.0.0 6 5720 220 220 1678123680 2165394042 22712 1448 5840
425 1218632121 378452

10 0.0.2 4094 10.0.0.6 5720 221 221 1678151192 2165394042 22713 1448 5840
426 1218632121 378606

10 0.0.2
10 0 0 2

4094
4

10.0.0 6 5720 222 222 1678188840 2165394042 22714 1448 6840
427 1218632121 466157 . . . 10006

094 10.0.0.6 5720 223 223 1678190288 2165394042 22715 1448 5840
428 1218632121 466187 10006

5720
5720

10 002 4094 201 202 2165394042 1678178704 28928 0 65160
429 1218632121 466210 10006 5720

10 0.02
1 4094 202 203 2165394042 1678180152 28929 0 65160

430
431

1218632121
1216632121

466232 10.006 5720
1000
10 002

4094
409

203 204 2165394042 1678181600 28930 0 65160

432 121 8632121 466278
466254 10 0 0.6 5720 . 10

. 0.0 2
4

4094
204
205

205 2165394042 1678183048 28931 0 65160

433 1216632121 466290
1()-006 6 5720 100 0.2 4094 206

206 2165394042 1678184496 28932 0 65160

434 121 8632121 4663 03
5720 10.0.0.2 4094 207

207 2165394042 1678185944 28933 0 65160

435 1216632121 466316
10 0.0.6 5720 10.0 0.2 4094 208

208 2165394042 1678187392 28934 0 65160

436 1218632121 466329
10.0 06
10 00 6

5720 10002 4094 209
209
210

2165394042 1678188840 28935 0 65160

437 121 8632121 466342 . . 10.00.6
5720
5720

10-00.2
10 0 02

4094 210 211
2165394042
2165394042

1678188840
1678188840

28936
28937

0
0

65160
65160

438 121 B632121 466353 10.0.0.6 5720 . . 10.0 0.2
4094
4094

211 212 2165394042 1678190288 28938 0 65160
439 1218632121 616651 10-00.2 4094 10-00.6 5720

212 213 2165394042 1678191736 28939 0 65160
440 1218632121 616662 10.0.0.2 4094 10 0 0.6 5720

224 224 1678191736 2165394042 22716 1448 5840
441 1218632121 616999 10.0 0.2 4094 10 0.0.6 5720

225
226

225 1678193184 2165394042 22717 1448 5840
442 1218632121 617002 10 0.0 2 4094 10-0-06 5720 228

226 1678194632 2165394042 22718 1448 5840
443 1218632121 617399 10.0.0.2 4094 10-0-06 5720 229

227 1678197528 2165394042 22720 1448 5840
444 1218632121 617401 10.0.0.2 4094 10.0.0 6 5720 230

228 1678198976 2165394042 22721 1448 5840
445 1218632121 617403 100.0.2 4094 10.0.0.6 5720 231

229 1678200424 2165394042 22722 1448 5840
446 1218632121 617405 10.0.0.2 4094 10 0.0 6 5720 232

230 1678201872 2165394042 22723 1448 5840
447 1218632121 617799 10.0.0.2 4094 10 006 5720 234

231 1678203320 2165394042 22724 1448 5840
448 1218632121 617801 10.0 0.2 4094

.
100.0.6 5720 235

232 1678206216 2165394042 22726 1448 5840
449 1218632121 617803 10.0 0.2 4094 10.0 0.6 5720 236

233 1678207664 2165394042 22727 1448 5840
450 1218632121 617804 10.0.0.2 4094 10.00-6 5720 237

234 1678209112 2165394042 22728 1448 5840
451 1218632121 695089 10.0.0.2 4094 10.0.0.6 5720 227

235
236

1678210560 2165394042 22729 1448 5840
452 1218632121 695498 10.0.0.2 4094 10.0.0.6 5720 233 237

1678196080
1678204768

2165394042 22719 1448 5840
453 1218632121 706151 10.0.0.6 5720 10.0.0.2 4094 213 214 2165394042

2165394042 22725 1448 5840
454 1218632121 706180 10.0.0.6 5720 10.0.0.2 4094 214 215 2165394042

1678193184 28940 0 65160
455 1218632121 706204 10.0.0.6 5720 10.0.0.2 4094 215 216 21 65394042

1678194632
1

28941 0 65160

456 1218632121 706221 10.0 0.6 5720 10.0.0.2 4094 216 217 21 65394042
678196080

1678196080
28942 0 65160

457 1218632121 706232 10.0.0 6 5720 10.0.0.2 4094 217 218 2165394042 167819W80
28943
28944

0
0

65160

458 1218632121 706243 10.0.0.6 5720 10.0.0.2 4094 218 219 2165394042 1678196080 28945
65160

459 1218632121 706254 10.0.0.6 5720 10.0.0.2 4094 219 220 2165394042 1678196080 28946
0
0

65160

460 1218632121 706265 10.0.0.6 5720 10.0.0.2 4094 220 221 2165394042 1678196080 28947 0
65160

461 1218632121 706277 10.0.0 6 5720 10.0.0.2 4094 221 222 2165394042 1678196080 28948 0
65160

462 1218632121 706288 10 0.0.6 5720 10.0.0.2 4094 222 223 2165394042 1678196080 28949 0
65160
65160

463 1218632121 706299 10 0.0 6 5720 10.0.0.2 4094 223 224 2165394042 1678196080 28950 0 65160
464 1218632121 706309 10.0.0.6 5720 10.0.0.2 4094 224 225 2165394042 1678196080 28951 0 65160
465 1218632121 706338 10 0.0.6 5720 10.0.0.2 4094 225 226 2165394042 1678204768 28952 0 65160
466 1218632121 706351 10.0.0 6 5720 10.0 0.2 4094 226 227 2165394042 1678212008 28953 0 65160
467 1218632121 856602 10.0.0.2 4094 10.0.0 6 5720 238 238 1678212008 2165394042 22730 1448 5840
468 1218632121 856614 10.0 0.2 4094 10.0.0.6 5720 239 239 1678213456 2165394042 22731 1448 5840
469 1218632121 856994 ZO 0.2 4094 10.0.0.6 5720 240 240 1678214904 2165394042 22732 1448 5840

470 1218632121 856996 10.0.0.2 4094 10 0.0 6 5720 241 241 1678216352 2165394042 22733 1448 5840
471 1218632121 656997 10.0.0.2 4094 10.0 06 5720 242 242 1678217800 2165394042 22734 1448 5840

472 1218632121 857393 10.0.0.2 4094 10 0.0.6 5720 243 243 1678219248 2165394042 22735 1448 5840

268

A B G D E F 0 N 1 J K L MN 0
473 1218632121 857395 10002 4094 10006 5720 244 244 1676220696 2165394042 22736 1448 5840
474 1218632121 857396 10002 4094 10006 5720 245 245 1678222144 2165394042 22737 1448 5840
475 1218632121 857398 10002 4094 10006 5720 246 246 1678223592 2165394042 22738 1448 5840
476 1218632121 857400 10002 4094 10 006 5720 247 247 1678225040 2165394042 22739 1448 5840
477 1218632121 857794 10002 4094 10006 5720 248 248 1678226488 2165394042 22740 1448 5840
478 1218632121 857795 10002 4094 10006 5720 249 249 1678227936 2165394042 22741 1448 5840
479 1218632121 857797 10002 4094 10006 5720 250 250 1678229384 2165394042 22742 1448 5840
480 1218632121 857799 10002 4094 10006 5720 251 251 1678230832 2165394042 22743 1448 5840
481 1218632121 857801 10002 4094 10006 5720 252 252 1678232280 2165394042 22744 1448 5840
482 1218632121 857803 10.0 02 4094 10006 5720 253 253 1678233728 2165394042 22745 1448 5840
483 1218632121 857805 10002 4094 10006 5720 254 254 1678235176 2165394042 22746 1448 5840 484 1218632121 858293 10 0 0.2 4094 10.0 06 5720 255 255 1678236624 2165394042 22747 1448 5840 485 1218632121 858295 10 0 0.2 4094 10006 5720 256 256 1678238072 2165394042 22748 1448 5840 486 1218632121 946147 10006 5720 10002 4094 227 228 2165394042 1678213456 28954 0 65160 487 1218632121 946177 10006 5720 10.0 02 4094 228 229 2165394042 1678214904 28955 0 65160 488 1218632121 946200 10006 5720 10002 4094 229 230 2165394042 1678216352 28956 0 65160 489 1218632121 946224 10006 5720 10002 4094 230 231 2165394042 1678217800 28957 0 65160 490 1218632121 946247 10 0.0 6 5720 10.0 02 4094 231 232 2165394042 1678219248 28958 0 65160 491 1218632121 946270 10006 5720 10.0 02 4094 232 233 2165394042 1678220696 28959 0 65160 492 1218632121 946282 10006 5720 10.0 02 4094 233 234 2165394042 1678222144 28960 0 65160
493 1218632121 946294 10006 5720 10.0 0.2 4094 234 235 2165394042 1678223592 28961 0 65160
494 1218632121 946305 10.0.0 6 5720 10.0.0 2 4094 235 236 2165394042 1678225040 28962 0 65160
495 1218632121 946316 10.0 06 5720 10.0 0.2 4094 236 237 2165394042 1678226488 28963 0 65160
496 1218632121 946327 10006 5720 10.0 0.2 4094 237 238 2165394042 1678227936 28964 0 65160
497 1218632121 946338 10 0 0.6 5720 10-00-2 4094 238 239 2165394042 1678229384 28965 0 65160
498 1218632121 946350 10.0 0.6 5720 10.0 0.2 4094 239 240 2165394042 1678230832 28966 0 65160
499 1218632121 946363 10.0.0 6 5720 10 0.0.2 4094 240 241 2165394042 1678233728 28967 0 65160
500 1218632121 946377 10.0.0.6 5720 10.0.0.2 4094 241 242 2165394042 1678236624 28968 0 65160
501 1218632121 946390 10.0 06 5720 10.0.0 2 4094 242 243 2165394042 1678239520 28969 0 65160
502 1218632122 96677 10.0.0.2 4094 10.0.0 6 5720 257 257 1678239520 2165394042 22749 1448 5840
503 1218632122 96692 10 0 0.2 4094 10006 5720 258 258 1678240968 2165394042 22750 1448 5840
504 1218632122 97089 10 0 0.2 4094 10 0.0.6 5720 259 259 1678242416 2165394042 22751 1448 5840
505 1218632122 97091 10.0.0.2 4094 10 0.0 6 5720 260 260 1678243864 2165394042 22752 1448 5840
506 1218632122 97093 10.0.0.2 4094 10.0 06 5720 261 261 1678245312 2165394042 22753 1448 5840
507 1218632122 97095 10.0.0.2 4094 10.0.0.6 5720 262 262 1678246760 2165394042 22754 1448 5840
508 1218632122 97097 10.0.0.2 4094 10.0.0.6 5720 263 263 1678248208 2165394042 22755 1448 5840
509 1218632122 97099 10.0.0.2 4094 10 0.0 6 5720 264 264 1678249656 2165394042 22756 1448 5840
510 1218632122 97490 10.0 0.2 4094 10.0.0 6 5720 265 265 1678251104 2165394042 22757 1448 5840
511 1218632122 97492 10.0.0.2 4094 10.0.0.6 5720 266 266 1678252552 2165394042 22758 1448 5840
512 1218632122 97494 10.0 02 4094 10 0.0 6 5720 268 267 1678255448 2165394042 22760 1448 5840
513 1218632122 97496 10.0.0.2 4094 10 0.0 6 5720 269 268 1678256896 2165394042 22761 1448 5840
514 1218632122 97498 10.0 0.2 4094 10-0-06 5720 271 269 1678259792 2165394042 22763 1448 5840
515 1218632122 97500 10 0.0.2 4094 10.0.0.6 5720 272 270 1678261240 2165394042 22764 1448 5840
516 1218632122 97889 10 0 0.2 4094 10006 5720 273 271 1678262688 2165394042 22765 1448 5840
517 1218632122 97891 10.0.0.2 4094 10.0.0.6 5720 274 272 1678264136 2165394042 22766 1448 5840
518 1218632122 97892 10 0.0.2 4094 10.0.0 6 5720 275 273 1678265584 2165394042 22767 1448 5840
519 1218632122 97894 10.0.0.2 4094 10.0.0 6 5720 276 274 1678267032 2165394042 22768 1448 5840
520 1218632122 97896 10.0.0.2 4094 10.0.0 6 5720 277 275 1678268480 2165394042 22769 1448 5840
521 1218632122 97898 10.0.0.2 4094 10 0.0 6 5720 278 276 1678269928 2165394042 22770 1448 5840
522 1218632122 97900 10.0.0.2 4094 10.0.0 6 5720 279 277 1678271376 2165394042 22771 1448 5840
523 1218632122 97901 10002 4094 10.0 06 5720 280 278 1678272824 2165394042 22772 1448 5840
524 1218632122 98289 10 0.0.2 4094 10.0 06 5720 281 279 1678274272 2165394042 22773 1448 5840
525 1218632122 98291 10 0 0.2 4094 10006 5720 282 280 1678275720 2165394042 22774 1448 5840
526 1218632122 98292 10002 4094 10006 5720 283 281 1678277168 2165394042 22775 1448 5840
527 1218632122 98294 10002 4094 10006 5720 284 282 1678278616 2165394042 22776 1448 5840
528 1218632122 98296 10.0.0.2 4094 10.0 06 5720 285 283 1678280064 2165394042 22777 1448 5840
529 1218632122 98298 10 0 0.2 4094 10006 5720 286 284 1678281512 2165394042 22778 1448 5840
530 1218632122 98300 10 0 0.2 4094 10.0 06 5720 287 285 1678282960 2165394042 22779 1448 5840
531 1218632122 98302 10 0 0.2 4094 10006 5720 288 286 1678284408 2165394042 -22780 1448 5840
532 1218632122 98690 10 0 0.2 4094 10006 5720 289 287 1678285856 2165394042 22781 1448 5840
533 1218632122 98693 10002 4094 10 0.0 6 5720 290 288 1678287304 2165394042 22782 1448 5840
534 1218632122 98694 10002 4094 10 0.0 6 5720 291 289 1678288752 2165394042 22783 1448 5840
535 1218632122 175383 10 0 0.2 4094 10006 5720 267 290 1678254000 2165394042 22759 1448 5840
536 1218632122 175787 10.0.0.2 4094 10.0-06 5720 270 291 1678258344 2165394042 22762 1448 5840
537 1218632122 186219 10006 5720 10 0.02 4094 243 244 2165394042 1678248208 28970 0 65160
538 1218632122 186239 10 0 0.6 5720 10002 4094 244 245 2165394042 1678251104 28971 0 65160
539 1218632122 186254 10.0 06 5720 100.02 4094 245 246 2165394042 1678254000 28972 0 65160
540 1218632122 186270 10.0.0 6 5720 10.0 02 4094 246 247 2165394042 1678254000 28973 0 65160
541 1218632122 186282 10006 5720 10-0.02 4094 247 248 2165394042 1678254000 28974 0 65160
542 1218632122 186296 10.0 0.6 5720 10.0.0.2 4094 248 249 2165394042 1678254000 28975 0 65160
543 1218632122 186308 10.0.0 6 5720 10 0 0.2 4094 249 250 2165394042 1678254000 28976 0 65160
544 1218632122 186319 10.0.0.6 5720 10.0.0.2 4094 250 251 2165394042 1678254000 28977 0 65160
545 1218632122 186330 10.0 06 5720 10.0 0.2 4094 251 252 2165394042 1678254000 28978 0 65160
546 1218632122 186341 10.0.0 6 5720 10 0.0.2 4094 252 253 2165394042 1678254000 28979 0 65160
547 1218632122 186352 10 0.0 6 5720 10 0.0 2 4094 253 254 2165394042 1678254000 28980 0 65160
548 1218632122 186363 10 0.0 6 5720 10.0.0 2 4094 254 255 2165394042 1678254000 28981 0 65160
549 1218632122 186373 10.0.0 6 5720 10.0.0 2 4094 255 256 2165394042 1678254000 28982 0 65160
550 1218632122 186385 10 0.0 6 5720 10.0.0.2 4094 256 257 2165394042 1678254000 28983 0 65160
551 1218632122 186396 10.0 06 5720 10.0.0.2 4094 257 258 2165394042 1678254000 28984 0 65160
552 1218632122 186406 10.0.0.6 5720 10.0.0 2 4094 258 259 2165394042 1678254000 28985 0 65160
553 1218632122 186417 10.0 0.6 5720 10.0.0 2 4094 259 260 2165394042 1678254000 28986 0 65160
554 1218632122 186429 10 0.0.6 5720 10 0.0.2 4094 260 261 2165394042 1678254000 28987 0 65160
555 1218632122 186440 10.0.0 6 5720 10 0 0.2 4094 261 262 2165394042 1678254000 28988 0 65160
556 1218632122 186450 10.0 0.6 5720 10.0.0.2 4094 262 263 2165394042 1678254000 28989 0 65160
557 1218632122 186462 10.0.0.6 5720 10 0.0.2 4094 263 264 2165394042 1678254000 28990 0 65160
558 1218632122 186472 10.0.0 6 5720 10 0.0.2 4094 264 265 2165394042 1678254000 28991 0 65160
559 1218632122 186483 10.0.0 6 5720 10.0 0.2 4094 265 266 2165394042 1678254000 28992 0 65160
560 1218632122 186494 10.0 0.6 5720 10.0.0.2 4094 266 267 2165394042 1678254000 28993 0 65160
561 1218632122 186505 10.0.0 6 5720 10 0.0.2 4094 267 268 2165394042 1678254000 28994 0 65160
562 1218632122 186516 10.0 06 5720 10.0-02 4094 268 269 2165394042 1678254000 28995 0 65160
563 1218632122 186531 10 0 0.6 5720 10.0.0.2 4094 269 270 2165394042 1678258344 28996 0 65160
564 1218632122 186571 10.0.0 6 5720 10.0.0 2 4094 270 271 2165394042 1678290200 28997 0 65160
565 1218632122 336764 10.0.0.2 4094 10.0.0 6 5720 292 292 1678290200 2165394042 22784 1448 5840
566 1218632122 337084 10.0.0.2 4094 10 0.0.6 5720 293 293 1678291648 2165394042 22785 1448 5840
567 1218632122 337086 10 0.0.2 4094 10.0.0.6 5720 294 294 1678293096 2165394042 22786 1448 5840
568 1218632122 337088 10.0.0 2 4094 10.0.0.6 5720 295 295 1678294544 2165394042 22787 1448 5840

A B C D E F G H I J K L MN 0
569 1218632122 337090 10002 4094 10 0 0.6 5720 296 296 1678295992 2165394042 22788 1448 5840

570 1218632122 337092 10.0.0.2 4094 10 0.0 6 5720 297 297 1678297440 2165394042 22789 1448 5840

571 1218632122 337464 10 0 0.2 4094 10006 5720 298 298 1678298888 2165394042 22790 1448 5840

572 1218632122 337486 10 0.0 2 4094 10.0 06 5720 299 299 1678300336 2165394042 22791 1448 5840

573 1218632122 337487 10002 4094 10006 5720 300 300 1678301784 2165394042 22792 1448 5840

574 1218632122 337489 10 0 0.2 4094 10006 5720 301 301 1678303232 2165394042 22793 1448 5840

575 1218632122 337491 10 0.0 2 4094 10.0.0 6 5720 302 302 1678304680 2165394042 22794 1448 5840

576 1218632122 337493 10.0 0.2 4094 10 0.0 6 5720 303 303 1678306128 2165394042 22795 1448 5840

577 1218632122 337495 10.0 0.2 4094 10.0.0 6 5720 304 304 1678307576 2165394042 22796 1448 5840

578 1218632122 337886 10.0.0.2 4094 10.0 06 5720 305 305 1678309024 2165394042 22797 1448 5840

579 1218632122 337888 10 0.0 2 4094 10 0.0 6 5720 306 306 1678310472 2165394042 22798 1448 5840

580 1218632122 337890 10002 4094 10006 5720 307 307 1678311920 2165394042 22799 1448 5840

581 1218632122 337891 10 0 0.2 4094 10.0 06 5720 308 308 1678313368 2165394042 22800 1448 5840

582 1218632122 338284 10 0.0 2 4094 10006 5720 310 309 1678316264 2165394042 22802 1448 5840

583 1218632122 338286 10 0 0.2 4094 10 0.0 6 5720 311 310 1678317712 2165394042 22803 1448 5840

584 1218632122 338684 10 0 0.2 4094 10.0 06 5720 312 311 1678319160 2165394042 22804 1448 5840
585 1218632122 338686 10 0 0.2 4094 10.0.0 6 5720 313 312 1678320608 2165394042 22805 1448 5840
586 1218632122 338688 10 0 0.2 4094 10 0.0 6 5720 314 313 1678322056 2165394042 22806 1448 5840
587 1218632122 338689 10 0.0.2 4094 10.0 06 5720 315 314 1678323504 2165394042 22807 1448 5840
588 1218632122 338691 10.0.0.2 4094 10.0.0 6 5720 316 315 1678324952 2165394042 22808 1448 5840
589 1218632122 415829 10.0 0.2 4094 10 0.0 6 5720 309 316 1678314816 2165394042 22801 1448 5840
590 1218632122 426137 10.0 06 5720 10 0.0.2 4094 271 272 2165394042 1678291648 28998 0 65160
591 1218632122 426167 10 0.0.6 5720 10.0.0.2 4094 272 273 2165394042 1678293096 28999 0 65160
592 1218632122 426190 10 0.0 6 5720 10.0.0.2 4094 273 274 2165394042 1678294544 29000 0 65160
593 1218632122 426212 10.0 06 5720 10.0.0.2 4094 274 275 2165394042 1678295992 29001 0 65160
594 1218632122 426235 10.0 0.6 5720 10.0.0.2 4094 275 276 2165394042 1678297440 29002 0 65160
595 1218632122 426260 10006 5720 10.0.0 2 4094 276 277 2165394042 1678298888 29003 0 65160
596 1218632122 426271 10 0.0 6 5720 10 0.0.2 4094 277 278 2165394042 1678300336 29004 0 65160
597 1218632122 426283 10.0.0 6 5720 10 0.0.2 4094 278 279 2165394042 1678301784 29005 0 65160
598 1218632122 426294 10.0.0.6 5720 10.0.0.2 4094 279 280 2165394042 1678303232 29006 0 65160
599 1218632122 426306 10.0 06 5720 10.0.0.2 4094 280 281 2165394042 1678304680 29007 0 65160
600 1218632122 426317 10.0 0.6 5720 10.0.0.2 4094 281 282 2165394042 1678306128 29008 0 65160
601 1218632122 426329 10.0 0.6 5720 10 0.0.2 4094 282 283 2165394042 1678307576 29009 0 65160
602 1218632122 426340 10 0.0 6 5720 10.0 0.2 4094 283 284 2165394042 1678309024 29010 0 65160
603 1218632122 426354 10 0.0 6 5720 10.0 0.2 4094 284 285 2165394042 1678311920 29011 0 65160
604 1218632122 426369 10 0.0 6 5720 10.0 0.2 4094 285 286 2165394042 1678314816 29012 0 65160
605 1218632122 426385 10 0.0.6 5720 10.0.0.2 4094 286 287 2165394042 1678314816 29013 0 65160
606 1218632122 426397 10 0 0.6 5720 10.0 0.2 4094 287 288 2165394042 1678314816 29014 0 65160
607 1218632122 426408 10.0 0.6 5720 10.0.0.2 4094 288 289 2165394042 1678314816 29015 0 65160
608 1218632122 426419 10006 5720 10.0.0.2 4094 289 290 2165394042 1678314816 29016 0 65160
609 1218632122 426429 10006 5720 10 0 0.2 4094 290 291 2165394042 1678314816 29017 0 65160
610 1218632122 426441 10 0.0.6 5720 10.0.0.2 4094 291 292 2165394042 1678314816 29018 0 65160
611 1218632122 426452 10 0 0.6 5720 10 0 0.2 4094 292 293 2165394042 1678314816 29019 0 65160
612
613

1218632122 426467 10.0 06 5720 10 002 4094 293 294 2165394042 1678326400 29020 0 65160

614
1218632122
1218632122

576603 10.0 0.2 4094 10.0 0.6 5720 317 317 1678326400 2165394042 22809 1448 5840

615 1218632122
576979 10 0 0.2 4094 10.0 06 5720 318 318 1678327848 2165394042 22810 1448 5840

616 1218632122
576982
576984

10 0 0.2 4094 10-0.06 5720 319 319 1678329296 2165394042 22811 1448 5840
617 1218632122 576986

10 0 0.2 4094 10.0 06 5720 320 320 1678330744 2165394042 22812 1448 5840
618 1218632122 577379

10 0 0.2 4094 10.0 06 5720 321 321 1678332192 2165394042 22813 1448 5840
619 1218632122 577381

10 0 0.2 4094 10.0 06 5720 322 322 1678333640 2165394042 22814 1448 5840
620 1218632122 577383

10 0 0.2
10 00 2

4094 10 006 5720 323 323 1678335088 2165394042 22815 1448 5840
621 121 8632122 577385 . . 10 002

4094 10.0 0.6 5720 324 324 1678336536 2165394042 22816 1448 5840
622 1218632122 577386 10 00 2

4094 10006 5720 325 325 1678337984 2165394042 22817 1448 5840
623 121 8632122 577388 . 10 00 2

4094 10.0 06 5720 326 326 1678339432 2165394042 22818 1448 5840
624 1218632122 577390 . 10002

4094
4094

10 006 5720 327 327 1678340880 2165394042 22819 1448 5840
625 1218632122 577779 10-00 2 4094

10006 5720 328 328 1678342328 2165394042 22820 1448 5840
626 1218632122 577781 . 10.0.0.2 4094

10006
10 00 6

5720 329 329 1678343776 2165394042 22821 1448 5840
627 1218632122 577783 10 0 0.2 4094 . . 10 006

5720 330 330 1678345224 2165394042 22822 1448 5840
628 1218632122 577785 10.0 02 4094 . 10 006

5720 331 331 1678346672 2165394042 22823 1448 5840
629 1218632122 577787 10002 4094 . 10 006

5720 332 332 1678348120 2165394042 22824 1448 5840
630 1218632122 577789 10002 4094 . 10006

5720 333 333 1678349568 2165394042 22825 1448 5840
631 1218632122 577790 10002 4094 10-00 6

5720
5720

334 334 1678351016 2165394042 22826 1448 5840
632 1218632122 577793 10.0.0.2 4094 . 10 0 06 5720

335 335 1678352464 2165394042 22827 1448 5840
633 1218632122 578178 10.0.0 2 4094 . 10.0.0 6 5720

336 336 1678353912 2165394042 22828 1448 5840
634 1218632122 578180 10 0.0 2 4094 10 0.0 6 5720

337 337 1678355360 2165394042 22829 1448 5840
635 1218632122 578182 10.00.2 4094 10-0-06 5720

338 338 1678356808 2165394042 22830 1448 5840
636 1218632122 578184 10-0.02 4094 10.0.0 6 5720

339
340

339 1678358256 2165394042 22831 1448 5840
637 1218632122 578186 10.0 0.2 4094 10 0.0 6 5720 341

340 1678359704 2165394042 22832 1448 5840
638 1218632122 578188 10.0.0.2 4094 10.0.0.6 5720 342

341 1678361152 2165394042 22833 1448 5840
639 1218632122 578189 10.0.0.2 4094 10.0.0 6 5720 343

342 1678362600 2165394042 22834 1448 5840
640 1218632122 578191 10.0.0.2 4094 10.0.0 6 5720 344

343 1678364048 2165394042 22835 1448 5640
641 1218632122 578193 10 0.0.2 4094 10.0.0.6 5720 345

344 1678365496 2165394042 22836 1448 5840
642 1218632122 578578 10 0.0.2 4094 10.0-06 5720 348

345 1678366944 2165394042 22837 1448 5840
643 1218632122 578581 10 0.0.2 4094 10-0.06 5720 347

346
347

1678368392 2165394042 22838 1448 5840

644 1218632122 578583 10.0.0.2 4094 10.0.0.6 5720 348 348
1678369840
1678371288

2165394042 22839 1448 5840

645 1218632122 578585 10 0.0.2 4094 10.0.0 6 5720 349 349 1678372736
2165394042
2165394042

22840 1448 5840

646 1218632122 578586 10.0.0.2 4094 10 0.0 6 5720 350 350 1678374184 2165394042
22841
22842

1448
1448

5840

647 1218632122 578588 10.0.0.2 4094 10 0.0 6 5720 351 351 1678375632 2165394042 22843 1448
5840
5840

648 1218632122 578978 10 0 0.2 4094 10 0.0.6 5720 352 352 1678377080 2165394042 22844 1448 5840
649 1218632122 578980 10.0.0.2 4094 10.0.0.6 5720 353 353 1678378528 2165394042 22845 1448 5840
650 1218632122 578982 10.0 0.2 4094 10-0.06 5720 354 354 1678379976 2165394042 22846 1448 5840
651 1218632122 578984 10 0.0.2 4094 10.0.0.6 5720 355 355 1678381424 2165394042 22847 1448 5840
652 1218632122 578986 10.0.0.2 4094 10.0.0.6 5720 356 356 1678382872 2165394042 22848 1448 5840
653 1218632122 666130 10 0 0.6 5720 10.0.0.2 4094 294 295 2165394042 1678327848 29021 0 65160
654 1218632122 666159 10 0.0 6 5720 10.0.0.2 4094 295 296 2165394042 1678329296 29022 0 65160
655 1218632122 666182 10.0.0.6 5720 10.0 0.2 4094 296 297 2165394042 1678330744 29023 0 65160
656 1218632122 666205 10 0.0.6 5720 10.0.0.2 4094 297 298 2165394042 1678332192 29024 0 65160
657 1218632122 666229 10.0.0.6 5720 10.0 0.2 4094 298 299 2165394042 1678333640 29025 0 65160
658 1218632122 666251 10.0.0.6 5720 10.0.0.2 4094 299 300 2165394042 1678335088 29026 0 65160
659 1218632122 666263 10 0.0 6 5720 10.0.0 2 4094 300 301 2165394042 1678336536 29027 0 65160
660 1218632122 666274 10.0.0.6 5720 10.0.0.2 4094 301 302 2165394042 1678337984 29028 0 65160
661 1218632122 666285 10.0.0.6 5720 10 0.0 2 4094 302 303 2165394042 1678339432 29029 0 65160

662 1218632122 666297 10.0.0.6 5720 10.0.0.2 4094 303 304 2165394042 1678340880 29030 0 65160

663 1218632122 666308 10 0.0 6 5720 10.0 0.2 4094 304 305 2165394042 1678342328 29031 0 65160

664 1218632122 666319 10 0.0.6 5720 10.0.0.2 4094 305 306 2165394042 1678343776 29032 0 65160

270

A g C D E F G H I J K L MN 0
665 1218632122 666330 10.0 06 5720 10.0.0 2 4094 306 307 2165394042 1678345224 29033 0 65160

666 1218632122 666340 10.0 06 5720 10.0.0.2 4094 307 308 2165394042 1678346672 29034 0 65160

667 1218632122 666356 10006 5720 100-0.2 4094 308 309 2165394042 1678349568 29035 0 65160

668 1218632122 666370 10 0.0 6 5720 10.0 0.2 4094 309 310 2165394042 1678352464 29036 0 65160

669 1218632122 666383 10006 5720 10 0.0.2 4094 310 311 2165394042 1678355360 29037 0 65160

670 1218632122 666397 10006 5720 10.0.0.2 4094 311 312 2165394042 1678358256 29038 0 65160

671 1218632122 666410 10 0.0 6 5720 10.0.0.2 4094 312 313 2165394042 1678361152 29039 0 65160

672 1216632122 666424 10.0 0.6 5720 10 0.0.2 4094 313 314 2165394042 1678364048 29040 0 65160

673 1218632122 666437 10 0 0.6 5720 1D. 00.2 4094 314 315 2165394042 1678366944 29041 0 65160

674 1218632122 666450 10.0.0 6 5720 10.0.0.2 4094 315 316 2165394042 1678369840 29042 0 65160

675 1218632122 666464 10.0 0.6 5720 10 0.0.2 4094 316 317 2165394042 1678372736 29043 0 65160

676 1218632122 666477 10 0 0.6 5720 10.00-2 4094 317 318 2165394042 1678375632 29044 0 65160

677 1218632122 666490 10006 5720 10.0 0.2 4094 318 319 2165394042 1678378528 29045 0 65160

678 1218632122 666504 10 0.0 6 5720 10.0.0.2 4094 319 320 2165394042 1678381424 29046 0 65160

679 1218632122 666517 10.0.0.6 5720 10.0.0.2 4094 320 321 2165394042 1678384320 29047 0 65160

680 1218632122 816696 10.0 0.2 4094 10.0 0.6 5720 357 357 1678384320 2165394042 22849 1448 5840
681 1218632122 816716 10.0 0.2 4094 10.0.0 6 5720 358 358 1678385768 2165394042 22850 1448 5840
682 1218632122 817077 10.0 0.2 4094 10.0.0 6 5720 359 359 1678387216 2165394042 22851 1448 5840
683 1218632122 817079 10.0.0.2 4094 10.0.0 6 5720 360 360 1678388664 2165394042 22852 1448 5840
684 1216632122 617081 10.0.0.2 4094 10.0.0.6 5720 361 361 1678390112 2165394042 22853 1448 5840
685 1218632122 817083 10.0.0.2 4094 10.0.0 6 5720 362 362 1678391560 2165394042 22854 1448 5840
686 1218632122 817085 10.0 0.2 4094 10006 5720 363 363 1678393008 2165394042 22855 1448 5840
687 1218632122 817086 10 0.0.2 4094 10.0.0.6 5720 364 364 1678394456 2165394042 22856 1448 5840
688 1218632122 817474 10.0.0.2 4094 10.0 0.6 5720 365 365 1678395904 2165394042 22857 1448 5840
689 1218632122 817476 10 0.0.2 4094 10 0.0 6 5720 366 366 1678397352 2165394042 22858 1448 5840
690 1218632122 817478 10.0.0.2 4094 10.0.0 6 5720 367 367 1678398800 2165394042 22859 1448 5840
691 1218632122 817480 10 0 0.2 4094 10.0 0.6 5720 368 368 1678400248 2165394042 22860 1448 5840
692 1218632122 817482 10.0.0.2 4094 10.0.0.6 5720 369 369 1678401696 2165394042 22861 1448 5840
693 1218632122 817875 10 0.0.2 4094 10.0.0 6 5720 370 370 1678403144 2165394042 22862 1448 5840
694 1218632122 817877 10.0.0.2 4094 10 0.0 6 5720 371 371 1678404592 2165394042 22863 1448 5840
695 1218632122 817879 10.0.0.2 4094 10.0.0.6 5720 372 372 1678406040 2165394042 22864 1448 5840
696 1218632122 817881 10.0.0.2 4094 10.0.0.6 5720 373 373 1678407488 2165394042 22865 1448 5840
697 1218632122 817883 10.0 0.2 4094 10.0.0 6 5720 374 374 1678408936 2165394042 22866 1448 5840
698 1218632122 817884 10.0 02 4094 10.0.0.6 5720 375 375 1678410384 2165394042 22867 1448 5840
699 1218632122 817886 10.0.0.2 4094 10 0.0 6 5720 376 376 1678411832 2165394042 22868 1448 5840
700 1218632122 817888 10 0.0 2 4094 10 0 0.6 5720 377 377 1678413280 2165394042 22869 1448 5840
701 1218632122 818276 10.0.0 2 4094 10.0.0 6 5720 378 378 1678414728 2165394042 22870 1448 5840
702 1218632122 818278 10.0.0 2 4094 10.0.0.6 5720 379 379 1678416176 2165394042 22871 1448 5840
703 1218632122 818280 10.0.0 2 4094 10.0 06 5720 380 380 1678417624 2165394042 22872 1448 5840
704 1218632122 818282 10 0.0.2 4094 10.0.0.6 5720 381 381 1678419072 2165394042 22873 1448 5840
705
706

1218632122 818283 10.0.0.2 4094 10.0 0.6 5720 382 382 1678420520 2165394042 22874 1448 5840

707
1218632122
1218632122

818285 100-0-2 4094 10.0 06 5720 383 383 1678421968 2165394042 22875 1448 5840
708 1218632122

818674 10 0 0.2 4094 10.0.0.6 5720 384 384 1678423416 2165394042 22876 1448 5840
709 1218632122

818675 10 0 0.2 4094 10 0.0 6 5720 385 385 1678424864 2165394042 22877 1448 5840
710 1218632122 818677

818679
10 0 0.2 4094 10.0.0 6 5720 386 386 1678426312 2165394042 22878 1448 5840

711 1218632122 818681
10 0.0.2 4094 10 0 0.6 5720 387 387 1678427760 2165394042 22879 1448 5840

712 1218632122 818683
10 0.0 2 4094 10 0.0 6 5720 388 388 1678429208 2165394042 22880 1448 5840

713 1218632122 816685
10.0.0 2 4094 10 0.0.6 5720 389 389 1678430656 2165394042 22881 1448 5840

714 1218632122 819073
10.0.0 2 4094 10 0.0.6 5720 390 390 1678432104 2165394042 22882 1448 5840

715 1218632122 819075
10 0.0.2 4094 10 0.0.6 5720 392 391 1678435000 2165394042 22884 1448 5840

716 1218632122 819077
10 0.0.2 4094 10006 5720 393 392 1678436448 2165394042 22885 1448 5840

717 1218632122 819079
10 0.0.2 4094 10.0.0 6 5720 394 393 1678437896 2165394042 22886 1448 5840

718 1218632122 819081
10.0 02
10 00 2

4094
4

10 0.0 6 5720 396 394 1678440792 2165394042 22888 1448 5840
719 1218632122 819082 . 10 00 2

094
4

10.0.0 6 5720 397 395 1678442240 2165394042 22889 1448 5840
720 1218632122 819064 . 10.0.0 2

094
4094

10006
10 006

5720
5

398 396 1678443688 2165394042 22890 1448 5840
721 1218632122 819473 10 0.0 2 4094 . 10 0 06

720
5720

399
4

397 1678445136 2165394042 22891 1448 5840
722 121 8632122 819475 10 0.0 2 4094 . 10.0 0 6 5720

00
4

398 1678446584 2165394042 22892 1448 5840
723 1216632122 896699 10 0.0.2 4094 . 10 00 6 5720

01 399 1678448032 2165394042 22893 1448 5840
724 1218632122 897072 10-0-02 4094 . 0 06 10 5720

391 400 1678433552 2165394042 22883 1448 5840
725 1218632122 906200 10 0.0 6 5720 . - 10 0 0 2 4094

395 401 1678439344 2165394042 22887 1448 5840
726 1218632122 906220 10 0.0 6 5720 . . 10 00 2 4094

321 322 2165394042 1678393008 29048 0 65160
727 1218632122 906234 10 0.0 6 5720 . 10.0.0.2 4094

322
323

323 2165394042 1678395904 29049 0 65160
728 1218632122 906248 10.0.0 6 5720 10.0 02 4094 3

324 2165394042 1678398800 29050 0 65160
729 1218632122 906261 10 0.0 6 5720 10.0 0.2 4094

24
325

325 2165394042 1678401696 29051 0 65160
730 1218632122 906275 10.0 06 5720 10.0 0 2 4094 3

326 2165394042 1678404592 29052 0 65160
731 1218632122 906289 10.0 06 5720 . . 10.0 02 4094

26
327

327 2165394042 1678407488 29053 0 65160
732 1218632122 906302 10.0.0.6 5720 10 0.0.2 4094 328

328 2165394042 1678410384 29054 0 65160
733 1218632122 906317 10.0.0 6 5720 10.0.0 2 4094 329

329 2165394042 1678413280 29055 0 65160
734 1218632122 906330 10.0.0.6 5720 10 0.0.2 4094 330

330
331

2165394042 1678416178 29056 0 65160
735 1218632122 906344 10.0.0.6 5720 10.0.0 2 4094 331 332

2165394042 1678419072 29057 0 65160
736 1218632122 906357 10.0.0.6 5720 10.0.0.2 4094 332 333

2165394042
2165394042

1676421968
1

29058 0 65160
737 1218632122 906371 10 0.0.6 5720 10.0.0.2 4094 333 334 2165394042

678424864 29059 0 65160
738 1218632122 906384 100.06 5720 10.0.0.2 4094 334 335 2165394042

1678427760
1 7

29060 0 65160
739 1218632122 906399 10.0 06 5720 10 0.0.2 4094 335 336 2165394042

6 8430656
1678

29061 0 65160

740 1218632122 906414 10 0.0.6 5720 10.0.0.2 4094 336 337 2165394042
433552

1678433552
29062 0 65160

741 1218632122 906426 10 0.0 6 5720 10.0 0.2 4094 337 338 2165394042 1678433552
29063
29064

0
0

65160

742 1218632122 906438 10.0.0 6 5720 10.00-2 4094 338 339 2165394042 1678433552 29065 0
65160

743 1218632122 906451 10.0.0.6 5720 10.0.0.2 4094 339 340 2165394042 1678433552 29066 0
65160

744 1218632122 906463 10 0.0 6 5720 10 0.0 2 4094 340 341 2165394042 1678433552 29067 0
65160
65160

745 1218632122 906474 10 0.0.6 5720 10.0 0.2 4094 341 342 2165394042 1678433552 29068 0 65160
746 1218632122 906485 10006 5720 10 0.0.2 4094 342 343 2165394042 1678433552 29069 0 65160
747 1218632122 906496 10 0.0.6 5720 10.0.0 2 4094 343 344 2165394042 1678433552 29070 0 65160
748 1218632122 906508 10006 5720 10 0.0.2 4094 344 345 2165394042 1676433552 29071 0 65160
749 1218632122 906523 10.0 06 5720 10.0.0.2 4094 345 346 2165394042 1678439344 29072 0 65160
750 1218632122 906536 10 0.0.6 5720 10 0.0.2 4094 346 347 2165394042 1676449480 29073 0 65160

271

