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Abstract 
Packet Reordering in IP networks is a phenomenon which is becoming increasingly 
important in network performance analysis. Reordering is a consequence of network 
equipment manufacturers increasing switch and link level parallelism within 
networks, in the quest for performance, reliability and fiscal gains. Wireless 

technologies are also expected to increase the amount of packet reordering 
observable in an end-to-end path. 

This thesis addresses the issue of measuring the impact of packet reordering on 
Internet traffic, by proposing a number of measurement methodologies and metrics. 
Previous techniques assume that packet reordering does not often occur, or make 

assumptions which severely limit the results obtained. This thesis proposes a two- 

point passive measurement technique, which improves on previous methods by 

allowing lightweight measurement of the amount and extent of reordering observed 
in a TCP flow, and classification of the cause of each reordering-induced packet 
retransmission. A large testbed measurement study performed using this technique 
indicated that TCP is tolerant to large percentages of reordered packets, providing 
that the delay of these packets is maintained below a threshold relative to Round- 
Trip-Time. This study further indicated that the effects of TCP packet reordering are 
not always negative. In specific scenarios reverse-path reordering can increase the 
overall throughput of a flow. This thesis further proposes a mid-point passive 
Measurement Technique and Visualisation Metric of TCP packet reordering, 
designed to classify out of sequence packets for many thousands of concurrent TCP 
flows. This technique is lightweight to implement and does not require symmetric 
TCP connections to operate. Finally, this thesis argues that future packet reordering 
metrics must correlate reordering observed at the network layer, with the resulting 
impacts observed at the application layer. An example of an application-specific 
metric is developed for MPEG-4 video over UDP traffic, and this metric is used to 
describe the effects of packet reordering on streamed video traffic. 

ii 



Acknowledgements 
I would like to sincerely thank David Harle, without whose constant support and 
encouragement throughout, I would not have been able to complete this work. 

I also am greatly indebted to Andrew Lehane - for his mentorship, his critique and 
his energy. Andrew has helped me in many ways throughout my short research 
career, and I can only hope that in the future, I can help others as he has helped me. 

I am indebted to many people at Strathclyde University throughout my period as a 
PhD student and a Research Assistant - all were very generous with their time, their 
ideas and their encouragement; Demessie Girma, Robert Atkinson, Alisdair 
McDiarmid, John Bush, Ian Robertson, Ian Armstrong, Kurian Oommen, Omar 
Tayan, Christos Tachtatzis, Kostas Sasloglou, Joan Cortes, Stefan Martin and 
Gordon Morison. 

I would also like to thank my new colleagues within the Measurement Research 
Laboratory at Agilent Labs for their support, and for always allowing me to learn 
from them; Frankie Garcia, Alex Tudor, Martin Curran-Gray, Kevin Mitchell, Tony 
Kirkham, Kathy Graham and Lance Tatman. 

I am indebted to my friends, whose constant motivation and support was greatly 
appreciated during the unrelenting write-up months; Elizabeth Watson, Alastair 
Davis, Brian Turnbull, Euan Robertson, Catalina Aguirre, Kevin McClenaghan and 
Ryan Tumilty. 

Swee deserves a special mention; her consistent help and encouragement, throughout 
the highs and the lows, was very important to me in the latter stages of writing up. 

Finally, I would like to thank my Mum, my Dad, my Gran and my Sis Laura. I am 
lucky to have a family that supports me in everything that I do, and I am sure that 
this PhD has been as traumatic for them as it has been for me. My Gran has a greater 
belief in my abilities than I ever will, and for that, I am truly grateful. 

iii 



List of Publications 

C. M. Arthur, D. Girma, "Unified Method for Video Traffic Modelling on IP 

Networks". IEE Electronics Letters, Vol. 38 No. 10, pp 492-494, May 2002. 

C. M. Arthur, D. Girma, "An Experimental Platform for Video Traffic Analysis over 

Lossy IP Networks". Fifth IEE European Personal Mobile Communications 

Conference (EPMCC), April 2003, Glasgow. 

C. M. Arthur, D. Girma, D. Harle, A. Lehane, "The Effects of Packet Reordering in 

a Wireless Multimedia Environment". First International Symposium on Wireless 

Communication Systems, September 2004, Mauritius. 

C. M. Arthur, A. Lehane, M. Curran-Gray, D. Girma, "Real Time Monitoring of 
TCP Flows", UK Patent Application GB2430577, Filed September 2005, Published 

March 2007. US Patent Office Application 20070070916, Published March 2007. 

C. M. Arthur, A. Lehane, D. Harle, "Keeping Order: Determining the Effect of TCP 

Packet Reordering", Second International Workshop on Internet Packet Dynamics, 

IPDy 2007, June 2007, Greece. Winner Best Paper Award. 

iv 



Contents 

Chapter 1 Introduction ............................................ 
1 

1.1 The Increase of Internet Parallelism .................................... 
2 

1 .2 
Characterising Packet Reordering ......................................... 

3 

1 .3 
Thesis Organisation ................................................................ 

5 

Chapter 2 The Internet Protocol Suite .................... 6 

2.1 Introduction 
............................................................................. 

6 

2.2 The Internet Protocol Suite ................................................... 
7 

2.2.1 Internet Standardisation 
.............................................................. 

8 

2.2.2 Internet Protocol version 4 ......................................................... 
9 

2.2.2.1 Addressing 
............................................................................. 

10 

2.2.2.2 Fragmentation 
....................................................................... 

11 

2.2.3 IPv4 Header Format .................................................................. 11 

2.3 User Datagram Protocol 
...................................................... 

13 

2.4 Transmission Control Protocol 
.......................................... 

13 
2.4.1 Reliable Transmission 

................................................................ 
14 

2.4.2 TCP Header Format 
.................................................................. 15 

2.4.3 Sequence Numbers and Acknowledgements 
......................... 

16 

2.4.4 Establishing a Connection 
........................................................ 

17 

V 



2.4.5 Retransmission Timeout ........................................................... 
18 

2.4.6 TCP Congestion Control .......................................................... 
19 

2.4.6.1 Slow Start ............................................................................... 
21 

2.4.6.2 Congestion Avoidance 
......................................................... 

21 

2.4.6.3 Fast Retransmit ..................................................................... 
22 

2.4.6.4 Fast Recovery ........................................................................ 
23 

2.4.6.5 Limited Retransmit ............................................................... 
23 

2.4.7 Loss Recovery Mechanisms 
...................................................... 

24 

2.4.7.1 Partial Acknowledgements .................................................. 
24 

2.4.7.2 Selective Acknowledgements .............................................. 
24 

2.5 The Problem of Reordering 
................................................ 

25 

2.5.1 Forward path reordering ........................................................... 
26 

2.5.2 Reverse Path Reordering ........................................................... 
27 

2.5.3 Combined Path Reordering ...................................................... 
27 

2.6 Internet Measurement .......................................................... 
28 

2.6.1 Quality of Service ....................................................................... 
28 

2.6.2 Service Level Agreements ......................................................... 
29 

2.7 Metrics and Measurements .................................................. 
29 

2.7.1 Packet Latency ............................................................................ 
30 

2.7.2 Packet Loss ................................................................................. 
30 

2.7.3 Packet Jitter and Delay Variation ............................................. 
32 

2.7.4 Packet Throughput .................................................................... 
32 

2.7.5 Packet Ordering 
......................................................................... 

33 

2.8 Measurement Bases 
............................................................... 

34 

2.8.1 Flow-based Measurements 
........................................................ 

34 

2.8.2 Interface, Link and Node-based Measurements .................... 
34 

2.8.3 Node-pair-based ......................................................................... 
35 

2.8.4 Path-based ................................................................................... 
35 

2.8.5 Local and End-to-End Measurements .................................... 
36 

2.9 Measurement Methodologies .............................................. 
37 

V1 



2.9.1 Passive Measurements 
............................................................... 37 

2.9.1.1 Passive Measurement Examples 
......................................... 

37 

2.9.2 Active Measurements 
................................................................ 

38 

2.9.2.1 Active Measurement Examples 
.......................................... 

39 

2.10 Limitations of Current Techniques 
.................................... 

39 

2.11 Summary 
................................................................................. 

41 

Chapter 3 Measuring Packet Reordering .............. 42 

3.1 Introduction ........................................................................... 
42 

3.2 Active Packet Reordering Measurements .......................... 
44 

3.2.1 Limitations of Active Reordering Measurements .................. 44 

3.2.2 Paxson ......................................................................................... 46 

3.2.3 Bennett ........................................................................................ 48 

3.2.4 Loguinov ..................................................................................... 50 

3.2.5 Bellardo ....................................................................................... 51 

3.2.6 Tsinghua 
...................................................................................... 

55 

3.2.7 Delft ............................................................................................. 
57 

3.2.8 Hong Kong Pointer ................................................................... 
58 

3.2.9 Perkins 
......................................................................................... 

62 

3.2.10 Summary 
..................................................................................... 64 

3.3 Pa ssive Packet Reordering Measurements ........................ 
65 

3.3.1 Limitations of Passive Reordering Measurements ................. 
65 

3.3.2 Mid-point Passive Measurements ................... 
3.3.3 Jaiswal TCPFIows 

...................................................................... 67 

3.3.3.1 Passive Estimation of RTT ................................................. 
69 

3.3.3.2 Jaiswal Running RTT Estimation Technique ................... 70 

3.3.3.3 Jaiswal Classification Results ............................................... 71 

3.3.3.4 Evaluation ............................................................................. 72 

3.3.4 Rewaskar ..................................................................................... 74 

3.3.4.1 SYN/ACK RTT Estimation 
............................................... 75 

vi' 



3.3.4.2 Rewaskar Classification Results .......................................... 
75 

3.3.5 Tstat Torino Algorithm ............................................................. 
76 

3.3.6 Summary ..................................................................................... 
79 

3.4 Packet Reordering Metrics ................................................... 
80 

3.4.1 IP Performance Metrics Standardisation ................................ 
80 

3.4.2 RFC 4737 .................................................................................... 
81 

3.4.2.1 A Reordered Packet Singleton Metric, 
Type-P-Reordered ................................................................ 

81 

3.4.2.2 Sample Metrics ...................................................................... 
82 

3.4.2.3 Evaluation ............................................................................. 
82 

3.4.2.4 Results .................................................................................... 
83 

3.4.3 RFC 5236 .................................................................................... 
83 

3.4.3.1 Reorder Density .................................................................... 
84 

3.4.3.2 Reorder Buffer Density ....................................................... 
84 

3.4.3.3 Results .................................................................................... 
84 

3.5 Comparison of Techniques ................................................. 
85 

3.6 Comparison of Measurement Results ................................ 
86 

3.7 Conclusions ............................................................................ 
88 

Chapter 4A Two-Point Passive Packet Reordering 
Measurement Technique .................................. 

90 

4.1 Introduction 
........................................................................... 

90 

4.1.1 Drivers of Packet Reordering 
................................................... 

91 

4.1.2 Measuring the Impact of Reordering ...................................... 
94 

4.1.3 Fixing Packet Reordering 
.......................................................... 

98 

4.1.4 The Motivation for Measuring the Effects of Reordering.... 99 

4.2 Experimental Methodology ............................................... 
101 

4.2.1 Core Transit Network Reordering Equivalence .................. 
101 

4.2.2 An Open Extensible Router 
................................................... 

103 

4.2.2.1 The Click Modular Router ................................................ 
103 

viii 



4.2.2.2 Installing a Click Router 
.................................................... 

104 

4.2.2.3 ElementClass `Reorder' 
..................................................... 

105 

4.2.2.4 Click Language Configuration 
.......................................... 

105 

4.2.3 Gigabit Network Testbed 
....................................................... 

107 

4.2.3.1 MMap Extensions 
.............................................................. 

109 

4.2.4 Defining Metrics for Packet Reordering ............................... 
109 

4.2.5 Packet Probe `Out of Sequence' Code 
.................................. 

111 

4.2.6 Automated Distributed Measurement System ..................... 
115 

4.2.6.1 Distributed Measurement System State Machine ........... 
116 

4.2.7 Post-processing of Results 
...................................................... 

118 

4.3 Results ................................................................................... 
120 

4.3.1 Experiment Validation ............................................................ 
121 

4.3.2 Measuring Forward Path Packet Reordering ........................ 
126 

4.3.2.1 50 msec Round Trip Time ................................................ 
126 

4.3.2.2 150 msec Round Trip Time .............................................. 
133 

4.3.2.3 300 msec Round Trip Time 
.............................................. 

137 

4.3.3 Reverse Path Reordering Results ........................................... 
139 

4.3.3.1 150 msec Round Trip Time .............................................. 
140 

4.3.3.2 200 msec Round Trip Time .............................................. 
146 

Combined .................................................................................. 
146 

4.3.4 Forward and Reverse Reordering, 100ms RTT ................... 
146 

4.3.5 Comparison of Methods to Combat Reordering ................. 147 

4.3.6 Conclusions 
............................................................................... 

149 

Chapter 5 Mid-Point Passive Monitoring of TCP 
Flows ................................................................ 153 

5.1 Introduction ......................................................................... 153 

5.2 Large Scale Monitoring of TCP Flows 
............................ 

155 

5.2.1 Single Point Measurement Techniques 
................................. 

155 

5.2.2 Goodput .................................................................................... 156 

ix 



5.2.3 Jaiswal 
........................................................................................ 

158 

5.2.4 Summary 
................................................................................... 

158 

5.3 A Passive Mid-Point Monitoring Technique 
.................. 

159 

5.3.1 Development of a Passive Mid-Point Software Probe........ 159 

5.3.2 Insertion of Packet Records into Flow Traces ..................... 162 

5.3.3 Calculation of Expected Position 
.......................................... 

163 

5.3.4 Calculation of Relative Sequencing........................................ 165 

5.3.5 The Arthur "Out of Sequence" Classification Algorithm .. 167 

5.3.5.1 Result 1 ................................................................................ 169 

5.3.5.2 Result 2 ................................................................................ 169 

5.3.5.3 Result 3 ................................................................................ 169 

5.3.5.4 Result 4 ................................................................................ 170 

5.3.5.5 Result 5 ................................................................................ 170 

5.3.5.6 Result 6 ................................................................................ 171 

5.3.5.7 Result 7 ................................................................................ 171 

5.3.5.8 Result 8 ................................................................................ 172 

5.4 Out of Sequence Classification Example 
........................ 

172 

5.4.1 Dealing with Duplicates .......................................................... 
177 

5.5 Implementation of Algorithm 
........................................... 

178 

5.5.1 Comparison with Jaiswal ......................................................... 179 
5.5.2 Experimental Setup .................................................................. 

180 
5.5.3 Results and Comparison 

......................................................... 
180 

5.5.4 Conclusions 
............................................................................... 

183 

5.6 Network Measurement Visualisation 
............................... 

184 
5.6.1 Visualisation of TCP ................................................................ 185 
5.6.2 Visualisation of TCP Packet Reordering 

............................... 
186 

5.6.2.1 RFC 5236 - Improved Packet Reordering Metrics........ 189 

5.6.2.2 Reorder Density 
.................................................................. 189 

5.6.2.3 Assigning receive index Values 
............................................ 190 

5.6.2.4 Reorder Buffer-Occupancy Density 
................................ 

191 

X 



5.6.3 The Arthur Visualisation Technique 
..................................... 

192 

5.6.3.1 Results and Comparison 
.................................................... 

193 

5.7 Conclusions 
.......................................................................... 

199 

Chapter 6 Measuring the Impact of Packet 
Reordering ....................................................... 203 

6.1 Introduction ......................................................................... 203 

6.1.1 Wireless as a Driver for Packet Reordering .......................... 
205 

6.1.2 The Effects of Reordering on Video ..................................... 
206 

6.1.3 Video over UDP ...................................................................... 207 

6.2 Experimental Methodology 
............................................... 

208 

6.2.1 Microsoft Windows Media ..................................................... 
208 

6.2.2 Video Traffic Generation ........................................................ 209 

6.2.3 Reordering of Video Packets 
.................................................. 

210 

6.2.4 Instrumentation of Receiver ................................................... 
212 

6.3 Results and Perceptual Quality 
......................................... 

213 

6.3.1 Packet Arrival Bit Rates ........................................................... 
216 

6.3.2 Buffer Occupancy .................................................................... 
218 

6.4 Conclusions 
.......................................................................... 

222 

Chapter 7 Conclusions and Future Work ........... 224 

7.1 Introduction 
......................................................................... 

224 

7.2 Thesis Summary 
.................................................................. 

226 

7.3 Main Contributions ............................................................. 232 
7.3.1 A Two-Point Passive Measurement Technique 

................... 
232 

7.3.2 Development of Testbeds 
....................................................... 

233 

7.3.3 Large scale measurement studies of packet reordering....... 233 

7.3.4 A Passive Mid-Point Classification Algorithm of 
TCP Reordering ....................................................................... 235 

xi 



7.3.5 An Improved Visualisation Technique and Metric 

of TCP Packet Reordering 
...................................................... 

235 

7.3.6 A client-side estimator of video QoS 
.................................... 

235 

7.3.7 Packet Reordering Measurement Taxonomy 
....................... 

236 

7.4 Future Directions 
................................................................ 

237 

7.4.1 Packet Reordering as a tool for SLA Compliance ............... 
237 

7.4.2 Software Routers as Measurement Instruments .................. 
238 

7.4.3 Extending the Arthur Classification and Visualisation 
Algorithm .................................................................................. 240 

7.4.4 Cross-layer Correlation of Packet Reordering Metrics........ 241 

7.5 Concluding Remarks 
........................................................... 

243 

Bibliography ............................................................ 244 

Appendix ................................................................. 263 

X11 



List of Figures 

Figure 1- The Internet Protocol Suite 
..................................................... 

7 

Figure 2- IPv4 Header Format ............................................................... 
12 

Figure 3- TCP Header Format ............................................................... 
15 

Figure 4- TCP 3-way Handshake ........................................................... 
18 

Figure 5- TCP Cumulative Acknowledgements ................................... 
18 

Figure 7- Congestion Avoidance ........................................................... 
20 

Figure 8- Adjusting Slow Start Threshold ............................................ 
22 

Figure 9- Forward Path Reordering ...................................................... 
26 

Figure 10 - Reverse Path Reordering 
..................................................... 

26 

Figure 11 - Bellardo Single Connection Test ......................................... 
52 

Figure 12 - Bellardo Dual Connection Test .......................................... 
52 

Figure 14 - Tsinghua reorder-judging algorithm ................................... 
55 

Figure 15 - Pointer ACM Test ................................................................. 
59 

Figure 16 - Hong Kong Poly SAM1 Test .............................................. 
60 

xiii 



Figure 18 - Perkins relation of reordering 

and packet rate [GharO4] .................................................... . 64 

Figure 19 - Jaiswal's Out of Sequence Classification Algorithm........ . 68 

Figure 20 - Jaiswal Running RTT Estimation Technique .................. . 
70 

Figure 22 - Packet Reordering Measurement Taxonomy ................... . 
85 

Figure 23 - Link-Level and Switch / Local Parallelism ...................... . 92 

Figure 24 - Network Equivalence Diagram 
......................................... 

101 

Figure 25 - Click Element Configuration 
............................................. 

106 

Figure 26 - Gigabit Network Testbed 
.................................................. 

108 

Figure 27 - Out of Sequence FSM 
....................................................... 

112 

Figure 28 - OOS Packet Callback Algorithm ...................................... 
113 

Figure 29 - Example Packet Capture Output ..................................... 
114 

Figure 30 - Measurement System State Machine ................................ 
116 

Figure 31 - OOS Parser Algorithm 
....................................................... 

119 

Figure 32 - Mean transmission time of 10 Megabytes, 90% C. I., 

F50(various, various, 0,0) ................................................... 
128 

Figure 33 - Percentage Reordered Packets, 90% C. I., 

Fso(various, various, 0,0) 
................................................... 

129 

Figure 34 - Percentage Retransmissions by Cause, 90% C. I., 

F50(5%, various, 0,0) ......................................................... 
130 

Figure 35 - Percentage Retransmissions by Cause, 90% C. I., 

F50(10%, various, 0,0) ....................................................... 
131 

Figure 36 - Percentage Retransmissions by Cause, 90% C. I., 

F50(15%, various, 0,0) ....................................................... 
131 

Figure 37 - Percentage Retransmissions by Cause, 90% C. I., 

F50(20%, various, 0,0) ....................................................... 132 

Figure 38 - Percentage Retransmissions by Cause, 90% C. I., 

F50(25%, various, 0,0) ....................................................... 132 

xiv 



Figure 40 - Percentage Reordered Packets, 90% C. I., 

F150(various, various, 0,0) ................................................. 134 

Figure 41 - Percentage Retransmissions by Cause, 90% Cl, 

F150(5%, various, 0,0) ........................................................ 
135 

Figure 42 - Percentage Retransmissions by Cause, 90% C. I., 

F150(10%, various, 0,0) ...................................................... 
135 

Figure 43 - Percentage Retransmissions by Cause, 90% C. I., 

F150(15%, various, 0,0) ...................................................... 
136 

Figure 44 - Percentage Retransmissions by Cause, 90% C. I., 

F150(20%, various, 0,0) 
...................................................... 

136 

Figure 45- Percentage Retransmissions by Cause, 90% C. I., 

F150(25%, various, 0,0) ...................................................... 
137 

Figure 46 - Mean transmission time of 10 Megabytes, 90% C. I., 

F300(various, various, 0,0) ................................................. 
138 

Figure 48 - Mean transmission time of 10 Megabytes, 90% C. I., 

F150(0,0, various, various) ................................................. 
140 

Figure 49 - Percentage Retransmissions by Cause, 90% C. I., 

F150(O, 0,5%, various) ....................................................... 
143 

Figure 50 - Percentage Retransmissions by Cause, 90% C. I., 

F150(O, 0,10%, various) ...................................................... 
144 

Figure 51 - Percentage Retransmissions by Cause, 90% C. I., 

F150(O, 0,15%, various) ...................................................... 
144 

Figure 52 - Percentage Retransmissions by Cause, 90% C. I., 

F150(O, 0,20%, various) ...................................................... 
145 

Figure 53 - Percentage Retransmissions by Cause, 90% C. I., 

F150(0,0,25%, various) ...................................................... 145 

Figure 55 - Mean transmission time of 10 Megabytes, 90% Cl, 

F, oo(various, various, 0,0) ................................................. 147 

xv 



Figure 56 -Transmission time of 10 Megabytes, SACK-Enabled, 

F150(various, various, 0,0) 
................................................. 

148 

Figure 57 Transmission time of 10 Megabytes, D-SACK-Enabled, 

F150(various, various, 0,0) 
................................................. 

148 

Figure 58 - Transmission time of 10 Megabytes, tcp_reordering =3 

Enabled, F150(various, various, 0,0) ................................ 
148 

Figure 59 - Mid Point Network Monitoring 
........................................ 

156 

Figure 60 - Example Flow Trace 
.......................................................... 

160 

Figure 61 - Example Packet Record .................................................... 
161 

Figure 62 - Expected Position Calculation .......................................... 
164 

Figure 63 - Post Processing Flowchart 
................................................. 

166 

Figure 64 - Arthur Out of Sequence Classification Algorithm ........ 168 

Figure 65 - Stevens' TCP Time-Sequence Graph ............................... 
185 

Figure 66 - Ostermann Time-Sequence Graph ................................... 
186 

Figure 67 - Zoomed Ostermann Time-Sequence Graph ................... 
186 

Figure 68 - Arthur Visualisation of TCP Reordering ........................ 
192 

Figure 69 - Reorder Density .................................................................. 
193 

Figure 70 - Reorder Buffer Density 
...................................................... 

193 

Figure 71 - 20 msec RTT, 10% Reordering, 

1 msec Reordering Delay 
.................................................. 

195 

Figure 72 - Reorder Density, DT=3 
...................................................... 

196 

Figure 73 - Reorder Density, DT=10 
.................................................... 

196 

Figure 74 - Reorder Buffer Density 
...................................................... 

196 

Figure 75 - 20 msec RTT, 10% Reordering, 

10 msec Reordering Delay 
................................................ 

197 

Figure 77 - Reorder Density, D. i. =10 .................................................... 
198 

Figure 78 - Reorder Buffer Density 
...................................................... 

198 

Figure 79 - Video Reordering Experimental Testbed 
....................... 

209 

xvi 



Figure 80 - Packet Disrupter Architecture 
........................................... 

210 

Figure 81 - WM Player Instrumentation .............................................. 212 

Figure 83 - Reordering Probability P. = 1%, for varying D ............. 216 

Figure 84 - Reordering Probability PR = 10%, for varying D ........... 217 

Figure 85 - Reordering Probability PR = 25%, for varying D, .......... 218 

Figure 86 - pdf Under-Run Number 
.................................................... 

220 

Figure 88 - pdf Under-Run Number 
................................................... 

221 

Figure 89 - pdf Under-Run Time 
.......................................................... 

222 

xvii 



List of Tables 

Table 1- RFC4737 Sample Reordering Metrics ................................... 
82 

Table 2- Comparison of Measurement Results .................................... 
87 

Table 3- Linux Kernel Variables 
.......................................................... 

117 

Table 5- Pseudo code of Packet Record Sorting 
............................... 

163 

Table 6- Example TCP Stream Capture ............................................. 173 

Table 7- Flow Trace 1- 10.0.0.2: 1789 to 10.0.0.6: 35427 .................. 174 

Table 8- Flow Trace 2- 10.0.0.6: 35427 to 10.0.0.2: 1789 .................. 
175 

Table 9- Packet Sequencing Analysis 
.................................................. 

175 

Table 10 - Rate of Change Analysis 
..................................................... 

176 

Table 11 - Jaiswal Classification Results 
............................................... 

181 

Table 12 - Arthur Classification Results 
............................................... 

181 

Table 13 - RFC 4737 Reordering Extent ............................................. 
187 

Table 14 - RFC 4737 n-Reordering ...................................................... 
188 

Table 15 - Reorder Density Example 
................................................... 189 

Table 16 - Reorder Buffer-Occupancy Density Example .................. 
191 

Table 17 - Subjective Grading Descriptions 
........................................ 214 

xviii 



Acronyms and Abbreviations 

Ack TCP Acknowledgement Number 
ADSL Asymmetric Digital Subscriber Line 
AS Autonomous System 
ASF Microsoft Advanced Systems Format 
ATM Asynchronous Transfer Mode 

awnd TCP Receiver's Advertised Window 
BDP Bandwidth Delay Product 
BER Bit Error Rate 
CPU Central Processing Unit 
cwnd TCP Congestion Window 
DARPA Defence Advanced Research Projects Agency 
DEC Digital Equipment Corporation 
DiffServ Differentiated Services 
dupthresh TCP Fast Retransmission Duplicate Acks Threshold 
ECN Explicit Congestion Notification 
EP Expected Position 
FDDI Fibre Distributed Digital Interface 
FIFO First In First Out 
FIN TCP Finish Flag 
FSM Finite State Machine 
FTP File Transfer Protocol 
GPS Global Positioning System 
GPU General Purpose Processing Unit 
HDTV High-definition television 
HTTP Hypertext Transfer Protocol 
ICMP Internet Control Message Protocol 
IDS Intrusion Detection System 
IETF Internet Engineering Task Force 
IHL Internet Header Length 
IOS Cisco Internetwork Operating System 
IP Internet Protocol version 4 

xix 



IPv4 Internet Protocol version 4 
IPv6 Internet Protocol version 6 
IPFIX Internet Protocol Flow Information Export 
IPID IP Identification Field 
IPMON Sprint IP Monitoring Project 
IPPM IP Performance Metrics Working Group 
IPTV Internet Protocol Television 
ISN Initial Sequence Number 
ISP Internet Service Provider 
L3 VPN Layer 3 Virtual Private Networks 
LAN Local Area Network 
MANET Mobile Ad-hoc Network 
MIB Management Information Base 
MMAP Memory Map Extensions 
MMS Microsoft Media Services 
MOS Mean Opinion Score 
MPEG Moving Pictures Experts Group 
MPLS Multiprotocol Label Switching 
MSS Maximum Segment Size 
MTU Maximum Transmission Unit 
NACK Negative Acknowledgement 
NEM Network Equipment Manufacturer 
NESN Next Expected Sequence Number 
NIST National Institute of Standards and Technology 
NMS Network Management System 
NS-2 Network Simulator version 2 
NTP Network Time Protocol 
OOS Out Of Sequence 
OP Observation Position 
OSI Open Systems Interconnection 
PSTN Public Switched Telephone Network 
QCIF Quarter Common Intermediate Format 
QoE Quality of Experience 
QoS Quality of Service 
RBD Reorder Buffer Density 
RD Reorder Density 
RED Random Early Detection 
RFC Request For Comments 
RIPE Reseaux IP Europeens 
RSH Remote Shell 
RST TCP Reset Flag 
RSVP Resource ReSerVation Protocol 

xx 



RTO Retransmission Timeout 
RTP Real-time Transport Protocol 
RTT Round Trip Time 
rwnd TCP Receiver's Advertised Window 
SACK TCP Selective Acknowledgement 
SDK Software Development Kit 
Seq TCP Sequence Number 
SLA Service Level Agreement 
SLS Service Level Specification 
SMSS Sender Maximum Segment Size 
SNMP Simple Network Management Protocol 
SONET Synchronous Optical Networking 
SPAN Switched Port Analyser 

ssthresh TCP Slow Start Threshold 
Syn TCP Synchronise Flag 
TCP Transmission Control Protocol 
TCP/IP Transmission Control Protocol / Internet Protocol 
TTL Time To Live 
UDP User Datagram Protocol 
VoIP Voice over Internet Protocol 
VPN Virtual Private Network 
WM Microsoft Windows Media 

xxi 



Chapter 1 

Introduction 

In December 1999 the IEEE/ACM Transactions on Networking published a paper 

entitled "Packet Reordering is Not Pathological Network Behavior" [Benn99]. Bennett 

et al. had intended to prove the hypothesis that the reordering of packets in the Internet 

is an ever increasing phenomenon. The results of their study, performed in January 

1998, indicate that the probability of a session, running through the US MAE-East 

exchange, experiencing packet reordering was over 90%. Intuitively, Bennett et al. cited 

that the reason for the large proportion of flows experiencing reordering was the 

presence of parallelism on the routes taken by the packets flowing through the network. 

However, the reason for this reordering, and the parallelism which caused it, was not 

immediately obvious. Bennett discovered that much of the packet reordering observed 

is not, as was first expected, due to multi-path routing or broken network equipment 

causing packets to traverse different logical paths, but occurred as a result of switch and 
link-level parallelism. This included link-level striping and switches that allow packets 
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travelling between the same source and destination to take different paths through the 

internal switch hardware. 

Bennett's work represented a significant contribution to the field of network science 

since packet reordering can have a measurable impact on both network and application 

performance. For example, out-of-order arrival of packets can cause apparent loss of 

data in real time flows, such as voice over packet and video streams. Reordering is also 

detrimental to Transmission Control Protocol (TCP), causing it to use available capacity 

less effectively, and lose the TCP self-clocking property, resulting in irregular data 

transmission. 

1.1 The Increase of Internet Parallelism 

It is clear from the literature that the level of parallelism in network paths is on the 

increase, although what overall impact this will have on packet reordering is less clear. 

Load balancing in network switches introduces local parallelism, which can allow 

packets flowing between the same source and destination to take different paths within 

the switch. Simple economics also has a bearing; it is often more cost effective to put 

two components in parallel than to use one component that has twice the 

speed[Benn99]. For example, when purchasing long-haul serial links many tariffs offer 
link bandwidths that are multiples of each other. Parallel links are also a very useful way 

to improve reliability; if the parallel links follow different physical paths, the virtual link 

they implement is generally less vulnerable to single-point failures. Large businesses, 

Internet Service Providers (ISPs) and their vendors are therefore aggressively promoting 

parallel links. In a survey of 38 major ISPs conducted in mid-1997 [Gare97], only two of 

the smaller ISPs did not have parallel uplink paths between nodes. 

Bennett's paper explains how packet reordering can impact network performance, by 

exemplifying TCP during packet reordering. In the presence of forward path reordering, 
TCP has great difficulty opening its congestion window and makes inefficient use of 

available link capacity through unnecessary retransmissions. During reverse path 

reordering events (reordering of acknowledgments), TCP loses self-clocking and data 
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transmission becomes very irregular, with a large quantity of short duration data bursts 

instead of more evenly loaded flows. However, the impact of packet reordering is not 

limited to TCP. Any protocol that is reliant on the ordered arrival of packets can be 

affected by this phenomenon. For example, RTP flows, based upon UDP, will not be 

immune to packet reordering. The impact on TCP is to slow traffic and reduce 

throughput. However, the impact upon real-time flows is often far more severe. Even 

low levels of reordering increase the buffer memory requirements at the receiver as well 

as increasing processing related latencies. However, as reordering becomes even more 

prevalent buffering becomes ineffective; the result is degradation in the quality of the 

delivered service. For example, in applications such as voice over packet there is no time 

to retransmit data, and so the supposedly missing, but in reality late information, has to 

be replaced at the application level by 'white noise' thus causing loss of intelligibility. 

Bennett et al. also found that one of the challenges of understanding this form of 

reordering is that this type of parallelism is not easily measured. During Paxson's 

measurement experiments with reordering in end-to-end routing, the different network 

paths taken by packets were clearly indicated by the different addresses of the routers 

they traversed [Paxs96]. However, in link and local parallelism, the only indication of the 

existence of parallel links, may be that a particular hop exhibits varying levels of delay. 

1.2 Characterising Packet Reordering 

There have been several proposals to create protocols that can either adapt, or are 

robust, to packet reordering. However, evaluating their effectiveness requires a good 

understanding of the dynamics of the reordering processes prevalent in the Internet. 

Unfortunately, Internet packet sequencing is still a poorly characterised and under- 

studied behaviour. Measurement studies in this field are, to some extent, contradictory, 

including two papers presented at the Internet Measurement Workshop 2002 

"Measuring Packet Reordering" [Bell02] and "Classification of Out-of-Sequence Packets 

in a Tier-1 IP Backbone" QaisO2]. Both papers describe in detail, how packet reordering 

can impact network performance and attempt to measure the problem using simple 

active and passive measurements techniques. Unfortunately, their measurement results 
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on live Internet traffic do not correlate with Bennett [Benn99]. Bellardo and Savage 

[Bell02] used a single active probe based in UCSD testing 40 different destinations over 

a 20 day period. Bellardo's results show some level of reordering on over 40% of paths 

tested and 15% of individual measurements with out-of-sequence packets. Bellardo's 

study indicates that the amount of packet reordering varies upon a daily basis and can 

range from 5% to 25% of packets appearing out-of-sequence. 

Conversely Jaiswal et al. gais021, who passively observed TCP flows at a single point in 

the middle of the Sprint backbone, measured only 13.6% of flows with some form of 

reordering present and 5% out-of-sequence packets. These conflicting findings might be 

due to different network topologies, switch architectures, underlying link layer protocols 

or the measurement techniques used, but both studies are sufficiently different in nature 

that drawing conclusions without further work is difficult, thus providing an ideal 

stimulus for further research into measuring and understanding this phenomena. 

In November 2006, the IETF IPPM Working Group published "Packet Reordering 

Metrics" RFC 4737 [MortO6], after thirteen drafts of the metric has been proposed and 

discussed. This metric was strongly contested by Jayasumana et al., who published 

"Improved Packet Reordering Metrics' QayaO8] in June 2008, thus indicating that there 

remains disagreement in the research community on defining a metric which 

meaningfully, accurately and unambiguously characterises packet reordering. 

Clearly, further exploration of link and local level parallelism, how it drives packet 

reordering and impacts on network performance is important. Previously, there has 

been little work published approaching this problem from first principles, investigating 

how parallelism drives packet reordering, and then correlating this with the resulting 

performance impacts, on reasonably large scale networks. 
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1.3 Thesis Organisation 

This thesis is organised as follows. Chapter 2 discusses the Internet Protocol Suite and 

the various options and additions to the protocol and current implementations. The 

effects of Packet Reordering on TCP are discussed, and an overview of Internet 

Measurement techniques is presented. 

Chapter 3 presents the prior art in this area, by presenting a taxonomy of Metrics and 
Methods used to characterise Packet Reordering in the Internet, and the results obtained 
by using these methods. The taxonomy classifies these metrics and methods as active or 

passive techniques, and discusses the advantages and limitations of each technique. 

Chapter 4 presents a methodology for simulating Packet Reordering, and the 

development of a testbed and experimental network to empirically measure packet 

reordering. A two-point passive measurement technique is designed and prototyped, 

which improves on previous methods by allowing lightweight measurement of the 

amount and extent of reordering observed in a TCP flow, and classification of the cause 

of each reordering-induced packet retransmission. A large testbed study of over 30,000 

TCP flows is performed to investigate and measure the behaviour of TCP during 

reordering. 

Chapter 5 presents an investigation and the development of a mid-point passive 

measurement technique of TCP Packet Reordering, which allow improved classification 

of out of sequence packets, an improved measure of TCP Goodput, and a Visualisation 

Metric for indicating the performance of TCP throughout the lifetime of a flow. 

Chapter 6 presents a case-study of non-TCP traffic and how it is affected by Packet 

Reordering; an example of an application-specific packet reordering metric is developed 

for MPEG-4 video over UDP traffic, and this metric is used to describe the effects of 

packet reordering on streamed video traffic. 

Chapter 7 presents conclusions and proposals for future work. 
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Chapter 2 

The Internet Protocol Suite 

2.1 Introduction 

The growth of the Internet has been well documented [Hobb97], from the very first 

networking research carried out by the US Advanced Research Projects Agency in 1957, 

through to the exponential growth of connected hosts experienced and measured in the 

last decade. [HobbO6] 

A significant part of this exceptional growth rate is due to the research conducted in the 

1970s into the first host-to-host protocols, which resulted in the development of the 

Transmission Control Protocol [Post8lb] over Internet Protocol [Post8la] (TCP/IP) 

Suite. This has allowed a multitude of heterogeneously interconnected systems, all with 
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diverse characteristics, vendors and operating systems, to communicate seamlessly with 

each other, over various communications channels. 

This chapter provides an overview of the TCP/IP protocol suite, discussion of the 

various enhancements which have been added to TCP since its initial development, an 

overview of Network Measurement Science, and discussion of the effects of Packet 

Reordering on TCP flows. 

2.2 The Internet Protocol Suite 

Fhe `Internet Protocol Suite', often generically referred to as 'TCP/IP' is considered to 

be a 4-layer system [Stev94] [Bra89] as illustrated in Figure 1, with each layer responsible 

for a particular aspect of the transmission system: - 

Figure 1- The Internet Protocol Suite 

The Application Layer is responsible for providing service to particular applications on 

an end host, such as Web, Email, and file transfer systems, through application layer 

`Messages'. 

The Transport Layer provides additional functionality above the Network Layer, to 

provide a particular type of service between two hosts. For the vast majority of Internet 

traffic, the two main transport protocols in use are 1'CP (Transmission Control 

Protocol) [Post8lb], and l'DP (User Datagram Protocol) [Post8O], discussed in greater 

detail later in this chapter. Protocol Units at this layer of the suite are termed as 

`Segments' when discussing TCP, and `Datagrams' when discussing UDP [Soco91]. 
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The Network Layer is responsible for the routing of packets around the network, 

fragmentation of packets if required, and the structures for addressing in the Internet. 

The network layer must [Brad89] implement both Internet Protocol (IP) [Post8la] and 

the Internet Control Message Protocol [Post8lc], which provides the routing, diagnostic 

and error capabilities in the IP suite. Protocol units in this layer are described as 

"Datagrams' [Soco9l] when referring to the end-to-end unit of data passed from 

network layer to link layer, and IP `Packets' when referring to mid-point forwarding. 

Due to fragmentation, an IP Datagram may be transmitted as a single, or multiple, IP 

Packets. 

The Link Layer is the network interface layer, and is normally considered to be the 

device driver in the operating system and the corresponding network interface cards in 

the end hosts. End hosts handle the details of physically interfacing with the relevant 

transmission media. Protocol units at this layer of the stack are usually termed `Frames'. 

Figure 1 illustrates the `Hourglass Analogy' [Deer01] which has been argued to be the 

main factor in the success of the Internet Protocol. The `thin waistline' provided by IP, 

allows physical network independence, by presenting a ubiquitous interface between the 

application and link layers, thus allowing application layer services on different 

machines, to communicate directly with application layers on other machines, over a 

multitude of per-hop link media, creating one `end-to-end' [Salt81] path. 

2.2.1 Internet Standardisation 

Internet Standardisation is a loosely defined process, driven by volunteers from 

academia and industry, in four main organisations; the Internet Society, the Internet 

Architecture Board, the Internet Engineering Task Force (IETF), and the Internet 

Research Task Force. The majority of standardisation work is carried out by the IETF 

and published in the form of incremental documents called Request for Comments' 

(RFC) [Malk93]. RFCs can describe protocols standards, describe best practice, or be 

informational. When describing protocol standards, an RFC will describe a protocol as 

either Standard, Draft Standard, Proposed Standard, Experimental, Informational or 

Historical, with various aspects and features of each protocol, marked with various 
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requirement levels[Brad97a]. 

It should be noted though, that standardisation itself is a lengthy process - the 

Transmission Control Protocol is planned to move from `Proposed Standard' to 

`Standard' in October 2008 [Allm07], over 20 years since original conception. Indeed, it 

is worth noting that once a standard is documented in an RFC, there are no formal 

methods to enforce compliance, and misbehaving implementations [Chen07] [Sava99] 

are commonly observed [Medi05] in the Internet. 

2.2.2 Internet Protocol version 4 

The Internet Protocol version 4 (IP) [Post8l a], commonly referred to as ̀ RFC 791', was 

created in September 1981 and describes the DARPA Internet Protocol Specification, 

for transmitting a packet across a packet-switched communications network. 

RFC 791 is specifically limited in discussion so as to only describe the two basic 

functions of addressing and fragmentation. Therefore there are no mechanisms to allow 

end-to-end data reliability, flow control not sequencing, and it is assumed that IP will be 

used in conjunction with other higher-layer protocols in the Suite to provide these 

additional functionalities. IP is considered to be a `best effort' unreliable, datagram 

delivery service. Sources and Destinations are identified by fixed length addresses, with 

mid-point hosts given the ability to perform fragmentation and reassembly of packets 

over intermediate networks with varying Maximum Transmission Units (MTU). 

The standard describes how packets are to be moved by passing from one `Internet 

Module' in a host, to another, until the final destination address is reached[Post8lb]. A 

host which is implemented and designed for the specific task of forwarding IP packets 

is called an IP `router' [Soco9l] [Bake95]. Each datagram must be considered 

independently of all others; there are no connections or logical circuits, and there are 

specifically no guarantees of reliability, flow control, or datagram sequencing. This 

allows a light-weight and simple implementation in mid-point routers; a router does not 

record state information to maintain a connection, and it is acceptable for a router to 

randomly drop packets from its input queue should congestion occur. A router is also 
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allowed to output packets travelling between the same source destination pair through 

different output paths, and therefore no guarantees can be made on packet sequencing 

at the destination host[Benn99]. 

The basic functionalities of Addressing and Fragmentation performed by the IP layer 

are now discussed. 

2.2.2.1 Addressing 

The purpose of addressing is to provide an interface between the local network 

addressing structure, and Internet-wide routing. Addressing avoids the complexity of 

naming, separately carried out by Domain Names [Mock87], or an end user being 

required to specify routes between nodes. 

Upon receipt of a packet [Bake95], the router will validate the IP header, process any 

relevant IP options specified in the header, and then examine the IP Destination 

Address in order to make a forwarding decision. An IP address can be partitioned into 

two constituent parts; a Network Prefix, and a host number. The Network Prefix is 

compared with the router's routing table, and the next hop IP address for the packet 

and relevant output interface are determined. This continues until reaching a router 

capable of mapping the Destination IP address to a local network address, whereupon 

the packet is delivered to the end host. 

IPv4 addresses, are of a standardised [Post8la] fixed length of 32 bits, with a 

convention [Soco9l] of writing each of the 4 bytes in decimal, separated by a period. 

The original specification has undergone significant developments, through Classless 

Inter Domain Routing [Fu 193], and Network Address Translation [Sris0l]. Although 

the IPv4 address space is limited, thus motivating the development of IPv6 [Deer98], a 

number of challenges [WaddO2] have slowed actual deployment of Ipv6, and it is 

expected that IPv4 will remain the predominant addressing technique for the 

foreseeable future. 

10 



2.2.2.2 Fragmentation 

The purpose of Fragmentation is to allow the transmission of IP packets across an end- 

to-end path, through constituent intermediate networks, with varying sizes of MTU. 

This is particularly common when a source host is located on an 802.3 Ethernet 

network, where the size of each packet could be as large as 1500 bytes. All IP compliant 

hosts must be able to forward a packet of 68 bytes without performing further 

fragmentation (60 bytes maximum header size, and 8 byte minimum fragment 

size)[Post8la]. Additionally, every host must have the capability of receiving at least a 

576 byte IP packet, either in one single packet, or in multiple packet fragments. 

Fragmentation is performed transparently to higher layers, and re-assembly of fragments 

is only performed at the destination host in a connection - individual fragments of 

packets are each routed individually, and therefore may transit differing disjoint paths 

prior to arrival at the destination. 

Fragments are reassembled using the Identification Field (IPID) in the IP header, in 

conjunction with the Fragment Offset Field, Length Field and More Fragments Field. 

The IPID uniquely identifies each packet sent by a host, and is used together with the 

source and destination addresses and protocol fields, to identify datagram fragments for 

reassembly. The sending host must therefore ensure that the IPID is unique for each 

source/destination pair, and protocol, for the time that IP packet or its fragments, are 

alive in the Internet. Most TCP/IP Linux implementations increment a Kernel variable 

each time an IP datagram is sent [Stev94]. The IPID, therefore, normally increments 

predictably each time a datagram is sent, and is often exploited in IP header 

compression techniques[West06]. 

2.2.3 IPv4 Header Format 

Figure 2 illustrates the format of the IPv4 Datagram Header applied to packets upon 

leaving an Internet host. Bit positions are illustrated along the top of the header and it 

should be noted that IP packets will always be 32 bit aligned for optimum performance 

11 



on commodity hardware. Each field of the header is populated as follows: - 

Pv4- 
header 

048 12 16 19 32 

Version IHL Type of Service Total Length 

Identification Flags Fragment Offset 

Time to Live Protocol Header Checksum 

Source Address 

Destination Address 
Options + Padding 

" 

Data ý-` 

Figure 2- IPv4 Header Format 

" Version indicates the version of the internet header, which for RFC 791 - IPv4, 

is the value 4, thereby specifying the format of the following fields. 

" IHL is the length of the internet header in 32 bit words, and thus a pointer to 

the beginning of the data. A correctly formed IPv4 header will have a minimum 

value of 5, corresponding to the minimum header length of 160 bits. 

" The Type of Service field historically provided an indication of the Quality of 

Service desired [A1gm92], which was examined by mid-point routers when 

determining an onward path. Currently, it is used as either the Differentiated 

Services (DiffScrv) Field [Nich98] in DiffServ networks [Blak98], or Explicit 

Congestion Notification (ECN) Field [Rama0l] on compatible hosts. 

" Total Length is the total length of the datagram, measured in octets, including 

the packet header. A 16 bit field allows a datagram of up to 65,535 octets. 

" Identification, Flags and Fragment Offset are variables set by the sender to 

allow packet fragmentation, as discussed in Section 2.2.2.2. 

" TTL indicates the maximum time that the datagram is allowed to remain in the 
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Internet system, and is decremented by each host processing that packet. The 

current recommended default value is 64 [Brad89] 

" Protocol indicates the next type of protocol header which will appear in the 

packet following the IPv4 header. The values for various protocols are specified 

in the Assigned Internet Protocol Numbers list [IanaO7]. 

" Header Checksum is performed across the Header only, recomputed and 

verified at each point where the Header is processed. 

" Source and Destination Addresses are as discussed in Section 2.2.2.1 

" Options are a number of optional types which implement less common 

functions such as Security, Loose Source Routing, Strict Source Routing, Route 

Record and Internet Timestamps. These functions may not be implemented, in 

which case zero-bit padding is applied to ensure that the Header ends on a 32 

bit boundary. It is permitted for hosts to silently ignore options which they do 

not understand. 

2.3 User Datagram Protocol 

UDP is a connectionless transport protocol [Post80], and provides a simple interface to 

IP when a connection-oriented guaranteed delivery service is not required. A UDP 

header consists of a Source and Destination Port Numbers, to allow multiplexing of 

packet flows between hosts, a Length header and a Checksum header. 

UDP provides a very simple service with no congestion or flow control, and no method 

of retransmitting lost packets. For non-real-time applications where reliable transport is 

important, TCP would be the protocol of choice. 

2.4 Transmission Control Protocol 

Transmission Control Protocol (TCP) [Post8lb] is the predominant transport-layer 

protocol operating in the Internet [Medi05], and provides a reliable full-duplex 

connection, across an end-to-end path, between two Internet hosts. TCP is used in 
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applications where accuracy and completeness of data take precedence over latency, and 

is therefore suited to applications such as E-mail, Web traffic and file transfer. 

2.4.1 Reliable Transmission 

TCP operates a `sliding window' over a continuous byte stream of data from the 

application layer, packetising this data into Segments. A Sequence Number is 

conceptually assigned to every byte transmitted, and positive Acknowledgements (Acks) 

are required from the receiving host, thus indicating that each byte has been successfully 

received. Expiration of a timer at the sending host, before an Ack is received, indicates 

that the segment has been lost and that a retransmission should be scheduled. 

Upon arrival at the receiving host, TCP specifies that the Sequence Numbers should be 

used to correctly reorder segments that may have arrived out of order and to reveal 

duplicates. TCP is therefore able to accommodate the loss, damage, duplication or 

reordering of packets that may be caused by any of the underlying networks along the 

end-to-end path. 

Flow control is performed in TCP, allowing the receiving TCP to control the rate at 

which the sender transmits data, by returning a Window with every Ack, indicating 

available space in the receiver buffer. This `Receiver Advertised Window' (Hund) is flow 

control governed by the Receiving TCP based on the Receiver's buffering and 

processing capabilities. Flow control performed at the Sending TCP is discussed in 

Section 2.4.6. 

Multiplexing is achieved in TCP through the use of Port Numbers on each host which, 

when concatenated with the host address, are termed as a `Socket'. A pair of `Sockets' 

uniquely identify each `Connection', and thereby allows multiple TCP connections to 

terminate on any host. 
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2.4.2 TCP Header Format 

Figure 3 illustrates the TCP header, with fields defined as follows: 

IPv4 
header 

TCP 
header 

Data 

0 4--,, 
- 

8 12 16 20 24 
_ 

32 

IP Header 

Source Port Destination Port 

Sequence Number 
Acknowledgement Number 

Data 
Offset Reserved C 0 Window 

Checksum Urgent Pointer 

Options Padding 

Data 

Figure 3- TCP Header Format 

" Source Port is the 16 bit source port on the source host. 

" Destination Port is the 16 bit destination port on the destination host. 

" Sequence Number is the 32 bit Sequence Number of the first data octet in the 

segment's payload (except when the SYN flag is present). If SYN is present the 

sequence number is the Initial Sequence Number (ISN) of the connection, and 

the first data octet is TSN+1. 

" Acknowledgment Number field is valid only if the ACK control bit is set, and 

contains the 32 bit Next Sequence Number that is expected at the destination 

host. 

" Data Offset is the 4 bit indicator of the number of 32 bit words in the TCP 

header. The TCP header is always 32 bit aligned. 

" Reserved is 6 bits reserved and must be zero, or, if Explicit Congestion 

Notification [Rama0l] is enabled, are used as described in RFC3168 [Rama0l] 
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and RFC3540 [Spri03]. 

" Control Bits are 6 single-bit control flags as follow: - 
URG - Urgent Pointer flag. 

ACK - Acknowledgement flag. 

PSH - Push function flag. 

RST - Reset connection flag. 

SYN - Synchronise sequence numbers flag. 

FIN - Request connection termination flag. 

" Window is a 16 bit field signalling the number of data bytes, starting with the 

byte indicated in the Acknowledgement field in this segment, which the 

receiving host is willing to accept. 

" Checksum is the 16 bit checksum of the payload and data, which is mandatory 

in all TCP packets[Brad89] 

" Urgent Pointer is a 16 bit field which points to urgent data following the 

current segment. The pointer points to the sequence number of the octet 

following the urgent data. 

" Options may appear at the end of the TCP header and are multiples of 8 bits in 

length, with Padding to ensure that the packet is 32 bit aligned. Options may 

indicate Timestamp options [Post8lb], Maximum Receive Segment Size (MSS), 

Selective Acknowledgements (SACK) [Math96], or other options. It is specified 

that a TCP must be able to receive an option in any segment, and ignore without 

error any option not implemented [Brad89]. 

2.4.3 Sequence Numbers and Acknowledgements 

The idea of Sequence Numbers is important in TCP as, conceptually, each octet of data 

is assigned a sequence number. Once the `sliding window' has isolated a stream of octets 

to form into a segment, it is the sequence number of the first octet of data in a segment 

that is used as the sequence number for the complete packet; termed the `Segment 

Sequence Number'. The Segment Sequence Number is placed in the Sequence Number 

field of the TCP header. 

16 



In the reverse direction, segments carry an Acknowledgement number, placed in the 

Acknowledgement Number field of the TCP header, with the ACK flag set, so as to 

mark the field as being valid. An Acknowledgement number in TCP is the sequence 

number of the octet that the receiver is next expecting to receive. Therefore, in a simple 

scenario, the Acknowledgement of a packet would be the (Sequence Number + Packet 

Length) of the most recent packet received. 

Acknowledgements in TCP are cumulative as illustrated in Figure 5. A Receiver may 

operate the `Delayed Ack' algorithm [Clar82], in which case a Sender, receiving 

acknowledgement of sequence number x, should interpret this to mean that the 

Receiver has correctly received all bytes up to but not including x. Cumulative Acks can 

substantially reduce protocol overhead [Brad89], but excessive delays can disturb the 

round-trip sampling and packet `clocking' algorithms Jaco88]. 

2.4.4 Establishing a Connection 

A connection is established through a three-way handshake mechanism, as illustrated in 

Figure 4, where the TCP modules of the Sender and Receiver synchronise on each 

other's Initial Sequence Numbers (ISN). Each TCP selects their ISN through an 

implementation dependent mechanism, and transmit a packet with the SYN 

(Synchronise) flag enabled. Once each TCP has positively acknowledged the ISN of the 

other TCP, by transmitting Acks, the connection is established and data transmission 

can begin. 

For sequence number purposes, the SYN packet sent to establish a connection, is 

considered to occur before the first actual data octet of the segment in which it occurs, 

while the FIN packet, sent to signal the end of a connection, is considered to occur after 

the last actual data octet in a segment in which it occurs. 
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Sender Receiver Sender Receiver 

SYN Seq 1234 
(Seq=X) 

Ack 5 

Seq 5,6,7,8 
SYN ACK 

(sec -Y 
ACK-X-1 

Ack9 

Seq 9,10,11,12 

ACK 
(SEQ=X+1, 

-ý ACK=Y+1; 

Ack 13 

Figure 4- TCP 3-way Handshake Figure 5- TCP Cumulative Acknowledgements 

Closing a connection can happen in two ways [Brad89] - either party can signal they 

wish to close by sending a FIN handshake, or an `abort' can be sent when a RST 

segment is sent, and the connection is discarded by both parties. 

2.4.5 Retransmission Timeout 

TCP reliability is implemented through the use of retransmissions, should loss be 

detected in the network. A TCP sender will maintain a copy of each transmitted 

segment, and a timer is initialised which will count until an acknowledgement is received 

which encompasses the sequence number of that segment. Should an acknowledgement 

not be received before a `Retransmission Timeout' (RTO) value is reached, the Sender 

will assume that the segment has been lost and will initiate the retransmission process. 

To enable this loss detection, the TCP sender requires a method of calculating the 

Round Trip Time of connections, which must be calculated on a per source-destination 
basis, and must be dynamically updated to ensure that any rime-varying effects of the 

end-to-end path are considered. 
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All TCP hosts must [Brad89] [PaxsOO] implement Kam's algorithm [Karn87] for 

selecting non-spurious RTT measurements that could corrupt the smoothed RTT 

measurement, and Jacobson's algorithm Uaco88] for computing the smoothed RTI', to 

calculate the retransmission timeout. Traditionally, TCP implementations will take one 

RTT measurement at a time (typically once per RTI)[PaxsOO]. For connections where 

there are no current RTO samples, the RTT is initially set to 3 seconds, and during 

calculation it should always be rounded up to a minimum value of at least 1 

second[PaxsOO]. 

2.4.6 TCP Congestion Control 

TCP Congestion Control is the process of applying flow control on the Sending TCP 

host, by probing the network path capability, and governing transmission so as not to 

overwhelm the intermediate nodes. Congestion Control [Allm99] [Al m07] is specified 

by four closely related algorithms; Slow Start, Congestion Avoidance, Fast Retransmit 

and Fast Recovery Qaco88] Qaco9O]. [Brad89] mandates that a TCP Sender must 

implement Slow Start and Congestion Avoidance, with Fast Retransmit and Fast 

Recovery later optionally introduced in [Allm99]. 

TCP maintains three variables per connection at the Sending TCP host: 

" The Congestion Window (cwnd) is a sliding window, which limits the amount 

of data a Sending TCP can transmit into a network, before receiving an 

Acknowledgement. 

The Receiver's Advertised Window (rwnd) is flow control from the Receiving 

TCP, indicating a window size of data the receiver is willing to accept. 

" The Slow Start Threshold (ssthresh) is a value used to decide whether the 
Sending TCP is transmitting packets using the Slow Start or Congestion 

Avoidance algorithm, and if the cwnd variable should be adjusted. 
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The minimum of cwnd and nvnd controls the amount of data a TCP sender can transmit 

into a network, before an Ack is received from the recipient. 

The aim of TCP Congestion Control is that transmission should be `self-clocking' 

Daco90], where the Sending TCP uses feedback in the form of rick packets, to strobe 

packets into the network, as other packets leave the network. Before this equilibrium 

can be reached, termed the Congestion Avoidance phase, the Sender must aggressively 

probe the network in order to find the end-to-end capacity of the path - termed the 

Slow Start phase. 

The Slow Start algorithm is used to govern transmission when twnd < ssthresh, and the 

Congestion Avoidance algorithm is used to govern transmission when cwnd > ssthresh. 
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2.4.6.1 Slow Start 

During Slow Start, the Sending TCP will increment cwnd by one `sender maximum 

segment size' (SMSS), each time an Ack is received as illustrated in Figure 6. This 

results in an exponential rise of segments injected into the network, and cwnd growing 

rapidly. Slow Start ends when cwnd is greater than ssthresh, or congestion is observed. 

RFC 2581 defines the slow start algorithm in terms of segments rather than bytes, but 

there are many TCP implementations which increase csvnd by exactly SMSS bytes 

whenever an Ack covering any new data, whatever size, is received,. This is known as 

`Ack Division' [Sava99]. This, and other `mis-behaving' TCP implementations [Sava99] 

are widespread in the Internet today. 

2.4.6.2 Congestion Avoidance 

Eventually the sender will reach a threshold where cwnd has grown too large, and the 

end-to-end network connection is unable to sustain that number of packets in flight 

simultaneously. At this point, packet loss will occur; indicated at the Sending TCP by 

either a segment RTO or, as discussed in Section 2.4.6.3, the receipt of duplicate Acks 

and the triggering of Fast Retransmit. 

When congestion is indicated, the Sending TCP will set its ssthresh variable to one-half of 

the current window size (the minimum of civnd and nvnd). Additionally, if the congestion 
is indicated by a RTO, cwnd is set to one segment and Slow Start will commence. 

Once retransmission has occurred, the sending TCP will continue to transmit. When the 

congestion window has grown to cwnd > ssthrerh, the Congestion Avoidance algorithm 

will regulate transmission, and will increment cwnd by approximately 1 SMSS per RTT, 

no matter how many Acks are received in that period. This results in a continued 

growth of cwnd, but in a linear fashion, as illustrated in Figure 7. The process of probing 

the path and the continuous adjustment of ssthresh is illustrated in Figure 8, where three 

losses each require a halving of the ssthresh value, and transmission restarting using the 

Slow Start algorithm. 
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2.4.6.3 Fast Retransmit 

The Fast Retransmit algorithm operates on the principle that Receiving TCP hosts are 

required [Brad89] to generate an immediate Ack each time they receive an out-of-order 

TCP segment. This Ack is termed a `Duplicate Ack' of the last in-order segment 

successfully received, and signals to the Sending host that segments are still successfully 

arriving at the end host, but are arriving out of order, indicating that there is loss in the 

segment sequence at the receiving end. It is acknowledged [AHm07] that the reaction to 

the arrival of duplicate Acks varies widely in TCP implementations. 

A TCP sender should [AUm07] use the Fast Retransmit algorithm to detect and repair 

loss, by using the arrival of 3 duplicate ricks, by default, as an indication that loss has 

occurred - that is, a total of four packets with the same acknowledgement field. 

The arrival of 3 duplicate Acks should cause the srihresh to be set to one-half of the 

current wund. Once the lost segment has been retransmitted, cwnd is inflated to (ssthresh + 

3xSMSS) to account for the segments that have left the network. 

The value of 3 was chosen since the Sending TCP does not know if the duplicate Acks 

are caused by packet loss or packet reordering over the path and, when the algorithm 

was developed in 1990UJaco9O], it was assumed that if `the consecutive duplicates 
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threshold is set high enough, we can reasonably assume that duplicate ticks mean 

dropped packets', as the usual cause of out-of-order packets at the receiver was assumed 

to always be due to a missing packet. 

TCP hosts which implement the Slow Start, Congestion Avoidance and Fast Retransmit 

algorithms are termed `TCP Tahoe' variants. 

2.4.6.4 Fast Recovery 

After a Fast Retransmission occurs and the Sender has sent what appeared to be the lost 

segment, the Fast Recovery algorithm controls the Sending TCP until new data is 

successfully Acknowledged by performing Congestion Avoidance, rather than entering 

Slow Start. When the next Ack arrives acknowledging new data, cwnd is set to ssthresh, 

and transmission of new data continues, at half the rate at which packet loss occurred. 

The Fast Recovery algorithm assumes that, although packet loss has occurred, the 

duplicate Acks indicate that other packets were successfully leaving the network and so 

there is no need to abruptly close cwnd and re-start the connection with Slow Start. This 

allows the `Ack Clock' to be preserved Uaco88], and the TCP algorithm to remain 

stable. 

TCP hosts which implement the Slow Start, Congestion Avoidance, Fast Retransmit 

and hast Recovery algorithms are termed `TCP Reno' variants. 

2.4.6.5 Limited Retransmit 

The fast retransmit and fast recovery algorithms can be implemented using the Limited 

Retransmit algorithm [Allm0l], where on the first and second duplicate ricks, a TCP 

should send a segment of previously unsent data, as the duplicate Acks indicate that data 

is leaving the network. 
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2.4.7 Loss Recovery Mechanisms 

Congestion control loss recovery mechanisms represent a popular research area, where 

investigations attempt to build on the mandatory Fast Retransmit and Fast Recovery 

algorithms to illustrate improvements in performance, although comparison of these 

techniques can be difficult [Floy07]. The predominant methods [Medi05] live in the 

current Internet are now discussed. 

2.4.7.1 Partial Acknowledgements 

The NewReno modification to TCP's Fast Recovery algorithm [Floy04] is motivated by 

the fact that simulations illustrate TCP Reno performs poorly [Fall96] when multiple 

packets are lost in a single packet `flight'. Multiple packet losses will trigger a Fast 

Retransmit, but this will only result in a `Partial Acknowledgements' from the Receiver - 

an Ack which does cover previously unacknowledged data, but not all the data 

outstanding when loss was detected, thus revealing that more than one loss has 

occurred. 

During the Fast Retransmission phase, NewReno examines Acks received after the Fast 

Retransmit has sent the retransmitted packet. If the ack acknowledges all data, up to the 

highest sequence number transmitted by the Sender, then the Fast Retransmit is 

assumed to have successfully completed loss recovery. If the Ack does not acknowledge 

all data sent by the Sender, up to the highest sequence number transmitted, the Ack is a 

Partial-Ack. On identification of a Partial-Ack, the segment indicated by that Ack is 

retransmitted - without waiting for any more duplicates, and hopefully before an R'1'O 

occurs. 

2.4.7.2 Selective Acknowledgements 

With the limited information available from cumulative acknowledgements, a Sender 

can only learn about one lost packet per RTT. The TCP Selective Acknowledgements 

option [Math96] allows the Receiving TCP to inform the sender what segments have 
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arrived successfully, so that only the actually lost segments need to be retransmitted. 

The Receiving TCP uses the TCP Options header to inform the Sender of the non- 

contiguous blocks of data that have been successfully received, but are queued until all 

sequence gaps have been filled. As retransmission from the Sender fills gaps in the 

holes, the Ack field is increased in the usual way, to Acknowledge successful receipt of 

the data. 

RFC 2883 [FloyOO] extends the use of SACK by specifying that when duplicated packets 

are received, the SACK options header can be used to report the Sequence number of 

the duplicated packet, in order to allow the TCP sender to infer the order of packets 

received, and infer when unnecessary retransmissions have been sent. This could be 

useful in environments where reordering, lick loss, duplication or early retransmit 

timeouts occur frequently. 

2.5 The Problem of Reordering 

As illustrated by the development of the Fast Retransmit algorithm, later additions to 

TCP were made, based on the assumption that packet reordering on the Internet was a 

pathological behaviour -a phenomenon that was very unlikely to occur. Discussion of 

the degree of reordering measured in the Internet is presented in Chapter 3, and a 

measurement study of the true effects of packet reordering is presented in Chapter 4. 

As discussed in Chapter 1, a significant contribution of Bennett's original paper in 1999, 

was to question the assumptions made by protocol designers that packets will traverse 

the Internet in-order. The following section presents the effects of reordering on TCP 

as hypothesised by Bennett, and the resulting effects that Bennett argued would be 

measurable on TCP performance [Benn99]. These assumptions have been assumed to 

be correct in many of the later studies of packet reordering [Bel102][BlanO2]. 

Bennett hypothesised that, due to the asymmetric nature of the Internet, connections 

will frequently only experience reordering in one direction, and therefore there are three 
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types of packet reordering that can be considered; forward-path reordering or data 

reordering, reverse-path reordering or Ack reordering, and a combination of both 

forward and reverse path. Each type of reordering was argued to have very different 

effects on the overall TCP connection. 

2.5.1 Forward path reordering 

In forward path reordering, TCP data segments arrive out-of-sequence at the receiver as 

shown in Figure 9. Bennett hypothesised that this would result in the five effects of 

unnecessary retransmissions, difficulty growing (wnd and ssihresh, actual losses being 

obscured, poor R'IT estimation, and reduced efficiency at the receiving TCP. 
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Figure 9- Forward Path Reordering Figure 10 - Reverse Path Reordering 

When data arrives out of order, the receiving TCP sends a duplicate acknowledgement 

of the last in-order byte received or, if SACK is implemented, the ack will acknowledge 

both the last in-order byte and the new out-of-order data. 

Upon receiving an out-of-sequence packet, through either loss or reordering, the TCP 
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receiver's request for retransmission will require the sender to infer that the path is 

congested. This will result in an unnecessary re-transmission, but additionally will initiate 

unnecessary congestion avoidance, thereby further reducing the potential throughput of 

the link. 

2.5.2 Reverse Path Reordering 

In reverse path reordering, the acknowledgments travelling back to the sender are 

reordered, as shown in Figure 10. Data travelling in the forward path may be arriving in 

sequence, but the asymmetric nature of the Internet may cause the receiver's cumulative 

Acks to appear out of sequence. Bennett hypothesised that reverse reordering would 

cause significant problems with the self-clocking property of TCP, leading to highly 

bursty transmission patterns [Benn99]. 

2.5.3 Combined Path Reordering 

Combined path reordering occurs when packet reordering is observed in both the 
forward and reverse paths. This could occur when a TCP connection is symmetric and 

passing through the same routers in both directions, although some studies have noted 

[GharO4], that packet reordering on specific network paths and routers can be 

asymmetric in nature. 

During Combined Path Reordering, Bennett hypothesised that TCP will alternate in 

behaviour between the effects of both forward and reverse path. This causes a 

combination of symptoms, depending on the degree of reordering experienced in both 

directions. 

Packet Reordering therefore has an instinctively negative effect on the performance of 

TCP, and therefore the majority of the current metrics and measurement studies have 

focussed on characterising the movement of packets within a flow, rather than 

measuring the resulting performance of a connection during reordering. Few papers in 

the literature [Laor021 have actually measured the performance of TCP, or questioned 
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Bennett's arguments of TCP's behaviour when undergoing reordering. A measurement 

study of the true effects of reordering on TCP application performance is therefore 

carried out in Chapter 4. 

2.6 Internet Measurement 

Network measurement science is motivated by a number of factors in order to develop 

the tools and techniques to allow accurate characterisation and modelling of live 

network traffic currently transported in the Internet today. Measurement is important 

for provider operations, such as capacity planning, billing, and fulfilling local Lawful 

Intercept requirements, and also from a scientific perspective of evaluating current 

protocols and architectures, in order to develop new technologies and standards. 

As the Internet evolves and new technologies such as voice, video and data 'Triple- 

Play'[HensO8] are deployed, there will be an increasing requirement to develop and 

implement Service Quality support in IP networks. To perform the traffic engineering 

required for this support, protocols such as RSVP [Brad97b] require more sophisticated 

characterisation of traffic flows, in order to allow network carriers to make provision for 

perhaps millions of concurrent connections, with diverse traffic characteristics and 

requirements[RaghO7], while at all times maintaining a guaranteed level of Quality of 

Service (QoS) [Info07]. 

2.6.1 Quality of Service 

Quality of Service and Traffic Engineering [AwduO2] are becoming dominant in 

Internet access technologies[InfoO7], as business users move from traditional ATM 

leased line installations to Virtual Private Networks (VPN)[InfoO7]. This new 

technology provides many cost benefits to the user, as there is no longer the 

requirement to install expensive point-to-point leased lines but, as a result, the level of 

service and traffic characteristics are no longer guaranteed. There is, therefore, an 
increasing requirement for Service Level Agreements with accurate methods, to police 

and measure compliance of the end user service experience, and to ensure that the 
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network is providing the Quality of Service that is expected. 

2.6.2 Service Level Agreements 

A Service Level Agreement (SLA) is a contract which documents the level of service 

between a user and a network provider [Mart02]. The SLA describes the business terms 

of the agreement, the network provider and the users' responsibilities, and the penalties 

to be imposed should the agreement be broken. Examples of SLAs are widely available 

[Pipe07] [AttO7], as they are used by providers as key differentiators to attract new 

customers. The Service Level Specification (SLS) [Nich01] of the SLA is a set of 

parameters and their values, defining quantitative characteristics, and the bounds on 

these characteristics, that the provider is committing to deliver. A wide variety of 

characteristics may be included, such as delay, loss, Delay Variation and availability; 

these characteristics, and the methods used to measure these characteristics, are 

documented and agreed upon before a provider will make provision for each new 

customer. 

2.7 Metrics and Measurements 

The term `Metric' is used to describe the computation of a measurement, and results in 

some quantifiable value that characterises a feature of the network. 

The term `Measurement' is used to describe the process by which the metric is obtained 

or retrieved and, therefore, could be one of several methods to perform a measurement 

that will result in the same metric. Performing a Measurement requires `Instrumentation' 

of the network, at an `Observation Point' (OP), for the given time-base of the metric. 

The following section discusses the common measurements and metrics that are used in 

current Internet monitoring[Brow0l]. A number of metrics are in common use, but 

their definitions are not necessarily standardised, resulting in problems when comparing 

one set of metrics with others. 
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2.7.1 Packet Latency 

An accurate measure of latency is important as many applications, such as voice and 

video, do not perform well over network paths with high levels of delay. TCP will suffer 
degraded performance, as the round-trip-time estimator will measure a very high value, 

resulting in the poor performance of loss recovery and congestion control algorithms. 

The `One Way Delay' measurement as defined by the IETF IPPNI Working Group, in 

Standards Track RFC 2679 [Alme99a], is the time measured between a host transmitting 

a packet, and the destination host receiving it. `Network Latency' is the term used to 

describe the round-trip delay[Alme99b], and is a function of the time taken to travel 

along the physical links (transport time), the time to pass through routers (queuing and 

transmission time), and the time for the receiving host to process the packet and 

generate and Acknowledgement (server response time). When measuring network 

latency, the transmission time component of the measurement may be asymmetric, as 

forward and reverse measurements may travel over disjoint paths. 

Latency can be measured using simple ICMP Echo Request 'ping' messages, or TCP 

resets, although using ICMP may not always result in accurate network 

measurements[WenwO7]. Measuring forward and reverse path delays separately, requires 

instrumentation at both ends of a connection, with appropriate hardware and software 

agents. RFC 2679 [Alme99a] describes a One-Way Delay metric, where both hosts have 

highly-synchronised clocks, and specially constructed packets with timestamps are 

transmitted to allow delay calculation in each direction. 

2.7.2 Packet Loss 

Network loss measurements are important because many applications do not perform 

well when end-to-end packet loss is high. Many services, such as voice over IP, are 
designed to tolerate some packet loss but, over a threshold value the service quality 
decays quickly. TCP actually requires packet loss in networks, in order to probe network 

capacity and adjust its transmission rate accordingly, and so an accurate measure of one 

way loss [Alme99c] and round trip loss are important network characteristics. Packet 
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loss may vary due to network load and time, and may exhibit bursty behaviour. 

Therefore, loss patterns [Koo02] and loss distribution are key parameters which 

determine the performance observed by the users for certain real-time applications. 

A definition for Packet Loss is provided by the IETF IPPM Working Group, in 

Standards Track RFC 2680 [Alme99c], `A One-Way Packet Loss Metric for IPPM'. Loss 

is defined simply as the number of packets transmitted from sender to receiver, which 

have been lost in transit. This can be expressed as a percentage over a set period of 

time. If a packet arrives, but any part of it is corrupted, RFC 2680 defines that packet to 

be counted as lost. If a packet arrives very late, a method is required to differentiate 

between packet loss and those very late packets; RFC 2680 suggests an upper bound of 

255 seconds, as defined by the theoretical TTL lifetime of an IP packet. Packets which 

arrive later than 255 seconds are to be counted as lost. If a packet is duplicated along the 

path, so that multiple non-corrupt copies arrive at the destination, RFC 2680 defines the 

packet to be counted as received. If the packet is fragmented, and for whatever reason, 

it is not reassembled correctly at the destination, RFC 2680 defines that packet to be 

counted as lost. 

The main difficulty with current loss measurement techniques, is that it is difficult to 

isolate an end-to-end loss measurement to a particular network node or path. 

Additionally, RFC 2680 comments that packet loss may occur asymmetrically across a 

network, and therefore loss measurements should be considered `one-way'. Loss 

measurements would be more useful for providers if they isolated a particular 

malfunctioning node or path. Loss measurements are also based on active probing 

techniques, which may result in packet probes traversing different intermediate routes 

between source and destination, thus measuring different paths. Therefore, routing and 

switching anomalies must be considered when performing these measurements, 

especially if it is impossible to gain knowledge of the interior gateway routing protocols 

in use. 
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2.7.3 Packet Jitter and Delay Variation 

The IETF IPPM Standards Track RFC 3393 [DemiO2], 'IP Packet Delay Variation 

Metric for IP Performance Metrics', defines a metric for the variation in delay of packets 

across Internet paths. This metric is based on the variance of the one-way-delay, as 

defined by RFC 2680, of two or more selected packets. 

RFC 3393 establishes that terminology in this area of measurement lacks 

standardisation, and that the variation in packet delay is sometimes called `Jitter'. `Jitter' 

commonly has two meanings; the first being the variation of a signal with respect to a 

clock signal, where the arrival of a specified signal is expected to coincide with the 

arrival of that clock signal. This definition of `Jitter' is similar to a metric called `Wander' 

[DemiO2] and is specific to networks such as ATM. The second meaning of `Jitter', as 

defined in RFC 3393, is related to the variation of a metric (e. g. delay) with respect to 

some reference metric (e. g. the average delay). RFC 3393 recommends discontinuation 

of the word `Jitter', and use of the more specific term 'IP Packet Delay Variation. ' 

`Delay Variation' is defined [PoreO6] as the absolute value of the difference between the 

arrival delay variation of two consecutive packets belonging to the same stream, and is 

therefore indicated by packets exhibiting a differential delay, positive or negative, 

compared to the other packets in the stream. Delay Variation can be caused by multi- 

path routing, route fluttering, or packets of the same stream traversing different queues 

inside a router. Delay Variation is an important metric for determining queuing and 

buffering capacities at mid-points and end-points in a network, as applications such as 

video require a constant flow of packets. Therefore Delay Variation must be smoothed 

by appropriately sized buffers. 

2.7.4 Packet Throughput 

Throughput is defined [Brad91] as the maximum rate, measured in bits or packets per 

second, at which none of the offered packets are dropped by a network device. 
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Throughput therefore describes the number or rate of delivered packets to a network 

device or end host. Throughput as a metric has many applications in terms of capacity 

planning and traffic engineering, but is also extended to discuss `Goodput'. Goodput is 

the number or rate of useful packets delivered, and therefore is a function of the 

throughput with respect to loss and retransmissions. Goodput is discussed further in 

Chapter 5. 

2.7.5 Packet Ordering 

In-sequence delivery is a good indicator of the health of a connection, as it indicates that 

there are no large variations in transmission time or Delay Variation, and that the 

receiving host is receiving data in the order by which it was intended. In protocols such 

as TCP, extremely late packets may result in the Receiver assuming that a loss has 

occurred, and that the Sender has chosen to retransmit that packet due to RTO. These 

extremely late packets may also result in the Receiver signalling to the Sender for Fast 

Retransmission, perhaps unnecessarily resulting in packet retransmission, and perhaps 

resulting in unnecessary Sender congestion avoidance. In Negative-Acknowledgement 

based protocols, such as the RFC 3940 NACK-Oriented Reliable Multicast Protocol 

[AdamO4], extremely late packets would result in the Receiver signalling to the Sender 

for unnecessary retransmission. 

Packet Ordering will also have an overhead, associated with the re-sequencing packets at 

the Receiver, before presentation of these packets to higher network layers. 

A review of both Metrics and Measurement Techniques for IP packet ordering is the 

subject of Chapter 3. 
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2.8 Measurement Bases 

Measurements can be classified on the basis of where and at which level of traffic 

aggregation the traffic data is gathered, and a number of Measurement Bases are 

defined[Lai03]. The observation point may be a probe on a line card of a router, or a 

software probe in the IP stack of a particular host. The exact location of the observation 

point may also have an effect on the observation measurement time. The concept of 

`wire time' and `host time' are therefore important, and are affected by the specific 

instance of probe. Wire time is defined [Alme99a] as the moment when a test packet 

leaves the network interface of the source, and the moment when it arrives completely 

at the destination. Host time is the timestamp taken from the sending/receiving hosts 

kernel, when the probe requests a timestamp. 

2.8.1 Flow-based Measurements 

Flow-based measurements are primarily used on interfaces at routers, and are used to 

collect detailed information about a particular, or group of, IP flows. A flow is identified 

by the source and destination IP addresses, port numbers, and protocol numbers, and 

once a flow has been identified, a variety of the measurements described in Section 2.7 

can be performed. On core network routers, measurement of every flow through a 

router interface is extremely challenging due to the number of source/destination pairs 

which could be identified, and the large number of measurement records that are 

created and then associated with each flow. This can result in large amounts of 

measurement data that may be difficult to process in real-time, without adversely 

affecting the network node's performance. 

2.8.2 Interface, Link and Node-based Measurements 

The purpose of these measurements is to characterise the behaviour of the particular 

network element or interface, and is typically performed by a single-point passive 

34 



technique as discussed in Section 2.9.1. This type of measurement may be used to 

describe the traffic aggregation across a particular router interface, such as the maximum 

packet throughput that a card will sustain, without giving attention to particular flows or 

their source and destinations. 

The Simple Network Management Protocol (SNMP) [Case90] is an example of an 

interface, link or node based measurement protocol, which uses passive monitoring to 

collect data, typically in the form of packet counters, byte counters, packet discards and 

errors. These metrics are organised in hierarchies and stored in Management 

Information Bases (MIB)s, and are reported by the SNMP agent to the Network 

Management System as required. These measurements would typically not be able to 

reconstruct a flow of packets between sender and receiver and, as discussed with flow 

based measurements, may require monitoring of thousands of concurrent flows and the 

generation of large amounts of measurement data, which would require significant post- 

processing to generate practical results. 

2.8.3 Node-pair-based 

Node-pair measurements concern the measurement made between two predefined 

network elements. This is usually the case for active measurements, such as Ping or 

Traceroute as discussed in Section 2.9.2. Alternatively, it could be derived from the 

records generated from a flow-based measurement through post-processing of 

source/destination pairs. Due to multi-path routing and asymmetric paths, node-pair 

measurements can be difficult to perform in IP networks. 

2.8.4 Path-based 

Path-based measurements are performed over a path between a number of network 

nodes. This may be a strictly defined MPLS path, or simply a multi-hop route across 

several nodes. These measurements describe the characteristics of the aggregate traffic 

of the path and could be retrieved, based on one observation point to passively monitor 

throughput, or based on multiple observation points to actively monitor the delay. 
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2.8.5 Local and End-to-End Measurements 

The observation point required to perform a measurement must be defined when 

reporting the results of any Internet measurement, and can be described as being either 

a Local Measurement or an End-to-End Measurements. 

" Local Measurements describe measurements which can be made from a single 

observation point, such as interface-based and node-based measurements. Path and 

flow based measurements can also be made locally if the correct observation point is 

chosen, although as discussed in previous sections, these measurements are more 

challenging to implement. 

" End-to-End Measurements are those which require more than one observation 

point. This facilitates path-based and node-pair based measurements, over multiple 

hops across an end-to-end Internet path. 

In addition, Internet measurements may be described as being absolute or derived: - 

" Absolute Measurements provide an accurate representation of a metric without 

calculation of any statistics. An example of an Absolute Measurement is a count of 

the number of packets discarded by a router. 

" Derived Measurements are computed from simple measurements, such as the 

delay of a single packet in a stream and, from a series of several measurements, 

derive a subjective measurement result - such as the Mean Opinion Score of a video 

playback. 
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2.9 Measurement Methodologies 

There are two primary techniques when performing both local and end-to-end 

measurements; Passive measurement methods and Active measurement methods. These 

passive or active methods can both be applied across local or end-to-end points, to 

compute a number of metrics. 

2.9.1 Passive Measurements 

Passive measurements are performed on live user traffic by monitoring the normal 

operational packet load from an observation point. The observation point applies a 

mask on the packets travelling through the instrumented device, and copies these 

packets of interest into the measurement probe, to perform metric calculation and 

possible storage. 

Passive measurements may be applied across a single or multiple observation points. A 

single-point measurement allows monitoring of traffic load and protocol statistics or, if 

the packet flows contain timestamps such as RTP, then metrics such as delay, Delay 

Variation and packet loss can be calculated. With multiple observation points, a passive 

measurement approach can perform delay measurements without timestamps, provided 

that both observation points are synchronised, as discussed in Section 2.10. 

Passive measurements do not add further traffic to the network but, in general, require 

more computation than active measurements and can result in very large datasets 

requiring to be processed in order to obtain relatively simple metrics. 

2.9.1.1 Passive Measurement Examples 

Cisco IOS NetFlow [Clai04] was a proprietary passive measurement technique to 

perform flow measurement on Cisco routers. For each interface on the router, NetFlow 

maintains tables of `Flow Records' of each connection passing through the interface, 
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based on source and destination IP addresses and ports. At specified intervals, NetFlow 

data records would be sent by UDP from the router, to a NMS for processing. 

NetFlow Version 9 [LeinO4] is the basis for the emerging IETF standard `Internet 

Protocol Flow Information eXport' (IPFIX), to create a common format for IP flow 

information, to be used in accounting, billing and network management systems. 

There are several methods and tools to collect and analyse NetFlow data, such as Flow- 

tools[Fu]107]. Flow-tools is an open-source collection of tools to process and generate 

reports from NetFlow-enabled devices. Other router manufacturers provide similar 

functionality to Cisco NetFlow. Juniper Networks provide Jflow statistics 

collection[uni07J, and Huawei Technologies provide a similar feature called 

NetStream[HuawO7]. 

2.9.2 Active Measurements 

Active measurements operate by injecting controlled test packets through the network, 

in order to observe how these packets, with their characteristics known a-priori, are 

affected by the network. Active measurements therefore require two elements in the 

network; the sending host must generate the test packets, and the receiving host must 

either perform the measurement, or return specific information to the sending host. 

Active test traffic may be simple ICMP Echo Request probes, such as those sent by 

Ping or Traceroute, or may be synthetic packets, typically carrying timestamp and 

sequence numbers to allow delay and Delay Variation measurements to be calculated. 

Active measurements are intrusive on the network and will add to the overall load that 

the network must process, but are commonly used as the method for monitoring SLAs 

[Bt07] and for basic site connectivity testing. There is also the possibility that the 

synthetic traffic may be treated differently from other live traffic on the 

network[Wenw07], or that the traffic may be processed by a router's `slow path' control- 

plane, thus generating non-representative results. 
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2.9.2.1 Active Measurement Examples 

Ting', the Packet Internet Groper [NU 183] was the first single-point active measurement 

tool, which transmits ICMP echo request packets to a specified host and measures the 

round-trip time of the response. The advantage of Ping is that ICMP packets are 

handled inherently by a hosts' IP kernel, and so no additional endpoint equipment is 

required. ICMP is used less often now for internet measurement, for the reasons 

discussed above, and because of the increased likelihood of firewalls blocking these 

messages. 

The IPPM Periodic Stream Measurement [RaisO2] transmits equally sized packets at 

regular intervals to simulate a constant bit-rate multimedia stream, and to quantify the 

delay and Delay Variation experienced. This method provides a way to perform 

measurements irrespective of the QoS mechanisms employed by the IP network. 

`Cisco IOS IP SLAs' is a tool which runs as embedded software within Cisco routers 

and network entities, to provide active monitoring of delay, loss and Delay Variation 

between the router device and other devices. Service Assurance Agents are installed on 

each Cisco device, which is polled by test traffic (simulating a particular IP network 

traffic type), and the response measured. As the name suggests, this is a key tool for 

network operators to ensure SLA compliance. 

2.10 Limitations of Current Techniques 

Many of the limitations of current measurement techniques have been highlighted 

throughout the previous discussion. The greatest difficulty with passive measurements is 

the positioning of the observation point, to ensure that all of the traffic of interest is 

measured. Additionally, passive measurements are likely to create large amounts of 
logging data, which require storage, transmission from the observation point to a NMS, 

and significant computation to produce the required results. Active measurement 
techniques require instrumentation of more than one host, and ensuring that the 
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receiving host is capable of processing the synthetic traffic as required. Active 

measurements consume valuable network resources as a part of their procedure and, if 

ICMP is used, they may also be handled differently from normal traffic - thus 

generating spurious results. 

Positioning of network probes is another difficulty with current techniques. Should the 

technique require specialist logging or processing capabilities, it may not be possible to 

place this on a particular piece of network hardware. The use of SPAN ports on 

switches [Cisc07] can only monitor low numbers of links and low utilisation levels. The 

use of fibre taps can have a detrimental effect on the distance the fibre would normally 

be able to span. 

Time Synchronisation is critical in many of these metrics, as many techniques, both 

active and passive, require the ability to timestamp measurements at geographically 

separate points in the network. It is widely accepted [Paxs98] that Network Time 

Protocol (NTP) is not sufficiently accurate for network measurements, as the clock 

accuracy is affected by the delays of the paths used by the NTP peers. Currently, the 

most common method of time synchronisation for network measurement is Global 

Positioning System (GPS). GPS systems are in wide use in telecoms applications to 

provide a reference site clock to a local site, that is then shared within that site using 
NTP. 

IEEE-1588 [Ieee07] is an emerging standard that defines a protocol which can 

synchronise heterogeneous systems, across a LAN, to nanosecond levels of resolution 

and accuracy on a Gigabit Ethernet. This protocol performs measurement of time 

offsets between devices on a LAN, and then the synchronisation of those devices to a 

master device - which would normally be connected to a GPS receiver. Standardisation 

work has now been completed on the protocol, but at the present time, there are very 
few devices available with 1588 capability. 
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2.11 Summary 

This chapter has provided an introduction to the Internet Protocol Suite, and 

specifically the operation of the Transmission Control Protocol. The various loss 

recovery mechanisms and congestion control algorithms have been presented, with the 

motivation and operational assumptions of these improvements discussed. 

An overview of network measurement science has discussed the common metrics and 

measurements that are used on the Internet today, and the two main methodologies of 

active and passive techniques have been shown. Examples of these techniques, and their 

limitations have been presented. 

The effects of packet reordering on TCP flows has been discussed, and it has been 

argued that packet reordering will have a significantly detrimental effect on overall 

performance. In-sequence packet delivery is a good indicator of the health of a 

connection, as it indicates that there are no large variations in transmission time or 

Delay Variation, and that the receiving host is receiving data in the order it was 
intended. Chapter 3 will continue this theme by presenting the current state of the art in 

packet reordering measurement research, by discussing the various proposed 

measurement techniques, and the results of recent measurements performed on live 

Internet networks. 
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Chapter 3 

Measuring Packet 

Reordering 

3.1 Introduction 

It has recently become clear to the networking community that the traditional metrics 

and measurements used to characterise an IP flow, namely latency, loss, Delay Variation 

and throughput, do not convey sufficient information to fully describe flow 

performance across an entire end-to-end path. Recent work [Benn99] has indicated that 

TCP's design assumption, that packet reordering occurs infrequently, may be invalid and 
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may be subject to increase further as the Internet grows. This may be further 

exacerbated by the increase of parallel links and the predominance of other new 

technologies, such as IP multihoming, and the increasing use of wireless technology. 

Since Paxson's first work in 1995[Paxs96] to characterise the degree and severity of 

packet reordering in the Internet, there have been several attempts to develop a metric 

and measurement methodology to describe IP packet reordering. These studies are so 

diverse in their techniques and assumptions, that it is very difficult to compare results 

across the literature. The lack of a standard experimental measurement methodology, 

and the lack of a standard reordering metric, has been argued [Benn99] to be a 

significantly limiting factor in understanding the effect, impact and prevalence of packet 

reordering in today's Internet. 

It is also important to note, that TCP itself is not the only protocol within the IP suite 

which is susceptible to packet reordering [GharO4]. Any protocol which mimics ' TCP- 

Friendly' behaviour, where the packet transmission rate is divided over the square root 

of the packet loss rate, or, has tight constraints on packet arrival times, may be 

susceptible to the effects of reordering, and thus this lack of understanding could affect 

a large proportion of the traffic on the Internet. 

This chapter presents the prior art of the area, by presenting a taxonomy of metrics and 

measurement methodologies which have been developed to characterise packet 

reordering in the Internet, and the results obtained by using these methods. 

Firstly, a survey of active and passive reordering measurement techniques are discussed 

and evaluated, which have been proposed to measure the degree of packet reordering 

occurring on an end-to-end path. 

Secondly, a number of packet reordering metrics are discussed, which have been 

proposed in order to numerically describe the amount of packet reordering that is 

occurring on a flow. 

Thirdly, a comparison of these techniques is presented, and a comparison of the 
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measurement results obtained using these techniques. This Chapter concludes with 

discussion of the difficulties of measuring both the impact and degree of packet 

reordering, and the drivers that should motivate further research in this area. 

3.2 Active Packet Reordering Measurements 

As previously discussed in Chapter 2, active measurement techniques are commonly 

used for SLA compliance monitoring [SommO7], and operate by injecting synthetic 

traffic into the network in order to emulate the performance characteristics endured by 

a real traffic flow. Passive measurement techniques are unable to characterise the end- 

to-end performance of a packet from an arbitrary single point, and therefore active 

packet probes are required. Active probes are, of course, not without their own 

problems, and it has been argued [SchoO4] that results obtained by active probes are low 

in accuracy and high in packet probing overhead, and often do not correlate [Barf04] 

with router-based passive measurements. 

Nevertheless, due to the complexity associated with designing a passive measurement 

technique for packet reordering, as discussed in Section 3.3, the majority of packet 

reordering measurement techniques are based on active methods. This section reviews 

these techniques, and summaries the results obtained when tests have been performed 

on live Internet networks. 

3.2.1 Limitations of Active Reordering Measurements 

Designing active packet probes which can be injected into a network and generate 

meaningful performance metrics, which are representative of real network behaviour, is 

a challenging process, and has been shown to produce results [BarfO4], which do not 

correlate with other passive measurements made by protocols such as SNMP. In many 

circumstances, intrusive measurements using active probe packets is the only option 

available [SchoO4]. There are many practical issues when conducting large scale Internet 

measurements that must be addressed [PaxsO4], such as including relevant meta-data 

with results, dealing with large amounts of data, ensuring results are reproducible and 
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accurate, and making datasets publicly available. 

Additionally, there are many limitations imposed by the operation of Internet nodes 

which may affect measurement. Not all implementations interpret standards consistently 

[Fang03], and this must be considered when designing measurement experiments which 

operate on live networks. Individual link measurements may not correlate with a user's 

end-to-end path experience, and it can be difficult to know what to measure. SNMP can 

provide a great deal of data about the status of each management network element, but 

this can be difficult to correlate with overall user experience[Hust031. 

Round-trip probes such as Ping and Traceroute are useful active measurements to 

measure a total network path, but these cannot measure the characteristics of a single 

component in that path. One-way measurement packet probing techniques [Luck0l] are 
being developed to perform these measurements, but require strict clock 

synchronisation between sender and receiver in order to calculate accurate results. 

The Internet does not lend itself well to being measured. `Middleboxes' [Allm03b] are 

intermediate network devices which do not follow the standard partitioning of 

functionality as defined by the OSI model Therefore `multilayer switches', `layer 4 

routers', `layer 4-7 switches' or `content switches' are all devices which provide the basic 

functionality of packet switching but, in addition, may inspect higher OSI layers to 

provide additional functionality, such as firewalling, intrusion detection services, web- 

server load balancing or network address translation. These additional network 

elements, which may appear transparent to a normal data connection, can have adverse 

affects on active packet probes, as many violate traditional networking assumptions that 

packets flow from source to destination essentially unchanged[Medi05]. 

Many publications of active Internet measurements rely on unusual or uncommon parts 

of specifications, in order to construct measurement packets. Approximately 40% of 
hosts do not operate SACK correctly, Explicit Congestion Notification has been 

measured in only 2.1% of connections, and less than 36% of end hosts support IP 

Options such as Timestamps[Medi05]. It is common for Middleboxes to simply drop 

packets with unknown IP options, and indeed, some Middleboxes deploy 

45 



countermeasures termed `fingerprint scrubbers' [SmarOO] [MediO5] to manipulate TCP 

options, thus preventing identification of TCP end hosts. Any active packet probe risks 
being identified as a Denial of Service attack, and should at least expect additional 
latency due to further analysis by intermediate IDS entities. 

With these limitations considered, a review of active packet reordering measurements is 

now presented. 

3.2.2 Paxson 

Between December 1994 and December 1995, Vern Paxson performed the first large 

scale studies of Internet packet behaviour from an end-to-end perspective[Paxs97], with 

the aim of investigating how routing dynamics translate into perceived quality by the 

end user[Paxs97a]. Paxson investigated `pathological conditions', such as routing 
behaviour and routing asymmetry, and discovered that both packet reordering and route 

asymmetry were much more common than was previously assumed. 

Paxson's work was important due to the sheer scale of the measurement methodology 
involved. 37 end hosts around the world [Paxs96] were instrumented as active probes, 

and 40,000 end-to-end ICMP `Traceroutes' were performed and post-processed for 

analysis. The results from these Traceroutes questioned many of the commonly held IP 

networking assumptions, such as in-order packet delivery, FIFO queueing, and path 

symmetries. 

Paxson extended this work [Paxs97b] [Paxs99] by performing 20,000 100-KByte TCP 

bulk transfers between 35 probe sites and, using Tcpdump [TcpdO8] to record the 

output at both ends, performed the largest one-way measurement [Hust03] to date, 

using TCP rather than UDP or ICMP. In subsequent offline post-processing, each 

tcpdump file was traced using `Tcpanaly' [Paxs97c], a tool to parse Sequence Numbers, 

follow the congestion control specifics of each TCP implementation, and to generate 

statistics. 

Paxson developed his own metric for packet reordering. As each packet arrives, it is 
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checked against the last `non-reordered packet'. If the sequence number is greater than 

the last non-reordered packet, then that packet is marked as being in-order, and 

becomes the new non-reordered packet. Therefore, in a sequence of arriving packets 1, 

6,2,3,4,5, packets 1 and 6 are marked `in-order', while the other 4 packets are marked 

`reordered'. This simple metric highlights packets which arrive `late', rather than marking 

`early' packets as those which have undergone reordering. 

The results from these measurements concluded that packet reordering is highly 

prevalent in the Internet. During the two measurement periods, over 36% and over 

12% of the TCP sessions included at least one packet which was delivered out of order, 

with the fraction of packets that were reordered measured as 2% and 0.3% in the 

forward direction, and 0.6% and 0.1% in the reverse. Paxson argued that the larger 

number of data packets being reordered in the forward direction results from the 

cumulative-ack function, resulting in data packets being sent closer together and, thus, 

requiring a smaller difference in transit time to cause reordering. Paxson questioned 

further assumptions on network behaviour by observing that Network Replication of 

packets was extremely rare, and that packet corruption was also negligible, measured in 

0.02% of data packets, and 1 in 1.6 million ack packets. 

Packet reordering was also found to be both highly site-dependent and asymmetric; one 

particular site exhibited 15% packet reordering, which was significantly higher than the 

average 2%. Of this 15% reordering, only 1.5% of data packets sent forward to that site 

were reordered; the majority of reordering was measured on data packets travelling away 

from the site. 

The major shortcoming of this, and of other active techniques, is the requirement to run 

code on end hosts; therefore this measurement methodology cannot scale to multitudes 

of arbitrary hosts. Furthermore, the use of 100 kbyte TCP transfers may not be 

sufficient data to allow the sender's congestion window to fully open, thus making 

comparison with other bulk transfer measurements difficult [LaorO2] [FengO7]. 

The ability to instrument the end-points across so many diverse hosts, to measure live 

TCP traffic rather than packet probes, to perform one-way unidirectional measurements 
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between each source-destination pair, and to perform offline post-processing of the 

results are compelling advocates for the use of Paxson's measurement methodology. 

The scale of these measurements, performed nearly 10 years ago, generated results 

which questioned many protocol design assumptions on packet reordering and 

duplication, and stimulated further attempts to measure and characterise these features. 

Paxson himself notes that these measurements may not be representative numbers for 

the whole Internet, but surmises that specific Internet paths may be subject to a high 

incidence of reordering, and that this incidence is site dependent and correlated with 

route fluttering. 

3.2.3 Bennett 

In 1999, Bennett [Benn99] questioned Paxson's conclusion that packet reordering was a 

`pathological behaviour', mainly caused by route fluttering, router update events and 

incorrect or malfunctioning networking components. The fact that packet reordering 

did occur on the Internet was not a revelation from Paxson's work, as this had been a 

design assumption of the Fast-Retransmit algorithm, but Bennett argued that a recent 

significant increase in `local parallelism' within Internet components, was causing packet 

reordering under normal operation. Bennett asserted that packet reordering was no 

longer a pathological behaviour, and that the incidence of packet reordering was 

substantially higher than had been previously reported. 

Bennett performed a number of active measurements at MAE-East[MaeO8]; the largest 

Internet Exchange Point in the world in terms of bits per second of traffic, equipped 

with a core DEC Gigaswitch multiport FDDI crossbar switch. Between December 1997 

and January 1998, Bennett chose 140 hosts that were topologically close to the 

Exchange, and sent a burst of 5 ICMP Ping packets, to prime for route cache misses, 

followed by a back-to-back burst of 50 ICMP Ping packets each of 56 bytes. The 

number of hosts to successfully receive the first 10 packets was recorded, and then the 

number to receive these first 10 packets in order was also recorded. This measurement 

was then repeated for the first 20 packets. 

Results from these initial tests indicated that the probability of a session experiencing 
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reordering was over 90%. To better understand the characteristics of reordering, a 

second site test was performed on a specific host which had exhibited high degrees of 

reordering, in order to investigate the effect of traffic load and reordering. This host was 

sent a 100-packet burst of 512-byte packets every minute for four days, and the degree 

of reordering was measured by calculating the average number of SACK blocks required 

to cover the out-of-order Ping replies received if the session had been a TCP 

connection. From publicly-available traffic statistics of MAE-East, Bennett was able to 

plot his SACK-block metric against the load of the Gigaswitch, and conclude that 

packet reordering, specifically at MAE-East, was a function of core network load. 

The concept of `local parallelism' introduced by Bennett, was exemplified by discussion 

of the DEC Gigaswitch and its feature of `Hunt Groups', whereby multiple FDDI ports 

operate as a single virtual link, thus allowing that switch port to "load stripe" across dual 

parallel physical links for increased bandwidth capacity. Bennett argued that prior to 

mid-1997, the Gigaswitch operated at loads where the "Hunt Groups" features would 

not cause packet reordering, but, due to the explosive growth in traffic by 1998, packet 

reordering was now a common feature. Bennett notes, though, that local parallelism is 

not a problem with just this particular switch. In order to achieve the multi-gigabit 

performance which users demand, the use of load balancing, link striping, and local 

parallelism within nodes will also have to increase. Packet reordering is therefore a 

complex phenomenon, and Bennett concludes that it is a function of the existence of 

parallel links between nodes on a path, of the exact configuration of the hardware and 

software in nodes on the path, and of the traffic load of the nodes on the path. 

Bennett's packet reordering technique is important as the use of ICMP Pings allows 

measurement against arbitrary hosts, thus negating the need for instrumentation of the 

endpoints. There are, though, some limitations to this technique. It is known that 

network operators often filter or rate-limit ICMP traffic [Be]102] [WenwO7] and, if the 

measurement end-point is a switch or router, the packet will be processed on the `slow 

path' by the router's GPU. Secondly, it is not possible to infer if the ICMP packets were 

reordered on either the forward or reverse path. The use of the `SACK blocks' metric is 

dependent on the end-host supporting this TCP extension. It has also been argued 
QaisO7] that the use of back to back ICMP packets may exacerbate the amount of 
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reordering observed, as the inter-packet gaps are small, and unlike TCP, the send rates is 

not reduced upon detecting congestion. 

3.2.4 Loguinov 

Loguinov's active measurement study of video traffic [Logu021 in 2002, across 16 

thousand ten-minute MPEG-4 sessions over seven months, is a significant large scale 

real-time measurement study of loss, delay and packet reordering, and provides an 

insight into the behaviour of low-bitrate streaming sessions. Based on connections to 

commercial dial-up ISPs, the experiments consisted of streaming video sequences to 

unicast home users, using UDP as the transport mechanism, and a simple NACK-based 

retransmission scheme to recover lost packets before their decoding deadlines. 

Two video streams were encoded at 14 kb/s and 25 kb/s, and split into 576 byte IP 

packets of roughly 5000 each. In the first set, three clients performed 16783 connection 

attempts by long distance PSTN modem calls to ISPs and completed 8429 successful 

streaming sessions. For the second set, 17465 calls were placed, resulting in 8423 

successful streaming sessions. Results unexpectedly indicated that, despite the very low 

bitrates of the streams downloaded, certain paths experienced consistent reordering 

although at a very small degree. 

The percentage of reordered packets was calculated relative to the total number of 

missing packets. The average reordering rate was measured to be 6.5% of the number of 

missing packets, or 0.04% of the number of sent packets, which although only 10% of 

that measured by Paxson, is explained by the authors due to the lower bit rates. Of the 

total number of transfers, 9.5% experienced at least one reordering, although specific 

paths exhibited up to 35% of connections (and 0.2% of sent packets) experienced 

reordering. 

Loguinov defined two metrics to describe reordering. The packet reordering delay, D� is 

the delay from the time when a reordered packet was declared as missing to the time 

when the reordered packet arrived at the client. Packet reordering distance d� is the 

number of packets (including the very first out-of-sequence packet, but not the 
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reordered packet itself), received by the client during reordering delay Dr 

Across the two sets of experiments, the largest reordering distance d,, was measured as 
10 packets, and the largest reordering delay D,, was 20 seconds, although this was seen 

on only one packet. 90% of d, measurements were below 150ms, 97% below 300ms, 

and 99% below 500ms. 

The Reordering Distance was used in order to measure the effectiveness of TCP's Fast 

Retransmit mechanism. By plotting the pdf of D, 
, 

91.1% of reordered packets were 

seen to have moved by less than 3 packets, and 95.7% of packets were reordered less 

than 4 packets. 

3.2.5 Bellardo 

In 2002, Bellardo [Be]102] developed a suite of active measurement tools named `Sting' 

[Bell03] to measure one-way end-to-end packet reordering rates; aiming to improve on 

Bennett's `SACK block' measurement and Paxson's ICMP measurements by negating 

the need to instrument end-point nodes. Bellardo uses a `packet-pair approach' 
[Hust03], where a packet `train' is sent to an arbitrary TCP endpoint, and the response 

to this packet-pair allows a one-way packet reordering measurement to be performed. 

Figure 11 illustrates the `Single Connection Test', whereupon after the normal 3-way 

handshake has been completed, the first data packet to be sent, Seq 2, is exactly one 

segment size higher in sequence number than that expected by the receiver. The end 

host will acknowledge this packet by sending Ack 1, indicating that the first data packet 

appears to have been lost. The measurement probe responds by sending the first and 

third data packets, Seq 1 and Seq 3. By priming a `hole' in the receiver's window of 

acknowledged packets, and then by measuring the response to this packet-pair, it is 

possible to differentiate from the resulting Acks if packet reordering is occurring on the 

forward path, reverse path or in both directions. 

The Single Connection Test provides a simple method of identifying reordering, but will 
fail if the end node implements the delayed acknowledgement algorithm, whereby a 
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receiving host will delay acknowledgements for a period before sending a cumulative 

acknowledgement covering several segments of data[Clar82]. On many TCP 

implementations, the arrival of Seq 1 and Seq 3 in close succession will result in a single 

Ack 4 being sent. 
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To address this limitation, Bellardo's `Dual Connection Test' establishes two 

simultaneous TCP connections from the measurement probe to the end host, as 

illustrated in Figure 12. Each TCP connection primes the end point in a fashion similar 

to the Single Connection Test, by sending a Sequence Number exactly one segment size 

greater than that expected. The Dual Connection Test assumes that the IPID field will 

increase monotonically across TCP connections to the same end host destination, and 

therefore the IPID can be examined in the returning Acks, to indicate the presence of 

reordering in the forward or reverse paths. The authors acknowledge that this 

assumption is not without its own problems, and that this test will fail completely 

should the end host be hidden behind a MZiddlebox, such as a transparent load balancer. 

The TCP SYN test, illustrated in Figure 13, assumes that any Middlebox will perform 

load balancing by hashing the four-tuple addresses and ports viewed in the IP header, 

and that by sending a packet pair of identical Syns that differ only slightly in the starting 

sequence number, the end host will reply with a Syn-Ack to the first Syn, and a Reset 

(Rst) to the second Syn. As with the previous tests, evaluation of the replies from the 

end host allows the probe to infer the presence of reordering in either direction. As with 

the Dual Connection Test, this measurement requires the end host's TCP 
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implementation to respond in a specific way, to a part of the TCP specification which 

may not be consistently implemented, and therefore cannot be assumed to be reliable in 

all cases. Additionally, many Middleboxes assume multiple roles, including that of 

Intrusion Detection Systems (IDS), and therefore this measurement technique may 

wrongly be identified as a 'SYN Flood' Denial-of-Service attack, resulting in unreliable 

measurements. 
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Figure 13 - Bellardo Syn Test 

As a fourth test, Bellardo described the `TCP Data Transfer test', a simple HTTP GET 

request to a web server. By generating Acks for the largest Seq number recorded, even 

when data is lost, and also by advertising a small Maximum Segment Size (MSS), it is 

possible to generate enough data to fill at least two packets and thereby measure the 

reverse path reordering. 

Bellardo chose 50 random hosts across the Internet and, from a single probe machine 

located at University of California San Diego, cycled through all four tests on each host 

over 20 days, resulting in 850 measurements per host, where each individual 

measurement consisted of 15 samples. Bellardo observed that over 40% of the hosts 

measured experienced some reordering during the 20 day period, with more than 15% 

of measurements having at least one reordered sample, and with forward path 

reordering significantly more prevalent than reverse path reordering. 

Bellardo found that during periods of significant reordering, the TCP data transfer tests 

produced significantly lower estimates of reordering than the other techniques. From all 

the metrics available in their experiments, they chose to report reordering as the 
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probability that a pair of back-to-back packets are reordered over a given time interval 

Bellardo suggested that this inaccuracy was most likely due to the fact that in the TCP 

test, the size of data packets would be 1500 bytes, whereas the other tests would consist 

of 40 byte packets. Therefore, the extra delay required to serialise the data for 

transmission, results in a much larger delay between the leading edges of the data 

packets, thus reducing the probability of the packets being reordered if they are assigned 

to different queues. 

Bellardo concludes that since packet reordering is related to `local parallelism' and that 

queues within a switch will likely drain at a constant rate, the likelihood of reordering is 

related to the inter-arrival time between two packets. A large inter-packet gap can 

tolerate a greater queue imbalance than those packets which are closer together. During 

experiments to vary the inter-packet gap between test probes, Bellardo measured that 

minimum-sized back-to-back packets are reordered more than 10% of The time, but 

with an additional 50 µsec delay between packets, reordering decreases to less than 2%, 

and approaches 0% after 250 µsec. From this relationship, Bellardo proposes that it is 

therefore possible to infer an application's behaviour when undergoing reordering. For 

example, during bulk data transfer, full-sized data packets are less likely to be reordered 

than acknowledgement packets. 

Bellardo's conclusions contribute to the discussion on packet reordering prevalence, but 

the measurement technique makes assumptions on the characteristics of end host TCP 

implementation, and assumes it will respond in certain ways. This limitation, and the 

difficulties that would be experienced when determining which method to use, and 
determining if Middlebox interaction is affecting performance, indicate deficiencies with 

this particular metric. 
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3.2.6 Tsinghua 

In 2004, Wang [WangO4] presented an active end-point technique, to analyse TCP 

streams arriving at a measurement probe, and to correlate measurements of packet 

reordering with network topology. Using traceroute to map the routes to various web 

server endpoints, and Wget [Wget08] to initiate downloads from those servers, the 

arriving data packets are analysed using a simple decision algorithm which classifies 

packets as Normal, Duplicated, Retransmitted or Reordered, as illustrated in Figure 14. 

A packet is determined to be out-of-sequence if the Sequence number is less than that 

of a previous packet; similar to Paxson's metric where `early' packets are considered 

`Normal'. Out-of-sequence packets are classified as Duplicates if they share the same 

Seq and IPID fields. In order to guard against wrapping of the 4 bit IPID field, a time 

lag threshold of 300 msec is set, to distinguish between reordered packets, and 

retransmitted packets with wrapped IPID. 

-Greater than 

0 

Figure 14 - Tsinghua reorder-judging algorithm 
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This algorithm classifies late packets as reordered, but some deficiencies can be 

identified upon inspection of Figure 14. Consider the sequence of packets 1,2,5,3,4,6. 

Packets 1 and 2 arrive in-order and therefore increase the `largest Seq seen' variable in 

each case, and are marked as `Normal Packets'. Packet 5 subsequently arrives, and is 

seen to be the highest Sequence number seen, thus being marked as a Normal packet 

and increasing the `largest Seq seen' variable to 5. Upon arrival of packets 3 and 4, these 

packets are seen to be lower in Sequence number than 5, and as they exhibit different 

IPID fields, are wrongly marked as Retransmissions. This wrong classification of `late' 

reordered packets may also hold true during IPID wrap, as packets 3 and 4 may arrive 

within the 300 msec threshold. Additionally, this algorithm could be improved by the 

simple addition of a `Spurious Retransmissions' category, for the case when a packet 

with the same Seq number but with higher IPID is received. 

From a measurement host based in the Chinese Education Research Network, Wget 

[Wget08] was used to measure forward path reordering twice a day for three weeks in 

May 2003, across 10647 web sites. Of the 208,000 connections and 3.3 million packets 

measured, 3.187% of all packets were reordered, with 5.79% of all web sites 

experiencing reordering at least once. Their results indicate that packet reordering is 

highly site dependent. During subsequent intensive measurement of the 5.79% reorder 

exhibiting sites at 3 hour intervals, the reordering rate of packets was measured between 

2.9% and 3.6% with a mean of 3.187%, compared to a random sample of non- 

reordering sites, which were constantly measured below 0.04% with a mean of 0.06%. 

Surprisingly, 20% of the 5.79% reordering sites, exhibited a reordering frequency higher 

than 80% ! Based on the TIT, values, reorder-exhibiting sites are typically those located 

further away, with average hop count of 13.8, compared to those with less reordering 

and average hop count of 12.9. 

In order to distinguish between a reordered and a retransmitted packet, the authors 

studied the time lag of the packet arrival. 90% of reordered packets arrived at the 

receiver with a time lag of less than 5.1 msec, whereas only 3.5% of retransmitted 

packets arrive within this interval. Within 22.1 msec, 50% of retransmitted packets and 
99.6% reordered packets have arrived. Empirical measurements suggest that 12.8 msec 
is a useful threshold for determining between reordering and retransmissions, where 
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95% of reordered and only 8.3% retransmitted packets will have arrived. 

The authors further investigated the degree of reordering places that packets will move 

when undergoing reordering. 86.5% of reordered packets were lagging by 1 place, and 

95.3% of packets were within 2 places late. Approximately 78.8% of retransmitted 

packets appeared 3 or more packets late. The conclusion drawn was that there is a small 

probability of reordered packets triggering the fast retransmit algorithm, and that this 3 

position boundary provides a useful method for differentiating reordering and loss. 

In order to infer the locations where packet reordering is occurring, Traceroute was 

used to build a tree of forward-paths from the 10,647 websites to their measurement 

host, assuming that both forward and reverse paths will be symmetric. Based on this 

tree, a metric is defined for each router, termed the reorder ratio which is the ratio of 

teordering-websites to total-websites passing through that router. This simple method 

may help to pinpoint reorder generating routers in some cases, although the authors 

acknowledge that this approach is extremely limited if the reorder generating router is 

close to the root of the tree. 

3.2.7 Delft 

In 2004, Zhou [ZhouO4], analysed end-to-end UDP traces between 12 hosts in the 

RIPE Test Traffic Measurement project [RipeO8]. 50 100-byte UDP `probe streams' 

were continuously transmitted, interspersed with 30 second gaps, resulting in 

approximately 360 probe-streams in 3 hours. The experiments were later repeated with 

100 packets per probe-stream. To limit the effects of packet loss, only probe-streams 

which received at least 90% packets were analysed. This study is distinctive from other 

measurements it its use of UDP to generate probe packets. 

The authors define a number of metrics in order to explain their results. The Reordered 

Probe-Stream ratio defines the total number of streams having at least one reordered 

packet, against the total number of streams received. In the first experiment of 50 

packets per probe-stream, approximately 56% of the probe-streams included at least 

one packet delivered out of sequence, equivalent to 6% of the total packets received. 
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This increased in the 100 packet per probe-stream measurements to 66% of the probe- 

streams, and 5.6% of the total packets being received out of sequence. This metric 

indicated that packet reordering is highly site-dependent. Two specific hosts, in Australia 

and the UK, were measured to exhibit reordering in over 70% of streams in the first 

test, and 80% of streams in the second test. This suggests that those sites, or 

intermediate networks towards those sites, were inducing high degrees of reordering. 

The Reordered Packet Lag, PL and the Reordered Time Lag TL were defined to predict 

whether a reordered packet would arrive in time at a receiver, in order to be useful to 

the application, or so as not to expire a finite buffer. In the sequence 1,2,4,5,3, PL =2 

for the third packet, and TL is the time difference between the delay of the reordered 

packet and its expected delay without reordering. Plotting the probability density 

function of PL indicated a heavy tail, suggesting that most reordered packets move only a 

small number of positions, and that each packet in a sequence had the same probability 

of being reordered, indicating reordering is a Poisson process. Further analysis of the 

probability of a reordered stream affecting the probability of the next stream being 

reordered, suggested that with 30 second gaps between probe-streams, there was no 

conditional probability and that reordering is a Poisson process which affects bursts at 

random. The pdf of the normalised TL 
, showed that the 90th percentile was 5% of the 

one-way delay, suggesting that the time lag induced by packet reordering is very small in 

most cases. 

A final investigation was to measure the degree of asymmetry in reordered probe- 

streams, by comparing the Reordered Probe Stream Ratio in each direction. The authors 

observed that asymmetry is present on all measurements, but varies significantly from 

host to host, and conclude that reordering may be caused by routing policies of the 

nodes on a path. 

3.2.8 Hong Kong Pointer 

In 2005, Luo [Luo05] developed a tool call Pointer (Packet reOrderINg tesTER), which 
implements three methods to measure forward and reverse path end-to-end packet 

reordering. The measurement is based on TCP data packets; avoiding the use of ICMP 
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and TCP Syn packets, and therefore decreasing the likelihood that these measurements 

will be affected by Middleboxes. The three methods differ in the mechanisms used to 

trigger responses from specific end host TCP implementations, as different 

implementations respond to unacceptable Sequence Numbers and unacceptable 

Acknowledgement Numbers in different ways. 
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Figure 15 - Pointer ACM Test 

The ACM (A(, knowledgment based Measurement) Test sends a probing message pair 

to test a server's response to an unacceptable Ack message. As illustrated in Figure 15, 

the measurement host establishes a connection with the remote host, by sending a SYN 

indicating a small advertised TCP window Hund, thus ensuring that the remote server will 

adopt the same small window, and making future returning packet sizes from the server 

predictable. 

The measurement host then sends an HTTP GET request. This request is 

acknowledged with a Pure lick (which does not acknowledge any new data), and then 

responded to with the first data packet. The data packet is acknowledged by the 

measurement host but, due to the small Hund and the therefore predictable size of the 

next data packet, the measurement host is able to construct and send a 'vet-to-receive' 

acknowledgement packet, Pure Ack S3, A3. This pair of ricks forms the test probing 
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pair, as indicated below the dashed red line. Comparison of the resulting pair of 

messages to be received at the measurement host, can then be used as shown in Figure 

15, to differentiate between forward, reverse, and combined path reordering. 

This method relies on the fact that a TCP host, receiving an unacceptable Ack number, 

as shown in the case for Forward Path Reordering, will generate a Pure Ack, and as 

noted by the authors, this is the case for Windows, Mac BSD and Solaris operating 

systems. For other operating systems, where the receipt of an unacceptable Ack may 

cause the packet to be silently dropped, other measurement techniques are required. 

SlA ,. oS A-"S A 

f5 
a2 AS 

, -", q 1- 11° s2 Aý_ 11" ýýýr_ 11-, `s-"q 

L-1 -H 

ýýaý° S Pý I I---H 
Forward Path Reverse Path Forward 8 

No Reordering Reordering Reordering 
Reverse Path 

Reordering 

Figure 16 - Hong Kong Poly SAM! Test 

The SAM1 (Seq number and Ack based Measurement) tests the response of an end-host 

to an unacceptable Seq Number, and is designed for use on Linux systems which will 

drop the segment and respond with a Pure Ack. 

As with the previous method, the probing message pair, sent after the red dashed line in 

Figure 16, consists of a second HTTP GET request message, and a Pure Ack, which 

acknowledges a `yet-to-receive' data segment. Should no reordering occur on the 

forward path, the probe pair will arrive in order and result in two data packets being 

sent by the end host. Should reordering occur, the Pure Ack will fail the Sequence 

Number Check at the receiving side and cause the end host to generate a pure . eck in 
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response. Differentiation of the resulting Data and Ack messages received at the 

measurement host, as shown in Figure 16, allows tests for forward, reverse and 

combined path reordering to be considered. 
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Figure 17 - Hong Kong Poly SAM2 Test 

The third method implemented by the authors, the SAN12 Method, allows measurement 

against HP-lit and VM TCP end hosts, which do not generate responses to either 

unacceptable Sequence or Acknowledgement numbers. Whereas the ACM method tests 

the response to an unacceptable Sequence Number, and the SAM1 method tests the 

response to an unacceptable Acknowledgement, the SAM2 test is constructed to test the 

end host response to an out-of-order segment. Figure 17 illustrates the two HTTP GET 

commands sent as the probing message pair. In this case, the Sequence numbers of both 

packets are offset by a small value, which results in both messages containing 

unexpected but acceptable Sequence Numbers. The packets are deemed by the receiving 

host to have been received out-of-order. This method exploits the fact that a TCP 

should send an immediate Duplicate-Ack upon receiving what it perceives to be an out- 

of-order segment. 

In live Internet trials, the authors performed tests on 100 randomly selected web 

servers, and sent 500 measurement tests to each server. Their measurements indicated 

that more than 35% of the paths measured experienced forward-path reordering at least 

once and 10% of the paths exhibited reverse path reordering. The forward-path 
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reordering rate was also more prevalent in terms of the percentage of reordering events. 

The clear benefits of these techniques are that any end host web server can be used as a 

measurement host and that the measurements themselves are carried out using TCP 

data packets. Unfortunately if a measurement packet is lost, it may be extremely difficult 

to differentiate this at the receiving end, which may skew the reordering results. In order 

to mitigate these errors, the authors propose setting a deadline for receiving responses 

from the end server. 

3.2.9 Perkins 

In 2004 [GharO4], Gharai and Perkins performed active UDP measurements in order to 

determine the effect of reordering on a TCP-friendly rate control system for HDTV 

RTP streams [PerkO2]. Using IPerf v1.1.1 [Tiru05] to generate forward and reverse 

measurements between three test sites on the DARPA SuperNet, the authors 

investigated whether an increase in data rate, achieved by maintaining a constant packet 

size and increasing the packet rate, thus causing a reduction in packet inter-arrival time, 

would result in measurable increased packet reordering. 

Each UDP test flow was of one minute duration, with rates varied between 1 and 900 

Mbps, and packet sizes of 500,1500 and 4500 bytes. An optical splitter at each traffic 

generation host would copy all packets using a modified version of tcpdump [Tcpd08], 

allowing for further offline analysis of the complete packet traces; thereby allowing loss 

to be distinguished from reordering. 

Perkins defined two metrics to describe packet reordering. The Monotonic Increasing 

Sequence Metric is similar to previous methods QaisO2] [Paxs99] where packets should 

monotonically increase in sequence number. Otherwise, packets are classified reordered 

until a packet arrives with a sequence number larger than the last classified `in-order' 

packet received. The number of reordering events is recorded as a percentage of the 

total number of packets in a flow. 

Perkins second metric, the TCP-like Packet Reordering Metric, counts the number of 
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reordering events which would likely cause a triple-duplicate Ack and probably cause the 

Fast Retransmission algorithm to activate. This simple algorithm compares a series of 

three consecutive packets, and establishes whether all three have arrived after a 

reordered late' packet, thus signalling triple-duplicate Acks. 

Traceroute was used to confirm that flows were taking the same paths between source- 

destination pairs, but the authors note that forward and reverse paths exhibit highly 

asymmetrical properties, which was blamed on the effects of cross-traffic. 

Of the 155 flows that were analysed and 60 million packets sent, only 22 packets were 

measured to be lost during their experiments. The authors argue that the absence of loss 

indicates that network capacity is available, and that TCP should be able to maintain a 

high throughput. 73 flows (47%) contained at least one out of order packet and, of 

those, 48 flows saw more than 0.01% of packets reordered by the monotonic metric. 

Exhibiting the largest amount of reordering was the Pittsburg to Los Angeles route 

which experienced 1.65% of reordered packets. 

To investigate the correlation between reordering, packet size and inter-arrival time, 

Iperf [Tiru05] was used to vary the sides of transmitted packets. The majority of flows 

with packet size 500 octets experienced reordering at rates of 200Mbps and higher, 

while flows of 1500 octet packets experience reordering at 600 Mbps and higher. None 

of the flows with packet sizes of 4500 octets, and therefore inter-arrival times greater 

than 0.04 msec, experienced any packet reordering. The authors argue that there is a 

threshold, coinciding with a inter-arrival rate of approximately 0.02 msec, beyond which 

packet reordering will increasingly occur. 

The authors summarise that the relative frequency of packet reordering increases as the 

inter-packet arrival time in the network core is reduced. Therefore, flows with small 

inter-arrival rates, or flows with high packet rates, will be more seriously affected by 

reordering than low-rate flows, as illustrated in Figure 18; Future protocol designs 

should be wary of these implications. 

It is acknowledged that the two metrics proposed are non-linear, and that it is not 
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possible to predict the behaviour of a TCP flow based on the percentage of packets 

reordered, unless that metric also describes the effects of the pattern of reordering. In 

one particular example, from Los Angeles to Pittsburgh, the monotonic metric 

measured 0.04% on both forward and reverse paths, but the TCP-like metric measured 

0 in the forward and 30 in the reverse paths. It was found that the monotonic metric 

would indicate consistent results in both directions, but highly asymmetric 

measurements using the TCP-like measurement in the reverse direction. 

Reordering I 

Packet Rate 

Figure 18 - Perkins relation of reordering and packet rate [Ghar04] 

3.2.10 Summary 

Section 3.2 has discussed the current field in active measurements of packet reordering, 

and illustrated the range of numerical results which have been obtained by using these 

measurements. Comparison and analysis of these measurements is presented in Sections 

3.5 and 3.6, where they are presented in context with similar passive measurement 

results. 

64 



3.3 Passive Packet Reordering Measurements 

As discussed in Chapter 2, passive measurement techniques provide many advantages 

over their active equivalents, and allow for characterisation of live, rather than synthetic 

traffic. The main advantage of passive techniques is that there is no requirement to 

instrument both endpoints of every connection and measurements obtained are based 

on real user data, thus providing results more representative of user experience. 

Positioning of a passive probe is important too; a mid-point probe may have the ability 

to monitor many thousands of concurrent connections simultaneously, across a diverse 

array of endpoints. 

This section reviews the prior art of passive packet reordering measurements and 
discusses and comments upon their results. 

3.3.1 Limitations of Passive Reordering Measurements 

The advantages of a passive approach to TCP monitoring are well documented and the 

literature includes many examples of these measurement methodologies. However, a 

large number of these methodologies and metrics have been designed on the same 

assumption as the Fast Retransmission algorithm, that packet reordering does not often 

occur. There are, therefore, many examples where passive measurements simply ignore 

the effects of packet reordering, which can lead to errors in the results obtained by these 

methods. 

In work by Benk [BenkO2][BenkO4], a passive mid-point method for estimating end-to- 

end TCP packet loss is presented which, by observing sequence numbers and using 

heuristics, attempts to infer the state machines of the sending and receiving TCPs. A 

packet loss before the measurement point is determined by observation of an out-of- 

order TCP segment that `fills a hole' in the data sequence. Similarly, a repeated sequence 

number suggests that a retransmission has been sent due to a loss after the measurement 

point. When packet reordering occurs, the algorithm erroneously assumes that the holes 
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in sequence numbers indicate packet loss before the measurement point. In order to 

mitigate this problem, the authors suggest using the IPID field in order to detect when 

packet reordering is occurring. 

A method for calculating TCP `Goodput' is presented by Love [Love06], where 

Goodput is defined as the ratio of useful data divided by total data, thus presenting a 

ratio of the degree of retransmissions a network is exhibiting. In this passive mid-point 

algorithm, the Sequence number of each arriving packet is examined and assumed to be 

monotonically increasing. When a packet arrives with a lower sequence number than 

those seen previously, it is immediately assumed to be a TCP retransmission, resulting in 

a retransmission counter being incremented and the goodput calculation being adversely 

affected. 

Implementing a passive measurement technique in itself is not particularly challenging; 

the difficulty is trying to explain observed events, based on the limited information 

available at that observation point. Visibility of out of sequence packets at an 

observation point can infer a number of possible scenarios, but without knowledge of 

the TCP state machines at either the sender or receiver, the challenge is to determine the 

toot cause of the observed event. 

The following section reviews the state-of-the-art in passive packet reordering 

measurements and presents results obtained using these methods. 

3.3.2 Mid-point Passive Measurements 

In 2003, Jaiswal QaisO7] performed a large scale study of packet reordering, by 

instrumenting a mid-point of a Tier-1 IP backbone, as part of the Sprint IP Monitoring 

(IPMON) [Fra03] project. A passive mid-point measurement has the advantage of 

allowing very large scale measurement studies to be carried out, without requiring 

instrumentation of sender and receiver hosts. The sheer scale of this measurement 

study, namely several-hour packet-level traces from a set of OC-12 and OC-48 links for 

29 million TCP connections generated in nearly 7600 unique ASes, and the fact that the 

study is performed passively on live TCP traffic, make this paper an important 
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contribution in the measurement of packet reordering. 

Performing passive TCP monitoring at a mid-point is not without its challenges. A 

packet can easily be identified as being out-of-sequence when it is observed as having a 

sequence number smaller than or equal to that of a previously observed packet at that 

measurement point. Explanation of the cause of the packet appearing out-of-sequence is 

challenging, as many variables, such as the state machines at the sending and receiving 

hosts, can only be inferred from the packets observed at the mid-point, and therefore a 

set of heuristics are required in order to examine the packet events observed. 

Additionally, several of these inferences will require an estimation of the sending host's 

congestion control, RTO and RTT values, for every source-destination pair, throughout 

the lifetime of every connection. These may also vary significantly over time. Tracking 

the RTT calculation and congestion control mechanisms of a sending host, from a mid- 

point position, is extremely challenging and techniques to perform this are discussed in 

Section 3.3.3.1. The major contribution of mid-point measurement algorithms such as 

Jaiswal, is explaining why these out-of-sequence events have occurred based purely on 

the analysis of the previously and subsequently observed packets. 

3.3.3 Jaiswal TCPF1ows 

Jaiswal's TCPF1ows algorithm, as illustrated in Figure 19, allows the classification of out- 

of-sequence packets as either Sender Retransmissions, Network Duplicates or Packet 

Reordering. During evaluation of the algorithm Uais07], Jaiswal argues that it was 

possible to classify almost all observed packets using this algorithm, with between 1% 

and 4% of packets being classified in the Unknown category. 

At the measurement point on each of the links monitored, two probes are used to 

capture the first 44 bytes of IP and TCP packet headers in both the forward and reverse 

directions. Sequence Numbers, Acknowledgement Numbers, IPID field and 

observation time are used in the algorithm. Post-processing of the traces is carried out 

offline where, firstly, the traces are filtered to consider only the TCP connections where 
both the forward data path and reverse Ack path have passed through the same 
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measurement point and have been logged entirely. Out-of-sequence packets, those 

which have sequence numbers less than or equal to a previously observed packet in that 

connection, are then classified using the rules in Figure 19. 
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As Figure 19 illustrates, a number of variables are used in the classification algorithm 

which must be inferred from the data and Ack packets as seen from the mid-point of 

each connection. In order to classif- those retransmissions which do not have distinct 

IPIDs, nor occur within the R'I'O period, the Jaiswal algorithm sets two variables 

InVastRecovery and SndFiigh, in order to cater for retransmissions sent during a sender's 

Fast Recover- phase. When recovering from multiple packet losses in one flight of 
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packets, a TCP NewReno sender will, upon receiving three duplicate-Acks, trigger Fast 

Recovery, and set the Sequence Number of the most recently sent data packet in the 

variable sndHigh. It will then retransmit the lost packet but, in addition, will immediately 

retransmit any packet for which any partial-Acks are received between the triple 

duplicate-Ack and the sndHigh sequence number, thus allowing faster recovery from 

multiple packet losses. Therefore, upon measuring triple duplicate-Acks in the reverse 

path, the Jaiswal algorithm will set the boolean InFastRecovey and the value of sndHigh; 

thus retransmissions sent during the sender's Fast Recovery phase will be classified 

appropriately. 

Figure 19 also indicates the requirement of the algorithm to have a current estimation of 

both the RTO and RTT of each connection, thereby allowing differentiation between 

Retransmissions, Reorderings and Network Duplicates. A packet is classified as a 

Retransmission if its time lag is greater than the RTO, while a packet is classified as a 

Reordering or Network Duplicate if its time lag is less than RTT. The authors argue that 

this is a compromise and so, rather than require that the interval be less than RTO 

which is subject to a large degree of uncertainty, take a more conservative approach and 

require that the Reordering interval be less than one RTT. 

3.3.3.1 Passive Estimation of RTT 

Passive mid-point estimation of a TCP flow's RTT is a non-trivial task. The loss of Data 

or Ack packets, either before or after the measurement probe, has various actions on 

the state machine of the Sending TCP which are difficult to infer, based on the sub-set 

of packets actually observed at any intermediate point. Previous techniques UianO2] have 

estimated RTT during the initial SYN-ACK handshake at the start of a connection or 

on the time difference between subsequent window transmissions at the start of a 

connection [Mart00]. 
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3.3.3.2 Jaiswal Running RTT Estimation Technique 

The `Running RTT Estimation Technique' LJaisO4], used by the jaiswal Out of Sequence 

Classification Algorithm, is illustrated in Figure 20. The addition of observation times tl 

and 12, allow for inference of the TCP Sender's RTT estimation. The argued benefit of 

this technique compared to previous methods, is that it allows calculation of RYE 

throughout the lifetime of the connection rather than on just one sample at the start. 

Under some circumstances, this method will compute one RTT sample for every 

`round' of packets sent by the sender which will equal the number of samples used by 

the Sender itself to calculate RIT. 
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Figure 20 - Jaisw"al Running RTT Estimation Technique 

The problem is not as simple as it first appears. In order to operate, this technique 

requires the ability to correlate from a mid-point position, the particular , eck packet that 

has triggered the transmission of each data packet observed. This, in turn, requires 

knowledge of the sender's current cwnd size which is a function of the particular TCP 

congestion control algorithm operating on the Sending host. The WIT estimation 

technique must be able to stop the WIT estimation during loss recovery, in order to 

emulate a transmitting TCP session which also does not compute R"1T during loss 

recovery. In order to do this, knowledge of the state of the Sending TCP and an 

estimation of that TCP's cwnd is required. 
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The Jaiswal RTT estimation technique estimates the sender's cwnd by constructing a 

replica TCP Finite State Machine (FSM) for each connection and, based on mid-point 

observations of Acknowledgements and inferred Sender Timeouts Uais03], the FSM is 

progressed through its various states. The algorithm performs TCP fingerprinting by 

observing the packets sent after a loss and Fast Retransmit has occurred, thus relating 

this inferred cxnd to the behaviour of either a Tahoe, Reno or NewReno host. Later in 

their work, the authors acknowledge that 97.05% of all TCP Senders and hence 67.51% 

of data packets sent, were indistinguishable using this fingerprinting technique, as it will 

only operate under a specific simple loss pattern. 

3.3.3.3 Jaiswal Classification Results 

Jaiswal's results focus on four packet traces collected on November 21" 2002; two 

across OC-12 (622 Mb/s) links to a Content Distribution Network and a Tier-1 ISP, 

and two across OC-48 (2.5Gb/s) links to the East coast of the USA. Overall nearly 30 

million TCP connections of nearly 500 million data packets are measured, originating in 

7664 unique Autonomous Systems. 

Jaiswal measured that the number of out-of-sequence packets was limited to 

approximately 4% of all TCP packets in each TCP connection. Only 8.8. % of all the 

studied TCP connections experienced any out of sequence packets, but these 

connections consist of a significant fraction of all the data packets (48%). Longer 

connections would be expected to experience more out-of-sequence packets. 

The majority of out-of-sequence packets were due to Retransmissions. Across the four 

links monitored, this was identified as the cause between 64% and 79% of the time. 

Note that a source may send more than one packet to repair a loss and thus this metric 

does not correlate directly with packet loss. Unneeded Retransmissions, varying between 

11 and 15% are the second highest cause of out-of-sequence packets. 

Network Duplicates were found to be negligible and the cause of approximately 0.1% 

of out-of-sequence packets. Packet Reordering was measured as the cause of 7.04%, 
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25.89%, 16.06% and 16.57% of out-of-sequence packets across the four monitored 

links. This indicates that reordering affects between 0.17 and 0.96% of all data packets, 

and that between 0.6 and 5.1% of TCP connections experience packet reordering. 

In the four traces, approximately 93% of the reordered packets have a packet lag of less 

than 3 and, therefore, Packet Reordering will have a minimal impact on a connection's 

performance. 92% of all reordered packets have a time lag of less than 50 msec, and 

88% of all reordered packets have a time lag less than 50 ursec and a packet lag of less 

than 1. The authors argue that, when compared to the delayed acknowledgement 

timeout of between 50-100 msec, packet reordering will have a minimal effect on end- 

user performance. 

From further examinations of Acks, it was possible to suggest, from the measurements, 

when reordering or duplication may be occurring between the measurement probe and 

the receiver. Assuming that duplicate-Acks from previously classified events and 

unneeded retransmissions have been filtered out, it is possible to infer that any 

remaining duplicate Acks are indications of reordering between probe and receiver. This 

ignores the possibility that duplicate Acks may be sent to communicate updates of rwnd, 

or that delayed acknowledgements from the receiver would prevent duplicate Acks from 

being sent. By applying this analysis to the four monitored links, the computed estimate 

for end-to-end reordering and duplication was estimated to be 1.13%, 1.75%, 1.02% 

and 1.29% respectively. 

3.3.3.4 Evaluation 

There are clearly a number of issues with this measurement methodology which must be 

considered when discussing the results obtained. Firstly, the requirement that both the 

forward and reverse paths pass through the measurement point is highly unlikely due to 

the asymmetric nature of the Internet, resulting in some experiments where only 9.2% 

of the TCP connections could be analysed. Secondly, the authors acknowledge that if a 

SYN is lost before the measurement point, or an entire window of packets is lost before 

the measurement point, it will go completely unnoticed by the classification algorithm. 
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There are also clear deficiencies with the classification algorithm itself. Reverse-path Ack 

reordering and cumulative Acks have not been considered, which could cause the 

algorithm to wrongly classify packets as Unneeded Retransmissions. The algorithm does 

also not acknowledge that these packets could also have been delayed Network 

Duplicates. The Retransmission category could easily be extended to identify the cause 

of retransmissions; either as a result of Fast Retransmission, or correlated with those 

retransmissions resulting from Fast Recovery. 

Finally, the RTT Estimation algorithm also has clear deficiencies. Since RTO calculation 

is subject to some uncertainty, the authors use RTT as their method of differentiating 

original packets from reordered packets. This requires a degree of accuracy and, 

although the authors claim QaisO4] that connections do not experience large RTT 

variations and that for 80-85% of connections the ratio between the 95'h percentile and 

5th percentile RTT value is less than 3, other recent work [Aika03] has measured that 

RTT values can vary widely over the lifetime of a connection. Furthermore, the value of 

11 can be affected by delayed Acknowledgements, while the value of t2 can be affected if 

the sender receives an Ack, but does not have any data immediately ready to send. 

RTT estimation is a problem which affects most mid-point measurement techniques, as 

it is accepted that a single estimate will not characterise network variability across the 

lifetime of a connection. An extension of Jaiswal's work, proposed by But [But05], 

simply estimates t1 in each direction, thus negating the need to estimate t2 and avoiding 

errors induced by delayed Acks. This technique does, however, require observation of 

full duplex TCP connections. Although all TCP connections are full duplex, many 

operate in a half duplex fashion, and are highly asymmetric in the volumes of data 

carried. For example, in a typical Active FTP session, a full duplex control connection is 

established on server port 21 for infrequent control commands, and individual half- 

duplex TCP connections are established for each PUT or GET command. But's 

technique therefore requires every observed TCP connection to operate in full duplex, 

and to each have sufficient data ready to be sent, from both sides of every connection. 

Should there be a lack of data to send from either side of a connection, the Delayed Ack 

algorithm may interfere with the RTT estimate observed. Other techniques [Veal05] 

[YanO4] have used TCP Timestamps in order to increase accuracy of mid-point RTT 
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estimation, although some have argued [Nledi05] that this option is not in common use 

and so is not appropriate on the majority of passively monitored connections. 

Although Jaiswal's work represents the most powerful mid-point packet reordering 

methodology to date, the limitation that only 9.2% of paths were symmetric and that 

97% of TCP flavours were unidentifiable by the fingerprinting method, question how 

representative of the whole Internet these results actually are. Therefore, although 

Jaiswal concludes that a relatively constant 4% of packets in the Internet are out of 

sequence and that the majority are retransmissions with only a small percentage due to 

reordering, these results must be considered in the context of the limitations identified 

above. 

3.3.4 Rewaskar 

In 2006, Rewaskar [Rewa06a] [RewaO6b] developed a passive mid-point probe 

classification tool for out-of-sequence packets. This extends the work of Jaiswal by 

considering variations across TCP implementations and explicit analysis of the cause of 

each retransmission. The authors argue that there are diverse and undocumented 

features of stack implementations which affect TCP behaviour and that significant 

numbers of retransmissions on the Internet are unnecessary. 

The main purpose of this algorithm is to classify the TCP mechanism which caused 

each packet retransmission, and to indicate if that retransmission was required or 

unnecessary. Data and Ack streams from each connection are parsed by replica partial 

TCP state machines augmented with extra state and logic about all previously 

transmitted packets; each retransmission is then classified as needed or unneeded and 

further classified as caused by RTO, Triple Duplicate Ack, Partial Ack, Selective Ack or 

Implicit. The replica state machines include the implementation details of four 

prominent TCP stacks (Windows XP, Linux 2.4.2, FreeBSD 4.10, and Solaris), such as 

initial RTO, the RTO estimation algorithm, the number of duplicate ACKs that trigger 

Fast Retransmit and the responses to partial ACKs and SACKS. Many of these features 

are specific to the implementation or, in the case of SACK responses, non-standardised. 
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Packets are classified as Reordered if they appear within 0.75 of that connection's 

minimum RTT after the segment with the next higher sequence number or, in the IP ID 

field of the packets seen from that source. Duplication is also identified using IP ID. 

Each potential indicator of packet loss, as identified from the Ack stream, will only 

trigger tentative changes in each state machine until a retransmission is confirmed in the 

data stream. 

To process results from experiments, each connection is parsed using all four state 

machines; the state machine which can explain and classify the most packets in that 

trace is selected and the results are stored. 

3.3.4.1 SYN/ACK RTT Estimation 

RTT estimation for each flow is partially based on the SYN SYN/ACK handshake at 

the initiation of each connection. During the initial three-way handshake, the 

measurement probe to Sender RTT is estimated. This estimate is added to repeated 

samples, from the data and ack flows, of the measurement probe to Receiver RTT 

estimate. The authors argue that the initial value obtained from the three way handshake 

is a good approximation of the minimum probe to Sender RTT [Aika03] and, that if 

subsequent delays vary significantly, this would not greatly affect results. RTO is used as 

a minimum threshold for the differentiation between the original packet and a 

retransmission. Therefore, a value lower than RTO would simply lower the threshold, 

but would still be able to correctly identify retransmissions that occur due to timeouts. 

The authors do not discuss how variations in their RTT calculation could affect the 

differentiation of reordered packets. 

3.3.4.2 Rewaskar Classification Results 

Seven tracesets were analysed; three of which were compared with Jaiswal's algorithm. 

In two tracesets, between 13% and 14% of out-of-sequence packets were classified as 

the result of network reordering between the sender and monitoring probe. The 

majority of reordering events were measured to be within 5ms. The small fraction of out 
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of sequence packets with large delays was said to occur in connections with large 

minimum RTTs. A significant number of retransmissions, between 3% and 19%, were 

shown to be unneeded, suggesting that retransmissions should not always be considered 

as indicators of packet loss. 

Comparison with results from Jaiswal's algorithm was favourable. Of the three tracesets 

where both algorithms were applied, Jaiswal reported 0.8,13.8 and 0.27% of out of 

sequence packets were due to reordering, while Rewaskar reported 0.2,12.9 and 0.2% of 

events due to reordering. This suggests that, from a reordering classification perspective, 

there is little additional merit in considering TCP implementation specific features. 

For each of the seven tracesets, between 25 - 35% of connections exhibited at least one 

packet which could not be classified correctly. The authors acknowledge that in more 

than 50% of these traces, this was due to more than one state machine claiming to be 

able to explain every packet in the trace; resulting in these traces having to be discarded. 

As with the Jaiswal algorithm, Rewaskar has a requirement that all packets, from both 

forward and reverse paths, are fully recorded at the measurement probe. Rewaskar has 

the additional requirement that each connection must be analysed and recorded directly 

from initialisation, in order to sample the three-way handshake and generate a measure 

of the RTT value from probe to sender. The results presented using the Rewaskar 

algorithm are based on pre-recorded publicly available traces. Therefore, application of 

this algorithm on a real probe on a live network, in order to illustrate the percentage of 

flows which might not be asymmetric and, therefore, unclassifiable, has not been tested. 

3.3.5 Tstat Torino Algorithm 

In 2006, the Jaiswal classification algorithm was extended by Mellia [MellO6] to allow the 

classification and root cause analysis of additional modes of out of sequence packets. 

As with Jaiswal, the algorithm is designed as a mid-point technique and therefore 

assumes visibility of both data and Ack paths. `Anomalous events', such as either 

duplicates or out-of-sequence packets, are classified using the algorithm shown in Figure 
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21. The algorithm maintains a number of variables in order to parse each packet. 

RTTýýý, 
\ 

is the minimum RTT since the flow commenced. RT Recovery Time is the time 

elapsed between the time the current anomalous segment has been observed and the 

time the segment with the largest sequence number has been received. AT is the 

invertedpacketgap - the difference between the observation time of the current anomalous 

event and of the previously received segment. RTO is the sender Retransmission Timer 

value, computed by observation from the midpoint, as defined in RFC 2988. 

Yes- 

Ves 

® 

No 

1 
-Yes-0- -Yes r-No-- 44*0 

Dw eo FM 
N Control 

rN 

Ný 

F®Yes 

Yes 
No 

logo r- 41 
&1 0 

Figure 21 - Torino Algorithm 

The algorithm extends Jaiswal in a number of ways. Firstly, all packets with the same 

IPID are immediately defined as Network Duplicates, regardless of arrival time. 

Secondly, the algorithm accounts for the `Window Probing' feature of Flow Control, 

whereby a TCP sender will retransmit its last segment, in order to force transmission of 

an Ack, thus measuring if the Hund has increased from zero. These window probe 

packets are easily identifiable; the Sequence number appears to repeat the last byte of 

the previous segment, but payload is empty (zero). 

The algorithm does not attempt to model the sender side state machine as other 
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classification methods have done. Therefore, retransmissions sent during the Fast 

Recovery phase are, unlike Jaiswal, not explicitly identified as such. Retransmissions are 

classified as those which occur if RT is greater than RTTMmJ and, by comparing the RT 

with the estimated RTO, retransmissions are distinguished between RTO, Fast 

Recovery or Unknown. If RT is less than RTTMIN and the inverted packet gap is less than 

RTTM, N, the packet is classified as Reordered. 

RTT is calculated from the mid-point throughout the lifetime of the connection using a 

moving average estimator which is argued to provide more classification accuracy than 

the average RTT as used by Jaiswal; the approximation of minimum WIT is 

conservative resulting in many packets being classed as Unknown. The method of 

calculating probe-to-receiver and probe-to-sender RIT measurements is the same 

method as Jaiswal and thus may incur the same inaccuracies due to cumulative 

acknowledgements or lack of data from the sender. 

Three datasets were analysed. The first, a4 hour long trace from the Abilene Internet 

backbone, on June 1" 2004, at the OC192c Packet-over-SONET link from Internet2's 

Indianapolis node towards Kansas City. The second was obtained by the authors 

themselves on the GARR backbone OC48 Packet-over-SONET network in August 

2005 while the third was sourced from the egress router of the Politecnico di Tornio 

campus LAN OC4 ATM link. While the two traces collected by the authors near their 

University campus showed 100% routing symmetry, the authors noted that the 

backbone Abilene trace indicated that only 46% of paths on a large Internet backbone 

may be symmetric. Where both directions of the traffic have not been captured, the 

authors discard the trace. 

Of the backbone packets analysed, between 5% and 8% of all packets were measured to 

be out of sequence. Of these out of sequence packets, 10.5% were classified as packet 

reordering, 19% as Unknown, and nearly 70% as retransmissions triggered by RTO. 

The remaining < 1% was accounted for by the other classifications. 

By normalising the breakdown of out-of-sequence packets against traffic load and by 

analysing the results over a month, the authors argue that the percentage of anomalies 
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appeared to be independent of the load. This contrasts with other findings which 

suggest loss and reordering as a function of applied load on a router [Benn99]. The 

authors argue that, due to the greedy nature of TCP even during off-peak periods when 

the average offered load is lower, TCP will grow to consume as much bandwidth as 

possible and so reordering rates will appear constant. On certain connections, including 

some very long connections, no reordering would occur at all, suggesting that reordering 

is path dependent. 

The Torino algorithm has clear comparisons with Jaiswal's classification algorithm, but 

also shares many of the same issues. The requirement for symmetric paths, the 

deficiencies in calculating an estimate of RTT and the very large number of 

classifications which resulted in Unknowns, question the value of the results. The 

additional complexity in the algorithm to classify less than 1% of the packets is difficult 

to justify and, therefore, the contribution beyond Jaiswal's work is questionable. The 

conclusions from the authors suggest that, although the absolute amount of out-of- 

sequence events is highly dependent on the link load, the relative amount compared to 

the total traffic and the classification breakdown are independent of the current load. 

This suggestion, that packet reordering could be independent of offered load requires 

further consideration. 

3.3.6 Summary 

Section 3.3 has discussed the current state of the art in passive packet reordering 

measurement techniques, and the range of numerical results obtained. Clearly mid-point 

observation affords many benefits in the number of connections which can be 

monitored, but results in increased complexity and the requirement to calculate an 

estimate of RTT per flow. Further comparison of these techniques is presented in 

Section 3.6. 
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3.4 Packet Reordering Metrics 

As discussed in Chapter 2, Internet standardisation is a loosely defined process, defined 

by RFC documents which can be produced by IETF working groups, or individual 

parties. The IP Performance Metrics (IPPM) working group produced RFC 4737 in 

November 2006, which defines whether a network has maintained packet order, on a 

packet-by-packet basis and the context information required for all metrics. In June 

2008, an individual contribution has resulted in RFC 5236, `Improved Metrics for 

Packet Reordering'. 

The authors of both RFCs agree on the requirements for packet reordering metrics. 

Packet reordering metrics must have relevance to an application, be computable `on the 

fly', be relevant to TCP and real-time performance and allow for the concatenation of 

separate segments to estimate the reordering of an entire path. This section discusses 

and compares the proposed metrics and illustrates some results from the limited 

number of deployments documented in the literature. 

3.4.1 IP Performance Metrics Standardisation 

The IP Performance Metrics Working Group is charted by the IETF to define metrics 

and measurement methodologies for network performance evaluation. IPPM has 

defined metrics for measuring connectivity RFC2678, one-way delay RFC2679, one-way 

packet loss RFC2680, round-trip delay RFC2681, bulk transfer capacity measurements 

RFC3148, one-way loss patterns RFC3357, IP packet delay variation RFC3393, a one- 

way active measurement protocol RFC4656, Network Capacity RFC5136 and recently 

packet reordering metrics RFC4737. 

Current research involves producing standards for a Two-way Active Measurement 

Protocol and a One-way Packet Duplication Metric. 
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3.4.2 RFC 4737 

RFC 4737 highlights that packet reordering may be present on a steady-state basis, 

which is easily detectable by minimising spacing between test packets, or the reordering 

may be on a transient basis as a result of network instability. The standard therefore 

defines a method to determine a `reordered singleton' - an atomic metric to indicate 

whether or not packet order has been maintained. It then defines multiple sample 

metrics to quantify the degree of reordering in terms of frequency and distance between 

events, since one metric that quantifies a key aspect of one receiver's behaviour may be 

completely irrelevant to another. 

As with other IPPM metrics, RFC4737 is an active measurement protocol. In order to 

provide the context in which the measurement was made, RFC2330 defines a packet `of 

type-p', which ensures that the constructed probe packets are designed so as not to 

receive any different packet treatment from any other data packets on the Internet and 

that their specific construction is reported in the context of the measurement. 

Additionally, the sending stream parameters must be reported with the metric, so as to 

document if the probe stream is periodic as in RFC3432, TCP-like as in RFC3148, or 

Poissonian as in RFC2330. 

3.4.2.1 A Reordered Packet Singleton Metric, Type-P-Reordered 

The metric to identify if packets are arriving in sequence requires the implementation of 

a sender which produces a series of monotonically increasing identifiers at the source on 

each packet in order to establish the original order of transmission. 

At the destination, a method is required to examine the `Next Expected' packet number, 

which may either be computed by the destination, or transmitted to the destination 

offline for correlation. In a TCP scenario, the value of Next Expected would be the 

sequence number of the previous packet plus payload size. 

If Sequence Number of received packet is >= Next Expected, then Type-P-Reordered 
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= False, else Type-P-Reordered = True. Packets with a Sequence Number > Next 

Expected are considered as a special case of in-order delivery, caused by packet loss or 

reordering. A SequenceDiscontinuity metric is calculated for these gaps in sequence 

numbers, using either packets, bytes or time. 

3.4.2.2 Sample Metrics 

A number of sample metrics are defined to assess the degree to which a packet is 

reordered with respect to other packets in the flow. These are illustrated in Table 1. 

Name Unit Description 

Reordered Packet Ratio Percentage Count of packets with Type-P- 
Reordered=True/Total # of packets 

Reordering Extent Packets The maximum distance, in packets, from a reordered 
packet to the earliest packet received that has a larger 
sequence number. 

Reordering Late Time Time Indication of lateness in terms of the buffer time 

Offset that a receiver requires to accommodate a reordered 
packet. 

Reordering Byte Offset Bytes Indication of lateness in terms of the storage bytes 
required that a receiver must possess to 
accommodate a reordered packet. 

Gaps between multiple Packets or The distance between successive reordering 
Reordering Discontinuities Time discontinuities. 
Reordering-Free Runs Packets The count of consecutive in-order packets between 

reordered packets. 
TCP-Relevant Metric Percentage The percentage of packets which are reordered by a 

distance >_ n packets, where, if n=3, a NewReno 
sender would consider this packet lost for purposes 
of congestion control. 
3 is the default threshold for Stream Control 
Transport Protocol RFC2960, and the Datagram 
Congestion Control Protocol RFC4340 when used 
with Control ID 2: TCP-like Congestion Control 
RFC4341. 

Table 1- RFC4737 Sample Reordering Metrics 

3.4.2.3 Evaluation 

The sample metrics provided by RFC4737 are relatively simplistic and do not attempt to 

explain the cause of packet reordering. The Type-P-Reordered non-reversing order 

criterion means that packet losses alone do not cause subsequent packets to be classified 

as reordered and the criterion results in only `late' arriving packets being classified. It is 

noted by the authors that determining reordering extents and gaps will be exceptionally 
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difficult when there are overlapping or nested reordering events occurring. 

In scenarios where a user wishes to apply these metrics to a normal TCP data stream, 

the authors suggest that, since the sequence numbers are based on the byte stream with 

varying packet sizes, care must be taken to not declare retransmissions as reordered and 

that the TCP timestamp field [RFC1323] should be used. 

3.4.2.4 Results 

There are few reports in the literature of successful measurement studies using 

RFC4737. Ciavattone and Morton [Ciav03] utilised a pre-RFC4737 Internet Draft of 

packet reordering, using a Poissonian probe, with Reordering Extent characterised in 

units of time, position and octets. The measurement was carried out on a Tier 1 ISP 

backbone by AT&T Laboratories. The metrics were used to analyse a Blender' - 

transient routing loops that occur when a router does not have correct forwarding 

information and sends packets on a path that loop back to that router; a loop that 

continues until a routing update corrects the problem. This results in short bursts of 

reordered packets with varying RTTs. For this particular event, they measured 79 

reordered packets, with maximum reordering extent 85 and maximum late time offset 

64ms, over seven separate sequence discontinuities. 

3.4.3 RFC 5236 

In June 2008, Jayasumana published RFC 5236, the culmination of several packet 

reordering metric publications [PiraO8]. RFC 5236 argues that the metrics described in 

RFC 4737 are difficult to implement and interpret and suffer complexity, lack of 

robustness and issues when attempting to evaluate in real-time. A packet arriving early 

can be classified as reordered only if receiving packets are not lost. Similarly a late 

arriving packet may not be reordered if there are earlier copies of the same packet 

[PiraO8J. Two metrics for packet reordering are defined; Reorder Density and Reorder 

Buffer Density. Reorder Density aims to capture the characteristics of reordering. 

Reorder Buffer Density aims to evaluate the packet sequence from the recovery 

perspective. A threshold is set in order to bound when a packet is designated as lost, so 
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as to bound the number of packets in a trace that are required for comparison and thus 

simplify storage and calculation requirements. 

3.4.3.1 Reorder Density 

Reorder Density (RD) is defined as the distribution of displacements of packets from 

their original positions, normalised with respect to the number of packets. An early 

packet corresponds to a negative displacement while a late packet corresponds to a 

positive displacement. RD measured on individual subnets can be combined by 

convolution, in order to predict the end-to-end reordering of the network. 

3.4.3.2 Reorder Buffer Density 

Reorder Buffer Density (RBD) is the normalised histogram of the occupancy of a 

hypothetical buffer, that would allow the recovery from out-of-order delivery of 

packets. As packets are analysed, they are added to this hypothetical buffer until 

sufficient other packets arrive, such that all can be released in order to the receiving 

application. The occupancy of this buffer at any given time is used to describe the 

reordering. 

3.4.3.3 Results 

As with RFC4737, there are few results published in the literature that make use of the 

metrics defined in RFC5236 on a live internet network. Ye [Ye06] used RD to passively 

measure 5 tcpdump traces of HTTP traffic downloaded to an observation point at 

Colorado State University in August 2005, each over 2 megabytes in size. The threshold 

defined, beyond which an early or late packet is deemed to be lost, was set to 25. The 

histogram plotted of displacement, between -25 and +25, and RD, shows that the 

majority of packets are grouped between -15 and +10, with RD approximately 0.030. 

No particular dominating features are present and it is difficult to evaluate from the 

histogram if such behaviour exhibited by the network is either good or bad. 
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3.5 Comparison of Techniques 

Figure 22 presents a classification taxonomy of the current methodologies and metrics 

which can be used to measure packet reordering. Previous classifications ll, uo05] have 

classified active measurements as bulk-transport measurements and packet-tram 

measurements; this method will not highlight the potential for adverse Middlebox 

interaction. Figure 22 classifies active measurements as Control-Plane packets and Data- 

Plane packets, in order to highlight the potential additional latencies which control-plane 

measurement techniques might endure. The Hong-Kong Pointer method is classified as 

a control-plane technique because, although the measurements themselves are 

performed on data packets, the method relies on less well defined parts of the TCP 

specification where the processing of these data packets may lead to some uncertainty. 

The Paxson and Tsinghua techniques are highlighted as techniques which may lead to 

the most representative techniques for inferring TCP behaviour during reordering. The 

UDP-based measurements may not fully characterise TCP congestion window-like 

behaviour when dealing with the effects of packet loss and other cross traffic. 

Figure 22 - Packet Reordering Measurement Taxonomy 
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Inspecting the passive measurements indicates the necessity for all mid-point 

measurements to obtain an accurate estimation of the sender's calculated RTI', for every 

TCP connection, throughout the entire lifetime of that connection. Clearly this is a 

challenging task, which will introduce large degrees of uncertainty in each of the 

classification algorithms. RFC 5236 avoids this uncertainty, but is primarily an end-point 

measurement and does not attempt to classify the cause of each packet reordering event. 

Clearly, some notion of the cause of packet reordering in a network, in addition to a 

numerical value of the degree and scale of reordering taking place, would be important 

to network operators and providers. 

3.6 Comparison of Measurement Results 

As discussed in Section 3.1, the methodologies used to measure packet reordering in the 

literature are diverse, so as to make comparison difficult. Nevertheless, those 

measurements which do appear comparable are presented in Table 2. 

As shown in Table 2, there is no simple answer as to the degree of packet reordering 

that is experienced on the Internet. Numerical results vary between 0.6% and 66% of 

connections experiencing at least one packet reordering during their lifetime, and that a 

total of between 0.1% and 90% of packets will experience reordering. 

Clearly, the limitations of each of the metrics, as discussed throughout this chapter, 

impose limits on the conclusions which can be drawn from these results. There does 

appear to be some consistency in the conclusions drawn by various authors as to the 

cause and type of reordering. 

Reordering appears to be highly asymmetric and path dependent. This questions many 

of the measurement studies, as no studies performed measurements on both forward 

and reverse paths. At present, there is little in the literature which considers reverse path 

reordering, its effect on TCP flows and how it can be measured. 
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Name % Connections Amount of Conclusions as to the Cause 

Experiencing Reordering 

Reordering 
Paxson Over 36% and Over 2% and 0.3% The large number of data reorderings instead of ack, is due 

12% forward direction, to the cumulative-ack function 
0.6 and 0.1% 
reverse Highly-site dependent, Highly asymmetric, Highly path 

dependent 

Bennett Not Comparable Over 90% Reordering is a function of local parallelism and network 
load 

Loguinov 9.5% 0.04% of all packets 
Bellardo Over 15% Forward path reordering significantly more prevalent than 

reverse path. 

Packet sizes (1500 bytes) gives different measurements to 
40 bytes 

Reordering is related to inter-packet gap (with 
experimental proof) 

Tsinghua 5.79% 3.187% of all Strongly site dependent. 
packets 

Delft 56% and 66% 6% and 5.6% Highly site dependent, and asymmetric 

Reordering is a Poisson process which affects bursts at 
random 

Hong Kong 35% of forward paths, Not Comparable 
Pointer 10% reverse paths 
Perkins 47% 0.01% Highly asymmetric 

The relative frequency of packet reordering increases as 
the inter-packet arrival time is reduced. 

aiswal Between 0.6 and 5.1% Between 7 and 26% 

Rewaskar Not Comparable Between 0.2 and 
12.9% 

Tstat Not Comparable 10.5% 

Table 2- Comparison of Measurement Results 

Reordering appears to be related to the inter-packet gap of packets in a connection. This 

intuitively appears logical; packets which are spaced close together, will require less delay 

in order to be moved out of sequence. Packets with larger inter-packet gaps, will have to 

be significantly delayed in order to be moved behind the next packet in the connection. 

Comparison of the measurement results also serves to highlight that, although some 

metrics claim to emulate TCP-like behaviour in their assessment of reordering, this is 

often simplified to mean that they evaluate the number of packets appearing more than 

3 packets out of sequence. This simplistic notion is unlikely to be sufficient to 

characterise the complex effects that reordering will have on a sending TCP congestion 

window and, thus, the performance of the flow. Further assessment of the impact of 

reordering is considered in Chapter 4. 
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3.7 Conclusions 

Chapter 3 has presented a taxonomy of the current state of the art in packet reordering 

measurement research and has discussed a number of key issues which affect both 

passive and active techniques in this field. In addition, a number of measurement studies 

of packet reordering have been surveyed and those results which are comparable have 

been presented and discussed. 

A number of conclusions can be drawn from the generated taxonomy. There are few 

active measurement techniques, which perform their measurements by using TCP-like 

data packets. Section 3.2.1 has discussed the effects of Middleboxes on reordering 

measurements. The use of such boxes is likely to increase, and their presence is difficult 

to detect. This will make it difficult to perform measurements, or will interfere with the 

results that are produced. 

The Paxson and Tsinghua measurements are highlighted in the taxonomy as the 

methodologies which may generate the most representative results of real network 

traffic. Results obtained using these two techniques, as shown in Table 2, differ in their 

report of the percentage of connections experiencing reordering by over 30%, but direct 

comparison of these approaches is not possible, as they were not applied over the same 

datasets. 

Passive measurements have also been classified in the taxonomy and differentiated by 

their observation point and their ability to generate RTT estimates. The clear benefits of 

passive monitoring techniques have been discussed in Section 3.3.1, the most important 

features being their ability to measure real network traffic and the ability to potentially 

monitor thousands of concurrent flows. Although two of the passive methods discussed 

enjoy these benefits, the difficulties in generating an accurate mid-point estimate of RTT 

coupled with the unrealistic expectation that both forward and reverse paths will flow 

symmetrically, highlight serious limitations with these methods. The resulting 

measurements obtained by these methods vary by over 20% in their estimation of the 
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total amount of packets undergoing reordering in the Internet. 

The drivers of packet reordering have been discussed during comparison of the 

measurement results. There is agreement in the literature that reordering appears to be 

highly asymmetric and path dependent, which is consistent with Bennett's hypothesis 

that reordering is an effect of local parallelism within nodes. Clearly, as multipath routes, 

the use of end-to-end wireless technologies such as WiFi and WiMax and local 

parallelism at multiple layers all increase, increased packet reordering becomes much 

more likely. 

Finally, although many metrics have claimed to emulate TCP-like behaviour in their 

assessment of packet reordering, their simplistic approach focuses on identifying the 

number of packets which have been reordered by 3 or more positions. None of the 

proposed metrics for packet reordering have been correlated with a measure of real 

TCP Goodput, thus providing a metric that truly is characteristic of receiver behaviour. 

Indeed, the literature is extremely limited [Laor021 when discussing the actual effect of 

packet reordering on TCP performance and such assumptions as the behaviour of TCP 

during reverse path reordering, have been hypothesised [Benn99], but never investigated 

by experiment or simulation. This would suggest that much of the recent work [LeunO7] 

focussed on simulating TCP and providing patches to the congestion control algorithms 

to mitigate reordering, is premature and much of the recent work lacks an 

understanding of the problem. 

Chapter 4 continues by investigating the effects of packet reordering, and presents 

results illustrating the true behaviour of TCP during reordering, which any effective 

reordering metric should attempt to characterise. 
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Chapter 4 

A Two-Point Passive Packet 

Reordering Measurement 

Technique 

4.1 Introduction 

It is clear that, given recent efforts to design both metrics and methodologies to 

characterise the degree of reordering along an end-to-end path, packet reordering is a 

phenomenon which is becoming increasingly important in network performance 
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measurement and analysis. 

It has been proposed [Benn99] [Ligh01] [PrzyO5] that packet reordering is a consequence 

of Network Equipment Manufacturers (NEMs) increasing switch and link level 

parallelism on the Internet, whilst seeking performance, reliability and economy 

improvements. It is therefore likely that the degree of packet reordering prevalent on 

the Internet is on the increase. Although many methods to both measure and mitigate 

reordering have recently been proposed, limited consideration has been given to 

measuring and understanding the true drivers of packet reordering, and correlating these 

measurements with the effect that they actually have on a user's application. It is only 

through this correlation of measurements that it will be possible to ascertain if packet 

reordering will affect the users perceived Quality of Service, and then allow for the 

design of appropriate metrics and mitigations. 

In this chapter, an investigation of the drivers of packet reordering is presented; a 

methodology for emulating and measuring TCP reordering is described, that allows 

empirical measurement of the true performance of TCP and provides an insight into the 

complex behaviours of the congestion and retransmission algorithms. A novel two- 

point packet reordering measurement methodology is presented, followed by a 

description of algorithms developed which measure and demonstrate the effect that 

reordering may have on application performance. Results of these measurements are 

presented and then methods to mitigate the effects of packet reordering are discussed. 

4.1.1 Drivers of Packet Reordering 

Bennett [Benn99] hypothesised that much of the reordering observed during his 

experimentation was, not as previously expected due to multi-path routing or broken 

equipment, but as a result of `Switch and Link-level parallelism'. 

Multi-path routing suggests that there is already an inherent degree of parallelism in 

existence in the Internet; it is well known that packets travelling between the same 

source-destination pair may experience `route flutter' due to transient effects at the 

intermediate routers along each path. Figure 23 illustrates the additional concepts of 
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Link-level Parallelism and Switch or Local Parallelism, all of which have been argued to 

play an even greater role as drivers of future packet sequencing issues. 

Multi paths 
between routes 

Multi paths 
between nodes 

Multi-Path Routing Link-Level Parallelism I _ý! 

Multi paths inputs Proc. s. IngQwuw o, npoi 
inside nodes 

Switch / Local Parallelisn 

Figure 23 - Link-Level and Switch / Local Parallelism 

Link-level Parallelism, includes mechanisms such as link striping and load balancing. It 

is often more cost effective for network providers to aggregate the throughput of 

several smaller links, rather than leasing a single high throughput connection. Such 

parallelism may provide additional benefits in terms of increased flexibility, capacity 

planning and redundancy. 'Zany NEIN1s implement 1.2 link striping on a per-packet basis 

[Be1102] and, therefore, since queues drain at a constant rate, packet flows with small 

inter-arrival times are likely to suffer reordering. 

Switch Parallelism describes elements of network hardware which allow packets, 

potentially from the same end-to-end connection, to take different paths within the 

internal hardware architecture. Switch Parallelism is therefore an intentional design 

feature and is a result of decisions made by NFMs in order to attain multi-Gigabit 

switching speeds. In such architectures, several parallel processing queues may have 

been implemented, potentially at multiple stages throughout the switch, in order to 

aggregate high overall throughput [Thom02]. Empirical observations have shown that 

these design compromises can result in packet ordering issues ILighO1ý. 

Consider a high speed router design that makes use of parallel processors and queues to 
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switch p2ckcts. Upon cntcring the router, rackets are dhpcrscd over thcsc multiple 

Piro queues of varying occupancies and it is very difficult to guarantee that sequencing 

will be nuintained. Despite there having always Uren some degree of parallelism on the 

Internet due to multi-path routing, it is this 'embedded parallelism' Which has been 

argued by Bennett to be the real driver of 'I'CI' reordering. \1 ctlicr or not this 
deliberate addition of parallelism and the resultant reordering,, represents a fair 

performance trade-off against the extra retransmissions that current '1 C1' mechanisms 

will cause, is worthy of further investigation. 

With such link and Switch embedded parallelism, it is impossible to identify these 

Parallel links from a logical overview of the network. Consequently, rackets within the 

same TCh connection, despite appearing to have trarcllcd the sane layer 2/3 path, will 

in fact have experienced varying transmission delays. 'I1ºc result will be increased Dclay 

Variation and, in the worst cascs, loss of packet sequence. l? xtctnal identification of the 

source of racket reordering is therefore difficult; the only indication may he that it 

particular hop exhibits varying levels of May. While the majority of routers will count 

packet losses and export these values through an SNAftº 4\1111, reordering is invisible it) 

routers and is not recorded or measured (l. aotO21. Uctccting and isolating routers that 

cause packet reordering [Miizr06], is therefore likely to become an important feature in 

future Internet architectures. It is worthwhile to note that neu flow-utyrntcd routing 

technologies, such as MI US and 1.3 VPN, arc not necessarily immune to this 

phenomenon since the parallelism occurs inside the nodes. 

Recent papers have suggested that the continued drive to increase fouler pcrfumuance 
for multi-gifiabit throughput will lead to increased link and local level parallelism. While 

CPU computing setad doubles every 18 months, recent ucnds inJicatc that nctwotk 

link speeds will double every nine monthsjllarcO7j, 'Iltis, combined With the ever. 

increasing sizes of routing tables, will result in an increase Of the amount of processing 

to be performed within routers, thus causing a bottleneck unlace highly 1parahlcliscd 

architectures arc developed. Although approaches have been develop d1 to mitig; atc 

switch reordering f PiraOG)jKandO7j, both input sorting and output re. icglucncing result 
in design complexities with severe processing ovcthcads, resulting b, incteaici latency at 
intcrmcdiitc nodcs. 
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The effects of Packet Reordering may be cumulative [LaorO2]. Across an entire end-to- 

end path, there may be multiple links and switches with individual degrees of parallelism 

which, each in turn, contribute to the overall level of packet reordering. These 

cumulative effects are not currently understood and are difficult to predict. Cumulative 

reordering at multiple intermediate points may either cancel out the effects, or 

exacerbate the problem further. 

The degree of multiplexing on a backbone switch may also be a factor in packet 

reordering. Given that the types of switches which implement highly parallelised 

architectures, such as the juniper M160 Quni08], will be core network devices 

multiplexing many millions of concurrent flows, the probability of an individual flow 

experiencing packet reordering is low[LaorO2]. It is unclear though how future traffic 

demands will affect the degree of reordering and other work [Benn99] has measured a 

correlation between packet reordering and switch load. 

The various measurement studies presented in Chapter 3 indicate that the only 

conclusion to which all agree is that packet reordering is highly site or link dependent. 

Trends indicate that the drivers of packet reordering are likely to become more 

prevalent in future devices and links across the Internet. At present, it is unclear how 

much there is, or what its effects will be. 

Further exploration of local level parallelism, packet reordering and its impact on the 

performance of TCP/IP is therefore important for future design considerations of 

Internet switching equipment architectures. 

4.1.2 Measuring the Impact of Reordering 

Packet Reordering has an instinctively negative effect on the performance of TCP and 

therefore the majority of the current metrics and measurement studies have focussed on 

characterising the movement of packets within a flow, rather than measuring the 

resulting overall performance of a connection during reordering. 
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On closer examination, it is clear that many of the assumptions regarding the 

performance of TCP during reordering have not been tested, but rely on the 

assumptions of Bennett's seminal paper in 1999. 

Bennett hypothesised that, due to the asymmetric nature of the Internet, connections 

will frequently only experience reordering in one direction, and that the following 

characteristics will be observed. During forward path reordering, the five effects of 

unnecessary retransmissions, difficulty growing cwnd and ssthresh, actual losses being 

obscured, poor RTT estimation, and reduced efficiency at the receiving TCP will all be 

prevalent. On the reverse path, a loss of self-clocking and a highly bursty transmission 

pattern will be observed. 

The literature indicates that many of Bennett's assertions have not actually been 

measured or observed on real networks, nor has there been any correlation between a 

metric for packet reordering and the resulting effects on application performance. There 

is, therefore, a need to carry out this study in order to evaluate the relevance of packet 

reordering metrics, and the accuracy of proposed reordering solutions. 

In `Is TCP Packet Reordering Always Harmful? ' [NeglO4], Neglia performs a series of 

NS-2 Simulations that indicate that a limited amount of reordering can actually improve 

network performance in terms of throughput and delay. In wireless links, where the 

steady-state dropping probability is independent of link congestion, TCP performance 

has been observed to improve due to random losses preventing link saturation. In 

simulations, 8.4% reordering was measured equivalent to 0.18% loss, and 14.2% 

reordering to 0.69% loss; all were found to result in increased link utilisation and 

decreased queuing delay. At very high reordering levels, loss was found to outperform 

reordering, as the unnecessary retransmissions due to reordering were beginning to 

consume a larger proportion of the link utilisation. 

The main reason for Neglia. 's measured improvement is due to a better operation of the 

RED algorithm in the simulated mid-point routers. In simulations, a specific equilibrium 

was found where the sending TCP algorithm and the mid-point RED algorithm were 

interacting so as to increase overall throughput. 
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Whilst this is a specific degenerative case, this paper does serve as the only one in the 

literature to propose that reordering is not necessarily harmful. Neglia notes that the 

improvement measured is highly dependent on having a uniform reordering (or 

dropping) probability, that the improvement would not happen for short-lived or 

reverse-path reordering, and that the amount of `helpful' reordering depends on the 

specific network scenario - the same probability may be extremely harmful for a 

different network configuration. 

A further study on the effect of reordering and dropping TCP packets over a slow 

wireless link is carried out by Nehme[Nehm03]. Using NS-2, a 9.6 kbps GSM link is 

simulated and buffer exhaustion induced at the Basestation. Only one packet is 

reordered at a time, and it is found that if reordering occurs at the beginning of a 

connection, an RTO is more likely to happen, because RTT estimates are not yet 

inflated by a large cwnd. The effects of reordering are negligible when loss rates are 

high, as the cwnd is already extremely small. 

A study on the effects of packet reordering on the subjective quality of broadband 

digital television [Spir06], measured that the subjective quality becomes unacceptable 

when more than 0.12% of packets are reordered on an IPTV network between a video 

server and a set-top-box. Although a metric similar to the Type-P-Reordered-Ratio- 

Stream is used, there is no detail as to how packets were reordered or how late a 

reordered packet would arrive. The effects of packet reordering and subjective video 

quality are further discussed in Chapter 6. 

In `Shall we worry about Packet Reordering' [Przy05], Przybylski used a UDP traffic 

generator to send test streams across the GEANT network [Gean08] between seven 

hosts across Europe. It was found that the streams of packets of the same size were not 

affected by reordering. The tolerance of specific applications to reordering will be 

affected by transmission rate, packet size, transport protocol used and receive buffers. 

The most vulnerable applications are those that generate small packets followed closely 

by large packets in a single stream. During experiments, Przybylski regularly observed 

reordering exceeding three packets over many European links. 
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Laor [Laor02] investigated the effects of reordering on application performance over a 

backbone link, where multiple TCP flows were multiplexed onto a single link, to 

investigate various operating systems, delay values and flow mixes. Laor argues that, 

with higher throughput in backbone links and higher throughput in technologies such as 

ADSL, along with larger delay values, there will be a significant increase in the 

bandwidth-delay product of many TCP connections and, therefore, also in TCP window 

size. 

Using an Agilent QA Robot, Laor was able to reorder one packet at a time (the amount 

currently supported by a QA-Robot), and measure the throughput of several operating 

systems, such as Windows 2000, Windows NT, Solaris and Linux. Laor found that 

applying a small percentage of reordering resulted in a drop in application throughput; 

between 0 and 1% (depending on the delay) can start to have effects. At around 8-10% 

reordering, the throughput of affected applications approaches minimum utilisation. 

Laor discovered that long flows are affected most by packet reordering, as they have 

sufficient time to open their congestion window. In fact, packet reordering can be 

advantageous for short flows, as it causes longer flows to behave in a more TCP- 

friendly manner. 

The main limitation of Laor's experiment is that in each case where packet reordering is 

applied, it is done so by a fixed number of packet positions. This does not allow for a 

range of experiments to be carried out, where the timing of such parameters as the RTT 

can be compared with the additional latency applied to a reordered packet. 

There is some discussion that packet reordering will have a measurable impact on high- 

speed TCP variants [FengO7], which modify the cwnd algorithm to be more aggressive, 

yet still rely on Fast Retransmit and Fast Recovery for packet loss indication. Feng 

discusses how the current packet reordering models in simulators such as NS-2, are 

extremely limited in that they cause a block of packets to be reordered at the same time, 

or make it difficult to relate a specific property of packet reordering to observed TCP 

performance. Feng finds that when the reordering interval is very small, high-speed TCP 

97 



variants suffer significantly from packet reordering even with very small reordering delay 

times and block sizes. 

4.1.3 Fixing Packet Reordering 

A significant number of recent publications [LeunO7] have suggested methods to 

mitigate the effects of packet reordering on TCP. As Bellardo comments [Bell02], 

despite the limitations of existing measurement studies, several researchers have used 

them to justify modifications to TCP, designed to better tolerate packet reordering. 

Bellardo comments that all projects would benefit from access to more empirical data, 

since additional patches to TCP cannot be validated without understanding the 

prevalence of reordering in the current Internet. 

A significant number of the methods to mitigate the effects of packet reordering on 

TCP, require adjusting the to-reordering variable in Linux, which controls the number of 

duplicate Acks allowed before a packet is declared as lost. Lee [Lee02], Blanton 

[Blan02], Zhang [ZhanO3], Ma [Ma04a] [MaO4b], Bhandarkar [Bhan03] [BhanO6], all 

propose different methods of dynamically altering the dupthresh during the lifetime of a 

TCP connection. Other methods, such as TCP-PR [Boha03], perform retransmission by 

timeout, rather than by dupthresh, based on RTT estimation in order to trigger Fast 

Retransmission and Fast Recovery. Reordering Notifying TCP, RN-TCP [Sath05] and 

Robust TCP, TCP-R, [Sath05b], require the involvement of intermediate routers along 

the path to distinguish reordering from loss. 

It has been argued [PiraOG] that little attention has been paid to understanding the 

nature of reordering and its cause-and-effect relationships. Substantial quantitative 

results have been produced to show that packet reordering does occur in the Internet 

but, as others have argued [LeunO7], there are few studies which have measured the 

impact of packet reordering and provided a quantitative assessment of the effects of 

reordering on a connection. 

The effects of reverse path reordering have been particularly poorly investigated in the 

past; much of Bennett's hypothesis on the impact of reordering remains untested but is 
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assumed to be correct. It has been argued that there has been a rush within the 

networking research community [Be]102] [LeunO7] to provide yet more patches for TCP 

congestion control algorithms, without actually understanding how TCP will behave 

during reordering. Although adjusting the to-reordering variable will allow for fewer 

spurious fast retransmissions, it is not known if fast retransmissions are the cause of 

performance degradation, nor what the effects will be for these algorithms for 

interactive applications or during normal packet loss. 

4.1.4 The Motivation for Measuring the Effects of 
Reordering 

The literature clearly indicates that there is a lack of understanding of the effects of 

packet reordering. The majority of work has focussed on simulations, where the 

methods to induce reordering are non-standardised, resulting in work which is difficult 

to evaluate and compare. Simulations often suffer from lack of credibility and there is 

now a clear trend in network research to move towards the development of testbeds, to 

allow simulations to be based on credible empirical measurements. 

Several papers have explicitly said that there is a lack of appreciation of the cause and 

effects of reordering, with the majority of Bennett's early assumptions about reordering, 

not actually having been measured in the real world. 

There is, therefore, a need to build a testbed to emulate packet reordering, and to 

determine the parameters which have the greatest influence on the performance 

degradation of a TCP stream. A testbed allows emulation of large amounts of network 

traffic, where all variables can be tightly controlled and the real effects of packet 

reordering can be instrumented and characterised. Although performance 

measurements of real world networks, such as those discussed in Chapter 3, are useful 

to gauge the amount of reordering in occurrence, they do not allow for the controlled 

environment in which the effects of reordering on individual flows can be measured and 

analysed. 

The investigation presented in this Chapter details the construction and methodology of 
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an experimental measure of the effects of packet reordering on a typical FTP 

application. Previous measurements of TCP Reordering have been based on simplistic 

simulation models [BlanO2], or on large scale production networks 

[LaorO2] QaisO7] [Bell02]. The only measurement study of reordering has been based on 

moving packets by position, rather than in time [Laor021. They do not allow for 

measurement of TCP algorithms in a controlled environment, where all nodes can be 

instrumented, and aspects such as the cause of retransmissions (for example Fast 

Retransmit requests with respect to RTT timeout), can be investigated. 

The use of FTP provides a simple method for illustrating TCP behaviour during single 

long-lived connections and is not intended to be representative of all Internet traffic. 

However, such an application provides an excellent first approximation to gain a better 

understanding of the protocol's characteristics under a variety of conditions. This 

Chapter discusses the effects of reordering as perceived by the user and illustrates the 

degree of service quality degradation that a user could expect in situations of severe 

reordering. 

This chapter discusses work which was presented at the Second International Workshop 

on Internet Packets Dynamics, IPDy 2007, and has been invited to appear in the IARIA 

International Journal on Advances in Internet Technology. 
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4.2 Experimental Methodology 

From the previous discussion, it is clear that the effects of packet reordering could be 

cumulative across an end-to-end path as a flow traverses several reordering-inducing 

components and links. Figure 24 illustrates a network equivalence diagram upon which 

the testbed network is designed. 

4.2.1 Core Transit Network Reordering Equivalence 

It is assumed that a flow is traversing from the cloud on the left to the cloud on the 

right, passing through edge devices such as low capacity routers, through a core transit 

network, towards the destination. It is the cumulative effects of reordering within the 

core transit network that the testbed will emulate. 

Source / Measurement Tap Transit Network Measurement Tap Source / 
Destination Point Point Destination 

Corporate Corporate 
Network Network 
soHC Core Network 50HO 

User PC Edge Device Edge Device User PC 
End Device End device V. 

_ 
If 

r 

Tap Network Emulator - Tap 
Linux Host introduces Delay, Linux Host 

Loss, Jitter and 
Packet reordering 

Figure 24 - Network Equivalence Diagram 

The purpose of this study is to emulate these cumulative effects of reordering on a 

single TCP stream and measure the resulting performance characteristics. Previous 
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studies to measure specific touter architectures [LighO1] do not allow for consideration 

of multiple reordering-inducing components, and thus do not accommodate the range 

of reordering measurements supported by this testbed. 

It is worth noting further, that the cumulative effects of reordering could be positive or 

negative at each device. That is to say that packet reordering occurring at a first device, 

may be `undone' by a second device. This phenomenon and its effects on a single TCP 

stream are not well understood or documented. 

The problem of reordering can therefore be refined into the following components. 

" P,. is defined as ̀ Reordering Probability'- the percentage probability of a packet 

undergoing reordering as it traverses the core transit network, separately defined 

for both forward and reverse directions. 

"d (ursec) is defined as ̀ Reordering Delay' - the additional time delay applied to 

packets which have been selected to undergo packet reordering, relative to the 

normal transit time across the core transit network, separately defined for both 

forward and reverse directions. 

"L (msec) is defined as `Line Length' - the emulated Round Trip Time of the 

flow, which is induced by applying a standard delay of L/2 to all packets in each 

direction, to allow various round-trip distances to be emulated. 

Figure 24 illustrates that a network emulator is required to introduce the various levels 

of packet reordering that are to be investigated. Two Linux hosts provide the de-facto 

implementations of TCP which will be measured. Network tap points are required 

between the Linux hosts and the network emulator to allow for a two-point 

measurement methodology to be developed and to allow correlation of the results from 

both sides of the network, before and after reordering has been induced. 
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4.2.2 An Open Extensible Router 

Router NEMs are moving towards building products based on standardised Linux 

kemels[InfoO8], thus allowing multiple services such as firewalls, border controllers and 

deep packet inspection, to run on a single ̀ Network Virtualised' device. 

At present, commercial routers are difficult to modify or to extend due to specialised 

hardware and some proprietary code. There is therefore a requirement to find an open 

source extensible software router, which can run on standardised Intel server hardware, 

to allow the programmability required for network emulation of packet reordering. 

4.2.2.1 The Click Modular Router 

The Click Modular Router Project [ClicO8] at M. I. T. and U. C. L. A, aims to develop a 

software architecture for building flexible and configurable routers. A Click software 

router [KohlOO] employs a simple declarative language to describe a router's 

configuration, allowing full control of packet processing within the router, such as 

packet modification, queuing, dropping and scheduling, and providing the flexibility 

required for the testbed packet reordering experimentation. 

Click routers are assembled from packet processing modules called `Elements'. An 

Element represents a basic unit of processing that would occur inside any router - 

example Elements include decrementing a TM counter, checking the value of an IP 

checksum or counting packets as they pass a point in the configuration. Click schedules 

the router's CPU with a task queue, one element at a time. Each task in the task queue is 

an Element requiring access to CPU time, and so each Click Element represents both 

Click's unit of packet processing as well as its unit of CPU scheduling. 

Each Element belongs to one Element Class, which specifies the piece of C++ code 

which should be executed when a packet is passed to that Element. Each Element 

specifies a number of ports; packets are passed from the output port of one Element to 

the input port of another. 

103 



A user can then define a configuration for the router, by using the Click declarative 

language to describe a directed graph, with Elements at the vertices, and packets flowing 

across the edges of the graph. Declarations are used to instantiate Elements, while 

Connections described how each of the Elements should be connected together. 

Depending on the endpoint ports of each graph edge, a particular Connection may be 

push or pull. Push processing is used when a packet arrives from a device, such as a 

packet arriving and being loading into a Queue Element. Pull connections are used 

when an Element is controlling the time of packet processing, such as a Scheduling 

Element loading packets from the Queue Element. 

4.2.2.2 Installing a Click Router 

Once a Configuration has been described, the router configuration is run in the context 

of a Linux driver, either at user level or in the Linux kernel. The user level driver 

operates on the Linux networking stack using Berkeley packet filters, whereas the in- 

kernel driver offers much increased performance. The kernel thread runs the router 

driver, which loops over the Click task queue and runs each task in turn. The Click 

language file is passed to the kernel driver, checked for errors, each Element is 

initialized, and the router is put online. 

The idea of modular routers is not new. However, finding the right level of abstraction 

to achieve high performance and flexibility is difficult. If the building blocks are very 

fine-grained, with expensive packet transfers between blocks, then performance will be 

poor. Creating monolithic blocks can reclaim this performance, but at the expense of 

flexibility. Click has explored a particular region within this spectrum and has 

demonstrated impressive packet forwarding speeds whilst retaining a degree of 

modularity. On conventional PC hardware, a Click router has been measured to achieve 

a maximum loss-free forwarding rate of 333,000 64-byte packets per second [Kohl00]. 

An otherwise idle Click IP router has been measured to forward 64-byte packets with a 

one-way latency of 29 microseconds. Minimum sized packets stress the router greater 

than larger packets, as the CPU and other processing resources are consumed in 

proportion to the number of packets forwarded, not in proportion to bandwidth. Each 
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Element has a processing cost associated with it, although even substantial Elements 

such as ChecklPHeader and DecIPTTL have been measured to have very low 

processing times of 457 nanoseconds and 119 nanoseconds respectively. 

For the experimentation carried out on the testbed, it will be shown that any extra 

processing latency induced by Click is negligible in proportion to the reordering delays 

and round trip times induced. 

4.2.2.3 ElementClass ̀Reorder' 

A new Element and corresponding ElementClass were created called `Reorder', to allow 

for the selective delay and reordering of packets passing through the Click router. 

Reorder uses two queues to simulate packet reordering. Packets traversing the first 

queue will pass with no additional delay, whereas packets randomly selected to traverse 

the second queue will have an additional delay applied to them. 

The Reorder Element is passed two variables from the Click configuration language. P� 

the Reordering Probability, is a value between 0 and 1, where 0.2 is equivalent to 20% of 

the packets being selected for reordering. d (msec) Reordering Delay, is the delay applied 

to the first queue within the Reorder Element. The random is self-weighting, so that 

every packet in the direction of interest has equal opportunity of being selected to be 

reordered. 

4.2.2.4 Click Language Configuration 

A Click language script was implemented to make use of the new Reorder ElementClass 

as illustrated in Figure 25. The figure illustrates two separate directed graphs; reordering 

occurs asymmetrically, both forward and reverse paths must be treated independently in 

the testbed and so the Click language script must instantiate two separate graphs. 
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FromDevice II FtomDevice 

CheckiPHeader II Check]PHeader 

Ot SetTimestamp ý-I SetTimestamp 
ToHos I To Host 

Reorder II Reorder 

Delay i Delay 

ToHost II ToHost 

Figure 25 - Click Element Configuration 

Upon arriving at a network interface card, a packet is pushed from the FromDevice 

Element to the ChecklPHeader Element. In this particular configuration, 

ChecklPHeader initially checks if a packet is IP or not; non-IP packets are passed to the 

ToHost Element and they are permitted to traverse the test network freely; IP packets 

are checked for valid IP length, address and checksum fields, and if correct, are passed 

to SetTimestamp. SetTimestamp records locally the time at which each packet arrived at 

the Click router. The packet is then pushed to the Reorder Element and processed as 

discussed in the previous section. Finally, each packet is pushed to the Delay element, 

where the additional delay L/2 (msec) is applied to each packet, thus allowing emulation 

of multiple Round Trip Times. L/2 is applied rather than L, to emulate the router as a 

mid-point device, thus ensuring that, for non-reordered packets, both forward and 

reverse paths induce the same overall path delay. 
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4.2.3 Gigabit Network Testbed 

A network testbed was constructed as illustrated in Figure 26 using fibre-based gigabit 

Ethernet components. The use of full-duplex fibre avoids local Ethernet contention or 

other transient network effects which may influence the measurements made. 

The testbed consists of a number of servers and networking components, which were 

rack mounted and configured in a single unit. 

" Quoyloo is an HP NetServer LPr, installed with two Netgear GA620 fibre-based 

Gigabit networking cards. Quoyloo was installed with Fedora Linux 2.4.18, with 

a recompiled Kernel to support Click kernel extensions and to allow Click to run 

as a Kernel module for improved performance. A version of the Click script 

described in Section 4.2.2.4 was installed on Quoyloo for each experiment. 

" Raasay and Stroma are two HP Kayak XU workstations, each with Netgear 

GA620 fibre Ethernet cards, and Fedora Linux 2.4 installed. During 

experimentation, Raasay performed 10 Megabyte FTP upload sessions to 

Stroma. 

" Yell is a Datum TymServe GPS NTP Server, which provided synchronisation 

between all the machines on the testbed. Yell itself was connected via coaxial 

cable to a GPS Antenna located on the roof of the building. 

" Isay is a Dell Poweredge server, used for offline processing of results, as 

discussed in Section 4.2.7. 

" Missouri was an additional Netserver LPr, which acted as the testbed 

commander, providing real time indication of the progress of experiments. 

" Hoy was a HP Netserver LPr with two Netgear GA620 cards, used to probe the 
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Gigabit network using the two Agilent Passive Optical Taps connected at the 

two points shown in Figure 26. 
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Figure 26 - Gigabit Network Testbed 

Figure 26 indicates that, in addition to the Full duplex Gigabit Ethernet link between 

Raasay, Quoyloo and Stroma, each element in the testbed was connected via a 10/100 

electrical Ethernet switch to allow for setup and control of each experiment. 

During experimentation on the Gigabit Ethernet testbed, the network maximum 

transfer unit on each workstation was set to 1500 bytes, thereby disabling Gigabit 

Jumbo Frame support, and allowing simulation of the standard packet size observed in 

the Internet[MediO5]. 
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4.2.3.1 A Map Extensions 

Raasay, Stroms and Hoy arc all based on fedora l inux 2.4.18 kernels, which have been 

recompiled and patched to support Memory Alan Extensions. The use of Linux Kernel 

Ring Buffers [Dcri04] allows for a much improved performance in passive racket 

capture. The patch allows creation of a circular buffer for racket capture, where 

captured packets arc copied by the driver into the ring and the write pointer moved 

forward; userspace applications can then access the circular buffer by calling A! Alap to 

obtain a pointer to the buffer, read the packet, then move the read pointer forward. '11tis 

avoids the time required to delete captured rackets from Kernel memory structures 

when they arc read (new packets simply overwrite old rackets in the ring, ), and avoids 

the latencies induced when moving a racket from the adaptor to the user space through 

the kernel data structures and queues. Libpcap-MMap (WVoo 1081 is a modified version 

of Libpcap, which exploits the AMAiap system calls for passing rackets into user space 

and was used on the packet capture code, developed and installed on ltaasay, Struma 

and troy. 

4.2.4 Defining Metrics for Packet Reordering 

A method was required to be able to measure the amount of racket reordering that each 

packet had undergone, when observed at either of the two tar points in the trrtbed. A 

C++ packet probe was developed using Libpcap. MMap, which was designed with the 

ability to record the arrival sequence of rackets as observed at the probe, and 

additionally monitor and log all packets in text Glos. Of both forward and rev crsc 
directions, for later parsing and analysis. 

In ordcr to calculate the distancc by which a racket has been reordcrcd, a method is 

rcquircd to differentiate the order in which the rackets were sent. compared with the 

order in which they were observed by the probe. 111c I1'II) (kid mithin the II' packet 
header was used to provide a sending sequence number. I1/ is designed to support 
fragmentation and rc-assembly of packets when traversing various layers of the OS! that 

may have differing maximum transmission unit (M'I'U) "ires. 'I11c IW'I[) fide is inserted 
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by the sender into each packet as it is transmitted. The IPID is then copied into each 

segment at fragmentation and can then be used by routers for re-assembly of the 

datagrams back into the originally transmitted packet. 

The traditional method of implementing IPID is using a simple counter incremented on 

a per packet basis on each Ethernet interface. On the testbed setup only one concurrent 

flow was active on each gigabit interface; each of the hosts on the test network were 

controlled using separate interfaces on the 100baseT electrical network. Using this setup 

the IPID increased by only one on each packet sent on each of the test streams. The 

IPID therefore provided a simple and effective 'packet counter' from both the sender 

and receiver and provided a means of identifying the outbound sequence in which the 

packets had been transmitted. Each flow's initial packet's IPID was used to normalise 

this 'sending sequence' number as recorded by the packet probes. 

The packet probes were deployed either side of the Click router, depending on their 

direction, forward or reverse, to capture packets after they had been reordered. As each 

packet was captured, the sniffer would record the arrival order of packets within the 

flow using an integer counter, which would indicate the arrival sequence of the packets 

at their destinations. This was the 'receiving sequence' number. 

Comparison of the 'receiving sequence' number with the 'sending sequence' number 

provided a very effective real-time method of measuring the "Absolute Reordering" of 

the packet. Previous methods have relied upon calculating the next IP sequence number 

based on the previous sequence number plus payload length. This method becomes 

extremely complex under high degrees of reordering and loss, as it can be difficult to 

calculate the next expected sequence numbers and the distance a packet has been 

reordered. 

Therefore, a simple metric can be defined that can be applied at probes on either side of 

the Click router, to define if packet reordering has occurred and the severity of the 

reordering observed. 
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For packet P,, where i is the index position of that packet in the arrival stream of 

packets, j is the observed IPID of the packet, and k is the first IPID observed in that 

stream of packets, the packet can be defined as out of order if Equation 1 is satisfied. 

Vi, j, k: i<(j-k) or i>(j-k) P, isoutof order 

Equation 1- Reordered Packet Metric 

For a packet P; which has been defined as out of order, the extent of the reordering can 

be defined by Equation 2, where the result is the number of packet positions that a 

Reordered packet has arrived, early or late. 

Vi, j, k: if P, = is out of order, i- (j - k) Reordering Extent 

Equation 2- Reordering Extent Metric 

When implementing these metrics, it is important to note that, as discussed in Chapter 

2, the IPID field in the IP header is limited to two bytes. Therefore, the counter will 

recycle after 65,535 iterations. Code implementation of Equations 1 and 2 requires a 

check in order to test if counter recycling has occurred, and if so, to normalise the value 

of j to zero on the packet at which this occurs. 

4.2.5 Packet Probe `Out of Sequence' Code 

The C++ packet probe operated as illustrated in Figure 27. A filter is specified at run 

time; in this case, the filter was to capture all packets between IP addresses 10.0.0.2 

(Raasay) and 10.0.0.6 (Stroma), which did not appear on port 21. Port 21 is the control 

port for FTP sessions and, through the use of Active rather than Passive 1 FP, it is 

known in advance that a separate data session will be created from 10.0.0.2 to 10.0.0.6, 

which forms the data transfer and the basis for the measurement. 
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Figure 27 shows that as each packet which matches the filter criteria arrives, it is passed 

to a callback function for processing. This continues until the code receives a SIUINT 

signal from the Linux kernel, indicating that the packet capture should cease, and the 

results should be flushed to disk. 

Cannot open Port 

or Invalid Filter 

Packet Processed 

0 

Packet Received 
Matching Filter 

Signal 2 or Signal 15 
Received from Kernel 

Fun on 

Figure 27 - Out of Sequence FSM 

Figure 28 illustrates the algorithm implemented by the called function as each new 

packet arrives at the probe. The packet is read in network byte order and byte masks, in 

the form of structs, are applied in order to delimit the Ethernet Header and IP Header. 

If the packet is not IPv4, as indicated in the Version field, it is silently dropped. 

The 4-tuple of IP source and destination addresses and ports, are then used to define a 

TCP connection. If the header has the TCP SYN flag set, the current IPII) is used as 

the norrnaliser applied to successive packet's IPID in order to calculate the `Sending 

Sequence' of the packets. 
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The Initial IPID value may be reset during the lifetime of a connection if it is detected 

that the IPID value has recycled from 65535 to 0. In this instance, it is assumed that the 

IPID counter on the sending Network Interface Card has recycled and therefore the 

Out of Sequence code follows suit. This occurrence will not have any adverse effect on 

the calculation of packet reordering, as the normalising IPID will reset to zero, and 

Equation 1 and Equation 2 remain valid. 

0ý- 

0ýý 

m 

No 

Figure 28 - OOS Packet Callback Algorithm 
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An example capture output from the probe software is illustrated in Figure 29. 

B CD EF GH I J K LMN 0 

1 1218632117 649377 10.0.0 2 4094 10.0.0.6 5720 0 0 1677880416 0 22492 0 SYN 5840 
2 1218632117 649441 10 0.0 6 5720 10.0.0.2 4094 0 0 2165394042 1677880416 00 SYN 5792 
3 1218632117 799834 10.0.0.2 4094 10006 5720 1 1 1677880416 2165394042 22493 0 5840 
4 1218632118 18821 10.0.0 2 4094 10.0.0.6 5720 2 2 1677880416 2165394042 22494 1448 5840 
5 1218632118 19273 10.0.0.2 4094 10 0.0.6 5720 3 3 1677881864 2165394042 22495 1448 5840 
6 1218632118 106245 10 0.0 6 5720 10.0.0.2 4094 28727 1 2165394042 1677881864 28727 0 8688 
7 1218632118 106277 10.0.0.6 5720 10.0.0.2 4094 1 2 2165394042 1677883312 28728 0 11584 
8 1218632118 256771 10.0.0.2 4094 10.0.0 6 5720 4 4 1677883312 2165394042 22498 1448 5840 
9 1218632118 257169 10002 4094 10006 5720 6 5 1677886208 2165394042 22498 1448 5840 

10 1218632118 257170 10.0 0.2 4094 10.0 0.6 5720 7 6 1677887656 2165394042 22499 1448 5840 
11 1218632118 334777 10 0.0.2 4094 10.0.0 6 5720 5 7 1677884760 2165394042 22497 1448 5840 
12 1218632118 346230 10.0.0.6 5720 10.0.0 2 4094 2 3 2165394042 1677884760 28729 0 14480 
13 1218632118 34625710.0.0.6 5720 10.0.0.2 4094 3 4 2165394042 1677884760 28730 0 14480 
14 1218632118 346270 10,0.0.6 5720 10.0.0.2 4094 4 5 2165394042 1677884760 28731 0 14480 
15 1218632118 346300 10.0.0 6 5720 10.0 0.2 4094 5 6 2165394042 1677889104 28732 0 17378 

16 1218632118 496600 10 0.0.2 4094 10.0 0.6 5720 8 8 1677889104 2165394042 22500 1448 5840 
17 1218632118 496965 10 0.0.2 4094 10.0 06 5720 9 9 1677890552 2165394042 22501 1448 5840 

18 1218632118 496967 10.0.0.2 4094 10.0.0 6 5720 10 10 1677884760 2165394042 22502 1448 5840 
19 1218632118 497365 10.0 0.2 4094 10.006 5720 11 11 1677892000 2165394042 22503 1448 5840 
20 1218632118 586223 10 0.0.6 5720 10.0 0.2 4094 6 7 2165394042 1677890552 28733 0 20272 
21 1218632118 586252 10 0.0.6 5720 10 0 0.2 4094 7 8 2165394042 1677892000 28734 0 23168 
22 1218632118 586266 10 0.0.8 5720 10.0.0.2 4094 8 9 2165394042 1677892000 28735 0 23168 
23 1218632118 586290 10.0.0 6 5720 10.0.0.2 4094 9 10 2165394042 1677893448 28738 0 26064 
24 1218632118 736775 10.0.0.2 4094 10.0.0.6 5720 12 12 1677893448 2165394042 22504 1448 6840 
25 1218632118 737158 10 0.0.2 4094 10.0.0 6 5720 13 13 1677894896 2165394042 22505 1448 5840 

28 1218632118 737160 10 0 0.2 4094 10006 5720 15 14 1677897792 2165394042 22507 1448 5840 
27 1218632118 737162 10.0.0.2 4094 10.0.0.6 5720 18 15 1677899240 2165394042 22508 1448 5840 
28 1218632118 814781 10 0.0.2 4094 10.00.6 5720 14 16 1677896344 2165394042 22506 1448 5840 
29 1218632118 826217 10.0.0.6 5720 10.0.0.2 4094 10 11 2165394042 1677894896 28737 0 28960 
30 1218632118 826245 10.0 06 5720 10.0.0.2 4094 11 12 2185394042 1677896344 28738 0 31858 
31 1218632118 826262 10.0 06 5720 10.0.0 2 4094 12 13 2165394042 1677896344 28739 0 31856 
32 1218632118 826274 10 0.0.6 5720 10.0.0.2 4094 13 14 2165394042 1677896344 28740 0 31856 
33 1218632118 826320 10.0.0.6 5720 10.0.0.2 4094 14 15 2165394042 1677900688 28741 0 34752 
34 1218632118 976731 10.0.0.2 4094 10.0.0.8 5720 17 17 1677900688 2165394042 22509 1448 5840 

35 1218632118 977055 10 0 0.2 4094 10.0.0.6 5720 18 18 1677902136 2165394042 22510 1448 5840 

36 1218632118 977056 10.0.0.2 4094 10.0.0 6 5720 19 19 1677903584 2165394042 22511 1448 5840 

37 1218632118 977058 10.0.0.2 4094 10.0 0.8 5720 21 20 1677906480 2165394042 22513 1448 5840 
38 1218632118 977454 10.0.0.2 4094 10.0.0.6 5720 23 21 1677909376 2165394042 22515 1448 5840 
39 1218632119 55079 10.0.0.2 4094 10.0.0.6 5720 20 22 1677905032 2165394042 22512 1448 5840 
40 1218632119 55453 10.0 0.2 4094 10.0.0.6 5720 22 23 1677907928 2165394042 22514 1448 5840 
41 1218632119 55455 10.0.0.2 4094 10.0.0 6 5720 24 24 1677910824 2165394042 22518 1448 5840 
42 1218632119 66215 10.0.0.6 5720 10 0.0.2 4094 15 16 2165394042 1677902136 28742 0 37648 
43 1218632119 66245 10.0.0.6 5720 10.0.0.2 4094 16 17 2165394042 1677903584 28743 0 40544 
44 1218632119 66268 10006 5720 10.0.0.2 4094 17 18 2165394042 1677905032 28744 0 43440 
45 1218632119 66285 10.0.0.6 5720 10.0.0.2 4094 18 19 2165394042 1677905032 28745 0 43440 
46 1218632119 66298 10.0.0 6 5720 10.0.0.2 4094 19 20 2165394042 1677905032 28748 0 43440 
47 1218632119 66327 10006 5720 10.0 0.2 4094 20 21 2165394042 1677907928 28747 0 46336 
48 1218632119 66340 10 008 5720 10.0 0.2 4094 21 22 2165394042 1677910824 28748 0 49232 
49 1218632119 66353 10 0.0.6 5720 10 0.0.2 4094 22 23 2165394042 1677912272 28749 0 52128 

13176 1218632183 885123 10006 5720 10.0.0 2 4094 6161 6162 2165394042 1687841208 34888 0 65160 
13177 1218832183 885141 10 0.0 8 5720 10.0.0 2 4094 6162 6163 2165394042 1887873064 34889 0 65160 
13178 1218632184 35411 10 0 0.2 4094 10 0.0.8 5720 7013 7013 1687873064 2165394042 29505 1448 5840 
13179 1218632184 35424 10.0 0.2 4094 10.0 0.6 5720 7014 7014 1687874512 2165394042 29506 1448 5840 
13180 1218632184 35803 10.0 0.2 4094 10.0 0.6 5720 7015 7015 1687875960 2165394042 29507 1448 5840 
13181 1218632184 35805 10.0.0 2 4094 10.0 0.6 5720 7016 7016 1687877408 2165394042 29508 1448 5840 
13182 1218632184 35807 10.0.0.2 4094 10.0.0 6 5720 7017 7017 1687878856 2165394042 29509 1448 5840 

13183 1218632184 35809 10.0.0 2 4094 10 0.0.6 5720 7018 7018 1687880304 2165394042 29510 112 FIN 5840 

Figure 29 - Example Packet Capture Output 

In Figure 29, Column A indicates line number. Column B and C indicate the timestamp 

of the arrival of the packet, which is achieved with microsecond resolution. Columns D 

to G indicate the four-tuple by which each connection is defined. It should be noted 

that a connection is defined as a single direction, and therefore the packet probe will 

treat data and ack paths separately for the purposes of computing the reordering. 
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Column I indicates the `Receiving Sequence' number, which can be seen to increment 

monotonically for each of the 10.0.0.2 to 10.0.0.6 and 10.0.0.6 to 10.0.0.2 connections. 

Column H illustrates the `Sending Sequence' number which, in this particular example, 

with little reordering, is seen on the forward path to match the `Receiving Sequence' 

until row nine, where the packet with Sending Sequence 5 is reordered by two positions 

and arrives late at position 7. Column j indicates the Seq number, column K indicates 

the Ack, Column L the IPID and Column M the payload size. Finally, set flags are 

indicated in Column N, and Column 0 indicates the nvnd advertised by the packet. 

4.2.6 Automated Distributed Measurement System 

In order to perform the substantial number of experiments and measurements that 

would be required to accurately measure the effects of packet reordering on the testbed, 

a distributed system of code components and actions was implemented in order to parse 

test plans, control and schedule measurement runs, configure the programmable router 

and initiate the FTP sessions to be measured. These code components were written in a 

variety of languages and controlled from the test commander Missouri. 

Each experiment can be defined by 6 variables: 

o The Reordering Probability in both the forward and reverse directions. 

o The Reordering Delay in both the forward and reverse directions. 

o The Line Length emulated round-trip distance of the experiment. 

o Finally, the iteration number of the experiment. 

Each experiment consisted of a 10 Megabyte FTP transfer, typically each experiment 

capturing approximately 13000 packets, equating to a 1.9 Megabyte text capture file. In 

order to manage the large amounts of data that were created, each capture file was 

named with the format Forward %-FonvardDelay-Reverse%-ReverseDelay-LineLength- 

Iterations-Direction. txt, where the Direction variable is enumerated F or R, thus indicating 

if the capture is from the TCP Forward path (between Quoyloo and Stroma), or the 

TCP Reverse path (between Quoyloo and Raasay). 
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4.2.6.1 Distributed Measurement System State Machine 

The state machine of the distributed Measurement System is illustrated in Figure 30. 

The state machine executes on the test command station Missouri. A perl script, called 

MakeMyClick was developed, in order to automate the process of generating a Click 

configuration for each experiment. An experimental run is initialised by loading the 6 

run variables, and MakeMyClick is called on Quoyloo to configure the Reorder 

ElementClass and Delay elements appropriately in a Click language file. The Click 

language file is checked for correctness, and the click router on Quoyloo is configured 

with the file. 

" " 

On Raasay and Stroma, an rsh call is made to restart the TCP/IP networking stack, and 

to flush all variables from previous experiments using the net. ipv4. route. flush sysctl 

command. Upon restarting the TCP/IP stacks, a number of variables are loaded into 

the stacks from bash scripts files, thus ensuring that the kernel settings are consistent 

across experimental runs. Table 3 illustrates some of these variables, which are loaded 

through Kernel SysCtl calls. 
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The values in Table 3 illustrate the TCP stack tuning applied in order to maximise 

throughput from the sending and receiving robots, thus stressing the reorder inducing 

router as much as possible. The TCP tuning parameters are based on values used in the 

NASA Engineering and Research Network [NasaO8], and involve setting 100 Megabyte 

networking send and receive buffers, disabling timestamps for performance, and 

allowing the TCP advertised window to grow to its full size of 65535 bytes. The use of 

tcß_no metrics save ensures that the TCP congestion state variables, such as ssthresh, are 

flushed between experiments. 

net. ipv4. ip_forward=0 

net. ipv4. ipfrag high thresh=262144 
net. ipv4. ipfrag_low_thresh=196608 

net. ipv4. ipfrag_time=30 

net. ipv4. ip_local port_range="1024 4999" 
net. ipv4. tcp abort_on overflow=0 
net. ipv4. tcp_adv win scale=2 
net. ipv4. tcp_app_win=31 
net. ipv4. tcp_dsack=0 
net. ipv4. tcp_ecn=0 
net. ipv4. tcp_fack=0 
net. ipv4. tcp_fin_timeout=60 
net. ipv4. tcp_keepalive_intvl=75 
net. ipv4. tcp_keepaliveprobes=9 
net. ipv4. tcp_keepalive_time=7200 
net. ipv4. tcp_max_orphans=8192 
net. ipv4. tcp max_syn backlog=256 

net. ipv4. tcp_max_twbuckets=16384 
net. ipv4. tcp_mem-"23552 24064 24576" 
net. ipv4. tcp_orphanretries=0 
net. ipv4. tcp reordering=0 
net. ipv4. tcp_retrans_collapse=1 
net. ipv4. tcp_retriesl-3 
net. ipv4. tcp_retries2=15 
net. ipv4. tcp rfc1337=0 
net. ipv4. tcp_sack=0 
net. ipv4. tcp_stdurg=0 
net. ipv4. tcp_synack_retries=5 
net. ipv4. tcp_synretries=5 
net. ipv4. tcp_timestamps-0 
net. ipv4. tcp tw_recycle=0 
net. ipv4. tcp_window_scaling=0 
net. core. rmem_default=65535 
net. core. wmem_default=65535 
net. core. rmem_max=104857600 
net. core. wmem_max=104857600 
net. ipv4. tcp_rmem-"4096 524288 104857600" 
net. ipv4. tcp_wmem="4096 524288 104857600" 
net. core. netdev_max_backlog=30000 
net. ipv4. tcp nc metrics_save=l 

Table 3- Linux Kernel Variables 

The majority of experiments involve setting to-sack, tp dsack, to- fack, and to-reordering 

off, although experiments with these options activated are discussed in Section 0. 

Upon checking that the correct kernel variables have been set in sending and receiving 
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hosts, the test commander initialises the packet probes as discussed in Section 4.2.5. 

Missouri then calls a bash script on Raasay to commence the active FTp session, and 

upload a standard 10 Megabyte file. Raasay signals completion of this upload to 

Missouri, which then sends a Linux kernel kill signal to the packet probes, forcing them 

to flush their contents to disk. Missouri then calls Quoyloo to uninstall the Click router 

configuration, compress the captured packet traces using a zip algorithm, and then 

prepare to initiate the next experiment run. 

4.2.7 Post-processing of Results 

Upon completion of a batch of experiments, a Perl program called `Oos Parser' was 

developed to parse the traces of out-of-sequence packets, and generate statistics on what 

was observed. The main algorithm implemented in `Oos Parser' is illustrated in Figure 

31, which illustrates the unique ability of this measurement to be able to correlate packet 

captures at two points, thus improving the ability to differentiate the cause of 

retransmissions as a result of packet reordering. 

The algorithm initially parses the packet traces recorded from the Forward probe; that 

is, those packets which have already undergone reordering on the Forward path and are 

observed at the probe between Quoyloo and Stroma. Observation of packets at this 

position facilitates the assumption that this is the order at which they will appear at the 

receiving host of the FTp session and that this is the order and relative timing at which 

the packets will be received. As each data packet in the trace is analysed, a data hash for 

that connection is created, keyed by the Sequence Numbers observed, and a count 

maintained for the number of occurrences of that Sequence Number. 

The packet trace recorded from the Reverse probe is then parsed and, in a similar 

technique, a data hash is created keyed by Acknowledgement Numbers observed and a 

count maintained for the number of occurrences of each Acknowledgement Number. 

Using Equation 1, packets that are defined to be Reordered, have their relevant 

Reordering Extent calculated as defined by Equation 2. 
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Figure 31 - OOS Parser Algorithm 
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A count of the number of packets defined as Reordered is maintained. An additional 

hash is created, keyed on the distance by which packets have been reordered, thus 

allowing a histogram to be plotted of this metric. Finally, a retransmissions counter is 

maintained, based on the number of times that the same Sequence Number is observed 

on the Forward path probe. These Sequence Numbers are then keyed against the hash 

of Acknowledgement Numbers, thereby providing a metric for explicitly measuring the 

number of Fast Retransmissions that have occurred during a connection. 

4.3 Results 

A total of approximately 30,000 10 Megabyte FTP transfers were performed with 

various reordering delays and reordering probabilities, on forward, reverse and 

combined path experiments, over a six month period. 

P, is defined as ̀ Reordering Probability' - the percentage probability of a packet entering 

the Click router and being selected to traverse the slow queue, and d (msec) as 

`Reordering Delay' - the additional delay applied to packets travelling through that slow 

queue. L (msec) - `Line Length' - describes the RTT of the connection, induced by 

applying a standard delay of L/2 to all packets in each direction, to allow various round- 

trip distances to be simulated. 

To describe a particular test flow, henceforth the following notation as shown in 

Equation 3 is used. 

FL (Pr Forward , 
dForward, Pr Reverse , 

dReverse) 

Equation 3- Notation to describe an Experiment 

Each of the experiments discussed was conducted using a single FTP over TCP, which 

although it does not account for competing cross traffic and varying traffic patterns, 

makes it possible to gauge the ideal performance of TCP algorithms in a controlled 

environment. 
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Finally, the experiments were performed such that no packet loss would occur. 

Therefore, all retransmissions measured were caused by packet reordering. 

Multiple tests were carried out under varying conditions; the aim was to demonstrate the 

effects of forward path, reverse path, and combined forward and reverse reordering. In 

each experimental run, a fixed reordering delay was applied. These were increased at 

intervals between 0 and up to 5x RTT, with the likelihood of a packet being selected 

varied from random samples with probability 5%, 10%, 15%, and 25%. 

The results illustrate typical data obtained for Reno TCP source and destinations, with 

TCP maximum window size of 65 kilobytes and with the results plotted as the mean 

over five experimental runs with 90% Confidence Intervals. The choice of 90% and five 

experimental runs is important, as the purpose of these experiments is to measure TCP 

over a wide range of conditions in order to gain an understanding of the complexities of 

the protocol, within a reasonable timescale. Testbed emulation requires significantly 

longer time periods and requires significant storage for captured data, as when 

compared to other simulation studies of TCP. The results reported in this chapter 

represent six months of experimental data measured on a single testbed, and over 

30,000 individual FTP transfers 

4.3.1 Experiment Validation 

In such large scale experiments, there are clearly many opportunities for external 

influences which may affect the validity of the results obtained. As the main 

contribution of this study compared with previous studies [LaorO2] is that the method 

of packet reordering is induced via time periods, rather than by packet position 

movements, it is important to consider all parts of the experiment which may influence 

time measurements in any way. 

Secondly, as discussed in Chapter 2, all two-point measurement techniques require a 

highly accurate notion of time at all probes in an Internet. In this particular experiment, 

all machines were synchronised to the NTP server at the start of each experiment, but in 

this particular set up where both network taps reside in Hoy, synchronisation between 
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the tap points is therefore known to be exact. If this technique was applied in a wider 

context where one machine could not operate as both taps simultaneously, a more 

accurate method of synchronisation between taps would be required. 

The use of the dedicated GPS receiver Yell, as a NTP Stratum 1 server, and the 

immediate proximity of each machine to this server, allows the assumption that all 

machines in the testbed are synchronised with an accuracy better than 1 microsecond. 1 

microsecond is the limit to which LibPcap can perform packet time-stamping on the 

particular hardware architectures of the machines in the testbed, and therefore clock 

synchronisation is not considered to be a limitation of this experiment. 

The clock resolution of the software-configurable-router is another area which could 

introduce errors, as it is this timer which introduces both the RTT delay and Reordering 

Delay applied in each experiment. With the particular 64-bit hardware architecture used 

in these experiments, and the version of Click installed, Click has the ability to operate 

at I microsecond resolutions and, therefore, all Line Lengths are Reordering Delays are 

specified in units of microseconds. To confirm that these time resolutions were as 

expected, a simple independent test was performed as detailed in Table 4. 

Table 4 illustrates initial experiments that were carried out using 200 ICMP packets to 

measure the additional delay placed on traffic due to the use of the Click router, in both 

directions, for a variety of emulated RTT paths. In each experiment, the standard Click 

Language installation file was used with all Elements instantiated in the router, but with 

Reordering Probability set to zero. Although Click was shown to cause a slight increase 

in RTT of approximately 0.15ms in each direction, this is insignificant in comparison to 

the additional RTT that would be intentionally introduced by the click script. This 

additional latency is shown in Table 4 to be relatively consistent across all RTT paths, 

and therefore will have a consistent effect on the measurements made. 
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Round-Trip-Time Measurement (msec) 

Minimum Average Maximum Standard Packet 
Deviation Loss (%) 

(1/2) = Raasay-> 0.206 0.319 0.519 0.057 0 
0 Stroma 

(Ü2) = Stroma-> 0.210 0.320 0.475 0.053 0 
0 Raasay 

(L/2) = Raasay-> 50.262 50.327 50.417 0.132 0 
0.025 Strome 

(L12) = Stroma-> 50.207 50.316 50.485 0.247 0 
0.025 Raasay 

(U2) = Raasay-> 100.216 100.321 100.425 0.426 0 
0.05 Stroma 

(1J2) = Stroma-> 100.214 100.318 100.430 0.328 0 
0.05 Raasay 

(L/2) = Raasay-> 150.215 150.323 150.431 0.088 0 
0.075 Stroms 

(U2) = Stroma-> 150.208 150.315 150.498 0.351 0 
0.075 Raasay 

(1.12) = Raasay-> 200.239 200.339 200.466 0.490 0 
0.1 Stroma 

(1J2) = Stroma- 200.256 200.312 200.392 0.574 0 
0.1 >Raasay 

(U2) = Raasay-> 300.216 300.298 300.406 0.598 0 
0.15 Stroma 

(112) = Stroma-> 300.267 300.353 300.598 0.631 0 
0.15 Raasay 

Table 4- Latency Test of Click Router 

Competing flows may also account for inaccuracies in the measurements obtained. In 

each case, all initialisation, setup and processing of results took place over the electrical 

network; only the FTP session to be measured was carried out on the fibre gigabit 

network. Network adaptors on the electrical network were prefixed with Class C subnet 

156.141.122. x, while adaptors on the gigabit network were prefixed with Class C subnet 

10.0.0. x. Each experiment consisted of a single active FTP session, with Raasay as client 

and Stroms as FTP server. Once the FTP session had been established on port 21, 

Stroma would issue a single Put command to upload the 10 Megabyte file. This would 

result in a second TCP connection being established on random high port numbers. By 

adding a filter to each packet probe to ignore port 21 traffic, it was only this second flow 

of FTP traffic which would be captured. 

123 



The throughput of the entire end-to-end path is another factor which can be used to 

validate the correctness of this experiment. The Bandwidth Delay Product (BDP), 

illustrated in Equation 4, describes the amount of data that can be in transit in the 

network. BDP is important for windowing protocols such as TCP, as BDP describes the 

amount of `un-acknowledged' data which can be in-flight in the network at any one time 

and, therefore, the maximum throughput that a TCP host can achieve. The results 

reported in this Chapter allow the receiving host to advertise the full 65kbyte rwnd using 

the 2 byte TCP header; the optional TCP Window Scaling feature Qaco92] is not 

considered, as it is not enabled as standard in current modem operating 

systems [MicrO8]. 

BDP (bytes) = total available link capacity (kbytes/sec) x RTT (ursec) 

Equation 4- Bandwidth Delay Product 

For a RTT of 50ms, where the rwnd and, therefore, the BDP are limited to 65160, the 

total available capacity of the link can be calculated as 1311 kbytes/sec. 

The limitations of TCP throughput have been described by Mathis et al [Math97}; for 

loss rates less than 1%, the maximum achievable throughput of a TCP connection is 

limited by Equation 5, where rwnd is the receiver host's advertised window, RIT is the 

sending host's evaluation of RTT, andp is the probability of packet loss. 

Throughput <_ 
M Rý d) 

x ý1- 
yp 

Equation 5- Mathis TCP Throughput Limitation 

In the experiments reported in this chapter, no packet loss is induced and it is assumed 

that all packets will eventually reach the destination. Equation 5 illustrates that the 

Mathis Throughput limitation does not account for this case, as the 1/Jp term would be 

expected to tend towards 00. However, it should be noted that although no packet loss 

was specifically induced in the network, the effects of extremely late packets are 

equivalent to those of lost packets; a factor that the Mathis formula also does not 
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account for. For experiments where no packet loss was induced, and no packet 

reordering is induced, the 1/'p term can be simplified to 1, and the maximum 

throughput rate during a 50ms R1T experiment can be calculated to be 65160 bytes / 

0.05 seconds, equalling 1311 kbytes/second. 

For a file size of exactly 10 Megabytes, it can therefore be calculated that the ideal 

transmission time, assuming no loss and no packet reordering, over a 50 msec RTT is 

7.6 seconds. Clearly, this is the ideal throughput and this simplified formula does not 

consider the slow start algorithm, which for short-lived flows will dominate a large 

proportion of the transmission time. The packet capture trace illustrated in Figure 29 is 

illustrated with more detail in the Appendix. The Appendix clearly shows the operation 

of the flow control and congestion control algorithms at the start of a TCP connection. 

Column 0 indicates the receiver's Hund, which does not grow to the full 65 kbytes until 

packet 64 in the trace. Column M indicates the payload size of each packet; analysis of 

the bursts of data packets indicates operation of the sender congestion control 

algorithm and linear growth as larger bursts of packets are injected into the network. In 

this capture trace, the sending TCP does not launch a full volley of its 45 packet 

maximum cwnd until 680 packets into the trace, 6 seconds after the data transfer has 

commenced. This 6 second period of initial window growth, combined with the 7.6 

second maximum throughput limit, combine favourably with the initial result plotted in 

Figure 32 indicating that the mean average to transfer 10 Mbytes was 19.49 seconds. 

Finally, all experiments are performed on the basis that no packet loss will be induced 

by the network. A ping flood was performed from Raasay to Stroms at the maximum 

sending rate possible by the machine, which indicated 0% packet loss. It can therefore 

be concluded that all three of the network nodes, Quoyloo, Raasay and Stroma have the 

capacity to process the maximum sending rate which can be generated by Raasay and 

that packet loss will not occur during experiments. 

125 



4.3.2 Measuring Forward Path Packet Reordering 

The primary purpose of these experiments is to characterise the effect of packet 

reordering, and to correlate these effects with a metric which describes the amount of 

reordering occurring in a network. In order to describe the impact that packet 

reordering has on a TCP flow and on the assumption that in every experiment, exactly 

the same amount of data was to be transferred, the overall throughput of each 

experiment is described in the form of the `Transmission Time' of 10 Megabytes. 

This metric was chosen for a number of reasons. Previous methods of articulating the 

throughput of a link are inaccurate when the effects of packet reordering are considered. 

As will be discussed in Chapter 5, accepted methods to calculate TCP Goodput are 
incorrect when packet reordering occurs. Traditional Goodput and Throughput 

measurements often confuse reordered packets with retransmissions, or are unable to 

differentiate those retransmissions which have occurred as a result of packet reordering. 

Transmission Time serves as a simple metric which fully describes the Quality of 

Experience that a user will experience during packet reordering. Coupled with the 

packet capture functionalities described in the testbed, it is possible to measure 

Transmission Time to microsecond resolution. Transmission Time can then be 

correlated with the other metrics of packet reordering, described in Equation 1 and 
Equation 2, to correlate these metrics with their effects. 

4.3.2.1 50 msec Round Trip Time 

Figure 32 plots a number of experiments performed on an emulated 50 msec RTT, with 

forward path Reordering Delay plotted on the y axis, and the percentage of forward 

path Reordering Probabilities plotted as the coloured series as indicated by the legend. 

The range of Reordering Delays, between 0 to 5x RTT illustrate the surprisingly large 

range over which TCP can operate, without serious degradation in Transmission Time. 

Although the range of Reordering Delays up to 0.25 seconds may appear unlikely, it is 

important to note that a wide range of Reordering Delays may be observed in a 
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production network and, therefore, this wide range of values allows full characterisation 

of the behaviour of TCP under a variety of conditions. 

Figure 32 indicates that there are three distinct regions of the graph, which appear as a 

function of Reordering Delay, regardless of Reordering Probability. This is also 

prevalent in Figure 39, which illustrates the same features, but for a slightly longer RTT 

of 150 msec. Figure 32 clearly indicates that between 0 and 0.117 msec Reordering 

Delay, the effects of Packet Reordering are marginal, with only a very small increase in 

Transmission Time observed between these two points. At 0.126 msec, there is a step 

change in performance, where the mean Transmission Time for all connections rises to 

over 75 seconds. This defines the start of the second period of the graph, between 0.126 

msec and 0.198 msec. Here, the effects of Reordering Probability are more obvious, as 

the 5% series maintains the lowest Transmission Time. However, the difference in 

performance between the various Reordering Probabilities is not significant and the 

confidence intervals widen for all, indicating that the performance of all flows has 

become less predictable. The third region of Figure 32 is evident beyond 0.2 msec, 

where confidence intervals widen further and the overall Transmission Time for all 

Reordering Probabilities rises steeply. Within this region, the effects of reordering are 

extremely difficult to predict, although it is important to consider that the width of the 

confidence intervals indicates a wildly varying behaviour, with flows alternating 

drastically between high and low performance. This can be explained by the fact that 

under these higher degrees of reordering, it would be reasonable to expect large blocks 

of packets to all be chosen to be delayed by the Reorder Element in the router (whilst 

retaining relative sequence), therefore being unlikely to cause further spurious 

reordering retransmissions and also allowing time for congestion control mechanisms to 

recover from the last reordering event 

The confidence intervals on Figure 32 illustrate the unusual behaviour of packet 

reordering on TCP flows, when compared to previously well documented anomalies 

such as loss. As the reordering delay is increased, the mean transmission time tends also 

to increase, but with a significantly larger error range. This indicates that, unlike 

percentage loss which guarantees retransmissions and invocation of congestion control, 

packet reordering is a complicated function of buffer sizes, control algorithms and 
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Delay Variation, which may or may not have a significant effect on a TCP flow. This 

variance is significant as it indicates that the effects of reordering are much more 

difficult to predict than the effects of loss. 

t 5% Reordering U 10% Reordering 15% Reordering - 20% Reordering -U- 25% Reordering 
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Figure 32 - Mean transmission time of 10 Megabytes, 90% C. I., Fso(various, various, 0,0) 

The three distinct regions are an important illustration of TCP's behaviour when 

undergoing reordering. The transition from the first to the second region, indicates that 

there is a point where reordering will always cause an unnecessary fast retransmission 

and therefore resulting a halving of the congestion window. Once this spurious fast 

retransmission has been triggered, the sending rate is reduced in a uniform fashion and, 

after this point within the second region, reordering has little additional effect. 'Ehe 

important observation which can be made on this transition from the first to second 

regions, is that Figure 32 suggests that it occurs independently from the Reordering 

Probability. The step change is observed to occur at the same Reordering Delay point 

for all Reordering Probabilities. This observation is of significance, as it suggests that 

large amounts of packet reordering can be permitted - up to 25°, % of packets - but by 

ensuring that Reordering Delay is maintained below the step change, the effects of 

reordering on QoE will be negligible. 
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Figure 33 illustrates the percentage of packets which have appeared out of sequence, for 

the same experiments as plotted in Figure 32. `Out of Sequence' is termed as any packet 

where `receiving sequence number' and `sending sequence number' do not match, as 

defined in Equation 1. Therefore, this percentage metric includes both `late' packets and 

the resulting `early' packets. 
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Figure 33 - Percentage Reordered Packets, 90% C. I., Fso(various, various, 0,0) 

Correlation of Figure 32 with Figure 33 allows evaluation of this metric, and other 

percentage metrics of packet reordering which have been proposed, such as Type-P- 

Reordering in RFC4737, Paxson, Bennett, Loguinov, Bellardo, Tsinghua and Perkins. 

Although each method relies on a slightly different approach for calculating the 

percentage of reordered packets, each method relies on reporting their results in the 

same way. 

Figure 33 suggests that it is impossible to predict the effects of packet reordering, based 

on a percentage reordering metric. The key transition in Figure 32 from the first to 

second regions of the graph at 0.126 msec, is in no way differentiable from the series 

plotted in Figure 33. For each Reordering Probability, the percentage of Out-of- 

Sequence packets rises steeply and is relatively consistent throughout all Reordering 

Delays. As discussed for Figure 32, it is Reordering Delay which has the most dramatic 
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effect on TCP behaviour, leading to the conclusion that percentage reordering metrics 

are not particularly useful in describing the QoS of a connection. 

Figure 34 to Figure 38 illustrate results obtained during the same 50 msec RTT 

experiments, which analyse the cause of packet retransmissions observed and classified 

by the Oos Parser code. Each Reordering Probability is plotted separately, with 

Reordering Delay plotted on the x axis, and Retransmissions by cause, plotted as the 

percentage number of total packets sent in the connection. 
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Figure 34 - Percentage Retransmissions by Cause, 9O% C. I., Fso(5%, various, 0,0) 
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Figure 35 - Percentage Retransmissions by Cause, 90% C. I., Fso(10%, various, 0,0) 
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Figure 36 - Percentage Retransmissions by Cause, 90% C. L, Fso(15%, various, 0,0) 
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Figure 37 - Percentage Retransmissions by Cause, 90% C. I., Fso(20%, various, 0,0) 
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Figure 38 - Percentage Retransmissions by Cause, 90% C. I., Fso(25%, various, 0,0) 
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It is clear that retransmissions are predominantly caused by triple duplicate Acks 

initiating the Fast Retransmit algorithm, rather than sender-side timeout retransmissions. 

For 5,10,15 and 20% Reordering Probability, RTO Retransmissions do not occur until 

the higher Reordering Delays of 0.207 and beyond. It was found that for all line lengths, 

the majority of retransmissions were due to fast-retransmission requests rather than 

time-out at the sender. This would suggest that a more conservative approach to the 

Fast-Retransmit threshold, with a more relaxed method of reducing the sender 

congestion window, will cause a significant improvement in TCP's ability to handle 

reordering. 

4.3.2.2 150 msec Round Trip Time 

To allow investigation of the effects of forward path packet reordering, with respect to 

varying RTT values, experiments were performed on an emulated 150 msec RTT and 

illustrated in Figure 39 - Figure 45. 
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Figure 39 - Mean transmission time of 10 Megabytes, 90% C. I., Fiso(various, various, 0,0) 

In Figure 39, the mean transmission time for 10 Megabytes is plotted for various 

Reordering Probabilities and Delays, over a set of experiments with 150 ursec RTT. 

Figure 39 indicates similarities with Figure 32, where three distinct regions are visible as 
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discussed in the previous section. The move from the first to second regions of the 

graph, where the Reordering Delay has caused an unnecessary Fast Retransmission, 

occurs at 0.171 msec and therefore the increase in RTT has increased the point at which 

this transition occurs. 

Figure 40 illustrates the Percentage Reordered Packets for the 150 msec RTT, which as 

discussed in the previous section, can be difficult to relate to the effects of reordering. 

Each Reordering Probability results in a relatively constant percentage number of 

reordered packets - 5% Reordering Probability results in 55% of packets being 

measured as reordered, whereas 25%/o Reordering Probability results in between 90 and 

100% of packets being measured as reordered. 

Correlating Figure 39 and Figure 40 is more successful at this RTT of 150 msec than in 

the previous discussion of 50 msec RTT. The transition from the first to second region 

occurs at 0.171 msec on Figure 39; this coincides with a very slight rise in the percentage 

of reordered packets in Figure 40, where at 0.171 msec a step increase can be observed, 

most noticeable for the higher Reordering Probabilities. In order to test this observation 

further, measurements for a 300 msec RTT are plotted in the next section. 
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Figure 40 - Percentage Reordered Packets, 90% C. I., Fiso(various, various, 0,0) 
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Figure 41 to Figure 45 perform retransmission analysis on the various Reordering 

Probabilities for a 150 msec RTT. 
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Figure 41 - Percentage Retransmissions bý Cause, 90% C. I., Flso(5%, various, 0,0) 
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Figure 42 - Percentage Retransmissions by Cause, 90% C. I., F130(10%, various, 0,0) 
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Figure 43 - Percentage Retransmissions by Cause, 90% C. I., Fiso(15%, various, 0,0) 
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Figure 44 - Percentage Retransmissions by Cause, 9O% C. I., Fiso(20%, various, 0,0) 
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Figure 45- Percentage Retransmissions by Cause, 90% C. I., Fnso(25%, various, 0,0) 

It is clear that, as for the shorter RTT variations, Fast Retransmissions make up the 

predominant number of retransmissions observed. For the higher percentage 

Reordering probabilities, there is a clear indication of an increase in the number of 

retransmissions at approximately 0.243 ursec. This correlates with Figure 39, where at 

the same Reordering Delay, the graph transitions from the second region to third region 

and Transmission Time increases rapidly. 

4.3.2.3 300 msec Round Trip Time 

There is some concern [Laor02] that packet reordering will have serious effects in high 

bandwidth-delay-product networks, such as satellite communications, where the high 

number of in-flight packets will offer greater opportunities for reordering to occur. 

In Figure 46, forward path reordering is performed on an emulated link of 300 msec 

RYI'. Note that the range over which Reordering Delays have been applied has been 

increased in order to find the regions where the effects of reordering can be measured. 

Figure 47 plots the percentage of reordered packets as defined by Equation 1. 

137 

0 .. cr+ r... .... -ýý_ý"-a>---___ý_'ý_ý- ---, -. ý. u.. nýýzz., iazfii+-r s.. r uu+z utiiii 
00 015 0 03 0 045 006 0.075 0 09 0 105 0 12 0.135 0 15 0 165 0.18 0.195 0.21 0.225 0.24 0 255 0.27 0.285 030 315 

Reordering Delay (maee) 



t 5% Reordering 

180 - 

160 , 

140 

120 

100 

80 

40 

-. 10%Reordenng 15% Reordering -- 20% Reordering -*-25% Reordering 

20 1 
0. 

^0ý 1Ba ^ah , ýo^ 1ý 0, y,, 
ý''0le0, p 

0 y'ý^ , y'1^ , yap''0, yaa0,00' 
Ile" 0, 

y"0e0lp 
00,0* 01§10, 

boa0, $^h 
010 0.11 

Q, 
0 ̂ y'1 11§1 0 ̂ 6h 0^1 I'll 0 0000000 

Reordering Delay (ursec) 

Figure 46 - Mean transmission time of 10 Megabytes, 90% C. I., Fioo(various, various, 0,0) 
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Figure 47 - Percentage Reordered Packets, 90% C. I., F3no(various, various, 0,0) 

Comparison of Figure 46 with previous Transmission 1'i-ne graphs over shorter R'1"1' 

distances indicates that the behaviour is more predictable, with significantly smaller 

confidence intervals. As previously discussed, the degree of Reordering Probability has 

little further effect on the degradation of the Transmission Time, despite Figure 47 

indicating that for 25°% packet reordering, over 90% of packets are always reordered. 
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In Figure 46, it can be seen that as in Figure 32 and Figure 39, there ate three distinct 

regions visible. It is clear that the move from the second to the third region, where 

Reordering Delay has caused an unnecessary Fast Retransmission, occurs at 0.24 msec 

where the mean transmission time for all reordering probabilities rises from 90 seconds 

to greater than 105 seconds. The third region of the graph, from 0.243 msec upwards, 

indicates that the mean of each Reordering Probability remains relatively constant, 

regardless of increased Reordering Delay. Figure 46 indicates that in the first region of 

the graph from 0 msec to 0.204 msec, there are unusually large confidence intervals 

compared with the relative flatness observed in the second region between 0.204 msec 

and 0.24 msec. Analysis of the raw packet traces between the values of 0.183 msec and 

0.201 msec indicated that it was only the 10% Reordering Probability experiments 

which were exhibiting these wide confidence intervals, due to one set of unusually long 

experiments, where each run would take approximately 115 seconds to complete. As the 

results in Figure 46 illustrate the mean of 5 runs with 90% confidence intervals, one 

particularly long experiment can have a significant effect on the results. Analysis of the 

packet headers of these 7 particularly long experiments, indicated that the set of 10% 

runs between 0.183 and 0.201 msec occurred at around 1 am. One hypothesis to 

describe these results, in that at around 1 am each morning, each Linux server will 

perform daily housekeeping tasks on its disks and logs. Due to the number of FTP and 

SSH sessions that occurred on the testbed each day, this would generate extremely large 

logs which would have required several minutes of processing to parse. This processing, 

on either Raasay, Stroma or Quoyloo, may have resulted in these 7 unusually long FTP 

sessions, which are not characteristic of others observed in this scenario. 

4.3.3 Reverse Path Reordering Results 

Reverse path TCP packet reordering, or Acknowledgement reordering, has received 

very little attention in the literature. Previous studies have concentrated on the data path 

as it is expected that this is where the majority of packet reordering effects will be 

observed. It has been hypothesised by Bennett that the major effect of reverse path 

reordering is an increase in burstiness, although this has never been confirmed in the 

literature by measurement or simulation. 
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Continuing the methodology developed for the Forward Path experiments discussed in 

the previous section, multiple experiments were performed to measure the effects of 

Reverse Path reordering over a number of emulated WIT, for various reverse path 

Reordering Probabilities and Reordering Delays. 

For RYI' emulations of 50 msec and 100 msec, the effects of reverse path reordering for 

a wide range of Reordering Delays, were found to be negligible. In these experiments, 

the 10 Megabyte TCP connection would quickly grow to fill the bandwidth delay 

product of the link, and the Transmission Time would complete in close to the Matthis 

ideal throughput for that particular RTT. For short RTT connections, it can be assumed 

that the effects of reverse path TCP packet reordering are negligible. 

4.3.3.1 150 msec Round Trip Time 

Figure 48 illustrates the Transmission Time for 150 msec RTT connections emulated 

with various degrees of reverse path Reordering Delav s, and Reordering Probabilities. 

150 msec is chosen to allow comparison with the equivalent forward path reordering 

results illustrated in Section 4.3.2.2. 
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This graph illustrates a number of surprising results which have not been measured or 

observed previously. 

Firstly, for this emulated experiment of RTT 150 msec, it can be observed that 

Transmission Time is relatively constant between 0.2 and 0.6 msec Reordering Delays. 

Although Bennett hypothesised that reverse path reordering would cause highly bursty 

behaviour, it should be noted that TCP is already a bursty protocol - evaluation of 

packet traces indicates that volleys of packets are launched into the network by a 

sending TCP, sometimes as many as 45 at a time, and the responding 

Acknowledgements (each acknowledging approximately 6 packets) would also arrive 

close together. This behaviour was observed at all reordering probabilities, both forward 

and reverse. 

Secondly, even if the burstiness of the connection has increased, it is clear that this has 

had no effect on the Transmission Time of TCP. Between 0.2 and 0.6 msec, the 

Transmission Time for each particular Reordering Probability remain relatively constant. 

The worst case 25% Reordering Probability with 0.6 msec Reordering Delay results in a 

less than 1 second increase in Transmission Time from 0% Reordering Probability and 

the ideal Bandwidth Delay Product of the link. 

Thirdly, perhaps the most surprising behaviour indicated in Figure 48, is the suggestion 

that a specific amount of reverse path Reordering Delay, can actually improve the 

performance of TCP. 

Between Reordering Delays 0.130 msec and 0.219 msec, Figure 48 indicates a decrease 

in Transmission Time for each Reordering Probability. Although the confidence 

intervals widen significantly, the mean Transmission Time for each Reordering 

Probability is seen to decrease - the larger Reordering Probabilities are measured to 

decrease further than the lower Reordering Probabilities. 

This phenomenon has not been observed elsewhere in the literature. All but one 

publication [Neg104] have been based on the assumption that either forward or reverse 

path TCP packet reordering will result in a degradation of service quality, and that it is 
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something which should be avoided when possible. Neglia's [NeglO4] NS-2 simulation 

demonstrated that specific degrees of forward path reordering resulted in improved 

performance, but these were due to the specific RED configuration simulated within the 

mid-point routers, thus correlating reordering with the effects of loss and resulting in an 

improved performance of the RED algorithm. 

The reason for this improvement in performance can be explained by examination of 

the packet traces in these experiments. These indicate that when Acknowledgement 

reordering occurs, the self-clocking control loop of TCP quickly breaks down. At the 

points in Figure 48 where the Transmission Time has decreased, this is because the 

Acknowledgement Reordering has allowed a larger Acknowledgement to arrive before 

the previous smaller Acknowledgement, signalling to the sending TCP that it is 

permitted to launch a large volley of packets into the network. The result of this is that 

the Congestion Window at the sending TCP is effectively allowed to grow much faster 

than it otherwise would, and so the sending TCP is able to grow to the Bandwidth 

Delay product of the link much faster. 

As discussed in Section 4.3.1, it can take as long as seven seconds for the sending TCP 

to probe the Bandwidth Delay Product of the link during normal operation. Reordered 

Acknowledgements resulted in the sending TCP growing its congestion window to 45 

packets in under 3 seconds, during the periods of improved performance. In this 

particular set of experiments, with a RTT of 150 msec and the mean Transmission Time 

in normal circumstances of approximately 38 seconds, this time saving in achieving the 

maximum link throughput results in a measurable performance improvement of TCP. 

Figure 49 to Figure 53 perform retransmission analysis on the 150 msec RTT reverse 

path reordering experiments, indicating that Retransmissions are caused exclusively by 

timeout at the Sender, rather than Fast Retransmissions. This is also an interesting 

observation and assists in explaining why the Transmission Times illustrated in Figure 

48 remain constant over a high range of Reordering Probabilities and Delays. As only 

reverse path reordering is being applied, packets are arriving at the receiving TCP in 

order. Therefore, all Acknowledgements are being generated in order too. As 

Acknowledgements pass through the Click router they are being reordered, some to a 
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very large delay, but not to the extent that they are moved more than 3 positions out of 

sequence thus causing a Fast Retransmission. The fact that no Fast Retransmissions are 

being signalled results in the Sending TCP assuming that there is loss, but no 

congestion, on the end-to-end path. Therefore, the sending TCP does not implement 

the Fast Recovery algorithm and scale back the congestion window and steady state 

threshold. The sending TCP continues transmission of packets at its full congestion 

window bandwidth delay product. 
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4.3.3.2 200 msec Round Trip Time 
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Figure 54 - Mean transmission time of 10 Megabytes, 9O% C. I., F2oo(0,0, various, various) 

Figure 54 illustrates the mean transmission time during reverse path reordering over a 

200 msec RTT. This figure serves to illustrate that reverse path reordering does not 

always incur a performance improvement; nonetheless, it does not incur performance 

degradation either. Over a wide range of Reordering Probabilities and Delays, the 

Transmission Time remains relatively constant, with the mean of the worst case 

Transmission Time only 1 second greater than the ideal Transmission 'l'ime. 

4.3.4 Combined Forward and Reverse Reordering, 
100ms RTT 

The effects of combined forward and reverse path reordering were investigated. Figure 

55 illustrates Transmission Time for a 100 ursec R'I71', where a constant reverse path 

reordering of 15° o Reordering Probability at 0.34 ursec Reordering Delay was applied. 
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100 msec is illustrated as it demonstrates the mid-range performance, allowing for 

comparison with 50 msec and 150 msec forward path reordering results. 
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Figure 55 - Mean transmission time of 10 Megabytes, 90% C. I., Fioo(various, various, 0,0) 

As can be seen, the effects of forward path reordering dominate the behaviour of the 

TCP transmission. This suggests that when considering the effects of packet reordering, 

it is the reordering on the forward path which has the potential for severe degradation 

of service quality. As illustrated in the previous Section, reverse path reordering, 

whether in isolation or combined with forward path, will not result in the significant 

throughput losses that forward path reordering could incur. 

4.3.5 Comparison of -Methods to Combat Reordering 

A number of extensions to'I'CP have been proposed in order to mitigate the effects of 

packet reordering. In this section, a brief investigation is carried out on three of these 

potential methods. 

Figure 56 to Figure 58 illustrate the Transmission Time for forward path packet 

reordering over a 150 msec RIT path. 

147 

00000000000000000000000000 
Reordering Delay (msec) 



Figure 56 -Transmission time of 10 Megabytes, SACK- 
Enabled, Fiso(various, various, 0,0) 

Figure 58 - Transmission time of 10 Megabytes, tcp_reordcring =3 Enabled, 
Fiso(various, various, 0,0) 

Figure 56 illustrates performance when Selective Acknowledgements are enabled. This 

may be compared with Figure 39 in order for comparison of a similar RYF, but when 

SACK is disabled. Figure 56 suggests that there is little improvement in performance for 

all Reordering Probabilities at low Reordering Delays, until the threshold where a Fast 

Retransmission will always be invoked at 0.243 mscc. Both graphs display the same step 

change in Transmission Time, suggesting that SACK is not able to perform any better 

than Rcno TCP during the extreme reordering tests applied in this study. 

Figure 57 illustrates a 150 ursec RIT with D-SACK (DSAC08J enabled. D-SACK 

allows a receiver to communicate to a sender when a retransmission was unnecessary 

and, therefore, tune the TCP dupthresh variable to avoid false fast retransmits. I figure 57 

suggests that there is little improvement achieved by D-SACK compared with standard 

SACK, under extreme reordering conditions. 

Figure 58 illustrates a 150 ursec R 'ff with the Linux kernel variable tc 
_"ordertng set to 3. 
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This variable effectively increases the dupthresh value for Fast Retransmissions, by 

allowing an additional packet buffer of 3, before the Fast Retransmission algorithm is 

triggered. Figure 58 suggests that, for low values of Reordering Delay, this is the most 

effective method to minimise Transmission Time. 

4.3.6 Conclusions 

This Chapter has made a number of contributions in the field of packet reordering 

measurement, in a variety of different areas. 

The first contribution is methodological. A method for emulating TCP packet 

reordering has been demonstrated, and through the development of software for a 

configurable router, a testbed has been built to allow the demonstration and 

measurement of packet reordering on real TCP flows. This has been done to provide an 

insight into the behaviours of the congestion and retransmission algorithms, thereby 

demonstrating that reordering can have both positive and negative effects on TCP 

performance. 

A two point passive measurement technique has been developed, which has allowed 

more accurate measurement than previous studies of packet reordering, by exploiting 

the use of the IPID field as a method to determine the sending sequence of a TCP 

connection. Simple metrics have been developed that exploit this IPID field, thereby 

allowing determination if a packet has been reordered and the extent by which that 

packet has moved. Under the high degrees of reordering measured in the testbed, this 

method has provided a lightweight and simple method for determining the Absolute 

Reordering of a packet and avoids the calculation of future Sequence Number based on 

current payload lengths. Although this method may not be applicable in the wider 

Internet where fragmentation may occur, it does allow a method for reordering in a 

controlled environment and could have future applications in the testing of specific 

reorder-inducing routers or paths. 

The two point measurement technique has allowed determination of the cause of 

retransmissions, which are the by-product of packet reordering effects on TCP. By 
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correlating the packet traces obtained at two points, it has been possible to investigate 

and classify each retransmission, thus providing a more complete analysis of the effects 

of packet reordering, compared to previous measurement studies [Laor02]. 

The second contribution of this chapter is the measurements obtained using this two 

point methodology. Separate investigations have been performed on the effects of 

Forward Path, Reverse Path and combined forward and reverse path reordering. 

Transmission Time has been chosen to be the metric used to describe the Quality of 

Experience that a user could expect under each packet reordering environment. 

The study of forward path packet reordering has indicated that the effects of packet 

reordering are negligible with respect to Reordering Probability. Reordering Delay is the 

dominant factor in determining the effect of packet reordering on a particular TCP 

connection. The sudden drop in throughput measured during these experiments is an 

important feature of TCP's tolerance to reordering. The drop in throughput is 

continuous and sustained for all reordering probabilities above a threshold reordering 

delay, regardless of additional reordering applied, providing an insight into the 

behaviour of TCP's control algorithms. As the reordering delay is increased, the mean 

transmission time tends also to increase, but with a significantly larger error range. This 

indicates that, unlike percentage loss which guarantees retransmissions and invocation 

of congestion control, packet reordering is a complicated function of buffer sizes, 

control algorithms and Delay Variation, which may or may not have a significant effect 

on a TCP flow. 

These results compare favourably with previous reported investigations into packet 

reordering [Blan02], where a command was implemented in NS-2 to swap two elements 

of a router's input queue at a given time. Their results illustrated a similarly initial steep 

decline in throughput as a function of queue swaps, with little additional impact caused 

by increasing the frequency of reordering events, and an eventual flattening out of 

throughput. Forward path reordering experiments in this chapter also indicate this 

behaviour, which can be attributed to there being a point where reordering always 

causes a needless fast retransmit and a halving of the congestion window. Once a 

spurious fast retransmit is triggered, the sending rate is reduced in a uniform fashion 
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and, after this point, reordering has little additional effect. 

In the only other measurement study of TCP reordering [LaorO2], the authors used an 

Agilent QA Robot to randomly delay packets by 3 positions. This does not allow 

investigation of the Reordering Delay, nor investigation of the Reordering Delay with 

respect to RTT. 

For every RTT, it has been found that there is a forward path maximum reordering 
delay threshold which can be applied to packets, regardless of percentage reordering, 
below which reordering has negligible effects. Determination of this threshold, on a 

specific path, is key to ensuring that a specific switch or router does not introduce 

reordering to such an extent that it causes unnecessary retransmissions and an 

associated reduction in throughput. 

This chapter has performed the first measurement study of reverse path packet 

reordering and has demonstrated surprising results. Contrary to assumptions in the 

literature, it has been measured that reverse path reordering has little additional negative 

effect on the throughput of a connection. Indeed, it has been measured that in specific 

circumstances, as a function of the RTT, a function of the amount of data to be 

transmitted in the flow and a function of reordering delay, reverse path reordering can 

actually be beneficial for a connection. This phenomenon was explained due to the loss 

of self-clocking during Acknowledgement resequencing, thus allowing the sending TCP 

cwnd to grow faster than normal. 

The first measurement study of combined path reordering has also been performed, 

which has illustrated that the effects of forward path reordering dominate the behaviour 

of the connection. 

The use of percentage reordered packets as a metric, has been shown to be difficult to 

correlate with the actual performance of a TCP connection. This suggests that many of 

the metrics proposed in the literature, such as RFC 4737, are difficult to apply in the 

context of Quality of Experience. Percentage Retransmissions, as a function of 

Reordering Delay, has been demonstrated as a more effective technique of representing 
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the performance of a connection. This, combined with Transmission Time, both 

illustrate the Reordering Delay at which a measurable effect in performance will occur. 

In forward path reordering measurements, it was found that for all RTT, the majority of 

retransmissions were due to Fast Retransmission requests sent by the receiver. This 

suggests that a more conservative approach to adjusting the dupthrrsh Fast Retransmit 

threshold, would result in significant improvements during reordering. This hypothesis 

was confirmed by investigation of the tcp rrordering variable, which was demonstrated as 

shown in Figure 58, to provide a near 20% performance improvement when compared 

to SACK and D-SACK, at low levels of reordering. 

This Chapter has performed one of the largest studies of TCP packet reordering to date, 

emulating over 30,000 FTP sessions over a six month period. It has presented the need 

to develop an autonomous measurement system to perform such a large study and 

demonstrated the methods to perform data management and processing of such large 

amounts of packet captures. 

Clearly there is motivation for NEMs and Operators to increase the amount of 

parallelism prevalent on the internet. This study has shown that percentage reordering 

itself does not cause problems on a TCP connection; Reordering Delay is the method 

which should be used to measure if a particular piece of equipment is likely to cause 

problems with the efficient operation of TCP. 
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Chapter 5 

Mid-Point Passive 

Monitoring of TCP Flows 

5.1 Introduction 

The classification taxonomy presented in Chapter 3 describing the current 

methodologies and metrics which can be used to measure packet reordering, has 

illustrated the range of techniques that have been developed by previous work and 
described in the literature. The diversity of these techniques has made it difficult to 

153 



compare the various measurement studies, and this has then led to an incomplete 

picture of the extent of packet reordering observable in the Internet today. 

Chapter 4 is a study on the effects of packet reordering on a TCP connection and has 

argued that, for any metric of packet reordering to be useful, it must be able to 

characterise the effects that will be experienced by a real flow. Chapter 4 has further 

demonstrated that it is difficult to correlate percentage reordering metrics with the 

measurable effects of packet reordering. 

The taxonomy in Chapter 3 indicates the two main classifications of all Internet 

measurements; active and passive techniques. Chapter 2 has argued the benefits of 

passive measurements while Chapter 3 has presented examples of these. Clearly the 

significant benefit of using a passive measurement methodology is that it can be used to 

measure the behaviour of many thousands of concurrent flows; in order to achieve this 

and to allow observation of large volumes of traffic, the passive measurement must be a 

mid-point technique. 

Jaiswal, Rewaskar and Tstat have each presented mid-point passive measurement 

techniques, which have been evaluated in Chapter 3. Both Rewaskar and Tstat are 

subsets of the work of Jaiswal and design classification algorithms which each classify 

out-of-sequence packets based on inferred knowledge observed around that packet. 

Each of the mid-point passive packet reordering techniques proposed in the literature, 

makes several assumptions that could significantly affect their operation. Each assumes 

the ability to be able to calculate the RTT of every concurrent flow observed. 

Additionally, each also assumes the ability to observe and correlate both Data and 

Acknowledgement packets, in order to be able to explain each out-of-sequence event. 

This requirement for symmetric data and acknowledgement paths, has been 

acknowledged by the authors themselves as a significant limitation of their 

research JaisO7]. 

This chapter discusses the challenge of developing a mid-point passive real time 

monitor of TCP flows which does not require Data and Ack symmetry, nor estimation 
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of RTT. A lightweight, mid-point methodology and classification algorithm is developed 

and applied to live Internet traffic in order to gauge performance when compared with 

JaiswaL Finally, a technique for the visualisation of a TCP flow's performance is 

presented. This proposed technique is superior to others; it allows simple evaluation of 

the degree of resequencing occurring within a TCP connection over time, improving on 

the metrics presented in RFC 5237. 

5.2 Large Scale Monitoring of TCP Flows 

The Internet and its millions of users now depend upon the reliable operation of TCP. 

Clearly, some mechanism for large-scale monitoring of TCP would be extremely 

valuable in ensuring that performance is optimised, faults are easily identifiable, service 

level agreements are maintained by Internet Service Providers and end users can expect 

a guaranteed high Quality of Service. 

There are, however, several difficulties when performing large scale mid-point 

monitoring of TCP flows. Firstly, the majority of flows are often short-lived. Secondly, 

there will be many millions of concurrent active flows observable from a mid-point 

position. Thus, any monitoring technique should be simple and lightweight to 

implement, should not consume costly processing and memory resources and should 

also be scalable, so that it can be applied to many simultaneous concurrent flows and 

deployed in many places around the Internet, without causing additional overhead itself. 

5.2.1 Single Point Measurement Techniques 

A single point measurement technique is desirable from a network monitoring 

perspective. Multi-path routing and link parallelism will cause an asymmetry in TCP 

flows, where the outgoing data packets may choose a different route from the resulting 

Acknowledgement packets, as illustrated in Figure 59. Therefore, a single point 

measurement technique should allow measurement of either Data or Ack packets at 

geographically separate points, without the need to correlate these measurements for 

processing and analysis. Furthermore, single point measurements should have no 
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requirement for time synchronisation between measurement probes and, therefore, are 

advantageous as they avoid the computationally expensive and bandwidth intensive real- 

time correlation of measurement data between probes. Time synchronising a large 

number of measurement devices over a very wide area and, to a high degree of accuracy, 

is a significant burden that should be avoided. 
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Figure 59 - Mid Point Network Monitoring 

5.2.2 Goodput 

The traditional measure used to monitor "I'CP performance is "Goodput", which is 

defined as the amount of data received versus the amount transmitted; in this work, the 

amount transmitted includes retransmissions caused by losses in the network. (; oodput 

provides a simple method of indicating the health of a '1'(; P connection, as 

retransmissions are an excess overhead on the network that should be avoided. 

Goodput is recorded by measuring the volume of all the transmitted '1'(; P payloads in a 

given flow by recording the first and last sequence numbers for a given direction in a 

flow. This provides the amount of traffic successfully transmitted and received during; 
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the lifetime of that flow. The calculation is adjusted to make allowance for the SYN and 

FIN signalling packets that signal the start and end of the flow and increase the 

sequence number without transmitting any payload. 

The conventional measure of TCP retransmission takes the sum of all TCP packet 

lengths actually transmitted and subtracts the goodput figure, giving a value for 

retransmitted packets. By making this measurement near the TCP source it produces an 

accurate measure of the retransmissions caused by packet loss 'downstream' from that 

point in the flow. However, if the measurement is made at a point where some packets 

may have already been lost, then the retransmission measurement will under-report the 

value by the amount of the loss. 

A standardised methodology for single point measurement of retransmission, loss, and 

goodput of TCP flows, currently in use throughout many network monitoring products 

deployed on the Internet, is proposed by Love[Love06]. For each TCP connection 

being monitored, a Next Expected Sequence Number value (NESN) is maintained and 

compared with the actual sequence number of a packet seen in that flow. If the 

sequence number is less than the NESN, a retransmission count is incremented by the 

size of the retransmitted TCP payload; if it is greater then the NESN, a loss counter is 

incremented by the size of the lost TCP payload. 

This technique, using analysis of the Sequence numbers, enables an observer at an 

arbitrary monitoring point on a TCP connection to estimate the traffic that was 

originally sent by the transmitting node, even though some of this traffic may have 

already been lost. However, this thesis has demonstrated that TCP traffic is not 

guaranteed to arrive at the observation point in the same order as which it was 

transmitted. Therefore out-of-sequence packets can be caused by a loss followed by 

retransmission or packet reordering. Clearly, when taking measurements at the 

transmission source, before the packets traverse a switching device, no packet re- 

ordering can have occurred and the traditional Love calculation for retransmission 

based upon subtracting goodput from throughput will suffice. However, any 

measurements using this method at subsequent later points in the network, after the 

packets have passed through multiple routers and switches, are likely to over-estimate 
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the amount of loss and retransmission by the amount of packet reordering that has 

occurred. 

5.2.3 Jaiswal 

Jaiswal's algorithm, as reviewed in Section 3.3.3, classifies out-of-sequence packets by 

observing properties of the forward path packets carrying the TCP segments observed, 

such as time of observance, the packet's IP ID field, the existence of the segments 

reverse path ACK packets, and some derived measures, such as the time difference 

between two occurrences of the same TCP segment. Each out-of-sequence packet is 

classified into one of five types; Retransmission, Unneeded Retransmission, Network 

Duplicate, Reordering and Unknown. 

However, as part of the algorithm, Jaiswal relies on two important properties that can 

severely limit the number of flows which can be analysed at any particular mid-point. 

They must first observe the return path Ack packets, and secondly they require an 

accurate estimation of the senders RTO and RTT for every single observed flow. There 

are simply too many complex heuristics used in this method to make a simple, 

lightweight and reliable measurement. Jaiswal acknowledges that only approximately 

13% of the monitored flows on the Sprint Tier-1 backbone were found to be 

symmetrical and therefore 87% of packets were not processed by the Jaiswal algorithm. 

5.2.4 Summary 

There is clear motivation for the development of accurate single point measurements of 

TCP loss, goodput, retransmission and reordering. The technique described by Love is 

clearly lightweight, simple to implement, and can perform measurement entirely on the 

data path of a connection, but will grossly overestimate retransmission count during 

periods of packet reordering. The Jaiswal algorithm will provide a much improved 

determination of loss and retransmissions, but the requirement to observe both Data 

and Acknowledgement packets and perform RTT estimation for every concurrent flow, 

makes this technique infeasible for the majority of network monitoring applications. 
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This chapter presents the development of a lightweight method for real time monitoring 

of TCP flows, which seeks to improve on the issues associated with the work by Jaiswal 

and Love. The work presented in this chapter has been filed for patent, "Real Time 

Monitoring of TCP Flows", UK Patent Application GB2430577, Filed September 2005, 

Published March 2007, and US Patent Application 20070070916, Published March 

2007. 

5.3 A Passive Mid-Point Monitoring 
Technique 

This section describes the development of a passive mid-point monitoring technique 

and out-of-sequence packet classification algorithm, which were developed in order to 

classify TCP data packets from an arbitrary point in a network, without the requirement 

of observing symmetrical Acknowledgement packets, nor performing estimation of 

RTT. 

5.3.1 Development of a Passive Mid-Point Software 
Probe 

A capture device and software probe are clearly necessary to collect the relevant 

information required, in order to passively monitor and collect enough relevant 

information, to then infer why a packet has been reordered and how it should be 

classified. 

At any point in the network where TCP flows can be observed, the probe monitors the 

packets that pass by. Whenever a packet is observed that matches specific criteria 

relating to the measurements of interest, the time that the packet is observed is noted 

and the packet is copied to the packet capture buffer for analysis. 

Measurement is performed on a per-flow basis. For each flow, a "Flow Trace" is 
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created; the trace consists of a series of "Packet Records" where each record consists of 

information about each packet in the flow. 

Each TCP connection is uniquely identifiable using the IP addresses of the source and 

destination nodes and the port numbers on those nodes between which the connection 

has been established. Figure GO illustrates part of a TCP packet header that provides the 

identification by which each packet Record is stored and defines a Flow 't'race. For each 

Flow "Trace, packet records arc formed for all packets that relate to that flow trace and 

the packet records arc stored in the memory of the probe, although the memory could 

be located elsewhere if required. 
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Figure 60 - Example Flow Trace 

For each TCP flow, starting with the SYN packet in forward direction flows, and the 

SYN-ACK in re-, -ersc direction flows, the packet's headers are examined and a packet 

record is added to the flow trace. On each packet arrival, a new packet FCCO )rd is added 

to the flow trace for that connection. 

Figure 61 illustrates the contents of a TCP packet record. The packet record consists of 

14 bytes and comprises a sequence number, the 11) 11) of the packet, the timestamp of 

its arrival at the net-, v'ork probe, an incrementing sequence number, called the 

'Observation Position' (OP) and the packet length. 
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Figure 61 - Example Packet Record 

The OP is provided by an integer counter within the probe device, which is used to 

record the arrival position of each packet obscn"ed in the flow at the measurement 

position. The counter is initialised to zero when a new Flow Trace is created and is then 

incremented by one on the arrival of each new packet for a given direction within that 

flow. Separate OP counters are maintained for each Flo-, k, 't'race and for each direction 

within the flow currently being monitored by the network probe. 

The optional timestamp measures the time elapsed between the current packet's arrival, 

and the arrival of the previous packet. For example, if this time was recorded in 10's of 

nanoseconds, an inter-packet gap of just under 43 seconds could be accommodated. 

The OP counter, IP ID and Packet Length may be 16 bit numbers with a range () toi 

65535. The 11) II) can be arbitrarily set by the sender, but should change on each packet 

transmitted, thereby providing a method for identifying netwoork duplicates of packets 

with identical Sequence and _1ck numbers. The OP counter may recycle back toi O after 

reaching 65535. Since this number is used to determine packet sequencing and packets 

are unlikely to arrive at more than a few tens of positions MIt of sequence, the 65535 

limit is adequate for most connections. If measurements over a very long flow arc 

required, a larger counter could be used. 

Each "I'CP packet sequence number is a 32 bit number. Storage could be 

further reduced by minimising the memory storage requirements for each flow record 

161 



by normalising the sequence numbers, with respect to the start of the sequence numbers 

for that flow for a given direction. Monitoring certain applications may require a longer 

timestamp period to accommodate longer inter packet arrival times, for example, to 

support protocols that contain natural pauses in the TCP connection. In this instance, a 

larger timestamp, for example 40 bits (5 bytes) long would provide slightly over 3 hours 

of timestamps. This change, coupled with the 24 bit sequence number, would align the 

packet record on a4 byte storage boundary, which can be useful on certain commodity 

hardware. The length of the various elements in the packet record can be adapted to suit 

the type of protocols being monitored, the type of hardware resources available on the 

probe, and the requirements to minimise the processing footprint on the hardware 

device. 

5.3.2 Insertion of Packet Records into Flow Traces 

On arrival each packet record is inserted into a flow trace. However, the insertion does 

not occur in arrival order. Insertion occurs in a sorted order keyed against the Sequence 

Number and IP ID. The sort is characterised in pseudo code as the function shown in 

Table 5, where each Packet Record has a structure of the type previously described in 

Figure 61. Using this sort function, a packet record will be placed in the Flow Trace, 

ordered from the lowest Sequence Number to the largest Sequence Number. For 

packets with the same Sequence Number, the IP ID is used for differentiation, although 

packets could just as easily be sorted against the Sequence Number, only. Using both 

numbers gives an increased level of differentiation between those packets that are 

retransmissions and those that were caused by network duplication. 

As each packet is inserted into the Flow Trace, it is assigned an OP. The OP indicates 

the actual arrival order of the packets within the flow and the Sequence Number 

provides the order that the packets were actually transmitted. 
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boolean sort(Record a, Record b) { 

if (a. sequenceNumber == b. sequenceNumber) { 

return a. ipid < b. ipid; 

} else { 

return a. sequenceNumber < b. sequenceNumber; 

} 

Table 5- Pseudo code of Packet Record Sorting 

When either a FIN or a RST is sent, or in case these are missed, after a suitable timeout 

period, the whole of the captured Flow Trace can be analysed. If the processing 

resources are not available at the probe, the Flow Trace could be sent to a network 

management station for analysis. Any results generated are either stored and displayed 

via the probe, or via the network management station. 

The analysis of the flow trace (when finished, reset or after the timeout) starts with a 

calculation of an "Expected Position" (EP) number for each packet record within the 

flow trace. The calculation of EP for each packet record is described in further detail in 

Figure 62. 

5.3.3 Calculation of Expected Position 

Figure 62 illustrates the calculation of an "Expected Position" (EP) number for each 

packet record within the Flow Trace. Upon completion of the packet capture, all packet 

records within the flow trace have been entered in sorted order keyed against "Sequence 

Number" and "IP ID". The steps to calculate EP are as follows: 

The first data packet record in the Flow Trace is found. This is identified as having a 

Sequence Number identical to the original flow SYN packet, but with different IP ID 

fields and a packet length not equal to zero. 
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The first data packet is assigned the initial EP number. For example, the initial EP could 

be set to the same as the OP of the first data packet, thus allowing simple comparison 

between the two values, and initially, before any retransmissions occur, thereby allowing 

EP==OP as an indication of perfect sequencing. 

Start 

Identify first data 
packet in flow trace 

Set first data packet 
to initial EP 

Calculate EP 

. cur = (EP. prev +1 

All records 
processed? 

Yes 

Sort flow trace 
by OP 

End 

No 

oes Seq. No - Yes 
previous Seq 

No ? 

No 
Move to next packet 
record in flow trace 

Figure 62 - Expected Position Calculation 

Result - 
Network 
Duplicate 

No 

Does IP ID = 
revious IP ID? 

Yes 

The algorithm then loops around all records in the flow trace until all have been 

processed. 

Calculate EP 
EP. cur - (EP. prev) 

Result - 
Retransmission 
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Each packet record is then tested by Sequence Number, to compare it with the 

Sequence Numbers of previous packet record. If the Sequence Numbers are different, 

the EP value of the current packet record is calculated as the EP value of the previous 

packet record plus 1. 

If two packet records have the same Sequence Number, the IP ID value of the current 

packet record is tested with respect to the IP ID value of the previous packet record. 

This allows differentiation between a Retransmission and a Network Duplicate, allowing 

a simple count to be maintained of each, which provides a more accurate measure of 

Goodput than the method described by Love. The EP value of the current packet 

record is then set to the same value as the EP value of the previous packet record. 

Once all packets reordered within the Flow Trace have been processed, they are then 

sorted are re-inserted into the Flow Trace by OP. 

The benefit of recording an entire Flow Trace and then sorting by Sequence Number 

and IPID, is that it does not require calculation of an NESN for each packet, as 

described in the Love algorithm. However, if the probe is located at a point where data 

packets from a single TCP connection may traverse different paths, resulting in some 

packets not passing through the measurement probe, the Flow Trace will be incomplete 

for that connection, and neither the sorting method nor NESN would be able to 

evaluate the correct EP values for the Flow Trace. 

5.3.4 Calculation of Relative Sequencing 

Figure 63 illustrates the processing carried out in order to define the amount of re- 

sequencing which has occurred within a flow trace. Once each packet record has been 

assigned an OP and EP value, the algorithm steps through all OP numbers and 

performs a series of calculations, on the EP (EP. cur) and OP (OP. cur) values of the 

current packet record, with respect to the EP (EP. prev) and OP (OP. prev) values of the 

previous packet record. 
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Figure 63 - Post Processing Flowchart 

Equation 6 and Equation 7 calculate the rate of change between the current packet 

record and the previous packet record, where in an ideal scenario with perfect network 

sequencing, both would increment monotonically each time. Equation 8 performs rate 

of change analysis, by allowing definition of a simple metric to test if a packet is out of 

sequence. If Equation 8 yields zero, then perfect network behaviour is being observed. 
If Equation 8 gives any other value, then the packet is flagged as Out-of-Sequence and 

will be classified as such by the algorithm. 
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. EP = EP. cur - EP. prev 

Equation 6- Expected Position Rate of Change 

OOP = OP. cur - OP. prev 

Equation 7- Observed Position Rate of Change 

aEP-OOP 

Equation 8" Rate of Change Analysis 

5.3.5 The Arthur "Out of Sequence" Classification 
Algorithm 

With the packet records reinserted in the flow trace by OP and calculation of all EP 

numbers complete, it is then possible to parse the flow trace and evaluate each packet 

record using the algorithm presented in Figure 64. 

Figure 64 illustrates the steps of capturing the TCP stream, inserting the packets into the 

flow trace as discussed in Section 5.3.2, calculating EP as discussed in 5.3.3, and then 

comparing EP and OP for each packet as illustrated by Equations 6,7 and 8. 

Each packet is then classified using the algorithm as illustrated in Figure 64 and the 

following steps are used in the algorithm to allow interpretation of the results: - 
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Insert packet into flow trace. 
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Calculate EP for each packet. 
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Figure 64- Arthur Out of Sequence Classification Algorithm 
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5.3.5.1 Result 1 

Result 1- Network Duplicate Packets. 

Packets that are duplicated in the flow record and share the same Sequence Number and 

IP ID are marked as network duplicates; a count of the number of network duplicates is 

maintained. 

5.3.5.2 Result 2 

Result 2- Retransmitted Packet, due to Packet Reordering Upstream or Downstream, 

or Packet Loss & Retransmission Downstream from Measurement Point 

Packets that are duplicated in the Flow Trace, sharing the same Sequence Number, but 

which are not network duplicates, as determined by differing IP ID fields, are 

retransmissions of packets and a count of such packets is maintained. The cause of this 

retransmission is a result of 

" Packet reordering either upstream or downstream from the measurement point. 

or 

" Packet loss downstream from the measurement point due to network 

congestion or malfunction of the network. 

5.3.5.3 Result 3 

Result 3- Packet Reordering, or Packet Loss & Retransmission Upstream from 

Measurement Point 

Packets that are Out-Of-sequence and are not duplicated in the flow record will be due 

either to: 

169 



" Packet reordering upstream from the measurement point. 

or 

" Packet loss upstream from the measurement point due to network congestion or 

malfunction, which has resulted in a subsequent retransmission of the lost 

packet. 

5.3.5.4 Result 4 

Result 4- Perfect Network Behaviour 

If no flow record Sequence Number duplicates are detected and the packet is not 

measured to be out of sequence by Equation 8, then Perfect Network Behaviour is 

observed. 

5.3.5.5 Result 5 

Result 5- Packet Loss Upstream & Retransmission, or Packet Reordering 

Packets that are categorised as being out-of-sequence and are significantly out-of- 

sequence but do not share a duplicate packet in the flow record, can be assumed to be 

caused by: 

" Packet loss upstream from the measurement point, as a significantly late arrival 

of the packet will have triggered either a Fast-Retransmit from the receiver, or a 
Round-Trip-Timeout at the sender. This would be the case for packets that are 

significantly more than 3 positions Out-of-Sequence, as a large delay would be 

incurred whilst a retransmission was transmitted. 

or 

" Packet reordering upstream and downstream from the measurement point, 
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which has not been to a large enough degree to cause a retransmission through 

RTT or Fast-Retransmit, but indicates significant disruption in network 

behaviour and should be measured as such. 

The degree to which packets are being measured out-of-sequence should be maintained, 

as significant numbers of packets arriving more than 3 positions out-of-sequence, is an 

indicator of unhealthy network performance. 

5.3.5.6 Result 6 

Result 6- Packet Reordering Upstream from the Measurement Point 

Packets that are categorised as being Out-Of-Sequence, but are less than three packets 

Out-Of-Sequence are a result of packet reordering upstream from the measurement 

point. This is indicative of unhealthy network performance and a count of this measure 

should be maintained, but these packets do not indicate problems with network 

performance as serious as those categorised under Result 5, as they are unlikely to cause 

unnecessary retransmissions. 

5.3.5.7 Result 7 

Result 7- Packet Retransmission, caused by Fast Retransmission 

Packets that are categorised as Result 2 and have duplicate packet records, but where the 

packet record with the lower IPID value is mote than three packets out-of-sequence, are 

retransmissions that are likely to be the result of the TCP receiver receiving three 

duplicate Acks and determining that the packet must be retransmitted. This is the 

amount of fast retransmission occurring in the flow and a count of such events should 

be maintained. 
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5.3.5.8 Result 8 

Result 8- Packet Retransmission, caused by RTO or Reverse Path Reordering or 

Reverse Path Loss 

Packets that are categorised as sharing the same Sequence Number, but not being 

network duplicates, but where the packet record with the lower IP ID value is less than 

three packets Out-of-Sequence, are retransmissions that could have been caused either 
by: 

" The TCP transmitter's RTO (retransmit timer) firing. This is the amount of 

sender RTO retransmission occurring in the flow and a count of this events 

should be maintained 

or 

" Reverse-Path reordering or loss, resulting in Acks not arriving at the transmitter 

as expected, and causing retransmissions. 

5.4 Out of Sequence Classification Example 

Table 6 illustrates an example of both directions of a single TCP flow capture, with the 

respective OP measurement calculated. Analysis of this sequence of packets, would be 

carried out using two separate flow traces, one for each direction: 

" Flow Trace 1- 10.0.0.2: 1789 to 10.0.0.6: 35427 

Flow Trace 2- 10.0.0.6: 35427 to 10.0.0.2: 1789 

Upon termination of the connection, when Flow Trace 1 is observed transmitting a RST 

or FIN, the results are processed and the EP numbers are calculated (as demonstrated 

in Figure 62). 
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Timestamp 
Secs Usecs 

1125264298 160003 

1125264298 160007 

1125264298 275604 

1125264298 275636 

1125264298 277983 

1125264298 278330 

1125264298 278332 

1125264298 278334 

1125264298 395590 

1125264298 395619 

1125264298 395641 

1125264298 395671 

1125264298 398070 

1125264298 398427 

1125264298 398428 

1125264298 398430 

1125264298 398432 

1125264298 398434 

1125264298 515588 

-1125264298 
515616 

1125264298 515638 

1125264298 515661 

1125264298 515673 

1125264298 515700 

1125264298 517947 

1125264298 518325 

1125264298 518327 

"1125264298 
518329 

1125264298 518330 

1125264298 518725 

1125264298 
635583 

1125264298 
635611 

0 1125264298 
635634 

1125264298 
635657 

1125264298 635685 

1125264298 637902 

1125264298 638254 

1125264298 638622 

1125264298 
638624 

1125264298 
638626 

1125264298 
638628 

1125264298 
638630 

1125264298 
638631 

1125264298 
638633 

Source Destination OP 
Address Port Address Port 

10.0.0.2 1789 10.0.0.6 35427 1 3E 

10.0.0.2 1789 10.0.0.6 35427 2 3E 

10.0.0.6 35427 10.0.0.2 1789 1 3E 

10.0.0.6 35427 10.0.0.2 1789 2 3E 

10.0.0.2 1789 10.0.0.6 35427 3 3E 

10.0.0.2 1789 10.0.0.6 35427 4 3E 

10.0.0.2 1789 10.0.0.6 35427 5 3E 

10.0.0.2 1789 10.0.0.6 35427 6 3E 

10.0.0.6 35427 10.0.0.2 1789 3 3E 

10.0.0.6 35427 10.0.0.2 1789 4 3E 

10.0.0.6 35427 10.0.0.2 1789 5 38 

10.0.0.6 35427 10.0.0.2 1789 6 38 

10.0.0.2 1789 10.0.0.6 35427 7 38 

10.0.0.2 1789 10.0.0.6 35427 8 38 

10.0.0.2 1789 10.0.0.6 35427 9 38 

10.0.0.2 1789 10.0.0.6 35427 10 38 

10.0.0.2 1789 10.0.0.6 35427 11 38 

10.0.0.2 1789 10.0.0.6 35427 12 38 

10.0.0.6 35427 10.0.0.2 1789 7 38 

10.0.0.6 35427 10.0.0.2 1789 8 38 

10.0.0.6 35427 10.0.0.2 1789 9 38 

10.0.0.6 35427 10.0.0.2 1789 10 38 

10.0.0.6 35427 10.0.0.2 1789 11 38 

10.0.0.6 35427 10.0.0.2 1789 12 38 

10.0.0.2 1789 10.0.0.6 35427 13 38 

10.0.0.2 1789 10.0.0.6 35427 14 38 

10.0.0.2 1789 10.0.0.6 35427 15 38 
10.0.0.2 1789 10.0.0.6 35427 16 38 

10.0.0.2 1789 10.0.0.6 35427 17 38 

10.0.0.2 1789 10.0.0.6 35427 18 38 

10.0.0.6 35427 10.0.0.2 1789 13 38 

10.0.0.6 35427 10.0.0.2 1789 14 38 
10.0.0.6 35427 10.0.0.2 1789 15 38 
10.0.0.6 35427 10.0.0.2 1789 16 38 

10.0.0.6 35427 10.0.0.2 1789 17 38 

10.0.0.2 1789 10.0.0.6 35427 19 38 

10.0.0.2 1789 10.0.0.6 35427 20 38 
10.0.0.2 1789 10.0.0.6 35427 21 38 

10.0.0.2 1789 10.0.0.6 35427 22 38 

10.0.0.2 1789 10.0.0.6 35427 23 38 

10.0.0.2 1789 10.0.0.6 35427 24 38 

10.0.0.2 1789 10.0.0.6 35427 25 38 

10.0.0.2 1789 10.0.0.6 35427 26 38 

10.0.0.2 1789 10.0.0.6 35427 27 38 

Table 6- Example TCP Stream Capture 

Seq Ack IPID 
116962545 3811057447 43099 
116963993 3811057447 43100 
111057447 3816963993 36800 
111057447 3816965441 36801 
116965441 3811057447 43101 
116966889 3811057447 43102 
116969785 3811057447 43104 
116968337 3811057447 43103 
111057447 3816966889 36802 
111057447 3816968337 36803 
111057447 3816968337 36804 
111057447 3816971233 36805 
16971233 3811057447 43105 
16972681 3811057447 43106 
16974129 3811057447 43107 

116975577 3811057447 43108 
116968337 3811057447 43109 
16977025 3811057447 43110 
111057447 3816972681 36806 

, 11057447 3816974129 36807 

, 11057447 3816975577 36808 
11057447 3816977025 36809 
11057447 3816977025 36810 
11057447 3816978473 36811 
16978473 3811057447 43111 
16979921 3811057447 43112 
16981369 3811057447 43113 
16982817 3811057447 43114 
16984265 3811057447 43115 
16985713 3811057447 43116 
11057447 3816979921 36812 
11057447 3816981369 36813 
11057447 3816982817 36814 
11057447 3816984265 36815 
11057447 3816987121 36816 
16987121 3811057447 43117 
16990017 3811057447 43119 
16988569 3811057447 43118 
16991465 3811057447 43120 
16992913 3811057447 43121 
16994361 3811057447 43122 
16995313 3811057447 43123 
16998209 3811057447 43125 
16996761 3811057447 43124 
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Table 7 and Table 8 illustrate the TCP packet records that would be generated by the 

packet sequencing analysis using the TCP stream capture data illustrated in Table 6. 

Timestamp Timestamp 
OP Packet 

(secs) (usecs) Length 

1125264298 160003 1 3816962543 43099 1448 

1125264298 160007 2 3816963993 43100 1448 

1125264298 277983 3 3816965441 43101 1448 
1125264298 278330 4 3816966889 43102 1448 
1125264298 278332 5 3816969785 43104 1448 
1125264298 278334 6 3816968337 43103 1448 

1125264298 398070 7 3816971233 43105 1448 

1125264298 398427 8 3816972681 43106 1448 

1125264298 398428 9 3816974129 43107 1448 
1125264298 398430 10 3816975577 43108 1448 
1125264298 398432 11 3816968337 43109 144$ 
1125264298 398434 12 3816977025 43110 1448 

1125264298 517947 13 3816978473 43111 1448 

1125264298 518325 14 3816979921 43112 1448 
1125264298 518327 IS 3816981369 43113 1448 

1125264298 518329 16 3816982817 43114 1448 
1125264298 518330 17 3816984265 43115 1448 
1125264298 518725 18 3816985713 43116 1408 
1125264298 637902 19 3816987121 43117 1448 

1125264298 638254 20 3816990017 43119 1448 
1125264298 638622 21 3816988569 43118 1448 
1125264298 638624 22 3816991463 43120 1448 
1125264298 638626 23 3816992913 43121 1448 
1125264298 638628 24 3816994361 43122 952 
1125264298 638630 25 3816995313 43123 1448 
1125264298 638631 26 3816998209 43125 1448 
1125264298 638633 27 3816996761 43124 144$ 

Table 7- Flow Trace 1- 10.0.0.2: 1789 to 10.0.0.6: 35427 

Table 9 illustrates the results of performing EP calculation using Flow Trace 1. It can be 

seen that the packet with Expected Position 6 was reordered during transmission and 

was observed arriving at position 7. The degree of sequence loss was sufficient to cause 

a retransmission; this can be observed as the packet arriving at Observed Position 12. 
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Timestamp Timestamp Up Ack IPID Packet 
(secs) (usecs) Length 

1125264298 275604 1 3816963993 36800 0 
1125264298 275636 2 3816965441 36801 0 
1125264298 395590 3 3816966889 36802 0 
1125264298 395619 4 3816968337 36803 0 
1125264298 395641 S 3816968337 36804 0 
1125264298 395671 6 3816971233 36805 0 
1125264298 515588 7 3816972681 36806 0 
1125264298 515616 8 3816974129 36807 0 
1125264298 515638 9 3816975577 36808 0 
1125264298 515661 10 3816977025 36809 0 
1125264298 515673 11 3816977025 36810 0 
1125264298 515700 12 3816978473 36811 0 
1125264298 635583 13 3816979921 36812 0 
1125264298 635611 14 3816981369 36813 0 
1125264298 635634 15 3816982817 36814 0 
1125264298 635657 16 3816984265 36815 0 
1125264298 635685 17 3816987121 36816 0 

Table 8- Flow Trace 2 -10.0.0.6: 33427 to 10.0.0.2: 1789 

Timestamp Timestamp Op Seq Irin Packet EP (secs) (usecs) Length 
1125264298 159999 1 3816961097 43098 1448 1 
1125264298 160003 2 3816962545 43099 1448 2 
1125264298 160007 3 3816963993 43100 1448 3 
1125264298 277983 4 3816965441 43101 1448 4 
1125264298 278330 5 3816966889 43102 1448 5 
1125264298 278332 6 3816969785 43104 1448 7 
1125264298 278334 7 3816968337 43103 1448 6 
1125264298 398070 8 3816971233 43105 1448 8 
1125264298 398427 9 3816972681 43106 1448 9 
1125264298 398428 10 3816974129 43107 1448 10 
1125264298 398430 11 3816975577 43108 1448 11 
1125264298 398432 12 3816968337 43109 1448 6 
1125264298 398434 13 3816977025 43110 1448 12 
1125264298 517947 14 3816978473 43111 1448 13 
1125264298 518325 15 3816979921 43112 1448 14 
1125264298 518327 16 3816981369 43113 1448 IS 
1125264298 518329 17 3816982817 43114 1448 16 
1125264298 518330 18 3816984265 43115 1448 17 
1125264298 518725 19 3816985713 43116 1408 18 
1125264298 637902 20 3816987121 43117 1448 19 
1125264298 638254 21 3816990017 43119 1448 21 
1125264298 638622 22 3816988569 43118 1448 20 
1125264298 638624 23 3816991465 43120 1448 22 
1125264298 638626 24 3816992913 43121 1448 23 
1125264298 638628 25 3816994361 43122 952 24 
1125264298 638630 26 3816995313 43123 1448 23 
1125264298 638631 27 3816998209 43125 1448 27 
1125264298 638633 28 3816996761 43124 1449 26 

Table 9- Packet Sequencing Analysis 
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Table 10 illustrates the results for a Packet Sequence Rate of Change Analysis as applied 

to the packets from Table 7 and the resulting classifications as applied by the Arthur 

classification algorithm. Empirical observation has indicated that a good indicator of the 

health of a TCP connection is the rate of change of sequence numbers. TCP receivers 

expect to receive packets from a flow in order and so an out-of-sequence packet, 

whatever the cause, indicates a breakdown which causes additional overhead to the 

connection. 

Arthur 

O E eo eE UP- Timestamp Timestamp Packet Algorithm 

p P P P SOP (secs) (usecs) Seq 1PIn Length (Figure 64) 
Classification 

Results 
1 1 1 1 0 1125264298 159999 3816961097 43098 1448 4 

2 2 1 1 0 1125264298 160003 3816962545 43099 1448 4 

3 3 1 1 0 1125264298 160007 3816963993 43100 1448 4 

4 4 1 1 0 1125264298 277983 3816965441 43101 1448 4 

5 5 1 1 0 1125264298 278330 3816966889 43102 1448 4 

6 7 1 2 1 1125264298 278332 3816969785 43104 1448 3,6 

7 6 1 -1 -2 1125264298 278334 3816968337 43103 1448 2.8 

8 8 1 2 1 1125264298 398070 3816971233 43105 1448 3.6 

9 9 1 1 0 1125264298 398427 3816972681 43106 1448 4 

10 10 1 1 0 1125264298 398428 3816974129 43107 1448 4 

11 11 1 1 0 1125264298 398430 3816975577 43108 1448 4 

12 6 1 -5 -6 1125264298 398432 3816968337 43109 1448 2.8 

13 12 1 6 5 1125264298 398434 3816977025 43110 1448 3,6 

14 13 1 1 0 1125264298 517947 3816978473 43111 1448 4 

15 14 1 1 0 1125264298 518325 3816979921 43112 1448 4 

16 15 1 1 0 1125264298 518327 3816981369 43113 1448 4 

17 16 1 1 0 1125264298 518329 3816982817 43114 1448 4 

18 17 1 1 0 1125264298 518330 3816984265 43115 1448 4 

19 18 1 1 0 1125264298 518725 3816985713 43116 1408 4 

20 19 1 1 0 1125264298 637902 3816987121 43117 1448 4 

21 21 1 2 1 1125264298 638254 3816990017 43119 1448 3.6 

22 20 1 -1 -2 1125264298 638622 3816988569 43118 1448 3,6 

23 22 1 2 1 1125264298 638624 3816991465 43120 1448 3.6 

24 23 1 1 0 1125264298 638626 3816992913 43121 1448 4 

25 24 1 1 0 1125264298 638628 3816994361 43122 952 4 

26 25 1 1 0 1125264298 638630 3816995313 43123 1448 4 

27 27 1 2 1 1125264298 638631 3816998209 43125 1448 3,6 

28 26 1 -1 -2 1125264298 638633 3816996761 43124 1448 3,6 

Table 10 - Rate of Change Analysis 

By performing this analysis, in an ideal case EP should increase by exactly I per packet - 

every packet received should be that predicted from the previous packet. 'I'lierefore, if 

applied across a sequence of more than two packets sorted by their observed position, if 
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Equation 8 does not equal zero, the connection is shown to have suffered sequencing 

problems and is, therefore, unhealthy. This Packet Sequence Rate of Change Analysis 

can measure the effects of packet reordering, by highlighting the points at which the 

observed sequence changes, rather than identifying packets as being either in or out of 

sequence. Even minor loss of sequence would suggest that a connection is unhealthy as 

the change in sequence could be misinterpreted as loss by the receiver, in which case a 

retransmission would be caused and congestion avoidance would begin. 

From the timestamp data within each packet record, the rate of change of inter-packet 

arrival times can also be calculated. The difference in inter-arrival times, differentiated 

over a distance of packets, selected in a method similar to that described for rate of 

sequence change, would allow for an indication of the burstincss of the data. If both 

forward and reverse flow traces were obtained, comparison of these would allow for 

measurements of reverse path reordering and how it had affected the forward path's 

burstiness. 

5.4.1 Dealing with Duplicates 

Table 10 further illustrates the use of the SEP, c)OP, and )EP-DOP when 

retransmissions occur in a flow trace. It is important to note that there arc situations 

when multiple packet records in the flow trace will be assigned identical EP numbers. 

This will occur when retransmitted packets arc allocated EP numbers that are identical 

to the original `lost' packet. This will also occur when there arc multiple retransmissions 

of a lost packet, or where reordering occurs to such an extent that the receiver has 

assumed the packet to be lost, and thus requested retransmission. Meanwhile, the OP 

counter will increase linearly for each packet arrival, which after a retransmission event 

when the flow has returned to correct sequencing, will have resulted in the OP counter 

being ahead of the EP counter by the number of packet retransmissions that have 

occurred. 

Therefore, calculating the change in EP and OP between packets provides a measure of 

sequence change that is relevant in situations where retransmissions will affect the 

expected sequence of arriving packets. Calculation of oOP will always result in a value 
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of 1 when calculated over 2 packet records, as OP increases linearly during packet 

capture. Therefore, when calculating DEP - OOP, a value of anything other than 0 is an 

indication of sequence breakdown. For example, in Table 10 a sequence gap is detected 

at OP 6 where EP 6 has undergone packet reordering, and arrives in OP 7. In this 

example, the reordering was sufficient to cause a retransmission of the packet at EP 6 

which is observed again at OP 12. In the intervening time between OP 9 and OP 11, 

packet sequencing is maintained as expected, with EP==OP, and so OEP - £3OP would 

indicate good network behaviour for this part of the flow. 

After the anomaly of the retransmission at OP 12, tiEP - COP from OP 14 onwards 

indicates that the flow trace is back in perfect sequence - despite OP and EP becoming 

'out of step' due to the additional retransmission. Calculation of m-P-)OP therefore 

mitigates this effect in addition to providing a simple measure of how late or early a 

packet has been measured as arriving with respect to the expected sequence of arrival. 

Positive numbers indicate early packets, while negative numbers indicate late packets. 

For example, in Table 10, OP 6 is calculated as having 8EP-0OP=1, indicating that the 

packet has arrived 1 position earlier than what it should be expected to be. Calculation 

of oEP-aOP on OP 7=-2, indicating that the packet has arrived 2 positions late. 

Calculation of ZIEP-öOP on OP 12=-6, indicating that the packet is 6 positions late and 

with an EP of 6(which has also been assigned to the packet with OP 7) indicates that 

this is a retransmission, caused by either downstream packet loss or packet reordering. 

5.5 Implementation of Algorithm 

In order to compare this mid-point classification algorithm with Jaiswal, a software 

prototype of the algorithm was implemented in C++ and Pcrl. Using the Libpcap- 

MMap extensions on a Linux platform, the C++ code performs passive sniffing of a 

Gigabit Ethernet Interface Card which, when used with a passive optical tap, can be 

used to perform mid-point monitoring of a fibre-based gigabit Ethernet connection. 

For each packet received, the C++ code evaluates the 4-tuple ports and addresses of the 
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source and destination, to define a Connection object. This Connection object is then 

used as a key into a hash of MeasuredSequence objects. Each MeasuredSequence object 

is a sorted `Packet Record' of the format described in Figure 61. 

The length of a packet capture can be specified at run time; in this case, the C++ code 

executes until a defined number of flows have been captured and then, prior to exit, 

flushes each MeasuredSequence object to output files. Example MeasuredSequence 

objects, for each flow, are illustrated in Table 7 and Table 8. 

At this point, further processing must be performed in Perl. A single txt capture file is 

generated by the C++ application, but with all MeasuredSequence objects, for every 

flow observed, written into that file. A Perl script was developed to parse these text files 

and perform the Expected Position calculation as defined in Figure 62, and the Rate of 

Change Analysis as defined in Table 10. This results in a separate text file output, for 

each flow trace, with summary statistics generated of the number of packets classified by 

each rule in Figure 64. 

5.5.1 Comparison with Jaiswal 

One of the significant contributions of Jaiswal's work was the ability to access packet 

captures from the Sprint IP Monitoring project and, therefore, perform real-time 

analysis of Tier-1 trans-continental 2.5 Gb/s network links. 

As is common with many ISPs, for security and privacy concerns, access to such real 
data is not publicly available and therefore the packet captures used by Jaiswal are not 

available in the form of packet headers that can be processed by the Arthur 

classification algorithm. Therefore, in order to provide comparison between this mid- 

point classification algorithm and the Jaiswal algorithm, a set of experiments were 
devised to generate new data in the formats which both algorithms could analyse and 

classify, thus allowing comparison of results from both techniques. 

The source code for the Jaiswal Out-of-Sequence Classification algorithm was obtained 
from Sharad Jaiswal and was compiled and tested. Jaiswal's classification tool, 
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`TCPFlows', can read packet traces either by live capture through a DAG card or by 

reading packets that have been captured and saved in the form of tcpdump files. 

5.5.2 Experimental Setup 

In order to capture packet traces of live Internet traffic across a reasonably large 

Internet backbone connection, an experiment was performed using a HP NetServer 

LPr. The NetServer was compiled with the C++ code developed in this chapter, which 

performed its own capture and logging of Flow Traces into text files. Additionally, 

tcpdump was simultaneously run on the same gigabit interface, in order to capture the 

same packets which were logged by the C++ code and written in the tcpdump file 

format for later processing by Jaiswal TCPFlows. Both the C++ code and tcpdump 

perform packet capture using Libpcap and were found to operate on the same interface 

on the same machine with no performance overheads. Tcpdump was configured to 

capture only the first 96 bytes of each packet to avoid disk space exhaustion. 

The NetServer was located beside an egress router at the Agilent Technologies South 

Queensferry facility. This router, a Cisco Catalyst 3620, is one of two used to route a 

variety of different IP traffic, from general office web and email, to experimental IP test 

traffic from the Agilent Laboratories Test Network. This router was chosen because it 

operates in parallel with a second identical router to connect, via 1000-Base-SX over 
fibre Gigabit, to one of the site core routers for 45 Mb/sec uplink to the Agilent 

Technologies MPLS cloud. 

5.5.3 Results and Comparison 

A total of 331649 flows were measured over a6 hour period, and were classified using 

the Jaiswal algorithm as illustrated in Table 11, and the Arthur algorithm in Table 12. It 

should be noted that a flow can traverse in either direction and, for the purposes of the 

Arthur algorithm, describes the Data path alone, while for the Jaiswal algorithm defines 

both Data and Acknowledgements. 
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Total Data Flows Symmetric Packets Total OOS Network Unneeded Reordered 

Packets Flows within OOS Unclassified Dups Retx Before 
Symmetric Packets (Ack already Probe 

Flows Observed) 

51040802 331649 271952 40556286 1262395 0 0 43531 232165 
I 1_ 8(81.99%) 1 (79.46%) (2.47%) (3.45%) 18.39% 

OOS due to Retransmission - 986699 78.16% 
Retx due to RTO Retx due to Fast Retx during Fast Retx during Fast Retx unknown 

Retx RTO Recovery Recovery 
72551 536880 0 377268 0 

(7.35%) (54.41%) (38.24%) 

Table 11- Jaiswal Classification Results 

OOS Packets 
& Sequence 

Total Data Number 
Packets Flows Duplications 

51040802 331649 2728100 

Resul-ti - Result 2- Packet Retransmission due Result 3- Packet Reordering, or Result 4- 

Network to Reordering, or Packet Loss & Packet Loss & Retransmission Perfect 
Duplicate Retransmission Downstream Upstream Network 

Behaviour 

0 1873658 854442 48312702 
(68.68%) (31.32%) (94.67%) 

Kesuit i- KeWIE a- Kesua o- racKet rcesuit o- 

Retransmission Retransmission Loss Upstream & Packet 
likely caused by likely caused by Retransmission, or Reordering 

Fast RTO or Reverse Packet Reordering Upstream 
Retransmission Path Reordering 

or Reverse Path 
Loss 

1566747 306911 594998 259444 
(57.43%) (11.25%) (21.81%) (9.51%) 

Table 12 - Arthur Classification Results 

The first comparison that can be made between the two techniques is that the flows 

observed at this observation point were only slightly asymmetrical, resulting in only 82% 

of the flows being parsed by the Jaiswal algorithm. This discrepancy can make 

correlation of results across the techniques difficult as the Jaiswal algorithm is operating 

over a smaller set of data. 

The number of packets reported to be Out-of-Sequence is also shown to be different. 
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This is partially due to the different definitions for this term and the methods by which 

both terms are calculated. In Jaiswal, a packet is termed to be Out-of-Sequence if the 

Sequence number observed is less than or equal to that of a previously observed 

Sequence number in that connection. In the Arthur algorithm, all packets where öEP- 

öOP does not equal zero are defined as Out of Sequence. It is important to note that, as 

a by-product of this test, öEP-aOP will not equal zero when a packet loss occurs (and a 

normal in-order packet then appears to arrive early) and also immediately after a 

retransmitted packet has arrived (when again, the immediately successive packet will 

appear to have arrived late). It is therefore expected that the Arthur algorithm will 

apparently over-classify the number of Out of Sequence packets in a measurement. 

The number of measured Retransmissions due to losses downstream from the probe 

will be equal in both algorithms; in the Arthur algorithm, a Retransmission is counted as 

two packets with the same Sequence number while in the Jaiswal algorithm, it is two 

packets with the same Sequence number and different IP ID fields. 

From the data packets alone, Retransmissions that result from a loss prior to the 

measurement point, are much more difficult to identify. Classifications R2 and R3 of the 

Jaiswal algorithm, where a packet has not been observed previously, but either has a 

Time Lag > RTO, Duplicate Acks > 3, or is in state InFastßecovey are all straightforward 

to identify from the Acknowledgement stream, but are difficult to infer using the Data 

stream alone. In these particular scenarios, the Arthur algorithm will classify the packet 

as not having observed this Sequence number previously, but also being Out of 

Sequence, and therefore Result 3. Result 3 defines packets which are either Reordered, 

or Lost and Retransmitted upstream. Without Acknowledgements, it is extremely 

difficult to differentiate between these categories and, therefore, the simple rule >3 

positions OOS is used to differentiate between Retransmission and Reordering. It is 

assumed that if a data packet is more than 3 positions late, a Fast Retransmit will have 

been initiated by the receiver; this may be inaccurate if the receiving TCP is using SACK 

or the Linux Kernel to-reordering variable. Therefore, although the confidence of 

correctly identifying Result 3 is high, the further differentiation between Result 5 and 

Result 6 may involve some error, dependent upon the TCP implementations in the 

connections measured. 
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Another similar factor that must be considered in the differences between Arthur and 
Jaiswal Retransmission measurements, is the ability of the Jaiswal algorithm to 

determine the inStateFastRecovery state and, therefore count retransmissions which are 

occurring as a function of the Sending TCP entering the Fast Recovery algorithm. These 

retransmissions, due to Fast Recovery, will be classified by the Arthur algorithm as 

Result 8, as they will be observed as Retransmissions appearing to be more than 3 

positions out of sequence and the result will be in an over-estimation of RTO 

Retransmissions. 

It is unusual that the Jaiswal algorithm classifies Network Duplicates in such a 

complicated fashion. Network Duplicates are classified as such if two packets with the 

same Sequence Number share the same IP ID, do not have Triple Duplicate Acks, are 

not in state InFastRecoveg and have a Time Lag < RTT. In the Arthur algorithm, any 

packet with the same Sequence Number and same IP ID are immediately flagged as 
Network Duplicates. It is uncertain why the Jaiswal algorithm requires the evaluation of 
Time lag < RTT to discern a Network Duplicate, as a Duplicate could appear in the 

network at any time and for any time duration (especially if such a duplicate became 

stuck in a routing loop). Unfortunately, during this measurement study, no Network 

Duplicates were observed, suggesting that these are uncommon phenomena on modern 

networks. 

5.5.4 Conclusions 

There are many challenges encountered when designing a mid-point measurement 

algorithm of TCP as such an algorithm must infer the behaviour and state machine of 

both TCP end hosts, based only on a small subset of information available in the middle 

of the connection. There is, therefore, a degree of error in all classification algorithms 

and these potential errors may adversely affect the results obtained. 

A similar problem when designing mid-point measurement algorithms, is the validation 

of these algorithms to ensure that they classify behaviour as expected. On a large scale 

experiment, it is impossible to instrument all end hosts and later correlate the actual 
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behaviour with the mid-point inferred behaviour and, therefore, packet reordering 

studies such as Jaiswal may also include inherent errors due to untested feat es of the 

algorithm. 

Based on the large number of uncertainties which are encountered during this type of 

measurement, such as type of end host TCP implementation, the possibility of non- 

standard compliant hosts and the many TCP features that could be implemented on 

each TCP stream such as SACK, D-SACK, t0,, reordering etc, it is important to err on the 

side of caution when designing a mid-point algorithm. The Arthur algorithm requires 

only to view data path and adopts simple classification rules, which makes this algorithm 

attractive as a tool to analyse the performance of a large number of flows. The methods 

to calculate loss and retransmission are significantly more advanced than those 

proposed by Love and will therefore not be adversely affected by packet reordering. 

Finally, the lightweight nature of the algorithm, in that there is no need to calculate RTT 

or infer state machine behaviour, would allow this algorithm to be deployed on a large 

number of mid-point nodes, with little additional processing overhead. 

5.6 Network Measurement Visualisation 

Measurement Visualisation is an important emerging area in the field of network 

measurement science and considers techniques to display large multivariate datasets in 

ways which reveal insights into the data. Information Visualisation is a form of data 

mining and is increasingly important for network monitoring and management; it allows 

the characterisation of the overall performance of a vast amount of measurement data. 

Chapter 4 has presented the issues encountered when performing any large scale 

measurement of network traffic. In order to calculate metrics that are representative of 

the traffic's performance, a significant amount of packet captures must be performed. 

Chapter 4 has also illustrated that, even when these large amounts of data have been 

captured and processed, the resulting metrics that are calculated, such as the percentage 

reordered packet metric, may be meaningless in their ability to describe end-user 
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performance. Simple numerical value cannot always describe the complex effects that 

the observed traffic may have on end system congestion control algorithms. 

Network Visualisation is therefore the process of applying Information Visualisation 

techniques to network measurement data, in order to develop methods of displaying 

this data in a more intuitive format which is more meaningful to a network manager or 

network operator. It is therefore likely to play an important role in future network 

performance and diagnosis methods to convey information about the system which 

simple numerical metrics alone cannot. 

5.6.1 Visualisation of TCP 

The most common method of visualising the performance of a TCP connection is 

through the use of a TCP Time-Sequence graph. Figure 65 illustrates a Stevens' [Stev94] 

TCP Time-Sequence graph, plotted using experimental data obtained from the testbed 

in Chapter 4, for a 150 msec RTT link with 15% 0.201 sec forward path packet 

reordering. The Stevens' graph plots observed sequence numbers against time and, 

therefore, allows simple analysis of the rate of change of sequence numbers. During 

periods of throttled congestion control, or retransmission, the gradient of the graph will 

decrease, indicating a drop in TCP throughput. 

.w 
Figure 65 - Stevens' TCP Time-Sequence Graph 

A TCP Time-Sequence graph may also be plotted using the Ostermann technique 

[Park98], as performed by the TCPTrace tool [OsteO8]. An Ostermann Time-Sequence 

graph, as illustrated in Figure 66 and Figure 67, improves on the Stevens' technique by 
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plotting both Acknowledgement Numbers received from the Receiving TCP and also 

the rwnd advertised by the Receiving TCP. The latter is drawn at the Sequence Number 

value corresponding to the sum of the acknowledgement number and the rwnd 

advertised from the last Ack packet received. Tick lines in Figure 67 represent segments 

sent and, therefore, vertical groups of tick lines indicate a volley of packets launched 

into the network at once. 

-. 
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Figure 66 - Ostermann Time-Sequence Graph Figure 67 - Zoomed Ostermann Time-Sequence Graph 

Neither of these techniques are appropriate for analysing TCP during packet reordering. 

In Figure 67 at time 6.8 seconds, a segment can be seen to arrive 0.3 seconds later than 

the other segments within that congestion window, therefore indicating that packet 

reordering has occurred on this segment. This is difficult to observe, unless the graph is 

plotted with a very fine resolution and does not intuitively highlight to the network 

operator that reordering is occurring in the connection. 

5.6.2 Visualisation of TCP Packet Reordering 

RFC 5236 Qaya08] defines two metrics to calculate and visualise the degree of packet 

reordering which a TCP stream has undergone. As discussed in Section 3.4.3, ̀ Reorder 

Density' shows the distribution of displacement of packets from their original positions, 

and `Reorder Buffer-Occupancy Density' displays the histogram of the occupancy of a 
hypothetical buffer used to re-sequence early arriving packets. 
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The two metrics proposed in RFC 5236 differ significantly from the packet reordering 

metrics standardised in RFC 4737 [MortO6]. The reordering metrics in RFC 4737 are as 

listed in Chapter 3, Table 1. Each RFC 4737 metric is a `lateness' based metric; that is 

packets which arrive `late' are highlighted by this metric, rather than packets which 

appear to arrive `early'. This is similar to the Paxson metric for packet reordering 

discussed in Section 3.2.2. As each packet arrives, it is checked against the last `non- 

reordered packet'. If the sequence number is greater than the last non-reordered packet, 

then that packet is marked as being in-order, and becomes the new non-reordered 

packet. Consider the sequence of arriving packets 1,6,2,3,4,5,7,8,9,10. Packets 1,6, 

7,8,9,10 are marked `in-order', while packets 2,3,4,5 are marked `reordered'. Simply 

calculating a percentage of packets by marking them as `in-order' has been illustrated in 

Chapter 4 as not sophisticated enough to describe the effects of reordering on TCP. 

Therefore, the extent or movement of packets, from their original positions, is 

calculated by many of the metrics proposed in Chapter 3. Metrics which quantify this 

`offset' in terms of packets, by which a packet is reordered, are useful for determining 

the portion of reordered packets that can or cannot be restored to order by the receiving 

host's buffer[MortO6]. 

`Reordering Extent', is defined in RFC 4737 as the maximum distance in packets, from a 

late packet until the earliest packet received that has a larger sequence number. It is 

therefore similar to the Paxson metric, but additionally measures the number of 

positions by which a packet is reordered. Table 13 illustrates the Reordering Extent 

calculation for a series of 10 packets. As is shown, if a packet is in order or, if it arrives 

early, the Reordering Extent is undefined. 

Sent Order 1 2 3 4 5 6 7 8 9 10 

Received 1 6 2 3 4 5 7 8 9 10 
Order 

RFC 4737 
Reordering 

Un- 
defined 

Un- 
defined 

4 3 2 1 
Un- 

defined 
Un- 

defined 
Un- 

defined 
Un- 

defined 

Extent 
Table 13 - RFC 4737 Reordering Extent 

The `TCP-Relevant' metric defined in RFC 4737, known as the `n-reordering' metric, 
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defines the percentage of packets which are reordered by a distance ?n packets where, 

if n=3, a NewReno sender would consider the packet lost for the purposes of 

congestion control. N-reordering defines the extent as the maximum distance in 

packets, from the reordered packet to the earliest packet that has a larger sequence 

number. This metric has been argued to be ambiguous [PiraO8], as packets are 

considered in sets. If two or more consecutive packets are late, but maintain position 

with respect to each other, then only the first packet is marked as reordered. 

A packet is late if one of, or a consecutive set of, its immediate preceding packets have 

higher sequence numbers. However, as shown in Table 14, although packets 2,3,4 and 

5 are all defined as `Reordered' by the Type-P-Reordered metric, only packet 3 is 

defined as n-reordered. Therefore the n-reordering metric is inconsistent with other 

metrics in RFC 4737, as it does not correctly identify all late reordered packets. 

Sent Order 1 2 3 4 5 6 7 8 9 10 

Received 1 6 2 3 4 5 7 8 9 10 
Order 

RFC 4737 N N Y Y Y Y N N N N 
Reordered? 

RFC 4737 0 0 4 0 0 0 0 0 0 0 
n-reordering 

Table 14 - RFC 4737 n-Reordering 

It has been argued [PiraO8] that lateness-based packet reordering metrics, as shown in 

Table 13 and Table 14, are not appropriate, as early packets should also be identified as 

reordered. Consider the arrival sequence in Table 14. If a metric is based on early 

arrivals, then packet 6 is identified as reordered. Alternatively, a lateness-based metric 

will mark all packets from 2 to 5 to be out of order, even although the most likely cause 

of the phenomenon is that the single packet arrived early. The metrics in RFC 4737 are 

lateness based metrics, but even these, such as n-reordering, will only capture a subset of 

late arriving packets, as sequences of several consecutive late packets will be marked in- 

order. 
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5.6.2.1 RFC 5236 - Improved Packet Reordering Metrics 

RFC 5236, Improved Packet Reordering Metrics, defines two methods to describe both 

late and early reordered packets in a TCP connection; Reorder Density and Reorder 

Buffer-Occupancy Density. 

5.6.2.2 Reorder Density 

Reorder Density (RD) describes the distribution of displacement of packets from their 

original positions. As a sequence of packets arrives at a measurement point, a 

receive index is assigned to each non-duplicate packet. The receive index is an integer 

number assigned to each packet, which is calculated to describe the original order in 

which the packets were transmitted. For TCP, this would be calculated using the 

Sequence Numbers. 

receive index 1 2 3 4 5 6 7 8 9 10 

Received 1 6 2 3 4 5 7 8 9 10 
Order 

Displacement 0 -4 1 1 1 1 0 0 0 0 

Table 15 - Reorder Density Example 

If the receive index assigned to packet m is (m + dm), with dam, !=0, then a `reorder event' 

has occurred and this event is denoted by r(m, d,, ). Packet m is late if this offset dm>0, 

early if d. <0 and, in order if dm= 0. Therefore, packet reordering in a sequence of 

packets is completely represented by the union of reorder events, R, referred to as the 

`reorder set': - 
R=U{r(m, dm)1 dm #0} 

Equation 9- Reorder Density, Reorder Set 

Therefore, the Reorder Set for Table 15 is defined by Equation 9 to be 

R= {(6, -4), (2,1), (3,1), (4,1), (5,1)}. 
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Reorder Density (RD) is defined as the histogram of the Reorder Set R, normalised with 

respect to the total number of packets, adjusted for losses and duplicates. Therefore, 

RD for Table 15 can be calculated to be RD [-4] = 1/10, RD [0] = 5/10, RD [1] = 4/10. 

5.6.2.3 Assigning receive index Values 

One complexity with this technique is the calculation of the receive index values as 

packets arrive within a flow. If a flow is short in duration, it is possible to assign 

receive index once the flow has completed. However, for real-time monitoring of packet 

reordering, receive index values must be assigned to packets as they arrive at the probe. 

This is an important consideration when network duplication or retransmissions occur, 

as they appear as additional packets in the `Received Order' counter, thus making this 

counter out-of-step with the receive indexvalues. 

RD uses a threshold, DT to decide when to declare a packet as lost, as in many 

applications such as TCP or VoIP, a packet reordered beyond a certain displacement is 

considered lost anyway. This same threshold is used to maintain a buffer of early- 

arriving packets, to allow identification of network duplicates. If a packet is not received 

within DT packets, it is considered to be lost. 

Two methods are proposed to assign the DT threshold for monitoring real-time 

flows[ayaO8]. The `Go-Back' DT method applies the rules at each packet arrival, and if a 

packet that was supposed to arrive DT places ago does not arrive, then the sequence 

number is removed from the receive index and RD is recomputed for the previous DT 

steps. The `Stay-Back' DT method performs RD calculation by lagging the computation 

of arrival packets by DT positions, therefore not requiring any further adjustments, as a 

missing packet can be immediately declared as lost. 
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5.6.2.4 Reorder Buffer-Occupancy Density 

Reorder Buffer-Occupancy Density (RBD) is defined in RFC 5236 as the normalised 

form of the occupancy of a hypothetical buffer, which could be used by a receiving TCP 

to recover from the out-of-order arrival of packets. Packets which appear to arrive 

`early', are placed in this buffer until intermediate packets arrive to fill any resulting gaps. 

The occupancy of this buffer, measured in packets, is used as a packet reordering 

metric. 

For the sequence of arrivals illustrated in Table 16, when packet sequence number 6 

arrives at position 2, the packet is stored in the hypothetical buffer until packet sequence 

number 5 arrives, which then allows the release of packet sequence number 6 to the 

application. Therefore, the density of the buffer is calculated as 1, for four packet 

arrivals and 0 for all other arrivals: RBD[0]=6/10, RBD[1]=4/10. 

Sent Order 1 2 3 4 5 6 7 8 9 10 

Received 1 6 2 3 4 5 7 8 9 10 
Order 

RBD 
Buffer 0 1 1 1 1 0 0 0 0 0 

Occupan 
Table 16 - Reorder Buffer-Occupancy Density Example 

RBD requires a similar threshold to RD to define a maximum extent, both late and 

early, that a packet can appear before it is assumed to be lost. This is a requirement for 

this metric to operate, and to perform calculation in real-time. This threshold Bz., 

describes the maximum number of packets that can be stored in the hypothetical buffer. 

If the buffer is already filled to BT, the packet is considered to be delayed more than the 

threshold and is considered to be lost. As each packet arrives, the sequence number is 

compared with a NESN and the existing contents of the hypothetical buffer. If the 

Sequence Number is lower than the NESN, or is identified as a duplicate or 

retransmission of a packet in the buffer, it is classified as such, and not considered in the 

calculation of RBD. 
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5.6.3 The Arthur Visualisation Technique 

Calculation of cEP-cOP during the Arthur Classification Algorithm, provides a useful 

method of visualising TCP packet reordering, as demonstrated in Figure 68. The effect 

of calculating aEP-8OP is to effectively 'cancel out' the packets that have arrived in 

perfect sequence, as these will have cEP-OOP=O. This results in a graph which indicates 

only the positions in the Flow Trace where sequence breakdown was apparent and the 

magnitude at which these breakdowns have occurred. 
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Figure 68 - Arthur Visualisation of TCP Reordering 

Figure 68 plots the Arthur Visualisation for the Flow Trace example discussed in 'f'able 

10, over the range of observed OP values. Positions on the graph below the V axis 

indicate packets that were considered to have arrived with observed positions 'later' than 

their expected positions, as is the case for reordered packets or those that have been 

retransmitted. Positions on the graph above the .1 axis indicate packets that were 

considered to have arrived with observed positions 'earlier' than their expected 

positions. 

As discussed in Section 5.6.2, it is important to consider how both early and late packets 
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are reordered; both will have an effect on the receiver's ability to recover from 

reordering. The Arthur Visualisation allows this ability. In common with the two 

metrics proposed in RFC 5236, it allows identification of both early and late packets, but 

additionally allows indication of when the packet reordering occurred during the lifetime 

of the connection. 

Graphs with many peaks are an indication of poor packet sequencing and hence poor 

link quality. Graphs with the majority of points on the 0 line of the i- axis, are an 

indication of good packet sequencing and high link quality. The Arthur Visualisation 

allows plotting OEP-POP against either OP, or against a measure of time, thereby 

allowing consideration of when reordering occurred. This would allow a network 

operator to perform later correlation of this Visualisation against other events in the 

network, such as link failures or route fluttering. 

5.6.3.1 Results and Comparison 

Figure 69 and Figure 70 illustrate the RFC 5236 Reorder Density and Reorder Buffer 

Density respectively, calculated for the example discussed in 'fable 10. 

ýý 

____ iLil Figure 69 - Reorder Density Figure 70 - Reorder Buffer Density 

Figure 69 indicates that 21 packets were measured with RD1O1,3 packets with R1)ß-1 1, 

and 3 packets with RD[l]. Clearly this accounts for only 27 packets out of the 28 

illustrated in the same Flow Trace illustrated in Figure 68. The reason being that the 

packet at OP 12 in Figure 68 is a retransmission of packet OP 7 (1? P 6), which was 

reordered to such an extent so as to cause a retransmission at OP 12. The RL) algorithm 
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discards all retransmissions and duplicates and thus does not consider them when 

producing a visualisation of the TCP connection. The RD algorithm identifies RD[-1] 

for packets 7,21 and 27, and RD[1] for packets at positions 6,20 and 26. When 

comparing these results with Figure 69, it should be noted that the RD algorithm has 

discarded packet 12, and therefore RD packet numbering above 12 is one less than that 

shown in the Arthur visualisation in Figure 68. 

Figure 70 plots the Reorder Buffer Density for the example discussed in Table 10, 

'indicating that RBD[0] was measured for 24 packets, and RBD[1] was measured for 3 

packets. Similarly with RD, the retransmitted packet 12 has been discarded. RBD[1] was 

measured for packets 6,20, and 26. Again consideration must be given to the change in 

numbering after the retransmission at 12 and, therefore, 20 and 26 correspond to 21 and 

27 in Figure 68. 

Comparison of these results suggest that the RBD measure corresponds naturally with 

the peaks shown in Figure 68. The peaks in the Arthur Visualisation, identifying early 

packets, correspond with the buffered packets identified in the RBD algorithm, but in 

addition, three extra `early' packets are identified. The packets at positions 5,13 and 23 

are each shown to be arriving early due to oEP-aOP analysis, but the reason for this is 

because the preceding packet was measured as arriving late. This causes the öEP 

calculation to produce a value which is not a monotonic step, thus producing a result 

where ZIEP-OOP 1= 0. This is an additional feature of the Arthur visualisation which 

does not occur in the RD algorithm. Despite this packet apparently being in-order, the 

additional re-sequencing required at a receiving TCP after a reordering event has 

occurred should be captured by any packet reordering metric. All discontinuities, both 

early and late, must be considered in order to fully convey the breakdown in sequence 

and the possible extra processing required at the receiver, in order to repair this 

breakdown. By allowing an immediately succeeding packet to be marked as `early' after a 

late packet has arrived, the Arthur algorithm is significantly less computationally 

intensive than RD and RBD. Both RD and RBD require the ability to identify and 

remove retransmissions or duplicates which, as discussed in Section 5.6.2.2, greatly 

increases the complexity when performing measurements in real time. 

RD fails to convey the number of retransmissions in a TCP connection visually, which 
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is an important aspect of the health of a connection. RD also relies on the user to 

determine the value of D. 1 the value required to differentiate between an upstream 

reordered or retransmitted packet. Should the user choose an incorrect value for a 

particular TCP connection, the RD algorithm will confuse upstream reordering and 

retransmission and will not accurately report either event. 

Figure 71 illustrates a further example of OEP-OOP analysis, employed on aI low 't'race 

recorded from the midpoint of the experimental testbed described in Chapter 4. The 

Flow Trace illustrates transfer of a 10 Megabyte file, over an R'1"1' of 20 msec, with 10°0 

reordering applied at 1 msec reordering delay. 
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Figure 71- 20 msec RTr, 10% Reordering, 1 msec Reordering Delay 

ßv applying the Arthur Classification Algorithm, a total of 6 packets were classified as 

Result 2 (Retransmission due to Reordering), with 3 packets each classified under Result 

7 (Retransmission due to Fast Retransmission) and Result 8 (Retransmission due to 

R'1'()). Visual inspection of Figure 71 indicates that the ma)orirv of packets appear less 

than 3 positions late or early, with significant periods of the flow where perfect 

sequencing has been achieved and ?I : P-cOP = 0. 

The calculation of PEP-POP also provides an excellent indication of the time periods 

during the transmission of the 10 megabyte file, when sequence breakdown occurred, 
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indicating that the reordering appears bursty; there are both periods where sequence 

breakdown occurs and other periods where perfect sequencing has been re-established 

and maintained. 

Comparison of Figure 71 with Figure 72, Figure 73 and Figure 74, allows evaluation of 

the Arthur Visualisation, with both RD and RBD calculation for the same "1'CP flow. 

Figure 72 and Figure 73 plot RD for various values of 1), in order to demonstrate the 

importance of choosing a suitable threshold for determining loss and reordering when 

using the RD metric. It is suggested in the literature I 11ira08I that 1) 1=3 should be used 

in order to differentiate packets which will cause a New Reno receiver to signal Fast 

Retransmit. Figure 73 indicates that there are a significant number of late packets which 

are not characterised by Figure 72, due to the low threshold chosen, and which arc then 

wrongly classified as retransmissions. 
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Figure 72 - Reorder Density, Dr=3 Figure 73 - Reorder Density, Dr=10 

Figure 74 - Reorder Buffer Density 

Figure 74 plots the RBD metric for the data shown in Figure 7 1, where the RIM buffer 

limit was set to 10. The graph indicates that the maximum buffer required to store an 

early packet was 7 packet positions, which corresponds with Figure 71, where the 

196 



majority of early and late packets are under 5 packet positions out-of-seyucnce. As 

discussed previously, RBD discards retransmitted packets, and therefore, unlike Figure 

71, does not provide indication of the number of retransmissions or how late these 

retransmissions were with respect to their originally intended positions. It should be 

noted that in Figure 74, RBD was calculated to have a Buffer Occupancy of 7 for only 4 

packets out of the total of 6911 packets analysed, and therefore RBD171=0.000579. This 

highlights another deficiency with the RBD metric, as when plotted in comparison to 

RBD[01=0.8256 with 5706 packets, it is very difficult to observe the few outlying highly 

reordered packets which could have highly negative effects on a TCP connection. 

Figure 75 illustrates a third example of the Arthur Visualisation ('111-001) analysis, 

applied to another TCP stream obtained from the testbcd, where Reordering I)cl: nv has 

been increased by a factor of 10. Application of the Arthur Classification Algorithm, 

indicated that 172 packets were classified as Result 2 Retransmissions, of which 162 

were classified as Result 7 Fast Retransmissions. 
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Figure 75 - 20 mscc RTT, 10% Reordering, 10 msec Reordering DeIav 

Figure 75 illustrates that the majority of packets in this connection are out of sequence, 

with many packets distributed over a large range of PEP-cß01' values. This is reflected in 

the range of displacements indicated in the equivalent RD metric, as shown in figure 
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and the equivalent RBD metric, as shown in Figure 78. Figure 76 indicates that the 

choice of D=3 is too conservative to describe the range of reordering events which 

has been induced in this test stream. 

I I 

Figure 76 - Reorder Density, Dr=3 Figure 77 - Reorder Density, Dr=10 

Figure 78 - Reorder Buffer Density 

Figure 75 illustrates a number of properties of the Arthur Visualisation which RI"(' 5236 

does not possess. Firstly,, Figure 75 indicates the number of retransmissions which have 

occurred as indicated by the peaks appearing below the %- axis as packets which have 

arrived very late. Figure 75 indicates that the majority of late packets, including the 

majority of retransmissions, arrive within 13 packet positions of their intended original 

position. 

Figure 75 also illustrates a second important property of the Arthur Visualisation 

technique. From discussion in Chapter 4, it is known that packet reordering is a 

phenomenon which is path dependent and which can vary rapidly over time. Figure 75 

indicates that, even when a fixed amount of reordering is applied, a connection's 

performance can degrade, over time as can be seen by the distribution of i 1'. I'-l OP cn er 
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the first third of the graph. During this period, fewer packets are shown to be extremely 

late or early, thus providing in an insight into the degenerative nature of packet 

reordering on a connection. It should be noted that there are also periods where there is 

a relative improvement in the connection's performance, but where fewer 

retransmissions occur, and more packets arrive in sequence. At OP 3400, and OP 5600, 

there are periods where the graph indicates that the number of retransmissions 

decreases and the number of in-order packets increases, indicating that the effects of 

packet reordering are not constant throughout a flow. It should be noted that these 

changes in measured performance are not an effect of the experiment; a constant 10% 

reordering was applied throughout the lifetime of this flow. 

On a live Internet, the effects of packet reordering are likely to be even more 

changeable over time, due to cross-traffic and route fluttering. In these situations, 

although RD and RBD can be calculated in real-time over a rolling window of packets 

in a stream, they do not provide the simple identification of changes over time as 

illustrated in Figure 75 and are, therefore, lacking in their usefulness as tools to 

investigate the cause and effects of packet reordering. 

5.7 Conclusions 

This Chapter has presented a number of contributions in the field of mid-point passive 
TCP measurement. 

The taxonomy of packet reordering metrics and methods has been reviewed and the 

motivations for the development of passive mid-point measurements have been 

discussed. The clear significant benefit of using a passive mid-point measurement, is 

that it can be used to measure the behaviour of many thousands of concurrent flows 

from a single point in the network. Unfortunately, each of the current proposed mid- 

point measurements in the literature make several assumptions which could significantly 

affect their operation and the accuracy of results that they produce. 

The Love mid-point Goodput measurement has been argued to overestimate the 
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amount of loss and retransmission experienced by a TCP connection, as the algorithm 

does not consider the effects of packet reordering. The Jaiswal Out-of-Sequence 

Classification algorithm is a significantly more advanced mid-point measurement of 

TCP, but has the requirements of symmetrical Data and Ack packets passing through a 

single mid-point measurement device, and also the requirement to estimate the RTT and 

RTO for every single observed flow. There is clearly a need for accurate, lightweight 

single-point measurements of TCP loss, goodput, retransmission and reordering; the 

current Love technique is too simplistic, whereas the Jaiswal technique's requirements 

result in only a small fraction of connections being analysed. 

A passive mid-point monitoring technique has been developed, which is lightweight in 

both its storage requirements and processing overhead at the mid-point measurement 

probe. The passive mid-point technique has described the capture and storage of Flow 

Traces, which can then be analysed to provide an improved measure of Goodput, Loss 

and Retransmission. 

The Arthur Classification Algorithm has been developed and performs analysis of the 

packet Flow Traces captured using the passive mid-point technique, and classifies 

packets into eight different results. These results identify Network Duplicate packets, 

Retransmitted packets, Lost Packets and Reordered Packets, and attempt to explain the 

cause of each event, based entirely on knowledge inferred from the Data path of the 

TCP connection. Clearly the ability to perform classification on only the Data path is a 

significant contribution beyond the Jaiswal algorithm, as it avoids the need of capturing 

and processing Acknowledgement packets at the same network tap. However, working 

on such a smaller subset of data limits the number of classifications that can be 

performed, as it is impossible to infer certain TCP end host states based only on the 

Data packets. 

The mid-point measurement technique and classification algorithm have been 

implemented in order to perform comparison with Jaiswal during a live Internet traffic 

experiment. The difficulties of validating such mid-point algorithms has been discussed; 

on a large scale experiment, it is impossible to instrument all end hosts and later 

correlate the actual behaviour with the mid-point inferred behaviour. Experiments 
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indicated that although the Arthur Classification Algorithm tended to over-estimate the 

number of out-of-sequence packets, this is due to the algorithm reporting packets 

immediately after a retransmission as `late' and after a loss as `early'. The number of 

Retransmissions measured were found to be similar to Jaiswal, but the ability of the 

Jaiswal algorithm to identify retransmission due to Fast Recovery is a feature which the 

Arthur algorithm cannot provide. In these instances, the Arthur algorithm will 

overestimate the number of retransmissions due to Fast Recovery. 

This chapter has argued that there is clearly a trade-off to be made in mid-point 

measurements between accuracy and complexity, and that due to the variations in end 
host TCP implementation, non standard compliant hosts and many additional TCP 

features, building a complex mid-point TCP measurement algorithm that can cater for 

these many variables is extremely complex. Therefore, the simplicity of the Arthur 

algorithm, the requirement for only Data packets without the necessity for 

Acknowledgements, the simple classification rules and the lightweight processing 

required at the measurement host, make this an attractive algorithm compared to both 

Love and Jaiswal. 

Network Visualisation Techniques have been discussed as an important research area 

which can describe the overall performance of a network in a more intuitive method 

than numerical metrics, and examples of TCP visualisations have been illustrated. The 

packet reordering metrics proposed in RFC 5236 have been discussed and compared 

with those in RFC 4737; it has been argued that a metric for packet reordering should 

describe both late and early packets. 

The Arthur Packet Reordering Visualisation Technique has been demonstrated and 

compared with both Reorder Density and Reorder Buffer Density. The Arthur 

technique improves on the techniques in RFC 5236 by first indicating the number of 

retransmissions which have occurred in a connection; retransmissions are the ultimate 

indicator of the health of a TCP connection and cannot be ignored. Secondly, the 

Arthur technique has illustrated the ability to show packet reordering during the lifetime 

of a connection. Through examples it has been shown that despite a constant amount of 

reordering applied, the effect on a TCP stream can vary over time. It is therefore very 
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important to be able to correlate a metric of packet reordering with time, in order to 

perform investigation of the causes and effects of packet reordering. 

Clearly there is a need for future work and development in the area of mid-point passive 

packet reordering measurements. As with the development of TCP and the Fast 

Retransmit algorithm, network measurement techniques have been developed under the 

assumption that TCP packet reordering is a phenomenon which does not often occur. 

Although Jaiswal and subsets of his work attempt to address this issue, a passive mid- 

point technique must be lightweight and simple in order to be of use to a Network 

Operator. This chapter has developed novel patented techniques for the classification 

and visualisation of packet reordering, and has progressed the state of the art to address 

these issues. 
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Chapter 6 

Measuring the Impact of 

Packet Reordering 

6.1 Introduction 

It is clear from Chapter 4 and Chapter 5 that packet reordering on the Internet can have 

a measurable effect on the performance of a TCP flow, and that there are many varying 

methods proposed in order to measure and describe the amount of reordering occurring 

within an end to end path. 

Chapter 4 has highlighted one area which has received little attention to date. While 

many different methods have been proposed in order to measure and classify the 
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amount of reordering occurring at the packet level as classified in the taxonomy 

presented in Chapter 3, very little work in the literature has attempted to correlate across 

layers to measure this, and the resulting effects on the end user application. Although it 

is argued that many studies are indeed relevant to TCP, such as the RFC 4737 `TCP- 

Relevant Metric', the simple notion of regarding a packet greater than three positions 

out of sequence as lost, is over-simplistic and requires more detailed investigation. 

Chapter 4 has made some advances in understanding the real impact of packet 

reordering on a single TCP connection; in this Chapter, a less prevalent, but significantly 

more complicated type of network traffic is now considered. 

Chapter 4 has also highlighted that the next main driver of packet reordering may be 

end-to-end wireless technologies such as WiFi and WiNlax, where parallelism at all 

layers is likely to increase. Wireless networks are especially prone to problems due to the 

higher levels of link layer retransmissions found in noisy wireless environments. 

Wireless links are very different from traditional wired links; the steady-state dropping 

and reordering probability are independent from link congestion and, so traditional 

assumptions that loss indicates congestion are invalid. 

An investigation into the behaviour of video traffic over UDP in situations of high 

packet reordering is now considered. Video traffic is significantly more complicated that 

a simple TCP session, due to the temporal inter-packet dependencies introduced by the 

MPEG video encoding structure. 

An experimental investigation into the effects of video packet reordering using the 

Windows Media streaming system is presented. A method for invoking packet 

reordering is introduced along with a tool for client-side measurements of video quality 

is presented. Typical measurements of video performance undergoing reordering are 

shown, with a study of buffering occupancy at the client and the potential impact this 

could have on video packet reordering is demonstrated. 

This chapter discusses a measurement study which was presented at the International 

Symposium on Wireless Communications Systems (ISWCS), September 2004, and 

development of a testbed which has been published in IEE Electronics Letters, May 
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2002, and European Personal Mobile Communications Conference (EPMCC), April 

2003. 

6.1.1 Wireless as a Driver for Packet Reordering 

In the near future, multimedia traffic is expected to represent a substantial percentage of 

the data carried on both mobile and fixed communications systems. Due to the 

predictive coding structures employed, video over IP has its own critical timing 

characteristics that make it highly susceptible to loss and varying delay. At any point 

where inter-packet latency cannot be guaranteed, it will prove exceedingly difficult to 

deliver real-time video streaming with guaranteed Quality of Service. 

Packet reordering is a symptom not only of fixed networks; the effects of reordering 

must also be addressed when considering other types of IP network, for example 

wireless. TCP is known to suffer performance degradation in mobile wireless 

environments[Xylo99], which typically have high bit error rates (BERs) and mobility 

induced disconnections. Moreover, wireless channels are afflicted with significant delay 

variations, due to factors such as link-layer retransmissions in radio access networks. In 

a wireless environment, a non-optimised TCP or UDP streaming implementation would 

mis-interpret a re-transmitted datalink frame as a reordered network layer packet. 

Without appropriate cross-layer feedback [Rais02b], TCP may interpret this apparently 

reordered packet as lost and would then invoke unnecessary congestion avoidance; 

UDP streams could be similarly affected. 

Trends towards Mobile Ad-hoc Networks (MANETs) may also prove to be the next 

driver of packet reordering. Such networks, with frequent route re-computations and 

the absence of a central base station [OlivO2], could cause current TCP and UDP 

implementations to misinterpret packet reordering as congestion, resulting in severe 

performance degradation. MANETs are also characterised as having high BERs and, as 

a result, exhibit frequent packet retransmission behaviours. MANETs also suffer from 

long pauses in transmission during the frequent route re-computations and exhibit 

regular network re-partitioning, causing packets to be dropped. Furthermore, some 

routing algorithms, (e. g. TOR. A [OlivO2]), maintain multiple routes between source- 
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destination pairs and so include actual Layer Three routing parallelism. Mobility 

Management protocols such as Mobile-IP, and multi-homed Mobility protocols, such as 

NEMO, have been measured [ParkO8] [TsanO8] to cause severe packet reordering 

during handovers. Each of these mechanisms, in isolation, can result in extreme loss of 

sequence and, therefore, when presented in combination provide motivation to 

investigate wireless and packet reordering further. 

The literature has focused on the separation of fixed networks from wireless 

networks[KoppO2], to seek gains in IP performance by optimising TCP for use in such 

error-prone environments. The wireless link is assumed to be the last hop of the 

connection, where most of the loss and delay occurs and where reordering would be 

most prevalent. It has been shown, though, that packet reordering can affect all parts of 

an IP network, and therefore it is important to consider the behaviour of TCP along the 

whole connection length. Obviously, the proposed modifications to TCP, do not take 

into account the effects of reordering on UDP traffic, which itself may be both time and 

sequence sensitive, depending on the type of data being carried. 

6.1.2 The Effects of Reordering on Video 

Little attention has been performed in the literature to investigate the effects of packet 

reordering on other non-TCP traffic. Although TCP is the predominant protocol used 

in the Internet today [Medi05], the trends in measurement studies of TCP would suggest 

that packet reordering is occurring on many other types of traffic too. 

A single study on the effects of packet reordering on the subjective quality of broadband 

digital television has been carried out [Spir06]. This study involved several assessment 

sessions where human observers were shown the output of broadband digital television, 

to examine how users would perceive the audiovisual subjective quality. The study 

concluded that current set top box receivers suffer unacceptable quality when more than 

0.12% of packets are reordered, on an IPTV network between a video server and a set- 

top-box. The study investigated the use of several different types of IPTV set top box, 

in order to gauge the performance of each box when a fixed amount of network 

reordering was applied using the NIST Net emulator. Test streams in these experiments 

206 



focussed on very high bit-rates, with video greater than 3 Mbit/sec, and audio at 192 

kilobit/sec. 

6.1.3 Video over UDP 

UDP alone does not provide retransmission or congestion control and, with simple 

datagrams, it would be largely unaffected by packet reordering. However, UDP is now 

often used to deliver stream-oriented traffic and, with no in-built method of presenting 

feedback to the transmitting node, it must be assumed that packets will arrive on time 

and in order. Unfortunately when stream-based data, such as encoded video, is 

transmitted over UDP, the predictive coding strategies employed in techniques, such as 

MPEG-4, place a new set of constraints on traffic sequencing. For example, predictive 

coding introduces temporal dependencies into the video data that improve compression 

ratios, but can result in greater error propagation in the event of packet loss or late 

arrival. 

The degree of error introduced by a lost MPEG encoded frame (or one which is so 

delayed by reordering as to be assumed to be lost), is governed by the specific temporal 

coding dependencies of that affected frame. Codecs such as MPEG-4 make use of I, P 

and B frames; each frame having its own characteristics of prediction dependence and 

delay constraints. I frames are required for the decoding of subsequent P and B frames. 

Therefore all frames must arrive by their `playback time' at the client; additionally some 

frames may also have secondary deadlines. For example, an I frame that has been 

delayed and missed its individual `playback time', will still be useful when decoding the 

subsequent P frames, that are based upon that I frame. Receiving a frame `late' is, 

therefore, considerably more useful than not receiving it at all. Hence, the effects of 

frame reordering are significantly different from the effects of frame loss. 

An improved streaming strategy has been suggested [Wee02] that attempts to reorder 

video frames before network transmission. The technique minimises perceptual errors 

by exploiting the fact that different late frames result in different degrees of video error. 

Work on this and other `Rate-Distortion' optimisation techniques are based on the 

principle that each frame is transmitted separately. In modern transmission systems, i. e. 
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those supporting high bit-rate video and many frames-per-second, it is much more likely 

that multiple frames will be transmitted in each packet, thereby requiring transmission 

scheduling on a per-packet and not a per-frame basis. The Microsoft Advanced Systems 

Format (ASF) [N icrO8b] is the most popular video streaming format used on the 

Internet today. ASF video packets are of fixed length, and can contain multiple video 

frames within each packet. When transmitted over proprietary protocols such as 

Microsoft Media Services (MMS), which further package several ASF video packets per 

IP MMS packet, it becomes almost impossible to design a scheduling algorithm that can 

effectively combat packet reordering. 

6.2 Experimental Methodology 

The aim of this investigation is to experimentally measure the behaviour of low bit rate 

Video over UDP traffic during various degrees of packet reordering in an end-to-end 

connection. This will allow for both a better understanding of the mechanisms 

employed in video streaming and for better overall QoS prediction. 

An experimental set-up was devised to transmit video traffic as UDP IP packets across 

an Ethernet network encoded using an ISO-compliant MPEG-4 codec. Clearly, an 

Ethernet based system will not exhibit the same behaviour as a wireless network but 

instead offers a controlled environment where the effects of reordering can be 

measured, and then correlated with the behaviour expected, without the additional 

complications associated with wireless networks. A software tool was then developed to 

selectively add delay to packets to simulate reordering, and the results obtained from 

these experiments are discussed. 

6.2.1 Microsoft Windows Media 

The Microsoft Windows Media (WM) [MicrO8b] suite of tools is designed for the 

authoring and distribution of multimedia content over the Internet; it provides an 

excellent controlled testbed for the experimentation of streaming video delivery. The 

purpose of this experiment is to inflict varying delays upon video packets streamed over 
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UDP/IP between a client and server, while monitoring the perceptual effects of 

reordering on the video display and using an instrumented receiver to correlate 

quantitative results on packet arrivals. 

6.2.2 Video Traffic Generation 

A typical videoconference scenario was simulated via a USB desktop camera. I'sing 

Microsoft WM Encoder v7, a simple profile with single unicast video stream was set-up 

to encode packets using Microsoft's ISO-compliant MPEG-4 codec at 15 frames per 

second. QCIF resolution, using average audience bit rates of 300kbps, was employed. 

The encoded video is passed to the Windows 2000 server running WM Services 4.1, 

which was configured for MMS streaming over UDP as illustrated in Figure 79 
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Figure 79 - Video Reordering Experimental Testhed 

209 



6.2.3 Reordering of Video Packets 

The Packet Disrupter tool is a C++ application developed for the application of noise 

on video packets, transmitted across an IP network. Interfacing through two network 

cards, the tool acts as a software router performing Network Address Translation and 

allows the addition of noise and errors, as well as changing scheduling, queuing and 

dropping behaviours. 

Video Packet Disrupter 

UDP 

TCP: 
eordering 
Selector 

P. 

UDP TCP 
Dr 

Splitter 
E 

Aggregator 

Libpcap Packet. dllj! Libpcap Packet. dlll 

Server-side Client-side 
receiving NIC transmitting NIC 

Figure 80 - Packet Disrupter Architecture 

The architecture of the tool, as illustrated in Figure 80, is described as follo s. The 

Disrupter was configured as an IP gateway and provided the default route from the 

LAN segment containing the Encoder and Streaming Server. Frames containing 11) 

packets with a destination IP address of one of the WM1 Clients were copied into the 

application using the Libpcap packet capture driver. Packets -,, ere initially filtered 

according to their protocol type, with tUDP packets buffered while all others -", -cre 

passed immediately up to the application level. In all experiments, video was streamed 
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over UDP and it was therefore assumed that all other packets were control protocols, 

required for the start-up and maintenance of the streaming session. The Packet 

Disrupter application monitored the number of packets processed, maintained a register 

of inter-packet spacing and monitored the overall performance of the tool to ensure that 

all packets were serviced in a timely fashion without the risk of dropping. The 

application provided a post-processing logging functionality of all packets' arrival and 

departure times, which provided a means to measure the degree of reordering that had 

taken place. 

During experimentation, three metrics are used to characterise the extent of reordering. 

The aim is that these should correlate with the effects on video quality perceived by the 

end-user. Packet Reordering Delay D, is the additional delay applied to a packet that has 

undergone a reordering event. Packet Reordering Distance d,., is the number of packets 

(including the very first, apparently one position `early' packet, and also the reordered 

multi-position `laxe' packet) that a reordered packet has traversed, after it has undergone 

a reordering event. Note that reordering is defined as a function of time and not packet 

positions, and therefore dr is entirely dependent upon the instantaneous bit-rate of video 

at that time. Packet Reordering Probability P, determines the likelihood of a packet 

undergoing a reordering event and being reordered by delay Dr. 

Using these metrics, packet reordering can be reduced to a simple dual-queue 

scheduling architecture, which is simple to implement within the Packet Disrupter tool. 

When leaving the Disrupter, UDP video packets pass through the `Reordering Selector' 

which randomly selects packets around a uniform distribution with probability P,; those 

selected for reordering pass down a slow queue of length D, seconds, therefore being 

reordered a distance dr packets. Queue outputs are aggregated and then transmitted on 

the client-side network card. 
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6.2.4 Instrumentation of Receiver 

To allow accurate quantitative analysis of video received at the decoder, a client-side 

estimator of WM QoS was required; the aim was to compare the measured quantitative 

results of packet reordering with the qualitative results displayed after decoding. 

An instrumented version of WIN1 Player v7 was developed, as illustrated in Figure 81, 

using the WIN1 Software Development Kit[i%licrO8b]. The additional metrics collected 

from the player included the current bandwidth, the number of times buffering 

occurred during playback, the current video frame rate, the total number of frames 

skipped during playback, the number of packets lost and the number of recovered 

packets. 

"t Arrival Times Received Bit Rate 

Number of Packets Total Number of Packets 
ved Recovered 

Number of Packets Current Video Frame Rate 

Number of Skipped Current Buffer Occupancy 

Network tatistics-eunenng contro l 
-- - --- -- --- 

WM IWMPNetwork Interfacý 

WM SDK ActiveX COM 

Windows Media Player Core- 

-- ----------------------- 
Video Packet Arrivals 

Figure 81 - WM Player Instrumentation 

In addition, logging was also enabled at the WM Server allowing for measurements of 

the amount of time that the client spent rendering the stream, the average bandwidth of 

the connection, the number of bytes received by the client, the number of packets that 

were not delivered to the client and the number of times the client buffered the stream. 
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6.3 Results and Perceptual Quality 

The purpose of these experiments was to measure the effects of packet reordering as 

perceived by an end-user. The perceptual performance of digital video systems can be 

assessed in either an Objective or Subjective basis. Objective methods attempt to 

measure video quality by mathematically comparing a reference video signal, with a 

second video signal which has been transmitted over an impaired transmission 

network[SpirO6]. Objective methods of assessing video are still in their infancy[Vgeg08], 

as they require a reference signal to perform computation of results, and require initial 

`training' using a subjective method in order to correlate the mathematical assessment 

with a human's perceived performance. It is accepted [Itu02] that it is impossible to fully 

characterise a system using entirely Objective means, and therefore Subjective quality 

assessment is required to supplement all Objective results. A cross-layer application- 

aware metric of video packet reordering is developed in Section 6.3.2. To be able to 

correlate this Objective method of video quality measurement, a series of Subjective 

experiments are required to be able to gauge the performance of video under a variety 

of conditions. 

A series of experiments were carried out, based on the recommendations discussed in 

ITU BT. 500-11 `Methodology for the subjective assessment of the quality of television 

pictures'[ItuO2]. BT. 500-11 describes the `Double-Stimulus Impairment Scale (DSIS) 

method', the ITU recommended method of measuring the robustness of a transmission 

system to impairments. DSIS was chosen in preference to the `Single Stimulus 

Continuous Quality Evaluation' (SSCQE) method, as during each experiment, a fixed 

amount of reordering would be applied to the streamed video, which would not vary 

over time, and then the overall perception by the human subject during the entire 

experiment would be noted. The DSIS method requires a human subject to be shown 

an unimpaired reference, and then presented with the impaired video to be measured. 

Following this, the subject is asked to vote on the second, based on the reference. The 

impaired video to be measured is randomly displayed with various impairments, 

interspersed with non-impaired copies of the reference video at frequent points. 

The DSIS method recommends grading video on a five-grade measurement scale. 
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Experiments were therefore performed, and each subject was asked to score the quality 

of the entire 120 second video clip based on the descriptions in Table 17. 

Grading Scale Description 

5 Errors Imperceptible 

4 Errors Perceptible, but not annoying 

3 Slightly annoying 

2 Annoying 

1 Very annoying 

0 Video imperceptible 

Table 17 - Subjective Grading Descriptions 

A 120 second `head-and-shoulders' typical videoconferencing scenario was recorded 

using Windows Media Encoder. The same video recording was used in every 

experiment for consistency of results, and was placed on the Windows Media server for 

download during each assessment session. 

Five human observers volunteered to take part in the series of experiments. The 

observers were not experts in technology or multimedia, and varied in age from 19 to 

79. The assessment sessions were held in a room conforming to the `Home Viewing 

Environment Specifications' and test procedure documented in ITU BT. 500-11 [ItuO2]. 

Before each assessment began, each observer was given introductory training about the 

purpose of the assessment, and the types of video impairments that they may expect to 

observe, such as video blockiness or colour artefacts, excessive pauses or freezing of the 

screen, and complete `blacking-out' of the screen. The observers were trained in the 0 to 

5 scoring system, and understood that the score chosen at the end of each 120 second 

recording, was to describe the user's experience throughout the duration of the entire 

recording. Before commencing the assessment, a recording was shown with no 

reordering induced, a recording with 10% 1 second reordering was shown, and finally a 

recording shown with 25% 2 second reordering, thus illustrating to each observer, the 

range of qualities that they could expect to observe throughout the experiments. 

The assessments lasted approximately 2.5 hours, during which, 60 experiments were 

214 



shown to each of the five human observers. The 60 experiments introduced reordering 

at rates P,. = [1°! o, 10%, 25%], with Dr varied between 0 and 2 seconds in 0.1 second 

steps. These were conducted in a random order for each observer. I? arlier 

experimentation had shown that for a default WM buffer of 5 seconds, the range over 

which reordering could be applied was between 0 and 2 seconds. The Reordering 

Probabilities of 1"o, 10°io and 25°'o were chosen as they emulate a wide range of results, 

thus providing evaluation of video under a variety of conditions. Figure 82 illustrates the 

average score of the 5 observers obtained from each experiment, to attempt to describe 

the visual disturbance caused by packet reordering. 
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Figure 1. Figure 82 - Average Mean Opinion Scores 

Initial results indicated that MMMMS was surprisingly tolerant to varying delays, contrasting 

with previous measurements of TCP undergoing similar reordering events. This was 

due, in part, to the large pre-roll buffer that was generated at the client player before 

streaming commenced which, by default, was set to 5 seconds of real-time audio/video. 

During periods when the server maintained its constant encoding bit-rate and did not 

attempt to `thin' the stream, visual output remained stable throughout the duration of a 

clip. Perceived quality would not alter significantly, with little loss of sharpness, even 

during scenes of high motion, and no artefacts appearing as a result of corrupted visual 

data. This quality was maintained in all experiments up to a threshold level, where 

`frame freezing' would occur due to an underrun at the client input buffer and playback 
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would pause on the last correctly displayed frame. Playback would not resume until the 

WM client had successfully re-filled the entire contents of the buffer. 

6.3.1 Packet Arrival Bit Rates 

The instantaneous bit delivery rates were measured over 120-second clips at the 

300kbps target encoding rate and varying reordering degrees applied. It should be noted 

that this metric is the instantaneous bit-rate as reported by the WM API, and therefore 

is an application-layer measurement as reported by the player itself. This cross-layer 

metric allows characterisation of the effects of packet reordering as observed by an 

application, rather than by any other traditional measurement in the networking stack. 

Figure 83, Figure 84 and Figure 85 illustrate typical measurements that show the 

behaviour in each scenario. Figure 83 demonstrates reordering applied at Pr. = l""', for 

varying reordering delays, which can be seen to have negligible effects on the bit rate for 

D,. < 0.5 secs. At time 100 sec for Dr = 0.5 secs, a reordering event can be seen to 

affect the throughput although, in this instance, it did not cause a buffer underrun. For 

Dr =1 sec, the bit rate is quickly driven down, even with low reordering probability and 

it fails to recover for the entire duration of the clip. 
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Figure 84 illustrates the behaviour of WM video under degrees of heavy reordering. For 

example, at time 15 sec where D, =1 sec the bit rate can be seen to decay rapidly; this 

was due to a severe reordering event, which then resulted in buffer underrun and, as a 

consequence, freeze frame was observed at the player. At time 24 sec, the player initiates 

re-filling of the buffer; this request is achieved by the server sending a burst of high bit 

rate UDP video packets - peaking at 700kbps - considerably higher than the standard 

300kbps stream. Upon filling the 5 second buffer, playing was resumed at time 30 sec, 

and continued successfully until another significant reordering event at 95 sec. Figure 85 

demonstrates this behaviour further and illustrates multiple significant reordering 

events. Each event had a severe impact on buffer underruns, followed by a period of 

recovery where the delivery of high bit rate traffic occurs in an attempt to re-fill the 

buffer as quickly as possible. 
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Figure 84 - Reordering Probability PR = 10%, for varying D, 

Figure 83, Figure 84 and Figure 85 illustrate a number of key points regarding W, NI 

video streaming, but are relevant to all types of video transmission. The figures illustrate 

that WM's congestion control can breakdown during packet reordering. For example, 

once packet reordering has caused a buffer underrun, the WM Player responds by 

requesting re-transmissions through N-ACK packets that instruct the WM server to 

launch a large amount of traffic into the network in an attempt to fill the 5 second 
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player buffer as quickly as possible. This resultant high bit-rate and large number of 

packets, also undergo significant reordering which is often exacerbated due to its greater 

share of the bandwidth consumed when compared to other applications on the 

network. The subsequent storm of traffic also increases the burstincss of the stream and 

is grossly unfair to competing packet flows. Furthermore, this traffic storm on a heavily 

loaded network may also increase the reordering probability. Such a congestion control 

mechanism could prove costly in a wireless environment, where both high transmission 

tariffs and power consumptions must be taken into account. 
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Figure 85 - Reordering Probability PR = 25%, for varying D, 

6.3.2 Buffer Occupancy 

Buffer underrun has been previously measured as the most important factor when 

determining the performance of WM across an end-to-end network jIDala031. Buffering 

is important as it allows an inherently bursty medium, such as video, to be transmitted 

over a communications channel at a constant rate. With large enough buffers, it would 

be possible to re-sequence any packet (providing it has arrived before the playback 

time), but large buffers take a significant amount of time to initially fill, which is 

perceived badly by the user. Moreover, large buffers could be costly to implement on 

low powered portable devices. Therefore, it is important to decide on an appropriate 
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buffer size that will act effectively to smooth traffic in the event of loss or reordering, 

but will also initially fill quickly to provide an effective user experience. 

The client was further adapted to measure the occupancy rate of the player's buffer. 

This allowed for monitoring of any period where packet arrival was disrupted to the 

extent that a freeze frame resulted, so that the time taken to re-fill the buffer to 100% 

and resume normal playback could be measured. 

A total of 40 experiments were completed for each percentage of 1%, 10% and 25% 

reordering. As illustrated in Figure 82, at D, = 0.5 secs, there can be a significant 

breakdown in the subjective performance of video quality. Therefore, the examples 

shown in Figure 86 - Figure 89, show results obtained at D, = 0.5 secs. The experiments 

used the same 120 second video recording as described in Section 6.3. At each point 

when a buffer underrun event occurred, the instrumented WM client would log that the 

underrun had occurred, and the duration of each underrun event, which would correlate 

with the amount of time that the WM client would `freeze-frame'. These two metrics of 

`Number of Buffer Underruns' and `Duration of Buffer Underruns' are illustrated in 

Figure 86 - Figure 89. To allow correlation of the duration of a Buffer Underrun event 

with the effect perceived by a human observer, the duration of underrun events are 

illustrated in multiples of 5 seconds, which can be correlated with multiples of the initial 

default pre-roll buffer at the WM client. 

Figure 86 illustrates the probability density function of buffer underruns that a user 

could expect to experience during a clip of 120 seconds duration. Figure 87 plots the 

durations of these buffer underrun events and of the durations of the resulting freeze 

frames. As can be seen, for P, = 1%, all streams will encounter at least one recorded 

underrun event during the initial pre-roll buffering before streaming commences. After 

this for P, = 1%, it is over 70% likely that no further buffer underruns will occur at all. 

Conversely, at 25% reordering, at least 2 underruns will occur during the same 120 sec 

period. 
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As can be seen in Figure 87, the majority of underrun events last approximately 5 

seconds - equivalent to the default buffer size in WM Player. Buffer underruns lasting 

longer than 5 seconds indicate severe congestion. 

Using the SDK, it was possible to alter the amount of buffering time apportioned by the 

WM client. Figure 88 and Figure 89 show the results of doubling the buffer to 10 

seconds and the resulting effects. As can be seen, the buffer underrun is shifted towards 

the middle. Hence the number of smaller pauses has been reduced, but more 

importantly, the probability of excessively long pauses is also reduced and the behaviour 

of the client is more predictable. The improvement is, in part, due to the extra time 

available for packet re-sequencing. 
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6.4 Conclusions 

This Chapter has made a number of contributions in the field of packet reordering and 

its effects on other, non-TCP, traffic. 

Reordering has been presented in the context of wireless networks, which are 

characterised as having varying delays that could cause loss of packet sequencing. The 

peculiar feature of wireless networks, in that the traditional assumption that packet loss 

is an indicator of congestion, has been argued to be invalid. Examples of the types of 

parallelism which could occur at various layers in a wireless network have been 

discussed, and wireless has been argued to be the next real driver of packet reordering, 

as end-to-end technologies such as Wil'i and WiMax become prevalent in the 

marketplace. It has been argued that little consideration has been given, thus far, to 

other time-critical types of network traffic, such as Video over UDP. Indeed, the effects 

of packet reordering are even more difficult to predict on such traffic, due to the 

temporal inter-packet dependencies introduced by the MPEG video encoding structure. 

An experimental testbed has been presented, that offers a controlled environment 
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where the effects of reordering can be measured and then correlated with the behaviour 

expected in a wireless environment. The design of a tool for invoking packet reordering 

has been described and metrics for packet reordering have been discussed that reduce 

reordering to a simple dual-queue scheduling architecture. 

A client-side estimator of video QoS was developed, by instrumentation of the 

Windows Media Player, to allow quantitative analysis of video quality. WM was seen to 

perform well under low degrees of reordering, but significant reordering resulted in 

buffer underrun, causing the client to freeze frame. 

WM bit-rates were extremely bursty during reordering, due to a congestion control 

mechanism which attempted to re-fill the client buffer as quickly as possible, launching a 

packet storm that was grossly unfair to competing packet flows. Buffer occupancy 

measurements were made to describe the number of underruns that a user would expect 

to experience during reordering, thereby providing a more advanced metric of packet 

reordering, specific to this particular traffic. Adjustment of the buffer size was found to 

enhance the client's ability to perform under significant reordering, by controlling the 

number of excessively long pauses a user will experience. 

It is clear that the diversity of traffic types prevalent in the Internet today, will require a 

range of advanced metrics and measurement methodologies, in order to correlate 

measurements made at various layers in the OSI, with the behaviours experienced by 

the end user. This thesis has illustrated that, although several attempts have been made 

to measure TCP during reordering, a metric is only truly useful if it is designed for a 

specific application and specific scenario. The method described in this Chapter, where 

the WM SDK was modified in order to expose Buffer Occupancy as a metric of 

reordering, is an example of the type of metric required to truly measure the effects of 

packet reordering. Clearly as packet reordering becomes more prevalent, and drivers 

such as wireless begin to make an impact, there will be clear motivation for network 

operators and application developers to build such measurement tools. 
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Chapter 7 

Conclusions and 

Future Work 

7.1 Introduction 

This thesis has argued that Packet Reordering in IP networks is an increasingly common 

phenomenon, which will require a range of sophisticated measurement methodologies 

and metrics in order to characterise the performance impact on various network traffic 

types in the future Internet. Packet Reordering has been argued to be the result of 

increasing parallelism within networks. The trend towards future end-to-end wireless 

links, has further been identified as a key driver of the reordering observable in a path. 
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This thesis has addressed the issue of measuring the impact of packet reordering on 

Internet traffic, by proposing a number of measurement methodologies and metrics. 

The effects of packet reordering as proposed by Bennett have been discussed. A two- 

point passive measurement technique has then been developed, which improves on 

previous methods by allowing the lightweight classification of the cause of each 

reordering-induced packet retransmission. This technique has been applied to a large- 

scale testbed measurement study of packet reordering, which has indicated that TCP is 

tolerant to large percentages of reordered packets, providing that the delay of these 

packets is maintained below a specific threshold relative to Round-Trip-Time. Packet 

reordering metrics, which report percentage reordered packets, have been shown to be 

poorly correlated to the measured effects of reordering on TCP. Traditional 

assumptions that TCP packet reordering is an intuitively negative phenomenon have 

been questioned. Empirical measurements have shown that, in specific scenarios, packet 

reordering can actually increase the overall throughput of a flow. 

A classification taxonomy of active and passive packet reordering measurement 

techniques has been presented. This has identified the key limitations of each technique, 

and the range of disparate measurements on the amount of reordering occurring in the 

Internet today. A mid-point passive Measurement Technique and Visualisation Metric 

of TCP packet reordering has been proposed, designed to classify out-of-sequence 

packets for many thousands of concurrent TCP flows. The proposed technique is 

lightweight to implement and does not require symmetric TCP connections to operate, 

thereby allowing an improved measure of TCP Goodput and simpler classification of 

the cause of each out-of-sequence packet. The proposed Visualisation Metric has been 

shown to offer an improved method of characterising packet reordering, by being 

simple to compute, and by indicating the packet reordering performance throughout the 

lifetime of a TCP flow. 

Finally, this thesis has argued that future packet reordering metrics must correlate 

reordering observed at the network layer with the resulting impacts observed at the 

application layer. An example of an application-specific metric is developed for MPEG4 

video over UDP traffic, and this metric is used to describe the effects of packet 

reordering on streamed video traffic. It has been argued, by this thesis, that this is the 
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type of measurement technique which will be required in the future, in order to describe 

the complex cross-layer effects of packet reordering on future complex traffic types. 

This chapter provides a summary of the work documented in this thesis, thereby 

highlighting the contributions to knowledge which have been achieved. Motivated by 

the themes of the work performed, a number of areas of future work are then presented 

and discussed, and the motivations for performing these works are documented. 

Finally, concluding remarks are presented, thereby completing this chapter and this 

thesis. 

7.2 Thesis Summary 

This thesis has proposed that the Internet is `out-of-order'. That is, there has been an 

inherent assumption in the literature that, in general, packet sequencing is maintained 

across an end-to-end IP network. The motivation for investigation of packet reordering 

in the Internet has been presented, and the pioneering work of Bennett [Benn99] has 

been discussed. Bennett argued that packet reordering is not a pathological problem; it 

is a naturally occurring phenomenon; it is on the increase, and it is a result of an 

increased presence in the degree of parallelism apparent in the Internet. Although it has 

been known that there is Internet parallelism due to multi-path routing and broken 

network equipment, it was argued by Bennett that switch and link-level parallelism are 

the real drivers of reordering and are on the increase. This includes link-level striping 

and switches that allow packets travelling between the same source-destination pair to 

take different paths through the switch hardware. Parallelism of network paths is on the 

increase, due to simple economics and an increase in redundancy. Chapter 1 has 

highlighted the importance of Bennett's work and its contribution to the field of 

network science, since packet reordering can have a significant impact 
on both network 

and application performance. For example, out-of-order arrival of packets can cause 

apparent loss of data in real time flows, such as voice-over-packet and video streams. 

Any protocol that is reliant on the ordered arrival of packets can be affected by this 

phenomenon, e. g. RTP flows based on UDP. Reordering is also detrimental to TCP, 
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causing it to use available capacity less effectively, and to lose the TCP self-clocking 

property, thus resulting in irregular data transmission. Bennett hypothesised that, due to 

the asymmetric nature of the internet, connections will frequently experience reordering 

in one direction only, and therefore there are three types of packet reordering that must 

be considered; forward-path reordering or data reordering, reverse-path reordering or 

Ack reordering, and a combination of both forward and reverse path. Each type of 

reordering was argued to have different overall effects on a TCP connection. 

IPv4 and TCP have allowed a multitude of heterogeneously interconnected systems, all 

with diverse characteristics, vendors and operating systems, to communicate seamlessly 

with each other over various communications channels. These protocols have 

developed over time with various loss recovery and congestion control enhancements 

added and have been slowly adopted by Internet users. The Fast Retransmit algorithm is 

an important mandatory algorithm which Chapter 2 has highlighted and has been 

developed on the assumption that packet reordering does not often occur. Therefore 

any packet delayed by more than three positions, can be assumed to be lost. 

There is clearly a need to measure the amount of packet reordering occurring in the 

Internet, as the traditional measurement techniques and metrics used in network 

performance analysis and presented in Chapter 2, are not capable of describing the 

complex effects of packet reordering. Recent measurement work in the field of Internet 

packet sequencing is, to some extent, contradictory, as there is a significant variation in 

the reported numerical measurements. These conflicting findings may be due to 

different network topologies, switch architectures, underlying link protocols, or the 

measurement techniques used. However the various studies are sufficiently different in 

nature that drawing conclusions without further work is difficult, thereby providing an 

ideal stimulus for further research into measuring and understanding these phenomena. 

A wide range of both active and passive measurement techniques has been developed in 

the literature; some to provide a metric for the amount of reordering that a packet will 

undergo; others specifically to describe the performance of reordering on TCP. These 

studies are so diverse in their techniques and assumptions, that it is very difficult to 

compare results across the literature. The lack of a standard experimental measurement 
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methodology, and the lack of a standard reordering metric, has been argued to be a 

significantly limiting factor in understanding the effect, impact and prevalence of packet 

reordering in today's Internet. A classification taxonomy of metrics and measurement 

methodologies of packet reordering has been presented in Chapter 3. This taxonomy 

has classified active measurement Layer 4 techniques as using either Control-Plane 

packets or Data-Plane packets in order to highlight the potential Middlebox interactions 

which Control-Plane packets may endure. Middleboxes are difficult to detect and will 

either prevent active measurements from taking place, or may interfere in the metrics 

generated from these measurements. The Paxson and Tsinghua active measurements are 

highlighted in the taxonomy as the methodologies which may generate the most 

representative results of real network traffic. Unfortunately, their results do not correlate 

well, differing in the percentage of reordered connections by over 30%. The taxonomy 

has classified passive measurements by their observation point, and their method of 

generating RTT estimates. The passive techniques in the literature suffer from 

difficulties in generating an accurate mid-point estimate of RTT, and from the 

unrealistic expectation that both forward and reverse paths will flow symmetrically. The 

Jaiswal and Tstat techniques have been argued to provide the most representative 

results, but measurements of the total amount of packets undergoing reordering in the 

Internet vary by over 20% in their estimation. 

Limited consideration has been given to measuring and understanding the true drivers 

of packet reordering, and to correlating these measurements with the effect that they 

will actually have on a user's application. It is only through this correlation of 

measurements, that it will be possible to ascertain if packet reordering will affect the 

user's perceived Quality of Service, and then allow for the design of appropriate metrics 

and mitigations. Indeed, the literature is sparse when discussing the actual effects of 

packet reordering on TCP performance, and such assumptions as the behaviour of TCP 

during reverse-path reordering, have been hypothesised but have not been investigated 

and measured. A two-point passive measurement technique has been developed in 

Chapter 4, which has allowed more accurate measurement than previous studies of 

packet reordering, by exploiting the use of the IPID field as a method to determine the 

sending sequence of a TCP connection. Simple metrics have been developed that 

exploit this IPID field, thereby allowing determination of whether a packet has been 
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reordered, and of the extent by which that packet has moved. The two-point 

measurement technique has allowed determination of the cause of retransmissions, 

which are the by-product of packet reordering effects on TCP. By correlating the packet 

traces obtained at two points, it has been possible to investigate and classify each 

retransmission, thus providing a more complete analysis of the effects of packet 

reordering, compared with previous measurement studies. A significant study of over 

30,000 FTP sessions during a six month period, of forward, reverse and combined path 

reordering has been performed. The study of forward path packet reordering has 

indicated that the effects of packet reordering are negligible with respect to the 

percentage of reordered packets. But, for every RTT, it has been found that there is a 

forward-path maximum reordering delay threshold which can be applied to packets, 

regardless of percentage reordering, and below which reordering has negligible effects. 

Determination of the value of this threshold, on a specific path, is key to ensuring that a 

specific switch or router does not introduce reordering to such an extent that it causes 

unnecessary retransmissions and an associated reduction in throughput. The study of 

reverse-path packet reordering has demonstrated results, contrary to previous 

assumptions in the literature, that reverse path reordering has little additional negative 

effect on the throughput of a connection. Indeed, it has been measured that, in specific 

circumstances, as a function of the RTT, of the amount of data to be transmitted, and 

of the reordering delay, reverse path reordering can actually increase throughput of a 

connection. This phenomenon was explained by the loss of self-clocking during 

Acknowledgement resequencing, thus allowing the sending TCP cvnd to grow faster 

than normal. A measurement study of combined path reordering has also been 

performed, and this has illustrated that the effects of forward-path reordering dominate 

the behaviour of the connection. 

The use of percentage-reordered packets as a metric, has been shown to be difficult to 

correlate with the actual performance of a TCP connection. This suggests that many of 

the metrics proposed in the literature, such as RFC 4737, are difficult to apply in a way 

that meaningfully describes the user's Quality of Experience. More sophisticated 

techniques are therefore required, and the classification taxonomy has highlighted the 

benefits of using passive techniques which can characterise many thousands of 

concurrent flows. Performing passive TCP monitoring at a mid-point, though, is not 
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without its challenges. A packet can easily be identified as being out-of-sequence when it 

is observed as having a sequence number smaller than or equal to that of a previously 

observed packet at that measurement point. Explanation of the cause of the packet 

appearing out-of-sequence is challenging as many variables, such as the state machines 

at the sending and receiving hosts, can only be inferred from the packets observed at the 

mid-point, and therefore a set of heuristics are required in order to examine the packet 

events observed. A passive mid-point monitoring technique has been developed in 

Chapter 5. This is lightweight in both its storage requirements and its processing 

overhead at the mid-point measurement probe. The passive mid-point technique has 

described the capture and storage of Flow Traces, which can then be analysed to 

provide an improved measure of Goodput, Loss and Retransmission. A lightweight, 

mid-point methodology and classification algorithm is developed, and this was applied 

to live Internet traffic in order to gauge performance when compared with Jaiswal. This 

mid-point technique improves on previous techniques in the literature, as it does not 

require calculation of RTT of every concurrent flow observed, nor does it assume 

visibility of symmetric connections. Finally, a technique for the visualisation of a TCP 

flow's performance is presented. This technique is superior to others, in that it allows 

simple evaluation of the degree of resequencing occurring within a TCP connection 

over time, thereby improving on the metrics presented in RFC 5237. 

The literature has indicated that packet reordering and parallelism in fixed networks is 

on the increase, due to large businesses, ISPs and their vendors aggressively promoting 

parallel links. This thesis has argued that wireless and mobility will be the next drivers of 

packet reordering in the future Internet. End-to-end wireless technologies such as WiFi 

and WiMax, and the use of protocols such as Mobile IP and IP multi-homing, will result 

in an increase in parallelism at all layers. Wireless links are very different from traditional 

wired links; the steady-state dropping and reordering probability are independent from 

link congestion, and so traditional assumptions that loss indicates congestion, are 

invalid. 

It is clear that the predominant focus in measurement research to date, has been to 

attempt to characterise the performance of packet reordering on TCP. The effects of 

packet reordering are still in their infancy and, therefore, the literature has concentrated 
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on describing the most predominant type of traffic in the Internet today. This thesis has 

proposed that a range of sophisticated measurement techniques will be required in order 

to characterise the diverse network traffic types occurring in today's Internet, each of 

which must be relevant to the particular application that they are trying to describe. This 

thesis has argued that work in the literature has not attempted to correlate 

measurements across layers, to measure reordering at the packet layer, and the resulting 

effects on the end user application. 

The effects of packet reordering are extremely difficult to predict on new complex 

traffic, such as video over UDP, due to the temporal inter-packet dependencies 

introduced by the MPEG video encoding structure. An experimental investigation into 

the effects of video packet reordering using the Windows Media streaming system was 

presented. A client-side estimator of video QoS was developed, by instrumentation of 

the Windows Media Player, to allow quantitative analysis of video quality. WM was seen 

to perform well under low degrees of reordering. Significant reordering resulted in 

buffer underrun, and in extremely bursty traffic patterns, due to a poorly designed 

congestion control mechanism. Buffer occupancy measurements were made to describe 

the number of underruns that a user would expect to experience during reordering, 

thereby providing a more advanced metric of packet reordering, specific to this 

particular traffic. 

It is clear that the diversity of traffic types prevalent in the Internet today, will require a 

range of advanced metrics and measurement methodologies, in order to correlate 

measurements made at various layers in the OSI with the behaviours experienced by the 

end user. This thesis has illustrated that, although several attempts have been made to 

measure TCP during reordering, a metric is only truly useful if it is designed for a 

specific application and specific scenario. The method developed used Buffer 

Occupancy as a metric of reordering, and is an example of the type of metric required to 

accurately measure the effects of packet reordering. Clearly, as packet reordering 

becomes more prevalent, and drivers such as wireless begin to make an impact, there 

will be further motivation for network operators and application developers to develop 

similar sophisticated measurement tools. 
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7.3 Main Contributions 

The primary contributions of this thesis relate to 

o The various measurement techniques and metrics which have been 

developed to characterise packet reordering. 

o The measurement results that have been obtained using these proposed 

techniques. 

o The comparisons indicating improvements over previous measurement 

techniques. 

An additional contribution is the taxonomy of packet reordering measurements and a 

review of previous measurement studies performed in the literature. 

7.3.1 A Two-Point Passive Measurement Technique 

A two-point passive measurement technique has been described in Chapter 4 and 

prototyped in software. This has allowed more accurate measurement than previous 

studies of packet reordering, by exploiting the use of the IPID field as a method to 

determine the sending sequence of a TCP connection. Simple metrics have been 

developed that exploit this IPID field, thereby allowing determination of whether a 

packet has been reordered, and the extent by which that packet has moved. Under the 

high degrees of reordering measured on the testbed, this method has provided a 

lightweight and simple method for determining the Absolute Reordering of a packet, 

and avoids the calculation of future Sequence Numbers based on current payload 

lengths. The two-point measurement technique has allowed determination of the cause 

of retransmissions, which are the by-product of packet reordering effects on TCP. By 

correlating the packet traces obtained at two points, it has been possible to investigate 

and classify each retransmission, thus providing a more complete analysis of the effects 

of packet reordering, compared with previous measurement studies. 

232 



Although this method may not be applicable in the wider Internet, where fragmentation 

may occur, it does allow a method for highly accurate measurement of reordering in a 

controlled environment, and could have future applications in the testing of specific 

reorder-inducing routers or paths. 

7.3.2 Development of Testbeds 

A number of network testbeds were designed, and implemented to allow for the 

measurement of packet reordering in a controlled environment, and to allow the 

development and testing of software prototypes of the measurement methodologies and 

metrics proposed. 

In Chapter 4, a method for emulating TCP packet reordering was demonstrated through 

the development of software for a configurable router, the development of software 

probes, and the development of a distributed automated measurement architecture, to 

perform a large-scale measurement of TCP reordering. This testbed allowed the testing 

of the developed software probes and metrics, the actual measurement study to be 

performed, and the validation and development of the algorithms presented in Chapter 

5. In Chapter 6, a second testbed was built and configured, and this has allowed 

measurement of the performance of video traffic during packet reordering. A video 

disruptor tool was developed to allow testing of video transmission with varying 

reordering and dropping probabilities, thereby allowing development and testing of the 

client-side estimator of video QoS. 

7.3.3 Large scale measurement studies of packet 
reordering 

A number of measurement studies were performed during this thesis to evaluate the 

impact of packet reordering on TCP, and to develop and validate improved metrics of 

TCP packet reordering. In Chapter 4, the passive two-point methodology was used to 

measure the effects of Forward Path, Reverse Path and Combined Forward and Reverse 

Path reordering. It has performed one of the largest studies of TCP packet reordering to 
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date, emulating over 30,000 FTP sessions over a six month period. It has demonstrated 

the need to develop an autonomous measurement system to perform such a large study, 

and the methods to perform data management and processing of such large amounts of 

packet captures. It has improved on the only other measurement study of TCP 

reordering [Laor021, where the authors used an Agilent QA Robot to randomly delay 

packets by three positions, but this does not allow investigation of the Reordering 

Delay, nor investigation of the Reordering Delay with respect to RTT. 

The results obtained have questioned the assumptions that packet reordering is an 

intuitively negative phenomenon. The study of forward-path packet reordering has 

indicated that, for every RI T, it has been found that there is a forward-path maximum 

reordering delay threshold which can be applied to packets, regardless of percentage 

reordering, below which reordering has negligible effects The study of reverse-path 

reordering has revealed little negative effect on the throughput of a connection. Indeed, 

it has been measured that, in specific circumstances, as a function of the RTr, and 

amount of data to be transmitted, and reordering delay, reverse path reordering can 

actually be beneficial for a connection. The first measurement study of combined path 

reordering has also been performed, and this has illustrated that the effects of forward 

path reordering dominate the behaviour of the connection. 

The use of percentage reordered packets as a metric has been shown in Chapter 4 to be 

difficult to correlate with the actual performance of a TCP connection, thus stimulating 

the development of the algorithms developed in Chapter 5. The Arthur mid-point 

Classification Algorithm developed in Chapter 5 has been prototyped and applied in a 

live network environment, thus allowing comparison with the Jaiswal mid-point 

technique, and with a measurement study of the out-of-order packets in a live network. 
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7.3.4 A Passive Mid-Point Classification Algorithm of 
TCP Reordering 

A passive mid-point monitoring technique has been developed in Chapter 5, which has 

clear improvements over previous techniques presented in the literature. The Arthur 

passive mid-point technique has described the capture and storage of Flow Traces, 

which can then be analysed to provide an improved measure of Goodput, Loss and 

Retransmission. The classification algorithm developed is lightweight and improves on 

the passive mid-point measurement techniques presented in Chapter 3, because it does 

not require calculation of RTT for every concurrent flow observed, not does it assume 

visibility of symmetric connections. 

7.3.5 An Improved Visualisation Technique and Metric 
of TCP Packet Reordering 

The passive mid-point monitoring technique has been extended in Chapter 5 to provide 

an improved technique for the visualisation of a TCP flow's performance. This 

technique has been demonstrated to be superior to those proposed in RFC 5237, as it 

allows simple evaluation of the degree of resequencing occurring within a TCP 

connection over time. The Arthur technique has been developed as a software 

prototype, and its lightweight real-time abilities have been demonstrated. It builds on 

the benefits discussed in Section 7.3.4, and its usefulness and relevance as a diagnostic 

tool for network managers and researchers has been discussed. 

7.3.6 A client-side estimator of video QoS 

An application-specific metric of packet reordering was developed as an example of the 

types of cross-layer techniques that will be required in future communications networks. 

In Chapter 6, a client-side estimator of video QoS was prototyped by instrumentation of 

the Windows Media Player, to allow quantitative analysis of video quality playback 

during packet reordering. A simple metric of packet reordering was defined and 
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measured by using the WM SDK to expose Buffer Occupancy within the player, and 

this application-relevant technique was contrasted with packet level reordering 

measurements. These measurements have been correlated, thus substantiating the 

argument that future metrics of packet reordering should correlate measurements made 

at various layers in the OSI, to explain behaviours experienced by the user. 

7.3.7 Packet Reordering Measurement Taxonomy 

A review and taxonomy of packet reordering measurement techniques and metrics has 

been performed, classifying these techniques as Active and Passive, and identifying the 

motivation for each, and assumptions made in each. Active techniques were further 

classified by Control-Plane and Data-Plane packets, while passive techniques were 

classified by their Observation Position, and their method of estimating RTT. This 

taxonomy has allowed a survey of the range of packet reordering techniques in the 

literature, the advantages and limitations of each one, and has highlighted the true 

novelty and value of the work presented in this thesis. 
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7.4 Future Directions 

A number of areas of future work can be identified during this thesis; some motivated 

as a direct continuation of the work performed thus far, others based along themes and 

trends which have been identified. 

7.4.1 Packet Reordering as a tool for SLA Compliance 

The testbed designed and implemented in Chapter 4 has demonstrated the ability to 

perform large numbers of experiments, in an automated fashion, over long periods of 

time. There is therefore the possibility of performing many more experiments. These 

experiments could emulate reordering over very long satellite-like RTTs, investigate 

various congestion control algorithms, or investigate the TCP Window Scaling option. 

It can be speculated though, that this work is unlikely to generate more significant 

results than those that have already been illustrated. The mandatory Fast Retransmit 

algorithm has been shown in this thesis to dominate the effects measured on a TCP 

stream. 

An interesting application of results from the testbed, would be to investigate the use of 

Packet Reordering as a method of mid-point traffic throttling, and therefore SLA 

compliance across a network. Chapter 4 has illustrated that packet reordering can have 

both positive and negative effects on the throughput of a TCP connection. Forward- 

path packet reordering can be used to throttle a connection passing through a mid- 

point, by selectively delaying packets and forcing a Fast Retransmit. Reverse-path packet 

reordering has been shown to have the ability to grow a Sender's cwad at a faster rate 

than normal This allows the unusual feature that, in theory, from a mid-point position, 

a Middlebox would be able to both speed-up and slow-down TCP connections. 

Rate-limiting Middleboxes, such as the Packeteer PacketShaper [PackO8], perform TCP 

rate limiting by artificially altering the rwnd in the Ack packets from a TCP Receiver, as 

they pass the PacketShaper at a mid-point in the network. Clearly the processing 
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required to monitor each concurrent flow, to perform deep packet inspection, to delay 

each Ack while the header is re-built, and then to re-compute checksums, is highly 

significant. Packet Reordering could offer the same ability to rate-limit each concurrent 

flow, but with significantly less processing requirement, as packets do not have to be 

altered. The additional possibility, that the same Middlebox could also be used to 

increase the throughput of specific TCP flows, indicates that this potential technique 

has significant commercial opportunities if it could be developed in a lightweight and 

robust manner. 

Clearly, this proposal would require a number of investigations. Firstly, a rigorous study 

on the testbed would have to be performed, to allow modelling of the scenarios where 

reverse-path packet reordering can cause an improvement in performance, in terms of 

various RTT and congestion control mechanisms. Secondly, a mid-point measurement 

technique, similar to that discussed in Chapter 5, would be developed to allow 

measurement of the performance of each flow, and a selection algorithm would be 

developed, to decide when packet reordering would be applied to a flow, in which 

direction and in what amount. 

7.4.2 Software Routers as Measurement Instruments 

The use of Click in Chapter 4 as a configurable router, has allowed a large-scale 

measurement of packet reordering to take place. It is worth noting, though, that 

software routers such as Click, are no longer in use only as research tools. Trends 

indicate that future routers will be built upon flexible hardware, with open source 

Operating Systems. This is expected to be the driver of `Router Virtualisation' 

research[Egi07], where a single hardware platform can simultaneously perform the roles 

of multiple independent routers. Previously, instrumentation inside a router was 

impossible due to the commodity hardware and closed software. This motivated 

projects such as NetFPGA[MckeO7], to build open router platforms where 

measurements such as the effects of mid-point buffering on TCP [AppeO4] could be 

investigated. The authors of Click have already acknowledged [Kohl06] that their 

software language could be extended to design mid-point measurement systems and, 

therefore, as software routers become more prevalent in production networks, this 
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x; '` affords the opportunity for large scale passive mid-point measurements to be made. 

The classification algorithm and visualisation technique presented in Chapter 5 could be 

implemented within a software router, to test the scalability and performance of the 

algorithm, in a variety of traffic conditions, thus producing a large scale measurement of 

empirical traffic. Software routers and virtualisation will allow for mid-point passive 

monitoring techniques to be deployed for many different traffic types, and therefore 

there is a great deal of motivation to extend the work presented in Chapter 5, to classify 

out-of-sequence packets passively, for a variety of traffic types. 

The method presented in Chapter 4, whereby the IPID of a TCP flow was used as a 

method for measuring the absolute packet reordering within a flow, could also be useful 

as a method for router testing. In both hardware and software routers, the Chapter 4 

technique provides a lightweight and highly accurate method for measuring packet 

displacement. In a software router, this method could be used as a method to monitor, 

in real-time, the amount of reordering which that router was inducing. Software probes 

on each line-card could correlate IPID values between input and output ports, thus 

measuring the degree of reordering induced on each flow. 

The use of the IPID field has only recently been proposed as a method to infer network 

measurements [Chen05]. This thesis has suggested that the IPID measurement 

technique proposed in Chapter 4 could only operate within a testbed network, due to 

the variety of methods to increment the IPID field. However, work by Chen [Chen05] 

has suggested that packet order in the Internet can be measured in this way. Further 

investigation and deployment of the proposed technique on real network traffic, would 

be a useful further study. 
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i' 7.4.3 Extending the Arthur Classification and 

Visualisation Algorithm 

A benefit of mid-point passive measurement techniques is that they can be applied as 

multiple probes throughout a network. Assuming that the probes can be time- 

synchronised to a high degree of accuracy, packet captures can be correlated between 

probes thereby allowing end-to-end measurements to be made. 

An interesting area of future work would be the development of a Distributed 

Measurement Architecture, whereby multiple Arthur out-of-sequence classification 

probes would be deployed across a network. Correlation of the Flow Traces created at 

various points around the network, would allow development of further heuristics in the 

algorithm, to identify the location of reorder-inducing paths and nodes. 

A second area of interesting research would be to investigate the design of an out-of- 

sequence classification algorithm, based entirely on Flow Traces created by 

Acknowledgements observed. This classification algorithm would provide mid-point 

analysis of TCP flows, based entirely on information inferred from the 

Acknowledgement packets. This is a challenging endeavour. With packets measured in 

the forward path, it is possible to calculate the NESN for each Seq observed, thus 

allowing simple identification of packet loss. Based entirely on Acknowledgements 

alone, it is not possible to predict the next expected packet, thereby making loss 

identification difficult. This is complicated further by the use of SACK and Partial-Acks. 

Nevertheless, a number of useful metrics could be defined, such as a Fast Retransmit 

counter based on observing triple duplicate-Acks. 

A third possible interesting extension to the Arthur algorithm, would be to extend the 

algorithm to accommodate non-TCP traffic, such as UDP or RTP. A method of 

determining the sending sequence of packets would be required, such as the IPID field 
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if it is seen to increase monotonically from a host. This would also allow extension of 
the Arthur Visualisation Technique, which would indicate the lateness or earliness of 

packets, and thresholds could be defined which were relevant to the application-traffic 

being carried. 

7.4.4 Cross-layer Correlation of Packet Reordering 
Metrics 

This thesis has argued that, for a packet reordering metric to be relevant, it must be 

specific to the user application traffic. This thesis has also argued that wireless is likely 

to be the next driver of packet reordering, due to parallelism occurring at multiple layers 

in a wireless network. Recent work has suggested that TCP can be used effectively on 
Multihop Wireless [Fu05] and Wireless Mesh [LiuO7] networks. Worryingly, other work 
has argued that IPv6 [BlanO6] and TCP (DunkO4] are both viable for use on Wireless 

Sensor Networks 1 TCP is already in use on Wi-Fi and WiMAX networks, on which it 

is likely that Mobile-IP will be used to provide session continuity during handover. 

Recent research in Mobility Management protocols for multiple interfaces, has 

measured [ParkO8] [TsanO8] that wireless multihoming causes severe packet reordering, 

significantly degrading the handover performance. There are a range of research topics 

in this area; it is clear that packet reordering has not previously been considered by 

Mobility Management researchers, and therefore a range of performance studies could 

be performed on the various mobility protocols proposed 

However, an interesting research approach to this area, would be determining the cross- 

layer impacts that wireless packet reordering will have on each upper layer. It is clear 

from this thesis that a packet can be defined as in-sequence or out-of-sequence, without 

significant difficulty. The difficulty occurs when relating this low-level movement of 

packets in a flow, to a measurable event in the user's application-level experience. 

Chapter 6 has highlighted this for a specific type of video traffic. In a recent 

SIGCOMM paper, Cheng [ChenO7b] attempted to correlate 802.11b Layer 2 metrics of 

loss caused by queuing, back-offs and contention, with the Layer 4 TCP performance 
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observed. The result of this work is a graph of TCP Goodput, plotted against various 
Layer 2 loss metrics, which indicates the causes of each loss, thereby providing root- 

cause analysis of TCP performance. 

A similar study is required for packet reordering. Simple metrics can define the amount 

of reordering occurring at each Layer of the OSI. But, for a measured drop in TCP 

throughput to be explained, this event must be correlated with the packet reordering 
metrics obtainable at the various lower layers, to identify the cause-and-effect of 

reordering on a particular flow. 
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7.5 Concluding Remarks 

The explosive growth of the Internet has allowed a multitude of heterogeneously 

interconnected systems to communicate seamlessly with each other, and to carry a 
diverse mix of traffic and applications. Simple byte-windowing protocols are being 

driven in diverse ways for which they were never intended. The Internet is becoming 

more complex and highly parallelised; new wireless technologies, transport protocols 

and new applications present a variety of challenges to network designers and operators. 

The effects of packet reordering have only recently become apparent; they will get 

worse! Many questions will arise around the implications of packet reordering for re- 

engineering the future internet. Is a new TCP needed or new router designs? Should 

future networks" be reordering-free, or should future protocols be reordering-tolerant? 

Never before has network measurement science been so important for the future of the 

Internet, to ensure that the high expectations of users can be fulfilled. 

It is clear that the diversity of traffic types prevalent in the future Internet, will require a 

range of sophisticated metrics and measurement methodologies, in order to explain the 

effects of packet reordering on a user's Quality of Experience. This thesis has addressed 

the issue of measuring the impact of packet reordering on Internet traffic, by proposing 

a number of measurement methodologies and metrics that will be required in order to 

describe the complex cross-layer effects of packet reordering on future complex traffic 

types. 
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Figure 29, Example Packet Capture Output, extended to illustrate the first 750 packets 

of a TCP Flow, thus illustrating the growth of cwnd. 

A B C 0 E F G H I J K L MN 0 
1 1218632117 649377 10 0.0.2 4094 10.0 06 5720 0 0 1677880416 0 22492 0 SYN 5840 
2 1218632117 649441 10 0.0 6 5720 10.0.0 2 4094 0 0 2165394042 1677880416 0 0 SYN 5792 
3 1218632117 799834 10 0.0.2 4094 10.0.0 6 5720 1 1 1677880416 2165394042 22493 0 5840 
4 1218632118 18821 10.0.0.2 4094 10.0 0.6 5720 2 2 1677880416 2165394042 22494 1448 5840 
5 1218632118 19273 10.0.0.2 4094 10.0.0 6 5720 3 3 1677881864 2165394042 22495 1448 5840 
6 1218632118 106245 10 0.0.6 5720 10 0.0 2 4094 28727 1 2165394042 1677881864 28727 0 8688 
7 1218632118 106277 10 0 0.6 5720 10.0 02 4094 1 2 2165394042 1677883312 28728 0 11584 
8 1218632118 256771 10.0.0 2 4094 10.0.0.6 5720 4 4 1677883312 2165394042 22496 1448 5840 
9 1218632118 257169 10.0.0 2 4094 10.0 06 5720 6 5 1677886208 2165394042 22498 1448 5840 
10 1218632118 257170 10.0 02 4094 10 0 0.6 5720 7 6 1677887656 2165394042 22499 1448 5840 
11 1218632118 334777 10.0.0.2 4094 10.0 06 5720 5 7 1677884760 2165394042 22497 1448 5840 
12 1218632118 346230 10.0.0 6 5720 10.0 02 4094 2 3 2165394042 1677884760 28729 0 14480 
13 1218632118 346257 10006 5720 10.0.0.2 4094 3 4 2165394042 1677884760 28730 0 14480 
14 1218632118 346270 10.0.0 6 5720 10 0 0.2 4094 4 5 2165394042 1677884760 28731 0 14480 
15 1218632118 346300 10.0 0.6 5720 10.0.0.2 4094 5 6 2165394042 1677889104 28732 0 17378 
16 1218632118 496600 10 0.0.2 4094 10 0 0,6 5720 8 8 1677889104 2165394042 22500 1448 5840 
17 1218632118 496965 10.0.0.2 4094 10 0.0 6 5720 9 9 1677890552 2165394042 22501 1448 5840 
18 1218632118 496967 100-0.2 4094 10.0.0 6 5720 10 10 1677884760 2165394042 22502 1448 5840 
19 1218632118 497365 10 0.0 2 4094 10.0.0 6 5720 11 11 1677892000 2165394042 22503 1448 5840 
20 1218632118 586223 10 0.0.6 5720 10.0 0.2 4094 6 7 2165394042 1677890552 28733 0 20272 
21 1218632118 586252 10.0.0 6 5720 10 0.0.2 4094 7 8 2165394042 1677892000 28734 0 23168 
22 1218632118 586266 10 0.0 6 5720 10 0.0 2 4094 8 9 2165394042 1677892000 28735 0 23168 
23 1218632118 586290 10.0.0 6 5720 10.0.0.2 4094 9 10 2165394042 1677893448 28736 0 26064 
24 1218632118 736775 10.0-02 4094 10 0.0 6 5720 12 12 1677893448 2165394042 22504 1448 5840 
25 1218632118 737158 10-00.2 4094 10.0.0 6 5720 13 13 1677894898 2165394042 22505 1448 5840 
26 1218632118 737160 10 0 0.2 4094 10.0 0.6 5720 15 14 1677897792 2165394042 22507 1448 5840 
27 1218632118 737162 100-0.2 4094 10.0.0 6 5720 16 15 1677899240 2165394042 22508 1448 5840 
28 1218632118 814781 10 0.0.2 4094 10.0.0.6 5720 14 16 1677896344 2165394042 22506 1448 5840 
29 1218632118 826217 10 0.0.6 5720 10 0.0.2 4094 10 11 2165394042 1677894896 28737 0 28960 
30 1218632118 826245 10 0.0 6 5720 10 0 0.2 4094 11 12 2165394042 1677896344 28738 0 31856 
31 1218632118 826262 10.0.0 6 5720 10.0.0.2 4094 12 13 2165394042 1677896344 28739 0 31856 
32 1218632118 826274 10.0.0.6 5720 10.0.0 2 4094 13 14 2165394042 1677896344 28740 0 31856 
33 1218632118 826320 10 0.0 6 5720 10 0.0 2 4094 14 15 2165394042 1677900688 28741 0 34752 
34 1218632118 976731 100-0.2 4094 10.0.0 6 5720 17 17 1677900688 2165394042 22509 1448 5840 
35 1216632118 977055 10 0.0 2 4094 10.0 0.6 5720 18 18 1677902136 2165394042 22510 1448 5840 
36 1218632118 977056 10.0 02 4094 10.0.0 6 5720 19 19 1677903584 2165394042 22511 1448 5840 
37 
38 

1218632118 977058 10.0.0.2 4094 10.0 0.6 5720 21 20 1677906480 2165394042 22513 1448 5840 

39 
1218632118 977454 10.0 0.2 4094 10.0 0.6 5720 23 21 1677909376 2165394042 22515 1448 5840 

40 
1218632119 
1218632119 

55079 10.0.0.2 4094 10.0 0.6 5720 20 22 1677905032 2165394042 22512 1448 5840 

41 1218632119 
55453 10.0 0.2 4094 10.0.0.6 5720 22 23 1677907928 2165394042 22514 1448 5840 

42 1218632119 
55455 10 0.0.2 4094 10006 5720 24 24 1677910824 2165394042 22516 1448 5840 

43 1218632119 
66215 10.0 06 5720 10.0.0.2 4094 15 16 2165394042 1677902136 28742 0 37648 

44 1218632119 
66245 
66268 

10006 5720 10.0 02 4094 16 17 2165394042 1677903584 28743 0 40544 
45 1218632119 66285 

10.0.0.6 5720 10.0 02 4094 17 18 2165394042 1677905032 28744 0 43440 
46 1218632119 66298 

10 0.0.6 5720 10 0.0.2 4094 18 19 2165394042 1677905032 28745 0 43440 
47 1218632119 66327 

10.0 06 
1000 

5720 10.0.0.2 4094 19 20 2165394042 1677905032 28746 0 43440 
48 12186321 19 66340 6 

10 00 6 
5720 10.0 02 4094 20 21 2165394042 1677907928 28747 0 46336 

49 1218632119 66353 . 0 100 
5720 10002 

. 4094 21 22 2165394042 1677910824 28748 0 49232 
50 1218632119 216798 - .6 10002 

5720 10.0 0.2 4094 22 23 2165394042 1677912272 28749 0 52128 
51 1218632119 216807 02 10 0 

4094 10 006 5720 25 25 1677912272 2165394042 22517 1446 5840 
52 1218632119 217149 . - 10 0 02 

4094 10.0.0.6 5720 26 26 1677913720 2165394042 22518 1448 5840 
53 1218632119 217151 . 10 00 2 

4094 10006 5720 27 27 1677915168 2165394042 22519 1448 5840 
54 1218632119 217152 . 0 2 100 

4094 10.0 0.6 5720 28 28 1677916616 2165394042 22520 1448 5840 
55 1218632119 217154 . - 10 002 

4094 100 0,6 5720 29 29 1677918064 2165394042 22521 1448 5840 
56 1218632119 217156 . 10.0 02 

4094 
4094 

10 0.0 6 5720 30 30 1677919512 2165394042 22522 1448 5840 
57 1218632119 217158 10.0-02 4094 

100. ()6 
10 0 

5720 31 31 1677920960 2165394042 22523 1448 5840 
58 1218632119 217549 10002 4094 - -06 1000 

5720 32 32 1677905032 2165394042 22524 1448 5840 
59 1218632119 217551 10.0 0.2 4094 

6 
10 00 6 

5720 33 33 1677922408 2165394042 22525 1448 5840 
60 1218632119 306211 10-0.06 5720 , 10 0 02 

5720 34 34 1677923856 2165394042 22526 1448 5840 
61 1218632119 306241 10006 5720 . 10 00 2 

4094 23 24 2165394042 1677913720 28750 0 55024 
62 1218632119 306264 10-00.6 5720 . 10 00 2 

4094 24 25 2165394042 1677915168 28751 0 57920 
63 1218632119 306287 10.0 0.6 5720 . 10 0 02 

4094 25 26 2165394042 1677916616 28752 0 60816 
64 1218632119 306311 10 0.0 6 5720 . - 10 0 0 2 

4094 26 27 2165394042 1677918064 28753 0 63712 

65 1218632119 306335 10.0.0.6 5720 . . 10.0.0 2 
4094 
4094 

27 28 2165394042 1677919512 28754 0 65160 

66 1218632119 306347 10.0 06 5720 . 10 0,0 2 4094 
28 29 2165394042 1677920960 28755 0 65160 

67 1218632119 306360 10.0.0 6 5720 . 100-0 2 4094 
29 30 2165394042 1677922408 28756 0 65160 

68 1218632119 306373 10006 5720 . 100-0.2 4094 
30 
31 

31 2165394042 1677922408 28757 0 65160 

69 1218632119 306384 10 0.0 6 5720 10,0.0,2 4094 32 
32 2165394042 1677923856 28758 0 65160 

70 1218632119 456629 10002 4094 100-0 6 5720 35 
33 2165394042 1677925304 28759 0 65160 

71 1218632119 457044 10.0.0.2 4094 . 10006 5720 38 
35 1677925304 2165394042 22527 1448 5840 

72 1218632119 457046 10 0.0.2 4094 10.0-06 5720 38 
36 
37 

1677926752 2165394042 22528 1448 5840 

73 1218632119 457444 10 0.0.2 4094 10.0-06 5720 39 38 
1677929648 2165394042 22530 1448 5840 

74 1218632119 457446 10.0.0 2 4094 10.0-06 5720 40 39 
1677931096 
167 

2165394042 22531 1448 5840 

75 1218632119 457448 10.0.0.2 4094 10-0.06 5720 41 40 
7932544 

1677933992 
2165394042 

165 
22532 1448 5840 

76 1218632119 457450 10.0 0.2 4094 10.0 06 5720 42 41 1677935440 
2 394042 
2165394042 

22533 
22534 

1448 
1448 

5840 
5840 

77 1218632119 457452 10.0.0.2 4094 10.0.0 6 5720 43 42 1677936888 2165394042 22535 1448 5840 
78 1218632119 457454 10 0.0.2 4094 10.0.0 6 5720 44 43 1677938336 2165394042 22536 1448 5840 
79 1218632119 457456 10.0 0.2 4094 10.0.0 6 5720 45 44 1677939784 2165394042 22537 1448 5840 
80 1218632119 457844 10.0.0.2 4094 10.0.0 6 5720 46 45 1677941232 2165394042 22538 1448 5840 
81 1218632119 534869 10.0.0.2 4094 10 0.0 6 5720 37 46 1677928200 2165394042 22529 1448 5840 
82 1218632119 546202 10.0.0 6 5720 10.0.0 2 4094 33 34 2185394042 1677926752 28760 0 65160 
83 1218632119 546231 10.0 06 5720 10002 4094 34 35 2165394042 1677928200 28761 0 65160 
84 1218632119 546248 10.0 0.6 5720 10.0.0.2 4094 35 36 2165394042 1677928200 28762 0 65160 
85 1218632119 546260 10 0.0 6 5720 10-0.02 4094 36 37 2165394042 1677928200 28763 0 65160 

86 1218632119 546270 10.0.0.6 5720 10 0.0.2 4094 37 38 2165394042 1677928200 28764 0 65160 
87 1218632119 546281 10.0 06 5720 10.0.02 4094 38 39 2165394042 1677928200 28765 0 65160 
88 1218632119 546292 10.0.0 6 5720 10.0.0.2 4094 39 40 2165394042 1677928200 28766 0 65160 
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A B C D E F G H 1 J K L MN 0 
89 1218632119 546303 10-00-6 5720 10 0 0.2 4094 40 41 2165394042 1677928200 28767 0 65160 

90 1218632119 546314 10.0.0 6 5720 10.0.0 2 4094 41 42 2165394042 1677928200 28768 0 65160 

91 1218632119 546324 10.0.0 6 5720 10.0 02 4094 42 43 2165394042 1677928200 28769 0 65160 
92 1218632119 546335 10.0.0 6 5720 10002 4094 43 44 2165394042 1677928200 28770 0 65160 

93 1218632119 546363 10 0 0.6 5720 10002 4094 44 45 2165394042 1677942680 28771 0 65160 

94 1218632119 696601 10.0 0.2 4094 10.0 06 5720 47 47 1677942680 2165394042 22539 1448 5840 

95 1218632119 696939 10 0.0.2 4094 10006 5720 48 48 1677944128 2165394042 22540 1448 5840 

96 1218632119 696941 10.0.0 2 4094 10.0 06 5720 49 49 1677945576 2165394042 22541 1448 5840 

97 1218632119 696942 10.0.0 2 4094 10.0.0 6 5720 50 50 1677947024 2165394042 22542 1448 5840 

98 1218632119 697338 10.0 0.2 4094 10006 5720 51 51 1677948472 2165394042 22543 1448 5840 

99 1218632119 697339 10002 4094 10006 5720 52 52 1677949920 2165394042 22544 1448 5840 

100 1218632119 697341 10.0 02 4094 10 0.0 6 5720 53 53 1677951368 2165394042 22545 1448 5840 
101 1218632119 697343 10.0 0.2 4094 10006 5720 54 54 1677928200 2165394042 22546 1448 5840 

102 1218632119 697345 10.0.0.2 4094 10006 5720 55 55 1677952816 2165394042 22547 1448 5840 
103 1218632119 697738 10002 4094 10.0.0.6 5720 56 56 1677954264 2165394042 22548 1448 5840 
104 1218632119 697740 10 0.0 2 4094 10 0.0 6 5720 57 57 1677955712 2165394042 22549 1448 5840 
105 1218632119 786196 10.0 06 5720 10.0.0.2 4094 45 46 2165394042 1677944128 28772 0 65160 
106 1218632119 786226 10.0 0.6 5720 10 0 0.2 4094 46 47 2165394042 1677945576 28773 0 65160 
107 1218632119 786248 10.0 0.6 5720 10.0.0.2 4094 47 48 2165394042 1677947024 28774 0 65160 
108 1218632119 786271 10.0.0.6 5720 10.0.0.2 4094 48 49 2165394042 1677948472 28775 0 65160 
109 1218632119 786294 10 0 0.6 5720 10.0.0 2 4094 49 50 2165394042 1677949920 28776 0 65160 
110 1218632119 786317 10 0.0 6 5720 10.0.0 2 4094 50 51 2165394042 1677951368 28777 0 65160 
111 1218632119 786328 10.0.0.6 5720 10.0.0.2 4094 51 52 2165394042 1677952816 28778 0 65160 
112 1218632119 786341 10 0.0 6 5720 10.0 02 4094 52 53 2165394042 1677952816 28779 0 65160 
113 1218632119 786355 10.0 06 5720 10.0.0 2 4094 53 54 2165394042 1677954264 28780 0 65160 
114 1218632119 786367 10.0 0.6 5720 10.0.0.2 4094 54 55 2165394042 1677955712 28781 0 65160 
115 1218632119 786378 10.0.0.6 5720 10.0.0.2 4094 55 56 2165394042 1677957160 28782 0 65160 
116 1218632119 936656 10.0.0.2 4094 10 0.0.6 5720 58 58 1677957160 2165394042 22550 1448 5840 
117 1218632119 937033 10 0.0 2 4094 10 0 0.6 5720 59 59 1677958608 2165394042 22551 1448 5840 
118 1218632119 937035 10.0.0.2 4094 10 0 0.6 5720 60 60 1677960056 2165394042 22552 1448 5840 
119 1218632119 937037 10 0.0.2 4094 10 0 0.6 5720 61 61 1677961504 2165394042 22553 1448 5840 
120 1218632119 937039 10.0.0 2 4094 10 0.0 6 5720 62 62 1677962952 2165394042 22554 1448 5840 
121 1218632119 937433 10.0.0.2 4094 10.0.0 6 5720 63 63 1677964400 2165394042 22555 1448 5840 
122 1218632119 937435 10 0.0 2 4094 10.0.0.6 5720 64 64 1677965848 2165394042 22556 1448 5840 
123 1218632119 937437 10.0 0.2 4094 10.0.0.6 5720 65 65 1677967296 2165394042 22557 1448 5840 
124 1218632119 937438 10 0.0.2 4094 10 0.0 6 5720 66 66 1677968744 2165394042 22558 1448 5840 
125 1218632119 937527 10.0 0.2 4094 10.0.0 6 5720 67 67 1677970192 2165394042 22559 1448 5840 
126 1218632119 937529 10 0.0.2 4094 10.0.0 6 5720 68 68 1677971640 2165394042 22560 1448 5840 
127 1218632119 937531 10 0.0.2 4094 10.0 06 5720 69 69 1677973088 2165394042 22561 1448 5840 
128 1218632119 937935 10 0 0.2 4094 10.0.0 6 5720 70 70 1677974536 2165394042 22562 1448 5840 
129 1218632119 937937 10.0 0.2 4094 10 0.0.6 5720 71 71 1677975984 2165394042 22563 1448 5840 
130 1218632119 937939 10.0 0.2 4094 10 0.0.6 5720 72 72 1677977432 2165394042 22564 1448 5840 
131 1218632120 26191 10.0 06 5720 10 0.0.2 4094 56 57 2165394042 1677958608 28783 0 65160 
132 1218632120 26219 10.0.0 6 5720 10.0.0.2 4094 57 58 2165394042 1677960056 28784 0 65160 
133 1218632120 26242 10.0 06 5720 10 0.0 2 4094 58 59 2165394042 1677961504 28785 0 65160 
134 1218632120 26265 10.0.0.6 5720 10.0.0.2 4094 59 60 2165394042 1677962952 28786 0 65160 
135 1218632120 26288 10.0.0.6 5720 10.0.0 2 4094 60 61 2165394042 1677964400 28787 0 65160 
136 1218632120 26309 10.0.0.6 5720 10.0.0.2 4094 61 62 2165394042 1677965848 28788 0 65160 
137 
138 

1218632120 
1218632120 

26321 10 0.0 6 5720 10.0.0.2 4094 62 63 2165394042 1677967296 28789 0 65160 

139 1218632120 
26333 
26344 

10006 5720 10 0.0.2 4094 63 64 2165394042 1677968744 28790 0 65160 

140 1218632120 26356 
10 0.0 6 5720 10.0 0.2 4094 64 65 2165394042 1677970192 28791 0 65160 

141 1218632120 26368 
10 0.0 6 
10 0 06 

5720 10.0.0.2 4094 65 66 2165394042 1677971640 28792 0 65160 
142 1218632120 26379 . 10 00 6 

5720 10 0.0.2 4094 66 67 2165394042 1677973088 28793 0 65160 
143 1218632120 26393 . 10006 

5720 
5720 

10.0.0.2 4094 67 68 2165394042 1677974536 28794 0 65160 
144 1218632120 62742 10.0 06 5720 

10 0 0.2 
10 0 

4094 68 69 2165394042 1677977432 28795 0 65160 
145 1218632120 176632 10.0 02 4094 . 0.2 

10 0 
4094 69 70 2165394042 1677978880 28796 0 65160 

146 1218632120 177029 10002 4094 . 0.6 
10 0 0 

5720 73 73 1677978880 2165394042 22565 1448 5840 
147 1218632120 177030 10002 4094 . 6 

10006 
5720 74 74 1677980328 2165394042 22566 1448 5840 

148 1218632120 177032 10 0.0 2 4094 10 00 6 
5720 75 75 1677981776 2165394042 22567 1448 5840 

149 1218632120 177034 10 0.0 2 4094 . 1000 a 
5720 76 76 1677983224 2165394042 22568 1448 5840 

150 1218632120 177036 10.0.0.2 4094 . 08 10 0 
5720 77 77 1677984672 2165394042 22569 1448 5840 

151 1218632120 177038 10002 4094 . . 06 10 0 
5720 78 78 1677986120 2165394042 22570 1448 5840 

152 1218632120 177429 10.0.0.2 4094 . - 10c)06 
5720 79 79 1677987568 2165394042 22571 1448 5840 

153 1218632120 177431 10.0 0.2 4094 10.0 0 6 
5720 
5720 

80 80 1677989016 2165394042 22572 1448 5840 
154 1218632120 177433 100 0.2 4094 . . 10 0.0 6 5720 

81 81 1677990464 2165394042 22573 1448 5840 
155 1218632120 177434 10002 4094 . 10.0 06 5720 

82 82 1677991912 2165394042 22574 1448 5840 
156 1218632120 177436 100.0 

.2 4094 10.0 06 5720 
84 
8 

83 1677994808 2165394042 22576 1448 5840 
157 1218632120 177438 10.0 0.2 4094 . 10.0 0 6 5720 

5 84 1677996256 2165394042 22577 1448 5840 
158 1218632120 177440 10.0.0.2 4094 . . 10.0.0.6 5720 

86 
87 

85 1677997704 2165394042 22578 1448 5840 
159 1218632120 177828 10.0.0 2 4094 10.0 06 5720 8 

86 1677999152 2165394042 22579 1448 5840 
160 1218632120 177830 10.0.0 2 4094 . 10 0.0.6 5720 

8 
89 

87 1678000600 2165394042 22580 1448 5840 

161 1218632120 177832 10.002 4094 10.0.0.6 5720 90 
88 1678002048 2165394042 22581 1448 5840 

162 1218632120 177833 10.0 02 4094 10.0.0.6 5720 91 
89 1678003496 2165394042 22582 1448 5840 

163 1218632120 177835 10.0 02 4094 10.0 06 5720 93 
90 1678004944 2165394042 22583 1448 5840 

164 1218632120 177837 10.0.0.2 4094 06 10.0 5720 94 
91 1678007840 2165394042 22585 1448 5840 

165 1216632120 177839 10.0.0.2 4094 . 10.0.0.6 5720 95 
92 
93 

1678009288 2165394042 22586 1448 5840 

166 1218632120 177841 10.0 0.2 4094 10 0.0 6 5720 96 94 
1678010736 2165394042 22587 1448 5840 

167 1218632120 178229 10.0.0.2 4094 10.0.0.6 5720 97 95 
1678012184 2165394042 22588 1448 5840 

168 1218632120 178232 10 0.0.2 4094 10006 5720 98 96 
1678013632 
1678015080 

2165394042 22589 1448 5840 

169 1218632120 178233 10.0.0.2 4094 10.0.0.6 5720 99 97 1678016528 
2165394042 
2165394042 

22590 
22591 

1448 
1448 

5840 
5840 

170 1218632120 213222 10.0 0.2 4094 10.0.0.8 5720 100 98 1678017976 2165394042 22592 1448 5840 
171 1218632120 213629 10.0.0.2 4094 10.0.0.6 5720 101 99 1678019424 2165394042 22593 1448 5840 
172 1218632120 255385 10.0.0.2 4094 10.0.0.6 5720 83 100 1677993360 2165394042 22575 1448 5840 
173 1218632120 255727 10.0.0.2 4094 10.0.0.6 5720 92 101 1678006392 2165394042 22584 1448 5840 
174 1218632120 266257 10 0.0.6 5720 10.0.0.2 4094 70 71 2165394042 1677987568 28797 0 65160 
175 1218632120 266275 10.0 0.6 5720 10.0.0.2 4094 71 72 2165394042 1677990464 28798 0 65160 
176 1218632120 266289 10 0.0 6 5720 10.0.0.2 4094 72 73 2165394042 1677993360 28799 0 65160 
177 1218632120 266303 10.0.0.6 5720 10.0.0.2 4094 73 74 2165394042 1677993360 28800 0 65160 
178 1218632120 266315 10 0.0.6 5720 10.0 0.2 4094 74 75 2165394042 1677993360 28801 0 65160 
179 1218632120 266326 10 0.0 6 5720 10.0.0.2 4094 75 76 2165394042 1677993360 28802 0 65160 
180 1218632120 266337 10.0.0.6 5720 10.0.0.2 4094 76 77 2165394042 1677993360 28803 0 65160 
181 1218632120 266348 10.0.0.6 5720 10.0.0 2 4094 77 78 2165394042 1677993360 28804 0 65160 
182 1218632120 266359 10.0.0 6 5720 10.0.0.2 4094 78 79 2165394042 1677993360 28805 0 65160 

183 1218632120 266370 10 0.0.6 5720 10.0 02 4094 79 80 2165394042 1677993360 28806 0 65180 

184 1218632120 266381 10.0.0.6 5720 10 0.0.2 4094 80 81 2165394042 1677993360 28807 0 65160 

265 



A S C D E F G H I J K L MN 0 
185 1218632120 266394 10 0 0.6 5720 10.0 0.2 4094 81 82 2165394042 1677993360 28808 0 65160 

186 1218632120 266406 10006 5720 10 0 0.2 4094 82 83 2165394042 1677993360 28609 0 65160 

187 1218632120 266416 10.0 0.6 5720 10 0.0.2 4094 83 84 2165394042 1677993360 28810 0 65160 

188 1218632120 266427 10 0 0.6 5720 10.0.0.2 4094 84 85 2165394042 1677993360 28811 0 65160 

189 1218632120 266437 10 0.0.6 5720 10.0.0.2 4094 85 86 2165394042 1677993360 28812 0 65160 

190 1218632120 266448 10 0.0.6 5720 10 0.0.2 4094 86 87 2165394042 1677993360 28813 0 65160 

191 1218632120 266459 10.0 06 5720 10.0 0.2 4094 87 88 2165394042 1677993360 28814 0 65160 

192 1218632120 266470 10 0.0 6 5720 10.0 0.2 4094 88 89 2165394042 1677993360 28815 0 65160 

193 1218632120 266481 10 0.0 6 5720 10.0.0.2 4094 89 90 2165394042 1677993360 28816 0 65160 

194 1218632120 266496 10.0.0.6 5720 10.0 0.2 4094 90 91 2165394042 1678006392 28817 0 65160 

195 1218632120 266509 10 0.0 6 5720 10.0 0.2 4094 91 92 2165394042 1678020872 28818 0 65160 

196 1218632120 416704 10.0.0.2 4094 10.0.0.6 5720 102 102 1678020872 2165394042 22594 1448 5840 

197 1218632120 417124 10.0.0.2 4094 10.0 0.6 5720 103 103 1678022320 2165394042 22595 1448 5840 
198 1218632120 417126 10.0 0.2 4094 10.0.0.6 5720 104 104 1678023768 2165394042 22596 1448 5840 
199 1218632120 417128 10 0.0.2 4094 10.0.0.6 5720 105 105 1678025216 2165394042 22597 1448 5840 
200 1218632120 417130 10.0.0.2 4094 10.0.0.6 5720 106 106 1678026664 2165394042 22598 1448 5840 
201 1218632120 417131 10.0.0.2 4094 10.0.0.6 5720 107 107 1678028112 2165394042 22599 1448 5840 
202 1218632120 417133 10.0.0 2 4094 10.0 06 5720 108 108 1678029560 2165394042 22600 1448 5840 
203 1218632120 417135 10 0.0 2 4094 10.0 06 5720 110 109 1678032456 2165394042 22602 1448 5840 
204 1218632120 417525 10 0.0 2 4094 10.0.0.6 5720 111 110 1678033904 2165394042 22603 1448 5840 
205 1218632120 417527 10 0.0 2 4094 10.0.0.6 5720 112 111 1678035352 2165394042 22604 1448 5840 
206 1218632120 417528 10 0.0.2 4094 10.0.0.6 5720 113 112 1678036800 2165394042 22605 1448 5840 
207 1218632120 417530 10.0 0.2 4094 10.0 0.6 5720 114 113 1678038248 2165394042 22606 1448 5840 
208 1218632120 417532 10.0 0.2 4094 10.0.0.6 5720 115 114 1678039696 2165394042 22607 1448 5840 
209 1218632120 417534 10 0 0.2 4094 10 0.0.6 5720 116 115 1678041144 2165394042 22608 1448 5840 
210 1218632120 417536 10 0.0.2 4094 10.0.0 6 5720 117 116 1678042592 2165394042 22609 1448 5840 
211 1218632120 417538 10 0.0.2 4094 10.0.0 6 5720 118 117 1678044040 2165394042 22610 1448 5840 
212 1218632120 417924 10.0.0.2 4094 10-0.06 5720 119 118 1678045488 2165394042 22611 1448 5840 
213 1218632120 417927 10.0.0.2 4094 10.0.0 6 5720 120 119 1678046936 2165394042 22612 1448 5840 
214 1218632120 417929 10.0.0.2 4094 10.0 0.6 5720 121 120 1678048384 2165394042 22613 1448 5840 
215 1218632120 417930 10.0.0.2 4094 10006 5720 122 121 1678049832 2165394042 22614 1448 5840 
216 1218632120 417932 10.0.0.2 4094 10 0 0.6 5720 123 122 1677993360 2165394042 22615 1448 5840 
217 1218632120 418323 10 0.0.2 4094 10 0.0 6 5720 124 123 1678051280 2165394042 22616 1448 5840 
218 1218632120 418324 10.0.0.2 4094 10.0.0.6 5720 125 124 1678052728 2165394042 22617 1448 5840 
219 1218632120 418326 10.0.0.2 4094 10.0 06 5720 126 125 1678054176 2165394042 22618 1448 5840 
220 1218632120 418723 10.0 0.2 4094 10-0.06 5720 127 126 1678055624 2165394042 22619 1448 5840 
221 1218632120 418724 10 0.0.2 4094 10.0 0.6 5720 128 127 1678057072 2165394042 22620 1448 5840 
222 1218632120 418726 10 0.0.2 4094 10.0.0 6 5720 129 128 1678058520 2165394042 22621 1448 5840 
223 1218632120 495077 10.0.0.2 4094 10.0 0.6 5720 109 129 1678031008 2165394042 22601 1448 5840 
224 1218632120 506183 10.0.0 6 5720 10.0.0.2 4094 92 93 2165394042 1678022320 28819 0 65160 
225 1218632120 506214 10.0.0.6 5720 10.0 0.2 4094 93 94 2165394042 1678023768 28820 0 65160 
226 1218632120 506237 10.0 0.6 5720 10.0 0.2 4094 94 95 2165394042 1678025216 28821 0 65160 
227 
228 

1218632120 506260 10.0.0.6 5720 10.0 0.2 4094 95 96 2165394042 1678026664 28822 0 65160 

229 
1218632120 
1218632120 

506284 10 0.0.6 5720 10.0.0.2 4094 96 97 2165394042 1678028112 28823 0 65160 

230 1218632120 
506308 10.0.0 6 5720 10.0.0.2 4094 97 98 2165394042 1678029560 28824 0 65160 

231 1218632120 
506320 10.0.0.6 5720 10.0.0.2 4094 98 99 2165394042 1678031008 28825 0 65160 

232 1218632120 
506335 10.0.0.6 5720 10.0.0.2 4094 99 100 2165394042 1678031008 28826 0 65160 

233 1218632120 
506346 10.0.0.6 5720 10.0.0.2 4094 100 101 2165394042 1678031008 28827 0 65160 

234 1218632120 
506358 
506869 

10.0 0.6 5720 10.0.0.2 4094 101 102 2165394042 1678031008 28828 0 65160 
235 1218632120 506381 

10.0.0 6 5720 10.0.0.2 4094 102 103 2165394042 1678031008 28829 0 65160 
236 1218632120 506391 

10 0.0 6 5720 10002 4094 103 104 2165394042 1678031008 28830 0 65160 
237 1218632120 506403 

10.0 06 5720 10.0.0.2 4094 104 105 2165394042 1678031008 28831 0 65160 
238 1218632120 506414 

10 0 0.6 5720 10.0 0.2 4094 105 106 2165394042 1678031008 28832 0 65160 
239 1218632120 506425 

10.0.0 6 5720 10.0 0.2 4094 106 107 2165394042 1678031008 28833 0 65160 
240 1218632120 506436 

10.0.0.6 
lo 'o 0 

5720 10.0 0.2 4094 107 108 2165394042 1678031008 28834 0 65160 
241 1218632120 506460 6 

10 0 06 
5720 10 0.0.2 4094 108 109 2165394042 1678031008 28835 0 65160 

242 3 1218632120 506460 . . 10 0 0 6 
5720 10 0 0.2 4094 109 110 2165394042 1678031008 28836 0 65160 

243 1218632120 506472 . . . 10 00 6 
5720 10.0.0 2 4094 110 111 2165394042 1678031008 28837 0 65160 

244 1218632120 506483 - - '0006 
5720 1000.2 4094 111 112 2165394042 1678031008 28838 0 65160 

245 1218632120 506496 10006 
5720 10 0.0 2 4094 112 113 2165394042 1678031008 28839 0 65160 

246 1218632120 506507 10 00 6 
5720 10.0.0.2 4094 113 114 2165394042 1678031008 28840 0 65160 

247 1218632120 506518 - . 10006 
5720 10 00.2 4094 114 115 2165394042 1678031008 28841 0 65160 

248 1218632120 506529 10.0.0.6 
5720 
5720 

100-0.2 4094 115 116 2165394042 1678031008 28842 0 65160 
249 1218632120 506541 10 0.0 6 5720 

10.0.0 2 4094 116 117 2165394042 1678031008 28843 0 65160 
250 1218632120 506552 10.0 06 5720 

10.0.0.2 4094 117 118 2165394042 1678031008 28844 0 65160 
251 1218632120 506568 10 0.0 6 5720 

100-0.2 4094 118 119 2165394042 1678031008 28845 0 65160 
252 1218632120 656660 10 0.0.2 4094 

10 0.0 2 
10 0 

4094 119 120 2165394042 1678059968 28846 0 65160 
253 1218632120 657019 10.0.0.2 4094 . 06 5720 130 130 1678059968 2165394042 22622 1448 5840 
254 1218632120 657021 10 0.0 2 4094 

10.0.0.6 
10 0 0 

5720 131 131 1678061416 2165394042 22623 1448 5840 
255 1218632120 657023 10.0.0.2 4094 . .6 10 0 

5720 132 132 1678062864 2165394042 22624 1448 5840 
256 1218632120 657418 10.0 0.2 4094 .06 10 0 

5720 133 133 1678064312 2165394042 22625 1448 5840 
257 1218632120 657420 10 0.0 2 4094 . . 0.6 

10 006 
5720 
57 

134 134 1678065760 2165394042 22626 1448 5840 

258 1218632120 657818 10.0 02 4094 . 10 0 06 
20 

57 
135 135 1678067208 2165394042 22627 1448 5840 

259 1218632120 657820 10 0.0.2 4094 . 10 0 06 
20 

5720 
137 136 1678031008 2165394042 22629 1448 5840 

260 1218632120 657822 10.0 0.2 4094 . - 10 00 6 5720 
138 
139 

137 1678070104 2165394042 22630 1448 5840 

261 1218632120 657824 10.0.0 2 4094 . . 10 00 6 5720 140 
138 1678071552 2165394042 22631 1448 5840 

262 1218632120 658218 10.0 0.2 4094 . 10 006 5720 141 
139 1678073000 2165394042 22632 1448 5840 

263 1218632120 658220 10.0 0.2 4094 . 10.0-06 5720 142 
140 
141 

1678074448 
16 

2165394042 22633 1448 5840 

264 1218632120 658222 10.0.0.2 4094 10.0.0 6 5720 143 142 
78075896 

1678077344 
2165394042 
2165394042 

22634 
6 

1448 5840 

265 1218632120 658224 10.0 0.2 4094 10 0 0.6 5720 144 143 1678078792 2165394042 
35 22 

22636 
1448 
1448 

5840 
5840 

266 1218632120 658619 10.0.0.2 4094 10.0-06 5720 145 144 1678080240 2165394042 22637 1448 5840 
267 1218632120 658620 10.0.0.2 4094 10.0.0.6 5720 146 145 1678081688 2165394042 22638 1448 5640 
268 1218632120 658622 10.0.0.2 4094 10 0.0.6 5720 147 146 1678083136 2165394042 22639 1448 5840 
269 1218632120 658624 10.0.0.2 4094 10.0.0.6 5720 148 147 1678084584 2165394042 22640 1448 5840 
270 1218632120 735375 10.0.0.2 4094 10 0.0.6 5720 136 148 1678068656 2165394042 22628 1448 5840 
271 1218632120 746174 10.0 0.6 5720 10.0.0.2 4094 120 121 2165394042 1678061416 28847 0 65160 
272 1218632120 746202 10 0.0.6 5720 10.0 0.2 4094 121 122 2165394042 1678062864 28848 0 65160 
273 1218632120 746225 10.0.0.6 5720 10.0.0.2 4094 122 123 2165394042 1678064312 28849 0 65160 
274 1218632120 746247 10.0.0.6 5720 100.02 4094 123 124 2165394042 1678065760 28850 0 65160 
275 1218632120 746270 10.0.0.6 5720 10.0.0 2 4094 124 125 2165394042 1678067208 28851 0 65160 
276 1218632120 746293 10 0.0 6 5720 10.0.0.2 4094 125 126 2165394042 1678068656 28852 0 65160 
277 1218632120 746305 10.0.0.6 5720 10 0.0 2 4094 126 127 2165394042 1678068656 28853 0 65160 
278 1218632120 746320 10.0.0 6 5720 10.0.0.2 4094 127 128 2165394042 1678068656 28854 0 65160 

279 1218632120 746331 10.0.0 6 5720 10.0.0.2 4094 128 129 2165394042 1678068656 28855 0 65160 

280 1218632120 746342 10 0.0.6 5720 10.0.0.2 4094 129 130 2165394042 1678068656 28856 0 65160 

266 



A B C D E F G H I J K L MN 0 
281 1218632120 746354 10.0.0 6 5720 10 0.0.2 4094 130 131 2165394042 1678068656 28857 0 65160 

282 1218632120 746365 10.0 06 5720 10.0.0.2 4094 131 132 2165394042 1678068656 28858 0 65160 

283 1218632120 746376 10006 5720 10002 4094 132 133 2165394042 1678068656 28859 0 65160 

284 1218632120 746387 10.0.0 6 5720 10 0.0 2 4094 133 134 2165394042 1678068656 28860 0 65160 

285 1218632120 746399 10.0 06 5720 10 0.0.2 4094 134 135 2165394042 1678068656 28861 0 65160 

286 1218632120 746410 10.0 06 5720 10.0.0.2 4094 135 136 2165394042 1678068656 28862 0 65160 

287 1218632120 746421 10 0 0.6 5720 10.0.0.2 4094 136 137 2165394042 1678068656 28863 0 65160 

288 1218632120 746432 10 0.0 6 5720 10.0.0.2 4094 137 138 2165394042 1678068656 28864 0 65160 

289 1218632120 746447 10.0 06 5720 10.0.0 2 4094 138 139 2165394042 1678086032 28865 0 65160 
290 1218632120 896630 10.0.0.2 4094 10 0.0 6 5720 149 149 1678086032 2165394042 22641 1448 5840 
291 1218632120 897014 10.0 0.2 4094 10.0.0 6 5720 150 150 1678087480 2165394042 22642 1448 5840 

292 1218632120 897016 10.0 0.2 4094 10.0.0.6 5720 151 151 1678088928 2165394042 22643 1448 5840 
293 1218632120 897017 10 0.0.2 4094 10.0.0.6 5720 152 152 1678090376 2165394042 22644 1448 5840 
294 1218632120 897019 10.0.0.2 4094 10.0.0.6 5720 153 153 1678091824 2165394042 22645 1448 5840 
295 1218632120 897021 10 0.0 2 4094 10.0.0 6 5720 154 154 1678093272 2165394042 22646 1448 5840 
296 1218632120 897023 10002 4094 10.0 0.6 5720 155 155 1678094720 2165394042 22647 1448 5840 
297 1218632120 897413 10 0.0.2 4094 10.0.0.6 5720 156 156 1678096168 2165394042 22648 1448 5840 
298 1218632120 897415 10 0 0.2 4094 10.0 06 5720 157 157 1678097616 2165394042 22649 1448 5840 
299 1218632120 897416 10.0 0.2 4094 10.0.0 6 5720 158 158 1678099064 2165394042 22650 1448 5840 
300 1218632120 897418 10.0.0.2 4094 10.0.0.6 5720 159 159 1678100512 2165394042 22651 1448 5840 
301 1218632120 897420 10 0.0.2 4094 10 0.0 6 5720 160 160 1678101960 2165394042 22652 1448 5840 
302 1218632120 897422 10.0.0.2 4094 10006 5720 161 161 1678103408 2165394042 22653 1448 5840 
303 1218632120 897815 10.0.0.2 4094 10 0 0.6 5720 162 162 1678104856 2165394042 22654 1448 5840 
304 1218632120 897817 10 0 0.2 4094 10.0.0.6 5720 163 163 1678106304 2165394042 22655 1448 5840 
305 1218632120 897819 10.0 0.2 4094 10.0.0 6 5720 165 164 1678109200 2165394042 22657 1448 5840 
306 1218632120 897821 10.0 0.2 4094 10.0 0.6 5720 166 165 1678110648 2165394042 22658 1448 5840 
307 1218632120 897822 10 0 0.2 4094 10.0 0.6 5720 167 166 1678112096 2165394042 22659 1448 5840 
308 1218632120 897824 10.0 0.2 4094 10.0.0.6 5720 168 167 1678113544 2165394042 22660 1448 5840 
309 1218632120 898213 10 0 0.2 4094 10.0 06 5720 169 168 1678114992 2165394042 22661 1448 5840 
310 1218632120 898214 10.0 02 4094 10.0.0.6 5720 170 169 1678116440 2165394042 22662 1448 5840 
311 1218632120 898216 10 0 0.2 4094 10.0.0.6 5720 171 170 1678117888 2165394042 22663 1448 5840 
312 1218632120 898218 10 0 0.2 4094 10.0 0.6 5720 172 171 1678119336 2165394042 22664 1448 5840 
313 1218632120 898220 10 0.0 2 4094 10.0 0.6 5720 173 172 1678120784 2165394042 22665 1448 5840 
314 1218632120 975584 10.0.0.2 4094 10.0.0.6 5720 164 173 1678107752 2165394042 22656 1448 5840 
315 1218632120 986171 10.0 0.6 5720 10 0.0.2 4094 139 140 2165394042 1678087480 28866 0 65160 
316 1218632120 986201 10.0.0.6 5720 10.0 0.2 4094 140 141 2165394042 1678088928 28867 0 65160 
317 1218632120 986224 10.0.0.6 5720 10.0 0.2 4094 141 142 2165394042 1678090376 28868 0 65160 
318 1218632120 986264 10.0 0.6 5720 10.0 0.2 4094 142 143 2165394042 1678091824 28869 0 65160 
319 1218632120 986289 10.0.0 6 5720 10.0.0 2 4094 143 144 2165394042 1678093272 28870 0 65160 
320 1218632120 986312 10.0 06 5720 10.0 02 4094 144 145 2165394042 1678094720 28871 0 65160 
321 
322 

1218632120 
1218 

986325 10 0.0 6 5720 10.0 02 4094 145 146 2165394042 1678096168 28872 0 65160 

323 
632120 

1218632120 
986337 10.0.0 6 5720 10 0.0 2 4094 146 147 2165394042 1678097616 28873 0 65160 

324 1218632120 
986348 
986360 

10.0.0 6 
1 

5720 10.0.0 2 4094 147 148 2165394042 1678099064 28874 0 65160 
325 1218632120 986371 

0 0.0.6 5720 10.0 0.2 4094 148 149 2165394042 1678100512 28875 0 65160 
326 1218632120 986382 

10006 5720 10 0.0.2 4094 149 150 2165394042 1678101960 28876 0 65160 
327 1218632120 986393 

10 0.0 6 5720 10.0.0.2 4094 150 151 2165394042 1678103408 28877 0 65160 
328 1218632120 986404 

100-0.6 5720 10 0 0.2 4094 151 152 2165394042 1678104856 28878 0 65160 
329 1218632120 986422 

10.0 0.6 
10006 

5720 10.0.0.2 4094 152 153 2165394042 1678106304 28879 0 65160 
330 1218632120 986434 10 00 6 

5720 10.0 0.2 4094 153 154 2165394042 1678107752 28880 0 65160 
331 1218632120 986446 . . 10006 

5720 10.0.0 2 4094 154 155 2165394042 1678107752 28881 0 65160 
332 1218632120 986456 10006 

5720 
5720 

10.0.0 2 4094 155 156 2165394042 1678107752 28882 0 65160 
333 121 8632120 986467 10006 5720 

10.0.0.2 4094 156 157 2165394042 1678107752 28883 0 65160 
334 121 8632120 986478 1 0 

.0 0 
.6 5720 

10.0-02 4094 157 158 2165394042 1678107752 28884 0 65160 
335 121 8632120 986489 1 0 0 0 6 5720 

10 0 0.2 
100 

4094 158 159 2165394042 1678107752 28885 0 65160 
336 121 8632120 986500 10 0.0 6 5720 

02 
10,002 

4094 159 160 2165394042 1678107752 28886 0 65160 
337 1218632120 986511 10.0.0 6 5720 . 10 002 

4094 160 161 2165394042 1678107752 28887 0 65160 
338 1218632120 986526 10.0.0.6 5720 . 10 00 2 

4094 161 162 2165394042 1678107752 28888 0 65160 
339 1218632121 136587 10.0.0.2 4094 . . 10 00 6 

4094 162 163 2165394042 1678122232 28889 0 65160 
340 1218632121 136945 10.0 02 4094 . 10 006 

5720 174 174 1678122232 2165394042 22666 1448 5840 
341 1218632121 137310 100-0.2 4094 10006 

5720 176 175 1678125128 2165394042 22668 1448 5840 
342 1218632121 137312 10 0.0.2 4094 10 0 06 

5720 177 176 1678126576 2165394042 22669 1448 5840 
343 1218632121 137314 10 0 0.2 4094 . . 10.0.0 6 

5720 
5720 

178 177 1678128024 2165394042 22670 1448 5640 
344 1218632121 137316 10.0.0.2 4094 . 10.0.0 6 5720 

179 178 1678129472 2165394042 22671 1448 5840 
345 1218632121 137318 10.0.0.2 4094 . 10.0.0 6 5720 

180 179 1678130920 2165394042 22672 1448 5840 
346 1218632121 137320 1000.2 4094 . 10006 5720 

181 180 1678132368 2165394042 22673 1448 5840 
347 1218632121 137322 10 0.0 2 4094 10.0 06 5720 

182 181 1678133816 2165394042 22674 1448 5840 
348 1218632121 137324 10.0.0.2 4094 10.0.0 6 5720 

183 182 1678135264 2165394042 22675 1448 5840 
349 1218632121 137708 10.0 0.2 4094 . 10006 5720 

184 183 1678136712 2165394042 22676 1448 5840 
350 1218632121 137710 10 0 0.2 4094 10.0.0 6 5720 

185 
186 

184 1678138160 2165394042 22677 1448 5840 
351 1218632121 137712 10.0.0.2 4094 10 0.0.6 5720 187 

185 1678139608 2165394042 22678 1448 5840 
352 1218632121 137714 10.0.0.2 4094 10.0.0.6 5720 188 

186 1678141056 2165394042 22679 1448 5840 
353 1218632121 137716 10.0.0.2 4094 10-0.06 5720 189 

187 1678142504 2165394042 22680 1448 5840 
354 1218632121 137718 10.0.0.2 4094 10-00.6 5720 190 

188 1678143952 2165394042 22681 1448 5840 

355 1218632121 137720 10.0.0.2 4094 10.0.0 6 5720 191 
189 1678145400 2165394042 22682 1448 5840 

356 1218632121 137802 10.0.0.2 4094 . 10.0.0 6 5720 192 
190 
191 

1678146848 2165394042 22683 1448 5840 
357 1218632121 137805 10 0.0.2 4094 10.0.0.6 5720 193 192 

1678148296 
1678149744 

2165394042 22684 1448 5840 

358 1218632121 138208 10.0 0.2 4094 10.0 06 5720 195 193 1678152640 
2165394042 22685 1448 5840 

359 1218632121 138210 10.0.0.2 4094 10.0.0.6 5720 196 194 1678154088 
2165394042 
2165394042 

22687 
2 6 

1448 5840 

360 1218632121 138212 10.0.0.2 4094 10.0.0.6 5720 197 195 1678155536 2165394042 
2 88 

22689 
1448 
1448 

5840 

361 1218632121 138214 10.0.0.2 4094 10.0.0.6 5720 198 196 1678156984 2165394042 22690 1448 
5840 
5840 

362 1218632121 138216 10.0.0.2 4094 10 0.0 6 5720 199 197 1678158432 2165394042 22691 1448 5840 
363 1218632121 138218 10.0 0.2 4094 10.0.0 6 5720 200 198 1678159880 2165394042 22692 1448 5840 
364 1218632121 138219 10 0.0.2 4094 10006 5720 201 199 1678161328 2165394042 22693 1448 5840 
365 1218632121 138610 10.0.0 2 4094 10.0.0.6 5720 202 200 1678162776 2165394042 22694 1448 5840 
366 1218632121 138612 10.0.0.2 4094 10.0 06 5720 203 201 1678164224 2165394042 22695 1448 5840 
367 1218632121 138614 10.0.0.2 4094 10.0.0.6 5720 204 202 1678165672 2165394042 22696 1448 5840 
368 1218632121 138616 10 0.0.2 4094 10.0.0.6 5720 205 203 1678167120 2165394042 22697 1448 5840 
369 1218632121 138618 10.0.0.2 4094 10.0.0 6 5720 206 204 1678168568 2165394042 22698 1448 5840 
370 1218632121 136620 10.0.0.2 4094 10.0.0.6 5720 207 205 1678170016 2165394042 22699 1448 5840 
371 1218632121 138622 10 0.0.2 4094 10.0.0.6 5720 208 206 1678171464 2165394042 22700 1448 5840 
372 1218632121 139009 10 0.0 2 4094 10.0.0.6 5720 209 207 1678172912 2165394042 22701 1448 5840 
373 1218632121 139012 10.0.0.2 4094 10.0.0.6 5720 210 208 1678174360 2165394042 22702 1448 5840 

374 1218632121 139014 10.0.0.2 4094 10,0.0 6 5720 211 209 1678175808 2165394042 22703 1448 5840 

375 1218632121 214756 10 0.0.2 4094 10.0.0.6 5720 175 210 1678123680 2165394042 22667 1448 5840 

376 1218632121 215895 10.0.0.2 4094 10.0.0.6 5720 194 211 1678151192 2165394042 22686 1448 5840 

267 



A 8 C O E F G H 1 J K L MN 0 
377 1218632121 226168 10 0 0.6 5720 10.0.0.2 4094 163 164 2165394042 1678123680 28890 0 65160 

378 1218632121 226191 10006 5720 10.0.0.2 4094 164 165 2165394042 1678123680 28891 0 65160 

379 1218632121 226203 10006 5720 10.0 0.2 4094 165 166 2165394042 1678123680 28892 0 65160 

380 1218632121 226214 10 0.0 6 5720 10.0.0.2 4094 166 167 2165394042 1678123680 28893 0 65160 

381 1218632121 226225 10 0 0.6 5720 10 0.0.2 4094 167 168 2165394042 1678123680 28894 0 65160 

382 1218632121 226237 10.0.0.6 5720 10.002 4094 168 169 2165394042 1678123680 28895 0 65160 

383 1218632121 226248 10 0.0 6 5720 10.0 0.2 4094 169 170 2165394042 1678123680 28896 0 65160 

384 1218632121 226259 10 0.0 6 5720 10.0.0.2 4094 170 171 2165394042 1678123680 28897 0 65160 

385 1218632121 226270 10 0 0.6 5720 10 0 02 4094 171 172 2165394042 1678123680 28898 0 65160 

386 1218632121 226281 10 0.0 6 5720 10.0 0.2 4094 172 173 2165394042 1678123680 28899 0 65160 
387 1218632121 226292 10.0.0 6 5720 10.0.0.2 4094 173 174 2165394042 1678123680 28900 0 65160 
388 1218632121 226303 10.0 06 5720 10.0.0.2 4094 174 175 2165394042 1678123680 28901 0 65160 
389 1218632121 226314 10.0 06 5720 10.0.0.2 4094 175 176 2165394042 1678123680 28902 0 65160 
390 1218632121 226326 10.0 06 5720 10.0.0.2 4094 176 177 2165394042 1678123680 28903 0 65160 
391 1218632121 226339 10.0.0 6 5720 10 0.0.2 4094 177 178 2165394042 1678123680 28904 0 65160 
392 1218632121 226350 10006 5720 10.0.02 4094 178 179 2165394042 1678123680 28905 0 65160 
393 1218632121 226361 10.0.0 6 5720 10.00-2 4094 179 180 2165394042 1678123680 28906 0 65160 
394 1218632121 226372 10.0-06 5720 10.00-2 4094 180 181 2165394042 1678123680 28907 0 65160 
395 1218632121 226383 10 0.0 6 5720 10.0.0.2 4094 181 182 2165394042 1678123680 28908 0 65160 
396 1218632121 226397 10.0.0.6 5720 10.0.0.2 4094 182 183 2165394042 1678123680 28909 0 65160 
397 1218632121 226409 10.0.0.6 5720 10.0.0.2 4094 183 184 2165394042 1678123680 28910 0 65160 
398 1218632121 226420 10.0.0 6 5720 10 0.0.2 4094 184 185 2165394042 1678123680 28911 0 65160 
399 1218632121 226431 10 0.0 6 5720 10.0.0.2 4094 185 186 2165394042 1678123680 28912 0 65160 
400 1218632121 226442 10.0.0.6 5720 10.0 0.2 4094 186 187 2165394042 1678123680 28913 0 65160 
401 1218632121 226453 10.0.0.6 5720 10.0.0.2 4094 187 188 2165394042 1678123680 28914 0 65160 
402 1218632121 226465 10.0.0 6 5720 10.0.0.2 4094 188 189 2165394042 1678123680 28915 0 65160 
403 1218632121 226476 10 0.0 6 5720 10.0.0.2 4094 189 190 2165394042 1678123680 28916 0 65160 
404 1218632121 226487 10.0.0 6 5720 10.0.0.2 4094 190 191 2165394042 1678123680 28917 0 65160 
405 1218632121 226498 10.0.0 6 5720 10.0.0.2 4094 191 192 2165394042 1678123680 28918 0 65160 
406 1218632121 226509 10.0.0 6 5720 10.0.0.2 4094 192 193 2165394042 1678123680 28919 0 65160 
407 1218632121 226520 10.0.0 6 5720 10.0.0.2 4094 193 194 2165394042 1678123680 28920 0 65160 
408 1218632121 226531 10 0 0.6 5720 10.0.0.2 4094 194 195 2165394042 1678123680 28921 0 65160 
409 1218632121 226542 10.0.0 6 5720 10.0 0.2 4094 195 196 2165394042 1678123680 28922 0 65160 
410 1218632121 226553 10.0.0 6 5720 10.0.0.2 4094 196 197 2165394042 1678123680 28923 0 65160 
411 1218632121 226565 10.0 0.6 5720 10.0.0.2 4094 197 198 2165394042 1678123680 28924 0 65160 
412 1218632121 226577 10.0.0 6 5720 10.0.0.2 4094 198 199 2165394042 1678123680 28925 0 65160 
413 1218632121 226609 10 0.0.6 5720 10.0.0.2 4094 199 200 2165394042 1678151192 28926 0 65160 
414 1218632121 226625 10.0.0 6 5720 10.0.0.2 4094 200 201 2165394042 1678177256 28927 0 65160 
415 1218632121 376702 10.0.0.2 4094 10.0.0.6 5720 212 212 1678177256 2165394042 22704 1448 5840 
416 1218632121 377106 10.0 0.2 4094 10.0.0 6 5720 213 213 1678178704 2165394042 22705 1448 5840 
417 
418 

1218632121 
1218632121 

377108 10.0.02 4094 10.0.0 6 5720 214 214 1678180152 2165394042 22706 1448 5840 

419 1218632121 
377110 
377112 

10.0.0.2 
1 

4094 10.0.0 6 5720 215 215 1678181600 2165394042 22707 1448 5840 
420 1218632121 377505 

0.0 02 
1 

4094 10.0.0 6 5720 216 216 1678183048 2165394042 22708 1448 5840 
421 1218632121 377508 

0 0.0.2 4094 10.0.0 6 5720 217 217 1678184496 2165394042 22709 1448 5840 
422 1218632121 377510 

10 0.0.2 4094 10 0.0 6 5720 218 218 1678185944 2165394042 22710 1448 5840 
423 1218632121 377905 

10 0.0.2 4094 10-0.06 5720 219 219 1678187392 2165394042 22711 1448 5840 
424 1218632121 377907 

10 0.0.2 4094 10.0.0 6 5720 220 220 1678123680 2165394042 22712 1448 5840 
425 1218632121 378452 

10 0.0.2 4094 10.0.0.6 5720 221 221 1678151192 2165394042 22713 1448 5840 
426 1218632121 378606 

10 0.0.2 
10 0 0 2 

4094 
4 

10.0.0 6 5720 222 222 1678188840 2165394042 22714 1448 6840 
427 1218632121 466157 . . . 10006 

094 10.0.0.6 5720 223 223 1678190288 2165394042 22715 1448 5840 
428 1218632121 466187 10006 

5720 
5720 

10 002 4094 201 202 2165394042 1678178704 28928 0 65160 
429 1218632121 466210 10006 5720 

10 0.02 
1 4094 202 203 2165394042 1678180152 28929 0 65160 

430 
431 

1218632121 
1216632121 

466232 10.006 5720 
1000 
10 002 

4094 
409 

203 204 2165394042 1678181600 28930 0 65160 

432 121 8632121 466278 
466254 10 0 0.6 5720 . 10 

. 0.0 2 
4 

4094 
204 
205 

205 2165394042 1678183048 28931 0 65160 

433 1216632121 466290 
1()-006 6 5720 100 0.2 4094 206 

206 2165394042 1678184496 28932 0 65160 

434 121 8632121 4663 03 
5720 10.0.0.2 4094 207 

207 2165394042 1678185944 28933 0 65160 

435 1216632121 466316 
10 0.0.6 5720 10.0 0.2 4094 208 

208 2165394042 1678187392 28934 0 65160 

436 1218632121 466329 
10.0 06 
10 00 6 

5720 10002 4094 209 
209 
210 

2165394042 1678188840 28935 0 65160 

437 121 8632121 466342 . . 10.00.6 
5720 
5720 

10-00.2 
10 0 02 

4094 210 211 
2165394042 
2165394042 

1678188840 
1678188840 

28936 
28937 

0 
0 

65160 
65160 

438 121 B632121 466353 10.0.0.6 5720 . . 10.0 0.2 
4094 
4094 

211 212 2165394042 1678190288 28938 0 65160 
439 1218632121 616651 10-00.2 4094 10-00.6 5720 

212 213 2165394042 1678191736 28939 0 65160 
440 1218632121 616662 10.0.0.2 4094 10 0 0.6 5720 

224 224 1678191736 2165394042 22716 1448 5840 
441 1218632121 616999 10.0 0.2 4094 10 0.0.6 5720 

225 
226 

225 1678193184 2165394042 22717 1448 5840 
442 1218632121 617002 10 0.0 2 4094 10-0-06 5720 228 

226 1678194632 2165394042 22718 1448 5840 
443 1218632121 617399 10.0.0.2 4094 10-0-06 5720 229 

227 1678197528 2165394042 22720 1448 5840 
444 1218632121 617401 10.0.0.2 4094 10.0.0 6 5720 230 

228 1678198976 2165394042 22721 1448 5840 
445 1218632121 617403 100.0.2 4094 10.0.0.6 5720 231 

229 1678200424 2165394042 22722 1448 5840 
446 1218632121 617405 10.0.0.2 4094 10 0.0 6 5720 232 

230 1678201872 2165394042 22723 1448 5840 
447 1218632121 617799 10.0.0.2 4094 10 006 5720 234 

231 1678203320 2165394042 22724 1448 5840 
448 1218632121 617801 10.0 0.2 4094 

. 
100.0.6 5720 235 

232 1678206216 2165394042 22726 1448 5840 
449 1218632121 617803 10.0 0.2 4094 10.0 0.6 5720 236 

233 1678207664 2165394042 22727 1448 5840 
450 1218632121 617804 10.0.0.2 4094 10.00-6 5720 237 

234 1678209112 2165394042 22728 1448 5840 
451 1218632121 695089 10.0.0.2 4094 10.0.0.6 5720 227 

235 
236 

1678210560 2165394042 22729 1448 5840 
452 1218632121 695498 10.0.0.2 4094 10.0.0.6 5720 233 237 

1678196080 
1678204768 

2165394042 22719 1448 5840 
453 1218632121 706151 10.0.0.6 5720 10.0.0.2 4094 213 214 2165394042 

2165394042 22725 1448 5840 
454 1218632121 706180 10.0.0.6 5720 10.0.0.2 4094 214 215 2165394042 

1678193184 28940 0 65160 
455 1218632121 706204 10.0.0.6 5720 10.0.0.2 4094 215 216 21 65394042 

1678194632 
1 

28941 0 65160 

456 1218632121 706221 10.0 0.6 5720 10.0.0.2 4094 216 217 21 65394042 
678196080 

1678196080 
28942 0 65160 

457 1218632121 706232 10.0.0 6 5720 10.0.0.2 4094 217 218 2165394042 167819W80 
28943 
28944 

0 
0 

65160 

458 1218632121 706243 10.0.0.6 5720 10.0.0.2 4094 218 219 2165394042 1678196080 28945 
65160 

459 1218632121 706254 10.0.0.6 5720 10.0.0.2 4094 219 220 2165394042 1678196080 28946 
0 
0 

65160 

460 1218632121 706265 10.0.0.6 5720 10.0.0.2 4094 220 221 2165394042 1678196080 28947 0 
65160 

461 1218632121 706277 10.0.0 6 5720 10.0.0.2 4094 221 222 2165394042 1678196080 28948 0 
65160 

462 1218632121 706288 10 0.0.6 5720 10.0.0.2 4094 222 223 2165394042 1678196080 28949 0 
65160 
65160 

463 1218632121 706299 10 0.0 6 5720 10.0.0.2 4094 223 224 2165394042 1678196080 28950 0 65160 
464 1218632121 706309 10.0.0.6 5720 10.0.0.2 4094 224 225 2165394042 1678196080 28951 0 65160 
465 1218632121 706338 10 0.0.6 5720 10.0.0.2 4094 225 226 2165394042 1678204768 28952 0 65160 
466 1218632121 706351 10.0.0 6 5720 10.0 0.2 4094 226 227 2165394042 1678212008 28953 0 65160 
467 1218632121 856602 10.0.0.2 4094 10.0.0 6 5720 238 238 1678212008 2165394042 22730 1448 5840 
468 1218632121 856614 10.0 0.2 4094 10.0.0.6 5720 239 239 1678213456 2165394042 22731 1448 5840 
469 1218632121 856994 ZO 0.2 4094 10.0.0.6 5720 240 240 1678214904 2165394042 22732 1448 5840 

470 1218632121 856996 10.0.0.2 4094 10 0.0 6 5720 241 241 1678216352 2165394042 22733 1448 5840 
471 1218632121 656997 10.0.0.2 4094 10.0 06 5720 242 242 1678217800 2165394042 22734 1448 5840 

472 1218632121 857393 10.0.0.2 4094 10 0.0.6 5720 243 243 1678219248 2165394042 22735 1448 5840 

268 



A B G D E F 0 N 1 J K L MN 0 
473 1218632121 857395 10002 4094 10006 5720 244 244 1676220696 2165394042 22736 1448 5840 
474 1218632121 857396 10002 4094 10006 5720 245 245 1678222144 2165394042 22737 1448 5840 
475 1218632121 857398 10002 4094 10006 5720 246 246 1678223592 2165394042 22738 1448 5840 
476 1218632121 857400 10002 4094 10 006 5720 247 247 1678225040 2165394042 22739 1448 5840 
477 1218632121 857794 10002 4094 10006 5720 248 248 1678226488 2165394042 22740 1448 5840 
478 1218632121 857795 10002 4094 10006 5720 249 249 1678227936 2165394042 22741 1448 5840 
479 1218632121 857797 10002 4094 10006 5720 250 250 1678229384 2165394042 22742 1448 5840 
480 1218632121 857799 10002 4094 10006 5720 251 251 1678230832 2165394042 22743 1448 5840 
481 1218632121 857801 10002 4094 10006 5720 252 252 1678232280 2165394042 22744 1448 5840 
482 1218632121 857803 10.0 02 4094 10006 5720 253 253 1678233728 2165394042 22745 1448 5840 
483 1218632121 857805 10002 4094 10006 5720 254 254 1678235176 2165394042 22746 1448 5840 484 1218632121 858293 10 0 0.2 4094 10.0 06 5720 255 255 1678236624 2165394042 22747 1448 5840 485 1218632121 858295 10 0 0.2 4094 10006 5720 256 256 1678238072 2165394042 22748 1448 5840 486 1218632121 946147 10006 5720 10002 4094 227 228 2165394042 1678213456 28954 0 65160 487 1218632121 946177 10006 5720 10.0 02 4094 228 229 2165394042 1678214904 28955 0 65160 488 1218632121 946200 10006 5720 10002 4094 229 230 2165394042 1678216352 28956 0 65160 489 1218632121 946224 10006 5720 10002 4094 230 231 2165394042 1678217800 28957 0 65160 490 1218632121 946247 10 0.0 6 5720 10.0 02 4094 231 232 2165394042 1678219248 28958 0 65160 491 1218632121 946270 10006 5720 10.0 02 4094 232 233 2165394042 1678220696 28959 0 65160 492 1218632121 946282 10006 5720 10.0 02 4094 233 234 2165394042 1678222144 28960 0 65160 
493 1218632121 946294 10006 5720 10.0 0.2 4094 234 235 2165394042 1678223592 28961 0 65160 
494 1218632121 946305 10.0.0 6 5720 10.0.0 2 4094 235 236 2165394042 1678225040 28962 0 65160 
495 1218632121 946316 10.0 06 5720 10.0 0.2 4094 236 237 2165394042 1678226488 28963 0 65160 
496 1218632121 946327 10006 5720 10.0 0.2 4094 237 238 2165394042 1678227936 28964 0 65160 
497 1218632121 946338 10 0 0.6 5720 10-00-2 4094 238 239 2165394042 1678229384 28965 0 65160 
498 1218632121 946350 10.0 0.6 5720 10.0 0.2 4094 239 240 2165394042 1678230832 28966 0 65160 
499 1218632121 946363 10.0.0 6 5720 10 0.0.2 4094 240 241 2165394042 1678233728 28967 0 65160 
500 1218632121 946377 10.0.0.6 5720 10.0.0.2 4094 241 242 2165394042 1678236624 28968 0 65160 
501 1218632121 946390 10.0 06 5720 10.0.0 2 4094 242 243 2165394042 1678239520 28969 0 65160 
502 1218632122 96677 10.0.0.2 4094 10.0.0 6 5720 257 257 1678239520 2165394042 22749 1448 5840 
503 1218632122 96692 10 0 0.2 4094 10006 5720 258 258 1678240968 2165394042 22750 1448 5840 
504 1218632122 97089 10 0 0.2 4094 10 0.0.6 5720 259 259 1678242416 2165394042 22751 1448 5840 
505 1218632122 97091 10.0.0.2 4094 10 0.0 6 5720 260 260 1678243864 2165394042 22752 1448 5840 
506 1218632122 97093 10.0.0.2 4094 10.0 06 5720 261 261 1678245312 2165394042 22753 1448 5840 
507 1218632122 97095 10.0.0.2 4094 10.0.0.6 5720 262 262 1678246760 2165394042 22754 1448 5840 
508 1218632122 97097 10.0.0.2 4094 10.0.0.6 5720 263 263 1678248208 2165394042 22755 1448 5840 
509 1218632122 97099 10.0.0.2 4094 10 0.0 6 5720 264 264 1678249656 2165394042 22756 1448 5840 
510 1218632122 97490 10.0 0.2 4094 10.0.0 6 5720 265 265 1678251104 2165394042 22757 1448 5840 
511 1218632122 97492 10.0.0.2 4094 10.0.0.6 5720 266 266 1678252552 2165394042 22758 1448 5840 
512 1218632122 97494 10.0 02 4094 10 0.0 6 5720 268 267 1678255448 2165394042 22760 1448 5840 
513 1218632122 97496 10.0.0.2 4094 10 0.0 6 5720 269 268 1678256896 2165394042 22761 1448 5840 
514 1218632122 97498 10.0 0.2 4094 10-0-06 5720 271 269 1678259792 2165394042 22763 1448 5840 
515 1218632122 97500 10 0.0.2 4094 10.0.0.6 5720 272 270 1678261240 2165394042 22764 1448 5840 
516 1218632122 97889 10 0 0.2 4094 10006 5720 273 271 1678262688 2165394042 22765 1448 5840 
517 1218632122 97891 10.0.0.2 4094 10.0.0.6 5720 274 272 1678264136 2165394042 22766 1448 5840 
518 1218632122 97892 10 0.0.2 4094 10.0.0 6 5720 275 273 1678265584 2165394042 22767 1448 5840 
519 1218632122 97894 10.0.0.2 4094 10.0.0 6 5720 276 274 1678267032 2165394042 22768 1448 5840 
520 1218632122 97896 10.0.0.2 4094 10.0.0 6 5720 277 275 1678268480 2165394042 22769 1448 5840 
521 1218632122 97898 10.0.0.2 4094 10 0.0 6 5720 278 276 1678269928 2165394042 22770 1448 5840 
522 1218632122 97900 10.0.0.2 4094 10.0.0 6 5720 279 277 1678271376 2165394042 22771 1448 5840 
523 1218632122 97901 10002 4094 10.0 06 5720 280 278 1678272824 2165394042 22772 1448 5840 
524 1218632122 98289 10 0.0.2 4094 10.0 06 5720 281 279 1678274272 2165394042 22773 1448 5840 
525 1218632122 98291 10 0 0.2 4094 10006 5720 282 280 1678275720 2165394042 22774 1448 5840 
526 1218632122 98292 10002 4094 10006 5720 283 281 1678277168 2165394042 22775 1448 5840 
527 1218632122 98294 10002 4094 10006 5720 284 282 1678278616 2165394042 22776 1448 5840 
528 1218632122 98296 10.0.0.2 4094 10.0 06 5720 285 283 1678280064 2165394042 22777 1448 5840 
529 1218632122 98298 10 0 0.2 4094 10006 5720 286 284 1678281512 2165394042 22778 1448 5840 
530 1218632122 98300 10 0 0.2 4094 10.0 06 5720 287 285 1678282960 2165394042 22779 1448 5840 
531 1218632122 98302 10 0 0.2 4094 10006 5720 288 286 1678284408 2165394042 -22780 1448 5840 
532 1218632122 98690 10 0 0.2 4094 10006 5720 289 287 1678285856 2165394042 22781 1448 5840 
533 1218632122 98693 10002 4094 10 0.0 6 5720 290 288 1678287304 2165394042 22782 1448 5840 
534 1218632122 98694 10002 4094 10 0.0 6 5720 291 289 1678288752 2165394042 22783 1448 5840 
535 1218632122 175383 10 0 0.2 4094 10006 5720 267 290 1678254000 2165394042 22759 1448 5840 
536 1218632122 175787 10.0.0.2 4094 10.0-06 5720 270 291 1678258344 2165394042 22762 1448 5840 
537 1218632122 186219 10006 5720 10 0.02 4094 243 244 2165394042 1678248208 28970 0 65160 
538 1218632122 186239 10 0 0.6 5720 10002 4094 244 245 2165394042 1678251104 28971 0 65160 
539 1218632122 186254 10.0 06 5720 100.02 4094 245 246 2165394042 1678254000 28972 0 65160 
540 1218632122 186270 10.0.0 6 5720 10.0 02 4094 246 247 2165394042 1678254000 28973 0 65160 
541 1218632122 186282 10006 5720 10-0.02 4094 247 248 2165394042 1678254000 28974 0 65160 
542 1218632122 186296 10.0 0.6 5720 10.0.0.2 4094 248 249 2165394042 1678254000 28975 0 65160 
543 1218632122 186308 10.0.0 6 5720 10 0 0.2 4094 249 250 2165394042 1678254000 28976 0 65160 
544 1218632122 186319 10.0.0.6 5720 10.0.0.2 4094 250 251 2165394042 1678254000 28977 0 65160 
545 1218632122 186330 10.0 06 5720 10.0 0.2 4094 251 252 2165394042 1678254000 28978 0 65160 
546 1218632122 186341 10.0.0 6 5720 10 0.0.2 4094 252 253 2165394042 1678254000 28979 0 65160 
547 1218632122 186352 10 0.0 6 5720 10 0.0 2 4094 253 254 2165394042 1678254000 28980 0 65160 
548 1218632122 186363 10 0.0 6 5720 10.0.0 2 4094 254 255 2165394042 1678254000 28981 0 65160 
549 1218632122 186373 10.0.0 6 5720 10.0.0 2 4094 255 256 2165394042 1678254000 28982 0 65160 
550 1218632122 186385 10 0.0 6 5720 10.0.0.2 4094 256 257 2165394042 1678254000 28983 0 65160 
551 1218632122 186396 10.0 06 5720 10.0.0.2 4094 257 258 2165394042 1678254000 28984 0 65160 
552 1218632122 186406 10.0.0.6 5720 10.0.0 2 4094 258 259 2165394042 1678254000 28985 0 65160 
553 1218632122 186417 10.0 0.6 5720 10.0.0 2 4094 259 260 2165394042 1678254000 28986 0 65160 
554 1218632122 186429 10 0.0.6 5720 10 0.0.2 4094 260 261 2165394042 1678254000 28987 0 65160 
555 1218632122 186440 10.0.0 6 5720 10 0 0.2 4094 261 262 2165394042 1678254000 28988 0 65160 
556 1218632122 186450 10.0 0.6 5720 10.0.0.2 4094 262 263 2165394042 1678254000 28989 0 65160 
557 1218632122 186462 10.0.0.6 5720 10 0.0.2 4094 263 264 2165394042 1678254000 28990 0 65160 
558 1218632122 186472 10.0.0 6 5720 10 0.0.2 4094 264 265 2165394042 1678254000 28991 0 65160 
559 1218632122 186483 10.0.0 6 5720 10.0 0.2 4094 265 266 2165394042 1678254000 28992 0 65160 
560 1218632122 186494 10.0 0.6 5720 10.0.0.2 4094 266 267 2165394042 1678254000 28993 0 65160 
561 1218632122 186505 10.0.0 6 5720 10 0.0.2 4094 267 268 2165394042 1678254000 28994 0 65160 
562 1218632122 186516 10.0 06 5720 10.0-02 4094 268 269 2165394042 1678254000 28995 0 65160 
563 1218632122 186531 10 0 0.6 5720 10.0.0.2 4094 269 270 2165394042 1678258344 28996 0 65160 
564 1218632122 186571 10.0.0 6 5720 10.0.0 2 4094 270 271 2165394042 1678290200 28997 0 65160 
565 1218632122 336764 10.0.0.2 4094 10.0.0 6 5720 292 292 1678290200 2165394042 22784 1448 5840 
566 1218632122 337084 10.0.0.2 4094 10 0.0.6 5720 293 293 1678291648 2165394042 22785 1448 5840 
567 1218632122 337086 10 0.0.2 4094 10.0.0.6 5720 294 294 1678293096 2165394042 22786 1448 5840 
568 1218632122 337088 10.0.0 2 4094 10.0.0.6 5720 295 295 1678294544 2165394042 22787 1448 5840 
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569 1218632122 337090 10002 4094 10 0 0.6 5720 296 296 1678295992 2165394042 22788 1448 5840 

570 1218632122 337092 10.0.0.2 4094 10 0.0 6 5720 297 297 1678297440 2165394042 22789 1448 5840 

571 1218632122 337464 10 0 0.2 4094 10006 5720 298 298 1678298888 2165394042 22790 1448 5840 

572 1218632122 337486 10 0.0 2 4094 10.0 06 5720 299 299 1678300336 2165394042 22791 1448 5840 

573 1218632122 337487 10002 4094 10006 5720 300 300 1678301784 2165394042 22792 1448 5840 

574 1218632122 337489 10 0 0.2 4094 10006 5720 301 301 1678303232 2165394042 22793 1448 5840 

575 1218632122 337491 10 0.0 2 4094 10.0.0 6 5720 302 302 1678304680 2165394042 22794 1448 5840 

576 1218632122 337493 10.0 0.2 4094 10 0.0 6 5720 303 303 1678306128 2165394042 22795 1448 5840 

577 1218632122 337495 10.0 0.2 4094 10.0.0 6 5720 304 304 1678307576 2165394042 22796 1448 5840 

578 1218632122 337886 10.0.0.2 4094 10.0 06 5720 305 305 1678309024 2165394042 22797 1448 5840 

579 1218632122 337888 10 0.0 2 4094 10 0.0 6 5720 306 306 1678310472 2165394042 22798 1448 5840 

580 1218632122 337890 10002 4094 10006 5720 307 307 1678311920 2165394042 22799 1448 5840 

581 1218632122 337891 10 0 0.2 4094 10.0 06 5720 308 308 1678313368 2165394042 22800 1448 5840 

582 1218632122 338284 10 0.0 2 4094 10006 5720 310 309 1678316264 2165394042 22802 1448 5840 

583 1218632122 338286 10 0 0.2 4094 10 0.0 6 5720 311 310 1678317712 2165394042 22803 1448 5840 

584 1218632122 338684 10 0 0.2 4094 10.0 06 5720 312 311 1678319160 2165394042 22804 1448 5840 
585 1218632122 338686 10 0 0.2 4094 10.0.0 6 5720 313 312 1678320608 2165394042 22805 1448 5840 
586 1218632122 338688 10 0 0.2 4094 10 0.0 6 5720 314 313 1678322056 2165394042 22806 1448 5840 
587 1218632122 338689 10 0.0.2 4094 10.0 06 5720 315 314 1678323504 2165394042 22807 1448 5840 
588 1218632122 338691 10.0.0.2 4094 10.0.0 6 5720 316 315 1678324952 2165394042 22808 1448 5840 
589 1218632122 415829 10.0 0.2 4094 10 0.0 6 5720 309 316 1678314816 2165394042 22801 1448 5840 
590 1218632122 426137 10.0 06 5720 10 0.0.2 4094 271 272 2165394042 1678291648 28998 0 65160 
591 1218632122 426167 10 0.0.6 5720 10.0.0.2 4094 272 273 2165394042 1678293096 28999 0 65160 
592 1218632122 426190 10 0.0 6 5720 10.0.0.2 4094 273 274 2165394042 1678294544 29000 0 65160 
593 1218632122 426212 10.0 06 5720 10.0.0.2 4094 274 275 2165394042 1678295992 29001 0 65160 
594 1218632122 426235 10.0 0.6 5720 10.0.0.2 4094 275 276 2165394042 1678297440 29002 0 65160 
595 1218632122 426260 10006 5720 10.0.0 2 4094 276 277 2165394042 1678298888 29003 0 65160 
596 1218632122 426271 10 0.0 6 5720 10 0.0.2 4094 277 278 2165394042 1678300336 29004 0 65160 
597 1218632122 426283 10.0.0 6 5720 10 0.0.2 4094 278 279 2165394042 1678301784 29005 0 65160 
598 1218632122 426294 10.0.0.6 5720 10.0.0.2 4094 279 280 2165394042 1678303232 29006 0 65160 
599 1218632122 426306 10.0 06 5720 10.0.0.2 4094 280 281 2165394042 1678304680 29007 0 65160 
600 1218632122 426317 10.0 0.6 5720 10.0.0.2 4094 281 282 2165394042 1678306128 29008 0 65160 
601 1218632122 426329 10.0 0.6 5720 10 0.0.2 4094 282 283 2165394042 1678307576 29009 0 65160 
602 1218632122 426340 10 0.0 6 5720 10.0 0.2 4094 283 284 2165394042 1678309024 29010 0 65160 
603 1218632122 426354 10 0.0 6 5720 10.0 0.2 4094 284 285 2165394042 1678311920 29011 0 65160 
604 1218632122 426369 10 0.0 6 5720 10.0 0.2 4094 285 286 2165394042 1678314816 29012 0 65160 
605 1218632122 426385 10 0.0.6 5720 10.0.0.2 4094 286 287 2165394042 1678314816 29013 0 65160 
606 1218632122 426397 10 0 0.6 5720 10.0 0.2 4094 287 288 2165394042 1678314816 29014 0 65160 
607 1218632122 426408 10.0 0.6 5720 10.0.0.2 4094 288 289 2165394042 1678314816 29015 0 65160 
608 1218632122 426419 10006 5720 10.0.0.2 4094 289 290 2165394042 1678314816 29016 0 65160 
609 1218632122 426429 10006 5720 10 0 0.2 4094 290 291 2165394042 1678314816 29017 0 65160 
610 1218632122 426441 10 0.0.6 5720 10.0.0.2 4094 291 292 2165394042 1678314816 29018 0 65160 
611 1218632122 426452 10 0 0.6 5720 10 0 0.2 4094 292 293 2165394042 1678314816 29019 0 65160 
612 
613 

1218632122 426467 10.0 06 5720 10 002 4094 293 294 2165394042 1678326400 29020 0 65160 

614 
1218632122 
1218632122 

576603 10.0 0.2 4094 10.0 0.6 5720 317 317 1678326400 2165394042 22809 1448 5840 

615 1218632122 
576979 10 0 0.2 4094 10.0 06 5720 318 318 1678327848 2165394042 22810 1448 5840 

616 1218632122 
576982 
576984 

10 0 0.2 4094 10-0.06 5720 319 319 1678329296 2165394042 22811 1448 5840 
617 1218632122 576986 

10 0 0.2 4094 10.0 06 5720 320 320 1678330744 2165394042 22812 1448 5840 
618 1218632122 577379 

10 0 0.2 4094 10.0 06 5720 321 321 1678332192 2165394042 22813 1448 5840 
619 1218632122 577381 

10 0 0.2 4094 10.0 06 5720 322 322 1678333640 2165394042 22814 1448 5840 
620 1218632122 577383 

10 0 0.2 
10 00 2 

4094 10 006 5720 323 323 1678335088 2165394042 22815 1448 5840 
621 121 8632122 577385 . . 10 002 

4094 10.0 0.6 5720 324 324 1678336536 2165394042 22816 1448 5840 
622 1218632122 577386 10 00 2 

4094 10006 5720 325 325 1678337984 2165394042 22817 1448 5840 
623 121 8632122 577388 . 10 00 2 

4094 10.0 06 5720 326 326 1678339432 2165394042 22818 1448 5840 
624 1218632122 577390 . 10002 

4094 
4094 

10 006 5720 327 327 1678340880 2165394042 22819 1448 5840 
625 1218632122 577779 10-00 2 4094 

10006 5720 328 328 1678342328 2165394042 22820 1448 5840 
626 1218632122 577781 . 10.0.0.2 4094 

10006 
10 00 6 

5720 329 329 1678343776 2165394042 22821 1448 5840 
627 1218632122 577783 10 0 0.2 4094 . . 10 006 

5720 330 330 1678345224 2165394042 22822 1448 5840 
628 1218632122 577785 10.0 02 4094 . 10 006 

5720 331 331 1678346672 2165394042 22823 1448 5840 
629 1218632122 577787 10002 4094 . 10 006 

5720 332 332 1678348120 2165394042 22824 1448 5840 
630 1218632122 577789 10002 4094 . 10006 

5720 333 333 1678349568 2165394042 22825 1448 5840 
631 1218632122 577790 10002 4094 10-00 6 

5720 
5720 

334 334 1678351016 2165394042 22826 1448 5840 
632 1218632122 577793 10.0.0.2 4094 . 10 0 06 5720 

335 335 1678352464 2165394042 22827 1448 5840 
633 1218632122 578178 10.0.0 2 4094 . 10.0.0 6 5720 

336 336 1678353912 2165394042 22828 1448 5840 
634 1218632122 578180 10 0.0 2 4094 10 0.0 6 5720 

337 337 1678355360 2165394042 22829 1448 5840 
635 1218632122 578182 10.00.2 4094 10-0-06 5720 

338 338 1678356808 2165394042 22830 1448 5840 
636 1218632122 578184 10-0.02 4094 10.0.0 6 5720 

339 
340 

339 1678358256 2165394042 22831 1448 5840 
637 1218632122 578186 10.0 0.2 4094 10 0.0 6 5720 341 

340 1678359704 2165394042 22832 1448 5840 
638 1218632122 578188 10.0.0.2 4094 10.0.0.6 5720 342 

341 1678361152 2165394042 22833 1448 5840 
639 1218632122 578189 10.0.0.2 4094 10.0.0 6 5720 343 

342 1678362600 2165394042 22834 1448 5840 
640 1218632122 578191 10.0.0.2 4094 10.0.0 6 5720 344 

343 1678364048 2165394042 22835 1448 5640 
641 1218632122 578193 10 0.0.2 4094 10.0.0.6 5720 345 

344 1678365496 2165394042 22836 1448 5840 
642 1218632122 578578 10 0.0.2 4094 10.0-06 5720 348 

345 1678366944 2165394042 22837 1448 5840 
643 1218632122 578581 10 0.0.2 4094 10-0.06 5720 347 

346 
347 

1678368392 2165394042 22838 1448 5840 

644 1218632122 578583 10.0.0.2 4094 10.0.0.6 5720 348 348 
1678369840 
1678371288 

2165394042 22839 1448 5840 

645 1218632122 578585 10 0.0.2 4094 10.0.0 6 5720 349 349 1678372736 
2165394042 
2165394042 

22840 1448 5840 

646 1218632122 578586 10.0.0.2 4094 10 0.0 6 5720 350 350 1678374184 2165394042 
22841 
22842 

1448 
1448 

5840 

647 1218632122 578588 10.0.0.2 4094 10 0.0 6 5720 351 351 1678375632 2165394042 22843 1448 
5840 
5840 

648 1218632122 578978 10 0 0.2 4094 10 0.0.6 5720 352 352 1678377080 2165394042 22844 1448 5840 
649 1218632122 578980 10.0.0.2 4094 10.0.0.6 5720 353 353 1678378528 2165394042 22845 1448 5840 
650 1218632122 578982 10.0 0.2 4094 10-0.06 5720 354 354 1678379976 2165394042 22846 1448 5840 
651 1218632122 578984 10 0.0.2 4094 10.0.0.6 5720 355 355 1678381424 2165394042 22847 1448 5840 
652 1218632122 578986 10.0.0.2 4094 10.0.0.6 5720 356 356 1678382872 2165394042 22848 1448 5840 
653 1218632122 666130 10 0 0.6 5720 10.0.0.2 4094 294 295 2165394042 1678327848 29021 0 65160 
654 1218632122 666159 10 0.0 6 5720 10.0.0.2 4094 295 296 2165394042 1678329296 29022 0 65160 
655 1218632122 666182 10.0.0.6 5720 10.0 0.2 4094 296 297 2165394042 1678330744 29023 0 65160 
656 1218632122 666205 10 0.0.6 5720 10.0.0.2 4094 297 298 2165394042 1678332192 29024 0 65160 
657 1218632122 666229 10.0.0.6 5720 10.0 0.2 4094 298 299 2165394042 1678333640 29025 0 65160 
658 1218632122 666251 10.0.0.6 5720 10.0.0.2 4094 299 300 2165394042 1678335088 29026 0 65160 
659 1218632122 666263 10 0.0 6 5720 10.0.0 2 4094 300 301 2165394042 1678336536 29027 0 65160 
660 1218632122 666274 10.0.0.6 5720 10.0.0.2 4094 301 302 2165394042 1678337984 29028 0 65160 
661 1218632122 666285 10.0.0.6 5720 10 0.0 2 4094 302 303 2165394042 1678339432 29029 0 65160 

662 1218632122 666297 10.0.0.6 5720 10.0.0.2 4094 303 304 2165394042 1678340880 29030 0 65160 

663 1218632122 666308 10 0.0 6 5720 10.0 0.2 4094 304 305 2165394042 1678342328 29031 0 65160 

664 1218632122 666319 10 0.0.6 5720 10.0.0.2 4094 305 306 2165394042 1678343776 29032 0 65160 

270 
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665 1218632122 666330 10.0 06 5720 10.0.0 2 4094 306 307 2165394042 1678345224 29033 0 65160 

666 1218632122 666340 10.0 06 5720 10.0.0.2 4094 307 308 2165394042 1678346672 29034 0 65160 

667 1218632122 666356 10006 5720 100-0.2 4094 308 309 2165394042 1678349568 29035 0 65160 

668 1218632122 666370 10 0.0 6 5720 10.0 0.2 4094 309 310 2165394042 1678352464 29036 0 65160 

669 1218632122 666383 10006 5720 10 0.0.2 4094 310 311 2165394042 1678355360 29037 0 65160 

670 1218632122 666397 10006 5720 10.0.0.2 4094 311 312 2165394042 1678358256 29038 0 65160 

671 1218632122 666410 10 0.0 6 5720 10.0.0.2 4094 312 313 2165394042 1678361152 29039 0 65160 

672 1216632122 666424 10.0 0.6 5720 10 0.0.2 4094 313 314 2165394042 1678364048 29040 0 65160 

673 1218632122 666437 10 0 0.6 5720 1D. 00.2 4094 314 315 2165394042 1678366944 29041 0 65160 

674 1218632122 666450 10.0.0 6 5720 10.0.0.2 4094 315 316 2165394042 1678369840 29042 0 65160 

675 1218632122 666464 10.0 0.6 5720 10 0.0.2 4094 316 317 2165394042 1678372736 29043 0 65160 

676 1218632122 666477 10 0 0.6 5720 10.00-2 4094 317 318 2165394042 1678375632 29044 0 65160 

677 1218632122 666490 10006 5720 10.0 0.2 4094 318 319 2165394042 1678378528 29045 0 65160 

678 1218632122 666504 10 0.0 6 5720 10.0.0.2 4094 319 320 2165394042 1678381424 29046 0 65160 

679 1218632122 666517 10.0.0.6 5720 10.0.0.2 4094 320 321 2165394042 1678384320 29047 0 65160 

680 1218632122 816696 10.0 0.2 4094 10.0 0.6 5720 357 357 1678384320 2165394042 22849 1448 5840 
681 1218632122 816716 10.0 0.2 4094 10.0.0 6 5720 358 358 1678385768 2165394042 22850 1448 5840 
682 1218632122 817077 10.0 0.2 4094 10.0.0 6 5720 359 359 1678387216 2165394042 22851 1448 5840 
683 1218632122 817079 10.0.0.2 4094 10.0.0 6 5720 360 360 1678388664 2165394042 22852 1448 5840 
684 1216632122 617081 10.0.0.2 4094 10.0.0.6 5720 361 361 1678390112 2165394042 22853 1448 5840 
685 1218632122 817083 10.0.0.2 4094 10.0.0 6 5720 362 362 1678391560 2165394042 22854 1448 5840 
686 1218632122 817085 10.0 0.2 4094 10006 5720 363 363 1678393008 2165394042 22855 1448 5840 
687 1218632122 817086 10 0.0.2 4094 10.0.0.6 5720 364 364 1678394456 2165394042 22856 1448 5840 
688 1218632122 817474 10.0.0.2 4094 10.0 0.6 5720 365 365 1678395904 2165394042 22857 1448 5840 
689 1218632122 817476 10 0.0.2 4094 10 0.0 6 5720 366 366 1678397352 2165394042 22858 1448 5840 
690 1218632122 817478 10.0.0.2 4094 10.0.0 6 5720 367 367 1678398800 2165394042 22859 1448 5840 
691 1218632122 817480 10 0 0.2 4094 10.0 0.6 5720 368 368 1678400248 2165394042 22860 1448 5840 
692 1218632122 817482 10.0.0.2 4094 10.0.0.6 5720 369 369 1678401696 2165394042 22861 1448 5840 
693 1218632122 817875 10 0.0.2 4094 10.0.0 6 5720 370 370 1678403144 2165394042 22862 1448 5840 
694 1218632122 817877 10.0.0.2 4094 10 0.0 6 5720 371 371 1678404592 2165394042 22863 1448 5840 
695 1218632122 817879 10.0.0.2 4094 10.0.0.6 5720 372 372 1678406040 2165394042 22864 1448 5840 
696 1218632122 817881 10.0.0.2 4094 10.0.0.6 5720 373 373 1678407488 2165394042 22865 1448 5840 
697 1218632122 817883 10.0 0.2 4094 10.0.0 6 5720 374 374 1678408936 2165394042 22866 1448 5840 
698 1218632122 817884 10.0 02 4094 10.0.0.6 5720 375 375 1678410384 2165394042 22867 1448 5840 
699 1218632122 817886 10.0.0.2 4094 10 0.0 6 5720 376 376 1678411832 2165394042 22868 1448 5840 
700 1218632122 817888 10 0.0 2 4094 10 0 0.6 5720 377 377 1678413280 2165394042 22869 1448 5840 
701 1218632122 818276 10.0.0 2 4094 10.0.0 6 5720 378 378 1678414728 2165394042 22870 1448 5840 
702 1218632122 818278 10.0.0 2 4094 10.0.0.6 5720 379 379 1678416176 2165394042 22871 1448 5840 
703 1218632122 818280 10.0.0 2 4094 10.0 06 5720 380 380 1678417624 2165394042 22872 1448 5840 
704 1218632122 818282 10 0.0.2 4094 10.0.0.6 5720 381 381 1678419072 2165394042 22873 1448 5840 
705 
706 

1218632122 818283 10.0.0.2 4094 10.0 0.6 5720 382 382 1678420520 2165394042 22874 1448 5840 

707 
1218632122 
1218632122 

818285 100-0-2 4094 10.0 06 5720 383 383 1678421968 2165394042 22875 1448 5840 
708 1218632122 

818674 10 0 0.2 4094 10.0.0.6 5720 384 384 1678423416 2165394042 22876 1448 5840 
709 1218632122 

818675 10 0 0.2 4094 10 0.0 6 5720 385 385 1678424864 2165394042 22877 1448 5840 
710 1218632122 818677 

818679 
10 0 0.2 4094 10.0.0 6 5720 386 386 1678426312 2165394042 22878 1448 5840 

711 1218632122 818681 
10 0.0.2 4094 10 0 0.6 5720 387 387 1678427760 2165394042 22879 1448 5840 

712 1218632122 818683 
10 0.0 2 4094 10 0.0 6 5720 388 388 1678429208 2165394042 22880 1448 5840 

713 1218632122 816685 
10.0.0 2 4094 10 0.0.6 5720 389 389 1678430656 2165394042 22881 1448 5840 

714 1218632122 819073 
10.0.0 2 4094 10 0.0.6 5720 390 390 1678432104 2165394042 22882 1448 5840 

715 1218632122 819075 
10 0.0.2 4094 10 0.0.6 5720 392 391 1678435000 2165394042 22884 1448 5840 

716 1218632122 819077 
10 0.0.2 4094 10006 5720 393 392 1678436448 2165394042 22885 1448 5840 

717 1218632122 819079 
10 0.0.2 4094 10.0.0 6 5720 394 393 1678437896 2165394042 22886 1448 5840 

718 1218632122 819081 
10.0 02 
10 00 2 

4094 
4 

10 0.0 6 5720 396 394 1678440792 2165394042 22888 1448 5840 
719 1218632122 819082 . 10 00 2 

094 
4 

10.0.0 6 5720 397 395 1678442240 2165394042 22889 1448 5840 
720 1218632122 819064 . 10.0.0 2 

094 
4094 

10006 
10 006 

5720 
5 

398 396 1678443688 2165394042 22890 1448 5840 
721 1218632122 819473 10 0.0 2 4094 . 10 0 06 

720 
5720 

399 
4 

397 1678445136 2165394042 22891 1448 5840 
722 121 8632122 819475 10 0.0 2 4094 . 10.0 0 6 5720 

00 
4 

398 1678446584 2165394042 22892 1448 5840 
723 1216632122 896699 10 0.0.2 4094 . 10 00 6 5720 

01 399 1678448032 2165394042 22893 1448 5840 
724 1218632122 897072 10-0-02 4094 . 0 06 10 5720 

391 400 1678433552 2165394042 22883 1448 5840 
725 1218632122 906200 10 0.0 6 5720 . - 10 0 0 2 4094 

395 401 1678439344 2165394042 22887 1448 5840 
726 1218632122 906220 10 0.0 6 5720 . . 10 00 2 4094 

321 322 2165394042 1678393008 29048 0 65160 
727 1218632122 906234 10 0.0 6 5720 . 10.0.0.2 4094 

322 
323 

323 2165394042 1678395904 29049 0 65160 
728 1218632122 906248 10.0.0 6 5720 10.0 02 4094 3 

324 2165394042 1678398800 29050 0 65160 
729 1218632122 906261 10 0.0 6 5720 10.0 0.2 4094 

24 
325 

325 2165394042 1678401696 29051 0 65160 
730 1218632122 906275 10.0 06 5720 10.0 0 2 4094 3 

326 2165394042 1678404592 29052 0 65160 
731 1218632122 906289 10.0 06 5720 . . 10.0 02 4094 

26 
327 

327 2165394042 1678407488 29053 0 65160 
732 1218632122 906302 10.0.0.6 5720 10 0.0.2 4094 328 

328 2165394042 1678410384 29054 0 65160 
733 1218632122 906317 10.0.0 6 5720 10.0.0 2 4094 329 

329 2165394042 1678413280 29055 0 65160 
734 1218632122 906330 10.0.0.6 5720 10 0.0.2 4094 330 

330 
331 

2165394042 1678416178 29056 0 65160 
735 1218632122 906344 10.0.0.6 5720 10.0.0 2 4094 331 332 

2165394042 1678419072 29057 0 65160 
736 1218632122 906357 10.0.0.6 5720 10.0.0.2 4094 332 333 

2165394042 
2165394042 

1676421968 
1 

29058 0 65160 
737 1218632122 906371 10 0.0.6 5720 10.0.0.2 4094 333 334 2165394042 

678424864 29059 0 65160 
738 1218632122 906384 100.06 5720 10.0.0.2 4094 334 335 2165394042 

1678427760 
1 7 

29060 0 65160 
739 1218632122 906399 10.0 06 5720 10 0.0.2 4094 335 336 2165394042 

6 8430656 
1678 

29061 0 65160 

740 1218632122 906414 10 0.0.6 5720 10.0.0.2 4094 336 337 2165394042 
433552 

1678433552 
29062 0 65160 

741 1218632122 906426 10 0.0 6 5720 10.0 0.2 4094 337 338 2165394042 1678433552 
29063 
29064 

0 
0 

65160 

742 1218632122 906438 10.0.0 6 5720 10.00-2 4094 338 339 2165394042 1678433552 29065 0 
65160 

743 1218632122 906451 10.0.0.6 5720 10.0.0.2 4094 339 340 2165394042 1678433552 29066 0 
65160 

744 1218632122 906463 10 0.0 6 5720 10 0.0 2 4094 340 341 2165394042 1678433552 29067 0 
65160 
65160 

745 1218632122 906474 10 0.0.6 5720 10.0 0.2 4094 341 342 2165394042 1678433552 29068 0 65160 
746 1218632122 906485 10006 5720 10 0.0.2 4094 342 343 2165394042 1678433552 29069 0 65160 
747 1218632122 906496 10 0.0.6 5720 10.0.0 2 4094 343 344 2165394042 1678433552 29070 0 65160 
748 1218632122 906508 10006 5720 10 0.0.2 4094 344 345 2165394042 1676433552 29071 0 65160 
749 1218632122 906523 10.0 06 5720 10.0.0.2 4094 345 346 2165394042 1678439344 29072 0 65160 
750 1218632122 906536 10 0.0.6 5720 10 0.0.2 4094 346 347 2165394042 1676449480 29073 0 65160 
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