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Abstract

Packet Reordering in IP networks is a phenomenon which is becoming increasingly
important in netwotk performance analysis. Reordeting is a consequence of network
equipment manufacturers increasing switch and link level parallelism within
networks, in the quest for performance, reliability and fiscal gains. Wireless
technologies are also expected to increase the amount of packet reorderng
observable in an end-to-end path.

This thesis addresses the issue of measuting the impact of packet reordening on
Internet traffic, by proposing a number of measurement methodologies and metrics.
Previous techniques assume that packet reordering does not often occur, ot make
assumptions which severely limit the results obtained. This thesis proposes a two-
point passive measurement technique, which improves on previous methods by
allowing lightweight measurement of the amount and extent of reordering observed
in a TCP flow, and classification of the cause of each reordering-induced packet
retransmission. A large testbed measutement study performed using this technique
indicated that TCP is tolerant to large percentages of reordered packets, providing
that the delay of these packets is maintained below a threshold relative to Round-
Trip-Time. This study further indicated that the effects of TCP packet reordering are
not always negative. In specific scenarios reverse-path reordering can increase the
overall throughput of a flow. This thesis further proposes a mid-point passive
Measurement Technique and Visualisation Metric of TCP packet reordering,
designed to classify out of sequence packets for many thousands of concurrent TCP
flows. This technique is lightweight to implement and does not require symmetric
TCP connections to operate. Finally, this thesis argues that future packet reordering
metrics must cotrelate reordering obsetved at the network layer, with the resulting
impacts obsetved at the application layer. An example of an application-specific

mettic is developed for MPEG-4 video over UDP traffic, and this metric 1s used to
describe the effects of packet reordering on streamed video traffic.
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Chapter 1

Introduction

In December 1999 the IEEE/ACM Transactions on Networking published a paper
entitled “Packet Reordering is Not Pathological Netwotk Behavior” [Benn99]. Bennett

et al. had intended to prove the hypothesis that the reordering of packets in the Internet
1s an evetr increasing phenomenon. The results of their study, petformed in January
1998, indicate that the probability of a session, running through the US MAE-East

exchange, expetiencing packet reotrdering was over 90%. Intuitively, Bennett et al. cited
that the reason for the large proportion of flows expetriencing reordering was the

ptesence of parallelism on the routes taken by the packets flowing through the network.

However, the reason for this reordering, and the parallelism which caused it, was not
immediately obvious. Bennett discovered that much of the packet reordering observed
is not, as was first expected, due to multi-path routing or broken network equipment
causing packets to traverse different logical paths, but occurred as a result of switch and

link-level parallelism. This included link-level striping and switches that allow packets



travelling between the same source and destination to take different paths through the

internal switch hardware.

Bennett’s work represented a significant contribution to the field of network science
since packet reordening can have a measurable impact on both network and application
petformance. For example, out-of-order arnival of packets can cause apparent loss of
data in real time flows, such as voice over packet and video streams. Reordering 1s also
detrimental to Transmission Control Protocol (TCP), causing it to use available capacity
less effectively, and lose the TCP self-clocking property, resulting in irregular data

transmission.

1.1  The Increase of Internet Parallelism

It is clear from the literature that the level of parallelism in network paths 1s on the
increase, although what overall impact this will have on packet reordering 1s less clear.
Load balancing in network switches introduces local parallelism, which can allow
packets flowing between the same source and destination to take different paths within

the switch. Simple economics also has a bearing; it is often more cost effective to put

two components in parallel than to use one component that has twice the
speed[Benn99]. For example, when purchasing long-haul serial links many tariffs offer
link bandwidths that are multiples of each other. Parallel links are also a very useful way
to improve reliability; if the parallel links follow different physical paths, the virtual link
they implement 1s generally less vulnerable to single-point failures. Large businesses,
Internet Service Providers (ISPs) and their vendors are therefore aggressively promoting

parallel links. In a survey of 38 major ISPs conducted in mid-1997 [Gare97], only two of
the smaller ISPs did not have parallel uplink paths between nodes.

Bennett’s paper explains how packet reordering can impact network petformance, by
exemplifying TCP during packet reordering, In the presence of forward path reordering,
TCP has great difficulty opening its congestion window and makes inefficient use of
available link capacity through unnecessary tetransmissions. During reverse path

reordering events (reordering of acknowledgments), TCP loses self-clocking and data



transmission becomes very irregular, with a large quantity of short dutation data bursts

instead of more evenly loaded flows. However, the impact of packet reordenng 1s not
limited to TCP. Any protocol that is reliant on the ordered attival of packets can be
affected by this phenomenon. For example, RTP flows, based upon UDP, will not be

immune to packet reordering. The impact on TCP is to slow traffic and reduce
throughput. However, the impact upon real-time flows is often far more severe. Even
low levels of teordering increase the buffer memory requitements at the recetver as well
as increasing processing related latencies. However, as reordering becomes even more
prevalent buffering becomes ineffective; the result is degradation in the quality of the
delivered service. For example, in applications such as voice over packet there is no time
to retransmit data, and so the supposedly missing, but in reality late information, has to

be replaced at the application level by *white noise’ thus causing loss of intelligibility.

Bennett et al. also found that one of the challenges of understanding this form of
reordeting is that this type of parallelism is not easily measured. During Paxson’s
measurement experiments with reordering in end-to-end routing, the different netwotk
paths taken by packets wete cleatly indicated by the different addresses of the routets
they traversed [Paxs96]. However, in link and local parallelism, the only indication of the
existence of parallel links, may be that a patticular hop exhibits vatying levels of delay.

1.2 Characterising Packet Reordering

There have been several proposals to create protocols that can either adapt, or are
robust, to packet reordering. However, evaluating their effectiveness requires a good
understanding of the dynamics of the reordering processes prevalent in the Internet.

Unfortunately, Internet packet sequencing is still a poorly characterised and undez-

studied behaviour. Measurement studies in this field are, to some extent, contradictory,

including two papers presented at the Internet Measurement Workshop 2002
“Measuring Packet Reordering” [Bell02] and “Classification of Out-of-Sequence Packets
in a Tier-1 IP Backbone” [Ja1s02]. Both papers desctibe in detail, how packet reordering
can impact network performance and attempt to measure the problem using simple

active and passive measurements techniques. Unfortunately, their measurement results



on live Internet traffic do not correlate with Bennett [Benn99]. Bellardo and Savage
[Bell02] used a single active probe based in UCSD testing 40 different destinations over
a 20 day petiod. Bellardo’s results show some level of reordeting on over 40% of paths

tested and 15% of individual measurements with out-of-sequence packets. Bellardo’s

study indicates that the amount of packet reordering varies upon a daily basis and can

range from 5% to 25% of packets appearing out-of-sequence.

Conversely Jaiswal et al.[Jais02], who passively obsetved TCP flows at a single point in

the middle of the Sprint backbone, measured only 13.6% of flows with some form of
reordering present and 5% out-of-sequence packets. These conflicting findings might be
due to different network topologies, switch architectures, undetlying link layer protocols
or the measurement techniques used, but both studies are sufficiently different in nature
that drawing conclusions without further work is difficult, thus providing an ideal

stimulus for further research into measuring and understanding this phenomena.

In November 2006, the IETF IPPM Working Group published “Packet Reotdering
Mettics” RFC 4737 [Mort06], after thirteen drafts of the metric has been proposed and

discussed. This metric was strongly contested by Jayasumana et al., who published
“Improved Packet Reordering Mettics’ [Jaya08] in June 2008, thus indicating that there
remains disagreement in the research community on defining a metric which

meaningfully, accurately and unambiguously characterises packet reordering.

Clearly, further exploration of link and local level parallelism, how it drves packet
reordering and impacts on network performance is important. Previously, thete has
been little work published approaching this problem from first principles, investigating

how parallelism drives packet reordering, and then correlating this with the resulting

performance impacts, on reasonably large scale networks.



1.3  Thesis Organisation

This thesis 1s organised as follows. Chapter 2 discusses the Internet Protocol Suite and

the vatious options and additions to the protocol and current implementations. The
effects of Packet Reordering on TCP are discussed, and an overview of Internet

Measurement techniques 1s presented.

Chapter 3 presents the prior art in this area, by presenting a taxonomy of Metrics and
Methods used to characterise Packet Reordering in the Internet, and the results obtained
by using these methods. The taxonomy classifies these metrics and methods as active or

passive techniques, and discusses the advantages and limitations of each technique.

Chapter 4 presents a methodology for simulating Packet Reordering, and the
development of a testbed and experimental network to empirically measure packet
reordering. A two-point passive measurement technique is designed and prototyped,
which improves on previous methods by allowing lightweight measurement of the
amount and extent of reordering observed in a TCP flow, and classification of the cause
of each reordering-induced packet retransmission. A large testbed study of over 30,000

TCP flows is performed to investigate and measure the behaviour of TCP during

reordering.

Chapter 5 presents an investigation and the development of a mid-point passive
measurement technique of TCP Packet Reordering, which allow improved classification

of out of sequence packets, an improved measure of TCP Goodput, and a Visualisation

Metric for indicating the petformance of TCP throughout the lifetime of a flow.

Chapter 6 presents a case-study of non-TCP traffic and how it is affected by Packet

Reotdering; an example of an application-specific packet reordering mettic is developed
for MPEG-4 video over UDP traffic, and this metric is used to desctibe the effects of

packet reordering on streamed video traffic.

Chapter 7 presents conclusions and proposals for future work.



Chapter 2

The Internet Protocol Suite

2.1  Introduction

The growth of the Internet has been well documented [Hobb97], from the very first
networking research carried out by the US Advanced Research Projects Agency in 1957,

through to the exponential growth of connected hosts experienced and measured in the

last decade. [Hobb0(]

A significant part of this exceptional growth rate is due to the research conducted in the

1970s into the first host-to-host protocols, which resulted in the development of the

Transmission Control Protocol [Post81b] over Internet Protocol [Post81a] (TCP/ID)

Suite. This has allowed a multitude of heterogeneously interconnected systems, all with



diverse characteristics, vendors and operating systems, to communicate seamlessly with

each other, over various communications channels.

This chapter provides an overview of the TCP/IP protocol suite, discussion of the
various enhancements which have been added to TCP since its initial development, an
overview of Network Measurement Science, and discussion of the effects of Packet

Reordering on TCP flows.

2.2  The Internet Protocol Suite

The ‘Internet Protocol Suite’, often generically referred to as “TCP/IP’ 1s considered to
be a 4-layer system [Stev94] [Bra89] as illustrated in Figure 1, with each layer responsible

for a particular aspect of the transmission system:-

Email

1CP UDP
.P.

Application

Transport

Network

Link

Gigabit

Figure 1 - The Internet Protocol Suite

The Application Layer is responsible for providing service to particular applications on

an end host, such as Web, Email, and file transfer systems, through application layer

‘Messages'.

The Transport Layer provides additional functionality above the Network lLayer, to
provide a particular type of service between two hosts. For the vast majority of Internet
traffic, the two main transport protocols in use are TCP (Transmission Control
Protocol) [Post81b], and UDP (User Datagram Protocol) [Post80], discussed 1n greater

detail later in this chapter. Protocol Units at this layer of the suite are termed as

‘Segments’ when discussing TCP, and ‘Datagrams’ when discussing UDP [Soco91].



The Network Layer is responsible for the routing of packets around the network,
fragmentation of packets if required, and the structures for addressing in the Internet.
The network layer must [Brad89] implement both Internet Protocol (IP) [Post81a] and
the Internet Control Message Protocol [Post81c], which provides the routing, diagnostic
and error capabilittes in the IP suite. Protocol units in this layer are described as
“Datagrams’ [Soco91] when referring to the end-to-end unit of data passed from
network layer to link layer, and IP ‘Packets’ when referring to mid-point forwarding.

Due to fragmentation, an IP Datagram may be transmitted as a single, or multiple, IP
Packets.

The Link Layer is the network interface layer, and is normally considered to be the
device driver in the operating system and the corresponding network interface cards in
the end hosts. End hosts handle the details of physically interfacing with the relevant

transmission media. Protocol units at this layer of the stack are usually termed ‘Frames’.

Figure 1 illustrates the ‘Hourglass Analogy’ [Deer01] which has been argued to be the

main factor in the success of the Internet Protocol. The ‘thin waistline’ provided by IP,
allows physical network independence, by presenting a ubiquitous interface between the
application and link layets, thus allowing application layer services on different

machines, to communicate directly with application layers on other machines, over a

multitude of per-hop link media, creating one ‘end-to-end’ {Salt81] path.

2.2.1 Internet Standardisation

Internet Standardisation is a loosely defined process, driven by volunteers from
academia and industry, in four main organisations; the Internet Society, the Internet
Architecture Board, the Internet Engtneering Task Force (IETF), and the Internet
Research Task Force. The majonty of standardisation work is carried out by the IETF
and published in the form of incremental documents called Request for Comments’

RFC) [Malk93]. RFCs can describe protocols standards, describe best practice, or be

informational. When describing protocol standards, an RFC will desctibe a protocol as

either Standard, Draft Standard, Proposed Standard, Experimental, Informational or

Historical, with vatious aspects and features of each protocol, marked with various



requirement levels[Brad97a].

It should be noted though, that standardisation itself is a lengthy process — the
Transmission Control Protocol is planned to move from ‘Proposed Standard’ to
‘Standard’ in October 2008 [Allm07], over 20 yeats since original conception. Indeed, it
is worth noting that once 2 standard 1s documented in an RFC, there are no formal

methods to enforce compliance, and misbehaving implementations [Chen07] [Sava99]

are commonly observed [Medi05] in the Internet.

2.2.2 Internet Protocol version 4

The Internet Protocol version 4 (IP) [Post81a], commonly referred to as ‘RFC 791°, was
created in September 1981 and describes the DARPA Internet Protocol Specification,

for transmitting a packet across a packet-switched communications network.

RFC 791 is specifically limited in discussion so as to only describe the two basic
functions of addressing and fragmentation. Therefore there are no mechanisms to allow
end-to-end data reliability, flow control nor sequencing, and it is assumed that IP will be
used in conjunction with other higher-layer protocols in the Suite to provide these
additional functionalities. IP is considered to be a ‘best effort’ unreliable, datagram
delivery setvice. Sources and Destinations are identified by fixed length addresses, with
mid-point hosts given the ability to petform fragmentation and reassembly of packets

over intermediate networks with varying Maximum Transmission Units (MTU).

The standard describes how packets are to be moved by passing from one ‘Internet

Module’ 1n a host, to another, until the final destination address is reached[Post81b]. A
host which 1s implemented and designed for the specific task of forwarding IP packets
is called an IP ‘router’ [Soco91] [Bake95]. Each datagram must be considered
independently of all others; there are no connections or logical circuits, and there are
specifically no guarantees of reliability, flow control, or datagram sequencing. This
allows a light-weight and simple implementation in mid-point routers; a router does not

record state information to maintain a connection, and it is acceptable for a router to

randomly drop packets from its input queue should congestion occur. A router is also



allowed to output packets travelling between the same soutce destination pair through

different output paths, and therefore no guarantees can be made on packet sequencing

at the destination host[Benn99].

The basic functionalities of Addressing and Fragmentation performed by the IP layer

are now discussed.

2.2.2.1 Addressing

The purpose of addressing is to provide an interface between the local network
addressing structure, and Internet-wide routing. Addressing avoids the complexity of
naming, separately carried out by Domain Names [Mock87], or an end user being

required to specify routes between nodes.

Upon receipt of a packet [Bake95], the router will validate the IP header, process any
relevant IP options specified in the header, and then examine the IP Destination
Addtess in order to make a forwarding decision. An IP address can be partitioned into
two constituent parts; a2 Network Prefix, and a host number. The Network Prefix 1s
compared with the router’s routing table, and the next hop IP address for the packet
and relevant output interface are determined. This continues until reaching a router

capable of mapping the Destination IP address to a local network address, whereupon

the packet 1s delivered to the end host.

IPv4 addresses, are of a standardised [Post81a] fixed length of 32 bits, with a
convention [Soco91] of writing each of the 4 bytes in decimal, separated by a period.
The original specification has undergone significant developments, through Classless
Inter Domain Routing [Full93], and Network Address Translation [Sris01]. Although

the IPv4 address space is limited, thus motivating the development of IPv6 [Deer98], a

number of challenges [Wadd02] have slowed actual deployment of IPv6, and it is

expected that IPv4 will remain the predominant addressing technique for the
foreseeable future.
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2.2.2.2 Fragmentation

The purpose of Fragmentation is to allow the transmission of IP packets across an end-
to-end path, through constituent intermediate networks, with varying sizes of MTU.
This is particulatly common when a source host is located on an 802.3 Ethernet
network, where the size of each packet could be as large as 1500 bytes. All IP compliant
hosts must be able to forward a packet of 68 bytes without performing furthet
fragmentation (60 bytes maximum header size, and 8 byte minimum fragment
size)[Post81a]. Additionally, every host must have the capability of receiving at least a

576 byte IP packet, either in one single packet, or in multiple packet fragments.

Fragmentation is petformed transparently to higher layers, and re-assembly of fragments
is only performed at the destination host in a connection — individual fragments of
packets are each routed individually, and therefore may transit differing disjoint paths

prior to arrival at the destination.

Fragments are reassembled using the Identification Field (IPID) in the IP header, in
conjunction with the Fragment Offset Field, Length Field and More Fragments Field
The IPID uniquely identifies each packet sent by a host, and is used together with the
source and destination addresses and protocol fields, to identify datagram fragments for
reassembly. The sending host must therefore ensure that the IPID is unique for each
source/destination pair, and protocol, for the time that IP packet or its fragments, are
alive in the Internet. Most TCP/IP Linux implementations increment a Kernel vatiable
each time an IP datagram is sent [Stev94]. The IPID, therefore, normally inctements

predictably each time a datagram is sent, and is often exploited iIn IP header

compression techniques[West06].

2.2.3 IPv4 Header Format

Figure 2 illustrates the format of the IPv4 Datagram Header applied to packets upon
leaving an Internet host. Bit positions are illustrated along the top of the header and it

should be noted that IP packets will always be 32 bit aligned for optimum performance

11



on commodity hardware. Each field of the header 1s populated as follows:-

header

Data

Figure 2 - IPv4 Header Format

e Version indicates the version of the internet header, which for RFC 791 - IPv4,
is the value 4, thereby specifying the format of the following fields.

e IHL is the length of the internet header in 32 bit words, and thus a pointer to
the beginning of the data. A correctly formed IPv4 header will have a minimum

value of 5, corresponding to the minimum header length of 160 bits.

¢ The Type of Service field historically provided an indication of the Quality of
Service desired [Algm92], which was examined by mid-point routers when
determining an onward path. Currently, it is used as either the Differentiated
Services (DiffServ) Field [Nich98] in DiffServ networks [Blak98], or Explcit
Congestion Notification (ECN) Field [Rama01] on compatible hosts.

e Total Length is the total length of the datagram, measured in octets, including
the packet header. A 16 bit field allows a datagram of up to 65,535 octets.

e Identification, Flags and Fragment Offset are variables set by the sender to

allow packet fragmentation, as discussed in Section 2.2.2.2.

e TTL indicates the maximum time that the datagram is allowed to remain in the
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Internet system, and 1s decremented by each host processing that packet. The

current recommended default value 1s 64 [Brad89]

e Protocol indicates the next type of protocol header which will appear in the
packet following the IPv4 header. The values for vatious protocols are specified

in the Assigned Internet Protocol Numbers list [[ana07].

o Header Checksum 1s performed across the Header only, recomputed and

verified at each point where the Header is processed.

e Source and Destination Addresses are as discussed in Section 2.2.2.1

o Options are a number of optional types which implement less common
functions such as Secunty, Loose Source Routing, Strict Source Routing, Route
Record and Internet Timestamps. These functions may not be implemented, 1n
which case zero-bit padding is applied to ensure that the Header ends on a 32
bit boundary. It 1s permitted for hosts to silently ignore options which they do

not understand.

2.3  User Datagram Protocol

UDP 1s a connectionless transport protocol [Post80], and provides a simple interface to
IP when a connection-oriented guaranteed delivery service is not required. A UDP
header consists of a Source and Destination Port Numbers, to allow multiplexing of

packet flows between hosts, a Length header and a Checksum headet.

UDP provides a very simple service with no congestion or flow control, and no method

of retransmitting lost packets. For non-real-time applications where teliable transport is

important, TCP would be the protocol of choice.

2.4  Transmission Control Protocol

Transmission Control Protocol (ICP) [Post81b] is the predominant transpott-layer

protocol operating in the Internet [Medi05], and provides a reliable full-duplex

connection, across an end-to-end path, between two Internet hosts. TCP is used in
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applications where accuracy and completeness of data take precedence over latency, and

is therefore suited to applications such as E-mail, Web traffic and file transfer.

24.1 Reliable Transmission

TCP operates a ‘sliding window’ over a continuous byte stream of data from the
application layer, packetising this data into Segments. A Sequence Number 1s
conceptually assigned to every byte transmitted, and positive Acknowledgements (Acks)
are required from the receiving host, thus indicating that each byte has been successfully
received. Expiration of a timer at the sending host, before an Ack is recetved, indicates

that the segment has been lost and that a retransmission should be scheduled.

Upon arrival at the receiving host, TCP specifies that the Sequence Numbers should be
used to cotrectly reorder segments that may have arrived out of order and to reveal
duplicates. TCP is therefore able to accommodate the loss, damage, duplication ot

reordering of packets that may be caused by any of the undetlying networks along the
end-to-end path.

Flow control is performed in TCP, allowing the receiving TCP to control the rate at
which the sender transmits data, by returning a2 Window with every Ack, indicating
available space in the receiver buffer. This ‘Receiver Advertised Window’ (rwnd) 1s flow
control governed by the Receiving TCP based on the Receiver’s buffering and

processing capabilities. Flow control petformed at the Sending TCP is discussed in
Section 2.4.6.

Multiplexing is achieved in TCP through the use of Port Numbers on each host which,

when concatenated with the host address, are termed as a ‘Socket’. A pair of ‘Sockets’

uniquely identify each ‘Connection’, and thereby allows multiple TCP connections to

terminate on any host.
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2.4.2 TCP Header Format

Figure 3 illustrates the TCP header, with fields defined as follows:

0
IPv4
header

TCP
header

Data I

Figure 3 - TCP Header Format

® Source Port is the 16 bit source port on the source host.
¢ Destination Port is the 16 bit destination port on the destination host.

* Sequence Number is the 32 bit Sequence Number of the first data octet in the
segment’s payload (except when the SYN flag is present). If SYN 1s present the
sequence number 1s the Initial Sequence Number (ISN) of the connection, and
the first data octet 1s ISN+1.

¢ Acknowledgment Number field is valid only if the ACK control bit 1s set, and
contains the 32 bit Next Sequence Number that is expected at the destination

host.

e Data Offset 1s the 4 bit indicator of the number of 32 bit words in the TCP
header. The TCP header 1s always 32 bit aligned.

¢ Reserved 1s 6 bits reserved and must be zero, or, if Explicit Congestion

Notification [Rama01] is enabled, are used as described in RFC3168 [Rama01]
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and RFC3540 [Spri03].

o Control Bits are 6 single-bit control flags as follow:-
URG - Utgent Pomter flag.

ACK - Acknowledgement flag.

PSH - Push function flag.
RST — Reset connection flag.

SYN - Synchronise sequence numbers flag.

FIN — Request connection termination flag.

e Window is a 16 bit field signalling the number of data bytes, starting with the
byte indicated in the Acknowledgement field in this segment, which the

receiving host 1s willing to accept.

¢ Checksum is the 16 bit checksum of the payload and data, which is mandatory
in all TCP packets[Brad89]

e Utrgent Pointer is a 16 bit field which points to urgent data following the

current segment. The pointer points to the sequence number of the octet

following the urgent data.

e Options may appear at the end of the TCP header and are multiples of 8 bits 1n
length, with Padding to ensure that the packet is 32 bit aligned. Options may
indicate Timestamp options [Post81b], Maximum Receive Segment Size (MSS),
Selective Acknowledgements (SACK) [Math96], or other options. It 1s specified

that 2 TCP must be able to receive an option in any segment, and ignore without

error any option not implemented [Brad89].

2.4.3  Sequence Numbers and Acknowledgements

The idea of Sequence Numbers is important in TCP as, conceptually, each octet of data
is assigned a sequence number. Once the ‘sliding window’ has isolated a stream of octets
to form into a segment, it is the sequence number of the fitst octet of data in a segment
that is used as the sequence number for the complete packet; termed the ‘Segment

Sequence Number’. The Segment Sequence Number is placed in the Sequence Number
field of the TCP header.
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In the teverse direction, segments carry an Acknowledgement number, placed in the

Acknowledgement Number field of the TCP headet, with the ACK flag set, so as to
matrk the field as being valid. An Acknowledgement number 1n TCP 1s the sequence

number of the octet that the receiver is next expecting to receive. Therefore, in a simple
scenatio, the Acknowledgement of a packet would be the (Sequence Number + Packet

Length) of the most recent packet received.

Acknowledgements in TCP are cumulative as illustrated in Figure 5. A Receiver may
operate the ‘Delayed Ack’ algorithm [Clar82], in which case a Sendert, receiving
acknowledgement of sequence number x, should intetpret this to mean that the
Receiver has correctly received all bytes up to but not including x. Cumulative Acks can
substantially reduce protocol overthead [Brad89], but excessive delays can distutb the

round-trip sampling and packet ‘clocking’ algorithms([Jaco88].

2.4.4 Establishing a Connection

A connection is established through a three-way handshake mechanism, as illustrated in
Figure 4, where the TCP modules of the Sender and Receiver synchronise on each
other’s Initial Sequence Numbets (ISN). Each TCP selects their ISN through an
implementation dependent mechanism, and transmit a packet with the SYN

(Synchronise) flag enabled. Once each TCP has positively acknowledged the ISN of the

other TCP, by transmitting Acks, the connection is established and data transmission

can begin.

For sequence number purposes, the SYN packet sent to establish a connection, 1s

considered to occur before the first actual data octet of the segment in which 1t occurs,
while the FIN packet, sent to signal the end of a connection, is considered to occur after

the last actual data octet in a segment in which it occuts.
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Sender Receiver Sender Receiver

SYN Seq 1,2,3,4
(5eq=X)
Ack 5
Seq 5,6,7,8
SYN ACK
(Seq=Y
ACK=X+1) ACk 9
Seq 9,10,11,12
ACK
(SEQ=X+1,
ACK=Y+1)
Ack 13
Figure 4 - TCP 3-way Handshake Figure 5 - TCP Cumulative Acknowledgements

Closing a connection can happen in two ways [Brad89] — either party can signal they
wish to close by sending a FIN handshake, or an ‘abort’ can be sent when a RST

segment 1s sent, and the connection 1s discarded by both parties.

2.4.5 Retransmission Timeout

1CP reliability 1s implemented through the use of retransmissions, should loss be
detected in the network. A TCP sender will maintain a copy of each transmitted

segment, and a timer 1s initialised which will count until an acknowledgement 1s received
which encompasses the sequence number of that segment. Should an acknowledgement
not be recetved before a ‘Retransmission Timeout’ (RTO) value is reached, the Sender
will assume that the segment has been lost and will initiate the retransmission process.

To enable this loss detection, the TCP sender requires a method of calculating the
Round Trip Time of connections, which must be calculated on a per source-destination

basis, and must be dynamically updated to ensure that any time-varying cffects of the

end-to-end path are considered.
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All TCP hosts must [Brad89] [Paxs00] immplement Karn’s algorithm [Karn87] for
selecting non-spurtous RTT measurements that could corrupt the smoothed RTT

measurement, and Jacobson’s algorithm [Jaco88] for computing the smoothed RTT, to
calculate the retransmission timeout. Traditionally, TCP implementations will take one
RTT measurement at a time (typically once per RTT)[Paxs00]. For connections where
there are no current RTO samples, the RTT is initially set to 3 seconds, and during

calculation it should always be rounded up to a minimum value of at least 1

second[Paxs00].

2.4.6 'TCP Congestion Control

TCP Congestion Control 1s the process of applying flow control on the Sending TCP
host, by probing the netwotk path capability, and governing transmission so as not to
overwhelm the intermediate nodes. Congestion Control [Allm99] [AllmO7] is specified
by four closely related algorithms; Slow Start, Congestion Avoidance, Fast Retransmit
and Fast Recovery [Jaco88][Jaco90]. [Brad89] mandates that a TCP Sender must
implement Slow Start and Congestion Avoidance, with Fast Retransmit and Fast

Recovery later optionally introduced 1n [Allm99].

TCP maintains three vatiables per connection at the Sending TCP host:

¢ The Congestion Window (awrd) is a sliding window, which limits the amount
of data a Sending TCP can transmit into a network, before recetving an

Acknowledgement.

e The Receiver’s Advertised Window (rwnd) is flow control from the Receiving

TCP, indicating a window size of data the receiver is willing to accept.

e The Slow Start Threshold (sszhresh) is a value used to decide whether the

Sending TCP 1s transmitting packets using the Slow Start or Congestion

Avoidance algonthm, and if the awnd vatiable should be adjusted.
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The mintmum of awnd and rwnd controls the amount of data a TCP sender can transmit

into a network, before an Ack 1s recetved from the recipient.

The aim of TCP Congestion Control 1s that transmission should be ‘self-clocking’
[Jaco90], where the Sending TCP uses feedback in the form of Ack packets, to strobe
packets mnto the network, as other packets leave the network. Before this equilibrium
can be reached, termed the Congestion Avoidance phase, the Sender must aggressively
ptobe the network in order to find the end-to-end capacity of the path — termed the

Slow Start phase.

The Slow Start algorithm 1s used to govern transmission when awnd < ssthresh, and the

Congestion Avoidance algorithm 1s used to govern transmission when cwnd > ssthresh.
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2.4.6.1 Slow Start

During Slow Start, the Sending TCP will imnctement awnd by one ‘sender maximum
segment size’ (SMSS), each time an Ack is received as illustrated in Figure 6. This
results in an exponential rise of segments injected into the network, and awnd growing
rapidly. Slow Start ends when awnd is greater than ssthresh, or congestion is observed.
RFC 2581 defines the slow start algorithm in terms of segments rather than bytes, but
there are many TCP implementations which increase awnd by exactly SMSS bytes

whenever an Ack covering any new data, whatever size, is received,. This 1s known as

‘Ack Division’ [Sava99]. This, and other ‘mis-behaving” TCP implementations [Sava9d9]

are widespread in the Internet today.

2.4.6.2 Congestion Avoidance

Eventually the sender will reach a threshold where avnd has grown too large, and the
end-to-end network connection is unable to sustain that number of packets in flight
simultaneously. At this point, packet loss will occur; indicated at the Sending TCP by
either a segment RTO or, as discussed in Section 2.4.6.3, the receipt of duplicate Acks

and the triggering of Fast Retransmit.

When congestion is indicated, the Sending TCP will set its ss#bresh vatiable to one-half of
the current window size (the minimum of awnd and rwnd). Additionally, if the congestion

1s indicated by a RTO, cwnd is set to one segment and Slow Start will commence.

Once retransmission has occurred, the sending TCP will continue to transmit. When the
congestion window has grown to awnd > ssthresh, the Congestion Avoidance algorithm
will regulate transmission, and will increment awnd by approximately 1 SMSS per RTT,
no matter how many Acks are received in that period. This tesults in a continued
growth of awnd, but in a linear fashion, as illustrated in Figure 7. The process of probing
the path and the continuous adjustment of ssthresh is illustrated in Figure 8, where three

losses each require a halving of the ssthresh value, and transmission restarting using the

Slow Start algorithm.
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2.4.6.3 Fast Retransmit

The Fast Retransmit algorithm operates on the principle that Receiving TCP hosts are

required [Brad89] to generate an immediate Ack each time they receive an out-of-order

TCP segment. This Ack 1s termed a ‘Duplicate Ack’ of the last in-order segment
successfully recetved, and signals to the Sending host that segments are still successfully
arriving at the end host, but are arriving out of order, indicating that there 1s loss 1n the

segment sequence at the receiving end. It 1s acknowledged [Allm07] that the reaction to

the arrival of duplicate Acks varies widely in TCP implementations.

A TCP sender should |[Alm07] use the Fast Retransmit algorithm to detect and repair

loss, by using the arrival of 3 duplicate Acks, by default, as an indication that loss has

occurred — that 1s, a total of four packets with the same acknowledgement field.

The arrival of 3 duplicate Acks should cause the ssthresh to be set to one-half of the

current awnd. Once the lost segment has been retransmitted, cwnd is inflated to (ssthresh +

3xSMSS) to account for the segments that have left the network.

The value of 3 was chosen since the Sending TCP does not know if the duplicate Acks

are caused by packet loss or packet reordering over the path and, when the algorithm

was developed 1 1990[Jaco90], it was assumed that if ‘the consecutive duplicates
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threshold 1s set high enough, we can reasonably assume that duplicate Acks mean

dropped packets’, as the usual cause of out-of-order packets at the receiver was assumed

to always be due to a missing packet.

TCP hosts which implement the Slow Start, Congestion Avoidance and Fast Retransmit

algorithms are termed “I'CP Tahoe’ variants.

2.4.6.4 Fast Recovery

After a Fast Retransmission occurs and the Sender has sent what appeared to be the lost
segment, the Fast Recovery algorithm controls the Sending TCP until new data 1s
successfully Acknowledged by performing Congestion Avoidance, rather than entering

Slow Start. When the next Ack arrives acknowledging new data, cwnd is set to ssthresh,

and transmission of new data continues, at half the rate at which packet loss occurred.

The Fast Recovery algorithm assumes that, although packet loss has occurred, the
duplicate Acks indicate that other packets were successfully leaving the network and so

there 1s no need to abruptly close cwnd and re-start the connection with Slow Start. This

allows the ‘Ack Clock’ to be preserved [Jaco88], and the TCP algorithm to remain

stable.

TCP hosts which implement the Slow Start, Congestion Avoidance, Fast Retransmit

and Fast Recovery algorithms are termed “T'CP Reno’ variants.

2.4.6.5 Limited Retransmit

The fast retransmit and fast recovery algorithms can be implemented using the Limited

Retransmit algorithm [AllmO1], where on the first and second duplicate Acks, a TCP

should send a segment of previously unsent data, as the duplicate Acks indicate that data

1s leaving the network.
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2.4.7 Loss Recovery Mechanisms

Congestion control loss recovery mechanisms represent a popular research area, where

investigations attempt to build on the mandatory Fast Retransmit and Fast Recovery
algorithms to illustrate improvements in performance, although comparison ot these

techniques can be difficult [Floy07]. The predominant methods [Medi05] live in the

current Internet are now discussed.

2.4.7.1 Partial Acknowledgements

The NewReno modification to TCP’s Fast Recovery algorithm [Floy(04] 1s motivated by
the fact that simulations illustrate TCP Reno performs poorly [Fall96] when multiple
packets are lost in a single packet ‘flight’. Multiple packet losses will trigger a Fast
Retransmit, but this will only result in a ‘Partial Acknowledgements’ from the Recetver —
an Ack which does cover previously unacknowledged data, but not all the data

outstanding when loss was detected, thus revealing that more than one loss has

occurred.

During the Fast Retransmission phase, NewReno examines Acks received after the Iast
Retransmit has sent the retransmitted packet. If the ack acknowledges all data, up to the
highest sequence number transmitted by the Sender, then the Fast Retransmit 1s
assumed to have successfully completed loss recovery. If the Ack does not acknowledge
all data sent by the Sender, up to the highest sequence number transmitted, the Ack 1s a
Partial-Ack. On identification of a Partial-Ack, the segment indicated by that Ack is

retransmitted — without waiting for any more duplicates, and hopefully before an RTO

OCCUrs.

2.4.7.2 Selective Acknowledgements

With the limited information available from cumulative acknowledgements, a Sender

can only learn about one lost packet per RTT. The TCP Selective Acknowledgements
option [Math96] allows the Recetving TCP to inform the sender what segments have
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arrived successfully, so that only the actually lost segments need to be retransmitted.

The Recetving TCP uses the TCP Options header to inform the Sender of the non-

contiguous blocks of data that have been successfully received, but are queued until all
sequence gaps have been filled. As retransmission from the Sender fills gaps in the

holes, the Ack field is increased in the usual way, to Acknowledge successful receipt of

the data.

RFC 2883 [Floy00] extends the use of SACK by specifying that when duplicated packets
are received, the SACK options header can be used to report the Sequence number of
the duplicated packet, in order to allow the TCP sender to infer the order of packets
received, and infer when unnecessary retransmissions have been sent. This could be
useful in environments where reordering, Ack loss, duplication or early retransmit

timeouts occur frequently.

2.5  The Problem of Reordering

As illustrated by the development of the Fast Retransmit algorithm, later additions to
TCP were made, based on the assumption that packet reordering on the Internet was a

pathological behaviour — a phenomenon that was very unlikely to occur. Discussion of
the degree of reordering measured in the Internet is presented in Chapter 3, and a

measurement study of the true effects of packet reordering is presented 1n Chapter 4.

As discussed in Chapter 1, a significant contribution of Bennett’s original paper in 1999,
was to question the assumptions made by protocol designers that packets will traverse
the Internet in-order. The following section presents the effects of reordering on TCP
as hypothesised by Bennett, and the resulting effects that Bennett argued would be
measurable on TCP performance [Benn99|. These assumptions have been assumed to

be correct in many of the later studies of packet reordering [Bell02][Blan02].

Bennett hypothesised that, due to the asymmetric nature of the Internet, connections

will frequently only experience reordering in one direction, and therefore there are three

25



types of packet reordering that can be considered; forward-path reordering or data

reordering, reverse-path reordering or Ack reordering, and a combination of both

forward and reverse path. Each type of reordering was argued to have very different

effects on the overall TCP connection.

2.5.1 Forward path reordering

In forward path reordering, TCP data segments arrive out-of-sequence at the recetver as
shown in Figure 9. Bennett hypothesised that this would result in the five effects of

unnecessary retransmissions, difficulty growing cwnd and ssthresh, actual losses being

obscured, poor RTT estimation, and reduced efficiency at the receiving TCP.

Sender Receiver Sender Receiver
Seq 1 Seq 1,2,3,4
Ack 2
\ ACK 5
T~ Seq 3
cgﬁ
o \\ Seq 5,6,7,8
h redrdere
Seq 4 /
\ d;-”
Ack 2 Seq 9,10,11,{2 Ackd
Seq 5 7
\ *"'ACK 13
Ack 2 \\ , Large amount of data
ACK’d at once
Wastpful
Re-tx 2 Re,[& i:sion
Figure 9 = Forward Path Reordering Figure 10 - Reverse Path Reordering

When data arrives out of order, the recetving TCP sends a duplicate acknowledgement

of the last in-order byte received or, if SACK is implemented, the ack will acknowledge

both the last in-order byte and the new out-of-order data.

Upon recewving an out-of-sequence packet, through either loss or reordering, the TCP
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receiver’s request for retransmission will require the sender to infer that the path is
congested. This will result in an unnecessary re-transmission, but additionally will initiate

unnecessaty congestion avoidance, thereby further reducing the potential throughput of
the link.

2.5.2 Reverse Path Reordering

In reverse path reorderning, the acknowledgments travelling back to the sender are
reordered, as shown 1n Figure 10. Data travelling in the forward path may be arriving in

sequence, but the asymmetric nature of the Internet may cause the receiver's cumulative
Acks to appear out of sequence. Bennett hypothesised that reverse reordering would

cause significant problems with the self-clocking property of TCP, leading to highly

butsty transmission patterns [Benn99].

2.5.3 Combined Path Reordering

Combined path reordering occurs when packet reordering is observed in both the
forward and reverse paths. This could occur when a TCP connection is symmetric and
passing through the same routers in both directions, although some studies have noted

[Ghar04], that packet reordering on specific network paths and routers can be

asymmetric in nature.

During Combined Path Reordering, Bennett hypothesised that TCP will alternate in

behaviour between the effects of both forward and reverse path. This causes a

combination of symptoms, depending on the degtee of reordering experienced in both

directions.

Packet Reordering thetefore has an instinctively negative effect on the performance of
TCP, and therefore the majonty of the current metrics and measurement studies have
focussed on characterising the movement of packets within a flow, rather than
measuring the resulting performance of a connection during reordering. Few papers in

the literature [Laot02] have actually measured the performance of TCP, or questioned
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Bennett’s arguments of TCP’s behaviour when undergoing reotdering. A measurement
study of the true effects of reordering on TCP application petformance is therefore

carried out in Chapter 4.

2.6 Internet Measurement

Network measurement sctence 1s motivated by a number of factors in order to develop
the tools and techniques to allow accurate characterisation and modelling of live
network traffic cutrently transported in the Internet today. Measurement is important
for provider operations, such as capacity planning, billing, and fulfilling local Lawful
Intercept requirements, and also from a scientific perspective of evaluating cutrent

protocols and architectures, 1n order to develop new technologies and standards.

As the Intemet evolves and new technologies such as voice, video and data “Triple-
Play’[Hens08] are deployed, there will be an increasing requirement to develop and
implement Service Quality support in IP networks. To petform the traffic engineering
requited for this suppott, protocols such as RSVP [Brad97b] require more sophisticated
characterisation of traffic flows, in order to allow networtk carriers to make provision for
pethaps millions of concurrent connections, with diverse traffic characteristics and

requirements[Ragh07], while at all imes maintaining a guaranteed level of Quality of
Service (QoS) [Info07].

2.6.1  Quality of Service

Quality of Service and Traffic Engineering [Awdu02] are becoming dominant in
Internet access technologies[Info07], as business users move from traditional ATM
leased line installations to Virtual Private Netwotks (VPN)[Info07]. This new
technology provides many cost benefits to the user, as thete is no longer the

requirement to install expensive point-to-point leased lines but, as a result, the level of

service and traffic charactenistics are no longer guaranteed. There is, therefore, an
increasing requirement for Service Level Agreements with accurate methods, to police

and measure compliance of the end user service experience, and to ensure that the
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network is providing the Quality of Service that 1s expected.

2.06.2 Service Level Agreements

A Service Level Agreement (SLA) 1s a contract which documents the level of service
between 2 usetr and a networtk provider [Mart02]. The SLA describes the business terms
of the agreement, the network provider and the users’ responsibilities, and the penalties
to be imposed should the agreement be broken. Examples of SLAs are widely available
[Pipe07][Att07], as they are used by providers as key differentiators to attract new
customers. The Service Level Specification (SLS) [NichO1] of the SLA is a set of
parameters and their values, defining quantitative characteristics, and the bounds on
these characteristics, that the provider is committing to deliver. A wide vatety of
characteristics may be included, such as delay, loss, Delay Varation and availability;

these characteristics, and the methods used to measure these characteristics, are

documented and agreed upon before a provider will make provision for each new

customet.

2.7  Metrics and Measurements

The term ‘Metric’ is used to describe the computation of 2 measurement, and results 1n

some quantifiable value that characterises a feature of the network.

The term ‘Measurement’ 1s used to describe the process by which the mettic 1s obtained

or retrieved and, therefore, could be one of several methods to perform a measurement

that will result in the same metric. Performing a Measurement requires ‘Instrumentation’

of the network, at an ‘Observation Point’ (OP), for the given time-base of the metric.

The following section discusses the common measurements and metrics that are used in

current Internet monttoring[Brow01]. A number of metrics are in common use, but

their definitions ate not necessarily standardised, resulting in problems when comparing

one set of metrics with others.
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2.7.1  Packet Latency

An accurate measute of latency 1s important as many applications, such as voice and

video, do not perform well over network paths with high levels of delay. TCP will suffer
degraded performance, as the round-trip-titme estimator will measure a very high value,

resulting in the poor performance of loss tecovery and congestion control algorithms.

The ‘One Way Delay’ measurement as defined by the IETF IPPM Working Group, in
Standatds Track RFC 2679 [Alme99a], is the time measured between a host transmitting
a packet, and the destination host receiving it. ‘Network Latency’ is the term used to
describe the round-trip delay[Alme99b], and is a function of the time taken to travel
along the physical links (transport time), the time to pass through routers (queuing and
transmission time), and the time for the receiving host to process the packet and
generate and Acknowledgement (server response time). When measuring network

latency, the transmission time component of the measurement may be asymmetric, as

forward and reverse measurements may travel over disjoint paths.

Latency can be measured using simple ICMP Echo Request ’ping’ messages, ot TCP
resets, although using ICMP may not always result in accurate network
measurements[Wenw07]. Measuring forward and reverse path delays separately, requires

instrumentation at both ends of a connection, with appropriate hardware and software

agents. RFC 2679 [Alme992] describes a One-Way Delay metric, where both hosts have

highly-synchronised clocks, and specially constructed packets with timestamps are

transmitted to allow delay calculation 1n each direction.

2.7.2 Packet Loss

Network loss measurements are important because many applications do not petform
well when end-to-end packet loss 1s high. Many services, such as voice over IP, are
designed to tolerate some packet loss but, over a threshold value the service quality
decays quickly. TCP actually requires packet loss in networks, in order to probe network

capacity and adjust its transmission rate accordingly, and so an accurate measure of one

way loss [Alme99c] and round trip loss ate important network characteristics. Packet
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loss may vary due to network load and time, and may exhibit bursty behaviour.
Therefore, loss patterns [Koo02] and loss distribution are key parameters which

determine the performance observed by the usets for certain real-time applications.

A definition for Packet Loss i1s provided by the IETF IPPM Wotking Group, in
Standards Track RFC 2680 [Alme99c], ‘A One-Way Packet Loss Mettic for IPPM’. Loss
is defined simply as the number of packets transmitted from sender to recetver, which
have been lost in transit. This can be expressed as a percentage over a set period of
time. If a packet arrives, but any part of it is corrupted, RFC 2680 defines that packet to
be counted as lost. If a packet arrives very late, a method is required to differentiate
between packet loss and those very late packets; RFC 2680 suggests an upper bound of
255 seconds, as defined by the theoretical TTL lifetime of an IP packet. Packets which
arrive later than 255 seconds are to be counted as lost. If a packet is duplicated along the
path, so that multiple non-corrupt copies arrive at the destination, RFC 2680 defines the
packet to be counted as recetved. If the packet is fragmented, and for whatever reason,

it is not reassembled correctly at the destination, RFC 2680 defines that packet to be

counted as lost.

The main difficulty with current loss measurement techniques, is that it is difficult to
isolate an end-to-end loss measurement to a particular netwotk node or path.
Additionally, RFC 2680 comments that packet loss may occur asymmetrically across a
network, and therefore loss measurements should be considered ‘one-way’. Loss
measurements would be more useful for providers if they isolated a particular
malfunctioning node or path. Loss measurements are also based on active probing

techniques, which may result in packet probes traversing different intermedtate routes

between source and destination, thus measuring different paths. Therefore, routing and

switching anomalies must be considered when petforming these measurements,

especially 1f it 1s impossible to gain knowledge of the interior gateway routing protocols

in use.
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2.7.3  Packet Jitter and Delay Variation

The IETF IPPM Standards Track RFC 3393 [Demi(2], ‘IP Packet Delay Vanation

Metric for IP Performance Mettics’, defines a metric for the variation in delay of packets

across Internet paths. This metric is based on the variance of the one-way-delay, as

defined by RFC 2680, of two or more selected packets.

RFC 3393 establishes that terminology in this area of measurement lacks
standardisation, and that the variation in packet delay is sometimes called Jitter’. Jitter’
commonly has two meanings; the first being the variation of a signal with respect to a
clock signal, where the arrival of a specified signal is expected to coincide with the
arrival of that clock signal. This definition of Jitter’ is similar to a metric called ‘Wander’
[Demi02] and is specific to networks such as ATM. The second meaning of ‘Jitter’, as
defined in RFC 3393, 1s related to the variation of a metric (e.g. delay) with respect to

some reference metric (e.g. the average delay). RFC 3393 recommends discontinuation

of the word ‘Jittet’, and use of the more specific term ‘IP Packet Delay Varation.’

‘Delay Variation’ is defined [Pore06] as the absolute value of the difference between the
arrival delay variation of two consecutive packets belonging to the same stream, and 1s
therefore indicated by packets exhibiting a differential delay, positive or negative,
compared to the other packets in the stream. Delay Variation can be caused by multi-
path routing, route fluttering, or packets of the same stream traversing different queues
inside a router. Delay Variation is an important metric for determining queuing and
buffering capacities at mid-points and end-points in a network, as applications such as

video require a constant flow of packets. Therefore Delay Vatiation must be smoothed

by approprately sized buffers.

2.7.4  Packet Throughput

Throughput 1s defined [Brad91] as the maximum rate, measured in bits or packets per

second, at which none of the offered packets are dropped by a netwotk device.
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Throughput therefore desctibes the number or rate of delivered packets to a network
device or end host, Throughput as a mettic has many applications in terms of capacity
planning and traffic engineering, but 1s also extended to discuss ‘Goodput’. Goodput 1s
the number or rate of wsefu/ packets delivered, and therefore is a function of the

throughput with respect to loss and retransmissions. Goodput is discussed further in

Chapter 5.

2.7.5 Packet Ordering

In-sequence delivery is a good indicator of the health of a connection, as it indicates that
there are no large variations in transmission time or Delay Variation, and that the
receiving host is receiving data in the order by which it was intended. In protocols such
as TCP, extremely late packets may result in the Receiver assuming that a loss has
occurred, and that the Sender has chosen to retransmit that packet due to RTO. These
extremely late packets may also result in the Receiver signalling to the Sender for Fast
Retransmission, pethaps unnecessarily resulting in packet retransmission, and perhaps
resulting in unnecessary Sender congestion avoidance. In Negative-Acknowledgement

based protocols, such as the RFC 3940 NACK-Oriented Reliable Multicast Protocol
[Adam04], extremely late packets would result in the Receiver signalling to the Sender

for unnecessary retransmission.

Packet Ordering will also have an ovethead, associated with the re-sequencing packets at

the Receiver, before presentation of these packets to higher network layets.

A review of both Metrics and Measurement Techniques for IP packet ordering is the

subject of Chapter 3.
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2.8 Measurement Bases

Measurements can be classified on the basis of where and at which level of traffic
agoregation the traffic data 1s gathered, and a number of Measurement Bases are
defined[Lai03]. The observation point may be a probe on a line card of a router, or a
software probe in the IP stack of a particular host. The exact location of the observation
point may also have an effect on the observation measurement time. The concept of
‘wire time’ and ‘host time’ are therefore important, and are affected by the specific
instance of probe. Wire time 1s defined [Alme993] as the moment when a test packet
leaves the network interface of the source, and the moment when it arrives completely
at the destination. Host time is the timestamp taken from the sending/receiving hosts

kernel, when the probe requests a ttmestamp.

2.8.1 Flow-based Measurements

Flow-based measurements are primarily used on intetfaces at routers, and are used to
collect detailed information about a particular, ot group of, IP flows. A flow 1s identified
by the source and destination IP addresses, port numbers, and protocol numbers, and

once a flow has been identified, a variety of the measurements described in Section 2.7

can be performed. On cote network routets, measurement of every flow through a .
router interface 1s extremely challenging due to the number of source/destination pairs
which could be identified, and the large number of measurement records that are
created and then associated with each flow. This can result in large amounts of

measurement data that may be difficult to process in real-time, without adversely

affecting the network node’s performance.

2.8.2 Interface, Link and Node-based Measurements

The purpose of these measurements is to characterise the behaviour of the particular

network element or interface, and is typically performed by a single-point passive
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technique as discussed in Section 2.9.1. This type of measurement may be used to

describe the traffic aggregation across a particular router interface, such as the maximum

packet throughput that a card will sustain, without giving attention to patticular flows ot

their source and destinations.

The Simple Network Management Protocol (SNMP) [Case90] is an example of an
interface, link or node based measurement protocol, which uses passive monitoring to
collect data, typically in the form of packet counters, byte counters, packet discards and
errors. These metrics are organised in hierarchies and stored in Management
Information Bases (MIB)s, and are reported by the SNMP agent to the Network
Management System as required. These measurements would typically not be able to
reconstruct a flow of packets between sender and receiver and, as discussed with flow
based measurements, may require monitoring of thousands of concutrrent flows and the

generation of large amounts of measurement data, which would require significant post-

processing to generate practical results.

2.8.3 Node-pair-based

Node-paitr measurements concern the measurement made between two predefined

network elements. This is usually the case for active measurements, such as Ping ot
Traceroute as discussed in Section 2.9.2. Alternatively, it could be derived from the
records generated from a flow-based measurement through post-processing of

source/destination pairs. Due to multi-path routing and asymmetric paths, node-pair

measurements can be difficult to perform in IP networks.

2.8.4 Path-based

Path-based measurements are performed over a path between a number of netwotk
nodes. This may be a strictly defined MPLS path, or simply a multi-hop route across
several nodes. These measurements describe the characteristics of the aggregate traffic
of the path and could be retrieved, based on one observation point to passively monitor

throughput, or based on multiple observation points to actively monitor the delay.
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2.8.5 Local and End-to-End Measurements

The observation point required to petrform a measurement must be defined when
reporting the results of any Internet measurement, and can be described as being either

a Local Measurement or an End-to-End Measurements.

¢ Local Measurements desctibe measurements which can be made from a single
observation point, such as interface-based and node-based measurements. Path and
flow based measurements can also be made locally if the correct observation point 1s
chosen, although as discussed in previous sections, these measutements are more

challenging to implement.

e End-to-End Measurements are those which require more than one observation
point. This facilitates path-based and node-pair based measutements, over multiple

hops across an end-to-end Internet path.

In addition, Internet measurements may be described as being absolute or dettved:-

¢ Absolute Measurements provide an accurate representation of a metric without

calculation of any statistics. An example of an Absolute Measurement is a count of

the number of packets discarded by a router.

e Derived Measutements are computed from simple measurements, such as the
delay of a single packet 1n a stream and, from a series of several measurements,

derive a subjective measurement tresult ~ such as the Mean Opinion Score of a video

playback.
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2.9  Measurement Methodologies

There are two primary techniques when performing both local and end-to-end

measurements; Passive measurement methods and Active measurement methods. These

passive or active methods can both be applied across local or end-to-end points, to

compute a number of metrics.

2.9.1 Passive Measurements

Passive measurements are petrformed on live user traffic by monitoring the normal
operational packet load from an observation point. The observation point applies a
mask on the packets travelling through the instrumented device, and copies these

packets of interest into the measurement probe, to perform metric calculation and

possible storage.

Passive measurements may be applied across a single or multiple obsetrvation points. A
single-point measurement allows monitoring of traffic load and protocol statistics o, if
the packet flows contain timestamps such as RTP, then metrics such as delay, Delay

Varnation and packet loss can be calculated. With multiple observation points, a passive
measurement approach can perform delay measurements without timestamps, provided

that both obsetvation points are synchronised, as discussed in Section 2.10.

Passive measurements do not add further traffic to the network but, in general, require
more computation than active measurements and can result in very large datasets

requiring to be processed in order to obtain relatively simple metrics.

2.9.1.1 Passive Measurement Examples

Cisco IOS NetFlow [Clai04] was a proprietaty passive measurement technique to

petform flow measurement on Cisco routers. For each interface on the router, NetFlow

maintains tables of Flow Records’ of each connection passing through the interface,
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based on soutce and destination IP addresses and ports. At specified intervals, NetkFlow

data records would be sent by UDP from the router, to a NMS for processing.

NetFlow Version 9 [Lein04] is the basis for the emerging IETF standard ‘Internet

Protocol Flow Information eXport’ (IPFIX), to create a common format for IP flow

information, to be used in accounting, billing and network management systems.

There are several methods and tools to collect and analyse NetFlow data, such as Flow-
tools[Full07]. Flow-tools is an open-source collection of tools to process and generate
reports from NetFlow-enabled devices. Other router manufacturers provide similar
functionality to Cisco NetFlow. Juniper Networks provide Jflow statistics
collection[Juni07], and Huawei Technologies provide a similar feature called
NetStream[Huaw07].

2.9.2 Active Measurements

Active measutements operate by injecting controlled test packets through the network,
in order to observe how these packets, with their characteristics known a-prioti, ate
affected by the netwotk. Active measutements therefore require two elements in the
network; the sending host must generate the test packets, and the receiving host must

either perform the measurement, or return specific information to the sending host.

Active test traffic may be simple ICMP Echo Request probes, such as those sent by
Ping or Traceroute, or may be synthetic packets, typically carrying timestamp and
sequence numbers to allow delay and Delay Variation measurements to be calculated.
Active measurements are intrusive on the network and will add to the overall load that
the netwotk must process, but are commonly used as the method for monitoring SLAs
[Bt07] and for basic site connectivity testing. There is also the possibility that the
synthetic traffic may be treated differently from other live traffic on the

network[Wenw(7], or that the tratfic may be processed by a router’s ‘slow path’ control-

plane, thus generating non-representative results.
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2.9.2.1 Active Measurement Examples

Ping’, the Packet Internet Groper [Mill83] was the first single-point active measurement
tool, which transmits ICMP echo request packets to a specified host and measures the
round-trip time of the response. The advantage of Ping is that ICMP packets are
handled inherently by a hosts’ IP kernel, and so no additional endpoint equipment i1s

required. ICMP 1s used less often now for internet measurement, for the reasons

discussed above, and because of the increased likelihood of firewalls blocking these

messages.

The IPPM Pernodic Stream Measurement [Rais02] transmits equally sized packets at
regular intervals to simulate a constant bit-rate multimedia stream, and to quantify the
delay and Delay Vanation expenienced. This method provides a way to perform

measurements irrespective of the QoS mechanisms employed by the IP network.

‘Cisco IOS IP SLAS’ 1s a tool which runs as embedded software within Cisco routers
and network entities, to provide active monitoring of delay, loss and Delay Varation
between the router device and other devices. Setvice Assurance Agents are installed on
each Cisco device, which is polled by test traffic (simulating a particular IP network

traffic type), and the response measured. As the name suggests, this is a key tool for

network operators to ensure SLA compliance.

2.10 Limitations of Current Techniques

Many of the Iimitations of cutrent measurement techniques have been highlighted
throughout the previous discussion. The greatest difficulty with passive measurements is
the positioning of the observation point, to ensure that all of the traffic of interest is
measured. Additionally, passive measurements are likely to create large amounts of
logging data, which require storage, transmission from the observation point to a NMS,

and significant computation to produce the required results. Active measurement

techniques require instrumentation of more than one host, and ensuting that the
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receiving host 1s capable of processing the synthetic traffic as required. Active
measutements consume valuable network resources as a part of their procedure and, if

ICMP 1s used, they may also be handled differently from normal traffic — thus

generating spurious results.

Positioning of netwotk probes is another difficulty with current techniques. Should the
technique requite specialist logging or processing capabilities, it may not be possible to
place this on a particular piece of network hardware. The use of SPAN ports on
switches [Cisc07] can only monitor low numbers of links and low utilisation levels. The
use of fibre taps can have a detrimental effect on the distance the fibre would normally

be able to span.

Time Synchronisation is critical in many of these metrics, as many techniques, both
active and passive, require the ability to timestamp measurements at geographically
separate points in the network. It is widely accepted [Paxs98] that Netwotk Time
Protocol (NTP) is not sufficiently accurate for network measurements, as the clock
accuracy is affected by the delays of the paths used by the NTP peers. Currently, the
most common method of time synchronisation for network measurement is Global
Positioning System (GPS). GPS systems are in wide use in telecoms applications to

provide a reference site clock to a local site, that is then shared within that site using

NTP.

IEEE-1588 [lece07] is an emerging standard that defines a protocol which can
synchronise heterogeneous systems, across a LAN, to nanosecond levels of resolution
and accuracy on a Gigabit Ethernet. This protocol petforms measurement of time
offsets between devices on a LAN, and then the synchronisation of those devices to a

master device — which would normally be connected to a GPS receiver. Standardisation

work has now been completed on the protocol, but at the present time, there are very

few devices available with 1588 capability.
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211 Summary

This chapter has provided an introduction to the Internet Protocol Suite, and
specifically the operation of the Transmission Control Protocol. The wvarious loss

tecovery mechanisms and congestion control algorithms have been ptesented, with the

motivation and operational assumptions of these improvements discussed.

An overview of network measurement science has discussed the common metrics and
measurements that are used on the Internet today, and the two main methodologies of

active and passive techniques have been shown. Examples of these techniques, and theit

limitations have been presented.

The effects of packet reordering on TCP flows has been discussed, and it has been
argued that packet reordering will have a significantly detrimental effect on overall
performance. In-sequence packet delivery is a good indicator of the health of a
connection, as it indicates that there are no large variations in transmission time ot
Delay Vatation, and that the recetving host is receiving data in the order it was
intended. Chapter 3 will continue this theme by presenting the current state of the art in
packet teordering measutement research, by discussing the various proposed

measurement techniques, and the results of recent measurements performed on live

Internet networks.
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Chapter 3
Measuring Packet

Reordering

3.1 Introduction

It has recently become cleat to the networking community that the tradittonal metrics
and measurements used to characterise an IP flow, namely latency, loss, Delay Variation
and throughput, do not convey sufficient information to fully describe flow
performance across an entite end-to-end path. Recent work [Benn99] has indicated that

TCP’s design assumption, that packet reordering occurs infrequently, may be invalid and
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may be subject to increase further as the Intermmet grows. This may be further
exacerbated by the increase of parallel links and the predominance of other new

technologies, such as IP multthoming, and the increasing use of witeless technology.

Since Paxson’s first wotk in 1995[Paxs96] to characterise the degree and severity of

packet reordering in the Internet, there have been several attempts to develop a metric
and measurement methodology to describe IP packet reordering. These studies are so
diverse in their techniques and assumptions, that it is very difficult to compare results
across the literature. The lack of a standard experimental measurement methodology,
and the lack of a standard reordering metric, has been argued [Benn99] to be a
significantly limiting factor 1n understanding the effect, impact and prevalence of packet

reordering in today’s Internet.

It is also important to note, that TCP itself is not the only protocol within the IP suite
which is susceptible to packet reordering [Ghar04]. Any protocol which mimics “TCP-
Friendly’ behaviour, where the packet transmission rate is divided over the square root
of the packet loss rate, or, has tight constraints on packet arrival times, may be

susceptible to the effects of reordering, and thus this lack of undetstanding could affect

a large proportion of the traffic on the Internet.

This chapter presents the prior art of the area, by presenting a taxonomy of metrics and
measurement methodologies which have been developed to charactertse packet

reordering in the Internet, and the results obtained by using these methods.

Firstly, a survey of active and passive reordering measurement techniques are discussed

and evaluated, which have been proposed to measure the degtee of packet reordenng

occurring on an end-to-end path.

Secondly, a number of packet reordering metrics are discussed, which have been

proposed in order to numerically describe the amount of packet reordering that is

occurring on a flow.

Thirdly, a comparison of these techniques is presented, and a comparison of the
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measurement results obtained using these techniques. This Chapter concludes with
discussion of the difficuldes of measuring both the impact and degree of packet

reotdering, and the drivers that should motivate further research in this area.

3.2  Active Packet Reordering Measurements

As previously discussed 1n Chapter 2, active measurement techniques are commonly
used for SLA compliance monitoring [Somm07], and operate by injecting synthetic
traffic into the network in order to emulate the performance characteristics endured by
a real traffic flow. Passive measurement techniques ate unable to characterise the end-
to-end performance of a packet from an arbitrary single point, and therefore active
packet probes are requited. Active probes are, of course, not without their own
problems, and it has been argued [Scho04] that results obtained by active probes ate low
in accuracy and high in packet probing overhead, and often do not correlate [BarfO4]

with router-based passive measurements.

Nevertheless, due to the complexity associated with designing a passive measurement
technique for packet reordering, as discussed in Section 3.3, the majority of packet
reordering measurement techniques are based on active methods. This section reviews

these techniques, and summaries the results obtained when tests have been performed

on live Internet networks.

3.2.1 Limitations of Active Reordering Measurements

Designing active packet probes which can be injected into a network and generate
meaningful performance metrics, which are representative of real network behaviout, is
a challenging process, and has been shown to produce results [Barf04], which do not
correlate with other passive measurements made by protocols such as SNMP. In many
circumstances, Intrusive measutements using active probe packets is the only option
available [Scho04]. There ate many practical issues when conducting large scale Internet
measurements that must be addressed [Paxs04], such as including relevant meta-data

with results, dealing with large amounts of data, ensuring tesults are teproducible and
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accurate, and making datasets publicly available.

Additionally, there are many limitations imposed by the operation of Internet nodes
which may affect measurement. Not all implementations interpret standards consistently

[Fang03], and this must be considered when designing measurement experiments which

operate on live networks. Individual ink measurements may not correlate with a uset’s
end-to-end path experience, and it can be difficult to know what to measure. SNMP can

provide a great deal of data about the status of each management network element, but

this can be difficult to correlate with overall user experience[Hust03].

Round-trip probes such as Ping and Traceroute are useful active measurements to
measure a total network path, but these cannot measure the charactetistics of a single
component in that path. One-way measutement packet probing techniques [Luck01] are
being developed to petform these measurements, but require strict clock

synchronisation between sender and receiver in order to calculate accurate results.

The Internet does not lend itself well to being measured. ‘Middleboxes’ [Alm03b] are
intermediate netwotk devices which do not follow the standard partitoning of
functionality as defined by the OSI model. Therefore ‘multilayer switches’, layer 4
routers’, ‘layer 4-7 switches’ or ‘content switches’ are all devices which provide the basic
functionality of packet switching but, in addition, may inspect higher OSI layers to
provide additional functionality, such as firewalling, intrusion detection services, web-
server load balancing or network address translation. These additional network
clements, which may appear transparent to a normal data connection, can have adverse

affects on active packet probes, as many violate traditional networking assumptions that

packets flow from source to destination essentially unchanged[Medi05].

Many publications of active Internet measurements rely on unusual or uncommon parts
of specifications, in order to construct measurement packets. Approximately 40% of
hosts do not operate SACK cortectly, Explicit Congestion Notification has been
measured in only 2.1% of connections, and less than 36% of end hosts support IP

Options such as Timestamps[Medi05]. It is common for Middleboxes to simply drop
packets with unknown IP options, and indeed, some Middleboxes deploy
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countermeasures termed ‘fingerprint scrubbers’ [Smar00][Medi05] to manipulate TCP
options, thus preventing identification of TCP end hosts. Any active packet probe tisks

being identified as a Denial of Service attack, and should at least expect additional

latency due to further analysis by intermediate IDS entities.

With these limitattons considered, a review of active packet reordering measurements 1S

now presented.

3.2.2 Paxson

Between December 1994 and December 1995, Vern Paxson performed the first large
scale studies of Internet packet behaviour from an end-to-end perspective[Paxs97], with
the aim of investigating how routing dynamics translate into perceived quality by the
end user[Paxs97a]. Paxson investigated ‘pathological conditions’, such as routing

behaviour and routing asymmetry, and discovered that both packet reordering and route

asymmetry were much more common than was previously assumed.

Paxson’s work was important due to the sheer scale of the measurement methodology
involved. 37 end hosts around the wotld [Paxs96] were instrumented as active probes,
and 40,000 end-to-end ICMP ‘Traceroutes’ wete petformed and post-processed for
analysis. The results from these Traceroutes questioned many of the commonly held IP

netwotking assumptions, such as in-order packet delivery, FIFO queueing, and path

symmetries.

Paxson extended this work [Paxs97b] [Paxs99] by performing 20,000 100-KByte TCP
bulk transfers between 35 probe sites and, using Tcpdump [Tcpd08] to record the

output at both ends, performed the largest one-way measurement [Hust03] to date,

using TCP rather than UDP or ICMP. In subsequent offline post-processing, each

tcpdump file was traced using “Tcpanaly’ [Paxs97c], a tool to parse Sequence Numbers,

follow the congestion control specifics of each TCP implementation, and to generate

statistics.

Paxson developed his own metric for packet reordering. As each packet arrives, it is
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checked against the last ‘non-reordered packet’. If the sequence number is gtreater than
the last non-reordered packet, then that packet is matked as being in-order, and
becomes the new non-reordered packet. Thetefore, in a sequence of arriving packets 1,
6,2, 3, 4, 5, packets 1 and 6 are marked ‘in-order’, while the other 4 packets are matked
‘reordered’. This simple metric highlights packets which artive ‘late’, rather than matking

‘early’ packets as those which have undergone reorderng.

The results from these measurements concluded that packet teordering is highly
prevalent in the Internet. During the two measurement periods, over 36% and over
12% of the TCP sessions included at least one packet which was delivered out of otdet,
with the fraction of packets that were reordered measured as 2% and 0.3% in the
forward direction, and 0.6% and 0.1% in the reverse. Paxson argued that the latger
number of data packets being reordered in the forward direction results from the
cumulative-ack function, resulting in data packets being sent closer together and, thus,
requiring 2 smaller difference in transit time to cause reordering. Paxson questioned
further assumptions on network behaviour by obsetving that Network Replication of

packets was extremely rare, and that packet cotruption was also negligible, measured 1n

0.02% of data packets, and 1 in 1.6 million ack packets.

Packet reotdering was also found to be both highly site-dependent and asymmetric; one
particular site exhibited 15% packet reordering, which was significantly higher than the
average 2%. Of this 15% reordering, only 1.5% of data packets sent forward to that site
were reordered; the majority of reordering was measured on data packets travelling away

from the site.

The major shortcoming of this, and of other active techniques, is the requirement to run
code on end hosts; therefore this measurement methodology cannot scale to multitudes
of atbitrary hosts. Furthermore, the use of 100 kbyte TCP transfers may not be
sufficient data to allow the sender’s congestion window to fully open, thus making

comparison with other bulk transfer measurements difficult [Laor02] [Feng07].

The ability to instrument the end-points across so many diverse hosts, to measure live

TCP traffic rather than packet probes, to perform one-way unidirectional measurements
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between each source-destination pair, and to perform offline post-processing of the
results are compelling advocates for the use of Paxson’s measurement methodology.

The scale of these measurements, performed nearly 10 years ago, generated results

which questioned many protocol design assumptions on packet reordering and
duplication, and stimulated further attempts to measure and characterise these features.

Paxson himself notes that these measurements may not be representative numbers for
the whole Internet, but surmises that specific Internet paths may be subject to a high

incidence of reordening, and that this incidence is site dependent and correlated with

route fluttering.

3.2.3 Bennett

In 1999, Bennett [Benn99] questioned Paxson’s conclusion that packet reordering was a
‘pathological behaviour’, mainly caused by route fluttering, router update events and
incotrect or malfunctioning networking components. The fact that packet reordering
did occur on the Internet was not a revelation from Paxson’s work, as this had been a
design assumption of the Fast-Retransmit algorithm, but Bennett argued that a recent
significant increase in ‘local parallelism’ within Internet components, was causing packet
reordering under normal operation. Bennett asserted that packet reordering was no
longer a pathological behaviour, and that the incidence of packet reordering was

substantially higher than had been previously reported.

Bennett performed a number of active measurements at MAE-East[Mae08]; the largest
Internet Exchange Point in the world in terms of bits per second of traffic, equipped
with a core DEC Gigaswitch multiport FDDI crossbar switch. Between December 1997
and January 1998, Bennett chose 140 hosts that were topologically close to the

Exchange, and sent a burst of 5 ICMP Ping packets, to ptime for route cache misses,
followed by a back-to-back burst of 50 ICMP Ping packets each of 56 bytes. The
number of hosts to successfully receive the first 10 packets was recorded, and then the

number to tecetve these first 10 packets in order was also recorded. This measurement

was then repeated for the first 20 packets.

Results from these initial tests indicated that the probability of a session experiencing
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reordering was over 90%. To better understand the charactetistics of reordering, a
second site test was petformed on a specific host which had exhibited high degrees of
reordering, in order to investigate the effect of traffic load and reordering. This host was
sent 2 100-packet burst of 512-byte packets every minute for four days, and the degtee
of reordering was measured by calculating the average number of SACK blocks required

to cover the out-of-order Ping replies received if the session had been a TCP

connection. From publicly-available traffic statistics of MAE-East, Bennett was able to
plot his SACK-block mettic against the load of the Gigaswitch, and conclude that

packet reordeting, specifically at MAE-East, was a function of core network load.

The concept of ‘local parallelism’ introduced by Bennett, was exemplified by discussion
of the DEC Gigaswitch and its feature of ‘Hunt Groups’, whereby multiple FDDI potts
operate as a single virtual link, thus allowing that switch pott to “load stripe” across dual
parallel physical links for increased bandwidth capacity. Bennett argued that prior to
mid-1997, the Gigaswitch operated at loads where the “Hunt Groups” features would
not cause packet reordering, but, due to the explosive growth in traffic by 1998, packet
reordering was now a common feature. Bennett notes, though, that local parallelism 1s
not a problem with just this particular switch. In order to achieve the multi-gigabit
petformance which users demand, the use of load balancing, link striping, and local
parallelism within nodes will also have to increase. Packet reordering is therefore a

complex phenomenon, and Bennett concludes that it is a function of the existence of

parallel links between nodes on a path, of the exact configuration of the hardware and

software in nodes on the path, and of the traffic load of the nodes on the path.

Bennett’s packet reordering technique is important as the use of ICMP Pings allows
measutrement against arbitrary hosts, thus negating the need for instrumentation of the
endpoints. There are, though, some limitations to this technique. It i1s known that
network operators often filter or rate-limit ICMP traffic [Bell02] [Wenw07] and, if the
measutement end-point 1s a switch or router, the packet will be processed on the ‘slow
path’ by the router’s GPU. Secondly, it 1s not possible to infer if the ICMP packets wete
reordered on either the forward or reverse path. The use of the ‘SACK blocks’ metric is
dependent on the end-host supporting this TCP extension. It has also been argued
[Jais07] that the use of back to back ICMP packets may exacerbate the amount of
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reordering observed, as the inter-packet gaps are small, and unlike TCP, the send rates is

not reduced upon detecting congestion.

3.2.4 Loguinov

Loguinov’s active measurement study of video traffic [Logu02] in 2002, across 16

thousand ten-minute MPEG-4 sessions over seven months, is a significant large scale
real-time measutement study of loss, delay and packet reordering, and provides an
insight into the behaviour of low-bitrate streaming sessions. Based on connections to
commercial dial-up ISPs, the experiments consisted of streaming video sequences to
unicast home users, using UDP as the transport mechanism, and a simple NACK-based

retransmission scheme to recover lost packets before their decoding deadlines.

Two video streams were encoded at 14 kb/s and 25 kb/s, and split into 576 byte IP
packets of roughly 5000 each. In the first set, three clients performed 16783 connection
attempts by long distance PSTN modem calls to ISPs and completed 8429 successful
streaming sessions. For the second set, 17465 calls were placed, resulting in 8423
successful streaming sessions. Results unexpectedly indicated that, despite the very low
bitrates of the stteams downloaded, certain paths experienced consistent reordering

although at a very small degree.

The percentage of reordered packets was calculated relative to the total number of
missing packets. The average reordering rate was measured to be 6.5% of the number of
missing packets, or 0.04% of the number of sent packets, which although only 10% of
that measured by Paxson, 1s explained by the authors due to the lower bit rates. Of the
total number of transfers, 9.5% experienced at least one reordering, although specific

paths exhibited up to 35% of connections (and 0.2% of sent packets) expetienced

reordering.

Loguinov defined two mettics to describe reotdering. The packet reordering delay, D, is
the delay from the time when a reordered packet was declared as missing to the time

when the reordered packet artived at the client. Packet reordering distance d, is the

number of packets (including the very first out-of-sequence packet, but not the
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reordered packet itself), received by the client during reordering delay D.

Across the two sets of experiments, the largest reordering distance 4. was measured as

10 packets, and the largest reordering delay D, was 20 seconds, although this was seen

on only one packet. 90% of 4, measurements were below 150ms, 97% below 300ms,
and 99% below 500m:s.

The Reordering Distance was used in order to measure the effectiveness of TCP’s Fast
Retransmit mechanism. By plotting the pdf of D, , 91.1% of reotrdered packets were

seen to have moved by less than 3 packets, and 95.7% of packets were teordered less

than 4 packets.

3.2.5 Bellardo

In 2002, Bellardo [Bell02] developed a suite of active measutement tools named ‘Sting’
[Bell03] to measure one-way end-to-end packet reordering rates; aiming to imptrove on
Bennett’s ‘SACK block’ measurement and Paxson’s ICMP measurements by negating
the need to instrument end-point nodes. Bellardo uses a ‘packet-pait approach’
[Hust03], where a packet ‘train’ is sent to an atbitrary TCP endpoint, and the response

to this packet-pair allows a one-way packet reordering measurement to be performed.

Figure 11 illustrates the ‘Single Connection Test’, whereupon after the normal 3-way

handshake has been completed, the first data packet to be sent, Seq 2, is exactly one

segment size higher in sequence number than that expected by the teceiver. The end
host will acknowledge this packet by sending Ack 1, indicating that the first data packet
appeats to have been lost. The measurement probe tesponds by sending the first and
third data packets, Seq 1 and Seq 3. By priming a ‘hole’ in the receiver’s window of
acknowledged packets, and then by measuring the response to this packet-pair, it is

possible to differentiate from the resulting Acks if packet reordering is occurring on the

forward path, reverse path or in both directions.

The Single Connection Test provides a simple method of identifying reordering, but will
fail if the end node implements the delayed acknowledgement algorithm, whereby a
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recetving host will delay acknowledgements for a period before sending a cumulative
acknowledgement covering several segments of data[Clar82]. On many TCP

implementations, the arrival of Seq 1 and Seq 3 in close succession will result in a single

Ack 4 being sent.
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Figure 11 - Bellardo Single Connection Test Figure 12 - Bellardo Dual Connection Test

To address this limitatton, Bellardo’s ‘Dual Connection Test” establishes two
simultaneous TCP connections from the measurement probe to the end host, as
tllustrated in Figure 12. Each TCP connection primes the end point in a fashion similar
to the Single Connection Test, by sending a Sequence Number exactly one segment size
greater than that expected. The Dual Connection Test assumes that the IPID field will

increase monotonically across TCP connections to the same end host destination, and

therefore the IPID can be examined in the returning Acks, to indicate the presence of
reordering in the forward or reverse paths. The authors acknowledge that this

assumption 1s not without its own problems, and that this test will fail completely

should the end host be hidden behind a Middlebox, such as a transparent load balancer.

The TCP SYN test, illustrated in Figure 13, assumes that any Middlebox will perform
load balancing by hashing the four-tuple addresses and ports viewed in the IP header,
and that by sending a packet pair of identical Syns that differ only slightly in the starting
sequence number, the end host will reply with a Syn-Ack to the first Syn, and a Reset
(Rst) to the second Syn. As with the previous tests, evaluation of the replies from the
end host allows the probe to infer the presence of reordering in either direction. As with

the Dual Connection Test, this measurement requires the end host’s TCP
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implementation to respond 1n a specific way, to a part of the TCP specification which
may not be consistently implemented, and therefore cannot be assumed to be reliable in
all cases. Additionally, many Middleboxes assume multiple roles, including that of

Intrusion Detection Systems (IDS), and therefore this measurement technique may

wrongly be identified as a ‘SYN Flood’ Denial-of-Service attack, resulting in unreliable

measurements.

Figure 13 - Bellardo Syn Test

As a fourth test, Bellardo described the “TCP Data Transfer test’, a simple HTTP GET
request to a web server. By generating Acks for the largest Seq number recorded, even
when data is lost, and also by advertising a small Maximum Segment Size (MSS), it is

possible to generate enough data to fill at least two packets and thereby measure the

reverse path reordering.

Bellardo chose 50 random hosts across the Internet and, from a single probe machine
located at University of California San Diego, cycled through all four tests on each host
over 20 days, resulting in 850 measurements per host, where each individual
measurement consisted of 15 samples. Bellardo observed that over 40% of the hosts
measured experienced some reordering during the 20 day period, with more than 15%
of measurements having at least one reordered sample, and with forward path

reordering significantly more prevalent than reverse path reordering.

Bellardo found that during periods of significant reordering, the TCP data transfer tests

produced significantly lower estimates of reordering than the other techniques. From all

the metrics available in their experiments, they chose to report reordering as the
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probability that a pair of back-to-back packets are reordered over a given time interval
Bellardo suggested that this inaccuracy was most likely due to the fact that in the TCP
test, the size of data packets would be 1500 bytes, whereas the othet tests would consist
of 40 byte packets. Therefore, the extra delay tequired to serialise the data for

transmission, tresults in a much larger delay between the leading edges of the data

packets, thus reducing the probability of the packets being reordered if they are assigned

to different queues.

Bellardo concludes that since packet reordering is related to ‘local parallelism’ and that
queues within a switch will likely drain at a constant rate, the likelthood of reordering 1s
related to the inter-atrival time between two packets. A large inter-packet gap can
tolerate a greater queue imbalance than those packets which are closer together. During
experiments to vary the inter-packet gap between test probes, Bellardo measured that
minimum-sized back-to-back packets are reordered more than 10% of ‘the time, but
with an additional 50 psec delay between packets, reordering decreases to less than 2%,
and approaches 0% after 250 usec. From this relationship, Bellardo proposes that it is
therefore possible to infer an application’s behaviour when undergoing reordering. For
example, during bulk data transfer, full-sized data packets ate less likely to be reordered

than acknowledgement packets.

Bellardo’s conclusions contribute to the discussion on packet reordering prevalence, but
the measurement technique makes assumptions on the characteristics of end host TCP
implementation, and assumes it will respond in certain ways. This limitation, and the
difficulties that would be experienced when determining which method to use, and

determining if Middlebox interaction 1s affecting performance, indicate deficiencies with

this particular metric.
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3.2.6 Tsinghua

In 2004, Wang [Wang04] presented an active end-point technique, to analyse TCP
streams arriving at a measurement probe, and to correlate measurements of packet
reordering with network topology. Using traceroute to map the routes to various web
server endpoints, and Wget [Wget08] to initiate downloads from those servers, the
arriving data packets are analysed using a simple decision algorithm which classifies
packets as Normal, Duplicated, Retransmitted or Reordered, as illustrated in Figure 14.

A packet 1s determined to be out-of-sequence if the Sequence number is less than that
of a previous packet; similar to Paxson’s metric where ‘early’ packets are considered
‘Normal’. Out-of-sequence packets are classified as Duplicates if they share the same
Seq and IPID fields. In order to guard against wrapping of the 4 bit IPID field, a2 ime
lag threshold of 300 msec is set, to distinguish between reordered packets, and

retransmitted packets with wrapped IPID.

Compare Seq
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Figure 14 - Tsinghua reorder-judging algorithm
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This algonthm classifies late packets as reordered, but some deficiencies can be
identified upon inspection of Figure 14. Consider the sequence of packets 1, 2, 5, 3, 4, 6.

Packets 1 and 2 arrive in-order and therefore increase the ‘largest Seq seen’ variable 1n

each case, and are marked as ‘Normal Packets’. Packet 5 subsequently arrives, and is
seen to be the highest Sequence number seen, thus being marked as a2 Normal packet
and increasing the ‘largest Seq seen’ vanable to 5. Upon arrival of packets 3 and 4, these
packets are seen to be lower in Sequence number than 5, and as they exhibit different
IPID fields, are wrongly marked as Retransmissions. This wrong classification of ‘late’
reordered packets may also hold true duning IPID wrap, as packets 3 and 4 may atrive
within the 300 msec threshold. Additionally, this algofrithm could be improved by the
simple addition of 2 ‘Spurious Retransmissions’ category, for the case when a packet

with the same Seq number but with higher IPID is received.

From a measurement host based in the Chinese Education Research Network, Wget
[Wget08] was used to measure forward path reordering twice a day for three weeks in
May 2003, across 10647 web sites. Of the 208,000 connections and 3.3 million packets
measuted, 3.187% of all packets were reordered, with 5.79% of all web sites
expetiencing reordering at least once. Their results indicate that packet reordering is
highly site dependent. During subsequent intensive measurement of the 5.79% reorder
exhibiting sites at 3 hour intervals, the reordering rate of packets was measured between
2.9% and 3.6% with a mean of 3.187%, compared to a random sample of non-
reordering sites, which were constantly measured below 0.04% with a2 mean of 0.06%.
Surprisingly, 20% of the 5.79% reordering sites, exhibited a reordering frequency higher
than 80% ! Based on the TTL values, reorder-exhibiting sites are typically those located

further away, with average hop count of 13.8, compared to those with less reordering

and average hop count of 12.9.

In order to distinguish between a reordered and a retransmitted packet, the authors
studied the time lag of the packet arrival. 90% of reordered packets artived at the
recetver with a time lag of less than 5.1 msec, whereas only 3.5% of retransmitted
packets artive within this interval. Within 22.1 msec, 50% of retransmitted packets and
99.6% reordered packets have arrived. Empirical measurements suggest that 12.8 msec

1s 2 useful threshold for determining between reordering and retransmissions, where

56



95% of reordered and only 8.3% retransmitted packets will have arrived.

The authors further investigated the degree of reotrdering places that packets will move

when undergoing reordering. 86.5% of reordered packets were lagging by 1 place, and
95.3% of packets were within 2 places late. Approximately 78.8% of retransmitted

packets appeared 3 or more packets late. The conclusion drawn was that there is a small
probability of reordered packets triggering the fast retransmit algorithm, and that this 3

position boundary provides a useful method for differentiating reordering and loss.

In order to infer the locations where packet reordering is occurring, Traceroute was
used to build a tree of forward-paths from the 10,647 websites to their measurement
host, assuming that both forward and reverse paths will be symmetric. Based on this
tree, a metric 1s defined for each router, termed the reorder ratio which 1s the ratio of
reordering-websites to total-websites passing through that router. This simple method
may help to pinpoint reorder generating routers in some cases, although the authors

acknowledge that this approach 1s extremely limited if the reorder generating router is

close to the root of the tree.

3.2.7 Delft

In 2004, Zhou [Zhou04], analysed end-to-end UDP traces between 12 hosts in the
RIPE Test Traffic Measurement project [Ripe08]. 50 100-byte UDP ‘probe streams’
were continuously transmitted, interspersed with 30 second gaps, tesulting in
approximately 360 probe-streams in 3 hours. The experiments were later repeated with
100 packets per probe-stteam. To limit the effects of packet loss, only probe-streams

which received at least 90% packets were analysed. This study is distinctive from other

measurements it its use of UDP to generate probe packets.

The authors define a number of metrics in order to explain their results. The Reordered
Probe-Stteam ratio defines the total number of streams having at least one reordered
packet, against the total number of streams received. In the first experiment of 50
packets per probe-stream, approximately 56% of the probe-stteams included at least

one packet delivered out of sequence, equivalent to 6% of the total packets received.
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This increased in the 100 packet per probe-stream measurements to 66% of the probe-

streams, and 5.6% of the total packets being received out of sequence. This metric
indicated that packet reordering is highly site-dependent. Two specific hosts, in Australia

and the UK, were measured to exhibit reordering in over 70% of streams in the first

test, and 80% of streams in the second test. This suggests that th