
I 
 

 

Constrained Adaptive Natural Gradient 

Algorithms for Adaptive Array Processing 

 

By 

Ijteba-ul-Hasnain Shah 

 

 

 

 

In the fulfilment of the requirement for the degree of 

 Doctor of Philosophy 

 

Centre for excellence in Signal and Image processing 

Department of Electronic and Electrical Engineering 

University of Strathclyde 

 

 

 

 

 

©March 2011 



II 
 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved parents Anwar Hussain Shah and Naseem Firdoos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 
 

 

Declaration and Copyright 
 

This thesis is the result of the author’s original research. It has been composed by the author 

and has not been previously submitted for examination which has led to the award of a 

degree. The copyright of this thesis belongs to the author under the terms of the United 

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due 

acknowledgement must always be made of the use of any material contained in, or derived 

from, this thesis.  

 

 

Ijteba-ul-Hasnain Shah 

                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

Acknowledgement 
  

 

I am heartily thankful to my PhD supervisor, Professor Tariq s Durrani, whose 

encouragement, guidance and support from the initial to the final level enabled me to gain an 

insight into the research area of adaptive array processing. This thesis would not have been 

possible without his prestigious guidance and motivation. It is an honour for me to be your 

student sir! 

 

I am very grateful to Dr Stephan Weiss for his provision of supportive material and very 

careful review in the final stages of my thesis. I am also thankful to Professor Peter Grant for 

his valuable recommendations for improving the quality of my thesis.  

 

I would like to show my gratitude to Ms Fiona Buggy and especially Ms Sheila Forbes for 

their incredible administrative support. I am also thankful to all staff and members of CeSIP 

for helping me in number of ways.  

 

I am indebted to many of my friends and colleagues; Shahzad, Zeng, Asif, Sameer, Zeshan 

and Adel for creating such an exquisite and caring environment in the lab. 

 

I extend my sincere gratitude towards Dr. Mansoor Beg, Mr. A J Ghouri and NESCOM 

Pakistan for their generous financial support and help. 

 

I do not find words to thank my parents, elder brothers and sisters back home for their 

unparallel love and support such that I always felt at-home despite living thousands miles 

away. I was always refreshed talking to them especially with my nephew Ali and niece Aliza. 

Finally, I acknowledge my inability in thanking Almighty God who blessed me with intellect 

and chose me among the knowledge seekers. 

 

 

 

 



V 
 

Abstract 
 

In a constrained optimisation problem an algorithm has to constantly observe the imposed constraints 

while maximising or minimising the cost function. The realistic minimization of these cost function 

problems is not trivial and generally involves manifolds with non linear surfaces. Working with a 

search space that carries the nonlinear manifolds introduces certain challenges in implementation of 

the algorithm, such as the choice of step size and the appropriate direction towards the optimal 

solution. The most popular optimisation technique used, perhaps due to its simplicity is the gradient 

descent technique.  However convergence speed of a gradient adaptation can be slow when the slope 

of the cost function varies widely for the small changes in the adjusted parameters. Any optimisation 

scheme that exploits the given structure of the underlying space does not encounter such phenomenon 

and is deemed successful with better convergence and accuracy. Since the procedure of finding 

optimisers is exactly a search based on the geometric information of both the constraints and the cost 

function, it is very important to develop search techniques using the intrinsic geometry properties of 

both functions. Natural gradient modifies the search direction according to the Riemannian structure 

of the optimisation space. Natural gradient overcomes many of the limitations of the Newton’s method, 

by assuming the surface of the cost function being minimised to be locally Euclidean.  

In this thesis, novel Constrained Adaptive Natural Gradient Algorithms (CANA) have been developed 

exploiting the natural gradient technique, and have been applied to problems in array processing. The 

algorithms are capable of rapidly adjusting the response of an array of sensors to a signal coming 

from Direction of Interest (DoI) and suppressing signals incident on the array from other directions. 

Constrained optimisation techniques have been extended to enhance the look direction signal in the 

presence of interference using adaptive natural gradient techniques. The algorithms provide more 

uniform performance than those based upon conventional tangential gradients, yet are simple to 

implement. Along with the ability of natural gradient algorithm to follow the exact surface of the 

optimisation space, self correcting feature of constrained optimisation makes the algorithms rapidly 

converge to steady feasible points. Numerical simulations confirm algorithms’ suitability for 

beamforming, null steering and mitigating hostile interferences. 

Riemannian metric, an essential component of CANA, is updated at each iteration with the update in 

weight vector,and is thus the major contributor in algorithm computational complexity. So in order to 

reduce the number of arithmatic operations at each iteration, a more appropriate non adaptive 

Riemannian metric is proposed. Inclusion of this fixed metric significantly reduces the complexity of 

technique developed earlier  in the thesis. The technique has been further extended to the adaptive step 

size algorithm. 



VI 
 

Next broadband adaptive array processing has been developed through a wave-number filtering 

based approach. The signal after filtering is summed by an array processor according to a wave-

number constraint. The present technique is also simple in the sense that spatial and temporal 

information has been mapped to only one dimension in the wave-number domain. Mathematical 

analysis and numerical simulations confirm the algorithm’s ability of operating over the full 

bandwidth of 0 to 2π. The technique has also found use in restoring the capability of cancellation of 

total number of hostile interferers equal to M-1 for an M sensor array. It eliminates the need for the 

calculation of tap spacing or the determination of the optimum sampling, in deriving the temporal 

information from the signals, as the algorithm directly provides the coefficients of the wave-number 

domain filters. Despite defined at the midpoint of the bandwidth, algorithm prevents from causing 

main lobe to be contracted at the higher frequencies and expanded at lower frequencies. Beam 

steering is embedded in the developed scenario, thus the algorithm does not undergo the side-lobe 

deterioration as in the case of TDL. Since the whole filter is steered towards the direction of interest, 

rather than the individual elements of the TDL/FIR filters, so the side-lobe one-to-one 

correspondence remains conserved. Extensive computed results are provided to verify the 

performance of the proposed algorithms. 
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Chapter 1 

Introduction 

This chapter presents an introduction to the research problem and overview of the thesis 

structure. The thesis structure follows bottom-up style, such that individual base elements of 

the array processing and constrained optimisation have been first specified in detail and then 

progressively built up to construct a conclusive outcome. Thesis contribution and list of 

publications has also been provided at the end of this chapter. 

1.1 Introduction 
 

Humans have always sought to mimic nature [1]. In this pursuit we have reached such 

impressive levels that we are able to incorporate some of the human thinking process in 

computers by mimicking human characteristics such as making decisions and operating 

autonomously. From flying planes to the submarines and from fixed to adaptive systems, 

almost every human invention can be traced back to the surrounding environment or the 

essential systems within himself. By adapting mechanisms and capabilities from nature, 

scientific approaches have helped humans understand the related phenomena and the 

associated principles in order to engineer novel devices and improve their capability [1]. On 

the similar note, the receptors of our taste buds, natural sounds and the cosmic systems in the 

universe, exhibit array paradigms for the concentration, convergence and conveying of the 

energy to the response processing systems. 

Having found way in as early as 1905, array processing [2-3] has become one of the major 

areas of signal processing [4-5]. It has been studied extensively [2, 4, 6-7] due to its wide 

applications in various areas ranging from radar, sonar, microphone arrays, radio, astronomy, 

seismology, medical diagnostics, commercial communications and satellite communications  

[3-5, 7-13]. In radar and communication systems, antenna arrays are traditionally used to 

meet the challenges of increased coverage, target identification, trajectory tracking and faster 

data rates. An array is a composite antenna formed from two or more, generally omni 

directional radiators. However the elements forming an array could be dipoles, dish 

reflectors, slots in a wave guide, or any other type of radiator. The basic performance of an 
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Figure 1.1: Constrained adaptive array processing  

 

antenna array is to synthesise narrow directive beams that may be steered, mechanically or 

electronically, literally in any direction [9]. Constrained processing for passive arrays is the 

method used to create the beam pattern of the antenna array by adding constructively the 

phases of the signals incident on the array from a direction of interest, and nulling the pattern 

of the sources that are undesired. For narrowband sensors this can be done by attaching a 

weight network analogous to simple FIR tapped delay line filter [14]. These weights may also 

be changed adaptively, and used to provide optimal beamforming, by reducing the Minimum 

Mean Square Error (MMSE) between the desired and resultant beam pattern formed, called 

adaptive beamforming.   

Figure 1.1 is a description of a generic constrained adaptive processor in which a desired 

source is at broadside of the antenna array while two hostile interferers are incident from 

arbitrary unknown directions. In addition to the interference, the sensor output also consists 

of sensor noise which is assumed to be Additive White Gaussian Noise (AWGN). 

Constrained adaptive array processing aka adaptive beamforming requires that the outputs of 

array antennas should be passed through a processor comprising filters with coefficients or 

weights so as to synthesize a desired beam pattern. Therefore the goal is to find a set of 

weights for adjusting the outputs of sensors of an array, in order to produce a far field pattern 

that optimizes the reception of a target signal along a direction of interest and suppresses 

unwanted signals from any direction along with beam steering capability.   

In this thesis the problem has been solved through the development of the novel constrained 

adaptive natural gradient algorithms based upon the concepts from differential geometry. The 

natural gradient technique provides more uniform performance than those based upon 

Interferer 

Interferer 

Desired 

Source 

Adaptive Weights 
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ordinary stochastic gradients, yet simple to implement [15-17]. Along with the ability of 

natural gradient algorithm to follow the exact surface of the optimisation space, self 

correcting feature of constrained optimisation makes the algorithms rapidly converge to 

steady optimum state for range of applications. 

1.2 Thesis Structure 

This thesis has been arranged in bottom-up style. Individual base elements of the array 

processing and constrained optimisation technique have been first described in detail. These 

elements have been linked together to form basic structure of array processing, which then in 

turn have been linked, to from a complete solution in natural gradient based constrained 

optimisation.   

First chapter has already set the scene by describing the problem of interest and the brief 

overview of the its importance for the diverse field of array signal processing, followed by the 

thesis structure and the thesis contribution. 

Chapter 2 provides background and prologue to some elementary systems in constrained 

adaptive array processing. Introduction to the antenna arrays, different geometric formulations 

and conventional constrained adaptive techniques have been described therein. Formulation of 

the constraint for narrowband and broadband processors has been outlined followed by the 

discussions and conclusion. 

Chapter 3 gives detailed description of constrained optimisation based upon natural gradient 

algorithm. The technique has been described by explaining and applying concepts of 

Riemannian metrics and differential geometry, on which the algorithm is based. A 

mathematical development of Constrained Natural Gradient Algorithm (CANA) is given 

along with numerical design example, results and critical analysis.  This chapter also presents 

a critical extension to the Constrained Adaptive Natural Gradient Algorithm (CANA), 

through inclusion of a non adaptive metric in place of adaptive Riemannian metric. Inclusion 

of this fixed metric significantly reduces the complexity of the technique developed earlier. 

The technique has been further extended to formulate an adaptive step size algorithm. This 

algorithm enhances the convergence properties of a fixed step fixed Riemannian metric 

algorithm. Mathematical analysis and realistic MATLAB simulations are developed to 

underpin the fast convergence of the adaptive weights, and the suitability of algorithm for 



Introduction  

4 
 

operations in adverse environments. Discussions on the numerical results are provided under 

the simulation examples followed by the conclusion at the end. 

Chapter 4 outlines broadband constrained array processing in wave-number domain. It 

comprises of sections on introduction, mathematical development and simulation of the 

proposed methodology. This chapter provides a novel closed form solution and iterative 

solution based upon natural gradient technique where an array of uniformly spaced sensors is 

constrained to produce optimum desired response. Analysis and discussion on the simulations 

and concepts derived therein are provided in detail. Further a section on steering of the broad 

band arrays is provided followed by conclusion at the end. 

Chapter 5 concludes this research monograph with evidences of conformance of the natural 

gradient based constrained adaptive techniques. Some limitations and drawbacks of the 

developed algorithms are discussed. This chapter also outlines some future applications and 

extensions in the subject research area, followed by the bibliography. 

1.3 Thesis Contribution  
 

This thesis is a research monograph on natural gradient based constrained optimisation.  

Working with an optimisation or search space that carries the structure of a non linear 

manifold, introduces certain challenges in the algorithm implementation. In the typical search 

methods, iterative algorithms rely heavily on approximating first and second order derivatives 

of the cost function in Euclidean spaces.  A new iteration is proposed which is generated by 

adding an update increment to the previous update and the process is repeated till a steady 

state is reached. In order to define algorithms on manifolds, these operations must be 

translated into differential geometry. Natural gradient modifies the slope according to the   

actual structure of the optimisation space and thus provides a better approximation to the 

steepest descent direction.  

Based on natural gradient, several optimisation algorithms, addressing the issues of narrow as 

well as broadband beamforming, have been developed in this thesis. Following is the brief 

synopsis of these techniques, with detailed description given in subsequent chapters. 
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1.3.1 Constrained Adaptive Natural Gradient Algorithm (CANA) 
 

Novel Constrained Adaptive Natural Gradient Algorithm (CANA) is capable of adjusting the 

response of an array of sensors to a signal coming from Direction of Interest (DoI) and 

suppressing interferers coming from other directions. Constrained optimisation techniques 

have been developed to enhance the look direction signal in the presence of additive noise 

and interference using adaptive natural gradient techniques. Mathematical analysis and 

realistic MATLAB simulations confirm the suitability of algorithm in calculating iterative tap 

weights of the processor attached with the sensor array. This technique outperforms ordinary 

gradient based methods, in terms of convergence, yet is simple and computationally efficient.  

The self correcting feature of the constrained optimising technique complements the natural 

gradient algorithm’s ability of following the exact surface of the optimisation space, resulting 

in fast convergence to the feasible point. 

1.3.2 Constrained Adaptive Natural Gradient Algorithm with Non Adaptive 

Metric (CANA-NAM) 
 

This algorithm is a critical extension to the previously developed Constrained Adaptive 

Natural Gradient Algorithm (CANA), through inclusion of a non adaptive metric in place of 

adaptive Riemannian metric. Inclusion of this fixed metric significantly reduces the 

complexity of previously developed technique. Complemented with constrained optimisation 

techniques the algorithm is capable of rapidly adjusting the response of an array of sensors to 

a signal coming from Direction of Interest (DoI) and suppressing noises coming from other 

directions. Mathematical analysis and realistic MATLAB simulations are developed to 

underpin the fast convergence of the adaptive weights, and the suitability of algorithm for 

operations in adverse environments.  

1.3.3 Adaptive Step-Size Algorithm  
 

Generally, the optimising algorithm for solving the linear and nonlinear equations is also very 

sensitive to the search strategy and the choice of the variables value [18]. In case of nonlinear 

equations and because of the complex search strategy, it needs too long time to run these 

algorithms. On the other hand, if the choice of the variable value is not reasonable, the results 

would be restricted to some parts of the extreme values, thus it is difficult to get the high 

precision solutions [18-19]. Therefore the algorithm should also be able to change the step 
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size according to the optimisation space. To incorporate this adaptability in existing solution, 

an adaptive step-size scheme has also been developed to complement the adaptability of 

CANA-NAM. The resultant algorithm is fast in attaining the optimum steady state as 

compared to the fixed step-size algorithm.  

1.3.4 Constrained Broadband Array Processing in Wave-Number Domain 
 

This technique is developed for the broadband array processing in wave-number domain. The 

approach uses wave-number domain filters associated with each sensor. An optimal array 

processor is developed which  exploits a wave-number constraint. The present technique is 

also simple in the sense that spatial and temporal information is mapped to only one 

dimension of wave-number domain. Mathematical analysis and numerical simulations confirm 

the algorithm’s ability of performing across the full bandwidth of 0 to 2π. Along with 

addressing the entire bandwidth, the technique has been found useful in cancelling a total 

number of hostile interferers equal to M-1,where M is the number of sensors in the array. 

The proposed technique eliminates the need for the calculation of tap spacing or determination 

of the optimum sampling, in deriving the temporal information from the signal, as the 

algorithm directly yields the coefficients of the wave-number domain filters. Despite the fact 

that the array is defined at the midpoint of the wave-number spectrum the algorithm prevents 

the main lobe from contracting at the higher frequencies and enlarging at lower frequencies. 

Results show that the more powerful interferers, the deeper the nulls established in the array 

processor. 

Beam steering is embedded within the scenario as no additional arrangement for pre-steering 

or post- steering [19-20] is required in order to adjust the beam response towards the desired 

direction. Moreover the processor does not suffer side-lobe deterioration as in the case of TDL 

based broadband adaptive beam steering. Since the whole filter  is steered towards the 

direction of interest, rather than the individual elements of the TDL/FIR filters, the one-to-one 

correspondence in the side-lobes remains conserved. 
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Chapter 2 

Array Processing 

 This chapter presents an overview of the array signal processing with an emphasis on 

constrained array processing. Signals having the same frequency components and 

originating from different locations can be differentiated through an array of antennas in 

conjunction with a smart processor called beamformer. Antenna arrays perform spatial 

filtering in order to discriminate useful signals from interferers in the presence of noise. For 

many decades, arrays have been traditionally used for radar, sonar, petroleum exploration, 

astrophysical exploration, biomedical imaging and communications. Smart and simple 

algorithms are generally required to perform these critical tasks. Constrained array 

processing is used when direction of the signal of interest is known a priori. In constrained 

array processing, the output of an array is constrained to adapt in a way so as to suppress all 

the signals except the one originating from the direction of interest. Similarly, in broadband 

array processing the arrays are constrained so as to implement a known frequency response 

for certain signals.  

2.1 Introduction 
 

An antenna array is a set of two or more antennas arranged in a particular geometrical 

configuration. The signals from several antennas are combined or processed in order to 

achieve enhanced performance over that of a single antenna [21]. Depending upon the 

application, antenna arrays are traditionally used for 

 

o increasing the overall gain 

o providing diversity  

o cancelling out interference originating from particular directions 

o processing the array output so that it is most/least sensitive in a specific 

direction 

o localisation of the signal sources 

http://www.antenna-theory.com/basics/gain.php
http://www.antenna-theory.com/arrays/diversity.php
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o maximising the Signal to Interference plus Noise Ratio (SINR). 

An isotropic antenna [4] is a hypothetical antenna with equal radiation pattern in each 

direction. Antenna radiators having omni-directional [2] characteristics are actually referred 

to as isotropic radiators. Many applications as in cellular communications and defence imply 

directional radiation patterns for selective transmission or reception of the signals. An 

antenna array may consist of a group of isotropic (omni-directional) radiators, or, the array 

may consist of a group of non isotropic radiators i.e. directional but these are usually 

identical.  In a group of identical radiators all elements share the same orientation in 

space. The same orientation results in the desired effect of reinforcement or cancellation of 

the electric field intensity and ensures polarisation in the same direction in space. 

2.2 Antenna Basics 
 

Before we further elaborate the antenna arrays it is imperative to define some of the key 

terms relevant to antenna for completeness and their use in later analysis.  

Beam Pattern 

Relative distribution of the received power in space as a function of direction is the beam 

pattern of an antenna. In broadband antenna arrays beam pattern can have another dimension 

of frequency or wave-number along with direction in space. 

Pattern Null 

It is the angle at which the received power is zero.  

Main Lobe 

The main lobe of the beam pattern is the lobe containing the direction of maximum received 

power. 

Side Lobe 

Additional lobes in the beam pattern of the antenna other than the main lobe are called side 

lobes. Ideally no or minimum side lobes are required in antenna applications. 
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Half Power Beam Width 

The beam width of the antenna is the angular width of the main lobe in its far field beam 

pattern. Half power beam width is also referred as 3dB beam width in the antenna literature.   

First Null Beam Width 

It is the ability of an antenna to reject the interference. The angle spanned by the main lobe is 

First Null Beam Width (FNBW). 

Side Lobe Level 

It is the power of highest side lobe with respect to the main lobe/beam. 

Directivity 

It is the directive gain in the angular direction of maximum radiation intensity. 

Antenna Gain 

Antenna gain is defined as the ratio of the radiated/received power to the power of an 

isotropic antenna. 

Grating Lobes 

The additional lobes formed in the beam pattern due to inter element spacing larger than half 

wavelength. Spatial aliasing is the phenomenon behind the formation of grating lobes. 

2.3 Array Processing 
 

For completeness, a brief review of array processing techniques is included here.  

Arrays and beamformers offer a versatile and effective way of spatial filtering. Applications 

like phased array radar, air traffic control, synthetic aperture radar, source localisation and 

classification in sonar, satellite communications and imaging, earth mapping and 

astrophysical exploration and biomedical applications, incorporate discrete arrays [2, 4, 7, 21-

23]. The applications in communications and defence often require narrow beams in order to 

achieve transmit and receive selectivity. A single dipole has a Half Power Beam Width 

(HPBW) of 
2

  [2, 21]. The half power beam width can be decreased down to 50
o
 by  
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 a)     b)  

Figure 2.1: Comparison of multiple antenna array with a single directive antenna  

increasing dipole length to 1.1 . A further increase in length will cause multi lobe beam 

pattern and loss of useful energy. Therefore alternative approaches need to be exercised to get 

the directional beam patterns of an antenna. Antenna array is defined as spatial configuration 

of a couple or more elements. In this arrangement the signal from all antennas is combined 

spatially to enhance overall signal in a particular direction. So by arranging antenna elements 

in several geometric arrangements complemented with adaptive processing, it is possible to 

design and develop intelligent and highly directive antennas.  

The information contained in a spatially propagating signal may be either the location of its 

source or the content of the signal itself [3]. If we are interested in obtaining this information, 

we generally must deal with the presence of other, undesired signals. Much as a frequency 

selective filter strengthens signals at a particular frequency, we can choose to focus on signals 

from the direction of interest [10, 24]. However, this task can be accomplished by using a 

single sensor, if it has the ability to pass signals from certain directions while rejecting others. 

Such a single-sensor system, shown in Figure 2.1(b), is commonly found in communications 

and radar applications in which the signals are collected over a continuous spatial aperture 

using a parabolic dish. The signals are reflected to the antenna in such a way that signals from 

the direction in which the dish is pointed, are emphasized. Directivity of an antenna array 

depends upon its physical characteristics and geometric structure [2, 9]. However, the single-

sensor based system has several drawbacks. Since the sensor relies on mechanical pointing 

for directivity, it can extract and track signals from only one direction. 
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Thus a slow antenna can miss the high speed or critical targets [7, 11]. The other critical issue 

with the sole sensor such as in the case of fixed beamformer too, is that, it cannot cope with 

the interferers which are arbitrary changing their locations. The solution of this very problem 

is a prime advantage of adaptive beamformers [4] which will be treated in detail later on. 

However in both the cases of Figure 2.1, the response is designed to emphasize signals from a 

certain direction through spatial filtering, either continuous or discrete.  

An array of sensors has the ability to overcome the shortcomings of a single sensor. Figure 

2.1 (a) illustrates the use of a sensor array. The sensor array signals are combined in such a 

way that a particular direction is emphasized. However, the direction in which the array is 

focused or pointed is almost independent of the orientation of the array [4]. Therefore, the 

sensors can be combined in distinct, separate ways so as to emphasize different directions, all 

of which may contain signals of interest. Since various weighted summations of the sensors 

simply amount to processing the same data in different ways, these multiple sources can be 

extracted simultaneously [25].  

2.3.1 Array Signal Model 
 

In their most general form, spatial signals represent wave fronts that propagate through space. 

These signals originate from a source, travel through a propagation medium, say, air or water, 

and arrive at an array of sensors that spatially samples the wave front. A processor can then 

take the data collected by the sensor array and attempt to extract information about the 

source, based on certain characteristics of the propagating wave. 

Consider a signal received by the Uniform Linear Array (ULA) from an angle   as in Figure 

2.2. Each sensor receives the spatially propagating signal and transforms into the voltage 

signal. This voltage signal is then part of the receiver channel of Figure 2.1a. In addition, the 

receiver contains noise due to internal circuitry attached with the sensors, known as thermal 

noise. 

A signal is a time-varying quantity having single or multiple frequencies and can be 

accordingly termed as narrowband or broadband. In array processing a signal is said to be 

broadband when all its frequency components not only undergo phase change but also 

experience a change in magnitude while travelling into an array of sensors, whereas a 

narrowband signal only experiences a phase shift. 
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Figure 2.2:  Spatial signal representation of a Uniform Linear Array (ULA) 

A signal can generally be represented as
  

   2j fts t e d f                        (2.1) 

Where  d f  is the infinitesimal component of the frequency spectrum defined over the 

frequency range of interest. If narrowband assumption is made then we can write 

    o od f A f f df  
 

Where oA  represents the amplitude of the signal and of  the signal frequency, then equation 

2.1 can be written as  

   2j ft

o os t e A f f df                        (2.2) 

This implies that for of f  

  2j ft

os t A e                                 (2.3) 

The signal defined thus is termed as a narrowband signal. Let us consider an array of 

uniformly spaced M sensors. A single signal source is impinging signal on the array from the 

direction . Then the signal received at the 1
st 

sensor from a direction    can be written as   

d  

d  


 

Incident Signal 
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     ox t s t v t                     (2.4)  

Where  s t  is defined by Eqs. 2.1, 2.3 and  v t  is the Additive White Gaussian Noise 

(AWGN) contribution due to thermal characteristics of an antenna element. Then the signal 

received at the next sensor is a delayed version of the signal received at the 1
st
 sensor as 

depicted in Figure 2.2 and is given by 

    1 1ox t x t   
                   (2.5)

 

Where we have assumed that the delay at the 1
st
 sensor   0o   . Following the same 

approach the signal received by the third sensor is 

    2 2ox t x t                       (2.6) 

and finally the radiation received at the last sensor of the array is thus written as 

    1 1M o Mx t x t                        (2.7) 

Since all the elements are equally spaced, the spatial signal has a difference in propagation 

paths between any two successive sensors of  sind  that result in a time delay of 

   sind c  
 

Therefore for the m
th

 array element the time delay can be defined as 

   sinm md c                     0 1m M    

Where d is the distance between the adjacent antenna elements of Figure 2.2 in terms of 

wavelength and c is the velocity of the incident radiation. Using the definition of  s t , Eq. 

2.7 can be formulated for m
th

 element as   

      
2 mj f t

m o mx t A e v t
  

    or                         

       2 mj f

m mx t s t e v t
  

                    (2.8) 

The discrete time signals from a ULA may be written as a vector containing the individual 

sensor signals 
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           1 2 3 1...
T

o Mt x t x t x t x t x t
   x                 (2.9) 

As sensor signals also constitute thermal noises therefore it can be written as. 

     
^

t t t x x v                   (2.10) 

     
^

t s t x a                   (2.11) 

Where            1 2 3 1...
T

o Mt v t v t v t v t v t
   v and  

       2 / sin 2 / sin 2 1 / sin
[1 ]p p pj f d c j fq d c j fM d c Te e e

     


   
a                      (2.12) 

The vector ( )a  is called the array response, where M is the total number of sensors. A single 

observation or measurement of this signal vector is known as an array snapshot. If all the 

signals from a single source developed at an array of antenna depicted in Figure 2.1 and 

Figure 2.2 are added up, then the array output  y t  can be written as  

     
1

2 / sin

0

M
j fm d c

m

y t s t e
 






                  (2.13) 

For no noise, the Array Factor (AF) is defined as the ratio of the output to the input of an 

array 

   /AF y t s t                  (2.14) 

Thus the array factor using the definitions above can be derived as 

 
1

2 / sin

0

M
j fm d c

m

AF e
 






                   (2.15) 

The above summation can also be written as a geometric series given below 

2 3 11 ...............j j j jMAF e e e e             

Where  2 / sinf d c    therefore 
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1

1

jM

j

e
AF

e









 
  

 
                               (2.16) 

Rearranging Eq. 2.16 

 
( /2) ( /2)

( 1/2)

(1/2) (1/2)

j M i M
j M

j j

e e
AF e

e e

 


 


 



 
  

 
                              (2.17) 

   

 
1/2 sin / 2

sin / 2

j M M
AF e

 



 
 

  
  

                 (2.18) 

If the reference point is taken as lying at the physical centre of the array, the array factor 

simplifies to 

 

 

sin / 2

sin / 2

N
AF





 
  
  

                                 (2.19) 

Here we have assumed that the antenna elements are essentially omni-directional sensors. If 

however they possess any directivity then the beam pattern is modified by the antenna 

individual gain [25]. It is imperative to note here that the above definition of the array factor 

holds valid for both transmitting and receiving arrays. Similarly the beam pattern of an array 

can be achieved by multiplying its array response vector or steering vector in Eq. 2.12 with 

set of weights w , approximated by an adaptive or fixed array processor. We normally plot 

this beam pattern to get insight into the array performance for the range of angles as desired.  

Beam Pattern  ,H f  w a                            (2.20) 

Here weight vector w  is given by 

 1 2 3 1

H

o Mw w w w w w
                (2.21)

 

For a signal with multiple sources impinging on the array including interference is given by  

 
  

 
1

2

1

m p

N
j f t

m p m

p

x t A e v t
  






 
                          (2.22)
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Where N is the total number of sources impinging on the ULA. Since the model is assumed 

to be linear, the extension to multiple signals, including interference sources, is 

straightforward and is given ample space in Chapter 3 and Chapter 4. 

2.3.2 Spatial Sampling Theorem 
 

Similar to the phenomenon of temporal sampling, the sensor array provides spatially sampled 

data that can be used for several applications. If two elements of a passive sensor array are 

placed very close to each other, the EM field incident on one antenna element couples with 

the EM field incident on the other antenna element thus erasing any possible phase shift 

between two waves being received on the antenna elements. The phenomenon is called 

mutual coupling responsible for spatial aliasing in array processing. Theorems applied to the 

FIR filter in the time domain may sometimes also be applied to a ULA in the spatial domain 

because of similarity between an FIR filter and a ULA [4]. In the time/frequency domain, the 

Nyquist sampling theorem states that for a band-limited signal with highest frequency f, the 

signal is uniquely determined by its discrete time samples if the sampling rate is equal to 

twice the frequency  [26]. If the sampling rate is less than twice the frequency, there will be 

aliasing. Similarly to avoid spatial aliasing, the beamformer must satisfy the following 

criterion  

/ 2d                                                                (2.23) 

Where d is the distance between adjacent array elements and   is the wavelength of incident 

radiation. Eq. 2.23 is known as the Nyquist sampling theorem in the spatial domain [14, 16]. 

Therefore to perform beamforming without spatial aliasing, the element spacing of the array 

must be less than half of the carrier wavelength. However the element spacing cannot be 

made arbitrarily small because of mutual coupling effects between elements [27].  

2.3.3 Array Covariance Matrix 
 

The signal received at an arbitrary sensor is composed of the essential three components; 

desired signal, interference and an independent thermal noise due to the sensor and internal 

circuitry attached to it such as front-end amplifier etc. Thus the signal irrespective of its 

bandwidth can be written as  

       d i

m m m mx t x t x t v t  

                           (2.24)
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Figure 2.3: General beamforming array 

 

Where  d

mx t ,  i

mx t
 
and  mv t  are the desired, interference and the noise components on the 

m
th

 sensor. Similarly the resultant received vector can also be written in a split form [28] as 

below. 

       d it t t t  x x x v                 (2.25) 

Thus the array covariance is the outer product of the received vector. 

   
H

E t t 
 

R x x                  (2.26) 

Where  E is the expectation and  H represents the complex conjugate transpose operator. 

Thus the covariance matrix can be devised as
 

d i v  R R R R                                                              (2.27) 

Where    
Hd d dE t t 

 
R x x

 
is the desired signal covariance,

 
   

Hi i iE t t 
 

R x x  is the 

covariance of interfering sources and     2Hv

vE t t   
 

R Iv v  is the noise covariance 

contribution by the sensor thermal noise. Where due to the fact that signal, interference and 

noise are mutually uncorrelated and zero mean, we can assume that all the cross products are 

zero i.e.;      0
Hd iE t t  

 
x x ,     0

HiE t t  
 
v x  and     0

HdE t t  
 
v x  etc. 

( )y t  

0w  

1w  

1Mw   

 ox t  

 1x t

 

 1Mx t  
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2.4 Beamforming 
 

There are three major areas of array processing, detecting the presence of impinging signals 

and their classification, finding DoAs of the impinging signals and beamforming. In general, 

beamforming is a process of estimating the signal arriving from desired direction in the 

presence of noise and interference [24, 29]. This is accomplished by spatially sampling the 

signal with the help of an array of sensors and summing it via a fixed or adaptive processor. 

In its most general form, a beamformer produces its output  y t
 
by forming a weighted 

combination of signals from the M elements of the sensor array, that is  

   Hy t t w x
                  (2.28) 

Where w  is the vector  of complex weights attached to each sensor and  tx is the data 

vector composed of signals from all sources including interference and noise at the time 

instance t. Beamforming is generally divided into two forms; 

 a) Narrowband Beamforming b) Broadband Beamforming. 

2.4.1 Narrowband Beamforming 
 

In this type of array processing the bandwidth of the impinging signal is assumed to be narrow 

enough to ensure that the signal received at the both ends of the array are still correlated with 

each other [14]. Discrete signal samples are collected at spatially separated sensors, which 

then are processed to attenuate interference and subsequently extract the desired signal in the 

presence of noise. Figure 2.3 is a narrowband beamformer where the object of the array 

processor is to find the weight vector in order to craft the desired beam pattern in the look 

direction. The delay between the signals arriving at different sensors due to narrowband can be 

approximated by the phase difference due to position of sensors in the space. The output of a 

narrowband beamformer [30] is given as  

   
1

0

M

k k

k

y t w x t





                                       (2.29) 
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2.4.2 Broadband Beamforming 
 

If the bandwidth of signal increases the beamformer in Eq. 2.29 is no longer valid. This is 

because the delay cannot be approximated by a single phase shift between the sensor 

elements due to the angle dispersion and de-correlation of the signal across the array [28]. 

Tapped delay line with adaptive array processing behind each antenna is an approach to 

compensate for the dispersion arising from the wideband signal [31]. The decline in 

performance can be restored by de-correlating each antenna channel with the tapped delay.   

The output of a broadband beamformer shown in Figure 2.4 can be derived as 

   
1 1

,

0 0

M P

k l k s

k l

y t w x t lT
 

 

 
                                      (2.30) 

Where sT  is the delay between adjacent taps of the Tapped Delay Line (TDL). sT  is also the 

temporal sampling period and according to Nyquist sampling theorem should not be greater 

than half time period of the highest frequency component. Sensor Delay Line (SDL) 

processing [28] shown in Figure 2.5, is another extension to the time delay processing in 

which time delays have been materialised by putting extra sensors. 

 A detailed treatment of the broadband adaptive processing and a brief review of the previous 

techniques in the subject area have been provided in Chapter 4.

 

2.5 Adaptive Array Processor  

Essentially it is required that the signal from desired direction should be enhanced and the 

nulls are inserted at the bearing/positions of interfering/jamming signals. As the interference 

can appear from any direction so a flexible structure for the array processor, which could 

adapt its output beam pattern as per the changing environment is required. Figure 2.6 depicts 

an adaptive processor, where the weights are adapted through the error feedback. 

As a general case let us consider that each sensor in Figure 2.6 is connected to a single weight 

multiplier or a transversal filter or TDL as depicted in Figure 2.4. By altering the weights of 

an adaptive processor beamforming in any direction in the permissible range of / 2 2 to –

/ 2  is possible in case of ULA. The purpose is well served by employing Least Mean 

Square (LMS) for updating the weights in order to minimise the Mean Square Error (MSE) 

between the output and reference desired signal. For narrowband operations and specific 
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Figure 2.4: TDL based broadband beamforming  
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Figure 2.5: SDL based broadband beamforming  
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Figure 2.6: Adaptive array processor 
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frequencies a sinusoidal pilot signal can well serve the purpose though it is not feasible for all 

especially broadband array operations. Generally reference based adaptive processors operate 

in two modes a) Learning mode and b) Linear combiner mode. In the learning mode the 

weights are adjusted until they converge with respect to the reference or desired signal and 

then switch to the second mode where output  y t  is devised using the best linear estimate of 

the signal received at the array from the direction of interest-the so called “look direction”. 

To compensate for any non-stationarity caused by the inclusion of new or moving interferer, 

the process is repeated at appropriate intervals.  

If the sensor data vector  tx is given by Eq. 2.21 and corresponding weights by Eq. 2.9 

Then the output of the overall array processor can be expressed as 

   Hy t t w x                  (2.31) 

The availability of reference signal as shown in Figure 2.6 is used to determine the error, 

which in turn can be used to devise an optimum response of the array processor. The error e(t) 

is the difference between the output of an array and the desired or reference signal. 

     e t d t y t                     (2.32) 

This error signal is used according to some criterion for adjusting weight sets attached to the 

single or multichannel arrays. The criterion is to minimise weighted sum of squares or Mean 

Square Error (MSE). 

Least Mean Square Algorithm (LMS) is stochastic gradient technique based on the particular 

geometry of the error or the cost function to be minimized. The Mean Square Error (MSE) 

criterion can be formulated by estimating the squared of the error. 

     
*

J E e t e t 
 w                     (2.33) 

           
*

J E d t y t d t y t   
  w                 (2.34) 

           
*

HHJ E d t t d t t   
  w

w x w x                              (2.35) 

 
2 H HH

dJ    
w

w p p w w wR
                                            

(2.36) 
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Figure 2.7: Cost function surface based on two element weight vector  

 

Where    
*2

d E d t d t  
 

 is the covariance of the desired signal,    
*

E t d t 
 

p x  is the 

cross correlation between desired signal and observation and    
H

E t t 
 

R x x  is the 

covariance matrix of the sensor data respectively. 

Finding the weight vector that minimises the MSE is a standard adaptive filtering problem. In 

this case the cost function 
 J
w

 is a quadratic function of w  and has a shape of a paraboloid 

for two element weight vector case as depicted in Figure 2.7.  

Minimum point of the MSE surface is that where the gradient of the cost function with 

respect to weight vector w  vanishes i.e. 

 
0

J




w

w                    (2.37) 

Hence 

 
0

J
  



w
p+ w

w
R

                             (2.38) 

Therefore the optimum weight vector which yields minima is given as 
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1

opt

w pR
                          (2.39)  

The solution in Eq. 2.39 is the Wiener Hopf [25] solution for the adaptive filters. In most of 

the applications the parameters of quadratic search surface are unknown. The location of 

points on the surface, however, can be measured or estimated by averaging the squared error 

over a period of time. The problem is to develop systematic procedures or algorithms capable 

of searching the performance surface and finding the optimal solution.
 

2.6 Adaptive Algorithms 
 

Cost function minimization can be performed through adaptive algorithms, the most simple 

of which is Least Mean Square (LMS) adaptive algorithm [32]. However an ideal adaptive 

algorithm  

o Must converge to the optimum filter (Wiener filter) 

o Should have fast convergence rate 

o Must be able to track changes in non-stationary conditions 

o Not too dependent on the input signals , be robust 

o Be numerical robust 

o Require minimum memory and computational resources. 

 

LMS finds minimum or feasible point by an update rule involving successive corrections of 

the weight vector w  in the direction of the negative gradient of the performance surface. 

Starting from the initial weight vector the process can be expressed as 

 1n n J   
w

w w
                             (2.40)

 

Where  

 J
J


 



w

w
w

 is the gradient of the cost function of Eq.2.36, therefore 

 1n n n    Rw w p+ w                            (2.41) 

Using instantaneous values of the covariance matrix and cross correlation vector the steepest 

descent algorithm [32] can be written as 
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*

1n n n ne  w w x
                             (2.42) 

The above equation is the well known LMS algorithm. Where the time index n is related to t 

such that t=nTs, here Ts is the sampling time, thus 

[ ] [ ]n

s

t
n

T
 x x x

 

Please note that we will alternatively use these notations throughout the thesis wherever 

appropriate. The solution requires availability of reference signal for the calculation of error, 

though it has avoided the requirement of covariance matrix R. The convergence of LMS is 

highly dependent upon the eigenvalue spread of the R matrix. If the eigenvalues are widely 

spread the convergence is slow and vice versa. The convergence and stability also depends 

upon the correct choice of the step size [32]. A choice of small and larger step size can lead to 

slow but accurate and fast but inaccurate solution respectively. Thus a trade-off exists between 

convergence and steady state mean square error. Therefore for the stability of algorithm step 

size must satisfy the inequality given by 

max

2
0 


 

                   (2.43) 

Where max is the maximum eigenvalue of the covariance matrix R. The step size can be 

normalised to ensure an approximately constant rate of adaptation to avoid slow convergence 

in non-stationary environments. 

o

H

n n


 

x x                    (2.44) 

Inserting this new value of step size in Eq. 2.42 yields 

*

1
o n n

n n H

n n

e
  

x
w w

x x                              (2.45) 

The Eq. 2.45 is the Normalised Least Mean Square (NLMS) [33] algorithm for adaptive 

minimization of the cost function described in Eq. 2.36, where o is the new step size. The 

critical drawback of LMS is that it is sensitive to the scaling of its input, which makes it hard 

to choose step size which can guarantee the stability of the algorithms. NLMS addresses this 
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through normalised step size and provides improved power control. LMS has also limitations 

over it dynamic range [34].  

The Recursive Least Square (RLS) [35] algorithm is another class of adaptive algorithms 

where the cost function to be minimized is sum of squared errors. The algorithm is faster than 

the LMS provided that the SNR is high, but has forgotten factor which is very much 

dependent on channel fading rate. The complexity of RLS is higher due to requirement of 

matrix inversion involved in optimisation procedure. However, the complexity of inversion of 

a matrix can be reduced through Woodbury Identity [36].  

Sample Matrix Inversion (SMI) algorithm is a block adaptive technique [37] which has very 

fast convergence but at the cost of increase computational complexity. Since SMI employs 

direct matrix inversion the convergence of this algorithm is much faster compared to the LMS 

algorithm. However, huge matrix inversions lead to computational complexities that cannot be 

easily overcome.  It is also numerically unstable at times.  

There is plethora of adaptive algorithms [2-3, 12, 25, 37-40] available for the weight vector 

adaptation but most commonly they require desired signal a priori, which is rarely known. To 

address this issue Griffiths [41] proposed a modification in the LMS array weight vector 

adaptation of Eq.2.41 such that it can be written as 

1 )H

n n n n n    w w p x x w
                                     (2.46) 

This can also be written as  

*

1 )n n n ny    w w p x
                           (2.47) 

Where 
* H

n n ny = x w
 

This modification has eased the restriction of prior knowledge for the direction and magnitude 

of the desired signal. Although it no more requires reference signal but it is assumed that the 

cross correlation is known or can be estimated. Another issue with the adaptive algorithms is 

that while minimising the error their output power decreases in the desired direction. To 

prevent this to happen it is required to place constraint on the output of the array towards the 

desired direction to be maximum while defining the array beam pattern. 
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2.7 Constraint Algorithms 
 

The techniques discussed above require significant prior knowledge about the desired signal 

while in reality most practical applications do not have this type of information. However if 

we know the Direction of  Arrival (DoA) of the desired signal and the desired frequency 

response we can impose some constraints on the array coefficients to adaptively minimise the 

array output in all direction but the direction of arrival. This leads to well known Linearly 

Constrained  Minimum Variance(LCMV) beamformer proposed by Frost [24, 29]. The only 

prior information the algorithm requires is the direction and frequency band of interest. 

Consequently, the algorithm minimises total noise power at the array output while maintaining 

a chosen frequency response in the “look direction”. Let us consider Eq. 2.10 and Eq. 2.11 

again to gain more insight into the look direction 

       t s t t x a v  

The individual elements of the array contain replicas of the signal  s t  with different phase 

shifts corresponding to differences in propagation times between elements. Ideally, the 

signals from the M array sensors are added coherently, which requires that each of the 

relative phases be zero at the point of summation; that is, we add  s t  with a perfect replica 

of itself. Thus, we need a set of complex weights that result in a perfect phase alignment of 

all the sensor signals. The resultant weight vector that phase-aligns a signal from direction θd 

at different array elements is simply the array response vector in that direction [2]. This is a 

kind of spatial match filtering since the steering vector is matched to the array response of 

signals impinging on the array from an angle θd. As a result, θd is known as the “look 

direction”. Thus a spatial matched filter maximises the signal in “look direction” or 

implements the desired frequency response known priori. Let us consider the broadband array 

in Figure 2.4, if the “look direction” is chosen as broadside to the line of sensors, then 

radiating waveforms impinging from the look direction are incident in-phase on all the array 

elements. Therefore as far as the “look direction” is concerned the processor for the 

broadband array of Figure 2.4 equates a single tapped delay line where each tap weight of the 

delay line is the sum of the delay weights in corresponding column of the filter. Figure 2.8 

depicts an equivalent processor for the look direction signal. If the look direction is not at 

0o   then the array response will be forced either electronically or mechanically such that  
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Figure 2.8: Equivalent processor for look direction signal 

the signals incident on the array from the directions of interest other than the broadside 

appear as replicas of one another at the output of the array. However we will show in the 

broadband wave-number solution proposed in this thesis that by intelligently devising the 

required frequency response the pre-steering delays can be avoided. Thus the weight vector 

formulation for the look direction signal can be casted as 

T
C w = f                        (2.48) 

Eq. 2.48 is called the constraint equation. It imposes linearly independent constraints on the 

weight vector w . Where  f  is the response vector set of constraints and is given by 

  1 2 1........
T

o Pf f f f f =                (2.49) 

A single element of the above response vector is the sum of corresponding weight column 

and is given by 

  
1

,

0

M

j m j

m

f w




                   (2.50) 

The MPxP matrix C has a special form and is given by 

d

d

 
 


 
  

C

c 0

0 c                  (2.51)

 

where Mx1 vector  1 1 1.... 1
T

d c  is the vector of “1s”. For Minimum Variance  
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Distortion-less Response (MVDR), the response vector in Eq. 2.49 becomes all zeros except 

one element equal to 1. The LCMV problem can be formulated as;  

Minimise output power of the array subject to the constraint of Eq. 2.48 i.e. 

Minimise  
H

w wR  subject to T
C w = f               (2.52) 

The solution can be formulated with the help of Lagrange multipliers [42] as 

   -H T T

c w
J = w w + w fR C                                         (2.53) 

Where 
 c w

J  is the cost function associated with constraint and   is the vector of Lagrange 

multipliers. Differentiating Eq. 2.53 w.r.t w . 

 c w
J


= w +

w
R C                             (2.54) 

The solution can be obtained by putting Eq. 2.54 equal to zero, hence 

1

opt

w R C                    (2.55) 

Using the constraint Eq. 2.48, the Eq. 2.55 can be written as the optimal solution  

 1 1T

opt

 w fR C C R C                  (2.56) 

Eq. 2.56 is the optimal solution to the LCMV problem in Eq. 2.53. If we replace the gradient 

in Eq. 2.40 with the one obtained in Eq. 2.54, after incorporating weight constraint, we can 

formulate an iterative solution for the weight update. 

 1n n n   R Cw w w + 
                           (2.57) 

Since 1nw   must satisfy the constraint in Eq. 2.48 hence we can write  

      
1 1

1

T T T

n n n n
 

     I C C C R C C C Cw w w f w                         (2.58) 

 1n n c   P I Rw w k                                        (2.59) 
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The Eq. 2.59 is the Constrained Least Mean Square (CLMS) algorithm for adaptive array 

processing. Where  
1

T

c



C C Ck = f and matrix  P is the projection operator and is given by 

  
1

T T


 P I C C C C                  (2.60) 

A stochastic version of the above algorithm proposed by Frost [24] is given as 

*

1n n n n cy
    Pw w x k                                                              (2.61) 

The constrained adaptive processing algorithm presents a flexible solution where the output 

response is directly controlled using constraint vector and a set of linear constraints. The 

calculation of optimum weight vector has been generally considered as a challenge in the 

subject area, due to attached requirement of inversion of the covariance matrix. Although the 

stochastic gradient approach eliminates the need of inversion but still it requires either the 

desired response or the cross correlation vector to calculate the optimum weight vector.  

2.8 Conclusion 

Sensor arrays are an important and indispensable component of signal processing. 

Complemented with a fixed or adaptive processor, antenna array can discriminate between 

wanted and unwanted signals in the presence of noise. The constrained adaptive processor 

optimises the array response according to defined set of spatial constraints such that the 

output contains the minimal contribution of noise and signals originating from undesired 

directions. The essence of an adaptive processor is the algorithm comprising of logical finite 

set of mathematical operations. There is plethora of adaptive algorithms available for the 

weight vector adaptation but most commonly they require desired signal a priori, which is 

rarely known. However if the Direction of Arrival (DoA) of the desired signal and the desired 

frequency response is chosen a priori, we can impose some constraints on the array 

coefficients to adaptively minimize the array output in all directions but the direction of 

arrival of the desired signal. The only a priori information the algorithm required is the 

direction and frequency band of interest. Consequently, the algorithm minimises total noise 

power at the array output while maintaining a chosen frequency response in the “look 

direction”. 
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 In this chapter we have reviewed basic adaptive processing techniques. In next Chapter 3 we 

will formulate the novel natural gradient based algorithms for the constrained adaptive array 

processing problem discussed herein. 
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Chapter 3 

Constrained Adaptive Natural Gradient 
Algorithm (CANA) for Adaptive Array 
Processing 

In previous chapters we have established the research question. Some of the pioneering 

techniques were also reproduced in order to address the subject issue. This chapter presents, 

novel natural gradient based algorithms for the constrained adaptive array processing 

problem. Novel Constrained Adaptive Natural Gradient Algorithm (CANA) is capable of 

adjusting the response of an array of sensors to a signal coming from Direction of Interest 

(DoI) and suppressing interferers coming from other directions. Constrained optimisation 

techniques have been developed to enhance the look direction signal in the presence of 

additive noise and interference using adaptive natural gradient techniques. The algorithms 

have been described by elaborating concepts of Riemannian metrics and differential 

geometry-on which the algorithms are based. Mathematical development of the techniques is 

given along with numerical design examples, results and critical analysis. Mathematical 

analysis and realistic MATLAB simulations confirm the suitability of algorithms in calculating 

iterative sensor weights for adaptive beamforming. 

3.1 Introduction 
 

Constrained optimisation has found many applications in signal processing as well as for 

solving control engineering problems involving minimization of a cost function [43]. The 

realistic minimization of these cost function problems is not trivial and generally involves 

manifolds with non linear optimisation surfaces [15]. Working with a search space that carries 

the nonlinear manifolds, introduces certain challenges such as choice of step size and 

appropriate direction towards the feasible point. Numerical computations also require that the 

solution set consists only of the isolated points in optimisation domain. The purpose is well 

served by imposing constraints [10]. The field of constraint analysis has been well established 

over the last three decades with contributions from a diverse community of researchers in  
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artificial intelligence, databases and programming languages, operations research, 

management science, and applied mathematics [10, 29]. In a constrained optimisation 

problem the algorithm has to constantly observe the imposed constraints while maximising or 

minimising the cost function.  

Parameter estimation is central to several scientific, engineering and financial applications, 

and the most popular technique used, perhaps due to its simplicity is the gradient descent 

technique. Although its ability to converge quickly and efficiently is limited by certain factors, 

yet the method has numerous applications in signal processing and control applications. The 

technique yields optimum performance when a) the cost function has a single minimum and b) 

the gradients of the cost function are isotropic in magnitude with respect to any direction away 

from the minimum [16]. 

On the other hand the applications in signal processing, mechanics and control theory quite 

often involve optimisation of the manifolds endowed with a metric structure, i.e. Riemannian.  

In such constrained problems, the super-linear convergence speed of the classical conjugate 

gradient and Newton algorithms is lost as the structure of the surface is ignored. The 

convergence speed of a gradient adaptation can be slow when the slope of the cost function 

varies widely for the small changes in the adjusted parameters. Conventional gradient based 

approaches undergo this phenomenon hence attain slow convergence. Any optimisation 

scheme that exploits the given structure of the underlying space does not encounter such 

phenomenon and is deemed successful with better convergence and accuracy [15]. 

Natural gradient changes the search direction according to the Riemannian structure of the 

parameter space. Natural gradient assumes the surface to be locally Euclidean and when used 

with statistically optimum cost functions, it overcomes many of the limitations of the 

Newton’s method, which assumes that cost function being minimized is approximately 

quadratic. 

The major drawback of natural gradient is the knowledge required to determine the 

Riemannian structure of the parameter space, although it can be quite simple for certain 

applications [15], as described in CANA-NAM. 

 



 

Constrained Adaptive Natural Gradient Algorithm for Adaptive Array Processing 

 

35 
 

3.2 Standard Gradient Adaptation  
 

Let us consider a scalar cost function  f w  defined by a set of parameters given by 

 0 2 1

H

Mw w w w
                              (3.1)

 

If the cost function is smooth i.e. twice differentiable with respect to iw  then there exists a 

solution vector 
o

w
 
given by  

0 1 2 1

H
o o o o o

Mw w w w 
   w

                   (3.2) 

For which the partial derivative of the cost function with respect to the vector defined in 

Eq.3.1 is zero, that is 

 
0

of




w

w                       (3.3) 

and if the cost function has a positive definite Hessian matrix-the square matrix of its second 

order partial derivatives, then the weight vector represents local minimum of the parametric
 

space  f w . The gradient in Eq. 3.3 can be defined as below.
 

         

0 1 2 1

...

H

M

f f f f f

w w w w 

     
  

     

w w w w w

w                 (3.4) 

It may be noted that a gradient is a vector field that for a given point of weight vector w, points 

in the direction of the greatest increase of the cost function f (w). Iterative procedures are 

based upon using the scaled version of this component to be subtracted from the previously 

calculated weight vector.  

The standard gradient or steepest descent is a method of iterative minimization of the cost 

function f (w). 

The method can be formulated as  

 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Partial_derivative
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 1n n f   w w w                       (3.5) 

Where
  

 f
f


 



w
w

w
 
is the tangential gradient of the cost function with respect to the weight 

vector w while µ is the step size. To start the process, the technique needs a predefined initial 

value as a starting point. At each iteration the algorithm subtracts a scaled value of tangential 

gradient from the calculated weight vector to search out the new value. This process is 

repeated until the tangential gradient vanishes or reaches a very small but stable value. When 

this steady state is reached the algorithm is said to have converged. At convergence the 

updated weight vector represents the optimum weight vector and hence represents a local 

minimum. It is important to note here that the convergence of the steepest descent technique is 

critically dependent upon the choice of step size. A large value of µ can lead to quick but 

imprecise results while a small value can drastically reduce the convergence speed though can 

lead to an accurate solution. Generally it is difficult or impossible to choose step size in order 

to provide fast convergence from all initial values of the weight vector w.  This is due to the 

fact that the individual components of gradient vector inconsistently vary in magnitude in 

different directions from the optimum value. So it suffers from poor convergence properties 

and may lead to inaccuracy at times. 

3.3 Natural Gradient Adaptation  
 

Natural gradient is formed by augmenting conventional tangential gradient with the 

Riemannian metric, calculated over the surface to be optimised. Riemannian metric in contrast 

to conventional metrics being abstraction of the notion of distance, is an inner product on 

continuous tangent spaces. There is however a link since any Riemannian metric induces a 

distance, the Riemannian distance [15, 44]. Nevertheless the metric tensor is used to calculate 

the actual distance on the Riemannian surface. The rest of the geometrical calculations arise 

from the curvature of the surface to be optimised. A curvature vector indicates the direction in 

which a certain curve under inspection is turning. Optimisation i.e. finding minimum or 

maximum point on the manifold involves displacing the tangential vector from its base to the 

new point and then subtracting the normal component. At each point of the manifold of Figure 

3.1a and 3.1b, we can find a tangent vector in each direction. The set of such vectors constitute  
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a tangent bundle. In Euclidean spaces, tangents are naturally isometric hence ideal for 

conventional gradient based optimisation. As depicted in Figure 3.1a, moving one vector from 

a point to another does not require more than the original point and end point of the 

displacement. There is a flat connection between the consecutive movements. Due to 

curvature such phenomenon does not hold true on the Riemannian manifolds. In this situation, 

moving on these surfaces require the normal component of the tangent vector to be subtracted 

from the new tangent vector at each move. The operation of creating the new tangent vector at 

the new point is referred to as parallel transposition as depicted in Figure 3.1a and 3.1b. 

For every Riemannian manifold there exists a unique and intrinsic connection “Levi-Civita” 

defined by “Christoffel coefficients” in terms of the metric tensor elements, gij [44]. 

Description of Christoffel symbols and their calculation is beyond the scope of this thesis. 

Nevertheless Christoffel symbols/coefficients carry all the information about the curvature of 

the manifold and thus enable movements on the tangential space. Through these Levi-Civita 

connections, geodesics-the curves of minimum length [45], are formed in order to perform 

movements over the surface [46] and consequently the optimisation. Thus on a Riemannian 

manifold, for motion of a vector w  to w+ w , where w  is an incremental vector of very 

small magnitude, the distance metric can be defined as [17, 47] 

    = H

wd   w,w + w w w wG
                    (3.6)
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Figure 3.1: Parallel transpositions along a) plane and b) curved manifolds 

 

a b 



 

Constrained Adaptive Natural Gradient Algorithm for Adaptive Array Processing 

 

38 
 

 

 

 

 

 

 

 

 

Wherein  G w  is the Riemannian metric. Essentially a positive definite matrix, the 

Riemannian metric carries the intrinsic curvature of a particular manifold.  If w is the vector of 

parameters defining the cost function  f w then any change from w  to  w+ w  reflect the 

change in cost function from  f w  to  f w + w  and hence its gradient with respect to the 

parameter of the surface. With the assumption of the distance metric to be very small the 

direction vector can be defined as  

   1= f w w wG
                                   

(3.7)
 

Where  
   f f

f
 

  
 

w w
w

w w  
is the conventional tangential gradient and  wG is the 

Riemannian metric. Wherein a manifold as depicted in Figure 3.2, is a topological surface 

which is locally Euclidian [48]. If for every point in a manifold , an inner product is defined on 

its tangent space; a space carrying all possible tangent vectors at that point, then the 

Riemannian metric is a collection of all these inner products [49]. As described earlier the 

iterative minimization of the cost function  f w  can be defined as  

1n n n   w w w                     (3.8) 

Using values of w from Eq. 3.7 the, natural gradient based adaptation in the descent direction 

is defined as 

Figure 3.2: A manifold M with typical tangent space TxM at point x  

 

x 

Tx M 

 M 

http://mathworld.wolfram.com/Manifold.html
http://mathworld.wolfram.com/InnerProduct.html
http://mathworld.wolfram.com/TangentSpace.html
http://mathworld.wolfram.com/InnerProduct.html


 

Constrained Adaptive Natural Gradient Algorithm for Adaptive Array Processing 

 

39 
 

 

 

 

 

 

 

 

 

   1

1n n f 

   Gw w w w                    (3.9) 

So for the curved spaces the natural gradient based search method as described above uses 

explicit knowledge of Riemannian distance structure hence provides better and faster 

approximation to the steepest descent direction. It may be noted that for flat spaces the 

Riemannian metric is Identity matrix, in that case, the distance metric of Eq. 3.6 represents a 

Euclidian metric i.e. 

  H

wd    w,w + w w w
 

Hence  = f w w , causing Eq. 3.9 to reduce to the standard gradient case of Eq. 3.5.  

Another variation can be obtained if we replace Riemannian metric with the Hessian [16] of 

the cost function  f w .  

If  
 f

f


 


w
w

w
 is the gradient of the cost function  f w then its Hessian matrix can be 

defined as  

   ( )
H

f f H w w w                    (3.10) 

Inserting negative of this value in the update Eq. 3.8 an already known algorithm emerges 

called Newton method [50] and is given as  

   1

1n n f 

   Hw w w w
                 (3.11)

 

Figure 3.3: Uniform linear array 
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The algorithm developed thus looks similar to the one based upon natural gradient but due to 

the fact that Hessian matrix is not always positive definite the technique suffers from poor 

convergence properties and at times exhibits wrong approximations. This is due to the fact that 

if the Hessian is not positive definite the direction vector based upon this value would not 

point towards the increase of the cost function. A negative of this vector would not point 

towards minimum and will result in wrong approximation or fluctuation around a certain 

value.  

3.4 Constrained Adaptive Natural Gradient Algorithm (CANA) 
 

In array processing, constrained optimisation technique is aimed at minimising the total noise 

power at the array output while maintaining a chosen frequency response in the Direction of 

Interest (DoI) [2]. The only a priori information the algorithm requires is the desired Direction 

of Interest (DoI). With the help of concepts derived in previous sections we will formulate the 

optimisation technique based upon natural gradient algorithm. We call this technique 

Constrained Adaptive Natural Gradient Algorithm (CANA).  

Consider a conventional narrowband adaptive array processor as depicted in Figure 3.3 with 

the array output ny , given by the following weight relationship. 

H

n n ny  w x                                              (3.12)  

Where w  is the vector of complex weights attached behind each sensor and nx is so called 

data vector composed of signals from all sources including interference and noise at time n. It 

is required that the array processor should optimally respond to the signal coming from a 

desired direction while discriminating against the interferers coming from the other 

directions. The objective here is to minimise the average output power 
2

nE y 
 

 with some 

look direction constraint; that the processor should produce maximum response in the look 

direction only, while rejecting interferers from all other directions. The look direction 

constraint can be formulated as [2, 24, 28] 

T

n cfc w                       (3.13) 
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Where c  is the constraint vector and cf  is scalar constraint to be observed by the processor. 

For the narrowband array, if we let the look direction be incident broadside to the array then 

the constraint vector c becomes a unit vector.  

The minimization of average output power in Eq. 3.12 is to minimise the cost function  J
w

 

subject to the constraint of Eq. 3.13. The unconstrained cost function is defined as 

       H H

n n n nJ E    w
w x x w                   (3.14) 

The Lagrange method can be used to incorporate the constraint of Eq. 3.13 into the cost 

function of Eq. 3.14 which has to be minimised with respect to the weight vector nw . Hence 

Eq. 3.14 takes the form  

   H T

n n n cc
J f  

w
w w wR c                                            (3.15) 

Where R  is the correlation matrix of the input data vector nx
 
and   is the Lagrange 

multiplier. Minimising of the cost function requires its gradient to be set to zero. As derived 

above and also proposed by Amari et. al [15], the natural gradient of a cost function 
 J
w

 can 

be written as    

     

~
1J J  

w w
wG                                             (3.16) 

Where  

~

J
w

 is the natural gradient and  J
w

is the conventional gradient of the cost function 

and  wG is the Riemannian metric respectively. The conventional gradient for the problem 

under discussion has already been defined in Eq. 2.55 as 

  nc
J   R c

w
w                                       (3.17) 

While formulating natural gradient algorithm on abstract Riemannian space the first and the 

foremost challenge is the calculation of Riemannian metric tensor. This metric tensor is 

basically the continuous dot product on the tangent space to the abstract Riemannian surface 

under observation and carries the curvature information of the surface to be optimised. As 

described earlier, since flat surfaces and optimisation spaces, carry no curvature, therefore in 
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those cases Riemannian metric is the identity matrix. From Eq. 3.15 the constrained cost 

function can be derived again as     

   ( )

T

c cJ J f  ww
c w                           (3.18) 

Naturally it can be construed that  

     c c c
J J J


 

w w w w                    
(3.19) 

Where  cJ
w

is the constrained cost function, as described in Eq. 3.18, if we let 

 

2

cJ   
w

w the Eq. 3.19 takes the form  

   

2

cc
J J 


  

w w w
w                               (3.20)   

but   

     T

c cJ J f
 

     w w w w
c w w  

Therefore 

         
T T

c c cJ f J f J 


        w w w w
c w w c w

 

or 
 

     
T

cJ J J


     w w w w
c w                               (3.21)                          

     

2T

cJ J J 


        w w w w
c w w

 

or  

      
HTJ       G

w
c w w w w                                   (3.22)  

Where     
2 H

   Gw w w w and  is an arbitrary small number which can be absorbed 

in the step size . From Eq. 3.22, therefore 

 ( )J



   


G

w
c w w

w
                             (3.23) 
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 Hence  
 

 1 1( )
J

 


  


G G
w

w w w c
w

                    (3.24) 

Then the iterative weight update equation can be reproduced again 

1n n n   w w w                            (3.25) 

Inserting the value of direction vector w  the weight update can be formulated as   

   ( )1 1

1n n

n

J
  



  
       

G G
w

w w w w c
w

 

or it can also be written as 

   ( )1 1

1n n

n

J
  



  
       

G G
w

w w w w c
w

                                               (3.26) 

However we know that the constraint is given as  

1

T

n cf c w  

Pre-multiplying Eq. 3.26 with T
c leads 

   ( )1 1

1

T T T T

c n n

n

J
f   



 
        

G G
w

c w c w c w c w c
w

  

   ( )1 1/T T T

c n

n

J
f   

  
           

G G
w

c w c w c w c
w

                               (3.27) 

Substituting this value in Eq. 3.26 we get 

   
 

 

1
( ) ( )1 1

1 1

T T

n n c n T

n n

J J
f 


 

 

       
                       

G
G G

G

w w w c
w w w c w c w

c w cw w
 

or 

   
 

 
 

 

1 1
( ) ( )1 1

1 1 1

T c
n n n T T

n n

J J f
 

 
 

  

       
                           

G G
G G

G G

w w w c w c
w w w c w w

c w c c w cw w

 



 

Constrained Adaptive Natural Gradient Algorithm for Adaptive Array Processing 

 

44 
 

 
   

 
 

   
 

1 1
1 1

1 1 1

T

c
n n nT T

n n

J J f
 

 
 

  

        
                                 

G G
G G

G G

w ww cc w c
w w w w w

c w c c w cw w
 

or 

 
 

 
   

 

1 1
1

11 1
I ( ))

T

c
Tn n T

n

J f


 


 

  
            

G G
G

G G

ww cc w c
w w w

c w c c w cw
 

or 

  ( )1

1n n

n

J
 



  
    

   

P G
w

w w w k
w

               (3.28) 

Wherein  

   
1

1 1T

cf


    G Gk w c c w c ,
         

 
 

1

1

T

T





 
  
 

G
P I

G

w cc

c w c
                                                    

Now let us check the idempotent property of projection matrix by projecting it to itself that is 

by multiplying it with itself. Hence 

 
 

 
 

1 1

1 1

T T

T T

 

 

   
     
   

G G
PP I I

G G

w cc w cc

c w c c w c
 

 
 

    

  

1 1
1

1 2
1

2
T T

T
T

T

 





 
   
 
 

G G
I G

G G

w cc w cc
w cc

c w c c w c  

 
 

   

  

1 1 1

1 2
1

2
T T T

T
T

  




 
  
 
 

G G G
I

G G

w cc w cc w cc

c w c c w c
 

It follows that projection matrix is given by 

 
 

1

1

T

T





 
  
 

G
P I

G

w cc

c w c
 

The idempotent property of matrix P  as derived above, confirms the suitability of matrix P  to 

be the true projection operator for the developed Constrained Adaptive Natural Gradient 
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Algorithm (CANA). Where,  G w  the Riemannian metric, as described earlier, is a collection 

of inner products on continuous tangent spaces. The metric can also be realised from the 

parallel transposition on the curved surface defined by parameter w. As depicted in Figure 

3.1b if tangential gradient of the surface is represented by  f w  then natural tangential 

gradient is the resultant component if the normal component of  f w   is subtracted from the 

displaced tangent vector at any point of the surface defined by the parameter w. Hence  

     
~

HJ f f   
w

w ww w           

or 

   
~

HJ f     I
w

ww w                    (3.29) 

Equating this with the relationship in Eq. 3.16 the inverse of Riemannian metric is given by 

 1 - H    G Iw ww                                                     (3.30) 

To further exploit the convergence characteristics of the algorithm we have slightly modified 

the metric, resulting; 

 1 - H     G Iw ww                  (3.31) 

Wherein  1   , we can also use /1 H     w w  ensuring more power control. The  

can be categorised as regularisation parameter with archetypal optimisation values. The 

inclusion of   also avoids the rank deficiency. Thus with slight apparent increase in 

computational complexity, convergence performance and accuracy, which far exceeds the 

performance of the conventional beamformer, make the proposed algorithm very attractive in 

terms of implementations. 

3.4.1 Convergence Analysis 
 

On the basis of Eq. 3.28 we can define a bias vectore  as follows 

1 1

o

n n  e w w                       (3.32) 
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Where 
o

w  is optimum weight vector as given by Frost [24, 28] in his famous solution for 

linearly constrained adaptive array processing. From the Eq. 3.32 we can deduce that 

o

n n w e w                                  (3.33) 

So for the particular cost function of Eq. 3.15, the Eq. 3.28 can be re-written as  

 1

1n n 


    P I G Rw w w k                                  (3.34) 

At the steady state 1nw  and nw  approach to optimum weight vector o
w  hence Eq. 3.34 can be 

written as 

 1o o     P I G Rw w w k                 (3.35) 

Gradient part also vanishes once the optimum weight vector has been found hence  

  o I Pk w                       (3.36) 

From (3.33), (3.34) and (3.36) 

   1 1

1

o o

n n  


          P I G R P I G Re w e + w w k w                          (3.37) 

But for optimal solution  

1( ) 0o PG Rw w  

Therefore Eq. 3.37 reduces to  

 1

1n n 


   P I G Re w e                                        (3.38) 

The idempotent property of projection matrix allows us to manipulate Eq. 3.38 by pre-

multiplying it with the matrix P . By doing so we get the same left hand side of Eq. 3.38, 

which means 

n nPe e  and    1 1

n n

 G R G RPw e w e
 

With these realisations we can write Eq. 3.38 as 
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 1

1 -n n 


   P P PG RPe w e

 

 
1

1

1

n

n o





   I PG RPe w e                         (3.39) 

Where oe is the initial value of the bias vector. The convergence of weight vector to the 

optimum weight vector along any eigenvector of 1( )
PG RPw  is therefore governed by the  

convergence condition [43] as  

max

1
0


                                (3.40) 

Where max
 
is the largest eigenvalue of the square matrix 1( )

PG RPw . It may be noted that 

the trace value, 
1( )tr   PG RPw  is always more than the maxM , where M is the dimension 

of matrix 1( )
PG RPw .  

In this scenario a suitable choice can be  

1
0

( )

M

tr



  

  PG RPw
                  (3.41) 

3.4.2 Computational Complexity Analysis 
 

To analyze the efficiency of an algorithm, one way is to determine the amount of resources 

such as number of Multipliers and Accumulators (MACs) required to execute the 

algorithm. In order to measure the computational complexity of the CANA we will first 

analyse computational complexity of CLMS and then compare both of the complexities in 

terms of number of MACs. Thus final weight update equation for CLMS algorithm defined in 

Section 2.7 can be re-written as 

 1 -n n c  P I Rw w k
                 (3.42) 

For the length of weight vector w  equal p and sizes of matrices R and P equal to pxp, the 

computational efforts required to execute each step in getting the final algorithm of Eq.3.42 

are described in Table 3.1. Thus the total computational effort required for CLMS in terms of 
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Constrained Adaptive 

Algorithm  

Computational Complexity[MACs] 

 

 

 

CLMS 

 -I R  requires p  MACs 

 - I R w  requires  p
2
+p MACs 

 -P I R w  requires  p
2
 MACs 

 - c P I R w k  requires p additions 

Total computational effort required =  2p
2
+3p 

 

 

 

 

 

CANA 

 1 - H

n n

    G Iw w w
 
requires  p

2
 MACs 

  

 1T 
Gc w c  requires  p

2
+p MACs  

   
1

1 1T


    G Gk w c c w c  requires  p
2
+p 

MACs  

- T
P = I kc  requires  p

2
 MACs  

1( )
G Rw w  requires  2p

2
 MACs  

1- ( )   I G Rw w  requires  p MACs  

1- ( )   P I G Rw w + k  requires  p
2
+p MACs  

Total computational effort required =  7p
2
+4p 

 

 

MACs is 2p
2
+3p, where p is the number of array sensors. The CANA algorithm in addition to 

the similar computations as in CLMS also requires matrices P and 1( )
G w to be updated at 

every iteration, along with the vector k . Thus the total computational effort required for the 

execution of CANA algorithm is 7p
2
+4p as described in Table 3.1. Hence CANA is 

computationally more expensive than the CLMS algorithm. Table 3.1summarises the 

comparative computational complexity of both CANA and CLMS.  

As p is the number of sensors hence for larger arrays the computational complexity of CANA 

increases sharply as compared to the computational complexity of the CLMS algorithm. 

Figure 3.4 represents complexities of two algorithms versus number of sensors, based on 

Table 3.1. But if we calculate the overall complexity in finding the steady state solution, say, 

Table 3.1: Complexity analysis of constrained adaptive algorithms 
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Figure 3.4 : Per iteration complexity comparison of CANA and CLMS 

 

 

 

 

 

Figure 3.5 : Overall complexity comparison between CANA and CLMS, for 8 sensors at  

steady state 
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Figure 3.6: Convergence characteristics of CANA, CLMS and constrained Newton 

algorithms 

for 8 sensors the statistics give a different picture. Figure 3.5 is a comparison between overall 

complexities of CANA and CLMS, where we have used the number of iteration for CANA to 

converge to optimum state as 50 and 350 for CLMS, for an 8 sensor array. From Figure 3.5, it 

is evident that the overall computational complexity of CANA is much less than that of 

CLMS. 

3.4.3 Numerical Simulations  
 

In order to validate the concepts developed here, CANA algorithm needs to be tested in a 

realistic scenario. Let us consider a uniformly spaced array of 8 sensors as depicted in Figure 

3.3, where the sensors are placed at half wavelength apart. The two interferers are present at 

angles 15
o
 and 75

o
 respectively. Assuming direction of arrival of the source of interest to be 

broadside to the array, with frequency of operation at 300 MHz, the wavelength is equal to 1 

meter. Hence the elements are placed at 0.5 meters apart. It is required that the algorithm 

should iteratively calculate optimum weighing coefficients to be multiplied with received 

antenna voltages so as to get the desired beam pattern in the presence of interference and 

additive noise. All the three algorithms CANA, CLMS and constrained Newton algorithm 

were tested for the calculation of coefficients. The coefficients found thus were used with 

MATLAB to give insight into the convergence properties, beam pattern and other relevant  
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Figure 3.7: Relationship between convergence rate of CANA and the value of Epsilon 

measurements. Figure 3.6 shows the convergence properties of three algorithms CANA, 

CLMS and constrained Newton algorithm for the cost function defined in Eq. 3.14 and Eq. 

3.15. For these set of simulations, we chose the convergence step size µ=0.01 and 

regularisation parameter   =0.1. Markedly CANA is very quick to attain the optimum value 

as compared to the rest. While CLMS is notably slow to attain the optimum value, 

interestingly the Newton algorithm even did not converge in the provided window of 

iterations. This is because; for certain cost functions the Hessian matrix is not always positive 

definite. Hence Newton method can get trapped in spurious local minima and thus may not 

converge as seen in this case. However for the functions that are not exactly quadratic, 

Hessian matrix can be forced to remain positive definite throughout the optimisation process, 

but this destroys the usefulness and demands additional computing resources. It may be noted 

that Constrained Adaptive Natural Gradient Algorithm (CANA) is very sensitive to the values 

of  . If we gradually increase the value of  , algorithm takes longer time to converge to the 

optimum value. At value of   equal to 1, the Riemannian metric of Eq. 3.31 is close to 

Identity matrix, hence the CLMS and CANA agree each other at this point. Interestingly 

values of   less than 0.1 are out of bound for this particular case depicted in Figure 3.7 and 

Figure 3.8, as system becomes unstable for the values less than 0.1. This is in fact governed by 

Eq. 3.40 which describes the lower bound on the step size. In Figure 3.6 apparently CLMS  
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Figure 3.8: Step length lower bound for CANA 

 

 

 

 

Element 

Number  

Optimum Weight CLMS Weight CANA Weight 

1 0.10718 0.13652 0.10718 

2 0.12485 0.09797 0.12485 

3 0.12755 0.13293 0.12755 

4 0.12801 0.12331 0.12801 

5 0.12809 0.15755 0.12809 

6 0.12811 0.14669 0.12811 

7 0.12811 0.12095 0.12811 

8 0.12811 0.08408 0.12811 

 

Table 3.2: Comparison of weights calculated by CANA (NG) and CLMS (CG) algorithms 

after 350 iterations 



 

Constrained Adaptive Natural Gradient Algorithm for Adaptive Array Processing 

 

53 
 

 

 

Figure 3.9: Comparison of weights calculated by natural (NG) and conventional gradient 

based (CLMS) algorithms after 350 iterations 

approaches the CANA results, but a close observation and the weights in Table 3.2, reveal that 

this is not the case and actullay CLMS takes a longer time, way beyond 600 iterations to 

equate to the Wiener results. This can be shown by examining the weights calculated at 350 

iterations, where the CLMS algorithm has apparently converged to the optimum values as 

shown in Figure 3.6. Table 3.2 summarises the element wise weight comparison between 

CANA, CLMS and optimum weights after 350 iterations. Please note that cofficients 

calculated by Newton weight update method  have not been included in the  comparison 

presented in Table 3.2 and Figure 3.9, as at this stage they were not even close to convergence 

as depicted in Figure 3.6. Figure 3.10 gives further insight into this phenomenon, wherein we 

have steered the main lobe towards -30
o
 inorder to see the sidelobe structure. Obviously the 

main lobe is towards -30
o
 and deep nulls at the designated places of interfrences at 15

o
 and 75

o
 

but rest of the side lobe structure is not uniform and wider grating lobes are seen, wasting a 

fair amount of valuable energy. The appearance of such grating lobe structure is due to the 

discrepency in weight determination by CLMS which is evident in Figure 3.10. It is quite 

obvious from Figure 3.10 that the CLMS algorithm is following the hard constraints of 

pointing maxima towards the direction of interest and nulls towards the hostile interferers at 

15
o
 and 75

o
 respectively but the side lobe structure is not as uniform as required by the Wiener 

solution. Neverthless after 600 iterations both algorithms conform to each other and sidelobe 

structures coincide with  each other and leads to the optimum Wiener solution. It may also be  
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Figure 3.10: A converged beam pattern comparison between CANA and CLMS with weights 

as in Table 3.2 

noted that this phenomenon has been observed even the algorithm has reached the steady state 

because of the residual error or misadjustment of the algorithm.The CANA algorithm is least 

affected by the misadjustment however some combinations of step size and regularisation 

parameter can lead to such discrepency. Thus for better results CANA must observe the step 

length bound of Eq. 3.41 pictorially depicted in Figure 3.8. 

3.5 Multiple Interference Cancellation  

 

Multiple Interference Cancellation (MIC) is another important and crucial area of adaptive 

array  processing [26]. In fact  one of the prime advantange of constrained adaptive 

procesoring over the conventional array processiong or fixed beamforming is that they are 

able to cancel out interference originating for variable locations [31, 51]. In constrained 

adaptive array processing the direction of source of interest is generally known but the 

direction of interfering sources may not be known. If the number of interferer and their 

locations is variable then coneventional fixed beamformers are unable to cope with it and fail 

to perform effective interference cancellation [22]. To observe the phenomenon of multiple 

interference cancellation, two cases of multiple intereference impinging from aribtrary 

directioms have been studied a) when the interferer is very close to the main-lobe and  
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Figure 3.11: Interference cancellation of main-lobe interference present at -1
o
 along with two   

        other interferers at 24
o
 and 56

o 

  

 b) when when all the interferers have different interference-to-noise ratio. The results have 

been presented in Tables and Figures. Figure 3.11 represents interference cancellation of three 

interferers when one of the interferers is present in the main-lobe at -1
o
. CANA effectively 

cancels the main-lobe interference and the other interferers present at 24
o
 and 56

o
. Figure 3.12 

illustrates the cancellation of 6 interfering sources when all the signal sources are of unequal 

Interference-to-Noise(I/N) ratio. The input interference -to-noise ratio of source at 43
o
 is 

43.0103 dB, at 30
o
 is 20dB, at 15

o
 is 40 dB , at -15

o
 is 20 dB, at -30

o
 is 20 dB, and that of at -

43
o
 is 44.7 dB. The corresponding null depth/power can be seen at the prescribed positions in 

Figure 3.12. It is also observed that higher power interferers get deeper nulls and lower power 

interferers get less deep nulls for a fixed noise floor. This asserts that the power of interfering 

source and the depth of spatial null offered by the adaptive array processor at the position of 

interferer/jammer have a certain relationship. To explore this, a set of observations has been 

taken in order to fully understand the phenomenon of interference suppression. For the 

following set of observations ,it is assumed that a single interferer is at the 24
o
 while the 

source of interest is at the broadside of the antenna array. Both the sensor noise power and the 

signal power are 0 dB while the observed null depth at the spatial location of interferer against 

the input interference-to-noise  ratio is listed in Table 3.3. It can be seen that with the increase 
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Figure 3.12: Interference cancellation of unequal power signal sources  

 

 

 

S/No. Input I/N ratio dB Null power at the position of 

Interferer dB 

1 0 -57.87 

2 10 -60.0 

3 20 -82.92 

4 23.0103 -89.85 

5 24.7712 -93.9 

6 26.0206 -96.77 

7 26.98 -99.00 

8 27.7815 -100.8 

9 28.4510 -102.4 

10 29.0309 -103.7 

11 29.5424 -104.9 

12 30.00 -105.9 

13 40.00 -129 

14 43.0103 -135 

15 44.7712 -139.9 

16 50.00 -152.0 

 

 

 

Table 3.3: Relationship between I/N ratio and null power/depth 
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Figure 3.13: Relationship between I/N ratio and null power/depth 

in input interference-to-noise ratio the null depth also increases. A direct correlation between 

the  interference-to-noise ratio and the null depth is observed. Figure 3.13 is the pictorial 

depiction of the same relationship between the input interference-to-noise ratio and the null 

power/depth. The x-axis represnts null power/depth while interference-to-noise ratio has been 

plotted at y-axis. Table 3.4 is another set of observations with only difference that the input 

Interference-to-Noise ratio has been started from -10 dB, while the sensor noise power and the 

signal power both are kept at 0 dB. As long as the input Interference-to-Noise ratio is lower 

than the noise floor adaptive processor is unable to insert the null at the spatial location of the 

interferer. Soon as the input interference-to-noise ratio increased and is equal to or greater than 

the noise floor/sensor noise the processor is able to offer null at the spatial position of that 

interferer. Rest of the values for this set of observations are same as in Table 3.2. Both the 

cases in Table 3.2 and Table 3.3 highlight a trend in Interference suppression which can be 

observed in Figure 3.11. Input interference-to-noise power in dB at x-axis has been plotted 

against the null depth in dB at y-axis. It can be seen that by increasing the input input 

Interference-to-Noise power the null depth increases and vice versa. 
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S/No. Input I/N ratio dB Null power at the position of 

Interferer dB 

1 -10 Null is not at the Required 

Position 

2 0 -57.87 

3 10 -60.0 

4 20 -82.92 

5 23.0103 -89.85 

6 24.7712 -93.9 

7 26.0206 -96.77 

8 26.98 -99.00 

9 27.7815 -100.8 

10 28.4510 -102.4 

11 29.0309 -103.7 

12 29.5424 -104.9 

13 30.00 -105.9 

14 40.00 -129 

15 43.0103 -135 

16 44.7712 -139.9 

17 50.00 -152.9 

 

3.6 Multi Beam Antenna 

A number of applications require that system should be capable of transmitting or receiving 

multiple beams especially in satellite communication, where number of ground links are 

attached to single satellite station [52]. Multiuser communications [53],and simultaneous 

detection of multiple targets are also the primitive applications both in military and air traffic 

control applications [54]. As development of active phased arrays for radar started over couple 

of decades ago and is atill being pursued [7]. Only a handful of active phased array radars are 

operational and much work is still on going to improve the technologies of radiating elements, 

transmit receive modules and beamformers. Active antennas for telecommunications partially 

benefit from this R&D, but differences in requirements-low cost, multiple beam operation, re-

use of frequencies, and restrictions attached to military developments limit the technology 

transfer possibilities. Let us consider an array of M sensors placed at half wavelength of centre 

frequency from each other. There is an incident signal from the direction θ , which is the 

source of interest for the time being. Note that the rest of the signals received  needed to be 

treated as interference. Thus the recieved signal at the reference element can be written as 

j t

ox e 
                  (3.43) 

Table 3.4: Relationship between I/N ratio and null depth at 0 dB noise 
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   
1

j jj t

ox x e e e
    

                       (3.44) 

Where ( )  the time delay is introduced by the signal source at the direction theta with respect 

to the reference antenna element and can be formulated as  

   sind c  
                 

(3.45) 

Where d is the distance between the adjacent antenna elements in terms of wavelength.With  

2

2 /

c f

f



 

  





                    (3.46) 

Therefore Eq. 3.44 can be written as  

 sin

1

j dj tx e e
  


                  

(3.47) 

And finally the generalised form for the m
th

 sensor with respect to reference element is 

 sinjm dj t

mx e e
  

                    (3.48) 

The signal recieved by the whole array is the signal of all sensors combined. Thus 

   
1

sin

0

M
jm dj n

m

n e e
 






 x

                 (3.49)

 

Where st nT , please note that the different notation for time index has been used to avoid 

confusion between the time index and sensor number.  

Eq. 3.49 can be written in vector form as  

   j nn e  x a                   (3.50) 

Where  

       sin 2 sin ( 1) sin
1 ...

T
j d j d j M d

e e e
     


    

 
a               (3.51) 

( )a  is called the steering vector or response vector. Now if there are N multiple sources 

impinging on an array , or if the array is a component of  multiuser communication system 
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then the signal due to all these sources at the reference sensor can be defined as 

 
1

N
jwn

o p

p

x n A e



                  (3.52)

 

The signal recieved at the m
th 

element with respect to the reference element due to all sources  

can be written as  

 
  sin

1

p

N
j wn mkd

m p

p

x n A e





                 (3.53)

 

And signal from all sources and all sensors  

 
  1

sin

0 1

p

M N
j wn mkd

p

m p

n A e





 

x

                (3.54)

 

This can be formulated in Vector-Matrix form as  

   jwn

an Ae  Ax                   (3.55) 

Where  a A  is the MxN steering matrix and is given by 

         1 2 3 ...a N       A a a a a
               (3.56)

 

and  

         sin 2 sin 1 sin
1 ...p p p

T
j d j d j M d

p e e e
     


    

  
a

             (3.57)
 

The multi beam antenna constraint can be formulated as  

 
T

a a A w f
                  (3.58)

 

Where [1 1 1.... 1]
T

a f is Nx1 vector of constraints. This constraint vector serves to 

produce  N multiple beams in distinct directions, hence every element should be “1” or some 

defined power level with  respect to each look direction or distinct user.  
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Producing multiple beams in distincts directions requires minimizing the output power subject 

to  the consraint in Eq. 3.58. Thus following the similar mathematics as developed in earlier 

formulation of CANA in Section 3.4, leads  gradient of the cost function to be
 

    TH T

a a

J


    
    

R Aw w w w f
w w


 

 a    R Aw 
                  (3.59)

 

Further using the analogous procedure as in Section 3.4, the CANA solution for multi beam 

antenna can be obtained as 

     
 

 

11 a

n

J
n n  

  
     

    

P G
w

w w w k
w

              (3.60)

 

Where 

       
1

T T

a a a a   
   

   
P I A A A A                (3.61) 

and 

     
1

T T

a a a a a  


 
 

A A Ak f
                (3.62)

 

Let the number of array elements be 8, placed at half wavelength distance appart from each 

other. Supose there are two desired sources at 20
o
 and 45

o
 and an interferer at 0

o
. Keeping the 

remaining settings of the step size and regularisation parameters intact as in previous 

numerical simulations  the obtained graphical results are given as follows. Figure 3.14 is the 

ploar graph of multi beam antenna where two beams have been pointed towards the required 

direction of 20
o
 and 45

o 
while interferer is at 0

o
. Figure 3.15 and 3.16 are the dB and 

normalised plot of the same simulation wherein -71.46 dB null has been inserted at the 

interferer position of 0
o
. Number and the power of beams at the defined locations can be 

manged through the constraint vector. 
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Figure 3.14: Polar plot of multi beam antenna with beams at 20
o
 and 45

o
 and interferer at 0

o
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Figure 3.15: Multi beam antenna with beams at 20
o
 and 45

o
 and interferer at 0

o
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Figure 3.16: Normalised response of multi beam antenna with beams at 20
o
 and 45

o
  and 

interferer at 0
o 

3.7 Constrained Adaptive Natural Gradient Algorithm with Non 

Adaptive Metric (CANA-NAM) 
 

Many applications like Thousand Element Array (THEA) and similar processes involving 

multi functions of navigation, tracking, guidance, and surveillance require the number of 

elements to be very large. Similarly the size of weight vector w   is directly propotional to the 

number of elements for narrowband processing. But if the system involves broadband 

processing the size of weight vector becomes MxL. Where M is the number of sensors and L is 

the order of the filter or number of taps associated with each antenna for Time Delay Line 

(TDL) type broadband adaptive processing. As explained and derived earlier, the Riemannian 

metric is a function of  weight vector and is updated at each iteration with the update in w, 

thus is the major contributor in algorithm computational complexity.  

Therefore for the purpose of reducing the number of arithmetic operations at each iteration,it 

would be more appropriate to have a non adaptive approximation to the Riemannian metric. 

On a similar note, we may not be able to find a single non adaptive metric suitable for all 

arrays, as every antenna array itself exhibit a Riemannian manifold. Due to intrinsic curvature 

information of an array manifold, the non adaptive metric must be  unique. Thus in order to  
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fully exploit the geometric properties of the objective function it is always apposite to have an 

adaptive version of the Riemannian metric unless the optimisation surface is known exactly. 

Consider a conventional narrowband adaptive array processor depicted in Figure 3.1. The 

signal from an incident source impinges on every element of the array. This is subsequently 

multiplied with relative weights and summed as the antenna array output ny . 

H

n n ny  w x                                      (3.63) 

Where nw  is the complex weight vector of coefficients attached to the antenna elements and 

nx  is the incoming data vector, and the time instant is represented by the subscript n.  Now the 

average output 
2

nE y 
 

 has to be minimized while observing look direction constraint. The 

look direction constraint can be formulated as  

T

n cfc w                              (3.64) 

Where c  is the constraint vector and cf  is the scalar constraint for the narrowband case. We 

will assume this constraint for a single source of interest to be equal to “1”. c  is an Mx1 vector 

with all elements equal to one for broadside look direction and is equal to steering vector 

otherwise. With the look direction broadside  to the line of sensors the constraint Eq. 3.64 can 

be realised as 

1

1
M

m

m

w


                     (3.65) 

From Eq. (3.63),(3.64) and (3.65) the cost function to be minimised can be  formulated as  

       H H

n n n nJ E    w
w x x w                  (3.66) 

Subject to the constraint given in Eq. (3.64). The Lagrange method, as shown previously can 

be used to incorporate the constraint in the cost function above to be minimized with respect to 

the weight vector nw . Hence Eq.3.66 takes the form as  

    H T

n n n cc
J f  

w
w w wR c                                          (3.67) 

Where R  is the correlation matrix of the input data vector nx and   is the Lagrange 
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multiplier. To minimise the cost function its gradient is set equal to zero. As described earlier 

in Section 3.4, the natural gradient of a cost function 
 J
w

  can be written as.  

     

~
1J J 

w w
wG                                            (3.68) 

Where  J
w

and  G w  are the conventional gradient of the cost function and the Riemannian 

metric respectively. Similarly the gradient of the constrained cost function defined in Eq. 3.67 

can be obtained as 

  nc
J   

w
wR c                                     (3.69) 

Following a derivation similar to that given in Eq. 3.28 the weight vector update may be 

expressed as 

 
 1

1n n

n

J
 



  
        

w
w w w k

w
P G                          (3.70) 

Where the Riemannian metric is given by  

 1 H

n n

    G Iw w w                                                    (3.71)  

However as the Riemannian metric is a function of weight vector i.e. of the optimisation 

surface, it has to be updated at each iteration and this therefore adds to computational 

complexity. If we could replace it with some fixed matrix then significant computational 

complexity could be reduced. The Riemannian metric, we used in the formulations and 

numerical simulations in CANA and broadband constrained natural gradient based adaptive 

processing [43] gives an intuition to finding a fixed metric for the natural  gradient adaptation. 

The Riemannian metric depicted in Figure 3.17 is the one which was used for the cost function 

optimisation space of 8 element uniformally spaced linear array, which has proven 

convergence properties. A bird’s eye view reveals that it is a diagonally dominant matrix. So if 

we replace it with some diagonally dominant fixed matrix we should achieve approximately 

the same convergence results depending upon our approximation of the metric. However this 

may not always the be case and the metric has to be updated at every iteration.  It may also be 

noted that Identity matrix is the pure diagonally dominant matrix at hand. We also know that if 
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Figure 3.17: Diagonally dominant Riemannian metric 

we replace Riemannian metric  G w  with Identity matrix in Eq. 3.70 it becomes the 

Constrained Least Mean Square (CLMS) algorithm, originally proposed by Frost [24]. But if 

we let G I  where   is a regularisation parameter which can be adjusted to achieve the 

desired convergence similar to an adaptive Riemannian metric. Further it can be explained that 

the CANA-NAM algorithm observes the same convergence condition as described in 

convergence analysis of CANA and is given by  

max

1
0


                                (3.72) 

Wherein max is the largest eigenvalue of the square matrix  1
PG RPw as in Eq. 3.38. It may 

be noted that the trace value,  1tr   PG RPw is always more than  maxM , where M is the 

dimension of matrix  1
PG RPw . Having this, the convergence condition given by Eq. 3.72 

can lead to the choice of step size as 
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 Figure 3.18: Convergence comparison of CANA-NAM with CLMS  

 1
0

M

tr



  

  PG RPw
                                                                         (3.73) 

3.7.1 Numerical Simulations  
 

Let us consider a Uniformly spaced Linear Array(ULA) of 16 antenna elements spaced at half 

wavelength of the frequency of operation. Let there be two interferers at 45
o
 and -50

o
 with 

source of interest at broadside side of the array. It is required that the array processor should 

adopt a beampattern such as to present maxima towards the Direction of Interest (DoI) and 

suppress any interference thereof. The direction of interferers and their strengths are not 

known to the adaptive processor. However for simulation purposes we will add some 

interferers in order to create a realistic environment for the algorithm.With known desired 

response, DoI and the inputs as stated above, Constrained Natural Gradient Algorithm with 

Non Adaptive Metric (CANA-NAM) was used for the calucation of optimum weight vector. 

For comparison Constrained Least Mean Square algorithm (CLMS) was also simulated with 

the same sttings. We chose the convergence step size 0.05   and regularisation parameter 

0.1  . Figure 3.18 shows the convergence statistics of  both the Constrained Natural 

Gradient Algorithm with Non Adaptive Metric (CANA-NAM) and Constrained Least Mean 

Square algorithm (CLMS). Constrained natural gradient with non adaptive metric is very 

quick to attain the optimum value and converges in fewer steps than the CLMS, taking as  
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Figure 3.19: A converged beam pattern comparison between CANA-NAM and CLMS after 

                   200 iterations 

many as 200 steps to converge to the optimum value. The optimum value for this particular set 

of simulations was found to be 0.1 resulting algorithm to converge to optimum value far quick 

than the counterpart. Figure 3.19 is a very good demonstration of efficiency and optimality of 

proposed algorithm. It is always required that the side lobe level should remain as small as 

possible, so that the maximum energy can be directed towards the look direction. The side 

lobe level efficiency of CLMS is much inferior to CANA-NAM as depicted in Figure 3.19. 

This also shows the accuracy of the developed technique. It may be noted that the value of 

regularisation parameter   is unique  and depends upon the number of array antenas as well as 

number of signal sources. Convergence characteristics of Constrained Adaptive Natural 

Gradient algorithm with Non Adaptive Metric (CANA-NAM), shown in Figure 3.18, have 

some interesting relationship with the value of  . As shown in Figure 3.20 changing the value 

of   significantly changes the rate of convergence. If we gradually increase the value of  , 

from 0.1 to 1 the the convergence rate of CANA-NAM slows down and it progressively meets 

with the CLMS solution. At    equal to 1, G become identity matrix and both of the solutions 

meet each. With values higher than 1, algorithm takes longer time to converge to the optimum 

value. Figure 3.21 shows algorithm’s capability of rejecting multiple interferers impinging  
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Figure 3.20: Effect of regularisation parameter zeta on convergence of CANA-NAM 
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from four different directions of 30
o
, 45

o
, -30

o
 and -71

o
. The main lobe is directed towards the 

the broadside source of interest and the deeper nulls are presented. It is also observed that the 

algorithm produces deeper nulls as the power of interferer is increased and vice versa. 

However it is imperative to note that the non adaptive metric used here effectively only 

changes the step size since the metric is a scaled identity. Similarly with the change in number 

of sources and or the number of antennas, the same metric might not work and can lead to 

inaccurate results. Since the CANA-NAM algorithm highly depends upon prior knoweldge of 

the Riemannian metric for approximating the non adaptive metric. Thus a hybrid approach can 

be followed in which for some initial iterations the CANA algorithm operates in normal mode 

and after approximating the Riemannian metric, shifts to the non adaptive metric mode. 

Nevertheless the formulation of this hybrid approach can be left as a future work. 

 3.8 Adaptive Step-size Algorithm 
 

Convergence rate of the gradient based search methods is highly dependent on the 

conditioning of autocorrelation matrix of its inputs [55]. When inputs are highly correlated, 

convergence rate degrades radically. Variable step-size is applied, with the intention of 

decreasing misadjustment and to maximise convergence rate of LMS algorithms [18].To 

design an appropriate variable step size method, one should intuitively use a larger step size 

when the estimate is far from the optimum and a smaller step size as it approaches the 

optimum [7, 8]. Generally, the optimising algorithm for solving the linear and nonlinear 

equations is also very sensitive to the search strategy and the choice of the variables value 

[7]. In case of nonlinear equations and because of the complex search strategy, it needs too 

long time to run these algorithms. 

 On the other hand, if the choice of the variables value is not reasonable, the results would be 

restricted to some parts of the extreme values, thus it is difficult to get the high precision 

solutions. Thus the algorithm should also be able to change the step size according to the 

optimisation space. To incorporate this adaptability in existing solution, we note that 

Constrained Natural Gradient Algorithm (CANA) can further be explained as 

 

1 1n n n n
 

 w w d
                             (3.74) 
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Where 1n n
  Pw w k  and  1

nn


 PG Rw wd  

Now to determine the optimal value of step size   we set 

 

 
0

n

J








w

  

where                            

    1

1

T

n

n n n

J J

 






  


  

   
    

  

w w w

w
                  (3.75) 

From Eq. 3.74 we get  

1n

n

n








 
 
 

w
d                         (3.76) 

Further since 

  1 1

1

2

H

n n
J

 
 R

w
w w   

So 
 

1

1

n

n

J










 
  
 

R
w

w
w                                               (3.77) 

Which yields  

   1n

n

T

n n n

J






 


 R

w
wd d                                      (3.78) 

 putting above Eq. 3.78 equal to zero yields adaptive step size scheme for CANA 

1n

T

n
n T

n n

 


 
Rwd

d d
                  (3.79) 

This adaptive step size can be calculated iteratively. Note that for fixed step size the analysis 

has been provided in earlier section on convergence analysis, which gives us the optimum  
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Figure 3.22: Optimum value of step size alpha for adaptive step-size algorithm 

range of step size. The same approach as in Section 3.4.1 can be followed to prove that the 

suitable choice for the step size  can be derived from the following relationship. 

1
0

M

tr



  

 
 PG RP

                   (3.80) 

Wherein   is the eigenvalue of the square matrix 
1

PG RP . Eq. 3.80 has been plotted in 

Figure 3.22. The algorithm converges to optmimum value as described by the above shown 

relationship. The step size obtained in 400 iterations is equal to -0.002933. It may be noted 

that the steady state value of the step size is highly dependent upon the initial weight vector, 

intial step size and the value of  . Figure 3.23 shows the convergence comparison between 

adaptive step size algorithm and the fixed step size algorithm. The adaptive step size algorithm 

quickly acquires the steady state weights. Figure 3.24 and 3.25 show the beam patterns in dB 

and polar forms wherein the desired user is at broadside of the array and an interferer at 24
o
. 

Thus the scheme improves the convergence properties by exploting the varaible stepsize while 

searching the performance surface. 

Note that two interferers were used in the simulation that resulted in Figure 3.6, while there 

were four interferers used in Figure 3.18. One interferer was present for the results plotted in  
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Figure 3.23: Convergence comparison of adaptive step-size algorithm with fixed step-size 

CANA-NAM 
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Figure 3.24: Broadside beamforming with adaptive step-size algorithm 

 



 

Constrained Adaptive Natural Gradient Algorithm for Adaptive Array Processing 

 

74 
 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

Figure 3.25: Polar plot of broadside beamforming with adaptive step-size algorithm 

 

Figure 3.23.  The difference in number of contributing signal sources has lead to the difference 

in maximum values of the respective cost functions, plotted in Figure 3.6, Figure 3.18 and 

Figure 3.23. 

3.9 CANA in polar space 
 

CANA can also be represented in Polar coordinate system for having further insight into the 

angular characteristics of the method. If we consider a two element system then the 

constrained cost function of Eq. 3.15 can be written as  

       11 12

1 2 1 2 1 2 1 2

21 22

[ ] [ ]
H T

c

R R
J w w w w c c w w f

R R


 
   

 
w

                                  

(3.81)
  

If 1 cosw r  , 2 sinw r 
 
and 1cf  , then Eq. 3.81 can be represented in polar coordinate 

system as 

          11 12

1 2

21 22

, cos sin cos sin cos sin 1
H TR R

J r r r r r c c r r
R R

       
 

   
 

                   

(3.82) 
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Differentiating with respect to polar coordinates, ,r   Eq. 3.82 leads 

   1 2,
,

TdJ
r c c

dr d
 


 h Q

               

(3.83) 

Where  ,
,

dJ
r

dr d



 is the gradient in polar coordinate system, h and Q are given by 

  

     

2 2

12 21 11 22

2 2 2

12 21 11 22

2 cos sin cos sin ;

cos sin 2cos sin

r R R R R

r R R R R

   

   

   


   


h

 

cos sin

sin cosr r

 

 

 
  
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Q

 

Thus the weight update can be written as. 

n+1 n= ( , )
,

dJ
r

dr d
 


w w

                (3.84) 

Inserting the value of gradient leads 

 n+1 n 1 2=
T

c c   
 

w w h Q                            (3.85) 

Following the same procedure as in Eq. 3.27 and inserting the value of  we get the weight 

update equation as 

 1n n    Pw w h b
                            

(3.86) 

 Where [ ]T P I bc  is the projection matrix and 
1

T=


  b c c cQ Q  

The natural gradient in polar space is defined as 

   1, ,
, ,

NGdJ dJ
r r

dr d dr d
 

 

G

                
(3.87) 

Where G is the Riemannian metric in polar space and is given by 

2

1 0

0 r

 
  
 

G

                  (3.88)
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Applying on the constrained cost function the Polar Natural Gradient (PNG) is given as  

   1 1 1 2,
,

TNGdJ
r c c

dr d
 


 h Q

                            
(3.89) 

Where 
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And hence the constrained weight updating equation is given as 

 1 1 1n n    P hw w b
                (3.90)

 

 Where 1

T   P I b c  is the projection matrix and 
1

1 1 1

T=


  b c c cQ Q  

Eq. 3.90 is the natural gradient based weight update equation in polar space. It is worth 

noting that the natural and Euclidean gradients only vary in the angle update and the 

magnitude calculation remains same. This formulation can be extended in spherical as well as 

to the N dimensions using different realisations of Riemannian metrics. 

3.10 Conclusion  
 

This chapter has presented a novel technique for constrained adaptive algorithm based upon 

the natural gradient. This technique provides more uniform performance than those based 

upon ordinary stochastic gradients, yet simple to implement. Along with the ability of natural 

gradient algorithm to follow the exact surface of the optimisation space, self correcting feature 

of constrained optimisation makes the algorithm rapidly converge to steady optimum state for 

variety of statistically optimum functions. So, for a reasonable range of step size the drawback 

of ordinary gradient of escaping from the cost function surface can be avoided, still 

maintaining the improved converging properties. This chapter has also presented a non 

adaptive approximation to the Riemannian metric which was used to develop a new version of 
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Constrained Adaptive Natural Gradient Algorithm with Non Adaptive Metric (CANA-NAM). 

The developed technique outperforms the conventional algorithm in convergence, yet 

computationally efficient. The numerical simulations confirm its suitability for adaptive 

beamforming, adaptive null steering and multiple interference rejection. Further, to aviod or 

minimise misadjustment or residual error due to fixed step size, a variable step size scheme 

has also been developed. This adaptive or variable step size algorithm is quicker than the fixed 

step algorithm. Thus if we are able to approximate the Riemannian metric as a fixed matrix 

than the technique can further be improved through adaptive stepsize. 

However the non adaptive metric used for the simulations in CANA-NAM effectively only 

changes the step size since the metric is a scaled identity. Similarly with the change in number 

of sources and or the number of antennas, the same metric might not work and can lead to 

inaccurate results. Since the algorithm highly depends upon prior knoweldge of the 

Riemannian metric for approximating the non adaptive metric. Thus a hybrid approach can be 

followed in which for some initial iterations the CANA algorithm operates in normal mode 

and after approximating the Riemannian metric shifts to the non adaptive metric mode. 

Nevertheless the formulation of this hybrid approach can be left as a future work. 

The polar space representation of both CLMS and CANA provides further insight into to the 

algorithm formulation. It is worth noting that the natural and Euclidean gradients only vary in 

the angle update and the magnitude calculation remains same. This formulation can be 

extended in spherical as well as to the N dimensions using different realisations of 

Riemannian metrics. 
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Chapter 4 

Constrained Broadband Array Processing 

in Wave-Number Domain 

Chapter 3 has established the formulation and characteristics of constrained natural 

gradient based techniques. The convergence properties and complexity of the algorithm has 

been studied with firm understanding of the technique. However examples and case studies in 

the previous chapter mostly presented its applications in narrowband domain. This chapter is 

a detailed description of the broadband constrained array processing in wave-number 

domain. It comprises of sections on introduction, mathematical development and simulation 

of the proposed methodology. This chapter provides a closed form and iterative natural 

gradient based solution whereas an array of uniformly distributed sensors is constrained to 

produce optimum desired response. The developed technique eliminates the need of the 

calculation of tap spacing or determination of the optimum sampling, in deriving the 

temporal information from the signal, as the algorithm directly gives the coefficients of the 

filters represented in wave-number domain. The technique has been found useful in restoring 

the capability of cancellation of total number of hostile interferers equal to M-1. Since the 

whole filter is steered towards the direction of interest, rather than the individual elements of 

the TDL/FIR filters, so the side-lobe one-to-one correspondence remains conserved. Analysis 

and discussion on the simulations and concepts derived therein are provided in detail 

followed by conclusion at the end. 

4.1 Introduction  
 

Broadband array processing is performed through mainly two types of techniques; frequency 

based and time based techniques. The time based adaptive array processing incorporates 

Taped Delay Line (TDL) [56] filter whose order is directly proportional to the fractional 

bandwidth of the signal. The frequency domain broadband beam forming [14] is achieved by 

taking Fast Fourier Transform (FFT) of each sensor signal, and then each frequency bin is 

processed by a narrowband independent processor. Several offshoots of these main 

techniques like Frequency Domain Frequency Independent Beamforming (FDFIB) and Time 

Domain Frequency Independent Beamforming (TDFIB) [57] etc., have been reported. Both 
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of these techniques have benefits and disadvantages which make them unsuitable at times. 

FFT approach is constrained by its inherent time delay, while technique based on time 

domain processing, is capped by the order of the TDL filter directly proportional to the 

fractional bandwidth [13, 58].  

Another issue with time delay processing is that it loses at least one degree of freedom in 

mitigating the number of hostile interferers. It has been reported [31] that TDL based 

broadband beamforming can cancel a maximum of M-2 interferers. Although TDL structure 

is similar to an FIR, and the tap spacing/temporal sampling observes the Nyquist criteria [59], 

but it is not always trivial to achieve right delays in order to craft a desired beam pattern. 

Sensor Delay Line (SDL) processing is another extension to the time delay processing in 

which time delays have been introduced by placing extra sensors behind each element. In this 

scheme a wide band linear array looks like a narrowband planar array  [60]. The method is 

simple to implement as only one coefficient is required for each array element. It also 

enhances the coverage by expanding the field of view of an array of antenna. Despite this, 

sensor delay line technique has some obvious disadvantages, since a considerably higher 

number of sensors would be required with significant calibration efforts. Also for the 

implementation of very short delays, the sensors are to be placed very near to each other 

putting further constraints on the proposed technique.  

To surmount the adversities in calculations of tap coefficients and determining optimum 

sampling frequency in implementing FIR type TDL structure, we have developed a wave-

number filtering based approach. The technique uses filters represented in wave-number 

domain associated with each sensor. The signal after filtering is summed by an array 

processor according to the wave-number constraint. The present technique is also simple, in 

the sense that spatial and temporal information has been mapped to only one dimension in the 

wave-number domain. Mathematical analysis and numerical simulations confirm the 

algorithm’s ability of operating over the full bandwidth of 0 to 2π. The technique has also 

been found useful in restoring the capability of cancellation of a total number of hostile 

interferers equal to M-1 for an M-length array. A detailed description of the broadband wave-

number processing right from ab initio is given in the following sections. 
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4.2 Broadband Array Processing in Wave-Number domain 
 

A signal is a time-varying quantity [61] having single or multiple frequencies and can be 

accordingly termed as narrowband or broadband. In array processing a signal is said to be 

broadband when all its frequency components not only undergo phase change but also 

experience a change in magnitude while travelling through an array of sensors, whereas a 

narrowband signal only experiences a phase shift. A broadband signal integrated over 

multiple frequencies can be represented as. 

   2j fts t e d f                        (4.1) 

Where  d f  is infinitesimal component of the frequency spectrum defined over the 

frequency range f. 

If    o od f A f f df    

Then the Eq. 4.1 can be written as  

   2j ft

o os t e A f f df                        (4.2) 

This implies that  

  2 oj f t

os t A e


                    (4.3) 

Where of is the frequency of the source signal; the signal defined thus is termed as the 

narrowband signal. Since we are concerned with the broadband signals, in this manner the 

definition of signal in Eq. 4.1 will hold true for the rest of the analysis. Let us consider an 

array of uniformly spaced M sensors, as in Figure 4.1. For a signal source impinging on the 

array from the direction  , the signal received at the 1
st 

sensor from a direction   can be 

expressed as 

     1 1 1x t s t v t                                (4.4)  

Where 1( )s t  is the signal received and  1v t  is the additive noise at the 1
st
 sensor. Similarly 

      2 1 1 2x t s t v t                                            (4.5) 
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Finally the radiation at the last sensor of the array is thus written as 

      1 1M M Mx t s t v t                      (4.6) 

Where    sinm md c          for            1 1m M                 (4.7) 

Whereas d is the distance between the adjacent antenna elements in terms of wavelength and 

c is the velocity of the incident radiation.                                 

Using the definition of  s t  Eq. 4.6 can be formulated for m
th

 element as   

        
2 mj f t

m mx t e d f v t
  




                    (4.8) 

Where  mv t  is the additive noise at the m
th

 sensor. Now    2 2 sin /mf m fd c     , but 

c f  . This implies that     2 sin 2 /mf md       or    2 sinmf mkd    , 

where k is the wave-number. Using the above defined quantities the Eq. 4.8 can be written in 

wave-number domain as  

( sin( ))( ) ( / 2 ) ( )jk ct md

m mx t e d kc v t                     (4.9) 

Where 2 /k    and 2kc f  without loss of generality  / 2d kc   can be written as  

 d k .  

 


 

d d d 

Figure 4.1: Signal impinging on an ULA from an arbitrary direction    

 



Constrained Broadband Array Processing in Wave-Number Domain 

82 
 

 

 

 

 

 

 

 Further to representation in wave-number domain, Eq. 4.9 can also be written as 

        
sinjk ct md

m mx t e d k v t





                           (4.10) 

Now if there are N broadband sources incident on the array from direction , 1,2..p p N    

as depicted in Figure 4.2, then the signal received at the 1
st
 sensor is the sum of signals from 

all the sources and can be written as. 

     1 1

1

N

p

p

x t s t v t


                  (4.11) 

Where    jkct

p ps t e d k   is broadband signal for p
th

 source as given in Eq. 4.1. Whereas 

 pd k  is infinitesimal component of the wave-number spectrum of p
th

 source at time t, and 

N is the total number of sources. Then the signal received at the m
th 

element of the array due 

to all the sources combined can be formulated as  
 

 
  

   
sin

1

p

N
jk ct md

m p m

p

x t e d k v t







                 (4.12) 

4.2.1 Wave-Number Processing  
 

 Let us consider that several broadband signals as depicted in Figure 4.2 are impinging on the 

uniform linear array of Figure 4.3. The sensors are placed at a distance of half wavelength 

defined at the midpoint of wave-number bandwidth, ko. Let there be M sensors and N 

 

Figure 4.2:  Multiple broadband sources impinging on an ULA 
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Figure 4.3: Broadband filters attached with each sensor 

broadband sources impinging on the array from several directions.  The signal developed at 

each antenna comprising signals from all sources, can be processed by inserting broadband 

wave-number filters at each sensor. Weights of these filters can be adjusted according to the 

desired spatial and temporal frequency response stated in wave-number. The algorithm we 

have developed not only crafts the spatial pattern but also gives the desired optimum response 

in wave-number, hence eliminating the need for separately finding the number of delays and 

the optimum spacing between the taps for each sensor channel as in case of conventional time 

delay beamforming. Output from each of the wave-number filters can be derived as 

( ) ( ) ( )q q qy t h t x d                                   (4.13) 

Where ( )qy t  is the output of the filter/channel of the q
th

 sensor. Using the definition 

developed in Eq. 4.12 

       
sin

1

o p

N
jkc mk d

q p q

p

x e d k v
 

  




                 (4.14) 

       
sin

1

o p

N
jkc mk d

q q p

p

y t h t e d k
 

 




                      (4.15) 

Now the cumulative output of all sensor channels can be written as 

   
1

M

q

q

z t y t


                  (4.16) 

Using the values from Eq. 4.15 

Broad Band Filter 

Broad Band Filter 

Broad Band Filter 



  



( )qy t

 


( )z t
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       
sin

1 1

o p

M N
jkc mk d

q p

q p

z t h t e d k
 

 


 

                         (4.17) 

Intuitively it can be written as  

       
sin

1 1

o p

M N
jkc mk d

q p

q p

z t h t e d k d
 

  


 

                       (4.18) 

To underpin the concepts developed above, the algorithm can be further illustrated; for 

example if we have 3 sensors and 2 sources the above expression can be reformulated as a 

vector matrix product 

     

 

 

 

 

 

 

 

 

1 2

1 2

1 2

sin sin

2 sin 2 sin 1

1 2 3

23 sin 3 sin

o o

o o

o o

jk d jk d

j k d j k djkc

j k d j k d

e e
d k

e d h t h t h t e e
d k

e e

 

 

 


   



 

 

 

 
   

        
   
  

                     (4.19) 

This can also be written as  

         

 
1 2

3 3
sin sin 1

1 1 2

o ojk qd jk qdjkc

q q

q q

d k
e d h t e h t e

d k

 


  


 

 

  
    

   
                        (4.20) 

or  

     
2 3

sin

1 1

o pjk qd jkc

q p

p q

h t e d k e d
   



 

               (4.21) 

Therefore  z t may be recast as 

( ) ( ) ( , ) ( )jkc H

oz t e d t k d k     h φA                           (4.22) 

Where 

        1 2 ...
H

Mt h t h t h t         h                   (4.23) 

       1 2 ...
T

Nd k d k d k d k     φ                (4.24) 
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and 

1 2

1 2

1 2

sin( ) sin( ) sin( )

2 sin( ) 2 sin( ) 2 sin( )

sin( ) sin( ) sin( )

( , ) .....

o o o N

o o o N

o o o N

jk d jk d jk d

j k d j k d j k d

o

jMk d jMk d jMk d

e e e

k e e e

e e e

  

  

  



  

  

  

 
 

  
 
 

A              (4.25) 

4.2.2 Constraint Formulation  
 

It is required that the array processor should optimally respond to the signal coming from a 

desired direction and discriminate against the interferers coming from the other directions. In 

other words, for the look direction signal the array processor comprised of all the wave-

number filters should behave like a single optimum filter whose response is known a priori 

and which should present nulls to hostile interferers originating from rest of the directions. If 

we let look direction to be perpendicular to the line of sensors the constraint can be depicted 

as in Figure 4.4. In case the look direction is other than the broadside to the line of sensors, 

the array can be steered to the desired source; this will be explained in a separate section on 

steering of wave-number filters. 

Equivalently the constraint formulation can be expressed in mathematical form as below. 

     ˆ
o oz t h t s d                    (4.26) 

Where  ẑ t  is the optimum output of the array processor for look direction signal  os  . For 

the broadside incidence, it is required that all wave-number filters associated with each of the 

sensor, should implement the above response hence; the optimum output can be expressed as  

     
1

ˆ
M

p o

p

z t h t s d  


                  (4.27) 

     ˆ T

oz t t s d   c h                 (4.28) 

Optimum Broadband Filter ho 



  



 ẑ t  

Figure 4.4: Pictorial depiction of broadband constraint for broadside look direction incidence 
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where  1 1 1... 1T c                 (4.29) 

So the constraint in its most basic form will appear as   

   T

ot h t   c h
                  

(4.30) 

4.2.3 Solution for the Optimum Weights 
 

Once the constraint has been realised we can solve for the optimum weights for the array 

processor to implement that constraint. The optimum weights can be achieved by minimising 

the average output power while maintaining the look direction frequency response. The total 

output of the array already derived can be reproduced as follows 

   
1

M

q

q

z t y t


                  (4.31) 

Expanding the above relationship as the sum of individual filters attached to each sensor     

     
1

M

q p

q

z t h t x d  


                 (4.32) 

The above expression can also be realised as the vector product as below. 

     
H

z t t d   h x                                         (4.33)                                                                         

Where          1 2 3 ...
T

Mx x x x       x  and  

         1 2 3 ...
H

Mh h h h       h  

In wave-number spectrum  z t  can be defined as 

   ˆ
jkctz t z k e dk                    (4.34) 

Using the concepts in Eq. 4.33 and Eq. 4.34 the output of array processor in wave-number 

representation can be written as below 

     Hz k k k h x                  (4.35) 
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Where  kh  is the broadband filter stated in wave-number domain, therefore Eq. 4.33 can be 

written as 

      jkctz t k k e dk h x                 (4.36) 

So the mean output power of the wave-number domain array processor is 

          1 22

1 2 1 1 2 2

jk ct k ctH HE z t E dk dk k k k k e       h x x h             (4.37) 

Please note that the auto correlation is only defined at 1 2( )k k  so that 

       1 2 1 2

HE k k k k k    x x                 (4.38) 

where  

( ) [ ( ) ] ( )T

vk E k k   A A                 (4.39) 

Where        ,T

ok k k k x s vA . The      H

v k E k k    v v  is noise while 

     
H

k E k k 
 

 s s  is a diagonal matrix of source wave-number spectra. Where 

       1 2 ...
T

Mk v k v k v k   v and        1 2 ...
T

Mk s k s k s k   s . A single element 

of the matrix A can be read as
sin( )

, ( , ) pjkpq

p q oA k e





 . 

Consequently the Eq. 4.37 can be written as  

     2( ) HE z t dk k k k     h h                 (4.40) 

In wave-number domain the constraint Eq. of 4.30 takes the form as below 

  ( )T

ok h kc h                  (4.41) 

  ( ) 0T

ok - h k c h                  (4.42) 

Thus to minimise output power of Eq. 4.40  subject to the constraint as in 4.42 the cost 

function, using Lagrange multipliers can be formulated as  

       2 T

oJ E z t k dk h k k         c h                           (4.43) 
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           H T

oJ dk k k k k dk h k k      h h c h              (4.44) 

Differentiating above Eq. 4.44 with respect to  kh   and putting it equal to zero will give the 

optimum weights in wave-number domain leading to 

     1k k kh c                             (4.45) 

But from Eq. 4.39     T

oh k k c h , using Eq. 4.44, this condition leads to 

     1T

oh k k k c c                  (4.46) 

or  

     
1

1T

ok k h k


   c c                 (4.47) 

Putting these values back in Eq. 4.44, the optimum filter in wave-number domain can be 

derived as 

       
1

1 1

0

T

ok k k h k


     h c c c               (4.48) 

Inserting the value of optimum filter in the minimization equation above, the output of the 

optimum processor comes out to be 

       
1

2 1H T

o oE z t dk k k k


       h h c c        

or  

122 1[ ( )] ( ) ( )T

oE z t dk k k


    h c c                               (4.49) 

The optimum filter in Eq. 4.48 can be iteratively approximated using the constrained natural 

gradient algorithm in wave-number domain. By following the similar arithmetic as adopted 

for Eq. 3.28, it can be shown that optimum weight is given as 

       1

1 [ ]n nk k k k 

   P I G h h b                (4.50) 

Where        
1

1 1T

ok k k h k


    G Gb c c c  and 
 

 

1

1

T

T

k

k





 
  
 

G
P I

G

cc

c c  
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The Riemannian metric G in this case can be written as 

     1 Hk k k    G I h h . 

4.2.4 Numerical Simulations 
 

Let there be 8 sensor and 3 broadband sources impinging on an array of Figure 4.3. As 

depicted, let each sensor is equipped with a wave-number based broadband filter. The signal 

after filtering operation is summed to give optimum response, while maintaining the 

constraint as defined by Eq. 4.40. 

Consider three sources incident upon the array having wave number spectra given 

respectively as 

 
 

0
0 2

0 0 21 2 sin 2

A
k

a a k k
 

  
                (4.51) 

 
 

1
1 2

1 11 2 cos

A
k

a a k
 

 
                (4.52) 

 
 

2
2 2

2 2 21 2 cos

A
k

a a k k
 

  
                (4.53) 

Where let      

0 1 21, 0.15, 0.15A A A    

0 1 20.8, 0.75, 0.45a a a  
 

Let k lie in the range  
2(0 2 ), / 4k k       
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Figure 4.5: Normalised desired response in the look direction 

Here we have used normalised values of the frequency and c, such that k lies in the range (0, 

2π). Let the desired signal 0 ( )k be the incident broadside at an angle o0   with respect to 

the line perpendicular to the line of sensors. Other sources 1( )k  and 2 ( )k  are at angles 

29
o
 and -42

o
 respectively and are the interferers or unwanted signals. These signals need to be 

suppressed while maintaining the desired frequency response for the signal source 0 ( )k .Let 

the desired filter response in wave number domain, known a priori, shown in Figure 4.5 is 

given as 

 
 

1

1 e

opt

opt jk
h k

a



                (4.54) 

Where 0.9opta   and (0 2 )k   . For N sources and M sensors, the optimum wave number 

filters in Eq. 4.48 can be reproduced here for further elaboration, thus 

       
1

1 1

0

T

ok k k h k


     h c c c  

Where  0 kh  is the vector of wave number filters attached to the sensors. 
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Figure 4.6: Normalised beam pattern of the broadband array 

 

         0 1 2[ ]H

p Mk h k h k h k h kh              (4.55) 

Here  1h k  is the wave number response of the filter attached to sensor 1,  2h k  is attached 

to sensor 2, etc. The matrix  k  here is the cumulative correlation matrix corresponding to 

all signal sources. To materialise this correlation matrix the above expressions can be re-

stated in the following manner: Matrix A can also be written as row vector of steering vectors 

corresponding to the sources from different directions as 

       1 2, , , ,o o o p o Nk k k k    
 

A a a a a              (4.56) 

Where any  ,o pk a  is Mx1 steering or direction vector corresponding to source at θp and is 

given by 

  sin 2 sin sin sin
, o p o p o p o p

T
jk d j k d jqk d jMk d

o p
k e e e e

   


   
   a           (4.57) 
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Figure 4.7 Broadside beam pattern gain in dB with interferers at 29
o
 and -42

o
 

d is the fixed uniform distance between sensors defined on the midpoint 
o

k of the array 

bandwidth represented in wave-number domain. Using this definition of A, we can derive an 

expression for the correlations of all signal sources. 

       *

1

, ,
N

p o p o p

p

k k k k 


  a a                                                        (4.58) 

The normalised desired response outlined in Eq. 4.54, has been plotted against wave-number 

in Figure 4.6. As the desired response is known or to set a priori, so we can force any 

response and see whether our algorithm behaves accordingly or not. We will explain latter 

how this response can be manoeuvred to give a more general response like broadband MVDR 

[38]. Figure 4.6 is the normalised broadband beam pattern plotted against wave-numbers in 

the range of (0 2 )k   and direction of arrival in the range of -90
o
 to 90

o
.  As constrained 

by the desired response, the array pattern is exactly in conformance with the pattern given in 

Figure 4.5. Maxima can be clearly seen at the desired angle of arrival and at the desired 

wave-number as specified earlier. Frequency nulls/minima deemed necessary are evident 

from the normalised plot. Since the interferers also constitute the same bandwidth, though 

slightly shifted by k2 so they must be suppressed through the spatial constraints imposed on 

the array output. However the type of plot in Figure 4.6 is unable to give spatial description  
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Figure 4.8: 7 Broadband interferers rejected by 8 element broadband array, interferers are 

present at 19
o
 ,29

o
 ,43

 o
 ,49

o
 ,-17

o
 ,-30

o
 and -43

o 

of interferers. A beam pattern plotted in dB will reveal more information as to how the 

interferers are treated by the algorithm. 

Figure 4.7 is the array beam pattern plotted in dB. Clearly the nulls can be seen at the position 

of broadband interferers while maintaining the desired frequency response at 0  . The 

interferers are suppressed for the whole frequency range of (0 2 )k    in the wave-number 

domain. It may be noted that the array response at the null positions of broadband interferers 

at 29
o
 and -42

o 
is 100 dB below than the main lobe of the desired filter response from all 

wave-numbers. The similar paradigm of inserting deeper nulls at the spatial position of the 

stronger or the one possessing higher interference-to-noise ratio is observed here as well.  

The wave-number domain filtering also imparts a very critical improvement in the array 

processing paradigm by quantitatively enhancing the number of interferes to be cancelled. 

The algorithm is capable of rejecting M-1 number of interferers as opposed to M-2 capability 

of TDL based arrays with space-time processing. This 1 degree of improvement can be used 

for placing an additional constraint e.g. side-lobe level etc.  Figure 4.8 demonstrates rejection 

of 7 broadband interferers by an 8 element uniform linear array. The nulls, on average are 

100 dB below than the main response.  It may be noted that the power of nulls can be 

controlled specifying further constraints on the solution. The trade-off is that we lose extra 

degrees of freedom. Also it is only possible if the position of interferers is known a priori. 
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Figure 4.9: The constant beam-width main-lobe response for wave-number based 

beamforming 

4.3 Constant Main-lobe Response 
 

Beamformer with constant main lobe response over the frequency of interest is desirable in 

many applications such as in underwater acoustics, ultrasonic acoustic imaging and 

communications etc [13, 58]. The arrays designed at a fixed middle frequency tend to expand 

main-lobe at lower frequencies and contract at higher frequencies. Several solutions have 

been provided to solve the issue. But the proposed solutions are either constrained by the 

fractional bandwidth or sacrifice extra degree of freedom to achieve the said objectives. With 

the wave-number approach we can not only attain this without sacrificing the extra degrees of 

freedom but can also maintain the condition of constant main lobe for entire range of 

bandwidth. The optimum response as given by Eq. 4.48 can be constrained to produce 

constant main-lobe response over the entire bandwidth by changing required optimum 

response equal to 1 over the entire bandwidth. The normalised response with constant beam-

width is shown in Figure 4.9. The order of the response vector is equal to order of the wave-

number filter i.e. for each selection/column of wave-number filters the cumulative response 

should be 1 for the signal source from the direction of interest. This can be realised as 

multiple narrowband filters tuned at particular wave-number (k), each implementing the 

spatial constraint as well. The dB beam pattern for this case is shown in Figure 4.10.  
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Figure 4.10: The constant beam-width main-lobe response in dB, with interferers at 29
o
 and -

30
o 

A constant beam response of 0 dB for all wave-numbers is evident along with nulls towards 

the direction of two interferers at 29
o
 and -30

o
. 

4.4 Narrowband Realisation 
 

The wave-number domain narrowband algorithm can be derived as a special case by placing 

the required response in Eq. 4.53 equal to unity or some scalar value for a particular wave-

number k. For the narrowband case the frequency of operation is either defined by the 

physical separation of sensors or the separation between elements is set according to the 

frequency of operation. Figure 4.11 and 4.12 show the dB and normalised pattern of the 

narrowband array. Maxima in the direction of desired signal of interest and two nulls can be 

seen at the designated places of 29
o
 and -42

o
.
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Figure 4.11: Beam pattern gain in dB for narrowband signals at 0
o
 with interferers at 29

o
 and 

-42
o 
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Figure 4.12: Narrowband normalised beam pattern in the desired look direction at 0
o
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4.5 Steering of the wave-number filters 
 

Beam steering represents the paradigm of changing the direction of the main lobe of a beam  

pattern towards the direction of interest [24, 29]. The same phenomenon is used for null 

steering if the position of the jammer/interferer is known a priori. In radio systems, beam 

steering may be accomplished by mechanically or electronically switching antenna elements 

or by changing the relative phases of the RF signals driving the elements. If the system is 

narrowband, relationship between the steered response and the original one is simple and 

directly related; the former is a circularly shifted version of the later i.e. the side lobe shifted 

out from one side is simply shifted back from the other side. But steering is a daunting task 

when it comes to broadband. It was observed that for broadband, the case is not simple and 

there is no one-to-one correspondence between the original and steered beam response [30]. 

Beam steering is embedded in our wave-number based technique, thus the beam pattern does 

not undergo side lobe deterioration after the array response is steered towards a particular 

direction. Since the whole filter is steered towards the direction of interest, rather than the 

individual elements of the TDL/FIR filters, so the side-lobe one-to-one correspondence is 

conserved. The phenomenon is underpinned by the following mathematical realisation and 

MATLAB simulations based upon this. Eq. 4.48 can be rearranged to present embedded 

capability of steering. Replacing constraint vector c by ( , )o pk a  the optimum weight 

formula becomes 

             
1

1 1

0 , , ,
T

o p o p o p ok k k k k k h k  


  
  

 h a a a            (4.59) 

In this way the filter represented by Eq. 4.59 produces optimum response in the desired 

direction governed by the steering vector ( , )o pk a . Figure 4.13 demonstrates the steering of 

the desired response towards an angle -30
o
 while Figure 4.14 is the original un-steered beam 

pattern towards the direction perpendicular to the line of sensors. The steered response is 

clearly able to conserve the side lobe symmetry and is further confirmed by steering the 

response at an angle of +30
o
 as depicted in Figure 4.15.

 

 

 

http://en.wikipedia.org/wiki/Main_lobe
http://en.wikipedia.org/wiki/Radiation_pattern
http://en.wikipedia.org/wiki/Radiation_pattern
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Switching
http://en.wikipedia.org/wiki/Antenna_(electronics)
http://en.wikipedia.org/wiki/Phased_array
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Figure 4.13: Beam pattern steered towards -30
o 
with interferer at 30

o
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Figure 4.14: Beam pattern at 0
o 
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Figure 4.15: Beam pattern steered towards 30
o
 with interferer at -30

o 

4.6 Signal conditioning prior to wave-number processing 

  
In the simulations we used broadband sources with wave-number spectrum. However in 

practice the signal data received at the sensor array is required to be converted into wave-

number domain before it is processed by the broadband wave-number filters. Thus signals are 

first transformed into wave-number domain through Scaled Fourier Transform and then 

processed to incorporate the spatial information of the array geometry. 

For instance the signal in Eq. 4.1 received at the m
th

 sensor can be defined in wave-number as  

   
2 jkct

m ms k s t e dt
c

               

or 

    /2

2
m m f kcs k S f

c



                 (4.60) 

Where      2j ftS f s t e dt   is the FT of the received signal. Since beamforming is same as  
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the Spatial Fourier Transform hence taking the Spatial Transform of the signal after 

conversion to wave-number would give us the data vector  kx  in wave-number. Where the 

Spatial Fourier Transform is represented by the operator matrix A given in Eq. 4.25. The 

process flow diagram for conversion of data vector  tx  to  kx  before further processing is 

shown in the Figure 4.16.  

In a real implementation, the FT would be replaced by a DFT processor. Whereby some 

techniques such as overlap-add or overlap-save [62] may be required to compensate for 

approximation effects when going from FT to DFT. 

Since the hardware implementation is out of the scope of this thesis hence supplementary 

implementation details are left for future as natural extension to the current research.
 

4.6 Conclusion  
 

The wave-number filtering technique developed in this chapter eliminates the need of the 

calculation of tap spacing or determination of the optimum sampling, in deriving the temporal 

information from the signal, as the algorithm directly gives the coefficients of the wave-

number domain filters. The procedure is simple in the sense that spatial and temporal 

information has been mapped to only one dimension of wave-number domain. Along with 

operating over the entire bandwidth, the technique has been found useful in restoring the 

capability of cancellation of total number of hostile interferers equal to M-1 for array of M 

sensors.  

Despite the fact that the elements in uniform linear array are arranged at half wave length 

defined at the midpoint of the wave-number spectrum the algorithm prevents from causing 

main lobe to be contracted at the higher frequencies and expanded at lower frequencies. The 

power of interferer and null power is inversely proportional to each other, as more powerful 

interferers get deeper nulls. 

Scaled Fourier Transform  tx   kx  Spatial Fourier Transform 

Figure 4.16: Signal conditioning prior to wave-number processing 
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Beam steering is embedded in the scenario and the beam pattern does not undergo the side 

lobe deterioration as in the case of conventional TDL. Since the whole filter is steered 

towards the direction of interest, rather than the individual elements of the TDL/FIR filters, 

so the side-lobe one-to-one correspondence remains conserved. 
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Chapter 5 

Conclusions and Future Work 

Nothing is invented and perfected at the same time 

- John Ray (November 29, 1627 – January 17, 1705)   

 

The aim of this research has been to develop novel constrained adaptive array algorithms 

with swift convergence characteristics. The aim has been achieved through the development 

of the natural gradient based adaptive algorithms for narrowband and broadband array 

processing, detailed in Chapter 3 and Chapter 4. The choice of natural gradient algorithm was 

made to exploit its capability in operating on the optimisation surface of the error function.  

In order to achieve these objectives this thesis has reviewed basic concepts involved in arrays 

and the constrained adaptive processing. Important concepts of antennas and some of the 

primary solutions for narrowband and broadband adaptive array processing have also been 

examined in detail. Since there is a plethora of adaptive algorithms in constrained adaptive 

processing domain so it has not been possible to review all of them, however, pioneering 

techniques in the subject area have been reviewed with emphasis on LMS based solutions for 

LCMV and MVDR.  

This research has lead to the development of following constrained algorithms based upon 

natural gradient adaptation techniques. 

 Constrained Adaptive Natural Gradient Algorithm (CANA) 

 Constrained Adaptive Natural Gradient Algorithm with Non Adaptive Metric 

(CANA-NAM) 

 Adaptive Step-size Algorithm 

 Constrained Broadband Array Processing in Wave-Number Domain 

Part of the research work has been published in a number of international conferences and is 

being prepared for submission in international journals and transactions. The list of  

publications based upon some parts of this thesis is given below; 
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 Ijteba-ul-Hasnain Shah and  Tariq S Durrani, Constrained Adaptive Natural Gradient 

Algorithm (Cana) For Adaptive Array Processing, 17th European Signal Processing 

Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009. 

 

 Ijteba-ul-Hasnain Shah and Tariq S Durrani, Broadband Constrained Natural Gradient 

Based Adaptive Processing, 2009 IEEE Workshop on Statistical Signal Processing, 

Cardiff, Wales ,UK, Aug 31, 2009 - Sep 03, 2009.  

 

 Ijteba-ul-Hasnain Shah and Tariq S Durrani, Constrained Natural Gradient Algorithm 

with Non Adaptive Metric, IEEE International Symposium on Signal Processing and 

Information  Technology, December 15-18, 2010 - Luxor - Egypt 

 

This thesis is a research monograph on natural gradient based constrained optimisation.  

Constrained optimisation typically involves minimization of a cost function surface, generally 

an error surface. The realistic minimization of these cost function problems is not trivial and 

involves manifolds with non linear optimisation surfaces. Working with such search space that 

carries the nonlinear manifold introduces certain challenges in the algorithm implementation. 

In the classic search methods, iterative algorithms rely heavily on approximating first and 

second order derivatives of the cost function in Euclidean spaces.  A new iteration is 

generated by adding an update increment to the previous update and the process is repeated 

till a steady state is reached. In order to define algorithms on manifolds, these operations 

must be translated into differential geometry.  Natural gradient modifies the slope according 

to the actual structure of the optimisation space, thus provides a better approximation to the 

steepest descent direction.  

While parameter estimation is central to several scientific and engineering [3] applications, the 

most popular, perhaps due to its simplicity is the gradient descent technique.  Although its 

ability to converge quickly and efficiently is limited by certain factors, yet it has numerous 

applications in signal processing and control applications.  The technique gives optimum 

performance when  

 The cost function has single minimum and 

 The gradients of the cost function are isotropic in magnitude with respect to any 

direction away from the minimum. 
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On the other hand the Riemannian metric structure is observed in optimisation surfaces of 

applications in signal processing, mechanics and control theory. In such constrained problems, 

the super-linear convergence speed of the classical conjugate gradient and Newton algorithms 

is lost because these techniques ignore the structure of the optimisation surface.  

The slow convergence of the conventional gradient based approaches is because they are 

unable to adapt quickly when the slope of the cost function varies widely for the small changes 

in the adjusted parameters.  But if an optimisation scheme exploits the given structure of the 

underlying space then it does not encounter such phenomenon and is deemed successful with 

better convergence and accuracy. 

Natural gradient modifies the search direction according to the Riemannian structure of the 

parameter space. Also when used with statistically optimum cost functions, natural gradient 

overcomes many of the limitations of the Newton’s method, which assumes that cost function 

being minimized is approximately quadratic. The major drawback of natural gradient is 

considered to be the knowledge required to determine the Riemannian structure of the 

parameter space, although it can be quite simple for certain applications as observed in 

CANA-NAM case. Also since many signal and array processing tasks have been firmly 

defined over years of research, and most of the optimisation surfaces are either known or can 

be approximated in certain cases hence the Riemannian metric can be approximated to 

formulate natural gradient algorithm.  

Thus based on natural gradient several optimisation algorithms addressing the issues of 

narrow as well as broadband beamforming have been developed in this thesis. 

Complemented with a fixed or adaptive processor, antenna array can discriminate between 

wanted and unwanted signals in the presence of noise. The constrained adaptive processor 

optimises the array response according to defined set of spatial constraints such that the 

output contains the minimal contribution of noise and signals originating from undesired 

directions. The essence of an adaptive processor is the algorithm comprising of logical finite 

set of mathematical operations.  There are quite a number of adaptive algorithms available for 

determining the weight vector but most commonly they require desired signal a priori, which 

is rarely known. However if we know the Direction of  Arrival (DoA) of the desired signal 

and the desired frequency response we can impose some constraints on the array coefficients 

to adaptively minimize the array output in all directions but the direction of arrival of the 

desired signal. The only a priori information the algorithm requires is the direction and 
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frequency band of interest. Consequently, the algorithm minimizes total noise power at the 

array output while maintaining a chosen frequency response in the “look direction”. This 

thesis has presented several techniques in order to address the constrained array problem.  

Constrained Adaptive Natural Gradient Algorithm (CANA) developed in this thesis is a novel 

technique for constrained adaptive processing based upon the natural gradient. This technique 

provides more uniform performance than those based upon ordinary gradients, yet simple to 

implement. Along with the ability of natural gradient algorithm to follow the exact surface of 

the optimisation space, self correcting feature of constrained optimisation makes the algorithm 

rapidly converge to steady optimum state for variety of statistically optimum functions. So for 

a reasonable range of step size the drawback of ordinary gradient of escaping from the cost 

function surface can be avoided, still maintaining the improved convergence properties.  

Many applications such as Thousand Element Array (THEA) [63] and similar processes 

involving multi functions require the number of elements to be very large. The length of 

weight vector w  is directly propotional to the number of elements for narrowband processing 

and is MxL for broadband ,whereas M is the number of sensors and L is the order of the filter 

attached with each sensor. As explained and derived in Chapter 3, Section 3.5, Riemannian 

metric is a function of  weight vector and is updated at each iteration with the update in w, thus 

is the major contributor in algorithm computational complexity.  

Hence in these scenarios it would be more appropriate to have a non adaptive Riemannian 

metric inorder to reduce the number of arithmatic operations at each iteration. On the similar 

note, we may not be able to find a single non adaptive metric suitable for all arrays, as every 

antenna array itself exhibits a Riemannian manifold. Due to intrinsic curvature information of 

an array manifold , the non adaptive metric must be  unique. So it would be more appropriate 

to have an adaptive version of the Riemannian metric to fully exploit the geometric properties 

of the objective function. 

CANA-NAM  given in Section 3.5 is a critical extension to the previously developed 

Constrained Adaptive Natural Gradient Algorithm (CANA), by incorporating a non adaptive 

metric in place of adaptive Riemannian metric. Inclusion of this fixed metric significantly 

reduces the complexity of previously developed technique. Complemented with constrained 

optimisation techniques the algorithm is capable of rapidly adjusting the response of an array 

of sensors to a signal coming from direction of interest. Numerical simulations confirm its 
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suitability for adaptive beamforming, adaptive null steering and multiple interference 

rejection.  

Further, to aviod or at least minimise the misadjustment or residual error due to fixed step size, 

a variable step size scheme has also been developed in Chapter 3, Section 3.6. This adaptive or 

variable step size algorithm is found quicker than the fixed step algorithm. Thus if we are able 

to approximate the Riemannian metric as a fixed matrix than the technique can further be 

improved through adaptive stepsize. 

As maintained previously, there are mainly two techniques of broadband array processing, 

frequency based and time based techniques. The time based adaptive array processing 

incorporates Taped Delay Line (TDL) filter whose order is directly proportional to the 

fractional bandwidth of the signal. The frequency domain broadband beamforming is done by 

taking Fast Fourier Transform (FFT) of each sensor signal and then each frequency bin is 

processed by narrowband independent processor. Several offshoots like Frequency Domain 

Frequency Independent Beamforming (FDFIB), Time Domain Frequency Independent Beam 

forming (TDFIB) of these main techniques have been reported. Both of these techniques have 

plus and minuses which make them unsuitable at times. FFT approach is constrained by its 

inherent time delay, while time domain is capped by the order of the TDL filter directly 

proportional to the fractional bandwidth. 

Another issue with time delay processing is that it loses at least one degree of freedom in 

mitigating the number of hostile interferers. It has been reported that TDL based broadband 

beam forming can cancel a maximum of M-2 broadband interferers [31]. Although TDL 

structure is similar to an FIR and the tap spacing/temporal sampling observes the Nyquist 

criteria, but it is not always trivial to achieve right delays in order to craft a desired radiation 

pattern. 

Sensor Delay Line (SDL) processing is another extension to the time delay processing in 

which time delays have been materialised by putting extra sensors behind each element. In 

this scheme a wide band linear array looks like a narrow band planar array.  The method is 

simple to implement as only one coefficient is required for each array element. It also 

enhances the coverage by expanding field of view of an array of antenna. Despite this, sensor 

delay line technique has some obvious disadvantages, since a considerably higher number of 

sensors with significant calibration efforts are required. Also for the very short delays, the 

sensors are to be placed very closely putting further constraints on the proposed technique.  
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To address these critical issues and lessen the adversities in calculation of tap coefficients and 

determination of optimum sampling frequency in implementing FIR type TDL structure, we 

have developed a wave-number filtering based approach. The technique, given in Chapter 4, 

uses wave-number domain filters behind each sensor. The signal after filtering is summed by 

an array processor according to the wave-number constraint. The present technique is also 

simple in the sense that spatial and temporal information has been mapped to only one 

dimension of wave-number domain. Mathematical analysis and numerical simulations 

confirm the algorithm’s ability of operating over the full bandwidth of 0 to 2π. The technique 

has been found useful in restoring the capability of cancellation of total number of hostile 

interferers equal to M-1.  

This technique eliminates the need of the calculation of tap spacing or determination of the 

optimum sampling, in deriving the temporal information from the signal, as the algorithm 

directly gives the coefficients of the wave-number domain filters. The procedure is simple in 

the sense that spatial and temporal information has been mapped to only one dimension of 

wave-number domain.  

The issue of array response deterioration with the change in bandwidth/frequency is very 

critical. Antenna arrays have the tendency of forming wider lobes at lower frequencies, while 

narrower lobes are formed at higher frequencies. This is due to the fact that arrays are 

generally of a fixed structure, and are defined at a single wavelength for operating in both 

narrowband and wideband scenario. Despite the fact that the elements in uniform linear array 

are arranged at half wave length (defined at the midpoint of the wave-number spectrum), the 

algorithm developed in Chapter 4 prevents the main lobe from contracting at the higher 

frequencies and expanding at lower frequencies.  

Beam steering is embedded in the scenario and steering the array response from one angle to 

other does not cause non-uniform formulation of side lobes as this happens in the case of 

TDL. Since the whole filter is steered towards the direction of interest, rather than the 

individual elements of the TDL/FIR filters, so the side-lobe one-to-one correspondence 

remains conserved. 

Thus through these techniques this thesis has been able to solve the constrained adaptive 

array problem with demonstrated improved convergence, accuracy and simplicity. The 

numerical simulations and mathematical results warrant the techniques’ usefulness for range 

of applications in commercial as well as the defence. Besides, the thesis gives ample thought 
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to the formulation of the Riemannian metric for a certain problem, as this is the main 

component on which whole concept of the natural gradient is build upon. 

5.1 Future work 
 

The techniques developed in this thesis are computationally efficient in addition to their good 

convergence characteristics. Both of these properties make the algorithms very suitable for 

the real time implementation with DSP or FPGA based platforms.  

The CANA-NAM algorithm highly depends upon prior knoweldge of the Riemannian metric 

for approximating the non adaptive metric. Thus a hybrid approach can be followed in which 

for some initial iterations the CANA algorithm operates in normal mode and after 

approximating the Riemannian metric shifts to the non adaptive metric mode. The formulation 

of this hybrid approach can be carried as a future work. 

In this thesis all the analysis was done on the basis of linear array of sensors. However 

practically there are a number of geometric arrangements possible for antenna arrays, so the 

analysis needs to be extended incorporating different geometries. An interesting application 

in this regard would be to use the natural algorithms for conformal arrays [64].  

The work can be potentially expanded to a number of scenarios incorporating different types 

of constraint. For example there are several types of soft and hard constraints that can be 

imposed to formulate the natural gradient constrained adaptive techniques. These constraints 

are  

 Correlation Constraint 

 Eigen Vector Constraint 

 Derivative Constraints 

 SRV Constraints 

 Norm Constraints etc. 

 

We also know that the convergence characteristics of gradient based techniques heavily 

depend upon the eigenvalue spread of the input correlation matrix. So it would be useful to 

formulate and analyse constrained natural gradient in the eigenvalue/eigenvector domain.   
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Most of the time we take the “Far Field” assumption such that a wave impinging on an 

antenna array is considered as a plane wave. How the algorithm will be transformed if this 

assumption is no longer valid? The situation can arise where non-identical sensors or devices’ 

network such as Body Area Networks [65] where all the equipment; mobile phone, IPod, 

laptop etc are required to be connected with each other, the far field assumption is invalid. 

Also if we are using multiple devices in closets such as cars and boats we will encounter the 

near field phenomenon. Thus the current work needs to be extended to incorporate near field 

assumptions.   

5.1.1 Multipath Problem 
 

The current research can be extended to multipath problem especially if the algorithms are to 

be used for the urban communications where there is an abundance of the delayed replicas of 

the signals as well as interfering sources. For example, we consider the Linearly Constrained 

Minimum Variance (LCMV) beamformer. We have seen that in an LCMV problem where 

output power   H
w wR   is minimised subject to 

T c w f where R is the covariance matrix of 

observed array data c is the constraint vector/matrix and f is the response vector or set of 

constraints. The constraint will ensure that beamformer will have the desired response set out 

by the constraint equation. We have observed that if the interferers are uncorrelated then the 

minimization will only suppress them, but if there are interferences which are correlated or 

the delayed replicas of the desired signal itself then the conventional minimization approach 

will either cancel part of the signal or can even result in complete cancellation of the desired 

signal. The wave-number broadband solution with multiple beams, developed in Chapter 4 

can be extended to cope with the multipath problem. 

 5.1.2 Cognitive Radio 
 

There are number of open research problems in cognitive radio which can be solved through 

the help of the techniques developed in this thesis. For example the issue of power control in 

cognitive radios is very critical. The power control problem in cognitive radios can be 

formulated as [66] 

“Make the spectrum holes available for employment by secondary users efficiently, subject to 

the constraint that the received power in each spectrum hole does not exceed a prescribed 

limit.” 
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Once the issues of defining the criterion of how to decide when to put the power constraint on 

the second user willing to use the available empty hole and issues such as the first user 

having to decide what would be the power level of the second user, multi beam narrowband 

solution can be used to serve the purpose.  In case where the users are at different frequencies 

then broadband constrained wave-number techniques can be used to implement cognitive 

power control. In this way the technique can permit, two way controls 

 Direction of arrival power control 

 Frequency power control 

We can also define primary users, secondary users, tertiary users and their power level 

through adjusting the optimum response matrix, whose columns are the broadband response 

vectors with respect to each user.  

5.1.3 GPS Interference Cancellation  
 

In GPS applications generally the signal is very weak, and can be easily interfered or 

jammed. We have observed that constrained broadband array processing in wave-number 

domain can   suppress the jamming not only in the wave-number/temporal domain, but also 

in the spatial domain. Therefore the algorithm can be applied for jamming mitigation in 

GPS.  For this we need to simulate space-time array GPS data with high fidelity and the 

software GPS receiver. Therefore a focused research can be initiated which will mainly 

present a simulation method for space-time GPS data, as well as the simulation of some 

typical kinds of jammers. The wave-number domain algorithms developed in this thesis can 

then be applied to achieve the required interference free communication.
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