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ABSTRACT

This thesis concerns the analysis of digital texture images, using techniques from

mathematical morphology and regression modelling for the classification of tex-

ture images. It investigates the use of granulometric moments, arising from the

morphological pattern spectrum, as texture descriptors to predict evolution time

or class label of texture images which evolve over time or follow an intrinsic or-

dering of textures. A cubic polynomial regression is used to model each of several

granulometric moments as a function of time or class. These models are combined

in a novel way and used to predict time or class.

The methodology was developed on synthetic images of evolving textures gen-

erated for the purpose, and then applied to classify a sequence of images of corrod-

ing metal to a point on an evolution time scale. Performance of the new regression

approach is compared to that of several well established classifiers, namely lin-

ear discriminant analysis, neural networks and support vector machines (SVMs).

The method was also applied to images of Indian black tea granules, which are

ordered according to granule size. Better classification was achieved for both sets

of images compared to previously published results for these images.

The performance of grey level co-occurrence matrix (GLCM) features from

the synthetic images and both sets of real images was compared to that of gran-

ulometric moments, and it was found that granulometric moments provide much

improved classification compared to GLCM features for such shape-based tex-

ture images. The performance of wavelet-based features from the Indian black

tea images was also evaluated and was poorer than expected.

SVMs were generally found to be superior to the other classifiers.

The later part of this thesis concerns classifying hyperspectral images of Chi-

nese teas. Several methods were compared for selection of appropriate spectral

bands from these images. Principal component analysis and entropy proved to be

the best band selection criteria in this application. GLCM features, wavelet-based

features and wavelet-based GLCM features outperformed granulometric moments

computed from the same set of bands. Calculating texture features from an op-

timum set of spectral bands gave better classification performance compared to

the use of RGB (red, green and blue) or HSV (hue, saturation and value) colour

representations or grey scale versions of the images.



Overview

Image processing is a multi-disciplinary research area, with contributions from

engineers, computer scientists and statisticians. Digital image analysis has many

applications, for example automating cell recognition and counting in microscope

images, tracking objects in radar images for military applications, or reducing

noise in satellite images before classifying areas on the ground into different types

of land use. Digital images are represented as an array of numbers, each repre-

senting black or white (in a binary image), a shade of grey (in a grey scale image),

or a multivariate measurement (for a colour or multi-sensor image).

In this project we investigate the use of statistics and mathematical morphol-

ogy for classifying shape-based texture images. Mathematical morphology is a

type of set theory, involving the interaction of specified test sets or structuring

elements with a larger set. The result is another set. Applying different test sets

to an image has different effects, useful for different purposes. These methods

may be applied to either black and white or grey scale images.

We use morphological granulometries based on a series of openings at different

scales, which produce a statistical probability distribution. The moments of this

distribution provide a summary of texture information present in the image. Ap-

plying this to the foreground of an image provides information on shape and size

of objects present, while applying it to the image background yields information

on the spacing of the objects.

Most approaches to texture classification consider texture classes that have no

intrinsic ordering, e.g. grass, wood, ceramic. In this work we are concerned with

classification of a texture image to a point on an ordered scale of texture, using

textures which evolve over time or follow an intrinsic ordering. In some texture

analysis applications, such as monitoring of the degree of corrosion of machine

parts, knowledge of the point reached on a time scale from no corrosion to severe

corrosion is a vital aspect of industrial technology monitoring, related to safety

issues as well as functionality (Choi and Kim (2005)). It is important to be able

to measure the severity of corrosion as this can cause component weakness and

potentially catastrophic failure.

The granulometric moments can be used to decide what type of texture an

image contains, using statistical classification procedures. Gray et al. (2006),

Gray et al. (2005), McKenzie (2004) and McKenzie et al. (2003) have shown

the usefulness of this approach, especially when small numbers of images are

available, and it has been implemented to enable classification of an image to a

point in time when the texture can be considered as an evolving process.

i



A statistical approach to image texture classification is proposed here which

uses polynomial regression. We model each texture feature as a function of lapsed

evolution time or class label directly, using training images for which both the

evolution parameters and the time state or class label are known. Polynomial

regression models (one for each moment) are built using average moments from

training images. A combined model is formed and the evolution time or class

label of a new image is predicted from its observed features.

The main difference between our methodology and the methodology developed

in McKenzie (2004) is that the latter used multiple regression to relate moments

with the underlying parameters used to generate their synthetic images. The evo-

lution of the artificial images depended explicitly on some evolution parameters

which were set up as a known function of time before generating the images. The

synthetic images were then used to relate granulometric moments to evolution

parameters and back-prediction was used to predict the lapsed evolution time of

a new image, based on the artificial image model and the observed granulometric

moments from the new image.

In our case, the method was developed and evaluated using synthetic images

for which the parameters do not change over time. Relating moments to time

directly makes more sense for our synthetic images, as the parameters used to

generate the images do not relate directly or explicitly to time. We build the

model separately for the real images of interest rather than using the synthetic

images-based model to predict time. Also, in practice any underlying parameters

considered in the earlier approach may not necessarily be the most appropriate

ones to use for real images of a particular type, so the approach developed here

should be more robust.

Our methodology was developed on computer-generated grey scale images

and is applied to two sets of real images, which consist of corrosion and Indian

black tea granules. Several well established classifiers, i.e. support vector ma-

chines, linear discriminant analysis and neural networks are also used, using the

same features, and their performance is compared with that of the regression

classification approach. We also consider different types of features, including

grey level co-occurrence features and wavelet-based features, and compare their

relative performance for discriminating textures. The last part of this work con-

cerns classifying Chinese teas based on analysis of hyperspectral images, and

the benefits of using hyperspectral images over grey scale and colour images for

classification is investigated.
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The thesis structure is as follows: Chapter 1 reviews elementary concepts of

digital image processing, with some examples. Morphological techniques, such as

dilation, erosion, opening, closing, and applications of morphological techniques

both for binary and grey scale images, are discussed in Chapter 2. An overview

of texture analysis and description of the conventional texture feature extraction

methods and classification approaches are given in Chapter 3. This chapter also

contains details of how we generate synthetic binary and grey scale texture images

which evolve over time. A detailed presentation of granulometries as the main

feature extraction approach used in this thesis is in Chapter 4. The relationships

of granulometric features to lapsed evolution time for synthetic images are inves-

tigated there. Chapter 5 presents the new regression-based texture classifier and

the classification results of the synthetic images. Chapter 6 concerns classification

of real corrosion images according to their evolution time and the performance

of all classifiers is presented. This methodology is applied to another set of real

images, of Indian black tea granules, to classify them according to granule size,

in Chapter 7. Grey level co-occurrence features and wavelet-based features are

extracted from the synthetic images as well as from both sets of real images and

their performance for classifying those images is compared to that of granulomet-

ric moments in Chapter 8. Our methodology is then applied to hyperspectral

images of six different types of Chinese teas to classify them in Chapter 9. Dif-

ferent band selection techniques are also compared there. Finally, Chapter 10

provides overall conclusions of the work in the thesis.
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Chapter 1

Introduction to Image Analysis

1.1 Introduction

This chapter gives an introduction to basic image analysis, including mathemat-

ical morphology. Different image analysis operations are illustrated on example

images, and carried out in the Matlab software package.

Image analysis is the extraction of meaningful information from digital images

by image processing techniques. A digital image is an electronic representation of

an image, usually as a two-dimensional finite array of numbers fij (Gonzalez and

Woods (2008)) where i and j are finite integers indicating the row and column,

and fij is the intensity or grey level of the image at that point (also finite). Each

location is known as a pixel (picture element). So function fij indicates the pixel

value in row i and column j (or vice versa).

Image analysis typically consists of five distinct stages that follow each other

logically. These stages are display, filtering, segmentation, mathematical mor-

phology and measurement, discussed briefly below.

1.2 Display

Display is the most basic step in image analysis. Different types of displays

(binary display, grey scale display, or multivariate display) are appropriate, de-

pending on the nature of the image.

1.2.1 Binary display

A binary image is the simplest type of display. In this case each pixel takes value

0 (for black) or 1 (for white), or sometimes 0 represents black and 255 represents
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white. The value 0 or 1 can be stored in a bit of computer memory. A byte is

the fundamental unit of computer memory which consists of 8 bits.

1.2.2 Grey scale display

In a grey scale image display, pixel values are used to specify the brightness with

which pixels are illuminated on a computer screen, or how bright they appear on

printed paper. Often the pixel values represent physical properties of the image.

Showing larger pixel values as brighter intensity is simply a way to enable the

spatial structure in the image to be seen. Grey scale pixels usually take an integer

value between 0 and 255. The number of grey levels that can be handled is usually

expressed in terms of a number of bits. One byte can represent 28 = 256 grey

levels.

1.2.3 Colour display

Human eyes are the main processors of the colour spectrum. The human eye

contains three types of cones for colour processing (Gonzalez and Woods (2008)).

One type has maximum sensitivity to the blue region of the colour spectrum, an-

other type to the green region, and a final type to the red region. Light consisting

of a single wavelength in the red region of the spectrum will be detected most

strongly by the red sensitive cells, and we see it as red. Similarly, green sensitive

cells detect green and blue sensitive cells detect blue. Different combinations of

these three wavelengths produce a different colour sensation. To produce any

colour, the intensities of the red, green, and blue light need to be present in spe-

cific proportions. This is referred to as the RGB (red, green, blue) system. Many

colours can be obtained on a display unit from combinations of the three basic

colour components. If each component can be displayed in 256 different intensi-

ties, there are 2563 = 16, 777, 216 different possible colours for a pixel (Gonzalez

and Woods (2008)).

Figure 1.1 shows a colour, grey scale and a binary version of an example image

of peppers. The original image is a colour image (RGB), which was converted

to grey scale using the Matlab function ‘rgb2gray’ (which converts RGB images

to grey scale by forming a weighted sum of the R, G, and B components as

0.2989 ∗R + 0.5870 ∗G+ 0.1140 ∗B). The grey scale image was then converted

to binary using function Im2bw with an associated threshold. Otsu’s threshold-

ing (Gonzalez and Woods (2008)) is used here, which chooses the threshold to
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minimise the intra-class variance of the black and white pixels (in this case the

threshold was 0.3961). In the output image all pixels in the input image with

luminance or intensity above the threshold are replaced with the value 1 (white)

and all other pixels with value 0 (black).

(a) Colour display (b) Grey scale display (c) Binary display

Figure 1.1: Colour, grey scale and binary display of a peppers image of size
350 × 243 (from the Matlab Help System).

1.2.4 Image enhancement

The objective of image enhancement is to improve the interpretability or percep-

tion of information in images for human viewers, or to provide ‘better’ input for

other automated image processing techniques. Image enhancement techniques

can be divided into two broad categories:

1. Spatial domain methods, which operate directly on pixels, and

2. Frequency domain methods, which operate on the Fourier transform of an

image.

We describe contrast stretching, and histogram equalisation, as spatial domain

techniques for image enhancement.

Contrast stretching: Contrast stretching, often called normalisation, is a sim-

ple image enhancement technique that attempts to improve contrast in an image

by ‘stretching’ the range of intensity values to span a desired range, e.g. the full

range of pixel values that the image type allows, using a linear scaling function.

As a result the ‘enhancement’ is less harsh than in histogram equalisation (see

below). A simple way of contrast stretching described by Jain (1989) is as follows:

The first step specifies limits a and b over which image intensity values will

be extended (for standard 8-bit grey scale images, these limits are usually 0 and

255). The original image is examined to determine the intensity limits (c and d)
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in the unmodified image. Then for each pixel, the original value Iin is mapped to

output value Iout as

Iout = (Iin − c)

(

b− a

d− c

)

+ a.

The main drawback is that a single outlying pixel with either a very high or

very low value can severely affect the effectiveness of the operation. One way to

overcome this is to set c and d to, say the 5th and 95th percentiles of the original

intensities, respectively.

Histogram equalisation: Histogram equalisation is a more sophisticated pro-

cess of image enhancement than contrast stretching, as it may employ non-linear

and non-monotonic transfer functions to map between input and output pixel in-

tensity values, whereas contrast stretching is restricted to a linear mapping. His-

togram equalisation ensures that all display intensities are approximately equally

represented, with the objective of obtaining a new enhanced image with a uniform

histogram. This can be achieved by using the normalised cumulative histogram

as the grey scale mapping function.

Glasbey and Horgan (1994) describe histogram equalisation as follows: Let I

denote the intensities ranging from 0, 1, . . . , Imax and p(f) be the proportion of

the pixel values ≤ f . If the pixel values are displayed with intensity I = Imaxp(f),

then the proportion of pixels with display intensity ≤ I will be i/imax, leading to a

linear cumulative distribution of intensities, i.e. a uniform distribution. Because

of the discrete nature of the image histogram, the transformed image will have

an approximate rather than an exact uniform distribution.

Zooming and reduction: If an image is too large to fit on a screen or too

small to see finer detail, then image reduction or zooming can be used to shrink

or enlarge the image. Image zooming gives control of the size of most images

displayed. The simplest form of zooming is pixel replication.

Alternatively it may be of interest to reduce the size of an image for easier dis-

play or so it can be processed in less computer time, or occupy less storage mem-

ory. Although reducing an image involves some loss of data, it may sometimes

be essential for display. Pixel sampling is one way to do this. Some techniques

of zooming and reduction are described in Gonzalez and Woods (2008).
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1.3 Filtering

Image filtering is another enhancement process. Image filters are the most com-

mon image processing operations, and create a new image by processing the pixels

of an existing image. Different filters are used for different purposes, such as to re-

move noise, to smooth out high-frequency fluctuations or remove periodic trends

of a specific frequency. Edge detection filters are of fundamental importance in

image processing as edges characterise boundaries of objects of an image. Edge

detecting an image significantly reduces the amount of data and filters out unnec-

essary information, while preserving the important structural properties of the

objects in an image. Edges represent rapid transitions of intensity in the image.

Filters are broadly classified as linear filters and non-linear filters, although

they can also be classified as (a) smoothing and noise reduction filters, (b) sharp-

ening filters, and (c) edge-detection filters.

1.3.1 Linear filters

A filter is called linear if its output is derived as a linear combination of the

pixels in the original image. An optimised linear filter possesses computational

simplicity but cannot smooth without simultaneously blurring the edges. Linear

filters can be used either for smoothing images to reduce noise, i.e. reducing

the amount of intensity variation between one pixel and the next, or for edge-

detection. Although there are many smoothing filters, we discuss only the moving

average filter and the Gaussian filter.

Let fij , i, j = 1, 2, . . . , n, denote the image pixel values, and gij denote the

output of a linear filter of size (2m+ 1)× (2m+ 1) with specified weights wkl for

k, l = −m, · · · , m. Then the output image is derived as :

gij =

m
∑

k=−m

m
∑

l=−m

wklfi+k,j+l, (1.1)

for i, j = (m+1), . . . , (n−m) (Gonzalez and Woods (2008)). So gij is a weighted

combination of the original pixel values, over a window of size (2m+1)×(2m+1),

centred on pixel (i, j). Most linear filters use a window with an odd number of

rows and columns. An even-sized window can be used, but in that case there will

be a half-pixel displacement between the input and output image. For smoothing,

all the wij are non-negative and usually sum to 1.
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Moving average filter

The moving average filter is the simplest method of smoothing images. Its output

is simply the average of the pixel values in the neighbourhood of pixels centred at

that pixel, usually a square neighbourhood, given by equation (1.1) with wkl =

1/(2m+1)2, for an (2m+1)× (2m+1) neighbourhood, so that for a 3×3 square

neighbourhood the weight will be 1/9 (and m = 1).

Gaussian filter

The Gaussian filter can also be defined by equation (1.1) with weights specified

by the probability density function of a bivariate Gaussian (normal) distribution

with variance σ2, that is

wij =
1

2πσ2
exp

{−(i2 + j2)

2σ2

}

,

for i, j = −[3σ], . . . , [3σ] for some specified positive value of σ2 and where [3σ]

represents the integer part of [3σ]. Beyond this range the wij are near zero.

The Gaussian filter is a generalisation of the moving average filter. Four

repeats of a moving average filter of size (2m + 1) × (2m + 1) approximates a

single Gaussian filter with σ2 = 4
3
(m2 + m) (Wells (1986)). The Gaussian filter

has the following advantages over the moving average filter:

1. Gaussian filters are separable and circularly symmetric (isotropic) but av-

erage filters are not. Average filters smooth further along diagonals then

along rows and columns.

2. The weights in the Gaussian filter decay gradually to zero, while in the

case of an average filter the weights have an abrupt cut-off which leaves

discontinuities in the smoothed image.

Figure 1.2 shows the effect of two moving average filters of size 5 and 10, and a

Gaussian filter of size 10 with σ = 0.5, on a binary image of disks of various radii.

The effect is to smooth out the noise but also smooth out edges, so the result

appears blurred. Comparing Figures 1.2(b) and (c) it is seen that the larger

moving average filter blurs the image more than the smaller one. Comparing

Figures 1.2(c) and (d), we see that the Gaussian filtering produces a better result

as it is not as blurred. Such filters are called low pass filters, as the high frequency
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components which give sharp changes in intensity are smoothed out, but lower

ones ‘pass’ the filtering process.

(a) Binary image of
size 256 × 256

(b) Effect of 5 × 5 av-
erage filter

(c) Effect of 10×10 av-
erage filter

(d) Effect of 10 × 10
Gaussian filter

Figure 1.2: Effect of moving average filters of different size and a Gaussian filter
on a binary image of disks.

First order edge detector

A high pass filter on the other hand is used to sharpen an image or to detect edges.

Linear edge detection filters use a combination of positive and negative weights

to emphasise edges and the weights usually sum to zero. The first-derivative row

and column filters detect edges in a given direction. The first-derivative row filter

replaces each pixel value by the difference in pixel values in columns on either

side of that location in the input image. The output will be larger in magnitude

if the pixel values to the left and right of that pixel are quite different from each

other. A set of weights, which operates over 3 rows, is given by

w =
1
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−1 0 1

−1 0 1

−1 0 1











.

The output estimates the first row derivative, based on a Taylor series expan-

sion of the image fxy near (i, j). It can be shown that

1
∑

k=−1

1
∑

l=−1

wklfi+k,j+l ≈
∂fij
∂x

,

the first row derivative.

For the first derivative column filter the weights are just the transpose of the

previous weights matrix, i.e.
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w =
1
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−1 −1 −1

0 0 0

1 1 1











.

Again this provides an approximation to the column derivative image. The first-

derivative row filter produces non-zero values in response to vertical edges and the

first-derivative column filter responds most to horizontal edges. However, these

filters can emphasise noise as well as edges. One way to overcome this is to use

a smoothing filter first. The effect of first-derivative row and column filters on

Figure 1.2(a) are shown in Figures 1.3(b) and (c). The row filter highlights the

image area where the intensity changes vertically and the column filter indicates

changes in the horizontal direction.

Second order edge detector

Second order derivative filters are also known as Laplacian filters, which are

isotropic and therefore responsive to edges in any direction. With the weights

w =











1 1 1

1 −8 1

1 1 1











the output of a Laplacian filter approximates the Laplacian transform f of the

input image (Glasbey and Horgan (1994)), i.e.

1
∑

k=−1

1
∑

l=−1

wklfi+k,j+l ≈
∂2fij
∂x2

+
∂2fij
∂y2

. (1.2)

Figure 1.3 shows the result of applying a Laplacian filter to Figure 1.2(a).

Since the Laplacian filter emphasises noises as well as edges, a 5 × 5 Gaussian

filter was applied to reduce noise first and then the Laplacian filter was applied

(α = 0.8) to the result to detect the edges (i.e. using a Laplacian of Gaussian

filter). Comparing the output image with the original, the effect is to highlight

areas in which intensity changes rapidly. The edges are finer than those produced

by the first derivative filters and noise has been suppressed.

1.3.2 Nonlinear filters

A nonlinear filter is a filter whose output is a nonlinear function of the input. One

practical reason to use nonlinear filters instead of linear filters is that linear filters
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(a) Effect of 5 × 5
Gaussian filter

(b) Effect of 3 × 3
row filter

(c) Effect of 3 × 3
column filter

(d) Effect of 3 × 3
Laplacian filter

Figure 1.3: Effect of row filter, column filter and Laplacian filter on a binary
image of disks.

may be too sensitive to a small fraction of unusually large input observations

(Macleod (1992)). Unlike linear filters, nonlinear filters can reduce noise and

enhance edges at the same time.

Nonlinear smoothing filters

A variety of non-linear smoothing filters have been developed. The median filter

is one of the most widely used nonlinear smoothing filters. A median filter moves

a window over an image and computes the output pixel value as the median

value of all input pixels within the window. For an n×n image the output of the

(2m+ 1) × (2m+ 1) median filter is

gij = median{fi+k,j+l} for i, j = (m+ 1), · · · (n−m).

Median filtering is a simple and very effective noise removal filtering process which

avoids blurring of edges. It is particularly good for removing shot noise (strong

spike-like isolated values) (Dougherty and Astola (1994)).

The moving average filter, the Gaussian filter, and the median filter are all

extensively used for noise reduction. To compare their effect with the Laplacian

filter, we superimposed salt and pepper noise on Figure 1.2(a), then applied a

3× 3 average filter, a 3× 3 Gaussian filter with σ = 0.5 and a 5× 5 median filter

(Figure 1.4). Although the Gaussian filter performs better in image smoothing

it does very little to reduce noise, and the median filter is much better for noise

reduction. The Laplacian filter of size 3 × 3 was applied with α = 0.8, and

effectively detects the edges of the image objects.
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(a) Noisy image of disks (b) Effect of 3× 3 average
filter

(c) Effect of 3×3 Gaussian
filter

(d) Effect of 5 × 5 median
filter

(e) Effect of 3 × 3 Lapla-
cian filter

Figure 1.4: Effect of average, Gaussian, median, and Laplacian filters on a noisy
binary image of disks.

Nonlinear edge-detection filters

Most of the edge-detection filters are based on the gradient method, which detects

edges by looking for the maximum and minimum in the first derivative of the

image (Kimmel and Bruckstein (2003)). There are various such filters, of which

a few are described below:

Variance filter: The variance of the pixel values in a window will be larger if

an edge is present than if it is not. Computing the variance or standard deviation

in a window centred on each pixel will therefore help to highlight edges. There are

several variations of the variance filter, such as the range filter and the Roberts

filter.

Range filter: The output of a range filter is the difference between the maxi-

mum and minimum values of the pixel values in a window:

gij = max{fi+k,j+l : k, l = −m, · · · , m} − min{fi+k,j+l : k, l = −m, · · · , m}.

The range filter is an useful edge-detector.
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Roberts’ filter: The Roberts’ filter uses the sum of absolute differences of

diagonally opposite pixel values, i.e.

gij = |fij − fi+1,j+1| + |fi+1,j − fi,j+1|,

so uses a 3× 3 window. This filter is used as an edge enhancement operator, and

especially determines edges at points where the gradient of the input image is

largest.

Gradient filter

The gradient indicates the highest rate of change. The maximum gradient of the

image fxy near (i, j) is given by

√

(

∂fij
∂x

)2

+

(

∂fij
∂y

)2

,

so a gradient filter can be designed by replacing the partial derivatives above

by their estimates. It is wise to use a smoothing filter before using a gradient

filter to obtain a satisfactory edge-detection.

Prewitt’s filter: Prewitt’s edge detector filter is the standard un-weighted gra-

dient filter used to detect edges based on applying a horizontal and vertical filter

in sequence. Both filters are applied to the image and summed to form the final

result. Prewitt’s filter replaces the partial derivatives by their estimates,

ˆ∂fij
∂x

=
1

6
(fi−1,j+1 + fi,j+1 + fi+1,j+1 − fi−1,j−1 − fi,j−1 − fi+1,j−1)

and

ˆ∂fij
∂y

=
1

6
(fi+1,j−1 + fi+1,j + fi+1,j+1 − fi−1,j−1 − fi−1,j − fi−1,j−1)

(Glasbey and Horgan (1994)), using a 3 × 3 window size.

The filter is of the form:

gij =

√

√

√

√

(

ˆ∂fij
∂x

)2

+

(

ˆ∂fij
∂y

)2

, (1.3)

and detects edges at all orientations.
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Sobel’s filter: Sobel’s filter consists of two kernels which detect horizontal and

vertical changes in an image. If both are applied to an image, the results can

be used to compute the magnitude and direction of the edges in the image. It

is a weighted version of Prewitt’s filter, which is also based on the maximum

gradient, but while estimating the partial derivatives more weight is given to the

pixels nearest to (i, j), as follows:

ˆ∂fij
∂x

=
1

8
(fi−1,j+1 + 2fi,j+1 + fi+1,j+1 − fi−1,j−1 − 2fi,j−1 − fi+1,j−1)

and

ˆ∂fij
∂y

=
1

8
(fi+1,j−1 + 2fi+1,j + fi+1,j+1 − fi−1,j−1 − 2fi−1,j − fi+1,j−1).

Again these are substituted in equation (1.3). Like Prewitt’s filter, this is a

filter of size 3× 3. A detailed description is given in Glasbey and Horgan (1994).

Canny filter: Canny (1986) developed another edge detector filter which is

also based on the gradient of the image intensity. It starts with linear filtering to

compute the gradient of the image intensity distribution function and ends with

thinning and thresholding to obtain a binary map of edges. The method uses two

thresholds, to detect strong and weak edges, and includes the weak edges in the

output only if they are connected to strong edges. Canny suggested using zero-

crossings of second derivatives in the direction of steepest gradient to determine

the position of the edges, i.e.

cos2 ϕij
∂2fij
∂x2

+ sin2 ϕij
∂2fij
∂y2

+ 2 sinϕij cosϕij
∂2fij
∂x∂y

where ϕi,j is the direction of the maximum gradient and may be defined as

ϕi,j = tan−1

(

ˆ∂fij
∂y

/
ˆ∂fij
∂x

)

In effect, the Canny filter thins the edges produced by the gradient filter.

Figure 1.5 shows the result of applying Roberts’ filter, Prewitt’s filter, Sobel’s

filter, the Canny filter and a variance filter to the disks image. The Roberts’

filter emphasises the edges better than the Canny filter and variance filter, but

the variance filter detects individual object edges more successfully, although

Canny is the best filter in general. The Prewitt’s filter and Sobel filter have
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a very similar effect, as they both are based on the maximum gradient. The

Roberts filter seems to be superior to the other filters for edge detection in this

case.

(a) Effect of 2× 2 Roberts
filter

(b) Effect of 2×2 Prewitt’s
filter

(c) Effect of 3 × 3 Sobel’s
filter

(d) Effect of 3 × 3 Canny
filter

(e) Effect of 5×5 variance
filter

Figure 1.5: Effect of Roberts, Prewitt’s, Sobel’s, Canny and variance filters on a
binary noisy image of disks.

Morphological filter: Morphological filters provide a whole class of nonlinear

filters, used for various purposes. They are mentioned in Section 1.5 as they are

also be used at a later stage in the processing of an image, and some of these are

also described and used extensively later in the thesis.

1.4 Segmentation

Image segmentation is a fundamental step in most applications of image analysis.

Segmentation is a commonly used term for separating interesting and uninterest-

ing objects, as well as distinguishing foreground from background (Reulke and

Lippok (2008)). In computer vision, segmentation precedes the appropriate rep-

resentation of the objects contained in an image and their classification according

to specific features of interest (Ballard and Brown (1982)). A sensible segmen-

tation is typically one in which pixels in the same category have similar grey
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scale values and form a connected region, and neighbouring pixels which are in

different categories have dissimilar values. Three general approaches to image

segmentation are: thresholding techniques, edge-based methods and region-based

techniques, described briefly below.

1.4.1 Thresholding

Thresholding is the simplest method of image segmentation. If the digital image

is grey scale and a binary display is required, thresholding can be employed to

produce a binary image (Shapiro and Stockman (2002)). This requires a threshold

value t, used to categorise the pixel values of the foreground, namely pixel values

on one side of t are displayed as black and those on the other side are displayed

as white (Gonzalez and Woods (2008)). So pixel (i, j) takes one value if its grey

scale value fij ≤ t, otherwise it takes a second value. More than one threshold

can also be used. For example if two threshold values are used, pixel (i, j) takes

one value if t2 ≤ fij ≤ t1, otherwise it takes a second value.

Figure 1.6 shows a grey scale image of size 256 × 256 of ellipses of various

sizes, and three segmentations using manually selected threshold values of 0.25,

0.5 and 0.75. Thresholding is carried out using Matlab command im2bw, in the

Matlab Image Processing Toolbox, where the parameter level (ranging from 0 to

1) is set at the various threshold values. As the threshold increases, the number

of object pixels reduces.

(a) Image of ellipses (b) Thresholding at
level 0.25

(c) Thresholding at
level 0.50

(d) Thresholding at
level 0.75

Figure 1.6: Effect of thresholding a 2562 grey scale image of ellipses, using various
threshold values.

Thresholding is most effective when the intensity levels of the objects fall

squarely outside the range of levels in the background. The threshold can be

chosen empirically, by testing a range of values of t and determining which works

best for identifying the object of interest, or automatically. There are several

automatic algorithms for choosing the threshold, such as Otsu’s thresholding al-

gorithm, the inter-means algorithm and the minimum error algorithm. All of
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these are histogram-based.

Otsu’s thresholding: Otsu (1979) proposed a thresholding method which in-

volves iterating through all the possible threshold values and calculating a mea-

sure of spread for the pixel levels to each side of the threshold. The aim is to find

the threshold value for which the sum of foreground and background spreads is

at its minimum, and to minimise the intra-class variance of the thresholded black

and white pixels. This turns out to be the same as maximising the between-class

variance. This operates directly on the grey level histogram. For each potential

threshold T , the steps are:

1. Separate the pixels into two categories according to the threshold.

2. Find the mean of each category, f̄1 and f̄2.

3. Square the difference between the means, to get (f̄1 − f̄2)
2.

4. Multiply by the number of pixels in one category times the number in the

other, to get n1n2(f̄1 − f̄2)
2.

5. Iterate the procedure until the optimum T is obtained, i.e. (4) is minimised.

This depends only on the difference between the means of the two categories,

thus avoids having to calculate differences between individual intensities and the

means of each category. The optimal threshold is the one that maximises the

between-class variance (or, conversely, minimises the within-class variance).

Inter-means algorithm: Ridler and Calvard (1978) and Trussell (1979) pro-

posed the inter-means method for choosing a single threshold. The steps are as

follows:

1. Select an initial estimate of the threshold at t. A good initial value could

be the median intensity of the image, such that

t
∑

k=0

hk ≥
1

2
n2 >

t−1
∑

k=0

hk,

where hk, k = 0, 1, · · · , N represents the number of pixels in the image with

grey scale value k, N is the maximum pixel value, and n2 is the number of

pixels in the n× n image.
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2. Calculate the mean pixel value for both categories resulting from step 1.

The mean pixel values for the first and second category respectively are

µ1 =

t
∑

k=0

khk/

t
∑

k=0

hk and µ2 =

N
∑

k=t+1

khk/

N
∑

k=t+1

hk.

3. Re-estimate t as half way between the two means, i.e.

t = [(µ1 + µ2)/2],

where [ ] denotes the integer part.

4. Repeat steps 2 and 3 until t stops changing value.

This threshold tends to divide the image histogram into two parts so that there are

approximately equal numbers of pixels in both categories. Kittler and Illingworth

(1986) suggested modifications to the above algorithm to overcome this tendency,

as equal-sized categories may not be appropriate. The modified method assumes

the image grey levels arise from a mixture of Gaussian distributions. The mini-

mum error method is based on this modification.

Minimum error algorithm: The minimum error algorithm was proposed by

Kittler and Illingworth (1986) which considers the image histogram as an estimate

of the Gaussian probability distribution. It also assume that image foreground

and background pixels follow Gaussian distributions with different means and

variances. The minimum error algorithm also starts with an initial choice of

threshold value and the steps are as follows:

1. Make an initial guess at a value for t.

2. Estimate the proportion p1, mean µ1, and variance σ2
1 for pixels with values

less than or equal to t (first category), by

p1 =
1

n2

t
∑

k=0

hk, µ1 =
1

n2p1

t
∑

k=0

khk and σ2
1 =

1

n2p1

t
∑

k=0

k2 hk − µ2
1.

Similarly, estimate p2, µ2, and σ2
2 for pixels with values t+1, . . . , N (second

category).

3. A good estimate of t would be such that pixels with value k are allocated

to the category with higher posterior probability, i.e. allocate to category 1
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if

p1ϕ1(k) ≥ p2ϕ2(k), otherwise category 2,

where ϕi(k) represents the probability density function of a Gausian distri-

bution with mean µi and variance σ2
i , assumed to hold in category i.

4. By substituting the functional form of ϕi in the above inequality and taking

logarithms we get

k2

(

1

σ2
1

− 1

σ2
2

)

− 2k

(

µ1

σ2
1

− µ2

σ2
2

)

+

(

µ1

σ2
1

− µ2

σ2
2

+ log
σ2

1p
2
2

σ2
2p

2
1

)

≤ 0

or

k2A− 2kB + C ≤ 0

where A, B, and C are:

A =

(

1

σ2
1

− 1

σ2
2

)

, B =

(

µ1

σ2
1

− µ2

σ2
2

)

and C =

(

µ1

σ2
1

− µ2

σ2
2

+ log
σ2

1p
2
2

σ2
2p

2
1

)

.

5. The threshold t is re-estimated in terms of the means and standard devia-

tions of the two categories by

t =

[

B +
√
B2 − AC

A

]

as the positive root of the quadratic equation k2A− 2kB + C = 0.

6. Repeat steps 2 to 5 until t converges.

Majority filter: The majority filter smooths images by replacing pixel values

with the majority (most frequent) pixel value in a neighbourhood. The steps,

described by Glasbey and Horgan (1994), are as follows:

1. Make an initial guess at a value for t.

2. Segment the image, by thresholding, and store the result in an array g:

gij = 1 if fij ≤ t, otherwise gij = 2.

3. Apply a majority filter to g, and record the new labels in array g′. There-

fore gij is set to the most common category in the set gi+k,j+l for k, l =
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−m, · · · , m. This is repeated for every value of i and j from m + 1 to

n−m.

4. Calculate the mean pixel value in category 1,

µ1 =
1

N1

∑∑

(ij):g′ij=1
fij ,

where N1 is the number of pixels in category 1. Similarly, calculate µ2.

5. Re-estimate t as [1
2
(µ1 + µ2)].

6. Repeat steps 2 to 5 until t converges to a stable value, and then stop after

step 3.

The majority filter, for example, can be implemented using Matlab ‘bwmorph’

function with the majority option. This filter replaces the value of a given pixel

to 1 if at least five of its immediate eight-neighbours (see Section 3.4) are 1, and

by 0 otherwise (Boland and Murphy (2001)). In effect it eliminates corners of the

objects, therefore the disks in Figure 1.7 (a) turned to more or less square shapes

in Figure 1.7 (b).

(a) Original image (b) Effect of a 3×3 major-
ity filter

Figure 1.7: Effect of a majority filter on a 2562 binary image of disks.

1.4.2 Edge-based thresholding

In edge-based segmentation an edge-detecting filter such as Prewitt’s filter is

applied to the image, and pixels are classified as edge and non-edge, depending

on the filter output. Segmentation can be achieved by allocating to a single

category all non-edge pixels that are not separated by an edge. However, edge-

based methods centre around contour detection and the contour may not always

be complete. There is a need to connect together broken contours lines, so this
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approach is prone to fail in the presence of blurring. An algorithm such as the

connected components algorithm can be used to label the objects defined by the

edges, if these do provide complete contours.

Connected component algorithm: A pixel has 4 horizontal and vertical

neighbours and 4 diagonal neighbours. Connectivity defines the relationship be-

tween pixels which specifies how many pixels are adjacent to a specific pixel.

The relationship can be based on either 4- or 8-connectivity. A pixel is called

4-connected if it is connected to its 4 horizontal and vertical neighbours only but

it is called 8-connected if the pixel is connected to its 4 horizontal and vertical

neighbours as well as 4 diagonal neighbours. The connected component algorithm

uses the concept of a pixel’s connectivity.

The connected component algorithm scans an image from top to bottom and

left to right in order to identify connected pixel regions, i.e. regions of adjacent

pixels which share the same intensity value, e.g. k. The connected components

labelling operator scans the image by moving along a row until it comes to a

point, for example p, where p denotes the pixel to be labelled at any stage in

the scanning process for which k = 1. For 8-connectivity, it examines the four

neighbours of p, i.e. the neighbours (i) to the left of p, (ii) above it, and (iii and

iv) the two upper diagonal terms. Based on this information, the labelling of p

occurs as follows:

1. If all four neighbours are 0, assign a new label to p, else

2. if only one neighbour has k = 1, assign its label to p, else

3. if one or more of the neighbours have k = 1, assign one of the labels to p

and record the equivalences.

After completing the scan, the equivalent label pairs are sorted into equiv-

alence classes and a unique label is assigned to each class. As a final step, a

second scan is made through the image, during which each label is replaced by

the label assigned to its equivalence classes. The algorithm is described in detail

in Glasbey and Horgan (1994).

1.4.3 Region-based thresholding

There are several different approaches to this, namely divisive methods which

split pixels into regions and agglomerative or merging algorithms which merge

pixels into regions, and those that both split and merge. Typically, the image
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is partitioned into connected regions by grouping neighbouring pixels of similar

intensity levels. This can be done in several ways. Adjacent regions may then

be merged under some criterion involving, perhaps, homogeneity or sharpness of

region boundaries. The watershed algorithm is one of the simplest, yet powerful,

region-based segmentation methods, now described.

Watershed segmentation

Watershed segmentation is a splitting algorithm which splits the image into re-

gions. This is a way of automatically separating objects that touch each other by

producing contours indicating their edges. The most intuitive formulation of the

watershed transform is based on a flooding simulation (Dougherty and Lotufo

(2003)). In this segmentation the input image is considered to be a topological

surface or elevation map. The grey scale value at each pixel represents the height

of the surface at that pixel, so the grey scale image can be thought of a 3-D

surface.

Gonzalez and Woods (2008) suggested considering three types of points to in-

terpret such a topological surface. These are: (a) points belonging to the regional

minima; (b) points at which a drop of water, if placed at the location of any of

those points, would fall with certainty to a single minimum; and (c) points at

which water would be equally likely to fall to more than one such minimum. For

a particular regional minimum, the set of points satisfying condition (b) is called

the catchment basin or watershed of that minimum. The points satisfying con-

dition (c) form crest lines on the topographic surface which are called watershed

lines.

The objective of watershed segmentation is to produce watershed lines on

the surface. The method can be visualised (Dougherty and Lotufo (2003)) by

conceptually punching holes in each regional minimum of the image. Then the

topography is slowly flooded from below by letting water rise from each regional

minimum at a uniform rate across the entire image. When the rising waters

coming from distinct minima are about to merge, a dam is built to prevent them

merging. The flooding will eventually reach a stage when only the tops of dams

are visible above the water-line, and these correspond to the watershed lines.

Figure 1.8(a) represents a 486 × 732 grey scale image of pears. The corre-

sponding colour image is available in the Matlab help file and was converted

to grey scale. The Matlab function watershed provides watershed segmentation

by computing the gradient magnitude using the Sobel edge masks. Using mor-

phological techniques, i.e. opening-closing reconstruction, it identifies foreground
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markers and computes background markers by means of thresholding, and the

watershed segmentation can be obtained from these. Figure 1.8(b) represents the

filtered image where the gradient is high at the borders of the objects and low

inside the objects, (c) is the opening-closing reconstructed image which allows the

algorithm to find the foreground markers, (d) is the thresholded opening-closing

reconstructed image, (e) shows the watershed segmentation of (a), and (f) con-

tains the foreground markers, background markers and watershed segmentation

superimposed on the original image.

(a) Image of pears (b) Gradient image of (a) (c) Foreground markers

(d) Background markers (e) Watershed segmenta-
tion of (a)

(f) Compact visualisation

Figure 1.8: Watershed segmentation of a 486 × 732 image of pears, taken from
the Matlab help file (using Matlab’s functions).

Watershed from markers: The watershed transform is mainly applied to the

morphological gradient image (see Section 2.6). This type of watershed requires

a set of markers or seed points. Each marker must be placed on a sample region

of the object to be segmented. The markers are used in the same way as the

holes at the regional minima in the image surface, as described above. The

approach is very appealing if one knows how to place the markers within the

object to be segmented. Marker design in watershed transform is one of the most

crucial steps for a successful segmentation (Dougherty and Lotufo (2003)). The

watershed from markers can also be described as a flooding simulation process.

It is an example of segmentation using seeded region growing using the markers

as seed points.
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1.5 Mathematical Morphology

Morphological operations can be employed for many purposes, including edge-

detection, segmentation and enhancement of images. From the underlying mor-

phological operations, an entire class of morphological filters can be constructed

that can often be used in place of standard linear filters. Morphological filters are

examples of nonlinear filters. This is a set-theoretic approach of image analysis

providing a quantitative description of geometrical structure or texture in an im-

age. We will discuss different aspects of mathematical morphology in Chapter 2,

as it is used extensively in this thesis.

1.6 Measurement

Measurement is considered to be the final step of an image analysis. Measure-

ments are usually taken from the image output from segmentation algorithms,

which may also have been produced using morphological operators. In some ap-

plications, measurements can be obtained directly from the original image. Three

general categories of measurements are size or length, measurement of shapes and

boundary statistics (Gonzalez and Woods (2008)).

1.6.1 Measures of size

Two most common types of statistics used to describe size of objects are mea-

surements of area and of distance. The area is just the number of pixels in an

object,

area =
∑ ∑

(i,j)∈A

1,

i.e. count ‘one’ for every pixel in A. If interest lies in the sum of pixel values

within a specified region A, then the area (or volume) is given by

∑ ∑

(i,j)∈A

fij,

where fij denotes the grey scale value of pixel (i, j). Image area and volume

remaining after sequences of morphological operations are also used extensively

in this thesis.

Average breadth, which can be obtained by dividing the area of an object by

its length, is another way to quantify objects.
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Moments can be used to specify the location and spatial distribution (shape)

of an object. The (k, l)th order moment is defined as

µkl =
∑ ∑

(i,j)∈A

ikjl for k, l = 0, 1, 2, . . .

If k and l are both zero, we obtain the zeroth-order moment µ00, which is the

area. The centroid or centre of gravity can be used to specify the location of an

object in the image, defined in terms of the moments, as

centroid =

(

µ10

µ00
,
µ01

µ00

)

,

where µ00 and µ10 are the zeroth and first-order moments.

The second order central moments are defined as

µ′
20 = µ20 −

µ2
10

µ00

, µ′
02 = µ02 −

µ2
01

µ00

and µ′
11 = µ11 −

µ10µ01

µ00

.

These measure how dispersed the pixels in an object are from their centroid.

The moment µ′
20 measures the spread of the object over rows, µ′

02 measures its

spread over columns, and µ′
11 is a cross-product term representing spread in the

direction in which both row and column indices increase. These central moments

are not rotationally invariant. Modified versions are available, for use when the

orientation of objects does not matter (see Glasbey and Horgan (1994)).

Distance measurements between two specified pixels (i, j) and (k, l) can be

defined by various different measures, including the traditional Euclidean distance
√

(i− k)2 + (j − l)2, Chessboard distance max(|i−k|, |j− l|), and City-block dis-

tance |i− k| + |j − l|.

1.6.2 Measures of shape

The most commonly used shape statistic is a measure of compactness, defined as

the ratio of the area of an object to the area of a circle with the same perimeter,

i.e.

compactness = 4π
area

(perimeter)2
,

where perimeter is the conventional measure of boundary length.

Another measure of compactness is given in terms of the moments as

compactness =
µ′

20 + µ′
02

µ2
00

.
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This measures how dispersed the pixels in an object are from their centroid,

compared to the most compact arrangement of the pixels.

The shape of an object can be measured in terms of elongation, defined by

the ratio of object length to its breadth, i.e.

elongation =
length

breadth
.

There are other measures of shapes, such as convexity and roundness. For details,

see Glasbey and Horgan (1994).

1.6.3 Boundary statistics

Boundary statistics provide information regarding the boundary of image objects.

Gonzalez and Woods (2008) discussed different boundary statistics, namely an

ordered set of boundary pixels, chain code and Fourier descriptors. An ordered set

of boundary pixels can be generated by determining two points on the boundary

of an object, where the second point is the next pixel location along the boundary

in an anti-clockwise direction, say, after the first point. Then we choose a search

direction between 0 to 3, if we only consider 4-connected neighbours, until we find

the next boundary pixel and so on. Chain code, consists of the starting location

and a list of subsequent directions d1, d2, . . . , dN , to provide a more compact

representation of all the information in a boundary or edge. Another way of

obtaining boundary statistics is to express the x and y coordinates separately as

weighted sums of sine and cosine terms. The weights are the Fourier coefficients,

which can be used to compute measures of shape. Using fewer terms in the sums

gives a more approximate boundary representation and using more terms gives a

more accurate representative.

1.7 Conclusion

This chapter provides a brief description of basic digital image processing tech-

niques, especially different types of filtering and segmentation. Among various

possible segmentation approaches we use Otsu’s thresholding in Chapter 7. The

next chapter describes mathematical morphology in detail.

24



Chapter 2

Mathematical Morphology

In this chapter, we describe mathematical morphology techniques in detail, as

these are used extensively in the work of this thesis.

2.1 Introduction

Mathematical morphology is a set-theoretic approach to image analysis (Matheron

(1975), Heijmans (1979), Serra (1983) and Dougherty and Lotufo (2003)), which

uses concepts from set theory, geometry, and topology to analyse geometrical

structures in images. It is a set of tools for extracting image components that are

useful in the presentation and description of region shape, such as boundaries,

skeletons, and convex hulls (Gonzalez and Woods (2008)). According to Petrou

and Garćıa-Sevilla (2006), mathematical morphology is a collection of non-linear

processes which can be applied to identify or remove image details smaller than

a pre-determined geometric structure. It provides many useful pre- and post-

processing techniques, especially in edge thinning and pruning (Giardina and

Dougherty (1987)).

The morphological approach is generally based upon the analysis of an image

in terms of some predetermined geometric shape, known as a structuring element

(SE) (Giardina and Dougherty (1987)), and on how the image interacts with the

structuring element.

2.2 Morphological Techniques

Different morphological operators and structuring elements provide different re-

sults which are useful for various purposes. Mathematical morphology provides a

number of important operations for analysing an image such as dilation, erosion,
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opening, closing, and many others. The applications of morphology to binary and

grey scale images are described separately here. We focus first on the SE, as it

determines the effect of the morphological operator on the image.

2.2.1 Structuring elements

In mathematical morphology, a SE is a pre-determined geometric shape, used to

probe or interact with a given image, with the purpose of drawing conclusions

as to how this shape fits or misses shapes in the image. The binary image and

SE are both considered as sets of 0s and 1s. Typically there are 1s in positions

corresponding to elements within the set, and 0s elsewhere. The locations of the

1s are called the neighbourhood defined by the SE.

The size and shape of the SE greatly affect the results of morphological oper-

ations. For example, the results of applying any morphological operation to an

image of stars using a square SE and a line SE will be quite different. Hence,

determining the best size and shape of a SE is of crucial importance. However,

the overall selection of a SE depends upon the geometric shapes we attempt to

extract from the image data. For example, if we are dealing with biological or

medical images, which contain few straight lines or sharp angles, a circular SE or

a disk is an appropriate choice. When extracting shapes from geographic aerial

images of a city, a square or rectangular SE will allow the extraction of angular

features from the image better than any of the line SEs.

Whatever the shape of the SE, a reference point must be selected for it, as

the morphological operations place the reference point of the SE at every single

pixel of the image to observe the interaction of the image and the SE at that

pixel (Gonzalez and Woods (2008)). Usually the central pixel of a SE is taken as

the reference point if the SE is a symmetric shape. For other shapes the reference

point needs to be defined. The location of the reference point is important.

Two SEs which have the same shapes but different reference points can extract

different information.

Figure 2.1 shows diamond, disk and square SEs, where the diamond and disk

are of radius 5 pixels and the square is of width 5 pixels, where width=0.5∗(base

length-1).

2.2.2 Dilation

Dilation is one of the fundamental operations of morphology, which dilates an

object with a pre-determined object (SE). Dilation of an image is the process of
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(a) Diamond (b) Disk (c) Square

Figure 2.1: Some commonly used SEs

placing the reference pixel of a SE on every pixel of the input image and marking

every pixel covered by the SE as an output image pixel (Petrou and Garćıa-

Sevilla (2006)). By adding the extra pixels to the input image it expands the size

of objects on the scale of the SE neighbourhood.

The effect of dilation on a binary image is to enlarge the boundaries of regions

of foreground pixels, so these areas grow in size, while holes within those regions

become smaller. It fills in holes and broken areas, connects areas that are sepa-

rated by spaces smaller than the size of the SE and adds pixels to the perimeter

of each image object.

The mathematically favoured definition of dilation as stated in Giardina and

Dougherty (1987), is as follows: Let A and B be two sets in two-dimensional

Euclidean space R
2, where A is the set to be dilated and B is the SE. The

dilation of A by B is denoted by A⊕B, and defined as

A⊕B = {w ∈ R
2 : w = a+ b, for a ∈ A and b ∈ B}, (2.1)

where the plus sign refers to vector addition. This is equivalent to Minkowski

addition. Given two sets A and x in R
2, their Minkowski addition, denoted by

A⊕ x, is the set

A⊕ x = {a+ x : a ∈ A}. (2.2)

where the plus sign refers to vector addition (Tuma and Walsh (1998)). Consid-

ering x as a vector in the plane, A + x is A translated along the vector x.

Dougherty and Lotufo (2003) mentioned two equivalent definitions of dilation

of A by B as

A⊕B =
⋃

b∈B

Ab, (2.3)

i.e. dilation is the process of translating the input image A by all points in the

SE and taking the union. It also can be defined in terms of translating the SE

27



by all points in the image, as

A⊕B =
⋃

a∈A

Ba. (2.4)

Using the definition of dilation given by (2.4) is computationally time con-

suming as it involves translation for every point in the input image, whereas the

definition given by (2.3) requires translation for every point in the SE.

Gonzalez and Woods (2008) define the dilation of a set A with another set

B, where both of the sets are in Z
2, as the set of all translations of the reflection

of the set B about its origin by z (rotation by 180◦ of B) and then taking the

intersection of this shifted result with the set A such the resulting set is non-

empty. Mathematically, the definition is as:

A⊕B = {z : (B̂)z ∩A 6= ∅}. (2.5)

Interpretation of (2.5) establishes the following equivalent definition of dilation,

as

A⊕ B = {z : [(B̂)z ∩ A] ⊆ A}. (2.6)

Since dilation thickens the objects in a binary image, it is referred to as an

extensive operator, i.e.

A⊕ B ⊇ A.

Although the basic morphological operations are available in many image analysis

software packages, in this thesis we have used Matlab. The Matlab definition of

dilation, which is applicable for both grey level and binary images, is as follows:

A dilated byB = {x : x = max pixels inA in neighbourhoodBx}, (2.7)

which works if the foreground of a binary image and SE are denoted as 1 and the

background as 0, and Bx is the SE placed with its reference pixel at pixel x or

the translation of B by x.

2.2.3 Erosion

Like dilation, erosion is also a basic operation of morphology, and entire morpho-

logical operations are based on these two primitive operations. Erosion operates

by placing the reference pixel of the SE on every pixel of the input image and

keeping only those pixels at which the SE fits fully inside the input image (Petrou
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and Garćıa-Sevilla (2006)). Whereas dilation is a thickening operation, erosion

shrinks or thins the image under analysis, as it removes some of the input image

pixels where the SE does not fit fully.

Erosion generally decreases the sizes of objects and removes objects which are

smaller than the applied SE. With binary images, erosion completely removes

objects smaller than the SE and removes perimeter pixels from larger image

objects.

The set-theoretic mathematical definition of erosion, according to Gonzalez

and Woods (2008), is as follows: for A and B as defined above, the erosion of A

by B is denoted by A⊖ B, and defined as

A⊖B = {w ∈ R
2 : w = a− b, for some a ∈ A and b ∈ B}. (2.8)

Equation (2.8) is known as Minkowski subtraction, defined as follows:

Given two sets A, and B in R
2, their Minkowski subtraction, denoted by

A⊖ B, is the set

A⊖ B =
⋂

b∈B

A+ B̂, (2.9)

where B̂ is the reflection of B, defined as the rotation of B by 180◦ about its

reference pixel, andA is translated by every element of B̂ and then the intersection

is taken.

Dougherty and Lotufo (2003) define the erosion of set A by the SE B (a set

usually smaller than A) as

A⊖B = {x : Bx ⊂ A}. (2.10)

Erosion can be defined in terms of dilation, as they are dual operations. The

erosion of set A by set B is defined as the complement of the dilation of set Ac

by the reflection of set B, i.e.

A⊖ B = (Ac ⊕ B̂)c. (2.11)

Gonzalez and Woods (2008) define the erosion of set A by set B as the set of

all points z such that B translated by z is contained in A. Mathematically, the

definition is as:

A⊖ B = {z : (B)z ⊆ A}. (2.12)

Since equation (2.12) establishes that the eroded set contains those points of B

which are in A, it is equivalent to say B is not overlapping with the complement
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of A, so another equivalent way to define erosion of A by B is

A⊖ B = {z : (B)z ∩ Ac = ∅}. (2.13)

Since erosion shrinks or thins objects in a binary image it is an anti-extensive

operator, i.e.

A⊖ B ⊆ A.

2.2.4 Opening

Opening is the operation by which we dilate an image after we have eroded it.

This is an important morphological operation, since it is useful for smoothing

the contour of an object, breaking narrow gaps, and eliminating thin protrusions

or spikes on an object (see Gonzalez and Woods (2008)). We use this operation

repeatedly in later chapters.

The opening of a binary set A by the SE B is defined to be the union of

all translations of B that are a subset of A. In effect, B is moved inside A and

the opening consists of all the points of A that lie in some translated copy of B

(Dougherty and Pelz (1991)), and is denoted by A ◦B. Notationally,

A ◦B = (A⊖ B) ⊕ B. (2.14)

Thus the opening of set A by B is the erosion of A by B, followed by a dilation of

the result. Gonzalez and Woods (2008) point out the geometric fitting property

of the opening operator, which leads to the following definition of opening:

A ◦B =
⋃

{(B)z : (B)z ⊆ A}. (2.15)

Equation (2.15) indicates that opening of the set A by B is the union of all

translations of B by z that fit into A.

2.2.5 Closing

Closing is the erosion of an image after it has been dilated. This also tends to

smooth sections of contour but, as opposed to opening, it generally fuses narrow

breaks and long thin gulfs, eliminates small holes, and fills gaps in contours

(Gonzalez and Woods (2008)).

Mathematically, the closing of the set A by the SE B is denoted by A•B and
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is defined as

A •B = (A⊕ B) ⊖ B. (2.16)

So the closing of set A by B is to dilate A by B, then erode the result.

Figure 2.2 shows the effect of dilation of a binary image of size 261 × 261

of disks of various radii ranging from 1 to 15, using a disk SE of radius 4. In

the dilated image the foreground pixels have increased by enlarging the objects

as well as filling gaps smaller than radius 4. This shows the extensive nature of

dilation. As erosion is anti-extensive, we see in the eroded image that the objects

in the original image have shrunk. Since opening is erosion followed by dilation,

we dilated the eroded image. In the opened image all disks smaller than radius 4

have disappeared and the rest remain. For closing, we eroded the dilated image.

This fills the gaps between objects and adds extra foreground pixels by enlarging

the object boundaries.

(a) Image of disks (b) Dilation of (a) (c) Erosion of (a)

(d) Opening of (a) (e) Closing of (a)

Figure 2.2: Effect of dilation, erosion, opening and closing of a 2612 binary image
of disks using a disk SE of radius 4.

The shape and size of image primitives (basic shape in the image) and SEs

greatly affect the results of any morphological techniques. For example we show

the effect of opening of the disk image in Figure 2.2 (a) using disk SE of radius 7

and 15 and square SE of width 7 and 15 in Figure 2.3. Opening the input image

by a disk of radius 7 removes any disk smaller than radius 7. Similarly opening by

a disk SE of radius 15 removes all disks smaller than radius 15. To compare the
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effect of opening by a differently shaped SE than the image primitives, we opened

the same image using a square SE of width 7 and 15, where width=0.5∗(base

length-1). Opening disks by a smaller disk SE removes all disks smaller than its

size, whereas opening by a smaller square SE removes small objects but also adds

pixels to the corners of remaining ones, making the objects more square shaped.

(a) Opening by a disk
of radius 7

(b) Opening by a disk
of radius 15

(c) Opening by a
square of width 7

(d) Opening by a
square of width 15

Figure 2.3: Effect of opening a binary 2562 image of disks using a disk and a
square SE.

2.3 Properties of the Morphological Techniques

Duality of dilation and erosion Dilation and erosion are duals of each other

with respect to set complement and reflection, where the complement of the set

A, denoted by Ac, consists of the elements not in A, and reflection of A is defined

as

Â = {w : w = −a, for b ∈ B}.

The dilation of set A by B is the complement of the erosion of Ac by the reflection

of the SE B (its rotation by 180o about its reference pixel) and vice-versa. That

is

(A⊕B)c = Ac ⊖ B̂,

and

(A⊖B)c = Ac ⊕ B̂.

The duality property is useful, particularly when the SE is symmetric, that is

B̂ = B, where B̂ is the reflection of B. Then we can obtain the dilation of an

image A by B simply by eroding the background (complement) of A (Figure 2.4

shows an example) with the same SE B.

Duality of opening and closing: Like dilation and erosion, opening and

closing are also duals of each other with respect to set complementation and
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(a) Original image (b) Image complement (c) (A ⊕ B)c

(d) Ac ⊖ B̂ (e) (A ⊖ B)c (f) Ac ⊕ B̂

Figure 2.4: Duality of dilation and erosion illustrated on a 2562 binary image of
squares of different width, using a square SE of width 2, where width=0.5∗(base
length-1).

reflection. The opening of set A by B is the complement of the closing of Ac by

the reflection of the SE and vice-versa. That is,

(A ◦B)c = Ac • B̂,

and

(A •B)c = Ac ◦ B̂,

where Ac is the complement of A and B̂ is the reflection of B. The duality of

opening and closing is shown in Figure 2.5.

Other properties: The basic morphological operators follow some other im-

portant properties (Gonzalez and Woods (2008), Glasbey and Horgan (1994)),

listed below:

1. Dilation is commutative, extensive and associative, i.e.

A⊕ B = B ⊕A,

A⊕ B ⊇ A,
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(a) Original image (b) Image complement (c) (A ◦ B)c

(d) Ac • B̂ (e) (A • B)c (f) Ac ◦ B̂

Figure 2.5: Duality of opening and closing illustrated on a 2562 binary image of
squares of different width, using a square SE of width 2, where width=0.5∗(base
length-1).

and

A⊕ (B ⊕ C) = (A⊕ B) ⊕ C.

2. Both dilation and erosion satisfy scalar multiplication, and erosion is anti-

extensive, i.e.

t(A⊕ B) = tB ⊕ tA

and

t(A⊖ B) = tB ⊖ tA,

where t > 0 is a scalar multiple, and

A⊖ B ⊆ A.

3. Dilation and erosion are both translation invariant, i.e.

(Ax ⊕ B) = (A⊕ B)x

and

(Ax ⊖B) = (A⊖B)x.
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4. Dilation and erosion are both monotonically increasing operators, i.e. if

A1 ⊂ A2, for fixed B

(A1 ⊕ B) ⊆ (A2 ⊕ B)

and

(A1 ⊖B) ⊆ (A2 ⊖ B).

5. Eroding A by B⊕C is the same as eroding A by B, then eroding the result

by C:

A⊖ (B ⊕ C) = (A⊖ B) ⊖ C.

6. Dilating A by two disks Br and Bs, one after another, is equivalent to

dilating with one larger disk whose radius is the sum of the radii r and s of

the smaller disks:

(A⊕ Br) ⊕Bs = A⊕Br+s

if Br and Bs are convex.

7. Eroding A by two disks Br and Bs, one after another, is equivalent to

eroding with one larger disk whose radius is the sum of the radii r and s of

the smaller disks:

(A⊖ Br) ⊖Bs = A⊖Br+s

if Br and Bs are convex.

8. Dilation and erosion satisfy certain distributivity properties with respect

to the set theoretic operations. Dilation distributes over union, but it does

not distribute over intersections:

A⊕ (B1 ∪B2) = (A⊕ B1) ∪ (A⊕ B2).

Erosion distributes from the right over intersection, i.e.

(A1 ∪A2) ⊖ B = (A1 ⊖B) ∩ (A2 ⊖B).

Relative to union, erosion satisfies left anti-distributivity, i.e.

A⊖ (B1 ∪B2) = (A⊖ B1) ∩ (A⊖ B2).

9. Opening A by two disks Br and Bs, one after another, is equivalent to
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opening with the larger disk only, i.e.:

(A ◦Br) ◦Bs = A ◦Bmax(r,s)

if Br and Bs are convex.

10. Opening and closing are increasing, i.e. if A1 is a sub-image of A2 then for

any SE B

(A1 ◦B) ⊆ (A2 ◦B)

and

(A1 •B) ⊆ (A2 •B).

11. The opening and closing are both translation invariant, i.e.

(Ax ◦B) = (A ◦B)x

and

(Ax •B) = (A •B)x.

12. Opening is anti-extensive, i.e. (A ◦B) is a sub-image of A and closing is an

extensive operator, i.e. (A◦B) ⊇ A, therefore the relation A◦B ⊆ A ⊆ A•B
always holds.

13. Opening and closing are both idempotent, i.e.

(A ◦B) ◦B = A ◦B

and

(A •B) •B = A •B.

This means they have a one-off effect.

2.3.1 Hit-or-miss-transform

The hit-or-miss transform provides powerful sets of tools for various applications

in image processing (Dougherty and Lotufo (2003)), including finding shapes in

an image. To describe the hit-or-miss transform we need to consider the SE as

a set with two components, i.e. B = (B1 ∪ B2), where B1 is the set formed

from elements of B associated with an object and B2 is the set of elements of B

associated with the corresponding background, and B1 and B2 are assumed to be
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disjoint (Dougherty and Lotufo (2003)). The effect of the hit-or-miss-transform

is the same as to erode the image A with B1 and the complement of the image

(Ac), with B2, and to take the intersection of those two eroded sets. It identifies

all the pixels in the image at which B1 matches with the image foreground and

at which B2 matches to the background. Notationally, the hit-or-miss-transform

is given by

A⊛B = (A⊖B1) ∩ (Ac ⊖ B2).

A point will be recognised as a ‘hit’ by the hit-or-miss transform if and only

if B1 translated to the point fits inside A, and B2 translated to the point fits

outside of A. Since the hit-or-miss operator operates by fitting the SE into both

the image and the complement of the image, it probes the relation between the

image and its complement relative to the SE.

2.4 Application of Binary Morphological Tech-

niques

Morphological operations are widely used in digital image processing, mainly as a

result of work by Matheron (1975) and Serra (1983). In general, opening followed

by closing has a smoothing effect. When there is additive and subtractive noise,

opening removes additive background noise and closing fills subtractive noise in

the foreground (Dougherty and Lotufo (2003)). Therefore these operations are

useful in practice. Some of the main applications of morphology are described

below.

Boundary extraction: As dilation is an extensive operation and erosion is an

anti-extensive operation, when applied to an image with a suitable SE, they can

both be used to detect boundaries of a binary image. Boundary extraction of a

binary image can be done simply by eroding the image by a suitable symmetric

SE and then subtracting the result from the original image, (Gonzalez and Woods

(2008)), giving the boundary of the set A by β(A) as:

β(A) = A− (A⊖ B).

According to Dougherty and Lotufo (2003), β(A) = A−(A⊖B) provides only the

internal boundary of an image. We may also be interested in the external bound-

aries, which in terms of the morphological operations are β(A) = (A ⊕ B) − A,

and β(A) = (A⊕B)− (A⊖B) which provide a boundary that straddles the ac-
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tual Euclidean boundary. This is also known as the morphological gradient (see

Section 2.6). Among many others, a recent application of boundary extraction

is in Mai and Wang (2008) who developed an effective image-processing method

to automatically extract the boundary of a shoe pattern. They used a histogram

thresholding technique to segment out a shoe pattern from the scanned input

image and then applied boundary extraction on the segmented image to auto-

matically detect and smooth the shoe-pattern boundary. Figure 2.6 shows the

internal and external boundaries as well as the morphological gradient of an 2562

binary image of squares.

(a) Original image (b) Eroded image (c) Dilated image

(d) Internal boundary (e) External boundary (f) Morphological Gradi-
ent

Figure 2.6: Effect of boundary extraction on a 2562 binary image of squares,
using a square SE of width 2, where width=0.5∗(base length-1).

Hole filling: Holes may be the result of various causes: manual manipulation,

e.g. removal of an object from an image, errors in the transmission of an image

or video, etc. Sometimes it may be important to fill holes or missing regions in

images. The hole is filled one pixel at a time by comparing the neighbourhood

of each pixel to other areas in the image. Hole filling in a set A can be done by

using the dilation, intersection and complement of the image.

Gonzalez and Woods (2008) define a hole as a background region surrounded

by a connected border of foreground pixels, and provide an algorithm which

starts with a point p in each hole and ends when all holes are filled. It begins by
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forming an array X0 of 0s (the same size as the array containing A), except that

the locations in X0 corresponding to the given point in each hole have been set

to 1, then it dilates X0 by a symmetric and convex SE B, and after each dilation

takes the intersection with Ac. The dilation tends to fill the whole area, whereas

the intersection with Ac limits the result to inside the region A. Mathematically,

the following procedure fills all the holes with 1s:

Xk = (Xk−1 ⊕ B) ∩ Ac, k = 1, 2, 3, . . . ,

using a symmetric SE B, if A is a set containing one or more holes, and X0 = {p}.
The algorithm terminates at iteration step k if Xk = Xk−1. The set Xk then

contains all the filled holes, and the set union of Xk and A contains all filled

holes and their boundaries, i.e. the filled object. The original image in Figure 2.7

contains images of size 1012. The first one contains some larger squares, the

second has relatively smaller squares and the third is obtained by subtracting

the second one from the first one. Lastly the holes have been filled, by using the

Matlab function ‘imfill’ with 4-connectivity (see Section 1.4).

(a) Image with
larger squares

(b) Image with
smaller squares

(c) (a) − (b) (d) Hole filling

Figure 2.7: Hole filling using morphological operators on a 1012 binary image of
squares.

Conditional dilation: As dilation expands the image, by repeated dilation the

input image can be grown unboundedly. Sometimes it is important to restrict

the growth. This can be achieved by conditional dilation. Dougherty and Lotufo

(2003) define conditional dilation of the image A which is a sub-image of C by

the SE B as:

A⊕C B =
⋃

a∈A

Ba ∩ C,

i.e. it is the union of all points in B, translated by all points in A, which overlap

C.
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Extraction of connected components: Binary images can be expressed as

the union of connected regions. If each of these regions is maximally connected,

i.e. is not a proper subset of a larger connected region within the image, then

the regions are called connected components of the image (Dougherty and Lotufo

(2003)). The extraction of connected components from a binary image plays a vi-

tal role in many automated image analysis applications. The procedure described

by Gonzalez and Woods (2008) for extracting connected components is as follows:

Again, the algorithm begins by forming an array X0 of 0s (of the same size as the

array containing A), except the locations in X0 corresponding to a given point p

in each hole have been set to 1. Then, the following iterative procedure finds all

the connected components:

Xk = (Xk−1 ⊕ B) ∩A,

if B is symmetric, A is a set containing one or more connected components and

X0 = {p}. The algorithm terminates at iteration step k if Xk = Xk−1. The set

Xk then contains the entire connected component.

Extraction of connected components is a widely used morphological technique.

For example, Auran and Malvig (1996) presented an algorithm for the segmenta-

tion of echo clusters within a dynamic 3-D sonar image using the concept of cell

connectivity between sonar beams.

Convex hull: A convex set is a set of elements from a vector space such that

all the points on the straight line between any two points of the set are also

contained in the set. Gonzalez and Woods (2008) describe the following sequence

of morphological operations for obtaining the convex hull of a set A in an image:

Let Bi, i = 1, 2, . . . , n, be a small set of SEs. The procedure starts with an

initial image X i
0 = A and consists of implementing the operation:

X i
k = (Xk−1 ⊛ Bi) ∪A, i = 1, 2, 3, . . . and i = 1, 2, 3, . . . .

When the procedure converges, i.e. when X i
k = X i

k−1, then let Di = X i
K . Then

the convex hull of A is

c(A) =
n
⋃

i=1

Di,

i.e. the method iteratively applies the hit-or-miss-transform to A using B1 until

there is no more change. The procedure is repeated with B2 until no further

changes occur, and so on and the convex hull is the union of the results.
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Thinning: One of the most common applications of morphological operations is

thinning objects. This mainly depends on the hit-or-miss-transform (Dougherty

and Lotufo (2003)). The thinning of a set A by a SE B is denoted by A⊗B, and is

defined as the difference between the original image and its hit-or-miss-transform,

i.e.

A⊗ B = A− (A⊛ B) = A ∩ (A⊛ B)c.

That is, the thinning operation removes the part of A which has been detected

by the hit-or-miss-transform from B. For a sequence of SEs, B = B1, B2, . . . Bn,

thinning can be carried out recursively (Gonzalez and Woods (2008)) as

A⊗ B = ((· · · ((A⊗B1) ⊗B2) · · · ) ⊗ Bn).

So first A is thinned by B1, then the resulting set is thinned by B2, and so on

until A is thinned with one pass of Bn. Thinning may be used to identify pixels

that may be removed without affecting connectivity.

Thickening: Thickening is just the morphological dual of thinning, denoted by

A⊙ B and defined as

A⊙B = A ∪ (A⊛B).

That is, the thickening operation adds the part of A which has been detected by

the hit-or-miss-transform from B (Glasbey and Horgan (1994)). However thick-

ening is often done by thinning the background of the set A and then taking the

complement of the result. For a sequence of SEs B = B1, B2, . . . , Bn, thickening

can be carried out sequentially (Gonzalez and Woods (2008)) as

A⊙ B = ((· · · ((A⊙B1) ⊙B2) · · · ) ⊙ Bn).

Skeletonisation: Skeletonisation is the process of reducing the foreground re-

gion of an image by removing as many pixels as possible without affecting the

general shape of the image, i.e. after pixels have been removed, the remaining

image should largely preserve the extent and connectivity of the original image.

According to Glasbey and Horgan (1994) the skeleton should fulfil some basic

requirements, such as (a) preserve the topology of the object, (b) be only one

pixel thick and (c) be in the middle of the object. Figure 2.8 shows an arbitrary

shaped binary image of size 101×101, its boundary and skeleton, obtained using

the Matlab function ‘bwmorph’.
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(a) Original image (b) Object boundaries (c) Skeletonisation

Figure 2.8: Effect of skeletonisation on a 1012 binary image.

Pruning: Sometimes a skeletonised image contains some barbs, i.e. some small

features sticking out from the main skeleton. Very often it is desirable to remove

those small barbs if they are not considered to be part of the true structure of

an object. They can be removed by an operation called debarbing or pruning.

Pruning can be regarded as a form of thinning, since it involves removing pixels

on the basis of some criterion. It is useful if the skeleton is affected by some small

features that are not of interest or are due to noise (Glasbey and Horgan (1994)).

2.5 Morphological Operations for Grey Scale Im-

ages

A grey scale image fij can be regarded as a 3−D stack of binary sets, because

an image defined by a function in two-dimensions produces a map in the 3rd

dimension (Glasbey and Horgan (1994)). The pixel intensities provide the height

in the third dimension. According to Dougherty and Lotufo (2003) the grey scale

image is a real-valued function defined in Euclidean space or on the Cartesian

grid. For mathematical morphology in three-dimensions, we need to define a SE

bij of the same format. So both fij and bij are 2−D functions defined on 3−D
sets, assigning intensity values for each distinct coordinate pair (i, j), and they

are assumed to be discrete (Gonzalez and Woods (2008)).

First it is useful to notice how translation and reflection work in the case of

grey scale images. The translation of a set B by a point z = (z1, z2), denoted by

Bz, is defined as

Bz = {w : w = b+ z, for b ∈ B},

i.e. coordinates (x, y) of B have been translated as (x + z1, y + z2) to form Bz.
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The reflection of the set B is denoted by B̂ and is defined as

B̂ = {w : w = −b, for b ∈ B}.

Reflection is the rotation of B by 180o about its reference pixel, i.e. if B has

co-ordinates (x, y), b̂ will have co-ordinates (−x,−y).

2.5.1 Grey scale dilation

The dilation of image f by a flat 2-D SE b at any location (i, j) is defined as the

maximum value of the image in the region outlined by the reflection of the SE

(b̂), when the origin of b̂ is at (i, j) (Gonzalez and Woods (2008)). The dilation

of f by b is denoted as

(f ⊕ b)ij = max
(k,l)∈b

{f(i− k, j − l)},

where (k, l) = (0, 0) is the reference pixel of b. The reference pixel of the reflected

SE visits every pixel in f , and the dilation is computed by taking the maximum

values of the intensity of f in every neighbourhood of (x, y) coincident with b

(Glasbey and Horgan (1994)). Dougherty and Lotufo (2003) define the dilation

of a grey scale image f by a SE b as

(f ⊕ b)i,j = min{y : −b̂+ y ≥ f},

i.e. consider the negative of the reflected SE and find the minimum by which it

can be raised and still remain beneath signal f . The effect of grey scale dilation

is shown in Figure 2.9.

Gonzalez and Woods (2008) defines dilation of f by a non-flat SE bN as

(f ⊖ bN)i,j = max
(s,t)∈bN

{f(i− s, j − t) + bN (s, t)},

which adds every value of bN from the input image. A non-flat SE is rarely used

in practice because of its computational burden.

2.5.2 Grey scale erosion

The erosion of a grey scale image f by a flat SE b at any specific location is defined

as the minimum value of the image in the region coincident with the SE when

its origin is also set at that location (Gonzalez and Woods (2008)). Notationally,
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the erosion of f by b is given by

(f ⊖ b)ij = min
(k,l)∈b

{f(i+ k, j + l)}.

Thus, the erosion of a grey scale image is the process of transforming f by taking

the minimum value of f in the neighbourhood about each pixel of f corresponding

to the SE placed with its reference pixel at pixel (i, j) (Glasbey and Horgan

(1994)). Erosion can be defined in terms of the dual of dilation as

(f ⊖ b) = (f c ⊕ b̂)c,

i.e. eroding f by b is the same as the complement of dilating f c by the reflection

of b. Dougherty and Lotufo (2003) define the erosion of a grey scale image f by

a SE b as

(f ⊖ b)i,j = max{y : b̂+ y ≥ f},

i.e. it finds the maximum difference between f and the translated SE over the

domain of b̂.

Gonzalez and Woods (2008) defines erosion of f by a non-flat SE bN as

(f ⊖ bN )i,j = min
(s,t)∈bN

{f(i+ s, j + t) − bN(s, t)},

which subtracts every value of bN from the input image. The general effects

of grey scale dilation and erosion are clearly described in Gonzalez and Woods

(2008). Since grey scale dilation by a flat SE b computes the maximum intensity

value of f in every neighbourhood of (i, j) coincident with b, the bright features

are thickened and the intensities of the dark features are reduced. Small dark

spots in images disappear as they are ‘filled in’ by the surrounding intensity value.

Small bright spots become larger spots. Since grey scale erosion computes the

minimum intensity value of f in every neighbourhood of (i, j) coincident with b,

the sizes of bright features are reduced and the sizes of dark features are darkened

and widened. Small bright spots disappear as they are eroded away down to the

surrounding intensity value, and small dark spots become larger spots. So in

general the eroded grey scale image is darker than the original image, and the

dilated grey scale image is brighter than the original. For both dilation and

erosion, the effect is most marked at places in the image where the intensity

changes rapidly and regions of fairly uniform intensity are largely unchanged

except at their edges.

Figure 2.9 shows a grey scale 2562 image of ellipses and the effect of dilating
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and eroding with a flat disk of radius 10. In general the dilated grey scale image is

brighter than the original image. We observe that the bright features are thicker

and darker features are reduced in the dilated image. The eroded grey scale image

is darker than the original as the darker parts have expanded and the brighter

parts have shrunk.

(a) Original image (b) Dilated image (c) Eroded image

Figure 2.9: Grey scale dilation and erosion of a 2562 grey scale image of ellipses
of random radii, shapes and sizes, by a flat disk of radius 10.

2.5.3 Grey scale opening and closing

As for binary images, grey scale opening and closing are also based on morpholog-

ical dilation and erosion. The opening of an image is the collection of foreground

parts of an image that fit a particular SE b. The grey scale opening is analogous

to its definition in the binary setting (Gonzalez and Woods (2008)), i.e. erosion

of f by b and then dilation of the resulting image by the same SE, namely,

f ◦ b = (f ⊖ b) ⊕ b. (2.17)

Dougherty and Lotufo (2003) define opening in terms of fitting, i.e. opening is

the maximum over all morphological translations of the SE that fit underneath

the input image,

f ◦ b =
∨

{bz + y : bz + y ≤ f}, (2.18)

where bz is the translation of b by z. A horizontal translation of f by x is

denoted as fx(i) = f(i − x) and a vertical translation of f by y is defined by

(f + y)(z) = f(z)+ y. Morphological translation is the combination of horizontal

and vertical translation and is expressed as (fx + y)(z) = f(z − x) + y.

A practical description of (2.18) is given by Dougherty and Astola (1994), in

terms of fitting, as sliding the SE along beneath the input image and at each

point recording the point on the SE’s translation that is highest at that point.

45



Similarly, the closing of an image is the collection of background parts of an

image that fit a particular SE, defined as dilation followed by erosion,

f • b = (f ⊕ b) ⊖ b. (2.19)

Grey scale closing can be defined in terms of its duality with opening as

f • b = (f c ◦ b̂)c, (2.20)

i.e. the closing is the same as the complement of the opening of the image back-

ground (f c) by the reflection of the same SE. Closing filters an image from above,

whereas opening filters from below. In terms of fitting, closing can be interpreted

as sliding the SE down from above the image and at each point recording the

point on the SE’s reflection that is highest at that point. The opening of a func-

tion f by a convex set b cuts down the peaks of f , whereas the closing of f by b

fills up the valleys of f .

Figure 2.10 illustrates grey scale opening and closing of an image of ellipses,

using a disk SE of radius 10. In the opened image all ellipses with semi-minor

axis smaller than 10 have disappeared and the brightness of the larger ones is

reduced, whereas in the closed image the brightness of all ellipses has increased

so the opened image is generally darker than the closed image.

(a) Original image (b) Opened image (c) Closed image

Figure 2.10: Grey scale opening and closing of a 2562 grey scale image of ellipses
of random radii, shapes and sizes, by a flat disk of radius 10.

Properties of the basic grey scale morphological filters: Grey scale di-

lation, erosion, opening and closing satisfy the following properties:

1. Both grey scale dilation and erosion are translation invariant:

(fz ⊕ b) = (f ⊕ b)z and (fz ⊖ b) = (f ⊖ b)z.
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2. Dilation is commutative:

(f ⊕ b) = (b⊕ f).

3. Dilation and erosion are duals:

(f ⊕ b) = (f c ⊖ b̂)c and (f ⊖ b) = (f c ⊕ b̂)c.

4. Both grey scale opening and closing are translation invariant:

(fz ◦ b) = (f ◦ b)z and (fz • b) = (f • b)z.

5. Opening lies beneath the original image, i.e. it is anti-extensive, and closing

lies over the original image, i.e. it is extensive:

f ◦ b ≤ f and f • b ≥ f,

so the following relation is always true:

f ◦ b ≤ f ≤ f • b.

6. If f1 ≤ f2, then the opening of image f1 by a SE b is a subset of the opening

of image f2 by the same SE, i.e.

f1 ◦ b ≤ f2 ◦ b.

7. If f1 ≤ f2, then the closing of image f2 by a SE b is a subset of the closing

of image f1 by the same SE, i.e.

f1 • b ≤ f2 • b.

8. Opening and closing are both idempotent, and have a one-off effect i.e.

(f ◦ b) ◦ b = f ◦ b and (f • b) • b = f • b.

47



2.6 Some Applications of Grey Scale Morphol-

ogy

Morphological gradient

The gradient of a scalar field is a vector field which indicates the greatest rate of in-

crease of the scalar field, and whose magnitude is the greatest rate of change. The

gradient of the function f(x) of a finite dimensional vector (x = x1, x2, · · · , xn) ∈
R
n is defined by

∇f =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)

.

In image processing the gradient plays a vital role in edge detection. A higher

gradient suggests a more rapid light-to-dark (or dark-to-light) change in the grey

scale case (see Dougherty and Lotufo (2003)). Although a number of gradients

exist, the most commonly used gradient in image processing is the morphological

gradient.

Since dilation thickens regions in an image and erosion shrinks them, by sub-

tracting them we obtain a non-negative quantity, known as the morphological

gradient. Let f be the original image and b1, and b2 be two SEs. The morpho-

logical gradient grad(f) is defined by

gradb1,b2(f) = (f ⊕ b1) − (f ⊖ b2). (2.21)

as for the binary image. Equation (2.21) indicates that it is essentially the sum

of two partial gradients, namely, the external gradient and the internal gradient,

referred to in the binary case as the external and internal boundary of an image

(see Section 2.4). The external gradient is defined by

gradextb1
= (f ⊕ b1) − f,

and the internal gradient is

gradintb2 = f − (f ⊖ b2).

The SEs b1 and b2 may be the same.

Top-hat transforms

Hat transformations play a pivotal role in image pre-processing. The opening of

a grey scale image lies beneath the original image. Subtracting the opened image
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from the original image is known as the open top-hat transform, or simply the

top-hat transform in morphology, i.e.

f ◦̂g = f − (f ◦ g).

Since opening is anti-extensive, opening lies beneath f and f ◦̂g is always non-

negative.

The complementary operator to the open top-hat transform is the close top-

hat transform, known as the bottom-hat transform, defined as

f •̂g = (f • g) − f.

Since closing is extensive, the grey scale closing lies over the original image, so

f •̂g is always non-negative. Figure 2.11 contains a 200 × 500 grey scale image

of a fish (available at http://www.peipa.essex.ac.uk) and shows the effect of the

top-hat transform and the bottom-hat transform.

The top-hat transformation is used to reduce uneven illumination. It high-

lights the bright features of the image, as opening eliminates the bright features

from the image and they appear again when the opened image is subtracted from

the original image. Similarly, bottom-hat transformation highlights the dark fea-

tures of the image. A non-flat ellipsoid SE with radius 10 and height 2 was used

where the radius determines the shape of the ellipsoid and height specifies its

colour. It is clear from Figure 2.11 that top-hat transformation eliminates the

uneven distribution of the dark and bright features of the images as well as indi-

cating brighter regions of the fish, and bottom-hat transformation indicates the

darker parts of the fish. We make use of these transformations in Chapters 6

and 7, for improved texture classification.

Morphological reconstruction:

Morphological reconstruction is a powerful morphological operation using the con-

cept of connectivity (see Section1.4) in images, both for binary and grey scale,

instead of a SE. It can be defined either by the thresholding superposition prin-

ciple or can rely on geodesic dilation and geodesic erosion (Gonzalez and Woods

(2008)). Morphological reconstruction has many applications including convert-

ing a complex image background to uniform intensities.

Binary reconstruction: To define morphological reconstruction by thresh-

olding superposition, Vincent (1993) defined two binary images I and J on the

same discrete domain D, such that J ⊆ I. I is called the mask image and J
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(a) A fish image of size 200 × 500

(b) Top-hat transform of (a)

(c) Bottom-hat transform of (a)

Figure 2.11: Effect of top-hat and bottom-hat transformation of an image of a
fish, using a ellipsoid of radius 10 and height 2 (see Matlab function ‘strel’ with
option ‘ball’).

is the marker. The reconstruction ρI(J) of I from marker J is the union of the

connected components of I which contain at least one pixel of J , i.e.

ρI(J) =
⋃

J∩Ik 6=∅

Ik. (2.22)

Very often reconstruction is defined in terms of geodesic distance. The geodesic

distance between two pixels p and q in a given set is the length of the shortest
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path joining p and q which is included in the given set. Gonzalez and Woods

(2008) define geodesic dilation of size n ≥ 0 of the marker image J with respect

to the mask I, denoted by ρ
(n)
I (J), as

ρ
(n)
I (J) = ρ

(1)
I [ρ

(n−1)
I (J)], (2.23)

with ρ
(0)
I (J) = J , and ρ

(1)
I (J) is the geodesic dilation of size 1 of the marker J

with respect to the mask I, defined as

ρ
(1)
I (J) = (J ⊕B) ∩G, (2.24)

where B is a suitable SE. That is, the reconstruction of I from J is obtained

by iterating elementary geodesic dilations of J inside I until there is no change.

This can be defined in terms of geodesic erosion as well.

Grey scale reconstruction: In terms of thresholding superposition, Vincent

(1993) defined two grey scale images I and J in the same domain D, taking

values in the discrete set {0, 1, . . . , N − 1} such that J ≤ I (i.e., for each pixel

p ∈ DI , J(p) ≤ I(p)). The grey scale reconstruction ρI(J) of I from marker J is

given by

ρI(J) = max{k ∈ [0, N − 1] | p ∈ ρTk(I)(Tk(J))} ∀p ∈ D, (2.25)

where the Tk(I) are k successive thresholds of I such that

Tk(I) ⊆ Tk−1(I) ∀k ∈ [1, N − 1].

In terms of geodesic dilation, grey scale reconstruction can be obtained by iter-

ating grey scale dilations of J under I until there is no change, i.e.,

ρI(J) =
∨

n≥1

∂
(n)(J)
I . (2.26)

τ-opening: τ -opening is a union of parametrised openings in which parameters

for each opening are individually defined and a SE can be parametrised relative to

both size and shape (Chen and Dougherty (1991)). If the aim is to pass portions

of an image conforming to any one of a number of shape primitives, a single

opening will not be appropriate as it will pass only parts of the image which

conform to the shape of the SE. Such an effect can be accomplished by using a

filter composed of a number of different openings. Dougherty and Lotufo (2003)
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define τ -opening as a morphological filter such that

Ψ(A) =
n
⋃

k=1

A ◦Bk, (2.27)

for some class B = {B1, B2, . . . , Bn} of SEs.

2.7 Conclusion

This chapter provides a condensed description of some widely used morphological

techniques for digital image processing. We illustrate most techniques with ex-

ample images. Grey scale opening is used extensively in most of the subsequent

chapters in the thesis, and top- and bottom-hat transformations are used in Chap-

ters 6 and 7 as a means of image pre-processing to eliminate the uneven intensity

variation in the real images. The next chapter provides a discussion of texture

feature extraction and classification techniques, before focusing on morphological

granulometry in Chapter 4.
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Chapter 3

Overview of Texture Analysis

and Classification

In this chapter, we define texture and discuss different approaches to analysis of

texture images as well as classification rules.

3.1 Introduction

Owing to the diversity of natural and artificial textures (Jain and Farrokhnia

(1990)) there is no generally agreed definition of texture and no unique math-

ematical model to synthesise texture (Nixon and Aguado (2002)). Some of the

definitions are perceptually motivated and others are driven completely by the

application (Tuceryan and Jain (1998)). Texture is an important cue in object

recognition as it can tell something about the material from which the object is

made (Petrou and Garćıa-Sevilla (2006)). Gonzalez and Woods (2008) defined

texture as a surface property which gives combined information on the smooth-

ness, coarseness, and regularity of objects.

Texture contains important information about the structural arrangement of

surfaces and their relationship to the surrounding environment. Texture is some-

thing which we feel when we interact with our surroundings, either by touching

or observing an object or an image, since the sense of touch cooperates with the

eyes to give a better understanding of the surroundings. Texture is characterised

not only by the grey value at a given pixel, but also by the grey value ‘pattern’

in a neighbourhood surrounding the pixel.

The statistical approach defines texture by a quantitative measure of the ar-

rangement of intensities in a region. Dougherty et al. (1992) define it by percep-

tual descriptors, such as ‘smooth’, ‘coarse’, or ‘regular’, or as a pattern comprised
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of repeated texture primitives or texture elements (texels). Image primitives are

the basic elements of the image, i.e. the basic objects of which an image is com-

posed. A more formal definition of texture, given by Livens et al. (1997) in terms

of neighbourhoods, is as the set of local neighbourhood properties of the grey

levels of an image region as well as their spatial relationships.

Tuceryan and Jain (1998) have accumulated an archive of definitions of tex-

ture, one of which is mentioned here. An image texture is non-figurative and

cellular. It is described by the number and types of its primitives repetitions

and the spatial organisation or layout of its primitives. The repetitiveness of the

texels (the texture unit) determines the type of texture and decides the texture

analysis approach (Jain (1989)). A fundamental characteristic of texture is that

it cannot be analysed without a frame of reference for the primitive being stated

or implied. For any smooth grey-tone surface, there exists a scale such that when

the surface is examined, it has no texture. Then as resolution increases, it takes

on a fine texture and then a coarse texture. Figure 3.1 shows two binary images,

of which (b) is the (digitised version of the) primitives of image (a).

(a) Image of disks (b) Primitive of image (a)

Figure 3.1: An image and its primitive.

In computer graphics there are two major types of textures, i.e. deterministic

or regular and statistical or irregular textures (Tuceryan (1994)). Deterministic

texture is created by repetition of a fixed geometric shape such as a circle or

square. Examples of deterministic textures are patterned wallpaper and bricks.

Texels are represented by a placement rule which gives an arrangement of the

primitives which yields the texture. Statistical textures are created by changing

patterns with fixed statistical properties. In these textures the placement of the

texture primitives is random and irregular, and the placement rule description for

such textures may be extremely complicated. Most natural textures like wood or

stone, grass, canvas are examples of statistical textures. Statistical textures are

typically represented in terms of spatial frequency properties. In Figure 3.2, (a),
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(d) and (f) represent some deterministic textures whereas (b), (c) and (e) show

statistical texture images.

(a) Bricks (b) Pressed cork (c) Straw

(d) Herringbone weave (e) Bubbles (f) Unknown

Figure 3.2: Some example textures from the Brodatz album (Brodatz (1966)).

In this work we are particularly interested in texture images which result from

a material subject to some sort of damage or decay, often as a result of organic

processes, e.g. textured images of corrosion of metal.

Texture analysis is primarily concerned with three major issues, i.e. texture

classification, texture segmentation, and texture synthesis. Texture classification

involves identifying a given textured region with a class in a given set of texture

classes, whereas texture segmentation is concerned with automatically determin-

ing the boundaries between various texture regions in an image, i.e. segmenting

an image into regions according to the textures of the regions. More specifically, a

texture classification system involves two steps (Masotti and Campanini (2008)):

a feature extraction step, in which a set of texture features is extracted from the

image under study, and a classification step, in which a texture class membership

is assigned to it according to the extracted texture features.

Texture synthesis is the process of algorithmically constructing a large digital

image from a small digital sample image by using its structural content (Paget

and Longstaff (1998)). It is a way to create textures, by inferring the parameters

of a real image texture and using them to create new texture images (Petrou and

Garćıa-Sevilla (2006)).
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A great deal of work has been done on texture analysis over the past few

decades. The existing methods of texture analysis can be characterised as statis-

tical approaches, geometrical approaches, model-based approaches and transform-

based methods. Model-based approaches include Markov random fields and auto-

regressive models (Harrison et al. (2008)). Statistical methods include features

derived from the histogram, gradient, run-length matrix, and co-occurrence ma-

trices. Structural or geometrical approaches mainly consist of mathematical mor-

phology. Transform-based methods describe the textural properties of the objects

by features derived from transformations used in image analysis, e.g. the Fourier

transform, Gabor transform, and wavelet transform. Many authors (e.g. Jafari-

Khouzani and Soltanian-Zadeh (2005), Xiao and Wu (2007), Wang and Yong

(2008)) refer to this as multi-resolution texture analysis, as the transformations

represent the image at different scales. They transform a texture image into a

local frequency representation by convolving the original image with a bank of

filters with some tuned parameters. However, very often the existing methods

match the criteria of more than one approach.

This chapter gives a condensed description of the existing methods of texture

analysis. Some of the most widely used texture analysis methods are described,

with their relative performance.

3.2 Morphological Granulometry on Texture

Analysis

Morphological granulometry, introduced by Matheron (1975), is extensively used

in texture analysis and also in this thesis. A binary image is considered to be

a collection of grains (Dougherty and Pelz (1991)), and granulometry sieves the

grains through filters of increasing size. Grains with size smaller than the holes

(filters) drop out and only the grains with larger sizes will remain. The shape

of the holes is determined by the shape of the structuring elements. As a result,

the underlying image that remains successively decreases in volume. A proba-

bility distribution function can be generated using the rate of decrease, and its

moments, known as granulometric moments, are used to characterise the image.

The granulometric moments have been extensively used to extract textural in-

formation from images. A detailed description of morphological granulometry

is given in Section 4.1. Here we mention some applications of morphological

granulometry for texture analysis.

Recently, Mavilio et al. (2010) used granulometric moments to characterise the
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evolution of a dynamic process concerning paint drying. The pattern spectrum of

the granular distribution of the grey scale temporal history of the speckle pattern

(THSP) images was obtained. The first four granulometric moments (mean, stan-

dard deviation, skewness and kurtosis) were obtained from each THSP image and

were used as texture features. The Mahalanobis distance (Mahalanobis (1936))

among the granulometric features was used to measure the textural difference

between THSP images of drying paint.

Kyriacou et al. (2009) used pattern spectrum texture features to classify ultra-

sound images of atherosclerotic carotid plaques either as asymptomatic or symp-

tomatic. Two different classifiers, i.e. a probabilistic neural network and support

vector machines were used and the highest classification accuracy of 73.7% was

obtained for support vector machines. Granulometric moments were used by

Theera-Umpon and Dhompongsa (2007) to analyse white blood cell images using

features extracted from the cell nuclei. They applied both the Bayes classifier

and a neural network classifier and found that better classification was achieved

by using the neural network classifier.

Dı́az et al. (2007) carried out granulometric analysis on corneal endothelium

specular images by means of the germ-grain model. If the granulometry is ap-

plied to the complement of a set they referred to it as anti-granulometry. They

applied anti-granulometry to images composed of inscribed circles for controls

and also pathological endothelia, and showed that the anti-granulometric size

distribution of the inscribed circles discriminated well between the controls and

the pathological endothelia.

McKenzie et al. (2003) used granulometric moments as texture features and

developed parallel evolution functions (PEFs) using multiple regression mod-

elling. The methodology was developed on computer-generated images where

evolution of the artificial images depended explicitly on some evolution parame-

ters which were set up as a known function of time before generating the images.

The synthetic images were then used to relate granulometric moments to evolu-

tion parameters. Back-prediction was used to determine the evolution time of a

new image based on the artificial image model and the observed granulometric

moments from the new image. For classifying a sequence of corrosion images the

PEF approach was found to be especially useful for small test set sizes. The work

in this thesis builds directly on McKenzie et al. (2003).

Granulometry was successfully used in estimating the shape of a random pat-

tern by Batman and Dougherty (2001), where the random pattern was deter-

mined by a multivariate probability distribution, and they used granulometric
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features to estimate the parameters of the multivariate distribution. Granulo-

metric size distributions and their moments are widely used as size-shape de-

scriptors, and have proved very useful in medical imaging, materials sciences,

and character recognition (Goutsias and Batman (2001)). Dougherty et al. (1993)

formulated linear granulometric moments of additive and subtractive binary im-

ages. Dougherty et al. (1992) applied local binary granulometries to 10 Brodatz

textures and achieved overall 99.8% accuracy (measured by number of correctly

classified pixels as a proportion of the total number of pixels to be classified).

They also used classification accuracy to determine a minimum window size re-

quired for effective classification. They examined six different window sizes, and

found that the highest accuracy (98%) was obtained with a 20-pixel window size.

Ayala and Domingo (2001) used the spatial size distributions as shape detectors.

Dougherty and Pelz (1991) used size distribution statistics for process control to

analyse electro-photographic images. Size distributions were successfully used by

Maragos (1987) to study shape-size complexity, multi-scale shape representation,

and symbolic image modelling.

3.3 Transformation-based Methods

Transformation-based methods mainly comprise the Fourier transform, Gabor

transform and wavelet transform, the second two of which are multi-resolution

methods. Some variations on Gabor filters and wavelets transforms are also

mentioned.

3.3.1 Fourier transform

There are many ways of transforming image data into alternative forms that are

more amenable for texture analysis. The Fourier transform (FT) is the most

common image transform that takes an image in the spatial domain and trans-

forms it into the frequency domain. This is an analysis of the global frequency

content in the image, but many applications require the analysis to be localised

in the spatial domain. This is handled by introducing spatial dependency into

the Fourier transform (Tuceryan and Jain (1998)), which allows extraction of

localised texture information.

The short-time FT is a Fourier-related transform used to determine the sinu-

soidal frequency and phase content of local sections of an image as it changes over

time. The FT (a one-dimensional function) of the resulting signal is taken as a
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window is slid along the time axis, producing a two-dimensional representation

of the signal (Gonzalez and Woods (2008)). Mathematically, this is written as:

Fw(u, ξ) =

∫ ∞

−∞

f(t)w(t− ξ)e−jωt dt, (3.1)

where w(t) is a window function, usually a Hann window or Gaussian ‘hill’ cen-

tred around zero, f(t) is the signal to be transformed, and j =
√
−1.

The discrete Fourier transform (DFT) is a sampled Fourier transform and

therefore does not contain all frequencies forming an image, but only a set of

samples which is large enough to fully describe the spatial domain image. The

number of frequencies corresponds to the number of pixels in the spatial domain

image, i.e. the image in the spatial and Fourier domains are of the same size

(Gonzalez and Woods (2008)).

For an image fxy of size M ×N , the two-dimensional DFT is given by:

Fw(k, l) =
1

MN

M
∑

i=1

N
∑

j=1

fije
{−j2π( ik

M
+ jl

N
)}, (3.2)

where fij is the image in the spatial domain, the exponential term is the basis

function corresponding to each output point Fw(k, l) in Fourier space, and the

discrete variables k and l take values 0, 1, 2, . . . ,M and 0, 1, 2, . . . , N respectively.

The FT plays a pivotal role in image processing applications, including en-

hancement, analysis, restoration, and compression as well as in texture analysis,

and many texture analysis techniques (such as the Gabor filter and wavelets)

are based on the FT. Some recent applications of FT in texture analysis are

mentioned below:

Liao and Chung (2010) introduced the composite Fourier domain (CFD) which

was constructed by taking the local FT of the original texture images and a global

multi-dimensional FT was then applied to the local FT images to obtain the multi-

dimensional frequency domain coefficients. A null-space based linear discriminant

analysis (nLDA) was derived from the traditional LDA and was applied to the

CFD to find the optimal discriminant sub-space in CFD. Higher classification

accuracy was obtained using a support vector machine with a radial basis kernel

for Brodatz texture images.

The FT was also found useful for segmentation of dynamic textures in Li et

al. (2009). The authors computed the phase spectrum for each of the dynamic

texture images using a 3-D discrete FT and then applied 3-D inverse fast FT

on the phase spectrum to obtain the reconstructed texture images, which were
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then smoothed using an average filter. Finally, binarisation was applied to the

smoothed reconstructed images to obtained segmented images.

A rotation-invariant texture classification technique was proposed in Xiao et

al. (2007). They rotated the images of interest from 0◦ to 180◦ in 10◦ increments

and used the Hough transform to convert the rotation image to a translation

in the parameter space, by isolating features of a particular shape within the

image. Rotation-invariant features were obtained by applying 2-D FT to the

Hough transformed images. The features were able to characterise the texture

images.

Xiao and Wu (2007) proposed a rotation-invariant texture classification tech-

nique based on the Radon and Fourier transforms. They first calculated the

Radon transform of an image and then the FT was computed to extract the cor-

responding rotation-invariant features. The Radon transform of an image fxy is

defined as its integration along a particular line defined by a normal distance r

from the origin and normal angle θ. This gives the corresponding Radon trans-

form point R(r, θ) as

R(r, θ)fxy =

∫ ∞

∞

∫ ∞

∞

fxy∂(r − x cos θ − y sin θ)dxdy, (3.3)

where −∞ < r < +∞ and 0 < θ < π. By using a 2D FT, rotation-invariant

features are produced. Finally to classify the textures they used a k-nearest

neighbour classifier. They tested their method on 15 Brodatz texture images,

and obtained 100% classification accuracy for almost all of them in the case of

no noise, and the method was robust to additive white noise.

A FT was used successfully to detect structural defects in fabric in Chan and

Pang (2000), where the defects were of four types, i.e. double yarn, missing yarn,

broken fabric and variation in yarn density. Jing et al. (2009) developed a face

recognition algorithm based on an angular FT. The algorithm first determines an

optimum angle to use to obtain the angular FT of the original images. Fisher-face

techniques were applied to extract discriminative texture features from the trans-

formed images. The method was applied to the well-known ORL and FERET face

databases and satisfactory classification results were obtained for both datasets

using a nearest neighbour classifier.

3.3.2 Gabor filters

Gabor (1946) first introduced the windowed Fourier transform, which represents

a signal in a joint time-frequency domain (Debnath (2002)). These functions,
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named as Gabor functions, have been used extensively in their 2-D form in tex-

ture analysis of digital images and are used for various kinds of image analysis

applications. They have been used for texture segmentation, face detection and

recognition, text detection and localisation in document images, and script iden-

tification in multi-script scenarios, for example. In the space domain, a Gabor

filter corresponds to a sinusoidal wavelet within a Gaussian envelope, and local

image texture is described by the Gabor filter that gives a maximum image-filter

convolution (Pasternack et al. (2009)).

A Gabor function in 1-D is defined by Petrou and Garćıa-Sevilla (2006) as:

g(u; u0, ω0, σ) ≡ exp

{−(u− uo)
2

2σ2

}

+ jω0u, (3.4)

and the Fourier transformation of equation (3.4) is given by

G(u; uo, ω0, σ) =
√

2πσ exp

{

−j(ω − ω0)u0 +
σ2(ω − ω0)

2

}

, (3.5)

where u is the spatial co-ordinate, ω0 is the sinusoidal plane wave of some fre-

quency, ω is the observed spatial frequency, and σ is the standard deviation of the

Gaussian envelope along the x-axis. Gabor filters provide a multi-resolution ap-

proach to texture characterisation (Jafari-Khouzani and Soltanian-Zadeh (2005)).

The Gabor function was extended to two dimensions by Daugman (1980). A

2-D Gabor function is a harmonic oscillator, which is a sinusoidal plane wave of

some frequency and orientation within a Gaussian envelope, whose frequency, ori-

entation and bandwidth are controlled by its parameters (Fogel and Sagi (1989)).

A canonical Gabor filter in the spatial domain is given as:

g(u, v) = exp

[

−1

2

(

u2

σ2
u

+
v2

σ2
v

)]

cos (2πu0u+ ψ) , (3.6)

where u0 is the sinusoidal plane wave of some frequency, σu and σv are the stan-

dard deviations of the Gaussian envelope along the x-axis and y-axis respectively,

and ψ is the phase of the sinusoidal plane wave along the x-axis (i.e. the 0o ori-

entation). When ψ = 0, the FT of the Gabor filter in (3.6) is given by

G(u, v) = 2πσuσv

[

exp

(

−1

2

(

(u− u0)
2

σ2
u

+
v2

σ2
v

))

+ exp

(

−1

2

(

(u+ u0)
2

σ2
u

+
v2

σ2
v

))]

.

(3.7)

Equations (3.4) and (3.6) can be thought of as a family of functions for dif-

ferent pairs of values of ω0 and u0, so they represent an image in the time and
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frequency domains simultaneously and become suitable to represent any image

fxy in terms of this family of functions (Jain and Farrokhnia (1990)).

To analyse an image in terms of Gabor filters, first the FT of the image is

taken, then the result is multiplied by a Gaussian window centred at various fre-

quencies, and then the inverse FT of the results is taken. The central frequencies

of the Gaussian windows are taken in such a way that all frequency bands of the

image are covered (Petrou and Garćıa-Sevilla (2006)).

The Gabor transform was applied to target echo-signals and the trace of the

Gabor transform coefficient matrix and the eigenvalues were used to describe the

textural information of the target echo-signals in Yang et al. (2009). Pasternack

et al. (2009) used analogue optical Gabor-like filters to analyse biological sample

textures. They used Gabor filters to characterise non-spherical sub-cellular par-

ticles with the aid of a digital micro-mirror device. The morphometric features of

sub-cellular organelles were characterised by their differential response to Gabor

filters with different dimensions and orientations.

Mengko and Pramudito (2002) applied Gabor filters to classify osteoporosis

level, based on change in trabecular pattern. Classification was based on the

energy features extracted by Gabor filtering, and the classification result was

compared to the Singh Index which was determined by a physician. The extracted

features in the form of energy from 55 radiographs almost matched their Singh

Index values. Haley and Manjunath (1995) proposed a modified Gabor filter

using a Gabor wavelet transform to create a multi-resolution space frequency

representation of a texture image. First they represented an input image as a

polar form of the Gabor function, and the resulting expression was re-expressed

as the basic wavelet function. The micro-features were defined in terms of the

wavelet coefficients. The modified Gabor filter was applied on 13 texture images

and overall 99% classification accuracy was achieved.

Jain and Farrokhnia (1990) used a multi-channel filtering approach and a fixed

set of Gabor filters was used to characterise the channel that preserved almost

all the information in the input image. An unsupervised texture segmentation

algorithm using a fixed set of Gabor filters was proposed, and applied to several

images to demonstrate its performance. Fogel and Sagi (1989) applied the Gabor

filter model to separate micro-patterns of an image and found the pattern spec-

trum of each basic element by means of Gabor filters, then they calculated the

dissimilarities between two pattern spectra.

There are many advantages of Gabor filters over other approaches. Some of

these advantages are:
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1. they simulate the human visual system,

2. they are direction dependent,

3. they have optimal joint localisation or resolution, in both the spatial and

the spatial-frequency domains (Daugman (1985)), and

4. they meet the equality criteria in the uncertainty principle, where the un-

certainty principle states that certain physical quantities, like position and

momentum, cannot both have precise values at the same time. The nar-

rower the probability distribution for one quantity, the wider it is for the

other.

However, Gabor filters are criticised by Wang and Yong (2008), as there is a

compromise between redundancy and completeness in the design of Gabor filters

because of their non-orthogonality.

3.3.3 Wavelets

The shifting and scaling properties of the FT, in which an image is represented as

a sum of sinusoids, led to the evolution of wavelets for texture analysis and image

and signal analysis, as these provide simultaneous representation and localisa-

tion of both time and frequency for non-stationary signals (e.g. music, speech,

images), whereas the standard FT is only localised in frequency. These decom-

pose an image into a complete set of wavelet functions which form an orthogonal

basis (Petrou and Garćıa-Sevilla (2006)). The concept of wavelets in its present

form, proposed by Morlet (1984), is now well established and has found many

applications in signal and image processing.

Wavelet transforms have advantages over traditional FTs for representing

functions that have discontinuities and sharp peaks, and for accurately decon-

structing and reconstructing finite, non-periodic and/or non-stationary signals.

Compared to the wavelet transform, using the Gabor transform requires selection

of the filter parameters for different textures (Wang and Yong (2008)).

A wavelet is a mathematical function used to divide a given function or

continuous-time signal into different scale components. Each scale component

can then be studied with a resolution that matches its scale. A wavelet trans-

form is the representation of a function by wavelets. The wavelets are scaled and

translated copies (known as ‘daughter wavelets’) of a finite-length or fast-decaying

oscillating waveform known as the ‘mother wavelet’ (Mallat (1999)).
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Unser (1995) defines the wavelet transform as a multi-resolution decomposi-

tion for finite energy functions f of a continuous variable x, i.e. f(x) ∈ L2, where

L2 represents the space of square summable sequences. It provides a time fre-

quency representation of an image, and the wavelet coefficients of an image are

the projections of the image onto multi-resolution subspaces (Jafari-Khouzani

and Soltanian-Zadeh (2005)).

Wavelet transforms are classified into discrete wavelet transforms (DWTs) and

continuous wavelet transforms (CWTs). Both DWTs and CWTs are continuous-

time (analogue) transforms, which can be used to represent continuous-time (ana-

logue) signals. The CWT operates over every possible scale and translation,

whereas the DWT uses a specific subset of scale and translation values (Mallat

(1999)).

Orthonormal wavelets: A family of functions ψa,b can be generated from

a single function ψ ∈ L2(R) by the operation of binary dilations and dyadic

translation of ψ, so that

ψa,b(x) = 2a/2ψ(2ax− b), (3.8)

where a, b, x ∈ R (a > 0), and the factor 2a/2 ensures orthonormality. So, a

wavelet ψ ∈ L2(R) is called orthonormal if the family of functions ψa,b can be

generated by (3.8).

Haar wavelets: The Haar transform can be thought of as a sampling process

in which rows of the transform matrix act as samples of finer and finer resolution.

The Haar wavelet’s mother wavelet ψ(t) can be defined as

ψ(t) =











1 0 ≤ t < 1
2

−1 1
2
≤ t < 1

0 otherwise,

and its scaling function Φ(t) can be described as

Φ(t) =

{

1 0 ≤ t < 1

0 otherwise.

Historically, the first orthonormal wavelet basis is the Haar basis. However,

although the Haar wavelet ψ has good time-localisation, it does not possess an

optimised frequency localisation and its FT ˆψ(k) decays as |k|−1 as k → ∞
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(Debnath (2002)).

Daubechies wavelets: Daubechies (1988) proposed a series of wavelet bases

which have compact support and maximum number of vanishing moments, named

after her name as Daubechies wavelets. These constitute a family of orthogonal

wavelets defining a discrete wavelet transform (DWT) and are characterised by

a maximal number of vanishing moments, i.e. moments which are equal to 0,

for some given support. In the Daubechies-n wavelet, n represents the order of

the wavelet basis function required for reconstructing the input image, which is

equivalent to the number of vanishing moments.

Continuous wavelet transforms

By means of the shifting and scaling properties of the FT, the CWTs are con-

structed by translating and dilating a single mother wavelet, which is localised in

both spatial and frequency domains (Livens et al. (1997)). For a prototype func-

tion ψ(x) = L2(R), the mother wavelet, the family of functions can be obtained

by shifting and scaling this ψ(x) as:

ψa,b(x) =
1√
a
ψa,b

(

x− b

a

)

, (3.9)

where a, b, x ∈ R (a > 0). Parameter a is a scaling factor and b is a shift factor.

Normalisation ensures that ‖ψa,b(x)‖ = ‖ψ(x)‖. The mother wavelet has to

satisfy the following admissibility condition

Cψ =

∫ ∞

−∞

|Ψa,b(ω)|
ω

dω, (3.10)

where Ψa,b(ω) is the FT of ψ(x), defined by Petrou and Garćıa-Sevilla (2006) as:

Ψa,b(ω) =
√
aΨ(aω) exp (jbω). (3.11)

In practice Ψ(x) will have sufficient decay so that the admissibility condition

reduces to
∫ ∞

−∞

ψ(x)dx = Ψ(0) = 0. (3.12)

Thus, the wavelet will have bandpass behaviour. The CWT of a function f(t) ∈ R

is then defined as:

Wcf(x) =

∫ ∞

−∞

ψ ∗a,b (t)f(t)dt. (3.13)
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Changing a or b in equations (3.9) and (3.10) generates two families of

functions which constitute two equivalent sets of elementary texture information.

Every wavelet transform corresponds to a high- and low-pass filter, and decom-

poses images into sub-images. Every sub-image contains information of a specific

scale and orientation, which is conveniently separated. Spatial information is

retained within the sub-images. Through CWT analysis, a set of wavelet coeffi-

cients Wcf(a,b) is obtained. These coefficients indicate how close the signal is to a

particular basis function.

Discrete wavelet transforms

As parameters a and b take continuous values, the resulting Wcf(x) in equa-

tion (3.13) becomes a very redundant representation. The wavelet given by (3.9)

can be discretised by constraining a and b to a discrete lattice (a = 2n, b ∈ Z).

The imposed constraints are that the transform should be non-redundant, com-

plete, and should constitute a multi-resolution representation of the original signal

(Petrou and Garćıa-Sevilla (2006)).

The discretisation is performed by setting a = aj0 and b = k a0b0 for j, k ∈ Z,

where a0 > 1 is a dilation step and b0 6= 0 is a translation step. The family of

wavelets then becomes

ψj,k(x) = a
−j/2
0 ψ(a−jx0 − kb0), (3.14)

and the wavelet decomposition of a function f(x) is

f(x) =
∑

j

∑

k

Wdfj,k(x)ψj,k(x), (3.15)

where the 2-D set of coefficients Wdf(j, k) is called the DWT of a given function

f(x).

The selection of ψ(x) is made in such a way that the basis function set ψj,k(x)

is an orthonormal basis of L2(R), so that

Wdf(x) =

∫ ∞

−∞

ψ∗
a,b(t)f(t)dt. (3.16)

The most widely used form of such discretisation with a0 = 2 and b0 = 1

is described as the standard DWT (Daubechies (1990)). A 2-D DWT is often

referred as the pyramid-structured wavelet decomposition (PSWT), e.g. in Wang

and Yong (2008).
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Figure 3.3: Two levels of a 2-D discrete wavelet decomposition.

The DWT decomposes a given image into different scale components. Each

scale component can then be studied with a resolution that matches its scale.

Figure 3.3 represents the DWT of an image at two different levels. First, the

input image is decomposed into four sub-bands, labelled as HH1, HL1, LH1 and

LL1. The first sub-band HH1 corresponds to an approximation image and the

last three represent detail images. To do further decomposition, the sub-band

HH1 is decomposed into four sub-bands again, among which the top-left is the

approximation sub-band representing the coarse coefficients and the rest corre-

spond to the detail images. This decomposition continues until the desired level is

obtained. Different statistical features, such as mean, standard deviation, energy

and entropy, defined below, can be calculated from each sub-band at different

scales or levels and used as texture descriptors for classification.

Energy can be based on either the square or absolute values of the pixel in-

tensities. Entropy provides a measure of randomness of an image. The higher

the entropy, the greater the variability in the image grey levels. For a constant

image entropy would be zero. Entropy is often considered as a histogram-based

measure, which involves quantising the image intensities according to the num-

ber of bins used to produce the histogram. The histogram is then normalised to

produce relative frequencies and entropy is computed from the normalised his-

togram. For any M×N sub-band image with pixel intensities fi,j, the traditional

way of computing mean, standard deviation (sd), energy and entropy is:

mean =
1

MN

M
∑

i=1

N
∑

j=1

fi,j,

sd =

√

√

√

√

1

MN

M
∑

i=1

N
∑

j=1

(fi,j −mean)2,
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energy =
1

MN

M
∑

i=1

N
∑

j=1

‖fi,j‖ or
1

MN

M
∑

i=1

N
∑

j=1

f 2
i,j

entropy = −
K
∑

i=1

pi log2 pi,

where p is the normalised grey level histogram with K bins and log2 is the base

2 logarithm.

Wavelet packet transform

Wavelet packet decomposition (WPD) can be derived from the 2-D DWT, which

offers a richer space-frequency representation. The key difference between 2-D

DWT and WPD is that for WPD, at the second and or further decomposition

levels all sub-images are decomposed into four sub-images (3 detail sub-bands and

1 approximation sub-band), whereas for the 2-D DWT only the approximation

sub-image is decomposed into smaller four sub-images. The WPD decomposes

a 1-D signal in all low and high frequency regions and wavelet decomposition of

a 2-D signal can be achieved by applying the 1-D wavelet decomposition along

rows and column of the image separately (Wang and Yong (2008)).

Applications of wavelet transforms

Wavelet transformations are now very commonly used in texture analysis. Some

of its recent applications are mentioned here.

Tsiaparas et al. (2011) compared different multi-resolution approaches for fea-

ture extraction for use in texture classification of ultrasound images of carotid

atheromatous plaque (into symptomatic and asymptomatic classes). They ap-

plied DWT, stationary wavelet transform (SWT), WPD and the Gabor trans-

form, and computed statistical features, i.e. the mean and sd of the detail sub-

images from each decomposition scheme. The features were plugged into a sup-

port vector machine and a probabilistic neural network, and higher classification

was obtained with WPD features using the support vector machine.

Wavelet-based texture features were found useful for discriminating benign

and malignant micro-calcification (MC) clusters on mammograms for breast can-

cer diagnosis by Karahaliou et al. (2008). DWT coefficients at three decompo-

sition levels and grey-level co-occurrence matrix features were computed from

images of regions of interest, and performance of the combined features was in-

vestigated using a probabilistic neural network.

68



Wang and Yong (2008) developed a texture classification algorithm based on

the wavelet transform combined with linear regression. It was proposed to analyse

correlation between pairs of sample images obtained by wavelet decompositions

rather than features extracted from those sample images, as it was believed that

the spatial correlation between sample images belonging to the same kind of

texture at different scales of WPD is distinct and able to characterise the texture.

A 2-D WPD was applied instead of 2-D DWT as the former captures more spectral

information in the image. Firstly, the original image was decomposed using a 2-D

WPD and the energy of all four sub-images was computed. They used n levels

of decomposition, where n was such that the final sub-images were larger than

162, and computed the energy for each sub-image. This gave k = 4n sub-images.

For a single image, the energy vector is of length 4n, called the channel-energy

vector. Similarly, by decomposing all j sample images belonging to the same

texture, they formed the channel-energy-matrix, Mj×k, where rows correspond

to different sample images and columns represent energies from different sub-

images. A k × k covariance matrix with k rows and k columns was derived from

Mj×k, where ci,j is the correlation coefficient ρ between the ith and jth frequency

channels. The channel-pairs with correlation ρ > T where T is a threshold value,

were considered to be the more informative frequency regions and were used in

the computation. They extracted the energy values (x1, y1)
′, . . . , (xn, yn)

′ for two

frequency channels (X and Y ) from each such pair and employed linear regression

by assuming that energy from X was a cause of the energy from Y . For any

energy from channel X, the corresponding residual was considered as a texture

descriptor. For any channel pair, if the residual lay within µ±3σ, it was concluded

that it belonged to frequency channel Y . They applied their method to 40 6402

grey level Brodatz texture images and compared it with other traditional multi-

resolution methods, such as the PSWT, the tree-structured wavelet transform,

and the Gabor transform and found that their method performed better in most

cases.

Traditional wavelet transforms were criticised by Chaux et al. (2006). Firstly,

as they are not shift-invariant, their performance is usually limited by the shift

variance with respect to the value of the transformed coefficient at a given scale.

Secondly, in higher dimensions, standard wavelets possess poor directionality

properties, which are very important for feature detection. They proposed an

M-band wavelet transform which does not suffer from those drawbacks and has

advantages over several classical dyadic orthonormal wavelet bases.

Jafari-Khouzani and Soltanian-Zadeh (2005) proposed a new rotationally in-

69



variant technique using Radon and wavelet transforms. They first calculated

the Radon transform of the image and then used a translation-invariant wavelet

transform in each of the four frequency sub-bands LL, LH , HL, and HH (diag-

onal, vertical, horizontal and approximation sub-band images) produced by two

levels of decomposition of an image to calculate the frequency components and

extract corresponding features. The proposed method was applied to 54 Brodatz

texture images of size 5122, using four different wavelet bases and different num-

bers of neighbours in the kth nearest-neighbour classifier. The rate of correctly

classified pixels was 95.6%.

Unser (1995) used a discrete wavelet frame (DWF) to characterise texture

properties. He suggested that the DWF should perform better than most tradi-

tional single resolution approaches. The classification performance of the DWF

was tested on 12 Brodatz texture images, each histogram-equalised with a re-

quantisation to 32 grey levels, so as to be indistinguishable on the basis of first-

order statistics only. A Gaussian maximum-likelihood classifier was used and

trained on all images except the one being classified. Classification accuracy of

99.2% was obtained for almost all the texture images and performance was com-

pared with the traditional wavelet transform. The classification results showed

that the DWF was superior to the discrete wavelet transform.

Complex wavelet transform

Although the wavelet transform is a powerful image processing tool, it has four

fundamental shortcomings. Firstly, it is not shift invariant, i.e. a small shift of the

image grey levels greatly affects the wavelet coefficient oscillation pattern around

singularities. Secondly, a higher-dimensional wavelet transform suffers poor di-

rectionality when the transform coefficients reveal only a few feature orientations

in the spatial domain. Thirdly, the wavelet coefficients of an image do not con-

tain any phase information, as filtering the image with a 2-D DWT increases its

size and adds phase distortion. Fourthly, the wavelet coefficients tend to oscil-

late between positive and negative values around singularities, which complicates

wavelet-based image processing (Kingsbury (2005)).

The complex wavelet transform is a complex-valued extension of the standard

DWT. It is a 2-D wavelet transform which provides multi-resolution, sparse repre-

sentation, and useful characterisation of image structure. Complex wavelet trans-

forms (CLWTs) can be broadly classified in two groups, i.e. redundant CLWTs

and non-redundant CLWTs.

One of the most promising redundant type of CLWTs is the dual-tree complex
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wavelet transform (Kingsbury (2001)) which overcomes the drawbacks of the

standard DWT. Two classical wavelet trees with real filters are developed in

parallel, with the wavelets forming (approximate) Hilbert pairs. A dual tree of

real wavelet filters is used to generate the real and imaginary part of the complex

wavelet coefficients. The requirement for the dual-tree setting for forming Hilbert

transform pairs is the well-known half-sample delay condition. The resulting

complex wavelet is then approximately analytic, i.e. approximately one-sided in

the frequency domain (Daubechies (1990)).

Since the FT does not suffer from the drawbacks of the DWT, Kingsbury

(1999) built a wavelet transform with a complex-valued scaling function and

complex-valued wavelet that decomposes the real/complex images into real and

imaginary parts. The real and imaginary coefficients are used to compute ampli-

tude and phase information. The filter bank structure of the CLWTs resembles

the filter bank structure of the standard DWT but with twice the complexity. Two

sets of filters hx and gx, each consisting of a high-pass and a low-pass filter, are

jointly designed such that the complex wavelet transform ψ(t) := ψh(t)+jψg(t) is

approximately analytic, or ψg(t) is approximately the Hilbert transform of ψh(t)

(Kingsbury (2005)).

The properties of the dual tree complex wavelet transform can be summarised

as: approximate shift invariance, good directional selectivity in 2-D, providing

phase information, allowing perfect reconstruction, limited redundancy and effi-

cient order-N computation (only twice that of the simple DWT for 1-D).

3.4 Model-based Approaches

As mentioned earlier, the model-based approach includes Markov random fields

and auto-regressive models. There are variations of the Markov random field,

among which the Gaussian Markov random model will be briefly discussed.

3.4.1 Markov random fields

A random field is created by performing a random experiment at each location of

the field and assigning the outcome of the experiment to that location. A random

field is called a Markov random field (MRF) if it possesses the Markovian prop-

erty. A process possesses the Markovian property if the conditional probability

distribution of the future state of any process, given the present and past states,

depends only upon the current state, i.e. it is conditionally independent of the

past states (the path of the process) given the present state.
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To build a MRF in terms of a coin-tossing experiment, for example, consider

an empty grid of size n× n and fill the spaces by the number of heads obtained

by throwing an unbiased coin 255 times for each grid position. This generates a

random field. If however the coin is biased, so that the outcome in a specific grid

location depends on the values of the neighbouring locations, a Markov random

field arises (Petrou and Garćıa-Sevilla (2006)).

An image is called Markovian if the probability distribution of the intensity at

any specific location directly depends on the values of the neighbouring intensi-

ties (Reulke and Lippok (2008)). MRFs are used for modelling images, and have

been applied to many aspect of image processing, such as texture synthesis, tex-

ture classification, image segmentation, image restoration, and image compression

(Tuceryan and Jain (1998)). The introduction of MRFs in a Bayesian framework

has resulted in a unified, coherent framework that enables treating many im-

age processing problems as statistical inference problems (Krishnamachari and

Chellappa (1997)).

The choice of neighbourhood depends on the type of random field used. The

first-order neighbourhood of a pixel consists of its four-connected neighbours,

and the second-order neighbourhood of a pixel consists of its eight-connected

neighbours (see Figure 3.4, which shows some commonly used neighbourhoods in

a MRF).

(a)

Figure 3.4: First-order neighbourhood (left); second-order neighbourhood (mid-
dle); third-order neighbourhood (right) of the central pixel.

Reulke and Lippok (2008) modelled MRFs using a Gibbs distribution. A is

assumed to be a Markovian image, for which the probability distribution of the

intensity of Pi depends on the intensities of the neighbouring pixels Wi (for a

specified neighbourhood). In the Gibbs distribution, the conditional probability

that pixel Pi takes value pi given that the neighbouring pixels Wi have value pj

is

Pr(Pi = pi | Wi = pj) =
exp{−h(pi, pj)}

∑P
p=0 exp{−h(p, pj)}

,

in which P is the maximum intensity value, and h is a parametrised energy

function characterising the MRF. There is no unique functional form of the energy
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function since it depends entirely on the problem under study.

The MRF technique was successfully used by Reulke and Lippok (2008) for

segmentation of roads in panchromatic images for traffic observation from an aero-

plane platform, for example. They assumed the image to be a MRF and used an

auto-binomial model as the underlying energy function. To estimate the param-

eters they used maximum pseudo-likelihood estimation, and approximated the

overall probability by the product of all conditional probabilities (Besag (1986)).

The model parameters were used to characterise the texture, and can be used

for texture segmentation. After estimating parameters, segmentation of Brodatz

textures was carried out. They also investigated some factors, e.g. influence of

parameter normalisation, size of the texture window, size of the neighbouring

system, image quality, and image scaling, which have a significant effect on tex-

ture segmentation. By using normalised parameters, the segmentation error was

reduced to 2%, whereas the un-normalised parameters yielded 16% segmentation

error.

Thakoor et al. (2007) applied the hidden Markov model to characterise the

shape of a texture and then used a weighted likelihood method to estimate the

model parameters. Wu and Chung (2007) introduced a boundary MRF model,

which can yield appropriate segmentation even with complex boundaries and is

robust to noise corruption. This study concerned medical image segmentation

rather than texture segmentation.

Apart from texture classification and segmentation, MRF models have also

been used for creating textures (texture synthesis) (Petrou and Garćıa-Sevilla

(2006)). They created an empty 64×64 grid where the grey value at each position

was drawn from the binomial probability density function with parameters n = 8

and θ = 0.5, to create a random field. Then for each pixel (i, j) they computed

the sums

s = gi,j−1 + gi,j+1 − gi−1,j − gi+1,j, (3.17)

where gi,j is the grey value of pixel (i, j), using a first order neighbourhood struc-

ture. Using these values of s, they computed the binomial parameter θ as a

function of the values of the neighbours using the following relation

θ

1 + θ
= es.

Then the new value for a specific pixel was drawn using the probability density

function with the new parameter. In the first step they updated the grey values

only for the pixels with non-overlapping neighbours and left the remaining pixels
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with their old values. In the next step, they updated the next set of pixels with

no overlapping neighbours, and carried out this procedure until all sets of pixels

with distinct neighbourhoods had been assigned updated values.

Gaussian Markov random model: When the outputs of the random exper-

iment performed to determine each pixel value arise from a Gaussian probability

distribution and the parameters of the probability distribution are functions of

the values of the neighbouring pixels, the image forms a Gaussian MRF (GMRF).

A simple form of a GMRF model is given by Petrou and Garćıa-Sevilla (2006)

as

p(gij | gi′j′∈Ni,j
) =

1√
2πσ

exp

{

(gij −
∑L

l=1 algi′j′)
2

2σ2

}

, (3.18)

where p(gij | gi′j′∈Ni,j
) is the probability of pixel (i, j) having grey value gij,

given the values of its neighbours (i, j), L is the total number of pixels in the

neighbourhood Nij of pixel (i, j) and al is the parameter with which a neighbour

influences the value of pixel (i, j). The maximum likelihood method can be used

to estimate the parameters of the Gaussian Markov model, and the estimated

parameters are used to characterise the texture.

Lehmann (2011) used GMRF based features for segmentation of 2-D texture

images by modelling them as the concatenation of two 1-D hidden Markov autore-

gressive models for the rows and the columns, respectively. A segmentation algo-

rithm was developed using the concept of turbo decoding used for error-correcting

codes.

Krishnamachari and Chellappa (1997) presented multi-resolution models for

texture segmentation using a GMRF. They estimated the GMRF parameters

either by minimising Kullback-Leibler distances or based on local conditional

distribution invariance. Since the data at lower resolutions can be approximated

by a GMRF, given the number of classes and the associated parameters at the

fine resolution, the GMRF parameters at lower resolutions were obtained by the

conditional distribution invariance approximation. Then segmentation was per-

formed at the coarsest resolution and the results of segmentation were passed on

to the most immediate higher resolution and the process repeated until the finest

resolution was reached. They tested their method on Brodatz textures and com-

pared its efficiency with a single resolution approach. The percentage of correctly

classified pixels reached 92.8% for the Brodatz textures, and for synthetic textures

it was 96.8%. They concluded that their method performed better than the sin-

gle resolution method both in terms of classification accuracy and computational
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requirements.

3.4.2 Auto-regressive model

The auto-regressive model for texture classification can be characterised both as

a statistical approach and a model-based approach. A considerable amount of

work has been done on development of models for random field image processing

(Jain (1981)). In a 2-D auto-regressive (AR) model the grey level of each pixel is

represented as a linear weighted sum of the grey levels of its neighbouring pixels,

with addition of white noise (Deguchi (1986)).

For an image with intensities f(x, y), x, y = 1, 2, . . . , N , the AR model is given

by

f(x, y) =
∑ ∑

(p,q)∈D

ap,qf(x− p, y − q) + nxy, (3.19)

where nxy is Gaussian white noise with zero mean and variance σ2
n, apq are coef-

ficients used to characterise the texture, and D is a rectangular neighbourhood

region defined as

D = {(p, q) : −Dx ≤ p ≤ Dx,−Dy ≤ q ≤ Dy, (p, q) 6= (0, 0)},

where Dx and Dy are the neighbourhood dimensions.

Alata and Ramananjarasoa (2005) used a 2-D quarter plane auto-regressive

model for an unsupervised textured image segmentation. They first estimated

both the number of textures and the model parameters associated with each ex-

isting texture, and used a simulated annealing method for maximum posterior

estimation of the specific region. Zheng (1997) showed that the estimated param-

eters of an AR model based on a noisy image are asymptotically unbiased. The

AR model is not usually rotationally invariant. Mital and Leng (1992)modified it

to be rotationally invariant under all configurations of pixels for texture analysis,

and found that the modified model gave better results than the original model.

3.5 Statistical Approaches

In statistical texture analysis, texture features are computed from the statistical

distribution of observed combinations of intensities at specified positions relative

to each other in the image. According to the number of intensity points in each

combination, statistics are classified into first-order, second-order and higher-

order statistics. First-order ones use the grey level histogram, so are based on
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single pixel intensities, e.g. grey level mean or sd. Second-order ones use 2-D

combinations of pixel grey levels, for example grey level co-occurrence measures,

defined below.

Among existing statistical approaches to texture analysis, auto-correlation

based texture features, grey level co-occurrence matrices, grey level run-length

distribution techniques, local binary pattern, improved local binary pattern and

coordinated cluster representation are discussed here. Although some authors

mention morphological granulometry as a statistical method of texture analysis,

we discuss it separately in Section 4.1, as it is used extensively in the work in this

thesis.

3.5.1 Auto-correlation based texture features

The auto-correlation function (ACF) of an image can be used to assess the regu-

larity as well as the coarseness of texture. It evaluates the linear spatial relation-

ships between texture primitives (basic shapes in the image). If the primitives are

large, the function decreases slowly with increasing distance, whereas it decreases

rapidly if the texture consists of small primitives (Sharma and Singh (2001)).

The ACF of an image f(x, y) of size M ×N can be defined as

ρ(x, y) =

∑M
i=1

∑N
j=1 f(i, j)f(i+ x, j + y)
∑M

i=1

∑N
j=1 f

2(i, j)
. (3.20)

This can be used directly as a signature, or by inferring the periodicity of

texture from it, or by extracting parametric features from it to characterise

a texture (Petrou and Garćıa-Sevilla (2006)). The ACF is the Fourier trans-

form of the power spectral density function and vice versa. A useful property

of the auto-correlation function is mentioned in Kurita and Otsu (1993), i.e. it

is shift-invariant. As a result they successfully used the higher-order local auto-

correlation features for texture classification.

The practical implementation of the ACF for identifying textures is described

by Petrou and Garćıa-Sevilla (2006). The ACF ρ(x, y) can be used directly to

represent the texture and compare it point by point with the auto-correlation

function of another texture to see how similar or dissimilar the two textures are.

The comparison can be done by computing any statistical measure of similarity

(e.g. the sum of squares of the differences, or the correlation coefficient between

two functions) or by plotting ρx(x) ≡
∑

y ρ(x, y) versus x and ρy(y) ≡
∑

x ρ(x, y)

versus y and using these curves as the texture signatures.
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3.5.2 Grey level co-occurrence matrices

The grey level co-occurrence matrix (GLCM), or the grey level spatial depen-

dence matrix, is one of the most popular ways to characterise image texture.

Co-occurrence matrices are based on second-order statistics, that is, the spatial

relationships of pairs of grey values of pixels within a specified region (Haddon

and Boyce (1993)).

For an M ×N image containing G grey levels, the GLCM is a G×G matrix

with entries C(i, j), such that C(i, j) is the number of pairs of pixels, at distance

d apart and lying on a line at angle ϕ to the reference direction of the image,

with grey levels i and j respectively (Clausi (2002), Petrou and Garćıa-Sevilla

(2006)). If the texture is coarser in one direction than the other, then the degree

of spread of the values about the main diagonal in the GLCM will depend on the

direction ϕ.

The normalised GLCM, c(i, j), is obtained by dividing each entry of C(i, j)

by the sum of the C(i, j), i.e.

c(i, j) =
C(i, j)

∑M
k=1

∑N
l=1C(k, l)

which normalises the co-occurrence values to lie between 0 and 1 and provides

the joint frequency distribution of pairs of pixels with grey level i and j, at a

given direction and specified distance apart.

Rather than using all possible grey levels (0-255), the original image’s grey

levels may be scaled down (quantised) to a smaller number, which reduces the size

of the GLCM to give a less sparse matrix. It is expected that coarser quantisation

may reduce both classification accuracy and feature space separability of the

classes. The literature suggests use of different quantisations, e.g. 8, 16, 32, 64, or

the difference between maximum and minimum intensities, as it is not guaranteed

that a higher level of quantisation will lead to better classification accuracy in any

given type of image (Clausi (2002)). According to Soh and Tsatsoulis (1999), use

of quantisation at level 256 is not necessary, 8 level quantisation is undesirable

(as it is too coarse) and 64 level quantisation is efficient and sufficient, and the

inter-pixel distance is more important than the orientation.

GCLMs capture texture properties but are not directly useful for further anal-

ysis, such as comparison of two textures. Haralick et al. (1973) and Haralick et

al. (1979) proposed some texture features that can be computed from the GLCM

for more compact texture representation, including:

1. Maximum probability: max(i,j) c(i, j)
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2. Energy:
∑G

i=1

∑G
j=1 c(i, j)

2

3. Entropy: -
∑G

i=1

∑G
j=1 c(i, j) log c(i, j)

4. Contrast:
∑G

i=1

∑G
j=1(i− j)2c(i, j)

5. Homogeneity:
∑G

i=1

∑G
j=1

c(i,j)
1+|i−j|

6. Correlation: 1
σiσj

∑G
i=1

∑G
j=1(i− µi)(j − µj)c(i, j),

where µi =
∑G

i=1 i
∑G

j=1 c(i, j), µj =
∑G

j=1 j
∑G

i=1 c(i, j),

σ2
i =

∑G
i=1(i− µi)

2
∑G

j=1 c(i, j), and σ2
j =

∑G
j=1(j − µj)

2
∑G

i=1 c(i, j).

7. Inverse difference moment:
∑G

i=1

∑G
j=1

c(i,j)
1+(i−j)2

8. Autocorrelation:
∑G

i=1

∑G
j=1 ijc(i, j)

9. Dissimilarity:
∑G

i=1

∑G
j=1 |i− j|c(i, j)

10. Cluster shade:
∑G

i=1

∑G
j=1(i+ j − µi − µj)

3c(i, j)

11. Cluster Prominence:
∑G

i=1

∑G
j=1(i+ j − µi − µj)

3c(i, j)

12. Horizontal mean: µi

13. Vertical mean: µj

14. Horizontal sd: σi

15. Vertical sd: σj

The maximum probability is just the value of the most frequent co-occurrence.

Energy, also known as uniformity or angular second moment (Gong et al. (1992)),

measures textural uniformity, i.e. pixel pair repetitions. For a texturally uniform

or homogeneous image a few GLCM elements will be close to 1, while many will

be near 0 (Baraldi and Parmiggiani (1995)) so energy will be near to its maximum

value of 1. Entropy measures randomness of the image intensity distribution. It

is highest when all GLCM entries are of similar magnitude, corresponding to

random grey levels, and small when these are unequal, i.e. the entropy for a

homogeneous image will be lower than that of an inhomogeneous image.

Contrast measures local variations in the GLCM, whereas correlation mea-

sures the association of the grey levels of the specified pixel pairs. Homogeneity,

also known as the inverse difference, measures closeness of the distribution of the

GLCM values to the GLCM diagonal. It will be larger if the pixel pairs take the
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same or similar grey levels. Inverse difference moment also measures the relative

closeness of the distribution of GLCM values to the GLCM diagonal and has a

high value when the high values of the GLCM are near the main diagonal of the

GLCM, i.e. the squared difference (i − j)2 becomes smaller. Cluster shade and

cluster prominence are measures of asymmetry, so provide measures of skewness

in the image. Larger values of cluster shade and cluster prominence indicate lack

of symmetry. Lastly, correlation is a measure of linear association between the

pixel grey levels of the image.

The GLCM characterises the spatial relationships between the pixel grey lev-

els, and has proved useful in various texture classification applications because

of its ability to extract spatial information. GLCM features, i.e. contrast and

entropy, were successfully used to segment images of chromosomes by Chanda

and Majumder (1988). Soh and Tsatsoulis (1999) obtained 94.2% classification

accuracy for SAR sea ice images using co-occurrence matrix features in Bayesian

classifiers. Clausi (2002) computed 8 different GLCM features using different

quantisations from (0 to 255) of SAR sea ice images and used the features jointly

and separately to classify the images. They advocated use of three features such

as contrast, entropy, and correlation for quantisations between 24 and 64. GLCM

features were used in a self-organising map in de Almeida et al. (2010) to classify

Brodatz texture images with 97% classification accuracy. GLCM features and

linear discriminant analysis (LDA) were successfully used to classify colour im-

ages of colon cancer in Shuttleworth et al. (2002). These features were also found

to be useful for classifying colour texture images in Palm (2004).

We use co-occurrence-based features (1–5 and 7 above as commonly used

GLCM features) in Chapter 8 to classify synthetic images as well as real images

of corroded metal and also of tea granules.

3.5.3 Grey level run length distribution

This approach is also a statistical approach to texture analysis. The grey level

run length (GLRL) method is a way of extracting higher-order statistical texture

features. The technique was described and applied by Galloway (1975), to extract

information in an image from its grey level runs. Run-length statistics capture

the coarseness of a texture in specified directions. A run is defined as a string of

consecutive pixels which have the same grey level intensity along a specific linear

orientation (Chu et al. (1990)). Fine textures tend to contain more short runs

with similar grey level intensities, while coarse textures have more long runs with

different grey level intensities.
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A run length matrix is a 2-D matrix formed by the number of runs of different

lengths and grey levels, arranged according to the lengths and grey values. Gal-

loway (1975) computed five features from run-length matrices analogous to the

properties used with grey level co-occurrence matrices, which are called short run

emphasis (SRE), long run emphasis (LRE), grey level non-uniformity (GLN),

run length non-uniformity (RLN) and run percentage (RP), defined as:

SRE =

G
∑

i=1

R
∑

j=1

p(i, j)/s

j2
(3.21)

LRE =

G
∑

i=1

R
∑

j=1

j2p(i, j)

s
(3.22)

GLN =
G
∑

i=1

(

R
∑

j=1

p(i, j)

)2

/s (3.23)

RLN =
R
∑

j=1

(

G
∑

i=1

p(i, j)

)2

/s (3.24)

RP =

G
∑

i=1

R
∑

j=1

p(i, j)/n, (3.25)

where G is the number of grey levels, R is the longest run, s is the total number

of runs in the image n is the number of pixels in the image, and p(i, j) is an

element of the run length matrix (Chu et al. (1990)).

Albregtsen et al. (2000) successfully used grey level run length matrices for

analysing the textures of liver cell nuclei. They combined information from the

entries of the normalised run length matrix, based on the class distance matrices,

to obtain adaptive features for texture classification. Arul et al. (1993) used

two approaches to texture analysis, namely spatial GLCMs and grey level run-

length matrices to determining beef quality grades in terms of the distribution

(or marbling) of intramuscular fat in a beef segment. The results showed good

potential of these approaches for tissue characterisation and objectively evaluating

beef quality.

3.5.4 Local binary pattern

Local binary pattern (LBP) was introduced by Ojala et al. (1996) and is the

simplest way of extracting texture features. It detects binary texture patterns in
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a 3×3 neighbourhood of a grey scale texture image and uses that as a measure of

texture. It starts by selecting a region of interest and comparing each pixel with

its 8-nearest neighbours, then assigns the value 1 for any neighbour with pixel

value greater than the centre pixel value and 0 otherwise, to provide an 8-digits

binary number. So there are 28 = 256 binary patterns that can be defined for a

3 × 3 neighbourhood. An LBP code for an 8-neighbour is

LBP = ΣP−1
p=0 s(gp − gc)2

p

where P = 8, gc is the intensity of the central pixel and gp are the intensities of

the 8-nearest neighbours, and

s(t) =

{

1 t ≥ 1

0 otherwise.

The LBP for each pixel is computed and stored and can be used as texture

descriptor. The basic version of LBP has been extended by introducing different

neighbourhoods, e.g. 8- or 16-neighbourhood and circular neighbourhood (Ojala

et al. (2002)). Using a circular neighbourhood and considering all rotated versions

of the same pattern to be equivalent can reduce the length of the LBP code

to 36 from 256. Fernández et al. (2011) proposed an extension of LBP, i.e.

improved local binary pattern (ILBP), that assigns labels to each pixel in a 3× 3

neighbourhood by using the mean value of the 9 grey levels as a threshold.

3.5.5 Coordinated cluster representation

The coordinated cluster representation (CCR) was introduced by Kurmyshev and

Cervantes (1996) to characterise a binary image in terms of a histogram of the

occurrence of texture pattern. Computation of the CCR of an L × M image

requires selecting a rectangular window W = I × J , where I < L and J < M ,

and then scanning each pixel of the window. Then binary patterns are found for

each pixel of the window and the histogram is formed. The normalised histogram

is considered as an image spectrum and used as a texture descriptor (Fernández

et al. (2011)). In LBP the central pixel is excluded while computing the LBP

code, there are 28 = 256 possible LBP codes, whereas CCR considers all pixels,

so there are 29 = 512 LBP codes, which makes LBP more limited than CCR.

Different versions of LBP and CCR are used for texture classification. For

example, Fernández et al. (2011) used LBP, ILBP and CCR for classifying granite

texture images and found that ILBP provided better classification. A rotation
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invariant LBP was developed in Ojala et al. (2002) and applied to 20 types of

texture images from the Outex image data base. They considered four rotation

angles, namely 0◦, 30◦, 45◦ and 60◦ while computing LBP code and achieved 100%

classification rate using histograms computed at all rotations. The classification

was based on a chi-square goodness of fit test to compute the dissimilarity of

sample images and the model histograms. LBP, ILBP and CCR were also used

in Harrison et al. (2011) to identify sabellaria spinulosa colonies in sidescan sonar

imagery. These features were compared with Gabor filter bank features and dual-

tree complex wavelet based features using a 1-NN classifier and it was found that

Gabor features provides better classification results.

3.6 Illumination Resistant Texture Analysis

Texture analysis becomes more challenging due to the fact that large variations

in the visual stimulus arising from illumination conditions, viewing directions,

poses, and disguises are all common in real applications (Eleyan et al. (2008)).

Ho et al. (2006) examined perception of the roughness of 3-D textures under

changes in illumination and showed that visual perception of 3-D texture is not

invariant under changes in lighting direction.

A texture image is a function of texture surface, the illumination, the cam-

era and its viewing position. None of the standard methods of texture analysis

consider the effect of illumination direction on texture, surface texture is greatly

affected by the illumination direction (Varma and Zisserman (2005)). For ex-

ample, Chantler et al. (2002) show that two images of the same surface texture

sample captured using different illuminant tilt angles look considerably differ-

ent. Existing texture analysis techniques assume either that image texture is due

solely to surface marking or that the source of illumination is omni-directional,

and commonly use a set of scanned images from the Brodatz texture album (Bro-

datz (1966)), to test their performance, whereas many of these texture images

clearly violate one or more of these assumptions (Chantler (1995)).

Recently, Hwang et al. (2011) applied FT for face recognition under uncon-

trolled variation in illumination. They obtained an integral normalised gradient

image by normalising and integrating the smoothed gradient of a facial image

and extracted hybrid Fourier features from different Fourier domains in different

frequency bandwidths. They obtained an 81.5% correct verification rate on 2-D

face images under various illumination directions.
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3.7 Comparative Studies of Existing Methods

Galloway (1975) showed that the grey level co-occurrence technique is better than

the grey level run-length method for texture analysis. Kurita and Otsu (1993)

extracted higher-order local auto-correlation features from 30 texture images and

showed that the local auto-correlation method achieved a 93.2% recognition rate,

whereas the higher-order local auto-correlation features achieved 99.6% accuracy.

One comparative study of texture classification methods by Dettori and Sem-

ler (2007) found that wavelet-based features performed worse in texture clas-

sification than GLCM and the grey level run length measures when they were

applied to 340 images of size 5122. The accuracy rates for the wavelet-based tex-

ture descriptors ranged between 85%-93%, whereas GLCM had accuracy rates of

94%-97% and the grey level run length measures had accuracy rates of 91%-98%.

The classification accuracy of auto-correlation and co-occurrence based methods

was compared by Sharma and Singh (2001) on images in the Meastex database,

and co-occurrence performed better than the auto-correlation method, having

recognition rates of 79.2% and 76.1% respectively.

Tang (1998) developed a new run length method based on the dominant run

length method and the Bhattacharyya distance measure, and observed that the

grey level run length features performed comparably with co-occurrence features

and better than wavelet features. The grey level run length method achieved 97%

accuracy on 8 Brodatz image classes, with 225 images in each class and 99.9%

accuracy on 16 Vistex images with 225 images in each class. Co-occurrence and

wavelet features were used on 16 Vistex images with accuracy rates of 100% and

98% respectively.

Ayala and Domingo (2001) proposed use of granulometric features from a

spatial size distribution, for shape and texture analysis. They compared their

method with the MRF approach, GLCM, the Gabor method and fractal dimen-

sion. They concluded that granulometry performs at least as well as GLCM when

granulometry is applied to the foreground image. The MRF and Gabor methods

had results extremely close to their method, however their method required fewer

features than the MRF and Gabor methods.

Unser (1995) experimented with the DWT on 12 Brodatz textures and found

that the DWT did better than most traditional single resolution approaches.

Although mathematical morphology is a well established approach in image

processing for vector-valued (grey level) images, it has limited application so far

in 3-D matrix-valued (colour) images. Recently, Burgeth et al. (2007a) extended

the fundamental concept of mathematical morphology to 3-D matrix-based im-
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ages based on the Loewner ordering (developed in Horn and Johnson (1994)) of

symmetric matrices in higher dimensions, and Burgeth et al. (2007b) generalised

non-linear partial differential equations (PDEs) that simulate dilation and ero-

sion to the 3-D setting. The corresponding non-linear system of PDEs provides

a novel way of using mathematical morphology in 3-D. But both papers focused

on image processing rather than texture analysis.

MRFs involve an energy function which has no unique form. So the choice of

the energy function requires expert knowledge. Mostly the optimisation schemes

associated with parameter estimation are iterative, which requires use of a further

simulation algorithm, e.g. simulated annealing, which adds an additional compu-

tational load. In practice, auto-correlation based texture features are easier to

use for classifying textures.

GLCM concerns the spatial arrangement of objects in the image. It is almost

guaranteed to produce distinct features for different textures, but the computa-

tional burden is the main drawback of its use. Rotation invariant GLCM features

can be obtained by averaging features from different orientations, e.g. 0◦, 90◦, 45◦

and 135◦.

Gabor filters possess some advantages although the sinusoidal plane wave is

computationally very expensive. Wavelet transforms require some assumptions on

the parameters, and also the optimisation procedure is a constrained optimisation

which is loaded with computational burden.

The pattern spectrum is considered to be a very powerful tool for analysing

textures, but it also possesses some drawbacks. The opening operation on which

the granulometry is based is very sensitive to image noise. Presence of noise can

drastically change the pattern spectrum of an image. Also it does not consider the

spatial arrangement of image objects, thus images of different structures may have

very similar pattern spectra (Zingman et al. (2007)). Using granulometry on the

image background overcomes this (see Section 4.3). Regardless of the drawbacks,

the use of morphological granulometry has an important role in shape-based

texture analysis and is the main method used in the work of this thesis to obtain

features for texture classification.

3.8 Texture Classification Rules

Classification is the process of assigning classes to objects. More precisely, classi-

fication is the assignment of new objects of unknown class to one of a number of

pre-defined classes, based on a set of variables or features (Hand (1981)). In the
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statistical approach, each texture pattern is represented in terms of d features or

measurements and is viewed as a point in d-dimensional space.

Given a set of observed measurements represented as a pattern vector x,

the texture classification problem is to assign the pattern to one of C possible

classes πi, i = 1, . . . , C. The aim of classification is to choose a combination of

these features that allow pattern vectors or feature vectors belonging to different

categories to occupy compact and disjoint regions in the d-dimensional feature

space. A decision rule partitions the measurement space into C sub-spaces Φi, i =

1, . . . , C. The effectiveness of the feature space is determined by how well patterns

from different classes can be separated (Jain et al. (2000)). If an observation

vector is in region Φi then it is assumed to belong to class πi (Webb (2002)).

There are two main divisions of classification: namely supervised classification

and unsupervised classification. In supervised classification a set of data samples

with associated classes is used in classifier design. The supervised component in

this classification methodology refers to the user-defined training classes. It is

important that these classes are a homogeneous sample of the respective class,

but at the same time include the range of possibilities for that class. Unsupervised

classification is used to cluster pixels in a dataset based on statistics only, without

any user-defined training classes. This is an exploratory data technique which

may be used before supervised classification methods.

Some commonly used approaches of texture classification are described below.

3.9 Bayesian Classifiers

A traditional powerful statistical approach to texture classification based on prob-

ability theory is Bayesian classification. Given the class conditional density func-

tions of a feature vector, the Bayesian classifier can be shown to supply the

statistically optimum solution to the problem of supervised classification. Given

the a priori probabilities p(πi) of the classes πi, i = 1, . . . , C, the problem is to

assign an observed feature vector x to one of the C classes. Intuitively we may

assign x to the class with highest prior probability p(πi), but the Bayes decision

rule makes use of the likelihood p(x | πi) of x, and Bayes theorem and assigns x

to the class with the largest a posteriori probability p(πk | x). For C classes, the

observed feature vector x is taken to belong to class πi if

p(πi | x) > p(πj | x) for all i 6= j, j = 1, . . . , C. (3.26)

In terms of p(πi) and the class conditional densities p(x | πi),
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p(πi | x) =
p(x | πi)p(πi)

p(x)
. (3.27)

So the decision rule using Bayes theorem may be written as: assign x to πi if

p(x | πi)p(πi) > p(x | πj)p(πj) for all i 6= j. (3.28)

A detailed description is given in Webb (2002).

The densities p(x | πi) in (3.28) are usually unknown and have to be estimated

from the training samples. Very often it is difficult to obtain reliable estimates,

but assumptions can be made, e.g. assuming that the class conditional distribu-

tions are all multivariate normal. This leads to quadratic discriminant analysis

(QDA), where the mean vectors and covariance matrices are both different for

different classes. The problem can be simplified further by assuming equal co-

variance matrices for all classes, which converts the QDA to linear discriminant

analysis (LDA) (Hand (1981)), now described.

3.9.1 Linear discriminant analysis

Linear discriminant analysis (LDA) assumes that the class conditional densities

p(x | πi) are multivariate normal, with identical covariance matrices, i.e.

p(x | πi) =
1

(2π)
p

2 |Σ| 12
exp

[

−1

2
(x − µi)

TΣ−1(x − µi)

]

, (3.29)

where p is the number of feature variables.

Classification is achieved by assigning a pattern to a class for which the pos-

terior probability p(πi | x) is the greatest. So the discriminant rule is to assign x

to class πi if gi > gj , for all j 6= i, where

gi(x) = log(p(πi)) −
1

2
log(|Σ|) − 1

2
(x − µi)

TΣ−1(x − µi) (3.30)

where p(πi) is the prior probability of class i, µi and Σ are the mean and covariance

matrix of the ith class and can be replaced by the maximum likelihood estimates

of µ̂i and Σ̂ based on a training sample.

LDA is a widely used statistical pattern recognition and texture classification

approach which can work very well. Bekios-Calfa et al. (2011) applied LDA for

gender recognition and found that LDA on a linearly selected set of features can

achieve accuracies as high as for the state-of-the-art classifier SVM.

Palaniappan and Huan (2005) used LDA and MLP neural networks to classify
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electro-encephalogram signals from five different tasks with features extracted us-

ing an autoregressive model. In most cases, LDA provided superior classification

performance.

3.9.2 Maximum likelihood classifier

Like LDA the (Gaussian) maximum likelihood (ML) classifier also assumes that

the class conditional probabilities are normal and so they can be described by

a mean vector and a covariance matrix. With equal a priori probabilities for

each class, classifying a feature vector x to the class to which it has the highest

posterior probability p(πi | x) of being a member is the same as classifying to the

class with the highest likelihood p(x | πi).

3.9.3 Minimum distance classifier

The minimum distance (MD) classifier uses the mean vector of each class, but

ignores information about how the classes are distributed in the feature space. It

characterises each class by its mean position. The mean pattern vector of class j

is

mj =
1

Nj

∑

x∈πj

x j = 1, 2, ...., C. (3.31)

where Nj is the number of training feature vectors from class πj . Using the

Euclidean distance to determine closeness reduces the problem to computing the

distance measures

Dj(x) = ‖x −mj‖ j = 1, 2, ...., C. (3.32)

Alternatively, a given pattern x of unknown class may be classified to πk if its

Mahalanobis distance DM(x, πk) = (x−mk)
TΣ−1(x−mk) to πk is smaller than

those to all other classes, i.e.

x ∈ πk iff DM(x, πk) = min{DM(x, πi) i = 1, . . . , C}.

3.10 K-Nearest Neighbour Classifier

The K-nearest neighbour approach is a simple non-parametric technique which

does not require a priori assumptions about the distributions of the training

samples. For a dataset containing points in C classes, to assign a point x into one
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of the C classes, the K-nearest neighbour (K-NN) classifier draws a hyperplane

around x, which encircles the nearest K points to x and assigns x to the class for

which Ni/K is largest, where the numerator is the number of points amongst the

K neighbours which are in the ith class. For K = 1, K-NN becomes the nearest

neighbour and x is assigned to the same class as throughout the closest point to

x in the training set (Webb (2002)).

3.11 Artificial Neural Networks

An artificial neural network (ANN) is an information processing prototype based

on the operation of biological neural networks, such as the human brain, which

processes information. A neural network consists of units (neurons), arranged in

layers, which convert an input vector into some output, e.g. a prediction. Each

unit takes an input (data), applies a (often nonlinear) function (the activation

function) to it and then passes the output on to the next layer (Izenman (2008)).

Many activation functions, such as sigmoid, softmax and logistic functions can

be used in neural networks.

An artificial neuron is a device with many inputs and one output. The neuron

has two modes of operation: the training mode and the using mode. In the

training mode, the neuron can be trained to fire (or not) for particular input

patterns. In the using mode, when a trained input pattern is encountered at the

input, its associated output becomes the current output. If the input pattern

does not belong in the taught list of input patterns, the firing rule is used to

determine whether to fire or not.

A more sophisticated neuron is the McCulloch-Pitts neuron. A McCulloch-

Pitts model uses components which have some of the characteristics of real neu-

rons. A real neuron has a number of inputs which are ‘excitatory’ and some

which are ‘inhibitory’. What the neuron does depends on the sum of inputs. The

excitatory inputs tend to make the cell fire and the inhibitory inputs make it not

fire, i.e. not pass on the signal (Izenman (2008)).

Consider a cell that gives out a binary state, zero or one, on or off. The inputs

then carry a binary signal and the only thing that matters is the number of ‘on’

signals on the excitatory versus the inhibitory inputs. If an inhibitory input is on,

the cell cannot fire (i.e. is off) no matter what the excitatory inputs are doing. So

the McCulloch-Pitts neuron can be defined precisely as a cell which can output a

0 or a 1, which has a number of excitatory inputs, a single inhibitory input and

uses a threshold value to produce its output. At time t it looks at its excitatory
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Figure 3.5: A feed-forward single hidden layer neural network.

inputs and counts the number of ones present. If the count is equal to or greater

than the threshold and the inhibitory input is zero, then at time t + 1 the cell

outputs a one, otherwise it outputs a zero.

3.11.1 Types of neural network

There are various sorts of neural networks. Some of them are discussed briefly

below.

Feed-forward neural network: Feed-forward ANNs allow signals to travel

one way only; from input to output. The data processing can extend over multiple

(layers of) units, but no feedback connections are present, i.e. no connections

extending from outputs of units to inputs of units in the same layer or previous

layers. This type of organisation is also referred to as bottom-up or top-down

(Zheng et al. (2010)). A single hidden layer feed-forward neural network (FF-

NNET) consisting of 5 units or neurons in the hidden layer is shown in Figure 3.5.

A classical example of feed-forward neural networks is the Multilayer perceptron

(MLP).

Multilayer perceptrons: This is the most common neural network model.

This multivariate statistical technique non-linearly maps an input vector X =
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(X1, . . . , Xr) of variables to an output vector Y = (Y1, . . . , Ys) of variables. It

also has a layered structure like feed-forward neural networks. Between the inputs

and the output variables there are hidden variables arranged in one or more layers.

Each layer receives input units from a layer directly below and sends their output

to units in a layer directly above the unit (Izenman (2008)). The hidden and

output variables are called nodes, neurons or processing units.

The training of an MLP is usually done using a backpropagation (BP) algo-

rithm that involves two phases (Rumelhart et al. (1986)), the forward phase and

the backward phase. In the forward phase, the weights of the network are fixed

and the input object data xi are propagated through the network layer by layer.

The forward phase finishes with the computation of an error measure ei = di−yi,
where di is the desired response and yi is the actual output produced by the

network in response to the input object xi. During the second phase, the partial

derivatives of the error measure ei with respect to the different parameter values

are propagated through the network in the backward direction, hence the name

of the algorithm. The network weights can then be adapted using any gradient-

based optimisation algorithm. The whole process is iterated until the weights

have converged (Haykin (1998)).

Recurrent neural networks: A network of neurons with feedback connec-

tions is called a recurrent neural network (RNN), e.g. the human brain is a RNN.

This type of neural network is also known as a feed-back network as it contains

feedback connections. Schmidhuber et al. (2007) define a RNN as a mathemat-

ical abstraction of a biological nervous system which may accomplish complex

mappings from input sequences to output sequences. According to Graves et

al. (2009), as a RNN contains self-connected hidden layers, previous information

remains in the network’s internal state, allowing it to make use of past informa-

tion, hence it is capable of producing better classification results. They found that

a RNN was superior for recognising unconstrained handwriting than a hidden-

Markov model. Gomez et al. (2008) developed an on-line controlling system using

a RNN which can be used efficiently for aircraft or robot control.

Examples of recurrent networks are Kohonen feature maps and Hopfield neural

networks. In a Kohonen feature map each node is fully connected with the input

layer. The Hopfield network consists of a set of n inter-connected neurons which

update their activation values asynchronously and independently of other neurons

(Egmont-Peterson et al. (2002)).
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Learning vector quantisation: The learning vector quantisation (LVQ) is

another algorithm for learning classifiers from labelled data samples. Instead of

modelling the class conditional densities directly, it models the discrimination

function defined by the set of labelled codebook vectors and the classification is

based on a nearest neighbour search between the codebook vectors and the input

data, i.e. a data point xi is assigned to a class k according to the class label of the

closest codebook vector, i.e. for which argmink‖xi−mk‖ is a minimum, where mk

is the centre of the kth class (Hollmén et al. (2000)). Codebook vectors represent

the centres of different classes and are of the same dimension as the input data.

These are known as neurons in other forms of neural networks.

Applications of neural networks: Some recent applications of neural net-

works are mentioned here. Yang and Lunetta (2008) applied MLP neural net-

works, a maximum likelihood classifier and a decision tree for cropland mapping

of the Great Lakes Basin (GLB) in the USA using Normalised Difference Vegeta-

tion Index (NDVI) time series data. MLP neural networks produced better results

than the other classifiers for classifying cropland versus non-cropland areas across

the entire GLB. Borah et al. (2007) applied learning vector quantisation (LVQ)

and MLP networks to classify images of tea granules, using wavelet-based fea-

tures. They obtained 80% classification accuracy using LVQ networks whereas

MLP yielded 74.7% accuracy. Neural networks were also used successfully to

predict the stability of RNA/DNA hybrid duplexes in Ma et al. (2004). An un-

supervised neural network was developed in Kumar and Manolakos (1997) which

can perform segmentation and labelling of objects in an image.

3.12 Support Vector Machines

The support vector machine (SVM) is a supervised classifier derived from machine

learning theory by Cortes and Vapnik (1995), with a strong theoretical founda-

tion. Currently, it is widely used in object detection and recognition, content-

based image retrieval, text recognition, biometrics, speech recognition, etc. SVM

is a powerful classification technique, which is robust in producing high classifi-

cation accuracy even in high-dimensional data spaces with non-linearly separable

classes (Kim et al. (2002) and Izenman (2008)).
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3.12.1 Binary classification

We may encounter a complicated classification problem even in the case of binary

classification. In the simplest case the objects in the two classes are linearly

separable but for non-linearly separable classes classification is a challenging task.

We discuss both situations here.

For binary classification, consider n training objects {xj , yj}Nj=1, where the xj

are input features, xj ∈ Rm and yj ∈ {−1,+1} are class labels. For an unknown

object x, the SVM tries to find an optimum hyperplane using the principle of

structural risk minimisation so that the distance between the nearest objects

and the hyperplane is maximised. This distance is known as the margin and

the nearest objects are known as support vectors. The decision function can be

written in terms of the support vectors as:

f(x) = sign

[

svs
∑

i=1

αiyix
T
i x + b

]

, (3.33)

where the αi are coefficients of the above optimisation equation (Lagrange multi-

pliers), b is an off-set parameter, the subset {xi}svs

i=1
is the set of support vectors,

x is the object we wish to classify and the sign of the function determines the

class membership of x, hence f(x) becomes ±1. For each support vector xi, the

decision function, f(xi) > 0 for y = +1, f(xi) < 0 for y = −1 and f(xi) = 0 if xi

falls on the optimum hyperplane. The values αi and b are found by maximising

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj ,

subject to αi ≥ 0 and
∑

i αiyi = 0, where n is the number of training cases and

the upper limit of αi, is known as the cost which penalises classification errors in

the training set.

In practice, there may exist many separating hyperplanes which can separate

the two classes (Figure 3.6(a)), but the SVM chooses the one which ensures the

maximum margin (Figure 3.6(b)).

To deal with classification of a dataset where a linear classifier is not appropri-

ate, Shigeo (2005) adds an extra step in the optimisation procedure. Rather than

finding the optimal hyperplane in the original input space, the SVM maps x into

a higher dimensional space where the objects are projected by means of a function

Φ(x). So the original observations are transformed in a Hilbert space R through

a non-linear mapping Φ : Rm → F, where F is the new feature space. The feature
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(a) Several hyperplanes (b) Optimum hyperplane

Figure 3.6: SVM for linearly separable feature space.

space F is usually very high-dimensional and the inner product 〈Φ(xi),Φ(xj)〉
becomes computationally expensive to evaluate.

To avoid this complexity, Cortes and Vapnik (1995) introduced the so-called

Kernel Trick. The kernel trick is to use a non-linear kernel function K(xi,xj),

instead of projecting then computing the inner product 〈Φ(xi),Φ(xj)〉. In the

projected space, in terms of the kernel trick the classification equation in (3.33)

can be rewritten as

f(x) = sign

[

svs
∑

i=1

αiyiK(xi,x) + b

]

, (3.34)

where αi are Lagrange multipliers, xi are the support vectors and K(xi,xj) is

the specified kernel.

Figure 3.7 shows classification of non-linearly separable data using SVMs.

Objects are non-separable in the original 2-D input space, so the first step is to

project the objects into 3-D space, through a mapping function Φ, where the

objects are separable. SVMs find the optimum separating hyperplane in the

projected space using decision function (3.34).

The kernel function plays an important role in mapping the input vector

onto a high-dimensional feature space. Using different kernels one can construct

learning machines with different types of non-linear decision surface in the input

space. There are many different kernel functions available. Some commonly used

kernels in SVM are listed in Table 3.1, though the radial basis kernel is the most

widely used one (Tsiaparas et al. (2011) and Bouguila (2011)).

In some cases when no hyperplane exists which can separate the data into

two classes, due to the presence of some overlapping objects. To deal with the

overlapping situation, a more flexible situation is suggested, known as the soft
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(a)

Figure 3.7: SVM for non-linearly separable features.

Table 3.1: Commonly used kernels relating two vectors u and v.

Kernel type Functional form Parameters
Linear u′ v None

Polynomial (γu′v + η)δ γ, η, δ
Radial basis exp(−γ‖u− v‖2) γ

Laplacian exp{−‖u−v‖
σ

} σ
Sigmoid tanh(γu′v + η) γ, η

margin solution (Izenman (2008)).

3.12.2 Multi-class support vector machines

Although SVMs were originally developed for binary classification problems, they

can be extended to the multi-class situation (Kim et al. (2002)). Izenman (2008)

mentions different approaches to tackle the multi-class classification problem, in

which the input features x ∈ Rm and Y ∈ {1, 2, . . . , K}, where K is the number

of classes. These are:

One-to-rest classification: The K-class classification is first reduced to bi-

nary classification sub-problems of the type ‘kth class’ vs. ‘not kth class’. A new

x is then assigned to the class with the largest value of f̂k(x), k = 1, 2, . . .K,

where f̂k(x) is the optimal SVM solution for the binary problem of the kth class

versus the rest.

One-to-one classification: Using K(K − 1)/2 pairs of classes, a classifier

f̂i,j is constructed by coding the ith class as positive and jth class as negative,
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i, j = 1, 2, . . .K, i 6= j. Then a new x is assigned to either the ith or jth class

using majority voting or with pairwise coupling (which involves pairwise compar-

ison). Each of the K(K − 1)/2 cases produces a pairwise probability and these

probabilities are pairwise coupled into a set of posterior probabilities to make the

final class allocation decision.

Li (2009) found that one-to-one classification outperformed one-to-rest classi-

fication for classifying copper clad laminate defects using wavelet coefficients and

SVM classifiers.

The SVM was originally developed for two-class classification, and for the

multi-class case a combination of SVMs is used with possibly lower performance

than with binary classification (Weston and Watkins (1998)). Also, for a large

scale dataset using an SVM is time consuming. Due to these inherent problems,

Kim et al. (2003) constructed the SVM ensemble. They defined an ensemble

of classifiers as a collection of several classifiers whose individual decisions are

combined using bootstrap aggregating (bagging) to classify the test examples.

They successfully applied the SVM ensemble technique to classify the well-known

Fisher’s Iris dataset (an easy pattern recognition problem), UCI hand-written

digits, and for fraud detection. For fraud detection in a mobile telecommunication

payment system, a user profiling method was used to track suspicious changes in

user behaviour and general patterns of fraud were detected by an SVM based on

a large amount of user-action data analysis.

The least squares support vector machine (LS-SVM) was recently proposed

in Suykens and Vandewalle (1999) by adding a least squares term in the cost

function and it involves only the equality constraints in the optimisation phase.

The LS-SVM requires significantly less computational time as it has to solve a set

of linear equations, whereas training the original SVM means solving a quadratic

programming optimisation problem.

3.12.3 Applications of SVMs

Despite being a relatively new classification approach, the SVM has already been

recognised as a better classifier in many complex situations, especially for high-

dimensional feature spaces. Commonly SVMs are combined with use of wavelet

features for classification. Here we describe some recent applications and exten-

sions of SVMs.

Tsiaparas et al. (2011) compared the performance of SVM and probabilistic

neural networks using different features sets extracted from ultrasound images of

the carotid artery using different multi-resolution techniques, i.e. WDT, WPD,
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SWT and the Gabor transform. SVMs performed better on classifying atheroma-

tous plaque into either a symptomatic or asymptomatic class than probabilistic

neural networks.

SVMs were found to be useful in the problem of count data modelling using

finite mixture distributions in Bouguila (2011). A hybrid deterministic annealing

expectation-maximisation was used to estimate the parameters of the mixture

model where the number of clusters was selected using the minimum distance

length criterion. For the UCI dataset the lowest classification error rate of 45%

was obtained using a SVM.

Mazanec et al. (2008) did an experiment on the FERET database by apply-

ing LDA and SVM for face recognition and found that the highest rate of face

recognition was obtained for a combined classifier LDA+SVM. Chaplot et al.

(2006) proposed use of SVMs using wavelet features as input to classify magnetic

resonance brain images and obtained 98% classification accuracy. Another ap-

proach used kernel principal component analysis as a feature extraction method

and combined it with SVMs to classify face images (Li and Chen (2005)).

The performance of four different classifiers, i.e. the Bayes classifier, Maha-

lanobis distance classifier, LVQ and SVM were assessed in Li et al. (2003). Using

wavelet coefficients computed from 30 Brodatz texture images, they found that

the classification accuracy using SVM could be as high as 95%. They considered

1- to 5-level wavelet decomposition. SVMs produced more accurate classification

compared to the Bayes classifier and LVQ.

A surprising application of SVM is found in Kim et al. (2002). Instead of

extracting the texture features using any of the conventional techniques, an SVM

was directly applied to the grey values of the input image. On average, the

classification error rate was below 20%. The potential of SVM for recognising

3-D objects is examined in Pontil and Verri (1998). It is argued that SVM is very

useful for direct 3-D object recognition. SVM was found to be one of the best

classifiers to classify spam email in Drucker et al. (2002).

SVM provided satisfactory results for detecting defects on copper clad lami-

nate using 2-D wavelet features and the radial basis kernel function, in Li (2009).

The highest classification accuracy was from 60% to 90% for various sets of the

parameter value γ and the cost, so choosing these appropriately is important for

good performance.
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3.13 Conclusion

Here we have briefly described the most widely used texture feature extraction

techniques, with some recent applications. The granulometric approach is the

main focus of the work which is presented in detail in Chapter 4 and the approach

is extensively used in Chapters 5–7. To compare with granulometric features, we

derived GLCM-based features and wavelet-based features from two sets of real

images in Chapter 8. The first six GLCM features listed in Section 3.5 are widely

used in the literature, so we use them to classify the synthetic images generated

as evolving textures,but we use more of them for the real images in Chapter 8.

SVMs, FF-NNETs and LDA are used throughout Chapters 5–8 to compare the

performance of the new regression-based classification approach which is devel-

oped in Chapter 5 with that of well established techniques.
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Chapter 4

Granulometric Approach to

Texture Analysis

This chapter gives a detailed description of binary and grey scale granulometry

as well as univariate and multivariate granulometry. We have applied granulom-

etry on binary and grey scale images to obtain their pattern spectrum and their

associated moments which will subsequently be used in Chapter 5 for texture

classification.

4.1 Morphological Granulometry

Mathematical morphology is a type of non-linear filtering for extracting infor-

mation from an image. It can be used in many aspects of image analysis, such

as enhancement, segmentation, restoration, edge detection, texture analysis and

shape analysis (Theera-Umpon and Dhompongsa (2007)). Morphological gran-

ulometry was introduced by Matheron (1975) in the binary case to characterise

the size and shape information of a random set and it was further developed and

extended by many others for grey scale images (Heijmans (1979), Serra (1983),

Dougherty and Astola (1994), Goutsias et al. (1995) and Dougherty and Lotufo

(2003)).

Granulometry is based on one of the basic morphological operations, usu-

ally opening. As well as being monotonically increasing, trans-location invariant,

anti-extensive, and idempotent (see Section 2.2), opening has another important

property which plays a key role in the construction of the granulometry. This

is, for a sequence of SEs E1, . . . , En of increasing size, if Ek+1 ◦ Ek = Ek+1, then

Ek+1 is said to be Ek open, k = 1, . . . , n (Dougherty and Astola (1994)). The

following subsections provide a description of granulometry for both binary and
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grey scale images.

4.1.1 Binary granulometry

An opening granulometry is based on a sequence of morphological openings using

scaled structuring elements. Opening granulometry is carried out by opening a

binary image A by a series of scaled SEs {E1, E2, . . . , En}, e.g. successively larger

disks, such that Ek+1 is Ek open. At each stage of opening, the finer details

are successively eliminated and the image area (sum of foreground pixels) of the

input image is successively reduced. The granulometry is defined as the set of

operations {A ◦ Ek}, k = 1, . . . , n, where the SE E is known as the generator

of the granulometry, k is the scaling factor, Ek is a scaled version of E in the

continuous domain and in the discrete domain Ek can be formed by k successive

dilations of E by itself (Dougherty and Astola (1994)).

Let P [A] be the original image area and P [A◦Ek] be the image area left after

k successive openings of A by E. As the scale k increases, more image details are

removed and eventually the image area drops to zero. Successive openings create

a decreasing sequence of images, i.e. A ◦ E1 ⊃ A ◦E2 . . . ⊃ A ◦En. A significant

drop in image area between two consecutive openings indicates that the image

contains many objects smaller than the SE applied at that stage. This decreasing

sequence represents the cumulative proportions of the image area dropped at each

opening, hence a cumulative distribution can be formed from this sequence. The

image area removed by k successive openings can be found by subtracting the

image area left after k openings from the original image area, which is known as

the size distribution, Ω(k), i.e.

Ω(k) = P [A] − P [A ◦ Ek]. (4.1)

As k increases, the number of object pixels in P [A ◦Ek] decreases, so Ω(k) is

an increasing function of k. If we divide the image area removed after k successive

openings of A by E by the original image area P [A], we obtain the Normalised

size distribution as:

Φ(k) =
Ω(k)

P [A]
= 1 − P [A ◦ Ek]/P [A].

For sufficiently large k, P [A ◦Ek] could be null, resulting in Φ(k) being equal

to 1 and for a sufficiently small k, Φ(k) becomes 0. What is ‘sufficient’ depends

on the size of the original image, its area, the shapes of the objects in it, as well
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as the shape and size of the applied SE. Since Φ(k) is monotonically increasing

from 0 to 1, it can be considered as a cumulative distribution function (cdf). So,

its derivative Φ′(k) = dΦ(k)
dk

is a probability density function (pdf), known as the

granulometric size distribution or pattern spectrum (PS) (Maragos (1987)) of the

image relative to the granulometry.

Since Φ′(k) is a pdf, it possesses statistical moments, known as granulometric

moments. In the discrete case, the scaling factor k is an integer, so the mth

granulometric moment may be calculated as

µ(m)(A) =

T
∑

k=1

kmΦ′(k),

where T is the largest size of SE needed to remove all image area. These moments

can be used to characterise the pdf and therefore the size distribution of objects,

as features describing the texture of the original image.

We use these moments to compute the mth central moment about the mean,

i.e.

v(m)(A) =
T
∑

k=1

(k − µ(1))mΦ′(k).

The mean, sd, skewness and kurtosis of the PS are computed using central

moments. The first moment is the mean about the origin (µ(1)), the sd (σ) is

the square root of the second moment about the mean, the skewness is the ratio

of the third moment about the mean to the cube of the sd (σ), i.e. v(3)/σ3, and

kurtosis is the ratio of the fourth moment about the mean to the square of the

variance, i.e. v(4)/σ4. We consider the excess kurtosis v(4)/σ4 − 3, a commonly

used correction to make the kurtosis of the normal distribution equal to 0. We

use these in later chapters for classification to predict the evolving time state of

a texture image using an appropriate model.

Figure 4.1 (a) contains a binary image of size 256 × 256 consisting of 100

randomly dispersed square objects of different sizes. First the image is padded

with zeroes to avoid edge-effects of opening and then it is successively opened

by a flat square of size 3, 5, 7, 9, 11, 13 and 15 and the resulting images are

shown. As we can see, Figure 4.1 (b) is the same as Figure 4.1 (a) since the

smallest square is of size 3. In Figure 4.1(c) all squares smaller than size 5 have

disappeared. As the size of the SE increases all squares smaller than the applied

SE disappear from the image. When the SE is of size 13 only 9 squares remain

in the opened image, and they all drop out by applying a larger SE of size 15.

Figure 4.2 shows the successive drop of pixels, the normalised size distribution
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(a) Binary image of
squares

(b) Opened by 3×3
square

(c) Opened by 5×5
square

(d) Opened by 7×7
square

(e) Opened by 9×9
square

(f) Opened by 11×
11 square

(g) Opened by 13×
13 square

(h) Opened by 15×
15 square

Figure 4.1: Effect of successive openings of a 2562 binary image of squares using
a square SE of increasing size.

and the pattern spectrum of Figure 4.1 (a). The SE was a square of size 2∗ j−1,

j = 1, 2, . . . , N . In Figure 4.2(a), the steepest drop is observed for SE of width

6, as most of the squares are of width 6. The pattern spectrum also reflects this

as the highest bar is at width 6, and there were almost equal numbers of squares

of width 5 and 7 (the next most frequent sizes).
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Figure 4.2: Successive area dropped, size distribution and pattern spectrum of a
2562 binary image of squares (Figure 4.1 (a)), from granulometry using a square
SE.

4.1.2 Grey scale granulometry

Like binary granulometry, grey scale granulometry is also based on opening. We

now think of the grey scale image as having a volume, given by the sum of the

pixel intensities or heights in the grey scale surface. A detailed account of grey
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scale opening is given in Section 2.5. Grey scale opening of a function f by a

structuring element g is given by the supremum of all grey scale translations of

g that lie beneath the surface f , i.e.,

f ◦ g = sup{gx + y : gx + y ≤ f} (4.2)

where gx(z) = g(z − x) and y is the off-setting parameter.

A grey scale granulometry results from successive openings by expanding the

structuring elements to iteratively reduce the grey scale height of an image. Con-

sidering a set of structuring elements {g1, g2, . . . , gn} such that gk+1 ◦ gk = gk+1,

then {f◦gk} is a decreasing sequence. If g0 is assumed to be a point function, n de-

notes some arbitrary stopping point for the granulometry, and Ω(k) is now the dif-

ference in volume between {f ◦gk} and {f ◦gk+1}, the normalised size distribution

is defined in the same way as its binary counterpart, i.e. Φ(k) = 1 − Ω(k)/Ω(0),

where Ω(0) is the initial volume of f (Chen and Dougherty (1994)). Having such

a normalised size distribution, which is a cdf, its derivative Φ′(k) = d
dk

Φ(k) can

be obtained. It is known as the grey scale pattern spectrum. Since it is a pdf, it

possesses statistical moments. The pth granulometric moment may be calculated

as

µ(p)(f) =

∫ ∞

k=1

kp Φ′(k)dk,

or in practice as the discrete sum

µ(p)(f) =
K
∑

k=1

kp Φ′(k),

where K is the size of the largest SE used to reduce the image volume to zero,

as in the binary case.

Again we computed the mean, sd, skewness and kurtosis as for the binary

PS moments and employed them for texture characterisation in the later sections

and chapters.

4.1.3 Other types of granulometries

Apart from the granulometry generated by successive openings, some others are

also available. We will briefly discuss a few of them.
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Algebraic granulometry: According to Dougherty and Lotufo (2003), a col-

lection of image operations {Ψt}, t > 0, is called an algebraic granulometry if it

satisfies the following properties:

1. {Ψt} is an anti-extensive operation for all t,

2. {Ψt} is increasing for all t, and

3. The order of sieving does not matter, i.e. ΨtΨs = ΨsΨt = Ψmax{t,s}.

The basic granulometry {A ◦ tB} described in Sub-section 4.1.1 is an algebraic

granulometry.

Euclidean granulometry: If a granulometry {Ψt} is translation invariant as

well as following the Euclidean property, namely

Ψt(A) = t× Ψ1(t
−1A),

for any t > 0 and any binary Euclidean image A, and if Ψ1 represents a unit

sieve, then Ψ1 is called a Euclidean granulometry. The most important Euclidean

granulometry is a union of openings of scale t by a generator (set of SEs) g =

{B1, B2, . . . , Bn},

Ψt(A) =
n
⋃

k=1

A ◦ tBk. (4.3)

Multivariate granulometry: The concept of a multivariate granulometry is

introduced by Batman and Dougherty (1997). It can be derived from a Eu-

clidean granulometry by letting the elements of the granulometric generator

g = {B1, B2, . . . , Bn} have their own parameters {t1, t2, · · · , tn}, and assuming

that none of these is open with respect to another, i.e. Bi ◦ Bj 6= Bi for i 6= j.

The multivariate granulometry is defined as

Ψt(A) =

n
⋃

k=1

A ◦ tkBk, (4.4)

where Ψt is an n dimensional granulometry with generator B. The corresponding

normalised size distribution is Φ and the multivariate pattern spectrum for A can

be defined by the partial derivatives of Φ with respect to t1, t2, . . . , tn. Using

more parameters in this way represents a more complete environment to extract

texture features, which may give better image information.
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Logical granulometry: Logical granulometries are the combination of the

disjunctive granulometry and conjunctive granulometry (Dougherty and Lotufo

(2003)). The disjunctive granulometry is based on reconstructive opening. Recon-

structive opening is the process of reconstruction of an image by opening which

requires two SEs. The first SE B determines the shape of the fitting criterion

in opening and the second SE E specifies the connectivity for the reconstruction

and is usually a 3 × 3 square SE. The reconstructive opening of A is
⋃

A ◦E Bk.

Using the concept of reconstructive opening, the disjunctive granulometry is

defined as

Ψt(A) =

n
⋃

k=1

A ◦E tBk,

where B is the SE specifying the fitting criterion and E is the connectivity for

the reconstructive opening.

Conjunctive opening is an inverse operation of reconstructive opening which

considers the intersection instead of the union of A ◦E Bk. A conjunctive granu-

lometry is defined as

Ψt(A) =

n
⋂

k=1

A ◦E tBk,

where B and E are the same as in reconstructive opening.

Finally the logical granulometry can be formed by combining conjunctive and

disjunctive granulometry as

Ψt(A) =

n
⋃

k=1

mk
⋂

j=1

A ◦ tBk,j. (4.5)

for fixed t and Bk,j specifies the shape used in the reconstructive and conjunctive

granulometry. The kth opening is taken from the intersection of the reconstructive

openings by Bk,1, Bk,2, . . . , Bk,mk
.

4.2 Texture Evolution

To use granulometry and develop our methodology, we have built a database

of evolving binary and grey scale texture images of objects, where the number

of objects grows with time. We experimented with different parameter settings

and different object shapes (disks, squares, ellipses, and pyramids). We have

produced sequences of synthetic texture images of pyramids and ellipses, from

which texture images of cones can be derived by setting the ratio of the semi-

major and semi-minor axes to 1. To generate some synthetic texture images in
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different orientations, we rotate the objects at specified angles. The rotation

angles of the objects are allowed to vary within given limits.

The underlying concept is as follows. We start with a 2-D blank image of

given size and a 3-D blank image of the same size, in which the 3rd dimension

is used to store the result obtained at each time step. An initial probability

α is set, which determines with what probability a new object appears at a

given time step. For a new object we decide its initial grey level from a uniform

distribution on a specified range. Once the first object appears, the growth time t

starts and is stored, and the location of the object ‘centre’ is generated randomly

and stored. Once a second or subsequent object appears, another probabilistic

decision is made to decide if the existing objects are updated. Each existing

object is independently updated (or not) with pre-specified probability δ (or 1-δ)

respectively. Once a object is to be updated we choose its grey level again from

a uniform distribution on a certain range. If an object is updated, we decide its

growth rate (γ), i.e. how fast it should grow.

The program records at which point of time an object appears, its location,

and the size of each object. The process repeats until growth time becomes 100

and the 3-D image stack is of size 100.

In the simulated images, new objects appear and objects are updated ran-

domly according to probabilistic decisions. As a result, in some cases an object

starts to grow at an earlier stage and in other cases only later. Consequently,

granulometric moments at a specific time differ considerably from one simulation

to another. Such a wide range of moments may produce a wide distribution of

predicted texture evolution times, hence high average prediction error rates.

To remove the enormous dissimilarity among images at a specific time, espe-

cially at the earlier stages of evolution, we let the evolution time start when the

first object appears and run until 100 growth steps are completed. At every sub-

sequent step, we determine whether to add a new object and revisit the existing

objects for possible updates.

For the pyramid images, the initial grey level for each pyramid was chosen

from a uniform distribution on the range 40 to 60. For updating a pyramid, we

draw a random number from a discrete uniform distribution on the range [1, 2]

for the growth rate γ and allow the pyramids to expand by 1 or 2 pixels on each

side. The rotation angle was set to 45◦ (as using other angles between 0 to 90 had

no effect on the shape of the pyramids). The process was repeated until growth

time 100 was reached.

A similar method was applied to generate ellipse images. Here the initial
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grey level for each ellipse was drawn from a discrete uniform distribution on the

range 10 to 20. The growth rate for an updating ellipse is chosen from a discrete

uniform distribution on the range [1, 3], which allows the ellipse to enlarge by 1

to 3 pixels around the edges. The shape of an updating ellipse is characterised

using the ratio of the semi-major to semi-minor axis of an ellipse, which is chosen

from a Gaussian distribution. Different means and sds were experimented with,

and it was found that mean 0.666 and sd 0.3 generate a ratio of the semi-major to

semi-minor axes which prevents the ellipse from being a straight line or a cone.

However, extreme values of the ratios are clipped at 0.1 and 0.9. Ellipses are

allow to rotate randomly between 125◦ to 145◦ and the process is repeated until

growth time 100.

To evaluate our methodology we need several sets of images of different sizes.

We have generated image stacks of 3 different sizes, e.g. 1002, 2562 and 5122. Dif-

ferent settings of the underlying parameters (probability of adding a new object

α, probability of updating an existing object δ and the growth rate of object γ)

are used for different sizes with a view to obtain images with a sufficient number

of objects at the final stage of evolution.

For 1002 images, α takes value 0.5 for pyramids and 0.8 for ellipses, δ takes

0.1 for pyramids and 0.3 for ellipses, and γ takes values according to the discrete

uniform distribution on [1, 2] for both pyramids and ellipses. For 2562 images,

we increase δ for both pyramids and ellipses to 0.3 and 0.5 respectively and keep

α and γ at their previous settings. For 5122 images, we keep α and δ same as

they are for 2562 images and increase the range for γ to discrete uniform [1, 3].

The MATLAB code used to generate these images are given in Appendix I.

Figures 4.3 and 4.4 show sequences of images containing pyramids at different

time points for the first two parameter settings, whereas the sequences of images

containing ellipses evolving over time for the first two parameter settings are

shown in Figures 4.5 and 4.6.

Opening granulometry using a disk SE was applied to the foreground of one

stack of 2562 ellipse images consisting of 100 layers (each layer represents one

time point) for parameters α = 0.8, δ = 0.5, and γ of 1 or 2. A sequence of

these images is shown in Figure 4.6. Figure 4.7 contains some of the images, the

corresponding image volume dropped and the pattern spectrum.

Although granulometry is a useful tool for analysing the size and shape of

image content, it does not consider the spatial arrangement of the image content

(Zingman et al. (2007)). Applying granulometry on the background of an image

does provide such spatial information. We can obtain the image background by
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(a) t = 1 (b) t = 25 (c) t = 50

(d) t = 70 (e) t = 85 (f) t = 100

Figure 4.3: Evolution of 1002 grey scale pyramid images at different time points
for parameters α = 0.5, δ = 0.1, and γ as discrete uniform [1, 2].

(a) t = 1 (b) t = 25 (c) t = 50

(d) t = 70 (e) t = 85 (f) t = 100

Figure 4.4: Evolution of 2562 grey scale pyramid images at different time points
for parameters α = 0.5, δ = 0.3, and γ as discrete uniform [1, 2].
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(a) t = 1 (b) t = 25 (c) t = 50

(d) t = 70 (e) t = 85 (f) t = 100

Figure 4.5: Evolution of 1002 grey scale ellipse images at different time points for
parameters α = 0.8, δ = 0.3, and γ as discrete uniform [1, 2].

(a) t = 1 (b) t = 25 (c) t = 50

(d) t = 70 (e) t = 85 (f) t = 100

Figure 4.6: Evolution of 2562 grey scale ellipse images at different time points for
parameters α = 0.8, δ = 0.5, and γ as discrete uniform [1, 2].
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(a) Image at t = 25 (b) Image at t = 50 (c) Image at t = 75 (d) Image at t =
100
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0 5 10 15 20 25 30
0

0.005

0.01

0.015

Radius of the SE

C
ha

ng
e 

in
 s

iz
e 

di
st

rib
ut

io
n

(g) PS at t = 50
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(h) PS at t = 75
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(i) PS at t = 100

Figure 4.7: A sequence of grey scale 2562 ellipse images, the corresponding gran-
ulometric size distribution and pattern spectrum using a disk SE.
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taking 255 minus image intensity for binary (0/255) images or 8-bit grey scale

images.

We illustrate this in Figure 4.8, where (a) and (b) are two binary images of

squares of size 1112 containing 10 squares of different widths ranging from 1 to 8.

The base size of a square is 2×width+1. The number of objects, total number of

foreground pixels and the object sizes and shapes are identical in both images, but

they have different spatial arrangements. Their pattern spectra arising from an

opening granulometry on the foreground, using a square SE, are identical (Figure

4.8(e)). The bars in the pattern spectrum correspond to the distinct object sizes

dropping out of the image. For example, there is one very small square of base

size 3 (width 1) which is removed by opening with a square of size 4, and there

are 4 squares of base size 9 (width 4) so the highest bar is observed at 9 as

they were removed by opening using a square of size 9. In general, applying

granulometry using any SE on the foreground of (a) and (b) will produce equal

pattern spectra. However, applying the same granulometry on the background

of each image (Figure 4.8(c)-(d)) using the same SE, generates different pattern

spectra, as shown in Figure 4.8(f). Since the pattern spectra are different their

moments are different, hence providing different sets of information.

Similarly, Figure 4.9 shows foreground and background pattern spectra from

images of disks, using a disk SE. Clearly foreground and background granulome-

tries provide different but complementary sets of information and the granulomet-

ric moments of both may be useful for texture classification (Chen and Dougherty

(1994)).

In the following section we apply granulometry on the foreground as well as

the background of the pyramid images and ellipse images.

4.3 PS Moments and Evolution Time

Granulometry was applied on the foreground and the background images sep-

arately, using six different SEs, namely a square, disk, horizontal line, vertical

line, and lines at 45◦ and 135◦. Corresponding pattern spectra were generated

from each SE and the first four granulometric PS moments (mean, sd, skewness,

and kurtosis) were computed from each pattern spectrum. Average PS moments

were then obtained at each time point by averaging over 100 simulations, each

one consisting of a single image at each time point t = 1, . . . , 100.
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Figure 4.8: Effect of granulometry using a square SE on the foreground and
background of two binary images of size 1112, containing squares of width 1 to 8
(base length=2×width+1). Object pixels are shown as white in (a)–(d).
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Figure 4.9: Effect of granulometry using a disk SE on the foreground and back-
ground of two binary images of size 1112, containing disks of different radii ranging
from 1 to 8. Object pixels are shown as white in (a)–(d).
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4.3.1 Foreground PS moments and evolution time

First of all, granulometry was applied on the foreground of 100 stacks of pyramid

images of size 1002, which were generated using parameters α = 0.5, δ = 0.1,

and γ was chosen from a discrete uniform distribution on the range [1, 2]. The

PS moments obtained by averaging over 100 simulations of the image stack were

stored in four matrices of size 100 × 6, where rows represent time steps and

columns represent SEs, one matrix for each moment. The average PS moments

were plotted against time, to identify any relationship with time.

Figure 4.10 represents the average foreground PS moments for the pyramid

images of size 1002, which shows that the first two moments (mean and sd) using

each SE increase with evolution time. The average PS means from all line SEs

coincide and have higher magnitude than for the square and disk SE, and the PS

mean from the disk has the lowest value throughout the whole evolution period.

The same pattern is noticed for PS sd for all SEs. However, the average PS sds

for horizontal and vertical line SEs are the same, and the average PS sds for lines

at 45◦ and 135◦ are the same.

There is no useful relationship between PS skewness and evolution time. If

there is a symmetric distribution of differently sized objects in the image, the PS

of that image will be symmetric, leading to near zero skewness. Having no object

at the beginning, the process starts adding new objects and updating existing

ones as time goes on. So in the earlier stages, a few objects appear, each of

different size, which forces the PS to be either positively skewed or negatively

skewed. If more image volume is dropped in the earlier stages of opening than

the later stages, the PS becomes positively skewed. The PS becomes negatively

skewed when the opposite occurs. The process is designed so that we are not

controlling either the number of objects or the size of the objects with time, but

these change randomly. After evolution time 10, the PS became symmetric, hence

all SEs produced near 0 skewness, and so PS skewness is not informative about

time after that point.

Average PS kurtosis increases over time for a square and disk SE, although

the rate of increase is different for each SE, but for any line SE it decreases after

time 50. Again there is no clear trend observed between PS kurtosis and evolution

time.

Similarly, average PS moments were computed for the pyramid images of

size 2562 and 5122, each yielding four 100 × 6 matrices of moments as before,

and average moments were plotted against time to identify any relationship with

time.
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 4.10: Plots of average foreground PS moments (averaged over 100 simula-
tions) against evolution time, using six different SEs, for the 1002 pyramid images
at each time point.

Figure 4.11 shows the average foreground PS moments for the pyramid images

of size 2562. The relationships between any moments and evolution time are very

similar to those observed for the 1002 pyramid images. Here again mean and sd

using all SEs increase over time. Any of the line SEs produces a higher mean

and sd, while the PS mean and sd from a disk SE are smaller, and the mean and

the sd from square SE are between the moments for the line SEs and disk SE.

Again skewness becomes near-zero for a square and disk SE through the whole

evolution period, and for any line SEs it becomes near-zero just after t = 15.

Kurtosis now shows a more regular relationship with time than before, but the

curves are jagged, especially for any line SE.

Finally, the relationships of the foreground moments of the 5122 pyramid

images with time are shown in Figure 4.12. Similar patterns are observed as in

Figures 4.10 and 4.11, with the only exception being that average PS kurtosis

generally increases over time and the lines are smoother than before, although

the rate of increase is different for each SE. In general, only PS mean and sd
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 4.11: Plots of average foreground PS moments (averaged over 100 simula-
tions) against evolution time using six different SEs, for the 2562 pyramid images
at each time point.

provide useful relationships with evolution time, but the skewness and kurtosis

do not look useful. Therefore, we used only the PS means and sds from each SE

to model evolution time in Chapter 5.

Granulometry was also applied to the foreground of the ellipse image stacks

of size 1002 and 2562 using the same SEs. We have not used 5122 ellipse images,

as the granulometric computation on larger images is more time consuming and

we cannot expect improved relationships of the moments with time, since the PS

moments from the 5122 pyramid images showed very similar patterns with time

as those of the 2562 images (Figures 4.11 and 4.12).

Figure 4.13 shows the relationship of the PS moments with time, which shows

that both average foreground PS mean and sd for all SEs clearly increase over

time. Average PS skewness for all SEs is near-zero after evolution time 10 except

for a disk SE for which the PS is symmetric after time 40. Average PS kurtosis

slightly increases throughout the whole evolution period for a disk SE, but does

not show any trend for the other SEs. Figure 4.14 represents the correspond-
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(b) Average PS sd.
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 4.12: Plots of average foreground PS moments (averaged over 100 simula-
tions) against evolution time using six different SEs, for the 5122 pyramid images
at each time point.

ing foreground granulometric moments for 2562 ellipse images. Both average

foreground PS mean and sd for all SEs clearly increase over time. Average PS

skewness for all SEs is near-zero after evolution time 20, but average PS kurtosis

does not show such a clear relation with time.

4.3.2 Background PS moments and evolution time

As the size of the images has little effect on the foreground PS moments relation-

ship with time, we only consider the 1002 and 2562 images when computing the

background PS moments for both pyramid and ellipse images.

The background granulometries of the same sets of pyramid images, each of

size 1002, were also calculated using the above SEs and the first four average PS

moments are plotted against time in Figure 4.15. The background PS means for

all SEs clearly decrease as a function of time. Average PS mean for a square SE

decreases faster with time than for the other SEs. The average PS means for the
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 4.13: Plots of the average foreground PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 1002 ellipse
images at each time point.

horizontal and vertical line SEs are the same, and the average PS means for lines

at 45◦ and 135◦ are the same. Average PS means for a disk SE are lower than

for any other SEs through the whole evolution period for both sets of images.

Average PS sd for any line SE increases with time, although the rate of increase

is higher for a horizontal or a vertical line SE. A curved relationship with time

is observed for the PS sd for a square and a disk SE, especially for the square

SE. The PS sds for horizontal and vertical line SEs are linearly related to time.

For the 45◦ and 135◦ line SEs, the PS sd is almost constant at a level around 34

up to t = 26 and moves upwards slowly after that. Larger negative skewness is

observed for the horizontal and vertical line SEs at the beginning of the evolution

but for the other SEs skewness is almost zero for the entire evolution period.

All SEs produced near-zero kurtosis, except for the horizontal and vertical lines

which produced very high kurtosis at the beginning of the evolution time.

Figure 4.16 represents the corresponding results for the background of the

2562 pyramid images. It shows almost identical relationships as in Figure 4.15.
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(d) Average PS kurtosis

Figure 4.14: Plots of the average foreground PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 2562 ellipse
images at each time point.

Both average PS skewness and kurtosis do not show a clear relationship with

time, hence do not provide useful texture information for classification.

Similarly granulometry was used on the background of the ellipse images of

size 1002 and 2562. Average PS moments are plotted against evolution time in

Figures 4.17 and 4.18. A clearly decreasing time trend is observed for the average

PS background mean for all SEs, whereas a clear curvilinear relation is found for

average PS sd with time. Again, both PS skewness and kurtosis are near-zero

after evolution time 20, so we do not use these in the prediction process.

4.3.3 Nature of PS moments

To examine the variation in the PS moments, the average foreground PS moments,

their maximum, minimum and 95% confidence limits for the 2562 pyramid images

are plotted in Figure 4.19, for the six different SEs. The confidence intervals are

very narrow and close to the average moments over the whole evolution time,
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(d) Average PS kurtosis

Figure 4.15: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 1002 pyramid
images at each time point.

while the range of the PS moments is wider. A similar situation is observed in

the corresponding figures for the ellipse images, shown in Figure 4.21.

Corresponding results for the background PS moments from the 2562 pyramid

and ellipse images are shown in Figures 4.20 and 4.22. The confidence limits are

again very close to the average moments but the moments at a specific time point

vary considerably. Wider variability of the PS moments may adversely affect the

classification results and may explain why the classification results are not as

good as we would expect (see Chapter 5).

4.3.4 Principal component analysis of the PS moments

As we have seen above that only the PS means and sds provide useful information

regarding evolution time, not skewness and kurtosis, we now use only the first

two granulometric moments to relate to evolution time. So our interest lies in

combining the information from the first two granulometric moments obtained
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Figure 4.16: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 2562 pyramid
images at each time point.

using the six SEs. Therefore the average PS moment data become a 100 × 12

matrix, where rows correspond to time, the first six columns represent the PS

means and the last six represent the PS sds for each SE. Having such a large

feature set, we consider principal component analysis (PCA), which can identify

a small number of independent linear combinations (principal components) of the

set of feature variables that retain a high proportion of the information in the

original variables, and also show which, if any, are the more important variables

in the data.

PCA was applied to the moments of the 2562 pyramid images and ellipse

images. For the pyramid images, the first principal component (PC) explains

99.75% of the variation in the foreground moments, together with the second

PC it explains 99.98% and the first three PCs explain 99.99%. The magnitude

of the moments is larger for a line SE at any of the four angles, leading to

larger coefficients for those SEs. So the moments were also normalised before

applying PCA. In this case, the first PC explains 99.45% of the variation, the
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Figure 4.17: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 1002 ellipse
images at each time point.

first two explain 99.98% and the first three explain 99.99%. The coefficients of the

first 3 PCs for both foreground and background PS moments (with and without

normalisation) are shown in Table 4.1.

For the foreground moments with normalisation, the coefficients are almost

identical in the first PC. In PC2, the PS sd from a line at 135◦ has the highest

coefficient (0.532) and the second strongest corresponds to the PS sds from the

disk (-0.454) and line at 45◦ (0.455). In PC3, the PS sd from a line at 0◦ has the

strongest coefficient (-0.531). However using PCA without normalisation, in the

first PC the PS means from any of the line SEs have the higher coefficients. The

PS sd from a line at 135◦ has the highest coefficient (0.588) in PC2. The PS sd

from a line at 45◦ has the highest coefficient (0.538) in PC3.

For the background moments, the first 3 PCs explain 95.58% of the variation

when PCA was applied with normalisation, but without normalisation the first 3

PCs express 97.04% of the variation in the moments. The PS mean from a line

at 135◦ has the strongest coefficient (-0.311) in PC1, whereas the PS mean from

120



0 20 40 60 80 100
0

50

100

150

200

250

300

Time

A
ve

ra
ge

 P
S

 m
ea

n
 

 
Square
Disk
Horizontal line
Vertical line
45 deg. line
135 deg. line

(a) Average PS mean

0 20 40 60 80 100
0

50

100

150

Time

A
ve

ra
ge

 P
S

 s
d

 

 
Square
Disk
Horizontal line
Vertical line
45 deg. line
135 deg. line

(b) Average PS sd

0 20 40 60 80 100
−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

2000

Time

A
ve

ra
ge

 P
S

 s
ke

w
ne

ss

 

 

Square
Disk
Horizontal line
Vertical line
45 deg. line
135 deg. line

(c) Average PS skewness

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time
A

ve
ra

ge
 P

S
 k

ur
to

si
s

 

 
Square
Disk
Horizontal line
Vertical line
45 deg. line
135 deg. line

(d) Average PS kurtosis

Figure 4.18: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 2562 ellipse
images at each time point.

a disk SE and the PS sds from a 90◦ and 135◦ line have the strongest coefficients

in PC2 and PC3 respectively, using PCA on the normalised moments. Without

normalisation, the PS mean from a square SE has the highest coefficient both in

PC1 (0.580) and PC3 (0.792), while the PS mean from a disk SE has the strongest

coefficient (-0.830) in PC2.

For the ellipse images, the first 3 PCs explain 98.08% of the variation in the

foreground PS moments. The principal components scores of the first 3 PCs with

and without normalisation are shown in Table 4.1. The PS mean from a square

SE and sd from a horizontal line SE have the strongest coefficient (0.293), when

PCA was applied with normalisation, although all the coefficients are similar. In

PC2, the PS sd from a disk SE has the strongest coefficient (-0.504), while in

PC3 the PS mean from a line at 135◦ has the strongest coefficient (-0.574). The

first 3 PCs without normalisation explain 98.94% variation of the moments. In

PC1, a 45◦ line has the highest coefficient of 0.458 for the PS sd. In PC2 and

PC3, the PS mean and sd from a 135◦ line SE have the strongest coefficients of
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(b) Disk SE
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(c) Horizontal line SE
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(d) Vertical line SE
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(e) Line at 45◦ SE
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(f) Line at 135◦ SE

Figure 4.19: Plots of average foreground PS means, maximum and minimum and
95% confidence intervals versus time, for the 2562 pyramid images.
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(a) Square SE
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(b) Disk SE
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(c) Horizontal line SE
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(d) Vertical line SE
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(e) Line at 45◦ SE
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(f) Line at 135◦ SE

Figure 4.20: Plots of average background PS means, maximum and minimum
and 95% confidence intervals versus time, for the 2562 pyramid images.

0.627 and -0.642 respectively.

Using PCA on the background PS moments from the 2562 ellipse images, the

first 3 PCs explain 97.40% and 99.13% of the variation with and without nor-

malisation respectively. The coefficients for both cases are shown in Table 4.1.

With normalisation, the PS sd from a 0◦ and 45◦ line SE produced the highest

coefficient of 0.328. The PS sd and mean from a disk SE produced the strongest
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(b) Disk SE
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(c) Horizontal line SE
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(d) Vertical line SE
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(e) Line at 45◦ SE
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(f) Line at 135◦ SE

Figure 4.21: Plots of average foreground PS means, maximum and minimum and
95% confidence intervals versus time, for the 2562 ellipse images.
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(b) Disk SE
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(c) Horizontal line SE
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(d) Vertical line SE
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(e) Line at 45◦ SE
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(f) Line at 135◦ SE

Figure 4.22: Plots of average background PS means, maximum and minimum
and 95% confidence intervals versus time, for the 2562 ellipse images.

coefficients (-0.517 and -0.694) in PC2 and PC3 respectively. Without normalisa-

tion the PS mean from a square SE has the highest coefficients (0.550 and 0.540)

in PC1 and PC2. In the third PC, the PS mean from a disk SE has the highest

coefficient (0.847).

From this analysis, the line SEs are more informative than the square and disk

SEs for the foreground moments of the pyramid images, while for the background
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images the square, disk and line SEs are the most informative in different PCs.

For the ellipse images, in some PCs the square SE is the most informative while

in other cases the disk or line SEs appeared to be best. In general no single SE

is better overall than the others for all sets of moments. Therefore, we conclude

that choosing a suitable SE largely depends on the images and objects in the

images of interest.

4.4 Conclusion

In this chapter we have generated synthetic images of differently sized objects

and computed granulometric PS moments from them using multiple SEs. We

investigated possible relationships between the average PS moments and time,

and found that both the foreground and background PS mean and sd always

show a relationship with time for both the pyramid and ellipse images. We also

computed the PCs of the PS moments. In the next chapter we will model the PS

means and sds in terms of evolution time, and we also examine the usefulness of

the PCs to relate them to evolution time.
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Table 4.1: Principal component scores for average foreground and background
PS mean and sd using 6 SEs for the size 2562 images.

PS moments from the pyramid images
Foreground Moments Coefficients (normalisation) Coefficients (without normalisation)

SE PC1 PC2 PC3 PC1 PC2 PC3

PS means

square 0.289 -0.158 0.371 0.224 -0.210 0.366
disk 0.288 -0.393 0.205 0.163 -0.351 0.146

line at 0◦ 0.290 0.008 -0.145 0.411 -0.033 -0.198
line at 90◦ 0.290 -0.057 -0.028 0.401 -0.167 0.002
line at 45◦ 0.289 -0.074 0.083 0.422 -0.215 0.202
line at 135◦ 0.290 -0.026 -0.083 0.418 -0.106 -0.091

PS sds

square 0.289 -0.195 0.117 0.112 -0.126 0.066
disk 0.288 -0.454 -0.145 0.072 -0.178 -0.042

line at 0◦ 0.289 0.255 -0.531 0.258 0.310 -0.519
line at 90◦ 0.289 0.112 -0.449 0.241 0.111 -0.405
line at 45◦ 0.288 0.455 0.505 0.221 0.494 0.538

line at 135◦ 0.287 0.532 0.104 0.222 0.588 0.164
Background Moments Coefficients (normalisation) Coefficients (without normalisation)

PS means

square 0.305 -0.040 0.111 0.580 -0.114 0.792

disk -0.220 -0.666 -0.155 -0.203 -0.830 0.064
line at 0◦ 0.297 -0.044 0.167 0.349 -0.021 -0.094
line at 90◦ -0.237 -0.560 0.088 -0.090 -0.221 -0.002
line at 45◦ 0.304 -0.209 0.098 0.272 -0.222 -0.273
line at 135◦ -0.311 -0.099 -0.087 -0.343 -0.152 0.239

PS sds

square 0.305 -0.190 0.083 0.270 -0.201 -0.261
disk -0.310 -0.105 -0.083 -0.343 -0.161 0.245

line at 0◦ 0.296 -0.251 0.250 0.227 -0.234 -0.222
line at 90◦ -0.284 0.082 0.621 -0.055 0.014 0.021
line at 45◦ 0.296 -0.251 0.250 0.227 -0.234 -0.222
line at 135◦ -0.284 0.082 0.621 -0.055 0.014 0.021

PS moments from the ellipse images
Foreground Moments Coefficients (normalisation) Coefficients (without normalisation)

SE PC1 PC2 PC3 PC1 PC2 PC3

PS means

square 0.293 0.065 0.151 0.219 -0.017 0.083
disk 0.290 0.311 0.255 0.115 0.031 0.084

line at 0◦ 0.292 0.137 0.185 0.141 0.002 0.046
line at 90◦ 0.286 0.407 0.284 0.074 0.031 0.049
line at 45◦ 0.292 0.145 -0.247 0.391 0.411 0.105
line at 135◦ 0.281 0.388 -0.574 0.254 0.627 0.160

PS sds

square 0.292 -0.309 0.174 0.401 -0.440 0.127
disk 0.284 -0.504 0.288 0.258 -0.490 0.144

line at 0◦ 0.293 -0.036 0.081 0.353 -0.043 0.313
line at 90◦ 0.286 -0.014 0.082 0.236 -0.010 0.384
line at 45◦ 0.291 -0.209 -0.219 0.458 -0.011 -0.500
line at 135◦ 0.282 -0.385 -0.481 0.280 0.012 -0.642

Background Moments Coefficients (normalisation) Coefficients (without normalisation)
SE PC1 PC2 PC3 PC1 PC2 PC3

PS means

square 0.297 0.314 0.029 0.550 0.540 0.074
disk 0.216 -0.327 -0.694 0.091 -0.378 0.847

line at 0◦ 0.308 0.252 -0.046 0.262 0.150 0.151
line at 90◦ 0.267 -0.286 -0.400 0.046 -0.142 0.127
line at 45◦ 0.316 -0.101 0.092 0.091 -0.129 -0.084
line at 135◦ -0.321 -0.150 0.006 -0.109 0.002 -0.005

PS sds

square 0.326 0.043 -0.003 0.421 -0.251 -0.018
disk -0.229 -0.517 -0.022 -0.160 -0.423 -0.064

line at 0◦ 0.328 0.049 0.039 0.439 -0.238 -0.133
line at 90◦ 0.248 -0.414 0.415 0.067 -0.274 -0.310
line at 45◦ 0.328 0.049 0.039 0.439 -0.238 -0.133
line at 135◦ 0.248 -0.414 0.415 0.067 -0.274 -0.310
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Chapter 5

Classification using

Granulometries

In this chapter the granulometric moments calculated in Section 4.3 are used

to model texture evolution time of the synthetic images, using a new regression

approach which is developed in Section 5.3.

5.1 Modelling PS Moments

Since the parameters used to generate the synthetic texture images, i.e. the prob-

ability of adding a new object (α), the probability of updating an existing object

(δ) and the rate at which the objects grow (γ) are all fixed over the period of time

for which the process was observed for any one simulation, the PS moments are

simply modelled as a function of evolution time rather than of the parameters.

At each time step, t = 1, 2, . . . , 100, of the evolution process there are 100

images, as 100 simulations are used to calculate the sample average moments

(averaged over the 100 simulations). We observed the relationships of the average

PS moments, namely, mean, sd, skewness, and kurtosis for both the foreground

and background of the pyramid and ellipse images, in Chapter 4. As skewness

and kurtosis do not exhibit any clear relationship with time (see Section 4.3)

we will not use them in model building, but use the foreground and background

mean and sd for each of the different SEs. We model the foreground moments

separately from the background ones.

Individual moments obtained from different SEs are expressed as a function of

evolution time using regression modelling. The objective of regression analysis is

to find a deterministic model which allows prediction of the values of a dependent

variable (measured subject to error) from values of one or more independent
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variables (assumed to be known and not subject to error). The general process

of fitting data to a linear combination of variables is termed linear regression.

Let Yi(t), i = 1, 2, . . . , 6 denote the average PS moment obtained by using the

SE given by a square, disk, horizontal line, vertical line, or line at 45◦ and 135◦

respectively at time t. The simple linear regression model of Yi(t) on time t is

Yi(t) = βi0 + βi1 ∗ t+ ξi, (5.1)

where t = 1, 2, . . . , T represents evolution time, and ξi, i = 1, . . . , 6, is an error

term.

The quadratic regression is of the form:

Yi(t) = βi0 + βi1 ∗ t+ βi2 ∗ t2 + ξi. (5.2)

The cubic regression can be written as:

Yi(t) = βi0 + βi1 ∗ t+ βi2 ∗ t2 + βi3 ∗ t3 + ξi. (5.3)

Simple linear regression produces a straight line fit of the data and quadratic

regression produces a fitted parabola, whereas cubic regression produces a fitted

S shaped curve. Least squares is used to fit every model.

Assumptions about the error term: Some fundamental assumption are

imposed on the disturbance term ξi, known as the Gauss-Markov assumptions,

that are sufficient to guarantee that ordinary regression estimates will have good

properties (Rawlings (1932)), namely.

• The errors ξi are independently and identically distributed random variables

having an expected value of zero, i.e. E(ξi) = 0. This means that on average

the errors balance out. This also implies that the disturbances associated

with different observations are uncorrelated, i.e. E(ξi, ξj) = 0 if i 6= j.

• The disturbances ξi are homoscedastic: E(ξ2
i ) = σ2, i.e. the variance of the

disturbance is the same for each observation.

Serial correlation: When the observations are collected in successive periods

of time, the disturbances associated with different observations may be correlated

and the disturbance terms become autocorrelated. This property is known as

serial correlation. With first-order serial correlation, errors in one time period

are correlated directly with errors in the previous time period, and with positive

or negative serial correlation, errors in one time period are positively correlated

or negatively correlated with errors in the next time period respectively.
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Durbin-Watson test: The most popular test for serial correlation is the

Durbin-Watson test (Gardiner (2001)). The Durbin-Watson statistic is:

DW =

∑T
t=2(ξ̂t − ξ̂t−1)

2

∑T
t=1 ξ̂

2
t

, (5.4)

where t = 1, 2, . . . , T is the number of time periods.

The DW statistic will lie in the 0-4 range, with a value near 2 indicating no

first-order serial correlation. When successive values of ξt are close to each other,

the DW statistic will be low (below 2), indicating the presence of positive serial

correlation. Positive serial correlation is associated with DW values below 2 and

negative serial correlation with DW values above 2. The Durbin-Watson test has

the null hypothesis that the autocorrelation of the disturbances is 0. The test is

significant if DW < Dl or DW > Du and is inconclusive when Dl < DW < Du,

where Dl and Du are lower and upper critical values of the test statistic at the

specified significance level.

Some measures of goodness of fit of these models are:

Mean squared error: The mean squared error (mse) is a measure of predic-

tion error, i.e. mse is the average squared vertical distance of a data point from

a fitted curve or prediction. The smaller the mse, the closer the fit is to the data.

The root mean square error (rmse) is the square root of mse, which is directly

interpretable as it has the same units as the data (Gardiner (2001)).

Coefficient of determination: The coefficient of determination R2 is an

important measure of goodness of fit of a regression model. It is defined as

the ratio of the sum of squares due to regression to the total sum of squares,

R2 = SSreg/SStot. The higher the R2, the better the model fit to the data used

to build it. For example if R2 = 0.9968, the fitted model expresses 99.7% of the

variation in the dependent variable.

Adjusted R2: The R2 of a model can be made larger simply by adding more

predictors in the model even if they are not useful predictors. The adjusted R2,

denoted by R2
adj , allows for this and may actually decrease because the decrease

in summed square error (SSE) may be more than offset by the corresponding

decrease in the error degrees of freedom (df). The adjusted R2 is R2
a = 1− SSE/dfE

SST/dfT
,

where SST is the total sum of squares (Rawlings (1932)).
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5.2 Modelling Foreground PS Moments

We investigated the presence of serial correlation in all fitted models using differ-

ent SEs for both the pyramid and ellipse images with different parameter settings.

Similar results were observed for both pyramid and ellipse images. Here we have

shown only the results for the average foreground PS moments (mean and sd)

for the pyramid image of size 2562 for all SEs using fitted straight line, quadratic

and cubic regression models.

Using parameters α = 0.5, δ = 0.3, and γ = discrete uniform [1, 2] initially,

100 stacks of 2562 pyramid images, each having 100 layers (one layer for each

time point), were generated and the average foreground PS means and sds were

calculated using each of the six SEs. The simple least squares regression given

by equation (5.1) was fitted to each of the 6 sets of PS means and sds.

5.2.1 Modelling foreground PS mean

Figure 5.1(a) shows average foreground PS means for a square and a disk SE

plotted against time, with their fitted regression line. The models fit very well

for both sets of means. The upper lines in the graph correspond to the average

PS mean for a square and the respective fitted line, whereas the lower lines

represent the average PS mean and fitted line for a disk SE. Figure 5.1(b) shows

the residuals for both models in (a). There is clearly curvature present in the

residual plots. We employed the Durbin-Watson test on every fitted model to

test if there is serial correlation present.

Figure 5.1(c) shows the average PS moments for all line SEs with their fitted

regression lines and their corresponding residuals are shown in (d). Again all of

the models fit well, but curvature in the residual plots suggests that quadratic

regression may be more appropriate. The pattern of runs of positive then negative

residuals also suggests serial correlation. This is not surprising, as the data were

collected as the images evolve through time.

The quadratic regression model (equation (5.2)) was fitted also, with results

shown in Figures 5.2. Quadratic regressions fit the data better than the straight

line regressions. However the residual plots still exhibit curvature in most cases.

The curvature in the residual plots suggests that applying higher order polynomial

would be more appropriate and any problem caused by the presence of serial

correlation may reduce.

Figure 5.3 represents the results of cubic regression (equation (5.3)). All

models fit the corresponding data extremely well and the presence of any serial
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(d) Residual plot of (c)

Figure 5.1: Plots of average foreground PS mean versus time t, with fitted lin-
ear regression lines (solid lines) and residual plots for the 2562 pyramid images
generated using parameters α = 0.5, δ = 0.3 and γ = discrete uniform [1, 2].
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(d) Residual plot of (c)

Figure 5.2: Plots of average foreground PS mean versus time t, with fit-
ted quadratic regression curves (solid lines) and residual plots for the 2562

pyramid images generated using parameters α = 0.5, δ = 0.3 and γ =
discrete uniform [1, 2].
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Figure 5.3: Plots of average foreground PS mean versus time t, with fitted cubic
regression curves (solid lines) and residual plots for the 2562 pyramid images
generated using parameters α = 0.5, δ = 0.3 and γ = discrete uniform [1, 2].

correlation is reduced, especially for square and disk SEs, but serial correlation

is noticeable in the models fitted using moments from a line SE. We applied the

Durbin-Watson test to all six PS mean models from the pyramid images and

computed test statistics and the associated p-values (Table 5.1). The results

indicate that positive serial correlation is present in every model.

The highest Durbin-Watson test statistic among the models is 0.1793 with

p-value 3.7319e−20 for the cubic regression model using the PS mean from a 45◦

line SE, but all are highly significant. The presence of positive serial correlation

is unavoidable as the synthetic image at any time point is built directly from the

image at the previous time point. Serial correlation will not affect the unbiased-

ness or consistency of ordinary least square estimators, but it does affect their

efficiency (Everitt and Dunn (2001)).

5.2.2 Modelling foreground PS standard deviation

Figure 5.4 represents the six sets of average PS sds with the fitted linear regression

lines and associated residual plots. As for the PS means, straight line regression

models fit the data quite well, but the residual plots indicate curvature and

presence of serial correlation, so we also fitted quadratic regression models.

The results from quadratic regression are shown in Figure 5.5. These models
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Table 5.1: Durbin-Watson test statistics and associated p-values for the six fore-
ground PS mean models using the 2562 pyramid images, one for each SE.

Straight line Quadratic Cubic

Model DW p-value DW p-value DW p-value

Mean from square SE 0.03 2.15e-23 0.06 9.10e-23 0.11 1.15e-21
Mean from disk SE 0.07 2.01e-22 0.08 3.66e-22 0.15 1.02e-20
Mean from 0◦ line 0.02 1.18e-23 0.03 2.59e-23 0.14 5.90e-21
Mean from 90◦ line 0.01 1.12e-23 0.03 2.66e-23 0.16 1.28e-20
Mean from 45◦ line 0.02 1.17e-23 0.04 3.36e-23 0.18 3.73e-20
Mean from 135◦ line 0.02 1.26e-23 0.03 2.57e-23 0.17 2.64e-20

fit the data better than the straight lines and lessen the curvature in the residual

plots, but serial correlation is still apparent.

Figure 5.6 represents the same sets of PS sds with fitted cubic regression

curves and residual plots. All models fit the data very well, and the presence of

serial correlation is not so severe, as judged from the residual plots.

The Durbin-Watson test statistics and corresponding p-values shown in Ta-

ble 5.2 confirm the presence of positive serial correlation in every model fitted

to the PS sds. This is inevitable owing to the nature of the data. Time se-

ries modelling would allow for the serial correlation but would make prediction

of evolution time much more difficult. We therefore continue to use regression

modelling as the fit of the cubic regression model is generally very good.

Table 5.2: Durbin-Watson test statistics and associated p-values for the six fore-
ground PS sd models using the 2562 pyramid images, one for each SE.

Straight line Quadratic Cubic

Model DW p-value DW p-value DW p-value

Sd from square SE 0.03 2.51e-23 0.05 8.59e-23 0.19 7.57e-20
Sd from disk SE 0.04 4.55e-23 0.06 1.29e-22 0.13 4.11e-21
Sd from 0◦ line 0.01 1.04e-23 0.03 3.03e-23 0.32 1.92e-17
Sd from 90◦ line 0.01 9.21e-24 0.03 2.62e-23 0.29 6.08e-18
Sd from 45◦ line 0.01 8.45e-24 0.057 9.64e-23 0.43 2.57e-15
Sd from 135◦ line 0.01 8.83e-24 0.03 2.60e-23 0.18 3.25e-20
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(d) Residual plot of (c)

Figure 5.4: Plots of average foreground PS sd versus time t, with fitted linear
regression lines (solid lines) and residual plots for the 2562 pyramid images gen-
erated using parameters α = 0.5, δ = 0.3 and γ = discrete uniform [1, 2].
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(c) Sd for all line SEs
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Figure 5.5: Plots of average foreground PS sd versus time t, with fitted quadratic
regression curves (solid lines) and residual plots for the 2562 pyramid images
generated using parameters α = 0.5, δ = 0.3 and γ = discrete uniform [1, 2].
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(c) Sd for all line SEs
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Figure 5.6: Plots of average foreground PS sd versus time t, with fitted cubic
regression curves (solid lines) and residual plots for the 2562 pyramid images
generated using parameters α = 0.5, δ = 0.3 and γ = discrete uniform [1, 2].

5.3 New Regression-based Classifier

Regression analysis provides a straightforward way to estimate the response vari-

able for any known value of the regressor, but when the interest centres on es-

timating an unknown value of the regressor corresponding to an observed value

of the response variable, this is known as calibration. So calibration is a reverse

process to regression, which can be handled either by the classical approach or

by the inverse approach (Krutchkoff, 1967). In the classical approach, the fitted

regression line is solved for the regressor, namely, if the fitted line is

Y (t) = β̂0 + β̂1 ∗ t, (5.5)

the corresponding calibration equation becomes

t̂ =
Y (t) − β̂0

β̂1

, (5.6)

where t = 1, 2 . . . , T , and Y (t) is the observed average PS moment at time point

t. The inverse calibration approach suggests fitting a regression line as

T = γ0 + γ1 ∗ Y (t), (5.7)
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so once the moments for any image are available, the corresponding time state

can be estimated from the calibration equation

T̂ = γ̂0 + γ̂1 ∗ Y (t). (5.8)

Solutions given by equations (5.6) and (5.8) will not be the same.

As in this case t is error free and Y (t) is subject to error, the relation between

t and Y (t) given by equation (5.8) violates one of the important assumptions of

regression analysis, which states that the regressor should be free of measurement

error.

5.3.1 Combined straight line model

Let Yi(t), i = 1, 2, . . . , p, and t = 1, 2, . . . , T be the average of the ith PS moment

for the tth time point. Each PS moment is modelled as a function of time t. First

each moment is modelled as a function of time using straight line regression of

the form:

Yi =













Yi(1)

Yi(2)
...

Yi(100)













=













β
(i)
0 + β

(i)
1 t1

β
(i)
0 + β

(i)
1 t2

...

β
(i)
0 + β

(i)
1 t100













+













ε1

ε2

...

ε100













=













1 t1

1 t2
...

...

1 t100













[

β
(i)
0

β
(i)
1

]

+ ε = Aβ(i) + ε,

assuming 100 time points t1, t2, . . . , t100, have been observed for each moment

and each such set of equations involves the same design matrix A. Substituting

estimates Yi on the left hand side of any one such equation yields numerous

different estimates of t, one from each equation if they are solved separately:

Ŷi(t) = β̂
(i)
0 + β̂

(i)
1 t. We can either rearrange the equation to solve for t given

the moment (inverse prediction) or use calibration. In either case we can simply

average the predictions for t.

A different approach is to use all p fitted models involving t, one per moment,

at once. For example, if the number of moments is p = 4, we could use the mean,
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sd, skewness, and kurtosis as Ŷ1, Ŷ2, Ŷ3, Ŷ4. We have in general
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(5.9)

or Ŷ = B̂T , where

B̂ =
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1
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is a p× 2 matrix and T is a 2 × 1 vector (1 t)T .

Pre-multiplying by B̂T gives B̂T Ŷ =B̂T B̂T , so the left hand side is of di-

mensions (2× p)× (p× 1) and the dimensions are (2× 2)× (2× 1) on the right.

Therefore we can solve for T as (B̂T B̂)−1B̂T Ŷ as in the original model fitting,

but the problem is that this does not guarantee that the first entry of T is 1 as

it should be. Therefore instead write
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]

,

or Ŷ = β̂0 + β̂1t, so (Ŷ -β̂0) = β̂1t, in which (Ŷ -β̂0) is p× 1, as is β̂1, and t

is scalar, and then pre-multiply by any 1× p vector, e.g. β̂1
T or (Ŷ -β̂0)

T , to get

t=β̂1
T (Ŷ -β̂0)/(β̂1

T β̂1), in the first case, or t=(Ŷ -β̂0)
T (Ŷ -β̂0)/((Ŷ -β̂0)

T β̂1), in

the second case.

We will use only the PS mean and sd, so p = 2 in Equation (5.9).

If p straight line models are solved separately for t, we get p solutions for t

namely, t =
Ŷ1(t)−β̂

(1)
0

β̂
(1)
1

, . . ., t =
Ŷp(t)−β̂

(p)
0

β̂
(p)
1

. Taking the average of the p solutions we

get
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t =
1

p

p
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i=1
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. (5.10)

The solution from the combined model was (Ŷ -β̂0)= β̂1t. Pre-multiplying by

any 1 × p vector, A = (a1, . . . , ap) and simplifying to make it comparable with

Equation (5.10) we get

t =
A

Aβ̂1

[

Ŷ − β̂0

]

t =

[

a1
∑p

i=1 aiβ̂
(1)
1

, . . . ,
ap

∑p
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1

]
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Ŷ − β̂0

]

. (5.11)

The solutions of t given by Equations (5.10) and (5.11) will coincide if and

only if a1
Pp

i=1 aiβ̂
(1)
1

= 1

pβ̂
(1)
1

, . . ., ap
Pp

i=1 aiβ̂
(1)
1

= 1

pβ̂
(p)
1

, that is if a1 =
Pp

i=1 aiβ̂
(1)
1

pβ̂
(1)
1

, . . .,

ap =
Pp

i=1 aiβ̂
(p)
1

pβ̂
(p)
1

. Therefore only using A = [
Pp

i=1 aiβ̂
(1)
1

pβ̂
(1)
1

, . . . ,
Pp

i=1 aiβ̂
(p)
1

pβ̂
(p)
1

] will yield an

estimate of t which is equivalent to the average of the p estimates of t from the

p separate models.

5.3.2 Combined quadratic model

As we have observed in Section 5.2 that a higher order polynomial fits the data

better, if we use quadratic polynomial regression to relate the mean and sd (for

a single SE) to time, the above becomes

[

Ŷ1(t)

Ŷ2(t)

]

=

[

β̂
(1)
0 + β̂

(1)
1 t+ β̂

(1)
2 t2

β̂
(2)
0 + β̂

(2)
1 t+ β̂

(2)
2 t2

]

(5.12)
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or Ŷ = B̂T , where

B̂ =

[

β̂
(1)
0 β̂

(1)
1 β̂

(1)
2

β̂
(2)
0 β̂

(2)
1 β̂

(2)
2

]

is a 2 × 3 matrix and T is a 3 × 1 vector (1, t, t2).

Equation (5.12) can be rewritten as

[

Ŷ1(t)

Ŷ2(t)

]

=

[

β̂
(1)
0

β̂
(2)
0

]

+

[

β̂
(1)
1 β̂

(1)
2

β̂
(2)
1 β̂

(2)
2

][

t

t2

]

or

[

Ŷ1(t) − β̂
(1)
0

Ŷ2(t) − β̂
(2)
0

]

=

[

β̂
(1)
1 β̂

(1)
2

β̂
(2)
1 β̂

(2)
2

][

t

t2

]

,

or
[

Ŷ − β̂0

]

= β̂T .

The left hand side is of dimension 2 × 1 and the right hand side is of order

(2 × 2) × (2 × 1) = (2 × 1).

Using the PS mean and sd obtained using 6 different SEs, the left hand side

becomes 12×1 and the right hand side becomes (12×2)×(2×1). Pre-multiplying

both sides of the above expression by (Ŷ − β̂0)
T , which is of order 1×12 produces

(Ŷ − β̂0)
T
(1×12)(Ŷ − β̂0)(12×1) = (Ŷ − β̂0)

T
(1×12)B̂(12×2)T (2×1)

or K ′ = K(1×2)T (2×1). (5.13)

The left hand side is a scalar and the right hand side is (1×2)×(2×1), so we end

up with a quadratic equation of the form K(2)t2 +K(1)t−K ′ = 0 to solve for t.

The root of such an equation can be calculated using the conventional formula

t =
−K(1) ±

√

(K(1)2 + 4K ′K(2))

2K(2)
.

Since our goal is to predict time, we choose the positive root. If both roots are

positive we choose the smallest one and in the case of no positive root we predict

time as the first time point.

This model can be built using only the foreground average PS mean and sd

obtained by using each of the 6 SEs, and for the background average PS mean
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and sd a similar model can be built to predict the time state, or we could use

both at once.

5.3.3 Combined cubic model

In a similar way a cubic regression model can be developed to relate PS moments

to time. A simplified form of this relationship is as follows:

[

Ŷ − β̂0

]

=
[

β̂1 β̂2 β̂3

]







t

t2

t3







or
[

Ŷ − β̂0

]

= B̂T .

In this case the left hand side is 12×1 and the right hand side is (12×3)×(3×1).

Pre-multiplying by (Ŷ − β̂0)
T , we get

(Ŷ − β̂0)
T
(1×12)(Ŷ − β̂0)(12×1) = (Ŷ − β̂0)

T
(1×12)B̂(12×3)T (3×1)

or K ′ = K(1×3)T (3×1). (5.14)

Now equation (5.14) can be written as K(3)t3 + K(2)t2 + K(1)t − K ′ = 0.

A real root of such a cubic equation can be found by dividing the equation by

K(3) and letting t = s − K(2)/3K(3). The reduced equation will be of form

s3 + As + B = 0, known as a depressed cubic equation. One of the roots of the

depressed cubic equation is s = u− v where u3 − v3 = B and 3uv = A. This can

be proved by replacing A, B and s in the equation. Once we get s, then t the

real root of the original equation can be obtained. However, this procedure does

not always guarantee a real root. A more robust procedure for finding a real root

of a cubic equation, as given in Tuma and Walsh (1998), is described here:

• Firstly calculate p = (3k(1)/k(3)−(k(2)/k(3))2)/3 and q = (2(k(2)/k(3))3−
9k(2)k(1)/k(3)/k(3) + 27(−k′)/k(3))/27.

• Then calculate the discriminant D in terms of p and q as (p/3)3 + (q/2)2.

• If D > 0 or D = 0, calculate u and v as u = (−q/2 +
√
D)(1/3) and

v = (−q/2 +
√
D)(1/3).

• Three transformed roots in these cases are y1 = u+ v, y2 = −(u + v)/2 +

i(u− v)
√

3/2 and y3 = −(u+ v)/2 − i(u− v)
√

3/2.
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• If D < 0, the transformed roots are: y1 = 2
√

(|p|/3) cos(ϕ/3), y2 =

−2
√

(|p|/3) cos((ϕ+ π)/3) and y3 = −2
√

(|p|/3) cos((ϕ− π)/3), where

ϕ = acos(−q/2.
√

(|p3|/27)).

• The real roots of the original cubic equation are calculated as x = y −
k(2)/k(3)/3, i.e. x1 = y1 − k(2)/k(3)/3, x2 = y2 − k(2)/k(3)/3 and x3 =

y3 − k(2)/k(3)/3.

To find the cubic roots we use either the roots function in Matlab or the method

given in Tuma and Walsh (1998) and available as FORTRAN or Matlab code

at http://www.ece.umd.edu/∼nsw/ench250/cubiceq.htm. We use the following

procedure for choosing a root as the predicted time:

• If D < 0, there are 3 distinct real roots and we choose the smallest positive

one.

• If none of the roots are positive, the method fails to predict time and we

choose the first (smallest) time point as the prediction.

• If D = 0, there are three real roots of which at least two are equal and we

choose the smallest positive one.

• If D > 0, there are one real and two complex roots, and we choose the

real one if it is positive, otherwise we choose the first time point as the

prediction.

This procedure gave sensible results in all cases examined in the training stage.

5.3.4 Assessing accuracy of prediction

The prediction abilities of the models are assessed using various error rates as well

as mean absolute error. Type k error (as used in McKenzie (2004)) measures the

proportion of images not classified to within k units of their actual time point,

and is defined as

E(k) =
1

n

n
∑

i=1

Ik(t
i
pred − t i

act), k = 0 , 1 , 2 (5.15)

where n is the number of images for which the time is to be predicted, tipred
and tiact are respectively the (rounded) predicted time and actual state of time of
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image j, and the indicator function I is such that

Ik(x ) =

{

1 if |x | > k

0 otherwise.

The prediction ability of the models (5.9), (5.12), and (5.14) are assessed

separately for the foreground as well as for the background PS moments.

Mean absolute error: Mean absolute error (MAE) of the prediction time is

also calculated. This is an average deviation of the predicted time from the actual

time, i.e.

MAE =
1

n

n
∑

i=1

|tipred − tiact|, (5.16)

where tpred and tact are respectively the rounded predicted time and the actual

time state, and n is the total number of images for which the time is predicted.

5.4 Prediction using the Regression Approach

In this section we make use of the first two PS moments computed from different

sizes 1002, 2562 and 5122 of the pyramid images using all 6 SEs to predict the

evolution state of individual image by means of the regression approach. The

aim is to investigate whether the performance of the PS moments increases with

increasing image size.

The PS moments data for any set of images is a 10000 × 12 matrix, where

rows correspond to time states t = 1, 2, . . . , 100 for 100 simulations and the first 6

columns contain PS means and the last 6 contain PS sds from the 6 SEs. Moments

are averaged over the 100 simulations (there are 100 images at each time point),

so the data is a matrix of size 100 × 12.

At this stage we built each combined regression model, i.e. straight line (5.9),

quadratic (5.13) and cubic (5.14) regression models using the average PS moments

(100 images at each time point) and the moments for each single image are used to

predict the time. We assess the performance of straight line, quadratic and cubic

regression models using the foreground as well as the background PS moments

separately. At this stage all of the data is used to fit the models and we predicted

the time for all of the available images at each time.
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5.4.1 Prediction for 1002 images

The 1002 pyramid images were generated using parameters α = 0.5, δ = 0.1, and

γ as discrete uniform [1, 2] in Section 4.2. Figure 5.7 shows some of those images

at their final stage of evolution at the growth time step 100. These are seen to

be quite variable in appearance.

Figure 5.7: Final pyramid images of size 1002 for different simulations, using
α = 0.5, δ = 0.1, and γ= discrete uniform [1, 2], at time 100.

We obtained the predicted times for 100 different simulations, using straight

line, quadratic and cubic regression, but we plotted the predicted times from cubic

regression of the foreground PS moments at every tenth time point in Figure 5.8.

The predicted times are centred at the actual time point, but are quite widely

spread. Very often the predicted times are more than 20 units away from the

actual time point, therefore the predicted time exceeds 100 (the largest actual

time state) when the actual time is 80 or higher, so in general prediction is poor.

Clipping the upper limit of the predicted time to 100 might decrease the error

rate, but we did not do that in this chapter as evolution time in principle could

be higher than 100.

The foreground and background moments were used separately for model

fitting and predicting time, and the different types of error rates and MAEs as

given in equations (5.15) and (5.16) are shown in Table 5.3. The type 0 error rate

for the straight line, quadratic and cubic regressions using foreground PS moments

are 96.1%, 95.7% and 95.2%, and 94.7%, 94.0% and 94.2% using background PS

moments. The MAEs for the foreground moments are 8.389, 8.137 and 7.550,
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Figure 5.8: Histograms of the predicted times for the 1002 pyramid images using
cubic regression modelling of the first two foreground PS moments from all 6 SEs,
for actual times t = 10, 20, . . . , 100.
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while much lower MAEs were obtained from the background moments, i.e. 5.769,

5.344 and 5.460 for straight line, quadratic and cubic regression respectively. The

background PS moments produced lower error rates and MAEs for any model

than the foreground moments. Cubic regression works slightly better for the

foreground moments but quadratic regression works better for the background

moments.

Figure 5.9 shows the MAEs, type 0, type 1, and type 2 error rates for all

3 models and the cubic regression provides slightly lower error rates than the

straight line and quadratic regression models. In terms of MAE, the quadratic

and cubic regression models are equally effective, especially after evolution time

10 for the foreground moments and for the background moment between times

20 and 80.

Table 5.3: Average classification error rates and MAEs from prediction of time
for all of the 1002 pyramid images, using the first 2 PS moments from 6 SEs.

Error rate Foreground PS moments
Straight line Quadratic reg. Cubic reg.

Type 0 0.961 0.957 0.952
Type 1 0.885 0.870 0.854
Type 2 0.813 0.793 0.764
MAE 8.389 8.137 7.550

Error rate Background PS moments
Straight line Quadratic reg. Cubic reg.

Type 0 0.947 0.940 0.942
Type 1 0.835 0.818 0.820
Type 2 0.724 0.696 0.702
MAE 5.769 5.344 5.460

5.4.2 Prediction for 2562 images

We then applied granulometry on the foreground of the 2562 pyramid images

stacks generated using parameters α = 0.5, δ = 0.3, and γ as discrete uniform

[1, 2]. Some images at their final stage of evolution are shown in Figure 5.10.

Again evolution times were predicted separately for the foreground and back-

ground PS moments from straight line, quadratic and cubic regression models,

and the different error rates and MAEs were computed. The predicted times

for the foreground moments for 2562 pyramid images using cubic regression are

shown as frequency histograms in Figure 5.11 at every tenth time point. Again
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Figure 5.9: MAE (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f) and type 2
error (g)-(h) for the first 2 foreground (left) and background PS moments (right)
from the 1002 pyramid images using all 3 regression models.

the predicted times are quite spread out, although they are centred at the actual

time points.

The error rates and MAEs for all 3 models for the foreground and back-

ground PS moments from the 2562 pyramid images are shown in Table 5.4 and

Figure 5.12. Again the background moments produce lower error rates and MAEs

compared to the foreground moments. Again for the foreground moments cubic
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Figure 5.10: Some pyramid images of size 2562 for different simulations, α = 0.5,
δ = 0.3, and γ=discrete uniform [1, 2], at time 100.

regression produces lower error rates and MAEs than straight line and quadratic

regression. For the background moments quadratic regression produces the lowest

error rates but cubic regression produces the lowest MAEs.

Table 5.4: Average classification error rates and MAEs from all the 2562 pyramid
images using the first 2 PS moments from 6 SEs.

Error rate Foreground PS moments
Straight line Quadratic reg. Cubic reg.

Type 0 0.949 0.948 0.941
Type 1 0.852 0.841 0.834
Type 2 0.756 0.737 0.727
MAE 7.164 6.397 6.103

Error rate Background PS moments
Straight line Quadratic reg. Cubic reg.

Type 0 0.918 0.906 0.942
Type 1 0.756 0.726 0.820
Type 2 0.605 0.568 0.577
MAE 4.015 3.952 3.637

5.4.3 Prediction for 5122 images

Pyramid images of size 5122, generated using parameters α = 0.5, δ = 0.3,

and γ as discrete uniform [1, 3] (with a increased rate of growth), are shown in

Figure 5.13.

Although the error rates using the background PS moments from the 1002 and

2562 images were slightly lower than with the foreground PS moments, computing

PS moments from the background of an image is more time consuming than from
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Figure 5.11: Histograms of the predicted times for the 2562 pyramid images using
cubic regression modelling of the first two foreground PS moments using all 6 SEs,
for actual times t = 10, 20, . . . , 100.
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Figure 5.12: MAE (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f) and type 2
error (g)-(h) for the first 2 foreground (left) and background PS moments (right)
from the 2562 pyramid images using all 3 regression models.

the foreground image. Therefore we computed PS moments using 6 SEs only

from the foreground of the 5122 images. Again all 3 regression models were used

to predict evolution times. The predicted times from the cubic regression model

at every 10th time point are shown in Figure 5.14. Still the predicted times are

wide spread.

The error rates and MAEs are shown in Table 5.5 and Figure 5.15. The overall
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Figure 5.13: Some pyramid images of size 5122 for different simulations, α = 0.5,
δ = 0.3, and γ=discrete uniform [1, 3], at time 100.

Table 5.5: Average classification error rates and MAEs from all the 5122 pyramid
images using the first 2 PS moments from 6 SEs.

Error rate Foreground PS moments
Straight line Quadratic reg. Cubic reg.

Type 0 0.943 0.935 0.927
Type 1 0.828 0.811 0.785
Type 2 0.714 0.683 0.651
MAE 6.016 5.188 4.864

type 0 error rate for straight line, quadratic and cubic regression is 94.3%, 93.5%

and 92.7% respectively and the corresponding MAEs are 6.016, 5.188 and 4.864.

Comparing Tables 5.3, 5.4 and 5.5 it can be concluded that the accuracy of the

PS moments in predicting time increases with size of the image. In general MAE

decreases with increasing image size.

Because of this high prediction error we focused on the error distribution

and investigated whether any adjustment can be made to the errors to increase

the prediction ability of the models. Figure 5.16 represents the distribution of

the prediction error (predicted time−actual time) at every 10th time point from

the cubic regression model using foreground PS moments from the 2562 pyramid

images. The prediction error for 100 different simulations is presented for specific

time points. We can see that the errors are random and there is no positive or

negative bias. However, only for a very few simulations does the predicted time

coincide with the actual time.
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(e) t = 50
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(h) t = 80
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(i) t = 90
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(j) t = 100

Figure 5.14: Histograms of the predicted times for the 5122 pyramid images using
cubic regression modelling of the first two foreground PS moments from all 6 SEs,
for actual times t = 10, 20, . . . , 100.
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(b) Type 0 error
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(c) Type 1 error
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(d) Type 2 error

Figure 5.15: MAE and type 0, type 1 and type 2 error for the first 2 foreground
PS moments from all 6 SEs from the 5122 pyramid images, using all 3 regression
models.

5.4.4 Prediction using PCs

Rather than using the original PS moments for prediction, here we investigate

the usefulness of PCA. The PCs of the normalised PS moments derived in Sec-

tion 4.3.4 were modelled as a function of evolution time using regression models,

and were used to predict time. Figure 5.17 shows the error rates using the first

2 PCs from foreground PS moments from all 6 SEs of the 2562 pyramid images.

We used all three regression models but none of them outperforms the previous

moments-based results. Comparing the cubic regression results (blue lines) in

Figure 5.17 with the REG results in Figure 5.18(a), (c), (e) and (g) (red lines),

we can say that prediction is not improved by employing PCs rather than using

the PS moments directly.

Computation of granulometric moments from the 5122 pyramid images is time

consuming, especially for a disk SE. Although the PS moments from the 5122

pyramid images provide slightly lower MAE and error rates, we will now only

use the PS moments from the 2562 images in the other classifiers to compare the

results with the corresponding regression models.
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(b) Error at t = 30
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(c) Error at t = 40
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(d) Error at t = 50

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20

25

30

Simulation

E
rr

or

(e) Error at t = 60
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(f) Error at t = 70
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(g) Error at t = 80
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(h) Error at t = 90
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(i) Error at t = 100

Figure 5.16: Prediction error (predicted time−actual time) plotted against sim-
ulation number, using the cubic regression model with 70% of the 2 foreground
PS moments using 6 SEs from the 2562 pyramid images.

152



0 20 40 60 80 100
0

5

10

15

Time

M
A

E

 

 

Straight line
Quadratic reg.
Cubic reg.

(a) MAE

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

T
yp

e 
0 

er
ro

r

 

 

Straight line
Quadratic reg.
Cubic reg.

(b) Type 0 error rate
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(c) Type 1 error rate
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(d) Type 2 error rate

Figure 5.17: Type 0, type 1 and type 2 error rates and MAEs using the first 2
PCs from 12 foreground PS moments (2 PS moments from 6 SEs) of the 2562

pyramid images using all 3 regression models.

5.5 Prediction using Other Classifiers

In this section, the first 2 PS moments from the foreground and background

of the 2562 pyramid images as well as the 2562 ellipse images using all 6 SEs

are used in some other classifiers, i.e. a support vector machine (SVM), a feed

forward neural network (FF-NNET) and linear discriminant analysis (LDA), and

their classification accuracy is compared with that of the regression approach.

Therefore each dataset is of size 10000×13, where the first 6 columns contain the

PS means using 6 SEs, the next 6 columns consist of the PS sds using 6 SEs and

the last column contains the actual time state. For all classifiers in this section,

70% of the moments were randomly sampled and used to train the classifiers and

the rest of the moments were used for testing. We calculate training or test set

error as the number of misclassifications divided by the total number of images

in the training or test set, or as the mean absolute error. This was done 10 times

and results were averaged to give overall performance of the method.
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5.5.1 Results from SVM

Different types of kernel can be used, such as linear, polynomial, radial basis

(also known as the Gaussian kernel), and sigmoid (tanh). A detailed description

is given in Section 3.12. The radial basis kernel is by far the most popular kernel

used in SVMs (Chellappa and Chatterjee (1985)), mainly because of its localised

and finite response across the entire range of the real x-axis. R library e1071 is

used here for SVMs (details are given in Appendix II(a)).

Although the generalisation ability of the SVM is relatively robust to varia-

tions in the parameter settings (Li (2009)), we tested several kernels and a wide

range of the parameter values in the kernel function and the cost or regularisation

parameter in training to ensure high accuracy. We investigated the performance

of the linear, polynomial and radial basis kernels with the associated parameter

values (in the last two cases). We used a grid search approach for finding an

appropriate kernel and the optimum value of any kernel parameters and also the

cost parameter, in terms of the training set error rates using a single training set

of 70% of the PS moments randomly selected for each set of images.

PS moments from the pyramid images

Using the first 2 foreground PS moments of the 2562 pyramid images, Table 5.6

contains error rates for different combinations of the value of the cost and the

kernel parameter γ for the radial basis and the polynomial kernel. For the poly-

nomial kernel, any value of the parameter η between 1 to 5 produced the same

results but the default value 0 produced a higher error rate, and we used η = 1.

Only γ = 1 and cost = 1 for the radial basis kernel gave 100% correct classifica-

tion and γ = 0.2 and cost = 100 produced the second lowest error rate of 10%.

None of the cases for the polynomial kernel produced 100% correct classification,

although the error rates were lower in general for a higher cost in both kernels.

Using the first 2 background PS moments, the radial basis kernel and polynomial

kernel produced very similar error rates for different combinations of γ and cost

to those shown here, so these results are not shown.

In the linear kernel there is no kernel parameter, so we considered only the cost

parameter. Training set error rates corresponding to different values of the cost

for the linear kernel are shown in Table 5.7, for both foreground and background

PS moments from the pyramid images. Any cost of 20 or more produced 100%

correct classification for both datasets. Therefore, a linear kernel with cost of 100

was used for both datasets.
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Table 5.6: Training set error rates for different combinations of cost and γ for the
radial basis kernel and the polynomial kernel with η = 1, using foreground PS
moments from the 2562 pyramid images. A 0 below means exactly 0. The values
in bold are the best results.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.1 0.92 0.81 0.66 0.61 0.60 0.54 0.44 0.27 0.20 0.15 0.12
0.2 0.91 0.71 0.63 0.52 0.30 0.21 0.17 0.14 0.12 0.11 0.10

0.3 0.89 0.66 0.57 0.33 0.23 0.19 0.17 0.14 0.13 0.12 0.12
0.4 0.89 0.66 0.44 0.28 0.22 0.19 0.17 0.16 0.16 0.15 0.15
0.5 0.89 0.67 0.37 0.27 0.23 0.20 0.19 0.19 0.18 0.18 0.17
0.6 0.88 0.65 0.35 0.27 0.24 0.22 0.21 0.20 0.19 0.19 0.18
0.7 0.88 0.60 0.33 0.27 0.25 0.23 0.22 0.21 0.21 0.21 0.20
0.8 0.88 0.57 0.33 0.28 0.25 0.24 0.23 0.23 0.22 0.22 0.22
0.9 0.88 0.54 0.37 0.29 0.26 0.25 0.25 0.24 0.24 0.24 0.24
1 0 0.87 0.51 0.37 0.30 0.27 0.26 0.26 0.25 0.25 0.25

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.1 0.92 0.78 0.73 0.70 0.68 0.66 0.64 0.63 0.62 0.61 0.60
0.2 0.81 0.62 0.57 0.53 0.51 0.50 0.49 0.48 0.47 0.46 0.45
0.3 0.70 0.52 0.48 0.45 0.45 0.43 0.42 0.41 0.40 0.40 0.39
0.4 0.64 0.47 0.43 0.41 0.40 0.38 0.37 0.36 0.35 0.34 0.33
0.5 0.59 0 .43 0.40 0.37 0.35 0.35 0.33 0.32 0.31 0.31 0.29
0.6 0.55 0.40 0.37 0.34 0.32 0.30 0.29 0.29 0.28 0.26 0.26
0.7 0.51 0.37 0.36 0.35 0.30 0.27 0.26 0.26 0.25 0.24 0.23
0.8 0.49 0.35 0.33 0.32 0.30 0.25 0.25 0.23 0.24 0.22 0.22
0.9 0.46 0.32 0.30 0.29 0.24 0.23 0.22 0.21 0.21 0.20 0.20
1 0.45 0.30 0.25 0.25 0.23 0.22 0.22 0.21 0.21 0.21 0.19

PS moments from the ellipse images

Now we investigate the optimum kernel and its parameter values using the first 2

foreground and background PS moments using 6 SEs from the 2562 ellipse images.

Table 5.8 shows the error rates for the first 2 foreground PS moments using the

radial basis and polynomial kernels. The error rate with any combination of the

parameters is high (at least 16% for the radial basis except for γ = 1 and cost

= 1 which gives 0% error, and 25% for the polynomial kernel). Different values

of γ between 0 and 1 in steps of size 0.1 were tested for the polynomial kernel as

well but are not all shown in the table. Any combination of γ and cost using the

first 2 background PS moments also produced a high error rate, so they are not

included here.

Table 5.7 shows the error using the linear kernel for the foreground and back-
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Table 5.7: Training set error rates for different values of cost for the linear kernel
using PS moments from the 2562 pyramid and ellipse images.

Pyramid images
Cost

1 10 20 30 40 50 60 70 80 90 100
Foreground 0.82 0.29 0 0 0 0 0 0 0 0 0

Background 0.80 0.25 0 0 0 0 0 0 0 0 0

Ellipse images
Cost

1 10 20 30 40 50 60 70 80 90 100
Foreground 0.84 0.27 0 0 0 0 0 0 0 0 0

Background 0.59 0.09 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ground PS moments from the ellipse images. The linear kernel produced 100%

correct classification for any cost of 20 or above for the foreground PS moments

but for the background moments a cost of 30 or more is best, with 1% error.

However we used a cost of 100 for both set of moments.

Although many authors (e.g. Li et al. (2003), Chellappa and Chatterjee (1985),

Chaplot et al. (2006)) achieved better classification accuracy using the radial basis

kernel, here the linear kernel is the most appropriate kernel with any cost of 20 or

more. The outstanding results achievable by SVM greatly depend on the choice

of an appropriate kernel and its parameters. For example, SVM yielded 100%

correct classification for the foreground PS moments from the pyramid images

using a linear kernel with cost of 20 or more, but for a radial basis kernel only

γ = 1 and cost = 1 produced 100% correct classification and the second best

combination of γ = 0.2 and cost = 100 gave a 10% error rate. For a polynomial

kernel, the optimum parameters are γ = 1 and cost = 100 with an error rate

of 19%. Therefore, choosing the most appropriate kernel is important for best

performance.

5.5.2 Results from LDA

Section 3.9 explains the LDA approach for binary and multi-class classification.

LDA was employed by using function lda in R library MASS. We applied LDA to

the first 2 foreground and background PS moments from the 2562 pyramid and

ellipse images. See Appendix II(b) for details of the R function.
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Table 5.8: Training set error rates for different combinations of cost and γ for
the radial basis kernel and the polynomial kernel with η = 1, using foreground
PS moments from the 2562 ellipse images.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.1 0.92 0.83 0.68 0.60 0.59 0.53 0.43 0.31 0.24 0.19 0.16
0.2 0.90 0.74 0.70 0.63 0.52 0.34 0.26 0.22 0.20 0.17 0.16
0.3 0.90 0.68 0.57 0.54 0.34 0.27 0.24 0.23 0.20 0.20 0.19
0.4 0.89 0.66 0.54 0.45 0.31 0.27 0.25 0.24 0.24 0.23 0.23
0.5 0.89 0.65 0.40 0.31 0.27 0.26 0.26 0.25 0.25 0.25 0.25
0.6 0.89 0.62 0.53 0.47 0.40 0.28 0.28 0.28 0.26 0.26 0.26
0.7 0.88 0.58 0.53 0.47 0.35 0.30 0.29 0.29 0.28 0.28 0.27
0.8 0.88 0.57 0.43 0.42 0.40 0.30 0.25 0.24 0.23 0.23 0.20
0.9 0.88 0.53 0.47 0.45 0.40 0.35 0.35 0.32 0.32 0.31 0.30
1 0 0.87 0.52 0.47 0.40 0.37 0.32 0.32 0.31 0.30 0.30

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.1 0.91 0.81 0.76 0.70 0.68 0.67 0.65 0.64 0.62 0.61 0.62
0.5 0.60 0 .45 0.41 0.40 0.38 0.36 0.35 0.33 0.32 0.32 0.31
0.9 0.48 0.31 0.29 0.29 0.28 0.27 0.27 0.26 0.26 0.25 0.25

5.5.3 Results from FF-NNET

The neural network classifier was applied in R, in the library nnet. It fits a

feed-forward single hidden layer neural network (FF-NNET). The architecture of

such networks is explained in Section 3.11 and details of the R function are in

Appendix II(c). Of many possible activation functions, R allows only a logistic

or linear activation function. Both were tested. A logistic activation function

was used for the final computation but the use of a linear activation function

instead had little effect on the results. Velten (2009) suggests scaling the input

data to the range 0 to 1 for neural networks. It was found that scaling the data

to range between 0 to 1 increased the overall error rate, whereas normalising the

data (to 0 mean and unit variance) substantially decreased the overall error rate

for the FF-NNET in some cases and often improved the results. So the data

were normalised before using the FF-NNET. This made it comparable to use of

SVM, as SVM normalises the data by default (though not normalising did not

alter the SVM results much). Normalisation of the data is a part of the LDA

computation, so further normalisation had no effect on the results. It was also

found that normalising the input data to the regression method worsened the
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results.

The optimum values of some important parameters in the FF-NNET, namely

decay, rang and number of hidden units were chosen for each set of features.

The value of rang specifies the range [-rang rang] from which the initial weights

are randomly taken, and decay controls the decay of the weights with successive

iterations of the fitting process and penalises over-fitting. The maximum number

of iterations was set to 5000, to ensure that the optimisation problem converged.

We carried out a grid search approach to find the optimum value of rang and

decay, using 7 hidden units (the maximum possible number of units for these

features). Different values of decay, i.e. 10−4, 10−3, 10−2, and 10−1 were used,

and the values of rang were taken as 0.1, 0.3, 0.5, 0.7, 0.9 and 1/max(|x|) where

x is the input data. The R default value of rang is 0.7 and a value of about 0.5

is recommended unless the inputs are large, in which case it should be chosen

so that rang×max(|x|) is about 1, where x is the input data. For the pyramid

images, the optimum pairs of values for decay and rang were (10−4, 0.3) for the

foreground PS moments and (10−4, 1/max(|x|)) for the background PS moments.

For the ellipse images, the optimum values were (10−4, 1/max(|x|)) and (10−3,

1/max(|x|)) for the foreground and background PS moments respectively. Using

the best values of decay and rang for each dataset we then again used a grid

search to choose the number of hidden units. Seven units was the best choice for

the pyramid or ellipse foreground or background PS moments. Table 5.9 shows

the training set error rates for the foreground and background PS moments of

the 2562 pyramid and ellipse images. According to Fujita (1998), error decreases

with the number of units in the hidden layer, which is true in our cases. The

number of neurons in the hidden layer greatly affects the classification results

using the background PS moments for the ellipse images, but for the other mo-

ments datasets the classification results did not vary much with the number of

hidden neurons (all are poor).

We computed the different error rates and MAEs with the first two (mean

and sd) foreground and background moments for the 2562 pyramid images for

all classifiers including the cubic regression model. MAE, type 0, type 1 and

type 2 error rates from the same sets of pyramid images are shown in Table 5.10

and plotted against time in Figure 5.18. For both foreground and background

moments, SVM attained 100% correct classification. Type 0 error rates for the re-

gression approach, LDA and FF-NNET using the foreground moments are 94.5%,

93.8% and 91.1%, whereas these are 90.8%, 88.2% and 85.1% respectively for the

background moments. Type 1 and type 2 errors are also high. For the other
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Table 5.9: Training set error rates from a grid search approach for finding the
optimum number of hidden neurons for FF-NNET, with the 2562 images of pyra-
mids and ellipses. The values in bold are the best values.

Number of neurons
PS moments 1 2 3 4 5 6 7

Foreground pyramid 0.94 0.94 0.93 0.93 0.93 0.92 0.91
Background pyramid 0.90 0.88 0.88 0.87 0.87 0.87 0.85
Foreground ellipse 0.90 0.90 0.90 0.90 0.89 0.89 0.88
Background ellipse 0.15 0.30 0.33 0.20 0.20 0.10 0.08

classifiers, error rates and MAEs for the background moments are lower than the

corresponding foreground ones.

Table 5.10: Average test set classification error rates and MAEs for the 2562

pyramid and ellipse images using PS moments; results are averaged over 10 runs.

Pyramid images
Error rate Foreground PS moments Background PS moments

REG SVM LDA FF-NNET REG SVM LDA FF-NNET
Type 0 0.945 0.000 0.938 0.911 0.908 0.000 0.882 0.851
Type 1 0.837 0.000 0.819 0.758 0.727 0.000 0.661 0.594
Type 2 0.729 0.000 0.713 0.623 0.568 0.000 0.464 0.385
MAE 6.716 0.000 5.994 4.497 3.578 0.000 2.929 2.343

Ellipse images
Error rate Foreground PS moments Background PS moments

REG SVM LDA FF-NNET REG SVM LDA FF-NNET
Type 0 0.937 0.000 0.926 0.886 0.903 0.002 0.881 0.123
Type 1 0.821 0.000 0.800 0.713 0.703 0.001 0.650 0.059
Type 2 0.703 0.000 0.692 0.560 0.520 0.000 0.444 0.023
MAE 5.716 0.000 5.670 3.781 3.328 0.002 2.706 0.229

We used all classifiers, including the regression approach, using the first two

PS moments from all 6 SEs from the foreground and background separately of

the 2562 ellipse images, and computed the type 0, type 1, type 2 error rates and

MAEs. The results are shown in Table 5.10 and Figure 5.19. Again SVM was

100% accurate for the foreground moments and 99.8% accurate for the back-

ground ones. For the foreground moments, the error rates for the regression

classifier, LDA and the FF-NNET are 93.7%, 92.6% and 88.6%, while for the

background moments these are 90.3%, 88.1% and 12.3% respectively. REG was
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(c) Type 0 error
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(d) Type 0 error

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

T
yp

e 
1 

er
ro

r

 

 

REG
SVM
LDA
NNET

(e) Type 1 error
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(f) Type 1 error
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(g) Type 2 error
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(h) Type 2 error

Figure 5.18: Mean absolute error (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f),
and type 2 error (g)-(h) for foreground (left) and background PS moments (right)
using different classifiers for the 2562 pyramid images.
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rather erratic in performance when using the background moments to predict at

later time points (Figure 5.19 (b)). At these points the predicted times were far

away from the actual times (more than 30 units higher or 30 units lower) which

contributed to the fluctuation of the MAE. (This was not due to any difficulty in

finding a real root of the cubic polynomial used for prediction as there were no

negative roots and only one real root in these cases, and for the synthetic images

generally). Again background PS moments work better overall for all classifiers,

especially for FF-NNET.

We also combined the foreground and background moments for each type

of image and applied all the different approaches for classification using all of

these moments (2 moments for each of the 6 SEs for both the foreground and

background) but the results reflected the average of the results for the foreground

and background moments separately.

Prediction using median PS moments

The regression modelling above used average PS moments (averaged over 100

simulations). In case the average PS moments were affected by unusual values

of the moments, we checked whether using median PS moments instead of av-

erage PS moments in the regression modelling would provide improved results.

We computed the foreground and background median PS moments for the 2562

pyramid and ellipse images. The time trends look very similar to those of the

corresponding average PS moments but in some cases are slightly smoother than

for the average PS moments. We computed the error rates for all median PS mo-

ments sets using the regression approach. The error rates and MAEs are not very

different from the corresponding average PS moments-based results (Table 5.11).

Therefore, use of median PS moments is not beneficial over the average PS mo-

ments in the regression modelling.

Table 5.11: Average test set classification error rates and MAEs for the 2562 pyra-
mid and ellipse images using median PS moments, with the regression approach;
results are the average of 10 runs.

Error rate
Pyramid

foreground
Pyramid

background
Ellipse

foreground
Ellipse

background
Type 0 0.946 0.902 0.937 0.905
Type 1 0.838 0.725 0.809 0.704
Type 2 0.731 0.565 0.686 0.520
MAE 6.313 6.269 5.696 3.165
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(b) MAE
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(c) Type 0 error
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(d) Type 0 error
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(e) Type 1 error
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(f) Type 1 error
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(g) Type 2 error
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(h) Type 2 error

Figure 5.19: Mean absolute error (a)-(b), type 0 error (c)-(d), type 1 error (e)-
(f), and type 2 error (g)-(h), using foreground (left) and background PS moments
(right) in different classifiers, for the 2562 ellipse images.
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5.6 Conclusions

None of the classifiers except SVM provides good classification rates for any

of the PS moment feature sets. We believe that the possible reasons for this

disappointing performance are largely due to the nature of the synthetic images

and the way we built the regression model. In the simulated images, the adding

of new objects and the updating of existing objects are random, so in some cases

objects start to grow at earlier stages and in other cases they start to grow

comparatively later. Consequently, the granulometric moments at a specific time

differ considerably from one simulation to another, even with limited ranges for

the parameters used to generate the images. Therefore the distribution of the

predicted times for images from any one time point is wider than will give good

classification accuracy. The coefficients of variation (CVs) for both foreground

and background PS moments of the 2562 pyramid and ellipse images are shown

in Appendix II(d). The CVs are high, confirming the high variability of the PS

moments.

We built the models using average granulometric moments and tested them

using moments from single images, which can vary considerably from the average

ones, but in practice there will only be one image available for a specific time

point to be predicted. We did compare the results of classification based on

modelling all the single moments from each training image available at each time

point to evolution time, rather than the average moment from these images.

Sometimes this was better, sometimes worse, but in general no real improvement

was obtained in prediction accuracy using single moments rather than average

ones.

Here we have evaluated our methodology of predicting evolution time of evolv-

ing synthetic texture images. Our methodology builds on and extends previous

work to predict evolving time of corrosion images in Gray et al. (2006), Gray et

al. (2005) and McKenzie et al. (2003). They also used a regression approach to

relate granulometric moments to evolution time, but a key difference between the

two methodologies is that they used multiple regression to relate moments to the

underlying parameters used to generate the synthetic images, as the evolution

of the artificial images depended explicitly on some evolution parameters, e.g.

mean grain size, sd of grain size and number of grains, which were set up as a

known function of time before generating the images. In our case the parameters

are set at the beginning of the evolution period and do not change with time, so

we developed a more generalisable approach of relating granulometric moments

directly to evolution time. Relating moments to time directly makes more sense
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for our synthetic images, as the parameters used to generate the images do not

relate directly or explicitly to time.

The earlier work used the artificial image-based model to predict the evolution

time of a new image, using the observed granulometric moments from that image.

We developed and evaluated the model using synthetic images, but to apply it

in practice the same approach is used on real training images to determine the

appropriate model for test images of the same kind of texture, so our approach

should be more robust.

In Chapter 6 we now apply the same methodology to real images of corrosion

to classify them according to evolution time.
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Chapter 6

Classification of Corrosion

Images

6.1 Corrosion Images

The corrosion images used here were also used in McKenzie et al. (2003), Gray

et al. (2005) and Gray et al. (2006) where they described the development of

parallel evolution functions as a method for texture classification of evolving

textures, using granulometric features from these corrosion images. The images

were generated in a laboratory setting by Jennifer McKenzie, for her PhD thesis

(McKenzie (2004)). These are images of a steel plate, sprayed regularly with

a dilute saline solution and left over a period of 10 days to corrode over time.

Images were captured on a daily basis, starting with no corrosion on the first day

of the experiment (t = 1) to the 10th day (t = 10) when the plate was almost

completely covered with corrosion texture and saved in TIFF image file format.

All images are of size 14002. The original colour images were converted to grey

scale, as colour was found in McKenzie (2004) not to provide useful information

for time classification of these images. A sub-set of these images is shown in

Figure 6.1. The blurred area in the images results from reflection from the camera

used to capture the images.

First we extracted sample images of size 2562 from each of the 14002 grey

scale images. A total of 10 non-overlapping sub-images were extracted from the

bottom and right side of each images, to avoid the blurred area. So there are a

total of 100 sample images, 10 for each time point (t = 1, 2, . . . , 10). A sub-set of

the sub-images is shown in Figure 6.2.
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(a) Image at t = 1 (b) Image at t = 2 (c) Image at t = 3 (d) Image at t = 4

(e) Image at t = 5 (f) Image at t = 6 (g) Image at t = 7 (h) Image at t = 8

(i) Image at t = 9 (j) Image at t = 10

Figure 6.1: Grey scale corrosion images of size 14002 taken at 10 different time
points.

6.2 Granulometry on Binary Corrosion Images

Initially we applied our methodology on the binary version of these images, ap-

plying granulometry using square and disk SEs. Although Otsu’s thresholding

provides optimum global thresholding (Gonzalez and Woods (2008)), in this case

it does not work well to distinguish the blob-like texture from the background of

the image. Hence, we selected the threshold empirically by experimenting with

a wide range of values between 0 to 1 and it was found that the threshold value

0.45 emphasised the texture best. Still it is not very accurate, as in some cases

it classified the image area as texture where there is no texture present at that

location.

The binary versions of the images and the PS of the binary images using a

disk SE are displayed in Figure 6.3. In the binary images, corrosion spots are

presented as white and the background as black. The corrosion spots are not well

preserved in the corresponding binary versions, especially at the top right corners

after t = 3. From time t = 6 the right side of the images are classified as corroded

regions but they are not fully corroded. For t = 1, there was no corrosion spot,
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

(i) t = 9 (j) t = 10

Figure 6.2: A sub-set of the extracted 2562 grey scale corrosion images, one from
each time point t = 1 to 10.

hence its binary version is completely blank, i.e. there is no object pixel which

can be removed by opening granulometry and as a result a null PS is obtained.

In general the PSs do not provide useful information regarding the shapes and

sizes of the corrosion spots.

Granulometry using square and disk SEs separately was applied to the fore-

ground and background of the thresholded images, and the first four PS moments

from each SE were obtained, so using all of these moments for each image the

moments data give a 100× 8 matrix. Average moments were computed over the

10 sub-images at each time point. So the average moment data consists of 10

rows, one for each time and 8 columns from the four moments for each of the two

SEs. The regression approach is used to model the foreground and background

average PS moments to evolution time, and the fitted model is used to predict

the time for each image. We consider foreground features first.
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5

(f) t = 6 (g) t = 7 (h) t = 8 (i) t = 9 (j) t = 10
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(k) PS of (a) and (b)
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(l) PS of (c) and (d)
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(m) PS of (e) and (f)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Radius of the SE

C
ha

ng
e 

in
 s

iz
e 

di
st

rib
ut

io
n

 

 
t=7
t=8

(n) PS of (i) and (j)
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t=9
t=10

(o) PS of (k) and (l)

Figure 6.3: Binary form of one extracted sub-image from each of time points
t = 1 to 10, and its PS using a disk SE.

6.2.1 Foreground PS moments of the binary images

The average foreground PS moments using the square and disk SE are plotted

against time, with the best fitting cubic regression curves, in Figure 6.4. Both
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mean and sd decrease with time, but are higher at time t = 5. Skewness from

both SEs for times 4 to 10 shows an increasing trend but kurtosis does not

show any clear relationship with evolution time. Therefore, only the first three

moments were used in the prediction process. The dotted lines are the fitted

cubic regression curves, which do not fit the data at all well. However, we are

not interested in using higher order polynomial regression than cubic, and so we

used the first three moments to predict time.

The predicted times are shown in Figure 6.5. The predicted time ranges from

1 to 11, whereas the actual time goes from 1 to 10. In general the prediction is

very poor. For example there are 10 images at each time point, for which time is

to be predicted, and for t = 1, 5 of them are predicted as time 1, 2 as time 2, 1

as time 3 and 2 as time 11. For t = 10, 1 image is predicted as time 2, 2 as time

3, 1 as time 9, 3 as 10 and 3 as time 11. The predicted times are either between

1 and 4 or between 9 and 11, whereas the actual time ranges from 1 to 10. None

of the images were predicted between time 5 and 8. It was not clear why this is

so.

This problem was not due to the root finding algorithm as there was always a

real positive root, rather the algorithm found it harder to predict the time for the

images in the middle stages of their evolution time. It was thought that the PS

moments for the middle stage images are more variable compared to the earlier

and later stages images, but sds and CVs of the PS moments did not confirm

that.

6.2.2 Background PS moments of the binary images

Figure 6.6 shows the average background PS moments against time with the

fitted cubic curves using square and disk SEs. Neither the PS means nor the sds

follow any regular pattern, as they increase with time in the earlier time points,

then decrease and then increase again. Skewness from both SEs increases at the

beginning and then decreases with time. Kurtosis decreases with time for both

SEs. None of the cubic curves fitted very well. However, we use them all in the

regression approach to predict evolution time.

The histograms of the predicted times are shown in Figure 6.7. The predicted

times are worse than using the foreground moments (Figure 6.7). Again the

predicted times are either between 1 and 3 or between 9 and 11, as for the

foreground moments. Performance of the foreground and background moments

for predicting time is computed in terms of error rates and MAEs, shown in

Table 6.1. The foreground moments are better than the background moments
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(a) Average PS mean
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(b) Average PS sd
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 6.4: Plots of the first four average foreground PS moments against time,
for the binary corrosion images using square and disk SEs, with fitted cubic curves
(dotted lines).
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(a) Actual time t = 1 to 5
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(b) Actual time t = 6 to 10

Figure 6.5: Frequency histograms of predicted time using the first three fore-
ground PS moments of the binary corrosion images from square and disk SEs,
using cubic regression, for all sub-images at each time point 1-5 (a) and 6-10 (b).

both in terms of error rates and MAEs, but both are very poor.
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(a) Average PS mean
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(b) Average PS sd
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(c) Average PS skewness

1 2 3 4 5 6 7 8 9 10
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time

A
ve

ra
ge

 P
S

 k
ur

to
si

s

 

 

Square SE
Fitted cubic curve
Disk SE
Fitted cubic curve

(d) Average PS kurtosis

Figure 6.6: Plots of the first four average background PS moments against time,
for the binary corrosion images using square and disk SEs, with fitted cubic curves
(dotted lines).
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(a) Actual time t = 1 to 5
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(b) Actual time t = 6 to 10

Figure 6.7: Frequency histograms of predicted time using the first four back-
ground PS moments of the binary corrosion images from square and disk SEs,
using cubic regression, for all sub-images in each time point 1-5 (a) and 6-10 (b).

6.2.3 Other classifiers on the binary images

For the binary corrosion images, since the foreground PS moments provide lower

classification error rates than the background ones, we use these moments (3
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Table 6.1: Average test set error rates for the regression approach using 6 fore-
ground and 8 background PS moments of the binary corrosion images using all
sub-images; results are averaged over 10 runs.

Time Foreground moments Background moments
MAE Type 0 Type 1 Type 2 MAE Type 0 Type 1 Type 2

1 2.40 0.60 0.30 0.20 11.00 1.00 1.00 1.00
2 4.00 0.70 0.60 0.40 9.50 1.00 1.00 1.00
3 3.30 0.80 0.40 0.40 8.00 1.00 0.90 0.90
4 2.30 0.90 0.70 0.20 6.60 1.00 1.00 0.90
5 3.10 1.00 0.80 0.70 5.40 1.00 0.90 0.90
6 3.40 1.00 1.00 0.90 5.10 1.00 1.00 0.90
7 3.20 1.00 1.00 0.80 4.20 1.00 1.00 0.90
8 2.40 1.00 0.80 0.30 3.10 1.00 1.00 0.80
9 2.50 0.90 0.60 0.30 3.60 0.90 0.90 0.50
10 2.60 0.70 0.30 0.30 4.30 1.00 0.80 0.70

Overall 2.92 0.86 0.65 0.45 6.08 0.99 0.95 0.16

from the square and 3 from the disk) in the other classifiers, i.e. SVM, LDA and

FF-NNET, and compare their performance with that of the regression approach.

For SVM, the different kernels and associated parameter values were tested

using a grid search approach for a single training set consisting of 70% of the

moments. Table 6.2 shows training set error rates for SVM using different kernels.

For the radial basis kernel and the polynomial kernel the error rate was computed

for different values of γ between 0.1 and 1 in steps of 0.1 (Table 6.2 shows error

rates corresponding to three different values of γ with different costs, as the rest

were very similar). A radial basis kernel with γ between 0.1 and 0.5 and any

cost between 1 and 100 produced 3% error, and γ = 0.9 with any cost between

1 and 100 produced a higher error rate (10%). A polynomial kernel produced its

lowest error rate of 10% with any cost between 50 and 100 and γ = 0.1. Other

choices of parameter values produced higher error. Different values of η (the

degree of polynomial) between 1 to 5 were experimented with and it was found

that η = 5 yielded the lowest error rates. A linear kernel with any cost of 10

or above produced 100% correct classification. Therefore we used a linear kernel

with cost of 100 for this feature set.

The data were normalised before using FF-NNET, to make FF-NNET com-

parable to SVM, and the values of decay and rang for FF-NNET were set to 10−4

and 1/max(|x|), where x is the input data, respectively. Ten hidden units were

used as this produced the lowest training set error rate (Table 6.3) and was the
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largest number possible for these data.

Table 6.2: Training set error rates for different combinations of cost and γ for
the radial basis kernel, the polynomial kernel with η = 5 and a linear kernel
using 6 foreground moments from the binary corrosion images. The bold figure
represents the kernel used in the final computation.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Polynomial kernel with η = 5
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.70 0.30 0.13 0.10 0.13 0.10 0.10 0.10 0.10 0.10 0.10
0.5 0.53 0.23 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.9 0.57 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

Linear kernel
Cost

1 10 20 30 40 50 60 70 80 90 100
0.3 0 0 0 0 0 0 0 0 0 0

Table 6.3: Training set error rates from a grid search approach for finding opti-
mum number of hidden neurons for FF-NNET using 6 foreground moments from
the binary corrosion images.

Number of units
1 2 3 4 5 6 7 8 9 10

Error rate 0.33 0.20 0.07 0.07 0 0 0 0 0 0

Table 6.4 shows average test set error rates and MAEs for all classifiers. SVM

with a linear kernel produced only a 3% error rate, whereas the error rates for

LDA and FF-NNET were 80% and 83% respectively. REG had an error rate

of 86% (Table 6.1). MAEs are different from type 0 error for REG, LDA and

FF-NNET as some predicted times were more than one unit away from the actual

time, but this was not the case for SVM.
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Table 6.4: Average test set error rates for SVM, LDA and FF-NNET using 6
foreground PS moments from the binary corrosion images using all sub-images;
results are averaged over 10 runs.

Class SVM LDA
MAE Type 0 Type 1 Type 2 MAE Type 0 Type 1 Type 2

1 0.00 0.00 0.00 0.00 0.77 0.40 0.10 0.07
2 0.00 0.00 0.00 0.00 4.17 0.73 0.60 0.57
3 0.00 0.00 0.00 0.00 3.83 0.83 0.73 0.70
4 0.00 0.00 0.00 0.00 1.80 0.80 0.37 0.23
5 0.00 0.00 0.00 0.00 1.60 0.87 0.57 0.10
6 0.00 0.00 0.00 0.00 1.93 1.00 0.60 0.27
7 0.00 0.00 0.00 0.00 1.60 0.77 0.50 0.23
8 0.33 0.33 0.00 0.00 1.90 0.87 0.30 0.30
9 0.00 0.00 0.00 0.00 2.53 0.93 0.46 0.37
10 0.00 0.00 0.00 0.00 4.83 0.83 0.70 0.67

Overall 0.03 0.03 0.00 0.00 2.50 0.80 0.49 0.35
Time FF-NNET

MAE Type 0 Type 1 Type 2
1 2.17 0.53 0.33 0.27
2 4.60 0.87 0.67 0.60
3 3.33 0.73 0.70 0.50
4 2.13 0.90 0.53 0.27
5 1.90 0.93 0.57 0.30
6 1.50 0.77 0.47 0.17
7 2.23 0.90 0.73 0.33
8 3.10 0.80 0.67 0.53
9 3.30 1.00 0.70 0.57
10 5.20 0.90 0.87 0.77

Overall 2.95 0.83 0.62 0.43

6.3 Granulometry on Grey Scale Corrosion Im-

ages

We now consider the foreground and background of the grey scale images directly.

Granulometry using a square and disk SE of increasing size is applied to the

foreground as well as the background of the 10 grey scale corrosion sub-images

at each time point and the first four PS moments are calculated.
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6.3.1 Foreground PS moments of the grey scale images

The average foreground PS moments are plotted against time in Figure 6.8. Both

mean and sd decrease with time, but increase in the middle of the evolution

period. The square SE produced near-zero skewness for the whole evolution

period, whereas the disk produced skewness which does not follow any clear time

trend. Kurtosis for the square SE is near-zero and for the disk SE it is almost

constant (at -23.999). The dotted lines are the fitted cubic curves. These do not

fit well to the first three moments. Although the fitted cubic has a good fit to

kurtosis it will be of no use for time prediction as kurtosis is almost constant over

time.

Using the first three PS moments from both SEs, we predicted the time using

cubic regression, with the results shown in Figure 6.9. The predictions are poor,

as before, especially for the middle states (actual time t = 5−8) of the evolution.
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 6.8: Plots of the average foreground PS moments against time, for grey
scale images using square and disk SEs with the fitted cubic curves (dotted lines).

6.3.2 Background PS moments of the grey scale images

Figure 6.10 shows background PS moments against time using square and disk

SEs from the grey scale corrosion images. The PS mean from the square SE
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(b) Actual time t = 6 to 10

Figure 6.9: Frequency histograms of predicted time using the first three PS mo-
ments from square and disk SEs on the foreground of the grey scale corrosion
images.

decreases slightly over time, whereas using the disk SE it decreases then increases.

The sd from both SEs in general increases with time. Skewness from a square

SE increases only slightly over time, whereas the increase is much more sudden

for the disk SE. Kurtosis from both SEs is constant at -3. Hence, we use the first

three moments from both SEs in the model building.
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Figure 6.10: Plots of the average background PS moments against time, for grey
scale images using square and disk SEs with the fitted cubic curves (dotted lines).
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(b) Actual time t = 6 to 10

Figure 6.11: Frequency histograms of predicted time using the first three PS
moments from square and disk SEs on the background of the grey scale corrosion
images.

Figure 6.11 shows the predicted times for this moment set. These were again

very disappointing, so we do not compare the performance of the regression ap-

proach with that of any other classifiers. Classification results for the foreground

and background moments are summarised in Table 6.5. Foreground moments

gave lower MAE, whereas background moments produced lower type 0 error.

However, the MAEs and error rates are all rather high. Therefore, we look for

further options to try to get improved prediction from the regression approach.

Table 6.5: Average test set error rates for the regression approach using 6 fore-
ground and 6 background PS moments from the grey scale corrosion images, using
all sub-images; results are averaged over 10 runs.

Time Foreground moments Background moments
MAE Type 0 Type 1 Type 2 MAE Type 0 Type 1 Type 2

1 7.00 0.90 0.60 0.60 0.10 0.10 0.00 0.00
2 4.00 1.00 0.40 0.40 2.20 0.40 0.20 0.20
3 4.60 0.80 0.60 0.60 8.90 1.00 0.90 0.90
4 3.60 1.00 0.80 0.40 3.70 0.90 0.40 0.40
5 3.10 1.00 1.00 0.50 3.60 1.00 1.00 0.30
6 3.40 1.00 1.00 0.90 3.40 1.00 1.00 0.90
7 3.40 1.00 1.00 1.00 5.00 1.00 1.00 1.00
8 2.80 1.00 1.00 0.50 5.60 1.00 1.00 1.00
9 1.70 1.00 0.20 0.10 6.60 1.00 1.00 1.00
10 3.20 0.80 0.40 0.40 7.80 1.00 1.00 0.90

Overall 3.68 0.95 0.70 0.54 4.69 0.84 0.75 0.66
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6.4 Granulometry on Transformed Corrosion Im-

ages

Pre-processing was investigated for better classification results, as the images

were converted from colour images and there are a lot of intensity variations in

the colour images. A hat transformation is applied at this stage for contrast

enhancement of the images. In many cases hat transformation is an effective

image pre-processing technique, e.g. it was used for optimum results in recognising

vehicle number plates in Sulehria et al. (2007).

There are two types of hat operations, known as the top-hat and bottom-hat

transformations, as discussed in Section 2.6. The top-hat operation is the result

of subtraction of an opened image from the original, whereas the bottom-hat

transform is defined as the closing of the image minus the original image. The

top-hat operation suppresses the dark parts and highlights the bright parts of the

image, and the bottom-hat operation highlights the dark features of the image.

Since the texture in the corrosion images is darker than the background, the

bottom-hat transformation is the appropriate one to use.

As the spots of corrosion in the images increase in size over time, it was

felt that use of a disk SE of increasing size in the bottom-hat transformation

would be appropriate. Disks with different radii were experimented with for each

image and a suitable radius was chosen to represent properly the image objects

(corrosion spots). From a wide range of radius values tested, it was found that

disks of radius 6, 7, . . . , 15 were the most appropriate ones for times 1 through 10

respectively, as they preserved best the sizes and shapes of the textures. Once

we found that a disk of radius 6 clearly represents the corrosion spots in the

bottom-hat transformed image at time 1, for example, we were able to decide

more quickly that a disk of radius 7 was suitable for the image at time 2 and so

on. These disk sizes were determined at the training stage and were used for all

images at each time point. However, in practice, if the evolution times of new test

images were unknown similar exploration would be needed for each test image.

Figure 6.12 represents the grey scale corrosion images and their respective

bottom-hat transformed images. Bottom-hat transformation highlighted the cor-

rosion spots by making them lighter and the background evenly darker. Applying

granulometry to these transformed images should make it possible to extract more

meaningful information, leading to better classification results.
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(a) t = 4 (b) Bottom-hat image of (a) (c) t = 8

(d) Bottom-hat image of (c) (e) t = 10 (f) Bottom-hat image of (e)

Figure 6.12: Some corrosion sub-images of size 2562 and their bottom-hat trans-
formed images.

6.4.1 PS moments of the transformed images

We applied granulometry to the foreground of the bottom-hat transformed im-

ages using square and disk SEs and the first four granulometric moments of each

pattern spectrum were computed for each image. The moments were then av-

eraged over the 10 sub-images from each time point, to give a 10 × 8 matrix

of moment data. The average moments are plotted against time in Figure 6.13,

with fitted cubic curves. Average PS mean and sd using both SEs clearly increase

with time, while skewness and kurtosis decrease in each case. The curves are now

much smoother than for the un-transformed images, so that fitting cubics to these

curves provided much better fits and should improve time prediction.

We computed the coefficients of variation (CVs) of the PS moments, which

expresses the standard deviation as a percentage of the sample mean, for this

dataset (see Appendix III). All 4 PS moments from both SEs have very low CVs,

which reflects low variability among the moments at different time points. Using

such moments we would expect good classification results. The CVs for both sets

of synthetic images were very high (Appendix II(d)), and those sets of moments

gave very high classification error.
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(d) Average PS kurtosis

Figure 6.13: Plots of average PS moments against evolution time, for the bottom-
hat transformed corrosion images using square and disk SEs, with fitted cubic
curves (dotted lines).

6.4.2 Using different classifiers on the transformed images

All 4 granulometric PS moments from both SEs are used as texture features for

predicting the evolution time of the texture as they all show a strong relationship

with time. Again we have implemented the regression approach as well as SVM,

FF-NNET and LDA and we compare their accuracy. At this stage, for all clas-

sifiers 70% of the moments were randomly sampled and were used for training,

and the rest used for testing, and the results averaged over 10 such runs.

Regression approach

A cubic polynomial regression was fitted using the first four average PS moments

computed from both SEs (square and disk) to relate the PS moments to evolution

time.

There are 10 sub-images for each time point and we selected 7 of them ran-

domly to build the regression model and used 3 sub-images to predict the time
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in each run. The confusion matrix of the predicted time for one such run is given

in Table 6.6. The overall error rate was exactly 10% for this specific run. The

regression approach correctly predicted the evolution time for all test images up

to t = 8, 2 images were misclassified at t = 9 and only 1 at t = 10, giving 3

misclassified out of 30 test images (3 for each time).

Table 6.6: Confusion matrix of the predicted time for test set images using re-
gression approach for the bottom-hat transformed images from a single run.

Actual time Predicted time using regression approach
1 2 3 4 5 6 7 8 9 10

1 3 0 0 0 0 0 0 0 0 0
2 0 3 0 0 0 0 0 0 0 0
3 0 0 3 0 0 0 0 0 0 0
4 0 0 0 3 0 0 0 0 0 0
5 0 0 0 0 3 0 0 0 0 0
6 0 0 0 0 0 3 0 0 0 0
7 0 0 0 0 0 0 3 0 0 0
8 0 0 0 0 0 0 0 3 0 0
9 0 0 0 0 0 0 0 0 1 2
10 0 0 0 0 0 0 0 0 1 2

Then we obtained average results, by repeating the process 10 times and

averaging overall error rate, type 0 error rate and MAE. Type 0 error and average

MAE are identical for all time points as the misclassified times were only one unit

away from the actual times (Table 6.8).

For these hat-transformed images we did not clip any predictions to the max-

imum observed time point of 10, so some may have been higher than that, and

also some may have been predicted as 0. In the root finding algorithm, for these

images, in training there were always three real roots, of which it was most ap-

propriate to select the smallest one as the prediction.

Support vector machine

The same set of granulometric moments were used as features in SVMs. This

is a multi-class classification problem, as there are 10 evolution times (t =

1, 2, . . . , 10). Here the one-to-one classification approach is used. The theoretical

aspects of SVM are described in Section 3.12, and their practical use using the

R software is described in Section 5.5 and in Appendix II(a).

We examined different kernels in the SVM with a broad range of values for the

cost and the kernel parameter. Table 6.7 shows error rates for a single training

set using different kernels with different parameter settings. A wide range of
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values of γ was tested but only few are displayed as the rest were similar. A

polynomial kernel with η = 1 is the best kernel for these moments, as it gives

100% accuracy for many choices of the cost and γ. The value η = 1 was the

best choice among the values 1 to 5. For example, any cost of 20 or above with

any value of γ between 0.1 to 0.9 produced 100% correct classification. For the

radial basis kernel, any cost between 1 and 100 and any γ in the range 0.1 to

0.9 produced 97% or better correct classification for the training set. The linear

kernel is equally effective as it produced 97% or better correct classification using

any cost between 1 and 100. Here we also tried a sigmoid kernel, but it was not

an appropriate choice as the highest correct classification was only 50%, for cost

20 and γ = 0.1. Therefore, we used the polynomial kernel with η = 1 and a cost

of 100 and γ = 0.9 in SVM, which provided 100% correct classification rate for

both training and test sets.

Linear discriminant analysis

Linear discriminant analysis (LDA) is discussed in Section 3.9 and how it can be

applied in the R computing package is described in Appendix II(b). As kurtosis

from the square SE is constant up to 3 decimal places (i.e. -2.999), for all time

points, kurtosis was not used in LDA. Using the proportions of the data in each

class as (equal) prior probabilities, 70% of the moments were used to train the

model and the rest was used for testing as before.

Neural network

A single hidden layer FF-NNET was used to classify the evolution time using

granulometric moments. Section 3.11 contains a detailed description of the neural

network and Appendix II(c) describes how to implement this in R.

The data were normalised before using FF-NNET and the parameter values

were tuned empirically to produce higher classification accuracy. Firstly, a grid

search approach was applied to find the optimum value of decay and rang and

it was found that the best values of decay and rang were 10−4 and 1/max(|x|),
where x is the input data, respectively for this set of PS moments. Using these

values we again sought for the number of hidden units to be used in the FF-

NNET. Although any hidden units between 1 and 10 with the optimum value

of decay and rang produced 0% training set error rate, 10 units were used in

the final computation to make the classifier more generalisable. The maximum

number of iterations was set to 5000, to ensure that the optimisation problem

converged.
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Table 6.7: Training set error rates for different combinations of cost and parameter
γ for a radial basis kernel, a polynomial kernel with η = 1, a sigmoid kernel with
η = 1, and a linear kernel using 8 foreground moments from the hat-transformed
corrosion images. The bold figure represents the kernel and its parameter used
in the final computation.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.5 0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.9 0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.03 0.03 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0 0

Sigmoid kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.6 0.53 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
0.5 0.90 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
0.9 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Linear kernel
Cost

1 10 20 30 40 50 60 70 80 90 100
0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

We computed average type 0 error and MAE for all classifiers using the first

four PS moments from each SE as before. To see the effect of using fewer features

for classifying these images, we also used the first two PS moments (mean and sd)

from each of the square and disk SE in all classifiers, using 70% of the moments

for training and the rest for training. Again we averaged the results over 10 runs.

Type 0 error and MAE are identical again as none of the images were misclassified

more than one unit away from its actual time.

Type 0 errors for each time and overall errors are shown in Table 6.8 for all

classifiers, using all 8 PS moments and also 4 moments. SVM predicted time for

all images correctly, while LDA was second best with 92% correct classification.

REG was as good as the FF-NNET with 90% correct classification.

Using the reduced feature set, i.e. the PS mean and sd from each SE, the new
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Table 6.8: Average test set Type 0 error rates for all classifiers using all 8 and
also 4 foreground PS moments, for the corrosion images; results are averaged over
10 runs.

Time 8 moments 4 moments
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 0.000 0 0.000 0.000 0.000 0 0.000 0.000
2 0.000 0 0.133 0.067 0.000 0 0.133 0.000
3 0.000 0 0.000 0.000 0.000 0 0.133 0.000
4 0.000 0 0.000 0.133 0.000 0 0.200 0.167
5 0.250 0 0.133 0.067 0.250 0 0.600 0.133
6 0.083 0 0.200 0.200 0.083 0 0.133 0.200
7 0.167 0 0.000 0.067 0.167 0 0.133 0.167
8 0.000 0 0.000 0.067 0.000 0 0.133 0.167
9 0.333 0 0.267 0.267 0.333 0 0.533 0.267
10 0.167 0 0.067 0.133 0.167 0 0.267 0.133

Overall 0.100 0 0.080 0.100 0.100 0 0.227 0.123

regression classifier produced the same 10% type 0 error and SVM still gave 100%

correct classification. However, for LDA and FF-NNET the type 0 error rates

increased to 22.7% and 12.3% respectively (Table 6.8).

In Gray et al. (2006), McKenzie (2004), Gray et al. (2005) and McKenzie et

al. (2003) these corrosion images were also classified according to their evolution

time. They related granulometric moments to evolution parameters of the syn-

thetic images, and back-prediction was used to predict the evolution time of a

new image, based on the artificial image model and the observed granulometric

moments from the new image. The difficulty with this is that real images of inter-

est do not necessarily evolve in the same way as the artificial ones, so leading to

higher error rates. Their method provided type 0 error as high as 48%, whereas

our method produced only 10% error for classifying the same corrosion images.

The key step in getting successful results from the granulometric moments

for the corrosion images was to use the bottom-hat transform with a disk that

increases in size with time. We show the results for comparison, of applying

bottom-hat transformation using a disk of fixed radius over times 1 to 10, rather

than using increasing radii. Different radii, 7, 9, 11 and 13, were experimented

with and the results for radius 9 are shown here. Opening granulometry was

applied to these bottom-hat transformed images using the square and disk SE

and the first four average PS moments used in each classifier. The type 0 errors

are reported in Table 6.9. Although SVM produced 100% correct classification,
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the results from the other classifiers were much poorer than when the increasing

disk size was used.

Table 6.9: Average test set Type 0 error rates for all classifiers using a fixed sized
disk of radius 9 in the bottom-hat transform of the corrosion images, using 8 PS
moments; results are averaged over 10 runs.

Time Type 0 error
REG SVM LDA FF-NNET

1 1.000 0 0.667 0.467
2 1.000 0 0.333 0.300
3 0.500 0 1.000 0.767
4 0.750 0 0.667 0.867
5 0.583 0 0.000 0.833
6 0.833 0 1.000 0.800
7 0.667 0 0.333 0.900
8 0.833 0 0.000 0.667
9 1.000 0 0.333 0.567
10 1.000 0 0.333 0.667

Overall 0.817 0 0.467 0.683

We compared the performance of the regression approach using different sub-

images. Its classification accuracy varies if the model is built using moments from

different sub-images. The lowest type 0 error (8%) was obtained by considering

only the first 5 sub-images for each time point, where the images were extracted

from along the bottom of the original corrosion images. The model was built

using the average moments of those sub-images and tested for the individual

ones. For the last 5 sub-images, extracted from the right side of the images,

the error rate was 18%, but if the model was based on the average moments of

all 10 sub-images, the error rate was 15%. The method worked better for the

first 5 sub-images, as at each time point in this subset the sub-images are more

homogeneous with respect to the size and number of spots within them. This is

a disadvantage of the method.

6.4.3 Granulometry on the background images

As in the foreground images the spots of corrosion are darker than the back-

ground, in the background images the reverse is observed, so as a pre-processing

technique the top-hat transformation is the best one to reduce the uneven illu-

mination as well as highlight the brighter parts of the images. The results of
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top-hat transformation of the background of the corrosion images are shown in

Figure 6.14 (there is some shading in these images, although they are very dark).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.14: Top-hat transformed images of the background corrosion images.

Then granulometry was applied using the square and disk SEs and the first

four granulometric moments were computed. Then average moments were calcu-

lated over the 10 sub-images at each time point. The top-hat transformed images

look very similar to the corresponding bottom-hat transformed foreground images

(see Figure 6.12), and their PS moments are nearly identical. Therefore using

the PS moments from these background images is likely to produce very similar

classification performance for each classifier, and so we did not proceed further

with this set of moments.

6.5 Conclusion

Classification of corrosion images has rarely been addressed except in McKenzie

et al. (2003), McKenzie (2004), Gray et al. (2005) and Gray et al. (2006). Some
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other papers in the literature have used image analysis of corrosion images, but

these all focus on distinguishing one type of corrosion from others or separating

the corroded parts from the non-corroded parts of an image. None of them consid-

ered classifying corrosion images according to their evolution time. For example,

Pidaparti et al. (2010) successfully classified the pits and cracks in nickel alu-

minium (NiAl) bronze metal images using image analysis. They considered four

classes of corrosion, namely no corrosion, cracks, cracks and pits, and pits. Six

sub-images of size 2562 were extracted from scanning electron microscopy (SEM)

of NiAl bronze sample images. Fractal dimensions (FD) were computed from

these images and it was shown that images with no corrosion had the smallest

FD, whereas pitted images had the highest FD. Cracks had the second lowest and

the combination of cracks and pits had the second highest FD. Wavelet-packet

decomposition was also used and Shannon entropies from each decomposed image

were computed. No classifier was used to classify the pits and cracks, rather the

Shannon entropy was plotted against FD, which clearly distinguished four types

of corrosion, with only two cracked and pitted images misclassified as pitted.

The FD and entropy allowed linear separation of the classes, so classification of

pits/cracks is possible using these features.

Choi and Kim (2005) used digital image processing for analysis and classifica-

tion of images of corrosion damage, namely, crevice corrosion, irregular corrosion,

pitting, fretting, uniform corrosion and non-corroded images. The corroded im-

ages were characterised by colour, texture and shape features. They considered

the hue, saturation and intensity planes of the colour images separately and com-

puted five features, namely horizontal and vertical means and sds and contrast

from a co-occurrence matrix. Multi-dimensional scaling was applied on the co-

occurrence features to classify different corrosion images. The shape and size

of pitting corrosion was analysed by digital image processing in Codaro et al.

(2002). Different boundary statistics of the pits, i.e. area, elongation, round-

ness and perimeters, were obtained and plotted. Area provided most information

about the pits and was more effective for identifying pitting corrosion.

Our regression-based classification approach using granulometric moments as

texture features is a substantial improvement for classifying images of corrosion

to a point in time compared to the approach in McKenzie et al. (2003), McKenzie

(2004), Gray et al. (2005) and Gray et al. (2006), where the lowest classification

error for the corrosion images was as high as 48% using the maximum likelihood

classifier. Our method produced only 10% error for classifying the same images,

moreover SVM produced 100% correct classification.
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Increasing the radius of the disk SE in the hat transform of the images is

of crucial importance, as granulometric features computed from hat-transformed

images obtained using the same size disk SE over all time points or classes pro-

duced very high classification error for all classifiers.

In the next chapter we apply the same methodology on images of tea granules

of increasing size to classify them according to their granule size.
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Chapter 7

Analysing Images of Tea

Granules

In this chapter we now use the same methodology on a different set of real images,

which are textured images of Indian black tea granules. The accurate sorting of

tea leaves is an important stage in the manufacturing process in the tea industry,

and applications of image texture analysis have proven advantageous in Borah et

al. (2007) and Li et al. (2008a). Image processing has numerous uses for online

inspection and monitoring in the food industries in general (Chen et al. (2008b),

Bhattacharyya et al. (2007), Borah and Bhuyan (2003), Wu et al. (2008), Wu et

al. (2007b), and Zenoozian and Devahasti (2009)).

Sorting has traditionally been carried out by sieving with a series of sieves of

differently sized mesh, however more recently computer vision approaches have

been investigated for a more automated approach (Borah et al. (2007)) with a

view to online monitoring.

Borah et al. (2007) consider images of cut-tear-curl (CTC) black tea granules

of ‘even’ appearance, comprising eight grades of tea from different tea gardens in

Assam, India, and sorted by granule size in terms of approximate diameter in mm.

They use automated texture classification using Daubechies wavelet (Daubechies

(1988)) features in MLP and LVQ neural networks, implemented in Matlab, and

achieve correct classification rates of 74.67% for MLP and 80% for LVQ for 150

test images. This study is part of a larger body of work addressing tea quality

assessment by automated means. In this chapter we use granulometric features

and various classifiers on the same images used by Borah et al. (2007), with

improved results.
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7.1 Background and Related Work

Image analysis and pattern recognition techniques have been used for assessment

of tea quality, classifying different types of tea and also to classify teas to different

geographical regions. Tea quality is mainly determined by flavour, aroma, colour

and strength (Bhattacharyya et al. (2007)). Bhuyan and Borah (2001) describe

use of an electronic nose to assess tea aroma and flavour, traditionally assessed by

a human sensory panel. Fermentation is one of several stages in the manufactur-

ing of black tea and the most important one in determining the quality of brewed

tea liquor. The optimum fermentation time for tea quality is the time at which

the tea colour changes from green to a deep coppery red (Borah and Bhuyan

(2003)). Aroma also changes from a grassy smell to a floral smell (Bhattacharyya

et al. (2007)). Under- or over-fermentation adversely affects flavour. This point

is traditionally detected by human observation, which is subjective and likely to

vary between observers. Alternatively, indirect colorimetric assessment may be

carried out, involving chemical analysis of samples collected at intervals during

fermentation and boiled to produce tea extract. Output from a colorimeter pro-

duces a profile representing optical absorbance against time. Once this profile

peaks for the second time, optimal fermentation has been reached, corresponding

to the change to the deep copper colour in the fermenting tea (Bhattacharyya et

al. (2007)).

Borah and Bhuyan (2003) describe a non-destructive, machine vision system

for colour matching using the Hue-Saturation-Intensity colour model for illumi-

nation invariance. This system used a histogram-based comparison of the hue

plane of an input image of fermenting tea leaves with the hue plane of two refer-

ence images from a database of ten standard images judged by a sensory panel as

being at the optimum point of fermentation. A simple threshold-based method

using histogram intersection (Swain and Ballard (1991)) was used to classify the

input image, with 90% success in a sample of ten test images. Borah et al. (2002)

used a neural network for colour matching. A two-layer perceptron, using hue

and saturation of colour images of tea leaves as the input features gave 94% suc-

cessful classification for 50 test images of tea granules, judged by a sensory panel

on the basis of strength of the made tea.

Bhattacharyya et al. (2007) and Dutta et al. (1994) also consider detection

of optimum fermentation time, but based on electronic nose-based monitoring

of volatile emissions during fermentation and detection of peaks in the sensor

output, rather than by detection of change in aroma by human supervisors.

Bhattacharyya et al. (2007) describe identification of eight sensors for use in
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an electronic nose used for monitoring fermentation. Principal component anal-

ysis (PCA) was used on readings from each sensor at regular intervals, and the

first principal component was found to indicate more clearly than any one sensor

individually the nature of the peaks in recorded emissions. As in the colorimetric

curve, the position of the second peak again indicates the point at which op-

timum fermentation has been reached and the fermentation process should be

stopped. The times indicated by the PCA accurately matched the optimal fer-

mentation times indicated by human expert assessment in all trials, and in most

cases matched the colorimetric assessment as well.

Li et al. (2008b) used wavelet-based image features for classification of five

Chinese green teas using multi-spectral images. These tea types are not obviously

distinguished by tea granule size, so are not ordered textures, and the shapes in

the image textures are quite different from Indian black tea granule images, as the

green tea leaves are longer and thinner. The shade of the green colour of the tea

leaves also varies between tea types. Li et al. (2008b) used variable selection to

select 11 grey level co-occurrence features computed from wavelet decompositions

of each of the three image colour planes separately. The chosen features are used

in linear discriminant analysis with 100% accurate classification for all 250 test

and training images.

In Wu et al. (2007) and Wu et al. (2008) four different categories of Chinese

green tea types were discriminated based on multi-spectral images. They used

the entropy values for 320 three channel (R, NIR (near infrared) and G) images,

80 from each category, as a feature set in a least squares support vector machine

(LS-SVM) and achieved 97.5% classification accuracy. The accuracy was further

improved to 100% by subtracting one channel image from the others, namely

R-NIR, R-G, NIR-R, NIR-G, G-R and G-NIR, so there were 6 images for each of

the 320 sample images. Again entropy values were computed, PCA was applied

and the first 6 PCs together expressed 100% of the variation in the feature set. A

LS-SVM based on the 6 PCs was 99.6% accurate in discriminating the four green

tea types.

In Borah et al. (2007), starting with 160 images, 20 from each of 8 grades

of black tea, four-level pyramidal decomposition using Daubechies wavelets was

applied to each image, giving four sub-band images from four levels of resolution.

Only the approximation sub-band image was used for feature extraction. Initially

they computed four features, i.e. mean, variance, entropy and energy, from each

of the four sub-band images from the four levels of resolution. Using only energy

and entropy as features, PCA and the clustering technique ‘self organising maps’
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(SOMs) were unable to make definite clustering of the data. Therefore they

employed Mahalanobis distance as a measure of dissimilarity among the images.

Mahalanobis distance was calculated using the features from each image in each

class with respect to the rest of the images in that class. Image pairs with the

smallest Mahalanobis distance were considered to be the most similar images

within a given class, and the statistical features of either of these was calculated.

Then the Mahalanobis distance of a test image was calculated with respect to

each of the eight selected images from the different classes, and these distances

were used as features for texture classification. With this new feature set PCA

and SOM were able to distinguish the grades better than the previous feature

set. Two different neural networks, a multi-layer perceptron (MLP) and learning

vector quantisation (LVQ), were trained using 700 images and tested on another

150 images, and achieved 74.67% and 80% classification accuracy respectively.

Chen et al. (2009b) differentiated 8 different Chinese teas based on the tea

content in terms of 15 metals. LDA and a BP-ANN both differentiated them with

100% accuracy. The amount of catechin and caffeine, measured simultaneously

by high performance liquid chromatography (HPLC), was used to identify the

quality level of four different green teas in Chen et al. (2008a). The identifica-

tion rates for SVM, BP-ANN and LDA were 90%, 75% and 80% respectively.

In Chen et al. (2008b) a discrete cosine transform of multi-spectral images (red,

near-infrared (NIR) and green bands) of six different classes of teas was used. Us-

ing the standard deviation (sd) of each of the original or filtered NIR images with

a SVM produced 73.33% or 100% correct classification respectively. Five varieties

of Chinese green teas were distinguished using statistical moments and spectral

measurements as features in Chen et al. (2008c). LDA using the first 11 PCs

produced 98.33% correct identification. Using spectral differences of green, black

and Oolong teas in the NIR region as input, SVM produced 100% classification

accuracy for black tea, 95% for green tea and 90% for Oolong tea respectively

in Chen et al. (2007) and Zhao et al. (2006). Chen et al. (2006) carried out a

qualitative and quantitative study of 4 different types of teas using NIR spec-

troscopy with soft independent modelling of class analogy (SIMCA). Separate

SIMCA models were built for each variety of tea based on PCs, which provided

80% correct identification for Biluochun tea and 100% for the other tea categories.

Four different grades of Chinese green teas were identified by means of HPLC

in Li and He (2008). PCA was applied to wavelet-based features and 8 PCs were

used in an ANN with 77.3% accuracy. Five different types of tea namely, white,

green, black, Oolong and Pu-erh, were classified according to their total mineral
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content in terms of 14 chemicals by McKenzie et al. (2010). LDA produced 100%

correct classification for Oolong tea, 93% for Pu-erh and white teas and 86% and

64% for black and green teas. A probabilistic NNET gave 100% correct classifi-

cation for all varieties except Pu-erh (93%). Li et al. (2011) applied a 2-D DWT

at two different resolutions on multi-spectral images of 8 types of Chinese tea

and then computed 5 GLCM features, namely energy, entropy, contrast, correla-

tion and homogeneity, from each sub-band image, so 35 features were computed

for each grey scale image and each sample consists of 3 grey scale images corre-

sponding to wavelengths 540nm, 670nm and 800nm. Hence, 105 features were

computed from each sample multi-spectral image. A LS-SVM was able to reach

up to 96.82% correct classification.

Measurements of 8 different chemical descriptors were computed from 48 sam-

ples of green, black and Oolong teas in Herrador and González (2001). PCA was

applied to explore the discrimination abilities of these chemicals and then LDA

and BP-ANN were applied to the original metal contents with 90% and 95%

correct classification. LDA was used on different chemical compositions to dif-

ferentiate two classes of green and black tea with 100% success in Valera et al.

(1996). PCA and partial least squares analyses of near infrared spectroscopic

(NIRS) data were able to discriminate different categories of partially fermented

tea samples from Taiwan with 94% to 99% accuracy in Liu et al. (2010). Ivanciuc

(2003) used 3 metal contents to classify black and green teas in a SVM. Different

kernels and kernel parameters were experimented with and the radial basis kernel

was found to be the best, giving 84% correct classification.

Some authors distinguished different varieties of teas according to geographic

areas of origin. For example, Chen et al. (2009a) proposed classifying roast

green teas according to geographic region by a Fourier Transform near-infrared

(FT-NIR) technique coupled with LDA, k-nearest-neighbour (KNN) classifica-

tion, back-propagation artificial neural networks (BP-ANN) and SVMs. Correct

classification rates for LDA, KNN, BP-ANN and SVM were 92%, 96.3%, 96.3%

and 100%. Moreda-Piñeiro et al. (2003) classified 85 samples of teas from dif-

ferent parts of the world (36 from Asia, 18 from Africa, 24 commercial blends

and 7 of unknown region) according to their region of origin using trace metal

contents. PCA and cluster analysis were employed as exploratory techniques.

LDA identified all African tea samples correctly but 1 sample was misclassified

from the Asian group giving 94.4% correct classification. Correct classification

rates using SIMCA were 100% and 91.7% for Asian and African teas respec-

tively. Fernández-Cáceres et al. (2001) differentiated tea varieties from different
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geographical regions based on levels of 12 metals. The discrimination abilities of

LDA and a BP-ANN were 93.5% and 95.6% respectively.

7.2 Description of the Tea Images

Initially we were supplied with 21 tea leaf images in JPG image file format.

Some of them contain granules of the same size. The images were sorted visually

according to their grain size and examples of the 8 classes distinguished in Borah

et al. (2007) are shown in Figure 7.1, from class 1, for the smallest granule size, to

class 8, for the largest granule size. Several images were available from all except

one class (8), which only contained one image.

Each image is a colour image of size 2000 × 3008. The eight different classes

mentioned in Borah et al. (2007) are Dust, OF (Orange Fannings), PD (Pekoe

Dust), PF (Pekoe Fannings), BP (Broken Pekoe), BOPSM (Broken Orange Pekoe

Small), BOP (Broken Orange Pekoe) and BOPL (Broken Orange Pekoe Large).

The approximate diameter (in mm) of Dust is not specified and the rest have

approximate granule diameter sizes of 0.25, 0.355, 0.5, 1.0, 1.3, 1.7 and 2.0 mm

respectively.

Here we investigate the usefulness of our methodology for classifying these

images. To obtain training and test sets, images of size 2562 were extracted

from each of the original images in Figure 7.1 representing each class, and were

converted to grey scale. A total of 50 non-overlapping sub-images were extracted

from one image from each class, avoiding the edges which are not fully covered

by the tea leaves, giving a total of 400 sample images. One such grey scale image

from each class is displayed in Figure 7.2.

It is clear from Figures 7.1 and 7.2 that tea granule size increases over the

classes, so we can consider the tea images as ordered textures, and the same

methodology can be used as for the evolving texture images considered in earlier

chapters. We define ordered textures as ones which can be ranked according to

some scale of fineness or coarseness, or by size of texture primitives (shapes) in

the images. In this case the tea granules increase in size between the classes.

7.3 Thresholded Tea Images

Initially, we obtained binary versions of the sub-images using Otsu’s thresholding

algorithm (see Section 1.2). The tea granules became white and the background

black (Figure 7.3).

194



(a) Original image 1 (b) Original image 2 (c) Original image 3

(d) Original image 4 (e) Original image 5 (f) Original image 6

(g) Original image 7 (h) Original image 8

Figure 7.1: Original colour tea images with different granule sizes, labelled here
as class 1 to 8.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

Figure 7.2: Grey scale sample 2562 tea images, one from each of the eight classes.

7.3.1 Granulometries on the thresholded images

Granulometries were then applied to the foreground of each of the 50 binary im-

ages from each class, using four different SEs, namely a square, a disk, horizontal
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(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8
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(i) PS of (a) to (d)
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(j) PS of (e) to (h)

Figure 7.3: One binary tea image from each class, and their PS using a disk SE.

line and vertical line, and PS moments were computed as before. One binary

image from each class, along with its PS, using disk SE is shown in Figure 7.3.

In the granulometric opening the image volume drops successively at each

opening, so any details smaller than the applied SE are completely removed from

the image and create a spike in the PS. A significant drop in volume between

two consecutive openings suggests that the image contains many objects/details

smaller than the applied SE at that stage and the highest spike on the PS corre-

sponds to that size of SE, but the PSs here do not show that trend. This may be

because there are some black holes within the tea granules. Closing the images

with a smaller SE, or applying median filtering, would lessen the problem but

would cause another problem, i.e. of joining the adjacent granules, which would

affect the original shape and size of the granules.
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Foreground PS moments from binary images

As four different SEs are used for all 50 sub-images from each class and the

first four PS moments are considered, the moments data form a 400× 16 matrix.

Average moments were computed over 50 sample images. So the average moment

data consists of 8 rows, one for each class, and 16 columns, four average moments

for each of the four SEs, 12 of which are used for prediction. The first four

average foreground PS moments using four different SEs are plotted against tea

class in Figure 7.4. It can be seen that the average PS mean and sd using all SEs

increase with class, although the rate of increase is different for different SEs and

moments, but PS skewness is very low in magnitude for all SEs and a decreasing

trend is observed. Kurtosis does not show any trend with class, therefore we used

the first three PS moments in model building.
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(a) Average PS mean
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(b) Average PS sd
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(c) Average PS skewness
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(d) Average PS kurtosis

Figure 7.4: Plot of the average foreground PS moments of the binary images
using 4 SEs against class.

The regression approach was used to relate the foreground and background

granulometric moments separately to tea class, and the fitted model was then

used to predict the class for each image. We consider foreground features first.

In Figure 7.4 the first three foreground PS moments possess a strong rela-

tionship with class, but the relationships are curvilinear. The first three average

197



moments for each of the four SEs were modelled using a polynomial regression

(equation (5.14)). Each of the 12 moments and corresponding fitted cubic is

plotted in Figure 7.5. Although some of the figures suggest that a higher order

polynomial than a cubic would be more appropriate (especially skewness using a

disk) solving a 4th or higher degree polynomial would be difficult and may be too

complicated for good prediction.
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(a) PS mean using square and disk SE
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(b) PS mean using line SEs
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(c) PS sd using square and disk SE
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(d) PS sd using line SEs
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(e) PS skewness using square and disk
SE
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(f) PS skewness using line SEs

Figure 7.5: Plot of the average foreground PS moments for the binary images
against class using different SEs, with fitted cubic curves (blue lines).

The fitted cubic model was used at this stage to predict class using the single

set of moments for each of the 50 sub-images from each class. The histograms of

predicted class are shown for all eight classes in Figure 7.6. The predicted classes
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are quite spread out and are not concentrated on the correct class.
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.6: Frequency histograms of predicted class using the first three fore-
ground PS moments of the binary tea images from square, disk, horizontal and
vertical line SEs, using cubic regression, for all 50 sub-images in each of the classes
1-4 (a) and 5-8 (b).

Background PS moments from binary images

Since granulometry on the foreground of an image only provides the size distri-

bution of the objects within the image but not spatial arrangement, applying

granulometry on the image background may also be useful. Again we used the

four SEs above and computed the first four PS moments from each of the 50

images.

Figure 7.7 shows the first three background PS moments using the four dif-

ferent SEs, with fitted cubic regressions. Again the PS mean and sd using all

SEs are increasing functions of class, although the rates of increase differ, and

again the PS skewness is very low in magnitude for all SEs and a decreasing trend

is observed. Again kurtosis (not shown) does not show much trend with class,

therefore again we used only the first three PS moments in model building. The

combined fitted model was used for prediction of class using the moments from

each of the 50 sub-images from each class. The predicted classes are shown in

Figure 7.8, but are still widely spread.

Principal component analysis

Both the first three foreground and first three background average PS moments

using all four SEs are now considered, and PCA with and without normalisation

applied to the full data matrix containing these 24 moments. In the un-normalised

case, the first PC expresses 98.4% of the variation in the data and the first 2 PCs

199



1 2 3 4 5 6 7 8

2

4

6

8

10

12

14

Class

A
ve

ra
ge

 P
S

 m
ea

n

 

 

Square SE
Fitted cubic curve
Disk SE
Fitted cubic curve

(a) PS mean using square and disk SE
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(b) PS mean using line SEs
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(c) PS sd using square and disk SE
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(d) PS sd using line SEs
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(e) PS skewness using square and disk
SE
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(f) PS skewness using line SEs

Figure 7.7: Plot of the average background PS moments for the binary images
against class using different SEs, with fitted cubic curves (blue lines).

explain 99.3% of the variation, while without normalisation the first PC explains

95.5% of the variation and the first 2 PCs explain 99.5% of the variation in the

data.

The PCs coefficients for the normalised case are shown in Table 7.1. In PC1,

the strongest coefficients are for the line SEs. The background PS sd using a

vertical line SE has the highest coefficient, and the second highest coefficient

corresponds to the background PS mean using a vertical line. The coefficients

are near zero using both foreground and background skewness for the line SEs. In

general, both foreground and background PS skewness have very low coefficients
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.8: Frequency histograms of predicted class using the first three back-
ground PS moments of the binary tea images from square, disk, horizontal and
vertical line SEs, using cubic regression, for all 50 sub-images in each of the classes
1-4 (a) and 5-8 (b).

and the line SEs have higher coefficients for the background PS mean and sd than

the foreground ones. Therefore the PS means and sds using the line SEs appear

to be the most informative.

Rather than using 12 foreground and 12 background PS moments, the first

two PCs with and without normalisation were modelled as a function of class

using cubic regression and a reasonably good fit was obtained. The PCs and fitted

cubic curves are shown in Figure 7.9. With normalisation both PCs increase with

class, but without normalisation only the first PC shows a relationship with class.

Therefore the PCs obtained using normalisation were used in model building for

prediction of class for each of the 50 sub-images in each class. The predicted

classes for the 50 sample images in each class are plotted in Figure 7.10. Still the

results are not ideal.
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(a) PCs with normalisation
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(b) PCs without normalisation

Figure 7.9: Plots of the first two PCs of the 24 moments from the binary images
against class, with fitted cubic curves.
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Table 7.1: Principal component coefficients using 12 foreground and 12 back-
ground moments from the binary tea images. The bold figures refer to the
strongest coefficients.

PS Moments Principal component coefficients (with normalisation)
SE PC1 PC2 PC3 PC4 PC5

Foreground mean

square 0.0781 -0.2071 0.0869 0.1148 -0.0250
disk 0.0460 -0.1307 0.0469 0.0721 -0.0218
line at 0◦ 0.2548 -0.3495 0.1212 0.4015 0.0209
line at 90◦ 0.2985 -0.5553 0.1278 -0.0605 0.4948

Foreground sd

square 0.0513 -0.1319 0.0025 0.1521 -0.1729
disk 0.0283 -0.0874 0.0021 0.0906 -0.1146
line at 0◦ 0.2230 -0.1936 -0.0125 0.4547 -0.5448

line at 90◦ 0.2889 -0.3465 -0.3215 -0.4919 -0.0319

Foreground skewness

square -0.0001 0.0006 -0.0005 -0.0002 0.0000
disk -0.0008 0.0039 -0.0023 -0.0017 0.0014
line at 0◦ -0.0000 0.0001 -0.0000 -0.0001 0.0000
line at 90◦ -0.0000 0.0000 -0.0000 -0.0000 0.0000

Background mean

square 0.1443 0.0265 0.0100 -0.1161 -0.1459
disk 0.0863 -0.0014 0.0013 -0.0789 -0.0661
line at 0◦ 0.3631 0.1793 -0.3642 -0.0463 -0.3321
line at 90◦ 0.4147 0.0900 0.2620 -0.4629 -0.2606

Background sd

square 0.1261 0.1466 0.0494 0.0143 0.1141
disk 0.0732 0.0681 0.0183 -0.0172 0.0971
line at 0◦ 0.3650 0.2858 -0.5991 0.2882 0.3922
line at 90◦ 0.4633 0.4221 0.5410 0.1305 0.1802

Background skewness

square -0.0001 0.0006 -0.0003 -0.0002 0.0003
disk -0.0010 0.0043 -0.0022 -0.0017 0.0018
line at 0◦ -0.0000 0.0001 -0.0000 -0.0000 0.0000
line at 90◦ -0.0000 0.0000 -0.0000 -0.0000 0.0000
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.10: Frequency histograms of predicted class using the first two PCs
derived from 24 moments (12 foreground and 12 background) of the binary tea
images from square, disk, horizontal and vertical line SEs, using cubic regression,
for all 50 sub-images in each of the classes 1-4 (a) and 5-8 (b).
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Prediction errors

The accuracy of the predicted class was computed as in Section 5.3.4. Type 0,

Type 1, Type 2 error rates and MAE were computed for each of the three re-

gression models (foreground moments, background moments and PC-based) and

shown in Figure 7.11 and Table 7.2. Overall type 0 error rate for the foreground

model is 72%, for the background model it is 66% and for the PC-based model it

is 71%. The background moments model produced better classification than the

foreground moments or PC-based model, although the error rates are still very

high. In terms of MAE (Figure 7.11(d)), the PC-based model produced slightly

lower MAE than the background moments model. For all models, later classes

are more difficult to classify.
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Figure 7.11: Overall prediction error measures of the three binary image models
tested on each of the 50 sub-images from each class.

Since the background moments provide comparatively better classification re-

sults we used the background moments in the other classifiers, i.e. SVM, LDA and

FF-NNET, and compared their performance with that of the regression approach

(REG).
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Table 7.2: Overall error rates for all 3 regression models tested on each of the 50
sub-images from each class, for the binary tea images.

Class Foreground moments Background moments
MAE Type 0 Type 1 Type 2 MAE Type 0 Type 1 Type 2

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.80 0.50 0.16 0.16 0.90 0.40 0.22 0.16
3 1.14 0.68 0.14 0.12 1.08 0.76 0.20 0.06
4 1.64 0.90 0.36 0.20 1.38 0.76 0.36 0.16
5 2.36 0.96 0.80 0.40 1.72 0.86 0.66 0.16
6 2.12 0.98 0.76 0.34 1.80 0.86 0.52 0.32
7 2.24 0.94 0.52 0.42 2.08 0.90 0.58 0.36
8 1.80 0.80 0.36 0.28 1.34 0.74 0.36 0.16

Overall 1.51 0.72 0.39 0.23 1.29 0.66 0.36 0.17
Class Principal components (2 PCs)

MAE Type 0 Type 1 Type 2
1 0.00 0.00 0.00 0.00
2 1.36 0.40 0.16 0.08
3 1.19 0.66 0.06 0.06
4 0.86 0.70 0.26 0.16
5 0.08 0.96 0.58 0.38
6 1.12 0.96 0.90 0.78
7 1.98 1.00 1.00 0.92
8 3.21 1.00 1.00 1.00

Overall 1.23 0.71 0.50 0.42

7.3.2 Other classifiers

We considered different kernels and a grid search approach to choose the optimum

kernel, parameter values and cost for the SVM. Error rates were computed for a

single training set, where the training set consists of 70% of the data. For SVM

the error rates for different kernels are shown in Table 7.3. Any value of the

cost (we tested costs between 1 and 100) with the linear kernel produces 100%

correct classification. The radial basis kernel with γ = 0.1 and a cost of 10 or

above produced only 1% error. A polynomial kernel produced 11% error rate for

any cost of 10 or above and γ greater than or equal to 0.5. The default value

of η = 0 produced higher error but any value of η between 1 to 5 produced the

same accuracy, hence we considered η = 1 for the polynomial kernel. Therefore

we used the simpler linear kernel with a cost of 100 for this dataset. Similarly,

with normalised features, ten units in the hidden layer of a FF-NNET with decay

as 10−4 and rang as 1/max(|x|), where x is the input data, produced a lower
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error rate for the training set (Table 7.4).

Table 7.3: Training set error rates for different combinations of cost and γ for
the radial basis kernel and the polynomial kernel with η = 1, and a linear kernel
using 12 background moments from the binary tea images. A 0 below means
exactly 0.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.5 0.23 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.9 0.24 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.59 0.38 0.33 0.26 0.25 0.23 0.22 0.20 0.19 0.18 0.17
0.5 0.17 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
0.9 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Linear kernel
Cost

1 10 20 30 40 50 60 70 80 90 100
0 0 0 0 0 0 0 0 0 0 0

Table 7.4: Training set error rates from a grid search approach for finding the
optimum number of hidden neurons for FF-NNET using 12 background moments
from the binary tea images.

Number of units
1 2 3 4 5 6 7 8 9 10

Error rate 0.52 0.36 0.34 0.25 0.24 0.26 0.21 0.13 0.11 0

The error rates for these classifiers are shown in Table 7.5 and Figure 7.12.

SVM produced 100% correct classification for all classes. For REG, LDA, and

FF-NNET the error rates are 66% (Table 7.2), 55% and 49% respectively. MAEs

are also shown in the same table and again SVM is best.
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(b) Type 1 error
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Figure 7.12: Error rates for all classifiers using 12 background PS moments from
the binary tea images using all the 50 sub-images from each class.

7.4 Granulometry on Grey Scale Tea Images

Foreground grey scale images

Granulometry is now applied using the foreground of the grey scale image directly

rather than thresholding first. We first subtracted the minimum intensity from

the grey scale image so that successive openings using increasing size SEs should

remove the whole image volume. This is true for a square or a disk SE but

applying a line SE of increasing length does not remove the whole image volume.

Once the line has brought the image grey scale down to the minimum grey level of

the pixels lying along the line, opening again has no further effect. To overcome

this problem, instead of subtracting the overall minimum image grey level from

each pixel’s intensity, we subtracted from each row of the original grey scale image

its respective minimum intensity before applying the horizontal line SE. Similarly

before applying a vertical line SE we subtracted from each column of the grey

scale image its minimum intensity. This could be done for lines at 45◦ and 135◦

similarly.

We computed the first four PS moments from the square, disk, horizontal

line and vertical line SEs. The average moments are plotted against class in
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Table 7.5: Overall error rates for SVM, LDA and FF-NNET using 12 background
PS moments of binary tea images for all 50 sub-images from each class.

Class SVM LDA
MAE Type 0 Type 1 Type 2 MAE Type 0 Type 1 Type 2

1 0 0 0 0 0.01 0.01 0.00 0.00
2 0 0 0 0 0.51 0.33 0.09 0.04
3 0 0 0 0 1.03 0.58 0.24 0.15
4 0 0 0 0 1.08 0.54 0.31 0.15
5 0 0 0 0 1.63 0.87 0.51 0.25
6 0 0 0 0 1.30 0.65 0.48 0.11
7 0 0 0 0 1.91 0.89 0.43 0.31
8 0 0 0 0 1.27 0.53 0.36 0.26

Overall 0 0 0 0 1.09 0.55 0.30 0.16
Class FF-NNET

MAE Type 0 Type 1 Type 2
1 0.05 0.03 0.02 0.00
2 0.50 0.19 0.11 0.08
3 1.09 0.46 0.29 0.21
4 1.45 0.69 0.44 0.20
5 1.19 0.71 0.38 0.10
6 1.36 0.79 0.49 0.08
7 1.49 0.67 0.43 0.24
8 1.02 0.41 0.32 0.16

Overall 1.36 0.49 0.31 0.13

Figure 7.13. None of the moments show a strong relationship with class, especially

skewness from a disk SE and kurtosis from a square SE. So we no longer consider

these two moments and use the remaining 14 moments for prediction.

The predicted classes from cubic polynomial regression are shown in Fig-

ure 7.14. Prediction is now even worse than using the binarised tea images

(Figure 7.6). The predicted classes are more widely spread and are not even

centred at the actual class. A confusion matrix of the predicted classes is shown

in Table 7.6.

Background grey scale images

Example background tea images, one from each class, are shown in Figure 7.15.

We applied granulometry using only a square and a disk SE (in this case the

granules are more likely to be disk-shaped and closer to square-shaped then a

line SE) on the background of the grey scale tea images. Average PS moments
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(d) Average PS kurtosis

Figure 7.13: Plots of the grey scale tea image average PS foreground moments
against class using different SEs.
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.14: Frequency histograms of predicted class using 14 foreground PS
moments from all 4 SEs (excluding skewness from the disk and kurtosis from
the square SE) for the grey scale tea images, using cubic regression, for all 50
sub-images in each of the classes 1-4 (a) and 5-8 (b).

over all 50 sub-images from each class are shown in Figure 7.16. The PS mean

and sd from both SEs in general decrease with class, but a disk SE shows a much

smoother relationship with class than a square SE. Skewness from a square SE is

near zero, while it decreases with class for a disk SE. Kurtosis from a square SE

is almost constant and from a disk SE shows an irregular trend. Therefore we
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Table 7.6: Confusion matrix of the predicted class using the regression approach
for the grey scale tea images, for all 50 sub-images in each class. The bold figures
show the total number of correctly classified images.

Predicted Class
Foreground PS moments Background PS moments

Class 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
1 4 14 5 11 9 5 2 0 0 25 13 4 3 4 1 0 0
2 0 9 8 8 15 6 3 0 1 0 18 13 8 6 5 0 0
3 1 4 6 13 24 2 0 0 0 0 5 19 6 18 2 0 0
4 0 0 1 20 28 1 0 0 0 0 2 7 11 26 4 0 0
5 0 1 3 8 31 7 0 0 0 0 0 8 6 31 5 0 0
6 0 0 5 15 28 1 1 0 0 0 2 4 4 31 9 0 0
7 0 2 7 11 27 3 0 0 0 0 0 3 5 40 2 0 0
8 0 0 0 7 41 2 0 0 0 0 0 2 1 41 6 0 0

used only the first two PS moments from both SEs and skewness from the disk

SE in prediction. The predicted classes are shown in Figure 7.17 and Table 7.6.

The predicted class ranges between 1 to 6 whereas the actual class labels are 1

to 8. Overall error rate is very high for all the classes. Therefore we did not use

other classifiers with this set of moments.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

Figure 7.15: Background of grey scale tea images, one from each class 1 to 8.
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(d) Average PS kurtosis

Figure 7.16: Plots of the grey scale average PS background moments against class
using a square and a disk SE.
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.17: Frequency histograms of predicted class using 5 background PS
moments from a disk and a square SE (first 2 moments from both and skewness
from disk) for the grey scale tea images, using cubic regression, for all 50 sub-
images in each of the classes 1-4 (a) and 5-8 (b).

7.5 Granulometry on Top-hat Transformed Im-

ages

We now investigate pre-processing of the images for better results. There is

substantial intensity variation within the images (clearly visible in Figure 7.1),
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as some parts of the images are brighter than others. Hence, the granulometric

moments for the sub-images from each class vary widely. Using such a wide range

of moments yields a wide range of the predicted class. So the uneven background

grey level makes the prediction more challenging.

This uneven background variation can be reduced by using the top-hat trans-

formation (Section 2.6) to highlight the tea granules (bright parts) and suppress

the darker parts (background). As granule size increases with class, a disk SE of

increasing size is used in the top-hat transformation. A wide range of radii were

tested and it was found that disks of radius 13, 15, 17, 19, 21, 23 and 25 were

the most appropriate ones for classes 1-8 respectively, to preserve best the tea

granule sizes and shapes. A similar strategy as described in Section 6.4 would be

needed in practice in the case of images with unknown class labels. One top-hat

image from each class is shown in Figure 7.18.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

Figure 7.18: Top-hat transformed grey scale images, one from each of classes
1 to 8.

Granulometries were applied using the square, disk, horizontal line and verti-

cal line SEs and the first four PS moments from each SE were computed. Average

PS moments were calculated using all sub-images from each class to give an 16×8

matrix and are plotted against class in Figure 7.19. The PS mean and sd using all

SEs clearly increase with class, while a decreasing trend is observed for skewness

using square and disk SEs, though it decreases faster for the disk SE than for a

square SE and for a line SE skewness is near-zero. Kurtosis for the square and

disk SE increase very slightly over the classes, whereas it decreases for any line
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SE. As PS moments computed from a square and a disk SE provide a smoother

relationship with class than the moments from the line SEs, they are more likely

to provide better prediction. Therefore at first we used only the PS moments

from the square and disk SE for prediction.
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Figure 7.19: Plots of the average top-hat image foreground PS moments against
class, for square, disk, horizontal line and vertical line SEs, using all 50 sub-images
from each class.

7.5.1 Exploratory analysis for top-hat images

The granulometric moments computed in Section 7.5 are used as texture features

for predicting the class of the tea images. The moments data available consists

of the first four PS moments using the square, disk, horizontal line and vertical

line SEs for 50 non-overlapping sample images from each of the 8 classes, giving

a 400 × 16 data matrix from all the images. The CVs of the PS moments were

computed for this dataset (see Appendix IV). The CVs are very low at different

class labels for all PS moments computed from both square and disk SE and

would expect to give better classification results than the synthetic images used

in Chapter 5. First we apply PCA for exploratory analysis and then compare

results of the REG, SVM, LDA and FF-NNET as supervised classifiers.
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Principal component analysis: Here we examine the discrimination ability

of the PCs (with normalisation) of different sets of moments. Figure 7.20 shows

scatter plots of the first two PCs from different sets of PS moments. The PCs

from a square or a disk SE distinguished all 8 classes well. However the PCs

from either of the line SEs moments cannot distinguish the different classes at

all. Therefore we can say that a square or a disk SE extracts more information

regarding the shapes and size of the tea granules than the other SEs, confirming

the impression from Figure 7.19.
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(a) PCs from square SE
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(c) PCs from horizontal line SE
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(d) PCs from vertical line SE

Figure 7.20: Scatter plots of 1st two PCs of the top-hat image foreground PS
moments, from square, disk, horizontal line and vertical line SEs, using all 50
sub-images from each class (C1-C8).

Class separability measures: PCA provides only pictorial information re-

garding the discrimination ability of the data. Hence we computed scatter matrix-

based class separability measures to get a numerical measure of the discriminating

ability of the different feature sets. Webb (2002) defines the within-class scatter

matrix as

SW =
K
∑

i=1

[

Ni
∑

j=1

(xi,j − mi)(xi,j − mi)
T

]
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where K is the number of classes, Ni, i = 1, 2, . . . , K, is the number of cases in

the ith class, xi,j is the jth feature vector in the ith class, and mi denotes the

mean vector of the cases in class i.

The between-class scatter matrix is:

SB =
K
∑

i=1

[

p(ωi)(mi − m)(mi − m)T
]

,

where p(ωi) = Ni/N is the proportion of cases in class i, N is the total number

of images and m is the overall mean vector, i.e. m =
∑

i
Ni

N
m (m is the sample

mean vector of class i, i.e. mi =
∑

j xi,j/Ni). The total scatter matrix ST is the

sum of the within-class and between-class scatter matrices, ST = SW + SB.

We used three different separability measures (Webb (2002)), namely, J1 =

Tr{SW
−1SB}, the ratio of the determinants J2 = |ST |

|SW |
and the ratio of the

traces J3 = Tr{SB}

Tr{SW }
, where Tr{A} is the sum of the diagonal elements of matrix

A, SW is a measure of the average variance of the features over all classes, and

Tr{SB} measures average distance of the mean of each class from the overall

mean over all classes. A large SB indicates good separation of the classes and

a small Tr{SW} indicates that the data points are well clustered around their

mean within each class. A smaller value of Tr{SW} or |SW | compared to Tr{SB}
or |SB| generates larger value of the measures J1, J2 and J3. Larger values of

these measures indicate stronger clustering of the feature set vectors for each case

around the mean vector in that class, hence greater class separability.

Table 7.7: Scatter matrix-based separability measures for different PS moments

sets J1 = Tr{SW
−1SB}, J2 = |ST |

|SW |
and J3 = Tr{SB}

Tr{SW }
. The bold figures represent

the best values of the statistics.

SE Tr(SW ) Tr(SB) J1 J2 J3

Square 24.278 0.411 18.515 19.515 0.017
Disk 9.659 0.451 19.044 20.044 0.047

Horizontal line (HL) 339.845 4.570 0.737 1.737 0.013
Vertical line (VL) 519.153 4.398 1.393 2.393 0.009

Square+Disk 17.789 0.431 7.936 8.936 0.024
Square+Disk+ HL 236.357 1.251 0.436 1.436 0.005
Square+Disk+ VL 14.46 0.191 4.336 5.336 0.013

Square+Disk+ HL+VL 367.045 1.829 0.586 1.586 0.005

Table 7.7 shows the values of these separability measures for different sets

of features. The smallest value of Tr{SW} corresponds to the disk SE and the
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second smallest corresponds to the combination of the square, disk and vertical

line PS moments. Therefore the PS moments from the disk SE are expected to

be the best feature set for separation of the classes, and the moments from the

square, disk and vertical line SEs the second best set. Although the best (largest)

values of Tr{SB} are for the horizontal line and vertical line SEs, these also have

very high Tr{SW}. The largest values of J1, J2 and J3 correspond to the disk

SE, and the second largest values for J1 and J2 are from the square SE (for J3

the second best is for square and disk combined), which implies that the PS

moments from a disk SE have slightly greater separation ability than those from

a square SE. The line SE moments have much less class separation ability, even

when combined with those of a square and disk SE. Therefore the separability

measures and Figure 7.20 provide the same kind of information regarding the

discrimination ability of different sets of moments.

Since the PCA and the different separability measures reveal better separation

ability of the disk and square PS moments, we now use the different classifiers

with these moments sets.

7.5.2 Regression approach

Figure 7.21 shows the first four PS average moments using a square, disk, horizon-

tal line and vertical line SEs, and the fitted cubic curves. All moments increase

or decrease with class and better fit is obtained for the moments corresponding

to the square and disk SE than for the line SEs. Since the first four PS moments

corresponding to the square and disk SEs look more promising, only these were

used to predict class for each individual sub-image.

Cubic polynomial regression models were fitted for all moments using all 50

sub-images from each class. In the root finding algorithm, in some cases none of

the roots were real and the predicted class was taken as the first class. In the

case of multiple real roots the smallest one was used, as previously. In the case

of predictions outside of the range 1 to 8, the predictions were clipped to 1 to 8

as appropriate. This made only a small difference to the results.

The predictions are shown in Figure 7.22. The technique correctly predicted

class for all 50 samples in the first 2 classes. For class 3, 46 images (92%) are

predicted correctly, and 4 are predicted as class 4, and for class 4 49 images (98%)

are predicted correctly and only one is predicted as class 5. For class 5, 41 images

(82%) are predicted correctly, 7 of them are predicted as class 6 and 2 as 4. For

class 6, 43 images (86%) are predicted correctly, 4 of them are predicted as class 5

and 3 of them are predicted as class 7. For class 7, 35 images (70%) are predicted
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(a) PS mean

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Class

A
ve

ra
ge

 P
S

 s
d

 

 

Square SE
Fitted cubic curve
Disk SE
Fitted cubic curve
Horizontal line
Fitted cubic curve
Vertical line
Fitted cubic curve

(b) PS sd
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(c) PS skewness
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(d) PS kurtosis

Figure 7.21: Plots of the first four average PS moments against class, using square,
disk, horizontal line and vertical line SEs, along with the fitted cubic curves.

correctly, 6 of them are predicted as class 6 and 9 of them are predicted as class

8. For the last class, only 5 images are predicted as class 7, to give an overall

90% correct classification rate for the regression approach. The misclassifications

are all only one class away from the correct class.
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.22: Frequency histograms of predicted class using 4 foreground PS mo-
ments from each of a square and disk for the top-hat transformed images, using
cubic regression, for all 50 sub-images in each of the classes 1-4 (a) and 5-8 (b).

The above results were obtained to compare to results in the previous sections,

but a more systematic approach is now followed to evaluate the accuracy of the
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new regression classifier. Rather than using the full dataset to produce average

moments to build the model and predicting the class separately for all of the

sub-images, 70% of the data, i.e. 35 randomly sampled sub-images from each

class, were used to build the cubic regression model and then we tested it on the

remaining sub-images from each class. The process was repeated 10 times and the

average predicted times, average error rates and average MAE were computed.

The confusion matrix of the average predicted times (averaged over 10 runs) is

shown in Table 7.8. A total of 12 images out of 120 are misclassified giving an

average overall error rate of 10% and they all predicted only one class away from

the actual class, so type 0 error and MAE are the same. However computing the

error rate at each run and averaging these error rates yielded an average 10.9%

error rate (Table 7.11).

Table 7.8: Confusion matrix for the regression approach, from the 1st 4 fore-
ground top-hat image PS moments from each of the square and disk SEs, training
on 35 sub-images and testing on the rest from each class; results are averaged over
10 runs. The bold figures are the number of correctly classified test set images.

Actual class Predicted class using regression approach
1 2 3 4 5 6 7 8

1 15 0 0 0 0 0 0 0
2 0 15 0 0 0 0 0 0
3 0 0 15 0 0 0 0 0
4 0 0 0 15 0 0 0 0
5 0 0 0 2 13 0 0 0
6 0 0 0 0 7 8 0 0
7 0 0 0 0 0 0 15 0
8 0 0 0 0 0 0 3 12

7.5.3 Other classifiers

We again applied SVM, LDA and FF-NNET using the four PS moments from a

square and a disk SE for all 50 sub-images from each class. To be comparable

with the regression approach, we randomly chose 70% of the moments data to

train the classifiers and tested on the rest, repeated the process 10 times and

averaged the results over 10 runs to give final results.

We used the grid search approach with a single training set, as before, to

identify the best kernel for the SVM and its parameters, and the optimum number

of hidden neurons for a single hidden layer FF-NNET. Training set error rates
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for different kernels in SVM are shown in Table 7.9. A radial basis kernel with

γ = 0.1 produced 1% error rate for any cost of 10 or above. A polynomial kernel

with η = 1 produced the lowest error rate of 1% for any cost of 20 or above with

γ = 0.1. The default value of η = 0 for a polynomial kernel produced a larger

error rate whereas any value between 1 and 5 produced the same error, so we

chose η = 1. A linear kernel with any cost between 1 and 100 produced 100%

correct classification. Therefore we used the linear kernel for SVM with a cost of

100.

Table 7.9: Training set error rates for different combinations of cost and parameter
γ for a radial basis kernel, a polynomial kernel with η = 1 and a linear kernel
using 8 moments from the top-hat transformed tea images using square and disk
SEs.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.9 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.07 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.5 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.9 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Linear kernel
Cost

1 10 20 30 40 50 60 70 80 90 100
0 0 0 0 0 0 0 0 0 0 0

For FF-NNET the data were normalised first and a grid search approach was

applied to find the best value of decay and rang with a fixed number of hidden

units and it was found that decay of 10−4 and rang of 1/max(|x|) produced the

lowest training set error. Then the optimum number hidden neurons were sought

for this feature set. Any number of units between 1 to 10 with decay of 10−4

and rang of 1/max(|x|) produced 100% accuracy for a single training set using

the moments from the square and disk SEs (fifth row of Table 7.10). We used 10

units in the hidden layer of FF-NNET. The optimisation problem was allowed to

iterate until it converged.

SVM produced 100% correct classification. The overall error rate was 10.9%
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Table 7.10: Single training set error rates from a grid search approach for finding
the optimum number of hidden neurons for FF-NNET with rang of 1/max(|x|)
and decay of 10−4 for different sets of moments. A 0 means exactly zero. The
bold figures represent the choice used in FF-NNET.

Error rate Number of units
SE 1 2 3 4 5 6 7 8 9 10

Square 0 0 0 0 0 0 0 0 0 0

Disk 0 0 0 0 0 2 0 0 0 0 0

Line at 0◦ (HL) 0.56 0.46 0.43 0.39 0.36 0.36 0.22 0.18 0.21 0.16

Line at 90◦ (VL) 0.53 0.43 0.38 0.32 0.29 0.30 0.23 0.16 0.18 0.18
Square+Disk 0 0 0 0 0 0 0 0 0 0

Square+Disk+
HL

0 0 0 0 0 0 0 0 0 0

Square+Disk+
VL

0 0 0 0 0 0 0 0 0 0

Square+Disk+
HL+VL

0 0 0 0 0 0 0 0 0 0

for REG and LDA and FF-NNET produced the same error rate of 0.3%, using

the first four granulometric moments from the square and disk SEs as features

(Table 7.11).

Table 7.11: Class-wise and overall test set classification error rates for different
classifiers using the full feature space (8 moments, the first 4 PS moments from
the square and the disk SEs); results are averaged over 10 runs.

Class 8 moments
REG SVM LDA FF-NNET

1 0.000 0 0.000 0.000
2 0.000 0 0.000 0.000
3 0.087 0 0.000 0.000
4 0.020 0 0.000 0.000
5 0.187 0 0.000 0.000
6 0.173 0 0.000 0.000
7 0.287 0 0.027 0.007
8 0.120 0 0.000 0.017

Overall 0.109 0 0.003 0.003

7.5.4 Prediction using different sets of moments

Firstly, we used the first four PS moments from the four different SEs separately

as features and used all the classifiers to classify the tea images according to
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granule size. For all classifiers 70% randomly chosen sub-images from each class

were used as the training set and the remaining 30% sub-images used for testing.

The process was repeated 10 times and the final results were averaged over 10

runs, as above.

It was found that for all moment sets, using a single training set SVM with a

linear kernel produced 100% correct classification using any cost between 1 and

100 (since the error rates are exactly 0, they are not shown here). Hence for SVM

a linear kernel with a cost of 100 was used for all sets of moments. Table 7.10

shows the training error rates corresponding to the different number of hidden

units in the FF-NNET for different moment sets, using decay of 10−4 and rang

of 1/max(|x|). Although in general the effect of the number of units is not large,

we chose the number of units corresponding to the lowest error rate i.e. 10 units

for all different sets of PS moments except for the vertical line SE, for which 8

units was appropriate (choosing the largest number of units that gives that error

rate).

As seen from Table 7.12, SVM attained 100% correct classification for all sets

of moments. For the other classifiers error rates are slightly higher for a square

SE than a disk SE, but are much worse when the SE is either a horizontal or

vertical line. We also investigated using the moments from a square and a disk,

a square, a disk and a horizontal line and a square, a disk, a horizontal line and

a vertical line. Using a square or a disk SE was much more successful than either

of the line SEs, and most classifiers produced a lower error rate for a disk SE.

Overall a disk SE, or a square and a disk SE do best.

It is clear that SE size and shape greatly affects the PS moments and hence

the classification results. So, determining the best size and shape of a SE is of

crucial importance. The overall selection of a SE depends upon the geometric

shapes we attempt to extract from the image data. For example, tea granules

are more likely to be a disk shape rather than square and are very distinct from

lines at any direction.

The class-wise type 0 error rate or MAE for all classifiers using PS moments

from the disk SE only is shown in Table 7.13. Type 0 error rates and MAEs

are identical as the predicted classes were only one unit away from the actual

class. Again SVM produced 100% correct classification. The overall error rates

for REG, LDA and FF-NNET are 8.1%, 0.9% and 1.5% respectively, using the

first four PS moments from the disk SE as features.

We also examined the effect of using only the PS mean and PS sd from

both SEs, as removing redundant features can improve classification results. The
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Table 7.12: Overall test set classification error rates for all classifiers using the
first 4 PS moments from each different set of SEs; results are averaged over 10
runs.

SE REG SVM LDA FF-NNET
Square 0.188 0 0.018 0.018
Disk 0.081 0 0.009 0.015

Horizontal line (HL) 0.807 0 0.509 0.577
Vertical line (VL) 0.793 0 0.491 0.587

Square+Disk 0.109 0 0.003 0.003
Square+Disk+ HL 0.762 0 0.003 0.010
Square+Disk+ VL 0.718 0 0.003 0.009

Square+Disk+ HL+VL 0.793 0 0.008 0.013

same parameter settings were used as above. SVM was unaffected by using fewer

features, but REG, LDA and FF-NNET do slightly worse. For all classifiers,

classification of the earlier classes is easier than the later ones (Table 7.13).

Table 7.13: Class-wise and overall test set classification error for the classifiers
using the full feature set (the first 4 PS moments from a disk SE) and a reduced
feature set (the first 2 PS moments from a disk SE).

Class 4 moments 2 moments
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 0.000 0 0.000 0.000 0.000 0 0.000 0.000
2 0.000 0 0.000 0.003 0.000 0 0.000 0.000
3 0.020 0 0.000 0.000 0.020 0 0.000 0.007
4 0.000 0 0.000 0.000 0.020 0 0.013 0.023
5 0.100 0 0.000 0.000 0.120 0 0.100 0.117
6 0.160 0 0.000 0.020 0.193 0 0.173 0.157
7 0.220 0 0.030 0.057 0.300 0 0.133 0.187
8 0.147 0 0.040 0.040 0.167 0 0.080 0.077

Overall 0.081 0 0.009 0.015 0.103 0 0.063 0.071

The results in Table 7.13 were obtained by training the classifiers using 70% of

the moments, randomly selected, and testing on the rest, repeating this 10 times

and averaging the results. To consider the effect of size of the training set on

each classifier we also used 40%, 50% and 60% of the available data to train each

classifier and test on the rest, averaging the results over 10 runs. SVM is very

robust to training set size (Table 7.14). REG and FF-NNET produced a slightly

lower error rate for a larger training set, whereas LDA produced slightly lower
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error rates for relatively smaller training sets. This will be due to randomness,

as it would be expected that the error rate would be larger for smaller training

sets, however the effect is very small.

Table 7.14: Average test set classification error rates for all classifiers using dif-
ferent training set sizes with the first 4 PS moments from a disk SE; results are
averaged over 10 runs.

Training set size 4 moments
REG SVM LDA FF-NNET

40% 0.093 0.000 0.001 0.020
50% 0.093 0.000 0.002 0.016
60% 0.091 0.000 0.003 0.015
70% 0.081 0.000 0.009 0.015

PCA on the transformed images: We computed the first four PS moments

from the four SEs, and there are 50 sub-images in each of the 8 classes, so the

moment data is of dimension 400 × 16. PCA with normalisation was applied to

the whole dataset to identify the most informative moments. The cumulative

proportions of the variation explained by the first 4 PCs are 72.93%, 80.86%,

87.73% and 92.61% respectively. The first 4 PCs are plotted against class in

Figure 7.23. The first 3 PCs clearly increase with class, whereas the fourth PC

decreases after class 4. The coefficients of the first 4 PCs are shown in Table 7.15.

In PC1 the sd from a square SE has the highest coefficient, while the second

highest corresponds to the sd from a disk SE. Again the mean from the line SE

at 90◦ has the strongest coefficients both in PC2 and PC4 while kurtosis from

line SE at 0◦ has the strongest coefficient in PC3. In general, square and disk SE

moments have slightly higher absolute coefficients, so are more informative than

the line SEs.

We used the first 4 PCs in the regression approach to predict class labels.

The predicted classes are shown in Figure 7.24. The prediction is not better

than prediction using the original moments. Type 0 error rate for the regression

approach using 4 PCs is 83.3%, whereas using all 4 PS moments from the 4 SEs

it is 79.3% (Table 7.12). Hence in this regard the use of PCs is not beneficial.
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Table 7.15: Principal component coefficients using the 16 foreground moments
from the top-hat transformed images.

PS Moments Principal component coefficients (with normalisation)
SE PC1 PC2 PC3 PC4

Mean

square 0.2825 0.0052 -0.1490 0.1908
disk 0.2838 -0.0666 -0.1441 0.1377
line at 0◦ -0.2541 -0.1845 0.2220 -0.3805
line at 90◦ 0.1754 -0.5856 -0.0418 -0.4828

Sd

square 0.2841 -0.0573 -0.1559 0.1331
disk 0.2840 -0.1046 -0.1486 0.0843
line at 0◦ -0.2546 0.1067 0.3202 -0.2821
line at 90◦ 0.2318 -0.4564 -0.1517 -0.1993

Skewness

square 0.2680 0.2612 -0.0675 -0.1905
disk 0.2475 0.3006 0.0462 -0.3021
line at 0◦ -0.2417 -0.3449 -0.0277 0.3192
line at 90◦ -0.2009 -0.3125 0.1934 0.3939

Kurtosis

square 0.2685 -0.0163 0.3182 0.1354
disk 0.2404 -0.0235 0.4654 0.0579
line at 0◦ -0.2346 0.0457 -0.5196 -0.0674
line at 90◦ -0.2182 0.0808 -0.3184 -0.1088
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Figure 7.23: The first four PCs from the top-hat transformed images using all 4
moments from all 4 SEs, against class.

7.5.5 Top-hat transformation using the same disk SE

The key step in getting successful results from the granulometric moments for

the tea images was to use the top-hat transform with a disk that increases in size

for classes with larger tea granules. Here we show the results, for comparison,

of applying the top-hat transformation using a disk of fixed radius over class 1

to 8, rather than using increasing radius. Different radii of 15, 17, 19, 21 were

experimented with and the results of radius 17 are shown here as an example.
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(a) Actual class = 1 to 4
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(b) Actual class = 5 to 8

Figure 7.24: Frequency histograms of predicted class using 4 PCs from 16 PS
moments of the top-hat transformed images from 4 SEs, using cubic regression,
for all 50 sub-images in each of the classes 1-4 (a) and 5-8 (b).

Granulometry was applied on those top-hat transformed images using the square

and disk SE and the first four PS moments were computed as before. Average

moments are shown in Figure 7.25. Average PS means and sds using both SEs

are almost constant across class, whereas skewness and kurtosis increase slightly

over time.
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Figure 7.25: Plots of the PS moments against class, using square and disk SEs
with a fixed size disk used in the top-hat transformation.

From this new moments dataset, again 70% of the moments were used for
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training and the rest for testing, averaging the results for 10 runs. Type 0 error

rates for all classifiers are shown in Table 7.16. The results are much worse than

using a disk of increasing radius in the top-hat transform (Table 7.13).

The overall error rate for the regression approach is 83.9%. SVM using a linear

kernel with any cost between 1 and 100 produced 100% correct classification. LDA

produced a 63.4% error rate and FF-NNET using 10 units in the hidden layer

and decay of 10−4 and rang of 0.7 (which produced the lowest training set error)

yielded a 71% error rate, whereas using an increasing disk radius in the top-

hat transformation these classifiers were able to achieve near 100% classification

accuracy (Table 7.13).

Table 7.16: Average test set Type 0 error rates for different classifiers using fixed
sized disk in the top-hat transform, using four PS moments from a square and a
disk SE; results are averaged over 10 runs.

Class Type 0 error
REG SVM LDA FF-NNET

1 0.600 0 0.140 0.293
2 0.780 0 0.420 0.563
3 0.900 0 0.573 0.700
4 1.000 0 0.813 0.860
5 1.000 0 0.907 0.853
6 0.987 0 0.853 0.887
7 0.980 0 0.933 0.833
8 0.467 0 0.433 0.690

Overall 0.839 0 0.634 0.710

7.5.6 Granulometry on the background images

For comparison, we applied bottom-hat transformation on the background of the

tea images with the same SEs as were used in the top-hat transformation of the

foreground of the tea images. For the corrosion images using the bottom-hat

transform of the foreground and the top-hat transform of the background pro-

duced exactly the same images, hence the same PS moments (Section 6.4.3), but

the situation is different for the tea images. The images in Figures 7.18 and 7.26

look different. So we applied granulometry on the bottom-hat transformed im-

ages using a square and a disk SE and calculated the first four PS moments.

Average moments from both SEs are plotted against class, in Figure 7.27. None

of the moments shows a clear trend with class, therefore it is unlikely to give
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better classification results, especially with the regression approach. Hence we

did not proceed with this set of moments.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

Figure 7.26: Results of bottom-hat transform on the background of the grey scale
images using an increasing disk size, one image from each classes 1 to 8.

7.6 Use of Colour Images

These tea images were supplied as colour images but we have converted them to

grey scale versions. We did investigate whether much information was lost by not

using the colour tea images. One colour sub-image of size 2562 from each class

is shown in Figure 7.28. Histograms of the red, green and blue planes of each of

the eight classes are shown in Figure 7.29. In each colour plane the histogram

of any one class looks different from those for the others classes but similar to

the histogram for that class in the other colour planes. The grey scale image is

an average of the intensities in the red, green and blue planes and, as the three

colour planes are not very distinct from each other, the grey scale image should

be as informative as any of the colour planes. Therefore we concluded that the

grey scale images retain most of the information in the RGB images and use of

the colour images would not provide substantially improved classification results.

We also considered the real HSV (hue, saturation and value/intensity) colour

map of the images. Hue represents an angle from 0◦ to 360◦, using a colour wheel

starting from red at 0◦, going through green at 120◦ and blue at 240◦ and then

rolling back to red at 360◦. The hue angles are given in radians. Saturation is a
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Figure 7.27: Plots of the PS moments against class, using square and disk SEs
with increasing disk radius used in the bottom-hat transform of the images.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

Figure 7.28: Sample 2562 colour tea images, one from each of the eight classes.

measure of how pure the color is and it increases with the distance from the centre

of the HSV colour space. For example, a pure red, dark blue and deep green are

all highly saturated, while pink, light blue and light green are less saturated,
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Figure 7.29: Histograms of the red, green and blue planes of the RGB colour tea
images. One bar is used for each of intensities 0 to 255.

and grey has a saturation of zero. Intensity is the maximum of the normalised

elements of the red, green and blue planes. If the images are of double precision

the intensity of the hue, saturation, and intensity images ranges from 0 to 255,
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but here the images are of 8-bits, so the intensities range from 0 to 1 (Levkowitz

and Herman (1993)).

The colour images were converted to HSV images using MATLAB function

‘rgb2hsv’. Although the pixel intensities in each of the red, green and blue planes

range from 0 to 255, the intensities in the hue, saturation and intensity images

range from 0 to 1. The histograms of the hue, saturation and intensity images

were created using MATLAB function ‘imhist’, which creates a histogram using

N specified bins of width A/(N − 1). For a double or single precision image A

is 1 and for an 8-bit image A is 255 (Matlab help file). The hue, saturation and

intensity images are shown in Figure 7.30. The classes are hard to distinguish

from the hue images, apart from class 2. The saturation images are even harder

to distinguish and the intensity images are similar to the grey scale images.

Figure 7.31 shows the histograms of the hue, saturation and intensity images,

using N = 256 bins. Different numbers of bins, i.e. N = 32 and N = 16, were

experimented with, and it was found that the bin size has no effect on the shape

of the histogram. The shape of the histograms of the hue images only varies

slightly over the classes (class 2 is a little different). For the saturation images

the histograms are very similar to each other. As the intensity images are very

similar to the grey scale images, the histograms vary over the classes and are

similar to the corresponding histograms in the red, green and blue planes. Use

of the hue and intensity (value) planes of HSV may bring some benefit over use

of grey scale, but it was felt that this would be small and so these were not used

here.

7.7 Conclusion

Borah et al. (2007) used image texture analysis to classify different grades of

CTC tea according to their granule size. Wavelet-based features were used with

two neural networks, i.e. the multilayer perceptron (MLP) and learning vector

quantisation (LVQ) which gave 74.67% and 80% classification accuracy, i.e. the

error rates of MLP and LVQ were 25.33% and 20% respectively.

This work is a substantial improvement on classifying these tea images over

the results of Borah et al. (2007). Our highest classification error rate (8.1%)

was obtained for the regression approach, 0% for SVM and 0.9% and 1.5% for

LDA and FF-NNET, using the top-hat transformed images. Increasing the ra-

dius of the disk SE in the top-hat transform of the images from different classes

is of crucial importance. Using the granulometric features from the top-hat im-

229



ages obtained using the same size disk SE over all 8 classes produced very high

classification error for the regression approach especially.

The wavelet-based results of Borah et al. (2007) are not exactly comparable

to ours, as we have extracted our own sub-images for algorithm development and

testing. Nonetheless we conclude that extracting shape-based information from

the tea granule images directly by use of morphological techniques provides very

useful features for texture classification in any of a range of classifiers. We com-

pare these directly with co-occurrence based features and wavelet-based features

in Chapter 8.
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(a) Class 1 (Hue) (b) Class 2 (Hue) (c) Class 3 (Hue) (d) Class 4 (Hue)

(e) Class 5 (Hue) (f) Class 6 (Hue) (g) Class 7 (Hue) (h) Class 8 (Hue)

(i) Class 1 (Satura-
tion)

(j) Class 2 (Satura-
tion)

(k) Class 3(Satura-
tion)

(l) Class 4 (Satura-
tion)

(m) Class 5(Satura-
tion)

(n) Class 6(Satura-
tion)

(o) Class 7(Satura-
tion)

(p) Class 8(Satura-
tion)

(q) Class 1 (Inten-
sity)

(r) Class 2 (Inten-
sity)

(s) Class 3 (Inten-
sity)

(t) Class 4 (Inten-
sity)

(u) Class 5 (Inten-
sity)

(v) Class 6 (Inten-
sity)

(w) Class 7 (Inten-
sity)

(x) Class 8 (Inten-
sity)

Figure 7.30: Hue, saturation and intensity (value) images from the HSV colour
map of the colour tea images.
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Figure 7.31: Histograms of the hue, saturation and intensity (value) images using
256 bins from the HSV colour map of the colour tea images. One bar is used for
each bin.
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Chapter 8

GLCM and Wavelet-based

Classification

In this chapter we derive the grey level co-occurrence matrix (GLCM) and wavelet-

based texture features from the synthetic images of pyramids and ellipses as well

as the real images of corrosion and tea leaves. We classify these images according

to their evolution time or class label by coupling these features with the different

classifiers and compare the classification performance of granulometric moments

with GLCM and wavelet-based features.

8.1 GLCM Features for Synthetic Images

A GLCM contains information about the positions of pixels having similar grey

level values. To compute a GLCM, we first quantise the image intensities into

a smaller number of levels. In this work we have quantised the usual 2562 grey

levels to 8 and 64 and we use a displacement of d = 1. The GLCM values C(i, j)

are obtained by counting all pairs of pixels, separated by distance d and at a

given angle to each other, which have grey levels i and j. Then the normalised

GLCM is obtained by dividing each entry by the sum of all entries, to give

relative frequencies. Among many possible features, we computed six GLCM

texture features, namely entropy, maximum probability, contrast, correlation,

energy and homogeneity. See Section 3.5 for details.

Firstly we computed GLCM features from 100 stacks of 2562 pyramid images

using quantisation levels 8 and 64 and four different orientations, i.e. 0◦, 90◦, 45◦

and 135◦ but using the same inter-pixel distance d = 1 for both cases. The

average GLCM features were obtained by averaging the values obtained over

the 100 different simulations/stacks, and these are shown plotted against time
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(f) Average Homogeneity

Figure 8.1: Plots of the average GLCM features against evolution time using
quantisation levels 8 and 64, averaged over 100 2562 pyramid images at each time
point (distance=1, and orientation = 0◦, 90◦, 45◦ and 135◦).

in Figure 8.1. The features are invariant under orientation but change with

quantisation level. Although the features computed at different orientations show

a similar pattern, they vary in magnitude. Entropy is higher for quantisation

level 64 than level 8, but both sets of entropy values have similar trends with

time. Maximum probability, energy and homogeneity decrease over time for both

quantisations, but less quantisation (level 64) produces relatively lower features.

More quantisation (level 8) produces near-zero contrast, whereas it increases with

time for level 64. Average correlations for both quantisations are alike except for

times t < 10.
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(f) Average Homogeneity

Figure 8.2: Plots of the average GLCM features against evolution time using
quantisation levels 8 and 64, averaged over 100 2562 ellipse images at each time
point (distance=1, and orientation = 0◦, 90◦, 45◦ and 135◦).

Figure 8.2 shows the same GLCM feature plots for the ellipse images. Again all

features except homogeneity are invariant under orientation but some change with

quantisation level. Now maximum probability and energy for both quantisations

are similar. The entropies for both quantisations have a similar relationship

with time, although level 64 quantisation produces higher values. It can be seen

that contrast for level 8 is very low, while it increases with time for level 64.

Homogeneity for level 64 coincides for all orientations, but for level 8 angles

0◦, 45◦ and 135◦ produce similar features, whereas 90◦ produces relatively lower

homogeneity for times t > 30.
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Since the GLCM features for both quantisation levels produce similar features

and trends at different orientations, we used all 6 features at quantisation level

8 with 135◦ orientation. So the feature data consists of a 10000 × 6 matrix

and the average feature data is of size 100 × 6 (averaged over 100 simulations).

To compare the classification results using the GLCM features with those from

the granulometric moments (as in Sections 5.4 and 5.5) we used all the classifiers

used there. Again we randomly selected 70% of the features to train each classifier

and tested its classification ability using the rest of the features. The process was

repeated 10 times to obtain average error rates and MAEs.

8.1.1 Classification using GLCM features

All 6 GLCM features at 135◦ orientation were used to predict evolution time for

the pyramid images. The regression classifier was built using average features,

averaged over the training samples, and the prediction was done using features

from an individual test image.

For SVMs a linear kernel with different values of cost was evaluated, and it

was found that for the linear kernel any cost of 20 or above produced 100% correct

classification (Table 8.1). A cost of 100 was used in the computation. Neither

a radial basis kernel nor a polynomial kernel was able to attain 100% correct

classification, so these are not shown here. For a single hidden layer FF-NNET

the optimum values of decay and rang were 10−3 and 0.1 for the pyramid images

and 10−4 and 0.1 for the ellipse images respectively, using normalised data. With

this parameter setting, 7 hidden units produced the minimum training set error

rate using a single training set (Table 8.2). Therefore 7 units were used in the

final computation. LDA was also used to predict evolution times.

Table 8.1: Finding the optimum value of the cost using a linear kernel in SVM
with 6 GLCM features from the pyramid and ellipse images; the table shows
training set error rate.

Pyramid images
Cost 1 10 20 30 40 50 60 70 80 90 100

Error rate 0.81 0.21 0 0 0 0 0 0 0 0 0
Ellipse images

Cost 1 10 20 30 40 50 60 70 80 90 100
Error rate 0.85 0.35 0 0 0 0 0 0 0 0 0

Error rates and MAEs for all classifiers are shown in Figure 8.3 and Table 8.3.

236



Table 8.2: Training set error rate from a grid search approach for finding the
optimum number of hidden neurons in the FF-NNET using 6 GLCM features
from the pyramid and ellipse images.

Pyramid images
No. of units 1 2 3 4 5 6 7
Error rate 0.92 0.90 0.90 0.90 0.90 0.90 0.89

Ellipse images
No. of units 1 2 3 4 5 6 7
Error rate 0.86 0.85 0.84 0.84 0.84 0.83 0.82

The regression classifier produced a 93.2% overall classification error rate which

is comparable with LDA (90.1%) and FF-NNET (89.1%). MAEs for all classifiers

(Figure 8.3(a)) are almost equal for all except SVM after time 30, and SVM pro-

duced an MAE of 0 through the entire evolution period as it classified perfectly.

The other classifiers are all poor. Comparing Figures 8.3 and 5.18, the perfor-

mance of the GLCM features is slightly better than that of the granulometric

moments for these synthetic pyramid images.
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Figure 8.3: Mean absolute error (a), type 0, type 1 and type 2 error (b)–(d),
using 6 GLCM features in different classifiers, for the pyramid images.
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Similarly, all 6 GLCM features from the ellipse images, at quantisation level 8,

were used to classify the time of these images. For this dataset, again SVM with

a linear kernel and any cost of 20 of more produced 100% classification accuracy

(Table 8.1), but we used a cost of 100, and 7 units in the FF-NNET with decay

of 10−3 and rang of 0.1, as this produced a slightly lower error rate (Table 8.2).

MAEs and error rates are shown in Figure 8.4 and Table 8.3. Again SVM classifies

perfectly. Average error rates for the regression classifier, LDA and FF-NNET

are poor at 91.7%, 86.7% and 83.5% respectively. Again comparing Figures 8.4

and 5.19, we conclude that GLCM features provide slightly better classification

results than the granulometric moments for the ellipse images.
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Figure 8.4: Mean absolute error (a), type 0, type 1 and type 2 error (b)–(d),
using 6 GLCM features in different classifiers, for the ellipse images.

Table 8.3: Average test set error rates as proportions and MAEs using 6 GLCM
features at quantisation level 8 for the synthetic images.

Error rate Pyramid images Ellipse images
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

Type 0 0.932 0 0.901 0.891 0.917 0 0.867 0.835
Type 1 0.796 0 0.734 0.702 0.764 0 0.636 0.574
Type 2 0.664 0 0.600 0.540 0.621 0 0.462 0.364
MAE 6.634 0 3.996 3.443 4.017 0 2.752 2.188
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8.2 GLCM Features for Corrosion Images

We computed GLCMs from each of the 2562 grey scale corrosion images directly,

as applying GLCM to the bottom-hat transformed images used previously pro-

duced constant features over time for all sub-images. We used GLCMs based on

a single inter-pixel distance, the four different orientations as above, and the two

different quantisations (level 8 and 64) and computed the 6 features again, namely

entropy, maximum probability, contrast, correlation, energy and homogeneity.
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Figure 8.5: Average GLCM features for the grey level corrosion images for quan-
tisation 8 using d = 1 and four orientations (0◦, 90◦, 45◦ and 135◦).

The features from quantisation level 8 are shown in Figure 8.5. Contrast

and homogeneity exhibit an irregular pattern with time. Entropy, maximum
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probability, correlation and energy show a more useful trend with time. Although

each of these four features computed using different orientations show similar time

trends, the features using 45◦ and 135◦ orientations are close to each other.

All 6 GLCM features using a unit inter-pixel distance as above, but with

level 64 quantisation, are shown in Figure 8.6. Energy and entropy show a much

smoother trend than for level 8. In this case, although correlation increases

with time, the trend is not is smooth as the others and contrast shows random

behaviour with time. Again features computed using 45◦ and 135◦ orientations

are closer to each other.
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Figure 8.6: Average GLCM features for the grey level corrosion images for quan-
tisation 64 using d = 1 and four orientations (0◦, 90◦, 45◦ and 135◦).
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Since features computed at different orientations show similar time trends we

used only features from 135◦ orientation for classification. For quantisation level

8, contrast and homogeneity, and for quantisation level 64 contrast and correlation

do not show a clear trend with time. Hence we used the other 4 features in each

case in all the classifiers. Using a single training set we again sought the best

kernel and its parameter values for SVM, and the optimum values of decay, rang

and the number of units in the hidden layer of the FF-NNET to minimise error

rates.

Table 8.4: Training set error rates from a grid search for finding the optimum
values of cost and parameter γ for the radial basis kernel and a polynomial kernel
with η = 1 in SVM using 4 GLCM features at quantisation level 8, and for a
linear kernel using 4 GLCM features from both quantisations, from the corrosion
images.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.63 0.40 0.23 0.17 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.5 0.50 0.33 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
0.9 0.60 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.67 0.17 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.5 0.23 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
0.9 0.27 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Linear kernel
Cost

1 10 20 30 40 50 60 70 80 90 100
Level 8 0.33 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Level 64 0.23 0 0 0 0 0 0 0 0 0 0

All possible values of γ between 0 to 1, in steps of size 0.1 were investigated

and the error rates corresponding to γ = 0.1, 0.5 and 0.9 are shown in Table 8.4.

At quantisation level 8, neither the radial basis kernel nor polynomial kernel was

able to produce 100% correct classification as the lowest error rate was 10% with

γ = 0.1 (or γ = 0.2, not shown here) and cost of 40 or above for the radial basis

kernel, and the lowest error rate for a polynomial kernel was 3% for γ = 0.1 with

any cost of 20 or more. For the polynomial kernel, the parameter value η = 0 (the

default value) produced higher error than any η between 1 and 5, which produced
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the same error, so η = 1 was used. Error rates for the radial basis kernel and

a polynomial kernel were similar for features at quantisation level 64, hence are

not shown here. A linear kernel with any cost of 10 or above produced only 3%

error for the features at quantisation level 8 (Table 8.4). Although a polynomial

kernel with γ = 0.1 or 0.2 and cost of 40 or above performed as well as the linear

kernel with cost of 20 or more for the features computed at quantisation level 8,

a linear kernel produced 100% correct classification for the features computed at

quantisation level 64 with any cost of 10 or more. We used a linear kernel with

a cost of 100 for both feature sets.

Table 8.5: Training set error rate from a grid search approach for finding the
optimum number of hidden neurons for FF-NNET using 4 GLCM features from
the corrosion images.

Quantisation level 8
No. of units 1 2 3 4 5 6 7 8 9 10
Error rate 0.41 0.34 0.27 0.16 0.01 0.03 0 0 0 0

Quantisation level 64
No. of units 1 2 3 4 5 6 7 8 9 10
Error rate 0.29 0.07 0.01 0 0 0 0 0 0 0

For the FF-NNET using the normalised features for quantisation level 8, the

best values of decay and rang were 10−4 and 1/max(|x|), where x is the in-

put data, whereas for the features at quantisation level 64 they were 10−3 and

1/max(|x|) respectively. For both sets of features 10 units was best as it pro-

duced the lowest training set error rate (Table 8.5) and greater generalisability.

Hence, 10 hidden units were used for both feature sets.

Again 70% of the features were used for training and the rest for testing, av-

eraging results over 10 runs. In this case the images were sometimes misclassified

by more than one unit, so in general type 0 error rates and MAEs are different.

Error rates for all classifiers for both quantisations are shown in Table 8.6. For

quantisation level 8, type 0 error rates for REG, LDA and FF-NNET are 92.0%,

70.7% and 79.3%, but only 2.7% for SVM. Quantisation level 64 has lower error

rates than level 8 for all classifiers. The corresponding MAEs for all classifiers

are also lower for level 64 than level 8. The error rates are noticeably higher for

all classifiers than when using the granulometric moments (see Table 6.8).

We also extracted 6 GLCM features without quantisation, shown in Figure 8.7.

Entropy and contrast were excluded as they do not show such a clear trend with

time, and the other features were used for classification. A linear kernel with
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Table 8.6: Average test set Type 0 error rates and MAEs for all classifiers using
4 GLCM features with quantisation levels 8 and 64, for the corrosion images;
results are averaged over 10 runs.

Type 0 errors
Time Quantisation at level 8 Quantisation at level 64

REG SVM LDA FF-NNET REG SVM LDA FF-NNET
1 0.300 0.100 0.867 0.933 0.417 0.000 0.000 0.267
2 0.900 0.133 0.367 0.433 0.333 0.000 0.467 0.567
3 1.000 0.067 0.867 0.867 0.667 0.000 0.733 0.800
4 1.000 0.000 0.800 0.733 1.000 0.000 0.767 0.867
5 1.000 0.000 0.900 0.867 1.000 0.000 0.900 0.733
6 1.000 0.000 1.000 0.733 1.000 0.000 0.867 0.767
7 1.000 0.000 0.733 0.800 1.000 0.000 0.500 0.533
8 1.000 0.000 0.767 0.933 1.000 0.067 0.367 0.567
9 1.000 0.000 0.300 0.833 1.000 0.100 0.300 0.500
10 1.000 0.000 0.467 0.800 1.000 0.000 0.333 0.600

Overall 0.920 0.027 0.707 0.793 0.842 0.017 0.523 0.620
MAEs

Time Quantisation at level 8 Quantisation at level 64
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 1.767 0.100 5.167 5.533 2.667 0.000 0.000 0.500
2 8.000 0.133 0.900 1.167 3.733 0.000 1.000 1.133
3 6.300 0.067 1.400 1.533 3.367 0.000 0.767 1.133
4 5.800 0.000 1.700 1.433 4.367 0.000 1.700 1.833
5 4.767 0.000 2.067 1.967 5.133 0.000 2.833 1.733
6 4.367 0.000 1.833 1.833 4.967 0.000 1.867 1.467
7 5.533 0.000 2.267 2.533 5.033 0.000 1.000 0.933
8 6.900 0.000 2.733 3.100 6.500 0.067 0.667 1.500
9 8.100 0.000 1.567 3.233 5.567 0.100 0.800 0.767
10 9.000 0.000 1.600 2.567 7.433 0.000 0.633 1.733

Overall 6.053 0.027 2.12 2.490 4.877 0.017 1.127 1.273

a cost of 100 for SVM and 10 hidden units with decay of 10−4 and rang of

1/max(|x|) for FF-NNET were used, as they produced the lowest training error

rates. Type 0 error rates and MAEs for all classifiers are recorded in Table 8.7.

Overall the regression approach performs better than for quantisation levels 8

and 64 (80.0% error rate). SVM has a 1.3% error rate, which is again better

than for both levels of quantisation. LDA and FF-NNET results are (at 59% and

62.7% respectively) better than for quantisation 8 but worse than for quantisation

level 64. MAE from no quantisation is higher than for both quantisations for

the regression approach but better for SVM. For LDA, no quantisation produces
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better MAE than both quantisation levels, whereas for FF-NNET no quantisation

yields better results than quantisation level 8 but worse than level 64.

1 2 3 4 5 6 7 8 9 10
18

19

20

21

22

23

24

25

26

27

Time

A
ve

ra
ge

 E
nt

ro
py

 

 

0 deg.
45 deg.
90 deg.
135 deg.

(a) Average Entropy

1 2 3 4 5 6 7 8 9 10
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Time

A
ve

ra
ge

 M
ax

im
um

 P
ro

ba
bi

lit
y

 

 

0 deg.
45 deg.
90 deg.
135 deg.

(b) Average Maximum Probability

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

50

55

60

Time

A
ve

ra
ge

 C
on

tr
as

t

 

 
0 deg.
45 deg.
90 deg.
135 deg.

(c) Average Contrast

1 2 3 4 5 6 7 8 9 10
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Time
A

ve
ra

ge
 C

or
re

la
tio

n

 

 

0 deg.
45 deg.
90 deg.
135 deg.

(d) Average Correlation

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

A
ve

ra
ge

 E
ne

rg
y

 

 

0 deg.
45 deg.
90 deg.
135 deg.

(e) Average Energy

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time

A
ve

ra
ge

 H
om

og
en

ei
ty

 

 
0 deg.
45 deg.
90 deg.
135 deg.

(f) Average Homogeneity

Figure 8.7: Average GLCM features for the grey level corrosion images for no
quantisation using d = 1 and four orientations (0◦, 90◦, 45◦ and 135◦).

We also tried using all 15 GLCM features mentioned in Section 3.5 at quan-

tisation levels 8 and 64 and also without quantisation. Again for SVM, a linear

kernel with a cost of 100 and 10 hidden units with decay of 10−4 and rang of

1/max(|x|) for FF-NNET (with normalised features) were used. Type 0 error

rates and MAEs are shown in Table 8.8. Use of 15 GLCM features severely af-

fects the performance of SVM as it now has 24.7%, 31.4% and 41% error rates

for quantisation level 8, level 64 and no quantisation respectively. LDA works

slightly better with more GLCM features and some quantisation but worse with
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Table 8.7: Average test set Type 0 error rates and MAEs for all classifiers us-
ing 4 GLCM features without quantisation, for the corrosion images; results are
averaged over 10 runs.

Time Type 0 error MAE
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 1.000 0.067 0.033 0.267 12.000 0.067 0.033 0.567
2 1.000 0.033 0.433 0.467 14.333 0.033 0.700 1.200
3 0.667 0.000 0.933 0.900 1.667 0.000 1.400 1.533
4 0.333 0.000 0.867 0.700 1.667 0.000 2.067 1.833
5 0.667 0.000 0.800 0.833 1.667 0.000 1.500 2.000
6 0.667 0.000 0.500 0.767 2.333 0.000 0.767 1.533
7 1.000 0.000 0.767 0.767 3.333 0.000 0.900 1.133
8 1.000 0.033 0.467 0.500 5.000 0.033 0.733 1.067
9 1.000 0.000 0.567 0.433 2.333 0.000 1.467 0.867
10 0.667 0.000 0.533 0.633 4.667 0.000 1.067 2.367

Overall 0.800 0.013 0.590 0.627 8.167 0.013 1.063 1.410

more. FF-NNET works better with more features at level 8 but not level 64 or

with no quantisation. The regression approach produces worse results for both

quantisation levels or no quantisation with more GLCM features.

245



Table 8.8: Average test set Type 0 error rates and MAEs for all classifiers using
all 15 GLCM features at quantisation levels 8 and 64 and without quantisation
for the corrosion images; results are averaged over 10 runs.

Quantisation level 8
Time Type 0 errors MAEs

REG SVM LDA FF-NNET REG SVM LDA FF-NNET
1 0.333 0.167 0.333 0.267 1.000 0.333 1.300 1.100
2 1.000 0.233 0.300 0.733 8.333 0.233 1.000 2.967
3 1.000 0.133 0.567 0.967 2.333 0.133 0.733 2.933
4 1.000 0.233 0.733 0.867 3.333 0.367 1.067 2.367
5 1.000 0.367 0.933 0.733 6.000 0.500 1.700 1.767
6 1.000 0.133 0.967 0.833 7.667 0.133 1.867 2.000
7 1.000 0.267 0.800 0.867 7.333 0.400 1.300 2.000
8 1.000 0.400 0.600 0.767 6.000 0.700 1.733 2.833
9 1.000 0.267 0.433 0.633 10.000 0.333 1.267 2.700
10 1.000 0.267 0.300 0.367 11.333 0.300 0.767 1.500

Overall 0.933 0.247 0.597 0.703 6.333 0.343 1.273 2.217
Quantisation level 64

Time Type 0 errors MAEs
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 0.667 0.167 0.233 0.633 1.333 0.200 0.900 4.100
2 1.000 0.500 0.333 0.633 8.333 0.567 1.033 1.867
3 1.000 0.400 0.567 0.567 2.333 0.433 0.633 1.067
4 1.000 0.400 0.733 0.800 4.333 0.533 1.100 1.267
5 1.000 0.367 0.633 0.833 3.667 0.667 1.367 1.800
6 1.000 0.233 0.800 0.633 5.333 0.233 1.433 1.467
7 1.000 0.267 0.467 0.967 7.333 0.267 0.733 2.533
8 1.000 0.267 0.367 0.800 6.667 0.367 0.867 2.267
9 0.667 0.367 0.333 0.667 4.667 0.533 0.833 2.133
10 1.000 0.167 0.367 0.767 12.000 0.233 0.767 4.200

Overall 0.933 0.314 0.483 0.730 5.600 0.403 0.967 2.270
Without quantisation

Time Type 0 errors MAEs
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 0.333 0.067 0.233 0.500 0.333 0.067 1.633 3.167
2 0.667 0.400 0.500 0.500 1.000 1.000 2.267 1.767
3 0.333 0.533 0.800 0.500 0.333 0.567 1.800 0.900
4 1.000 0.500 0.900 0.867 6.333 1.333 2.400 1.967
5 1.000 0.467 0.833 0.800 3.667 1.067 2.100 1.933
6 1.000 0.433 0.900 0.867 4.000 1.300 2.533 2.367
7 1.000 0.667 0.800 0.800 4.667 1.533 1.533 2.067
8 1.000 0.333 0.733 0.700 5.667 0.733 2.167 2.600
9 1.000 0.433 0.300 0.733 7.333 2.200 1.333 3.533
10 1.000 0.267 0.367 0.533 8.000 0.767 0.633 3.233

Overall 0.833 0.410 0.637 0.680 4.133 1.057 1.840 2.355
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8.3 GLCM Features for the Tea Images

We obtained GLCMs from each of the original untransformed 2562 grey scale

tea images and computed the 6 GLCM features as above. As there are 50 sub-

images from each class 1, . . . , 8, the feature data is of size 400 × 6. Again we

used a unit inter-pixel distance d = 1, four different orientations and two levels

of quantisations (8 and 64).
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Figure 8.8: Average GLCM features against class for the grey scale tea images
for quantisation 8 using d = 1 and four orientations (0◦, 90◦, 45◦ and 135◦).

Figure 8.8 shows the relationship of average GLCM features for quantisation

level 8 with class. Average entropy and correlation increase with class, and av-

erage maximum probability and energy decrease over the classes, but there is no
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clear trend for average contrast or homogeneity with class. The features were also

computed for level 64 quantisation, and are shown in Figure 8.9. None of them

have any clear trend with class but we considered maximum probability, contrast,

correlation and homogeneity for classification purposes. In general, quantisation

level 8 produces smoother trends than level 64. For both quantisations, the fea-

tures show similar trends with different orientations.
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Figure 8.9: Average GLCM features against class for the grey scale tea images
for quantisation 64 using d = 1 and four orientations (0◦, 90◦, 45◦ and 135◦).
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8.3.1 PCA on GLCM features for the tea images

PCA was applied to the best four GLCM features for both quantisations as de-

scribed above, and all four orientations. Figure 8.10 shows the scatterplots of

the first two PCs derived from the GLCM features computed for all orientations

at quantisation levels 8 and 64. Features computed at level 8 for different ori-

entations have similar discrimination ability, as they are only able to distinguish

class 1 clearly and the other classes overlap. The results for quantisation level

64 indicate the same. The PCs from PS moments using either a disk or a square

SE clearly distinguished all 8 classes, shown in Figure 7.20, unlike the PCs from

the GLCM features at either quantisation level. Therefore, GLCM features are

unlikely to give good performance in any classifier.

8.3.2 Classification using supervised classifiers

We used the regression approach, SVMs, LDA and FF-NNET, as before to classify

the tea images. Again we trained each classifier using 70% of the features and

tested for the rest and computed the average error rates and MAEs over 10 runs.

As in Chapter 7 for the Indian tea images, we clipped predictions to lie in the

range of classes 1 to 8.

We used 4 GLCM features, entropy, maximum probability, correlation and

energy computed at quantisation 8 and 135◦ orientation, as contrast and homo-

geneity are more constant over the classes. For quantisation level 64 maximum

probability, contrast, correlation and homogeneity at 135◦ orientation were used

for classification.

SVM with a radial basis kernel produced only 1% error for any cost of 10

or above with γ = 0.1, for both quantisation levels (Table 8.9). We also com-

puted the training set error rate using a polynomial kernel using η = 1 − 5. For

quantisation 8, 100% correct classification can be obtained for any cost of 10 or

more with γ = 0.1, while for quantisation 64 the lowest error rate of 2% can

be attained using the same parameter settings. A linear kernel produced 100%

correct classification for the training set with any cost between 1 to 100, using

the 4 GLCM features at 135◦ rotation and for both quantisations, so they are not

shown in the table. However, we used a linear kernel with cost of 100. LDA was

considered without cross-validation. For FF-NNET the best values of decay and

rang were found to be 10−4 and 0.5 for normalised features at both quantisation

levels. Ten hidden units were used for the FF-NNET at both quantisations, as

they produced lower training set error rates (Table 8.10).

249



−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

5

1st Principal Component

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

 

 
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

(a) PCs from 0◦ orientation
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(b) PCs from 45◦ orientation
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(c) PCs from 90◦ orientation
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(d) PCs from 135◦ orientation
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(e) PCs from 0◦ orientation
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(f) PCs from 45◦ orientation
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(g) PCs from 90◦ orientation
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(h) PCs from 135◦ orientation

Figure 8.10: Scatter plots of the first two PCs using 4 GLCM features for all four
orientations at quantisation levels 8 ((a)–(d)) and 64 ((e)–(h)), using the grey
scale tea images.

250



Table 8.9: Training set error rates for different values of cost and γ for radial
basis kernel, a polynomial kernel with η = 1 and a linear kernel in SVM using 4
GLCM features from the tea images with quantisations level 8 and 64.

Radial basis kernel
Cost at quantisation level 8

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.5 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.9 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Radial basis kernel
Cost at quantisation level 64

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.5 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.9 0.13 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Polynomial kernel
Cost at quantisation level 8

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.07 0 0 0 0 0 0 0 0 0 0
0.5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.9 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Polynomial kernel
Cost at quantisation level 64

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.15 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.5 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Type 0 error and MAE in this case are different as the predicted classes are

more than one unit away from the actual class. See Table 8.11. Type 0 errors

and MAEs for all classifiers are generally higher for quantisation level 64 than

level 8, as expected from the plots. SVM attained 100% correct classification for

both quantisations. For quantisation level 8, LDA and FF-NNET have 55.9% and

63.2% error rates respectively, and the regression approach has the highest error

rate (78.3%), while with quantisation level 64, LDA, FF-NNET and the regression

approach gave 57.8%, 65.5% and 85.1% error rates respectively. This pattern of

performance is similar to what was found for the corrosion images. However

for the tea images the quantisation level 64 produced higher classification error.

This is different from the conclusion of Soh et al. (2004) that level 8 quantisation

is undesirable and level 64 quantisation is efficient and sufficient, however this
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Table 8.10: Training set error rates from a grid search approach for finding op-
timum number of hidden neurons for FF-NNET using 4 GLCM features for the
quantisation level 8 and 64, with rang = 1/max(|x|), for the tea images.

Number of units
Error rate 1 2 3 4 5 6 7 8 9 10

Quantisation 8 0.53 0.45 0.49 0.38 0.34 0.29 0.31 0.22 0.16 0.01
Quantisation 64 0.56 0.54 0.49 0.39 0.40 0.27 0.31 0.22 0.23 0.07

Table 8.11: Average test set Type 0 error rates and MAEs for all classifiers using
4 GLCM features with quantisation levels 8 and 64, for the tea images; results
are averaged over 10 runs.

Type 0 error rates
Class Quantisation at level 8 Quantisation at level 64

REG SVM LDA FF-NNET REG SVM LDA FF-NNET
1 0.427 0 0.000 0.083 0.400 0 0.000 0.110
2 0.687 0 0.353 0.487 0.933 0 0.600 0.633
3 0.873 0 0.680 0.660 0.920 0 0.573 0.757
4 0.967 0 0.413 0.713 0.993 0 0.440 0.630
5 1.000 0 0.887 0.830 1.000 0 0.833 0.877
6 0.993 0 0.920 0.817 1.000 0 0.940 0.800
7 0.993 0 0.787 0.793 1.000 0 0.673 0.727
8 0.380 0 0.433 0.677 0.560 0 0.560 0.707

Overall 0.783 0 0.559 0.632 0.851 0 0.578 0.655
MAEs

Class Quantisation at level 8 Quantisation at level 64
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 1.493 0 0.000 0.213 1.147 0 0.000 0.207
2 1.867 0 0.967 1.360 4.073 0 1.507 1.763
3 2.667 0 1.293 1.437 2.467 0 1.047 1.557
4 2.860 0 0.747 1.303 3.087 0 0.853 1.203
5 2.833 0 1.813 1.513 3.047 0 1.640 1.643
6 2.727 0 1.693 1.467 2.827 0 1.607 1.403
7 2.853 0 1.653 1.600 2.833 0 1.607 1.567
8 2.200 0 1.233 1.527 3.460 0 1.720 2.013

Overall l 2.438 0 1.175 1.042 2.867 0 1.248 1.136

was for SAR sea ice imagery, so the choice of optimum quantisation level may

depend on the application. Again using GLCM features generally give much

poorer results than using the granulometric moments.
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8.4 Wavelet-based Features for the Tea Images

To compare with the performance of granulometric moments and GLCM features

for texture image classification, wavelet-based features were also computed from

the tea images. A 2-D DWT was applied to decompose the input images into four

sub-bands, i.e. the approximation sub-band, and horizontal, vertical and diagonal

sub-bands. In the second and higher decomposition levels only the approximation

was decomposed into four sub-bands and so on. Among the many possible wavelet

bases the Daubechies wavelet with 45 vanishing moments was used here as the

mother wavelet, as it is a widely used wavelet basis (Borah et al. (2007), Chaplot

et al. (2005), and Salari and Ling (1995)). A brief account of DWTs is given in

Section 3.3.

The DWT at four different resolutions was applied on the foreground of the

2562 grey scale tea images, and statistical features were computed, namely the

mean and sd, maximum, energy and entropy from each of the four sub-bands.

We computed the maximum feature as the maximum intensity of the sub-bands.

Since there are 50 sub-images in each of the 8 classes and 5 features for each

of the 4 sub-bands, 20 features were computed at each level from each class.

There are 4 levels of decomposition, so the feature matrix is of size 400× 20× 4,

where rows represent the class of the 50 sub-images, columns represent different

features and the third dimension represents decomposition level. Average features

were obtained by averaging over the 50 sub-images in each class, and are plotted

against class in Figures 8.11, 8.12 and 8.13. The means of any sub-band for the

first two levels of resolution are almost constant (near-zero) over the classes, but

do change with class for the level 3 and 4 resolutions, especially for level 4.

The sd of the approximation sub-band increases with class for all four reso-

lutions, especially for level 3 and 4, although the rate of increase is lower for the

lower level of decompositions. All four are expected to be useful for classification.

The sds of all the detail sub-bands show constant trends. The maxima of the

detail sub-bands show a very similar pattern to that of the sds. However the

maxima of the approximation sub-band varies with class, although they do not

look useful as they do not show any clear trend.

Entropy is a measure closely related to randomness. For the first two levels of

decomposition the entropies are almost constant. However they vary at a higher

level of decomposition (Figures 8.13 (a)–(d)). At level 4 decomposition, class 4

has the highest entropy of the approximation sub-band, whereas the entropy of

the detail sub-bands is high for class 3.
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(d) Mean of Horizontal sub-band
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(e) Sd of Horizontal sub-band
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(f) Maximum of Horizontal sub-band

Figure 8.11: Average wavelet-based coefficients from the 2562 grey scale tea im-
ages for the first 4 levels.

Energy is a measure closely related to information content in an image. We

computed energy for all sub-bands. The amount of information is higher for the

lower levels of decomposition of the approximation sub-band and is almost con-

stant at around 100 for all classes at the first level and decreases with subsequent

decomposition. It is clearly visible in Figure 8.13 (e) that class 4 contains the

highest energy and class 8 the second highest for all four levels of decomposition.

However, the energy of any detail sub-band increases with the level of decom-

position. They are almost constant at 0 for level 1 but vary at further levels of

decomposition.

254



1 2 3 4 5 6 7 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Class

A
ve

ra
ge

 M
ea

n

 

 
level 1
level 2
level 3
level 4

(a) Mean of Vertical sub-band
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(b) Sd of Vertical sub-band
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(c) Maximum of Vertical sub-band
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(d) Mean of Diagonal sub-band
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(e) Sd of Diagonal sub-band
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(f) Maximum of Diagonal sub-band

Figure 8.12: Average wavelet-based coefficients from the 2562 grey scale tea im-
ages for the first 4 levels.

The means, sds, maximums, entropies and energies of all sub-bands at levels

3 and 4 differ most with class although they do not show any clear trend with

class.
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(a) Entropy of Approximation sub-
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(b) Entropy of Horizontal sub-band
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(c) Entropy of Vertical sub-band
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(d) Entropy of Diagonal sub-band
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(e) Energy of Approximation sub-band
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(f) Energy of Horizontal sub-band
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(g) Energy of Vertical sub-band
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(h) Energy of Diagonal sub-band

Figure 8.13: Average wavelet-based coefficients from the 2562 grey scale tea im-
ages for the first 4 levels.
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8.4.1 PCA on wavelet features for the tea images

There are 20 features (5 features from 4 sub-bands) extracted from each level of

decomposition, giving a total of 80. Different combinations of the features were

considered for classification. Figures 8.11, 8.12 and 8.13 suggest that the means,

sds and maximums of all sub-bands at level 1 (12 features), entropies of all 4

sub-bands at level 1 and 2 (8 features) and energies of all sub-bands at levels 1

(4 features) are almost constant over class. Hence these were not considered at

this stage, giving 80 − 12 − 8 − 4 = 56 features for classification. The means,

sds, maximums, entropies and energies of all sub-bands at level 1 and 2 were also

excluded as the features at level 1 are constant and only slightly vary with class

for level 2, leaving 80− 5 ∗ 4 ∗ 2 = 40 features for classification. It is also obvious

from the figures that only the sds of the approximation sub-band increase with

class, so we also used these 4 features alone for classification as a third feature

set.
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(c) PCs using sds of approximation sub-
band

Figure 8.14: Scatter plots of first two PCs using different sets of wavelet features
for the tea images.

PCA was first applied to the 56 and 40 selected features, and then 4 fea-

tures, to observe the clustering ability of the feature sets. Figure 8.14 shows

that PCA using 56 features distinguishes classes 2 and 4, and using 40 features
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distinguishes only class 4 but the rest overlap, whereas using 4 features from the

approximation sub-band differentiates the first two classes while leaving the rest

indistinguishable.

8.4.2 Using different classifiers

The different sets of features were used in all the classifiers. Again 70% of the

features, randomly sampled, were used to train each classifier and each was tested

on the other 30% of the features. Parameter settings were chosen for SVM and

FF-NNET using a single training set. The process was repeated 10 times and

average error rates and average MAEs were computed.

Table 8.12: Training set error rates for different combinations of cost and γ for
the radial basis kernel and for a linear kernel using 56, 40 and 4 wavelet-based
features from the tea images.

Radial basis kernel
Cost [56 wavelet-based features]

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.5 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
0.9 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74

Cost [40 wavelet-based features]
γ 1 10 20 30 40 50 60 70 80 90 100

0.1 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
0.9 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79

Cost [4 wavelet-based features]
1 10 20 30 40 50 60 70 80 90 100

0.1 0.11 0 0 0 0 0 0 0 0 0 0
0.5 0.02 0 0 0 0 0 0 0 0 0 0
0.9 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Linear kernel
1 10 20 30 40 50 60 70 80 90 100

56 features 0.86 0.86 0.88 0.87 0.87 0.83 0.88 0.88 0.86 0.84 0.84
40 features 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
4 features 0 0 0 0 0 0 0 0 0 0 0

Table 8.12 shows that neither the linear kernel nor the radial basis kernel

attained 100% correct classification on the training set for any cost between 1

and 100 using 56 and 40 wavelet-based features in the SVM, but using only 4

features 100% correct results can be obtained for a linear kernel with any cost
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between 1 and 100, and with the radial basis kernel with a cost of 10 or more and

γ between 0.1 and 0.5 inclusive. A linear kernel with a cost of 100 was used for all

sets of features. For all 3 feature sets, a FF-NNET with decay as 10−4 and rang

as 1/max(|x|) was best, using normalised features. With these parameter values

the training set error rate for different numbers of hidden units was computed and

it was found that 10 units were appropriate for all sets of features (Table 8.13).

Table 8.13: Training set error rates for different numbers of hidden units in a
FF-NNET, using all 56, 40 and 4 wavelet-based features from the tea images.

Number of units
1 2 3 4 5 6 7 8 9 10

56 features 0.28 0.25 0.03 0 0 0 0 0 0 0
40 features 0.51 0.31 0.49 0.05 0 0 0 0 0 0
4 features 0.52 0.36 0.33 0.26 0.25 0.26 0.18 0.13 0.13 0.02

Type 0 errors and MAEs for all classifiers are shown in Table 8.14 using 56,

40 and 4 features. REG has the same error rate of 85.7% for both 56 and 40

features and the error rates from LDA are similar for both sets of features, but

SVM and FF-NNET work better with 56 features than 40 features. However SVM

gives 100% correct classification using 4 features and REG, LDA and FF-NNET

have 63.2%, 40.1% and 50.2% error rates respectively, so using only the sd of

the approximation sub-band from each level of decomposition provides improved

classification results for REG and SVM. The MAEs indicate the same. SVM is

clearly the best classifier overall.

8.5 Conclusion

For the pyramid images, the regression approach, LDA and FF-NNET are equally

effective for classifying these images, though LDA and FF-NNET produced lower

error rates than the regression approach for the ellipse images.

GLCM features produced slightly lower classification error rates for the regres-

sion approach but slightly higher rates for LDA and FF-NNET for the pyramid

images compared to the granulometric moments (Table 5.10). For both feature

sets, SVM with a linear kernel and a cost of 20 or more produced 100% correct

classification and is superior.

Again the linear kernel was the best choice of kernel for SVM with GLCM

features from the corrosion images, with a small test set error rate (2.7% for
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quantisation level 8, 1.7% for quantisation 64 (Table 8.6) and 1.3% with no quan-

tisation (Table 8.7)). Error rates for the other classifiers are high. Use of addi-

tional GLCM features does not have benefits, rather it produced worse results

in some cases. For the tea images, error rates for LDA and FF-NNET are quite

comparable, while the regression approach has a higher error rate and SVM with

a linear kernel classifies perfectly.

LDA works better for the wavelet-based features than the GLCM features for

both quantisations, but FF-NNET produced lower error rates for 4 wavelet-based

features than the GLCM feature for both quantisations. However SVM produced

11.8% error with 56 wavelet-based features. The regression approach worked

better with 4 wavelet-based features than the GLCM features but worse with

56 wavelet-based features. Nevertheless error rates for all classifiers are much

higher with the wavelet-based features compared to the granulometric moments.

Therefore, for both sets of real images granulometric moments provide very use-

ful features compared to the GLCM and wavelet-based features for shape-based

texture image classification.

In the next chapter hyperspectral images of six different types of Chinese

teas are used with several different band selection techniques and feature sets in

another classification problem.
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Table 8.14: Average test set Type 0 error rates and MAEs for all classifiers using
56, 40 and 4 wavelet-based features from the tea images; results are averaged over
10 runs.

56 features
Class Type 0 errors MAEs

REG SVM LDA FF-NNET REG SVM LDA FF-NNET
1 0.427 0.000 0.000 0.100 0.427 0.000 0.000 0.203
2 0.847 0.060 0.073 0.127 0.847 0.060 0.260 0.387
3 0.953 0.127 0.387 0.530 2.220 0.220 0.967 1.473
4 1.000 0.027 0.047 0.133 4.000 0.027 0.107 0.380
5 1.000 0.127 0.547 0.647 3.553 0.200 0.933 1.250
6 1.000 0.227 0.487 0.715 3.787 0.240 0.773 1.318
7 1.000 0.173 0.420 0.410 5.327 0.173 1.073 1.103
8 0.627 0.200 0.453 0.513 3.953 0.327 1.393 1.503

Overall 0.857 0.118 0.302 0.340 3.014 0.155 0.688 0.952
40 features

Class Type 0 errors MAEs
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 0.427 0.053 0.035 0.117 0.427 0.063 0.085 0.303
2 0.847 0.140 0.085 0.403 0.847 0.187 0.275 1.317
3 0.953 0.220 0.410 0.573 2.220 0.367 1.175 1.677
4 1.000 0.057 0.045 0.227 4.000 0.077 0.075 1.620
5 1.000 0.440 0.620 0.773 3.553 0.653 1.140 1.593
6 1.000 0.487 0.640 0.763 3.787 0.670 1.065 1.520
7 1.000 0.407 0.445 0.707 5.327 0.583 1.155 2.030
8 0.627 0.310 0.465 0.613 3.953 0.560 1.305 1.920

Overall 0.857 0.264 0.343 0.522 3.014 0.395 0.784 1.373
4 features

Class Type 0 errors MAEs
REG SVM LDA FF-NNET REG SVM LDA FF-NNET

1 0.000 0 0.000 0.013 0.000 0 0.000 0.030
2 0.307 0 0.533 0.213 0.373 0 0.107 0.590
3 0.540 0 0.267 0.567 1.347 0 0.553 1.277
4 0.960 0 0.533 0.567 2.820 0 0.940 1.170
5 1.000 0 0.687 0.667 2.333 0 1.127 1.127
6 1.000 0 0.793 0.827 2.480 0 1.327 1.467
7 0.927 0 0.573 0.663 2.913 0 1.213 1.437
8 0.320 0 0.300 0.503 1.453 0 0.780 1.233

Overall 0.632 0 0.401 0.502 1.715 0 0.756 1.041
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Chapter 9

Hyperspectral Image

Classification

This chapter describes hyperspectral images and reviews some applications of hy-

perspectral imaging. It applies some of the existing methods for selecting appro-

priate spectral bands to hyperspectral images of six different varieties of Chinese

teas, and explores the benefits of using hyperspectral images over colour and grey

scale images for classifying these datasets. It also investigates the comparative

performance of shape-based texture features, i.e. pattern spectrum (PS) moments,

and several intensity-based texture features, i.e. grey level co-occurrence matrix

(GLCM) features, wavelet-based features and wavelet-based GLCM features.

9.1 Hyperspectral Imaging

A digital image is a 2D finite array of pixels, each with a pixel intensity. For a

binary image, pixel intensities are either 0 or 1, whilst for a grey scale image,

intensities usually range from 0 to 255. Only spatial information is available in

these images but not spectral information. A colour image consists of three layers

of grey scale images corresponding to three wavelength regions corresponding

broadly to red, green and blue. In the electromagnetic spectrum (EMS) the RGB

region is known as the visible region ranging from wavelength 400 nanometres

(nm) to 700nm. A multispectral image consists of up to tens of layers of grey

scale images, each corresponding to a specific spectral band in the EMS, whereas a

hyperspectral image contains hundreds to thousands of grey scale images covering

a wider range of wavelengths, e.g. 2nm to 2500nm (Geladi et al. (2007)).
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Image generation

A hyperspectral image is a 3D dataset generated by photographing the same

image through a series of wavelength bandpass filters. There are two main ap-

proaches to collecting hyperspectral images, namely push-broom imaging and

tunable filtering imaging. Both approaches require a 2D optical sensor array to

separate wavelengths from each other. A push-broom imaging technique consists

of a suitable objective lens matched to the spatial and spectral requirements of

the application, an imaging spectrograph and a 2D detector to simultaneously

collect the spectral versus spatial information. Three basic camera configura-

tions, point scan, line scan and focal plane scan, are used based on the type of

spatial information required. For x, y and λ data, (where x and y are the coor-

dinates of a spectral band and λ is the central wavelength value of that band),

push-broom collects x and λ by scanning y, whereas tunable filtering collects x,

y by scanning λ. A detailed description is given in Geladi et al. (2007).

Line scanning imaging was used to capture the Chinese tea images used in this

chapter. This records sequential y values, building up a hyperspectral image with

two spatial dimensions considering all pixels and the central wavelength values λ

of each band in an image. The scanning can be done either by camera movement

(e.g. aircraft) or by movement of the scene to be imaged (e.g. conveyor belt, Balas

et al. (2003)).

9.2 Overview of Band Selection Methods

Hyperspectral imaging acquires hundreds of spectral bands within a wide range

of the EMS region, hence provides rich spectral information which is very of-

ten advantageous for classification. However, the high dimensionality of hyper-

spectral data makes the classification task more challenging and computationally

expensive. Moreover, the contiguous bands in hyperspectral data are very of-

ten captured at a narrow spatial resolution (few nm) (Gilchrist and Hyvarinen

(2006)), consequently, some adjacent bands represent similar spectral and spatial

information. Use of such redundant information not only increases computational

expense but may also decrease classification efficiency. Therefore, it is essential to

select appropriate spectral bands of the hyperspectral data before classification.

Different authors have adopted different strategies for selecting bands, some of

which are discussed below.

263



9.2.1 PCA reduction

PCA is the most widely used dimensionality reduction technique in this domain.

PCA maximises the variance of the input data in the new uncorrelated coordinate

system. Many researchers have applied PCA to select appropriate spectral bands

for classification purposes. For example, Zhao et al. (2009) applied PCA to

extract 3 dominant bands from 150 bands of five types of Chinese green tea to

discriminate tea categories. Benediktsson et al. (2005) proposed using the number

of PC images that account for more than 90% of the variation in the data, and

used the first 2 PC images extracted from the first 40 out of 80 spectral bands

(the last 40 bands were excluded due to heavy noise) of hyperspectral images

of urban areas of Pavia, Italy, whilst Tan and Du (2010) used the first 7 PCs

from the same dataset using all spectral bands. Zhang et al. (2010) used airborne

hyperspectral images of Shanghai, to classify 8 different kinds of vegetation area

using the first 3 PC images extracted from the original data.

9.2.2 Using all bands

Although hyperspectral images consist of hundreds of spectral bands, some au-

thors have suggested using all available spectral bands. For example Jia et al.

(2010a) used a wavelet approach on all 220 bands of Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) images of Indiana’s Indian Pines (scenes taken

over northwest Indiana) for classification. Prasad et al. (2010) used all bands of

a 2151-band handheld ASD dataset and a 128-band airborne SpecTIR dataset,

to separate seven classes of corn crops. Eight regions of different bodies of water,

ranging from clear water to an evaporation pond, and 2 regions of dense and

sparse vegetation were classified using 224 spectral bands of AVIRIS data in Sub-

ramanian et al. (1997). Huang and Zhang (2008) used all 126 spectral bands of

hyperspectral images taken over the West Lafayette campus of Purdue University

to extract roads within images of the campus.

All 220 spectral bands of AVIRIS images of Indiana’s Indian Pines were used

to classify 10 out of 16 terrain classes based on a sparse conditional random field

model in Zhong and Wang (2008), whereas Liguo et al. (2009) and Kuo et al.

(2010) used all bands of the same dataset to classify all 16 terrain classes. All

spectral bands (210) of the Washington DC Mall dataset were used in Yin et

al. (2010) and Yan et al. (2010). Kim et al. (2008) used all spectral bands of

hyperspectral images taken over Okavango Delta, Botswana. Rellier et al. (2004)

used all 224 spectral bands of AVIRIS images of Moffett Field, California. Moshou
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et al. (2005) used all 4 available spectral bands of hyperspectral images of wheat

plants to detect plant disease, using data fusion. Different anomaly detectors

were developed and applied to the 224 bands of AVIRIS scenes and 15-panel

hyperspectral digital imagery collection experiment (HYDICE) scenes in Chang

(2002). Jensen et al. (2008) used all spectral bands of the Rosis dataset (81

bands taken at Fontainebleau forest, Paris) and an airborne sensor over Kennedy

Space Center at Cape Canaveral, Florida, consisting of 224 bands, to verify their

proposed regression model. Guo et al. (2008) used all spectral bands of AVIRIS

92AV3C hyperspectral images. Haq et al. (2010) used all 210 spectral bands of

the Washington DC Mall dataset to validate their model. Chang (2002) evaluated

his method on all the bands of AVIRIS images of the Lunar Crater Volcanic Field

of North Nye County.

9.2.3 Band selection by inspection or prior knowledge

However many researchers identified some damaged and/or less useful bands by

visual inspection and discarded them. For example, among 224 spectral bands 4

noisy bands were discarded from AVIRIS images from Purdue University, in Hsu

and Yang (2007). Rabe et al. (2010) used 114 spectral bands after radiometric

correction and eliminating noisy bands from the HyMap sensor acquired over the

city of Berlin. Huang and Zhang (2008) removed 18 water-absorption bands from

the Washington DC Mall data set (210 bands) and applied a mean-shift to obtain

an object-oriented representation of hyperspectral data. Chen and Tran (1994)

selected 50 bands (41-90) out of 224 spectral bands of AVIRIS images as they

contained more terrain features. Jensen et al. (2008) used spectral bands 1-71 out

of 80 bands of an image of Pavia, of which the last 8 captured thermal infrared.

They also selected some bands manually from another hyperspectral image taken

over Okavango Delta, Botswana by removing noisy bands.

Bazi and Melgani (2006), Demir and Ertürk (2007, 2011), Haq et al. (2010),

Camps-Valls et al. (2007), Jia et al. (2010a), and Ratle et al. (2010) discarded 20

out of 220 spectral bands of the Indiana Indian Pines data, as they were affected

by an atmospheric problem, and applied their methodology on the selected bands

for classification. Serpico et al. (2004) and Serpico et al. (2007) discarded 18 bands

of the same dataset and used 202 for classification. Ratle et al. (2010) also used

176 bands out of 224 bands of the Kennedy Space Center data after omitting

the water absorption bands. Du and Chang (2001) used 196 spectral bands after

removing some noisy bands of HYDICE images of scenes. Chang (2002) evaluated

the proposed methodology on HYDICE images after removing some noisy bands.
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Nidamanuri and Zbell (2011) eliminated 4 bands due to noise and the presence of

faulty detectors from a airborne hyperspectral images consisting of 128 spectral

bands.

9.2.4 Other band selection approaches

Apart from these simplistic techniques of band selection, a few authors have sug-

gested some more sophisticated approaches. For example, Zhao et al. (2011)

selected appropriate bands by computing the correlation matrix of all bands and

selecting the less correlated bands. Zhu et al. (2010) proposed a memetic ant

colony optimisation (MACO) band selection approach for hyperspectral image

classification, based on the foraging behaviour of ants searching for the short-

est path between a food source and their nest. Bajcsy and Groves (2004) pro-

posed combining unsupervised and supervised methods for selecting appropriate

hyperspectral bands for classification. Seven unsupervised methods including in-

formation entropy, first and second spectral derivatives, spatial contrast, spectral

ratio, correlation and PCA were applied separately to prepare seven rank-ordered

lists. Three supervised methods, namely regression, an instance-based method

(using an inverse Euclidean distance weighting of the k-nearest neighbours) and

a regression tree were employed using those rank-ordered lists as well as random

and incremental ranking of all spectral bands. Lower error rates were obtained

using the unsupervised rank-ordered lists of bands. Chen and Zhang (2011)

proposed several dimension-reduction techniques using prior knowledge of pair-

wise constraints (pairs of samples belonging to the same class are referred to as

must-link constraints and ones belonging to different classes are called cannot-link

constraints).

A mutual information (MI) based band selection approach is proposed in Ren

et al. (2011). MI between each pair of adjacent bands is computed in terms of

Shannon entropy. Zero MI indicates complete independence of the corresponding

band images, and the smaller the MI the greater the chance of bands being in

different clusters. All MIs are ordered in ascending order and the corresponding

band labels are recorded. The first m elements of the ranked series and their band

labels are used for grouping all spectral bands. This splits up all available bands

of the hypercube from left to right into groups. One representative band with the

smallest summed mean squared difference or summed mean absolute difference

from each of the other bands in the group was selected from each group. So there

are m− 1 bands chosen for feature extraction.
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9.3 Different Approaches for Classification

Hyperspectral imaging is used extensively in remote sensing image classification

but has rarely been reported so far for discriminating tea varieties, except in Zhao

et al. (2009). They used hyperspectral images of five grades of roasted Chinese

green tea leaves where the grades were determined using average scores from

3 skilful tea tasters. Each taster scored on appearance, taste and aroma. The

hyperspectral image data was gathered through a system consisting of 3 modules,

namely the sensor module, the lighting source module and the conveyer module.

The sensor module was an ImSpector V10E HSI camera with a spectral range of

408-1117nm and spectral resolution of 2.8nm. The lighting source module had

two 150W quartz-halogen DC stabilised fiber-optic illuminators and the conveyer

module consisted of a translation stage and a controller.

Corrected images were obtained by calibrating the original images with a

white and a dark reference image as R = (I −B)/(W −B), where B is the dark

image obtained by closing completely the aperture, i.e. using approximately 0%

reflectance, W is the white image obtained using approximately 99% reflectance,

and I is the original image. The spectral reference R values range from 0 to

1. The spectral profiles among the five grades were very similar in the spectral

region below 700nm, but were distinct in the spectral region 700-850nm.

PCA was applied to select 3 dominant wavebands from the spectral range

700-850nm. The first PC explained 79.1% of the variation in the original images.

Images at spectral bands 762, 793 and 838nm were found to be the dominant

bands. Sample images of size 3002 were extracted from the original images of size

1280×600. Four texture descriptors, namely mean, sd, energy and entropy, were

computed from each optimum sub-band image and used in a SVM. Among 700

sample images (140 for each grade), 500 images (100 for each grade) were used

to train the classifier and the remaining 200 sample images were used to test it.

They obtained 98% and 95% correct classification rates for the training and test

set respectively. A back-propagation neural network (BP-NNET) also produced

98% accuracy for the training set, but 90% for the test set. Classification accuracy

using LDA was 88% and 85% for the training and test sets respectively.

Morphological techniques were applied to hyperspectral images in Benedikts-

son et al. (2005). They proposed using PCs that account for around 90% of the

variation in the data. The first two PC images (accounting for more than 90%

variation) from the first 40 spectral bands of 80, of the urban areas of Pavia, Italy,

were used. The last 40 bands were excluded due to heavy noise. They derived

an opening profile which constitutes opening granulometry (as we use) but using
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opening by reconstruction, and a closing profile which is anti-granulometry (also

known as closing granulometry) from closing by reconstruction. The opening and

closing profiles were constructed from both PCs and were used to develop an ex-

tended morphological profile. A NNET using the morphological profile based on

the first 2 PCs produced more than 99% classification accuracy.

Mathematical morphology was also used for detecting different ground cover

in agricultural and urban classification by Plaza et al. (2005). An extended differ-

ential morphological profile (EDMP) and a scale-orientation morphological profile

(SOMP) were constructed by simultaneously considering the spatial and spectral

information of the image data. Morphological features were extracted from real

HSI AVIRIS images taken over Salinas Valley, CA, consisting of 192 spectral

bands, and from 40 spectral bands of DAIS 7915 image data of Pavia, Italy.

SOMP with a NNET classifier achieved 94% and 96% classification accuracy for

the AVIRIS and DAIS datasets respectively.

Jia et al. (2010b) proposed de-noising each hyperspectral band first and then

computing wavelet coefficients. They applied wavelet shrinkage on all 220 bands

of AVIRIS images of Indiana’s Indian Pines and then applied a discrete wavelet

transform on the spectral signature to obtain a number of wavelet features. Then

they used an affinity propagation algorithm to select optimum features. Using a

k-NN classifier, 83% classification accuracy was obtained.

Prasad et al. (2010) proposed a confusion-driven adaptation technique con-

sisting of estimating confusion matrices from the training sample and iteratively

finding features that best separate the most confused classes. In the classifica-

tion phase, a stepwise LDA (SLDA) and a quadratic maximum likelihood (ML)

classifier were combined, and improved classification (78%) was obtained from

multiple-classifiers (SLDA+ML) compared to a single classifier for classifying

seven classes of corn crops. The method was tested on a 2151-band handheld

ASD dataset and 128-band airborne SpecTIR dataset.

Rabe et al. (2010) proposed simplifying an SVM to reduce the number of

support vectors, hence reducing computation time. Firstly, an SVM was trained

on the original training samples and then used to classify them. Afterwards, the

class membership was replaced by the SVM class decision and a second SVM

was applied on the modified training data. Much improved results were obtained

for classifying HSI data consisting of 114 spectral bands from the HyMap sensor

used over Berlin, using their simplified SVM compared to the regular SVM.

Zhang et al. (2010) classified airborne hyperspectral images of Shanghai, to

classify 8 different kinds of vegetation area. The first 3 PCs were plugged into the
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ML classifier. Then easy mixed classes were identified by investigating the classi-

fication results. For the easy mixed classes, a projection pursuit (PP) algorithm

was applied to find the optimal projection directions, projecting the full dataset

on the calculated directions and constructing the PP feature subspace. Then they

combined the PP feature subspace with PCs and applied the ML classifier again.

The combined features produced higher classification accuracy of 67%, whereas

PCs alone produced 60% accuracy.

Bazi and Melgani (2006) applied a SVM classifier directly on hyperspectral

AVIRIS images of land cover classes consisting of 220 bands, of which 20 were

discarded as they were affected by an atmospheric problem. They used 1800

training samples and 4588 test samples, and 87.66% overall classification accuracy

was obtained. Two other modified versions of SVM were also used to classify the

same data with improved accuracy.

A FF-NNET using eigenvalues from the region of interest from 224 spectral

bands of AVIRIS data was proposed in Subramanian et al. (1997) and 100%

accurate classification was attained. Zhao et al. (2011) proposed partitioning the

hyperspectral data cube into several nearly uncorrelated sub-sets as the varying

data quality and discrimination ability across bands may affect the accuracy

of classification. An eigenvalue-based approach was proposed to evaluate the

confidence of each subset. A fuzzy c-mean clustering method and a k-NN classifier

produced nearly the same accuracy for classifying real HYDICE scenes. Huang

and Zhang (2008) used a SVM for classification of two sets of real hyperspectral

image data. One consisted of HYDICE images taken over the Mall, Washington

DC, using 210 bands of which 18 water-absorption bands were deleted, to classify

roads, grass, water, shadow, trees, trails and roofs. The second dataset from a

flight over Purdue University contained 126 spectral bands used to extract roads

within the images.

9.4 Image Description

There are hundreds of different varieties of tea from the tea bush Camellia Sinen-

sis, but almost all of them fall into three main categories. These are black teas,

which are fully oxidised before drying by a careful withering process; green teas,

which are dried quickly while unoxidised; and Oolongs, which are somewhere in

the middle and combine the best qualities of both (http://oolong.co.uk/tea.html).

Six varieties of Chinese tea, namely China Black, Lung Ching, Tikuanyin, Yun-

nan, Oolong and Jasmine are studied in this chapter.
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Black tea leaves come from the same tea plant, Camellia Sinensis, as does

all tea. The first step after plucking the leaves is to let them wither. Then

there are three additional processing steps that the leaves are subjected to before

becoming black tea. They are rolled, allowed to fully oxidize (ferment), and lastly

they are dried. After rolling, they are sifted to separate the different leaf particle

sizes (http://folk.uio.no/gisle/cache/blacktea.html). Lung Ching, also known as

Dragon Well tea, is one of the most popular Chinese green teas, mainly produced

in the Zhejiang province of China. It has a green colour, mellow taste, fragrant

aroma, and graceful shape. Lung Ching tea is characterised by its unusual shape

and characteristics of the dry leaves, i.e. long, flat, and very lightweight. Oolong

teas are produced in Fujian province in China. Tikuanyin tea, also originating in

Fujian province, is a variety of Chinese oolong tea and has been very popular for

centuries. The tea leaves are dark green and rolled into tight balls. Tikuanyin

tea is also known as Ti Kwan Yin, Anxi Tie Guan Yin, Iron Goddess of Mercy

etc. (http://www.chinese-tea-culture.com/tieguanyin-tea.html). Yunnan is one

of the best Chinese black teas, mainly produced in Yunnan province. Yunnan

tea is highly regarded for its unique malt and peppery taste. Jasmine tea is a

famous tea made from Chinese green tea leaves that are scented with jasmine

flowers (http://www.wisegeek.com/what-is-yunnan-tea.html).

There is no ordering that can be established visually based on the size of the

tea leaves among the different tea types. Hence, we arbitrarily refer to China

Black, Lung Ching, Tikuanyin, Yunnan, Oolong and Jasmine tea as Tea 1, Tea 2,

Tea 3, Tea 4, Tea 5 and Tea 6 respectively. Hyperspectral images of each tea type

were acquired in Kelman et al. (2011) using an Andor Luca EMCCD camera with

Specim V8E spectrograph. Each tea type was placed into a compartment of an

ice cube tray and the tray was placed on a Zolix KSA 11-200S4N motorised stage,

illuminated with an Armley 150W Halogen lamp and imaged simultaneously to

generate a hypercube consisting of 196 scan lines, with 251 pixels in each line and

250 spectral bands in the 282nm to 865nm region of the EMS. Each hypercube was

calibrated with a white and dark reference image such that the pixel intensities

range from 0 to 1. A dark reference was recorded by putting the lens cap on

the camera and a white reference was obtained by placing a white tile under the

camera. Occasionally there may be values above 1, due to specular reflection from

the material being imaged (tea leaves here). The spectraSENS software used to

capture the images has a function to allow corrections. Figure 9.1 shows the raw

hypercube images, one from each of the six hypercubes taken at spectral band

630nm.
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(a) Tea 1 (b) Tea 2 (c) Tea 3

(d) Tea 4 (e) Tea 5 (f) Tea 6

Figure 9.1: Hyperspectral images of 6 types of Chinese tea at wavelength 630nm.

Corresponding RGB images of each tea type were captured by uniformly plac-

ing the same tea sample on a white sheet of paper and imaging it using a CCD

camera and saving in RGB format. Although the tea types are visually indistinct

with respect to the hypercube images, they are distinguishable from each other

in terms of leaf sizes, shapes and colour (Figure 9.2). We are interested in inves-

tigating whether hyperspectral imaging provides useful information compared to

RGB images for classifying these tea types.

(a) Tea 1 (b) Tea 2 (c) Tea 3

(d) Tea 4 (e) Tea 5 (f) Tea 6

Figure 9.2: Colour images of size 1952 × 2592 of 6 types of Chinese tea. There
are no bright colours in the images, so even printed in colour they look grey.

271



A considerable area of each slice of the hypercube contains the image of the

ice cube tray rather than the tea sample. To obtain representative sample images,

we selected the region of interest by manually cropping two images to the largest

possible size of 702, one from each part of the ice cube tray, from each of the 250

spectral bands. One extracted image at spectral band 150 for each tea type is

shown in Figure 9.3.

(a) Tea 1 (b) Tea 2 (c) Tea 3

(d) Tea 4 (e) Tea 5 (f) Tea 6

Figure 9.3: Sample images of size 702, one from each type of Chinese tea at
wavelength 630 nanometers (spectral band 150).

9.5 Band Selection

Here we investigate on these tea images some of the simpler approaches used for

band selection, namely using all of the bands, visual inspection to select some of

the bands, and identifying the more informative bands using PCA, entropy and

mutual information.

Approach 1: Firstly, we consider all 250 bands for all tea types.

Approach 2: Secondly, we select 150 bands out of the 250 spectral bands from

each hypercube by discarding the first 100 bands, as 70 of them are very dark
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and the next 30 are rather noisy.

Approach 3: Thirdly, PCA was applied on all 702 images extracted from all

spectral bands for each type separately to select the first few PC images, then to

select representative spectral bands corresponding to the strongest coefficients.

We chose not to normalise the data as the pixel intensities all range between 0 to

1 (see Section 9.4).

PCA centring (subtracting the mean of each variable) is very common to avoid

larger scale variables dominating PC1. Both Matlab and R centred the data

before applying PCA and as a result, some of the centred data values become

negative. Applying PCA on the centred data produces coefficients of each PC

which may be a mixture of positive and negative. Multiplying the PC coefficients

with the centred data produces PC scores, the representation of the original data

in the principal component space. The PC scores have some negative values,

which makes no sense when we deal with PC images, as images cannot have

negative intensity. However, applying PCA on the original data does not always

produce PC scores with all positive entries. PCA was also applied to the centred

but un-scaled, non-centred but scaled and normalised (both centred and scaled)

data to explore whether any options produced PC scores with positive entries.

Nevertheless, none of the options was found to guarantee positive PC scores.

PCA can be applied to the covariance or correlation matrix of the data. It was

found that applying PCA on the covariance matrix yields the same coefficients,

with arbitrary sign, as PCA on the centred but unscaled data and the PC score

is calculated by multiplying the coefficients with the centred but unscaled data.

Similarly, applying PCA on the correlation matrix is the same as applying PCA

on the normalised data and the PC score can be found by multiplying the PC

coefficients with the normalised data. But none of the options generates PC

scores with all positive entries.

The PC score is considered as the PC image, so its entries must be non-

negative. To deal with the negative intensities, the PC score images are shifted

along so their minimum is zero. Each PC image is checked for negative intensities

and adjusted by adding the most negative intensity, e.g. add on 10 if the smallest

value is -10. Clipping the negative intensities at zero may be an alternative,

but this will affect the variation of the PC image intensities, hence limiting the

information.

The first 10 PCs express around 85% of the variation among any of the tea

types. The cumulative proportions of variation explained by each PC for all tea
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types are shown in Table 9.1.

Table 9.1: Cumulative proportion of variation explained by each of the first 10
PCs from each tea type.

PCs Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 Tea 6
PC 1 0.70 0.60 0.72 0.73 0.71 0.66
PC 2 0.76 0.77 0.76 0.75 0.76 0.76
PC 3 0.78 0.79 0.78 0.77 0.78 0.78
PC 4 0.79 0.80 0.79 0.79 0.79 0.79
PC 5 0.80 0.81 0.80 0.80 0.80 0.80
PC 6 0.81 0.82 0.82 0.81 0.81 0.81
PC 7 0.82 0.83 0.83 0.82 0.82 0.82
PC 8 0.83 0.84 0.83 0.83 0.83 0.83
PC 9 0.84 0.85 0.84 0.84 0.84 0.84
PC 10 0.85 0.86 0.85 0.85 0.85 0.85

Then we select 10 spectral bands containing the higher PC coefficients in PC1

and use them for feature extraction. The coefficients of PC1 were sorted, and the

highest 10 coefficients and the corresponding bands for all tea types are recorded

in Table 9.2. The 10 highest coefficients correspond to the last 10 bands (241-250)

for Teas 1, 3, 4 and 5, and for Teas 2 and 6 they also come from the upper end

of the spectral region.

Table 9.2: Highest 10 coefficients from the first PC with the corresponding band
for each tea type.

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 Tea 6
Band Coef. Band Coef. Band Coef. Band Coef. Band Coef. Band Coef.

1 241 0.139 232 0.117 241 0.132 241 0.121 241 0.131 234 0.112
2 242 0.139 233 0.117 242 0.133 242 0.121 242 0.131 235 0.112
3 243 0.139 234 0.117 243 0.133 243 0.121 243 0.131 236 0.112
4 244 0.140 235 0.117 244 0.133 244 0.122 244 0.131 237 0.112
5 245 0.142 236 0.117 245 0.134 245 0.124 245 0.132 238 0.112
6 246 0.144 237 0.117 246 0.136 246 0.125 246 0.134 239 0.112
7 247 0.145 238 0.117 247 0.136 247 0.126 247 0.134 240 0.112
8 248 0.146 239 0.117 248 0.136 248 0.127 248 0.135 241 0.113
9 249 0.146 240 0.117 249 0.137 249 0.127 249 0.135 246 0.113
10 250 0.147 241 0.117 250 0.138 250 0.128 250 0.135 247 0.113

Approach 4: Fourthly, we consider use of image entropy to select appropriate

bands. The entropy measure was developed in Shannon (1948), and is sometimes

known as the Shannon entropy. The entropy of a random variable is a numerical

measure of its randomness or uncertainty or unpredictability, defined in terms of

its probability distribution. For a random variable X ∈ X, e.g. grey level pixel
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intensity, with probability distribution p(x), the entropy H(X) is defined as

H(x) = −Σx∈X p(x)log2p(x). (9.1)

Low entropy of a random variable means that the value is easily predictable,

whereas a high entropy means that the value is hard to predict, and zero entropy

means there is no uncertainty. For example, in the case of a uniform distribution,

all possible values of a random variable have equal probability. Hence it has the

maximum entropy value, which means more uncertainty. On the other hand, if

prior knowledge about the non-uniformity of the outcomes is available, the ran-

dom variable will have lower entropy, i.e. less uncertainty, and more predictability.

In the context of an image, larger entropy corresponds to greater variability in

the image intensities, i.e. an image with a wider range of intensities produces

higher entropy. An image containing a more limited range of intensities produces

smaller entropy, and an image with constant intensities (perfectly flat) has zero

entropy.

For two random variables X ∈ X and Y ∈ Y, if p(i, j) represents the proba-

bility of joint occurrence of X = i and Y = j, the entropy of this joint event can

be defined as:

H(x, y) = −Σm,n
i,j p(i, j)log2p(i, j) (9.2)

where m and n are the number of possible values of X and Y respectively. The

entropy of X and Y separately can be derived from the joint entropy as

H(x) = −Σm,n
i,j p(i, j)log2Σjp(i, j) and H(y) = −Σm,n

i,j p(i, j)log2Σip(i, j). (9.3)

If X and Y are independent, their joint entropy is equivalent to the sum of

their marginal entropies.

We investigated different approaches for computing entropy, using all 250

sub-images extracted from all available spectral bands, shown in Figure 9.4.

Method I: Matlab’s ‘entropy’ function computes histogram-based entropy mea-

sures. The steps involved are:

1. convert any class other than logical to an 8-bit image, so that the pixel

values are discrete (ranging from 0 to 255) and directly correspond to a bin

value of the histogram,
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2. specify number of bins and compute the grey level frequency histogram,

which provides a vector p of length equivalent to the number of bins,

3. replace 0 entries of p by 10−4, to allow computation of log 0,

4. divide p by the total number of pixels in the original image to obtain a

relative frequency vector,

5. compute entropy using p as given in (9.1).

Figure 9.4 was produced using method I with 16, 32, 64, 128 and 256 bins,

to see the effect of number of bins on entropy. Comparing entropy patterns in

Figure 9.4, we see that number of bins affects the value of the entropy but not

the pattern of entropy plotted against spectral band. We use different scaling on

the y-axes, to preserve the patterns of the curves, but these are easily comparable

with each other.

In general lower entropies correspond to the bands around 68 to 170 for all tea

types except Tea 2. Bajcsy and Groves (2004) used spectral bands corresponding

to high entropy and argued that bands with higher entropy provide more infor-

mation. Therefore we would like to select spectral bands with higher entropy.

Although the first 55 bands have higher entropies, we do not consider them as

these may be due to noise and considered the last 50 bands for all tea types for

features extraction as they have the highest entropies.

Method II: The entropy of an individual image can also be derived from the

joint entropy of two images as given in (9.3). Matlab’s ‘hist2’ function was used

to compute the joint histogram of the two images and the individual entropies

were derived afterwards. The steps are:

1. a scaling step, i.e. quantise and round the image intensities, so that the

intensities are integer and directly fall into one of the bins {0,1,. . . ,L-1}, as

I = round((I−ma) ∗ (L− 1)/(MA−ma)) and J = round((J −mb) ∗ (L−
1)/(MB −mb)) where L is number of bins, ma and mb are the minimum

intensities and MA and MB are the maximum intensity of image I and J

respectively,

2. compute the joint histogram h of the scaled images, which is a 2-D array,

3. replace the 0 entries in h by 10−4,

4. divide h by the total number of pixels in either of the original images to

obtain a relative frequency matrix,
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(a) Entropy using 16 bins
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(b) Entropy using 32 bins
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(c) Entropy using 64 bins
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(d) Entropy using 128 bins
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(e) Entropy using 256 bins

Figure 9.4: Entropy information against spectral band using Method I for bin
sizes 16, 32, 64, 128 and 256.

5. compute marginal entropies as in (9.3).

Figure 9.5 (a) represents entropies computed using Method II for 16 bins,

where the patterns are not similar to those in Figure 9.4. However, the entropies

in Figure 9.5 (b) were also computed using Method II but without scaling the

image intensities (step 1 of Method II), and these show very similar patterns to

those in Figure 9.4.

We observed the effect of scaling used in Method II in simple examples, shown

in Appendix V. Consider a 102 image with intensity ranging from 0 to 232. Scaling

to I = round((I−ma)∗(L−1)/(MA−ma)), where L = 16 is the number of bins,

ma and MA are the minimum and maximum intensities of image I respectively,
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(a) Using hist2 function
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(b) Using hist2 without scaling
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(c) Using hist2 without scaling
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(d) Using hist2 without scaling
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(e) Using hist2 without scaling

1 21 41 61 81 101 121 141 161 181 201 221 241
34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

Spectral Band

E
nt

ro
py

 

 
Tea 1
Tea 2
Tea 3
Tea 4
Tea 5
Tea 6

(f) Using hist2 without scaling

Figure 9.5: Entropy information against spectral band using Matlab’s hist2 func-
tion (a) with scaling for 16 bins and (b)–(f) without scaling for 16, 32, 64, 128
and 256 bins.

gives image intensities scaled from 0 to 15. The histograms of the original image

and the scaled image are very similar. Although the scaling was sensible, we

prefer applying ‘hist2’ but without scaling of the intensities.
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Approach 5: Fifthly, we computed the mutual information (MI) for adjacent

pairs of bands, as used in Ren et al. (2011). The MI between bands i and i+ 1,

I(xi, xi+1), is defined as

I(xi, xi+1) = H(xi) +H(xi+1) −H(xi, xi+1) (9.4)

where H(xi), H(xi+1) and H(xi, xi+1) are the individual entropies of bands i and

i+ 1 and their joint entropy respectively.

We first consider Method II but without scaling the intensities, to compute

individual entropies and joint entropies. Since there are 250 bands, we obtained

249 MIs, which are plotted against spectral band-pair in Figure 9.6. Figures 9.6

(a) and (b) represent the entropies of spectral bands 1, 2, . . . , 249 and 2, 3, . . . , 250

respectively, (c) shows the joint entropy and (d) represents the MI between ad-

jacent pairs of bands, for 16 bins. For all tea types the MI is almost constant at

about 0.1 up to spectral band 110, except Tea 2 which has some higher entropies

around band 30. The MI starts to increase at spectral band 110, except for Tea

4, but the rate of increase is higher for Tea 2.

Figure 9.7 shows MIs using different numbers of bins, namely, for bin size 32,

64, 128 and 256. Any number of bins gives a similar pattern. However 128 and

256 bins produced negative MIs, so the individual entropies and joint entropies

using 128 bins were computed and are shown in Figure 9.8. For 128 bins, the

joint entropies are higher than using fewer bins. Therefore, the MIs are negative

as the MI is the sum of the individual entropies minus the joint entropy.

For comparison, the MIs using method II and with scaling of the intensi-

ties were also computed for 16 bins. Figure 9.9 shows the entropies for bands

1, 2, . . . , 249 and 2, 3, . . . , 250, their joint entropies and MIs for 16 bins. In general

the MIs for all tea types increase with spectral band-pair after 60 (Figure 9.9(d)).

Ren et al. (2011) suggested ranking the MIs and selecting the lowest m values

from the ranked MIs, which can split the total available bands into m+ 1 groups

using the bands corresponding to the lowest MI as boundaries separating the

groups. Then one representative band from each group with the smallest summed

mean squared difference or summed mean absolute difference from each of the

other bands in the group was selected. In our case, the MI for each tea type

increases with spectral band after around 60, if we consider scaling the image

intensities (Figure 9.9). However, if we do not scale the image intensities, for

any number of bins, the MI starts to increase from the beginning for all tea

types, peaks at around band 25 and then drops again. After band 50 the MIs

again increase with band number for all tea types. Selecting the smallest m
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(a) Entropy of 1, 2, . . . , 249
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(b) Entropy of 2, 3, . . . , 250
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(c) Joint Entropy of adjacent pairs of
bands
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(d) MI of adjacent pairs of bands

Figure 9.6: Entropy and mutual information (MI) for 16 bins using Matlab’s
‘hist2’ function but without scaling the image intensities; (a) Entropy of bands
1, 2, . . . , 149; (b) Entropy of bands 2, 3, . . . , 250; (c) Joint entropy of adjacent
pairs of bands, i.e. 1 and 2, 2 and 3, and so on; (d) MI of adjacent pairs of bands.

MIs in either case will not divide the bands into groups unlike the situation

in Ren et al. (2011). Therefore, we consider the 10 bands with lowest MIs for

feature extraction. Again we avoid the first 50 bands due to the presence of noise,

although some of them have lower MIs.

9.6 Computation of PS Moments

Granulometry is now applied on all 702 sample images extracted from selected

spectral bands for all tea types using three different SEs, i.e. a square, disk and

rectangle. We used square SEs of base length sizes 2j − 1, j = 1, 2, . . ., and disk

SEs of radius 2j − 1, j = 1, 2, . . . and rectangle SEs of size j × 2j, j = 1, 2, . . .,

where j is the number of rows and 2j is the number of columns.

Firstly we computed the first four PS moments from each SE from all 250

sub-images extracted from all available bands. The average PS moments are

plotted against tea type in Figure 9.10. Tea types are quite distinguishable in
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(a) MI for 32 bins
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(b) MI for 64 bins
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(c) MI for 128 bins
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(d) MI for 256 bins

Figure 9.7: MI of adjacent pairs of bands using Matlab’s ‘hist2’ function but
without scaling the image intensities for (a) 32; (b) 64; (c) 128 and (d) 256 bins.

terms of PS mean from each SE, i.e. Teas 1, 2 and 6 are clearly distinct from

each other for any PS mean but Teas 3, 4 and 5 are similar as their PS means

are only slightly different from each other. A similar situation is observed for PS

sd. PS skewness from a disk SE clearly distinguished the tea types, however the

square and rectangle SEs produced similar skewness for all tea types. A rectangle

SE produced the same kurtosis for all tea types but they are distinguishable in

terms of kurtosis from the square and disk SEs, except teas 3 and 4. Although

the average PS skewness is not very close to zero, most of the individual skewness

values are close to zero. Consequently, only the PS mean, sd and kurtosis are

used in classification.

PS moments were computed from all 702 sub-images of the first 10 PC images

derived from each tea type, and are shown in Table 9.3. The PS mean and sd for

Tea 1 is similar to Tea 4, whereas Tea 3 is similar to Tea 5, and Tea 6 has the

highest PS mean and sd except for the sd from the rectangle SE. Skewness is zero

(up to two decimal place) for all SEs, hence it is not shown in the table. Tea 6

has negative kurtosis for all SEs while the other tea types have positive kurtosis.

The PS moments from the 10 bands with the strongest PC coefficients were also

computed. The moments for Teas 3 and 4 are very similar and Tea 2 has the
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(a) Entropy of 1, 2, . . . , 249
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(b) Entropy of 2, 3, . . . , 250
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bands
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(d) MI for 128 bins

Figure 9.8: Entropy and MI for 128 bins using ‘hist2’ function but without scaling
the image intensities; (a) Entropy of bands 1, 2, . . . , 149; (b) Entropy of bands
2, 3, . . . , 250; (c) Joint entropy of adjacent pairs of bands, i.e. 1 and 2, 2 and 3,
and so on; (d) MI of adjacent pairs of bands.

highest PS moments for all SEs. We use the first two moments and kurtosis from

all SEs in classification.

The average PS moments from the 10 bands with highest entropies and the 10

bands with lowest MI, using 3 SEs, are also shown in Table 9.3. The PS means

and sds for the bands with highest entropies are higher compared to the means

and sds from the 10 bands with lowest MIs. Again skewness from all SEs is zero

(up to 4 decimal places), hence these are not shown. Therefore, again we use 9

PS moments (mean, sd, and kurtosis from each SE) from both sets of bands for

classification.
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(c) Joint Entropy of adjacent pairs
of bands
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(d) MI for 16 bins

Figure 9.9: Entropy and MI for 16 bins using ‘hist2’ function with scaling of
the image intensities; (a) Entropy of bands 1, 2, . . . , 149; (b) Entropy of bands
2, 3, . . . , 250; (c) Joint entropy of adjacent pairs of bands, i.e. 1 and 2, 2 and 3,
and so on; (d) MI of adjacent pairs of bands for 16 bins.
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(c) PS skewness
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(d) PS kurtosis

Figure 9.10: Plots of the average PS moments against tea type, for square, disk
and rectangular SEs, using all 250 sample images from each tea type.
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Table 9.3: Average PS moments computed from different sets of spectral bands.

PS moments from the first 10 PCs
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 24.79 14.05 35.98 34.31 20.24 53.13 1.51 1.73 2.44
Tea 2 31.62 18.57 45.39 35.37 21.48 52.27 0.16 0.42 0.12
Tea 3 29.95 17.61 44.43 37.56 23.06 59.62 0.88 1.11 2.09
Tea 4 24.76 14.29 35.40 33.47 20.17 50.28 1.34 1.51 2.54
Tea 5 30.41 17.40 44.56 38.28 22.65 60.57 0.70 0.96 1.67
Tea 6 35.30 20.63 50.82 39.73 24.10 58.00 -0.25 -0.01 -0.23

PS moments from 10 bands with highest PC1 coefficients
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 29.98 18.02 46.86 37.86 24.44 66.25 0.08 0.36 0.74
Tea 2 51.66 30.13 68.76 53.00 31.60 67.98 -1.43 -1.40 -1.23
Tea 3 22.63 12.82 36.19 30.43 18.22 57.59 2.66 2.92 5.10
Tea 4 22.30 12.84 36.31 32.26 19.65 61.95 2.26 2.43 3.97
Tea 5 25.92 15.06 41.99 35.06 21.81 66.03 1.04 1.58 2.11
Tea 6 34.40 21.12 54.72 40.21 26.93 72.04 -0.52 -0.15 0.24

PS moments from the 10 bands with highest entropies
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 29.98 18.02 46.86 37.86 24.44 66.25 0.08 0.74 0.74
Tea 2 53.56 31.27 71.10 53.58 31.99 68.89 -1.54 -1.29 -1.29
Tea 3 22.63 12.82 36.19 30.43 18.22 57.59 2.66 5.10 5.10
Tea 4 22.30 12.84 36.31 32.26 19.65 61.95 2.26 3.97 3.97
Tea 5 25.92 15.06 41.99 35.06 21.81 66.03 1.04 2.11 2.11
Tea 6 34.95 21.48 55.69 40.50 27.14 72.41 -0.57 0.16 0.16

PS moments from the 10 bands with lowest MI
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 17.35 9.78 25.45 25.22 15.09 40.72 4.61 5.34 8.03
Tea 2 30.62 18.54 49.58 40.41 26.07 70.15 0.38 0.63 0.79
Tea 3 14.27 7.84 19.98 18.94 10.85 26.46 6.37 6.22 8.99
Tea 4 15.95 9.10 23.30 22.03 13.49 35.43 5.67 6.04 10.48
Tea 5 16.05 8.93 22.69 21.17 12.18 34.13 5.84 5.55 8.33
Tea 6 23.85 13.97 38.16 33.72 21.13 59.62 1.23 1.94 2.41
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9.6.1 Separability measures

Different scatter matrix-based class separability measures, as described in Sec-

tion 7.5.1, are computed to indicate the separation ability of different sets of

bands. The value of Tr{SW}, Tr{SB}, J1, J2 and J3 for each set of bands are

recorded in Table 9.4. A large Tr{SB} indicates good separation of the classes

and a small Tr{SW} indicates that the data points are well clustered around their

mean within each class. A smaller value of Tr{SW} or SW compared to Tr{SB}
or SB generates larger values of J1, J2 and J3. Larger values of these measures

indicates stronger clustering of the feature set vector for each case around the

mean vector in that class, hence greater class separability.

The smallest Tr{SW} corresponds to the 10 bands with the lowest MI, which

also produced the largest Tr{SB}, and so the highest value of J3. The 10 bands

with the strongest PC1 coefficients produced a higher Tr{SW} but quite a high

value of Tr{SB}, and produced the largest values of J1 and J2, confirming the

greater separability of the data. The second best set of features correspond to

the 10 bands with highest entropies as they produced the second largest values

of J1 and J2.

Table 9.4: Separability measures for the PS moments computed from different

sets of bands J1 = Tr{SW
−1SB}, J2 = |ST |

|SW |
and J3 = Tr{SB}

Tr{SW }
.

Set of bands Tr{SW} Tr{SB} J1 J2 J3

All bands 287.421 6.246 0.851 1.851 0.022
First 10 PC images 410.540 1.772 0.406 1.406 0.004

10 bands with strongest
PC1 coefficients

483.800 9.859 4.172 5.172 0.020

10 bands with highest
entropies

492.148 11.190 3.633 4.633 0.023

10 bands with lowest
MI

227.818 11.376 1.957 2.957 0.050

9.6.2 Graphical presentation of different sets of PS mo-

ments

The first four PS moments using a square, a disk and a rectangular SE from the

different sets of bands are presented using box plots. This provides an impression

about the distribution and variability of the moments from the different tea types

as well as the discrimination ability of different sets of PS moments.
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Using all 250 images: The box plots of the PS moments computed using

3 SEs are shown in Figure 9.11. Based on the PS means and sds using all SEs,

only Tea 2 is reasonably different from the other tea types, although outliers are

present in some sets of moments. The levels of the boxes for other tea types,

especially for Teas 3 and 4, are quite similar, indicating lower discrimination

ability. The lower and upper quartiles and the median of the PS skewness are

close to zero for all SEs, with many outliers, as seen in Figure 9.11 (c), (g) and (k).

The box plots of the PS kurtosis for the different tea types are more symmetrical

compared to those of the PS mean and sd, and Teas 2 and 6 are dissimilar from

Teas 3–5 and Tea 1 is a little different from the rest.
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Figure 9.11: Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using all 250 bands from each tea type.

Using the first 10 PC images: The box plots of the first 4 PS moments

from all 3 SEs are shown in Figure 9.12. The moments are rarely symmetric,

with a few outliers for some sets of moments. The levels for different teas differ
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a bit but they do overlap, suggesting higher classification error using this set of

moments.
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Figure 9.12: Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using the first 10 PC images for each tea type.

Using the 10 bands with highest PC1 coefficients and with highest

entropies: Figures 9.13 and 9.14 represent the box plots of these PS moments.

The corresponding plots in both figures are similar, as both methods selected

bands from the upper end of the spectral region. All tea types are less variable

for both these sets of moments and are different from each other. Therefore these

sets of moments are expected to give the best classification results, and these

plots confirm the results seen in the separability measures. However many of the

plots are not symmetric.

Using the 10 bands with lowest MI: The PS moments are able to dis-

tinguish clearly only Teas 2 and 6 (Figure 9.15). This set of moments provides

better separation than the moments using all bands and the 10 PC images but
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Figure 9.13: Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using the 10 bands with highest PC1 coefficients for each tea
type.

worse than the PS moments from the 10 bands with highest PC coefficients or

entropies.

Most of the PS moments appear to have asymmetric distributions in Fig-

ures 9.11– 9.15. Also the adjacent bands are correlated, not independent. Con-

sequently, ANOVA or MANOVA would not be appropriate tests for testing the

differences between the means of the PS moments from different tea types. There-

fore, we consider the Kruskal-Wallis non-parametric test as a robust alternative to

ANOVA to test for differences between the tea types in terms of the PS moments.

The Kruskal-Wallis test only investigates whether the different populations gen-

erating the samples have the same median. The p-values for different sets of

moments from each set of bands are shown in Table 9.5. For all sets of bands

except the first 10 PC images, the p-values for the test statistics from the PS
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Figure 9.14: Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using the 10 bands with highest entropies for each tea type.

mean, sd and kurtosis from all 3 SEs are near zero, strongly indicating different

median values of the PS moments between the tea types.

9.6.3 PCA on different sets of PS moments

We examined the clustering ability of PCA using different sets of moments before

applying any supervised classification techniques. PCA was applied to the 9 PS

moments from the different sets of bands, namely all 250 bands, the first 10 PC

images and the 10 bands with the strongest PC1 coefficients, the 10 bands with

the highest entropy and the 10 bands with the lowest MI. The first two PCs from

each set of bands are plotted against each other in Figure 9.16.

Neither the PCs from all bands nor the PCs from the first 10 PC images were

able to discriminate the tea types. However, the first two PCs computed from the
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Figure 9.15: Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using the 10 bands with lowest MI for each tea type.

10 bands with the strongest PC1 coefficients and the 10 bands with the highest

entropies were able to distinguish all tea types (Figures 9.16 (c) and (d)), except

some images of Teas 3 and 4. Both techniques selected bands from the upper end

of the available spectral bands (see Table 9.2 and Figure 9.5). The 10 bands with

minimum MI were selected from the middle of the spectral bands (Figure 9.7).
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Table 9.5: P-values of Kruskal-Wallis tests; one for each PS moment from each
SE and from each set of bands.

Bands PS mean PS sd
Square Disk Rect. Square Disk Rect.

All bands 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16

First 10 PC images 0.06 0.45 0.06 0.41 0.07 0.45
10 bands with

strongest PC1 coefficients
8.9e−11 2.8e−10 1.1e−10 9.4e−11 1.3e−11 1.3e−8

10 bands with
highest entropies

8.9e−11 2.5e−10 9.1e−11 1.1e−10 9.4e−11 6.6e−9

10 bands with
lowest MI

1.3e−8 1.8e−8 1.0e−8 9.9e−9 1.7e−8 5.9e−8

Bands PS kurtosis
Square Disk Rect.

All bands 2.2e−16 2.2e−16 2.2e−16

First 10 PC images 0.06 0.11 0.02
10 bands with

strongest PC1 coefficients
7.6e−11 1.1e−10 5.8e−11

10 bands with
highest entropies

7.6e−11 1.1e−10 5.4e−11

10 bands with
lowest MI

8.3e−8 2.9e−7 9.7e−7
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Figure 9.16: Scatter plots of the first two PCs derived from different sets of bands.
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9.7 Classification using PS moments

Although the separability measures and PCA clustering confirmed that the 10

bands with the strongest PC1 coefficients and the 10 bands with the highest

entropies are the best sets of bands, we applied SVM, FF-NNET and LDA to all

sets of PS moments and compare their performance. We randomly selected 70%

of the available images and used the 9 PS moments from these images to train

the classifiers and tested on the rest, repeated the process 10 times and averaged

the results over 10 runs to compute the final results. As the ordering of the tea

types are arbitrary (Section 9.4), use of Type 1, Type 2 error and MAE as used in

previous chapters are meaning less. Therefore we only used Type 0 error, which

represents the proportion of misclassification, to assess the performance of each

classifier.

For SVM and FF-NNET the optimum parameter values were decided on based

on a single set of training data. For SVM, a linear kernel produced 100% correct

classification for any cost between 1 and 100 for the PS moments computed from

all 250 bands, the last 150 bands, the first 10 PC images, the 10 bands with

highest entropies and the 10 bands with lowest MI. However, we also computed

the training set error rates using other kernels for some sets of PS moments. For

example, a polynomial kernel with η = 1 produced 100% correct classification for

any combination of cost between 1 and 100 and γ between 0.1 to 1 (Table 9.6),

using 9 PS moments from all 250 images. The radial basis kernel was only slightly

worse as the optimum pairs of cost and γ (any cost of 10 or more with γ = 0.1

(or γ = 0.2, not shown here)) produced 99% correct classification.

Table 9.6: Training set error rates for different combinations of cost and γ for
the radial basis kernel and the polynomial kernel with η = 1, using 9 moments,
where the training set consists of 70% of the 250 sub-images of each tea type.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.5 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.9 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0 0
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Table 9.7: Training set error rates for different combinations of cost and γ for the
radial basis kernel and the polynomial kernel with η = 1, using 9 PS moments,
where the training set consists of 70% of the 10 PC images of each tea type.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.22 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.5 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
0.9 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.5 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
0.9 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

We again sought other appropriate kernels and corresponding parameter val-

ues for the PS moments from the first 10 PC images. The radial basis kernel

produced the lowest error rate of 11% with γ = 0.2 for any cost of 10 or more.

The lowest error rate of 17% for a polynomial kernel with η = 1 corresponds to

any value of cost between 1 and 100 with γ < 0.5 (Table 9.7). However for all sets

of bands, SVM with a linear kernel produced 100% correct classification for any

cost between 1 and 100 using a single training set, so we used the linear kernel

and a cost of 100 in each case.

The error rates for FF-NNET on normalised PS moments using a single train-

ing set with different numbers of hidden neurons are shown in Table 9.8 for dif-

ferent sets of bands. The values of decay and rang were set to be 10−4 and

1/max(|x|), where x is the input data, as these were the best choice for many

sets of features in previous chapters. For all sets of bands 10 hidden units were

used as this produced the lowest training set error rate.

Both the average test set and training set error rates (averaged over 10 runs)

for different sets of bands were computed to examine whether there was any over-

fitting of any classifiers. The error rates are shown in Table 9.9. Training and test

set error rates for SVM and LDA are comparable but for FF-NNET occasionally

the test set error rates are very high compared to the training set error rates,

e.g. for the first 10 PC images and the 10 bands with lowest MI, which suggests

overfitting.

Considering the test set error rates, SVM yielded better classification results

for all 250 bands, however, the performance of LDA and FF-NNET is relatively

poor, although FF-NNET is better than LDA. For bands 101-250, again SVM
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Table 9.8: Training set error rates from a grid search approach for finding the
optimum number of hidden neurons for FF-NNET with rang of 1/max(|x|) using
9 PS moments from different sets of bands.

Number of units
Bands 1 2 3 4 5 6 7 8 9 10
1-250 0.57 0.46 0.36 0.34 0.31 0.25 0.29 0.21 0.20 0.19

101-250 0.39 0.13 0.09 0.04 0.03 0.02 0 0 0 0

First 10 PC images 0.69 0.57 0.14 0.14 0 0 0 0 0 0

10 bands with strongest
PC1 coefficients

0 0 0 0 0 0 0 0 0 0

10 bands with
highest entropies

0 0 0 0 0 0 0 0 0 0

10 bands with
lowest MI

0.40 0.17 0.05 0 0 0 0 0 0 0

produced 100% correct classification, LDA a 34.9% error rate and FF-NNET a

7.4% error rate, and all classifiers performed better than using all bands. Using

the PS moments from the first 10 PC images, SVM with the linear kernel attained

89% correct classification, but the performance of FF-NNET and LDA was very

poor. SVM, LDA and FF-NNET produced very low error rates using the PS

moments from both the 10 bands with the strongest PC1 coefficients (1.1% for

SVM, 5% for LDA and FF-NNET) and the 10 bands with highest entropies (1.1%

for SVM, 6.1% for LDA and 4.4% for FF-NNET). Selecting 10 bands either with

the strongest PC1 coefficients or with the highest entropies was the best choice

overall.

Table 9.9: Overall test and training set error rates for all classifiers using PS
moments; averaged over 10 runs.

No. of bands Test set error rate Training set error rate
SVM LDA FF-NNET SVM LDA FF-NNET

1-250 0.000 0.490 0.310 0.000 0.552 0.200
101-250 0.000 0.349 0.074 0.000 0.339 0.000

First 10 PC images 0.111 0.839 0.772 0.000 0.548 0
10 bands with strongest

PC1 coefficients
0.011 0.050 0.050 0.000 0.000 0

10 bands with
highest entropies

0.011 0.061 0.044 0.000 0.000 0

10 bands with
lowest MI

0.017 0.294 0.411 0.000 0.217 0
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Table 9.10 shows the Type 0 error rates for each tea type using all classifiers

for one of the two best sets of bands, i.e. the 10 bands with highest entropy. Teas

4 and 5 were harder to classify than the other tea types. SVM is best and LDA

is poorest.

Table 9.10: Average test set error rates for SVM, LDA and FF-NNET using 9
PS moments from the 10 bands with highest entropies; results are averaged over
10 runs.

Tea type SVM LDA FF-NNET
Tea 1 0.000 0.067 0.000
Tea 2 0.000 0.000 0.000
Tea 3 0.000 0.000 0.000
Tea 4 0.067 0.100 0.167
Tea 5 0.000 0.200 0.100
Tea 6 0.000 0.000 0.000

Overall 0.011 0.061 0.044

9.8 Classification using Other Features

Since the 10 bands with highest entropies provided good classification results

for all different classifiers using PS moments, we investigated the performance of

different features, i.e. GLCM features, wavelet-based features and wavelet-based

GLCM features from this set of bands.

9.8.1 GLCM features

First we computed 6 GLCM features, namely maximum probability, energy, en-

tropy, contrast, homogeneity and correlation (as in Section 3.5) for four orienta-

tions, namely 0◦, 90◦, 45◦ and 135◦. We averaged the GLCM features over all

orientations to obtain rotationally invariant features. Then we computed the av-

erage of these rotationally invariant features over the 10 bands, which are plotted

against tea type in Figure 9.17 and shown in Table 9.11. Average entropy using

quantisation level 8 is lower than that of level 64 for all tea types, although they

are not very distinct for different tea types. Level 64 produces lower maximum

probabilities (closer to zero) than level 8 and the differences are apparent for each

tea type except Teas 4 and 5. Average contrasts for level 8 look almost identical

in the plot because of the y-axis scale (the numerical values range from 0.39 to

0.66), however level 64 produced considerably different contrast for different tea
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types. Tea types are easily distinguishable based on the average correlation from

both quantisation levels. Average energies from level 64 are more or less identi-

cal and near zero, whereas energies from level 8 are higher and are different for

different tea types. Average homogeneities for different tea types are not very

distinct for either level of quantisation, but level 8 produces higher homogeneities

than level 64. We used all 6 features from either quantisation for classification in

Section 9.8.5.
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Figure 9.17: Plots of the rotationally invariant GLCM features, averaged over 10
bands, against tea type, from the 10 bands with highest entropies.
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Table 9.11: Rotationally invariant GLCM features, averaged over 10 bands, com-
puted at quantisation levels 8 and 64.

Quantisation level 8
Tea type Entropy Max. Pr. Contrast Correlation Energy Homogeneity

Tea 1 2.7205 0.2074 0.6452 0.8017 0.0974 0.7682
Tea 2 2.5879 0.1804 0.4636 0.8531 0.1088 0.8163
Tea 3 2.1749 0.3762 0.3827 0.8078 0.1899 0.8382
Tea 4 2.5327 0.2760 0.5725 0.7843 0.1261 0.7901
Tea 5 2.6855 0.2825 0.6596 0.8307 0.1195 0.7836
Tea 6 2.1375 0.3764 0.3928 0.7799 0.2000 0.8368

Quantisation level 64
Tea type Entropy Max. Pr. Contrast Correlation Energy Homogeneity

Tea 1 9.3300 0.0071 39.3196 0.8432 0.0019 0.3212
Tea 2 9.2821 0.0087 24.8093 0.8969 0.0023 0.3806
Tea 3 8.9118 0.0245 18.4885 0.8701 0.0053 0.4190
Tea 4 9.1871 0.0108 33.5330 0.8324 0.0028 0.3555
Tea 5 9.1576 0.0108 41.5692 0.8633 0.0027 0.3482
Tea 6 8.9924 0.0148 19.9095 0.8493 0.0043 0.3982

9.8.2 Wavelet-based features

We applied a 2-D DWT on each of the 702 sub-images extracted from the 10

bands with highest entropies. We employed the first level of decomposition us-

ing a Daubechies wavelet with 45 vanishing moments as the mother wavelet.

Among many wavelet-based features, the mean and sd were computed from the

approximation sub-band as well as from each detail sub-band. Energy from the

approximation sub-band was also computed. The features were averaged over all

sub-images in each tea type and are shown in Figure 9.18 and Table 9.12. It is

clear that the means of the detail sub-bands are not informative as they are all

near-zero, hence they are not considered for use in classification. Although en-

ergy, mean and sd from the approximation sub-band and the sds from the detail

sub-bands do not vary substantially over different tea types they show at least

some differences, and we used all of these for classification in Section 9.8.5.

9.8.3 Wavelet-based GLCM features

We also computed GLCM features from the wavelet sub-bands of the images

rather than the original 702 images, as these features have produced good classi-

fication results in some applications, e.g. in Li et al. (2011). First a level 1 DWT

was obtained from the 702 images and approximation and detail sub-bands ob-

tained, and then the same 6 GLCM features were computed from all 4 sub-bands.

Again four different orientations were considered while computing wavelet-based
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Table 9.12: Average wavelet-based features from the 10 bands with highest en-
tropies.

Approximation Horizontal Vertical Diagonal
Energy Mean Sd Mean Sd Mean Sd Mean Sd

Tea 1 99.4004 0.5164 0.2616 0.0000 0.0262 0.0001 0.0351 0.0000 0.0102
Tea 2 99.7624 1.0011 0.3844 0.0001 0.0326 0.0002 0.0390 0.0000 0.0122
Tea 3 99.3468 0.4579 0.2815 0.0000 0.0236 0.0001 0.0353 0.0000 0.0098
Tea 4 99.1843 0.2912 0.1723 0.0000 0.0146 0.0000 0.0259 0.0000 0.0075
Tea 5 99.2518 0.4653 0.2946 0.0000 0.0257 0.0000 0.0391 0.0000 0.0097
Tea 6 99.4611 0.6439 0.3161 0.0001 0.0293 0.0001 0.0424 0.0000 0.0117
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Figure 9.18: Plots of the wavelet-based features, averaged over 10 bands, against
tea type from the 10 bands with highest entropies, for each tea type.

GLCM features and the results were averaged over the different orientations to

obtain rotationally invariant features. Wavelet-based GLCM features were com-

puted from the 10 bands with highest entropies with quantisation levels 8 and

64. The average features are shown in Figures 9.19 and 9.20 and Table 9.13. For

both quantisation levels, the approximation sub-band produced higher entropy

and correlation than any detail sub-band, whereas contrast and energy are lower

than in the detail sub-bands. The energies from all sub-bands for quantisation

level 64 are zero up to 2 decimal places, except from the vertical sub-band for
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Tea 6, but they all vary at further decimal places, as seen in Figure 9.20(e). For

both levels of quantisation, tea types look distinct based on all 6 features from all

sub-bands except correlation from the detail sub-bands, though they vary slightly

over tea types. These are more obvious from the figures (Figures 9.19 and 9.20)

than the table (Table 9.13). However, none of the features from either quanti-

sation level is constant over tea types, hence all features are used for classifying

these tea types.
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Figure 9.19: Plots of the average wavelet-based GLCM features computed at
quantisation level 8 against tea type, from the 10 bands with highest entropies.
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Figure 9.20: Plots of the average wavelet-based GLCM features computed at
quantisation level 64 against tea type, from the 10 bands with highest entropies.
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Table 9.13: Rotationally invariant GLCM features from the wavelet decomposi-
tions, from the 10 bands with highest entropies.

Wavelet-based GLCM features at quantisation level 8
Approximation Horizontal

Ent MaxPr Cont Corr Ener Hom Ent MaxPr Cont Corr Ener Hom
Tea 1 2.85 0.15 1.07 0.59 0.08 0.69 2.20 0.31 1.44 -0.20 0.18 0.66
Tea 2 2.70 0.20 0.79 0.70 0.10 0.74 2.28 0.29 1.61 -0.22 0.16 0.65
Tea 3 2.50 0.28 0.80 0.62 0.13 0.74 2.30 0.24 1.65 -0.23 0.15 0.64
Tea 4 2.65 0.23 0.94 0.56 0.11 0.71 2.23 0.28 1.39 -0.18 0.16 0.66
Tea 5 2.80 0.22 1.07 0.62 0.10 0.70 1.99 0.30 1.17 -0.20 0.20 0.68
Tea 6 2.52 0.25 0.81 0.60 0.12 0.74 2.03 0.28 1.17 -0.21 0.19 0.67

Vertical Diagonal
Ent MaxPr Cont Corr Ener Hom Ent MaxPr Cont Corr Ener Hom

Tea 1 2.23 0.29 1.30 -0.11 0.17 0.67 2.36 0.26 1.44 -0.09 0.15 0.66
Tea 2 2.30 0.26 1.42 -0.10 0.16 0.66 2.38 0.26 1.44 -0.07 0.14 0.66
Tea 3 1.99 0.40 1.11 -0.15 0.23 0.72 2.33 0.25 1.40 -0.09 0.15 0.66
Tea 4 2.05 0.28 1.11 -0.14 0.19 0.68 2.65 0.18 1.86 -0.08 0.10 0.61
Tea 5 2.10 0.30 1.08 -0.08 0.18 0.69 2.31 0.30 1.35 -0.08 0.15 0.67
Tea 6 1.85 0.46 0.91 -0.13 0.27 0.74 2.20 0.28 1.22 -0.08 0.17 0.68

Wavelet-based GLCM features at quantisation level 64
Approximation Horizontal

Ent MaxPr Cont Corr Ener Hom Ent MaxPr Cont Corr Ener Hom
Tea 1 9.41 0.00 72.06 0.64 0.00 0.25 9.06 0.01 102.81 -0.24 0.00 0.24
Tea 2 9.33 0.01 49.68 0.74 0.00 0.29 9.07 0.01 116.47 -0.26 0.00 0.23
Tea 3 9.15 0.01 50.31 0.67 0.00 0.29 9.11 0.01 121.08 -0.27 0.00 0.22
Tea 4 9.28 0.01 63.24 0.60 0.00 0.27 9.15 0.01 99.12 -0.21 0.00 0.22
Tea 5 9.25 0.01 72.16 0.66 0.00 0.27 8.91 0.01 79.27 -0.25 0.00 0.25
Tea 6 9.24 0.01 53.07 0.65 0.00 0.28 8.95 0.01 78.42 -0.26 0.00 0.25

Vertical Diagonal
Ent MaxPr Cont Corr Ener Hom Ent MaxPr Cont Corr Ener Hom

Tea 1 9.05 0.01 90.25 -0.12 0.00 0.25 9.18 0.01 102.77 -0.10 0.00 0.22
Tea 2 9.06 0.01 98.55 -0.12 0.00 0.24 9.18 0.01 102.10 -0.08 0.00 0.22
Tea 3 8.84 0.02 75.71 -0.19 0.00 0.27 9.15 0.01 99.26 -0.10 0.00 0.23
Tea 4 8.99 0.01 74.38 -0.17 0.00 0.26 9.31 0.01 137.73 -0.09 0.00 0.19
Tea 5 8.98 0.01 70.78 -0.10 0.00 0.27 9.20 0.01 96.26 -0.09 0.00 0.23
Tea 6 8.85 0.02 61.69 -0.17 0.01 0.28 9.11 0.01 85.58 -0.09 0.00 0.24
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9.8.4 PCA clustering using other features

PCA with normalisation of the features was applied to the different feature sets

above to observe the separation of the six Chinese teas. First we applied PCA

on the 6 rotationally invariant GLCM features for both quantisations separately.

For quantisation levels 8 and 64 the first two PCs explain 95.27% and 93.51% of

the variation in the feature sets respectively. (These very high figures may sug-

gest that the data has been over-simplified by quantisation.) The corresponding

scatter plots of the first two PCs are shown in Figure 9.21 (a) and (b). Both

sets of PCs correctly separate the six tea types without any misclassifications.

Points belonging to each tea type are well separated from the other tea types in

the plots.

PC1 from PCA on 6 wavelet-based features expresses 88.7% of the variation

in the feature set and together with PC2 it explains 98.17%. The scatter plot

shows that all the tea types are also clearly distinguishable using the first two

PCs (Figure 9.21 (e)).

PCA was also applied to the wavelet-based GLCM features from both quan-

tisation levels. For level 8, the first PC explains only 34.37% of the variation in

the features and the first two PCs explain 60.12%. For quantisation level 64, PC1

expresses 38.25% of the variation and the first two PCs explain 63.33%. Since the

proportion of variation explained by the first two PCs is low we would not expect

such good separation using them (Figure 9.21 (c) and (d)). The features from

quantisation level 8 were able to separate only Teas 3, 5 and 6 but the others

overlap with each other. However, the features computed at quantisation level

64 classified the tea types into different groups without any overlap, although the

points within the groups are quite scattered compared to Figure 9.21 (a)–(b).

The PC loadings for the 6 GLCM features from both levels of quantisations

and wavelet-based features are shown in Table 9.14. In PC1 from the GLCM

features at level 8, entropy has the highest coefficient while the second strongest

corresponds to energy and correlation is least strong. Correlation has the highest

coefficient in PC2 whereas maximum probability is the most influential feature in

PC3. At level 64, energy, correlation and contrast have the strongest coefficients

in PC1, PC2 and PC3 respectively. Therefore, none of the features uniquely

dominates the others. For the wavelet-based features, sd from the diagonal,

vertical and approximation sub-bands has the highest coefficients in PC1, PC2

and PC3 respectively.
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−6 −4 −2 0 2 4 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

1st Principal Component

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

 

 

Tea 1
Tea 2
Tea 3
Tea 4
Tea 5
Tea 6

(c) PCs from wavelet-based GLCM fea-
tures at level 8
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(d) PCs from wavelet-based GLCM fea-
tures at level 64
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(e) PCs from wavelet-based features

Figure 9.21: Scatter plots of PC2 versus PC1 from 6 rotationally invariant GLCM
features at quantisation levels 8 and 64 ((a) and (b)), 6 rotationally invariant
wavelet-based GLCM features ((c) and (d)) and 6 wavelet-based features (e)
from the 10 bands with highest entropies from each type.

9.8.5 Classification using supervised classifiers

As the PCA clustering was able to distinguish the tea types 100% correctly, for

both sets of GLCM features and wavelet-based features, we applied SVM, LDA

and FF-NNET to all the feature sets to classify the tea images, and compared

their performances.

For SVM, any kernel, i.e. a radial basis kernel, a polynomial kernel and a

linear kernel, produced 100% correct classification for a single training set with
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Table 9.14: Principal component scores for GLCM and wavelet-based features
from the 10 bands with highest entropies for the Chinese tea images.

Level 8 Level 64
GLCM features PC1 PC2 PC3 PC1 PC2 PC3

Entropy 0.4678 -0.0095 0.0945 0.4418 -0.2725 -0.2294
Max.Probability -0.4137 -0.2949 0.6573 -0.4436 0.1652 0.4371

Contrast 0.4128 -0.3775 0.4562 0.4158 0.2327 0.7307
Correlation 0.2157 0.7819 0.5347 -0.1190 -0.8720 0.4181

Energy -0.4623 -0.0764 0.2409 -0.4601 0.2117 0.1023
Homogeneity -0.4234 0.3914 -0.0836 -0.4575 -0.1979 -0.1927

Wavelet features PC1 PC2 PC3
Energy from

approximation sub-band
0.3944 0.5414 -0.2148

Mean from
approximation sub-band

0.4082 0.4229 0.2180

Sd from
approximation sub-band

0.4243 -0.0604 0.7178

Sd from
horizontal sub-band

0.4255 -0.1799 -0.0927

Sd from
vertical sub-band

0.3674 -0.6985 -0.0159

Sd from
diagonal sub-band

0.4262 -0.0641 -0.6183

any cost of 1 or above, any value of γ between 0 and 1 and for the polynomial

kernel η = 1, using the GLCM features from either quantisation level 8 or 64. For

the FF-NNET on normalised features with decay of 10−4 and rang of 1/max(|x|),
where x is the input data, any number of units between 1 and 10 produced 100%

correct classification using a single training set. However we used a linear kernel

with cost of 100 in SVM and 10 hidden neurons in the FF-NNET for both sets

of GLCM features. The same parameter settings were used for the wavelet-based

features and wavelet-based GLCM features.

For the rotationally invariant GLCM features at quantisation levels 8 and

64, all classifiers gave 100% correct classification. All classifiers also perfectly

classified all tea types using the wavelet-based features and wavelet-based GLCM

features. Therefore the GLCM features, wavelet-based features and the wavelet-

based GLCM features are slightly more informative than the PS moments for

classifying these images using any of the classifiers.
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9.9 Colour Chinese Tea Images

We now consider the use of colour images rather than the hyperspectral images to

explore whether the use of hyperspectral images is more advantageous (provides

more useful information) than colour images for classifying these tea images.

Twenty non-overlapping sub-images of size 2562 were extracted from each of the

colour images shown in Figure 9.2. Both the RGB and HSV (hue-saturation-

value) colour spaces are considered for computation of PS moments. The PS

moments using square, disk and rectangle SEs were computed from both sets of

colour representations. The average PS moments computed from the red, green

and blue planes and also from a HSV representation of the colour Chinese tea

images are shown in Table 9.15. PS skewness from all SEs is zero up to 4 decimal

places, therefore is not shown in the table. There is some difference between the

teas.

In the red plane of the RGB colour representation, Tea 4 has the highest and

tea 6 has the lowest PS mean from a square and a rectangle SEs, whereas a disk

SE produced the highest mean for tea 5 and lowest for tea 6. In the green plane,

the PS means for tea 3 are highest and lowest for tea 6 for all SEs, and in the

blue plane the lowest PS mean corresponds to tea 2 for all SEs but the highest

for tea 4 from a square and disk SEs and tea 3 for a rectangle SE. The tea types

are also different in terms of PS sd and kurtosis. A rectangle SE gave higher first

two PS moments than a square and a disk SE and the first two PS moments from

a disk SE are generally lowest for all tea types.

The PS means and sds from the hue and saturation images are much lower

for all SEs than those of the intensity images. For the hue images, Tea 2 has the

highest PS mean and sd and the lowest kurtosis and Tea 6 has the lowest PS

mean. For the saturation images, Tea 2 has the highest mean and sd whereas

Tea 1 has the lowest. Overall the PS mean, sd and kurtosis are different for the

different tea types for both sets of colour maps, hence are likely to be useful for

classification.

We used both sets of PS moments in the SVM, LDA and FF-NNET for

classifying the teas. There are 3 PS moments (mean, sd and kurtosis) from each

SE for each of the 3 colour planes in both colour representations, giving a total of

27 PS moments to be used in any classifier. Table 9.16 shows the training set error

for SVM (for a single training set) with different kernels and different values of γ

and cost. For the polynomial kernel any value of η between 1 and 5 gave slightly

higher error rate than η = 0. Although a polynomial kernel with η = 0 does

as well as the linear kernel for the PS moments from the RGB colour planes, a
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linear kernel with cost 100 was used for classification as it produced 100% correct

classification for both sets of PS moments. Ten hidden units with decay of 10−4

and rang of 1/max(|x|), where x is the input data, were used for both the PS

moments from the RGB HSV colour maps in FF-NNET (with normalisation of

features), as they produced lower training set error rates (Table 9.17).

The average test set error rates for all classifiers using the PS moments from

both colour representations are shown in Table 9.18. For the RGB images, the

error rates for SVM, LDA and FF-NNET are 7.2%, 23.9% and 21.7%, whereas

for the HSV model the error rates are 7.8%, 22.8% and 22.2% respectively, so

the error rates are not very different for the RGB and HSV colour spaces. None

are nearly as good as using the hyperspectral images, as would be expected since

there is less information in the RGB and HVS data.
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Table 9.15: Average PS moments computed from the RGB and HSV colour maps
of the Chinese tea images using a square, disk and rectangular SEs.

PS moments from the red plane of the Chinese tea images
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 132.54 94.18 224.05 154.62 106.06 284.52 -0.63 -1.24 -0.30
Tea 2 139.04 81.56 225.10 147.44 85.23 268.40 -0.11 -0.34 0.47
Tea 3 184.04 114.07 292.40 163.47 101.62 276.62 -1.60 -1.67 -1.56
Tea 4 195.66 107.87 306.69 165.16 103.11 275.08 -1.52 -1.53 -1.50
Tea 5 182.10 120.33 283.24 167.41 122.17 276.35 -1.38 -1.25 -1.35
Tea 6 125.50 78.29 197.07 154.51 93.36 260.09 -0.19 -0.66 0.22

PS moments from the green plane of the Chinese tea images
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 120.10 86.67 196.69 146.48 105.00 259.93 0.12 -0.43 0.94
Tea 2 117.77 71.63 176.86 128.68 79.20 208.29 0.97 0.96 1.58
Tea 3 198.64 129.00 330.80 178.49 119.31 321.04 -1.64 -1.71 -1.57
Tea 4 197.57 122.90 325.77 168.98 106.62 303.88 -1.53 -1.54 -1.46
Tea 5 175.04 104.08 278.15 164.52 94.71 279.46 -1.39 -1.36 -1.27
Tea 6 104.61 66.78 158.02 133.79 85.64 215.74 0.96 0.59 1.82

PS moments from the blue plane of the Chinese tea images
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 144.75 103.43 245.58 156.43 107.55 288.82 -0.91 -1.42 -0.53
Tea 2 114.73 72.31 170.60 123.65 78.59 198.55 1.28 0.74 2.32
Tea 3 221.96 136.39 391.05 168.01 103.03 321.09 -1.81 -1.85 -1.84
Tea 4 232.00 150.40 386.89 177.31 118.25 317.31 -1.77 -1.82 -1.79
Tea 5 205.39 134.70 325.16 171.47 112.39 286.28 -1.73 -1.76 -1.70
Tea 6 149.27 96.17 241.14 169.64 106.36 295.95 -0.77 -1.01 -0.31

PS moments from the Hue images
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 11.28 6.01 15.12 8.30 4.78 11.83 1.31 0.79 1.08
Tea 2 50.21 28.97 69.91 46.71 27.54 65.02 -0.11 -0.28 -0.38
Tea 3 12.46 6.71 16.74 10.22 5.93 14.83 2.66 2.40 2.56
Tea 4 14.85 8.10 20.10 14.40 8.28 20.43 5.86 5.04 5.07
Tea 5 12.20 6.47 16.42 11.96 6.72 16.90 7.82 6.87 8.50
Tea 6 10.86 5.81 14.55 8.60 5.04 12.25 3.68 3.36 3.99

PS moments from the Saturation images
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 21.84 11.28 30.11 21.44 11.68 31.42 4.07 5.14 5.18
Tea 2 103.30 54.20 149.57 96.36 49.16 145.14 0.98 0.89 0.36
Tea 3 33.17 17.66 45.79 33.09 17.38 46.41 3.87 3.43 4.20
Tea 4 58.36 31.93 80.93 58.94 33.54 82.12 2.48 3.47 2.43
Tea 5 66.51 37.53 96.06 58.11 32.70 87.25 0.48 0.06 1.05
Tea 6 33.76 17.30 46.25 35.65 18.95 49.36 4.62 5.15 4.84

PS moments from the Intensity images
Tea type PS mean PS sd PS kurtosis

SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.
Tea 1 147.45 96.22 256.30 157.24 95.47 298.10 -1.15 -1.64 -0.88
Tea 2 139.20 77.64 225.62 145.64 86.63 265.79 -0.25 -0.16 0.32
Tea 3 206.17 141.77 342.76 164.83 112.33 292.47 -1.81 -1.82 -1.80
Tea 4 216.65 132.37 376.09 175.83 115.17 337.19 -1.68 -1.78 -1.66
Tea 5 193.63 137.14 314.43 172.36 122.17 301.46 -1.58 -1.67 -1.54
Tea 6 141.07 96.46 229.87 161.49 105.38 282.36 -0.79 -0.99 -0.53
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Table 9.16: Training set error rates for different combinations of cost and param-
eter γ for a radial basis kernel and a polynomial kernel with η = 0 using 27 PS
moments; 9 from each of the RGB colour plane and a linear kernel for RGB and
HSV colour maps of the Chinese tea images, using square, disk and rectangle
SEs.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.36 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.5 0.67 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
0.9 0.75 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

Polynomial kernel with η = 0
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.9 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Linear kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
RGB 0 0 0 0 0 0 0 0 0 0 0

HSV 0 0 0 0 0 0 0 0 0 0 0

Table 9.17: Training set error rates from a grid search approach for finding the
optimum number of hidden neurons for FF-NNET with decay of 10−4 and rang
of 1/max(|x|), using 27 PS moments from RGB and HVS colour maps of the
Chinese tea images using square, disk and rectangle SEs.

Number of units
1 2 3 4 5 6 7 8 9 10

RGB 0.08 0 0.01 0 0 0 0 0 0 0

HSV 0.37 0.06 0 0 0 0 0 0 0 0

Table 9.18: Average test set error rates for SVM, LDA and FF-NNET using 27
PS moments, 9 from each colour plane of the Chinese tea images using square,
disk and rectangle SEs; results are averaged over 10 runs.

Tea type PS moments from RGB images PS moments from HSV images
SVM LDA FF-NNET SVM LDA FF-NNET

Tea 1 0.017 0.133 0.150 0.000 0.100 0.233
Tea 2 0.000 0.083 0.083 0.000 0.050 0.000
Tea 3 0.083 0.267 0.183 0.033 0.183 0.167
Tea 4 0.167 0.400 0.467 0.267 0.417 0.300
Tea 5 0.133 0.467 0.317 0.167 0.367 0.283
Tea 6 0.033 0.083 0.100 0.000 0.250 0.350

Overall 0.072 0.239 0.217 0.078 0.228 0.222
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9.10 Grey Scale Chinese Tea Images

The grey scale versions of the RGB images were also considered for classification

of the images instead of the RGB or HSV colour spaces. The RGB images (shown

in Figure 9.2) were converted to grey scale images and twenty non-overlapping

sub-images of size 2562 were extracted from each image. One such sub-image

from each tea type is shown in Figure 9.22.

(a) Tea 1 (b) Tea 2 (c) Tea 3

(d) Tea 4 (e) Tea 5 (f) Tea 6

Figure 9.22: Grey scale images of size 256 × 256 from 6 types of Chinese tea.

The PS moments from the grey scale Chinese tea images using a square, disk

and a rectangular SEs were computed and averaged over all sub-images. Average

PS moments are shown in Table 9.19. Tea 3 has the highest mean and sd using

any SE, whereas Tea 6 has the lowest mean and sd. Skewness from all SEs is zero

up to 5 decimal places, so they are not shown in the table and therefore again we

use only the mean, sd and kurtosis from all SEs for classification.

We used SVM, LDA and FF-NNET (on normalised features) to classify the

grey scale images. For all classifiers 70% randomly chosen sub-images from each

tea type were used as the training set and the remaining are used for testing.

The process was repeated 10 times and the results are averaged over 10 runs.

For SVM, the training set error rates from a single training set for different

values of γ and cost for a radial basis kernel and a polynomial kernel are shown

in Table 9.20. The radial basis kernel produced the lowest error rate of 8% for

γ = 0.1 and cost of 10, whereas the lowest error rate of 5% from a polynomial
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Table 9.19: Average PS moments computed from the grey scale Chinese tea
images using a square, disk and rectangular SEs.

Tea type PS mean PS sd PS kurtosis
SEs Square Disk Rect. Square Disk Rect. Square Disk Rect.

Tea 1 132.77 92.99 219.49 157.05 104.55 279.30 -0.38 -1.11 0.06
Tea 2 125.37 82.29 192.96 134.29 86.32 227.60 0.40 -0.23 1.04
Tea 3 206.04 129.34 338.05 178.88 111.81 314.60 -1.71 -1.78 -1.69
Tea 4 200.41 120.01 325.21 163.71 107.13 287.63 -1.61 -1.66 -1.59
Tea 5 189.04 118.83 310.95 172.56 115.56 306.85 -1.50 -1.40 -1.42
Tea 6 117.29 78.05 179.16 144.56 92.36 236.58 0.12 -0.53 0.81

kernel with η = 1 can be obtained for γ = 0.1 and any cost between 1 and 100.

The table also shows the error rate for a linear kernel, which produced 100%

correct classification for any cost between 1 and 100. In FF-NNET, 10 hidden

units produced the lowest error rate (Table 9.21), hence 10 units are used.

Table 9.20: Training set error rates for different combinations of cost and param-
eter γ for a radial basis kernel and a polynomial kernel with η = 1 and for a
linear kernel with different cost using 9 PS moments from the grey scale Chinese
tea images using square, disk and rectangle SEs.

Radial basis kernel
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.27 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.5 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
0.9 0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

Polynomial kernel with η = 1
Cost

γ 1 10 20 30 40 50 60 70 80 90 100
0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.5 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.9 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Linear kernel
Cost

Cost 1 10 20 30 40 50 60 70 80 90 100
0 0 0 0 0 0 0 0 0 0 0

Table 9.22 shows the average test set error rates for the different classifiers.

SVM produced only a 1.4% error rate, while LDA and FF-NNET produced 51.6%

and 27.5% error rates respectively, which are much poorer. LDA performed much

worse with these images than with the colour ones, FF-NNET was slightly worse,
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Table 9.21: Training set error rate from a grid search approach for finding the
optimum number of hidden neurons for FF-NNET with decay of 10−4 and rang
of 1/max(|x|) using 9 PS moments from the grey scale Chinese tea images using
square, disk and rectangle SEs.

Number of units
1 2 3 4 5 6 7 8 9 10

Error rate 0.32 0.21 0.02 0 0 0 0 0 0 0

Table 9.22: Average test set error rates for SVM, LDA and FF-NNET using 9 PS
moments from grey scale Chinese tea images; results are averaged over 10 runs.

Tea type SVM LDA FF-NNET
Tea 1 0.000 0.700 0.283
Tea 2 0.033 0.400 0.133
Tea 3 0.000 0.446 0.217
Tea 4 0.000 0.667 0.333
Tea 5 0.000 0.533 0.333
Tea 6 0.050 0.350 0.350

Overall 0.014 0.516 0.275

but SVM was (surprisingly) better. All are worse than with the hyperspectral

images.

9.11 Conclusion

Although all available spectral bands of hyperspectral images are used in many

classification problems, selecting the optimum set of bands is important. We have

discussed different approaches for selecting the optimum set of bands, among

which choosing bands with the highest entropy and the bands with the strongest

PC1 coefficients appeared to be the best criteria. A set of bands either with

maximum entropies or with the strongest PC1 coefficients produced the lowest

error rates for all classifiers for these tea images. However it is not guaranteed that

these are the best criteria for selecting appropriate bands for every application,

as these may depend on the images of interest. The performance of all classifiers

using PS moments from the hyperspectral images is satisfactory, although SVM

outperforms LDA and FF-NNET.

The rotationally invariant GLCM features, wavelet-based features and wavelet-

based average GLCM features provide very useful information for classifying these

tea images and are all better than PS moments, as these features gave 100% cor-
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rect classification using any classifier with appropriate parameter settings.

The usefulness of two different colour representations and grey scale images,

compared to the hyperspectral images, was also examined. SVM, LDA and FF-

NNET showed similar efficiency using the PS moments from both colour maps.

Although SVM worked slightly better with the PS moments from the grey scale

images, the performance of LDA was much better with the PS moments from

either the RGB or HSV images. The FF-NNET had slightly better results for

the RGB and HSV images than for the grey scale images.

Nonetheless, use of the optimum set of bands from the hyperspectral images is

much more advantageous (as the error rates for SVM, LDA and FF-NNET were

only 1.1%, 6.1% and 4.4% respectively) than either colour plane representation

or the grey scale version for any classifier.

Overall conclusions of the thesis are drawn in Chapter 10.1.
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Chapter 10

Conclusions

In this chapter a summary of the important findings from Chapters 4–9 is pre-

sented in Section 10.1 and future potential research directions are discussed in

Section 10.2.

10.1 Key Findings

In this thesis, the use of regression modelling based on PS moments as image

texture features from multiple SEs has been explored as a means of classifying

texture images. GLCM features and wavelet-based features were also used for

comparison. Other approaches to classification, i.e. SVM, LDA and FF-NNET,

were also used for comparison.

We considered several different sets of texture images. The PS moments from

a disk SE provided more useful features than a square or a line SE at any of

the four angles (0◦, 90◦, 45◦ and 135◦) for the synthetic images as well as for the

real images of corrosion and Indian black tea granules. However computing PS

moments using a disk SE is much more computationally expensive (at least 15

times more) than a square SE and horizontal or vertical line SEs for all sets of

synthetic and real images. A line SE at 45◦ or 135◦ also required more time than

the above SEs for computing PS moments but less than one fifth of the time

needed for a disk SE.

Both the foreground and background PS mean and sd of the synthetic images

containing pyramids or ellipses showed a clear relationship with evolution time

of the texture but PS skewness or kurtosis did not. However, due to the high

variability of the PS means and sds across the images at a specific point in time,

none of the classifiers except SVM produced good classification results. The

regression model was built using average PS moments (central moments) and
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the prediction was computed from each image separately, which also affected the

classification results. However, building a regression model using the PS moments

from every single image did not improve the results. Also the use of the PS median

instead of the PS mean in the model building was not found to be beneficial. We

considered as well the use of raw moments instead of the central moments for the

synthetic images, but this was not advantageous and hence the results are not

included in the thesis.

The training times for the SVM and LDA were very rapid (a few seconds

per time state) whereas the FF-NNET required a few minutes per time state

for the synthetic images. However the total time needed for FF-NNET was not

significant for any of the real images used here, as they consist of either 10 time

points or 8 or 6 classes.

For classifying the corrosion images, the new regression-based classification

approach worked better than FF-NNET and almost as well as LDA using 8 fore-

ground PS moments, and was more robust using fewer features. It outperformed

the previously published results on these images in McKenzie et al. (2003), Gray

et al. (2005) and Gray et al. (2006) where the lowest error rate is about 5 times

higher than our highest error rate. Performance might be improved further by

clipping any predictions to the range of times observed in the training image set.

Our methodology again performed better for classifying texture images of Indian

black tea granules according to granule size, compared to the published work on

these images in Borah et al. (2007). The PS moments produced very good results,

with the highest error rate (8.1%) being less than half of the error rate (20%)

obtained in Borah et al. (2007), who used wavelet-based features coupled with

LVQ and MLP. For these images wavelet-based features do not work well. A key

step for getting successful results in both classification problems was the use of a

disk SE of increasing radius in the pre-processing (top-hat or bottom-hat trans-

formation) of the images, since the use of a fixed size disk in the hat transform

led to high error rates for all classifiers.

Comparing the performance of different texture features for the synthetic im-

ages, neither PS moments nor GLCM features were better overall than the other,

as in some cases the former worked better and in other cases the opposite was

observed. However for the real images of corrosion and tea granules, the shape-

based PS moments were much better than the GLCM features for classifying

those images. Furthermore, for the images of tea granules, PS moments provided

very good classification results compared to the wavelet-based features.

For the SVM, the simple linear kernel was the best kernel for our images
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as it gave a lower error rate for all sets of features except for the PS moments

from the corrosion images, for which the polynomial kernel was best. The widely

used radial basis kernel did not produce the lowest error rate for any of the sets

of features from any of the sets of images used here. In general SVMs were

much superior for classification compared to any of the other classifiers used

here, and were extremely robust to the choice of texture features. However,

SVMs (and also FF-NNET) require proper training to give optimum results, as

an inappropriate choice of kernel function and its parameters can lead to a large

error rate (Section 5.5). If correctly trained, the state-of-the-art classifier SVM

can provide 100% or near 100% correct classification rate in many classification

problems, as for example in Li et al. (2011), Chen et al. (2009a) and Chen et al.

(2006).

Several existing techniques for selecting informative bands from hyperspectral

images were investigated here for use in texture classification of images of Chinese

teas. We considered the first 10 PC images and 10 spectral bands with strongest

coefficients in the first PC, from PCA, 10 bands with highest entropies and 10

bands with lowest MIs. PCA to select bands with strongest PC1 coefficients

and entropy-based methods were equally effective here for choosing informative

spectral bands. Using the bands with the strongest coefficients in the first PC

or with the highest entropy provided very good classification results for any of

SVM, LDA and FF-NNET. SVM was equally effective with a 1.1% error rate for

classifying these images using PS moments computed from either set of bands.

LDA and FF-NNET produced equal error rates of 5% using the PS moments from

the 10 bands with the strongest coefficients in the first PC, but LDA produced

a slightly higher error rate of 6.1% than that of FF-NNET (4.4%) for the PS

moments from the bands with highest entropies.

The other sets of features, i.e. rotationally invariant GLCM-based features at

quantisation levels 8 and 64, wavelet-based features and wavelet-based average

GLCM features at quantisation levels 8 and 64 from the 10 bands with high-

est entropies were very robust (100% correct classification) for classifying these

hyperspectral tea images using any of the three classifiers considered. Even the

choice of different kernels and the cost for SVM and the different parameter values

(including number of hidden units) for FF-NNET were not crucial.

Although the PS moments were more effective for classifying the images of

corrosion and Indian black teas than the GLCM features, and wavelet-based

features showed worse performance for the Indian tea images, for the Chinese tea

images the intensity-based GLCM features gave 100% accuracy. For the Chinese
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tea images, the GLCM features were averaged over four different orientations to

produce the results in Section 9.8, but the features from any of the orientations

separately produced the same results.

The PS moments from the RGB and HSV colour representations of the images

provided similar information, as SVM and LDA produced similar results for both

sets of PS moments, though the HSV colour representation was slightly better in

FF-NNET. Surprisingly, the grey scale version of the images was more informative

than either of the colour representations, but only for SVM.

For all sets of features from the Indian black tea images as well as from the

hyperspectral images of Chinese tea, the results of any of the supervised classifiers

reflected the degree of class separation expected from the plots of PC2 against

PC1, from PCA.

10.2 Further Work

For further work, the use of 3-D (grey scale) SEs rather than flat (binary) 2-D

SEs could be examined for the grey scale image morphology, as the 3-D SEs

may extract more useful information from the images and hence lead to more

accurate classification. In particular it could potentially overcome the need for

hat transformation or other suitable pre-processing to reduce intensity variations

within the image texture primitives. However the use of 3-D SEs would be very

expensive computationally.

Also the use of higher order features, instead of the first and second order

features used here, may be expected to give better classification results, hence it

would be interesting to investigate the performance of these for texture classifi-

cation. The autocorrelation function of an image and run length matrix-based

features (described in Section 3.5) can be regarded as higher order texture fea-

tures. Some of the more recent feature extraction techniques, e.g. the local binary

pattern (Ojala et al. (1996)) and coordinated cluster representation (Kurmyshev

and Cervantes (1996)) could also be applied. Combining different features and

using variable selection procedures could also be investigated.

Combining different classifiers may provide better classification results, at

least for the synthetic images, since none of the classifiers except SVM works well

either with the PS moments or GLCM features from the synthetic images. Com-

bined classifiers have achieved high classification accuracy in many applications,

for example in Prasad et al. (2010).

A more systematic study of when different image features do well would be
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interesting, although for the SVM the choice of features does not greatly affect

the results, at least for the images used here. We used GLCM features only at

135◦ for the synthetic images as well as for the real corrosion and tea granule

images, since the features from other orientations produced very similar time

or class trends, however averaging them over different orientations, as we have

done later in Section 9.7, may lead to better classification results. In the wavelet

decomposition we used the Daubechies wavelet with 45 vanishing moments, as

this is a widely used wavelet basis. Different wavelet bases such as Haar wavelets,

or using a different number of vanishing moments with the Daubechies wavelet,

may alter the results, so it would be interesting to investigate this also.

For classifying the hyperspectral images of Chinese tea, we a considered se-

lection of different sets of bands using several different approaches, and extracted

different features from these sets of bands for classification. In future work spec-

tral signature could also be used as a feature, as it is used in many applications

of hyperspectral image classification, e.g. in Camps-Valls et al. (2007).
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APPENDICES

Appendix I: Matlab code

The Matlab code to generate the synthetic texture images of pyramids and ellipses

discussed in Section 4.2 is given here.

Generation of synthetic images of pyramids of different widths.

%parameters of the program

time =100; %number of iterations

start= 40; %control the colour of new object

objectcode = 50; %initial mean object code

imsize=256; %size of the image

pr=0.99; %probability of adding a new object

updatepr = 0.2; %probability of updating an existing object

%parameters to control the colour of the objects

updateinc = 10; %determine increment of pixel intensities

grey = 0.25; %scaling factor to compute the greylevel

%at the edges of the objects

%parameters to control the size of the object

initstep = 1; %to create a random stepsize

stepinc = 1; %to create a random stepsize

stepsize=zeros(time,1); %store stepsize of each object

phi= 45; %control orientation of the objects

%arguments of the program

nobjects=0; %initial number of object

im=zeros(imsize, imsize); %initial 2D blank image

%figure, imshow(im);

output=zeros(imsize,imsize,1,time); %4D image to store images.

ex_num= zeros(time,1); %vector to store iterations when new objects added

ex_numc= zeros(time,2); %matrix to store centre coordinates of objects

size = zeros(time,1); %vector to store the current size of each object
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greylevel = zeros(time,1); %store current greylevel of the central section

%body of the programm

for t = 1:time

output(:,:,:,t+1) = output(:,:,:, t);

%subsequent stages are built on the previous stage

if t==1; %force to add the first object at the

t; %beginning of the evolution

cx=round(unifrnd(1,imsize,1,2)); %set random location within image

newobjectcode = round(start + 2*(objectcode-start)*unifrnd(0,1));

%generate objectcode for the new object

im(cx(1),cx(2)) = newobjectcode;

%assign the objectcode at the centre of the new object.

increment = round(updateinc + unifrnd(0,1)*updateinc);

for i = max(cx(1)-1,1): min(cx(1)+1,imsize);

for j = max(cx(2)-1,1): min(cx(2)+1,imsize);

im(i, j) = min(im(i,j) + increment, 255);

end; % loop for j

end% loop for i

else

if unifrnd(0,1) <= pr %condition of adding a new object

cx=round(unifrnd(1,imsize,1,2)); %set random location

newobjectcode = round(start + 2*(objectcode-start)*unifrnd(0,1));

%generate the greylevel of the object

if im(cx(1),cx(1))==0

%check to see if im matrix is empty where a new object appears

disp(’Adding a new object at iteration’);

%adding a new point at this time

t;

disp(’Centre is at location’)

cx;

im(cx(1),cx(2)) = newobjectcode;

%fill the centre with the newobjectcode

nobjects= nobjects+1;

greylevel(nobjects)=newobjectcode;

ex_num(nobjects)=t; %stores iteration number when new object added

ex_numc(nobjects,:)=cx; %store (x,y) location of new object

nobjects;

end %end for if im(cx(1),cx(1))

end %end for unifrnd(0,1)<= pr

end %end if t==1

%now revisit existing objects for possible update

for k = 1: nobjects-1

if unifrnd(0,1) <= updatepr %updating the object using updatepr
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t; %at which iteration update is taking place

nobjects; %how many objects have been updated

disp(’Updating object’); %updating existing object

k; %display which object is updating

increment = round(updateinc + unifrnd(0,1)*updateinc);

i1 = max(ex_numc(k,1) - size(k),1);

i2 = min(ex_numc(k,1) + size(k), imsize);

j1 = max(ex_numc(k,2) - size(k),1);

j2 = min(ex_numc(k,2) + size(k), imsize);

for i = i1: i2;

for j = j1: j2;

ir = ex_numc(k,1)+(i-ex_numc(k,1))*round(cosd(phi))-(j-ex_numc(k,2))*

round(sind(phi));

jr = ex_numc(k,2)+(i-ex_numc(k,1))*round(sind(phi))+(j-ex_numc(k,2))*

round(cosd(phi));

%computes the rotated x and y coordinates

%fill the area with the minimum of newobjectcode + increment and 255.

for inew = max(min(ir),1):min(max(ir),imsize);

for jnew = max(min(jr),1):min(max(jr),imsize);

im(inew, jnew) = min(im(inew, jnew) + increment, 255);

end %end for jnew

end %end for inew

end %end for j

end %end for i

greylevel(k) = min(round(im(i,j)*grey),255); %store old greylevel

stepsize(k)=initstep + round(stepinc*unifrnd(0,1));

%increase the size of the object

size(k)=size(k)+stepsize(k);

for i=max(ex_numc(k,1)-size(k),1):min(ex_numc(k,1)+size(k), imsize);

for j=max(ex_numc(k,2)-size(k),1):min(ex_numc(k,2)+size(k), imsize);

ir=ex_numc(k,1)+(i-ex_numc(k,1))*round(cosd(phi))-(j-ex_numc(k,2))*

round(sind(phi));

jr=ex_numc(k,2)+(i-ex_numc(k,1))*round(sind(phi))+(j-ex_numc(k,2))*

round(cosd(phi));

%again computes rotated x and y coordinates

for inew = max(min(ir),1):min(max(ir),imsize);

for jnew = max(min(jr),1):min(max(jr),imsize);

im(inew, jnew) = max(im(inew,jnew), greylevel(k));

end %end for jnew

end %end for inew

end % end for j

end % end for i

end% if unifrnd(0,1) <= updatepr

end; %end for objects loop

output(:,:,:,t) = im(:,:);%store im matrix at output matrix
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%figure,imshow(im2uint8(im(:,:)+1, ’indexed’));

%display image at each evolving time

%im2uint8 converts the intensity image to uint8 for the purpose of

% display 1 is added as some of the pixel values are zero.

end; %end for time loop

%the following code is used to display different attributes and

% evolution time of the objects

disp(’Total number of objects added is’);

nobjects;

disp(’at iterations’);

ex_num(1:nobjects,:);

disp(’and at locations’);

ex_numc(1:nobjects,:)

disp(’current major axis of each object’);

a(1:nobjects,:) ;

disp(’current minor axis of each object’);

b(1:nobjects,:);

disp(’ratio of each object’);

ratio(1:nobjects,:);

disp(’orientation of each object’);

phi(1:nobjects,:);

disp(’stepsize of each object’);

stepsize(1:nobjects,:);
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%parameters of the program

time = 100; %number of iterations

start= 10; %control the colour of new object

objectcode = 15; %initial mean object code

imsize=256; %size of the image

updateinc=10; %determine increment of pixel intensities

pr=0.99; %probability of adding a new object

updatepr = 0.3; %probability of updating an existing object

%parameters to control shapes of the ellipses

rmin=0.3; %minimum of the ratio

rmax=.9; %maximum of the ratio

mu= 0.666; %mean of the Gaussian random number

sigma=.3; %sd of the Gaussian random number

%by keeping sigma at 0.3 ratios are more likely to fall between .4 to .9.

a = zeros(imsize,1); %to store the major axis

b = zeros(imsize,1); %to store the minor axis

ratio = zeros(time,1); %to store ratio of major and minor axis

%of each object

%parameters to control how fast objects grow.

initstep = 2; %to control stepsize

stepsize = ones(time,1); %to store stepsize of each object

%parameters to control orientation of the objects

phimin=125; %minimum orientation

phimax=135; %maximum orientation

phi = zeros(time,1); %store orientation of each objects

%arguments of the program

nobjects=0; %initial number of object

im=zeros(imsize, imsize); %initial 2D blank image

%figure, imshow(im);

output = zeros(imsize,imsize,1,time); %4D image to store images.

ex_num = zeros(time,1); %store iteration number when a new point is added

ex_numc = zeros(time,2); %matrix to store centre coordinates of objects

greylevel = zeros(time,1); %store current greylevel of the central section

%body of the programm

for t = 1:time

output(:,:,:,t+1) = output(:,:,:, t);

if t==1;

cx=round(unifrnd(1,imsize,1,2)); %set random location
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newobjectcode = round(start + 2*(objectcode-start)*unifrnd(0,1));

im(cx(1),cx(2)) = newobjectcode;

increment = round(updateinc + unifrnd(0,1)*updateinc);

for i = max(cx(1)-1,1): min(cx(1)+1,imsize);

for j = max(cx(2)-1,1): min(cx(2)+1,imsize);

im(i, j) = min(im(i,j) + increment, 255);

end; % loop for j

end% loop for i

else

if unifrnd(0,1) <= pr %condition of adding a new object

cx=round(unifrnd(1,imsize,1,2)); % set random location

%generate the greylevel of the object

newobjectcode = round(start + 2*(objectcode-start)*unifrnd(0,1));

if im(cx(1),cx(2))==0 % adding a new point at this time

disp(’Adding a new object at iteration’);

t

disp(’Centre is at location’)

cx

nobjects= nobjects+1;

greylevel(nobjects)=newobjectcode;

ex_num(nobjects)=t; %stores iteration number when new object added

ex_numc(nobjects,:)=cx; %store (x,y) location of new object

nobjects;

end

end% end for x <= pr

%now revisit existing objects for possible update

for k = 1: nobjects-1

if unifrnd(0,1) <= updatepr %updating the object using updatepr

t %at which iteration update is taking place

disp(’Updating object’); %updating existing object

k %display which object is updating

%make the object size larger than the current size

if stepsize(k)==1;

stepsize(k) = stepsize(k)*initstep*unifrnd(0,1);

end;

a(k)= a(k) + stepsize(k);

%to keep the ratio same for a particular object, that is ratio will

%be generated once for each object.

if ratio(k)==0;

r= normrnd(mu,sigma); %generate a random number from N(mu,sigma^2)

if r>rmax;

ratio(k)=rmax;

elseif r<rmin;

ratio(k)=rmin;
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else ratio(k) =r;

end %end for if ratio(k)

end;%end for if stepsize(k)

b(k) = a(k)*ratio(k); %the major axis

psi=0:5:359; %vectors of angles in degrees

%to keep the rotation angle same for a particular object, that is

%rotation angle will be generated once for each object

if phi(k) == 0;

phi(k)=phimin + (phimax - phimin)*unifrnd(0,1);

end;

%vectors of rotated x and y coordinates using rotated angle phi(k)

if a(k)>1.5

xnew = ex_numc(k,1) + round(a(k)*cosd(psi)*cosd(phi(k))-b(k)*

sind(psi)*sind(phi(k)));

ynew = ex_numc(k,2) + round(a(k)*cosd(psi)*sind(phi(k))+b(k)*

sind(psi)*cosd(phi(k)));

for i = max(min(xnew),1) : min(max(xnew),imsize);

for j = max(min(ynew),1) : min(max(ynew),imsize);

icos = (i-ex_numc(k,1))*cosd(phi(k));

jcos = (j-ex_numc(k,2))*cosd(phi(k));

isin = (i-ex_numc(k,1))*sind(phi(k));

jsin = (j-ex_numc(k,2))*sind(phi(k));

if ((icos+jsin).^2/b(k).^2 + (isin-jcos).^2/a(k).^2<=1),

%filling the ellipse

im(i, j) = min(im(i,j) + newobjectcode,255); end;

end;% end for i

end;% end for j

end;% end for if

end%if unifrnd(0,1) <= updatepr

end; %end for objects loop

output(:,:,:,t) = im(:,:);%store im matrix at output matrix

end;%end for time loop

figure, imshow(im2uint8(output(:,:,:,100)+1, ’indexed’));
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Code for computing granulometric moments using different SEs. The following

code was used to compute the PS moments from the synthetic images of pyramids and ellipses

and is also applicable for the real images (corrosion and tea images).

%parameters of the program

imsize=256; %size of the image

time=100; %number of evolution steps

Sp=100; %number of simulations

%creates space for storing different quantities

pmg=zeros(Sp*time,imsize); %to store remaining image volume after each opening

spmg=zeros(Sp*time,imsize); %to store normalised side distribution

moments=zeros(Sp*time,4); %to store the first four moments

%reading image and embedding it with 0s to avoid edge effect on opening

for p=1:Sp

filename= strcat(’Name of the image file with extension’);

%creates file name

I=imread(filename,’frames’,’all’);

%read sequence of images and assigned it to I

s = size(I); %provides dimension of I

n1=s(1); %first dimension of I

n2=s(1)+10;

for t= 1:time

re0 = I(:,:,:,t); %assign t$^{th}$ layer of I as re0

if nnz(re0)==0;

moments1(time*p-(time-t),:)=0;

%if re0 is a matrix of 0s, moments are 0

else %if it is a matrix of positive entries

I1=zeros(n2); %embedding with zeros by inserting it into I1

k=(n2-n1)/2; %(I1 is larger than I(:,:,:,t))

for i= (1+k):(n1+k)

for j=(1+k):(n1+k)

I1(i,j)=re0(i-k,j-k);

end;

end;

%openings by increasing the size of the SE until the image become flat.

n=sum(I3(:)); %total no. of pixels in the image

j=1; %initial width/radius of the SE

while(sum(I3(:))~=0) %checks for positivity of I3

res = imopen(I3,SE); %SE is either square, disk, or a line SE.

pmg(time*p-(time-t),j)=sum(res(:));

%stores sum of the remaining pixel

% intensities after each opening
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I3=res; %resets the image

j=j+1; %increases the width/radius by 1

end;

figure,plot(pmg(time*p-(time-t),:), ’g - *’),grid on;

axis([1 j 0 n+50]) %plots the remaining pixel intensities

set(gca, ’xtick’,1 : j); %after each opening

xlabel(’Width/Radius of the SE’);

ylabel(’Volume of the opened image’);

%normalised size distribution as the difference in volume between

%two successive openings, n is the original volume of the image.

spmg(time*p-(time-t),:)=1-pmg(time*p-(time-t),:)/n;

figure,stairs(spmg1(time*p-(time-t),:), ’r - *’),grid on;

axis([1 j 0 1]) %plots the normalised size distribution

set(gca, ’xtick’,1 : j);

title(’Size distribution’)

xlabel(’Width/Radius of the SE)’);

ylabel(’Area removed by opening’);

%computes ps as the derivatives of the normalised size distribution

ppmg = diff(spmg(time*p-(time-t),:));

figure,bar(ppmg,.5); %plots pattern spectrum

axis([0 j 0 0.3])

set(gca, ’xtick’,0:j);

title(’Pattern spectrum’)

xlabel(’Width/Radius of the SE’);

ylabel(’Change in size distribution’);

%computes moments of the pattern spectrum

y = 1:max(size(ppmg));

x=2*y-1; %define the width/radius of the SEs

mean = x*ppmg’; %mean of the PS

variance = x.^2*ppmg’ - (mean).^2; %variance of the PS

std=sqrt(variance); %sd of the SD

if variance == 0; %if sd is 0 skewness and kurtosis is 0

skewness = 0;

kurtosis = 0;

else

a1 = (x-mean).^3*ppmg’; %3rd central moment about mean

a2 = (x-mean).^4*ppmg’; %4th central moment about mean

skewness = a1/(variance).^3/2; %skewness of the PS

kurtosis = a2/(variance).^2-3; %kurtosis of the PS

%computes ‘excess kurtosis’ by subtracting

%3, which is 0 for normal distribution
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end;%end of if var

moments(time*p-(time-t),:) = [mean,std,skewness,kurtosis];

end;%end of if nnz

end;% end of time loop

end;%end of simulation loop
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Appendix II(a): SVM in R

SVMs were implemented in R using the package e1071. This provides a training

function svm with standard and formula interfaces and a predict method using

predict function. It also provides a method for visualising data, the support

vectors, and the decision boundaries. The svm function has different parameters

which can be tuned for more robust results. Among them ‘scale’, ‘kernel’, ‘type’,

‘cross’, ‘cost’, ‘fitted’ are important to consider.

Explanation of the parameters is given below (from the R help file): Scale is

a logical vector indicating whether or not to normalise the data, and we chose

normalising the data (the default). That means the data are scaled internally to

zero mean and unit variance. The centred and scaled values are returned and

used for later predictions.

Parameter type specifies whether svm is used as a classification machine or as

a regression machine. Depending on whether the dependent variable is a factor

or not, the default setting for type is C-classification or ε-regression, respectively,

but may be overwritten by setting an explicit value. C-classification was used as

the dependent variables are factors (time state, class label or tea type).

Cross is a integer value k > 0, so that a k-fold cross validation on the train-

ing data is performed to assess the quality of the model: the accuracy rate for

classification and the Mean Squared Error for regression. We chose not to do

cross-validation as we trained the model using a portion of the data, randomly

sampled, and tested it on the rest of the data.

Cost is the cost of constraint violation, which greatly affects the classification

ability. This is the upper limit of the regularisation term of the Lagrange multi-

pliers, i.e. the value of the largest αi in equation (3.33). We experimented with

different cost values in a grid search approach.

Fitted is a logical argument indicating whether the fitted values should be

computed and included in the model or not. We chose computing the fitted

values.

The kernel is used in training. Different types of kernel can be used, such

as the linear, polynomial, radial basis (also known as the Gaussian kernel), and

sigmoid (tanh) kernels. By default the kernel parameter γ (except in the linear

kernel which has no parameter) is either 1 or 1/(data dimension) depending on

whether the input data is a vector or not. For the polynomial kernel the default

value of η is 0, but we found the optimum value for each set of features used.
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Appendix II(b): LDA in R

LDA is employed here by using a generic function lda in R library MASS. The

function has optional arguments, some of which are:

Prior defines the prior probabilities of class membership. If unspecified, the

class proportions for the training set are used. Here we have chosen the default

setting. Tol specifies the tolerance to decide if a matrix is singular; R will reject

variables and linear combinations of unit-variance variables whose variance is less

than tol2.

Cross-validation, CV, is a logical argument. If it is true, R returns results

(classes and posterior probabilities) for leave-one-out cross-validation. If we set

CV as true, the fitted model itself contains the predicted class for the trained

data set.

Since we aimed to compare the mean absolute error of the predicted class

using different classifiers on the same test set data we set CV = FALSE and

used the fitted model to predict class for the test data set using another generic

function, predict. This returns the prior probabilities used for each class, the

group means (the average value of each feature) for each class, the coefficients

of the linear discriminants (LDs), and the proportion of the trace of each of the

LDs. The coefficients of the LDs are given in a matrix containing the coefficients

for each discriminant function, normalised so that the within-groups covariance

matrix is spherical and the proportions of the trace are the singular values, which

give the ratio of the between- and within-group standard deviations of the linear

discriminant variables.

Appendix II(c): Neural network in R

The neural network classifier was applied in R using function nnet in the library

nnet. It fits a feed forward single hidden layer neural network. The architecture

of such networks is explained in Section 3.11. Some of the optional arguments

of this function are ‘weights’, ‘size’, ‘Wts’, ‘mask’, ‘linout’, ‘entropy’, ‘softmax’,

‘censored’, ‘skip’, ‘rang’, ‘decay‘, ‘maxit’, ‘Hess’, ‘trace’, ‘MaxNWts’, ‘abstol’ and

‘reltol’.

Size defines the number of units in the hidden layer, which is set to zero if the

hidden layer is to be skipped. The argument size has a great effect so we used a

grid search approach to find the optimum number of hidden units for each set of

images.
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Decay specifies a parameter for weight decay. The default is 0 and we also

used grid search to find the optimum value of the parameter.

We set the maximum number of iterations Maxit to 5000 (the default is 100)

for each set of images. The synthetic images required a higher number of iterations

(3000–3500) as they have 100 time points and 100 observations at each time point,

but for any of the set of real images the optimisation problem converges quickly.

Rang specifies the range used for the initial random weights, which lie in the

interval [-rang, rang] with default value 0.7. For input data with large values it

is recommended to choose the value rang = 1/max |data|, but we used a grid

search approach to find the best value of the parameter for all sets of images. This

provided better classification results in many cases especially when the maximum

of the input data is large, e.g. for the synthetic images. For the real images, the

maximum value in the data set was not very high, so using either the default

value of range or 1/max |data| does not make much difference.

There are many possible activation functions. Options here are the default

logistic function or the linear one. We used the logistic function but also tested

the linear function and this made little difference to our results.

The function predict returns the predicted class for each observation in the

test data set. We used argument type as ‘class’ to indicate that predict should

return class labels and not numeric values, for each observation in the test data

set.

Appendix II(d): Summary of PS moments I

Means, sds and coefficients of variation (CVs) for the foreground and background

PS moments from the pyramid and ellipse images, as discussed in Section 5.6,

are shown in Tables V1–V4. M1–M6 and S1–S6 represent the means and sds from

the six SEs used.
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Table V1: Means, sds and CVs of the foreground PS moments for pyramid images

using 6 SEs at every 5th time point.
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Table V2: Means, sds and CVs of the background PS moments for pyramid

images using 6 SEs at every 5th time point.
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Table V3: Means, sds and CVs of the foreground PS moments for ellipse images

using 6 SEs at every 5th time point.
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Table V4: Means, sds and CVs of the background PS moments for ellipse images

using 6 SEs at every 5th time point.
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Appendix III: Summary of PS moments II

Means, sds and CVs of the PS moments using a square and a disk SE from the

bottom-hat transformed corrosion images are shown in Table VI, discussed in

Section 6.4.

Table VI: Means, sds and CVs of the PS moments for the hat-transformed

corrosion images.
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Appendix IV: Summary of PS moments III

Table VII shows the means, sds and CVs of the PS moments using a square

and a disk SE from the top-hat transformed Indian tea images, discussed in

Section 7.5.1.

Table VII: Means, sds and CVs of the PS moments from the hat-transformed tea

images.
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Appendix V: Scaling image intensities

The effect of scaling image intensities as I = round((I −ma) ∗ (L − 1)/(MA −
ma)), where L = 16 is the number of bins, and ma and MA are the minimum

and maximum intensities of image I respectively (Section 9.5). The histograms

of the original image and the transformed image have the same shape, as the

transformation only scaled the original image intensities down to 0 to 15.

Table VIII: Original image and transformed images used in Matlab function

‘hist2’ with respective histograms.
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machines, PCA and LDA in face recognition. Journal of Electrical Engineering

59(4), pp. 203–209.

McKenzie, J. (2004). Classification of dynamically evolving textures using evolu-

tion functions. PhD. Thesis, Department of Electronic and Electrical Engineer-

ing, University of Strathclyde.

McKenzie, J., J. Jurado, and F. de Pablos (2010). Characterisation of tea leaves

according to their total mineral content by means of probabilistic neural networks.

Journal of Food Chemistry 123(3), pp. 859–864.

McKenzie, J., S. Marshall, A. Gray, and E. Dougherty (2003). Morphological

texture analysis using the texture evolution function. International Journal of

Pattern Recognition and Artificial Intelligence, special issue on Quantitative Im-

age Morphology 17(2), pp. 167–185.

Mengko, T. and J. Pramudito (2002). Implementation of Gabor filter to texture

analysis of radiographs in the assessment of osteoporosis. In Proceedings of Asia-

Pacific Conference on Circuits and Systems, Bali, Indonesia, pp. 251–254.

Mital, D. and G. Leng (1992). Autoregressive approach to surface texture analy-

sis. In Proceedings of International Conference on Industrial Electronics, Control,

Instrumentation and Automation, Volume 3, San Diego, USA, pp. 1309–1312.
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