Morphological Granulometry for
Texture Analysis
Mahmuda Khatun

Requirements for the degree of

Doctor of Philosophy

Department of Mathematics and Statistics

University of Strathclyde

November 2012



(© The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde Regu-
lation 3.50. Due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.



Acknowledgements

All kinds of praises and thanks are for Allah (God) alone, the beneficent, the
merciful. The author invokes Allah’s choicest blessing and peace for Prophet
Muhammad (Sm), the messenger of Allah, the bearer of glad tidings and Warner
for mankind.

My sincere gratitude to my supervisors, Dr. Alison Gray and Professor Stephen
Marshall for their constructive guidance throughout the entire period of my PhD
study. I wish to articulate my appreciation to my husband Dr. Nazrul Islam,
moreover, I am thankful to my parents and my daughter (Munami) for their
moral support and patience to accomplish this study.

[ am indebted to the university for providing me with the University of Strath-
clyde scholarship which made this study possible. I appreciate the pleasant envi-
ronment in the department of Mathematics and Statistics and the services pro-
vided by the office staff members. I am very grateful to E. Hines, S. Borah and
M. Bhuyan for access to, and use of, the black tea granule images and Timothy
Kelman for providing the hyperspectral images of Chinese teas.

Parts of Chapters 4-6 and 8 were published in Proceedings of 19th Euro-
pean Signal Processing Conference, 2011, Barcelona, Spain, 759-763 and parts of
Chapters 7 and 8 were published in Proceedings of 15th Irish Machine Vision and
Image Processing Conference, Dublin, 2011, 70-75.

11



Contents

1 Introduction to Image Analysis

1.1 Introduction . . . . . . . . ...
1.2 Display. . . . . . . .
1.2.1 Binary display . . . . . . ... oo oo
1.2.2 Greyscaledisplay . . . . . ... ... oL
1.2.3 Colourdisplay . . . . . . .. .. .. ..o
1.2.4 Image enhancement . . . . . . . . . ... ... ... ...,
1.3 Filtering . . . . . . . .
1.3.1 Linear filters . . . . . . . . . .. oo
1.3.2 Nonlinear filters . . . . . . . .. .. ... L.
1.4 Segmentation . . . . . . . ...
1.4.1 Thresholding . . . . . . .. ... ... L.
1.4.2 Edge-based thresholding . . . . .. ... ... ... ....
1.4.3 Region-based thresholding . . . . . ... .. ... ... ..
1.5 Mathematical Morphology . . . . . . . ... ... ... .. ....
1.6 Measurement . . . . .. . ..o
1.6.1 Measures of size . . . . . . . .. ...
1.6.2 Measures of shape . . . . ... ... L
1.6.3 Boundary statistics . . . . . .. ... o000
1.7 Conclusion . . . . .. . ..

2 Mathematical Morphology

2.1 Imtroduction . . . . . . . ..o
2.2 Morphological Techniques . . . . . .. ... .. ... ... ....
2.2.1 Structuring elements . . . . ... ...
222 Dilation . . . ... oo
223 FErosion .. ...
224 Opening . . . . . ..
225 Closing . . . . . . .

111

co Ut Ut W NN = ==

D NDNNN N ===
= W NN NN O 0 e W



2.3 Properties of the Morphological Techniques . . . . . . . .. .. ..
2.3.1 Hit-or-miss-transform . . . . .. .. .. ... ... .. ...
2.4 Application of Binary Morphological Techniques . . . . . . . . ..
2.5 Morphological Operations for Grey Scale Images . . . . . . . . ..
2.5.1 Grey scale dilation . . . . ... ... o000
2.5.2 Greyscaleerosion. . . .. ... ... ... ... ... ...
2.5.3 Grey scale opening and closing . . . . ... ... ... ..
2.6 Some Applications of Grey Scale Morphology . . . . . ... ...

2.7 Conclusion . . . . . . . .

Overview of Texture Analysis and Classification
3.1 Introduction . . . . . . .. ...
3.2 Morphological Granulometry on Texture
Analysis . . . . ...
3.3 Transformation-based Methods . . . . . . ... ... ... ....
3.3.1 Fourier transform . . . . . .. ... ... ...
3.3.2 Gaborfilters. . . . . .. ...
333 Wavelets . . . . . . ..o
3.4 Model-based Approaches . . . . . . ... ... ... ... ... ..
3.4.1 Markov random fields . . . . .. ... ... ... ... ...
3.4.2  Auto-regressive model . . . ... ...
3.5 Statistical Approaches . . . . . .. ... ... L.
3.5.1 Auto-correlation based texture features . . . . . . . . . ..
3.5.2  Grey level co-occurrence matrices . . . . . ... ... L.
3.5.3 Grey level run length distribution . . . . . ... .. .. ..
3.5.4 Local binary pattern . . . . . ... ...
3.5.5 Coordinated cluster representation . . .. ... ... ...
3.6 Illumination Resistant Texture Analysis. . . . . . . . . ... ...
3.7 Comparative Studies of Existing Methods . . . . . . . ... ...
3.8 Texture Classification Rules . . . . .. ... ... ... ... ...
3.9 Bayesian Classifiers . . . . . . . .. ... ... . 0L
3.9.1 Linear discriminant analysis . . . . . . .. ... ... ...
3.9.2 Maximum likelihood classifier . . . . . .. ... ... ...
3.9.3 Minimum distance classifier . . . ... .. ... ... ...
3.10 K-Nearest Neighbour Classifier . . .. . ... ... ... .. ...
3.11 Artificial Neural Networks . . . . . . . ... .. ... ... ....
3.11.1 Types of neural network . . . . ... ... ... ... ...
3.12 Support Vector Machines . . . . . . . . .. ... ... ... . ...

v



3.12.1 Binary classification . . . . .. ... ... 92

3.12.2 Multi-class support vector machines . . . . . . . .. .. .. 94
3.12.3 Applications of SVMs . . . . . ... 95
3.13 Conclusion . . . . . . . . ..o 97
Granulometric Approach to Texture Analysis 98
4.1 Morphological Granulometry . . . . . . . . ... ... ... ... 98
4.1.1 Binary granulometry . . . . . .. ... .00 99
4.1.2  Grey scale granulometry . . . . . .. ... 101
4.1.3 Other types of granulometries . . . . . . . ... ... ... 102
4.2 Texture Evolution . . . . . . .. .. ... ... 104
4.3 PS Moments and Evolution Time . . . . ... ... ... .. ... 110
4.3.1 Foreground PS moments and evolution time . . . . . . .. 112
4.3.2 Background PS moments and evolution time . . . . . . . . 115
4.3.3 Nature of PSmoments . . . . . ... ... .. .. ..... 117
4.3.4 Principal component analysis of the PS moments . . . . . 118
4.4 Conclusion . . . . . . . . .. 124
Classification using Granulometries 126
5.1 Modelling PS Moments . . . . . .. .. ... .. ... ... ... 126
5.2 Modelling Foreground PS Moments . . . . . . ... .. ... ... 129
5.2.1 Modelling foreground PS mean . . . . . .. .. ... ... 129
5.2.2  Modelling foreground PS standard deviation . . . . .. .. 131
5.3 New Regression-based Classifier . . . . . .. ... ... ... ... 134
5.3.1 Combined straight line model . . . . ... ... ... ... 135
5.3.2 Combined quadratic model . . . . . . . ... ... ... .. 137
5.3.3 Combined cubic model . . . . . . ... ... 139
5.3.4  Assessing accuracy of prediction . . . . . ... ... 140
5.4 Prediction using the Regression Approach . . . . . .. ... ... 141
5.4.1 Prediction for 100% images . . . . . . . ... .. ... ... 142
5.4.2 Prediction for 256% images . . . . . . ... ... ... ... 144
5.4.3 Prediction for 5122 images . . . . . . ... ... ... ... 146
5.4.4 Prediction using PCs . . . . . . . ... 151
5.5 Prediction using Other Classifiers . . . . . . .. .. .. ... ... 153
5.5.1 Results from SVM . . .. ... ... 154
5.5.2 Results from LDA . . ... ... ... 156
5.5.3 Results from FF-NNET . . .. ... ... ... .. ... . 157
5.6 Conclusions . . . . . . . ... 163



6 Classification of Corrosion Images

6.1 Corrosion Images . . . . . . .. . ...

6.2 Granulometry on Binary Corrosion Images . . . . . . . . .. . ..

6.2.1
6.2.2
6.2.3

Foreground PS moments of the binary images . . . . . ..
Background PS moments of the binary images . . . . . . .

Other classifiers on the binary images . . . . . . . . . . ..

6.3 Granulometry on Grey Scale Corrosion Images . . . . . . . . . ..

6.3.1
6.3.2

Foreground PS moments of the grey scale images . . . . .

Background PS moments of the grey scale images . . . . .

6.4 Granulometry on Transformed Corrosion Images . . . . . . . . ..

6.4.1
6.4.2
6.4.3

PS moments of the transformed images . . . . . . .. . ..
Using different classifiers on the transformed images . . . .

Granulometry on the background images . . . . . . . . ..

6.5 Conclusion . . . . . . . .,

7 Analysing Images of Tea Granules
7.1 Background and Related Work . . . . . ... ... ... ... ...
7.2 Description of the Tea Images . . . . . . . ... ... ... ....
7.3 Thresholded Tea Images . . . . . . .. ... .. ... ... ....

7.3.1
7.3.2

Granulometries on the thresholded images . . . . . . . ..

Other classifiers . . . . . . . . . . ...

7.4 Granulometry on Grey Scale Tea Images . . . . .. ... .. ...

7.5 Granulometry on Top-hat Transformed Images . . . . . . . . . ..

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6

Exploratory analysis for top-hat images . . . . . . . . . ..
Regression approach . . . . ... .. ... ... ... ...
Other classifiers . . . . . . . ... ...
Prediction using different sets of moments . . . . . . . ..
Top-hat transformation using the same disk SE . . . . . .

Granulometry on the background images . . . . . . . . ..

7.6 Use of Colour Images . . . . . . .. ... ... ... ... .....

7.7 Conclusion . . . . . . . .

8 GLCM and Wavelet-based Classification
8.1 GLCM Features for Synthetic Images . . . . . . .. .. ... ...

8.1.1

(Classification using GLCM features . . . . . . . ... ...

8.2 GLCM Features for Corrosion Images . . . . . . . ... ... ...
8.3 GLCM Features for the Tea Images . . . . . . ... .. ... ...

8.3.1

PCA on GLCM features for the tea images . . . . . . . ..

vi

165
165
166
168
169
171
174
175
175
178
179
180
185
186

189
190
194
194
195
204
206
210
212
215
217
219
223
225
226
229



8.3.2 C(lassification using supervised classifiers . . . . . . . . ..
8.4 Wavelet-based Features for the Tea Images . . . . . . . ... ...
8.4.1 PCA on wavelet features for the tea images . . . . . . ..
8.4.2 Using different classifiers . . . . . .. ... ... ... ...

8.5 Conclusion . . . . . . . .

9 Hyperspectral Image Classification
9.1 Hyperspectral Imaging . . . . . .. .. ... ... ...
9.2 Overview of Band Selection Methods . . . . . ... .. ... ...
9.2.1 PCA reduction . . ... ... ... ... ... ... ...
922 Usingallbands . . . ... ... ... ... ... ... ...
9.2.3 Band selection by inspection or prior knowledge . . . . . .
9.2.4  Other band selection approaches . . . . . . . .. ... ...
9.3 Different Approaches for Classification . . . . . ... . ... ...
9.4 Image Description . . . . . . . ... .. L oo
9.5 Band Selection . . . . ... ...
9.6 Computation of PS Moments . . . .. ... .. ... .......
9.6.1 Separability measures . . . . .. ... ..o
9.6.2 Graphical presentation of different sets of PS moments . .
9.6.3 PCA on different sets of PS moments . . . . . . ... ...
9.7 Classification using PS moments . . . . . . . .. .. .. ... ...
9.8 C(lassification using Other Features . . . .. . ... ... .. ...
9.8.1 GLCM features . . . . . . ... .. ... ... .......
9.8.2 Wavelet-based features . . . . . . ... ... .. ... ...
9.8.3 Wavelet-based GLCM features . . . . . . .. .. ... ...
9.8.4 PCA clustering using other features . . . . . . . .. . . ..
9.8.5 Classification using supervised classifiers . . . . . . . . ..
9.9 Colour Chinese Tea Images . . . . . .. ... .. .. ... .....
9.10 Grey Scale Chinese Tea Images . . . . . .. .. ... ... ....

9.11 Conclusion . . . . . . . . .

10 Conclusions
10.1 Key Findings . . . . . . . .. . . o
10.2 Further Work . . . . . . . . . . .

vii

262
262
263
264
264
265
266
267
269
272
280
285
285
289
293
296
296
298
298
303
304
306
310
312



List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.8

2.1
2.2

2.3

24

2.5

2.6

Colour, grey scale and binary display of a peppers image of size
350 x 243 (from the Matlab Help System). . . . . . . ... .. ..
Effect of moving average filters of different size and a Gaussian
filter on a binary image of disks. . . . . . . ... ...
Effect of row filter, column filter and Laplacian filter on a binary
image of disks. . . . . . ..o
Effect of average, Gaussian, median, and Laplacian filters on a
noisy binary image of disks. . . . . .. .. .. oL
Effect of Roberts, Prewitt’s, Sobel’s, Canny and variance filters on
a binary noisy image of disks. . . . . . ... ...
Effect of thresholding a 256% grey scale image of ellipses, using
various threshold values. . . . . . . ... ... ... ... ...
Effect of a majority filter on a 256* binary image of disks.

Watershed segmentation of a 486 x 732 image of pears, taken from
the Matlab help file (using Matlab’s functions). . . . . ... . ..

Some commonly used SEs . . . . .. ..o
Effect of dilation, erosion, opening and closing of a 2612 binary
image of disks using a disk SE of radius 4. . . . . ... ... ...
Effect of opening a binary 2562 image of disks using a disk and a
square SE. . . .o Lo
Duality of dilation and erosion illustrated on a 256% binary image
of squares of different width, using a square SE of width 2, where
width=0.5%(base length-1). . . . . . ... ... ... ... ...
Duality of opening and closing illustrated on a 2562 binary image
of squares of different width, using a square SE of width 2, where
width=0.5%(base length-1). . . . . . . . ... ... ... ... ...
Effect of boundary extraction on a 2562 binary image of squares,

using a square SE of width 2, where width=0.5%(base length-1).

viil

38



2.7 Hole filling using morphological operators on a 101% binary image

of squares. . . . . .. 39
2.8 Effect of skeletonisation on a 1012 binary image. . . . . . . .. .. 42
2.9 Grey scale dilation and erosion of a 2562 grey scale image of ellipses

of random radii, shapes and sizes, by a flat disk of radius 10. . . . 45
2.10 Grey scale opening and closing of a 2562 grey scale image of ellipses

of random radii, shapes and sizes, by a flat disk of radius 10. . . . 46
2.11 Effect of top-hat and bottom-hat transformation of an image of a

fish, using a ellipsoid of radius 10 and height 2 (see Matlab function

‘strel” with option ‘ball’). . . . . . ... ..o 50
3.1 An image and its primitive. . . .. .. ..o 54
3.2 Some example textures from the Brodatz album (Brodatz (1966)). 55
3.3 Two levels of a 2-D discrete wavelet decomposition. . . . . . . .. 67

3.4 First-order neighbourhood (left); second-order neighbourhood (mid-

dle); third-order neighbourhood (right) of the central pixel. . . . . 72
3.5 A feed-forward single hidden layer neural network. . . . . . . . .. 89
3.6 SVM for linearly separable feature space. . . . . . . . .. .. ... 93
3.7 SVM for non-linearly separable features. . . . . .. .. ... ... 94

4.1 Effect of successive openings of a 2562 binary image of squares

using a square SE of increasing size. . . . . . . ... .. ... ... 101
4.2 Successive area dropped, size distribution and pattern spectrum of

a 2562 binary image of squares (Figure 4.1 (a)), from granulometry

using a square SE. . . . ..o 101
4.3 Evolution of 100? grey scale pyramid images at different time

points for parameters a = 0.5, § = 0.1, and v as discrete uni-

form [1, 2] . .. 107
4.4 Evolution of 2562 grey scale pyramid images at different time

points for parameters a = 0.5, § = 0.3, and v as discrete uni-

form [1, 2] . .. 107
4.5 Evolution of 100 grey scale ellipse images at different time points

for parameters o = 0.8, 6 = 0.3, and v as discrete uniform [1, 2]. . 108
4.6 Evolution of 2562 grey scale ellipse images at different time points

for parameters a = 0.8, § = 0.5, and v as discrete uniform [1, 2]. . 108
4.7 A sequence of grey scale 256 ellipse images, the corresponding

granulometric size distribution and pattern spectrum using a disk

X



4.8 Effect of granulometry using a square SE on the foreground and
background of two binary images of size 1112, containing squares of
width 1 to 8 (base length=2xwidth+1). Object pixels are shown
as white in (a)—(d). . . . . . . ...

4.9 Effect of granulometry using a disk SE on the foreground and back-
ground of two binary images of size 1112, containing disks of dif-
ferent radii ranging from 1 to 8. Object pixels are shown as white
in (a)—(d). . ...

4.10 Plots of average foreground PS moments (averaged over 100 sim-
ulations) against evolution time, using six different SEs, for the
100? pyramid images at each time point. . . . . ... ... .. ..

4.11 Plots of average foreground PS moments (averaged over 100 simu-
lations) against evolution time using six different SEs, for the 2562
pyramid images at each time point. . . . . . .. ... ... L.

4.12 Plots of average foreground PS moments (averaged over 100 simu-
lations) against evolution time using six different SEs, for the 5122
pyramid images at each time point. . . . . . .. ... ... L.

4.13 Plots of the average foreground PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the
100? ellipse images at each time point. . . . . . .. .. ... ...

4.14 Plots of the average foreground PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the
2562 ellipse images at each time point. . . . . . . . .. ... ...

4.15 Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the
100? pyramid images at each time point. . . . . . . . ... .. ..

4.16 Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the
2562 pyramid images at each time point. . . . . . . .. ... ...

4.17 Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the
100? ellipse images at each time point. . . . . ... .. ... ...

4.18 Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the

2562 ellipse images at each time point. . . . . . . . .. ... ...

114

115



4.19

4.20

4.21

4.22

5.1

5.2

5.3

5.4

2.5

2.6

5.7

Plots of average foreground PS means, maximum and minimum
and 95% confidence intervals versus time, for the 2562 pyramid
IMages. . . . . . . oL 122
Plots of average background PS means, maximum and minimum
and 95% confidence intervals versus time, for the 2562 pyramid
IMages. . . . . . ..o 122
Plots of average foreground PS means, maximum and minimum
and 95% confidence intervals versus time, for the 2562 ellipse images. 123
Plots of average background PS means, maximum and minimum

and 95% confidence intervals versus time, for the 256 ellipse images. 123

Plots of average foreground PS mean versus time ¢, with fitted
linear regression lines (solid lines) and residual plots for the 2562
pyramid images generated using parameters a = 0.5, 6 = 0.3 and

v = discrete uniform [1, 2].. . . . ..o 130
Plots of average foreground PS mean versus time ¢, with fitted
quadratic regression curves (solid lines) and residual plots for the

2562 pyramid images generated using parameters o = 0.5, § = 0.3

and v = discrete uniform [1, 2]. . . ... ..o 130
Plots of average foreground PS mean versus time ¢, with fitted
cubic regression curves (solid lines) and residual plots for the 2562
pyramid images generated using parameters a = 0.5, 6 = 0.3 and

v = discrete uniform [1, 2].. . . . ..o oo 131
Plots of average foreground PS sd versus time ¢, with fitted linear
regression lines (solid lines) and residual plots for the 256% pyramid
images generated using parameters a« = 0.5, 6 = 0.3 and v =
discrete uniform [1, 2]. . . . .. ..o 133
Plots of average foreground PS sd versus time ¢, with fitted quadratic
regression curves (solid lines) and residual plots for the 2562 pyra-

mid images generated using parameters a = 0.5, § = 0.3 and

v = discrete uniform [1, 2].. . . . ..o oo 133
Plots of average foreground PS sd versus time ¢, with fitted cu-

bic regression curves (solid lines) and residual plots for the 2562
pyramid images generated using parameters a = 0.5, 6 = 0.3 and

v = discrete uniform [1, 2].. . . . ..o 134
Final pyramid images of size 100? for different simulations, using

a =0.5,9 = 0.1, and y= discrete uniform [1, 2], at time 100. . . . 142

X1



2.8

2.9

5.10

5.11

5.12

0.13

5.14

5.15

0.16

5.17

0.18

Histograms of the predicted times for the 100 pyramid images
using cubic regression modelling of the first two foreground PS
moments from all 6 SEs, for actual times ¢ = 10, 20, ..., 100. . . 143
MAE (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f) and type 2
error (g)-(h) for the first 2 foreground (left) and background PS
moments (right) from the 100 pyramid images using all 3 regres-
sionmodels. . . . ... 145
Some pyramid images of size 2562 for different simulations, o = 0.5,
d = 0.3, and y=discrete uniform [1, 2|, at time 100. . . . . . . .. 146
Histograms of the predicted times for the 2562 pyramid images
using cubic regression modelling of the first two foreground PS
moments using all 6 SEs, for actual times t = 10, 20, ..., 100. . 147
MAE (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f) and type 2
error (g)-(h) for the first 2 foreground (left) and background PS
moments (right) from the 256 pyramid images using all 3 regres-
sionmodels. . . . . ... 148
Some pyramid images of size 5122 for different simulations, o = 0.5,
d = 0.3, and y=discrete uniform [1, 3|, at time 100. . . . . . . .. 149
Histograms of the predicted times for the 5122 pyramid images
using cubic regression modelling of the first two foreground PS
moments from all 6 SEs, for actual times ¢ = 10, 20, ..., 100. . . 150
MAE and type 0, type 1 and type 2 error for the first 2 foreground
PS moments from all 6 SEs from the 5122 pyramid images, using
all 3 regression models. . . . . . .. ... 0oL 151
Prediction error (predicted time—actual time) plotted against sim-
ulation number, using the cubic regression model with 70% of the
2 foreground PS moments using 6 SEs from the 256 pyramid images.152
Type 0, type 1 and type 2 error rates and MAEs using the first 2
PCs from 12 foreground PS moments (2 PS moments from 6 SEs)
of the 2562 pyramid images using all 3 regression models. . . . . . 153
Mean absolute error (a)-(b), type 0 error (c¢)-(d), type 1 error (e)-
(f), and type 2 error (g)-(h) for foreground (left) and background
PS moments (right) using different classifiers for the 256 pyramid
IMAGES. « . o v v o e e e e 160

xii



5.19 Mean absolute error (a)-(b), type 0 error (c)-(d), type 1 error (e)-
(f), and type 2 error (g)-(h), using foreground (left) and back-
ground PS moments (right) in different classifiers, for the 2562

ellipse images. . . . . . . . . ..

6.1 Grey scale corrosion images of size 1400% taken at 10 different time
POINES. . . . . . e e e
6.2 A sub-set of the extracted 2562 grey scale corrosion images, one
from each time point t =1to 10. . . . . . ... ... ... ....
6.3 DBinary form of one extracted sub-image from each of time points
t =1%o 10, and its PSusing adisk SE. . . . . .. ... ... ...
6.4 Plots of the first four average foreground PS moments against time,
for the binary corrosion images using square and disk SEs, with
fitted cubic curves (dotted lines). . . . . . . ... ... ... ...
6.5 Frequency histograms of predicted time using the first three fore-
ground PS moments of the binary corrosion images from square
and disk SEs, using cubic regression, for all sub-images at each
time point 1-5 (a) and 6-10 (b). . . . . . . ...
6.6 Plots of the first four average background PS moments against
time, for the binary corrosion images using square and disk SEs,
with fitted cubic curves (dotted lines). . . . .. . ... ... ...
6.7 Frequency histograms of predicted time using the first four back-
ground PS moments of the binary corrosion images from square
and disk SEs, using cubic regression, for all sub-images in each
time point 1-5 (a) and 6-10 (b). . . . . . .. ...
6.8 Plots of the average foreground PS moments against time, for grey
scale images using square and disk SEs with the fitted cubic curves
(dotted lines). . . . . . . . .. .
6.9 Frequency histograms of predicted time using the first three PS
moments from square and disk SEs on the foreground of the grey
scale corrosion images. . . . . . . ...
6.10 Plots of the average background PS moments against time, for grey
scale images using square and disk SEs with the fitted cubic curves
(dotted lines). . . . . . . . . ...
6.11 Frequency histograms of predicted time using the first three PS
moments from square and disk SEs on the background of the grey

scale corrosion images. . . . . . . ...

xiil

166



6.12 Some corrosion sub-images of size 2562 and their bottom-hat trans-
formed images. . . . . . ... 179
6.13 Plots of average PS moments against evolution time, for the bottom-
hat transformed corrosion images using square and disk SEs, with
fitted cubic curves (dotted lines). . . . . ... ... 180

6.14 Top-hat transformed images of the background corrosion images. . 186

7.1 Original colour tea images with different granule sizes, labelled
hereasclass 1to 8. . . . . . . . ... L 195
7.2 Grey scale sample 2562 tea images, one from each of the eight classes.195
7.3 One binary tea image from each class, and their PS using a disk SE.196
7.4 Plot of the average foreground PS moments of the binary images
using 4 SEs against class. . . . . . . ... o000 197
7.5 Plot of the average foreground PS moments for the binary images
against class using different SEs, with fitted cubic curves (blue lines).198
7.6 Frequency histograms of predicted class using the first three fore-
ground PS moments of the binary tea images from square, disk,
horizontal and vertical line SEs, using cubic regression, for all 50
sub-images in each of the classes 1-4 (a) and 5-8 (b). . . . .. .. 199
7.7 Plot of the average background PS moments for the binary images
against class using different SEs, with fitted cubic curves (blue lines).200
7.8 Frequency histograms of predicted class using the first three back-
ground PS moments of the binary tea images from square, disk,
horizontal and vertical line SEs, using cubic regression, for all 50
sub-images in each of the classes 1-4 (a) and 5-8 (b). . . . .. .. 201
7.9 Plots of the first two PCs of the 24 moments from the binary images
against class, with fitted cubic curves. . . . . . . .. ..o 201
7.10 Frequency histograms of predicted class using the first two PCs
derived from 24 moments (12 foreground and 12 background) of
the binary tea images from square, disk, horizontal and vertical
line SEs, using cubic regression, for all 50 sub-images in each of
the classes 1-4 (a) and 5-8 (b). . . . . . . ... ... 202
7.11 Overall prediction error measures of the three binary image models
tested on each of the 50 sub-images from each class. . . . . . . .. 203
7.12 Error rates for all classifiers using 12 background PS moments from
the binary tea images using all the 50 sub-images from each class. 206
7.13 Plots of the grey scale tea image average PS foreground moments

against class using different SEs. . . . . ... ..o 208

X1v



7.14

7.15
7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

Frequency histograms of predicted class using 14 foreground PS
moments from all 4 SEs (excluding skewness from the disk and
kurtosis from the square SE) for the grey scale tea images, using

cubic regression, for all 50 sub-images in each of the classes 1-4 (a)

and 5-8 (b). . . . .. 208
Background of grey scale tea images, one from each class 1 to 8. . 209
Plots of the grey scale average PS background moments against
class using a square and a disk SE. . . . .. ... 0000 210
Frequency histograms of predicted class using 5 background PS

moments from a disk and a square SE (first 2 moments from both
and skewness from disk) for the grey scale tea images, using cubic

regression, for all 50 sub-images in each of the classes 1-4 (a) and

5-8(b). . o 210
Top-hat transformed grey scale images, one from each of classes
B 70 1 211
Plots of the average top-hat image foreground PS moments against

class, for square, disk, horizontal line and vertical line SEs, using
all 50 sub-images from each class. . . . . .. . ... .. ... ... 212
Scatter plots of 1st two PCs of the top-hat image foreground PS
moments, from square, disk, horizontal line and vertical line SEs,
using all 50 sub-images from each class (C1-C8). . . . . . ... .. 213
Plots of the first four average PS moments against class, using
square, disk, horizontal line and vertical line SEs, along with the
fitted cubic curves. . . . ... oo 216
Frequency histograms of predicted class using 4 foreground PS mo-
ments from each of a square and disk for the top-hat transformed
images, using cubic regression, for all 50 sub-images in each of the
classes 1-4 (a) and 5-8 (b). . . . . . . ... 216
The first four PCs from the top-hat transformed images using all
4 moments from all 4 SEs, against class. . . . . . ... ... ... 223
Frequency histograms of predicted class using 4 PCs from 16 PS
moments of the top-hat transformed images from 4 SEs, using
cubic regression, for all 50 sub-images in each of the classes 1-4 (a)
and 5-8 (b). . . . .. 224
Plots of the PS moments against class, using square and disk SEs

with a fixed size disk used in the top-hat transformation. . . . . 224

XV



7.26

7.27

7.28

7.29

7.30

7.31

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Results of bottom-hat transform on the background of the grey
scale images using an increasing disk size, one image from each
classes 1 to 8. . . . . .. 226
Plots of the PS moments against class, using square and disk SEs
with increasing disk radius used in the bottom-hat transform of
the images. . . . . . . .. 227
Sample 2562 colour tea images, one from each of the eight classes. 227
Histograms of the red, green and blue planes of the RGB colour
tea images. One bar is used for each of intensities 0 to 255. . . . . 228
Hue, saturation and intensity (value) images from the HSV colour
map of the colour tea images. . . . . . . .. .. ... ... .. .. 231
Histograms of the hue, saturation and intensity (value) images
using 256 bins from the HSV colour map of the colour tea images.
One bar is used for each bin. . . . . . . ... ... ... .. .... 232

Plots of the average GLCM features against evolution time using
quantisation levels 8 and 64, averaged over 100 256% pyramid im-
ages at each time point (distance=1, and orientation = 0°, 90°, 45°
and 135°). . . . . 234
Plots of the average GLCM features against evolution time using
quantisation levels 8 and 64, averaged over 100 2562 ellipse images
at each time point (distance=1, and orientation = 0°, 90°, 45° and
135°%). 235
Mean absolute error (a), type 0, type 1 and type 2 error (b)—(d),
using 6 GLCM features in different classifiers, for the pyramid images.237
Mean absolute error (a), type 0, type 1 and type 2 error (b)—(d),
using 6 GLCM features in different classifiers, for the ellipse images.238
Average GLCM features for the grey level corrosion images for
quantisation 8 using d = 1 and four orientations (0°, 90°, 45° and
135°%). 239
Average GLCM features for the grey level corrosion images for
quantisation 64 using d = 1 and four orientations (0°, 90°, 45° and
135°%). 240
Average GLCM features for the grey level corrosion images for no
quantisation using d = 1 and four orientations (0°, 90°, 45° and
135°). 244

Xvi



8.8

8.9

8.10

8.11

8.12

8.13

8.14

9.1
9.2

9.3

9.4

9.5

9.6

9.7

Average GLCM features against class for the grey scale tea images
for quantisation 8 using d = 1 and four orientations (0°, 90°, 45°
and 135°). . . . . 247
Average GLCM features against class for the grey scale tea images
for quantisation 64 using d = 1 and four orientations (0°, 90°, 45°
and 135°). . . . . 248
Scatter plots of the first two PCs using 4 GLCM features for all
four orientations at quantisation levels 8 ((a)—(d)) and 64 ((e)—(h)),
using the grey scale tea images. . . . . . . . ... ... ... ... 250

Average wavelet-based coefficients from the 256% grey scale tea

images for the first 4 levels. . . . . .. ... ... 254
Average wavelet-based coefficients from the 2562 grey scale tea
images for the first 4 levels. . . . . .. ... ... 0. 255
Average wavelet-based coefficients from the 2562 grey scale tea
images for the first 4 levels. . . . . .. ... ... 256
Scatter plots of first two PCs using different sets of wavelet features

for the tea images. . . . . . .. .. ... L oo 257

Hyperspectral images of 6 types of Chinese tea at wavelength 630nm.271
Colour images of size 1952 x 2592 of 6 types of Chinese tea. There
are no bright colours in the images, so even printed in colour they
look grey. . . . . . 271
Sample images of size 702, one from each type of Chinese tea at
wavelength 630 nanometers (spectral band 150). . . . . . . .. .. 272
Entropy information against spectral band using Method I for bin
sizes 16, 32, 64, 128 and 256. . . . . . . . ... ... 277
Entropy information against spectral band using Matlab’s hist2
function (a) with scaling for 16 bins and (b)-(f) without scaling
for 16, 32, 64, 128 and 256 bins. . . . . . . .. ... ... 278
Entropy and mutual information (MI) for 16 bins using Matlab’s
‘hist2’ function but without scaling the image intensities; (a) En-
tropy of bands 1,2, ...,149; (b) Entropy of bands 2,3, ..., 250; (c)
Joint entropy of adjacent pairs of bands, i.e. 1 and 2, 2 and 3, and
so on; (d) MI of adjacent pairs of bands. . . . .. ... ... ... 280
MI of adjacent pairs of bands using Matlab’s ‘hist2’ function but
without scaling the image intensities for (a) 32; (b) 64; (c¢) 128 and
(d) 256 bins. . . . . .. 281

Xvil



9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

Entropy and MI for 128 bins using ‘hist2’ function but without
scaling the image intensities; (a) Entropy of bands 1,2,...,149;
(b) Entropy of bands 2,3,...,250; (c) Joint entropy of adjacent
pairs of bands, i.e. 1 and 2, 2 and 3, and so on; (d) MI of adjacent
pairsof bands. . . . . . ... 282
Entropy and MI for 16 bins using ‘hist2’ function with scaling of the
image intensities; (a) Entropy of bands 1,2,...,149; (b) Entropy
of bands 2,3,...,250; (¢) Joint entropy of adjacent pairs of bands,
i.e. 1 and 2, 2 and 3, and so on; (d) MI of adjacent pairs of bands
for 16 bins. . . . . . . .. 283
Plots of the average PS moments against tea type, for square, disk
and rectangular SEs, using all 250 sample images from each tea type.283
Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using all 250 bands from each tea type. . . . . . 286
Box plots of the PS moments against tea type, for square, disk and
rectangular SEs; using the first 10 PC images for each tea type. . 287
Box plots of the PS moments against tea type, for square, disk and
rectangular SEs; using the 10 bands with highest PC1 coefficients
for each tea type. . . . . . . ... 288
Box plots of the PS moments against tea type, for square, disk
and rectangular SEs, using the 10 bands with highest entropies for
each tea type. . . . . . . . . 289
Box plots of the PS moments against tea type, for square, disk and
rectangular SEs, using the 10 bands with lowest MI for each tea
type. . . oo 290
Scatter plots of the first two PCs derived from different sets of bands.292
Plots of the rotationally invariant GLCM features, averaged over
10 bands, against tea type, from the 10 bands with highest entropies.297
Plots of the wavelet-based features, averaged over 10 bands, against
tea type from the 10 bands with highest entropies, for each tea type.299
Plots of the average wavelet-based GLCM features computed at
quantisation level 8 against tea type, from the 10 bands with high-
est entropies. . . . . ..o 300
Plots of the average wavelet-based GLCM features computed at
quantisation level 64 against tea type, from the 10 bands with
highest entropies. . . . . . . . . . ... oL 301

Xviil



9.21 Scatter plots of PC2 versus PC1 from 6 rotationally invariant
GLCM features at quantisation levels 8 and 64 ((a) and (b)), 6
rotationally invariant wavelet-based GLCM features ((c) and (d))
and 6 wavelet-based features (e) from the 10 bands with highest
entropies from each type. . . . . . . ... 304

9.22 Grey scale images of size 256 x 256 from 6 types of Chinese tea. . 310

X1X



ABSTRACT

This thesis concerns the analysis of digital texture images, using techniques from
mathematical morphology and regression modelling for the classification of tex-
ture images. It investigates the use of granulometric moments, arising from the
morphological pattern spectrum, as texture descriptors to predict evolution time
or class label of texture images which evolve over time or follow an intrinsic or-
dering of textures. A cubic polynomial regression is used to model each of several
granulometric moments as a function of time or class. These models are combined
in a novel way and used to predict time or class.

The methodology was developed on synthetic images of evolving textures gen-
erated for the purpose, and then applied to classify a sequence of images of corrod-
ing metal to a point on an evolution time scale. Performance of the new regression
approach is compared to that of several well established classifiers, namely lin-
ear discriminant analysis, neural networks and support vector machines (SVMs).
The method was also applied to images of Indian black tea granules, which are
ordered according to granule size. Better classification was achieved for both sets
of images compared to previously published results for these images.

The performance of grey level co-occurrence matrix (GLCM) features from
the synthetic images and both sets of real images was compared to that of gran-
ulometric moments, and it was found that granulometric moments provide much
improved classification compared to GLCM features for such shape-based tex-
ture images. The performance of wavelet-based features from the Indian black
tea images was also evaluated and was poorer than expected.

SVMs were generally found to be superior to the other classifiers.

The later part of this thesis concerns classifying hyperspectral images of Chi-
nese teas. Several methods were compared for selection of appropriate spectral
bands from these images. Principal component analysis and entropy proved to be
the best band selection criteria in this application. GLCM features, wavelet-based
features and wavelet-based GLCM features outperformed granulometric moments
computed from the same set of bands. Calculating texture features from an op-
timum set of spectral bands gave better classification performance compared to
the use of RGB (red, green and blue) or HSV (hue, saturation and value) colour

representations or grey scale versions of the images.



Overview

Image processing is a multi-disciplinary research area, with contributions from
engineers, computer scientists and statisticians. Digital image analysis has many
applications, for example automating cell recognition and counting in microscope
images, tracking objects in radar images for military applications, or reducing
noise in satellite images before classifying areas on the ground into different types
of land use. Digital images are represented as an array of numbers, each repre-
senting black or white (in a binary image), a shade of grey (in a grey scale image),
or a multivariate measurement (for a colour or multi-sensor image).

In this project we investigate the use of statistics and mathematical morphol-
ogy for classifying shape-based texture images. Mathematical morphology is a
type of set theory, involving the interaction of specified test sets or structuring
elements with a larger set. The result is another set. Applying different test sets
to an image has different effects, useful for different purposes. These methods
may be applied to either black and white or grey scale images.

We use morphological granulometries based on a series of openings at different
scales, which produce a statistical probability distribution. The moments of this
distribution provide a summary of texture information present in the image. Ap-
plying this to the foreground of an image provides information on shape and size
of objects present, while applying it to the image background yields information
on the spacing of the objects.

Most approaches to texture classification consider texture classes that have no
intrinsic ordering, e.g. grass, wood, ceramic. In this work we are concerned with
classification of a texture image to a point on an ordered scale of texture, using
textures which evolve over time or follow an intrinsic ordering. In some texture
analysis applications, such as monitoring of the degree of corrosion of machine
parts, knowledge of the point reached on a time scale from no corrosion to severe
corrosion is a vital aspect of industrial technology monitoring, related to safety
issues as well as functionality (Choi and Kim (2005)). It is important to be able
to measure the severity of corrosion as this can cause component weakness and
potentially catastrophic failure.

The granulometric moments can be used to decide what type of texture an
image contains, using statistical classification procedures. Gray et al. (2006),
Gray et al. (2005), McKenzie (2004) and McKenzie et al. (2003) have shown
the usefulness of this approach, especially when small numbers of images are
available, and it has been implemented to enable classification of an image to a

point in time when the texture can be considered as an evolving process.



A statistical approach to image texture classification is proposed here which
uses polynomial regression. We model each texture feature as a function of lapsed
evolution time or class label directly, using training images for which both the
evolution parameters and the time state or class label are known. Polynomial
regression models (one for each moment) are built using average moments from
training images. A combined model is formed and the evolution time or class
label of a new image is predicted from its observed features.

The main difference between our methodology and the methodology developed
in McKenzie (2004) is that the latter used multiple regression to relate moments
with the underlying parameters used to generate their synthetic images. The evo-
lution of the artificial images depended explicitly on some evolution parameters
which were set up as a known function of time before generating the images. The
synthetic images were then used to relate granulometric moments to evolution
parameters and back-prediction was used to predict the lapsed evolution time of
a new image, based on the artificial image model and the observed granulometric
moments from the new image.

In our case, the method was developed and evaluated using synthetic images
for which the parameters do not change over time. Relating moments to time
directly makes more sense for our synthetic images, as the parameters used to
generate the images do not relate directly or explicitly to time. We build the
model separately for the real images of interest rather than using the synthetic
images-based model to predict time. Also, in practice any underlying parameters
considered in the earlier approach may not necessarily be the most appropriate
ones to use for real images of a particular type, so the approach developed here
should be more robust.

Our methodology was developed on computer-generated grey scale images
and is applied to two sets of real images, which consist of corrosion and Indian
black tea granules. Several well established classifiers, i.e. support vector ma-
chines, linear discriminant analysis and neural networks are also used, using the
same features, and their performance is compared with that of the regression
classification approach. We also consider different types of features, including
grey level co-occurrence features and wavelet-based features, and compare their
relative performance for discriminating textures. The last part of this work con-
cerns classifying Chinese teas based on analysis of hyperspectral images, and
the benefits of using hyperspectral images over grey scale and colour images for

classification is investigated.
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The thesis structure is as follows: Chapter 1 reviews elementary concepts of
digital image processing, with some examples. Morphological techniques, such as
dilation, erosion, opening, closing, and applications of morphological techniques
both for binary and grey scale images, are discussed in Chapter 2. An overview
of texture analysis and description of the conventional texture feature extraction
methods and classification approaches are given in Chapter 3. This chapter also
contains details of how we generate synthetic binary and grey scale texture images
which evolve over time. A detailed presentation of granulometries as the main
feature extraction approach used in this thesis is in Chapter 4. The relationships
of granulometric features to lapsed evolution time for synthetic images are inves-
tigated there. Chapter 5 presents the new regression-based texture classifier and
the classification results of the synthetic images. Chapter 6 concerns classification
of real corrosion images according to their evolution time and the performance
of all classifiers is presented. This methodology is applied to another set of real
images, of Indian black tea granules, to classify them according to granule size,
in Chapter 7. Grey level co-occurrence features and wavelet-based features are
extracted from the synthetic images as well as from both sets of real images and
their performance for classifying those images is compared to that of granulomet-
ric moments in Chapter 8. Our methodology is then applied to hyperspectral
images of six different types of Chinese teas to classify them in Chapter 9. Dif-
ferent band selection techniques are also compared there. Finally, Chapter 10

provides overall conclusions of the work in the thesis.
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Chapter 1

Introduction to Image Analysis

1.1 Introduction

This chapter gives an introduction to basic image analysis, including mathemat-
ical morphology. Different image analysis operations are illustrated on example
images, and carried out in the Matlab software package.

Image analysis is the extraction of meaningful information from digital images
by image processing techniques. A digital image is an electronic representation of
an image, usually as a two-dimensional finite array of numbers f;; (Gonzalez and
Woods (2008)) where i and j are finite integers indicating the row and column,
and f;; is the intensity or grey level of the image at that point (also finite). Each
location is known as a pizel (picture element). So function f;; indicates the pixel
value in row ¢ and column j (or vice versa).

Image analysis typically consists of five distinct stages that follow each other
logically. These stages are display, filtering, segmentation, mathematical mor-

phology and measurement, discussed briefly below.

1.2 Display

Display is the most basic step in image analysis. Different types of displays
(binary display, grey scale display, or multivariate display) are appropriate, de-

pending on the nature of the image.

1.2.1 Binary display

A binary image is the simplest type of display. In this case each pixel takes value

0 (for black) or 1 (for white), or sometimes 0 represents black and 255 represents



white. The value 0 or 1 can be stored in a bit of computer memory. A byte is

the fundamental unit of computer memory which consists of 8 bits.

1.2.2 Grey scale display

In a grey scale image display, pixel values are used to specify the brightness with
which pixels are illuminated on a computer screen, or how bright they appear on
printed paper. Often the pixel values represent physical properties of the image.
Showing larger pixel values as brighter intensity is simply a way to enable the
spatial structure in the image to be seen. Grey scale pixels usually take an integer
value between 0 and 255. The number of grey levels that can be handled is usually
expressed in terms of a number of bits. One byte can represent 2® = 256 grey

levels.

1.2.3 Colour display

Human eyes are the main processors of the colour spectrum. The human eye
contains three types of cones for colour processing (Gonzalez and Woods (2008)).
One type has maximum sensitivity to the blue region of the colour spectrum, an-
other type to the green region, and a final type to the red region. Light consisting
of a single wavelength in the red region of the spectrum will be detected most
strongly by the red sensitive cells, and we see it as red. Similarly, green sensitive
cells detect green and blue sensitive cells detect blue. Different combinations of
these three wavelengths produce a different colour sensation. To produce any
colour, the intensities of the red, green, and blue light need to be present in spe-
cific proportions. This is referred to as the RGB (red, green, blue) system. Many
colours can be obtained on a display unit from combinations of the three basic
colour components. If each component can be displayed in 256 different intensi-
ties, there are 2563 = 16,777,216 different possible colours for a pixel (Gonzalez
and Woods (2008)).

Figure 1.1 shows a colour, grey scale and a binary version of an example image
of peppers. The original image is a colour image (RGB), which was converted
to grey scale using the Matlab function ‘rgh2gray’ (which converts RGB images
to grey scale by forming a weighted sum of the R, G, and B components as
0.2989 % R + 0.5870 * G + 0.1140 * B). The grey scale image was then converted
to binary using function Im2bw with an associated threshold. Otsu’s threshold-
ing (Gonzalez and Woods (2008)) is used here, which chooses the threshold to



minimise the intra-class variance of the black and white pixels (in this case the
threshold was 0.3961). In the output image all pixels in the input image with
luminance or intensity above the threshold are replaced with the value 1 (white)

and all other pixels with value 0 (black).

(a) Colour display (b) Grey scale display (c) Binary display

Figure 1.1: Colour, grey scale and binary display of a peppers image of size
350 x 243 (from the Matlab Help System).

1.2.4 Image enhancement

The objective of image enhancement is to improve the interpretability or percep-
tion of information in images for human viewers, or to provide ‘better’ input for
other automated image processing techniques. Image enhancement techniques

can be divided into two broad categories:
1. Spatial domain methods, which operate directly on pixels, and

2. Frequency domain methods, which operate on the Fourier transform of an

image.

We describe contrast stretching, and histogram equalisation, as spatial domain

techniques for image enhancement.

Contrast stretching: Contrast stretching, often called normalisation, is a sim-
ple image enhancement technique that attempts to improve contrast in an image
by ‘stretching’ the range of intensity values to span a desired range, e.g. the full
range of pixel values that the image type allows, using a linear scaling function.
As a result the ‘enhancement’ is less harsh than in histogram equalisation (see
below). A simple way of contrast stretching described by Jain (1989) is as follows:

The first step specifies limits a and b over which image intensity values will
be extended (for standard 8-bit grey scale images, these limits are usually 0 and

255). The original image is examined to determine the intensity limits (¢ and d)



in the unmodified image. Then for each pixel, the original value I;,, is mapped to

b—
Lot = (Iin — ¢) (d_Z) +a.

The main drawback is that a single outlying pixel with either a very high or

output value [I,,; as

very low value can severely affect the effectiveness of the operation. One way to
overcome this is to set ¢ and d to, say the 5" and 95" percentiles of the original

intensities, respectively.

Histogram equalisation: Histogram equalisation is a more sophisticated pro-
cess of image enhancement than contrast stretching, as it may employ non-linear
and non-monotonic transfer functions to map between input and output pixel in-
tensity values, whereas contrast stretching is restricted to a linear mapping. His-
togram equalisation ensures that all display intensities are approximately equally
represented, with the objective of obtaining a new enhanced image with a uniform
histogram. This can be achieved by using the normalised cumulative histogram
as the grey scale mapping function.

Glasbey and Horgan (1994) describe histogram equalisation as follows: Let [
denote the intensities ranging from 0,1, ..., I,.x and p(f) be the proportion of
the pixel values < f. If the pixel values are displayed with intensity I = I,..p(f),
then the proportion of pixels with display intensity < I will be i/iyay, leading to a
linear cumulative distribution of intensities, i.e. a uniform distribution. Because
of the discrete nature of the image histogram, the transformed image will have

an approximate rather than an exact uniform distribution.

Zooming and reduction: If an image is too large to fit on a screen or too
small to see finer detail, then image reduction or zooming can be used to shrink
or enlarge the image. Image zooming gives control of the size of most images
displayed. The simplest form of zooming is pizel replication.

Alternatively it may be of interest to reduce the size of an image for easier dis-
play or so it can be processed in less computer time, or occupy less storage mem-
ory. Although reducing an image involves some loss of data, it may sometimes
be essential for display. Pizel sampling is one way to do this. Some techniques

of zooming and reduction are described in Gonzalez and Woods (2008).



1.3 Filtering

Image filtering is another enhancement process. Image filters are the most com-
mon image processing operations, and create a new image by processing the pixels
of an existing image. Different filters are used for different purposes, such as to re-
move noise, to smooth out high-frequency fluctuations or remove periodic trends
of a specific frequency. Edge detection filters are of fundamental importance in
image processing as edges characterise boundaries of objects of an image. Edge
detecting an image significantly reduces the amount of data and filters out unnec-
essary information, while preserving the important structural properties of the
objects in an image. Edges represent rapid transitions of intensity in the image.

Filters are broadly classified as linear filters and non-linear filters, although
they can also be classified as (a) smoothing and noise reduction filters, (b) sharp-

ening filters, and (c) edge-detection filters.

1.3.1 Linear filters

A filter is called linear if its output is derived as a linear combination of the
pixels in the original image. An optimised linear filter possesses computational
simplicity but cannot smooth without simultaneously blurring the edges. Linear
filters can be used either for smoothing images to reduce noise, i.e. reducing
the amount of intensity variation between one pixel and the next, or for edge-
detection. Although there are many smoothing filters, we discuss only the moving
average filter and the Gaussian filter.

Let fij, i,7 = 1,2,...,n, denote the image pixel values, and g;; denote the

output of a linear filter of size (2m + 1) x (2m + 1) with specified weights wy,; for

k,l = —m,---,m. Then the output image is derived as :
Gij = Z Z wklfi+k,j+l> (1'1)
k=—ml=—m

for i,7 = (m+1),...,(n—m) (Gonzalez and Woods (2008)). So g;; is a weighted
combination of the original pixel values, over a window of size (2m+1) x (2m—+1),
centred on pixel (7, 7). Most linear filters use a window with an odd number of
rows and columns. An even-sized window can be used, but in that case there will
be a half-pixel displacement between the input and output image. For smoothing,

all the w;; are non-negative and usually sum to 1.



Moving average filter

The moving average filter is the simplest method of smoothing images. Its output
is simply the average of the pixel values in the neighbourhood of pixels centred at
that pixel, usually a square neighbourhood, given by equation (1.1) with wy =
1/(2m+1)2, for an (2m+1) x (2m+ 1) neighbourhood, so that for a 3 x 3 square
neighbourhood the weight will be 1/9 (and m = 1).

Gaussian filter

The Gaussian filter can also be defined by equation (1.1) with weights specified
by the probability density function of a bivariate Gaussian (normal) distribution

with variance o2, that is

Wy = ! ex —(@ +5%)
RO P 202 ’

for i, j = —[30], ..., [30] for some specified positive value of 02 and where [30]

represents the integer part of [30]. Beyond this range the w;; are near zero.

The Gaussian filter is a generalisation of the moving average filter. Four
repeats of a moving average filter of size (2m + 1) x (2m + 1) approximates a
single Gaussian filter with 0 = 3(m? + m) (Wells (1986)). The Gaussian filter
has the following advantages over the moving average filter:

1. Gaussian filters are separable and circularly symmetric (isotropic) but av-
erage filters are not. Average filters smooth further along diagonals then

along rows and columns.

2. The weights in the Gaussian filter decay gradually to zero, while in the
case of an average filter the weights have an abrupt cut-off which leaves

discontinuities in the smoothed image.

Figure 1.2 shows the effect of two moving average filters of size 5 and 10, and a
Gaussian filter of size 10 with ¢ = 0.5, on a binary image of disks of various radii.
The effect is to smooth out the noise but also smooth out edges, so the result
appears blurred. Comparing Figures 1.2(b) and (c) it is seen that the larger
moving average filter blurs the image more than the smaller one. Comparing
Figures 1.2(c) and (d), we see that the Gaussian filtering produces a better result

as it is not as blurred. Such filters are called low pass filters, as the high frequency



components which give sharp changes in intensity are smoothed out, but lower

ones ‘pass’ the filtering process.

(a) Binary image of (b) Effect of 5 x 5 av- (c) Effect of 10 x 10 av- (d) Effect of 10 x 10
size 256 x 256 erage filter erage filter Gaussian filter

Figure 1.2: Effect of moving average filters of different size and a Gaussian filter
on a binary image of disks.

First order edge detector

A high pass filter on the other hand is used to sharpen an image or to detect edges.
Linear edge detection filters use a combination of positive and negative weights
to emphasise edges and the weights usually sum to zero. The first-derivative row
and column filters detect edges in a given direction. The first-derivative row filter
replaces each pixel value by the difference in pixel values in columns on either
side of that location in the input image. The output will be larger in magnitude
if the pixel values to the left and right of that pixel are quite different from each

other. A set of weights, which operates over 3 rows, is given by

-1 0 1
-1 0 1

The output estimates the first row derivative, based on a Taylor series expan-

sion of the image f,, near (4, j). It can be shown that

1 1

Z Z Wit fitk,j+1 = %277

k=—11l=-1

the first row derivative.
For the first derivative column filter the weights are just the transpose of the

previous weights matrix, i.e.



Again this provides an approximation to the column derivative image. The first-
derivative row filter produces non-zero values in response to vertical edges and the
first-derivative column filter responds most to horizontal edges. However, these
filters can emphasise noise as well as edges. One way to overcome this is to use
a smoothing filter first. The effect of first-derivative row and column filters on
Figure 1.2(a) are shown in Figures 1.3(b) and (c). The row filter highlights the
image area where the intensity changes vertically and the column filter indicates

changes in the horizontal direction.

Second order edge detector

Second order derivative filters are also known as Laplacian filters, which are

isotropic and therefore responsive to edges in any direction. With the weights

1 1 1
w = 1 -8 1
1 1 1

the output of a Laplacian filter approximates the Laplacian transform f of the

input image (Glasbey and Horgan (1994)), i.e.

1 1
fy 01
Z Z Wi fitkjr1 & 372] + 8y2]' (1.2)

k=—11=—1

Figure 1.3 shows the result of applying a Laplacian filter to Figure 1.2(a).
Since the Laplacian filter emphasises noises as well as edges, a 5 x 5 Gaussian
filter was applied to reduce noise first and then the Laplacian filter was applied
(v = 0.8) to the result to detect the edges (i.e. using a Laplacian of Gaussian
filter). Comparing the output image with the original, the effect is to highlight
areas in which intensity changes rapidly. The edges are finer than those produced

by the first derivative filters and noise has been suppressed.

1.3.2 Nonlinear filters

A nonlinear filter is a filter whose output is a nonlinear function of the input. One

practical reason to use nonlinear filters instead of linear filters is that linear filters



(a) Effect of 5 x 5 (b) Effect of 3 x 3 (c) Effect of 3 x 3 (d) Effect of 3 x 3
Gaussian filter row filter column filter Laplacian filter

—
~

Figure 1.3: Effect of row filter, column filter and Laplacian filter on a binary
image of disks.

may be too sensitive to a small fraction of unusually large input observations
(Macleod (1992)). Unlike linear filters, nonlinear filters can reduce noise and

enhance edges at the same time.

Nonlinear smoothing filters

A variety of non-linear smoothing filters have been developed. The median filter
is one of the most widely used nonlinear smoothing filters. A median filter moves
a window over an image and computes the output pixel value as the median
value of all input pixels within the window. For an n x n image the output of the
(2m + 1) x (2m + 1) median filter is

gi; = median{ fix j1} for i,j=(m+1),---(n—m).

Median filtering is a simple and very effective noise removal filtering process which
avoids blurring of edges. It is particularly good for removing shot noise (strong
spike-like isolated values) (Dougherty and Astola (1994)).

The moving average filter, the Gaussian filter, and the median filter are all
extensively used for noise reduction. To compare their effect with the Laplacian
filter, we superimposed salt and pepper noise on Figure 1.2(a), then applied a
3 x 3 average filter, a 3 x 3 Gaussian filter with ¢ = 0.5 and a 5 x 5 median filter
(Figure 1.4). Although the Gaussian filter performs better in image smoothing
it does very little to reduce noise, and the median filter is much better for noise
reduction. The Laplacian filter of size 3 x 3 was applied with o = 0.8, and

effectively detects the edges of the image objects.



B K RN
(c) Effect of 3x 3 Gaussian
filter

(d) Effect of 5 x 5 median (e) Effect of 3 x 3 Lapla-
filter cian filter

Figure 1.4: Effect of average, Gaussian, median, and Laplacian filters on a noisy
binary image of disks.

Nonlinear edge-detection filters

Most of the edge-detection filters are based on the gradient method, which detects
edges by looking for the maximum and minimum in the first derivative of the
image (Kimmel and Bruckstein (2003)). There are various such filters, of which

a few are described below:

Variance filter: The variance of the pixel values in a window will be larger if
an edge is present than if it is not. Computing the variance or standard deviation
in a window centred on each pixel will therefore help to highlight edges. There are
several variations of the variance filter, such as the range filter and the Roberts
filter.

Range filter: The output of a range filter is the difference between the maxi-

mum and minimum values of the pixel values in a window:

gi; = max{ firpjp: k,l=—m, -+ . m} —min{fiyx 4 k,l=—m, -, m}.

The range filter is an useful edge-detector.
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Roberts’ filter: The Roberts’ filter uses the sum of absolute differences of

diagonally opposite pixel values, i.e.

Gi; = | fij — firr g1l + | fixr; — fijel,

so uses a 3 X 3 window. This filter is used as an edge enhancement operator, and
especially determines edges at points where the gradient of the input image is

largest.

Gradient filter

The gradient indicates the highest rate of change. The maximum gradient of the

image f,, near (7,7) is given by

fi\* [0\’
CORICT

so a gradient filter can be designed by replacing the partial derivatives above

by their estimates. It is wise to use a smoothing filter before using a gradient

filter to obtain a satisfactory edge-detection.

Prewitt’s filter: Prewitt’s edge detector filter is the standard un-weighted gra-
dient filter used to detect edges based on applying a horizontal and vertical filter
in sequence. Both filters are applied to the image and summed to form the final

result. Prewitt’s filter replaces the partial derivatives by their estimates,

of.; 1

8—95] = 6(fi-1,j+1 + fije1+ fiv1 01 — fic1jo1 — fij—1 — fix1,5-1)
and

of.; 1

8y] = 6(fi+1,j—1 + fix1j + fir1 01 — fic1jo1 — fic1j — fic1,j-1)

(Glasbey and Horgan (1994)), using a 3 x 3 window size.
The filter is of the form:

LN 2 N
B 0 fi Afij
9ij = <3x> + ( oy ) ) (1.3)

and detects edges at all orientations.
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Sobel’s filter: Sobel’s filter consists of two kernels which detect horizontal and
vertical changes in an image. If both are applied to an image, the results can
be used to compute the magnitude and direction of the edges in the image. It
is a weighted version of Prewitt’s filter, which is also based on the maximum
gradient, but while estimating the partial derivatives more weight is given to the

pixels nearest to (i, j), as follows:

of.; 1

—3; = g(fiq,jﬂ +2fi 41+ fir141 — fi1j-1 — 2fij-1 — fir1,5-1)
and

of,; 1

8—3/] = g(fiﬂ,jq +2fiv1, + firrje1 — fiijo1 — 2fim1; — fir1-1)-

Again these are substituted in equation (1.3). Like Prewitt’s filter, this is a
filter of size 3 x 3. A detailed description is given in Glasbey and Horgan (1994).

Canny filter: Canny (1986) developed another edge detector filter which is
also based on the gradient of the image intensity. It starts with linear filtering to
compute the gradient of the image intensity distribution function and ends with
thinning and thresholding to obtain a binary map of edges. The method uses two
thresholds, to detect strong and weak edges, and includes the weak edges in the
output only if they are connected to strong edges. Canny suggested using zero-
crossings of second derivatives in the direction of steepest gradient to determine

the position of the edges, i.e.

2 2 2
O fi O fi O fij
O 2] + SlIl Pij a 2] o a;

where ¢; ; is the direction of the maximum gradient and may be defined as

Ofi; ,0fi;
- <f/f>

In effect, the Canny filter thins the edges produced by the gradient filter.

cos? ©ij + 28In @;; COS P

Figure 1.5 shows the result of applying Roberts’ filter, Prewitt’s filter, Sobel’s
filter, the Canny filter and a variance filter to the disks image. The Roberts’
filter emphasises the edges better than the Canny filter and variance filter, but
the variance filter detects individual object edges more successfully, although
Canny is the best filter in general. The Prewitt’s filter and Sobel filter have
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a very similar effect, as they both are based on the maximum gradient. The
Roberts filter seems to be superior to the other filters for edge detection in this

case.

(a) Effect of 2 Effect of 3 x 3 Sobel’s

filter

(d) Effect of 3 x 3 Canny (e) Effect of 5 x 5 variance
filter filter

Figure 1.5: Effect of Roberts, Prewitt’s, Sobel’s, Canny and variance filters on a
binary noisy image of disks.

Morphological filter: Morphological filters provide a whole class of nonlinear
filters, used for various purposes. They are mentioned in Section 1.5 as they are
also be used at a later stage in the processing of an image, and some of these are

also described and used extensively later in the thesis.

1.4 Segmentation

Image segmentation is a fundamental step in most applications of image analysis.
Segmentation is a commonly used term for separating interesting and uninterest-
ing objects, as well as distinguishing foreground from background (Reulke and
Lippok (2008)). In computer vision, segmentation precedes the appropriate rep-
resentation of the objects contained in an image and their classification according
to specific features of interest (Ballard and Brown (1982)). A sensible segmen-

tation is typically one in which pixels in the same category have similar grey
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scale values and form a connected region, and neighbouring pixels which are in
different categories have dissimilar values. Three general approaches to image
segmentation are: thresholding techniques, edge-based methods and region-based

techniques, described briefly below.

1.4.1 Thresholding

Thresholding is the simplest method of image segmentation. If the digital image
is grey scale and a binary display is required, thresholding can be employed to
produce a binary image (Shapiro and Stockman (2002)). This requires a threshold
value t, used to categorise the pixel values of the foreground, namely pixel values
on one side of ¢ are displayed as black and those on the other side are displayed
as white (Gonzalez and Woods (2008)). So pixel (7, j) takes one value if its grey
scale value f;; < t, otherwise it takes a second value. More than one threshold
can also be used. For example if two threshold values are used, pixel (i, ) takes
one value if ¢t < f;; <11, otherwise it takes a second value.

Figure 1.6 shows a grey scale image of size 256 x 256 of ellipses of various
sizes, and three segmentations using manually selected threshold values of 0.25,
0.5 and 0.75. Thresholding is carried out using Matlab command im2bw, in the
Matlab Image Processing Toolbox, where the parameter level (ranging from 0 to
1) is set at the various threshold values. As the threshold increases, the number

of object pixels reduces.

(a) Image of ellipses (b) Thresholding at (c) Thresholding at (d) Thresholding at
level 0.25 level 0.50 level 0.75

Figure 1.6: Effect of thresholding a 2562 grey scale image of ellipses, using various
threshold values.

Thresholding is most effective when the intensity levels of the objects fall
squarely outside the range of levels in the background. The threshold can be
chosen empirically, by testing a range of values of t and determining which works
best for identifying the object of interest, or automatically. There are several
automatic algorithms for choosing the threshold, such as Otsu’s thresholding al-

gorithm, the inter-means algorithm and the minimum error algorithm. All of
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these are histogram-based.

Otsu’s thresholding: Otsu (1979) proposed a thresholding method which in-
volves iterating through all the possible threshold values and calculating a mea-
sure of spread for the pixel levels to each side of the threshold. The aim is to find
the threshold value for which the sum of foreground and background spreads is
at its minimum, and to minimise the intra-class variance of the thresholded black
and white pixels. This turns out to be the same as maximising the between-class
variance. This operates directly on the grey level histogram. For each potential
threshold 7', the steps are:

1. Separate the pixels into two categories according to the threshold.
2. Find the mean of each category, f; and fs.
3. Square the difference between the means, to get (f; — f)%.

4. Multiply by the number of pixels in one category times the number in the
other, to get niny(fi — f2)2.

5. Tterate the procedure until the optimum 7" is obtained, i.e. (4) is minimised.

This depends only on the difference between the means of the two categories,
thus avoids having to calculate differences between individual intensities and the
means of each category. The optimal threshold is the one that maximises the

between-class variance (or, conversely, minimises the within-class variance).

Inter-means algorithm: Ridler and Calvard (1978) and Trussell (1979) pro-
posed the inter-means method for choosing a single threshold. The steps are as

follows:

1. Select an initial estimate of the threshold at t. A good initial value could

be the median intensity of the image, such that

t 1 t—1
th > 577,2 > th,
k=0 k=0

where hy, k =0,1,---, N represents the number of pixels in the image with
grey scale value k, N is the maximum pixel value, and n? is the number of

pixels in the n x n image.
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2. Calculate the mean pixel value for both categories resulting from step 1.

The mean pixel values for the first and second category respectively are

t t N N
pr =Y khi/Y h, and  pp= > khy/ Y Iy
k=0 k=0

k=t+1 k=t+1

3. Re-estimate t as half way between the two means, i.e.

t=[(p1 + p2)/2],

where [] denotes the integer part.
4. Repeat steps 2 and 3 until £ stops changing value.

This threshold tends to divide the image histogram into two parts so that there are
approximately equal numbers of pixels in both categories. Kittler and Illingworth
(1986) suggested modifications to the above algorithm to overcome this tendency,
as equal-sized categories may not be appropriate. The modified method assumes
the image grey levels arise from a mixture of Gaussian distributions. The mini-

mum error method is based on this modification.

Minimum error algorithm: The minimum error algorithm was proposed by
Kittler and Illingworth (1986) which considers the image histogram as an estimate
of the Gaussian probability distribution. It also assume that image foreground
and background pixels follow Gaussian distributions with different means and
variances. The minimum error algorithm also starts with an initial choice of

threshold value and the steps are as follows:
1. Make an initial guess at a value for .

2. Estimate the proportion p;, mean p;, and variance o} for pixels with values

less than or equal to ¢ (first category), by

2
n=py

t t t
1 1 1
p=—> M = Y khpand o} = —— > K hy — 1.
ni= =0 i

Similarly, estimate po, 2, and o3 for pixels with values t+1,..., N (second

category).

3. A good estimate of ¢t would be such that pixels with value k£ are allocated

to the category with higher posterior probability, i.e. allocate to category 1
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if
pre1(k) > papa(k), otherwise category 2,

where ¢;(k) represents the probability density function of a Gausian distri-

bution with mean p; and variance o?, assumed to hold in category i.

4. By substituting the functional form of ¢; in the above inequality and taking

logarithms we get

1 1 [ o M1 2 oip;
2 9 1P5
k(_2__2)_k(_2__2)+<_72__2+l0922 <0

07 03 07 03 1 03 03P

or

EA—2kB+C <0

where A, B, and C' are:

1 1 op?
A:(—Q——Q), B:(’u—;—’u—;) and C:(M—;—M—;jtlog épg)
o1y 03 01 b o1y 03 03P

5. The threshold ¢ is re-estimated in terms of the means and standard devia-

tions of the two categories by

L {BJF\/W]

A
as the positive root of the quadratic equation k*A — 2kB + C = 0.

6. Repeat steps 2 to 5 until ¢ converges.

Majority filter: The majority filter smooths images by replacing pixel values
with the majority (most frequent) pixel value in a neighbourhood. The steps,

described by Glasbey and Horgan (1994), are as follows:
1. Make an initial guess at a value for t.

2. Segment the image, by thresholding, and store the result in an array g:

g5 =1 it fi; <4, otherwise g;; = 2.

3. Apply a majority filter to g, and record the new labels in array ¢’. There-

fore g;; is set to the most common category in the set g,y 4 for k1 =
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—m,---,m. This is repeated for every value of ¢ and j from m + 1 to

n—m.

4. Calculate the mean pixel value in category 1,

1
1 = EZ Z(ij):g;j:1 [ig

where N; is the number of pixels in category 1. Similarly, calculate pus.
5. Re-estimate ¢ as [3(u1 + p2)].

6. Repeat steps 2 to 5 until £ converges to a stable value, and then stop after

step 3.

The majority filter, for example, can be implemented using Matlab ‘bwmorph’
function with the majority option. This filter replaces the value of a given pixel
to 1 if at least five of its immediate eight-neighbours (see Section 3.4) are 1, and
by 0 otherwise (Boland and Murphy (2001)). In effect it eliminates corners of the
objects, therefore the disks in Figure 1.7 (a) turned to more or less square shapes
in Figure 1.7 (b).

(a) Original image (b) Effect of a 3 x 3 major-
ity filter

Figure 1.7: Effect of a majority filter on a 256* binary image of disks.

1.4.2 Edge-based thresholding

In edge-based segmentation an edge-detecting filter such as Prewitt’s filter is
applied to the image, and pixels are classified as edge and non-edge, depending
on the filter output. Segmentation can be achieved by allocating to a single
category all non-edge pixels that are not separated by an edge. However, edge-
based methods centre around contour detection and the contour may not always

be complete. There is a need to connect together broken contours lines, so this
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approach is prone to fail in the presence of blurring. An algorithm such as the
connected components algorithm can be used to label the objects defined by the

edges, if these do provide complete contours.

Connected component algorithm: A pixel has 4 horizontal and vertical
neighbours and 4 diagonal neighbours. Connectivity defines the relationship be-
tween pixels which specifies how many pixels are adjacent to a specific pixel.
The relationship can be based on either 4- or 8-connectivity. A pixel is called
4-connected if it is connected to its 4 horizontal and vertical neighbours only but
it is called 8-connected if the pixel is connected to its 4 horizontal and vertical
neighbours as well as 4 diagonal neighbours. The connected component algorithm
uses the concept of a pixel’s connectivity.

The connected component algorithm scans an image from top to bottom and
left to right in order to identify connected pixel regions, i.e. regions of adjacent
pixels which share the same intensity value, e.g. k. The connected components
labelling operator scans the image by moving along a row until it comes to a
point, for example p, where p denotes the pixel to be labelled at any stage in
the scanning process for which £ = 1. For 8-connectivity, it examines the four
neighbours of p, i.e. the neighbours (i) to the left of p, (ii) above it, and (iii and
iv) the two upper diagonal terms. Based on this information, the labelling of p

occurs as follows:
1. If all four neighbours are 0, assign a new label to p, else
2. if only one neighbour has k = 1, assign its label to p, else

3. if one or more of the neighbours have k = 1, assign one of the labels to p

and record the equivalences.

After completing the scan, the equivalent label pairs are sorted into equiv-
alence classes and a unique label is assigned to each class. As a final step, a
second scan is made through the image, during which each label is replaced by
the label assigned to its equivalence classes. The algorithm is described in detail
in Glasbey and Horgan (1994).

1.4.3 Region-based thresholding

There are several different approaches to this, namely divisive methods which
split pixels into regions and agglomerative or merging algorithms which merge

pixels into regions, and those that both split and merge. Typically, the image
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is partitioned into connected regions by grouping neighbouring pixels of similar
intensity levels. This can be done in several ways. Adjacent regions may then
be merged under some criterion involving, perhaps, homogeneity or sharpness of
region boundaries. The watershed algorithm is one of the simplest, yet powerful,

region-based segmentation methods, now described.

Watershed segmentation

Watershed segmentation is a splitting algorithm which splits the image into re-
gions. This is a way of automatically separating objects that touch each other by
producing contours indicating their edges. The most intuitive formulation of the
watershed transform is based on a flooding simulation (Dougherty and Lotufo
(2003)). In this segmentation the input image is considered to be a topological
surface or elevation map. The grey scale value at each pixel represents the height
of the surface at that pixel, so the grey scale image can be thought of a 3-D
surface.

Gonzalez and Woods (2008) suggested considering three types of points to in-
terpret such a topological surface. These are: (a) points belonging to the regional
minima; (b) points at which a drop of water, if placed at the location of any of
those points, would fall with certainty to a single minimum; and (c) points at
which water would be equally likely to fall to more than one such minimum. For
a particular regional minimum, the set of points satisfying condition (b) is called
the catchment basin or watershed of that minimum. The points satisfying con-
dition (c) form crest lines on the topographic surface which are called watershed
lines.

The objective of watershed segmentation is to produce watershed lines on
the surface. The method can be visualised (Dougherty and Lotufo (2003)) by
conceptually punching holes in each regional minimum of the image. Then the
topography is slowly flooded from below by letting water rise from each regional
minimum at a uniform rate across the entire image. When the rising waters
coming from distinct minima are about to merge, a dam is built to prevent them
merging. The flooding will eventually reach a stage when only the tops of dams
are visible above the water-line, and these correspond to the watershed lines.

Figure 1.8(a) represents a 486 x 732 grey scale image of pears. The corre-
sponding colour image is available in the Matlab help file and was converted
to grey scale. The Matlab function watershed provides watershed segmentation
by computing the gradient magnitude using the Sobel edge masks. Using mor-

phological techniques, i.e. opening-closing reconstruction, it identifies foreground
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markers and computes background markers by means of thresholding, and the
watershed segmentation can be obtained from these. Figure 1.8(b) represents the
filtered image where the gradient is high at the borders of the objects and low
inside the objects, (c) is the opening-closing reconstructed image which allows the
algorithm to find the foreground markers, (d) is the thresholded opening-closing
reconstructed image, (e) shows the watershed segmentation of (a), and (f) con-
tains the foreground markers, background markers and watershed segmentation

superimposed on the original image.

(d) Background markers (e) Watershed segmenta- (f) Compact visualisation
tion of (a)

Figure 1.8: Watershed segmentation of a 486 x 732 image of pears, taken from
the Matlab help file (using Matlab’s functions).

Watershed from markers: The watershed transform is mainly applied to the
morphological gradient image (see Section 2.6). This type of watershed requires
a set of markers or seed points. Each marker must be placed on a sample region
of the object to be segmented. The markers are used in the same way as the
holes at the regional minima in the image surface, as described above. The
approach is very appealing if one knows how to place the markers within the
object to be segmented. Marker design in watershed transform is one of the most
crucial steps for a successful segmentation (Dougherty and Lotufo (2003)). The
watershed from markers can also be described as a flooding simulation process.
It is an example of segmentation using seeded region growing using the markers

as seed points.
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1.5 Mathematical Morphology

Morphological operations can be employed for many purposes, including edge-
detection, segmentation and enhancement of images. From the underlying mor-
phological operations, an entire class of morphological filters can be constructed
that can often be used in place of standard linear filters. Morphological filters are
examples of nonlinear filters. This is a set-theoretic approach of image analysis
providing a quantitative description of geometrical structure or texture in an im-
age. We will discuss different aspects of mathematical morphology in Chapter 2,

as it is used extensively in this thesis.

1.6 Measurement

Measurement is considered to be the final step of an image analysis. Measure-
ments are usually taken from the image output from segmentation algorithms,
which may also have been produced using morphological operators. In some ap-
plications, measurements can be obtained directly from the original image. Three
general categories of measurements are size or length, measurement of shapes and
boundary statistics (Gonzalez and Woods (2008)).

1.6.1 Measures of size

Two most common types of statistics used to describe size of objects are mea-

surements of area and of distance. The area is just the number of pixels in an

cw“eazz Z 1,

(i,7)€A

object,

i.e. count ‘one’ for every pixel in A. If interest lies in the sum of pixel values

within a specified region A, then the area (or volume) is given by

S fa

(i,7)€A

where f;; denotes the grey scale value of pixel (7,7). Image area and volume
remaining after sequences of morphological operations are also used extensively
in this thesis.

Average breadth, which can be obtained by dividing the area of an object by

its length, is another way to quantify objects.
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Moments can be used to specify the location and spatial distribution (shape)

of an object. The (k, 1) order moment is defined as

p =Y > %t fork,1=0,1,2,...
(i) €A

If £ and [ are both zero, we obtain the zero'-order moment iy, which is the

area. The centroid or centre of gravity can be used to specify the location of an

object in the image, defined in terms of the moments, as

centroid = (@, @) ,
Hoo Moo

where jig and g1 are the zero and first-order moments.

The second order central moments are defined as

i M(2)1 H1o o1

/ Hig / /
Poog = H20 — —, flog = Moz — —— and ;= pi — :
20 Hoo 02 Hoo H Hoo

These measure how dispersed the pixels in an object are from their centroid.
The moment ph, measures the spread of the object over rows, pu(, measures its
spread over columns, and p, is a cross-product term representing spread in the
direction in which both row and column indices increase. These central moments
are not rotationally invariant. Modified versions are available, for use when the
orientation of objects does not matter (see Glasbey and Horgan (1994)).

Distance measurements between two specified pixels (i,j) and (k,[) can be
defined by various different measures, including the traditional Fuclidean distance
V(i — k)2 + (j — 1)2, Chessboard distance max(|i — k|, |j —1|), and City-block dis-
tance |t — k| + 17 — 1.

1.6.2 Measures of shape

The most commonly used shape statistic is a measure of compactness, defined as
the ratio of the area of an object to the area of a circle with the same perimeter,
ie.

area

compactness = 4x————,
(perimeter)?

where perimeter is the conventional measure of boundary length.

Another measure of compactness is given in terms of the moments as

oo + Hog

compactness = 2
00
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This measures how dispersed the pixels in an object are from their centroid,
compared to the most compact arrangement of the pixels.

The shape of an object can be measured in terms of elongation, defined by
the ratio of object length to its breadth, i.e.

length
breadth

elongation =

There are other measures of shapes, such as convexity and roundness. For details,
see Glasbey and Horgan (1994).

1.6.3 Boundary statistics

Boundary statistics provide information regarding the boundary of image objects.
Gonzalez and Woods (2008) discussed different boundary statistics, namely an
ordered set of boundary pixels, chain code and Fourier descriptors. An ordered set
of boundary pixels can be generated by determining two points on the boundary
of an object, where the second point is the next pixel location along the boundary
in an anti-clockwise direction, say, after the first point. Then we choose a search
direction between 0 to 3, if we only consider 4-connected neighbours, until we find
the next boundary pixel and so on. Chain code, consists of the starting location
and a list of subsequent directions di,d>,...,dy, to provide a more compact
representation of all the information in a boundary or edge. Another way of
obtaining boundary statistics is to express the x and y coordinates separately as
weighted sums of sine and cosine terms. The weights are the Fourier coefficients,
which can be used to compute measures of shape. Using fewer terms in the sums
gives a more approximate boundary representation and using more terms gives a

more accurate representative.

1.7 Conclusion

This chapter provides a brief description of basic digital image processing tech-
niques, especially different types of filtering and segmentation. Among various
possible segmentation approaches we use Otsu’s thresholding in Chapter 7. The

next chapter describes mathematical morphology in detail.
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Chapter 2
Mathematical Morphology

In this chapter, we describe mathematical morphology techniques in detail, as

these are used extensively in the work of this thesis.

2.1 Introduction

Mathematical morphology is a set-theoretic approach to image analysis (Matheron
(1975), Heijmans (1979), Serra (1983) and Dougherty and Lotufo (2003)), which
uses concepts from set theory, geometry, and topology to analyse geometrical
structures in images. It is a set of tools for extracting image components that are
useful in the presentation and description of region shape, such as boundaries,
skeletons, and convex hulls (Gonzalez and Woods (2008)). According to Petrou
and Garcia-Sevilla (2006), mathematical morphology is a collection of non-linear
processes which can be applied to identify or remove image details smaller than
a pre-determined geometric structure. It provides many useful pre- and post-
processing techniques, especially in edge thinning and pruning (Giardina and
Dougherty (1987)).

The morphological approach is generally based upon the analysis of an image
in terms of some predetermined geometric shape, known as a structuring element
(SE) (Giardina and Dougherty (1987)), and on how the image interacts with the

structuring element.

2.2 Morphological Techniques

Different morphological operators and structuring elements provide different re-
sults which are useful for various purposes. Mathematical morphology provides a

number of important operations for analysing an image such as dilation, erosion,
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opening, closing, and many others. The applications of morphology to binary and
grey scale images are described separately here. We focus first on the SE, as it

determines the effect of the morphological operator on the image.

2.2.1 Structuring elements

In mathematical morphology, a SE is a pre-determined geometric shape, used to
probe or interact with a given image, with the purpose of drawing conclusions
as to how this shape fits or misses shapes in the image. The binary image and
SE are both considered as sets of 0s and 1s. Typically there are 1s in positions
corresponding to elements within the set, and 0Os elsewhere. The locations of the
1s are called the neighbourhood defined by the SE.

The size and shape of the SE greatly affect the results of morphological oper-
ations. For example, the results of applying any morphological operation to an
image of stars using a square SE and a line SE will be quite different. Hence,
determining the best size and shape of a SE is of crucial importance. However,
the overall selection of a SE depends upon the geometric shapes we attempt to
extract from the image data. For example, if we are dealing with biological or
medical images, which contain few straight lines or sharp angles, a circular SE or
a disk is an appropriate choice. When extracting shapes from geographic aerial
images of a city, a square or rectangular SE will allow the extraction of angular
features from the image better than any of the line SEs.

Whatever the shape of the SE, a reference point must be selected for it, as
the morphological operations place the reference point of the SE at every single
pixel of the image to observe the interaction of the image and the SE at that
pixel (Gonzalez and Woods (2008)). Usually the central pixel of a SE is taken as
the reference point if the SE is a symmetric shape. For other shapes the reference
point needs to be defined. The location of the reference point is important.
Two SEs which have the same shapes but different reference points can extract
different information.

Figure 2.1 shows diamond, disk and square SEs, where the diamond and disk
are of radius 5 pixels and the square is of width 5 pixels, where width=0.5%(base
length-1).

2.2.2 Dilation

Dilation is one of the fundamental operations of morphology, which dilates an

object with a pre-determined object (SE). Dilation of an image is the process of
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(a) Diamond (b) Disk (¢) Square

Figure 2.1: Some commonly used SEs

placing the reference pixel of a SE on every pixel of the input image and marking
every pixel covered by the SE as an output image pixel (Petrou and Garcia-
Sevilla (2006)). By adding the extra pixels to the input image it expands the size
of objects on the scale of the SE neighbourhood.

The effect of dilation on a binary image is to enlarge the boundaries of regions
of foreground pixels, so these areas grow in size, while holes within those regions
become smaller. It fills in holes and broken areas, connects areas that are sepa-
rated by spaces smaller than the size of the SE and adds pixels to the perimeter
of each image object.

The mathematically favoured definition of dilation as stated in Giardina and
Dougherty (1987), is as follows: Let A and B be two sets in two-dimensional
Euclidean space R?, where A is the set to be dilated and B is the SE. The
dilation of A by B is denoted by A @ B, and defined as

Ao B={weR*:w=a+b,fora € Aandb € B}, (2.1)

where the plus sign refers to vector addition. This is equivalent to Minkowsk:
addition. Given two sets A and x in R?, their Minkowski addition, denoted by
A @ x, is the set

Avr={a+xz:ac A} (2.2)

where the plus sign refers to vector addition (Tuma and Walsh (1998)). Consid-
ering x as a vector in the plane, A + z is A translated along the vector x.
Dougherty and Lotufo (2003) mentioned two equivalent definitions of dilation
of A by B as
A®B =] A, (2.3)

beB
i.e. dilation is the process of translating the input image A by all points in the

SE and taking the union. It also can be defined in terms of translating the SE
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by all points in the image, as

A®B=|]J B, (2.4)

acA

Using the definition of dilation given by (2.4) is computationally time con-
suming as it involves translation for every point in the input image, whereas the
definition given by (2.3) requires translation for every point in the SE.

Gonzalez and Woods (2008) define the dilation of a set A with another set
B, where both of the sets are in Z?, as the set of all translations of the reflection
of the set B about its origin by z (rotation by 180° of B) and then taking the
intersection of this shifted result with the set A such the resulting set is non-

empty. Mathematically, the definition is as:

~

A®B={z:(B),NA#0}. (2.5)

Interpretation of (2.5) establishes the following equivalent definition of dilation,

as

A® B={z:[(B).nA] C A}. (2.6)
Since dilation thickens the objects in a binary image, it is referred to as an
extensive operator, i.e.
A® B D A.

Although the basic morphological operations are available in many image analysis
software packages, in this thesis we have used Matlab. The Matlab definition of

dilation, which is applicable for both grey level and binary images, is as follows:
Adilated by B = {x : x = max pixels in Ain neighbourhood B, }, (2.7)

which works if the foreground of a binary image and SE are denoted as 1 and the
background as 0, and B, is the SE placed with its reference pixel at pixel x or

the translation of B by .

2.2.3 Erosion

Like dilation, erosion is also a basic operation of morphology, and entire morpho-
logical operations are based on these two primitive operations. Erosion operates
by placing the reference pixel of the SE on every pixel of the input image and

keeping only those pixels at which the SE fits fully inside the input image (Petrou
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and Garcia-Sevilla (2006)). Whereas dilation is a thickening operation, erosion
shrinks or thins the image under analysis, as it removes some of the input image
pixels where the SE does not fit fully.

Erosion generally decreases the sizes of objects and removes objects which are
smaller than the applied SE. With binary images, erosion completely removes
objects smaller than the SE and removes perimeter pixels from larger image
objects.

The set-theoretic mathematical definition of erosion, according to Gonzalez
and Woods (2008), is as follows: for A and B as defined above, the erosion of A
by B is denoted by A © B, and defined as

AcB={weR?:w=a—b,for somea € Aandb € B}. (2.8)

Equation (2.8) is known as Minkowski subtraction, defined as follows:

Given two sets A, and B in R?, their Minkowski subtraction, denoted by
A © B, is the set

AeB=()A+B, (2.9)
beB

where B is the reflection of B, defined as the rotation of B by 180° about its
reference pixel, and A is translated by every element of B and then the intersection
is taken.

Dougherty and Lotufo (2003) define the erosion of set A by the SE B (a set

usually smaller than A) as
AeB={x:B, C A}. (2.10)

Erosion can be defined in terms of dilation, as they are dual operations. The
erosion of set A by set B is defined as the complement of the dilation of set A°

by the reflection of set B, i.e.
A6 B=(A°® B)-. (2.11)

Gonzalez and Woods (2008) define the erosion of set A by set B as the set of
all points z such that B translated by z is contained in A. Mathematically, the

definition is as:
AeB={z:(B), C A}. (2.12)

Since equation (2.12) establishes that the eroded set contains those points of B

which are in A, it is equivalent to say B is not overlapping with the complement
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of A, so another equivalent way to define erosion of A by B is
Ao B={z:(B),NnA°=0}. (2.13)

Since erosion shrinks or thins objects in a binary image it is an anti-extensive

operator, i.e.
Ao B C A

2.2.4 Opening

Opening is the operation by which we dilate an image after we have eroded it.
This is an important morphological operation, since it is useful for smoothing
the contour of an object, breaking narrow gaps, and eliminating thin protrusions
or spikes on an object (see Gonzalez and Woods (2008)). We use this operation
repeatedly in later chapters.

The opening of a binary set A by the SE B is defined to be the union of
all translations of B that are a subset of A. In effect, B is moved inside A and
the opening consists of all the points of A that lie in some translated copy of B
(Dougherty and Pelz (1991)), and is denoted by A o B. Notationally,

AoB=(A©B) @& B. (2.14)

Thus the opening of set A by B is the erosion of A by B, followed by a dilation of
the result. Gonzalez and Woods (2008) point out the geometric fitting property

of the opening operator, which leads to the following definition of opening:
Ao B =| J{(B).:(B). C A}. (2.15)

Equation (2.15) indicates that opening of the set A by B is the union of all
translations of B by z that fit into A.

2.2.5 Closing

Closing is the erosion of an image after it has been dilated. This also tends to
smooth sections of contour but, as opposed to opening, it generally fuses narrow
breaks and long thin gulfs, eliminates small holes, and fills gaps in contours
(Gonzalez and Woods (2008)).

Mathematically, the closing of the set A by the SE B is denoted by Ae B and
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is defined as

AeB=(A®B) S B. (2.16)

So the closing of set A by B is to dilate A by B, then erode the result.

Figure 2.2 shows the effect of dilation of a binary image of size 261 x 261
of disks of various radii ranging from 1 to 15, using a disk SE of radius 4. In
the dilated image the foreground pixels have increased by enlarging the objects
as well as filling gaps smaller than radius 4. This shows the extensive nature of
dilation. As erosion is anti-extensive, we see in the eroded image that the objects
in the original image have shrunk. Since opening is erosion followed by dilation,
we dilated the eroded image. In the opened image all disks smaller than radius 4
have disappeared and the rest remain. For closing, we eroded the dilated image.
This fills the gaps between objects and adds extra foreground pixels by enlarging

the object boundaries.

(d) Opening of (a) (e) Closing of (a)

Figure 2.2: Effect of dilation, erosion, opening and closing of a 2612 binary image
of disks using a disk SE of radius 4.

The shape and size of image primitives (basic shape in the image) and SEs
greatly affect the results of any morphological techniques. For example we show
the effect of opening of the disk image in Figure 2.2 (a) using disk SE of radius 7
and 15 and square SE of width 7 and 15 in Figure 2.3. Opening the input image
by a disk of radius 7 removes any disk smaller than radius 7. Similarly opening by

a disk SE of radius 15 removes all disks smaller than radius 15. To compare the
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effect of opening by a differently shaped SE than the image primitives, we opened
the same image using a square SE of width 7 and 15, where width=0.5%(base
length-1). Opening disks by a smaller disk SE removes all disks smaller than its
size, whereas opening by a smaller square SE removes small objects but also adds

pixels to the corners of remaining ones, making the objects more square shaped.

- »® g |
(a) Opening by a disk (b) Opening by a disk (¢) Opening by a (d) Opening by a
of radius 7 of radius 15 square of width 7 square of width 15

Figure 2.3: Effect of opening a binary 256% image of disks using a disk and a
square SE.

2.3 Properties of the Morphological Techniques

Duality of dilation and erosion Dilation and erosion are duals of each other
with respect to set complement and reflection, where the complement of the set
A, denoted by A° consists of the elements not in A, and reflection of A is defined

as

A={w:w=—a, forb e B}.

The dilation of set A by B is the complement of the erosion of A¢ by the reflection
of the SE B (its rotation by 180° about its reference pixel) and vice-versa. That
is

(A® B) = A°6 B,
and

(A6 B)=A°® B.

The duality property is useful, particularly when the SE is symmetric, that is
B = B, where B is the reflection of B. Then we can obtain the dilation of an
image A by B simply by eroding the background (complement) of A (Figure 2.4

shows an example) with the same SE B.

Duality of opening and closing: Like dilation and erosion, opening and

closing are also duals of each other with respect to set complementation and
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(a) Original image

L

(d) Ao B

Figure 2.4: Duality of dilation and erosion illustrated on a 2562 binary image of
squares of different width, using a square SE of width 2, where width=0.5%(base
length-1).

reflection. The opening of set A by B is the complement of the closing of A° by

the reflection of the SE and vice-versa. That is,

(Ao B)* = A°e B,

and

(Ae B)* = A0 B,

where A€ is the complement of A and B is the reflection of B. The duality of

opening and closing is shown in Figure 2.5.

Other properties: The basic morphological operators follow some other im-
portant properties (Gonzalez and Woods (2008), Glasbey and Horgan (1994)),
listed below:

1. Dilation is commutative, extensive and associative, i.e.
A®B=B®A,

A® B D A,
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) Original image ) Image complement

B

A‘OB A"oé

Figure 2.5: Duality of opening and closing illustrated on a 2562 binary image of
squares of different width, using a square SE of width 2, where width=0.5%(base
length-1).

and
Ap(BaC)=(AeB)aC.

2. Both dilation and erosion satisfy scalar multiplication, and erosion is anti-
extensive, i.e.

t(A® B) =tB®tA

and
t(A© B) =tB O tA,

where ¢ > 0 is a scalar multiple, and

Ao B CA.

3. Dilation and erosion are both translation invariant, i.e.
(A, ®B)=(A® B),

and
(A, ©B)= (Ao B),.
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. Dilation and erosion are both monotonically increasing operators, i.e. if
Ay C As, for fixed B
(A;®B) C (A2 @ B)

and
(Ao B)C (A0 B).

. Eroding A by B® C is the same as eroding A by B, then eroding the result
by C:
Aeo(Ba(C)=(AeB)oC.

. Dilating A by two disks B, and B,, one after another, is equivalent to
dilating with one larger disk whose radius is the sum of the radii  and s of
the smaller disks:

(A®B,)®B;=A® B,

if B, and B, are convex.

. Eroding A by two disks B, and B, one after another, is equivalent to
eroding with one larger disk whose radius is the sum of the radii  and s of

the smaller disks:
(A B,)©Bs=A6 B,

if B, and B, are convex.

. Dilation and erosion satisfy certain distributivity properties with respect
to the set theoretic operations. Dilation distributes over union, but it does

not distribute over intersections:
A® (BiUBy) = (A® B))U(A® By).
Erosion distributes from the right over intersection, i.e.
(AjUA)eB=(A16B)N (A © B).
Relative to union, erosion satisfies left anti-distributivity, i.e.

A6 (BiUBy) = (A6 B)N(AS By).

. Opening A by two disks B, and B, one after another, is equivalent to
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10.

11.

12.

13.

opening with the larger disk only, i.e.:
(A o Br) o Bs =Ao Bma;r(r,s)

if B, and B, are convex.

Opening and closing are increasing, i.e. if Ay is a sub-image of A, then for
any SE B
(Al O B) g (A2 o B)

and
(AjeB) C (Ay e B).

The opening and closing are both translation invariant, i.e.
(A; 0 B) = (Ao B),

and
(A, e B) = (AeDB),.

Opening is anti-extensive, i.e. (Ao B) is a sub-image of A and closing is an
extensive operator, i.e. (AoB) D A, therefore the relation AoB C A C AeB
always holds.

Opening and closing are both idempotent, i.e.
(AoB)oB=AoB

and
(AeB)eB=AeB.

This means they have a one-off effect.

2.3.1 Hit-or-miss-transform

The hit-or-miss transform provides powerful sets of tools for various applications

in image processing (Dougherty and Lotufo (2003)), including finding shapes in

an image. To describe the hit-or-miss transform we need to consider the SE as

a set with two components, i.e. B = (B; U By), where B; is the set formed

from elements of B associated with an object and B is the set of elements of B

associated with the corresponding background, and B; and B, are assumed to be
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disjoint (Dougherty and Lotufo (2003)). The effect of the hit-or-miss-transform
is the same as to erode the image A with By and the complement of the image
(A°), with By, and to take the intersection of those two eroded sets. It identifies
all the pixels in the image at which B; matches with the image foreground and
at which By matches to the background. Notationally, the hit-or-miss-transform
is given by

A® B = (A6 B;)N(A°S By).

A point will be recognised as a ‘hit’ by the hit-or-miss transform if and only
if B; translated to the point fits inside A, and B, translated to the point fits
outside of A. Since the hit-or-miss operator operates by fitting the SE into both
the image and the complement of the image, it probes the relation between the

image and its complement relative to the SE.

2.4 Application of Binary Morphological Tech-

niques

Morphological operations are widely used in digital image processing, mainly as a
result of work by Matheron (1975) and Serra (1983). In general, opening followed
by closing has a smoothing effect. When there is additive and subtractive noise,
opening removes additive background noise and closing fills subtractive noise in
the foreground (Dougherty and Lotufo (2003)). Therefore these operations are
useful in practice. Some of the main applications of morphology are described

below.

Boundary extraction: As dilation is an extensive operation and erosion is an
anti-extensive operation, when applied to an image with a suitable SE, they can
both be used to detect boundaries of a binary image. Boundary extraction of a
binary image can be done simply by eroding the image by a suitable symmetric
SE and then subtracting the result from the original image, (Gonzalez and Woods
(2008)), giving the boundary of the set A by G(A) as:

B(A) = A— (Ao B).

According to Dougherty and Lotufo (2003), 5(A) = A—(A© B) provides only the
internal boundary of an image. We may also be interested in the external bound-
aries, which in terms of the morphological operations are §(A) = (A ® B) — A,
and G(A) = (A® B) — (A © B) which provide a boundary that straddles the ac-
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tual Euclidean boundary. This is also known as the morphological gradient (see
Section 2.6). Among many others, a recent application of boundary extraction
is in Mai and Wang (2008) who developed an effective image-processing method
to automatically extract the boundary of a shoe pattern. They used a histogram
thresholding technique to segment out a shoe pattern from the scanned input
image and then applied boundary extraction on the segmented image to auto-
matically detect and smooth the shoe-pattern boundary. Figure 2.6 shows the
internal and external boundaries as well as the morphological gradient of an 2562

binary image of squares.

(a) Original image (b) Eroded image (¢c) Dilated image
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(d) Internal boundary (e) External boundary (f) Morphological Gradi-

ent

Figure 2.6: Effect of boundary extraction on a 2562 binary image of squares,
using a square SE of width 2, where width=0.5%(base length-1).

Hole filling: Holes may be the result of various causes: manual manipulation,
e.g. removal of an object from an image, errors in the transmission of an image
or video, etc. Sometimes it may be important to fill holes or missing regions in
images. The hole is filled one pixel at a time by comparing the neighbourhood
of each pixel to other areas in the image. Hole filling in a set A can be done by
using the dilation, intersection and complement of the image.

Gonzalez and Woods (2008) define a hole as a background region surrounded
by a connected border of foreground pixels, and provide an algorithm which

starts with a point p in each hole and ends when all holes are filled. It begins by
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forming an array X, of Os (the same size as the array containing A), except that
the locations in X corresponding to the given point in each hole have been set
to 1, then it dilates Xy by a symmetric and convex SE B, and after each dilation
takes the intersection with A°. The dilation tends to fill the whole area, whereas
the intersection with A€ limits the result to inside the region A. Mathematically,

the following procedure fills all the holes with 1s:
Xp = (X1 ® B)N A°, k=1,2,3,...,

using a symmetric SE B if A is a set containing one or more holes, and X, = {p}.
The algorithm terminates at iteration step k if X = X;_;. The set X, then
contains all the filled holes, and the set union of X and A contains all filled
holes and their boundaries, i.e. the filled object. The original image in Figure 2.7
contains images of size 1012. The first one contains some larger squares, the
second has relatively smaller squares and the third is obtained by subtracting
the second one from the first one. Lastly the holes have been filled, by using the

Matlab function ‘imfill” with 4-connectivity (see Section 1.4).

(a) Image with (b) Image with
larger squares smaller squares

(d) Hole filling

Figure 2.7: Hole filling using morphological operators on a 1012 binary image of
squares.

Conditional dilation: As dilation expands the image, by repeated dilation the
input image can be grown unboundedly. Sometimes it is important to restrict
the growth. This can be achieved by conditional dilation. Dougherty and Lotufo
(2003) define conditional dilation of the image A which is a sub-image of C' by
the SE B as:

A®cB=|JB.NnC,

acA

i.e. it is the union of all points in B, translated by all points in A, which overlap

C.
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Extraction of connected components: Binary images can be expressed as
the union of connected regions. If each of these regions is maximally connected,
i.e. is not a proper subset of a larger connected region within the image, then
the regions are called connected components of the image (Dougherty and Lotufo
(2003)). The extraction of connected components from a binary image plays a vi-
tal role in many automated image analysis applications. The procedure described
by Gonzalez and Woods (2008) for extracting connected components is as follows:
Again, the algorithm begins by forming an array X, of Os (of the same size as the
array containing A), except the locations in X corresponding to a given point p
in each hole have been set to 1. Then, the following iterative procedure finds all

the connected components:
Xk = (kal D B) N A>

if B is symmetric, A is a set containing one or more connected components and
Xo = {p}. The algorithm terminates at iteration step k if Xy = Xj_;. The set
X} then contains the entire connected component.

Extraction of connected components is a widely used morphological technique.
For example, Auran and Malvig (1996) presented an algorithm for the segmenta-
tion of echo clusters within a dynamic 3-D sonar image using the concept of cell

connectivity between sonar beams.

Convex hull: A convex set is a set of elements from a vector space such that
all the points on the straight line between any two points of the set are also
contained in the set. Gonzalez and Woods (2008) describe the following sequence
of morphological operations for obtaining the convex hull of a set A in an image:

Let B',i = 1,2,...,n, be a small set of SEs. The procedure starts with an

initial image X! = A and consists of implementing the operation:
X, =(Xp1®BYUA, i=1,23,...and i=1,23, ...

When the procedure converges, i.e. when X} = X}_,, then let D' = X}.. Then

the convex hull of A is

c(A) = U D',

i.e. the method iteratively applies the hit-or-miss-transform to A using B! until
there is no more change. The procedure is repeated with B? until no further

changes occur, and so on and the convex hull is the union of the results.
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Thinning: One of the most common applications of morphological operations is
thinning objects. This mainly depends on the hit-or-miss-transform (Dougherty
and Lotufo (2003)). The thinning of a set A by a SE B is denoted by A® B, and is
defined as the difference between the original image and its hit-or-miss-transform,
ie.

ARB=A-(A®B)=AN(A® B)".

That is, the thinning operation removes the part of A which has been detected
by the hit-or-miss-transform from B. For a sequence of SEs, B = By, By, ... By,

thinning can be carried out recursively (Gonzalez and Woods (2008)) as
ARB=((-- (A®By) ® By)---) ® B,).

So first A is thinned by Bj, then the resulting set is thinned by B, and so on
until A is thinned with one pass of B,,. Thinning may be used to identify pixels

that may be removed without affecting connectivity.

Thickening: Thickening is just the morphological dual of thinning, denoted by
A ® B and defined as
A®B=AU((A® B).

That is, the thickening operation adds the part of A which has been detected by
the hit-or-miss-transform from B (Glasbey and Horgan (1994)). However thick-
ening is often done by thinning the background of the set A and then taking the
complement of the result. For a sequence of SEs B = By, Bs, ..., B, thickening
can be carried out sequentially (Gonzalez and Woods (2008)) as

AOB=((--((A®B))®By)--+)® B,).

Skeletonisation: Skeletonisation is the process of reducing the foreground re-
gion of an image by removing as many pixels as possible without affecting the
general shape of the image, i.e. after pixels have been removed, the remaining
image should largely preserve the extent and connectivity of the original image.
According to Glasbey and Horgan (1994) the skeleton should fulfil some basic
requirements, such as (a) preserve the topology of the object, (b) be only one
pixel thick and (c) be in the middle of the object. Figure 2.8 shows an arbitrary
shaped binary image of size 101 x 101, its boundary and skeleton, obtained using

the Matlab function ‘bwmorph’.
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(a) Original image (b) Object boundaries (¢) Skeletonisation

Figure 2.8: Effect of skeletonisation on a 1012 binary image.

Pruning: Sometimes a skeletonised image contains some barbs, i.e. some small
features sticking out from the main skeleton. Very often it is desirable to remove
those small barbs if they are not considered to be part of the true structure of
an object. They can be removed by an operation called debarbing or pruning.
Pruning can be regarded as a form of thinning, since it involves removing pixels
on the basis of some criterion. It is useful if the skeleton is affected by some small

features that are not of interest or are due to noise (Glasbey and Horgan (1994)).

2.5 Morphological Operations for Grey Scale Im-
ages

A grey scale image f;; can be regarded as a 3—D stack of binary sets, because
an image defined by a function in two-dimensions produces a map in the 3™
dimension (Glasbey and Horgan (1994)). The pixel intensities provide the height
in the third dimension. According to Dougherty and Lotufo (2003) the grey scale
image is a real-valued function defined in Euclidean space or on the Cartesian
grid. For mathematical morphology in three-dimensions, we need to define a SE
b;; of the same format. So both f;; and b;; are 2—D functions defined on 3—D
sets, assigning intensity values for each distinct coordinate pair (7, ), and they
are assumed to be discrete (Gonzalez and Woods (2008)).

First it is useful to notice how translation and reflection work in the case of
grey scale images. The translation of a set B by a point z = (z1, 23), denoted by
B., is defined as

B, ={w:w=>b+z, forb € B},

i.e. coordinates (z,y) of B have been translated as (x + z1,y + 22) to form B,.
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The reflection of the set B is denoted by B and is defined as
B={w:w=—b, forb € B}.

Reflection is the rotation of B by 180° about its reference pixel, i.e. if B has

co-ordinates (z,y), b will have co-ordinates (—z, —y).

2.5.1 Grey scale dilation

The dilation of image f by a flat 2-D SE b at any location (i, j) is defined as the
maximum value of the image in the region outlined by the reflection of the SE
(b), when the origin of b is at (4, j) (Gonzalez and Woods (2008)). The dilation
of f by b is denoted as

(F @by = max (£ = k. =},
where (k,[) = (0,0) is the reference pixel of b. The reference pixel of the reflected
SE visits every pixel in f, and the dilation is computed by taking the maximum
values of the intensity of f in every neighbourhood of (z,y) coincident with b
(Glasbey and Horgan (1994)). Dougherty and Lotufo (2003) define the dilation
of a grey scale image f by a SE b as

(f ©b)iy =min{y: ~b+y > f},

i.e. consider the negative of the reflected SE and find the minimum by which it
can be raised and still remain beneath signal f. The effect of grey scale dilation
is shown in Figure 2.9.

Gonzalez and Woods (2008) defines dilation of f by a non-flat SE by as

(f S/ bN)i,j - (sntl)%%{N{f(Z - S?.j - t) + bN(Sv t)}7

which adds every value of by from the input image. A non-flat SE is rarely used

in practice because of its computational burden.

2.5.2 Grey scale erosion

The erosion of a grey scale image f by a flat SE b at any specific location is defined
as the minimum value of the image in the region coincident with the SE when

its origin is also set at that location (Gonzalez and Woods (2008)). Notationally,
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the erosion of f by b is given by
(feb)y=mn{f(i+kj+1)}.
(k,l)eb

Thus, the erosion of a grey scale image is the process of transforming f by taking
the minimum value of f in the neighbourhood about each pixel of f corresponding
to the SE placed with its reference pixel at pixel (i,7) (Glasbey and Horgan
(1994)). Erosion can be defined in terms of the dual of dilation as

(feb) = (f eb)r

i.e. eroding f by b is the same as the complement of dilating f¢ by the reflection
of b. Dougherty and Lotufo (2003) define the erosion of a grey scale image f by
a SE b as

(fOb); =max{y:b+y> [},

i.e. it finds the maximum difference between f and the translated SE over the
domain of b.
Gonzalez and Woods (2008) defines erosion of f by a non-flat SE by as

(fobn)i; = (S%iEI;N{f(i + 5,7 +t) —bn(s,t)},

which subtracts every value of by from the input image. The general effects
of grey scale dilation and erosion are clearly described in Gonzalez and Woods
(2008). Since grey scale dilation by a flat SE b computes the maximum intensity
value of f in every neighbourhood of (i, j) coincident with b, the bright features
are thickened and the intensities of the dark features are reduced. Small dark
spots in images disappear as they are ‘filled in” by the surrounding intensity value.
Small bright spots become larger spots. Since grey scale erosion computes the
minimum intensity value of f in every neighbourhood of (i, j) coincident with b,
the sizes of bright features are reduced and the sizes of dark features are darkened
and widened. Small bright spots disappear as they are eroded away down to the
surrounding intensity value, and small dark spots become larger spots. So in
general the eroded grey scale image is darker than the original image, and the
dilated grey scale image is brighter than the original. For both dilation and
erosion, the effect is most marked at places in the image where the intensity
changes rapidly and regions of fairly uniform intensity are largely unchanged
except at their edges.

Figure 2.9 shows a grey scale 256% image of ellipses and the effect of dilating
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and eroding with a flat disk of radius 10. In general the dilated grey scale image is
brighter than the original image. We observe that the bright features are thicker
and darker features are reduced in the dilated image. The eroded grey scale image
is darker than the original as the darker parts have expanded and the brighter

parts have shrunk.

s

(a) Original image (b) Dilated image (c) Eroded image

Figure 2.9: Grey scale dilation and erosion of a 2562 grey scale image of ellipses
of random radii, shapes and sizes, by a flat disk of radius 10.

2.5.3 Grey scale opening and closing

As for binary images, grey scale opening and closing are also based on morpholog-
ical dilation and erosion. The opening of an image is the collection of foreground
parts of an image that fit a particular SE b. The grey scale opening is analogous
to its definition in the binary setting (Gonzalez and Woods (2008)), i.e. erosion
of f by b and then dilation of the resulting image by the same SE, namely,

fob=(fob) @b. (2.17)

Dougherty and Lotufo (2003) define opening in terms of fitting, i.e. opening is
the maximum over all morphological translations of the SE that fit underneath
the input image,

fob=\/{b-+y:b.+y< [}, (2.18)

where b, is the translation of b by z. A horizontal translation of f by x is
denoted as f.(i) = f(i — x) and a vertical translation of f by y is defined by
(f+vy)(z) = f(2) +y. Morphological translation is the combination of horizontal
and vertical translation and is expressed as (f; +y)(z) = f(z — x) + y.

A practical description of (2.18) is given by Dougherty and Astola (1994), in
terms of fitting, as sliding the SE along beneath the input image and at each
point recording the point on the SE’s translation that is highest at that point.
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Similarly, the closing of an image is the collection of background parts of an

image that fit a particular SE, defined as dilation followed by erosion,
feb=(f®b)Ob. (2.19)

Grey scale closing can be defined in terms of its duality with opening as

Feb=(fcob), (2.20)

i.e. the closing is the same as the complement of the opening of the image back-
ground (f¢) by the reflection of the same SE. Closing filters an image from above,
whereas opening filters from below. In terms of fitting, closing can be interpreted
as sliding the SE down from above the image and at each point recording the
point on the SE’s reflection that is highest at that point. The opening of a func-
tion f by a convex set b cuts down the peaks of f, whereas the closing of f by b
fills up the valleys of f.

Figure 2.10 illustrates grey scale opening and closing of an image of ellipses,
using a disk SE of radius 10. In the opened image all ellipses with semi-minor
axis smaller than 10 have disappeared and the brightness of the larger ones is
reduced, whereas in the closed image the brightness of all ellipses has increased

so the opened image is generally darker than the closed image.

(a) Original image (b) Opened image (¢) Closed image

Figure 2.10: Grey scale opening and closing of a 2562 grey scale image of ellipses
of random radii, shapes and sizes, by a flat disk of radius 10.

Properties of the basic grey scale morphological filters: Grey scale di-

lation, erosion, opening and closing satisfy the following properties:

1. Both grey scale dilation and erosion are translation invariant:

(f.@b) =(f@b), and (f.0b) = (fOb)..
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. Dilation is commutative:

(feb)=(baf)

. Dilation and erosion are duals:

(Fob)=(fob and (fob)=(f @)
. Both grey scale opening and closing are translation invariant:

(fzob) = (fob). and (f.eb)=(feb)..

. Opening lies beneath the original image, i.e. it is anti-extensive, and closing

lies over the original image, i.e. it is extensive:
fob<[f and feb2=>f,
so the following relation is always true:
fob< f< feb

. If fi < f5, then the opening of image f; by a SE b is a subset of the opening
of image f, by the same SE, i.e.

Jiob< fa0b.

It fi < fs, then the closing of image f> by a SE b is a subset of the closing
of image f; by the same SE, i.e.

Jieb< freb.

. Opening and closing are both idempotent, and have a one-off effect i.e.

(fob)ob=fob and (feb)eb= feb.
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2.6 Some Applications of Grey Scale Morphol-
ogy

Morphological gradient

The gradient of a scalar field is a vector field which indicates the greatest rate of in-

crease of the scalar field, and whose magnitude is the greatest rate of change. The

gradient of the function f(x) of a finite dimensional vector (z = xy, 29, ,x,) €
R™ is defined by
[ 9Of of
oo (2. 95)

In image processing the gradient plays a vital role in edge detection. A higher
gradient suggests a more rapid light-to-dark (or dark-to-light) change in the grey
scale case (see Dougherty and Lotufo (2003)). Although a number of gradients
exist, the most commonly used gradient in image processing is the morphological
gradient.

Since dilation thickens regions in an image and erosion shrinks them, by sub-
tracting them we obtain a non-negative quantity, known as the morphological
gradient. Let f be the original image and by, and by be two SEs. The morpho-
logical gradient grad(f) is defined by

grady, u,(f) = (f ©b1) = (f ©ba). (2.21)

as for the binary image. Equation (2.21) indicates that it is essentially the sum
of two partial gradients, namely, the external gradient and the internal gradient,
referred to in the binary case as the external and internal boundary of an image

(see Section 2.4). The external gradient is defined by
grady = (f ®bi) — f,
and the internal gradient is
grady' = f — (f © by).
The SEs b; and b, may be the same.

Top-hat transforms

Hat transformations play a pivotal role in image pre-processing. The opening of

a grey scale image lies beneath the original image. Subtracting the opened image
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from the original image is known as the open top-hat transform, or simply the

top-hat transform in morphology, i.e.

fog=1f—(fog)

Since opening is anti-extensive, opening lies beneath f and fog is always non-
negative.
The complementary operator to the open top-hat transform is the close top-

hat transform, known as the bottom-hat transform, defined as

feg=(feyg)— .

Since closing is extensive, the grey scale closing lies over the original image, so
feg is always non-negative. Figure 2.11 contains a 200 x 500 grey scale image
of a fish (available at http://www.peipa.essex.ac.uk) and shows the effect of the
top-hat transform and the bottom-hat transform.

The top-hat transformation is used to reduce uneven illumination. It high-
lights the bright features of the image, as opening eliminates the bright features
from the image and they appear again when the opened image is subtracted from
the original image. Similarly, bottom-hat transformation highlights the dark fea-
tures of the image. A non-flat ellipsoid SE with radius 10 and height 2 was used
where the radius determines the shape of the ellipsoid and height specifies its
colour. It is clear from Figure 2.11 that top-hat transformation eliminates the
uneven distribution of the dark and bright features of the images as well as indi-
cating brighter regions of the fish, and bottom-hat transformation indicates the
darker parts of the fish. We make use of these transformations in Chapters 6

and 7, for improved texture classification.

Morphological reconstruction:

Morphological reconstruction is a powerful morphological operation using the con-
cept of connectivity (see Sectionl.4) in images, both for binary and grey scale,
instead of a SE. It can be defined either by the thresholding superposition prin-
ciple or can rely on geodesic dilation and geodesic erosion (Gonzalez and Woods
(2008)). Morphological reconstruction has many applications including convert-
ing a complex image background to uniform intensities.

Binary reconstruction: To define morphological reconstruction by thresh-
olding superposition, Vincent (1993) defined two binary images I and J on the

same discrete domain D, such that J C [. [ is called the mask image and .J
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(a) A fish image of size 200 x 500

(b) Top-hat transform of (a)

(¢) Bottom-hat transform of (a)

Figure 2.11: Effect of top-hat and bottom-hat transformation of an image of a
fish, using a ellipsoid of radius 10 and height 2 (see Matlab function ‘strel” with
option ‘ball’).

is the marker. The reconstruction p;(.J) of I from marker J is the union of the

connected components of I which contain at least one pixel of J, i.e.

pr(N)= | In (2.22)

JNI#D

Very often reconstruction is defined in terms of geodesic distance. The geodesic

distance between two pixels p and ¢ in a given set is the length of the shortest
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path joining p and ¢ which is included in the given set. Gonzalez and Woods
(2008) define geodesic dilation of size n > 0 of the marker image J with respect
to the mask I, denoted by pgn)(J), as

P = pP 1l ()], (2.23)

with p§0>(,]) = J, and pgl)(J) is the geodesic dilation of size 1 of the marker J
with respect to the mask I, defined as

p'(J) = (J@B)NG, (2.24)

where B is a suitable SE. That is, the reconstruction of I from J is obtained
by iterating elementary geodesic dilations of J inside I until there is no change.
This can be defined in terms of geodesic erosion as well.

Grey scale reconstruction: In terms of thresholding superposition, Vincent
(1993) defined two grey scale images I and J in the same domain D, taking
values in the discrete set {0,1,..., N — 1} such that J < I (i.e., for each pixel
p € Dy, J(p) < I(p)). The grey scale reconstruction pr(J) of I from marker J is
given by

pr(J) =max{k € [0,N —1] | p € pTi1)(Tx(J))} Vp e D, (2.25)

where the Ty (1) are k successive thresholds of I such that
Ti(I) € Teer(I) VK €[1,N —1].

In terms of geodesic dilation, grey scale reconstruction can be obtained by iter-

ating grey scale dilations of J under I until there is no change, i.e.,

pr(J) =\ 9. (2.26)

n>1

T-opening: T7-opening is a union of parametrised openings in which parameters
for each opening are individually defined and a SE can be parametrised relative to
both size and shape (Chen and Dougherty (1991)). If the aim is to pass portions
of an image conforming to any one of a number of shape primitives, a single
opening will not be appropriate as it will pass only parts of the image which
conform to the shape of the SE. Such an effect can be accomplished by using a

filter composed of a number of different openings. Dougherty and Lotufo (2003)
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define T-opening as a morphological filter such that
U(A)=|JAo B, (2.27)
k=1

for some class B = {B, Bs, ..., B,} of SEs.

2.7 Conclusion

This chapter provides a condensed description of some widely used morphological
techniques for digital image processing. We illustrate most techniques with ex-
ample images. Grey scale opening is used extensively in most of the subsequent
chapters in the thesis, and top- and bottom-hat transformations are used in Chap-
ters 6 and 7 as a means of image pre-processing to eliminate the uneven intensity
variation in the real images. The next chapter provides a discussion of texture
feature extraction and classification techniques, before focusing on morphological

granulometry in Chapter 4.
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Chapter 3

Overview of Texture Analysis

and Classification

In this chapter, we define texture and discuss different approaches to analysis of

texture images as well as classification rules.

3.1 Introduction

Owing to the diversity of natural and artificial textures (Jain and Farrokhnia
(1990)) there is no generally agreed definition of texture and no unique math-
ematical model to synthesise texture (Nixon and Aguado (2002)). Some of the
definitions are perceptually motivated and others are driven completely by the
application (Tuceryan and Jain (1998)). Texture is an important cue in object
recognition as it can tell something about the material from which the object is
made (Petrou and Garcia-Sevilla (2006)). Gonzalez and Woods (2008) defined
texture as a surface property which gives combined information on the smooth-
ness, coarseness, and regularity of objects.

Texture contains important information about the structural arrangement of
surfaces and their relationship to the surrounding environment. Texture is some-
thing which we feel when we interact with our surroundings, either by touching
or observing an object or an image, since the sense of touch cooperates with the
eyes to give a better understanding of the surroundings. Texture is characterised
not only by the grey value at a given pixel, but also by the grey value ‘pattern’
in a neighbourhood surrounding the pixel.

The statistical approach defines texture by a quantitative measure of the ar-
rangement of intensities in a region. Dougherty et al. (1992) define it by percep-

tual descriptors, such as ‘smooth’, ‘coarse’, or ‘regular’, or as a pattern comprised
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of repeated texture primitives or texture elements (texels). Image primitives are
the basic elements of the image, i.e. the basic objects of which an image is com-
posed. A more formal definition of texture, given by Livens et al. (1997) in terms
of neighbourhoods, is as the set of local neighbourhood properties of the grey
levels of an image region as well as their spatial relationships.

Tuceryan and Jain (1998) have accumulated an archive of definitions of tex-
ture, one of which is mentioned here. An image texture is non-figurative and
cellular. It is described by the number and types of its primitives repetitions
and the spatial organisation or layout of its primitives. The repetitiveness of the
texels (the texture unit) determines the type of texture and decides the texture
analysis approach (Jain (1989)). A fundamental characteristic of texture is that
it cannot be analysed without a frame of reference for the primitive being stated
or implied. For any smooth grey-tone surface, there exists a scale such that when
the surface is examined, it has no texture. Then as resolution increases, it takes
on a fine texture and then a coarse texture. Figure 3.1 shows two binary images,

of which (b) is the (digitised version of the) primitives of image (a).

(a) Image of disks (b) Primitive of image (a)

Figure 3.1: An image and its primitive.

In computer graphics there are two major types of textures, i.e. deterministic
or regular and statistical or irregular textures (Tuceryan (1994)). Deterministic
texture is created by repetition of a fixed geometric shape such as a circle or
square. Examples of deterministic textures are patterned wallpaper and bricks.
Texels are represented by a placement rule which gives an arrangement of the
primitives which yields the texture. Statistical textures are created by changing
patterns with fixed statistical properties. In these textures the placement of the
texture primitives is random and irregular, and the placement rule description for
such textures may be extremely complicated. Most natural textures like wood or
stone, grass, canvas are examples of statistical textures. Statistical textures are

typically represented in terms of spatial frequency properties. In Figure 3.2, (a),
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(d) and (f) represent some deterministic textures whereas (b), (¢) and (e) show

statistical texture images.
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(a) Bricks
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Straw

(d) Herringbone weave (f) Unknown

Figure 3.2: Some example textures from the Brodatz album (Brodatz (1966)).

In this work we are particularly interested in texture images which result from
a material subject to some sort of damage or decay, often as a result of organic
processes, e.g. textured images of corrosion of metal.

Texture analysis is primarily concerned with three major issues, i.e. texture
classification, texture segmentation, and texture synthesis. Texture classification
involves identifying a given textured region with a class in a given set of texture
classes, whereas texture segmentation is concerned with automatically determin-
ing the boundaries between various texture regions in an image, i.e. segmenting
an image into regions according to the textures of the regions. More specifically, a
texture classification system involves two steps (Masotti and Campanini (2008)):
a feature extraction step, in which a set of texture features is extracted from the
image under study, and a classification step, in which a texture class membership
is assigned to it according to the extracted texture features.

Texture synthesis is the process of algorithmically constructing a large digital
image from a small digital sample image by using its structural content (Paget
and Longstaff (1998)). It is a way to create textures, by inferring the parameters
of a real image texture and using them to create new texture images (Petrou and
Garcia-Sevilla (2006)).
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A great deal of work has been done on texture analysis over the past few
decades. The existing methods of texture analysis can be characterised as statis-
tical approaches, geometrical approaches, model-based approaches and transform-
based methods. Model-based approaches include Markov random fields and auto-
regressive models (Harrison et al. (2008)). Statistical methods include features
derived from the histogram, gradient, run-length matrix, and co-occurrence ma-
trices. Structural or geometrical approaches mainly consist of mathematical mor-
phology. Transform-based methods describe the textural properties of the objects
by features derived from transformations used in image analysis, e.g. the Fourier
transform, Gabor transform, and wavelet transform. Many authors (e.g. Jafari-
Khouzani and Soltanian-Zadeh (2005), Xiao and Wu (2007), Wang and Yong
(2008)) refer to this as multi-resolution texture analysis, as the transformations
represent the image at different scales. They transform a texture image into a
local frequency representation by convolving the original image with a bank of
filters with some tuned parameters. However, very often the existing methods
match the criteria of more than one approach.

This chapter gives a condensed description of the existing methods of texture
analysis. Some of the most widely used texture analysis methods are described,

with their relative performance.

3.2 Morphological Granulometry on Texture
Analysis

Morphological granulometry, introduced by Matheron (1975), is extensively used
in texture analysis and also in this thesis. A binary image is considered to be
a collection of grains (Dougherty and Pelz (1991)), and granulometry sieves the
grains through filters of increasing size. Grains with size smaller than the holes
(filters) drop out and only the grains with larger sizes will remain. The shape
of the holes is determined by the shape of the structuring elements. As a result,
the underlying image that remains successively decreases in volume. A proba-
bility distribution function can be generated using the rate of decrease, and its
moments, known as granulometric moments, are used to characterise the image.
The granulometric moments have been extensively used to extract textural in-
formation from images. A detailed description of morphological granulometry
is given in Section 4.1. Here we mention some applications of morphological
granulometry for texture analysis.

Recently, Mavilio et al. (2010) used granulometric moments to characterise the
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evolution of a dynamic process concerning paint drying. The pattern spectrum of
the granular distribution of the grey scale temporal history of the speckle pattern
(THSP) images was obtained. The first four granulometric moments (mean, stan-
dard deviation, skewness and kurtosis) were obtained from each THSP image and
were used as texture features. The Mahalanobis distance (Mahalanobis (1936))
among the granulometric features was used to measure the textural difference
between THSP images of drying paint.

Kyriacou et al. (2009) used pattern spectrum texture features to classify ultra-
sound images of atherosclerotic carotid plaques either as asymptomatic or symp-
tomatic. Two different classifiers, i.e. a probabilistic neural network and support
vector machines were used and the highest classification accuracy of 73.7% was
obtained for support vector machines. Granulometric moments were used by
Theera-Umpon and Dhompongsa (2007) to analyse white blood cell images using
features extracted from the cell nuclei. They applied both the Bayes classifier
and a neural network classifier and found that better classification was achieved
by using the neural network classifier.

Diaz et al. (2007) carried out granulometric analysis on corneal endothelium
specular images by means of the germ-grain model. If the granulometry is ap-
plied to the complement of a set they referred to it as anti-granulometry. They
applied anti-granulometry to images composed of inscribed circles for controls
and also pathological endothelia, and showed that the anti-granulometric size
distribution of the inscribed circles discriminated well between the controls and
the pathological endothelia.

McKenzie et al. (2003) used granulometric moments as texture features and
developed parallel evolution functions (PEFs) using multiple regression mod-
elling. The methodology was developed on computer-generated images where
evolution of the artificial images depended explicitly on some evolution parame-
ters which were set up as a known function of time before generating the images.
The synthetic images were then used to relate granulometric moments to evolu-
tion parameters. Back-prediction was used to determine the evolution time of a
new image based on the artificial image model and the observed granulometric
moments from the new image. For classifying a sequence of corrosion images the
PEF approach was found to be especially useful for small test set sizes. The work
in this thesis builds directly on McKenzie et al. (2003).

Granulometry was successfully used in estimating the shape of a random pat-
tern by Batman and Dougherty (2001), where the random pattern was deter-

mined by a multivariate probability distribution, and they used granulometric
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features to estimate the parameters of the multivariate distribution. Granulo-
metric size distributions and their moments are widely used as size-shape de-
scriptors, and have proved very useful in medical imaging, materials sciences,
and character recognition (Goutsias and Batman (2001)). Dougherty et al. (1993)
formulated linear granulometric moments of additive and subtractive binary im-
ages. Dougherty et al. (1992) applied local binary granulometries to 10 Brodatz
textures and achieved overall 99.8% accuracy (measured by number of correctly
classified pixels as a proportion of the total number of pixels to be classified).
They also used classification accuracy to determine a minimum window size re-
quired for effective classification. They examined six different window sizes, and
found that the highest accuracy (98%) was obtained with a 20-pixel window size.
Ayala and Domingo (2001) used the spatial size distributions as shape detectors.
Dougherty and Pelz (1991) used size distribution statistics for process control to
analyse electro-photographic images. Size distributions were successfully used by
Maragos (1987) to study shape-size complexity, multi-scale shape representation,

and symbolic image modelling.

3.3 Transformation-based Methods

Transformation-based methods mainly comprise the Fourier transform, Gabor
transform and wavelet transform, the second two of which are multi-resolution
methods. Some variations on Gabor filters and wavelets transforms are also

mentioned.

3.3.1 Fourier transform

There are many ways of transforming image data into alternative forms that are
more amenable for texture analysis. The Fourier transform (FT) is the most
common image transform that takes an image in the spatial domain and trans-
forms it into the frequency domain. This is an analysis of the global frequency
content in the image, but many applications require the analysis to be localised
in the spatial domain. This is handled by introducing spatial dependency into
the Fourier transform (Tuceryan and Jain (1998)), which allows extraction of
localised texture information.

The short-time FT is a Fourier-related transform used to determine the sinu-
soidal frequency and phase content of local sections of an image as it changes over

time. The FT (a one-dimensional function) of the resulting signal is taken as a
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window is slid along the time axis, producing a two-dimensional representation
of the signal (Gonzalez and Woods (2008)). Mathematically, this is written as:

F(u,€) = / " Fwlt — e dr, (3.1)

where w(t) is a window function, usually a Hann window or Gaussian ‘hill’ cen-
tred around zero, f(t) is the signal to be transformed, and j = /—1.

The discrete Fourier transform (DFT) is a sampled Fourier transform and
therefore does not contain all frequencies forming an image, but only a set of
samples which is large enough to fully describe the spatial domain image. The
number of frequencies corresponds to the number of pixels in the spatial domain
image, i.e. the image in the spatial and Fourier domains are of the same size
(Gonzalez and Woods (2008)).

For an image f,, of size M x N, the two-dimensional DFT is given by:

M N
Fo(k,1) = ﬁ izljzlfije{_jQW(%+%)}’ (3.2)
where f;; is the image in the spatial domain, the exponential term is the basis
function corresponding to each output point F,(k,[) in Fourier space, and the
discrete variables k£ and [ take values 0,1,2,..., M and 0,1, 2, ..., N respectively.

The FT plays a pivotal role in image processing applications, including en-
hancement, analysis, restoration, and compression as well as in texture analysis,
and many texture analysis techniques (such as the Gabor filter and wavelets)
are based on the FT. Some recent applications of FT in texture analysis are
mentioned below:

Liao and Chung (2010) introduced the composite Fourier domain (CFD) which
was constructed by taking the local F'T of the original texture images and a global
multi-dimensional F'T was then applied to the local F'T images to obtain the multi-
dimensional frequency domain coefficients. A null-space based linear discriminant
analysis (nLDA) was derived from the traditional LDA and was applied to the
CFD to find the optimal discriminant sub-space in CFD. Higher classification
accuracy was obtained using a support vector machine with a radial basis kernel
for Brodatz texture images.

The FT was also found useful for segmentation of dynamic textures in Li et
al. (2009). The authors computed the phase spectrum for each of the dynamic
texture images using a 3-D discrete FT and then applied 3-D inverse fast F'T

on the phase spectrum to obtain the reconstructed texture images, which were
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then smoothed using an average filter. Finally, binarisation was applied to the
smoothed reconstructed images to obtained segmented images.

A rotation-invariant texture classification technique was proposed in Xiao et
al. (2007). They rotated the images of interest from 0° to 180° in 10° increments
and used the Hough transform to convert the rotation image to a translation
in the parameter space, by isolating features of a particular shape within the
image. Rotation-invariant features were obtained by applying 2-D FT to the
Hough transformed images. The features were able to characterise the texture
images.

Xiao and Wu (2007) proposed a rotation-invariant texture classification tech-
nique based on the Radon and Fourier transforms. They first calculated the
Radon transform of an image and then the F'T was computed to extract the cor-
responding rotation-invariant features. The Radon transform of an image f,, is
defined as its integration along a particular line defined by a normal distance r
from the origin and normal angle . This gives the corresponding Radon trans-

form point R(r,0) as

R(r,0) fo, = /OO /OO JayO(r — x cos — ysinf)dxdy, (3.3)

oo J OO

where —oo < r < +o00 and 0 < 0§ < 7. By using a 2D FT, rotation-invariant
features are produced. Finally to classify the textures they used a k-nearest
neighbour classifier. They tested their method on 15 Brodatz texture images,
and obtained 100% classification accuracy for almost all of them in the case of
no noise, and the method was robust to additive white noise.

A FT was used successfully to detect structural defects in fabric in Chan and
Pang (2000), where the defects were of four types, i.e. double yarn, missing yarn,
broken fabric and variation in yarn density. Jing et al. (2009) developed a face
recognition algorithm based on an angular F'T. The algorithm first determines an
optimum angle to use to obtain the angular F'T of the original images. Fisher-face
techniques were applied to extract discriminative texture features from the trans-
formed images. The method was applied to the well-known ORL and FERET face
databases and satisfactory classification results were obtained for both datasets

using a nearest neighbour classifier.

3.3.2 Gabor filters

Gabor (1946) first introduced the windowed Fourier transform, which represents

a signal in a joint time-frequency domain (Debnath (2002)). These functions,
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named as Gabor functions, have been used extensively in their 2-D form in tex-
ture analysis of digital images and are used for various kinds of image analysis
applications. They have been used for texture segmentation, face detection and
recognition, text detection and localisation in document images, and script iden-
tification in multi-script scenarios, for example. In the space domain, a Gabor
filter corresponds to a sinusoidal wavelet within a Gaussian envelope, and local
image texture is described by the Gabor filter that gives a maximum image-filter
convolution (Pasternack et al. (2009)).
A Gabor function in 1-D is defined by Petrou and Garcia-Sevilla (2006) as:

—(u — u,)?
202

g(u; ug, wo, o) = exp { } + jwou, (3.4)

and the Fourier transformation of equation (3.4) is given by

G (u; Uy, wo, 0) = V2o exp {—j(w — wo)up + M} : (3.5)
where u is the spatial co-ordinate, wy is the sinusoidal plane wave of some fre-
quency, w is the observed spatial frequency, and o is the standard deviation of the
Gaussian envelope along the z-axis. Gabor filters provide a multi-resolution ap-
proach to texture characterisation (Jafari-Khouzani and Soltanian-Zadeh (2005)).

The Gabor function was extended to two dimensions by Daugman (1980). A
2-D Gabor function is a harmonic oscillator, which is a sinusoidal plane wave of
some frequency and orientation within a Gaussian envelope, whose frequency, ori-
entation and bandwidth are controlled by its parameters (Fogel and Sagi (1989)).

A canonical Gabor filter in the spatial domain is given as:

1 (u? 2?2
g(u,v) = exp [—5 (0_3 + J—g)} cos (2mugu + 1), (3.6)
where ug is the sinusoidal plane wave of some frequency, o, and o, are the stan-
dard deviations of the Gaussian envelope along the x-axis and y-axis respectively,
and v is the phase of the sinusoidal plane wave along the z-axis (i.e. the 0° ori-

entation). When ¢ = 0, the FT of the Gabor filter in (3.6) is given by

1 [ (u—wup)? o° 1 s
G(u,v) = 2mo0, {exp (‘5 (g * —)) e (‘5 (@ " —))} |

(3.7)
Equations (3.4) and (3.6) can be thought of as a family of functions for dif-

ferent pairs of values of wg and ug, so they represent an image in the time and
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frequency domains simultaneously and become suitable to represent any image
fay in terms of this family of functions (Jain and Farrokhnia (1990)).

To analyse an image in terms of Gabor filters, first the FT of the image is
taken, then the result is multiplied by a Gaussian window centred at various fre-
quencies, and then the inverse F'T of the results is taken. The central frequencies
of the Gaussian windows are taken in such a way that all frequency bands of the
image are covered (Petrou and Garcia-Sevilla (2006)).

The Gabor transform was applied to target echo-signals and the trace of the
Gabor transform coefficient matrix and the eigenvalues were used to describe the
textural information of the target echo-signals in Yang et al. (2009). Pasternack
et al. (2009) used analogue optical Gabor-like filters to analyse biological sample
textures. They used Gabor filters to characterise non-spherical sub-cellular par-
ticles with the aid of a digital micro-mirror device. The morphometric features of
sub-cellular organelles were characterised by their differential response to Gabor
filters with different dimensions and orientations.

Mengko and Pramudito (2002) applied Gabor filters to classify osteoporosis
level, based on change in trabecular pattern. Classification was based on the
energy features extracted by Gabor filtering, and the classification result was
compared to the Singh Index which was determined by a physician. The extracted
features in the form of energy from 55 radiographs almost matched their Singh
Index values. Haley and Manjunath (1995) proposed a modified Gabor filter
using a Gabor wavelet transform to create a multi-resolution space frequency
representation of a texture image. First they represented an input image as a
polar form of the Gabor function, and the resulting expression was re-expressed
as the basic wavelet function. The micro-features were defined in terms of the
wavelet coefficients. The modified Gabor filter was applied on 13 texture images
and overall 99% classification accuracy was achieved.

Jain and Farrokhnia (1990) used a multi-channel filtering approach and a fixed
set of Gabor filters was used to characterise the channel that preserved almost
all the information in the input image. An unsupervised texture segmentation
algorithm using a fixed set of Gabor filters was proposed, and applied to several
images to demonstrate its performance. Fogel and Sagi (1989) applied the Gabor
filter model to separate micro-patterns of an image and found the pattern spec-
trum of each basic element by means of Gabor filters, then they calculated the
dissimilarities between two pattern spectra.

There are many advantages of Gabor filters over other approaches. Some of

these advantages are:
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1. they simulate the human visual system,
2. they are direction dependent,

3. they have optimal joint localisation or resolution, in both the spatial and

the spatial-frequency domains (Daugman (1985)), and

4. they meet the equality criteria in the uncertainty principle, where the un-
certainty principle states that certain physical quantities, like position and
momentum, cannot both have precise values at the same time. The nar-
rower the probability distribution for one quantity, the wider it is for the
other.

However, Gabor filters are criticised by Wang and Yong (2008), as there is a
compromise between redundancy and completeness in the design of Gabor filters

because of their non-orthogonality.

3.3.3 Wavelets

The shifting and scaling properties of the F'T, in which an image is represented as
a sum of sinusoids, led to the evolution of wavelets for texture analysis and image
and signal analysis, as these provide simultaneous representation and localisa-
tion of both time and frequency for non-stationary signals (e.g. music, speech,
images), whereas the standard FT is only localised in frequency. These decom-
pose an image into a complete set of wavelet functions which form an orthogonal
basis (Petrou and Garcia-Sevilla (2006)). The concept of wavelets in its present
form, proposed by Morlet (1984), is now well established and has found many
applications in signal and image processing.

Wavelet transforms have advantages over traditional FTs for representing
functions that have discontinuities and sharp peaks, and for accurately decon-
structing and reconstructing finite, non-periodic and/or non-stationary signals.
Compared to the wavelet transform, using the Gabor transform requires selection
of the filter parameters for different textures (Wang and Yong (2008)).

A wavelet is a mathematical function used to divide a given function or
continuous-time signal into different scale components. Each scale component
can then be studied with a resolution that matches its scale. A wavelet trans-
form is the representation of a function by wavelets. The wavelets are scaled and
translated copies (known as ‘daughter wavelets’) of a finite-length or fast-decaying

oscillating waveform known as the ‘mother wavelet’ (Mallat (1999)).

63



Unser (1995) defines the wavelet transform as a multi-resolution decomposi-
tion for finite energy functions f of a continuous variable z, i.e. f(z) € Lo, where
Lo represents the space of square summable sequences. It provides a time fre-
quency representation of an image, and the wavelet coefficients of an image are
the projections of the image onto multi-resolution subspaces (Jafari-Khouzani
and Soltanian-Zadeh (2005)).

Wavelet transforms are classified into discrete wavelet transforms (DWTs) and
continuous wavelet transforms (CWTs). Both DWTs and CWTs are continuous-
time (analogue) transforms, which can be used to represent continuous-time (ana-
logue) signals. The CWT operates over every possible scale and translation,

whereas the DWT uses a specific subset of scale and translation values (Mallat
(1999)).

Orthonormal wavelets: A family of functions ¢,; can be generated from
a single function ¢ € L*(R) by the operation of binary dilations and dyadic

translation of v, so that

Yap(x) = 2779 (2°2 — b), (3.8)

where a,b,x € R (a > 0), and the factor 29/2 ensures orthonormality. So, a
wavelet ¢ € L?(R) is called orthonormal if the family of functions 1, can be
generated by (3.8).

Haar wavelets: The Haar transform can be thought of as a sampling process
in which rows of the transform matrix act as samples of finer and finer resolution.

The Haar wavelet’s mother wavelet () can be defined as

1 0<t<j
Yt) =9 -1 1<t<1

0  otherwise,

and its scaling function ®(¢) can be described as

1 0<t<«1
o(t) = o
0 otherwise.

Historically, the first orthonormal wavelet basis is the Haar basis. However,
although the Haar wavelet 1) has good time-localisation, it does not possess an

~

optimised frequency localisation and its FT (k) decays as |k|™! as k& — oo
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(Debnath (2002)).

Daubechies wavelets: Daubechies (1988) proposed a series of wavelet bases
which have compact support and maximum number of vanishing moments, named
after her name as Daubechies wavelets. These constitute a family of orthogonal
wavelets defining a discrete wavelet transform (DWT) and are characterised by
a maximal number of vanishing moments, i.e. moments which are equal to 0,
for some given support. In the Daubechies-n wavelet, n represents the order of
the wavelet basis function required for reconstructing the input image, which is

equivalent to the number of vanishing moments.

Continuous wavelet transforms

By means of the shifting and scaling properties of the FT, the CWTs are con-
structed by translating and dilating a single mother wavelet, which is localised in
both spatial and frequency domains (Livens et al. (1997)). For a prototype func-
tion ¢(x) = L*(R), the mother wavelet, the family of functions can be obtained
by shifting and scaling this ¢ (z) as:

aale) = 7tnn (7). 5.9)

where a,b,x € R (a > 0). Parameter a is a scaling factor and b is a shift factor.
Normalisation ensures that [|¢,,(x)]] = [|¢(x)|. The mother wavelet has to

satisfy the following admissibility condition

o [ sl o

0o w

where U, ,(w) is the FT of ¢(x), defined by Petrou and Garcia-Sevilla (2006) as:

U,p(w) = vVa¥(aw) exp (jiw). (3.11)

In practice W(z) will have sufficient decay so that the admissibility condition

reduces to

/ " (s = B(0) = 0. (3.12)

Thus, the wavelet will have bandpass behaviour. The CWT of a function f(t) € R

is then defined as:

Wof () = / s (B (1) (3.13)
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Changing a or b in equations (3.9) and (3.10) generates two families of
functions which constitute two equivalent sets of elementary texture information.
Every wavelet transform corresponds to a high- and low-pass filter, and decom-
poses images into sub-images. Every sub-image contains information of a specific
scale and orientation, which is conveniently separated. Spatial information is
retained within the sub-images. Through CWT analysis, a set of wavelet coeffi-
cients W, f(4,) is obtained. These coefficients indicate how close the signal is to a

particular basis function.

Discrete wavelet transforms

As parameters a and b take continuous values, the resulting W, f(x) in equa-
tion (3.13) becomes a very redundant representation. The wavelet given by (3.9)
can be discretised by constraining a and b to a discrete lattice (a = 2™,b € Z).
The imposed constraints are that the transform should be non-redundant, com-
plete, and should constitute a multi-resolution representation of the original signal
(Petrou and Garcia-Sevilla (2006)).

The discretisation is performed by setting a = aé and b = k agby for j, k € 7Z,
where ag > 1 is a dilation step and by # 0 is a translation step. The family of

wavelets then becomes

(@) = ag? P (ag? — kby), (3.14)

and the wavelet decomposition of a function f(z) is

F@) =" Wafjula)tu(@), (3.15)

J
where the 2-D set of coefficients W, f (7, k) is called the DWT of a given function
f(@).

The selection of 1(z) is made in such a way that the basis function set ¢; ()

is an orthonormal basis of L?(fR), so that

Waf(2) = / (0 f (. (3.16)

The most widely used form of such discretisation with ayp = 2 and by = 1
is described as the standard DWT (Daubechies (1990)). A 2-D DWT is often
referred as the pyramid-structured wavelet decomposition (PSWT), e.g. in Wang
and Yong (2008).

66



HH, HLy HH; | HL HL,

LH, LL,

LH, LL, LH, LL

Decomposition at level 1 Decomposition at level 2

Figure 3.3: Two levels of a 2-D discrete wavelet decomposition.

The DWT decomposes a given image into different scale components. Each
scale component can then be studied with a resolution that matches its scale.
Figure 3.3 represents the DWT of an image at two different levels. First, the
input image is decomposed into four sub-bands, labelled as HH;, HL;, LH; and
LL;. The first sub-band HH; corresponds to an approximation image and the
last three represent detail images. To do further decomposition, the sub-band
HH; is decomposed into four sub-bands again, among which the top-left is the
approximation sub-band representing the coarse coefficients and the rest corre-
spond to the detail images. This decomposition continues until the desired level is
obtained. Different statistical features, such as mean, standard deviation, energy
and entropy, defined below, can be calculated from each sub-band at different
scales or levels and used as texture descriptors for classification.

Energy can be based on either the square or absolute values of the pixel in-
tensities. Entropy provides a measure of randomness of an image. The higher
the entropy, the greater the variability in the image grey levels. For a constant
image entropy would be zero. Entropy is often considered as a histogram-based
measure, which involves quantising the image intensities according to the num-
ber of bins used to produce the histogram. The histogram is then normalised to
produce relative frequencies and entropy is computed from the normalised his-
togram. For any M x N sub-band image with pixel intensities f; ;, the traditional

way of computing mean, standard deviation (sd), energy and entropy is:

| M
mean = UN ZZf”,

i=1 j=1

N

L XM
sd = Wz (fi; — mean)?

i=1 j=1



M N
energyZﬁZZHfi,jH or ﬁzzﬁa

=1 j=1 =1 j=1
K

entropy = — Y pilogy i,
1=1

where p is the normalised grey level histogram with K bins and log, is the base

2 logarithm.

Wavelet packet transform

Wavelet packet decomposition (WPD) can be derived from the 2-D DWT, which
offers a richer space-frequency representation. The key difference between 2-D
DWT and WPD is that for WPD, at the second and or further decomposition
levels all sub-images are decomposed into four sub-images (3 detail sub-bands and
1 approximation sub-band), whereas for the 2-D DWT only the approximation
sub-image is decomposed into smaller four sub-images. The WPD decomposes
a 1-D signal in all low and high frequency regions and wavelet decomposition of
a 2-D signal can be achieved by applying the 1-D wavelet decomposition along
rows and column of the image separately (Wang and Yong (2008)).

Applications of wavelet transforms

Wavelet transformations are now very commonly used in texture analysis. Some
of its recent applications are mentioned here.

Tsiaparas et al. (2011) compared different multi-resolution approaches for fea-
ture extraction for use in texture classification of ultrasound images of carotid
atheromatous plaque (into symptomatic and asymptomatic classes). They ap-
plied DWT, stationary wavelet transform (SWT), WPD and the Gabor trans-
form, and computed statistical features, i.e. the mean and sd of the detail sub-
images from each decomposition scheme. The features were plugged into a sup-
port vector machine and a probabilistic neural network, and higher classification
was obtained with WPD features using the support vector machine.

Wavelet-based texture features were found useful for discriminating benign
and malignant micro-calcification (MC) clusters on mammograms for breast can-
cer diagnosis by Karahaliou et al. (2008). DWT coefficients at three decompo-
sition levels and grey-level co-occurrence matrix features were computed from
images of regions of interest, and performance of the combined features was in-

vestigated using a probabilistic neural network.
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Wang and Yong (2008) developed a texture classification algorithm based on
the wavelet transform combined with linear regression. It was proposed to analyse
correlation between pairs of sample images obtained by wavelet decompositions
rather than features extracted from those sample images, as it was believed that
the spatial correlation between sample images belonging to the same kind of
texture at different scales of WPD is distinct and able to characterise the texture.
A 2-D WPD was applied instead of 2-D DWT as the former captures more spectral
information in the image. Firstly, the original image was decomposed using a 2-D
WPD and the energy of all four sub-images was computed. They used n levels
of decomposition, where n was such that the final sub-images were larger than
162, and computed the energy for each sub-image. This gave & = 4" sub-images.
For a single image, the energy vector is of length 4", called the channel-energy
vector. Similarly, by decomposing all j sample images belonging to the same
texture, they formed the channel-energy-matriz, M;jy, where rows correspond
to different sample images and columns represent energies from different sub-
images. A k X k covariance matrix with k& rows and k columns was derived from
M, where ¢; ; is the correlation coefficient p between the i and j™ frequency
channels. The channel-pairs with correlation p > T where T' is a threshold value,
were considered to be the more informative frequency regions and were used in
the computation. They extracted the energy values (z1,11)’,. .., (s, y,) for two
frequency channels (X and Y') from each such pair and employed linear regression
by assuming that energy from X was a cause of the energy from Y. For any
energy from channel X, the corresponding residual was considered as a texture
descriptor. For any channel pair, if the residual lay within p+30, it was concluded
that it belonged to frequency channel Y. They applied their method to 40 6402
grey level Brodatz texture images and compared it with other traditional multi-
resolution methods, such as the PSWT, the tree-structured wavelet transform,
and the Gabor transform and found that their method performed better in most
cases.

Traditional wavelet transforms were criticised by Chaux et al. (2006). Firstly,
as they are not shift-invariant, their performance is usually limited by the shift
variance with respect to the value of the transformed coefficient at a given scale.
Secondly, in higher dimensions, standard wavelets possess poor directionality
properties, which are very important for feature detection. They proposed an
M-band wavelet transform which does not suffer from those drawbacks and has
advantages over several classical dyadic orthonormal wavelet bases.

Jafari-Khouzani and Soltanian-Zadeh (2005) proposed a new rotationally in-
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variant technique using Radon and wavelet transforms. They first calculated
the Radon transform of the image and then used a translation-invariant wavelet
transform in each of the four frequency sub-bands LL, LH, HL, and HH (diag-
onal, vertical, horizontal and approximation sub-band images) produced by two
levels of decomposition of an image to calculate the frequency components and
extract corresponding features. The proposed method was applied to 54 Brodatz
texture images of size 5122, using four different wavelet bases and different num-
bers of neighbours in the k"® nearest-neighbour classifier. The rate of correctly
classified pixels was 95.6%.

Unser (1995) used a discrete wavelet frame (DWF) to characterise texture
properties. He suggested that the DWF should perform better than most tradi-
tional single resolution approaches. The classification performance of the DWF
was tested on 12 Brodatz texture images, each histogram-equalised with a re-
quantisation to 32 grey levels, so as to be indistinguishable on the basis of first-
order statistics only. A Gaussian maximum-likelihood classifier was used and
trained on all images except the one being classified. Classification accuracy of
99.2% was obtained for almost all the texture images and performance was com-
pared with the traditional wavelet transform. The classification results showed

that the DWF was superior to the discrete wavelet transform.

Complex wavelet transform

Although the wavelet transform is a powerful image processing tool, it has four
fundamental shortcomings. Firstly, it is not shift invariant, i.e. a small shift of the
image grey levels greatly affects the wavelet coefficient oscillation pattern around
singularities. Secondly, a higher-dimensional wavelet transform suffers poor di-
rectionality when the transform coefficients reveal only a few feature orientations
in the spatial domain. Thirdly, the wavelet coefficients of an image do not con-
tain any phase information, as filtering the image with a 2-D DWT increases its
size and adds phase distortion. Fourthly, the wavelet coefficients tend to oscil-
late between positive and negative values around singularities, which complicates
wavelet-based image processing (Kingsbury (2005)).

The complex wavelet transform is a complex-valued extension of the standard
DWT. It is a 2-D wavelet transform which provides multi-resolution, sparse repre-
sentation, and useful characterisation of image structure. Complex wavelet trans-
forms (CLWTs) can be broadly classified in two groups, i.e. redundant CLWTs
and non-redundant CLWTs.

One of the most promising redundant type of CLWTSs is the dual-tree complex
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wavelet transform (Kingsbury (2001)) which overcomes the drawbacks of the
standard DWT. Two classical wavelet trees with real filters are developed in
parallel, with the wavelets forming (approximate) Hilbert pairs. A dual tree of
real wavelet filters is used to generate the real and imaginary part of the complex
wavelet coefficients. The requirement for the dual-tree setting for forming Hilbert
transform pairs is the well-known half-sample delay condition. The resulting
complex wavelet is then approximately analytic, i.e. approximately one-sided in
the frequency domain (Daubechies (1990)).

Since the FT does not suffer from the drawbacks of the DWT, Kingsbury
(1999) built a wavelet transform with a complex-valued scaling function and
complex-valued wavelet that decomposes the real/complex images into real and
imaginary parts. The real and imaginary coefficients are used to compute ampli-
tude and phase information. The filter bank structure of the CLWTs resembles
the filter bank structure of the standard DWT but with twice the complexity. Two
sets of filters h, and g,, each consisting of a high-pass and a low-pass filter, are
jointly designed such that the complex wavelet transform () := 1y, (¢)+j1,(t) is
approximately analytic, or 1,(t) is approximately the Hilbert transform of ,(¢)
(Kingsbury (2005)).

The properties of the dual tree complex wavelet transform can be summarised
as: approximate shift invariance, good directional selectivity in 2-D, providing
phase information, allowing perfect reconstruction, limited redundancy and effi-

cient order-N computation (only twice that of the simple DWT for 1-D).

3.4 Model-based Approaches

As mentioned earlier, the model-based approach includes Markov random fields
and auto-regressive models. There are variations of the Markov random field,

among which the Gaussian Markov random model will be briefly discussed.

3.4.1 Markov random fields

A random field is created by performing a random experiment at each location of
the field and assigning the outcome of the experiment to that location. A random
field is called a Markov random field (MRF) if it possesses the Markovian prop-
erty. A process possesses the Markovian property if the conditional probability
distribution of the future state of any process, given the present and past states,
depends only upon the current state, i.e. it is conditionally independent of the

past states (the path of the process) given the present state.
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To build a MRF in terms of a coin-tossing experiment, for example, consider
an empty grid of size n x n and fill the spaces by the number of heads obtained
by throwing an unbiased coin 255 times for each grid position. This generates a
random field. If however the coin is biased, so that the outcome in a specific grid
location depends on the values of the neighbouring locations, a Markov random
field arises (Petrou and Garcia-Sevilla (2006)).

An image is called Markovian if the probability distribution of the intensity at
any specific location directly depends on the values of the neighbouring intensi-
ties (Reulke and Lippok (2008)). MRFs are used for modelling images, and have
been applied to many aspect of image processing, such as texture synthesis, tex-
ture classification, image segmentation, image restoration, and image compression
(Tuceryan and Jain (1998)). The introduction of MRF's in a Bayesian framework
has resulted in a unified, coherent framework that enables treating many im-
age processing problems as statistical inference problems (Krishnamachari and
Chellappa (1997)).

The choice of neighbourhood depends on the type of random field used. The
first-order neighbourhood of a pixel consists of its four-connected neighbours,
and the second-order neighbourhood of a pixel consists of its eight-connected

neighbours (see Figure 3.4, which shows some commonly used neighbourhoods in
a MRF).

(a)

Figure 3.4: First-order neighbourhood (left); second-order neighbourhood (mid-
dle); third-order neighbourhood (right) of the central pixel.

Reulke and Lippok (2008) modelled MRF's using a Gibbs distribution. A is
assumed to be a Markovian image, for which the probability distribution of the
intensity of P; depends on the intensities of the neighbouring pixels W; (for a
specified neighbourhood). In the Gibbs distribution, the conditional probability
that pixel P; takes value p; given that the neighbouring pixels W; have value p;
is

exp{—h iy Mg

> o exp{—h(p,p;)}

in which P is the maximum intensity value, and A is a parametrised energy

function characterising the MRF. There is no unique functional form of the energy
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function since it depends entirely on the problem under study.

The MRF technique was successfully used by Reulke and Lippok (2008) for
segmentation of roads in panchromatic images for traffic observation from an aero-
plane platform, for example. They assumed the image to be a MRF and used an
auto-binomial model as the underlying energy function. To estimate the param-
eters they used mazimum pseudo-likelihood estimation, and approximated the
overall probability by the product of all conditional probabilities (Besag (1986)).
The model parameters were used to characterise the texture, and can be used
for texture segmentation. After estimating parameters, segmentation of Brodatz
textures was carried out. They also investigated some factors, e.g. influence of
parameter normalisation, size of the texture window, size of the neighbouring
system, image quality, and image scaling, which have a significant effect on tex-
ture segmentation. By using normalised parameters, the segmentation error was
reduced to 2%, whereas the un-normalised parameters yielded 16% segmentation
error.

Thakoor et al. (2007) applied the hidden Markov model to characterise the
shape of a texture and then used a weighted likelihood method to estimate the
model parameters. Wu and Chung (2007) introduced a boundary MRF model,
which can yield appropriate segmentation even with complex boundaries and is
robust to noise corruption. This study concerned medical image segmentation
rather than texture segmentation.

Apart from texture classification and segmentation, MRF models have also
been used for creating textures (texture synthesis) (Petrou and Garcia-Sevilla
(2006)). They created an empty 64 x 64 grid where the grey value at each position
was drawn from the binomial probability density function with parameters n = 8
and 6§ = 0.5, to create a random field. Then for each pixel (7, j) they computed

the sums
5= Gij—1+ Gij+1 = Gi—1,j — Gi+1,55 (3.17)
where g; ; is the grey value of pixel (7, j), using a first order neighbourhood struc-

ture. Using these values of s, they computed the binomial parameter 6 as a

function of the values of the neighbours using the following relation

9 _ S
1+0 ¢

Then the new value for a specific pixel was drawn using the probability density
function with the new parameter. In the first step they updated the grey values

only for the pixels with non-overlapping neighbours and left the remaining pixels
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with their old values. In the next step, they updated the next set of pixels with
no overlapping neighbours, and carried out this procedure until all sets of pixels

with distinct neighbourhoods had been assigned updated values.

Gaussian Markov random model: When the outputs of the random exper-
iment performed to determine each pixel value arise from a Gaussian probability
distribution and the parameters of the probability distribution are functions of
the values of the neighbouring pixels, the image forms a Gaussian MRF (GMRF).

A simple form of a GMRF model is given by Petrou and Garcia-Sevilla (2006)

P L )2
! exp { (905 = 211 Winy) }, (3.18)

p(gi | gi/j/eNi,j) = Vono 902

as

where p(gi; | gujen,,) is the probability of pixel (,j) having grey value gy,
given the values of its neighbours (7, ), L is the total number of pixels in the
neighbourhood N;; of pixel (7, j) and a; is the parameter with which a neighbour
influences the value of pixel (i, 7). The maximum likelihood method can be used
to estimate the parameters of the Gaussian Markov model, and the estimated
parameters are used to characterise the texture.

Lehmann (2011) used GMRF based features for segmentation of 2-D texture
images by modelling them as the concatenation of two 1-D hidden Markov autore-
gressive models for the rows and the columns, respectively. A segmentation algo-
rithm was developed using the concept of turbo decoding used for error-correcting
codes.

Krishnamachari and Chellappa (1997) presented multi-resolution models for
texture segmentation using a GMRF. They estimated the GMRF parameters
either by minimising Kullback-Leibler distances or based on local conditional
distribution invariance. Since the data at lower resolutions can be approximated
by a GMRF, given the number of classes and the associated parameters at the
fine resolution, the GMRF parameters at lower resolutions were obtained by the
conditional distribution invariance approximation. Then segmentation was per-
formed at the coarsest resolution and the results of segmentation were passed on
to the most immediate higher resolution and the process repeated until the finest
resolution was reached. They tested their method on Brodatz textures and com-
pared its efficiency with a single resolution approach. The percentage of correctly
classified pixels reached 92.8% for the Brodatz textures, and for synthetic textures
it was 96.8%. They concluded that their method performed better than the sin-

gle resolution method both in terms of classification accuracy and computational
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requirements.

3.4.2 Auto-regressive model

The auto-regressive model for texture classification can be characterised both as
a statistical approach and a model-based approach. A considerable amount of
work has been done on development of models for random field image processing
(Jain (1981)). In a 2-D auto-regressive (AR) model the grey level of each pixel is
represented as a linear weighted sum of the grey levels of its neighbouring pixels,
with addition of white noise (Deguchi (1986)).
For an image with intensities f(x,y),z,y = 1,2,..., N, the AR model is given
by
flz,y) = Z Z apof(x =P,y — q) + Ny, (3.19)
(p.9)eD
where n,,, is Gaussian white noise with zero mean and variance o2, a,, are coef-
ficients used to characterise the texture, and D is a rectangular neighbourhood

region defined as

where D, and D, are the neighbourhood dimensions.

Alata and Ramananjarasoa (2005) used a 2-D quarter plane auto-regressive
model for an unsupervised textured image segmentation. They first estimated
both the number of textures and the model parameters associated with each ex-
isting texture, and used a simulated annealing method for maximum posterior
estimation of the specific region. Zheng (1997) showed that the estimated param-
eters of an AR model based on a noisy image are asymptotically unbiased. The
AR model is not usually rotationally invariant. Mital and Leng (1992)modified it
to be rotationally invariant under all configurations of pixels for texture analysis,

and found that the modified model gave better results than the original model.

3.5 Statistical Approaches

In statistical texture analysis, texture features are computed from the statistical
distribution of observed combinations of intensities at specified positions relative
to each other in the image. According to the number of intensity points in each
combination, statistics are classified into first-order, second-order and higher-

order statistics. First-order ones use the grey level histogram, so are based on
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single pixel intensities, e.g. grey level mean or sd. Second-order ones use 2-D
combinations of pixel grey levels, for example grey level co-occurrence measures,
defined below.

Among existing statistical approaches to texture analysis, auto-correlation
based texture features, grey level co-occurrence matrices, grey level run-length
distribution techniques, local binary pattern, improved local binary pattern and
coordinated cluster representation are discussed here. Although some authors
mention morphological granulometry as a statistical method of texture analysis,
we discuss it separately in Section 4.1, as it is used extensively in the work in this

thesis.

3.5.1 Auto-correlation based texture features

The auto-correlation function (ACF) of an image can be used to assess the regu-
larity as well as the coarseness of texture. It evaluates the linear spatial relation-
ships between texture primitives (basic shapes in the image). If the primitives are
large, the function decreases slowly with increasing distance, whereas it decreases
rapidly if the texture consists of small primitives (Sharma and Singh (2001)).
The ACF of an image f(z,y) of size M x N can be defined as

S L S+ )
DD

This can be used directly as a signature, or by inferring the periodicity of

p(z,y) : (3.20)

texture from it, or by extracting parametric features from it to characterise
a texture (Petrou and Garcia-Sevilla (2006)). The ACF is the Fourier trans-
form of the power spectral density function and vice versa. A useful property
of the auto-correlation function is mentioned in Kurita and Otsu (1993), i.e. it
is shift-invariant. As a result they successfully used the higher-order local auto-
correlation features for texture classification.

The practical implementation of the ACF for identifying textures is described
by Petrou and Garcia-Sevilla (2006). The ACF p(x,y) can be used directly to
represent the texture and compare it point by point with the auto-correlation
function of another texture to see how similar or dissimilar the two textures are.
The comparison can be done by computing any statistical measure of similarity
(e.g. the sum of squares of the differences, or the correlation coefficient between

two functions) or by plotting p.(z) = >_, p(z,y) versus x and p,(y) = >, p(z,y)
versus y and using these curves as the texture signatures.
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3.5.2 Grey level co-occurrence matrices

The grey level co-occurrence matriz (GLCM), or the grey level spatial depen-
dence matrix, is one of the most popular ways to characterise image texture.
Co-occurrence matrices are based on second-order statistics, that is, the spatial
relationships of pairs of grey values of pixels within a specified region (Haddon
and Boyce (1993)).

For an M x N image containing G grey levels, the GLCM is a G x G matrix
with entries C'(4, j), such that C(i, j) is the number of pairs of pixels, at distance
d apart and lying on a line at angle ¢ to the reference direction of the image,
with grey levels i and j respectively (Clausi (2002), Petrou and Garcia-Sevilla
(2006)). If the texture is coarser in one direction than the other, then the degree
of spread of the values about the main diagonal in the GLCM will depend on the
direction ¢.

The normalised GLCM, ¢(i, j), is obtained by dividing each entry of C(%, j)
by the sum of the C(i, j), i.e.

Ci, j)
22/[:1 Zl]\il O(k7 l)

which normalises the co-occurrence values to lie between 0 and 1 and provides

C(i’j) -

the joint frequency distribution of pairs of pixels with grey level ¢ and j, at a
given direction and specified distance apart.

Rather than using all possible grey levels (0-255), the original image’s grey
levels may be scaled down (quantised) to a smaller number, which reduces the size
of the GLCM to give a less sparse matrix. It is expected that coarser quantisation
may reduce both classification accuracy and feature space separability of the
classes. The literature suggests use of different quantisations, e.g. 8, 16, 32, 64, or
the difference between maximum and minimum intensities, as it is not guaranteed
that a higher level of quantisation will lead to better classification accuracy in any
given type of image (Clausi (2002)). According to Soh and Tsatsoulis (1999), use
of quantisation at level 256 is not necessary, 8 level quantisation is undesirable
(as it is too coarse) and 64 level quantisation is efficient and sufficient, and the
inter-pixel distance is more important than the orientation.

GCLMs capture texture properties but are not directly useful for further anal-
ysis, such as comparison of two textures. Haralick et al. (1973) and Haralick et
al. (1979) proposed some texture features that can be computed from the GLCM

for more compact texture representation, including:

1. Maximum probability: max ;) c(i, 7)
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2. Energy: ZZGZI Zle c(i, j)?
3. Entropy: —ZiG:1 Z]-Gzl c(i, j) log c(i, j)
4. Contrast: Y7, Z]-Gzl(i — j)%c(i, 5)

. G G c(t,g
5. Homogeneity: > .", ijl 1+(\ii)j\

6. Correlation: —Uilaj Zil Zle(i — 1) (J — py)e(i, g),
G . G .o e G ..
where ; = > ;71 Zj:l (i, g), py= Zj:lj > i i ),
G . G .o G . G .o
o =321 — w)” Zj:l c(i, j), and UJZ‘ = Zj:l(] — py)? 20 i, ).

G (i)
3=1 T4(i—j)2

7. Inverse difference moment: Zlel >
8. Autocorrelation: Zszl Z].Gzl ijc(i, j)
9. Dissimilarity: 327, 2?21 li — 7le(i, 7)
10. Cluster shade: Zil Zle(i + 7 = i — pg)3c(i, g)
11. Cluster Prominence: S Zle(i + 7 = i — )i, )
12. Horizontal mean: u;
13. Vertical mean: p;
14. Horizontal sd: o;

15. Vertical sd: o}

The maximum probability is just the value of the most frequent co-occurrence.
Energy, also known as uniformity or angular second moment (Gong et al. (1992)),
measures textural uniformity, i.e. pixel pair repetitions. For a texturally uniform
or homogeneous image a few GLCM elements will be close to 1, while many will
be near 0 (Baraldi and Parmiggiani (1995)) so energy will be near to its maximum
value of 1. Entropy measures randomness of the image intensity distribution. It
is highest when all GLCM entries are of similar magnitude, corresponding to
random grey levels, and small when these are unequal, i.e. the entropy for a
homogeneous image will be lower than that of an inhomogeneous image.

Contrast measures local variations in the GLCM, whereas correlation mea-
sures the association of the grey levels of the specified pixel pairs. Homogeneity,
also known as the inverse difference, measures closeness of the distribution of the
GLCM values to the GLCM diagonal. It will be larger if the pixel pairs take the
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same or similar grey levels. Inverse difference moment also measures the relative
closeness of the distribution of GLCM values to the GLCM diagonal and has a
high value when the high values of the GLCM are near the main diagonal of the
GLCM, i.e. the squared difference (i — 7)? becomes smaller. Cluster shade and
cluster prominence are measures of asymmetry, so provide measures of skewness
in the image. Larger values of cluster shade and cluster prominence indicate lack
of symmetry. Lastly, correlation is a measure of linear association between the
pixel grey levels of the image.

The GLCM characterises the spatial relationships between the pixel grey lev-
els, and has proved useful in various texture classification applications because
of its ability to extract spatial information. GLCM features, i.e. contrast and
entropy, were successfully used to segment images of chromosomes by Chanda
and Majumder (1988). Soh and Tsatsoulis (1999) obtained 94.2% classification
accuracy for SAR sea ice images using co-occurrence matrix features in Bayesian
classifiers. Clausi (2002) computed 8 different GLCM features using different
quantisations from (0 to 255) of SAR sea ice images and used the features jointly
and separately to classify the images. They advocated use of three features such
as contrast, entropy, and correlation for quantisations between 24 and 64. GLCM
features were used in a self-organising map in de Almeida et al. (2010) to classify
Brodatz texture images with 97% classification accuracy. GLCM features and
linear discriminant analysis (LDA) were successfully used to classify colour im-
ages of colon cancer in Shuttleworth et al. (2002). These features were also found
to be useful for classifying colour texture images in Palm (2004).

We use co-occurrence-based features (1-5 and 7 above as commonly used
GLCM features) in Chapter 8 to classify synthetic images as well as real images

of corroded metal and also of tea granules.

3.5.3 Grey level run length distribution

This approach is also a statistical approach to texture analysis. The grey level
run length (GLRL) method is a way of extracting higher-order statistical texture
features. The technique was described and applied by Galloway (1975), to extract
information in an image from its grey level runs. Run-length statistics capture
the coarseness of a texture in specified directions. A run is defined as a string of
consecutive pixels which have the same grey level intensity along a specific linear
orientation (Chu et al. (1990)). Fine textures tend to contain more short runs
with similar grey level intensities, while coarse textures have more long runs with

different grey level intensities.
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A run length matrix is a 2-D matrix formed by the number of runs of different
lengths and grey levels, arranged according to the lengths and grey values. Gal-
loway (1975) computed five features from run-length matrices analogous to the
properties used with grey level co-occurrence matrices, which are called short run
emphasis (SRE), long run emphasis (LRE), grey level non-uniformity (GLN),
run length non-uniformity (RLN) and run percentage (RP), defined as:

SRE = Zzp i)/ (3.21)

=1 j5=1

G R .o ,. .
LRE=Y"%" w (3.22)

i=1 j=1

G R 2
GLN = Z (Zp(i,j)) /s (3.23)
Ie. 2
RLN =) (Zp (i, 7 ) s (3.24)
G R
RP =3 % pli] (3.25)

where G is the number of grey levels, R is the longest run, s is the total number
of runs in the image n is the number of pixels in the image, and p(i,j) is an
element of the run length matrix (Chu et al. (1990)).

Albregtsen et al. (2000) successfully used grey level run length matrices for
analysing the textures of liver cell nuclei. They combined information from the
entries of the normalised run length matrix, based on the class distance matrices,
to obtain adaptive features for texture classification. Arul et al. (1993) used
two approaches to texture analysis, namely spatial GLCMs and grey level run-
length matrices to determining beef quality grades in terms of the distribution
(or marbling) of intramuscular fat in a beef segment. The results showed good
potential of these approaches for tissue characterisation and objectively evaluating

beef quality.

3.5.4 Local binary pattern

Local binary pattern (LBP) was introduced by Ojala et al. (1996) and is the

simplest way of extracting texture features. It detects binary texture patterns in

80



a 3 x 3 neighbourhood of a grey scale texture image and uses that as a measure of
texture. It starts by selecting a region of interest and comparing each pixel with
its 8-nearest neighbours, then assigns the value 1 for any neighbour with pixel
value greater than the centre pixel value and 0 otherwise, to provide an 8-digits
binary number. So there are 2° = 256 binary patterns that can be defined for a

3 x 3 neighbourhood. An LBP code for an 8-neighbour is

LBP =%]"s(g, — gc)2"

where P = 8, g. is the intensity of the central pixel and g, are the intensities of

the 8-nearest neighbours, and

S(t):{ 1 t>1

0 otherwise.

The LBP for each pixel is computed and stored and can be used as texture
descriptor. The basic version of LBP has been extended by introducing different
neighbourhoods, e.g. 8- or 16-neighbourhood and circular neighbourhood (Ojala
et al. (2002)). Using a circular neighbourhood and considering all rotated versions
of the same pattern to be equivalent can reduce the length of the LBP code
to 36 from 256. Ferndndez et al. (2011) proposed an extension of LBP, i.e.
improved local binary pattern (ILBP), that assigns labels to each pixel in a 3 x 3

neighbourhood by using the mean value of the 9 grey levels as a threshold.

3.5.5 Coordinated cluster representation

The coordinated cluster representation (CCR) was introduced by Kurmyshev and
Cervantes (1996) to characterise a binary image in terms of a histogram of the
occurrence of texture pattern. Computation of the CCR of an L x M image
requires selecting a rectangular window W = I x J, where [ < L and J < M,
and then scanning each pixel of the window. Then binary patterns are found for
each pixel of the window and the histogram is formed. The normalised histogram
is considered as an image spectrum and used as a texture descriptor (Ferndandez
et al. (2011)). In LBP the central pixel is excluded while computing the LBP
code, there are 2% = 256 possible LBP codes, whereas CCR considers all pixels,
so there are 2% = 512 LBP codes, which makes LBP more limited than CCR.
Different versions of LBP and CCR are used for texture classification. For
example, Ferndndez et al. (2011) used LBP, ILBP and CCR for classifying granite

texture images and found that ILBP provided better classification. A rotation
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invariant LBP was developed in Ojala et al. (2002) and applied to 20 types of
texture images from the Outex image data base. They considered four rotation
angles, namely 0°, 30°, 45° and 60° while computing LBP code and achieved 100%
classification rate using histograms computed at all rotations. The classification
was based on a chi-square goodness of fit test to compute the dissimilarity of
sample images and the model histograms. LBP, ILBP and CCR were also used
in Harrison et al. (2011) to identify sabellaria spinulosa colonies in sidescan sonar
imagery. These features were compared with Gabor filter bank features and dual-
tree complex wavelet based features using a 1-NN classifier and it was found that

Gabor features provides better classification results.

3.6 Illumination Resistant Texture Analysis

Texture analysis becomes more challenging due to the fact that large variations
in the visual stimulus arising from illumination conditions, viewing directions,
poses, and disguises are all common in real applications (Eleyan et al. (2008)).
Ho et al. (2006) examined perception of the roughness of 3-D textures under
changes in illumination and showed that visual perception of 3-D texture is not
invariant under changes in lighting direction.

A texture image is a function of texture surface, the illumination, the cam-
era and its viewing position. None of the standard methods of texture analysis
consider the effect of illumination direction on texture, surface texture is greatly
affected by the illumination direction (Varma and Zisserman (2005)). For ex-
ample, Chantler et al. (2002) show that two images of the same surface texture
sample captured using different illuminant tilt angles look considerably differ-
ent. Existing texture analysis techniques assume either that image texture is due
solely to surface marking or that the source of illumination is omni-directional,
and commonly use a set of scanned images from the Brodatz texture album (Bro-
datz (1966)), to test their performance, whereas many of these texture images
clearly violate one or more of these assumptions (Chantler (1995)).

Recently, Hwang et al. (2011) applied FT for face recognition under uncon-
trolled variation in illumination. They obtained an integral normalised gradient
image by normalising and integrating the smoothed gradient of a facial image
and extracted hybrid Fourier features from different Fourier domains in different
frequency bandwidths. They obtained an 81.5% correct verification rate on 2-D

face images under various illumination directions.
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3.7 Comparative Studies of Existing Methods

Galloway (1975) showed that the grey level co-occurrence technique is better than
the grey level run-length method for texture analysis. Kurita and Otsu (1993)
extracted higher-order local auto-correlation features from 30 texture images and
showed that the local auto-correlation method achieved a 93.2% recognition rate,
whereas the higher-order local auto-correlation features achieved 99.6% accuracy.

One comparative study of texture classification methods by Dettori and Sem-
ler (2007) found that wavelet-based features performed worse in texture clas-
sification than GLCM and the grey level run length measures when they were
applied to 340 images of size 5122. The accuracy rates for the wavelet-based tex-
ture descriptors ranged between 85%-93%, whereas GLCM had accuracy rates of
94%-97% and the grey level run length measures had accuracy rates of 91%-98%.
The classification accuracy of auto-correlation and co-occurrence based methods
was compared by Sharma and Singh (2001) on images in the Meastex database,
and co-occurrence performed better than the auto-correlation method, having
recognition rates of 79.2% and 76.1% respectively.

Tang (1998) developed a new run length method based on the dominant run
length method and the Bhattacharyya distance measure, and observed that the
grey level run length features performed comparably with co-occurrence features
and better than wavelet features. The grey level run length method achieved 97%
accuracy on 8 Brodatz image classes, with 225 images in each class and 99.9%
accuracy on 16 Vistex images with 225 images in each class. Co-occurrence and
wavelet features were used on 16 Vistex images with accuracy rates of 100% and
98% respectively.

Ayala and Domingo (2001) proposed use of granulometric features from a
spatial size distribution, for shape and texture analysis. They compared their
method with the MRF approach, GLCM, the Gabor method and fractal dimen-
sion. They concluded that granulometry performs at least as well as GLCM when
granulometry is applied to the foreground image. The MRF and Gabor methods
had results extremely close to their method, however their method required fewer
features than the MRF and Gabor methods.

Unser (1995) experimented with the DWT on 12 Brodatz textures and found
that the DWT did better than most traditional single resolution approaches.

Although mathematical morphology is a well established approach in image
processing for vector-valued (grey level) images, it has limited application so far
in 3-D matrix-valued (colour) images. Recently, Burgeth et al. (2007a) extended

the fundamental concept of mathematical morphology to 3-D matrix-based im-
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ages based on the Loewner ordering (developed in Horn and Johnson (1994)) of
symmetric matrices in higher dimensions, and Burgeth et al. (2007b) generalised
non-linear partial differential equations (PDEs) that simulate dilation and ero-
sion to the 3-D setting. The corresponding non-linear system of PDEs provides
a novel way of using mathematical morphology in 3-D. But both papers focused
on image processing rather than texture analysis.

MRF's involve an energy function which has no unique form. So the choice of
the energy function requires expert knowledge. Mostly the optimisation schemes
associated with parameter estimation are iterative, which requires use of a further
simulation algorithm, e.g. simulated annealing, which adds an additional compu-
tational load. In practice, auto-correlation based texture features are easier to
use for classifying textures.

GLCM concerns the spatial arrangement of objects in the image. It is almost
guaranteed to produce distinct features for different textures, but the computa-
tional burden is the main drawback of its use. Rotation invariant GLCM features
can be obtained by averaging features from different orientations, e.g. 0°,90°, 45°
and 135°.

Gabor filters possess some advantages although the sinusoidal plane wave is
computationally very expensive. Wavelet transforms require some assumptions on
the parameters, and also the optimisation procedure is a constrained optimisation
which is loaded with computational burden.

The pattern spectrum is considered to be a very powerful tool for analysing
textures, but it also possesses some drawbacks. The opening operation on which
the granulometry is based is very sensitive to image noise. Presence of noise can
drastically change the pattern spectrum of an image. Also it does not consider the
spatial arrangement of image objects, thus images of different structures may have
very similar pattern spectra (Zingman et al. (2007)). Using granulometry on the
image background overcomes this (see Section 4.3). Regardless of the drawbacks,
the use of morphological granulometry has an important role in shape-based
texture analysis and is the main method used in the work of this thesis to obtain

features for texture classification.

3.8 Texture Classification Rules

Classification is the process of assigning classes to objects. More precisely, classi-
fication is the assignment of new objects of unknown class to one of a number of

pre-defined classes, based on a set of variables or features (Hand (1981)). In the
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statistical approach, each texture pattern is represented in terms of d features or
measurements and is viewed as a point in d-dimensional space.

Given a set of observed measurements represented as a pattern vector «,
the texture classification problem is to assign the pattern to one of C possible
classes m;, ¢ = 1,...,C". The aim of classification is to choose a combination of
these features that allow pattern vectors or feature vectors belonging to different
categories to occupy compact and disjoint regions in the d-dimensional feature
space. A decision rule partitions the measurement space into C' sub-spaces ®;, i =
1,...,C. The effectiveness of the feature space is determined by how well patterns
from different classes can be separated (Jain et al. (2000)). If an observation
vector is in region ®; then it is assumed to belong to class m; (Webb (2002)).

There are two main divisions of classification: namely supervised classification
and unsupervised classification. In supervised classification a set of data samples
with associated classes is used in classifier design. The supervised component in
this classification methodology refers to the user-defined training classes. It is
important that these classes are a homogeneous sample of the respective class,
but at the same time include the range of possibilities for that class. Unsupervised
classification is used to cluster pixels in a dataset based on statistics only, without
any user-defined training classes. This is an exploratory data technique which
may be used before supervised classification methods.

Some commonly used approaches of texture classification are described below.

3.9 Bayesian Classifiers

A traditional powerful statistical approach to texture classification based on prob-
ability theory is Bayesian classification. Given the class conditional density func-
tions of a feature vector, the Bayesian classifier can be shown to supply the
statistically optimum solution to the problem of supervised classification. Given
the a priori probabilities p(m;) of the classes m;, i = 1,...,C, the problem is to
assign an observed feature vector @ to one of the (' classes. Intuitively we may
assign @ to the class with highest prior probability p(m;), but the Bayes decision
rule makes use of the likelihood p(x | ;) of &, and Bayes theorem and assigns x
to the class with the largest a posteriori probability p(m | ). For C classes, the

observed feature vector « is taken to belong to class m; if

p(m | x) >p(r; |x) forall i#j5 j=1,...,C. (3.26)

In terms of p(m;) and the class conditional densities p(x | m;),

85



p(x | m)p(m)
p(x)

So the decision rule using Bayes theorem may be written as: assign x to m; if

p(m | ) = (3.27)

p(x | m)p(m;) > p(x | 7;)p(r;) forall i # j. (3.28)

A detailed description is given in Webb (2002).

The densities p(x | ;) in (3.28) are usually unknown and have to be estimated
from the training samples. Very often it is difficult to obtain reliable estimates,
but assumptions can be made, e.g. assuming that the class conditional distribu-
tions are all multivariate normal. This leads to quadratic discriminant analysis
(QDA), where the mean vectors and covariance matrices are both different for
different classes. The problem can be simplified further by assuming equal co-

variance matrices for all classes, which converts the QDA to linear discriminant
analysis (LDA) (Hand (1981)), now described.

3.9.1 Linear discriminant analysis

Linear discriminant analysis (LDA) assumes that the class conditional densities

p(x | ;) are multivariate normal, with identical covariance matrices, i.e.

1
———7 X
(2m)8 |z

where p is the number of feature variables.

p|s@ ) S e m)| (329)

pla | m) =
Classification is achieved by assigning a pattern to a class for which the pos-

terior probability p(m; | ) is the greatest. So the discriminant rule is to assign x

to class m; if g; > g;, for all j # ¢, where

(@) = log(p(m) — Slog(|5) — 5(@ — ) S @ — ) (3.30)

where p(m;) is the prior probability of class i, 11; and ¥ are the mean and covariance
matrix of the i class and can be replaced by the maximum likelihood estimates
of fi; and S based on a training sample.

LDA is a widely used statistical pattern recognition and texture classification
approach which can work very well. Bekios-Calfa et al. (2011) applied LDA for
gender recognition and found that LDA on a linearly selected set of features can
achieve accuracies as high as for the state-of-the-art classifier SVM.

Palaniappan and Huan (2005) used LDA and MLP neural networks to classify
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electro-encephalogram signals from five different tasks with features extracted us-
ing an autoregressive model. In most cases, LDA provided superior classification

performance.

3.9.2 Maximum likelihood classifier

Like LDA the (Gaussian) maximum likelihood (ML) classifier also assumes that
the class conditional probabilities are normal and so they can be described by
a mean vector and a covariance matrix. With equal a priori probabilities for
each class, classifying a feature vector x to the class to which it has the highest
posterior probability p(m; | &) of being a member is the same as classifying to the
class with the highest likelihood p( | ;).

3.9.3 Minimum distance classifier

The minimum distance (MD) classifier uses the mean vector of each class, but
ignores information about how the classes are distributed in the feature space. It
characterises each class by its mean position. The mean pattern vector of class j
is

! > i =1,2,....,C (3.31)

m; = — T =12,...,C. .
wEﬂ'j

where N; is the number of training feature vectors from class 7;. Using the

Fuclidean distance to determine closeness reduces the problem to computing the

distance measures

Dj(x) =z —my| =12, ..,C. (3.32)

Alternatively, a given pattern & of unknown class may be classified to m, if its
Mahalanobis distance Dy (x, m,) = (£ — my)T X7 (@ — my) to m is smaller than

those to all other classes, i.e.

xem it Dy(x,m) =min{Dy(x,m) i=1,...,C}.

3.10 K-Nearest Neighbour Classifier

The K-nearest neighbour approach is a simple non-parametric technique which
does not require a prior: assumptions about the distributions of the training

samples. For a dataset containing points in C' classes, to assign a point x into one
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of the C classes, the K-nearest neighbour (K-NN) classifier draws a hyperplane
around x, which encircles the nearest K points to x and assigns x to the class for
which N;/K is largest, where the numerator is the number of points amongst the
K neighbours which are in the i’* class. For K = 1, K-NN becomes the nearest
neighbour and x is assigned to the same class as throughout the closest point to
x in the training set (Webb (2002)).

3.11 Artificial Neural Networks

An artificial neural network (ANN) is an information processing prototype based
on the operation of biological neural networks, such as the human brain, which
processes information. A neural network consists of units (neurons), arranged in
layers, which convert an input vector into some output, e.g. a prediction. Each
unit takes an input (data), applies a (often nonlinear) function (the activation
function) to it and then passes the output on to the next layer (Izenman (2008)).
Many activation functions, such as sigmoid, softmax and logistic functions can
be used in neural networks.

An artificial neuron is a device with many inputs and one output. The neuron
has two modes of operation: the training mode and the using mode. In the
training mode, the neuron can be trained to fire (or not) for particular input
patterns. In the using mode, when a trained input pattern is encountered at the
input, its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is used to
determine whether to fire or not.

A more sophisticated neuron is the McCulloch-Pitts neuron. A McCulloch-
Pitts model uses components which have some of the characteristics of real neu-
rons. A real neuron has a number of inputs which are ‘excitatory’ and some
which are ‘inhibitory’. What the neuron does depends on the sum of inputs. The
excitatory inputs tend to make the cell fire and the inhibitory inputs make it not
fire, i.e. not pass on the signal (Izenman (2008)).

Consider a cell that gives out a binary state, zero or one, on or off. The inputs
then carry a binary signal and the only thing that matters is the number of ‘on’
signals on the excitatory versus the inhibitory inputs. If an inhibitory input is on,
the cell cannot fire (i.e. is off ) no matter what the excitatory inputs are doing. So
the McCulloch-Pitts neuron can be defined precisely as a cell which can output a
0 or a 1, which has a number of excitatory inputs, a single inhibitory input and

uses a threshold value to produce its output. At time ¢ it looks at its excitatory
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Input Hidden Output

Figure 3.5: A feed-forward single hidden layer neural network.

inputs and counts the number of ones present. If the count is equal to or greater
than the threshold and the inhibitory input is zero, then at time ¢ + 1 the cell

outputs a one, otherwise it outputs a zero.

3.11.1 Types of neural network

There are various sorts of neural networks. Some of them are discussed briefly

below.

Feed-forward neural network: Feed-forward ANNs allow signals to travel
one way only; from input to output. The data processing can extend over multiple
(layers of) units, but no feedback connections are present, i.e. no connections
extending from outputs of units to inputs of units in the same layer or previous
layers. This type of organisation is also referred to as bottom-up or top-down
(Zheng et al. (2010)). A single hidden layer feed-forward neural network (FF-
NNET) consisting of 5 units or neurons in the hidden layer is shown in Figure 3.5.

A classical example of feed-forward neural networks is the Multilayer perceptron
(MLP).

Multilayer perceptrons: This is the most common neural network model.

This multivariate statistical technique non-linearly maps an input vector X =
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(X1,...,X,) of variables to an output vector Y = (Y7,...,Y) of variables. It
also has a layered structure like feed-forward neural networks. Between the inputs
and the output variables there are hidden variables arranged in one or more layers.
Each layer receives input units from a layer directly below and sends their output
to units in a layer directly above the unit (Izenman (2008)). The hidden and
output variables are called nodes, neurons or processing units.

The training of an MLP is usually done using a backpropagation (BP) algo-
rithm that involves two phases (Rumelhart et al. (1986)), the forward phase and
the backward phase. In the forward phase, the weights of the network are fixed
and the input object data a; are propagated through the network layer by layer.
The forward phase finishes with the computation of an error measure e¢; = d; —vy;,
where d; is the desired response and y; is the actual output produced by the
network in response to the input object x;. During the second phase, the partial
derivatives of the error measure e; with respect to the different parameter values
are propagated through the network in the backward direction, hence the name
of the algorithm. The network weights can then be adapted using any gradient-
based optimisation algorithm. The whole process is iterated until the weights
have converged (Haykin (1998)).

Recurrent neural networks: A network of neurons with feedback connec-
tions is called a recurrent neural network (RNN), e.g. the human brain is a RNN.
This type of neural network is also known as a feed-back network as it contains
feedback connections. Schmidhuber et al. (2007) define a RNN as a mathemat-
ical abstraction of a biological nervous system which may accomplish complex
mappings from input sequences to output sequences. According to Graves et
al. (2009), as a RNN contains self-connected hidden layers, previous information
remains in the network’s internal state, allowing it to make use of past informa-
tion, hence it is capable of producing better classification results. They found that
a RNN was superior for recognising unconstrained handwriting than a hidden-
Markov model. Gomez et al. (2008) developed an on-line controlling system using
a RNN which can be used efficiently for aircraft or robot control.

Examples of recurrent networks are Kohonen feature maps and Hopfield neural
networks. In a Kohonen feature map each node is fully connected with the input
layer. The Hopfield network consists of a set of n inter-connected neurons which
update their activation values asynchronously and independently of other neurons
(Egmont-Peterson et al. (2002)).
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Learning vector quantisation: The learning vector quantisation (LVQ) is
another algorithm for learning classifiers from labelled data samples. Instead of
modelling the class conditional densities directly, it models the discrimination
function defined by the set of labelled codebook vectors and the classification is
based on a nearest neighbour search between the codebook vectors and the input
data, i.e. a data point z; is assigned to a class k according to the class label of the
closest codebook vector, i.e. for which argminy||z; —mF|| is a minimum, where my,
is the centre of the k™ class (Hollmén et al. (2000)). Codebook vectors represent
the centres of different classes and are of the same dimension as the input data.

These are known as neurons in other forms of neural networks.

Applications of neural networks: Some recent applications of neural net-
works are mentioned here. Yang and Lunetta (2008) applied MLP neural net-
works, a maximum likelihood classifier and a decision tree for cropland mapping
of the Great Lakes Basin (GLB) in the USA using Normalised Difference Vegeta-
tion Index (NDVI) time series data. MLP neural networks produced better results
than the other classifiers for classifying cropland versus non-cropland areas across
the entire GLB. Borah et al. (2007) applied learning vector quantisation (LVQ)
and MLP networks to classify images of tea granules, using wavelet-based fea-
tures. They obtained 80% classification accuracy using LVQ networks whereas
MLP yielded 74.7% accuracy. Neural networks were also used successfully to
predict the stability of RNA/DNA hybrid duplexes in Ma et al. (2004). An un-
supervised neural network was developed in Kumar and Manolakos (1997) which

can perform segmentation and labelling of objects in an image.

3.12 Support Vector Machines

The support vector machine (SVM) is a supervised classifier derived from machine
learning theory by Cortes and Vapnik (1995), with a strong theoretical founda-
tion. Currently, it is widely used in object detection and recognition, content-
based image retrieval, text recognition, biometrics, speech recognition, etc. SVM
is a powerful classification technique, which is robust in producing high classifi-
cation accuracy even in high-dimensional data spaces with non-linearly separable
classes (Kim et al. (2002) and Izenman (2008)).
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3.12.1 Binary classification

We may encounter a complicated classification problem even in the case of binary
classification. In the simplest case the objects in the two classes are linearly
separable but for non-linearly separable classes classification is a challenging task.

We discuss both situations here.

N
j:la

For binary classification, consider n training objects {z;,y,} where the x;
are input features, ; € "™ and y; € {—1,+1} are class labels. For an unknown
object x, the SVM tries to find an optimum hyperplane using the principle of
structural risk minimisation so that the distance between the nearest objects
and the hyperplane is maximised. This distance is known as the margin and
the nearest objects are known as support vectors. The decision function can be

written in terms of the support vectors as:

SUs

f(x) = sign [Z i+ b, (3.33)

i=1

where the «; are coefficients of the above optimisation equation (Lagrange multi-
pliers), b is an off-set parameter, the subset {x;};5 is the set of support vectors,
x is the object we wish to classify and the sign of the function determines the
class membership of @, hence f(x) becomes +1. For each support vector x;, the
decision function, f(x;) > 0 for y = +1, f(x;) <0 fory = —1 and f(=x;) = 0 if =;

falls on the optimum hyperplane. The values «; and b are found by maximising

n n

1 T
E o — B E Qi Y Y, L,
1=1

i,j=1

subject to a; > 0 and ), ayy; = 0, where n is the number of training cases and
the upper limit of «;, is known as the cost which penalises classification errors in
the training set.

In practice, there may exist many separating hyperplanes which can separate
the two classes (Figure 3.6(a)), but the SVM chooses the one which ensures the
maximum margin (Figure 3.6(b)).

To deal with classification of a dataset where a linear classifier is not appropri-
ate, Shigeo (2005) adds an extra step in the optimisation procedure. Rather than
finding the optimal hyperplane in the original input space, the SVM maps x into
a higher dimensional space where the objects are projected by means of a function
®(x). So the original observations are transformed in a Hilbert space SR through

a non-linear mapping ® : R™ — §, where § is the new feature space. The feature
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(a) Several hyperplanes (b) Optimum hyperplane

Figure 3.6: SVM for linearly separable feature space.

space § is usually very high-dimensional and the inner product (®(x;), ®(x;))
becomes computationally expensive to evaluate.

To avoid this complexity, Cortes and Vapnik (1995) introduced the so-called
Kernel Trick. The kernel trick is to use a non-linear kernel function K(zx;,z;),
instead of projecting then computing the inner product (®(x;), ®(x;)). In the
projected space, in terms of the kernel trick the classification equation in (3.33)

can be rewritten as

SUs

f(x) = sign [Z oy K (i, x) + b, (3.34)

where «; are Lagrange multipliers, x; are the support vectors and K(x;, x;) is
the specified kernel.

Figure 3.7 shows classification of non-linearly separable data using SVMs.
Objects are non-separable in the original 2-D input space, so the first step is to
project the objects into 3-D space, through a mapping function ®, where the
objects are separable. SVMs find the optimum separating hyperplane in the
projected space using decision function (3.34).

The kernel function plays an important role in mapping the input vector
onto a high-dimensional feature space. Using different kernels one can construct
learning machines with different types of non-linear decision surface in the input
space. There are many different kernel functions available. Some commonly used
kernels in SVM are listed in Table 3.1, though the radial basis kernel is the most
widely used one (Tsiaparas et al. (2011) and Bouguila (2011)).

In some cases when no hyperplane exists which can separate the data into
two classes, due to the presence of some overlapping objects. To deal with the

overlapping situation, a more flexible situation is suggested, known as the soft
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Figure 3.7: SVM for non-linearly separable features.

Table 3.1: Commonly used kernels relating two vectors w and v.

Kernel type | Functional form | Parameters
Linear u v None
Polynomial (yu'v + n)? v, n, 0
Radial basis | exp(—v|ju — v||?) v
Laplacian exp{— @ } o
Sigmoid tanh(yu'v +7) v, M

margin solution (Izenman (2008)).

3.12.2 Multi-class support vector machines

Although SVMs were originally developed for binary classification problems, they
can be extended to the multi-class situation (Kim et al. (2002)). Izenman (2008)
mentions different approaches to tackle the multi-class classification problem, in
which the input features @ € R™ and Y € {1,2,..., K}, where K is the number

of classes. These are:

One-to-rest classification: The K-class classification is first reduced to bi-
nary classification sub-problems of the type ‘.k*" class’ vs. ‘not k" class’. A new
x is then assigned to the class with the largest value of fk(m), k=1,2,... K,
where f,,(z) is the optimal SVM solution for the binary problem of the k™ class

versus the rest.

One-to-one classification: Using K(K — 1)/2 pairs of classes, a classifier

fi,j is constructed by coding the i** class as positive and j** class as negative,
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i,7=1,2,...K,i # j. Then a new x is assigned to either the i’® or j* class
using majority voting or with pairwise coupling (which involves pairwise compar-
ison). Each of the K(K — 1)/2 cases produces a pairwise probability and these
probabilities are pairwise coupled into a set of posterior probabilities to make the
final class allocation decision.

Li (2009) found that one-to-one classification outperformed one-to-rest classi-
fication for classifying copper clad laminate defects using wavelet coefficients and
SVM classifiers.

The SVM was originally developed for two-class classification, and for the
multi-class case a combination of SVMs is used with possibly lower performance
than with binary classification (Weston and Watkins (1998)). Also, for a large
scale dataset using an SVM is time consuming. Due to these inherent problems,
Kim et al. (2003) constructed the SVM ensemble. They defined an ensemble
of classifiers as a collection of several classifiers whose individual decisions are
combined using bootstrap aggregating (bagging) to classify the test examples.
They successfully applied the SVM ensemble technique to classify the well-known
Fisher’s Iris dataset (an easy pattern recognition problem), UCI hand-written
digits, and for fraud detection. For fraud detection in a mobile telecommunication
payment system, a user profiling method was used to track suspicious changes in
user behaviour and general patterns of fraud were detected by an SVM based on
a large amount of user-action data analysis.

The least squares support vector machine (LS-SVM) was recently proposed
in Suykens and Vandewalle (1999) by adding a least squares term in the cost
function and it involves only the equality constraints in the optimisation phase.
The LS-SVM requires significantly less computational time as it has to solve a set
of linear equations, whereas training the original SVM means solving a quadratic

programming optimisation problem.

3.12.3 Applications of SVMs

Despite being a relatively new classification approach, the SVM has already been
recognised as a better classifier in many complex situations, especially for high-
dimensional feature spaces. Commonly SVMs are combined with use of wavelet
features for classification. Here we describe some recent applications and exten-
sions of SVMs.

Tsiaparas et al. (2011) compared the performance of SVM and probabilistic
neural networks using different features sets extracted from ultrasound images of

the carotid artery using different multi-resolution techniques, i.e. WDT, WPD,
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SWT and the Gabor transform. SVMs performed better on classifying atheroma-
tous plaque into either a symptomatic or asymptomatic class than probabilistic
neural networks.

SVMs were found to be useful in the problem of count data modelling using
finite mixture distributions in Bouguila (2011). A hybrid deterministic annealing
expectation-maximisation was used to estimate the parameters of the mixture
model where the number of clusters was selected using the minimum distance
length criterion. For the UCI dataset the lowest classification error rate of 45%
was obtained using a SVM.

Mazanec et al. (2008) did an experiment on the FERET database by apply-
ing LDA and SVM for face recognition and found that the highest rate of face
recognition was obtained for a combined classifier LDA+SVM. Chaplot et al.
(2006) proposed use of SVMs using wavelet features as input to classify magnetic
resonance brain images and obtained 98% classification accuracy. Another ap-
proach used kernel principal component analysis as a feature extraction method
and combined it with SVMs to classify face images (Li and Chen (2005)).

The performance of four different classifiers, i.e. the Bayes classifier, Maha-
lanobis distance classifier, LVQ and SVM were assessed in Li et al. (2003). Using
wavelet coefficients computed from 30 Brodatz texture images, they found that
the classification accuracy using SVM could be as high as 95%. They considered
1- to 5-level wavelet decomposition. SVMs produced more accurate classification
compared to the Bayes classifier and LVQ.

A surprising application of SVM is found in Kim et al. (2002). Instead of
extracting the texture features using any of the conventional techniques, an SVM
was directly applied to the grey values of the input image. On average, the
classification error rate was below 20%. The potential of SVM for recognising
3-D objects is examined in Pontil and Verri (1998). It is argued that SVM is very
useful for direct 3-D object recognition. SVM was found to be one of the best
classifiers to classify spam email in Drucker et al. (2002).

SVM provided satisfactory results for detecting defects on copper clad lami-
nate using 2-D wavelet features and the radial basis kernel function, in Li (2009).
The highest classification accuracy was from 60% to 90% for various sets of the
parameter value v and the cost, so choosing these appropriately is important for

good performance.
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3.13 Conclusion

Here we have briefly described the most widely used texture feature extraction
techniques, with some recent applications. The granulometric approach is the
main focus of the work which is presented in detail in Chapter 4 and the approach
is extensively used in Chapters 5-7. To compare with granulometric features, we
derived GLCM-based features and wavelet-based features from two sets of real
images in Chapter 8. The first six GLCM features listed in Section 3.5 are widely
used in the literature, so we use them to classify the synthetic images generated
as evolving textures,but we use more of them for the real images in Chapter 8.
SVMs, FF-NNETs and LDA are used throughout Chapters 5-8 to compare the
performance of the new regression-based classification approach which is devel-

oped in Chapter 5 with that of well established techniques.
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Chapter 4

Granulometric Approach to

Texture Analysis

This chapter gives a detailed description of binary and grey scale granulometry
as well as univariate and multivariate granulometry. We have applied granulom-
etry on binary and grey scale images to obtain their pattern spectrum and their
associated moments which will subsequently be used in Chapter 5 for texture

classification.

4.1 Morphological Granulometry

Mathematical morphology is a type of non-linear filtering for extracting infor-
mation from an image. It can be used in many aspects of image analysis, such
as enhancement, segmentation, restoration, edge detection, texture analysis and
shape analysis (Theera-Umpon and Dhompongsa (2007)). Morphological gran-
ulometry was introduced by Matheron (1975) in the binary case to characterise
the size and shape information of a random set and it was further developed and
extended by many others for grey scale images (Heijmans (1979), Serra (1983),
Dougherty and Astola (1994), Goutsias et al. (1995) and Dougherty and Lotufo
(2003)).

Granulometry is based on one of the basic morphological operations, usu-
ally opening. As well as being monotonically increasing, trans-location invariant,
anti-extensive, and idempotent (see Section 2.2), opening has another important
property which plays a key role in the construction of the granulometry. This
is, for a sequence of SEs Fi, ..., E, of increasing size, if Ey,q o By = Ejpy1, then
Ej41 is said to be Ej open, k = 1,...,n (Dougherty and Astola (1994)). The

following subsections provide a description of granulometry for both binary and
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grey scale images.

4.1.1 Binary granulometry

An opening granulometry is based on a sequence of morphological openings using
scaled structuring elements. Opening granulometry is carried out by opening a
binary image A by a series of scaled SEs {E, Es, . .., E,}, e.g. successively larger
disks, such that Ej,, is E; open. At each stage of opening, the finer details
are successively eliminated and the image area (sum of foreground pixels) of the
input image is successively reduced. The granulometry is defined as the set of
operations {A o Ex}, k = 1,...,n, where the SE E is known as the generator
of the granulometry, k is the scaling factor, Ej is a scaled version of E in the
continuous domain and in the discrete domain Ej, can be formed by k successive
dilations of E by itself (Dougherty and Astola (1994)).

Let P[A] be the original image area and P[A o E;] be the image area left after
k successive openings of A by E. As the scale k increases, more image details are
removed and eventually the image area drops to zero. Successive openings create
a decreasing sequence of images, i.e. Ao E; D Ao FE,... D Ao E,. A significant
drop in image area between two consecutive openings indicates that the image
contains many objects smaller than the SE applied at that stage. This decreasing
sequence represents the cumulative proportions of the image area dropped at each
opening, hence a cumulative distribution can be formed from this sequence. The
image area removed by k successive openings can be found by subtracting the
image area left after k£ openings from the original image area, which is known as
the size distribution, Q(k), i.e.

Q(k) = P[A] — P[Ao Ey]. (4.1)

As k increases, the number of object pixels in P[A o Fj| decreases, so Q(k) is
an increasing function of k. If we divide the image area removed after £k successive
openings of A by F by the original image area P[A], we obtain the Normalised

size distribution as:
®(k) = —=—5 =1— P[Ao E;]/P[A].
For sufficiently large k, P[A o E)| could be null, resulting in ®(k) being equal

to 1 and for a sufficiently small k, (k) becomes 0. What is ‘sufficient’ depends

on the size of the original image, its area, the shapes of the objects in it, as well
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as the shape and size of the applied SE. Since ®(k) is monotonically increasing
from 0 to 1, it can be considered as a cumulative distribution function (cdf). So,
its derivative ®'(k) = %ﬁf) is a probability density function (pdf), known as the
granulometric size distribution or pattern spectrum (PS) (Maragos (1987)) of the
image relative to the granulometry.

Since (k) is a pdf, it possesses statistical moments, known as granulometric
moments. In the discrete case, the scaling factor k is an integer, so the m'

granulometric moment may be calculated as
T
plm(A) = kT (k),
k=1

where 7" is the largest size of SE needed to remove all image area. These moments
can be used to characterise the pdf and therefore the size distribution of objects,
as features describing the texture of the original image.

We use these moments to compute the m'™ central moment about the mean,
ie. .
o(A) = 3k — )" ()
k=1

The mean, sd, skewness and kurtosis of the PS are computed using central
moments. The first moment is the mean about the origin (u(")), the sd (o) is
the square root of the second moment about the mean, the skewness is the ratio
of the third moment about the mean to the cube of the sd (), i.e. v® /o3 and
kurtosis is the ratio of the fourth moment about the mean to the square of the
variance, i.e. v /0%, We consider the excess kurtosis v /o* — 3, a commonly
used correction to make the kurtosis of the normal distribution equal to 0. We
use these in later chapters for classification to predict the evolving time state of
a texture image using an appropriate model.

Figure 4.1 (a) contains a binary image of size 256 x 256 consisting of 100
randomly dispersed square objects of different sizes. First the image is padded
with zeroes to avoid edge-effects of opening and then it is successively opened
by a flat square of size 3, 5, 7, 9, 11, 13 and 15 and the resulting images are
shown. As we can see, Figure 4.1 (b) is the same as Figure 4.1 (a) since the
smallest square is of size 3. In Figure 4.1(c) all squares smaller than size 5 have
disappeared. As the size of the SE increases all squares smaller than the applied
SE disappear from the image. When the SE is of size 13 only 9 squares remain
in the opened image, and they all drop out by applying a larger SE of size 15.

Figure 4.2 shows the successive drop of pixels, the normalised size distribution
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Figure 4.1: Effect of successive openings of a 2562 binary image of squares using
a square SE of increasing size.

and the pattern spectrum of Figure 4.1 (a). The SE was a square of size 2% j — 1,
j=1,2,...,N. In Figure 4.2(a), the steepest drop is observed for SE of width
6, as most of the squares are of width 6. The pattern spectrum also reflects this
as the highest bar is at width 6, and there were almost equal numbers of squares

of width 5 and 7 (the next most frequent sizes).
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Area removed by opening
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(a) Successive volume (b) Size distribution (c) Pattern spectrum
dropped

Figure 4.2: Successive area dropped, size distribution and pattern spectrum of a
2562 binary image of squares (Figure 4.1 (a)), from granulometry using a square
SE.

4.1.2 Grey scale granulometry

Like binary granulometry, grey scale granulometry is also based on opening. We
now think of the grey scale image as having a volume, given by the sum of the

pixel intensities or heights in the grey scale surface. A detailed account of grey
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scale opening is given in Section 2.5. Grey scale opening of a function f by a
structuring element ¢ is given by the supremum of all grey scale translations of

g that lie beneath the surface f, i.e.,

fog=sup{ge +y:9. +y <[} (4.2)

where ¢,(z) = g(z — x) and y is the off-setting parameter.

A grey scale granulometry results from successive openings by expanding the
structuring elements to iteratively reduce the grey scale height of an image. Con-
sidering a set of structuring elements {g1, 9o, ..., gn} such that gy © gx = g1,
then { fogy} is a decreasing sequence. If gq is assumed to be a point function, n de-
notes some arbitrary stopping point for the granulometry, and (k) is now the dif-
ference in volume between {fog;} and {fogii1}, the normalised size distribution
is defined in the same way as its binary counterpart, i.e. ®(k) = 1 — Q(k)/Q(0),
where (0) is the initial volume of f (Chen and Dougherty (1994)). Having such
a normalised size distribution, which is a cdf, its derivative ®'(k) = L ®(k) can
be obtained. It is known as the grey scale pattern spectrum. Since it is a pdf, it
possesses statistical moments. The p* granulometric moment may be calculated

as

or in practice as the discrete sum

pP(f) => k' (k),
k=1

where K is the size of the largest SE used to reduce the image volume to zero,
as in the binary case.

Again we computed the mean, sd, skewness and kurtosis as for the binary
PS moments and employed them for texture characterisation in the later sections

and chapters.

4.1.3 Other types of granulometries

Apart from the granulometry generated by successive openings, some others are

also available. We will briefly discuss a few of them.
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Algebraic granulometry: According to Dougherty and Lotufo (2003), a col-
lection of image operations {W;}, t > 0, is called an algebraic granulometry if it

satisfies the following properties:
1. {¥,} is an anti-extensive operation for all ¢,
2. {¥,;} is increasing for all ¢, and
3. The order of sieving does not matter, i.e. U, W, = W, 0y = W, .00 3.

The basic granulometry {A o tB} described in Sub-section 4.1.1 is an algebraic

granulometry.

Euclidean granulometry: If a granulometry {W;} is translation invariant as

well as following the Euclidean property, namely
U (A) =t x ¥y (tA),

for any ¢ > 0 and any binary Euclidean image A, and if ¥, represents a unit
sieve, then W is called a Fuclidean granulometry. The most important Euclidean
granulometry is a union of openings of scale ¢ by a generator (set of SEs) g =
{By,Bs, ..., B},

Ty (A) = O AotBy. (4.3)
k=1

Multivariate granulometry: The concept of a multivariate granulometry is
introduced by Batman and Dougherty (1997). It can be derived from a Eu-
clidean granulometry by letting the elements of the granulometric generator
g = {By, Bs,...,B,} have their own parameters {t,ts,--- ,t,}, and assuming
that none of these is open with respect to another, i.e. B; o B; # B; for @ # j.

The multivariate granulometry is defined as

Ty (A) = O Aot By, (4.4)

k=1

where ¥, is an n dimensional granulometry with generator B. The corresponding
normalised size distribution is ® and the multivariate pattern spectrum for A can
be defined by the partial derivatives of & with respect to ti,ts,...,t,. Using
more parameters in this way represents a more complete environment to extract

texture features, which may give better image information.
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Logical granulometry: Logical granulometries are the combination of the
disjunctive granulometry and conjunctive granulometry (Dougherty and Lotufo
(2003)). The disjunctive granulometry is based on reconstructive opening. Recon-
structive opening is the process of reconstruction of an image by opening which
requires two SEs. The first SE B determines the shape of the fitting criterion
in opening and the second SE E specifies the connectivity for the reconstruction
and is usually a 3 x 3 square SE. The reconstructive opening of A is | J A op By.

Using the concept of reconstructive opening, the disjunctive granulometry is
defined as .
Uy(A) = JAoptBy,
k=1
where B is the SE specifying the fitting criterion and E is the connectivity for
the reconstructive opening.

Conjunctive opening is an inverse operation of reconstructive opening which
considers the intersection instead of the union of A o By. A conjunctive granu-
lometry is defined as .

Uy(A) = () AoptBy,
k=1
where B and E are the same as in reconstructive opening.
Finally the logical granulometry can be formed by combining conjunctive and

disjunctive granulometry as

n Mmg

Ty(A) = () AotBs,. (4.5)

k=1j=1

for fixed t and By, ; specifies the shape used in the reconstructive and conjunctive
granulometry. The k" opening is taken from the intersection of the reconstructive

openings by By 1, Br2, ..., Bim,-

4.2 Texture Evolution

To use granulometry and develop our methodology, we have built a database
of evolving binary and grey scale texture images of objects, where the number
of objects grows with time. We experimented with different parameter settings
and different object shapes (disks, squares, ellipses, and pyramids). We have
produced sequences of synthetic texture images of pyramids and ellipses, from
which texture images of cones can be derived by setting the ratio of the semi-

major and semi-minor axes to 1. To generate some synthetic texture images in
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different orientations, we rotate the objects at specified angles. The rotation
angles of the objects are allowed to vary within given limits.

The underlying concept is as follows. We start with a 2-D blank image of
given size and a 3-D blank image of the same size, in which the 3" dimension
is used to store the result obtained at each time step. An initial probability
« is set, which determines with what probability a new object appears at a
given time step. For a new object we decide its initial grey level from a uniform
distribution on a specified range. Once the first object appears, the growth time ¢
starts and is stored, and the location of the object ‘centre’ is generated randomly
and stored. Once a second or subsequent object appears, another probabilistic
decision is made to decide if the existing objects are updated. Each existing
object is independently updated (or not) with pre-specified probability ¢ (or 1-6)
respectively. Once a object is to be updated we choose its grey level again from
a uniform distribution on a certain range. If an object is updated, we decide its
growth rate (), i.e. how fast it should grow.

The program records at which point of time an object appears, its location,
and the size of each object. The process repeats until growth time becomes 100
and the 3-D image stack is of size 100.

In the simulated images, new objects appear and objects are updated ran-
domly according to probabilistic decisions. As a result, in some cases an object
starts to grow at an earlier stage and in other cases only later. Consequently,
granulometric moments at a specific time differ considerably from one simulation
to another. Such a wide range of moments may produce a wide distribution of
predicted texture evolution times, hence high average prediction error rates.

To remove the enormous dissimilarity among images at a specific time, espe-
cially at the earlier stages of evolution, we let the evolution time start when the
first object appears and run until 100 growth steps are completed. At every sub-
sequent step, we determine whether to add a new object and revisit the existing
objects for possible updates.

For the pyramid images, the initial grey level for each pyramid was chosen
from a uniform distribution on the range 40 to 60. For updating a pyramid, we
draw a random number from a discrete uniform distribution on the range [1, 2]
for the growth rate v and allow the pyramids to expand by 1 or 2 pixels on each
side. The rotation angle was set to 45° (as using other angles between 0 to 90 had
no effect on the shape of the pyramids). The process was repeated until growth
time 100 was reached.

A similar method was applied to generate ellipse images. Here the initial

105



grey level for each ellipse was drawn from a discrete uniform distribution on the
range 10 to 20. The growth rate for an updating ellipse is chosen from a discrete
uniform distribution on the range [1, 3], which allows the ellipse to enlarge by 1
to 3 pixels around the edges. The shape of an updating ellipse is characterised
using the ratio of the semi-major to semi-minor axis of an ellipse, which is chosen
from a Gaussian distribution. Different means and sds were experimented with,
and it was found that mean 0.666 and sd 0.3 generate a ratio of the semi-major to
semi-minor axes which prevents the ellipse from being a straight line or a cone.
However, extreme values of the ratios are clipped at 0.1 and 0.9. Ellipses are
allow to rotate randomly between 125° to 145° and the process is repeated until
growth time 100.

To evaluate our methodology we need several sets of images of different sizes.
We have generated image stacks of 3 different sizes, e.g. 1002, 2562 and 5122. Dif-
ferent settings of the underlying parameters (probability of adding a new object
«, probability of updating an existing object § and the growth rate of object )
are used for different sizes with a view to obtain images with a sufficient number
of objects at the final stage of evolution.

For 100? images, a takes value 0.5 for pyramids and 0.8 for ellipses, § takes
0.1 for pyramids and 0.3 for ellipses, and v takes values according to the discrete
uniform distribution on [1, 2] for both pyramids and ellipses. For 256 images,
we increase 0 for both pyramids and ellipses to 0.3 and 0.5 respectively and keep
a and « at their previous settings. For 5122 images, we keep o and § same as
they are for 256 images and increase the range for v to discrete uniform [1, 3.
The MATLAB code used to generate these images are given in Appendix I.

Figures 4.3 and 4.4 show sequences of images containing pyramids at different
time points for the first two parameter settings, whereas the sequences of images
containing ellipses evolving over time for the first two parameter settings are
shown in Figures 4.5 and 4.6.

Opening granulometry using a disk SE was applied to the foreground of one
stack of 256 ellipse images consisting of 100 layers (each layer represents one
time point) for parameters « = 0.8, 6 = 0.5, and v of 1 or 2. A sequence of
these images is shown in Figure 4.6. Figure 4.7 contains some of the images, the
corresponding image volume dropped and the pattern spectrum.

Although granulometry is a useful tool for analysing the size and shape of
image content, it does not consider the spatial arrangement of the image content
(Zingman et al. (2007)). Applying granulometry on the background of an image

does provide such spatial information. We can obtain the image background by
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(d) t =170 (f) t = 100

Figure 4.3: Evolution of 100? grey scale pyramid images at different time points
for parameters o = 0.5, § = 0.1, and 7 as discrete uniform [1, 2].

(d) t = 70

Figure 4.4: Evolution of 256? grey scale pyramid images at different time points
for parameters a = 0.5, § = 0.3, and v as discrete uniform [1, 2.
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(d) t =170 (e) t =85 (f) t = 100

Figure 4.5: Evolution of 100? grey scale ellipse images at different time points for
parameters a = 0.8, 6 = 0.3, and ~ as discrete uniform [1, 2].

(f) t =100

Figure 4.6: Evolution of 256% grey scale ellipse images at different time points for
parameters o = 0.8, 6 = 0.5, and ~ as discrete uniform [1, 2J.
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109



taking 255 minus image intensity for binary (0/255) images or 8-bit grey scale
images.

We illustrate this in Figure 4.8, where (a) and (b) are two binary images of
squares of size 111% containing 10 squares of different widths ranging from 1 to 8.
The base size of a square is 2xwidth-+1. The number of objects, total number of
foreground pixels and the object sizes and shapes are identical in both images, but
they have different spatial arrangements. Their pattern spectra arising from an
opening granulometry on the foreground, using a square SE, are identical (Figure
4.8(e)). The bars in the pattern spectrum correspond to the distinct object sizes
dropping out of the image. For example, there is one very small square of base
size 3 (width 1) which is removed by opening with a square of size 4, and there
are 4 squares of base size 9 (width 4) so the highest bar is observed at 9 as
they were removed by opening using a square of size 9. In general, applying
granulometry using any SE on the foreground of (a) and (b) will produce equal
pattern spectra. However, applying the same granulometry on the background
of each image (Figure 4.8(c)-(d)) using the same SE, generates different pattern
spectra, as shown in Figure 4.8(f). Since the pattern spectra are different their
moments are different, hence providing different sets of information.

Similarly, Figure 4.9 shows foreground and background pattern spectra from
images of disks, using a disk SE. Clearly foreground and background granulome-
tries provide different but complementary sets of information and the granulomet-
ric moments of both may be useful for texture classification (Chen and Dougherty
(1994)).

In the following section we apply granulometry on the foreground as well as

the background of the pyramid images and ellipse images.

4.3 PS Moments and Evolution Time

Granulometry was applied on the foreground and the background images sep-
arately, using six different SEs, namely a square, disk, horizontal line, vertical
line, and lines at 45° and 135°. Corresponding pattern spectra were generated
from each SE and the first four granulometric PS moments (mean, sd, skewness,
and kurtosis) were computed from each pattern spectrum. Average PS moments
were then obtained at each time point by averaging over 100 simulations, each

one consisting of a single image at each time point ¢t = 1,...,100.
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4.3.1 Foreground PS moments and evolution time

First of all, granulometry was applied on the foreground of 100 stacks of pyramid
images of size 100%, which were generated using parameters a = 0.5, § = 0.1,
and v was chosen from a discrete uniform distribution on the range [1, 2|. The
PS moments obtained by averaging over 100 simulations of the image stack were
stored in four matrices of size 100 x 6, where rows represent time steps and
columns represent SEs, one matrix for each moment. The average PS moments
were plotted against time, to identify any relationship with time.

Figure 4.10 represents the average foreground PS moments for the pyramid
images of size 100%, which shows that the first two moments (mean and sd) using
each SE increase with evolution time. The average PS means from all line SEs
coincide and have higher magnitude than for the square and disk SE, and the PS
mean from the disk has the lowest value throughout the whole evolution period.
The same pattern is noticed for PS sd for all SEs. However, the average PS sds
for horizontal and vertical line SEs are the same, and the average PS sds for lines
at 45° and 135° are the same.

There is no useful relationship between PS skewness and evolution time. If
there is a symmetric distribution of differently sized objects in the image, the PS
of that image will be symmetric, leading to near zero skewness. Having no object
at the beginning, the process starts adding new objects and updating existing
ones as time goes on. So in the earlier stages, a few objects appear, each of
different size, which forces the PS to be either positively skewed or negatively
skewed. If more image volume is dropped in the earlier stages of opening than
the later stages, the PS becomes positively skewed. The PS becomes negatively
skewed when the opposite occurs. The process is designed so that we are not
controlling either the number of objects or the size of the objects with time, but
these change randomly. After evolution time 10, the PS became symmetric, hence
all SEs produced near 0 skewness, and so PS skewness is not informative about
time after that point.

Average PS kurtosis increases over time for a square and disk SE, although
the rate of increase is different for each SE, but for any line SE it decreases after
time 50. Again there is no clear trend observed between PS kurtosis and evolution
time.

Similarly, average PS moments were computed for the pyramid images of
size 2562 and 5122, each yielding four 100 x 6 matrices of moments as before,
and average moments were plotted against time to identify any relationship with

time.
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Figure 4.10: Plots of average foreground PS moments (averaged over 100 simula-
tions) against evolution time, using six different SEs, for the 100? pyramid images
at each time point.

Figure 4.11 shows the average foreground PS moments for the pyramid images
of size 256%. The relationships between any moments and evolution time are very
similar to those observed for the 100? pyramid images. Here again mean and sd
using all SEs increase over time. Any of the line SEs produces a higher mean
and sd, while the PS mean and sd from a disk SE are smaller, and the mean and
the sd from square SE are between the moments for the line SEs and disk SE.
Again skewness becomes near-zero for a square and disk SE through the whole
evolution period, and for any line SEs it becomes near-zero just after ¢t = 15.
Kurtosis now shows a more regular relationship with time than before, but the
curves are jagged, especially for any line SE.

Finally, the relationships of the foreground moments of the 5122 pyramid
images with time are shown in Figure 4.12. Similar patterns are observed as in
Figures 4.10 and 4.11, with the only exception being that average PS kurtosis
generally increases over time and the lines are smoother than before, although

the rate of increase is different for each SE. In general, only PS mean and sd
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Figure 4.11: Plots of average foreground PS moments (averaged over 100 simula-
tions) against evolution time using six different SEs, for the 256 pyramid images
at each time point.

provide useful relationships with evolution time, but the skewness and kurtosis
do not look useful. Therefore, we used only the PS means and sds from each SE
to model evolution time in Chapter 5.

Granulometry was also applied to the foreground of the ellipse image stacks
of size 100? and 256* using the same SEs. We have not used 5122 ellipse images,
as the granulometric computation on larger images is more time consuming and
we cannot expect improved relationships of the moments with time, since the PS
moments from the 5122 pyramid images showed very similar patterns with time
as those of the 2562 images (Figures 4.11 and 4.12).

Figure 4.13 shows the relationship of the PS moments with time, which shows
that both average foreground PS mean and sd for all SEs clearly increase over
time. Average PS skewness for all SEs is near-zero after evolution time 10 except
for a disk SE for which the PS is symmetric after time 40. Average PS kurtosis
slightly increases throughout the whole evolution period for a disk SE, but does

not show any trend for the other SEs. Figure 4.14 represents the correspond-

114



—+—Square ——Square
70| - & - Disk 70| - = - Disk
ol © Horizontal line el © Horizontal line
Vertical line Vertical line
50 45 deg. line 50 45 deg. line
o ——135 deg. line w© —~—135 deg. line

301

Average PS sd

20+

Average PS mean

) il N 4 10

20 40 60 80 100 20 40 60 80 100

Time Time
(a) Average PS mean (b) Average PS sd.
4 —+—Square ’ ——Square
% Nl - = - Disk 0 |- = -Disk
g | g o Horizontal line 8 2o Horizontal line
g D: Vertical Iine %‘ . Vertical I?ne
5o ‘ 45 deg. line = 45 deg. line
g —=—135 deg. line A i
E o ; g g o 135 deg. line
o S
& ©
o S
o 2 g
é Ll e 2

0 2‘0 4‘0 i (;0 B‘O 100 0 2‘0 4‘0 i (;0 B‘O 100
Time Time
(¢) Average PS skewness (d) Average PS kurtosis

Figure 4.12: Plots of average foreground PS moments (averaged over 100 simula-
tions) against evolution time using six different SEs, for the 512% pyramid images
at each time point.

ing foreground granulometric moments for 2562 ellipse images. Both average
foreground PS mean and sd for all SEs clearly increase over time. Average PS
skewness for all SEs is near-zero after evolution time 20, but average PS kurtosis

does not show such a clear relation with time.

4.3.2 Background PS moments and evolution time

As the size of the images has little effect on the foreground PS moments relation-
ship with time, we only consider the 100 and 2562 images when computing the
background PS moments for both pyramid and ellipse images.

The background granulometries of the same sets of pyramid images, each of
size 1002, were also calculated using the above SEs and the first four average PS
moments are plotted against time in Figure 4.15. The background PS means for
all SEs clearly decrease as a function of time. Average PS mean for a square SE

decreases faster with time than for the other SEs. The average PS means for the
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Figure 4.13: Plots of the average foreground PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 100? ellipse
images at each time point.

horizontal and vertical line SEs are the same, and the average PS means for lines
at 45° and 135° are the same. Average PS means for a disk SE are lower than
for any other SEs through the whole evolution period for both sets of images.
Average PS sd for any line SE increases with time, although the rate of increase
is higher for a horizontal or a vertical line SE. A curved relationship with time
is observed for the PS sd for a square and a disk SE, especially for the square
SE. The PS sds for horizontal and vertical line SEs are linearly related to time.
For the 45° and 135° line SEs, the PS sd is almost constant at a level around 34
up to t = 26 and moves upwards slowly after that. Larger negative skewness is
observed for the horizontal and vertical line SEs at the beginning of the evolution
but for the other SEs skewness is almost zero for the entire evolution period.
All SEs produced near-zero kurtosis, except for the horizontal and vertical lines
which produced very high kurtosis at the beginning of the evolution time.
Figure 4.16 represents the corresponding results for the background of the

2562 pyramid images. It shows almost identical relationships as in Figure 4.15.
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Figure 4.14: Plots of the average foreground PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 256 ellipse
images at each time point.

Both average PS skewness and kurtosis do not show a clear relationship with
time, hence do not provide useful texture information for classification.
Similarly granulometry was used on the background of the ellipse images of
size 100% and 256%. Average PS moments are plotted against evolution time in
Figures 4.17 and 4.18. A clearly decreasing time trend is observed for the average
PS background mean for all SEs, whereas a clear curvilinear relation is found for
average PS sd with time. Again, both PS skewness and kurtosis are near-zero

after evolution time 20, so we do not use these in the prediction process.

4.3.3 Nature of PS moments

To examine the variation in the PS moments, the average foreground PS moments,
their maximum, minimum and 95% confidence limits for the 2562 pyramid images
are plotted in Figure 4.19, for the six different SEs. The confidence intervals are

very narrow and close to the average moments over the whole evolution time,
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Figure 4.15: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 100* pyramid
images at each time point.

while the range of the PS moments is wider. A similar situation is observed in
the corresponding figures for the ellipse images, shown in Figure 4.21.
Corresponding results for the background PS moments from the 256% pyramid
and ellipse images are shown in Figures 4.20 and 4.22. The confidence limits are
again very close to the average moments but the moments at a specific time point
vary considerably. Wider variability of the PS moments may adversely affect the
classification results and may explain why the classification results are not as

good as we would expect (see Chapter 5).

4.3.4 Principal component analysis of the PS moments

As we have seen above that only the PS means and sds provide useful information
regarding evolution time, not skewness and kurtosis, we now use only the first
two granulometric moments to relate to evolution time. So our interest lies in

combining the information from the first two granulometric moments obtained
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Figure 4.16: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 256 pyramid
images at each time point.

using the six SEs. Therefore the average PS moment data become a 100 x 12
matrix, where rows correspond to time, the first six columns represent the PS
means and the last six represent the PS sds for each SE. Having such a large
feature set, we consider principal component analysis (PCA), which can identify
a small number of independent linear combinations (principal components) of the
set of feature variables that retain a high proportion of the information in the
original variables, and also show which, if any, are the more important variables
in the data.

PCA was applied to the moments of the 2562 pyramid images and ellipse
images. For the pyramid images, the first principal component (PC) explains
99.75% of the variation in the foreground moments, together with the second
PC it explains 99.98% and the first three PCs explain 99.99%. The magnitude
of the moments is larger for a line SE at any of the four angles, leading to
larger coefficients for those SEs. So the moments were also normalised before
applying PCA. In this case, the first PC explains 99.45% of the variation, the
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Figure 4.17: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 100? ellipse
images at each time point.

first two explain 99.98% and the first three explain 99.99%. The coefficients of the
first 3 PCs for both foreground and background PS moments (with and without
normalisation) are shown in Table 4.1.

For the foreground moments with normalisation, the coefficients are almost
identical in the first PC. In PC2, the PS sd from a line at 135° has the highest
coefficient (0.532) and the second strongest corresponds to the PS sds from the
disk (-0.454) and line at 45° (0.455). In PC3, the PS sd from a line at 0° has the
strongest coefficient (-0.531). However using PCA without normalisation, in the
first PC the PS means from any of the line SEs have the higher coefficients. The
PS sd from a line at 135° has the highest coefficient (0.588) in PC2. The PS sd
from a line at 45° has the highest coefficient (0.538) in PC3.

For the background moments, the first 3 PCs explain 95.58% of the variation
when PCA was applied with normalisation, but without normalisation the first 3
PCs express 97.04% of the variation in the moments. The PS mean from a line
at 135° has the strongest coefficient (-0.311) in PC1, whereas the PS mean from
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Figure 4.18: Plots of the average background PS moments (averaged over 100
simulations) against evolution time using six different SEs, for the 256 ellipse
images at each time point.

a disk SE and the PS sds from a 90° and 135° line have the strongest coefficients
in PC2 and PC3 respectively, using PCA on the normalised moments. Without
normalisation, the PS mean from a square SE has the highest coefficient both in
PC1 (0.580) and PC3 (0.792), while the PS mean from a disk SE has the strongest
coefficient (-0.830) in PC2.

For the ellipse images, the first 3 PCs explain 98.08% of the variation in the
foreground PS moments. The principal components scores of the first 3 PCs with
and without normalisation are shown in Table 4.1. The PS mean from a square
SE and sd from a horizontal line SE have the strongest coefficient (0.293), when
PCA was applied with normalisation, although all the coefficients are similar. In
PC2, the PS sd from a disk SE has the strongest coefficient (-0.504), while in
PC3 the PS mean from a line at 135° has the strongest coefficient (-0.574). The
first 3 PCs without normalisation explain 98.94% variation of the moments. In
PC1, a 45° line has the highest coefficient of 0.458 for the PS sd. In PC2 and
PC3, the PS mean and sd from a 135° line SE have the strongest coefficients of
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and 95% confidence intervals versus time, for the 256? pyramid images.

0.627 and -0.642 respectively.

Using PCA on the background PS moments from the 256 ellipse images, the
first 3 PCs explain 97.40% and 99.13% of the variation with and without nor-
malisation respectively. The coefficients for both cases are shown in Table 4.1.
With normalisation, the PS sd from a 0° and 45° line SE produced the highest
coefficient of 0.328. The PS sd and mean from a disk SE produced the strongest
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Figure 4.21: Plots of average foreground PS means, maximum and minimum and
95% confidence intervals versus time, for the 2562 ellipse images.
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Figure 4.22: Plots of average background PS means, maximum and minimum
and 95% confidence intervals versus time, for the 2562 ellipse images.

coefficients (-0.517 and -0.694) in PC2 and PC3 respectively. Without normalisa-
tion the PS mean from a square SE has the highest coefficients (0.550 and 0.540)
in PC1 and PC2. In the third PC, the PS mean from a disk SE has the highest
coefficient (0.847).

From this analysis, the line SEs are more informative than the square and disk

SEs for the foreground moments of the pyramid images, while for the background
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images the square, disk and line SEs are the most informative in different PCs.
For the ellipse images, in some PCs the square SE is the most informative while
in other cases the disk or line SEs appeared to be best. In general no single SE
is better overall than the others for all sets of moments. Therefore, we conclude
that choosing a suitable SE largely depends on the images and objects in the

images of interest.

4.4 Conclusion

In this chapter we have generated synthetic images of differently sized objects
and computed granulometric PS moments from them using multiple SEs. We
investigated possible relationships between the average PS moments and time,
and found that both the foreground and background PS mean and sd always
show a relationship with time for both the pyramid and ellipse images. We also
computed the PCs of the PS moments. In the next chapter we will model the PS
means and sds in terms of evolution time, and we also examine the usefulness of

the PCs to relate them to evolution time.
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Table 4.1: Principal component scores for average foreground and background
PS mean and sd using 6 SEs for the size 256 images.

PS moments from the pyramid images
Foreground Moments | Coefficients (normalisation) | Coefficients (without normalisation)
SE PC1 PC2 PC3 PC1 PC2 PC3
square 0.289 -0.158 0.371 0.224 -0.210 0.366
disk 0.288 -0.393 0.205 0.163 -0.351 0.146
PS means %ine at 0° 0.290 0.008 -0.145 0.411 -0.033 -0.198
line at 90° 0.290 -0.057 -0.028 0.401 -0.167 0.002
line at 45° 0.289 -0.074 0.083 0.422 -0.215 0.202
line at 135° 0.290 -0.026 -0.083 0.418 -0.106 -0.091
square 0.289 -0.195 0.117 0.112 -0.126 0.066
disk 0.288 -0.454 -0.145 0.072 -0.178 -0.042
PS sds line at 0° 0.289 0.255 -0.531 0.258 0.310 -0.519
line at 90° 0.289 0.112 -0.449 0.241 0.111 -0.405
line at 45° 0.288 0.455 0.505 0.221 0.494 0.538
line at 135° 0.287 0.532 0.104 0.222 0.588 0.164
Background Moments | Coefficients (normalisation) | Coefficients (without normalisation)
square 0.305 -0.040 0.111 0.580 -0.114 0.792
disk -0.220 -0.666 -0.155 -0.203  -0.830 0.064
PS means %ine at 0° 0.297 -0.044 0.167 0.349 -0.021 -0.094
line at 90° -0.237 -0.560 0.088 -0.090  -0.221 -0.002
line at 45° 0.304 -0.209 0.098 0.272 -0.222 -0.273
line at 135° -0.311  -0.099 -0.087 -0.343  -0.152 0.239
square 0.305 -0.190 0.083 0.270 -0.201 -0.261
disk -0.310 -0.105 -0.083 -0.343 -0.161 0.245
PS sds line at 0° 0.296 -0.251 0.250 0.227 -0.234 -0.222
line at 90° -0.284 0.082 0.621 -0.055 0.014 0.021
line at 45° 0.296 -0.251 0.250 0.227 -0.234 -0.222
line at 135° -0.284 0.082 0.621 -0.055 0.014 0.021
PS moments from the ellipse images
Foreground Moments | Coefficients (normalisation) | Coefficients (without normalisation)
SE PC1 PC2 PC3 PC1 PC2 PC3
square 0.293 0.065 0.151 0.219 -0.017 0.083
disk 0.290 0.311 0.255 0.115 0.031 0.084
PS means %ine at 0° 0.292 0.137 0.185 0.141 0.002 0.046
line at 90° 0.286 0.407 0.284 0.074 0.031 0.049
line at 45° 0.292 0.145 -0.247 0.391 0.411 0.105
line at 135° 0.281 0.388 -0.574 0.254 0.627 0.160
square 0.292 -0.309 0.174 0.401 -0.440 0.127
disk 0.284 -0.504 0.288 0.258 -0.490 0.144
PS sds line at 0° 0.293 -0.036 0.081 0.353 -0.043 0.313
line at 90° 0.286 -0.014 0.082 0.236 -0.010 0.384
line at 45° 0.291 -0.209 -0.219 0.458 -0.011 -0.500
line at 135° 0.282 -0.385 -0.481 0.280 0.012 -0.642
Background Moments | Coefficients (normalisation) | Coefficients (without normalisation)
SE PC1 PC2 PC3 PC1 PC2 PC3
square 0.297 0.314 0.029 0.550 0.540 0.074
disk 0.216 -0.327 -0.694 0.091 -0.378 0.847
PS means !ine at 0° 0.308 0.252 -0.046 0.262 0.150 0.151
line at 90° 0.267 -0.286 -0.400 0.046 -0.142 0.127
line at 45° 0.316 -0.101 0.092 0.091 -0.129 -0.084
line at 135° -0.321 -0.150 0.006 -0.109 0.002 -0.005
square 0.326 0.043 -0.003 0.421 -0.251 -0.018
disk -0.229 -0.517 -0.022 -0.160 -0.423 -0.064
PS sds !ine at 0° 0.328 0.049 0.039 0.439 -0.238 -0.133
line at 90° 0.248 -0.414 0.415 0.067 -0.274 -0.310
line at 45° 0.328 0.049 0.039 0.439 -0.238 -0.133
line at 135° 0.248 -0.414 0.415 0.067 -0.274 -0.310
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Chapter 5

Classification using

Granulometries

In this chapter the granulometric moments calculated in Section 4.3 are used
to model texture evolution time of the synthetic images, using a new regression

approach which is developed in Section 5.3.

5.1 Modelling PS Moments

Since the parameters used to generate the synthetic texture images, i.e. the prob-
ability of adding a new object («), the probability of updating an existing object
(0) and the rate at which the objects grow (7) are all fixed over the period of time
for which the process was observed for any one simulation, the PS moments are
simply modelled as a function of evolution time rather than of the parameters.

At each time step, t = 1,2,...,100, of the evolution process there are 100
images, as 100 simulations are used to calculate the sample average moments
(averaged over the 100 simulations). We observed the relationships of the average
PS moments, namely, mean, sd, skewness, and kurtosis for both the foreground
and background of the pyramid and ellipse images, in Chapter 4. As skewness
and kurtosis do not exhibit any clear relationship with time (see Section 4.3)
we will not use them in model building, but use the foreground and background
mean and sd for each of the different SEs. We model the foreground moments
separately from the background ones.

Individual moments obtained from different SEs are expressed as a function of
evolution time using regression modelling. The objective of regression analysis is
to find a deterministic model which allows prediction of the values of a dependent

variable (measured subject to error) from values of one or more independent
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variables (assumed to be known and not subject to error). The general process

of fitting data to a linear combination of variables is termed linear regression.
Let Y;(t),7=1,2,...,6 denote the average PS moment obtained by using the

SE given by a square, disk, horizontal line, vertical line, or line at 45° and 135°

respectively at time ¢. The simple linear regression model of Y;(¢) on time ¢ is

Yi(t) = Bio+ B xt + &, (5.1)

where t = 1,2,...,T represents evolution time, and &;, 7 = 1,...,6, is an error
term.

The quadratic regression is of the form:
Yi(t) = Bio + Bin xt+ Bio x 2 + & (5.2)

The cubic regression can be written as:
Yi(t) = Bio+ B xt + Big % 12 + Bz # ° + & (5.3)

Simple linear regression produces a straight line fit of the data and quadratic
regression produces a fitted parabola, whereas cubic regression produces a fitted
S shaped curve. Least squares is used to fit every model.

Assumptions about the error term: Some fundamental assumption are
imposed on the disturbance term &;, known as the Gauss-Markov assumptions,
that are sufficient to guarantee that ordinary regression estimates will have good

properties (Rawlings (1932)), namely.

e The errors &; are independently and identically distributed random variables
having an expected value of zero, i.e. F(&;) = 0. This means that on average
the errors balance out. This also implies that the disturbances associated

with different observations are uncorrelated, i.e. E(§;,&;) = 0if i # j.

e The disturbances &; are homoscedastic: E(£?) = o2, i.e. the variance of the

disturbance is the same for each observation.

Serial correlation: When the observations are collected in successive periods
of time, the disturbances associated with different observations may be correlated
and the disturbance terms become autocorrelated. This property is known as
serial correlation. With first-order serial correlation, errors in one time period
are correlated directly with errors in the previous time period, and with positive
or negative serial correlation, errors in one time period are positively correlated

or negatively correlated with errors in the next time period respectively.
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Durbin-Watson test: The most popular test for serial correlation is the
Durbin-Watson test (Gardiner (2001)). The Durbin-Watson statistic is:

pi = Ziall =61y
YL &

where t =1,2,...,T is the number of time periods.

, (5.4)

The DW statistic will lie in the 0-4 range, with a value near 2 indicating no
first-order serial correlation. When successive values of & are close to each other,
the DW statistic will be low (below 2), indicating the presence of positive serial
correlation. Positive serial correlation is associated with DW values below 2 and
negative serial correlation with DW values above 2. The Durbin-Watson test has
the null hypothesis that the autocorrelation of the disturbances is 0. The test is
significant if DW < DIl or DW > Du and is inconclusive when DI < DW < Du,
where DI and Du are lower and upper critical values of the test statistic at the
specified significance level.

Some measures of goodness of fit of these models are:

Mean squared error: The mean squared error (mse) is a measure of predic-
tion error, i.e. mse is the average squared vertical distance of a data point from
a fitted curve or prediction. The smaller the mse, the closer the fit is to the data.
The root mean square error (rmse) is the square root of mse, which is directly
interpretable as it has the same units as the data (Gardiner (2001)).

Coefficient of determination: The coefficient of determination R? is an
important measure of goodness of fit of a regression model. It is defined as
the ratio of the sum of squares due to regression to the total sum of squares,
R? = SSreq/SStor- The higher the R?, the better the model fit to the data used
to build it. For example if R? = 0.9968, the fitted model expresses 99.7% of the
variation in the dependent variable.

Adjusted R?: The R? of a model can be made larger simply by adding more
predictors in the model even if they are not useful predictors. The adjusted R2,
denoted by Rgdj, allows for this and may actually decrease because the decrease

in summed square error (SSE) may be more than offset by the corresponding

SSE/dfr
SST/dfr

decrease in the error degrees of freedom (df). The adjusted R? is R2 = 1—
where SST is the total sum of squares (Rawlings (1932)).
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5.2 Modelling Foreground PS Moments

We investigated the presence of serial correlation in all fitted models using differ-
ent SEs for both the pyramid and ellipse images with different parameter settings.
Similar results were observed for both pyramid and ellipse images. Here we have
shown only the results for the average foreground PS moments (mean and sd)
for the pyramid image of size 2562 for all SEs using fitted straight line, quadratic
and cubic regression models.

Using parameters a = 0.5, 6 = 0.3, and v = discrete uniform [1, 2] initially,
100 stacks of 256% pyramid images, each having 100 layers (one layer for each
time point), were generated and the average foreground PS means and sds were
calculated using each of the six SEs. The simple least squares regression given

by equation (5.1) was fitted to each of the 6 sets of PS means and sds.

5.2.1 Modelling foreground PS mean

Figure 5.1(a) shows average foreground PS means for a square and a disk SE
plotted against time, with their fitted regression line. The models fit very well
for both sets of means. The upper lines in the graph correspond to the average
PS mean for a square and the respective fitted line, whereas the lower lines
represent the average PS mean and fitted line for a disk SE. Figure 5.1(b) shows
the residuals for both models in (a). There is clearly curvature present in the
residual plots. We employed the Durbin-Watson test on every fitted model to
test if there is serial correlation present.

Figure 5.1(c) shows the average PS moments for all line SEs with their fitted
regression lines and their corresponding residuals are shown in (d). Again all of
the models fit well, but curvature in the residual plots suggests that quadratic
regression may be more appropriate. The pattern of runs of positive then negative
residuals also suggests serial correlation. This is not surprising, as the data were
collected as the images evolve through time.

The quadratic regression model (equation (5.2)) was fitted also, with results
shown in Figures 5.2. Quadratic regressions fit the data better than the straight
line regressions. However the residual plots still exhibit curvature in most cases.
The curvature in the residual plots suggests that applying higher order polynomial
would be more appropriate and any problem caused by the presence of serial
correlation may reduce.

Figure 5.3 represents the results of cubic regression (equation (5.3)). All

models fit the corresponding data extremely well and the presence of any serial
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Figure 5.1: Plots of average foreground PS mean versus time ¢, with fitted lin-
ear regression lines (solid lines) and residual plots for the 256% pyramid images
generated using parameters o = 0.5, § = 0.3 and v = discrete uniform [1, 2].
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Figure 5.2: Plots of average foreground PS mean versus time ¢, with fit-
ted quadratic regression curves (solid lines) and residual plots for the 256
pyramid images generated using parameters « = 0.5, 6 = 0.3 and 7 =
discrete uniform [1, 2J.
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Figure 5.3: Plots of average foreground PS mean versus time ¢, with fitted cubic
regression curves (solid lines) and residual plots for the 256* pyramid images
generated using parameters o = 0.5, § = 0.3 and v = discrete uniform [1, 2].

correlation is reduced, especially for square and disk SEs, but serial correlation
is noticeable in the models fitted using moments from a line SE. We applied the
Durbin-Watson test to all six PS mean models from the pyramid images and
computed test statistics and the associated p-values (Table 5.1). The results
indicate that positive serial correlation is present in every model.

The highest Durbin-Watson test statistic among the models is 0.1793 with
p-value 3.7319¢72° for the cubic regression model using the PS mean from a 45°
line SE, but all are highly significant. The presence of positive serial correlation
is unavoidable as the synthetic image at any time point is built directly from the
image at the previous time point. Serial correlation will not affect the unbiased-
ness or consistency of ordinary least square estimators, but it does affect their
efficiency (Everitt and Dunn (2001)).

5.2.2 Modelling foreground PS standard deviation

Figure 5.4 represents the six sets of average PS sds with the fitted linear regression
lines and associated residual plots. As for the PS means, straight line regression
models fit the data quite well, but the residual plots indicate curvature and
presence of serial correlation, so we also fitted quadratic regression models.

The results from quadratic regression are shown in Figure 5.5. These models
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Table 5.1: Durbin-Watson test statistics and associated p-values for the six fore-
ground PS mean models using the 256% pyramid images, one for each SE.

Straight line Quadratic Cubic

Model DW  p-value | DW  p-value | DW  p-value
Mean from square SE | 0.03 2.15e-23 | 0.06 9.10e-23 | 0.11 1.15e-21
Mean from disk SE 0.07 2.01le-22 | 0.08 3.66e-22 | 0.15 1.02e-20
Mean from 0° line 0.02 1.18e-23 | 0.03 2.59e-23 | 0.14 5.90e-21
Mean from 90° line 0.01 1.12e-23 | 0.03 2.66e-23 | 0.16 1.28e-20
Mean from 45° line 0.02 1.17e-23 | 0.04 3.36e-23 | 0.18 3.73e-20
Mean from 135° line | 0.02 1.26e-23 | 0.03 2.57e-23 | 0.17 2.64e-20

fit the data better than the straight lines and lessen the curvature in the residual
plots, but serial correlation is still apparent.

Figure 5.6 represents the same sets of PS sds with fitted cubic regression
curves and residual plots. All models fit the data very well, and the presence of
serial correlation is not so severe, as judged from the residual plots.

The Durbin-Watson test statistics and corresponding p-values shown in Ta-
ble 5.2 confirm the presence of positive serial correlation in every model fitted
to the PS sds. This is inevitable owing to the nature of the data. Time se-
ries modelling would allow for the serial correlation but would make prediction
of evolution time much more difficult. We therefore continue to use regression

modelling as the fit of the cubic regression model is generally very good.

Table 5.2: Durbin-Watson test statistics and associated p-values for the six fore-
ground PS sd models using the 256* pyramid images, one for each SE.

Straight line Quadratic Cubic

Model DW  p-value | DW  p-value | DW  p-value
Sd from square SE | 0.03 2.51e-23 | 0.05 8.59e-23 | 0.19 7.57e-20
Sd from disk SE 0.04 4.55e-23 | 0.06 1.29¢-22 | 0.13 4.11e-21
Sd from 0° line 0.01 1.04e-23 | 0.03 3.03e-23 | 0.32 1.92e-17
Sd from 90° line 0.01 9.21e-24 | 0.03 2.62e-23 | 0.29 6.08e-18
Sd from 45° line 0.01 8.45e-24 | 0.057 9.64e-23 | 0.43 2.57e-15
Sd from 135° line | 0.01 8.83e-24 | 0.03 2.60e-23 | 0.18 3.25e-20
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Figure 5.4: Plots of average foreground PS sd versus time ¢, with fitted linear
regression lines (solid lines) and residual plots for the 256® pyramid images gen-
erated using parameters a = 0.5, § = 0.3 and « = discrete uniform [1, 2].
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Figure 5.5: Plots of average foreground PS sd versus time ¢, with fitted quadratic
regression curves (solid lines) and residual plots for the 256% pyramid images
generated using parameters o = 0.5, § = 0.3 and ~ = discrete uniform [1, 2].
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Figure 5.6: Plots of average foreground PS sd versus time ¢, with fitted cubic
regression curves (solid lines) and residual plots for the 256* pyramid images
generated using parameters « = 0.5, § = 0.3 and v = discrete uniform [1, 2].

5.3 New Regression-based Classifier

Regression analysis provides a straightforward way to estimate the response vari-
able for any known value of the regressor, but when the interest centres on es-
timating an unknown value of the regressor corresponding to an observed value
of the response variable, this is known as calibration. So calibration is a reverse
process to regression, which can be handled either by the classical approach or
by the inverse approach (Krutchkoff, 1967). In the classical approach, the fitted

regression line is solved for the regressor, namely, if the fitted line is
Y(t) = fo+ b *t, (5.5)

the corresponding calibration equation becomes

.Y () - f
p= YO =0 (5.6)
b
where t = 1,2...,T, and Y (¢) is the observed average PS moment at time point

t. The inverse calibration approach suggests fitting a regression line as
T =7 +7*Y(t), (5.7)
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so once the moments for any image are available, the corresponding time state

can be estimated from the calibration equation

~

Solutions given by equations (5.6) and (5.8) will not be the same.

As in this case t is error free and Y'(t) is subject to error, the relation between
t and Y (t) given by equation (5.8) violates one of the important assumptions of
regression analysis, which states that the regressor should be free of measurement

error.

5.3.1 Combined straight line model

Let Yi(t),i=1,2,...,p,and t = 1,2,..., T be the average of the i’ PS moment
for the t*" time point. Each PS moment is modelled as a function of time ¢. First

each moment is modelled as a function of time using straight line regression of

the form:

[ Yi(1) g + B €1

v | V@A e
| Yi(100) 5(@ + B t100 €100
(1t
-1 [ﬂii +e=ABY 4o,
S 1

| 1 00

assuming 100 time points tq,s,...,t100, have been observed for each moment

and each such set of equations involves the same design matrix A. Substituting
estimates Y; on the left hand side of any one such equation yields numerous
different estimates of ¢, one from each equation if they are solved separately:
Yi(t) = B(()i) + Bf)t. We can either rearrange the equation to solve for ¢ given
the moment (inverse prediction) or use calibration. In either case we can simply
average the predictions for ¢.

A different approach is to use all p fitted models involving ¢, one per moment,

at once. For example, if the number of moments is p = 4, we could use the mean,
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sd, skewness, and kurtosis as Y1, Yo, Y3, Y4. We have in general

o
I

Yi(t) G+ e
) | | AT A 5.9
| L s
or Y:BT, where
g By
5(2) 3(2)

is a p x 2 matrix and T is a 2 X 1 vector (1 ).

Pre-multiplying by B7 gives BTY =BT BT, so the left hand side is of di-
mensions (2 X p) X (p x 1) and the dimensions are (2 x 2) x (2 x 1) on the right.
Therefore we can solve for T as (BTB) 'BTY as in the original model fitting,
but the problem is that this does not guarantee that the first entry of T is 1 as

it should be. Therefore instead write

9 A(1 A(1
Yi(t) o) P
Vo 32) 32
D=1
Y, (1) Gy 6y

or Y =B+ But, so (Y-Bo) = But, in which (Y-Bo) is p x 1, as is By, and ¢
is scalar, and then pre-multiply by any 1 x p vector, e.g. 817 or (Y-Bo)”, to get
t=B1T(Y-Bo)/(B17B1), in the first case, or t=(Y-Bo)" (Y-Bo)/((Y-Bo)T31), in
the second case.

We will use only the PS mean and sd, so p = 2 in Equation (5.9).

If p straight line models are solved separately for ¢, we get p solutions for ¢

o (1) gD o (1 g®
namely, t = Yl(g(l)ﬂ o . t= Yp(g(mﬂ 0. Taking the average of the p solutions we

1 1

get
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p =1 Y)
_[(no &Y, Y- éf”]
Y pBY
) | v = gW
. . 1(t) — B

_ p31<1>"“’ ! ¥ - B, (5.10)
L 1

The solution from the combined model was (}A’—BO): B1t. Pre-multiplying by
any 1 x p vector, A = (ay,...,a,) and simplifying to make it comparable with

Equation (5.10) we get

A N o
P [Y—ﬁo]
ABn
ay Qp |: ~ ~
f=|— Y—ﬁo]. (5.11)
1 ) )
S Y W@]

The solutions of ¢ given by Equations (5.10) and (5.11) will coincide if and

: a 1 1 CO f: ai,@(l)
only if Zflé}iﬁl) = A o ngziﬁf) = 5 f}:at is if a, :( ﬁ, e

Alp a: 1 3 eiss . .
a, = Zp;lﬁi?p)ﬁl Therefore only using A = [szlf)ﬁl, . %] will yield an

estimate of ¢ which is equivalent to the average1 of the p estimates of ¢ from the

p separate models.

5.3.2 Combined quadratic model

As we have observed in Section 5.2 that a higher order polynomial fits the data
better, if we use quadratic polynomial regression to relate the mean and sd (for

a single SE) to time, the above becomes

A1 H(1 H(1
o)+ A 0

. A A 5.12
VA B o
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or Y = BT, where

3(1) A1) A1)
E o 50 1 2

3(2) 5(2) 5(2)

ﬁo 1 2

is a 2 x 3 matrix and T is a 3 X 1 vector (1, ¢, ¢?).

Equation (5.12) can be rewritten as

A(1)
o 0
| A2

0

(t)
(t)

+

o e |
G e

-0 ][ a0
- a0 | a6 | e ]
or |: }Af — BO :| = BT
The left hand side is of dimension 2 x 1 and the right hand side is of order
(2x2)x(2x1)=(2x1).

Using the PS mean and sd obtained using 6 different SEs, the left hand side
becomes 12 x 1 and the right hand side becomes (12x2) x (2x1). Pre-multiplying

Y
Yy

or

both sides of the above expression by (Y — BO)T, which is of order 1 x 12 produces

A~ A

(Y = Bo){1x12) (Y = Bo)a2x1) = (¥ — Bo) {112 B12x2 T 2x1)
or K' = K(1><2)T(2><1)' (513)

The left hand side is a scalar and the right hand side is (1 x2) x (2 x 1), so we end
up with a quadratic equation of the form K (2)t* + K(1)t — K’ = 0 to solve for t.

The root of such an equation can be calculated using the conventional formula

. —K(1) £ /(K(1)2+ 4K'K(2))
B 2K (2) ‘

Since our goal is to predict time, we choose the positive root. If both roots are
positive we choose the smallest one and in the case of no positive root we predict
time as the first time point.

This model can be built using only the foreground average PS mean and sd

obtained by using each of the 6 SEs, and for the background average PS mean
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and sd a similar model can be built to predict the time state, or we could use

both at once.

5.3.3 Combined cubic model

In a similar way a cubic regression model can be developed to relate PS moments

to time. A simplified form of this relationship is as follows:

or |: Y — BO i| = BT
In this case the left hand side is 12 x 1 and the right hand side is (12 x3) x (3 x 1).
Pre-multiplying by (Y — Bo)”, we get

A~ A

(Y - ﬁo)axu)(f/ - ﬁO)(12x1) = (Y - 50)(T1x12)3(12x3)T(3x1)
or K' = K(1X3)T(3><1)' (514)

Now equation (5.14) can be written as K (3)t® + K(2)t* + K(1)t — K’ = 0.
A real root of such a cubic equation can be found by dividing the equation by
K(3) and letting t = s — K(2)/3K(3). The reduced equation will be of form
53 + As + B = 0, known as a depressed cubic equation. One of the roots of the
depressed cubic equation is s = v — v where u® —v3 = B and 3uv = A. This can
be proved by replacing A, B and s in the equation. Once we get s, then ¢ the
real root of the original equation can be obtained. However, this procedure does
not always guarantee a real root. A more robust procedure for finding a real root

of a cubic equation, as given in Tuma and Walsh (1998), is described here:

o Firstly calculate p = (3k(1)/k(3)— (k(2)/k(3))2)/3 and q = (2(k(2) /k(3))>—
0k(2)k(1)/k(3)/k(3) + 27(—K') /k(3))/27.

e Then calculate the discriminant D in terms of p and ¢ as (p/3) + (¢/2)*.

eIf D > 0or D = 0, calculate v and v as u = (—¢/2 + vVD)/3 and
v=(—q/2+ VD).

e Three transformed roots in these cases are yl = u+v, y2 = —(u+v)/2 +

i(u—v)v3/2 and y3 = —(u +v)/2 — i(u — v)V/3/2.
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o If D < 0, the transformed roots are: yl = 2./(|p|/3)cos(p/3), y2 =
—2+/( \p]/3 cos((p+m)/3) and y3 = —2./(|p|/3) cos((¢ — 7)/3), where

© = acos(—q/2.4/(|p?|/27)).

e The real roots of the original cubic equation are calculated as © = y —
k(2)/k(3)/3, i.e. 1 =yl — k(2)/k(3)/3, 22 = y2 — k(2)/k(3)/3 and 23 =
y3 — k(2)/k(3)/3.

To find the cubic roots we use either the roots function in Matlab or the method
given in Tuma and Walsh (1998) and available as FORTRAN or Matlab code
at http://www.ece.umd.edu/~nsw/ench250/cubiceq.htm. We use the following

procedure for choosing a root as the predicted time:

e If D < 0, there are 3 distinct real roots and we choose the smallest positive

one.
e If none of the roots are positive, the method fails to predict time and we

choose the first (smallest) time point as the prediction.

e If D =0, there are three real roots of which at least two are equal and we

choose the smallest positive one.

e If D > 0, there are one real and two complex roots, and we choose the
real one if it is positive, otherwise we choose the first time point as the

prediction.

This procedure gave sensible results in all cases examined in the training stage.

5.3.4 Assessing accuracy of prediction

The prediction abilities of the models are assessed using various error rates as well
as mean absolute error. Type k error (as used in McKenzie (2004)) measures the
proportion of images not classified to within £ units of their actual time point,

and is defined as
E(k Z [k pred act k 07 17 2 (515)

where n is the number of images for which the time is to be predicted, t}, .,

and ¢! , are respectively the (rounded) predicted time and actual state of time of
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image 7, and the indicator function [ is such that

1 if || >k
]k(z>:{ ||

0 otherwise.

The prediction ability of the models (5.9), (5.12), and (5.14) are assessed

separately for the foreground as well as for the background PS moments.

Mean absolute error: Mean absolute error (MAE) of the prediction time is
also calculated. This is an average deviation of the predicted time from the actual

time, i.e.
n

1 , ,
MAE = — tred — Lo 5.16
n :g:: | act|> ( )

pred
=1

where t,,.q and ¢, are respectively the rounded predicted time and the actual

time state, and n is the total number of images for which the time is predicted.

5.4 Prediction using the Regression Approach

In this section we make use of the first two PS moments computed from different
sizes 1002, 256% and 5122 of the pyramid images using all 6 SEs to predict the
evolution state of individual image by means of the regression approach. The
aim is to investigate whether the performance of the PS moments increases with
increasing image size.

The PS moments data for any set of images is a 10000 x 12 matrix, where
rows correspond to time states t = 1,2, ..., 100 for 100 simulations and the first 6
columns contain PS means and the last 6 contain PS sds from the 6 SEs. Moments
are averaged over the 100 simulations (there are 100 images at each time point),
so the data is a matrix of size 100 x 12.

At this stage we built each combined regression model, i.e. straight line (5.9),
quadratic (5.13) and cubic (5.14) regression models using the average PS moments
(100 images at each time point) and the moments for each single image are used to
predict the time. We assess the performance of straight line, quadratic and cubic
regression models using the foreground as well as the background PS moments
separately. At this stage all of the data is used to fit the models and we predicted

the time for all of the available images at each time.
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5.4.1 Prediction for 100? images

The 100* pyramid images were generated using parameters o = 0.5, § = 0.1, and
7 as discrete uniform [1, 2] in Section 4.2. Figure 5.7 shows some of those images

at their final stage of evolution at the growth time step 100. These are seen to

»
e

Figure 5.7: Final pyramid images of size 100? for different simulations, using
a =0.5,0 = 0.1, and y= discrete uniform [1, 2], at time 100.

be quite variable in appearance.

l?

We obtained the predicted times for 100 different simulations, using straight
line, quadratic and cubic regression, but we plotted the predicted times from cubic
regression of the foreground PS moments at every tenth time point in Figure 5.8.
The predicted times are centred at the actual time point, but are quite widely
spread. Very often the predicted times are more than 20 units away from the
actual time point, therefore the predicted time exceeds 100 (the largest actual
time state) when the actual time is 80 or higher, so in general prediction is poor.
Clipping the upper limit of the predicted time to 100 might decrease the error
rate, but we did not do that in this chapter as evolution time in principle could
be higher than 100.

The foreground and background moments were used separately for model
fitting and predicting time, and the different types of error rates and MAEs as
given in equations (5.15) and (5.16) are shown in Table 5.3. The type 0 error rate
for the straight line, quadratic and cubic regressions using foreground PS moments
are 96.1%, 95.7% and 95.2%, and 94.7%, 94.0% and 94.2% using background PS
moments. The MAEs for the foreground moments are 8.389, 8.137 and 7.550,

142



Frequency Frequency

Frequency

Frequency

Frequency

o N & o ®

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(a) t=10

Frequency

=

5

o N & o ®

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(b) t = 20

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(c) t=30

Frequency

=

5

o N & o ®

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(d) t = 40

&

5

o N & o ®

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(e) t =50

Frequency

5 B 5 &

5

N s o @

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(f) t =60

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(g) t=170

Frequency

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(h) t =80

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(i) t = 90

Frequency

0 10 20 30 40 50 60 70 80 90 100 110 120

Time

(j) t = 100

Figure 5.8: Histograms of the predicted times for the 100? pyramid images using
cubic regression modelling of the first two foreground PS moments from all 6 SEs,
for actual times t = 10, 20, ..., 100.
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while much lower MAEs were obtained from the background moments, i.e. 5.769,
5.344 and 5.460 for straight line, quadratic and cubic regression respectively. The
background PS moments produced lower error rates and MAEs for any model
than the foreground moments. Cubic regression works slightly better for the
foreground moments but quadratic regression works better for the background
moments.

Figure 5.9 shows the MAEs, type 0, type 1, and type 2 error rates for all
3 models and the cubic regression provides slightly lower error rates than the
straight line and quadratic regression models. In terms of MAE, the quadratic
and cubic regression models are equally effective, especially after evolution time
10 for the foreground moments and for the background moment between times
20 and 80.

Table 5.3: Average classification error rates and MAEs from prediction of time
for all of the 1002 pyramid images, using the first 2 PS moments from 6 SEs.

Error rate Foreground PS moments
Straight line Quadratic reg. Cubic reg.
Type 0 0.961 0.957 0.952
Type 1 0.885 0.870 0.854
Type 2 0.813 0.793 0.764
MAE 8.389 8.137 7.550
Error rate Background PS moments
Straight line Quadratic reg. Cubic reg.
Type 0 0.947 0.940 0.942
Type 1 0.835 0.818 0.820
Type 2 0.724 0.696 0.702
MAE 5.769 5.344 5.460

5.4.2 Prediction for 2562 images

We then applied granulometry on the foreground of the 256% pyramid images
stacks generated using parameters o = 0.5, 6 = 0.3, and v as discrete uniform
[1, 2]. Some images at their final stage of evolution are shown in Figure 5.10.
Again evolution times were predicted separately for the foreground and back-
ground PS moments from straight line, quadratic and cubic regression models,
and the different error rates and MAEs were computed. The predicted times
for the foreground moments for 2562 pyramid images using cubic regression are

shown as frequency histograms in Figure 5.11 at every tenth time point. Again
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Figure 5.9: MAE (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f) and type 2
error (g)-(h) for the first 2 foreground (left) and background PS moments (right)
from the 100? pyramid images using all 3 regression models.

the predicted times are quite spread out, although they are centred at the actual
time points.

The error rates and MAEs for all 3 models for the foreground and back-
ground PS moments from the 2562 pyramid images are shown in Table 5.4 and
Figure 5.12. Again the background moments produce lower error rates and MAEs

compared to the foreground moments. Again for the foreground moments cubic
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Figure 5.10: Some pyramid images of size 2562 for different simulations, a = 0.5,
d = 0.3, and y=discrete uniform [1, 2|, at time 100.

regression produces lower error rates and MAEs than straight line and quadratic
regression. For the background moments quadratic regression produces the lowest

error rates but cubic regression produces the lowest MAEs.

Table 5.4: Average classification error rates and MAEs from all the 256% pyramid
images using the first 2 PS moments from 6 SEs.

Error rate Foreground PS moments
Straight line Quadratic reg. Cubic reg.
Type 0 0.949 0.948 0.941
Type 1 0.852 0.841 0.834
Type 2 0.756 0.737 0.727
MAE 7.164 6.397 6.103
Error rate Background PS moments
Straight line Quadratic reg. Cubic reg.
Type 0 0.918 0.906 0.942
Type 1 0.756 0.726 0.820
Type 2 0.605 0.568 0.577
MAE 4.015 3.952 3.637

5.4.3 Prediction for 5122 images

Pyramid images of size 5122, generated using parameters a@ = 0.5, § = 0.3,
and ~y as discrete uniform [1, 3] (with a increased rate of growth), are shown in
Figure 5.13.

Although the error rates using the background PS moments from the 100% and
2562 images were slightly lower than with the foreground PS moments, computing

PS moments from the background of an image is more time consuming than from
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Figure 5.11: Histograms of the predicted times for the 2562 pyramid images using
cubic regression modelling of the first two foreground PS moments using all 6 SEs,
for actual times ¢t = 10, 20, ..., 100.
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Figure 5.12: MAE (a)-(b), type 0 error (c)-(d), type 1 error (e)-(f) and type 2
error (g)-(h) for the first 2 foreground (left) and background PS moments (right)
from the 2562 pyramid images using all 3 regression models.

the foreground image. Therefore we computed PS moments using 6 SEs only
from the foreground of the 5122 images. Again all 3 regression models were used
to predict evolution times. The predicted times from the cubic regression model
at every 10" time point are shown in Figure 5.14. Still the predicted times are
wide spread.

The error rates and MAEs are shown in Table 5.5 and Figure 5.15. The overall
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Figure 5.13: Some pyramid images of size 5122 for different simulations, a = 0.5,
d = 0.3, and y=discrete uniform [1, 3], at time 100.

Table 5.5: Average classification error rates and MAEs from all the 512% pyramid
images using the first 2 PS moments from 6 SEs.

Error rate Foreground PS moments
Straight line Quadratic reg. Cubic reg.
Type 0 0.943 0.935 0.927
Type 1 0.828 0.811 0.785
Type 2 0.714 0.683 0.651
MAE 6.016 5.188 4.864

type 0 error rate for straight line, quadratic and cubic regression is 94.3%, 93.5%
and 92.7% respectively and the corresponding MAEs are 6.016, 5.188 and 4.864.
Comparing Tables 5.3, 5.4 and 5.5 it can be concluded that the accuracy of the
PS moments in predicting time increases with size of the image. In general MAE
decreases with increasing image size.

Because of this high prediction error we focused on the error distribution
and investigated whether any adjustment can be made to the errors to increase
the prediction ability of the models. Figure 5.16 represents the distribution of
the prediction error (predicted time—actual time) at every 10" time point from
the cubic regression model using foreground PS moments from the 2562 pyramid
images. The prediction error for 100 different simulations is presented for specific
time points. We can see that the errors are random and there is no positive or
negative bias. However, only for a very few simulations does the predicted time

coincide with the actual time.
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Figure 5.14: Histograms of the predicted times for the 5122 pyramid images using
cubic regression modelling of the first two foreground PS moments from all 6 SEs,
for actual times t = 10, 20, ..., 100.

150



15
—— Straight line
—=— Quadratic reg.
—e—Cubic reg. ]|
i —_
10 F e :
# o© 06
O os
[0}
o 04
>
- o3
02 : —— Straight line
o1 —s=—Quadratic reg.
) —o— Cubic reg.
. 00 20 40 . 60 80 100
Time Time
(a) MAE (b) Type 0 error
1
|
0.9 "
} 08 “‘ **WMZ : s
— = | el |
E E : T‘ P4
o © Ot | Ve
— o AN o5 “* 4
Q ‘ () I
&()A ‘ §0A ‘Fh
- o3 EF = oap ]
02 “ —+— Straight line 02 } —+— Straight line
o1 L‘ —=— Quadratic reg. o1 \\ —=— Quadratic reg.
’ —o— Cubic reg. ’ —o— Cubic reg.
00 2‘0 4‘0 . 60 80 100 00 2‘0 4‘0 . 60 80 100
Time Time
(¢c) Type 1 error (d) Type 2 error

Figure 5.15: MAE and type 0, type 1 and type 2 error for the first 2 foreground
PS moments from all 6 SEs from the 5122 pyramid images, using all 3 regression
models.

5.4.4 Prediction using PCs

Rather than using the original PS moments for prediction, here we investigate
the usefulness of PCA. The PCs of the normalised PS moments derived in Sec-
tion 4.3.4 were modelled as a function of evolution time using regression models,
and were used to predict time. Figure 5.17 shows the error rates using the first
2 PCs from foreground PS moments from all 6 SEs of the 256% pyramid images.
We used all three regression models but none of them outperforms the previous
moments-based results. Comparing the cubic regression results (blue lines) in
Figure 5.17 with the REG results in Figure 5.18(a), (c), (e) and (g) (red lines),
we can say that prediction is not improved by employing PCs rather than using
the PS moments directly.

Computation of granulometric moments from the 5122 pyramid images is time
consuming, especially for a disk SE. Although the PS moments from the 5122
pyramid images provide slightly lower MAE and error rates, we will now only
use the PS moments from the 2562 images in the other classifiers to compare the

results with the corresponding regression models.
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Figure 5.16: Prediction error (predicted time—actual time) plotted against sim-
ulation number, using the cubic regression model with 70% of the 2 foreground
PS moments using 6 SEs from the 2562 pyramid images.
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Figure 5.17: Type 0, type 1 and type 2 error rates and MAEs using the first 2
PCs from 12 foreground PS moments (2 PS moments from 6 SEs) of the 2562
pyramid images using all 3 regression models.

5.5 Prediction using Other Classifiers

In this section, the first 2 PS moments from the foreground and background
of the 2562 pyramid images as well as the 2562 ellipse images using all 6 SEs
are used in some other classifiers, i.e. a support vector machine (SVM), a feed
forward neural network (FF-NNET) and linear discriminant analysis (LDA), and
their classification accuracy is compared with that of the regression approach.
Therefore each dataset is of size 10000 x 13, where the first 6 columns contain the
PS means using 6 SEs, the next 6 columns consist of the PS sds using 6 SEs and
the last column contains the actual time state. For all classifiers in this section,
70% of the moments were randomly sampled and used to train the classifiers and
the rest of the moments were used for testing. We calculate training or test set
error as the number of misclassifications divided by the total number of images
in the training or test set, or as the mean absolute error. This was done 10 times

and results were averaged to give overall performance of the method.
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5.5.1 Results from SVM

Different types of kernel can be used, such as linear, polynomial, radial basis
(also known as the Gaussian kernel), and sigmoid (tanh). A detailed description
is given in Section 3.12. The radial basis kernel is by far the most popular kernel
used in SVMs (Chellappa and Chatterjee (1985)), mainly because of its localised
and finite response across the entire range of the real z-axis. R library el1071 is
used here for SVMs (details are given in Appendix II(a)).

Although the generalisation ability of the SVM is relatively robust to varia-
tions in the parameter settings (Li (2009)), we tested several kernels and a wide
range of the parameter values in the kernel function and the cost or regularisation
parameter in training to ensure high accuracy. We investigated the performance
of the linear, polynomial and radial basis kernels with the associated parameter
values (in the last two cases). We used a grid search approach for finding an
appropriate kernel and the optimum value of any kernel parameters and also the
cost parameter, in terms of the training set error rates using a single training set

of 70% of the PS moments randomly selected for each set of images.

PS moments from the pyramid images

Using the first 2 foreground PS moments of the 256* pyramid images, Table 5.6
contains error rates for different combinations of the value of the cost and the
kernel parameter v for the radial basis and the polynomial kernel. For the poly-
nomial kernel, any value of the parameter 7 between 1 to 5 produced the same
results but the default value 0 produced a higher error rate, and we used n = 1.
Only v =1 and cost = 1 for the radial basis kernel gave 100% correct classifica-
tion and v = 0.2 and cost = 100 produced the second lowest error rate of 10%.
None of the cases for the polynomial kernel produced 100% correct classification,
although the error rates were lower in general for a higher cost in both kernels.
Using the first 2 background PS moments, the radial basis kernel and polynomial
kernel produced very similar error rates for different combinations of v and cost
to those shown here, so these results are not shown.

In the linear kernel there is no kernel parameter, so we considered only the cost
parameter. Training set error rates corresponding to different values of the cost
for the linear kernel are shown in Table 5.7, for both foreground and background
PS moments from the pyramid images. Any cost of 20 or more produced 100%
correct classification for both datasets. Therefore, a linear kernel with cost of 100

was used for both datasets.
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Table 5.6: Training set error rates for different combinations of cost and ~y for the
radial basis kernel and the polynomial kernel with n = 1, using foreground PS
moments from the 256% pyramid images. A 0 below means exactly 0. The values
in bold are the best results.

Radial basis kernel
Cost,
¥ 1 10 20 30 40 50 60 70 80 90 100
0 099 099 099 099 099 099 099 099 0.99 0.99 0.99
0.1 {092 0.81 0.66 0.61 0.60 0.54 0.44 0.27 0.20 0.15 0.12
0.2 1091 071 063 052 030 0.21 0.17 0.14 0.12 0.11 0.10
03108 0.66 0.57 033 0.23 0.19 0.17 0.14 0.13 0.12 0.12
04108 066 044 0.28 0.22 0.19 0.17 0.16 0.16 0.15 0.15
0.5 (089 0.67 037 0.27 0.23 020 0.19 0.19 0.18 0.18 0.17
0.6 | 0.88 0.65 0.35 0.27 0.24 0.22 0.21 0.20 0.19 0.19 0.18
0.7 1088 0.60 0.33 0.27 0.25 0.23 0.22 0.21 0.21 0.21 0.20
0.8 1088 0.57 033 0.28 0.25 0.24 0.23 0.23 0.22 0.22 0.22
09108 054 037 0.29 0.26 0.25 0.25 0.24 0.24 024 0.24
1 0 0.87 0.51 0.37 030 0.27 026 026 025 025 0.25
Polynomial kernel with n =1
Cost,

¥ 1 10 20 30 40 50 60 70 80 90 100
0 099 099 099 099 099 099 099 099 0.99 0.99 0.99
0.1 {092 078 0.73 0.70 0.68 0.66 0.64 0.63 0.62 0.61 0.60
0.2 1081 0.62 057 0.53 0.51 0.50 0.49 0.48 0.47 0.46 0.45
0.3 (070 052 048 0.45 0.45 0.43 0.42 0.41 0.40 0.40 0.39
04064 047 043 041 0.40 0.38 037 0.36 0.35 0.34 0.33
051059 0.43 040 037 035 035 033 0.32 031 0.31 0.29
0.6 | 0.55 040 0.37 0.34 032 030 0.29 0.29 0.28 0.26 0.26
0.7 1051 037 036 035 030 027 0.26 0.26 0.25 0.24 0.23
0.8 1049 035 033 032 030 0.25 0.25 0.23 0.24 0.22 0.22
09046 032 030 0.29 0.24 0.23 0.22 0.21 0.21 0.20 0.20
1 1045 030 0.25 0.25 0.23 0.22 0.22 0.21 0.21 0.21 0.19

PS moments from the ellipse images

Now we investigate the optimum kernel and its parameter values using the first 2
foreground and background PS moments using 6 SEs from the 2562 ellipse images.
Table 5.8 shows the error rates for the first 2 foreground PS moments using the
radial basis and polynomial kernels. The error rate with any combination of the
parameters is high (at least 16% for the radial basis except for v = 1 and cost
= 1 which gives 0% error, and 25% for the polynomial kernel). Different values
of v between 0 and 1 in steps of size 0.1 were tested for the polynomial kernel as
well but are not all shown in the table. Any combination of v and cost using the
first 2 background PS moments also produced a high error rate, so they are not
included here.

Table 5.7 shows the error using the linear kernel for the foreground and back-
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Table 5.7: Training set error rates for different values of cost for the linear kernel
using PS moments from the 256 pyramid and ellipse images.

Pyramid images
Cost
1 10 20 30 40 50 60 70 80 90 100
Foreground | 0.82 0.29 0 0 0 0 0 0 0 0 0
Background | 0.80 0.25 0 0 0 0 0 0 0 0 0
Ellipse images
Cost
1 10 20 30 40 50 60 70 80 90 100
Foreground | 0.84 0.27 0 0 0 0 0 0 0 0 0
Background | 0.59 0.09 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ground PS moments from the ellipse images. The linear kernel produced 100%
correct classification for any cost of 20 or above for the foreground PS moments
but for the background moments a cost of 30 or more is best, with 1% error.
However we used a cost of 100 for both set of moments.

Although many authors (e.g. Li et al. (2003), Chellappa and Chatterjee (1985),
Chaplot et al. (2006)) achieved better classification accuracy using the radial basis
kernel, here the linear kernel is the most appropriate kernel with any cost of 20 or
more. The outstanding results achievable by SVM greatly depend on the choice
of an appropriate kernel and its parameters. For example, SVM yielded 100%
correct classification for the foreground PS moments from the pyramid images
using a linear kernel with cost of 20 or more, but for a radial basis kernel only
v =1 and cost = 1 produced 100% correct classification and the second best
combination of v = 0.2 and cost = 100 gave a 10% error rate. For a polynomial
kernel, the optimum parameters are v = 1 and cost = 100 with an error rate
of 19%. Therefore, choosing the most appropriate kernel is important for best

performance.

5.5.2 Results from LDA

Section 3.9 explains the LDA approach for binary and multi-class classification.
LDA was employed by using function lda in R library MASS. We applied LDA to
the first 2 foreground and background PS moments from the 2562 pyramid and
ellipse images. See Appendix II(b) for details of the R function.
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Table 5.8: Training set error rates for different combinations of cost and ~ for
the radial basis kernel and the polynomial kernel with n = 1, using foreground
PS moments from the 256 ellipse images.

Radial basis kernel
Cost,
~ 1 10 20 30 40 50 60 70 80 90 100
0 099 099 099 099 099 099 0.99 0.99 0.99 0.99 0.99
0.1 1092 083 0.68 0.60 0.59 0.53 043 031 0.24 0.19 0.16
02109 074 070 0.63 0.52 034 0.26 0.22 0.20 0.17 0.16
031090 068 057 054 034 027 0.24 0.23 0.20 0.20 0.19
04108 066 054 045 0.31 0.27 0.25 0.24 0.24 0.23 0.23
0.5]10.8 065 040 031 0.27 0.26 0.26 0.25 0.25 0.25 0.25
0608 062 053 047 0.40 0.28 0.28 0.28 0.26 0.26 0.26
0.7 1088 058 0.53 047 0.35 0.30 0.29 0.29 0.28 0.28 0.27
0.8 1088 057 043 042 0.40 0.30 0.25 0.24 0.23 0.23 0.20
09088 053 047 045 0.40 035 0.35 0.32 0.32 0.31 0.30
1 0 0.87 0.52 047 040 0.37 032 0.32 0.31 0.30 0.30
Polynomial kernel with n =1
Cost,

~ 1 10 20 30 40 50 60 70 80 90 100
0 099 099 099 0.99 099 099 0.99 0.99 0.99 0.99 0.99
0.1 1091 081 076 070 0.68 0.67 0.65 0.64 0.62 0.61 0.62
051060 0.45 041 040 0.38 0.36 0.35 0.33 0.32 0.32 0.31
091048 031 0.29 0.29 0.28 0.27 0.27 0.26 0.26 0.25 0.25

5.5.3 Results from FF-NNET

The neural network classifier was applied in R, in the library nnet. It fits a
feed-forward single hidden layer neural network (FF-NNET). The architecture of
such networks is explained in Section 3.11 and details of the R function are in
Appendix II(c). Of many possible activation functions, R allows only a logistic
or linear activation function. Both were tested. A logistic activation function
was used for the final computation but the use of a linear activation function
instead had little effect on the results. Velten (2009) suggests scaling the input
data to the range 0 to 1 for neural networks. It was found that scaling the data
to range between 0 to 1 increased the overall error rate, whereas normalising the
data (to 0 mean and unit variance) substantially decreased the overall error rate
for the FF-NNET in some cases and often improved the results. So the data
were normalised before using the FF-NNET. This made it comparable to use of
SVM, as SVM normalises the data by default (though not normalising did not
alter the SVM results much). Normalisation of the data is a part of the LDA
computation, so further normalisation had no effect on the results. It was also

found that normalising the input data to the regression method worsened the
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results.

The optimum values of some important parameters in the FF-NNET, namely
decay, rang and number of hidden units were chosen for each set of features.
The value of rang specifies the range [-rang rang] from which the initial weights
are randomly taken, and decay controls the decay of the weights with successive
iterations of th