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Abstract

Structural failures caused by cracks or corrosion lead to catastrophic consequences

in environmental, human and economic terms. Therefore, structural health as-

sessments are essential for maintaining their structural integrity. Considering the

small size and manoeuvrability of the Unmanned Aerial Vehicles (UAVs), the

aerial inspection platform provides an efficient solution for inspecting high-risk

sites such as drilling rigs and pressure vessels, which are traditionally inspected

by experienced human engineers that mainly rely on their naked eyes. By deploy-

ing an autonomous aerial vision-based visual inspection system, the limitations

of the human cost and safety factors of previously time-consuming tasks have the

potential to be overcome. However, the maturity level of autonomous inspection

UAVs still needs to be improved.

Motivated by the observations derived from improving the autonomous capa-

bility of aerial visual inspection, this thesis presents novel solutions to contribute

to autonomous UAVs for asset visual inspection. First and foremost, the feasibil-

ity of using a UAV system with Visual Simultaneous Localisation and Mapping

(VSLAM) for autonomous visual inspection in confined and low-illumination in-

door environments is verified in the simulation environment for the first time.

With image contrast-enhanced VSLAM, the UAV can track the planned tra-

iv



Abstract

jectory stably and record videos. Subsequently, corrosion detection and UAV 

localisation systems are further investigated to address the challenges that arise 

when implementing the UAV in complex environments and deploying algorithms 

on the UAV onboard platform.

In particular, to address the computational challenges of implementing a deep 

learning-based corrosion detector on UAV onboard platforms caused by the exten-

sive usage of traditional convolutional layers, a solution with a lightweight model 

design is provided, achieving the first UAV onboard deep learning-based real-time 

corrosion detector. This advancement was achieved through lightweight convo-

lution utilising Depthwise Separable convolution (DSconv), innovative feature 

extraction and fusion techniques leveraging the Convolutional Block Attention 

Module (CBAM) and the proposed improved Spatial Pyramid Pooling (SPP), 

refined detection strategies incorporating three-scale detection, and an optimised 

learning approach using the focal loss. The proposed lightweight but powerful 

corrosion detector is verified by leveraging the Nvidia Jetson TX2, and it achieves 

20.18 Frames Per Second (FPS) and 84.96% mean Average Precision (mAP). The 

overall performance meets the requirements and outperforms other state-of-the-

art detectors.

Then, the issue of the degraded performance of VSLAM-based UAV locali-

sation systems in complex lighting and textureless environments is investigated. 

Initially, the inherent challenges faced by feature-based VSLAM in low-contrast 

environments, where extracting sufficient feature points is challenging, need to 

be addressed. To mitigate this issue, adaptive adjustments to the Features from 

Accelerated Segment Test (FAST) threshold and image enhancement from con-

trast and sharpening perspectives are proposed. These improvements are then
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seamlessly integrated into monocular ORB-SLAM3, ensuring a stable and robust 

extraction of feature points. Compared with other advanced works, the developed 

VSLAM system achieves overall higher localisation accuracy and robustness in 

low-contrast environments while maintaining good performance in general envi-

ronments.

To address the performance degradation or failure of VSLAM and Visual 

Odometry (VO) systems in environments with textureless and low-illumination 

conditions where sufficient feature points cannot be extracted, the deep learning-

based feature point extraction method with a novel lightweight model has been 

investigated and incorporated into a VO system. Specifically, this model has been 

achieved by incorporating DSconv and Deformable Convolution (DFconv), whose 

kernel offsets are calculated through DSconv. Extensive experiments, including 

physical UAV flying tests, have been conducted to validate the feasibility and ex-

ceptional performance of the proposed method. Moreover, the developed model 

allows the UAV to localise itself and track the predefined trajectory in the tex-

tureless and challenging lighting environment, where both the other traditional 

and deep learning involved VO and VSLAM systems fail.
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Chapter 1

Introduction

1.1 Research Background and Motivation

1.1.1 Robot-based Visual Inspection of Oil and Gas Facilities

Owing to the growth of the Industry 4.0 revolution, industries face growing de-

mands for monitoring and maintaining the proper function of industrial facil-

ities efficiently and effectively. Non-Destructive Testing (NDT) is the process

of inspecting, testing or evaluating the properties of a component for industry

without destroying the serviceability of the part. Inspections are a crucial part

of the operations of many industrial sectors. The report presented by Mordor

Intelligence [25] has indicated that the NDT market was valued at $16.72 billion

in 2020 and is expected to reach a value of $24.64 billion by 2026, at a compound

annual growth rate of 6.7% during the forecast period of 2021-2026. At the same

time, the oil and gas sector still underpins modern society. According to the

Energy Outlook 2022 released by the British Petroleum, the demand for oil and

gas has increased above the pre-COVID-19 level [26]. Therefore, demand from
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the oil and gas industries is fuelling the NDT market.

Visual inspection is currently the principal approach for maintenance and

assessment of asset integrity [27]. Hence, the reliability and efficiency of inspec-

tion systems are vital to public safety and the economy. However, there are

many facilities in oil and gas companies that own lots of oil derricks, pressure

vessels and offshore rig infrastructures set in hazardous environments. These en-

vironments have risks of radiation, lack of oxygen, high temperatures and fire

dangers, which put engineers at risk. In this case, eye-based visual inspection

is inefficient, experience-dependent and can even be dangerous for experienced

engineers [28]. Therefore, liberating human engineers from dangerous, expensive

and time-consuming tasks becomes urgent.

To eliminate human participation, boost operational efficiency and improve

safety, robotics are increasingly used to carry out inspection and maintenance

activities on industrial properties [29]. The oil and gas business benefits from

inspection robotics technology by being more productive, secure and dependable.

According to [30], the inspection robot market was worth more than $1.68 billion

in 2020, and it is projected to expand at a compound annual growth rate of

17.3 % from 2021 to 2029. Meanwhile, the oil and gas industry dominated the

inspection robot market globally in 2020, accounting for more than 50% of the

total market value.

Various robot-based platforms have been studied for efficiently assessing in-

frastructures, such as Unmanned Ground Vehicles (UGVs), Remotely Operated

underwater Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs) and Un-

manned Aerial Vehicles (UAVs). To inspect assets in hazardous environments,

UAVs have gained great interest due to their flexibility and manoeuvrability [31],
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and they have been applied to lots of inspection tasks such as pipelines [32] and

flare stacks [33]. A general UAV-based facility visual inspection process is indi-

cated in Fig. 1.1. The visual inspection is carried out by experienced engineers

who control the UAV remotely and identify defects from the captured data. The

inspection efficiency and quality are influenced by the inspectors’ skill and tired-

ness [34]. Therefore, this inspection procedure creates opportunities for furthering

the advancement of autonomous UAV technologies and image analysis solutions

to address challenges in efficient inspections [33], and the full automation of the

visual data collection as well as its analysis is expected [35].

Figure 1.1: Scheme of UAV-based visual inspection

With the advancement of image processing techniques, a lot of image pro-

cessing methods have been adopted for corrosion detection. However, corrosion

does not have a unique shape, colour, or pattern that can be used to identify

corrosion accurately [36]. Deep learning-based methods autonomously learn the

relevant features, and some studies show that these methods outperform tradi-

tional corrosion detectors in terms of detection accuracy [37]. However, the high

demand for computing resources has limited their applications on the UAV on-

board platform [38]. Moreover, the requirement of real-time detection at a speed

of at least 20 Frames Per Second (FPS) [39] is increasing in practical UAV visual
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inspection due to the limited endurance time [40]. With real-time corrosion de-

tection technology, end-to-end visual inspection practices become possible [41].

As a result, the labour intensity of corrosion detection can be further reduced,

and the efficiency of visual inspection can be improved [31].

Figure 1.2: Example images of UAV first person view (adapted from [1])

To autonomously inspect facilities, the UAV must be aware of its location.

Otherwise, the flying stability of the UAV is significantly degraded, and it can-

not even track its trajectory for performing inspection tasks [42]. In outdoor

inspection tasks, the UAV can rely on the Global Positioning System (GPS)

for navigation to collect visual data. As UAVs continue to evolve, small UAVs

have also started to be deployed into confined spaces to perform internal inspec-

tion tasks, such as inspecting the inside of pressure vessels and wind turbine

blades [43]. These scenarios involve confined spaces that need to be visually in-

spected. Therefore, the UAVs used in these tasks must be small, which limits the

UAV’s payload capability [43]. As a result, the adoption of Visual Simultaneous

Localisation and Mapping (VSLAM) or Visual Odometry (VO) in small UAVs is

on the rise due to the use of lightweight cameras as sensors, with no prior knowl-

edge required [44]. However, some indoor environments are enclosed spaces with

no direct sunlight, leading to reduced visibility. To address this issue, the UAV

needs to be equipped with artificial lighting resources. Specular reflections caused

by coatings or walls can lead to glare, and the limited distance to the surface that
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needs to be inspected constrains the texture information obtained by the camera,

resulting in a lack of features. Some example images derived from the UAV visual

inspection process [1] are shown in Fig. 1.2 to illustrate the challenging lighting

and textureless conditions. These hazardous environments present challenges to

the stability of the VSLAM and VO systems may result in system failures.

1.1.2 Research Aim and Objectives

Motivated by the opportunities and challenges mentioned above, the aim of this

thesis is to investigate key technologies to support an aerial platform to au-

tonomously conduct visual inspections of different assets, such as pressure vessels

or drill platforms.

Specifically, the feasibility of deploying UAVs with VSLAM in confined and

low-illumination environments to perform autonomous visual inspection tasks is

investigated. Subsequently, this thesis presents a series of developments in cor-

rosion detection and VO/VSLAM systems that address challenges derived from

the existing literature. The corrosion detection algorithm aims to fill the gap

of lacking an accurate real-time deep learning-based corrosion detector for the

UAV onboard computer. The VO/VSLAM algorithms aim to provide position

information for UAVs in complex environments and address the issue of suffi-

cient feature points that cannot be extracted in low-contrast scenarios caused by

unfavourable lighting conditions and textureless environments, which can lead to

degraded performance or even failure of the VO and VSLAM systems. Therefore,

the objectives of this thesis are:
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1. Explore key knowledge of autonomous UAV systems for industrial facility

visual inspection:

(a) Survey the existing knowledge about autonomous UAV systems for

industrial facility visual inspection.

(b) Assess the current state of corrosion detectors.

(c) Examine the present status of VO/VSLAM systems used in low-illumination

and textureless environments.

2. Investigate the feasibility of deploying UAV with VSLAM in confined and

low-illumination environments for autonomous visual inspection:

(a) Develop a simulation environment to mimic the scenario of UAV-based

autonomous visual inspection inside a pressure vessel.

(b) Evaluate the performance of the VSLAM algorithms and the VSLAM-

based autonomous UAV navigation system in the developed simulation

environment.

3. Tackle the challenge of the high computing resource demand when deploy-

ing deep learning-based corrosion detection algorithms on UAV onboard

platforms to achieve real-time and accurate corrosion detection:

(a) Develop a deep learning model with lower computing complexity com-

pared to other deep learning-based corrosion detectors in the literature.

(b) Conduct experiments to validate the developed model.

4. Investigate and address the issue of insufficient feature points that can be

extracted for feature-based VSLAM in environments with challenging illu-

mination conditions:
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(a) Develop a strategy for VSLAM to extract reliable and robust feature

points in environments with different illumination conditions.

(b) Conduct experiments to verify the developed VSLAM method.

5. Study and address the gap in extracting sufficient feature points in tex-

tureless and low-illumination environments for UAV onboard feature-based

VO/VSLAM.

(a) Develop a lightweight deep learning-based feature extractor for UAV

onboard VO systems:

(b) Conduct experiments to validate the UAV onboard deep learning feature-

based VO method.

6. Conclude research findings and provide suggestions for future work.

1.2 Research Methodology

1.2.1 Introduction

Research can be defined as a systematic process carried out with a specific ob-

jective, which aims to explore and discover new knowledge [45]. This definition

suggests that research is founded on logical relationships rather than just beliefs.

The research methodology can be defined as how the research is approached, tak-

ing into account philosophical and theoretical assumptions and their influence on

the research [45]. However, some researchers use the term ”methodology” syn-

onymously with ”methods” [46]. The definition of research methodology in [47] is

“the entire framework or design of the research: the choice of paradigm, methods,

and tools or technique”, and it is used in this thesis. A research methodology
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can be determined by the chosen techniques and the ways they are applied to the

research process.

The choice of research methodology relies on the research subject, the re-

searcher’s interests, as well as the adopted philosophy [48]. This procedure is

guided by the employed philosophies in order to carry out the research. The

research philosophy and methodology determine the choice of research strategies

and methods [48]. The relationship between philosophical worldviews, strategies

and research methods is shown in Fig. 1.3. Research design connects research

philosophies and the research strategy. However, philosophical worldviews deter-

mine the research strategy and the adopted research methods.

Figure 1.3: The relationship between philosophical worldviews, strategies and research
methods (Adapted from [2]).

In the tradition of science, two primary research philosophies are acknowl-

edged: positivism and interpretivism [49]. Positivists believe that reality is sta-

ble and can be observed and described objectively [50]. Positivism highlights

measurement and rationality, asserting that knowledge is derived from objec-
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tive and quantifiable observations of events or actions. Therefore, in positivist

research, data collection and interpretation are carried out in an objective way.

Positivism is closely associated with the utilisation of quantitative data collection

techniques [51]. Interpretivism is founded on the belief that reality is subjective,

multiple and shaped by social construction [52]. Therefore, the understanding of

reality is limited to individual’s personal experiences, which may vary from some-

one else’s, and it is influenced by the individual’s historical and social viewpoint.

Interpretive approaches utilise questioning and observation to uncover or develop

a comprehensive understanding of the investigated phenomenon. This is closely

related to qualitative methods of collecting data [53].

This thesis aims to investigate the advanced localisation and corrosion detec-

tion solutions to assist the UAV to perform visual inspection tasks autonomously.

Therefore, positivism is chosen as the research philosophy, and quantitative re-

search is designed and conducted. Quantitative research is a method for testing

objective theories by exploring the relationship among variables [54]. These vari-

ables are usually measurable, allowing for the analysis of numerical data through

statistical methods. In this thesis, the data are collected and analysed through

the following approaches:

The literature review forms the foundation of the research [45]. Therefore, a

comprehensive literature review was conducted in Chapter 2 to assess the current

state of relevant studies. The insights gained from this review were then utilised

to identify research gaps and refine the scope of this thesis.

Simulation aims to analyse the behaviour of a complex system [55]. Simula-

tion is employed in scenarios where analytical problem-solving is typically chal-

lenging and often involves random variables. The UAV autonomous navigation

9



Chapter 1. Introduction

system used in this thesis consists of different components, such as localisation,

controllers, and so on. This work focused on investigating the performance of

the VSLAM-based localisation module. Therefore, simulation was deployed to

analyse the feasibility of the VSLAM-based autonomous aerial system (Chapter

3). However, creating a simulation that closely mimics real-world events can be

challenging.

Laboratory experiments identify the precise relationships among a small num-

ber of variables in a designed and controlled laboratory environment [56]. The

data is collected and analysed using quantitative analytical techniques with the

aim of formulating generalisable statements that can be applied to real-world sce-

narios. The major weakness of laboratory experiments is the ’limited extent to

which identified relationships exist in the real world due to oversimplification of

the experimental situation and the isolation of such situations from most of the

variables found in the real world’ [49]. Therefore, data collected from real-world

environments were used to test the performance of the developed algorithms, and

laboratory experiments was employed in Chapters 4, 5 and 6.

1.2.2 Research process

The research can be conducted by the guidance of the research philosophy and

methodology. The research process used in this thesis is shown in Fig. 1.4, which

is adapted from [57]. There are a total of six steps included in the research

process:

(1) Identifying the research problem;

(2) Comprehensive literature review including concepts, theories and previous
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is

Figure 1.4: Research process (adapted from [57])

research findings;

(3) Developing the hypothesis;

(4) Conducting the research design;

(5) Carrying out the research and analysing the results;

(6) Preparing the thesis to report the results.

Instead of adhering to a rigidly specified schedule, these activities continually

overlap. Moreover, the initial step dictates the achievement of the last step that

has to be reached. Serious problems may occur and the study might not be

finished if later procedures were not considered in the beginning phases.

1.2.3 Research Questions

Research questions are questions that the research project sets out to answer.

Identifying proper research questions is an essential process of effective research.

To conduct the research on autonomous corrosion detection and robust UAV

localisation, the following research questions were identified for this thesis.

1. Is it feasible to deploy UAVs equipped with VSLAM technology into con-

fined and low-illumination environments for autonomous visual inspection tasks?
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2. How to tackle the challenge of high demand for computing resources in

deploying the deep learning-based detector on the UAV onboard computer to

achieve real-time and accurate metallic corrosion detection?

3. How to address the issue of poor performance in UAV onboard VO/VSLAM

systems in complex environments, particularly in scenarios under low-light or

overly bright conditions, as well as textureless conditions where a sufficient num-

ber of feature points cannot be extracted?

Each of these questions has been proven difficult to address when applied

to relevant existing work in literature that provides an existing solution to the

UAV inspection scene. By addressing these research questions during the devel-

opment of solutions to corrosion detection and UAV localisation, the presented

efficient corrosion detection algorithm and robust VO/VSLAM systems success-

fully achieve the aim of this research while extending the state-of-the-art UAV

autonomous visual inspection scenario.

1.2.4 Literature Review

A summary of previously published works on a certain topic can be called a ”lit-

erature review” [45]. It grasps the literature and demonstrates prior knowledge of

the targeted research area. To address the research questions mentioned above,

comprehensive literature reviews about sensors and robotic platforms for inspec-

tions, vision-based corrosion detection systems, UAV positioning techniques and

principles of Convolutional Neural Networks (CNNs) are carried out and pre-

sented in Chapter 2.
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1.2.5 Research Hypotheses

The research hypothesis is “a statement about the expected outcome of a study”

[58]. It is a predictive statement about the expected study outcome. The research

hypothesis for the feasibility of deploying autonomous UAV into the confined low

illumination environment with VSLAM is that through the improvement of the

feature extraction capability of VSLAM, the autonomous UAV can track the

predefined trajectory to collect visual data. The research hypothesis for the

corrosion detection task is that through the lightweight model design, the deep

learning-based corrosion detector can accurately identify different categories of

corrosion under different environments and obtain real-time results with UAV

onboard platforms. The research hypothesis for the UAV localisation component

is that by improving the feature extraction capability, the VO/VSLAM algorithms

can deliver reliable localisation performance in complex environments, especially

in challenging lighting environments and textureless scenarios.

1.2.6 Research Design

To test the above research hypothesis, research solutions are created and formu-

lated. A customised simulation environment is developed to prove the effective-

ness of the autonomous visual inspection with the improved VSLAM. Advanced

deep learning-based techniques are adopted and optimised for the UAV onboard

corrosion detector to accomplish accurate and efficient corrosion detection. To de-

ploy the UAV into the challenging lighting environment, a novel VSLAM approach

that owns the adaptive image enhancement and feature extraction capabilities has

been developed. To further improve the robustness of the VO/VSLAM system

in the textureless and challenging lighting environment, the deep learning-based
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feature point extraction method has been optimised and implemented into the

VO framework. Both public datasets and physical experiments are utilised to

verify the proposed approaches.

1.2.7 Research Execution and Analysis

Both the software and hardware are designed and utilised to conduct the simu-

lation and experiments to assess proposed solutions. Specifically, a customised

simulation environment has been designed to verify the feasibility of the UAV

with VSLAM for autonomous visual inspection in challenging indoor environ-

ment. A novel deep learning-based accurate UAV onboard corrosion detector, a

improved traditional VSLAM for the low-contrast environment and a optimised

deep learning feature-based VO systems have been developed. A quadrotor with

onboard computing platforms is set up, and the public dataset and experimental

settings are configured. The experimental results are collected and analysed to

reveal their benefits, shortcomings and potential improvements.

1.2.8 Thesis Writing

To summarise the entire research and deliver the findings to more audiences, the

research outcomes and contributions are described in-depth in this thesis and

additional research publications.
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1.3 Contributions

To accomplish the previously outlined objectives, the contributions of this thesis

can be summarised as follows:

• The feasibility of deploying the UAV with VSLAM to achieve autonomous

visual inspection in confined and low-illumination indoor environments has

been proven through a customised simulation environment for the first time.

• The issue of high demand for computing resources when deploying deep

learning-based corrosion detection on the UAV onboard computer caused

by extensive usage of traditional convolution layers is addressed through

lightweight model design. It is achieved through lightweight convolution

utilising Depthwise Separable convolution (DSconv), innovative feature ex-

traction and fusion techniques leveraging the Convolutional Block Atten-

tion Module (CBAM) and the proposed improved Spatial Pyramid Pooling

(SPP), refined detection strategies incorporating three-scale detections, and

an optimised learning approach using the focal loss.

• The challenge of extracting sufficient feature points in low-contrast envi-

ronments for the VSLAM system is addressed through an image contrast

based adaptive Features from Accelerated Segment Test (FAST) threshold

and image contrast enhancement from the perspective of image contrast and

sharpening.

• The challenge of extracting sufficient feature points in low-contrast and

textureless environments for the UAV onboard VO/VSLAM system is ad-

dressed through the adoption of the deep learning-based feature point ex-

traction method with the lightweight model. The advancement is achieved
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by incorporating DSconv and the Deformable Convolution (DFconv), whose

kernel offsets are calculated through DSconv, to extract feature points in the

challenging environment.

1.4 Thesis Organisation

To present the preceding contributions, the rest of this thesis is divided into six

chapters as follows:

Chapter 2 reviews different types of robot platforms for infrastructure inspec-

tion (objective 1(a)). Besides, the corrosion detection systems (objective 1(b))

and UAV localisation techniques (objective 1(c)) are also surveyed. The principles

of CNN have also been introduced. The limitations of the current state-of-the-

art approaches are identified, and the knowledge gaps are also discussed in this

chapter.

Chapter 3 evaluates the feasibility of deploying the UAV in confined and

low-illumination environments with VSLAM to perform the autonomous visual

inspection task. Specifically, a simulation environment was developed to evaluate

the feasibility of deploying the UAV with VSLAM to achieve autonomous visual

inspection of the inside of the pressure vessel (objective 2(a)). Moreover, a basic

vision-based UAV autonomous inspection scheme in the low-illumination envi-

ronment is developed and verified (objective 2(b)). The overall structure involves

four parts: the UAV platform to execute the flight command; the visual localisa-

tion module to obtain the UAV position in the dark environment; the waypoint

controller to calculate the desired position and the position tracking controller to

generate the control signal.
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Chapter 4 focuses on addressing the problem of detecting corrosion accurately

and efficiently with the UAV onboard computing resources. A novel deep learning-

based accurate metallic corrosion detection algorithm has been developed, which

is optimised for the UAV onboard platform to improve the inspection efficiency

(objective 3(a)). Extensive experiments are carried out to verify the performance

of the corrosion detector (objective 3(b)).

Chapter 5 presents a novel VSLAM system to localise the robot in the complex

illumination environments. Efficient image enhancement and adaptive feature

extraction threshold are presented and embedded into the VSLAM framework to

overcome the problem caused by the unideal lighting conditions (objective 4(a)).

The performance of the developed VSLAM has been validated through extensive

experiments (objective 4(b)).

Chapter 6 describes a deep learning feature-based VO system to handle envi-

ronments that are low-textured and challenging in lighting conditions (objective

5(a)). Experimental results show that the proposed system cannot only handle

the challenging scenarios that traditional feature-based VO and VSLAM systems

fail but can also be deployed on the UAV platform (objective 5(b)).

Chapter 7 concludes this thesis with a collective discussion of the research

findings derived from each of the studies in relation to the overall research and

provides suggestions for future research (objective (6)).
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Chapter 2

Literature Review

This chapter provides a solid foundation for the research questions and scopes

covered by this thesis. Thus, a basic review of the latest NDT techniques and

robotic platforms for inspecting assets in oil and gas companies is presented.

Inspection robots can make the inspection process more thorough and simpler

to perform. In addition, inspection robots improve data organisation and help

in lowering the cost of operations. Thus, deploying robotic systems to substi-

tute human engineers for accessing hazardous environments is the future trend.

Therefore, state-of-the-art robotic inspection solutions are reviewed. Based on

vehicle type, the inspection robots in the oil and gas industry can be divided into

the following categories: ROVs, AUVs, UGVs and UAVs. The ROVs and AUVs

are both Unmanned Underwater Vehicles (UUVs), so they will be covered in the

UUVs part. These robots have different mechanisms and structures for different

inspection tasks. Some of them are focused on inspecting oil storage tanks, while

some of them are designed for pipeline inspection. Nevertheless, most of them

need experienced engineers to manipulate them to conduct the inspection pro-

cess. Greater robot flexibility and autonomy levels can make the inspection more
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intelligent and efficient.

To comprehensively understand inspection robots in the oil and gas industry,

this chapter reviews the key technologies in different kinds of inspection robots,

discussing the challenges and highlighting the trends in future research that will

make the inspection process more efficient, intelligent and cost-effective. In par-

ticular, the key inspection solutions are surveyed and compared to identify their

advantages and limitations. Moreover, key technologies, especially for the UAV

deployed corrosion detection algorithms and localisation systems, which improve

the inspection efficiency, are reviewed to summarise their limitations and research

gaps.

2.1 Sensors and Robotic Platforms for Inspections

2.1.1 Inspection Methods and Sensors

For inspection purposes in the oil and gas industry, no single NDT solution works

for all defect detection solutions [59]. Therefore, a number of NDT sensors with

their appropriate inspection methods are used to detect corrosion and cracks.

According to different types of sensors, the most commonly applied inspection

technologies can be roughly divided into four classes, i.e., visual inspection, ul-

trasonic inspection, magnetic inspection and eddy current inspection.

Visual inspection is one of the most basic and common inspection means.

In the very beginning, experienced engineers used their naked eyes to check the

condition of assets [60]. But now, cameras have allowed the inspection robots

to pursue a view of the structure. Then, the structure will be reviewed by an
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experienced engineer remotely [61]. With the development of image processing

techniques, the image analysis process can be finished in an autonomous manner

[62]. Visual inspection is simple and one of the most straightforward inspection

techniques to perform. However, it is only suitable for detecting surface damage,

and the inspection quality is sensitive to illumination conditions [63].

Besides the visual inspection mentioned previously, the ultrasonic inspection

is another primary way found in literature. Ultrasonic sensors can emit and

receive ultrasound waves, which are propagated into the material. Cracks can be

detected by measuring the time difference between the generated and reflected

ultrasound [64]. There are many advantages to using ultrasonic sensors, such as

high accuracy, high sensitivity and suitability for monitoring all kinds of materials

[65]. However, it will not work when the defect lies along the line of the wave

travelling [66].

Magnetic sensitive sensors work with ferrous material assets [67]. After ap-

plying a magnetic field to these facilities, most of the magnetic flux lines will go

through these metal materials. If there is a defect, magnetic flux lines will be

bent. Some of the magnetic flux lines will leak out. The magnet sensitive sensors

can detect the magnetic leakage field. The detected signal can be analysed to re-

veal the changes in structure [68]. This method can realise high-speed inspection

and defects on both the external surfaces and subsurface [69]. However, it can

only work for ferromagnetic materials, and the sizes of defects detected are very

limited [70].

Eddy current inspection is similar to magnet sensitive inspection in some

ways. It uses eddy currents generated by coils. When there is a crack in the

structure, the eddy current will be altered. At the same time, the impedance of
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the coil will also be affected. Monitoring the change in impedance in the coils can

tell the condition of the facility [71]. This method is sensitive to surface defects

and can be used to inspect multilayer structures [72]. Nonetheless, it is very

susceptible to magnetic permeability changes and cannot detect defects parallel

to the surface [73].

Table 2.1: Comparison of different inspection technologies

Technology
Defect

location
Advantages Limitations

Visual inspection
[60] [61] [62] [63]

Surface
Easy to use;

good at finding
surface blemishes

Influenced by
the environment

easily;
subject to

operator’s skill

Ultrasonic testing
[64] [65] [66]

Surface;
internal

Sensitive to
detects; fast

Critical requirement
for surface condition;

difficult to inspect
complex structures

Magnetic testing
[67] [68] [69] [70]

Surface;
subsurface

Higher sensitivity
than ultrasonic

for ferromagnetic
materials

Limited to
ferromagnetic

materials; difficult
to measure
the defect

depth quantitatively

Eddy current
testing

[71] [72] [73]

Surface;
Subsurface

Low requirement
for the surface

condition

Influenced by
magnetic properties;

orientation of
probe during
scanning can
effect results

thermography
testing

[74] [75] [76] [77] [78]

Surface;
Subsurface

Fast; large
detection area

Influenced by
reflectance of
the surface

Infrared thermography testing uses thermal imaging cameras to visually repre-

sent surface temperatures of a facility to identify abnormal temperature patterns

that indicate possible defects [74]. Thermographic measurements can be con-
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ducted in either the active or passive mode. In passive mode, the camera records

the existing thermal profile emitted from the surface. On the contrary, the ac-

tive mode captures the surface temperature decay profile when subjected to an

external thermal stimulus for a certain duration [75]. There are no standard

baselines that can be used to identify abnormal temperature patterns. There-

fore, defect detection with passive thermography is often considered a qualitative

approach. In contrast, active thermography experiments are conducted under

controlled conditions. The type and amount of stimulation are specified, which

enables defect identification with quantitative analysis [76]. The infrared ther-

mography testing can inspect a large area efficiently, and the detection results

are intuitive [77]. Nevertheless, obtaining accurate results requires knowledge of

the target’s emissivity and reflective temperature [78].

The summary of these methods is listed in Table 2.1.

2.1.2 Unmanned Ground Vehicles for Facility Inspection

According to the shape and function of the onshore facilities in the oil and gas

industries, the equipment can be roughly divided into vertical structures and

pipelines. The vertical structures contain drilling, production and storage assets

such as flare stacks and tanks. Pipelines are primarily focused on transportation

purposes. To inspect these kinds of facilities, UGVs are the most popular choice

nowadays.
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Figure 2.1: (a) A magnetic adhesion robot [3], (b) a pneumatic adhesion robot [4], (c)
a cat insperied adhesive robot [5], (d) a gecko inspired robot [6].
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2.1.2.1 Vertical Structure Inspection

For inspecting vertical structures, wall-climbing robots have gained significant

interest. The climbing technologies are the main difference between these robots.

At the same time, the most important task in the design and development of a

climbing robot is to develop an appropriate mechanism to ensure that the robot

adheres to different types of walls and surfaces reliably without sacrificing its

mobility. According to the adhesion and locomotion principles, climbing methods

can be cauterised as magnetic adhesion, pneumatic adhesion, and bio-inspired

grasping grippers [79], as shown in Fig. 2.1.

Vertical structures in oil and gas companies are usually made of carbon steel.

Since this kind of material is ferromagnetic, magnetic adhesion can be highly

desirable in this kind of environment. There is a lot of work utilising magnetic

adhesion to inspect these facilities. One method is to use permanent magnets.

Such as [3], they selected high-strength permanent magnets as the adhesion mech-

anism, which can hold the robot firmly on the walls. Another advantage of these

methods is that robots do not need extra power for the adhesion mechanism.

In some circumstances, variable adhesion is required, and the speed of switching

required is high. Thereby, the electromagnetic adhesion mechanism will become

specifically applicable [80].

Pneumatic adhesion mechanisms are another widely used technology in ver-

tical structure inspection robots. The attraction force between the robot and

the wall is proportional to the pressure difference between the pressure chamber

or suction cups and the atmosphere. Unlike magnetic adhesion methods, which

can only work on ferromagnetic surfaces, the pneumatic adhesion mechanism is

suitable for a wider range of materials. Using suction cups is a very popular
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method. In [81], three suction cups, a supporting plate, a vacuum pump, and

some accessories were used to compose the suction module. The rover developed

in [4] was equipped with a vacuum adhesion mechanism as a fall protector while

performing inspection tasks.

There is also a variety of work adopting biomimetic adhesion methods to re-

alise excellent climbing robots. In [5], researchers developed a robot that consists

of four legs with gripping devices made of 12 fishing hooks. This robot can imitate

the movements of rock-climbers and the way cats hold surfaces when they climb

in the vertical direction. A gecko-inspired adhesive method was proposed in [6].

Inspired by the gecko toes, it used a rigid tile supported by a compliant material

and loaded by an inextensible tendon. This mechanism allowed the climbing part

to make full contact with the surfaces.

2.1.2.2 Onshore Pipeline Inspection

For onshore pipeline inspection robots, the style of locomotion is a vital part,

which can reflect the whole performance of the robots [82]. According to the

difference in driving source and control ability of movement mechanism, robots

can be sorted into the pig, wheeled, tracks, legged, inchworm, snake and screw

types [83]. Fig. 2.2 gives some examples of these kinds of robots.

The pig type [7] itself is a simple device which collects the data from the

pipeline. The pig carries out the inspection tasks along with the flow of oil or

gas. What is more, the pig has no driving mechanism and is driven through the

pipeline by oil or gas flow. The wheel type [8] uses wheels to touch the pipe

wall. It can easily adapt to various pipelines with springs. The track type [9] is

often treated as the alternative to the wheeled robot. The wheels are bounded

25



Chapter 2. Literature Review

Figure 2.2: (a) The pig type [7], (b)the wheel type [8], (c) the track type [9], (d) the
legged type [10], (e) the inchworm type [11], (f) the snake type [12], (g) the screw
type [13].

by the belt, which can enlarge the surface contact area and reduce the chances of

losing pipe wall contact. The legged type [10] uses legs to contact the pipe wall.

This type of robot can produce highly sophisticated motions and is suitable for

pipes with obstacles. The inchworm type [11] uses the traction generated by the

large force applied to the front or back module. Compared with other types of

inspection robots, it has an advantage in curved pips. Snake type [12] consists

of several identical body segments with joints, which allows it to generate a wide

range of different motions. The screw type [13] moves forward through the rotary

motion, achieving good performance in vertical pipelines.
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2.1.3 Unmanned Underwater Vehicles for Facility Inspection

Oil and gas companies have thousands of kilometres of pipelines and other assets

in the sea to produce and transport their products. These undersea structures can

easily develop corrosion and cracks since they are often made from metal materi-

als. In order to prevent financial and environmental disasters caused by leaking

products, these facilities need to be inspected frequently. ROVs and AUVs are ef-

fective and affordable platforms for performing underwater inspection tasks [84].

The inspection ROVs are operated by the surface operator. They are alternative

vehicles to human workers in conditions that are too deep and too dangerous for

human beings [85]. What is more, with the help of ROVs, inspection tasks can

be performed in 24 hours and 7 days. Due to these advantages, the oil and gas

companies have developed ROV technologies since the 1980s [29]. After that,

a large number of advanced ROVs with a group of sensors were used to carry

out inspection tasks, which varied in size and weight. These features of some

ROVs used for visual inspections are listed in Table 2.2. These ROVs consist of

Table 2.2: Features of some ROVs used for visual inspection

ROVs
Max
depth
(m)

Weight
(kg)

Forward
speed

(knots)

Size
(mm)

VideoRay pro 4 [86] 305 38.5 4.2 375, 290, 220
Novaray model 2000 [87] 305 25.5 6 1020, 997, 229

Falcon [88] 300 60 3 1000, 500, 600
Constructor 220 HP [89] 3048 4500 3.1 3220, 1700, 2165

Mojave [90] 300 85 3.5 1000, 600, 500

a vehicle body, control cabin, umbilical, video cameras, handling system, launch

system and power supplies. For the deep-sea inspection tasks, the main cost of

using an ROV is caused by the human operator. This cost can be reduced if these
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tasks can be performed autonomously. Based on the previous technologies and

economic constraints, using the AUVs may be a replacement for the ROVs for in-

spection purposes, and currently, it has gained great research interest. Compared

with ROVs, AUVs demand more accurate and efficient sensors, guidance systems

and algorithms for the execution of this kind of mission [91]. Authors in [92]

presented a Deformable Virtual Zones (DVZ) method that is a sensor-based con-

trol approach. It builds a model of a virtual zone around the robot. Once the

obstacles are detected by proximity sensors, there will be deformation, and the

control signal will be calculated by minimising the deformation in the DVZ. The

FlatFish project [93] utilised the asset layout-based navigation methods. Since

almost all of the underwater assets are connected together, they can be inspected

by following pipelines and tie-backs to reach the different parts of the facilities.

The sonar and camera are utilised to target and inspect the facilities. In [94],

image-processing technologies are adopted for the AUV’s navigation. At first,

it detects the pipeline corners in the captured image. After that, the obstacles

are identified by Hough Transform (HT), and velocity and angle values can be

calculated according to this information. Finally, the AUV can move along the

pipeline by itself and inspect these structures autonomously.

2.1.4 Unmanned Aerial Vehicles for Facility Inspection

UAVs equipped with relative sensors can work as an excellent alternative to

traditional inspection techniques [95]. It can not only save time but also lower

the cost. The North Sea E & P company conducted a survey and showed that

using UAVs to inspect assets can be twenty times faster and half the cost of

traditional inspection methods [96]. This kind of method has gained great interest
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in inspecting assets in the oil and gas industry. Until now, all the commercial

inspection UAVs are still manually controlled. During the inspection procedure,

the UAV will be controlled by one experienced pilot, while the live video for

inspection purposes will be monitored by another experienced inspection engineer.

Famous oil and gas companies in the world, such as BP, Shell, Apache, BG

Group and Statoil have cooperated with Cyberhawk, which is the world leader

in the drone inspection domain, to inspect their facilities. Intel Falcon 8 Plus

used by Cyberhawk has shown a reliable and efficient performance [97]. The

Intel Falcon 8 Plus has a patented V-shaped design with eight rotors, which

makes the UAV more stable and ensures an unobstructed data capture procedure.

By carrying three redundant inertial measurement units (IMUs) with efficient

data fusion technology, the flying system can perform reliable responsiveness and

stability during flights. The inspection module consists of an RGB camera and

a thermal camera, which helps the UAV navigate while capturing detailed data

for orthography and 3D reconstruction that can be used for inspecting the assets

and further analysis [98]. Thanks to the manoeuvrability and flexibility of the

small UAV, UAV has also started to be developed for confined indoor inspection

tasks to improve inspection efficiency and reduce cost [99]. The most notable

indoor inspection UAV is Elios [100], the first collision-tolerant drone developed

by Flyability. The diameter of the Elios is below 400mm. It is surrounded by a

carbon fibre shell, which can protect the body from a collision. When colliding

with the obstacles, the UAV will bounce off and roll along the surface to find the

path. It has been widely utilised for indoor facility visual inspection by oil and

gas companies.

For UAV inspection, one UAV needs two experienced human engineers, one

in charge of operating the UAV and another responsible for identifying defects
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from captured image sequences. If the inspection tasks can be performed au-

tonomously, the inspection procedure can not only be speeded up but also im-

prove cost efficiency by reducing engineering labour fees and minimising accidents

due to human operation errors. The Petroleum Institute of Abu Dhabi has de-

veloped a UAV autonomous tracking and navigation controller for inspecting

straight oil and gas pipelines [32]. Their autonomous procedure consists of four

parts: Firstly, the gradient of Gaussian is used to extract the edge of the object in

image sequences. Secondly, the HT is implied to identify the pipeline. After that,

a Proportional–Integral–Derivative (PID) controller is designed to achieve angu-

lar and lateral correction, which ensures the position and orientation of the UAV

are aligned with the pipeline. Finally, automated navigation along the pipeline

is realised.

2.1.5 Key Findings

Through the comparison of different sensors and relevant techniques for inspec-

tion discussed above, each sensor has its own advantages and drawbacks. When

choosing the proper sensor for inspection robots, the application scenario and

constraints need to be taken into consideration. Visual inspection is one of the

most basic and popular methods to determine the surface condition, and it can

be performed with only one camera by the robotic platforms. As a result, it is

chosen as the inspection technique to be discussed in this thesis.

In addition, three kinds of inspection robots in the oil and gas industries have

been surveyed. Among these robots, autonomous UAVs are efficient alternatives

to UGVs. Similarly, AUVs are more efficient than ROVs to perform repeated

close-distance visual inspections [93]. The UAVs and AUVs perform the inspec-
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Figure 2.3: Framework of UAV-based autonomous visual inspection

tion tasks autonomously, which reduces costs for the oil and gas industries. What

is more, with the development of indoor localisation, intelligent control strategies

and path planning methods, the autonomous navigation performance of UAVs

and AUVs can still be further improved. The autonomous inspection will also

come true with the help of advanced computer vision algorithms. The survey

shows that the maturity level of autonomous inspection UAVs and AUVs will be

developed, considering the robustness and reliability. The autonomous UAVs and

AUVs for inspection do not need human interaction, which can further reduce

the operational cost and time-consuming [33]. In this thesis, the UAV will be

utilised as the autonomous visual inspection platform.

The schematic of a UAV-based autonomous visual inspection system should

consist of localisation, control, path planning and defect detection. This thesis

will focus on the localisation and defect detection parts. Considering the limited

payload capability of the UAV, the visual sensor used for inspection can also

be applied for the localisation purpose. Therefore, the VSLAM systems, which

do not require previous knowledge of the environment, have the potential to be
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Figure 2.4: Different of the workflow of the traditional corrosion detector (a) and deep
learning-based corrosion detection approaches (b).

deployed for UAV indoor autonomous visual inspection [101]. In conclusion, the

autonomous visual inspection framework utilised in this thesis is depicted in Fig.

2.3. In particular, this thesis focuses on the process of using sensor data to locate

the UAV and identify corrosion defects.

2.2 Vision-based Corrosion Detection Systems

Without the autonomous corrosion detection system, an additional expert engi-

neer is required to monitor the picture sequences collected by the UAVs resulting

in an expensive visual inspection procedure. Thus, to realise a fully autonomous

inspection system to reduce the labour cost further, the ability to detect corro-

sion and cracks autonomously is essential. Owing to there is not so much research

focused on developing corrosion detection systems for the UAV platform, both

the pure image processing techniques focusing on corrosion detection and the
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UAV-deployed defects detection algorithms are reviewed in this section.

To detect corrosion from captured images, both traditional approaches and

deep learning-based algorithms can be utilised. The main difference between

traditional corrosion detection algorithms and deep learning-based corrosion de-

tectors is depicted in Fig. 2.4. For the traditional corrosion detectors, the features

to determine the crack regions are defined and selected by experienced engineers.

On the contrary, deep learning-based methods automate the learning of feature

sets from the given input dataset. Thereby, based on the feature extraction and

selection methods, corrosion detectors can be classified into traditional algorithms

and deep learning-based methods. Additionally, the types of corrosion suitable

for visual inspection are also introduced.

2.2.1 Types of Corrosion for Visual Inspection

Figure 2.5: Corrosion images (adapted from [14]). (a) Galvanic, (b) crevice, (c) pitting,
(d) dealloying, (e) exfoliation and (f) erosion.

Corrosion is commonly defined as the degradation of a material, typically a

metal, or its properties due to a reaction with the surrounding environment [102].

In order to identify metallic corrosions through visual inspection, it is necessary
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for corrosions to be observed on the surface. In addition, their sizes need to

be large enough to be detected by ordinary visual sense. Based on the visual

characteristics of corrosions, there are six types suitable for visual inspection,

namely galvanic, crevice, pitting, dealloying, exfoliation, and erosion [14]. Fig.

2.5 shows the six types of corrosion.

Galvanic corrosion occurs on the metallic surface at discrete portions by an

anodic portion and a cathodic portion [103]. Galvanic corrosion describes the

corrosion of one metal over another when they are in electrical contact, partic-

ularly in the presence of a suitable electrolyte. Crevice corrosion arises near a

crevice between two joining surfaces. Crevice corrosion results from differences

in oxygen concentrations between the inside and outside of the crevice. [104].

Pitting corrosion happens within small areas on the metallic surface. These areas

are covered with impurities or water and have a lower concentration of oxygen,

causing them to function as the anode, while the surrounding areas serve as the

cathode. As a result, the metal undergoes dissolution through the electrochemical

mechanism [105]. Dealloying mainly occurs in alloy metals, and its mechanism

is similar to difference of materials in the galvanic series. One of the alloying

elements serves as the anode, while the others act as the cathode. When they

are exposed to an electrolyte, an electrochemical reaction is initiated. As a con-

sequence, the reactive components are lost, and the alloy metal preserves the

corrosion-resistant elements in a porous state [106]. Exfoliation corrosion takes

place when corrosion spreads along intergranular pathways parallel to the mate-

rial surface. This action causes a wedging effect that separates metal layers [107].

Erosion results from the relative movement between metal surfaces and corrosive

fluids. When the fluid contains solid particles that are harder than the affected

metal surface, erosion occurs due to the combined effects of corrosion and abra-
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sion. Conversely, when the fluid contains particles softer than the metal, erosion

occurs as a result of corrosion and attrition [108].

2.2.2 Traditional Algorithms for Corrosion Detection

Colour, as one of the most basic and popular features, is widely used for com-

puter vision tasks. A colour-based corrosion detector was proposed in [15], and

a classifier was trained to classify corrosion by adopting a codeword dictionary

consisting of the stacked histogram for red, green and blue colour channels. Util-

ising colour information for corrosion detection was further investigated in [109].

As Hue-Saturation-Value (HSV) values of corrosion areas are confined to the hue-

saturation plane, they utilised a classifier that works over HSV space to recognise

corrosion. Shapes and sizes of corrosion were applied to detect and classify the

pitting corrosion in [16]. The texture analysis for corrosion detection was pro-

posed in [17]. In their theory, based on image colour, Grey-Level Co-occurrence

Matrix (GLCM) and grey-level run lengths, 78 features were extracted from the

corrosion area. After that, a decision boundary for classifying corrosion images

was constructed by the Support Vector Machine (SVM). In [110], the texture

analysis was utilised for pitting corrosion detection. Statistical measurements

of colour channels, GLCM and local binary patterns were computed to charac-

terise the properties of the metal surface, and 93 texture features were obtained.

The SVM was then employed to detect the pitting corrosion. However, these

traditional approaches require previous knowledge about corrosion and its opti-

mal features. Some features used for corrosion detection are shown in Fig. 2.6.

Moreover, determining optimal features of corrosions is still challenging [111].
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Figure 2.6: Features used for corrosion detection or classification. (a) Codeword con-
sisting of red, green and blue stacked histograms [15]; (b) Diagram used for pit geometry
classification [16]; (c) Feature extracted for corrosion identification [17].

2.2.3 Deep Learning-based Methods for Corrosion Detection

Deep learning-based methods, especially CNNs, have made many breakthroughs

in computer vision tasks [112]. The CNNs can extract features autonomously for

all kinds of objects, which is more accurate and robust than traditional hand-

designed features [113], such as edges and shapes. It has led to significant im-

provements in many vision inspection tasks. Several studies on high-accuracy

corrosion detection with CNNs have already been proposed.

Researchers finetuned a CNN network to classify and identify the corrosion

position through the sliding window technique [37]. The results indicated that

the use of a CNN was shown to outperform the previous state-of-the-art corrosion

detection approach where wavelet features were used. Based on corrosion levels,
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a custom designed CNN was utilised classify oil and gas pipeline images. Then,

the recursive region-based method was proposed to locate corrosion regions. Ex-

perimental result showed that the classification accuracy of the customised CNN

was 98.8% [36]. Du et al. [114] proposed a two-parallel CNN architecture to

extract corrosion features, and these features are classified by the SVM. Com-

pared with the traditional corrosion detection methods, this study fills the blank

of detecting the corrosion degree of the grounding grid by the image method.

Apart from the aforementioned approaches, there are also some other works that

adopt CNN-based object detection approaches to locate corrosion directly. Faster

Region-based Convolutional Neural Network (Faster R-CNN) [115] was trained

by 1737 images to detect steel corrosion and bolt corrosion in [116]. It overcame

the challenge of determining the window size when utilising traditional sliding

window methods to localise the damage. Li et al. [117] modified the You Only

Look Once (Yolo) [118] architecture to 27 convolutional layers to detect corrosion

of flat steel. The defect detector reached a performance of 99% defect detection

rate with a speed of 83 FPS. The rust was detected through the improved Single

Shot multibox Detector (SSD) [119] in [120]. Specifically, the backbone of the

SSD was modified and the attention mechanism was adopted. As a result, the

detection accuracy of the proposed method reached 90.2%. Andersen et al. [121]

added a regression head to Faster R-CNN to detect corroded areas of vessels, and

mAP of the corrosion detection was 49.8%. Multiple structure defects was de-

tected by the Faster R-CNN with the modified base network, and the detection

result reached 93.11% mAP. The backbone of Faster R-CNN was improved to

detect structure defects [122]. The DEA RetinaNet [123], which adopted differ-

ence channel attention and adaptively spatial feature fusion to RetinaNet [124],

was developed to identify steel surface defects, and it achieved 78.25% mAP. The
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mAP of the defect defection results was 93.31%. Li et al. [125] used the Faster

R-CNN to detect defects on aluminium surface, and the mAP of 79.49% was

achieved.

2.2.4 Key Findings

Based on the visual characteristics of corrosion, there are six types suitable for

visual inspection, namely galvanic, crevice, pitting, dealloying, exfoliation, and

erosion. However, as shown in Table 2.3, different researchers reclassified the

corrosion into different categories.

Then, corrosion detectors were proposed to detect corrosion in digital images.

The traditional corrosion detectors aim to investigate the basic common features

of corrosion areas, such as colour or texture information. With these features

obtained, the whole image can be divided into small patches and classified as a

corrosion area or a normal area. However, without prior knowledge about the

corrosion area and the correct selection of features, the performance of these

detectors degenerates significantly, and their performance is influenced by the

environment dramatically [111].

Deep learning-based corrosion detectors learn the appropriate features au-

tonomously. These studies have shown that deep learning-based corrosion detec-

tors outperform traditional corrosion detectors towards detection accuracy [37]

[114]. As a result, the inspection quality will improve. The summary of deep

learning-based detectors for corrosion visual inspection is listed in Table 2.3. If

the required information is not presented in the publication, it will be repre-

sented as Not Applicable (N/A). Tera Floating Point Operations Per Seconds

(TFLOPS) for single-precision floating-point format data, which represents the
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computing speed of the Graphics Processing Unit (GPU), is utilised to indicate

the computing performance of the GPU.

Table 2.3 shows that there is a lack of consistency when it comes to reporting

the performance of inspection systems. The corrosion has been classified to differ-

ent types by different researchers, and the number as well as the quality of images

are also varied in different studies. In addition, different researchers use different

matrices to measure corrosion detectors’ performance, such as accuracy, F1 score

and mean Average Precision (mAP). In addition, there is no human inspector

performance reported in the literature, especially for oil and gas facility visual

inspection. The Faster R-CNN, SSD, Yolo and RetinaNet are popular baseline

models used in the literature, and the mAP is the most popular evaluation ma-

trix. Among these models, the mAP obtained by RetinaNet will be considered

as the baseline in this thesis due to its high mAP in many studies [126] [127].

Moreover, existing work only focuses on improving detection accuracy with-

out consideration of UAV onboard applications. Their networks contain a large

number of standard convolutions, resulting in high computational complexity. As

shown in Table 2.3, the high-end GPUs are required to obtain real-time corrosion

detection (at least 20 FPS [39]). Nvidia Jetson TX2 [128], which is one of the

most popular UAV onboard computers [129], only has a constrained performance

of 0.67 TFLOPS. For this reason, these approaches cannot be applied to UAV

onboard platforms directly.
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2.3 UAV Positioning Techniques

Robots need to know where it is before they can perform tasks autonomously.

Thus, autonomous localisation is the basic requirement for autonomous naviga-

tion [130]. However, in the asset inspection scenario, electromagnetically guided

localisation systems such as the GPS [131] are extensively utilised in the outdoor

environment. In indoor inspection scenarios, vision-based localisation and nav-

igation systems have become popular these days, considering the relatively low

requirements and easy deployment of cameras [132]. VSLAM algorithms pro-

cess the images captured by the onboard camera to locate the robot, estimate

its state, and simultaneously build a map of the surrounding environment. In

addition, the VSLAM approaches do not require prior knowledge of the environ-

ment. These features make it suitable for visual guide systems [133]. Related

work has proven the reality of leveraging VSLAM to develop robotic autonomous

navigation systems. For instance, the graph-based VSLAM approach has been

deployed in UAVs and AUVs to realise robot localisation in [134]. Thereby, in

this part, the survey mainly focuses on introducing the GPS and VSLAM-related

works.

2.3.1 Global Positioning System

GPS is the most common type of global navigation satellite system, and it consists

of 26 satellites to provide 3D information for the receiver. The GPS system was

developed by the Department of Defence in the USA. To provide the position

for the UAV, GPS should be in contact with at least 4 satellites simultaneously

[135]. It is one of the most popular localisation techniques for UAVs in outdoor
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environments.

According to the report presented in [136], the global average position domain

accuracy of the GPS is less than 1.665m in the horizontal direction and 3.603m in

the vertical direction, which is not precise enough for UAV close inspection tasks.

Therefore, the use of real-time kinematic devices or post-processing kinematic

systems nowadays for UAV outdoor navigation is the most popular solution,

owing to their accuracy, which ranges between 20 mm and 50 mm [137]. Although

these filter-related technologies are one of the best options on the market for UAV

position estimation in outdoor environments, they can be very expensive due to

the amount of equipment needed.

Meanwhile, GPS signals are voluble due to the possibility of being blocked

temporarily by buildings during outdoor applications [138]. Thus, lots of re-

search adopts filtering techniques to improve the robustness of UAV localisation.

In [139], an Extended Kalman Filter (EKF) was applied to estimate the location

of those UAVs temporarily losing their GPS connection. The EKF could also be

used to fuse information from other sensors, such as inertial navigation sensors,

to compensate for the GPS system. According to the trajectory following results

presented in [140], the error was around 2.5m. The state-dependent Riccati equa-

tion nonlinear filtering was proposed in [141]. It aimed to solve problems related

to linearisation, which pose problems for EKF when fusing GPS and inertial data

for UAV localisation.

However, in some inspection scenarios, the UAV needs to be deployed in indoor

environments such as inside pressure vessels or tanks. Thus, the localisation

methods for UAVs in GPS-denied environments should also be developed.
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2.3.2 Vision-based Localisation Systems

To substitute the GPS system, a lot of localisation methods based on the Light

Detection and Ranging (LiDAR) sensor, time-of-flight sensor and visual sensors

have emerged. Due to the stable performance in varied lighting environments

and precise results, there are some works that adopted the LiDAR to the UAV

platforms [142] [143]. However, the high cost and massive weight still cannot be

ignored for small UAV platforms. The ultrasonic and ultra-wideband sensors are

light and cost-efficient for UAV localisation in confined spaces. Nevertheless, the

requirement for deploying the auxiliary anchor nodes restricts their applications.

With the development of the Simultaneous Localisation and Mapping (SLAM)

technology and the capabilities of texture obtained from cameras, the usage of

cameras as the input sensors for SLAM is blossoming. Thus, in this section,

the survey will mainly focus on the VSLAM technologies, especially VSLAM

approaches for low-contrast or textureless environments. Specifically, the VSLAM

systems are classified as traditional VSLAM systems and deep learning feature-

based VSLAM approaches based on whether deep learning-related features have

been utilised in the VSLAM system. The basic theory and related work will be

presented in the following parts.

2.3.2.1 Theory of Visual Simultaneous Localisation and Mapping and ORB-

SLAM3

VSLAM is an advanced technique for robot environment perception with camera

information. The primary purposes of this approach are to address the issue of

camera localisation and perceive the layout of surrounding objects [144]. Based
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Figure 2.7: The standard architecture of VSLAM (adapted from [18])

on [18], the general schematic of the VSLAM is depicted in Fig. 2.7. Rather

than being just one algorithm, VSLAM is more of a notion. The front end and

the back end are the two primary parts of the VSLAM system. The VO, also

known as the front end, calculates the mobility of the camera between frames and

the location of landmarks. The back end serves as the optimisation procedure,

and it optimises camera posture as determined by the visual odometer at various

times. The loop closure process determines whether the robot has arrived at a

previously visited place. Finally, according to the trajectory and surrounding

objects captured by the camera, a map will be constructed to represent them.

VSLAM is a subset of SLAM that incorporate the camera as the input sensor.

mx
x

xx

y

y

y

y

ny

Figure 2.8: The pipeline of SLAM

According to [18], a common formulation of SLAM will be introduced in the

following part. As demonstrated in Fig. 2.8, a robot moves in an unknown
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environment. The location of the robot is represented by X = xk : k = 1, ...,m,

and the poses of landmarks observed by the sensor are Y = yi : i = 1, ..., n. The

pose of the robot at the moment k can be calculated through motion equation:

xk = fmot(xk−1,uk,wk) (2.1)

where fmot represents the motion model. uk is the estimated sensor movement,

and the measurement noise for the camera movement is indicated by wk. With

the assumption that the landmark yi can be observed at the moment k, the obser-

vation data zk,i, which describes the charismatics of landmarks, can be formulated

through the observation equation.

zk,i = hobs(yi,xk,vk,i) (2.2)

where hobs demonstrates the observation model, and vk,i indicates the measure-

ment noise for landmarks. The motion equation describes the relationship be-

tween sensor movement, while the observation model describes the relationship

between the sensor and landmarks. Based on practical applications, the vk,i and

wk can be modelled in a Gaussian, non-Gaussian or mixed distribution. The

fundamental mathematical model of SLAM is made up of motion equation and

observation equation. This state estimation problem can be addressed by using

a filter or nonlinear optimisation techniques.

An example is provided to show what the format of fmot and hobs might

be. Assuming a 2D scenario, a uniform motion model is used to estimate the

movement of the sensor, and the sensor pose xk consists only position [xx, xy]
T
k .

The movement between timestamp k − 1 and k is represented by [∆xx,∆xy]
T
k .
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Then, the motion equation can be reformulated by:

xx
xy


k

=

xx
xy


k−1

+

∆xx

∆xy


k−1

+ wk (2.3)

At the same time, a landmark yi at position [yx, yy]
T
k is observed by the sensor. If

the observation data zk,i obtained from the sensor is relative distance of xk and yi,

and it is represented by dk,i. Then the observation equation can be represented

by:

dk,i =
√

(yx,i − xx,k))2 + (yy,i − xy,k)2 + vk,i (2.4)

Based on the basic theory mentioned above, lots of VSLAM systems have been

developed. The ORB-SLAM3 [19] is claimed as the most robust VSLAM system

in the literature. As shown in Fig. 2.9, it has three main threads, i.e., tracking,

local mapping and loop and map merging. Besides, it utilises the multi-map

technology named Atlas to improve the robustness of the system.

Tracking thread: The tracking thread processes each frame of the video.

Firstly, it will initialise the system with the first frame that contains sufficient

feature points. Then, the system starts tracking the pose of the current frame.

When the tracking fails, the relocation function is activated to relocate the current

frame among all the maps. If being relocated, the corresponding map becomes

the active map. Otherwise, a new active map is created while all other maps

are stored in the Atlas as non-active maps. The bundle adjustment is applied

to process the active map points to minimise the reprojection error and optimise

the pose of the current frame. If the current frame meets certain conditions, it

will be selected as a keyframe.
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Figure 2.9: The structure of the ORB-SLAM3 (adapted from [19])

Local mapping thread: Keyframes generated by the tracking thread are

sent to the local mapping thread. The newly added keyframe and corresponding

map points are inserted into the active map. A local bundle adjustment is per-

formed to optimise the poses of map points and keyframes. To maintain the size

of the map, the redundant map points and keyframes will be deleted.

Loop and Map Merging Thread: The input of this thread is the refined

keyframes by the local mapping thread. It detects the overlap scenes between

the active map and the Atlas. If it exists in different maps, the active map and

matching map will be merged as a new active map. Otherwise, the loop closure is
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utilised in the active map. When the loop correction is finished, an independent

thread executes a global bundle adjustment to reduce the accumulated drift error.

Atlas: The Atlas is a multi-map representation that contains all non-active

maps in the ORB-SLAM3. The active map is utilised by the tracking thread to

locate the incoming frames. All other maps are treated as disconnected maps

and stored in the Atlas. When the system re-enters the mapped scene, the active

map will be merged with the relative non-active map.

2.3.2.2 Traditional VSLAM Systems

Depending on whether image feature extraction and matching are needed, these

methods can be grouped into two categories, i.e., feature-based methods and

direct methods. In terms of direct VSLAM methods, some works have been

done towards complex lighting environments. Extensive experiments have been

conducted to verify direct VSLAM systems towards changing illumination envi-

ronments in [145]. Experiments showed that most direct VSLAM systems failed

due to abrupt illumination changes while the brightness constancy assumption

was adopted. Sun et al. [146] combined the RGB channel linearly to compen-

sate for the lighting changes. In [147], illumination changes were modelled for

affine lighting correction. Thereby, the illumination invariance was handled for

the direct VSLAM system. As these methods still rely on the brightness con-

stancy assumption, direct VSLAM systems still cannot handle complex lighting

environments.

In recent years, some advanced feature-based VSLAM systems have emerged,

and they are suitable for embedded computing platforms due to the sparse points

utilised for pose estimation [148]. To overcome the challenges caused by the
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unideal lighting conditions, image enhancement has been widely utilised to han-

dle the challenging lighting environment. The Histogram Equalisation (HE) was

adopted for the HE-SLAM, which improved the contrast of captured low-contrast

images in [149]. Compared to the ORB-SLAM2 [150], the HE-SLAM was more

robust in a harsh environment. However, the HE is significantly affected by back-

ground noises. To improve the robustness of the HE-SLAM, Yang et al. [151]

adopted the Contrast Limited Adaptive Histogram Equalisation (CLAHE) algo-

rithm to the ORB-SLAM2 framework. The trajectory generated by this method

was closer to the ground truth than that calculated by the HE-SLAM and ORB-

SLAM2. The Dim-light Robust Monocular SLAM (DRMS) was proposed in [152],

which utilised the linear transformation and CLAHE algorithms as the image pre-

processing to enhance the brightness and contrast of input images. After that, the

performance of the proposed VSLAM in the dim-light conditions was improved.

However, the CLAHE algorithm calculates the neighbourhood histogram for each

pixel and performs histogram equalisation processing for sub-regions of the image,

which is computationally expensive [153]. Meanwhile, the aforementioned meth-

ods mainly focus on either global or local enhancement for all kinds of images, and

they may not perform well for different types of images [154]. Moreover, the de-

creased sharpness of images owing to image transformations should also be taken

into consideration [155]. However, even with the enhanced images, sufficient fea-

ture points still could not be extracted in some challenging environments. Thus,

investigating the VSLAM combined with multiple features has gained research

interest. Pumarola et al. [156] proposed the PL-SLAM that relied on line features

as well as the ORB features. To this end, a more robust performance in environ-

ments with challenging illumination conditions was achieved. Huang et al. [157]

processed ORB and Brisk feature points at the same time for a low-lighting envi-
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ronment to improve the robustness of the VSLAM system. However, extracting

multiple features requires extra computing resources. Thereby, their applications

for mobile robots are restricted due to the robots’ limited onboard computing

capabilities. In addition, the application scenarios are still constrained by the

rules governing feature design, and different types of features may exhibit incon-

sistencies or mismatches with each other in some scenarios, leading to degraded

performance of the VSLAM system (as shown in Tables 5.1 and 5.2).

2.3.2.3 Deep Learning Feature-based VO and VSLAM Approaches

As there are not many works aiming to deploy deep learning feature-based VS-

LAM systems on UAVs, this part focuses on introducing general deep learning

feature-based VO and VSLAM systems in this section. A deep neural network

was adopted to increase representations of captured images for the VSLAM al-

gorithm, which improved the robustness of the VSLAM system in high dynamic

range environments [158]. DarkSLAM [159] leveraged EnlightenGAN [160] to

enhance low-light images. With the enhanced image, robust performance was

achieved in the low illumination environment. In [161], a framework consisting of

CNN and Recurrent Neural Network (RNN) was developed to detect keypoints

and their corresponding descriptors for pose estimation. The performance of the

whole system was on par with the ORB-SLAM2. DF-SLAM [162] combined the

FAST detector for keypoint detection and the TFeat network [163] for feature

point description. The feature points and descriptors were then deployed into

the ORB-SLAM2, and the DF-SLAM outperformed the ORB-SLAM in some im-

age sequences. The HF-Net [164] was incorporated into the DXSLAM [165] to

extract local and global features. Compared with traditional VSLAM systems,
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the robustness of the DXSLAM in different environments was improved signifi-

cantly. The SuperPointVO [166] adopted the framework of traditional VO sys-

tems but incorporated the self-supervised interest point detection and description

method named SuperPoint [167] to replace the hand-engineered feature extrac-

tion, and it achieved similar performance to the advanced VO systems. The LIFT-

SLAM [168] employed the Learned Invariant Feature Transform (LIFT) [169] to

replace the ORB feature extraction module, and the robustness of the VSLAM

system was enhanced. Compared with traditional methods, these systems lever-

age the stability and robustness of the deep learning-based feature description

module in the VSLAM pipeline to obtain more accurate and robust localisation

performance. However, deep learning-based methods need even more computing

resources than traditional methods, and most of these works focus on improving

localisation while ignoring efficiency. In other words, integrating deep learning

techniques into the VSLAM pipeline in performance-constrained platforms, such

as UAV onboard platforms, is still an open problem [170].

To this end, there are also some works starting to improve the efficiency of the

deep learning feature-based VSLAM systems. Several simplified networks have

been developed and integrated into the VSLAM pipeline. MobileNetV2 [171] was

used as an encoder and trained using the knowledge distillation method in [172]

to greatly reduce the model size and increase the running speed. A quantised lo-

cal feature extraction module was described in [173]. A simplified network which

contains four convolutional layers in the backbone network was proposed in [174].

Even so, most of these methods still need more execution time than traditional

VSLAM algorithms. If deep learning feature-based algorithms can achieve simi-

lar or shorter runtime compared to traditional methods, they will have broader

applications and the potential to be deployed on computing resource-constrained
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platforms such as the UAV onboard platform. GCNv2 [175] predicted the key-

point and descriptor in a low-resolution feature map to improve the efficiency,

and the simplified network named GCNv2-tiny based SLAM ran at 20Hz on the

Nvidia Jetson TX2. Nevertheless, the GCNv2 predicts the projective geometry

rather than generic feature matching. Thus, the generalisation capability was

limited.

2.3.3 Key Findings

GPS is the most popular positioning system for UAV in outdoor environments

and can provide global position information. There are lots of autonomous UAV

navigation systems developed utilising the position information from the GPS.

However, it can be interfered easily. Therefore, lots of works have adopted filter-

based technologies to improve the accuracy and robustness of GPS systems. Even

so, GPS is blocked in the indoor environments.

Considering the requirement for sensors, VO/VSLAM, which only relies on

the camera, shows its advantages for UAV-based indoor applications. There is no

doubt that the previously developed methods have made a significant improve-

ment in the robustness and accuracy of VO/VSLAM systems. However, these

approaches are still in the start-up stage. Compared with direct VO/VSLAM

methods, feature-based VO/VSLAM systems are more robust. The quality of

extracted feature points has a significant impact on VO/VSLAM localisation ac-

curacy. Thus, lots of works have tried to improve the quality of extracted features.

Moreover, thanks to the development of deep learning based feature extraction

techniques, researchers stared to substituting traditional feature points with deep

learning-based feature points.
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The summary of techniques used to improve the feature extraction capability

of VO/VSLAM systems is listed in Table 2.4. If the required information is not

presented in the publication, it will be represented as N/A. There is a lack of

consistency when it comes to reporting the performance of different VO/VSLAM

systems. Some researchers use the Root Mean Square (RMS) Absolute Trajectory

Error (ATE) [159], Relative Position Error (RPE) [151], ATE [156] or Absolute

Pose Error (APE) [157] to evaluate the performance of VO/VSLAM systems.

Some works report the keyframe error [156], while some studies present the tra-

jectory error [152]. Moreover, different datasets are used by different researchers.

Some studies constructed the datasets themselves [158]. Even when the same

dataset is used, different sequences are chosen by different researchers to test

the VO/VSLAM systems [161] [174]. Furthermore, some researchers modified

the sequences, such as selecting specific frames [175] or deleting frames from the

datasets [147]. The VO/VSLAM may perform significantly differently in vari-

ous scenarios. The VSLAM system was evaluated by 27 sequences in [173], with

the minimum ATE being 9.22 mm and the maximum ATE reaching 513.91 mm.

These challenges make it very difficult to compare localisation accuracy. Thus,

the effectiveness of the VSLAM system in the inspection scenario needs to be

verified. Based on the comparison experiments carried out by the authors them-

selves, deep learning feature-based VO/VSLAM systems outperform traditional

feature-based VO/VSLAM methods in many scenarios. However, as shown in

Table 2.4, desktop-level GPUs are required, and the high demand for computing

resources still restricts their application on UAV platforms. Thus, the perfor-

mances of ORB-SLAM3 [19], claimed to be as robust as the best traditional

VSLAM systems available in the literature and significantly more accurate, are

considered as the baseline in this thesis.
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2.4 Principles of Convolution Neural Networks

The basic CNN model is comprised of the convolution layer, pooling layer and

full connection layer [176]. As its name indicates, the primary component of the

CNN architecture that accomplishes feature extraction is the convolutional layer.

Combining linear and nonlinear processes, such as the convolution operation and

the activation function, is common practice in feature extraction.

Convolution is known as a special kind of liner process that is utilised to

extract features from input data. It transforms the input with the kernel. By

multiplying and summing the elements between each element of the kernel and

each point of the input, an output, also known as a feature map, is produced. To

represent different facets of the input feature maps, an indefinite number of output

feature maps are made using various kernels. Different kernels may be treated as

different feature extractors in this way. Even though it is commonly referred to

as convolution, the operation carried out on picture inputs using CNNs is more

accurately described as cross-correlation, which is a slightly modified form of

convolution in which one of the inputs is time-reversed [177]. According to [178],

the format of the convolution can be represented by :

Y = W ∗X (2.5)

where the W is the kernel weight, and it convolutes with the input X.

The convoluted value yi,j can be calculated through

yi,j =
kh∑
a=1

kw∑
b=1

w−a,−bxi+a,j+b (2.6)
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where height and width of the kernel are represented by kh and kw, respectively.

wa,b indicates the value of element in the kernel weight at the position (a, b).

Similarity, xi,j is the value of element in the input matrix at the position (i, j).

Thanks to the convolution technique explained above, the centre of each kernel

cannot overflow the outermost input tensor element. It shrinks the height and

width of the output feature map in comparison to the input tensor. To solve

this problem, padding, usually zero padding, is utilised. In this method, rows

and columns of zeros are added to each side of the input tensor, allowing the

kernel’s centre to fit on the element’s outermost point while maintaining the

same in-plane dimension throughout the convolution operation. Zero padding is

typically used in modern CNN designs to maintain in-plane dimensions so that

more layers may be applied in the model. Without zero padding, the size of

each subsequent feature map would decrease following the convolution process.

A stride, which also describes the convolution procedure, is the distance between

two successive kernel points. The most popular stride to use is 1. However, to

produce downsampling of the feature maps, a stride greater than 1 is occasionally

employed. A pooling procedure is an alternate method to achieve downsampling,

which will be introduced later.

The results of a linear process, such as convolution, are then fed into a nonlin-

ear activation function. Smooth nonlinear functions, such as the Sigmoid [179] or

hyperbolic tangent (Tanh) function [180], were previously used because they are

mathematical representations of biological neuron behaviour. Due to the simple

deployment feature, Rectified Linear Unit (ReLU) [181] is the most popular non-

linear activation function utilised at the moment. The formulas of the Sigmoid,

ReLU and Tanh are shown in Eq.(2.7), (2.8) and (2.9), respectively. Their curves
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Figure 2.10: Curves of commonly utilised activation functions. (a) Sigmoid, (b) ReLU
and (c) Tanh

are also illustrated in Fig. 2.10.

f(x) =
1

1 + e−x
(2.7)

f(x) = max(0, x) (2.8)

f(x) =
ex − e−x

ex + e−x
(2.9)

A pooling layer serves as a common downsampling method that reduces the in-

plane dimensionality of the feature maps and adds translation invariance to minor

shifts and distortions. To this end, the number of resulting learnable features is

reduced. Unlike convolution layers, there is no learnable parameter in any of the

pooling layers. Similar to convolution layers, hyperparameters in pooling layers

include the filter size, stride, and padding.

Max Pooling (MaxPool), the most common type of pooling procedure, sepa-

rates patches from the input feature maps. After that, the largest value in each

patch is used as the output, while all other values are discarded. In practice, it

is typical to utilise a MaxPool with a filter of size 2 × 2 with a stride of 2 in

a CNN model. In this technique, the height and width of input feature maps

are downsampled by a factor of 2. Instead, the depth dimension of feature maps
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remains unchanged.

Another popular pooling operation is Average Pooling (AvgPool). The main

difference between the MaxPool and AvgPool is described in Fig. 2.11. In con-

trast to the MaxPool, which outputs the max value of patches, the AvgPool

averages all components of patches as an output to downsample the feature map.

Meanwhile, the depth channel of feature maps is reserved.

Figure 2.11: The difference of max pooling and average pooling

Fully connected layers, also referred to as dense layers, have a learnable weight

linking each input to each output. The feature maps retrieved by the CNN model,

which is comprised of convolution layers and pooling layers, are mapped by a

subset of fully connected layers to produce the final results.

2.4.1 Depthwise Separable Convolution

The DSConv [182] can reduce CNN parameters significantly. Unlike the tradi-

tional convolution processes images from height, width and channel dimensions

simultaneously, the DSConv divides the convolution process into depthwise con-

volution and pointwise convolution. Fig. 2.12 demonstrates the comparison of
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the DSConv with standard convolution.

Figure 2.12: Comparison of the DSConv with standard convolution

The first step of the DSConv is a depthwise convolution. In this step, the

number of filters is the same as that of input channels, which ensures that only

one feature map is generated per input channel. The equation of the depthwise

convolution is shown as follows:

DWConv(Wd, X)(i,j) =

M,N∑
m,n

Wd(m,n) ·X(i+m,j+n) (2.10)

where Wd indicates the weight matrix of depthwise convolutional filters. X

denotes input feature maps. (i, j) represents the coordinates of a point within

the output feature maps. M and N are the height and width of input feature

maps. Meanwhile, m and n represent the height and width of the convolutional

filter, respectively.
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The second step involves applying a set of 1 × 1 convolutional layers to fuse

feature maps generated by the depthwise convolution. This is called the pointwise

convolution. The pointwise convolution focuses on the combination of spatial

features, which only changes the number of channels while keeping the width and

height of feature maps. The formula of the pointwise convolution is written as:

PWConv(Wp, x)(i,j) =
C∑
c

Wp(c) · x(i,j,c) (2.11)

where Wp indicates the weight matrix of pointwise convolutional filters. x denotes

the output feature maps generated by the depthwise convolution operations. C

is the total number of channels of input feature maps. c represents the channels

of convolution filters.

Overall, the whole process can be represented by:

DSConv(Wd,Wp, X)(i,j) =

PWConv(Wp, DWConv(Wd, X)(i,j))(i,j)

(2.12)

At the same time, the formula of the standard convolution with weight matrix

W can be represented by:

Conv(W,X)(i,j) =

M,N,C∑
m,n,c

W (m,n, c) ·X(i+m,j+n,c) (2.13)

The parameters of the DSConv are reduced significantly compared with the tra-

ditional convolution. There is an assumption that the number of output channels

is o. According to Eq. (2.13), total parameters of the standard convolution are

m×n× c× o. While the DSConv is utilised to generate the same output feature

maps, based on Eq. (2.12), total parameters are m × n × c + c × o. A quanti-
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fied comparison of parameters between the DSConv and standard convolution is

presented:

m× n× c+ c× o
m× n× c× o

=
1

o
+

1

m× n
(2.14)

For example, input feature maps contain 3 channels. The convolutional kernel size

is 3×3, and there are 4 sets of convolutional filters to output 4 feature maps. The

standard convolution processes images from height, width and channel dimensions

simultaneously, and the number of parameters is 108. Meanwhile, the same input

feature maps are processed by the DSConv to output the same size and channels

of feature maps. First, every single channel of the input feature map is processed

by a 3 × 3 convolutional filter. Then, 4 sets of 1 × 1 × 3 convolutional filters

are utilised to process the generated feature map and output 4 feature maps.

The number of total parameters of the DSConv is 39, which is almost 1/3 of the

traditional convolution.

2.4.2 Key Findings

An introduction to the basic CNN is presented in this section. The basic CNN

model consists of the convolution layer, pooling layer, and full connection layer.

The CNN layer aims to extract features from the input data, the pooling layer

acts as the downsampling method to reduce the dimension of the feature maps,

and the full connection layer integrates the features and maps them to the fi-

nal results. The CNN model is a multi-layer structure that extensively uses

convolution operations [183]. The DSConv divides the convolution process into

depthwise convolution and pointwise convolution, resulting in a significant reduc-

tion of CNN parameters. According to equations presented in the above section,

parameters are used for computations with the input feature maps. Therefore,
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through the reduction of CNN parameters, the computing complexity of CNN is

reduced, which makes the CNN model have the potential to be deployed on the

UAV onboard platform.

2.5 Summary

This chapter reviews different types of inspection methods, robotic platforms,

UAV positioning systems, vision-based corrosion detectors, and the principles of

CNNs. The challenges investigated in this thesis are derived from the following

sections:

In Section 2.1, various inspection methods and robotic platforms are reviewed.

The advantages and drawbacks of different inspection methods and robots are

analysed. Visual inspection is the most basic means for assessing the surface

conditions of the infrastructure, and the UAV has gained increasing interest due

to its efficiency in performing inspection tasks. Therefore, utilising autonomous

UAVs to perform visual inspection tasks has the potential to assess the infras-

tructure effectively and efficiently. Due to the flexibility and manoeuvrability of

small UAVs, they can easily access confined indoor environments, such as pressure

vessels. This feature allows them to efficiently perform indoor visual inspection

tasks. However, there has been a lack of investigation of the autonomous UAVs

for visual inspection in confined indoor environments due to the hazardous condi-

tions and the limited payload capacity of small UAVs. Therefore, the feasibility

of the autonomous UAV with VSLAM, which does not require extra sensors or

prior knowledge of the environment, for autonomous visual inspection of a pres-

sure vessel is explored in Chapter 3.

62



Chapter 2. Literature Review

Section 2.2 introduces corrosion types and comprises corrosion detectors in

the literature. The performance of traditional corrosion detectors depends on

human-crafted features such as colour and texture information. Thereby, the se-

lection of optimal features determines the overall performance of the corrosion

detector, and the feature selection process relies on the experience of the engi-

neer. Deep learning-based corrosion detectors do not need to set the optimal

features, and they can learn the representative features from the training dataset

autonomously. As a result, it can reduce reliance on human experts and achieve

high-accuracy detection results. As summarised in Table 2.3, it is difficult to

make a fair comparison of different corrosion detectors. Moreover, there is no hu-

man inspector performance reported in the literature. Considering the popular

models used in the literature, the mAP of RetinaNet is considered as the baseline

in Chapter 4. The most popular UAV onboard platform, the Nvidia Jetson TX2,

has a performance capacity of only 0.67 TFLOPS. Consequently, there are still

challenges in deploying existing deep learning-based corrosion detectors on UAV

onboard platforms to achieve real-time (at least 20 FPS) corrosion identification

with satisfying corrosion detection accuracy, primarily due to the demand for

high-end GPUs.

Section 2.3 has been devoted to UAV positioning systems, especially GPS

and VO/VSLAM systems. GPS technology has proven to be an extraordinarily

valuable and versatile technology. It relies on satellites and is suitable for rough

UAV outdoor localisation. However, when it comes to the small size of UAVs and

indoor inspections, the accuracy of GPS is insufficient and even unavailable. The

VO/VSLAM system does not rely on the satellite system and can be deployed

in indoor environments. Considering the robustness and computing complexity

of VO/VSLAM systems, feature-based VO/VSLAM systems are more feasible
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for embedded platforms. Since UAVs need to be deployed in complex environ-

ments with varying illumination conditions where extracting sufficient feature

points becomes challenging, incorporating image processing technology with the

VO/VSLAM system appears to be a potential solution. However, some studies

customised the dataset to show the high localisation accuracy of VO/VSLAM

systems. Therefore, the issue of extracting sufficient feature points and deploy-

ing VO/VSLAM in complex lighting environments, such as dark or overly bright

environments, still needs to be addressed. In addition to the complex lighting

conditions, textureless environments also challenge the feature extraction capa-

bility of the VO/VSLAM system, leading to degraded localisation accuracy and

robustness. Combining different types of features and even substituting the fea-

ture extraction methods with deep learning-based methods has gained a lot of

interest. As shown in Table 2.4 and the summary presented in Chapter 2.3.3,

adopting deep learning-based feature points has proven its effectiveness in han-

dling textureless environments. However, there is still a gap in adopting deep

learning-based feature points for UAV onboard platforms to cope with challeng-

ing environments due to the high demand for desktop-level GPUs. Because of

the accurate and robust performance of ORB-SLAM3, it is chosen as the baseline

VSLAM system in this thesis.
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Simulation of UAV-based

Autonomous Internal Visual

Inspection of a Pressure Vessel

3.1 Introduction

From the introduction above, it is clear that visual inspection plays a vital role

in maintaining the proper functions of industrial facilities. Besides, developing

UAV-based autonomous visual inspection systems can improve the inspection ef-

ficiency significantly, and there are still research gaps in realising the expected

functions. According to the findings in Section 2.1.5, the localisation, control,

path planning and defect detection are the main components of the UAV-based

autonomous visual inspection system. However, there is a lack of investigation

into the feasibility of deploying the UAV with VSLAM to achieve autonomous

indoor visual inspection. Thereby, this chapter develops a simulation environ-
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Figure 3.1: One pressure vessel. (a) The overview of the pressure vessel; (b) the
entrance of the pressure vessel; (c) the inside of the pressure vessel.

ment to verify the autonomous navigation capability of the UAV equipped with

VSLAM. The pressure vessel is a common container in the company, and it is

a low-visibility and hard-to-access environment even for experienced engineers.

Hence, it is chosen to verify the performance of the developed autonomous UAV

system. As the UAV is particularly susceptible to damage in complex and haz-

ardous environments, simulation experiments are used to explore and validate the

generalised UAV-based visual inspection solution. The texture of the corrosion

is difficult to reproduce in the simulation environments. The corrosion detec-

tion part is ignored in this simulation environment, and it will be introduced in

Chapter 4. Thus, this chapter investigates the capability of UAV with VSLAM

to autonomously record video of the inner surface of the pressure vessel in the

simulation environment.
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However, the interior of a pressure vessel is a GPS-denied and low-illumination

environment (as shown in Fig. 3.1). Autonomous navigation for UAV-refined

visual inspection inside the pressure vessel is challenging and has not been eval-

uated. Moreover, the ORB-SLAM3 fails to extract sufficient feature points to lo-

cate the UAV. Therefore, the contrast enhancement method is incorporated into

ORB-SLAM3. With the improved ORB-SLAM3, the performance of a stereo

vision-based autonomous navigation system for the automatic acquisition of im-

ages inside oil and gas pressure vessels with the UAV is evaluated. The main

contribution is summarised as follows:

The feasibility of deploying the UAV with VSLAM to achieve autonomous

visual inspection in confined and low-illumination indoor environments has been

proven through a customised simulation environment for the first time.

The rest of the chapter is organised as follows. Details of the stereo vision-

based autonomous navigation approach are given in Section 3.2. In Section 3.3,

the experimental environment is demonstrated. Section 3.4 shows and analyses

the performance of the developed approach. Finally, conclusion and future work

are provided in Section 3.5.

3.2 Approach Description

The scheme of the stereo vision-based autonomous navigation approach used in

this chapter is shown in Fig. 3.2. Based on the images captured by the UAV

onboard stereo camera, the UAV will locate itself through the visual localisation

technology. Then, compared with the planned trajectory, the next target position

will be updated. Afterwards, the proper control signal will be generated to control
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the UAV to move to the target position. The whole process will be repeated until

the UAV finishes the whole trajectory.

Figure 3.2: Scheme of the vision-based autonomous navigation approach.

3.2.1 Improved VSLAM Approach

To navigate successfully in a GPS-denied and low-illumination environment, the

UAV must have self-localisation capability. However, the ORB-SLAM3 relies

heavily on matching ORB feature point pairs. In the low-light environment,

the number of stable ORB feature points drops significantly. Thus, the system

fails to obtain enough input information, and posture cannot be calculated and

corrected. Within the default settings in [19], the system tracks 500 ORB feature

points to locate the position and map the surrounding environment. When ORB

feature points are less than 500 in all frames, the pose estimation process cannot

be performed, so the initialisation and tracking fail [155].

Image pre-processing technologies have been widely used to improve the per-

formance of computer vision tasks, such as the image sharpening technique for

facial emotion recognition [184] and speckle reduction for synthetic aperture radar

(SAR) image recognition [185]. In the oil and gas pressure vessel inspection sce-

nario, the light is insufficient for the ORB-SLAM3, and the image contrast en-

hancement technology improves the visual quality of dimmed images. Thus, the
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image contrast enhancement method is adopted before the ORB feature point

extraction process in the tracking thread. The image contrast enhancement tech-

nology makes the image contain more prominent textures, thereby increasing the

number of stable ORB feature points. Eventually, the robustness and stability of

the ORB-SLAM3 are improved.

3.2.1.1 Adaptive Image Enhancement

Figure 3.3: Diagram of the adaptive gamma correction with weighting distribution
(adapted from [20]).

In the image contrast enhancement domain, considering the easy adjustment

and efficient implementation capabilities, gamma correction [20] has been widely

utilised. It enhances image contrast by directly modifying pixel values based on

regulation. An Adaptive Gamma Correction algorithm with Weighting Distri-

bution (AGCWD) [186] is adopted and improved to process frames before the

ORB feature point extraction procedure. Fig. 3.3 shows the steps for enhanc-

ing the image at a high level. As ORB feature points are extracted from the

grey image, the colour image needs to be transformed into the grey image first.
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In the dimmed grey image, most pixels lie at the low-intensity level. After the

weighting distribution and gamma correction, more pixels will be distributed in

the high-intensity region, thereby improving image contrast.

Specifically, gamma correction techniques use the parameter γ to adjust the

luminance of the image. The transform-based gamma correction is represented

by

F (l) = lmax(
l

lmax
)γ (3.1)

where l and lmax represent the intensity of each pixel and the maximum intensity

in the input image, respectively. In Eq. (3.1), the highest intensity in the output

image is restricted by the maximum intensity of the input image. To deploy it

in a low-illumination environment, the lmax is set to 255, which is the highest

intensity value in the grey image. In this work, the modified gamma correction

can be defined as

F (l) = 255(
l

255
)γ (3.2)

The Probability Density Function (PDF) can be approximated by

PDF (l) =
nl
N

(3.3)

where nl represents the number of pixels that have intensity l. N denotes the total

number of pixels in the image. Based on the PDF, the Cumulative Distribution

Function (CDF) can be formulated as

CDF (l) =
l∑

k=0

PDF (k) (3.4)
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The adaptive gamma correction used in this work is written as

F (l) = 255(
l

255
)(1−CDF (l)) (3.5)

Additionally, the weighting distribution function is utilised to modify the statis-

tical histogram with fewer adverse effects. The weighting distribution function is

expressed as

PDFwd(l) = PDFmax(
PDF (l)− PDFmin
PDFmax − PDFmin

)α (3.6)

where α indicates the adjusted parameter, and it is 0.5 in this work, which is

the median value of the original limits [187]. PDFmax and PDFmin denote the

maximum and minimum PDF of the statistical histogram, respectively. So, the

modified CDF is defined as

CDFwd(l) =

∑l
l=0 PDFwd(l)∑

PDFwd
(3.7)

where the sum of PDFwd is represented as follows

∑
PDFwd =

lmax∑
l=0

PDFwd(l) (3.8)

Finally, the γ parameter can be calculated by

γ = 1− CDFwd(l) (3.9)

The temporal technique [186] is applied to reduce the computational complexity.

The information content contained in each frame is represented by the following

entropy function:

Hic = −
lmax∑
l=0

PDF (l)log(PDF (l)) (3.10)
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The differences between the information contents contained by two frames can

be defined as

Th = |Hiccur −Hicpre| (3.11)

The first frame is stored and utilised to calculate the γ transformation curve.

According to [186], the Th is set to 0.05. When the Th exceeds 0.05, the stored

frame is updated with the current frame. At the same time, the γ transformation

curve is modified. Otherwise, the existing γ transformation curve is applied

directly to transform the intensity level of the incoming frame.

3.2.2 Position Tracking Controller

After the UAV is located by the improved ORB-SLAM3, the waypoint controller

compares the current position with the planned inspection path to compute the

desired position. Afterwards, a position tracking controller is needed to control

the movement of the UAV.
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Figure 3.4: Scheme for position tracking controller.

In this section, a vision hybrid position tracking controller is developed from

the PX4, the leading open-source autopilot stack for the UAV [188], to realise an

accurate position control mechanism for the UAV. The position tracking controller

is demonstrated in Fig. 3.4. Herein, based on the PID control law [189], a P loop

for position error (ep(t)) and a PID loop for velocity error (ev(t)) are cascaded

as the position tracking controller. The PID velocity control loop contains three
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parameters, taken as constant kvp, kvi and kvd which are responsible for adjusting

the proportional, integral and differential units, respectively. Its continuous form

can be given as

asp(t) = kvpev(t) + kvi

∫ t

0

ev(τ)dτ + kvd
dev(t)

dt
ev(t) (3.12)

The UAV is controlled by a digital controller operating in a sampled-data feedback

loop. Define

zi(k) = zi(k − 1) + z(k) (3.13)

zd(k) = z(k)− z(k − 1) (3.14)

where z(k) represents an error variable. zi(k) is the integrator state, and zd(k)

indicates the differentiator state. Define the discrete-time PID velocity controller

as

asp(k) = kvp(k)z(k) + kvi(k)zi(k) + kvd(k)zd(k) (3.15)

Eq. (3.15) can be rewritten as

asp(k) = θv(k)φv(k) (3.16)

where

θv(k) ,
[
kvp(k) kvi(k) kvd(k)

]
(3.17)

φv(k) ,


z(k)

zi(k)

zd(k)

 (3.18)
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In the same manner, the P position control can be represented as

vsp(k) = kpp(k)zp(k) (3.19)

where kpp represents proportional parameter, and zp(k) is the position error.

3.3 Experimental Environment

Due to the high risk of property damage and battery constraints, extensive phys-

ical UAV flying tests are costly and time-consuming. As an alternative solution,

simulation allows testing and validating the developed algorithm in “realistic”

scenarios, which can avoid the potential risk in real flights. In the UAV research

domain, the Robot Operating System (ROS) [190] is the most popular and conve-

nient middleware suite. Moreover, it comes with the Gazebo simulator [191] that

contains a physics engine to imitate the actual motions of the UAV in the cus-

tomised environment. Thus, to closely mirror the performance of the quadrotor

with the PX4 autopilot, the simulation environment developed in this chapter is

based on the ROS-Gazebo-PX4 toolchain. Besides parameters introduced in the

following part, default parameters are utilised. Gazebo 7.16.1 contains a simu-

lated pressure vessel and a simulated UAV model. The UAV model is customised

from the PX4 official iris model to add a stereo camera and spotlight. The stereo

camera is fixed on the front centre of the UAV. The resolution of the camera is

752× 480, with a baseline of 5cm. The focal lengths on the x and y axes are 376

and 376, respectively, and the aperture centres of the camera are 376 and 240,

respectively. The framerate is set to 20Hz. The PX4 v1.8.0 firmware is used for

dynamic simulation. The spotlight is fixed on the bottom centre. The PX4 com-
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Figure 3.5: Physical and simulation components. (a) The simulated pressure vessel;
(b) the section view of the simulated pressure vessel; (c) the physical UAV; (d) the
simulated UAV equipped with a stereo camera and a spotlight source; (e) the developed
simulation environment.
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municates with the Gazebo to receive sensor data from the simulated world and

send the motor commands back. Meanwhile, all the components are coordinated

through ROS Kinetic.

Specifically, based on the pressure vessel shown in Fig. 3.1, a pressure vessel

model is constructed (as shown in Fig. 3.5(a)). Its dimensions are 7m x 2.5m x

2.5m. As demonstrated in Fig. 3.5(b), it contains shells, several horizontal bars

and vertical pipes. To simulate the customised quadrotor shown in Fig. 3.5(c), a

simulated UAV is developed from the PX4 flight control stack, and it is equipped

with a stereo camera and a spotlight. Due to the horizontal bar at the entrance

of the pressure vessel, the UAV is placed inside the pressure vessel. The overall

layout of the simulation environment is illustrated in Fig. 3.5(e). Within this

scenario, a world coordinate system is established. The x-axis is supposed to

be the depth direction of the pressure vessel, the y-axis is parallel to the width

direction, and the z-axis denotes the altitude.

3.4 Results

3.4.1 Comparison of Feature Point Extraction and Matching

In this experiment, the light intensity of the spotlight keeps the same during the

whole inspection procedure, and the first frame captured by the stereo camera

within the developed simulation environment is selected. The results of image

contrast enhancement are illustrated in Fig. 3.6. The contrast of the original

images is low, and the limited textures can be observed from the image. Within

the enhanced images, more visual textures are revealed.
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Figure 3.6: Image contrast enhancement. (a1) and (a2) are a pair of images captured
by the on-board stereo camera; (b1) and (b2) are the original gray images transformed
from (a1) and (a2); (c1) and (c2) are the enhanced gray images.

The ORB feature point detection and matching processes are compared using

the ORB-SLAM3 with the improved ORB-SLAM3, and all the parameters are

adopted from [19] for a fair comparison. Matches after selection through the Sum

of Absolute Difference (SAD) [192] are supposed to be good matches. The visual

results are shown in Fig. 3.7, while the statistical results are demonstrated in

Table 3.1. The ORB-SLAM3 fails to extract 500 ORB feature points from the

first frame to initialise the system. Compared to the ORB-SLAM3, more than

5 times ORB feature points can be extracted by the improved ORB-SLAM3.
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Meanwhile, the number of good matching points realised by the improved ORB-

SLAM3 increases by 600%.

Figure 3.7: Feature points extraction and matching. (a) Feature points extraction and
matching based on original images; (b) feature points extraction and matching based
on enhanced images.

Table 3.1: Comparison of feature point extraction and matching in the first frame

Method
ORB feature points Good

matches
System

initialisationLeft image Right image

ORB-SLAM3 200 208 103 Fail
Improved

ORB-SLAM3
1051 1092 746 Success

The results illustrate that with the image contrast enhancement method,

enough ORB feature points can be extracted to initialise the system. What

is more, more effective matching points for the subsequent processes such as

tracking, mapping and loop detection are achieved to improve the stability and
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Figure 3.8: Trajectory following results. (a) The overview of the UAV 3D trajectory;
(b) the top view of the UAV trajectory.

robustness of the ORB-SLAM3. More details are presented in the following sec-

tion.

3.4.2 Trajectory Tracking Performance Evaluation

The task of the aerial vehicle is to follow a pre-defined 3D trajectory to record

videos of the pressure vessel. Fig. 3.8 demonstrates the 3D trajectory of the

UAV and the pre-defined inspection plan. Parts of the inspection process are

visualised in Fig. 3.9. The square trajectory is designed to inspect the shells of
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Figure 3.9: Demonstration of the visual inspection process. (a) Inspection of the vessel
shell, (b) inspection of pipeline.

the pressure vessel. What is more, the pipelines are inspected by tracking the

helical path. The results indicate that keeping a constant distance to the shell in

directions y and z is not an issue for the whole system. The parameters of the

position tracking controller are adjusted for translation and shared with rotation,

which negatively affects the tracking accuracy, especially in direction x due to

the UAV heading in the y-axis positive direction at the beginning. The overall
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results validate that the UAV can locate and navigate itself stably in a pressure

vessel for the visual inspection application. A supplementary video1 is provided

to show more detailed results.

3.5 Summary

In this chapter, the simulation has been carried out to verify the feasibility of

deploying the UAV with VSLAM to achieve autonomous visual inspection of the

pressure vessel. To address the issue of ORB-SLAM3 failure due to insufficient

feature points extracted from the low illumination environment, the image con-

trast enhancement technique using adaptive gamma correction with weighting

distribution was adopted. Then, a P-PID controller was deployed for position

tracking. The autonomous navigation system of the UAV with VSLAM was

verified in a deeply customised ROS-PX4-Gazebo simulation environment. The

results showed that the improved ORB-SLAM3 could achieve more ORB feature

points and matching points than the ORB-SLAM3 in the low-lighting environ-

ment, which addressed the challenge of feature extraction in the low-illumination

environment. Moreover, with the improved VSLAM system, the UAV could track

the planned trajectory stably to take images of the inner surfaces and structures

of the pressure vessel. Thus, the feasibility of deploying the UAV with VSLAM

to achieve autonomous visual inspection was proven for the first time.

However, environmental noises also have a significant impact on the stability

of the UAV system, and they cannot be fully tested in simulation environments.

Specifically, in the simulation environment, the texture of the vessel cannot be

fully replicated, and the light distribution is uniform. Additionally, the images

1https://youtu.be/p1zKOHhxKfI
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captured by the UAV are clear, which means no blurred images are taken, and

the influence of light reflections is not evaluated. To address these issues, the

VSLAM algorithm used in this chapter will be further improved in Chapters

5 and 6 and validated through real-world scenarios. In addition, the corrosion

detection module that is ignored in this chapter will be introduced in Chapter 4.
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Chapter 4

AMCD: Accurate UAV onboard

Metallic Corrosion Detector

4.1 Introduction

To develop UAV-based autonomous visual inspection systems, creating high-

accuracy corrosion detectors based on advanced computer vision techniques will

be the primary concern [37]. Moreover, the requirement of real-time detection at

a speed of at least 20 FPS [39] is increasing in practical UAV visual inspection

due to the limited endurance time [40]. Hence, this chapter addresses the ignored

corrosion detection module in the depicted scheme in Chapter 3.

Over the last couple of years, a variety of algorithms for corrosion detection

have been proposed. Among them, texture and colour analysis by a filter-based

approach or a statistical model have gained great interest. The colour wavelet

filter bank is one of the most popular techniques for detecting corrosion through

filtering texture and colour features. However, when the optimal features are not
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identified, the detection accuracy will decrease heavily [193].

Recently, CNNs have been proven to surpass humans in the ImageNet clas-

sification task [194]. According to the investigation, an increasing number of

researchers have adopted CNNs to assist their research, such as morbidity identi-

fication [195], Synthetic Aperture Radar (SAR) image classification [196], vehicle

detection [197], wind turbine blade structural state evaluation [198] and bridge

crack detection [199]. These results suggest that CNNs could also be utilised

to achieve high-accuracy corrosion detection. Unlike previous approaches, CNNs

do not need prior-designed low-level features, which are not robust enough for

computer vision tasks. For CNN-based computer vision tasks, features are de-

termined inherently by CNNs and the training dataset. The results in [200]

indicated that CNNs are robust enough to detect or classify objects with differ-

ent scales, orientations and illuminations. Thus, an opportunity has emerged for

CNN-based detectors to achieve much more accurate corrosion detection than

traditional approaches.

Although several existing works have shown accurate corrosion detection with

CNNs, the high demand for desktop-level CPUs still poses a challenge in adopting

these methods onto the UAV onboard computer (Nvidia Jetson TX2). As dis-

cussed in Sections 2.2.3 and 2.2.4, these studies focus on image processing without

consideration of the limitations of the UAV platform. The high-end GPUs are

necessary to achieve real-time corrosion detection. However, the Nvidia Jetson

TX2 only has a performance capacity of 0.67 TFLOPS. Consequently, there are

still challenges in deploying existing deep learning-based corrosion detectors on

UAV onboard platforms to achieve real-time corrosion identification. Since there

is no standard baseline for detection accuracy in the literature, the mAP obtained
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by RetinaNet [124] will be considered as the baseline due to its high mAP in the

literature [126] [127]. In this chapter, an accurate deep learning-based corrosion

detector is proposed for real-time implementation on UAV onboard platforms.

The main contributions of this chapter are summarised as follows:

The issue of high demand for computing resources when deploying deep learning-

based corrosion detection on the UAV onboard computer caused by extensive us-

age of traditional convolution layers is addressed through lightweight model de-

sign. It is achieved through lightweight convolution utilising DSconv, innovative

feature extraction and fusion techniques leveraging the CBAM and the proposed

improved SPP, refined detection strategies incorporating three-scale detections,

and an optimised learning approach using the focal loss.

The rest of this chapter is organised as follows. Details of the proposed de-

tector are given in Section 4.2. Section 4.3 shows the experimental environment

and results. Section 4.4 concludes the whole chapter.

4.2 Proposed Efficient Corrosion Detection Algorithm

4.2.1 Framework of Corrosion Detection

Based on the introduction above, there are lots of excellent object detectors

emerging. The Yolov3-tiny is an object detector, which has been proven to be

fast on embedded platforms [127]. Fig. 4.1 shows the network structure of the

Yolov3-tiny. There are seven convolution layers and six MaxPool layers for ex-

tracting image features. Two-scale detection is utilised to detect different-sized

targets. The detection process of the Yolov3-tiny is described as follows:
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Predict one Predict two

Convolution MaxPool Upsampling Concatenation

Figure 4.1: Framework of the Yolov3-tiny

Step 1 Load the input image and resize the image to a size of 416*416

step 2 Extract features with convolutional and MaxPool layers

Step 3 Produce feature maps of size 13*13 on a small scale

Step 4 Upsample small-scale feature maps to size 26*26 and connect them to

the same size feature maps generated by the feature extraction network

Step 4 Produce feature maps of size 26*26 on a large scale.

Step 5 Divide the input image into 13*13 and 26*26 grids for two-scale object

detection. Based on the predefined anchors, the grid will be responsible for

predicting the object when the centre of the object lies in the grid.

Step 6 Output the two-scale prediction results

Step 7 Fuse different scale prediction results and acquire accurate bounding

boxes

Since the simple and shallow network is designed as the backbone, the detection

accuracy of the Yolov3-tiny is not high enough [201]. According to the initial test,

the mAP for the corrosion detection is 79.02% (as shown in Table 4.2). Therefore,

the Yolov3-tiny cannot be utilised directly due to the fact that its accuracy cannot
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meet the requirement, which is the mAP of 83.5% achieved by the baseline model.

Moreover, the Yolov3-tiny deploys many convolution layers with 512 and 1024

convolution filters, which leads to a large number of parameters contained by the

network. Finally, the model size is 34.7 MB, and it requires around 70% GPU

resources on the Nvidia Jetson TX2 [202].

To address these problems in the Yolov3-tiny for corrosion detection, this

chapter proposes a novel metallic corrosion detector. Inspired by the Yolov3-tiny

(as shown in Fig. 4.1), the overall schematic architecture is presented in Fig.

4.2. The backbone is responsible for extracting features from images, and the

detection part will output the position and category of the corrosion. A brand-

new lightweight network has been designed as the AMCD focuses on achieving

accurate corrosion detection on embedded platforms. What is more, the DSConv

is adopted to reduce parameters. To enhance the feature extraction capability

of the shallow network, the CBAM [21], three-scale prediction, improved SPP

and focal loss [124] are also utilised. Finally, considering the limited computing

resources and the target to detect corrosion at a speed of 20 FPS, the designed

backbone contains 1 traditional convolution layer, 7 DSConv layers, 1 SPP layer

and 4 CBAM modules. Details of the AMCD will be explained in the following

parts.

4.2.1.1 Depthwise Separable Convolution

The DSconv is adopted to reduce model parameters to fit embedded computing

platforms. The detailed introduction to DSconv can be found in Section 2.4.1.

87



Chapter 4. AMCD: Accurate UAV onboard Metallic Corrosion Detector

Figure 4.2: Structure of the AMCD

4.2.2 Attention Mechanism

Inspired by human visual attention mechanisms, CNNs can employ attention

mechanisms to select optimal information from the training dataset. The at-

tention module selects the most representative area in the image and allows the

network to focus on it. Thus, more critical features can be extracted, and the

detection accuracy will be improved. The attention mechanism has proven its

effectiveness in many tasks, such as river detection [203], outdoor illumination

estimation [204] and SAR image recognition [205].

The CBAM [21] outputs refined feature maps by channel and spatial attention

sequentially. The overview diagram of the CBAM is shown in Fig. 4.3. In gen-

eral, the channel attention module focuses on figuring out optimal feature maps

between different channels of feature maps. The spatial attention module aims
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Figure 4.3: Diagram of the CBAM (adapted from [21])

to output a spatial attention map based on local information. The MaxPool and

AvgPool operations are utilised to construct feature map statistics. The MaxPool

could return the significant features of the target. At the same time, the AvgPool

provides global statistics on feature maps. With the usage of MaxPool and Avg-

Pool operations, the representation of features extracted by CNNs is improved.

Channel attention focuses on global information, whereas spatial attention is em-
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ployed locally. Therefore, the CBAM can extract comprehensive salient features

to improve the performance of corrosion detection.

4.2.3 Improved Spatial Pyramid Pooling

Figure 4.4: Structures of SPP. (a) The traditional SPP (adapted from [22]), (b) the
improved SPP

The architectures of the SPP are shown in Fig. 4.4. Different from the

traditional SPP proposed by [22], the improved SPP does not resize feature maps

into feature vectors. Instead, the improved SPP outputs feature maps. Based on

the size of input feature maps, MaxPool layers with kernel sizes of 3×3, 5×5 and

7× 7 are utilised to pool feature maps. The stride of each pooling layer is 1, and

padding is adopted to make sure the size of generated feature maps is the same as

that of input feature maps. After the concatenation, there are 1024 feature maps

generated by the improved SPP, which extracts and fuses local region features.
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4.2.4 Loss Function

The Yolov3-tiny uses anchors to generate candidate object locations from the

whole image. The number of potential bounding boxes containing objects is much

less than those only containing background. What is more, negative samples

contribute no useful learning signal and cause biased learning. Finally, it will

lead to a degenerate detector, which cannot detect the corrosion correctly. To

overcome this limitation, the focal loss is introduced into the AMCD, which gives

a high loss value to an object. This makes the detector concentrate on object

areas and is sensitive to the target. The formula for the focal loss is:

Ffl = αloss × (1− pcb)λloss (4.1)

The αloss is the hyperparameter which down-weights the loss contributed by

background. pcb indicates the confidence of whether the candidate bounding

box contains the object. λloss represents the exponential scaling factor which

down-weights the loss generated by easy examples and makes the CNNs focus on

difficult examples. In the AMCD, the αloss and λloss are empirically set to 0.5

and 2, respectively.
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According to Eq.(4.1), the loss function of the AMCD can be defined as:

Loss =

S2∑
i=0

B∑
j=0

1objij [(xi − x̂i)2 + (yi − ŷi)2]

+
S2∑
i=0

B∑
j=0

1objij (2− wi × hi)[(wi − ŵi)2 + (hi − ĥi)2]

+Ffl

S2∑
i=0

A∑
j=0

1objij [Ĉilog(Ci) + (1− Ĉi)log(1− Ci)]

+Ffl

S2∑
i=0

A∑
j=0

1noobjij [Ĉilog(Ci) + (1− Ĉi)log(1− Ci)]

+
S2∑
i=0

1objij
∑

c∈classes

[p̂i(c)log(pi(c)) + (1− p̂i(c))log(1− pi(c))]

(4.2)

where S2 denotes the number of grid cells. B is the number of bounding boxes

predicted by each cell. 1objij indicates that the jth bounding box predicted in cell

i contains an object. At the same time, 1noobjij refers to the predicted bounding

box containing only the background. x and y are the centre coordinates of the

bounding box. w and h represent the dimensions of the bounding box. The vari-

ables witĥindicate they are predicted values. Otherwise, they are groundtruth.

C denotes the confidence of whether the bounding box contains an object or just

a pure background. The prediction of classes is represented by pi(c). Notably,

Ffl, which represents the focal loss, is adopted to address the class imbalance

problem.
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4.3 Experiments

4.3.1 Dataset

To construct a dataset to train and verify the AMCD, 5625 images were cap-

tured by a DJI Phantom 4. Images are taken from different facilities, such as

pressure vessels and oil wells, at a distance of 1 m to 10 m under different an-

gles and illumination conditions to ensure their diversity. Based on the visual

appearance, the corrosion types are classified as bar corrosion, nubby corro-

sion, fastener corrosion and exfoliation. If the aspect ratio of a damaged area

is less than 1:2, this region will be treated as nubby corrosion. Otherwise, the

damaged region will be considered to be bar corrosion. Bolt and nut corro-

sion are treated as fastener corrosion, and exfoliation corrosion includes cracked

coatings. To annotate captured images with different corrosion types, labelImg

(https://github.com/HumanSignal/labelImg) is utilised to put bounding boxes

on images by human experts. Each bounding box contains the upper-left corner

position, width and height of the box. Therefore, the format of the bounding box

is (x, y, w, h). There is a total of 27039 corrosion areas labelled in 5625 images.

Several annotated images are shown in Fig. 4.5. Bounding boxes with different

colours represent different kinds of corrosion.

To generate training and test sets, labelled images are randomly divided by the

contained corrosion. The training and validation datasets contain 4500 images.

Another 1125 images are utilised to test the proposed detector.
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Figure 4.5: Labelled images

4.3.2 Experimental Setup

All training processes are conducted by applying Tensorflow 1.15 and CUDA

10.0 on a computer with an Intel Core i7-8750 CPU, 12 GB Random-access

Memory (RAM) and 6 GB GDDR5 memory Nvidia GTX1060 GPU. To evaluate

the performance of the AMCD on UAV onboard platform, testing processes are

made on the Nvidia Jetson TX2. It is equipped with a hexa-core CPU and a

Nvidia Pascal-family GPU with 256 CUDA cores. It loads with 8GB of memory

and 59.7GB/s of memory bandwidth.

Transfer learning has the ability to transfer knowledge from a related task

that has already been learned to a new domain. A lot of works have proven

that transfer learning is an optimisation technique which saves training time

and gets better test performance. Instead of using randomly initialised weights

of CNNs, layers of the proposed model are initialised by the weight trained on

PASCAL VOC2007 [206] and PASCAL VOC2012 [207] datasets. These are two

widely used computer vision datasets and contain 20 different object classes for

object recognition and detection. The VOC2007 dataset primarily contains 9,963
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Figure 4.6: Learning rate curve during the training procedure

labelled images, while the VOC2012 dataset consists of 11,530 labelled images,

providing a diverse set of images and annotations that can be used for training

and evaluating machine learning models. The anchor sizes are clustered by K-

means [208] as [(14,15), (18,21), (31,17), (25,26), (20,38), (36,35), (30,78), (63,48),

(93,118)].

The proposed network is trained using the stochastic gradient descent algo-

rithm [209], and the rand seed is set to 0. To make the training process stable

and efficient, warmup [210] and cosine learning rate decay [211] are utilised. Fig.

4.6 depicts the variation of the learning rate during the training stage. The x

axis represents iterations, and the learning rate is updated every iteration. In the

warmup stage, the learning rate is increased linearly over the warm-up period un-

til it hits the nominal rate, which reduces the primacy effect of the early training

examples. Then, the learning rate begins to decay using the cosine function to

train the model. The momentum parameter is 0.9995. The batch size is assigned

as 2. The model is trained for 450000 iterations, and the model with the lowest

loss values is chosen for testing. The loss curve during the training process can be

seen in Fig. 4.7. A decreasing loss curve and small fluctuations in later iterations

indicate the loss function is optimised and converged.
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Figure 4.7: Loss decline curve of the AMCD

4.3.3 UAV platform-based Evaluation

4.3.3.1 Evaluation Metrics

Precision and recall concepts [212] are widely utilised to evaluate the performance

of object detection approaches. Precision denotes the number of True Positive

(TP) results divided by all positive detection results. The Recall is defined as the

percentage of the TP in all correct detection results. The area under the precision

and recall curve is called Average Precision (AP). The AP indicates the ability

of the detector to locate objects and classify them into a single class. In general,

the higher AP for a category of objects, the better performance of the detector

in identifying them. The mAP represents the performance of the detector across

all classes and can be defined by the average value of APs for all classes.

In reality, predicted results cannot match groundtruth perfectly. Thus, the

Intersection-over-Union (IoU) metric is adopted to represent the overlap of the

predicted bounding box with the groundtruth box. This allows predicted results

can partially overlap with groundtruth. While the overlap area between suspi-

cious corrosion and groundtruth exceeds the IoU threshold, the prediction result

is classified as positive. Otherwise, the detection result is categorised as negative.
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In this study, the IoU value is 0.5.

Figure 4.8: Some detection results

4.3.3.2 Performance of the AMCD

The trained model is used to identify different kinds of corrosion, and some recog-

nition results are shown in Fig. 4.8. As images are taken under different angles

and illumination conditions, their backgrounds are cluttered. Four kinds of cor-

rosion can be detected correctly. What is more, when an image contains multiple
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Figure 4.9: PR curves of four kinds of corrosions

types of corrosion, all of the corrosion can be identified. As shown in Fig. 4.8

(b), the fastener corrosion and bar corrosion are detected correctly, even though

some shadows exist in the image. In Fig. 4.8 (f), small holes in the structure are

very similar to the nubby corrosion. The AMCD can still locate corrosion areas

precisely.

Precision-Recall (PR) curves and APs for four kinds of corrosion are demon-

strated in Fig. 4.9 and Table 4.1, respectively. Based on the unique features

of fastener corrosion, the detection results show high accuracy for this kind of

corrosion. As its shape distinguishes bar corrosion from nubby corrosion, the

features extracted from them are similar. The number of nubby corrosions in the

training dataset is far greater than that of bar corrosion. Thus, bar corrosion can

be easily misunderstood as nubby corrosion, leading to a relatively low detection
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Table 4.1: Detection results of four kinds of corrosions

Number of corrosions Detection accuracy(%) AP(%)

Nubby corrosion 3559 89.83 85.81
Bar corrosion 501 84.23 75.78
Exfoliation 290 93.45 86.36
Fastener corrosion 985 93.81 91.88

accuracy for bar corrosion. Some misdetection results are shown in Fig. 4.10. In

addition, the AMCD still has limitations in detecting small corrosions. This is

due to the lack of sufficient features extracted by the AMCD that can be used to

distinguish the corrosion and its type. Besides its unique features, the exfoliation

contains parts of the features of nubby corrosion or bar corrosion. Because the

samples of the exfoliation are the fewest, its detection accuracy is between that

of bar corrosion and nubby corrosion.

Figure 4.10: Demonstration of misdetected corrosions. (a) Some bar corrosions are
mislabelled as nubby corrosions, and some corrosion are not detected. (b) Small nubby
corrosions are not all detected.
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Table 4.2: Comparison of corrosion detection performance

Detector Backbone Input dimension mAP(%)

Yolov2-tiny Yolov2-tiny 320 71.87
Yolov3-tiny Yolov3-tiny 320 79.02
Yolov4-tiny Yolov4-tiny 320 82.1
SSD VGG16 300 81.2
RetinaNet Resnet50 320 83.5
AMCD (ours) AMCD 320 84.96

4.3.3.3 Comparison with Latest Detection Methods

In this section, the proposed network is compared with some state-of-the-art

detectors. As the AMCD towards detecting corrosion with limited computing

resources, the Yolov2-tiny [213], Yolov3-tiny, Yolov4-tiny [214], SSD [119] and

RetinaNet [124] are selected for the comparison. To make a fair comparison,

the input dimension of compared detectors is resized to a similar scale, and all

compared detectors are trained with default parameters provided by the authors.

As shown in Table 4.2, the RetinaNet achieves 83.5% mAP, which is the baseline

in this chapter. The proposed detector achieves 84.96% mAP, which is the best

among these algorithms, and it meets the requirement. When taking the model

size and detection speed into consideration, details are shown in Fig. 4.12. Due

to the shallow network architecture and DSConv being utilised in the AMCD, the

detection speed reaches 20.18 FPS on average. It is almost 4 times faster than

the RetinaNet, and it meets the requirement for real-time corrosion detection.

With the adoption of the DSConv, the model size is reduced significantly, and it

is only 6.1MB. This suggests that the AMCD could perform corrosion detection

efficiently, which is essential for UAV onboard visual inspection applications.

Fig. 4.11 shows that the proposed method can achieve optimal corrosion de-

tection results compared with other state-of-the-art algorithms. Other detectors
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.11: Original image (a) and detection results produced by the Yolov2-tiny (b),
Yolov3-tiny (c), Yolov4-tiny (d), SSD (e), RetinaNet (f) and AMCD (g).

        A

Figure 4.12: Comparison of the Yolov2-tiny, Yolov3-tiny, Yolov4-tiny, SSD, RetinaNet
and AMCD in terms of model sizes and FPS

are limited by the tight layout and size of corrosion. The Yolov2-tiny is strug-

gling to generate accurate bounding boxes for corrosion areas. The Yolov3-tiny,

Yolov4-tiny and RetinaNet cannot detect small-size corrosion. The SSD and

AMCD identify corrosion correctly in this image.
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4.4 Summary

To the best of my knowledge, the first deep learning-based UAV onboard real-time

corrosion detector was presented in this chapter. The computational challenges

of implementing a deep learning-based corrosion detector on UAV onboard plat-

forms due to the extensive usage of traditional convolution layers were addressed

through the design of the lightweight corrosion detector. It was achieved through

the lightweight convolution utilising DSconv, innovative feature extraction and

fusion techniques leveraging the CBAM and the improved SPP, refined detection

strategies incorporating three-scale detection, and an optimised learning approach

using the focal loss.

Detailed experiment setup and execution processes were described in Section

4.3. 5625 images captured by the UAV were labelled with nubby corrosion, bar

corrosion, fastener corrosion and exfoliation to train the proposed corrosion de-

tector. The proposed approach achieves excellent performance in detecting and

recognising different categories of corrosion. Experimental results proved that the

proposed detector obtains satisfactory corrosion detection results, which is able

to achieve 84.96% mAP for corrosion identification in the complex environment

and get real-time performance (20.18 FPS) with an off-the-shelf UAV commercial

onboard processing platform. Both the detection accuracy and efficiency met the

requirements, which were 83.5% mAP and 20 FPS, respectively.
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Robust Feature-based Monocular

VSLAM for Challenging Lighting

Environments

5.1 Introduction

As discussed in Chapters 1 and 2, SLAM, which estimates the position of the

robot while reconstructing the surrounding environment simultaneously in the

unknown environments, has vital theoretical significance and application value.

Moreover, it is the core technology of autonomous robots in the unknown envi-

ronment [215]. VSLAM researches are blooming due to their convenience and

relatively low requirements for sensors. VSLAM only relies on the camera, which

obtains plenty of texture information and has been widely deployed on robotic

platforms [216]. The accuracy and robustness of VSLAM are vital for autonomous

navigation, especially in the complex lighting environment. For this reason, the
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AGCWD is introduced into the stereo version of ORB-SLAM3 in Chapter 3 to

realise robust localisation in a simulated pressure vessel. However, this approach

can still not achieve robust localisation performance in complex environments,

and processing stereo images needs lots of computing resources. On the con-

trary, monocular VSLAM systems only rely on the lightweight camera, and their

simple calibration features make them particularly attractive for many robotic

applications [217]. Thereby, in the following 2 chapters, two improved monocular

VSLAM approaches will be introduced.

Depending on the image matching methods, monocular VSLAM systems can

be divided into the featured-based method and the direct method [218]. The for-

mer extracts feature points from images and finds their corresponding based on

geometric constraints, while the latter finds the corresponding of different frames

based on their pixel intensities directly. The monocular VSLAM has been investi-

gated from different perspectives, and lots of cutting-edge VSLAM methods such

as the ORB-SLAM3 [219] and Direct Sparse Mapping (DSM) [220] have been de-

veloped. However, most advanced VSLAM systems are evaluated in well-lighted

environments without considering challenging lighting conditions, such as dark,

over-bright or dynamic illumination conditions. Visual blur or feature changes

because of different illumination conditions that occur in these complex lighting

environments. Therefore, the feature matching or frame-to-frame matching pro-

cess is significantly affected by the changes in illumination conditions. As a result,

monocular VSLAM systems may fail in these environments. Thus, developing a

robust monocular VSLAM system for the challenging scenario with complex light

has significant research and application value.
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Towards this end, this chapter presents a robust monocular VSLAM system

named AFE-ORB-SLAM through adopting the proposed adaptive FAST thresh-

old and image enhancement techniques. In the proposed AFE-ORB-SLAM, the

ORB-SLAM3 is chosen as the framework due to its excellent performance in well-

lit environments. Unlike the VSLAM utilised in Chapter 2, which mainly focuses

on the applications in the dimmed environment, the AFE-ORB-SLAM aims to

achieve robust localisation in more challenging lighting environments. In order

to handle the poor performance of the ORB-SLAM3 in challenging lighting en-

vironments, the truncated Adaptive Gamma Correction (AGC) is enhanced and

combined with the unsharp masking method in the AFE-ORB-SLAM. Mean-

while, the proposed system is improved by the proposed efficient and adaptive

FAST threshold method. The main contribution of this chapter is surmised as

follows:

To address the issue of the degraded performance of feature-based VSLAM

in an unideal lighting environment caused by sufficient feature points that can-

not be extracted, an image contrast based adaptive FAST threshold and image

contrast enhancement from the perspective of image contrast and sharpening are

developed.

The rest of the chapter is structured as follows: Section 5.2 provides the

framework of the AFE-ORB-SLAM. Section 5.3 introduces the details of improved

image enhancement and feature extraction. Experimental results and analysis are

given in Section 5.4. Section 5.5 concludes the whole work.
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Figure 5.1: Structure of the AFE-ORB-SLAM

5.2 Structure of the AFE-ORB-SLAM

This chapter proposes the AFE-ORB-SLAM based on the ORB-SLAM3 frame-

work for complex lighting environments. The overall schematic architecture is

presented in Fig. 5.1. The two blocks with words in red are the main novel works

proposed in this work. Three parallel threads (tracking, local mapping and loop

and map merging) are utilised by the ORB-SLAM3. Besides, all the generated

maps are managed by Atlas, which is a novel multiple-map system. A detailed

introduction to the ORB-SLAM3 can be found in Section 3.2.2.

Although the ORB-SLAM3 with the monocular sensor achieves impressive

performance in well-lit environments, its accuracy and robustness still suffer a lot

in complex lighting environments. In these environments, the performances of

feature extraction and matching drop significantly. When there are not enough

matched ORB feature points obtained from the surrounding environment, the

pose estimation process cannot be implemented, even leading to initialisation

and tracking failures [155]. For the reasons mentioned above, it is crucial to

incorporate the algorithm that can handle the variations of illumination into the

ORB-SLAM3. In this chapter, the image enhancement technology and ORB
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feature extraction are improved and deployed in the tracking thread to solve this

problem. After the image enhancement, more distinct texture information is

revealed. Besides, more stable ORB feature points could be obtained with the

adaptive threshold of FAST feature extraction in complex lighting environments.

Eventually, the accuracy and robustness of the ORB-SLAM3 are enhanced in

complex lighting environments.

5.3 Robust VSLAM based on Image Enhancement and

Adaptive FAST Threshold

5.3.1 Image Enhancement

The texture information is decreased in the dimmed or over-bright image. Thus,

the captured images suffer from poor contrast. Contrast enhancement algorithms

improve the visibility of objects in the dimmed or bright area by directly modi-

fying pixel values based on the proper regulation [221]. Gamma correction [20]

has gained lots of interest due to its easy adjustment and efficient implementa-

tion. The AGCWD [186] behaves well to enhance the images captured in the

low-lighting environment. As the AGCWD focuses on improving the contrast of

dimmed images, some detail loss occurs in the bright area. Inspired by Cao et al.’s

work [23], truncated Cumulative Distribution Function (CDF)-based AGCWD

(IAGCWD) is improved and adopted to process both dimmed and over-bright

images. Thereby, the local over-enhancement can be reduced. To compensate

for decreased sharpness because of image transmission and transformation, de-

tails and contours of the image are enhanced through unsharp masking technol-

ogy. Eventually, with the combination of image contrast enhancement and image
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sharpening adjustment technologies, texture information, especially for contours

contained in the image, will be more prominent.

The overall structures of the IAGCWD and the proposed image enhancement

method are shown in Fig. 5.2. The proposed image enhancement method consists

of the contrast adjustment module and the sharpening adjustment module.

5.3.1.1 Image Contrast Enhancement

The standard deviation of the image intensity denotes the average contrast of the

image [222], and it can be used to divide one image as the low contrast image

and the high contrast image. The standard deviation of the image intensity

is represented by λ. In this work, the following equation is derived to classify

images:

I(x, y) =

 Ilow(x, y) λ ≤ 0.25

Ihigh(x, y) otherwise

 (5.1)

Similar to Chapter 2, the PDF can be calculated by

PDF (l) =
nl
N

(5.2)

where l is the pixel intensity in the (x, y) position. nl represents the number

of pixels with intensity l, and N indicates the total pixels contained in the im-

age. After the histogram distribution is smoothed by the weighting distribution

function [187], the weighting distributed PDF can be formulated as

PDFwd(l) = PDFmax(
PDF (l)− PDFmin
PDFmax − PDFmin

)α (5.3)
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Figure 5.2: Structure of image enhancement. (a) IAGCWD [23], (b) the proposed
image enhancement method.
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where α is used to adjust the smooth level. The sum of PDFwd(l) can be calcu-

lated trough

SPDFwd =
lmax∑
l=0

PDFwd(l) (5.4)

Thereby, the CDF can be formulated as

CDFwd(l) =

∑lmax

l=0 PDFwd(l)

SPDFwd
(5.5)

Eventually, the parameter γ can be obtained through

γ = 1− CDFwd(l) (5.6)

To improve the performance of the image enhancement, the dimmed and bright

images should be processed differently. Thus, based on the average pixel intensity

mI , t is calculated to represent the overall brightness of the image. In this work,

t is obtained through:

t =
mI − 128

128
(5.7)

Finally, the image is divided into the bright and dark sub-classes based on the

value of t.

I(x, y) =

Ibright(x, y) t ≥ 0

Idark(x, y) t < 0

 (5.8)

Following the image classification, the contrast of dimmed and bright images will

be restored separately. The bright region in the dimmed image will be degraded

due to an overly low gamma value. To this end, a truncated CDF [23] is utilised.

γ′wd = max(τ, γ) (5.9)

110



Chapter 5. Robust Feature-based Monocular VSLAM for Challenging Lighting
Environments

τ is the threshold used for CDF truncation. It makes sure that bright regions are

not adjusted by a low gamma value. From plentiful experimental observations, it

is set to 0.3 in this work. Thereby, the detailed contour information in the bright

area could be reserved. With the adoption of CDF truncation, the dimmed

pixels will be processed by a small gamma value, while the restricted adjustment

is applied to bright pixels. Thereby, in this work, the pixel intensity could be

transformed with the following equation:

Ice(l) = 255(
l

255
)γ

′
wd (5.10)

Specifically, the process to enhance the contrast of the dimmed image is intro-

duced in Algorithm 1.

Algorithm 1 Contrast enhancement for the dimmed image

Step1: Calculate the P (l) of the input image I.
Step2: Compute PDFwd(l) with the weighting distribution function
Step3: Obtain CDFwd(l) according to Eq.(5.5).
Step4: Calculate and choose proper γ′wd
Step5: Output the contrast enhanced image Ice

A large number of pixels in the dimmed or overly bright images have similar

intensities. Over-bright images have high pixel intensities, and their negative

images contain an enormous number of pixels with low-intensity values. Thus,

the negative image of the over-bright image can be treated as a dimmed image,

and it is formed by [23]:

I ′ = 255− I(x, y) (5.11)

Then, Algorithm 1 can be utilised directly to enhance I ′. After that, the final con-

trast enhanced image Ice could be obtained through the reverse of the enhanced

negative image.
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Finally, in this work, the contrast enhancement mask Tmask(x, y) can be ob-

tained as:

Tmask(x, y) = Ice(x, y)− I(x, y) (5.12)

5.3.1.2 Sharpening Adjustment

Image sharpening enhancement highlights the contour and makes the textures of

the image clear. Unsharp masking [223] is a typical image sharpening technique.

This technique utilises a low-pass filter to get a blurred image. Based on that, a

mask is created and combined with the original image to make the texture of the

image clear. Specifically, according to [223], the process of unsharp masking can

be realised through the following steps:

The input image is processed by one low-pass filter

f(x, y) = I(x, y) ∗ hf (m,n) (5.13)

where ∗ denotes the convolution operator, and hf (m,n) is a low-pass filter

Unsharp mask gmask(x, y) can be calculated through

gmask(x, y) = I(x, y)− f(x, y) (5.14)

The sharpened image can be obtained through

gsa(x, y) = I(x, y) + ksha · gmask(x, y) (5.15)

where ksha represents the sharpening level. For the unsharp masking technique,

ksha is set to 1. In this work, a Gaussian low-pass filter is used, which could be
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represented by

G0(x, y) = e
−(x2+y2)

2σ2 (5.16)

in which σ is the standard deviation of the normal distribution.

Finally, in this work, the enhanced image can be represented by

Ienhanced =

I(x, y) + αsha · gmask(x, y) + βcon · Tmask(x, y) λ ≤ 0.25

I(x, y) + αsha · gmask(x, y) otherwise

 (5.17)

αsha and βcon are two adjustable parameters, which controls the level of image

image sharpening adjustment and contrast enhancement. As the unsharp mask-

ing technique is utilised in this work, αsha should be set to 1.0. βcon is obtained

by carrying out extensive experiments under different scenarios, and it is set to

0.3 in this work. Users can adjust them to achieve a more preferable result in a

specific environment.

5.3.2 Adaptive FAST Threshold for Feature Extraction
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Figure 5.3: FAST keypoint extraction
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The ORB feature is developed from the FAST keypoint and Binary Robust

Independent Elementary Features (BRIEF) descriptor [224]. If the pixel intensity

significantly differs from that of surrounding pixels, this pixel will be treated as

a keypoint. To detect whether a pixel p is a FAST keypoint, the pixel intensity

lp will be compared with that of 16 pixels on a circle with a radius of 3 pixels (as

shown in Fig. 5.3). A threshold θ is set manually to distinguish the current and

surrounding 16 pixels. If there are over 12 contiguous pixels brighter than lp + θ

or darker than lp − θ, the current pixel will be considered as a FAST keypoint.

To improve the detection efficiency, the differences between the current pixel and

pixels on the circle with numbers 1, 5, 9 and 13 will be detected first. Wherein

at least 3 points meet the condition that the pixel intensity difference is larger

than θ or smaller than −θ, the remaining 12 pixels on the circle will be detected.

Otherwise, the pixel p will be discarded. Then, the scale, orientation invariance

and BRIEF descriptor will be calculated by following the approach in [225].

Through the analysis above, the threshold θ is vital for the feature extraction

process. Thereby, the performance of the whole VSLAM system will be improved

through a proper θ value. However, a fixed θ cannot be adjusted to different

illumination conditions. Thus, the feature extraction is degraded in different en-

vironments. To overcome this problem, an adaptive FAST threshold calculation

method is proposed and adopted to the AFE-ORB-SLAM. Considering the com-

puting efficiency, the λ used for the image enhancement is utilised to control the

value of θ. Following the feature extraction process utilised in the ORB-SLAM3,

two adaptive threshold values are set. The values of θ are set to 20 and 7 by the

ORB-SLAM3. In this work, if enough feature points can be extracted from the

114



Chapter 5. Robust Feature-based Monocular VSLAM for Challenging Lighting
Environments

environment, a relatively large θ is used to obtain more reliable feature points.

θ = ω · λ+ 20 (5.18)

If the number of extracted feature points is not enough in a quite low contrast

image, a relatively small θ will be set.

θ =
ω · λ

2
(5.19)

ω is a parameter to control the threshold for ORB feature points extraction. In

our work, as the texture information is enriched, ω is set to 128, which is the

median value of the pixel intensity. To a specific scenario, users can adjust ω

accordingly to obtain the best result.

5.4 Experiments

5.4.1 Experimental Environment

To verify the performance of the proposed AFE-ORB-SLAM, a laptop with

Ubuntu 16.04 is used. The processor is Intel Core i7-8750H and the program uses

C++ 17 compilation. Besides, the laptop is equipped with 12GB RAM. The Im-

perial College London and National University of Ireland Maynooth (ICL-NUIM)

dataset with simulated lighting changes [145], Onboard Illumination Visual-Inertial

Odometry (OIVIO) dataset [226] and the European Robotics Challenge (EuRoC)

dataset [227] are utilised to verify the localisation accuracy and illumination ro-

bustness of the proposed AFE-ORB-SLAM.
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Figure 5.4: Example images in the ICL-MUIM dataset with simulated lighting changes
[145]. (a) Original illumination, (b) global illumination, (c) local illumination, (d) local
and global illumination.

The ICL-NUIM dataset with simulated lighting changes is a synthetic dataset,

and the camera position is available as the ground truth. It contains image

sequences under different illumination conditions. Thus, it is suitable for testing

the performance of VSLAM systems under different lighting conditions. The

office room sequences with static, local variation, global variation and local and

global variation lighting conditions are used in this work. Some sample images

are shown in Fig. 5.4.

The OIVIO dataset contains 9 image sequences captured by the Clearpath

Husky UGV in weakly lighted environments, such as mines, tunnels and other

dark environments. There are 3 scenarios named ”MINE GROUND-VEHICLE

1”, ”MINE GROUND-VEHICLE 2” and ”TUNNEL GROUND-VEHICLE 1”
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have the ground truth generated by the Leica TCRP1203 R300, and these se-

quences are utilised in our work to verify the performance of VSLAM systems.

What is more, an onboard light of approximately 1350, 4500, or 9000 lumens is

utilised to illuminate each scene. Some example images are shown in Fig. 5.5.

Figure 5.5: Example images in the OIVIO dateset [226]

Figure 5.6: Example images in the EuRoC dateset [227]

The EuRoC dataset contains 11 sequences collected by the AscTec ”Firefly”

hex-rotor helicopter. Among them, 5 sequences are recorded in a large machine

hall with ground truth provided by a Leica Multistation. The other 6 sequences

are recorded in a small Vicon room with ground truth provided by the motion

capture system. To complete the V103 sequence, the ORB-SLAM3 relies on the

multi-map system significantly, and the ORB-SLAM3 cannot complete the V203

sequence. Tracking lost will lead to unpredictable threats to robot platforms.

Thus, in this work, the other 9 sequences are chosen to validate VSLAM methods

to simulate their performances on a robot platform. Some example images are

shown in Fig. 5.6
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Figure 5.7: Results of image enhancement. (a) Original images; Enhanced images by
HE (b), CLAHE (c), IAGCWD (d) and the proposed method (e).

If the trajectory has a loop, the motion trajectory generated by ORB-SLAM3

and other ORB-SLAM based VSLAM algorithms will be optimised by g2o [228].

5.4.2 Verification of Image Enhancement

To compare performances of different image contrast enhancement methods, the

HE and CLAHE that are utilised in VSLAM systems, and the original IAGCWD

are chosen. Fig. 5.7 demonstrates the results of different image enhancement

algorithms. Fig. 5.7 (a) indicates the original images selected from different

scenarios. As shown in Fig. 5.7 (b) and (c), some high contrast images are
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achieved. However, if there are some noises contained in the images, the noises

will also be significantly amplified. Fig. 5.7 (d) shows the results achieved by

the IAGCWD, and it incurs over-enhancement in some bright regions. Fig. 5.7

(e) proves that the contrast and visibility of the texture information contained in

images are enhanced by the proposed method.

5.4.3 Evaluation on the ICL-NUIM dataset with simulated lighting

changes

To verify a VSLAM system, ATE [229] is a common practice. The ATE represents

the difference between the ground truth and the path estimated by the VSLAM

system. To verify the pose estimation performance of the AFE-ORB-SLAM,

the PL-SLAM, DSM and ORB-SLAM3 with default parameters are selected for

comparison. The median value of the localisation results for each method from

10 times running are presented.

Table 5.1: Performance comparison on the ICL-NUIM dataset with simulated lighting
changes for the mean ATE (m) and RMS ATE (m). The best results are highlighted
in a bold font.

ICL-NUIM
benchmark

DSM PL-SLAM ORB-SLAM3 AFE-ORB-SLAM
Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Syn1 0.0028 0.0030 0.0271 0.0311 0.0684 0.0732 0.0340 0.0375
Syn1-local 0.8524 0.8937 0.0385 0.0429 0.2214 0.2952 0.0376 0.0407
Syn1-global 0.0031 0.0035 - - 0.1543 0.2065 0.0329 0.0365
Syn1-local-global 0.0112 0.0119 0.2158 0.3132 0.1309 0.1684 0.0299 0.0333
Syn1-average 0.2174 0.2280 0.0938* 0.1291* 0.1438 0.1858 0.0336 0.0370
Syn2 0.5426 0.5997 0.0964 0.1093 0.0848 0.1273 0.0717 0.0817
Syn2-local 0.5438 0.5920 0.0841 0.1001 0.0758 0.0951 0.0889 0.1160
Syn2-global 0.5266 0.5722 0.0935 0.1046 0.1103 0.1458 0.0775 0.0839
Syn2-local-global 0.5198 0.5664 0.0858 0.0992 0.0858 0.0982 0.0670 0.0764
Syn2-average 0.5332 0.5826 0.0899 0.1033 0.0892 0.1166 0.0763 0.0895
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Table 5.1 indicates the mean ATE and RMS ATE of keyframe trajectories.

If the VSLAM system cannot complete all the sequences, the results will be

marked by *. With the feature points extracted with the proposed adaptive

threshold from the enhanced image, the AFE-ORB-SLAM outperforms the orig-

inal ORB-SLAM3 in all video sequences. Fig. 5.8 visualises the trajectory of the

ORB-SLAM3 and AFE-ORB-SLAM in the office scenario with local and global

variations in lighting conditions. A large offset occurs on the initialising stage

of the ORB-SLAM3, while the AFE-ORB-SLAM has a relatively smaller error

compared to the ground truth, and the proposed method outperforms the ORB-

SLAM3 in all coordinate directions.

For the DSM, even though it could achieve the best localisation accuracy in

several sequences contained in the Syn1 scenario, it is still vulnerable to different

illumination conditions. Moreover, the developed method shows the smallest

error considering the average performance of the same sequence under different

illumination conditions. The effectiveness of the proposed image enhancement

method and ORB feature points with the adaptive threshold is verified. The

overall results prove the robustness and effectiveness of the AFE-ORB-SLAM in

environments with different illumination conditions. This allows the autonomous

system to work robustly in environments with different lighting conditions.

5.4.4 Evaluation on the OIVIO dataset

To further evaluate the performance of the AFE-ORB-SLAM, apart from the

VSLAM methods utilised in Section 5.3, VSLAM systems improved by the image

contrast enhancement methods are also utilised for comparison. The HE-SLAM

and CLAHE-SLAM represent the monocular version of [149] and [151], respec-
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Figure 5.8: Visualised trajectory estimation of the ORB-SLAM3 and AFE-ORB-
SLAM. (a) and (b) are the overview of the whole trajectory. (c) and (d) are the
detailed camera position in x, y and z directions.

tively. The IAGC-SLAM indicates the ORB-SLAM3 with the IAGCWD as the

pre-processing technique. Meanwhile, the effect of the proposed image contrast

enhancement method and the adaptive FAST threshold for ORB feature extrac-

tion are analysed separately. If only the proposed image contrast enhancement

method is adopted to the ORB-SLAM3, the VSLAM system is named the IE-

SLAM. The TH-SLAM represents the ORB-SLAM3 improved by the adaptive

FAST threshold for ORB feature extraction. Finally, the DSM, PL-SLAM, ORB-

SLAM3, HE-SLAM, CLAHE-SLAM, IAGC-SLAM, IE-SLAM and TH-SLAM are
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selected to compare with the proposed AFE-ORB-SLAM.

Table 5.2: Performance comparison on the OIVIO dataset for the RMS ATE (m). The
best results are highlighted in a bold font.

OIVIO
benchmark

DSM PL-
SLAM

ORB-
SLAM3

HE-
SLAM

CLAHE-
SLAM

IAGC-
SLAM

IE-
SLAM

TH-
SLAM

AFE-ORB-
SLAM

MN 015 GV 01 5.5781 0.1858 0.1780 0.2848 0.2033 0.1746 0.1528 0.1461 0.1265
MN 050 GV 01 0.9177 0.2707 0.2218 0.2128 0.1965 0.2465 0.1810 0.1873 0.1431
MN 100 GV 01 0.6433 0.2494 0.1714 0.1765 0.1467 0.1799 0.1779 0.1578 0.1254
MN 015 GV 02 3.3304 0.2150 0.1186 0.1285 0.1014 0.1527 0.0937 0.1041 0.0855
MN 050 GV 02 0.8907 0.1977 0.1040 0.1203 0.1256 0.1587 0.0921 0.0969 0.0891
MN 100 GV 02 0.4740 0.1428 0.0964 0.1298 0.0886 0.1315 0.0936 0.0928 0.0854
TN 015 GV 01 0.8458 - 0.3231 1.1108 0.4548 0.4131 0.2751 0.2382 0.1728
TN 050 GV 01 1.0153 0.5171 0.2693 0.5378 0.2591 0.4320 0.2271 0.3393 0.1569
TN 100 GV 01 0.4948 0.3394 0.2551 0.2425 0.1608 0.2039 0.1649 0.3241 0.1511

Average 1.5767 0.2647* 0.1931 0.3281 0.1930 0.2325 0.1620 0.1874 0.1262

To simulate the performance of different VSLAM systems on robot platforms,

the full trajectories generated by VSLAM systems are used to calculate the

RMS ATE. As the DSM and PL-SLAM only output the keyframe trajectory,

the keyframe trajectory is still utilised in this section. The median RMS ATE

of 10 executions is provided in Table 5.2. If the VSLAM system cannot com-

plete all sequences, the results are marked by *. Compared with the ICL-NUIM

dataset with simulated lighting changes, sequences in the OIVIO dataset have

long trajectories, and there is no loop closure during the whole process. What

is more, the texture information is not as rich as that of the ICL-NUIM dataset

with simulated lighting changes, especially for the TUNNEL scenario. The RMS

ATE obtained in this dataset is larger than the ICL-NUIM dataset with simulated

lighting changes.

The performance of DSM is significantly influenced by the illumination con-

ditions, and it achieves the worst performance in almost all sequences. The

PL-SLAM fails in the TN 015 GV 01 sequence due to the weak visual connectiv-
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ity. The HE-SLAM, CLAHE-SLAM and IAGC-SLAM achieve higher localisation

accuracy than the ORB-SLAM3 in several sequences. However, the noises con-

tained in the images are also enhanced, and the over-enhancement exists in some

regions. The average accuracy of the ORB-SLAM3 outperforms that of the HE-

SLAM and IAGC-SLAM, while the CLAHE-SLAM and ORB-SLAM3 have sim-

ilar average accuracy. The IE-SLAM and TH-SLAM obtain better results than

the ORB-SLAM3 in most sequences. However, due to the less texture informa-

tion contained in the TUNNEL scenario, the TH-SLAM performs worse than the

ORB-SLAM3. Apparently, with the proposed image enhancement method and

ORB feature points extracted through the adaptive threshold, the AFE-ORB-

SLAM achieves the best localisation performance in all sequences. Moreover,

these sequences are collected by the UGV in mines and tunnels, which further

attests that the AFE-ORB-SLAM is robust to different illumination conditions

and can achieve accurate localisation performance in real-world scenarios.

The visualised localisation results are exhibited in Fig. 5.9 for the TUNNEL

scenario. It shows that the low visibility of the environment has a great impact

on the DSM. The PL-SLAM and ORB-SLAM3 rely on feature matching against

neighbouring frames. When not enough reliable matched feature pairs are ob-

tained, significant performance degradation can be observed. Considering the

HE and CLAHE algorithms cannot handle different images properly, their per-

formances are also influenced by different illumination conditions. The proposed

AFE-ORB-SLAM could localise the robot accurately under different illumination

conditions.

The time usage of the DSM, PL-SLAM, ORB-SLAM3, HE-SLAM, CLAHE-

SLAM and AFE-ORB-SLAM for the scenario under different illumination con-

123



Chapter 5. Robust Feature-based Monocular VSLAM for Challenging Lighting
Environments

Figure 5.9: Trajectory comparison on the TUNNEL sequences. (a) are some sample
images. (b), (c) and (d) indicate the localisation performance with the light of 1350,
4500, or 9000 lumens, respectively.

ditions are averaged and shown Fig. 5.10. The results further confirm that the

AFE-ORB-SLAM is able to deal with the challenging scenes that provide less

visual information effectively and efficiently. The average accuracy is improved

by 34.65% with the comparison to the ORB-SLAM3. In contrast, the average

processing time is only increased by 3.38%.

124



Chapter 5. Robust Feature-based Monocular VSLAM for Challenging Lighting
Environments

Figure 5.10: Comparison of time usage for different VSLAM systems

Figure 5.11: Precision comparison of different VSLAM methods
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Table 5.3: Performance comparison on the EuRoC dataset for the RMS ATE (m). The
best results are highlighted in a bold font.

EuRoC
benchmark

DSO
[230]

SVO
[231]

DSM
[220]

ORB-
SLAM3

HE-
SLAM

CLAHE-
SLAM

AFE-ORB-
SLAM

MH01 0.046 0.100 0.039 0.017 0.022 0.030 0.018
MH02 0.046 0.120 0.036 0.032 0.047 0.047 0.032
MH03 0.172 0.410 0.055 0.028 0.036 0.037 0.028
MH04 3.810 0.430 0.057 0.088 0.125 0.139 0.087
MH05 0.110 0.300 0.067 0.103 0.045 0.061 0.041
V101 0.089 0.070 0.095 0.033 0.033 0.033 0.033
V102 0.107 0.210 0.059 0.018 0.016 0.016 0.016
V201 0.044 0.110 0.056 0.022 0.023 0.022 0.023
V202 0.132 0.110 0.057 0.037 0.027 0.040 0.017

Average 0.506 0.207 0.058 0.042 0.042 0.047 0.033

5.4.5 Evaluation on the EuRoC dataset

The AFE-ORB-SLAM is further validated on the EuRoC dataset. Comparisons

of the AFE-ORB-SLAM against the DSO [230], SVO [231], DSM, ORB-SLAM3,

HE-SLAM and CLAHE-SLAM are presented in this section. The results pub-

lished in [230] for the DSO, in [231] for the SVO and in [220] for the DSM are

utilised. For other VSLAM systems, the median RMS ATE of 10 executions

for the full trajectories is obtained. The results are shown in Table 5.3. As the

most images in the EuRoC dataset contains rich texture information with regular

lighting conditions, the ORB-SLAM3 achieves similar localisation accuracy with

HE-SLAM and CLAHE-SLAM. Owing to the MH05 sequence containing images

collected at night, the localisation performance improvement by applying the im-

age contrast enhancement could be observed. The AFE-ORB-SLAM achieves a

higher localisation accuracy in the MH05, V102 and V202 sequences than the

ORB-SLAM3. Moreover, the proposed AFE-ORB-SLAM still achieves the best

126



Chapter 5. Robust Feature-based Monocular VSLAM for Challenging Lighting
Environments

average accuracy on selected scenarios.

To verify the robustness of different VSLAM systems, the results with 10

times execution are presented in Fig. 5.11. Different colour squares represent the

RMS ATE obtained in each of the 10 executions. The results demonstrate that

the precision of the ORB-SLAM3 could be improved by adopting proper image

contrast enhancement method, and the CLAHE-SLAM achieves the best results.

The proposed AFE-ORB-SLAM outperforms the ORB-SLAM3 in terms of not

only the accuracy but also the precision.

5.5 Summary

Based on the VSLAM presented in Chapter 3, a robust monocular VSLAM named

AFE-ORB-SLAM was proposed to locate the robot in complex lighting environ-

ments. The main goal of this work was to extract more reliable feature points from

the images captured in challenging lighting conditions for VSLAM approaches.

Thereby, the IAGCWD was adopted to improve the contrast of dimmed im-

ages. For over-bright images, their negative images were utilised and processed by

the IAGCWD. After reversing the enhanced negative images, the final enhanced

over-bright images were obtained. In addition to the contrast enhancement, the

sharpening adjustment was also achieved through the implantation of the unsharp

masking. Finally, the image was enhanced by both the contrast adjustment and

the sharpening adjustment. Besides image processing, the way of feature extrac-

tion was also improved to extract more robust feature points. Specifically, the

ORB feature extraction was enhanced by adopting the adaptive FAST threshold.

When the contrast of the image was low, a relatively small threshold for ORB

feature extraction would be utilised. On the contrary, a relatively large FAST
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threshold was utilised when enough feature points could be obtained in a high-

contrast image. As shown in Fig. 5.1, both the proposed image enhancement and

adaptive FAST threshold were embedded into the ORB-SLAM3 to improve the

localisation performance of the ORB-SLAM3 in complex lighting environments.

Extensive experiments were carried out in Section 5.4 to verify the perfor-

mance of the AFE-ORB-SLAM. First of all, the effect of the image enhancement

method was validated, and the results showed that the texture information con-

tained in images was enhanced by the proposed method. Then, the ICL-NUIM

dataset with simulated lighting changes and the OIVIO dataset were utilised

to test the localisation accuracy of the AFE-ORB-SLAM. Experiments demon-

strated that the AFE-ORB-SLAM was capable of achieving accurate and robust

localisation performance in environments where the images were captured under

different illumination conditions, even with less visual information. Finally, the

AFE-ORB-SLAM was validated by the EuRoC dataset, where the lighting condi-

tions were not challenging. Results showed that the AFE-ORB-SLAM preserved

the excellent performance of the ORB-SLAM3 in the well-lit environments. All

of these results proved the effectiveness of the adoption of the proposed image

enhancement method and ORB feature points with adaptive threshold into The

VSLAM system.

Thereby, the issue of the degraded performance of ORB-SLAM3 caused by

the poor feature extraction capability in unideal lighting environments is ad-

dressed through the adoption of the proposed image enhancement method, which

enhances the images from contrast and sharpening perspectives with the ORB

feature points extracted with the image contrast-based adaptive threshold calcu-

lation.
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Deep Learning Feature-based

Monocular VO for Challenging

Environments

6.1 Introduction

Chapters 3 and 5 have introduced two improved VSLAM systems for challeng-

ing lighting environments. The image enhancement techniques were adopted to

enrich the texture information. What is more, the adaptive FAST threshold is

utilised in Chapter 5 to extract more robust feature points. Both algorithms are

traditional VSLAM algorithms, and they apply hand-engineered features that

represent feature regions in the image to calculate the pose of the camera and

map points of the surrounding environment. Chapters 3 and 5 aim to extract

more ORB feature points from the challenging illumination environments for the

VSLAM system. However, ORB points are not robust enough for different envi-
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ronments. Therefore, in this chapter, the robustness of the VO/VSLAM will be

improved in another aspect: the types of the feature points.

Different kinds of feature points have already been adopted into VO/VSLAM

systems. The parallel tracking and mapping processes of the PTAM [232] are

based on FAST [233] feature extraction. After that, FAST feature extraction is

improved by combing with the BRIEF and adopted in the most famous ORB-

SLAM series [225] [150] [219]. These VSLAM systems are effective in general

environments. However, when they are deployed into the complex environments,

such as the unideal light conditions and textureless environments, their perfor-

mance is degraded significantly, and they may even be unable to localise the

camera.

Recently, as deep learning has defined the state-of-the-art in many research

areas [234] [235], adopting deep learning-based features into VO/VSLAM systems

has gained increasing interest from researchers. A complete survey can be found in

Section 2.3. Compared with traditional features, features extracted by the CNN

are more robust, which results in an improvement in the pose estimation accuracy.

However, a powerful GPU is required to deploy deep learning-based methods. To

some extent, efficiency is sacrificed to improve robustness and accuracy. To this

end, the balance of accuracy and efficiency should be taken into consideration

while deploying the deep learning-based features into the VO/VSLAM systems,

especially for the UAV platforms that have limited payload capability. In this

chapter, a deep learning feature-based VO system for UAV onboard platforms

based on an efficient feature extraction network is proposed. Specifically, an

efficient CNN model is proposed for keypoint detection. The designed network

deals with constraints on computation as the UAV has limited resources. The
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main contributions of this chapter can be summarised as follows:

To address the challenge of extracting sufficient feature points in low-contrast

and textureless environments for the UAV onboard VO system, a lightweight

CNN model is designed for feature extraction. Specifically, DSconv is employed

to reduce the computing complexity of CNN, and the DFconv with the kernel

offset calculated through the DSconv is utilised to extract feature points.

The rest of this chapter is organised as follows: Section 6.2 introduces the

VO system based on the efficient feature extraction network. in Section 6.3, the

experimental results and analysis are provided. The conclusion is given in Section

6.4.

6.2 Robust VO based on Deep Local Features

Figure 6.1: The structure of the network for feature detection and description

131



Chapter 6. Deep Learning Feature-based Monocular VO for Challenging
Environments

Considering the deep learning feature-based VO/VSLAM needs to focus on

deployment on UAV platforms, the efficiency and accuracy of the feature extrac-

tion module should be balanced. Inspired by the SuperPoint, which is trained

by the self-supervision method and achieves the desirable homography estima-

tion results, a novel efficient CNN model for feature extraction is proposed. The

DSconv [182] is adopted to reduce parameters, and it is also adopted to the DF-

conv [236] to improve the feature extraction capability. The proposed feature

detection and description module is shown in Fig. 6.1. It shows that the model

includes a shared backbone network, followed by two sub-modules for feature

point detection and description. The input image is processed by traditional con-

volutional layers, DSconv layers and DFconv layers. The details are introduced

as follows.

6.2.1 Deep Learning-based Feature Extraction and Description

6.2.1.1 Depthwise Separable Convolution

The DSconv is adopted to reduce model parameters to fit embedded computing

platforms. The detailed introduction to DSconv can be found in Section 4.3.2.

Therefore, This chapter will mainly introduce the improved DFconv.

6.2.1.2 Deformable Convolution

The DSconv scarifies the accuracy to reduce the computational cost, and tra-

ditional CNN is difficult to accommodate geometric variations properly owing

to the fixed geometric structures. Compared with the traditional convolution,

the DFconv layer adds a 2D offset to the sampling grid, which enables the free
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form deformation of the convolutional kernel. As shown in Fig. 6.2, the DF-

conv consists of two feature preprocessing channels. The upper channel learns

the sampling locations for the convolutional kernel. To reduce parameters and

improve the robustness of the DSconv, the traditional convolution is replaced by

the DSconv to calculate the 2D offset matrix. Then, the convolutional opera-

tion is performed between the input data and the deformed convolutional kernel

accordingly. Thus, the DFconv can extract features from non-uniform shapes

effectively.

In a 3 × 3 convolutional kernel with dilation 1, the convolutional grid R can

be formalised as

R =


(−1,−1) (−1, 0) (−1, 1)

(0,−1) (0, 0) (0, 1)

(1,−1) (1, 0) (1, 1)

 (6.1)

The output feature map on location p0 can be obtained through:

y(p0) =
∑
pp∈R

w(pp) · xifm(p0 + pp) (6.2)

where w indicates the convolutional weights. xifm represents the input feature

map. pp means the position in R. In the DFconv, offsets
{

∆pp|p = 1, 2, ..., P

}
is

added to R, and offset locations pp + ∆pp allows the convolutional kernel to form

an irregular shape. Thereby, the DFconv is formulated as:

y(p0) =
∑
pp∈R

w(pp) · xifm(p0 + pp + ∆pp) (6.3)
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As offset ∆pp learned by the DSconv is usually fractional, bilinear interpolation

is implemented to revise the offset as an integer.

xifm(p) =
∑
q

B(q, p) · xifm(q) (6.4)

where B denotes the bilinear interpolation kernel. p and q represent the fractional

and integral locations, respectively.

Figure 6.2: Deformable convolution

6.2.1.3 Activation Functions

In this work, the Exponential Linear Unit (ELU) [237] is chosen as the activation

function. The expression for the ELU is:

f(x) =


x x ≥ 0

αelu(e
x − 1) x < 0

(6.5)
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The hyperparameter αelu controls saturate for negative inputs. Unlike the ReLU

only has positive values, the negative values of ELU push the mean unit ac-

tivations closer to zero, which accelerates the training speed and improves the

stability of the training process.

6.2.1.4 Training Process

Figure 6.3: Training process

To avoid the data labelling process, which is time-consuming and laborious,

the self-training strategy is adopted. The training process is illustrated in Fig.

6.3. Firstly, the model provided in SuperPoint [167] is utilised to generate pseudo

ground truth for unlabelled images. To improve the robustness of the model, the

Homographic Adaptation [167] is employed to enlarge the dataset. The augmen-

tation process can be represented by

Â(X; fipa) =
1

NH

NH∑
i=1

H−1i (fipa(Hi(X))) (6.6)

where NH is the number of the generated homography matrix. H and H−1 are

the randomly generated homography matrix and the corresponding reverse. fipa
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represents the interest point adaption function.

The feature point loss function Lp is a cross-entropy loss, which can be ex-

pressed as:

Lp(Xo, Lo) = − 1

HdWd

Hd,Wd∑
i=1,j=1

(lijlog(xij) + (1− lij)log(1− xij)) (6.7)

where Hd = H/8 and Wd = W/8. Xo is the heatmap generated by the keypoint

detector branch. Lo indicates the ground truth for keypoints. To improve the

training efficiency, Mp positive pairs and Mn negative pairs of descriptor cells

are sampled from (HdWd)
2 of positive and negative pairs to train the model.

Variables with ′ indicate that these variables are extracted from the transformed

image. The encoded descriptor tensor D is generated from the original image.

uij represent the centre of the descriptor vector dij. The correspondence of the

descriptor pair
{
dij, d

′
i′j′

}
can be calculated through:

ciji′j′ =

1, ||H(uij)− u′i′j′ ||2 6 8

0, otherwise
(6.8)

With the positive margin mp and negative margin mn, a hinge loss for descriptor

loss can be defined as:

Ld(D,D′;H) =
1

(HdWd)2

Hd,Wd∑
i=1,j=1

Hd,Wd∑
i′=1,j′=1

(λciji′j′max(0,mp − dTijd′i′j′)+

(1− ciji′j′)max(0, dTijd
′
i′j′ −mp))

(6.9)

Finally, the training loss could be represented by

Ljoint = Lp(Xo, Lo) + Lp(X ′o, L′o) + Ld(D,D′;H) (6.10)
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6.2.2 SLAM Implementation

Figure 6.4: The scheme of the VO system (adapted from [24])

The proposed network is incorporated into the SP-ORB-SLAM [24], which

leverages learned repeatability and description. The SuperPoint is substituted

by the proposed network to improve the efficiency while preserving the accuracy

of the entire VO system. Fig. 6.4 shows the overall structure of the VO method.

The heatmap predicted by the keypoint detection branch is supposed to be the

repeatability map, and it is sampled as 2D grids. After that, sparse features could

be extracted. Furthermore, the camera pose is estimated directly based on the

repeatability map and refined through the association of the sparse feature points

with historical keyframes. Finally, the mapping module manages the sparse map.

The repeatable features can be identified across different images, and their

locations are considered the local peaks of the repeatability map. The track-

on-repeatability approach is adopted to localise the camera directly and coarsely.

After that, the landmarks are associated with local feature points, and the camera

pose is optimised by minimising the reprojection error. When a new keyframe is

determined, the feature points observed by previous keyframes are mapped as the
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map points. In the association step, the Approximate Nearest Neighbour (ANN)

search and epipolar line search are adopted to associate feature points. Finally,

the map maintenance process culls redundant keyframes and deletes outliers.

6.3 Experiments and analysis

To verify the performance of the proposed system, experiments including feature

point extraction, localisation performance analysis and UAV flying tests are car-

ried out. A laptop is utilised for training the model, which is equipped with the

Intel Core i7-7700HQ CPU, 16 GB of memory and an external GPU enclosure

connected via Thunderbolt 3. Specifically, the crate is equipped with an Nvidia

Titan RTX GPU. The MS-COCO 2014 dataset [238], which consists of 80000

images, is utilised for training the proposed model, and images are resized to

240 × 320. The training is done using PyTorch 1.9.1. The model is optimised

by the adam solver [239] with a learning rate of 0.0001. To improve the gen-

eralisation performance, data augmentation techniques such as random contrast

and motion blur are adopted to enlarge the training dataset. The total training

integration is 200000.

6.3.1 Datasets

HPatches [240] is a novel benchmark for local feature descriptor evaluation that

contains 116 image scenes. There are 57 scenes that show large photometric

changes, and the other 59 sequences have large viewpoint changes. Each sequence

consists of 6 images and 5 ground-truth homographies between the first image

and the others.
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Similar to Chapter 5, 9 sequences are chosen from the EuRoC dataset to

test the proposed method. More descriptions of these sequences can be found in

Section 5.4.1

Unlike Chapter 5, which uses office room sequences with static, local variation,

global variation and local and global variation lighting conditions in the ICL-

NUIM dataset with simulated lighting changes, the scenes with flash lighting

conditions are also utilised in this chapter.

Table 6.1: Feature extraction comparison

Feature
extraction methods

Detector metric Descriptor metric Homography estimation

Rep. MLE MAP MS ε = 1 ε = 3 ε = 5

ORB 0.64 1.03 0.51 0.18 0.14 0.40 0.49
SIFT 0.51 1.16 0.70 0.27 0.63 0.76 0.79

SuperPoint 0.61 1.14 0.81 0.55 0.44 0.77 0.83
GCNv2 0.64 1.14 0.78 0.44 0.45 0.73 0.81

deepFEPE 0.63 1.07 0.78 0.42 0.46 0.75 0.81
Proposed method 0.63 1.20 0.75 0.41 0.38 0.70 0.78

6.3.2 Evaluation on Feature Point Extraction and Description

To evaluate the feature point detection and matching ability of the proposed

model, detector metrics including the repeatability (Rep.) and Mean Localisation

Error (MLE), descriptor metrics consisting of mAP and Matching Score (MS) and

the homography estimation metrics with different thresholds are measured on

the HPatches dataset. The proposed model is compared with the deep learning-

based feature extraction algorithms including SuperPoint [167], deepFEPE [240],

GCNv2 [175], as well as traditional feature extraction methods such as ORB [241]

and SIFT [242] with implemented by OpenCV. The results are presented in Table
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Figure 6.5: Feature extraction and matching: (a) ORB, (b) SIFT, (c) SuperPoint, (d)
deepFEPE, (e) GCNv2, (f) the proposed model.
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6.1. The visualised feature extraction and matching results are shown in Fig. 6.5.

The red circles are feature points, and the green lines indicate the matches of

feature points. The least number of feature points were extracted by the ORB,

and a lot of mismatching exists. However, the ORB achieves the highest Rep.,

but scores for descriptor-focused metrics are the lowest. Therefore, it cannot

perform well in the homography estimation task. The SIFT detects feature points

with sub-pixel accuracy. Thereby, the greatest number of feature points are

extracted, and the best performance in homography estimation with the ε = 1

is achieved. Compared to traditional feature extraction methods, the learned

descriptors outperform artificially designed representations. In the homography

estimation, SuperPoint achieves the best score with a tolerance threshold of 3

and 5. Our method is slightly less accurate than other learned features, but still

better than the ORB. When taking the model size and Floating Point Operations

(FLOPs) into consideration, the comparison of learned features is shown in Fig.

6.6. Owing to the proposed efficient network structure, it can be seen that the

proposed method contains fewer parameters. At the same time, the FLOPs

is reduced significantly compared to other methods, which improves the model

efficiency. Thus, it bridges the gap of high demand for GPU resources when

deploying deep learning feature-based VO/VSLAM onto UAV onboard platforms.

6.3.3 Evaluation on Trajectory Estimation

To verify the localisation accuracy of the VO/VSLAM system, the ATE [229] is

estimated for comparison. The ATE represents the absolute distance between

the true trajectory and the calculated path. The comparisons of the proposed
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Figure 6.6: Model size and FLOPs comparison of different feature extraction methods

algorithm against the SP-ORB-SLAM, orb-slam3 and GCNv2-slam are carried

out on the EuRoC dataset and the ICL-NUIM dataset with simulated lighting

changes. As this work focus on the usage of the UAV onboard platform, no loop

closure and relocalisation are allowed. Once they are activated, the result will be

treated as a failure.

6.3.3.1 Evaluation on the EuRoC Dataset

The evaluation on the EuRoC dataset is carried out on a laptop with an Intel

Core i7-8750H CPU, 20GB memory and a GeForce GTX 1050 Ti 4GB graphics

card. The median value of the localisation results for each method from 10 runs

is presented in table 6.2. Due to the GCNv2-SLAM struggling to keep the scale

consistent for the monocular sequences, it fails in all scenarios. The ORB-SLAM3

achieves the best localisation accuracy in several sequences. However, it cannot

finish the sequences V102 and V202 due to the fast motion and relative textureless

environment. The SP-ORB-SLAM achieves the best average localisation accu-

racy. The proposed method finishes all sequences and obtains the sub-optimal

average localisation accuracy.
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Table 6.2: Performance comparison on the EuRoC dataset for the mean ATE (m) and
RMS ATE (m). The best results are highlighted in a bold font.

EuRoC
benchmark

ORB-SLAM3 SP-ORB-SLAM GCNv2-SLAM The proposed method
Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

MH01 0.020 0.022 0.011 0.012 - - 0.014 0.017
MH02 0.016 0.018 0.011 0.012 - - 0.012 0.014
MH03 0.027 0.031 0.023 0.027 - - 0.023 0.026
MH04 0.074 0.081 0.091 0.102 - - 0.087 0.098
MH05 0.036 0.041 0.042 0.047 - - 0.050 0.058
V101 0.031 0.033 0.032 0.034 - - 0.035 0.038
V102 - - 0.229 0.248 - - 0.201 0.215
V201 0.026 0.023 0.022 0.024 - - 0.027 0.036
V202 - - 0.035 0.052 - - 0.104 0.127
Average 0.033* 0.036* 0.055 0.062 - - 0.061 0.070

6.3.3.2 Evaluation on the ICL-NUIM Dataset with Simulated Lighting

Changes

Table 6.3: Performance comparison on the ICL-NUIM dataset with simulated lighting
changes for the mean ATE (m) and RMS ATE (m). The best results are highlighted
in a bold font.

ICL-NUIM
benchmark

ORB-SLAM3 SP-ORB-SLAM GCNv2-SLAM The proposed method
Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Mean
ATE

RMS
ATE

Syn1 0.335* 0.779* 0.053 0.062 - - 0.041 0.046
Syn1-local 0.479* 0.545* 0.040 0.046 - - 0.043 0.046
Syn1-global 0.128* 0.148* 0.059 0.066 - - 0.048 0.054
Syn1-local-global 0.271* 0.330* 0.028 0.035 - - 0.028 0.042
Syn1-flash - - 0.128* 0.141* - - 0.102 0.112
Syn1-average 0.303* 0.451* 0.062 0.070 - - 0.052 0.060

To obtain the results of the deep learning-based VO/VSLAM methods, a pow-

erful GPU is preferred. Because of the payload and power constraints on the UAV

onboard platform, the high-power GPU is unavailable. Thus, a small-sized Nvidia
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Figure 6.7: Time usage comparison

Jetson TX2, which is the most popular onboard platform for UAV, is utilised to

verify the proposed methods. Considering the limited computing resources of Jet-

son TX2, all images in the ICL-NUIM dataset with simulated lighting changes

are resized to 320 × 240. Similarly, the median localisation accuracy of success-

ful trajectory estimation among 10 times of execution is presented in Table 6.3.

Unlike the results on the powerful laptop, the proposed method obtains the best

performance on the Jetson TX2. Due to less texture information being observed

in the scenario with the flashlight, the ORB-SLAM3 fails to initialise and track

the pose of the camera. The performance of the SP-ORB-SLAM is restricted due

to the limited computing resources. Only the proposed algorithm could finish

all of the sequences in 10 times of execution, and the robustness of the proposed

method is presented in Fig. 6.8. Different colour squares represent the RMS

ATE obtained in each of the 10 executions. It shows that the proposed algo-

rithm could achieve robust localisation performance with a maximum deviation

of 0.3m. Comparisons for time usage are depicted in Fig. 6.7. The ORB-SLAM3
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is the most efficient method. However, it cannot achieve robust and accurate

localisation performance in this scenario. Compared to the SP-ORB-SLAM, the

efficiency of the proposed method is improved by 30.03% with the total power

consumption decreased by 37.31%.
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Figure 6.8: Robustness evaluation of the proposed method

6.3.3.3 Evaluation on the Real-world Sequence

To further verify the effectiveness of the proposed method, an analysis of the

performances of different VO/VSLAM methods in a real-world scenario is pro-

vided. Fig. 6.9 (a) and (b) show the top view and front view of the quadrotor

to capture image sequences, and the overall environment is shown in Fig. 6.9

(c). The quadrotor is based on the PX4 autopilot, and the Nvidia Jetson TX2

is used as the onboard computer. The detailed hardware configurations can be

found in Appendix A. Some boxes and images captured in a pressure vessel are

utilised to set up the environment. To make the environment more challenging,

the lights are turned off. An OLIGHT Baton 3 is adopted to provide light for the

environment. The Logitech C270 is used as the image input sensor. Considering
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Figure 6.9: Experimental environment setup. (a) The top view of the quadrotor, (b)
the front view of the quadrotor, (c) the experimental environment, (d) a cookie box for
VO initialisation, (e) and (f) two sample images captured by the onboard camera.

the limited computing resources of the Nvidia Jetson TX2, the quadrotor is held

in hand to record the image sequence. Some recorded images are shown in Fig.
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6.9 (d), (e) and (f). The cookie box (shown in Fig. 6.9 (d)) contains rich texture

information, and it is used to initialise the SLAM system. The image shown

in Fig. 6.9 (e) contains motion blur and reflections. Fig. 6.9 (f) indicates the

textureless environment. The Jetson TX2 is used to verify different VO/VSLAM

methods. GCNv2 still cannot track all the image frames in this image sequence.

The ORB-SLAM3 cannot keep the scale during the whole process, especially in

the textureless region. The SP-ORB-SLAM fails to initialise the system. The

proposed system could estimate the trajectory, and the trajectory can be seen in

Fig. 6.10.
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Figure 6.10: VO trajectory estimation

6.3.4 UAV Flying Tests

Finally, the flying test with the quadrotor and the environment introduced in

Section 6.3.3 is carried out. Besides the ROS, the UDP is adopted to transmit

position information through the VO system to the ROS topic. More details
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Figure 6.11: UAV velocity and position estimation

148



Chapter 6. Deep Learning Feature-based Monocular VO for Challenging
Environments

can be found in Appendix B. Through the conclusion obtained in the prevision,

only the proposed methods can provide position information for the quadrotor in

this challenging environment. Thus, only the proposed method is verified in this

flying test. The scale of the monocular VO is obtained from the PX4 autopilot.

During the experiments, the UAV is hold in hand to initialise the VO first. After

that the UAV is capable of following the desired path in this low-illumination and

textureless environment. More detailed results can be found at the supplementary

video1. Fig. 6.11 displays the velocity and position estimation results over time

in the trajectory following process. In summary, the experimental results further

attested that the proposed method is capable of locating the UAV in a challenging

indoor environment.

6.4 Summary

In this chapter, a more robust VO approach than the AFE-ORB-SLAM intro-

duced in Chapter 5 was proposed. To extract robust feature points from the

textureless environments with challenging lighting conditions, the deep learning-

based feature extraction method was adopted and optimised. As this work fo-

cused on the UAV-based autonomous visual inspection system, the DSconv is

implemented as the main convolution operation to reduce parameters. To im-

prove the feature extraction capabilities, the improved DFconv is utilised. In

particular, the DSconv instead of the traditional convolution is implemented to

calculate the offset for the DFconv layers. In addition, the ELU is utilised as

the activation function to keep the training process stable with a small number

of calculations. After that, as described in Section 6.2.1.4, the whole network

1https://youtu.be/rV-iYm6m Co
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was trained in a self-supervision manner. Finally, the proposed network was

embedded into the SP-ORB-SLAM to provide efficient but robust feature points.

Numerous experiments were conducted to validate the performances of the

proposed feature extractor network and the improved SP-ORB-SLAM. Although

the developed feature extraction network could not achieve the best performance

as shown in Table 6.5. The proposed network still outperforms ORB in homogra-

phy estimation. Compared to other learned methods, the model size and FLOPs

were reduced significantly.

For the improved VO system, the performances of the localisation were tested

and compared with other state-of-the-art VO/VSLAM systems. Results indicated

that the improved VO system was able to be deployed in challenging environments

where the ORB-SLAM3 failed, and the processing time was similar to the ORB-

SLAM3. When the computing resources were restricted, such as on the Nvidia

Jetson TX2, the proposed approach obtained the best results in most sequences.

Furthermore, it still handled the scenario where the ORB-SLAM3 failed. As

shown in Fig. 6.10 and Fig. 6.11, the UAV could localise itself and track the

predefined trajectory in the textureless and challenging lighting environment,

where both the traditional and deep learning-involved VO/VSLAM failed.

In summary, through the adoption of deep learning-based feature point extrac-

tion with a lightweight model, the VO/VSLAM could extract sufficient and robust

feature points and locate the UAV with the UAV onboard computing resources

in the low-illumination and textureless environment. Thereby, the challenge of

extracting sufficient feature points in low-contrast and textureless environments

for the UAV onboard VO/VSLAM system was addressed.
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Conclusion and Future Work

The research presented in this thesis aims to investigate how the task of UAV-

based autonomous visual inspection in complex environments can be better sup-

ported. Specifically, the contributions to knowledge are:

• The feasibility of deploying the UAV with VSLAM to achieve autonomous

visual inspection in confined and low-illumination indoor environments has

been proven through a customised simulation environment for the first time.

• The issue of high demand for computing resources when deploying deep

learning-based corrosion detection on the UAV onboard computer caused

by extensive usage of traditional convolution layers is addressed through

lightweight model design. It is achieved through lightweight convolution

utilising DSconv, innovative feature extraction and fusion techniques lever-

aging the CBAM and the proposed improved SPP, refined detection strate-

gies incorporating three-scale detections, and an optimised learning ap-

proach using the focal loss.
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• The challenge of extracting sufficient feature points in low-contrast environ-

ments for the VSLAM system is addressed through image contrast-based

adaptive FAST threshold and image contrast enhancement from the per-

spectives of image contrast and sharpening.

• The challenge of extracting sufficient feature points in low-contrast and

textureless environments for the UAV onboard VO/VSLAM system is ad-

dressed through the adoption of the deep learning-based feature point ex-

traction method with the lightweight model. The advancement is achieved

by incorporating DSconv and the DFconv, whose kernel offsets are calcu-

lated through DSconv, to extract feature points in the challenging environ-

ment.

In this chapter, the research approach utilised in this thesis is summarised in

Section 7.1. Detailed work and contributions are discussed in Section 7.2. The

limitations of this work and future work are presented in Section 7.3.

7.1 Research Approach

As discussed in Section 1.2, positivism was adopted as the worldview for this

research to answer the research question. Thus, the research methodology utilised

in this research was the quantitative method, and the data were collected and

analysed through the literature review, simulation and laboratory experiments.
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7.2 Summary of the Thesis

7.2.1 Review of Related Work

Existing research works towards inspection methods and robotic platforms were

presented in Chapter 2 (objectives 1(a)-(c)). The review of these works indi-

cates that adopting the autonomous UAV for visual inspection tasks was able

to reduce labour costs and improve efficiency. To realise an autonomous UAV

system, the robust localisation, controller, path planning and corrosion detec-

tion systems served as the main components. However, there is no end-to-end

autonomous UAV visual inspection system, primarily because of the challenges

posed by confined and low-illumination environments. Additionally, the UAVs

utilised in such settings have limited payload capacities. Thus, the first research

question was derived: Is it feasible to deploy UAVs equipped with VSLAM tech-

nology into confined and low-illumination environments for autonomous visual

inspection tasks?

The challenges and research gaps in the specific modules should be further

identified. In this thesis, the research domains focused on accurate corrosion de-

tection and robust UAV localisation in complex environments. Then, a compre-

hensive review of corrosion detection methods, including the traditional corrosion

detector and deep learning-inspired corrosion detection methods, was presented.

Towards detection accuracy, deep learning-based corrosion detectors outperform

traditional corrosion detection methods due to their advanced feature extraction

capability. However, these models cannot be deployed on the UAV platform due

to the high demand for computing resources. Thus, the second research question

was derived: How to tackle the challenge of high demand for computing resources
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in deploying the deep learning-based detector on the UAV onboard computer to

achieve real-time and accurate metallic corrosion detection?

After that, a comprehensive literature review of feature-based VO/VSLAM

algorithms in textureless and challenging lighting environments was carried out.

The literature review indicated that adopting image processing technology into

the VO/VSLAM framework is a solution to improve the quality of feature points

used by VO/VSLAM systems. However, some studies customised the dataset

to show the high localisation accuracy of the VO/VSLAM systems. Thus, the

generalisation of the image enhancement enhanced VO/VSLAM system in com-

plex lighting environments, such as dark or over-bright environments, still needs

to be addressed. Combining different kinds of features, especially by substitut-

ing feature extraction methods with deep learning-based methods, has proven the

capability to improve the accuracy and robustness of VO/VSLAM in complex en-

vironments. However, there is still a gap in adopting deep learning-based feature

points to UAV onboard platforms to cope with challenging environments, due

to the high demand for desktop-level GPUs. Thereby, the third research ques-

tion is derived: How to address the issue of poor performance in UAV onboard

VO/VSLAM systems in complex environments, particularly in scenarios under

low-light or overly bright conditions, as well as textureless conditions where a

sufficient number of feature points cannot be extracted?

To answer the above research question, research objectives were identified in

Section 1.1.2.
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7.2.2 Summary of Conducted Studies

Chapter 3 aimed to answer research question 1. To verify the feasibility of the

VSLAM-based autonomous UAV visual inspection system for pressure vessel in-

spection, a deeply customised ROS-PX4-Gazebo simulation environment, which

contains a pressure vessel and a quadrotor, was developed to mimic the practi-

cal UAV-based pressure vessel inspection scenario (objective 2(a)). The ORB-

SLAM3 could not initialise due to insufficient feature points that could be ex-

tracted in the low-illumination environment. Through the adoption of the adap-

tive gamma correction algorithm with weighting distribution as the preprocessing

process to handle low-contrast images, sufficient feature points could be obtained.

Thereby, the improved ORB-SLAM3 could be used to locate the position of the

UAV. A trajectory, which consists of a square path and a helical path, was de-

signed to inspect the inside of the pressure vessel. The pose calculated by the

improved ORB-SLAM3 was compared with the planned inspection trajectory to

determine the next target point. Then, a P-PID controller was adopted to control

the UAV to track targeted waypoints. Experimental results showed the VSLAM-

enabled autonomous UAV system could be utilised for autonomous indoor visual

inspection tasks (objective 2(b)).

Chapter 4 focused on answering research question 2. To address the issue of

high demand for computing resources when deploying deep learning-based corro-

sion detection on the UAV onboard computer caused by extensive usage of tra-

ditional convolution layers, the DSconv layers were employed as the main layers.

Moreover, the SPP has been improved to output fused feature maps that contain

more useful information for corrosion detection. At the same time, the CBAM

attention module, focal loss and three-level target detection were also adopted to
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achieve the required corrosion detection accuracy (objective 3(a)). Experimental

results showed that the proposed corrosion detector achieves 84.96% mAP for

multiple corrosion detection in complex environments, while the required mAP

is 83.5%. In addition, it achieved 20.18 FPS on the Nvidia Jetson TX2, which

meets the required 20 FPS (objective 3(b)).

The research question 3 was answered in Chapters 5 and 6. Chapter 5 inves-

tigated the traditional VSLAM system to address the issue of poor feature point

extraction performance caused by different illumination environments. Consider-

ing the excellent performance of ORB-SLAM3, it was chosen as the framework

used in this chapter. The truncated AGC was improved by the combination of

unsharp masking to enhance the image in both contrast and sharpness. Then,

the improved image enhancement approach was utilised for the pre-processing of

the ORB-SLAM3. To further improve the performance of the developed VSLAM

system, the image contrast-based adaptive FAST threshold was also proposed

and adopted to the ORB-SLAM3 to extract more robust feature points (objec-

tive 4(a)). The ICL-NUIM dataset with simulated lighting changes, the OIVIO

dataset and the EuRoC dataset were utilised to verify the performance of the

improved VSLAM system, and experimental results indicated that the improved

VSLAM system outperformed other cutting-edge monocular VSLAM methods in

most scenarios regarding localisation accuracy (objective 4(b)). However, it still

failed in textureless and low-light environments.

Thus, the issue of extracting sufficient feature points in low-contrast and tex-

tureless environments for the UAV onboard VO/VSLAM system was addressed

in Chapter 6. Specifically, the deep learning-based feature extractor with a

lightweight model has been developed and adopted to the VO system. Finally, a
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robust deep learning-based monocular VO system has been presented to achieve

robust localisation performance in textureless and low-light environments. Sim-

ilar to the efficient and accurate corrosion detector, the DSconv was still chosen

as the main convolutional operation. Meanwhile, DSconv was also applied to

the deformable convolution to calculate the offsets, and the improved deformable

convolution was utilised to extract more representative feature points in complex

environments (objective 5(a)). With the adoption of the proposed deep learning-

based feature extraction network, the performance of the VO system has been

significantly improved, and it has handled scenarios where other VO/VSLAM sys-

tems failed. Extensive experiments, including the public datasets (EuRoC and

ICL-NUIM datasets with simulated lighting changes), the recorded real-world se-

quences and the flying test, were carried out to assess the performance of the

proposed method. Experimental results confirmed that the proposed monocu-

lar VO approach outperformed other traditional and deep learning feature-based

VO/VSLAM systems on the Nvidia Jetson TX2, which was utilised as the UAV

onboard controller in this thesis. Moreover, due to the improvement in computing

efficiency, the proposed VO system allowed the UAV to track the planned trajec-

tory in textureless and low-illumination environments where both the traditional

and deep learning feature-based VO and VSLAM systems fail (objective 5(b)).

7.3 Future Work

Due to the limited time, there are several limitations to the current work (objective

(6)). The key techniques developed in this thesis are verified by the datasets and

laboratory-based mock environments. Even though the datasets are collected

in the real world, the noise and vibration caused by the UAV utilised in this
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project are not taken into consideration. The laboratory-based experimental

environment is a controlled environment, and it is not as challenging as the real

inspection scenario. Thereby, to further improve the robustness and efficiency of

the UAV-based autonomous visual inspection system, the following work can be

carried out:

Lots of the hyperparameters used in CNN training are set empirically or de-

rived from the literature. Hyperparameter optimisation techniques can be em-

ployed to identify the optimal parameters for the developed models and achieve

their optimal performance. Furthermore, the training stability of the CNN model

should also be investigated to ensure robust training processes with minimal noise.

The accuracy and robustness of VO/VSLAM systems need to be further im-

proved. The developed VO approach does not allow the fast movement of the

UAV. The novel model compression techniques that compress deep learning mod-

els for efficient deployment without scarifying too much predictive performance

could be adopted. The common practices for model compression are pruning,

quantisation and knowledge distillation. Besides improving the performance of

the pure VO/VSLAM algorithm, the sensor fusion methods could also be taken

into consideration. Considering the difficulty of sensor deployment in challenging

environments and the limited payload capability of the UAV, the IMU would

be the ideal sensor to be merged with the VO/VSLAM. When the VO/VSLAM

fails due to the fast changes of the visual feature, the UAV could also localise

itself through the IMU. Once the VO/VSLAM works again, it will take over the

localisation process to reduce cumulative errors.
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The UAV tracks the predefined path to carry out inspection tasks. Hence,

coverage path planning could also be considered. The coverage path planning

not only guarantees the full coverage inspection of the facilities but also assists

in the dense 3D model reconstruction of the facilities. In addition, the coverage

path planer can be treated as the global planner to work with a local planner.

Finally, the UAV will have the capability to avoid dynamic obstacles that can

further improve the safety of the inspection procedure.

For the UAV-based close visual inspection tasks, a robust or intelligent con-

troller to navigate the UAV in complex environments efficiently is essential.

Therefore, investigations into the flight controller would make the inspection pro-

cess safer and more efficient.
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tonomous structural visual inspection using region-based deep learning for

detecting multiple damage types,” Computer-Aided Civil and Infrastructure

Engineering, vol. 33, no. 9, pp. 731–747, 2018.

[117] J. Li, Z. Su, J. Geng, and Y. Yin, “Real-time detection of steel strip surface

defects based on improved yolo detection network,” IFAC-PapersOnLine,

vol. 51, no. 21, pp. 76–81, 2018.

[118] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 779–788.

[119] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in European Conference on

Computer Vision. Springer, 2016, pp. 21–37.

[120] Y. Dai, R. Han, L. Liu, X. Jiang, S. Qian, Q. Hong, and S. Gao, “Research

on substation equipment rust detection method based on improved ssd,”

in 2021 International Conference on Advanced Electrical Equipment and

Reliable Operation (AEERO). IEEE, 2021, pp. 1–3.

175



Bibliography

[121] R. E. Andersen, L. Nalpantidis, and E. Boukas, “Vessel classification using

a regression neural network approach,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.

4480–4486.

[122] R. Ali, D. Kang, G. Suh, and Y.-J. Cha, “Real-time multiple damage map-

ping using autonomous uav and deep faster region-based neural networks

for gps-denied structures,” Automation in Construction, vol. 130, p. 103831,

2021.

[123] X. Cheng and J. Yu, “Retinanet with difference channel attention and adap-

tively spatial feature fusion for steel surface defect detection,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.

[124] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense

object detection,” in Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 2980–2988.

[125] T. Li, L. Xing, H. Fan, and H. Zhu, “Surface defect detection of alu-

minum material based on deep learning,” in 2022 IEEE International Con-

ference on Advances in Electrical Engineering and Computer Applications

(AEECA). IEEE, 2022, pp. 1375–1379.

[126] C. Luo, L. Yu, J. Yan, Z. Li, P. Ren, X. Bai, E. Yang, and Y. Liu, “Au-

tonomous detection of damage to multiple steel surfaces from 360 panora-

mas using deep neural networks,” Computer-Aided Civil and Infrastructure

Engineering, vol. 36, no. 12, pp. 1585–1599, 2021.

[127] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018.

176



Bibliography

[128] NVIDIA DEVELOPER, “Jetson tx2 module,” https://developer.nvidia.c

om/embedded/jetson-tx2, 2017.

[129] S. Jung and Y.-J. Kim, “Mils and hils analysis of power management system

for uavs,” IEEE Access, 2023.

[130] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner, and

T. Duckett, “Localising faster: Efficient and precise lidar-based robot local-

isation in large-scale environments,” in 2020 IEEE international conference

on robotics and automation (ICRA). IEEE, 2020, pp. 4386–4392.

[131] B. W. Parkinson and J. J. Spilker, Progress in astronautics and aeronautics:

Global positioning system: Theory and applications. Aiaa, 1996, vol. 164.

[132] M. Y. Arafat, M. M. Alam, and S. Moh, “Vision-based navigation tech-

niques for unmanned aerial vehicles: Review and challenges,” Drones, vol. 7,

no. 2, p. 89, 2023.

[133] I. A. Kazerouni, L. Fitzgerald, G. Dooly, and D. Toal, “A survey of state-

of-the-art on visual slam,” Expert Systems with Applications, vol. 205, p.

117734, 2022.

[134] A. Annaiyan, M. A. Olivares-Mendez, and H. Voos, “Real-time graph-based

slam in unknown environments using a small uav,” in 2017 international

conference on unmanned aircraft systems (ICUAS). IEEE, 2017, pp. 1118–

1123.

[135] M. Hassanalian, M. Radmanesh, and S. Ziaei-Rad, “Sending instructions

and receiving the data from mavs using telecommunication networks,” in

Proceeding of International Micro Air Vehicle Conference (IMAV2012),

Braunschweig, Germany, 2012, pp. 3–6.

177

https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2


Bibliography

[136] B. Renfro, M. Stein, E. Reed, J. Morales, and E. Villalba, “An analysis of

global positioning system (gps) standard positioning service performance

for 2019,” The University of Texas at Austin, 2020.

[137] M. Perez-Ruiz, D. C. Slaughter, C. Gliever, and S. K. Upadhyaya, “Tractor-

based real-time kinematic-global positioning system (rtk-gps) guidance sys-

tem for geospatial mapping of row crop transplant,” Biosystems engineer-

ing, vol. 111, no. 1, pp. 64–71, 2012.

[138] M. Lu, W. Chen, X. Shen, H.-C. Lam, and J. Liu, “Positioning and tracking

construction vehicles in highly dense urban areas and building construction

sites,” Automation in construction, vol. 16, no. 5, pp. 647–656, 2007.

[139] G. Mao, S. Drake, and B. D. Anderson, “Design of an extended kalman filter

for uav localization,” in 2007 Information, Decision and Control. IEEE,

2007, pp. 224–229.

[140] L. Arreola, A. M. De Oca, A. Flores, J. Sanchez, and G. Flores, “Improve-

ment in the uav position estimation with low-cost gps, ins and vision-based

system: Application to a quadrotor uav,” in 2018 International Conference

on Unmanned Aircraft Systems (ICUAS). IEEE, 2018, pp. 1248–1254.

[141] A. Nemra and N. Aouf, “Robust ins/gps sensor fusion for uav localization

using sdre nonlinear filtering,” IEEE Sensors Journal, vol. 10, no. 4, pp.

789–798, 2010.

[142] Y. J. Choi, I. N. A. Ramatryana, and S. Y. Shin, “Cellular communication-

based autonomous uav navigation with obstacle avoidance for unknown

indoor environments,” International Journal of Intelligent Engineering and

Systems, vol. 14, no. 2, pp. 344–352, 2021.

178



Bibliography

[143] J. Ho, S. Phang, and H. Mun, “2-d uav navigation solution with lidar sensor

under gps-denied environment,” in Journal of Physics: Conference Series,

vol. 2120, no. 1. IOP Publishing, 2021, p. 012026.

[144] X. Gao, T. Zhang, Y. Liu, and Q. Yan, “14 lectures on visual slam: from

theory to practice,” Publishing House of Electronics Industry, 2017.
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Appendix A

Hardware Specifications

Table A.1: Detailed Hardware Components Utilised in This Work

Hardware type Quantity Specification

UAV frame 1
DJI F450 Flame Wheel

Quadcopter Frame
Motor 4 Multistar 2212 920KV Motor

Electronic Speed
Control

4 HobbyWing 40A

Propellers 4
DJI 9450 Self-

tightening Propellers
Power module 1 Holybro PM07

UAV battery 1
YouMe 6000mAh 4S 50C

Lipo Battery
Flight Controller 1 Pixhawk 4

Companion computer 1 Nvidia Jetson TX2
Carrier board for

companion computer
1 Auvidea J120 Carrier Board

Telemetry Radio 1
Holybro 100mW Telemetry

Radio Set V3
Remote control receiver 1 Turnigy TGY-iA6C Receiver

Remote control transmitter 1
Turnigy TGY-i6S Digital Proportional

Radio Control System
RGB Camera 1 Logitech C270

Lighting 1 OLIGHT Baton 3
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Communication between UDP

and ROS

The example of sending position information obtained from the VO

system is listed as follows:

int client sockfd;

int len;

std::ostringstream ss;

struct sockaddr in remote addr;

int sin size;

char buf[BUFSIZ];

char vslam x[BUFSIZ];

char vslam y[BUFSIZ];

char vslam z[BUFSIZ];

memset( & remote addr, 0, sizeof(remote addr));

remote addr.sin family = AF INET;

remote addr.sin addr.s addr = inet addr(”127.0.0.1”);
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Appendix B. Communication between UDP and ROS

remote addr.sin port = htons(8000);

if ((client sockfd = socket(PF INET, SOCK DGRAM, 0)) < 0)

perror(”socket error”);

}

tf::poseTFToMsg(new transform, pose.pose);

x = pose.pose.position.x;

y = pose.pose.position.y;

z = pose.pose.position.z;

float ix, iy, iz;

ix = x;

iy = z;

iz = -y;

sprintf(vslam x, ”%f”, ix);

sprintf(vslam y, ”%f”, iy);

sprintf(vslam z, ”%f”, iz);

strcat(vslam x,” ”);

strcat(vslam x, vslam y);

strcat(vslam x,” ”);

strcat(vslam x, vslam z);

strcpy(buf, vslam x);

printf(”sending: ’%s’ \n”, buf);

sin size = sizeof(struct sockaddr in);

if ((len = sendto(client sockfd, buf, strlen(buf), 0, (struct sockaddr * ) &

remote addr, sizeof(struct sockaddr))) < 0)

perror(”recvfrom”);

}
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Appendix B. Communication between UDP and ROS

close(client sockfd);

The example of receiving position information and publishing it through

the ROS topic is shown as follows:

UDP IP = ”127.0.0.1”

UDP PORT = 8000

sock = socket.socket(socket.AF INET,

socket.SOCK DGRAM)

sock.bind((UDP IP, UDP PORT))

rate = rospy.Rate(30)

self.orbpose = PoseStamped()

self.position = rospy.Publisher(’/mavros/vision pose/pose’, PoseStamped,

queue size=10)

data, addr = sock.recvfrom(1024)

data1 = data.split()

self.orbpose.pose.position.x = float(data1[0])*scale;

self.orbpose.pose.position.y = float(data1[1])*scale;

self.orbpose.pose.position.z = float(data1[2])*scale;

self.position.publish(self.orbpose)
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