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Abstract

The demand for remote inspection of pipework in the nuclear, oil and gas
industries provides significant challenges of access, navigation, inspection
technique and data communication. Nuclear processing cells, in particular, typically
contain several kilometers of densely packed pipework whose actual physical layout
may be poorly documented. Access to these pipes is typically available through the
radiation shield, via a small removable concrete plug, which may be several meters
from the actual inspection site. The high levels of radiation within such cells means
that manual inspection is often impossible and, typically, bespoke solutions are
utilised on a case specific basis. This thesis describes the development of an
intelligent inspection system for non-destructive evaluation on non-ferromagnetic
pipes. This wireless robotic platform has a range of kinematic abilities suited to the
infrastructural demands of typical industrial facilities. Inspection is conducted
using an integrated camera coupled with statistical pattern classification which
complements a swept-frequency, eddy current array for rapid imaging of surface
breaking defects. Extensive evaluation of the performance of the classification
system is provided along with the establishment of a combined theoretical and
finite element framework for the eddy current array. Data from each sensor is fused
to provide the final inspection result, yielding enhanced detection capabilities.    
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Chapter 1

Introduction

1.1  Background

1.1.1  Non-Destructive Evaluation and the Power Industry

The majority of nuclear infrastructure in the UK was constructed during the post-
war era as the race to harvest the commercial power of the atom commenced. The
working life of these assets was expected to be no greater than around 25 years and,
such was the confidence in the quality of design, little thought was given to the need
for inspection or decommissioning. Due to a number of high profile incidents,
nuclear power lost favour with both the public and the policy-makers and, as a
result, investment in new infrastructure was reduced and the working life of
existing plant extended well beyond its initial scope. Calder Hall power station is an
example of such plant. Originally commissioned for an operational life of 20 years,
starting in 1956, generation at this facility was repeatedly extended until 2003!
Consequently, the role of non-destructive evaluation (NDE) has become
increasingly important. A 2009 report [1] showed that, despite the global financial
crisis reducing the rate of market growth, the overall growth rate in the NDE
equipment market was positive. This growth is, in part, due to the ever-present
need to ensure the safety of personnel and the maximisation of plant operation. In
2008, the world market was estimated to be in the region of $1.1billion [1] with
forecasts predicting this to increase to $1.3billion by 2013. The commitment of
successive UK governments to the principle of new nuclear facilities, in the face of
much negative publicity, follows the inevitable realisation that, with the steady
1



demise of fossil fuels, current renewable technology is unable to realistically meet
the country’s soaring energy demands. In order to ensure price stability and security
of energy supply, coupled with increasing demands for CO2 reduction, nuclear
power is entering a global ‘renaissance’ period [2], expanding the potential for non-
destructive evaluation. This trend towards lifetime extension and increasing usage
of NDE is evident in all power generation industries. Precise figures are difficult to
obtain however, it is estimated that the annual inspection of pipework in the oil and
gas industry costs many tens of millions and, given that a typical gas refinery may
contain thousands of kilometers of pipework, this presents considerable logistic
challenges where access is limited to within a scheduled time window.

The ubiquity of certain defects varies across different industries. For much of the
carbon steel pipework, corrosion is the major problem, however, corrosion pits in
isolation are not necessarily of tremendous concern. In fact, reductions of 50% of
the wall thickness can be tolerated on occasions before a section must be replaced.
However, multiple instances of corrosion pitting within close proximity is of
considerable concern, due to the prime conditions this creates for inter-pit crack
generation. In the nuclear industry, due to the predominance of austenitic stainless
steel usage, corrosion pitting is not the most significant problem. Fatigue cracking,
however, is a particular concern and was instrumental in the 2005 THORP
incident, where a failure in a nozzle resulted in approximately 83 m3 of highly
radioactive uranium and plutonium dissolver product liquor leaking into the
processing cell [3]. The total cost of this incident is estimated to be in the region of
£300m [4] and resulted in the operator of the plant being fined £500,000 [3].
Furthermore, the site was forced to shut down entirely for a period of 22 months.
Most plant is typically subjected to prolonged cyclic loading of some form or other
and, for the majority of ageing plant in the nuclear, oil and gas industries, fatigue
cracks are inevitable. The existence of such cracks in itself is not an immediate
cause for concern, in many instances, however it is important to be able to assess
the extent of the crack such that an estimation of the remaining useful life can be
obtained. Such defects in ageing plant are likely to be in the tertiary (or most rapid)
stage of creep, which ultimately precedes failure. Furthermore, as plant degrades
there will be increasing numbers of defects, thus compounding the need for quick
and efficient inspection. Given the relatively modern nature of materials such as
austenitic stainless steel, the long-term performance is unknown and due to the
volume of such material used in critical plant, the need for NDE is likely to be ever-
growing. 
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There are a wealth of NDE inspection systems and techniques commercially
available, however the equipment market is dominated by the four main modalities:
eddy current, visual, ultrasonic and radiographic. In 2005, the eddy current and
visual inspection test equipment markets accounted for 20.6% and 24.3% of the
total NDE equipment market respectively with ultrasonic claiming 26.6% and
radiographic 25.9% [5].   

1.1.2  The Move Towards Remote Inspection

The motivation for increased research into remote inspection is, broadly speaking,
to address three concerns: NDE in areas of restricted access, inspection efficiency
(i.e. volume of inspection in a given time frame) and accuracy (resolution of defect
characterisation/location). It can be shown that the latter two are linked, with more
accurate inspection allowing more efficient deployment of NDE resources.

Nuclear processing cells process spent fuel and separate the re-usable by-products
of fission, such as uranium and plutonium, from the radioactive waste which must
be treated and stored. The high levels of radiation within such cells means that
inspection is at best difficult and, in some cases, impossible by manual means.
Furthermore, some areas may be physically too small to allow access and often,
particularly in the nuclear industry, bespoke solutions are required. Such innovative
and unique systems inevitably come at a premium and therefore a strong case must
be made for this investment. A multi-use robotic system for pipe inspection offers
a cost-effective means of protecting personnel safety while enabling inspection of
all necessary plant. It is therefore a very attractive solution for the industrial end-
user.

Inspection and maintenance is required by law, however the competitive nature of
the markets means that there is a drive to be more efficient and minimise down-
time and hence costs [6]. As intervals between inspection can be in the region of
several years and there is a limit to the amount of inspection that can be achieved
within a given time window, priority must be assigned to those areas of greatest
concern. The preparation required to facilitate a given NDE inspection
(scaffolding, insulation removal, grit blasting etc) is often as much as four or five
times more expensive than the cost of the actual inspection itself. Furthermore, in
spite of increasing expenditure on NDE training, the fallibility of human nature
means that errors will inevitably occur. As many oil and gas pipelines operate at
temperatures of several hundred degrees, marking of pipes is not possible and thus,
in densely populated regions, mistakes may be as simple (and costly) as inspection
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of the wrong pipe. Originally, NDE was a largely qualitative process aimed at
simply identifying if a defect was present or not. As technology progressed, and
driven by economic factors, there has been a move to a more quantitative approach
where greater emphasis is placed on determining the residual life of an asset [6]. In
doing so, it may be feasible to keep a part in operation until an outage is scheduled
rather than unnecessarily interrupting operation. By gaining a more precise
quantitative description of a particular structure, unnecessary interruptions can be
minimised. Intelligent robotic systems offer the potential to make the most
efficient use of plant down-time by maximising the volume of inspections that can
be achieved while minimising the extraneous costs. Such a system would offer a
significant reduction in overall maintenance costs and, consequently, increase
profitability while offering the capability to expand the scope of NDE and provide
quantitative data to a predictive maintenance regime.

1.1.3  Typical Inspection Scenario

At this point it is pertinent to provide an example of a specific inspection problem
in order to ‘set the scene’ for this research. In the scenario shown in Figure 1.1, a
weld requires inspection at the point where the red pipe connects to a vessel.
Processing cells typically have small inspection ports through which access to the

Figure 1.1:  Model of a typical inspection scenario in a nuclear processing cell. A
weld on a pipe (shown in red) connecting into a vessel requires inspection for
fatigue, however this is a considerable distance from the nearest inspection port.
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pipe may be gained. The size of the cell can be quite large and, as there are only a
limited number of such access points, it is quite likely that, as in this instance, the
artefact of interest is some distance from the nearest inspection port. The level of
radioactivity within the cell is high, making manual inspection dangerous and
costly. The use of a multi-degree-of-freedom (MDOF) snake-arm robot to deploy
a payload to the site has the problem that the arm must be long enough to span the
distance required. Furthermore such systems are typically expensive and can be
difficult to control. A more convenient solution would be to clamp a mobile
robotic vehicle onto the pipe leading to the vessel where it passes an inspection
port and then drive the system to the weldment of interest, navigating past
obstacles en-route. Deployed on this ‘pipe crawler’ would be a range of payloads
suited to the particular inspection. The results of the inspection would then either
be transmitted wirelessly back to a receiver located at the inspection port or stored
on-board for later post-processing. A platform such as this, rather ironically, has a
significant advantage in terms of flexibility over a MDOF system since its range is
not limited and, consequently, it is a more cost-effective solution.

1.2  Aims of this Thesis

One of the major difficulties in the field of nuclear facility inspection is the non-
trivial matter of getting the NDE equipment to the area of interest. In many
instances, the same is true of the oil, gas and petrochemical industries, where either
there is significant expense in terms of creating a supporting infrastructure suitable
to provide a safe platform for personnel to perform a manual inspection, or space
is so restrictive that actually gaining access itself is highly problematic. The
fundamental aim of this thesis is to create a robotic pipe inspection system which
is capable of addressing this issue. A particular emphasis will be placed on the
application of nuclear processing cell inspection, while offering broader
applicability to the other relevant industries. The principal application is somewhat
of an ‘acid test’ in that the restrictions and stipulations imposed by the operating
environment are much stricter than in the other areas mentioned. Thus, a system
that is designed to operate in such harsh environments could also, almost certainly,
operate in the majority of cases in these other industries. Thus, by prioritising the
application in this way, a platform can be developed that offers a high level of
application flexibility and thus broader industrial appeal. Critical to the efficacy of
such a system, is a set of NDE inspection tools that are integrated with the main
platform. Off-the-shelf inspection equipment could quite easily be adapted so that
they could be mounted on a robotic platform, however only their complete
integration within the system offers the high levels of control that a truly flexible
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inspection solution demands. Furthermore, bespoke payloads for specific
inspection problems can be developed that offer advantages in terms of sensitivity
and probability of detection over an adapted, commercially available solution.   

Given the preceding argument, the specific aims of the research can be summarised
as follows:

i. Create and evaluate a robotic platform for the inspection of non-ferro-
magnetic pipes, particularly within nuclear processing cells.

ii. Design and evaluate a visual inspection system incorporating both 
image capture and pattern recognition for defect classification.

iii. Create and evaluate a sensor for integration with the main pipe inspec-
tion platform.

iv. Fuse image and eddy current sensor data sets to enhance clarity and 
probability of detection (POD).

1.3  Contributions to the Field

Existing pipe inspection systems are typically either very bulky, external devices,
requiring an umbilical to deliver power and communications, or are internal pipe
inspecting ‘pigs’1. Due to the dense nature of the internal infrastructure and the
aggressive nature of the pipe contents, such systems are unsuitable for the
inspection of pipework within nuclear processing cells. CUE has a long-term
interest in remote inspection however, prior to this research, the focus has been on
wheeled robots using magnetic traction [7]. The unsuitability of this platform for
non-magnetic material and also for small diameter pipework required that a
completely new and novel platform be developed for this task. The development
of such a system for external pipe inspection, capable of operating wirelessly and
of circum-navigating typical obstacles such as pipe hangers, flanges and pipe bends
demonstrates a considerable contribution to the field and to the robotic inspection
portfolio of the group. The creation of a stable and robust inspection platform
necessarily precedes the development of payloads since without such stability and
kinematic ability, the inspection sensors cannot be delivered to the location
accurately. Surmounting the key issue surrounding traction on such materials, while
providing these capabilities, is a significant achievement.

1. A ‘pig’ refers to a device that travels through a pipeline and does not require the flow of the 
pipeline product to be stopped.
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The use of pattern recognition techniques to extract features in data is one where
the results have often been overstated, particularly in the field of neural networks
as will be outlined in Chapter 5. However the implementation of an automated
visual recognition system for classifying defects, based on the statistical information
within images captured using the on-board visual inspection system, is crucially
different from these approaches and is novel. The application of the eigenface
facial recognition technique to NDE images has not been attempted previously and
therefore is a contribution of this thesis. A good quantitative evaluation of the
performance of the system on both synthetic and real defect images has been
provided.

The integration of a low power, swept-frequency, differential eddy current array
with a robotic pipe inspection platform is a contribution and forms an essential
non-contact payload. The establishment of an equation to calculate the optimum
operating frequency for a differential phase eddy current system and a metric that
makes use of the swept excitation method which is less sensitive to unwanted
factors than the conventional single-frequency metric are also both contributions.
A theoretical relationship between the defect geometry and the new defect metric
is provided and has been shown to relate well to defect size allowing C-scan images
with the relative depth of defects to be obtained. 

Finally, a framework for combining data sets from the visual and eddy current array
payloads has been presented with some rudimentary examples to satisfactorily
prove the overall concept of an intelligent pipe inspection system. A significant
body of further work could be focussed on this area and this is acknowledged. 

1.4  Thesis Content

Chapter 2 provides an overview of the nature of austenitic materials and the
influence this has on the suitability of certain inspection modalities. A review of
state-of-the-art pipe crawling robots follows a focussed examination of suitable
traction options for use on non-ferromagnetic materials. A literature review of
eddy current techniques and visual pattern recognition systems is also provided.

Chapter 3 reflects upon the literature outlined in Chapter 2 and defines a
specification for the intelligent inspection system.

Chapter 4 contains an in-depth study of the design of the robotic platform,
indicating the reasoning behind the choice of traction system and chassis design
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from the many alternatives. A finite element model (FEM) examines the structural
integrity of the proposed design and an exhaustive analysis of the kinematic
performance is provided which feeds a second, optimised design iteration. Finally,
there is an overview of the graphical user interface (GUI) for control of the robotic
platform and integrated control of the on-board payloads.

In Chapter 5, the automated visual recognition system is discussed. An overview of
pattern recognition and types of classifier is provided together with a detailed
examination of the use of principal component analysis (PCA) for image
processing. Following a system overview and establishment of a Bayesian
framework for the classifier, a detailed examination of the influence of image
bandwidth, volume of training data and generalisation is given. An overview of
classifier combination theory outlines the mathematical framework for combining
the outputs from multiple binary and multi-class classifiers followed by an
examination of the relative performance, benchmarked against a K-nearest
neighbour (KNN) methodology. Finally, the system is tested using genuine
corrosion defects and the performance of the various classifier ensembles
compared. 

Chapter 6 discusses the fundamentals of eddy current inspection and the design of
the sensor. A detailed derivation of the optimum operating frequency and defect
metric is provided and finite element modelling (FEM) is used to relate this to the
underlying defect geometry. The effect of lift-off, defect position and radius as well
as the performance on sub-surface defects are considered in terms of the coil
impedance. A detailed description of the functional design and operation of the
eddy current array system is provided along with an overview of the associated
digital signal processing (DSP) that is required. An imaging algorithm is presented
which combines the data from multiple probe positions and this is compared with
a benchmark, commercially available device. The results of the imaging process are
validated against results from an algorithm simulator.

Chapter 7 combines the three key threads of the research, namely the robotic
platform, the visual inspection system and the eddy current array, through a
process of data fusion. The data sets from the two sensor payloads, resulting from
a 304L austenitic stainless steel pipe inspection, are combined into a single image
and in so doing, it is demonstrated that the clarity of the defect image, and hence
probability of detection (POD), is significantly improved. The effect of a
registration mismatch is identified along with the effect of inadequate shape
extraction performance.
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In Chapter 8, a review of the complete developed system is provided including a
discussion of the performance and suitability to the intended inspection tasks.
Additionally, a programme for future work is outlined.

1.5  Publications to Date Arising from this Thesis

•L. Mackenzie, S.G.Pierce, G. Hayward, “Robotic Pipe Crawling Platform 
for NDE”, Proc. of 46th Annual British Conference on NDT, Glasgow, 18-20th 
September 2007

•L. Mackenzie, S.G.Pierce, G. Hayward, “Robotic Inspection System for 
Non-destructive Evaluation (NDE) of Pipes”, AIP Conference Proceedings, 
2009, 1096, 1687

•S.G. Pierce, G. Dobie, R. Summan, L. Mackenzie, J. Hensman, K Worden, 
G. Hayward, “Positioning Challenges in Reconfigurable Semi-Autonomous 
Robotic NDE Inspection”, Proceedings of SPIE, 2010, 7650, 76501C

•L. Mackenzie, S.G.Pierce, G. Hayward, “NDE Image Pattern Classifier for 
Intelligent Pipe Inspection”, Pattern Analysis and Applications, 2011 (In 
progress)

•L. Mackenzie, S.G.Pierce, G. Hayward, “Robotic Pipe Inspection with 
NDE Image and Eddy Current Data Fusion”, Insight, 2011 (In progress)
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Chapter 2

Review of Material, Systems and 
Techniques

2.1  Introduction

The purpose of this Chapter is to examine areas relevant to the project and present
a summary of the important research that has been conducted with a view to
establishing a formal specification in Chapter 3. Further details will be provided, on
each topic, in the relevant chapters however here the aim is to provide a broad
overview and the reader will be directed to the relevant section for a more detailed
explanation where required. The nature of austenitic stainless steel will first be
outlined, leading into a discussion of suitable traction methods for a robot
operating on this material and a summary of various pipe robots from research
papers. The influence of the pipe material on the suitability of different payloads
will be discussed and it will be shown that a visual payload coupled with a pattern
recognition algorithm in addition to an eddy current sensor offers a useful
combination. A review of eddy current techniques and commercial equipment is
provided followed by a discussion of how pattern recognition techniques have
been applied to images in various fields including NDE.

2.2  Overview of Austenitic Stainless Steel

Austenitic stainless steel is widely used in industry for its relatively high tensile
strength, malleability and excellent corrosion resistance. Typical applications within
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the nuclear power industry include piping in pressurised water reactors (PWR) and
boiling water reactors (BWR). The following section gives an insight into the
factors that provide its unique properties. 

Pure iron has three, temperature-dependent, solid states each having one of two
crystalline configurations. Body centred cubic (BCC) refers to a lattice structure
containing one lattice point at each corner of the cubic structure and one in its
centre. A face centred cubic (FCC) structure similarly has lattice points at each
corner, however additional points are found on each face of the cube rather than
at its centre. This leads to a greater number of shared atoms in adjacent lattices,
meaning the atoms can pack more closely together resulting in greater ductility.
Unlike the more brittle BCC structures, such as carbon steel, unexpected changes
in operating conditions (e.g. temperature, loading) are much less likely to
compromise the performance of austenitic stainless steel. The three solid states of
iron along with their associated lattice structure and stable temperature range are
given in Table 2.1. 

When cooling from its liquid phase, an iron alloy initially solidifies as delta ferrite,
transforming to gamma ferrite (austenite) and then alpha ferrite with further
cooling. The addition of nickel (Ni) increases the temperature range over which the
FCC structure, and hence the austenite state, prevails. However, ferrite crystals can
remain in the casting which will lead to a reduction in corrosion resistance. The
corrosion resistance property of the material is achieved through a process called
passivation. To prevent the formation of iron oxide (i.e. corrosion) on the surface
of the steel upon exposure to air, chromium (Cr) can be added to the iron which
preferentially forms a protective film of chromium oxide on the surface [8]. This
oxide layer reforms if the surface is damaged, leading to such steels being termed
‘stainless’. The 304 grade austenitic stainless steel, used a great deal in the nuclear
industry, has a 18% Cr and 8% Ni content. 

Table 2.1:  Iron states with associated temperature range and lattice structure 

State Stable Temperature Range 
( )

Crystalline Structure

Alpha Ferrite <910 BCC

Gamma Ferrite
(Austenite)

910 - 1400 FCC

Delta Ferrite 1400 - 1535 BCC

Co
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The rate at which the alloy is cooled can have a significant effect on the properties
of the resulting material. During the cooling process, interstitial accumulations of
impurities, such as sulphur and phosphorous, can occur, leading to an increased
risk of cracking - the situation is exacerbated if the material is cooled too rapidly. If
the alloy is cooled too slowly however, corrosion of the grains at the grain
boundary can occur due to a chromium depletion in this area. At a temperature of
around 650oC the relatively small carbon atoms diffuse easily through the lattice
structure to the grain boundary. However, the larger chromium atoms cannot
diffuse, leading to the formation of chromium carbides [8, 9]. The lack of available
chromium atoms now to form protective oxides results in a reduced corrosion
resistance. This process, known as sensitisation, can also occur during welding
when there is a sudden increase in temperature. Low carbon grades of steel are
available (e.g. AISI 304L, 316L) which reduce the available carbon for carbide
formation and hence provide better resistance to corrosion. 

Weldments in austenitic steel present a further microstructural complexity. In both
ferritic and austenitic metals the initial stages of grain formation are the same in
that, during the solidification process following welding, a columnar grain structure
is produced. Grain growth is along the direction of the maximum thermal gradients
and is faster along a <100> crystallographic axis leading to the creation of
columnar grains [8, 9, 10, 11]. For a V-preparation weld, in the proximity of the
fusion faces, the direction of heat flow will be normal to the fusion face, towards
the cooler parent material, where-as in the centre of the weld this will be normal to
the weld surface [10, 12]. The difference arises after the initial pass of the weld
torch. In the case of a ferritic weld, reheating and then subsequent cooling of the
weld bead causes an austenite to ferrite phase transformation resulting in the
disappearance of the columnar grain structure. In the case of an austenitic weld
there is no such transition and, provided that the penetration depth is not too great,
epitaxial growth on existing grains may occur leading to a long columnar grain
structure. In fact, the reheating process allows the crystallites to cross the grain
boundaries, to an extent, resulting in epitaxial grain growth (i.e. having the same
crystalline orientation) leading to the characteristically large grain structure [9, 10,
11, 12]. The net result of this is a highly anisotropic structure.

In addition to fatigue cracks, stress corrosion cracking (SCC) can occur within the
heat affected zone (HAZ) of a weld, adjacent to the weld bead. Consisting of
intergranular cracks, SCC is caused by the metal experiencing a certain level of
tensile stress coupled with either the presence of chlorides in the process fluid or
sensitised metal [8, 9]. SCC produces a significant reduction in mechanical strength
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with little metal loss, complicating inspection and increasing the risk of rapid
fracture.

2.3  Pipe Inspection Robots

The following sections introduce the role of robots in pipe inspection, starting with
an overview of suitable traction schemes and finishing with a summary of existing
robotic pipe inspection technology.

2.3.1  Traction Methods

The most common methods of traction for robotic systems are: magnetic,
chemical, friction, biomimetic, vacuum and electroadhesion. Although magnetic
adhesion is not suitable for austenitic steel, due to the non-ferritic nature of the
material, it is included here for completeness. 

Magnetic traction makes use of the attraction force between the persistent
magnetic field generated by a permanent magnet and any ferromagnetic surface. In
general, the size of the magnet dictates the magnitude of this force however, by
definition, this is unsuitable for any material that is not ferromagnetic thus limiting
its applicability. 

Chemical adhesion, typically involves the use of an adhesive tape of some form,
which sticks the robot to the surface. Since such systems offer no means of
controlling the chemical bond, they can be described as ‘always on’. Consequently,
there is a trade-off between the magnitude of the adhesion force and the size of the
actuators required to break the bond and allow locomotion. The nature of the
material is such that it attracts dust deposits which ultimately impairs the system’s
ability to adhere in subsequent instances.

A friction based traction method is a particularly simple technique that utilises the
inherent friction force that exists between any two surfaces in contact. All materials
have a particular friction coefficient which dictates how large the resulting traction
force will be. The coefficient of kinetic friction is the ratio of the lateral friction
force to the normal component of the applied force when two objects are moving
relative to each other. The coefficient of static friction is the dominating factor in
determining the initial force required in order to get an object moving from
stationary and is usually higher than the coefficient of kinetic friction. Neither
coefficient is necessarily constant for a given material and are both affected by
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factors such as the material surface roughness, temperature and humidity of the
operating environment.

In recent years, significant work has
been conducted in the field of
biomimetic (or biologically inspired)
traction systems, with particular interest
in recreating the techniques employed
by geckos; a member of the lizard
family. A gecko can climb on rough or
smooth surfaces at any orientation by
utilising the molecular forces (primarily
Van der Waal's force) between the
nano-scale beta-keratin structures
present on its foot and the contact
surface [13,14] as shown in Figure 2.1.
Current experimental traction systems
based on this principle appear to be
approaching the performance achieved
in nature by geckos [13] and studies have found the adhesion force to be as high as
10 N cm-2 [14]. Furthermore, since the adhesion is based on molecular forces, it
can be maintained indefinitely with no power consumption. This is of considerable
interest in robotic applications, particularly where there is a need to use battery
power. Gecko inspired adhesion systems offer the possibility of very fast
locomotion due to the ease with which attachment and detachment can be
achieved. Furthermore, the hydrophobic nature of the synthetic fibres under
development means that they are self-cleaning [14]; this is attractive to the
inspection of many industrial facilities where a high level of particulate surface
contamination is common. Similar technology using micro-spines to exploit the
small asperities on surfaces such as concrete, sandstone and brick (rather than the
molecular forces) has been developed [15]. This technology was shown to climb
reliably on surfaces with asperities of the order of 25 microns, however was not
suitable for surfaces with asperities smaller than this. While showing considerable
promise, both technologies are relatively immature and not yet available as an off-
the-shelf solution.

Vacuum adhesion works by creating a controlled region of low (or vacuum)
pressure within a region between the robot and the surface it wishes to adhere to.
The pressure differential between this and the surrounding atmosphere generates

Figure 2.1:  Gecko-inspired foot con-
sisting of micro and nano-scale
adhering fibers [14] 
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a force that pushes the robot towards the surface. Providing this force is great
enough to overcome the force due to gravity, traction will be achieved. 
A number of wall climbing robots
designed for non-ferritic surface
applications (such as window
cleaning) use a single suction cup
design which results in a single
pressure source. An issue with such
a system lies in the intrinsic
relationship between the traction
force and the application of power.
In environments where even
momentary loss of traction cannot
be tolerated or where the use of a
safety line (for retrieval in this
event) is impractical, single-cup,
vacuum adhesion does not offer an
attractive solution. Furthermore,
single-cup systems are generally sensitive to cracks in the supporting surface and
can have difficulty in overcoming significant obstacles due to the loss of vacuum
pressure that arises in this process [16, 17]. This sensitivity could potentially be
overcome through the use of a suction cup array, shown in Figure 2.2. The concept
of this system is that a conformable pad consisting of a number of miniature
suction cups would generate a distributed vacuum force that would collectively
support the load of the robot. A certain level of redundancy must be built into the
system so that, in the event that a cracked surface is encountered, provided that
enough suction cups make a sound coupling to the surface, the weight of the robot
can be supported and traction therefore maintained. The conformable nature of
the system would allow wrapping to the contours of a pipe and possibly more
complex structures. In general, the performance of all vacuum adhesion
technologies suffer from exposure to dust and damage to the suction cup material
and is therefore only really suitable for clean and smooth surfaces.

Electroadhesion is a relatively new technology that works by inducing electrostatic
charges on a surface through a conformable series of electrodes. This battery
powered system is capable of traction on a range of both conductive and non-
conductive surfaces [18]. Unlike passive systems, such as biomimetics, the adhesion
force can be switched off, thereby minimising the power consumption required in
climbing applications. The clamping force has been found to be in the range of 0.5

Figure 2.2:  Suction cup array consisting of
multiple pneumatically isolated suction cups
providing a distributed adhesion force.
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to 1.5 N cm-2 [19]. As with the gecko-inspired systems, while offering an attractive
solution (particular in terms of controllability), there is currently no commercially
available product on offer.

2.3.2  Pipe Crawling Robots

Pipe crawling robots are a particular subset of climbing robots that focus
specifically on applications involving tubular structures. Although there are a
diverse range of systems available, they can generally be grouped for either internal
or external operation. Internal pipe inspection robots are commonly used in
inspection applications in the oil and gas industry [20, 21]. The design of such
systems varies significantly but for small bore operation the design is generally
notable for its narrow, elongated shape. The propulsion mechanism varies from
systems that use the kinetic energy of the fluid in the pipe [22] to self-propelled
systems using robotic legs [23], wheeled systems [24, 25] and even snaking drive
mechanisms [26]. In-line pipe robots require either access to the pipe ends or the
presence of ‘pig traps’ to insert and remove the system. Furthermore, they cannot
be used in situations where the native fluid is highly corrosive such as in nuclear
processing cells.

External pipe inspection systems are less common but their designs are no less
diverse. Their relatively limited use is most probably due to the large volume of
pipework that contains outer insulation and the need to preserve this if at all
possible while conducting the inspection. For uninsulated pipes, where insulation
removal can be tolerated or where the pipe contents precludes in-line inspection,
external pipe robots offer a viable solution. One such system, designed to deliver
NDT sensors on 6 inch bore pipes having approximately 50 mm of insulation and
cladding, consists of a single metal collar containing omni-directional wheels to
provide both axial and circumferential locomotion [27]. A gap in the collar exists
so that the robot can be placed on the pipe as well as to allow obstacles, such as
pipe hangers and branches, to be overcome. Although the system can negotiate
bends in the region of 1 to 3.5 times the standard diameter, the single collar design
means that it is not suitable for pipe work that contains flanges. The overall weight
of the design is 8 kg and is capable of carrying a 5 kg payload. However, it requires
an umbilical to deliver power and control. Another design, intended for outlet
feeder pipe inspection in pressurized heavy water reactors (PHWR), consists of two
collars powered by pneumatic actuators [28]. As with the omni-wheel robot, a gap
exists in the collar for inserting the device onto the pipe and an umbilical is required
for both power and control. Locomotion is achieved through an inch-worm
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mechanism which allows both axial and rotational movement. Miniature robotic
vehicles using magnetic wheels have been used elsewhere [7] for NDE on large
diameter carbon steel pipes as well as flat, steel plates. However, they are not
suitable for either small diameter or non-ferromagnetic pipework.

In recent years, parallel robots based on
the Stewart-Gough (S-G) platform,
such as that shown in Figure 2.3, have
been developed for the external
climbing of tubular structures [29, 30,
31, 32, 33, 34]. Parallel robots are
characterised by an end-effector
connected to its base by two or more
independent kinematic chains. Such
systems have greater rigidity than their
serial counterparts since the load is
distributed rather than cumulatively
added between each link, thereby
offering greater load carrying
capabilities. In terms of pipe inspection
robots, this translates to a system whose forward and rear ends are connected by
one or more independent actuators. The S-G platform is one such example,
consisting of two rigid bodies connected by six identical linear actuators providing
a highly rigid design with a high payload/weight ratio [34]. A parallel S-G robot
design was presented in [32] for climbing palm trees and consists of two hinged
hexagonal rings through which the tree trunk passes with four clamping devices on
each allowing the robot to grip to its surface. The system has a movable arm fitted
with an end-effector and the main chassis contains ultrasonic sensors to detect the
centrality of the robot to the trunk. Although this design was found to be suitable
for its intended application, it is limited to use on structures where the radius of
curvature is low and where no support structures such as pipe hangers are used. A
similar design was proposed for climbing metallic structures that differs only in that
it incorporates arms extending from each ring to facilitate gripping. In this system,
therefore, the supporting structure does not need to pass through the centre of the
robot thereby allowing full use of the flexibility of the S-G platform to be made
[30]. While mechanically less demanding compared with serial robots, in general
parallel S-G robotic platforms suffer from the complexity of their direct kinematics
with the existence of multiple solutions for a given set of actuator extensions [32,
33, 34]. Consequently, the control system is rather complex. In addition, the

Figure 2.3:  Stewart-Gough platform
for climbing square cross-section
tube [29]
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application of the S-G platform to a parallel robot requires the design of special
universal joints to accommodate the large rotations that are possible. A four
degree-of freedom (DOF) hybrid serial-parallel design has been developed that
uses three electrical cylinders and three DC motors to climb a pole for an arbitrary
light bulb changing operation [31]. Using the two translational and two rotational
DOF, the system was shown to be capable of negotiating bends in pipes and has a
high load capacity of 800 N (or one very large light bulb). Although relatively heavy
at 16 kg, the use of electric motors rather than pneumatic cylinders ensures that an
umbilical is not needed thereby minimising the impact of adjacent infrastructure on
its operational ability. Furthermore, the design uses an inter-meshing gripper to
clamp on to the pole, thus allowing inline variations in diameter to be tolerated. 

2.4  Influence of Material on Test Method

The anisotropic nature of austenitic stainless steel material has an inevitable
influence on the most appropriate choice of inspection technique. Clearly, visual
inspection takes no account of such factors, performing equally well on carbon and
austenitic steels and is a valuable addition to any inspection modality. Magnetic flux
leakage is unsuitable due to its reliance on the material being ferromagnetic.
Radiographic inspection is technically suitable, however the hazardous nature of
the inspection materials, and subsequent safety implications, means that it is not
ideally suited to a cross-application, pipe inspection solution. The effect of the
material properties will, therefore, be restricted to the other principal modalities:
ultrasonic testing and eddy current testing.

2.4.1  Ultrasonic Testing

A general issue with the use of contact ultrasonic testing (UT) in active plant,
regardless of the material, is in the need for a couplant to transmit the transducer
energy to the metal. Aside from the obvious issue with carrying and dispensing the
couplant, further problems arise where there is dirt, oil or oxide layers on the
surface of the material. Additionally, high temperature surfaces can reduce the
effectiveness of the couplant or, in extreme cases, cause it to evaporate entirely. 

Two primary forms of attenuation arise in UT, of anisotropic materials, due to the
material structure: beam skewing and scattering. The orientation of the austenitic
steel fibres has a strong influence on the propagation of ultrasound, resulting in
beam skewing occurring and leading to potentially misleading results in terms of
the position and even existence of defects. It has been found that an ultrasonic
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beam can be bifurcated (split in two) resulting in double images of a defect being
detected [10]. Further skewing can occur through refraction at the weld fusion
faces resulting, in some cases, to mode conversion of the incident wave. Since the
extent to which the beam is skewed is dependent on the incident angle, the width
of the beam will also change. In tests conducted on cylindrical specimens of 316
austenitic weld metal it was reported that the attenuation varied from a maximum
of 0.4 dB mm-1, with the direction of propagation at 0o or  to the grain axis, to
a minimum value of 0.05 dB mm-1 at approximately 45o [10]. Consequently, for
weld inspection in austenitic stainless steel, the optimum incident angle is at 45o to
the grain axis [10, 11, 35, 36]. The level of scattering is dependent on the insonified
volume of the metal which, in turn, is related to the level of beam spreading [10].
Beam spreading will tend to increase the insonified volume and hence increase the
number of scatterers contributing to the overall coherent noise floor. 

The signal-to-noise ratio (SNR) has an inverse-root relationship with the pulse
length and so shorter pulses will result in lower noise levels [10]. However, as the
energy input by a shorter pulse is also lower, the signal-to-electrical noise ratio may
be low [9]. For ferritic welds, shear wave probes are commonly used due to the
‘oriented’ nature of the defects acting as good reflectors for such incident waves.
In general, compression wave probes are preferable for austenitic welds, due to the
reduced beam skewing and increased SNR that this mode offers in such media. The
latter arises from the fact that the majority of scattered ultrasound is in the shear
mode regardless of the incident wave and thus, compression probes can be
designed such that they are unaffected by this mode [9, 35].

In general, where-as with ferritic welds, it can be assumed that, for the most part,
significant and even small defects can be detected with a high level of success, the
same cannot be said for austenitic welds where low sensitivity means that
fracturable defects may not be detectable [10]. The problems associated with UT
in austenitic stainless steel were considered too great for implementation at this
time within a mobile, miniature robotic vehicle when compared with eddy current
testing and it was therefore not pursued. Its use, however, will be discussed further
in conjunction with a programme of future work. 

90o
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2.4.2  Eddy Current Testing

Eddy current testing (ECT) [37, 38] is founded on the principles of
electromagnetism as described by James Clerk Maxwell. This subject will be
discussed in detail in Chapter 6 however for the purposes of an overview the
following introduction is sufficient. An alternating current (AC) in a conducting
coil produces a changing magnetic field that induces a current in any conducting
material that intersects it. This, in turn, establishes an opposing magnetic field
which reduces the coil impedance. Defects, modify this field and consequently
affect the impedance of the coil. It is these changes, measured in terms of the
magnitude and/or phase, that are measured in ECT. 

Eddy current systems do not suffer the same level of microstructural complication
as UT, however material properties can still influence the inspection results. The
process of cold working (deformation of steel below its recrystallisation
temperature) can cause a partial transformation from austenite to a ferromagnetic
phase. The presence of this material causes a local variation in the relative
permeability and hence increased density of magnetic flux from the coil. As eddy
current testing is based on the interaction of the magnetic field with the material
under test, this can lead to spurious results. A positive use of the effect of ferrite
content on eddy current systems has been proposed to control the phase fraction
in steel production processes [39]. Further detail on the theory of eddy current
testing can be found in Chapter 6.

2.5  Review of Eddy Current Testing

2.5.1  Probe Types

Typically, coils are configured as either absolute, differential or reflection probes.
An absolute probe consists of a single coil with the drive signal doubling up as the
sensing signal. Such probes are particularly sensitive to lift-off, probe wobble and
thermal, permeability and conductivity variations which can lead to spurious
indications of defects. Differential probes consist of a pair of coils which usually
each form one half of a balanced Wheatstone bridge. The detection signal, in this
case, is the out-of-balance voltage from the bridge circuit. In this configuration, the
unwanted sensitivities are cancelled out provided that each coil experiences them
to the same degree. The differential probe is fundamentally a relative system and
simply detects a difference in the conditions under either of its coils. A limitation
naturally arises from this in cases where the defect length exceeds the coil spacing
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since only the leading and trailing edges of the crack will be detectable. Reflection
probes consist of electrically separate coils: one to induce the eddy currents and one
or more sensing coils to detect variations in the induced field. Such probes allow
flexibility in terms of optimisation of the driver/pick-up coils thereby offering the
potential for high sensitivity to very small defects and their performance can be
equivalent to that of the preceding configurations [40]. In all cases, the sensitivity
of each coil is inversely proportional to the distance from the conducting surface.

2.5.2  Applications of Eddy Current Inspection

Eddy current applications can be broadly grouped into one of three categories:
defect detection, thickness measurement and metal sorting. The latter is not
relevant to automated NDE and therefore the following section will concentrate
on the former two applications.

Absolute pencil or pancake probes are typically used for detecting surface breaking
cracks operating in the frequency range of 100 kHz to several MHz and, provided
the surface is not overly rough, are capable of detecting defects down to
approximately 0.1 mm or less [41]. For inspection close to metal-air edges or
regions where two dissimilar metals are joined (e.g. ferrous fasteners in aluminium)
shielded probes can be used to provide a more focussed field. Differential probes
are less common outside automated applications. Sub-surface cracks, of particular
interest in the aerospace industry, can be detected by using a suitably low operating
frequency (100 Hz to 10 kHz). As a rule of thumb, for a given probe diameter, the
maximum depth of penetration at which defects can be reliably detected will be 33-
50% of this. For surface-breaking cracks, the capacity to detect defects decreases
as their size becomes less than the diameter of the coil [42]. Thickness
measurement of a non-conductive coating (e.g. insulation) is possible using eddy
current techniques and essentially equates to a measurement of lift-off. For non-
ferrous materials, high frequencies (>100 kHz) are desirable and it should be
ensured that the depth of penetration is small enough that the thickness of the
underlying material is not important. A rule of thumb is that the operating
frequency should be 10 times that required for a penetration depth equal to the
material thickness. To obtain quantitative results, calibration blocks of varying
thickness must be used to generate a calibration curve and absolute results derived
from this.
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2.5.3  Probe Configuration for Mobile Robotic Applications

There are three factors that make absolute probes unsuitable, or at the very least,
non-ideal for robotic inspection applications. Firstly, temperature variations cannot
easily be corrected without retrieving the vehicle and re-calibrating. This in itself, is
likely to produce poor results since the temperature at the point of access may be
different from that at the inspection location. Secondly, local conductivity and
permeability variations would be difficult to identify remotely and could result in
an incorrect designation of a section as being defective. Both of these mean that
interpretation of the results is less straightforward. Thirdly, absolute systems are
generally highly sensitive to probe lift-off. Automatic lift-off suppression, making
use of the relatively slow change in signal due to lift-off compared with that of a
defect, is possible through judicious high-pass filtering of the raw signal to
eliminate this low frequency oscillation. Such a technique is useful for inline
processing environments where the material moves at a constant speed relative to
the probe, but not for NDE applications. Each of these issues is corrected
implicitly by a differential system. Temperature compensation is inherent since
each coil will be situated together and therefore, as they share the same drive circuit,
at the same temperature. Material variations are unlikely to be confined to an area
smaller than the coil spacing unless the coils are very large or situated very far apart.
Finally, lift-off is automatically suppressed provided that both coils experience it to
the same degree. The addition of an extra coil/winding results in a larger probe
assembly however this can be minimised through the use of either small coils or a
single core, differentially wound coil. Although such a design introduces limitations
in terms of the detectability of large defects, this can be more easily overcome
remotely than the issues of absolute probes, with potential solutions being either a
mechanical scanning assembly or an array of differential coils. Furthermore, for
pipe inspection, such a system is required in any case for a practical system capable
of inspecting the entire circumference of a pipe. Although a successful inspection
can be achieved using an absolute probe in an environment containing all of the
aforementioned issues, the success of the inspection is largely a result of the
experience of the NDT technician to eliminate the unwanted artefacts and interpret
the data and is therefore not suited to a remote, automated inspection.
Furthermore, while very sensitive results may be obtained by a skilled technician,
the time required to perform the inspection is greater and a quicker inspection is
possible using a differential setup. While suitably configured reflection probes can
produce results equivalent to that of either absolute or differential probes, they are
typically more complex and thus expensive to produce. For mobile robotic
22



applications the trade-off between the simplicity and sensitivity of the differential
setup make it a good solution.

Array instruments are suited to the same inspection applications as conventional
systems however offer the advantage of lower inspection times through increased
speed. Parallel inspection may be possible with multiple coils employed at the same
time. The resolution in the scanning direction is generally very good and is
dependent on the increment interval of the probe head. The resolution in the
transverse direction, however, is generally quite coarse since this is limited by the
element size and spacing. The use of an array is an attractive solution in many
automated applications for three primary reasons:

i. Increases the speed of inspection

ii. Eliminates the need for mechanical scanning of probe

iii. Provides greater data accuracy

The latter is true because the fixed reference system of the array provides more
accurate information on the position of the coils.

2.5.4  Multi-frequency Eddy Current Techniques 

Multi-frequency eddy current techniques are used in many instances to increase the
sensitivity of an inspection. The term can relate to systems using small numbers of
discrete frequencies added together and fed into the drive coil to swept frequency
eddy current (SFEC) systems and pulsed eddy current (PEC) systems. Due to the
skin effect, different operating frequencies result in sensitivities to different
artefacts. A common use of multi-frequency techniques is in the inspection of heat
exchanger pipes where a number of additional infrastructural supports add noise
to the eddy current signal. By subtracting a frequency that is very sensitive to the
support structure from a signal that covers the full thickness of the tube, the effect
of the supports can be largely eliminated, thus increasing sensitivity to defects. 

SFEC differs from this approach in that it is essentially the repeated application of
a single frequency over a wide range and is often used for thickness measurements
in rolling mills. Although such applications use a differentially connected probe,
one coil is in air and the other on the process line and thus only temperature
compensation is achieved by the second coil. Furthermore, in this configuration
there will always be a differential signal and so a major issue is achieving sensitivity
to small changes superimposed on a much larger nominal signal. In [43], Yin et al
investigated the use of the change in complex inductance ( ) for detection ofΔL
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plate thickness in a hot steel rolling mill. It was shown that the Im( ) has a
frequency response containing a maximum and that the frequency of this is related
to the thickness of the plate. Furthermore, it was found that the effect of lift-off
was confined to a change in the magnitude at which this peak occurred.
Consequently, the error due to lift-off could be eliminated by considering only the
frequency, which was found to be inversely proportional to the plate thickness. For
NDE, it is generally cracks that must be identified and thus lift-off can be much
more simply eliminated through hardware using a differential probe with both coils
oriented towards the test specimen. One advantage of a multi-frequency approach
for NDE, however, is that data is gathered over a range of frequencies and can be
averaged to potentially yield higher sensitivity. 

Pulsed eddy current differs from both previous approaches in that it uses a step
function rather than a sinusoidal excitation. The advantage of using this frequency
rich signal is that all defects can be identified from one signal and very quickly using
the same probe and setup, which is attractive for fast, practical inspection. The
PEC signal is split into three parts for interpretation. The initial part shows near
surface artefacts such as lift-off and surface breaking cracks, the middle part
identifies internal and interlayer corrosion while the 'tail' signal shows any far
surface cracks/corrosion and can be used to detect the overall thickness. Post-
processing techniques can be used to compensate for the effects of lift-off and
edges. However, where swept-frequency excitation allows noise from other
frequencies to be filtered out through, for example, lock-in detection, this is not
possible with PEC leading to SNR issues. In general however, the advantages
associated with the inspection speed make PEC very attractive to the industrial
end-user.

2.5.5  Commercial Instrumentation

Two dominant categories of eddy current system exist presently: handheld,
graphical instruments for single/dual probe use or array instruments [44].

Handheld instruments have gained popularity due to the improvements in
processing capabilities and battery technology and typically allow operation over a
wide frequency range. The precise features included vary greatly depending on the
model. General Electric Measurement & Control offer the Vector 22 [45] and
Phasec series [46] systems, both of which do not require connection to a PC. The
Vector 22 system is a dual channel instrument intended for automated testing lines
or laboratory use and provides an impedance plane output. The Phasec 3 series
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systems are single channel, handheld devices allowing visualisation on a TFT
screen and weigh 1 kg including a 6 hr battery pack. The data output can be
displayed as either one of x/y impedance plane, Y/t or bar graph. Multiple probes
are interchangeable and the system has built-in lift-off and probe orientation
compensation. There are also tunable filters available to remove unwanted
frequency components and data can be stored on board up to 200 traces. Both
systems offer a wide operating frequency range from tens of Hz up to 10 MHz and
allow dual frequency mixing. The UniWest US454 EddyView and the US454-A
Multi-Frequency EddyView [47] are similar in size and weight to the Phasec 3 and
operate over a similarly large frequency range. The multi-frequency model allows
up to four frequencies to be mixed together (two more than the GE system) to
form the drive signal and can operate at up to 15 MHz. The MIZ-21B [48] from
Zetec is the smallest form-factor, portable device and can display results as x/y
impedance plane, bar graph or C-scan. Consistent with other offerings, dual-
frequency mixing is possible however the upper frequency range is slightly more
limited at 8 MHz. Common to all of the listed systems, is support for a variety of
different probe heads to suit the desired inspection application.

There are two main commercial array products available. The Olympus NDT
Omniscan MX ECA allows multiple probe heads to be used depending on the
particular inspection application. The drive signal can contain up to 8 frequencies
at the same time and nominally supports 32 coils (64 with the inclusion of an
external multiplexer). Measurement of the amplitude, phase and probe position are
available in a range of graphical representations. Built-in filtering options allow
further customisation to a particular inspection need. Performance on sub-surface
defects is good with a 10% lap-splice thickness loss detectable at a depth of 5mm
[49]. Zetec offers flexible eddy current array probes for weld inspection that
interface with their MS5800 [50] or TC7700 [51] remote data acquisition systems.
In contrast to the Olympus array, this system is designed so that processing and
visualisation of the data is done on a PC using their custom ECVision software [52]
rather than providing a fully portable device. Consequently the total weight of this
system is 12 kg (or 7.4 kg greater than the Olympus system) and is less suited to on-
site inspection. The system performance is quoted in terms of the minimum
detectable pit size which varies from 0.75 mm diameter by 0.75 mm deep to 2 mm
diameter by 0.75 mm deep for coil diameters of 2 mm and 3 mm respectively in
300 series stainless steel [53].
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2.6  Visual Pattern Recognition Techniques

2.6.1  Motivation for Incorporating Pattern Recognition

Despite the human eye being relatively poor in ocular terms, compared with most
modern cameras, the capacity of humans to recognise complex patterns and shapes
from noisy data is considerable. Such intrinsic processing abilities are due to the
vast computational capabilities of the brain. Such performance cannot be
mimicked using current technology however the principal of pattern recognition
and characterisation has been applied widely, with fields ranging from speech,
handwriting [54], eye [55] and face recognition systems [56, 57] through to medical
[58, 59], process control [60], weather forecasting and information retrieval [61].
The potential has also been recognised for automated NDE processes [62, 63, 64,
65], although to a much lesser extent, where manual inspection of many images is
highly time consuming and may lead to performance degradation due to mental
fatigue. The application to the nuclear pipe inspection problem offers the
opportunity for a low cost, automated inspection systems that can operate with
limited supervision to assess or flag suspect areas for further scrutiny. 

The purpose of the following section is to draw together a variety of different
approaches to image processing and pattern recognition and to explore the
potential for their application to NDE images. Existing applications in facial
recognition, medical, astronomical and radiographic NDE will be considered,
highlighting the key features of the input data and reviewing the associated
techniques for them as outlined in literature.

2.6.2  Review of Applications

2.6.2.1  Facial Recognition

Facial recognition research has been fuelled to a large extent by the increasing need
for personal identification for security and law enforcement reasons [66].
Depending on the specific application, input images may contain single or multiple
faces at varying pose with partial occlusion and/or under varying lighting
conditions. The role of low frequency components has been shown to be
important in recognition task with studies showing that gender classification can be
achieved using only the low frequency while specific identification of the individual
requires the inclusion of the higher spatial frequencies [66]. Osuna et al [67]
presented a support vector machine (SVM) implementation which achieved a
26



97.1% correct classification rate on an image set consisting of 313 high quality
images and 74.2% on a set containing 23 mixed quality images. In both cases the
images contained instances of multiple faces at a variety of pose. Their goal was to
identify areas of each image that contained a face and highlight it. Each image was
first segmented into 19x19 pixel overlapping sub-images and a best-fit illumination
plane subtracted from each to correct for heavy shadows. Histogram equalisation
was used, which scales the image intensities so that they occupy the full spectrum
of values, to compensate for differences in illumination brightness and camera
response. This process is repeated at multiple scales of the original image to
account for the possibility of different sizes of face within the image. A SVM was
used to determine if the sub-image contains a face. Eigenfaces [56] is an
information theory approach which decomposes an image containing a face into a
series of feature images and projects the original images onto this feature space. For
each known face, a boundary is defined for the maximum allowable distance from
the face class. A new image is classified by first projecting it into the feature space
and then comparing it with the projected positions of known images within this
feature subspace. If the image falls within the decision boundary for one of the face
classes then it is assigned to that class otherwise it is labelled 'unknown'. This
approach, adopted by Turk and Pentland, used principal component analysis
(PCA) to extract the eigenfaces and, operating on images containing faces on a
varying background, was shown to yield an average classification rate of 96% on
images exhibiting lighting variations, 85% with face orientation variations and 64%
with face size variations

2.6.2.2  Medical Applications

In medical applications, particularly oncology, pattern recognition takes the form
of computer aided diagnosis (CAD). In contrast with facial recognition, the aim of
CAD is to support the experienced physician by acting as a 'second reader' to
highlight areas of potential interest (in a process known as 'prompting') and is not
intended to replace him. In this system, the medical expert is required to view all
images first and consult the CAD system only after recording an initial diagnosis.
The input data varies depending on the specific medical application. Early
detection of melanoma is of critical importance and, in automated systems, three
classes of lesions may be of interest: benign, dysplastic (precursor for melanoma)
or malignant [68]. Noise in skin images may come from the presence of hair
follicles surrounding a lesion and may be removed through a combination of
morphological operators to identify the hair location and substation of the
corresponding pixel values with adjacent skin pixel values [68,69]. The image is
then segmented into lesions and healthy skin by either boundary reconstruction
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using edge detection/linking procedures or colour segmentation. The latter may
involve simple thresholding techniques (particularly where the histogram is
bimodal), region growing or clustering. In some cases, the process of classification
can be achieved by simply thresholding offering a computationally inexpensive
method however practically speaking, the performance is likely to be poor due to
image noise or the artefact of interest being small in comparison to the image
frame. In general, the amount of diagnostic information contained within an image
is low in relation to the total image content and so only a small subset of the total
features necessary for the full image content are required to represent the
information required for diagnostic purposes; this is similar to NDE images. Thus,
having identified the region of interest, a set of features are determined which are
typically either pigment colour (normalised for skin type) or shape (particularly
asymmetry) related. A classification is made based on the a priori knowledge
(garnered from a training procedure) of the likelihood of such features appearing
in the defined classes. Statistical classifiers are the most common [70] although
KNN methods have been employed. In [68] a correct classification rate of 73% for
a malignant class was achieved using a KNN classifier (K=24) however for the
three class problem (benign, dysplastic or malignant) this reduced to 61%. The
suppression of false negatives is a high priority in melanoma detection due to the
relative risk of this misdiagnosis. This has parallels with NDE in that the incorrect
identification of a defective region has more serious implications than a non-
defective region. Zang et al [70] presented a system to detect the borders of skin
tumours using a radial search technique. This may be regarded as a semi-automated
system since no interpretation of the results is provided. 

Mammography has been a popular area for the use of CAD, where labels are placed
on the mammogram indicating areas believed to have a high probability of
malignancy and some commercial systems have gained FDA approval [71]. Due to
the relatively low contrast of mammograms, false negatives (cancerous tissue
deemed to be benign) can occur due to the highly demanding nature of manually
performing a detailed search for small indications of such entities. Secondary
reading procedures using an independent physician can significantly reduce the
false negative rate however this can be costly and the resources may not always be
available. Microcalcifications in the breast, when present in groups, can indicate a
precursor to cancer. Noise within mammograms generally come from regions of
tissue with varying radiographic density and connective tissue. The detection and
classification of microcalcifications is relatively well suited to CAD because the
radiographic signature (size, shape, brightness) of these artefacts is distinct
compared with other mammographic features [72]. Brem et al [73] showed that a
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98% classification rate could be achieved in this case although no statistically
significant improvement was achieved over using a group of expert
mammographers. There is, however, the potential to free up resources and/or
assist less experienced clinicians with diagnosis. Yu et al [74] developed a system
that first segments suspected microcalcification pixels using two wavelet and two
grayscale statistical features (median contrast and normalised gray level) and groups
them using spatial connectivity. These features then form the inputs to a multi-layer
feed-forward ANN to generate a likelihood map of microcalcifications. In order to
reduce the number of false positives due to blood vessels, radiographically dense
tissue etc, a second step involving a 31 element feature set (including grayscale,
shape and contrast measures) classifies these as true or false microcalcifications. A
90% true positive (TP) rate is achieved at the expense of 0.5 false positives per
image however the test and training was performed using the same image database.
An ANN approach was also adopted by Meinel et al [75] but this time to breast
MRI images. An interactive region growing algorithm was used to segment the
image by specifying an initial grayscale value and represents a non-automated step
for each image. Thirteen features are selected relating to either shape (area, radial
length etc), texture (grayscale intensity) and time/intensity curves and each of the
80 breast MRI images are defined in terms of these features. These features are then
fed into a 13-3-1 back-propagating neural network, trained using the leave-one-out
method (see Section 5.4.4.3) which yields an output ranging from +1 (definitely
malignant) to -1 (definitely benign). This system showed improved performance
for the CAD system supporting diagnosis over human readers alone. A statistical
approach to segmenting microcalcifications from digitised mammograms using an
iterative Bayesian update was presented by Karssemeijer [76]. In this approach each
image is expressed by local contrast and shape images and each pixel label is
updated based on the relative pixel value and the likelihood that the pixel is a dot
or a line. The shape parameter is necessary in order to differentiate faint
microcalcifications from the x-ray signatures of the connective tissue. The
approach was shown to perform much better than standard local thresholding
techniques however carried additional computational complexity and required that
the parameters for the prior distribution be determined experimentally. The
resulting three class image highlights either microcalcifications, connective tissue or
background. 

Pattern recognition techniques have been applied to the problem of identifying
abnormalities in the heart wall movement from echocardiographical sequences [77,
78]. In this application, a diagnosis requires analysis of the inner and outer wall
movement through a full cardiac cycle. In [78], the difference image between the
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heart position at the contracted and relaxed phase is used and the principal
components of the training set (where the heart condition has been determined by
medical experts) form a set of basis vectors in the same way as is obtained in the
eigenfaces approach. An image is first projected into the feature space and the
Euclidean, city-block and Cosine distance (see Section 5.3.2) of each are calculated
and a combined KNN classifier used. Assessment of the system showed a
performance of ~83% correct classification as either normal or abnormal.

2.6.2.3  Astronomical Applications

A number of features appear in solar images that relate to a particular
phenomenon. Sunspot identification and characterisation (particularly sizing) form
part of quantitative study of the solar cycle and of forecasting of solar flare activity.
Quality of images varies particularly where archive records have been digitised.
Initial techniques used thresholding to separate sunspots from the background
intensity of the sun using a priori estimations for the intensity threshold [70]. The
size of the spot was characterised by the number of pixels that fell below the
threshold. Histogram techniques removed the need for threshold estimation and
for high quality images a more accurate approach involves using edge detection and
boundary gradient intensity techniques. Bayesian methods are typically more
computationally expensive (and hence slower) than these however are more
insensitive to noise and background variations. Turmon et al presented a system
employing a Bayesian framework to identify quiet sun, faculae, umbra and
penumbra [79]. Each image pixel was assigned a class label based on its intensity
and the system makes use of the assumption that physical processes will have a
spatial coherence such that labels tend to form clusters in the image plane. Prior
knowledge of the intensity distribution for each class label of interest is achieved
through expert-input as a training stage.

2.6.2.4  Non-Destructive Evaluation

Pattern recognition has been applied to NDE radiographic images of structures
and in particular weld seams for the detection of incomplete penetration, cracks,
porosity and voids. Noise in such images is usually manifest as randomly
distributed pixels having significant intensity differences from neighbouring pixels.
In such an application [62], the raw radiographical images were first low pass
filtered to remove the high frequencies due to noise pixels, followed by a histogram
equalisation stage and background subtraction. The background was defined as the
low spatial frequencies due to the slow varying intensity changes of the pixels
defining the weld bead where-as the defect indications could be identified by high
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spatial frequencies. Twelve features relating to shape, size, location and intensity
are then extracted from the resulting image and the classification performance
using a fuzzy KNN and multilayer perceptron neural network evaluated. Both
classifiers yielded approximately a 92% classification rate however how this result
is distributed between each of the six classes is not explained. Gayer et al [63]
outlined a two step process designed to mimic that of a human expert examining a
radiographic film. The first step attempts to locate defective regions in the weld
seam with coarse resolution through a fast-search process while the second step
examines these flagged areas in more detail for more accurate identification and
location. The fast search algorithm is based on the assumption that a defect results
in irregular gray levels within the image. Two fast search techniques were
investigated (both on 32x32 pixel sub-images): a high frequency contribution
algorithm and a gradient approach. The high frequency content was shown to be
indicative of a defect with the derivative approach even more effective. Defect
classification of the flagged areas was done using the sequential similarity detection
algorithm (SSDA) which attempts to match the 1D row or column grayscale
variation to a template variation for known defects quantified by an error function.
The performance of the SSDA approach suffers from defect scaling and contrast
variations. A neural network approach was implemented in [64] with the intention
of improving on the performance achieved by linear classifiers. Low-pass filtering
is used, again, to remove noise and histogram equalisation is employed. Four
features were evaluated for each image: position, aspect ratio, ratio of the small axis
to the area and the roundness. Classification of each image, expressed in terms of
these features, was attempted to one of the following classes: undercut, lack of
penetration, porosity and slag inclusions. In order to ensure equal numbers of class
images, duplicates were chosen randomly to obtain 25 images per class which
appears difficult to justify and the system is only tested using the data presented for
training. Consequently a suspiciously high classification rate of 100% is achieved
for all classes other than the slag inclusions (where 1 out of 50 is unclassifiable)
through modifying the number of intermediate neurons with a further conclusion
that the probability of correct classification is high for new samples. An SVM
approach was adopted in [65] to detect linear defects in low contrast images. The
weld area is first segmented from the rest of the image and then the resulting area
is processed using a sliding window. In each position the grayscale value of the
pixels within the block are ordered and successively higher elements are used as
thresholds resulting in a series of feature vectors defined by the original block
thresholded at each given level. The SVM is then trained to define a decision
boundary between defect blocks and non defect blocks. Once a defect block in a
new image has been identified by the SVM, the Hough transform is applied and an
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algorithm invoked to predict the rectangular region that contains the defect. This
approach assumes only one defect per image frame and that all defects are
essentially straight lines.

2.7  Concluding Remark

This Chapter has provided an overview of a broad range of topics relating to the
problem of austenitic stainless steel pipe inspection. Chapter 3 will now formalise
a system specification based on this review.
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Chapter 3

Specification of Inspection System

3.1  Introduction

The aim of this Chapter is to discuss the specific elements of the project which
influence the design of the system. The nature of the nuclear industry is such that
it is difficult to obtain site visits and/or specific details regarding the facilities there-
in. The specific details presented here were obtained through an informal research
collaboration with Nexia Solutions Ltd (latterly National Nuclear Laboratory). As
much of the detail does not exist in the public domain, in any formal sense, it has
not been possible to provide references as would be desired. In fact, in many cases,
as was pointed out in Chapter 1, the precise contents of facilities are in fact
unknown to the operators themselves. The details used in this specification are
therefore the result of numerous email exchanges, telephone conversations and
meetings and represent the best estimates of the inspection environment. The
specification for the mechanical design, visual payload and eddy current payload
will discussed in turn and the specification for each stated at the end of each
section.

3.2  Robotic Platform

3.2.1  Environmental Constraints 

In Chapter 1 it was observed that, within nuclear processing cells, the material of
choice for pipes is typically austenitic stainless steel due to its structural strength
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and resistance to corrosion. Limited ferromagnetic properties may exist due to
factors associated with material fabrication however these are grossly insufficient
to allow a magnetic form of traction to be employed. Therefore the search for an
adhesion mechanism must be restricted to one of the remaining five technologies
discussed in Chapter 2. Several decades' worth of ageing will inevitably result in the
outer surface of the pipes harbouring significant levels of particulate deposit in
addition to any cracks, corrosion pits or other artefacts that may be present. Such
factors present issues both in terms of the method of traction and the inspection
modality. The diameters of pipes within processing cells are typically in the range
of 20mm to 220mm outside diameter (OD) with the exact size depending on
function. Particularly in older plant, there is generally a higher proportion of 50mm
OD pipe. An essential feature of any useful inspection robot must be its ability to
be fitted on to a pipe without requiring the disassembly of any of its component
parts. Such a requirement is likely to influence the size of the robot.

Due to the nature of the material flowing
through the pipes, processing cells tend to rely
on welded joints rather than flanges, however
some may exist. Pipe support clips are used to
support the weight of the pipe with hangers or
stands used depending on whether the pipe is
tethered from above or below respectively.
Some typical support clips are shown in
Figure 3.1; these wrap around the circumference
of the pipe with securing bolts at either one or both sides. For a 50mm pipe such
a clip would be expected to add approximately 5mm to either side of the pipe and
thus 10mm to the overall diameter. In addition to welds, flanges and pipe hangers,
there are a number of other features including pipe bends, reducers, and expanders
which impose kinematic constraints on the system. Consequently, a practical
inspection robot should be capable of operating in the presence of all such fixtures
and on any orientation of the pipe. Typically, in order to ensure laminar flow, pipe
bends have a radius of curvature of no less than four times the outside diameter of
the pipe.

The finite volume of the processing cells, coupled with the lack of a design-for-
inspection philosophy in their construction and significant retrofitting of additional
piping in the years following their commissioning, has resulted in a relatively
densely populated environment with no standard clearance between adjacent
pipework. Several consequences arise from this: 

Figure 3.1:  Pipe support clips
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i. The robotic inspection system must be physically small enough to
ensure that potentially damaging collisions with, and obstructions
due to, adjacent infrastructure do not occur. The dimensions of the
access point to the processing cell (through which the robot must
be deployed) defines the maximum allowable size of the robot to be
300mm, however, in the absence of a standard clearance policy, the
design intent must be to ensure the robot is as small as possible. 

ii. The complexity of the internal infrastructure means that the design
must be entirely wireless to avoid the risk of an umbilical becoming
entangled and impairing the inspection. Furthermore, no tethered
line may be used as a fail-safe to retrieve the robot in the event of
failure and hence ideally the robot should be 100% reliable. 

iii.The likelihood that there will be no clear line-of-sight (LOS) path
between the access point and the robot largely precludes the use of
a visual or laser range finding positioning system and simple LOS
communication technologies. Also, the potential for strong multi-
path effects from such a densely populated structure further limits
the options for a communications system to technologies with
multi-path suppression capabilities.

3.2.2  Performance Constraints

The performance constraints can be broken down into three principal categories:
traction, range and positional accuracy. The hazardous nature of the operating
environment necessitates a performance requirement that traction should be
maintained even in the event of a total power failure. Failure of the adhesion system
at any point could result in damage being incurred to the robot or (less likely) the
surrounding environment and invoke a costly retrieval operation. This task is made
more complex by the incongruity of magnetic traction. The distribution of the
access points to the cells is such that it is estimated that the distance from any
desired inspection location to the nearest inspection port will be approximately
10m. Therefore the battery life must be such that the robot can travel to the desired
location, perform the inspection and return to the starting point without requiring
a recharge. Furthermore, the communications system must be capable of operating
over this range. The positional accuracy of defect location desired by the end-user
is ±3 mm and to minimise inspection costs and disruption, any associated
positioning system equipment should be deployable through a single inspection
port.
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3.2.3  Levels of Autonomy

The term 'autonomous' is one that is often used incorrectly and is frequently
confused with 'automatic', meaning 'self acting, under the conditions fixed for it'.
Strictly speaking, autonomous is used to define something that is capable of
operating entirely independently and has the ability of self governance. The
assumption of this level of intelligence is subtly different from automatic. Three
basic levels of autonomy have been identified in Table 3.1. In reality, such discrete
levels are more appropriately replaced with a continuum of levels of robot

Level of Autonomy Description

Fully autonomous User interaction is not required beyond the provision
of the required inspection task(s). Having obtained
this, the robot can then perform the inspection, deal-
ing with any incidents and obstacles that may occur,
intelligently and return to the entry point with the
inspection results.

Semi-autonomous or 
automatic

The robot can guide itself to the inspection location
while scanning its environment for obstacles or haz-
ards and perform the specified task requested of it.
However, if an obstacle is encountered which the
robot does not recognise, it cannot intelligently adapt
to the scenario for which it has not been trained. In
this instance, the user will be alerted and manual con-
trol may be enabled to overcome the situation. The
robot can run self-diagnostic checks (such as battery
level measurement) and communication between the
base station and the robot is automatic. 

Drone The user controls the robot to guide it to the inspec-
tion location and avoids any obstacles that may be
encountered. The communications architecture is a
master-slave system, with the robot acting as the
slave and only responding to direct commands from
the master. The user has remote control of the sen-
sor during the inspection process.

Table 3.1:  Level of autonomy
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intelligence however, for the purposes of robot design, it is helpful to categorise
them as shown.

A fully autonomous robot is the ‘holy grail’ of robotics and represents the peak of
artificial intelligence. In its final form, the robotic pipe inspection system aims to
slot into the semi-autonomous category where manual supervision will be on-hand
if necessary.

3.2.4  System Specification

The aim is to create a robotic vehicle which can operate on non-ferromagnetic
pipes however the wide range of pipe diameters initially specified is a significant
engineering task. The operating environment plays a central role in the design of
any robotic system and in this instance places certain constraints on the variety of
suitable designs. As with all climbing robots, overall weight is a critical parameter
and an optimum system will be the minimum weight solution that best satisfies the
specification. Given that NDE is likely to be most urgently required on older plant,
to simplify the mechanical complexity and cost, the RPC should be designed for
use on pipes with a principal diameter of 50 mm with a tolerance of at least ±10
mm to allow for inline changes in diameter and the width of the pipe support clip.
By following such a development strategy, a proof-of-concept design can be
created which can be scaled to greater diameters as necessary, while greatly
simplifying the engineering problem and maintaining focus on the fundamental
research element of the project. Similarly, the kinematics of the system should be
limited to translation along any orientation of straight and curved sections of pipe.
Circumferential locomotion, while ultimately necessary to allow the RPC to orient
itself in any position on the pipe and essential for a practical, industrially deployed
system, introduces a further degree of freedom which presents an additional
engineering obstacle. This omission does not detract from the proof-of-concept,
and therefore is regarded as a sound decision. Given the limited resources and
expertise in robot development, creating a platform which can be guaranteed to be
infallible is impractical for a prototype system. It is essential however that the
system is wireless and therefore a fail-safe tether is not an option. Instead of
providing a guarantee that once the system has been deployed in the processing cell
then it can be guaranteed to make it out again under its own power the goal will be
that, given a system power failure, the robot will maintain its grip on the pipe and
will not fall off. A limitation of this modification is that, in practise, loss of power
would require a separate robot-retrieval process to be initiated. 
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The desired accuracy of defect location is ±3 mm which, given the 10 m range of
the robot, requires a positioning system accurate to 0.6% of the expected range.
Line of sight limitations preclude the use of laser range finding systems and
ultrasonic positioning technology, such as the commercially available ‘cricket’
system [80], are limited to positional accuracies of the order of centimeters.
Additionally, the desire to make the robot deployable through a single inspection
port presents a significant challenge in terms of the usage of any positioning system
relying on trilateration. It was concluded that a more achievable goal would be to
design a robot which could be positioned to a rough global accuracy while the
subsequent inspection could be conducted against the local reference of the robot
to a much greater accuracy. This compromise ensures that the data measured by
the sensors will be very accurate relative to the fixed position of the robot, however
there will be an increased level of uncertainty in the global position of the defect
within the processing cell.

Finally, given the limited resources and knowledge-base within CUE regarding
radiation hardening of components, it was concluded that a proof of concept
system should have the luxury of assuming that the environment is non-
radioactive. The process of ruggedising the robotic hardware and electronics of the
final system is an important engineering process in order to produce a
commercially viable product. However, this constitutes a distraction from the more
fundamental question of the viability of such an inspection system. The assumption
taken here allows the principle of robotic inspection, miniaturisation and collection
and fusion of different data to be the primary focus while acknowledging the
ultimate need to radiation-harden the final system.

3.3  Pattern Recognition System

3.3.1  Discussion

For the given application it is not possible/practical to allow an NDE expert to
perform the inspection manually. Thus, where in many NDE applications the use
of an experienced technician employing visual inspection techniques is
straightforward, albeit subjective, the automation of this process poses a significant
challenge. The choice is therefore to either automate the process or have an expert
continually monitor the visual data. Common to all of the reviewed applications,
the motivation for the research has been primarily to reduce the effect of human
limitations by increasing objectivity, accuracy and repeatability. In pipeline
inspection applications, as with oncological screening, the vast majority of the
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images processed would be expected to contain no artefacts of interest and
automation would potentially increase performance where previously expert
opinion was degraded by the mental fatigue associated with monotonous
processes. Furthermore, the correct assessment of an image is highly dependent on
the experience of the technician/physician and their ability to recognise minute
details within noisy images. In oncology applications, the consequences of missing
a cancerous instance are much higher than those associated with an increased
workload to the physician. Therefore it is more important to be able to detect that
something is present than it is to accurately quantify what that is since this can then
be handled by the oncologist. Similarly, in NDE it is of greater value to be able to
reliably detect that a defect exists than it is to be able to accurately quantify what
the nature of that defect is. Thus, a good result (and the primary objective for an
automated classifier) would be to be able to reliably distinguish images containing
a defect from those that do not. A secondary objective would be to be able to
characterise its nature provided this was not at the expense of an increase in false
negatives in the primary objective.

Fatigue cracks are of significant interest due to their potential to cause failure
however they are visually very difficult to see and penetrant techniques are often
used to aid identification. As no depth information is obtained within the 2D
image, it is unrealistic to presume that such defects could be differentiated from
surface scratches by an automated system without similar visual enhancement
techniques. Corrosion pits are often a precursor to the initiation of fatigue cracks
and so early detection of these would be valuable. Corrosion pits in steel are
characterised by their irregular but roughly circular shape and may penetrate up to
the wall thickness of the pipe. Noise in images of fatigue cracks and corrosion pits
may arise from surface scratches, dirt, associated support structures or lighting
variations. The problem of hair follicles in melanoma detection applications has
parallels with the presence of surface scratches in NDE images. Where-as a
combination of morphology and pixel substitution was used in [68, 69], it is by no
means certain that there would be sufficient contrast between scratches and the
general surface to allow such techniques to be employed for NDE images.
However, such techniques may be suitable for removing artefacts such as support
structures where contrast will be high and there is little variation in physical shape.
Low frequencies in facial recognition were identified as being suitable for
determining gender (characterised by facial structure) and it seems possible that this
could be applied to NDE where the low spatial frequencies could identify the
general type of defect (e.g. significant cracks, corrosion pitting etc) based on its
shape and in particular to distinguish between images that contain defects from
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those that do not. The use of high frequencies (as was shown for radiographic
NDE) may be more appropriate for fatigue cracks however will result in images
containing higher levels of noise due to their similarity to surface scratches.
Through the use of penetrant techniques it may be possible to use the high
frequency content to identify fatigue cracks while removing the noise associated
with scratches. The opposing frequency requirements for the description of
corrosion pits and fatigue cracks leads to the conclusion that separate pre-processes
may be required for each. As fatigue cracks are often generated through the
structural weakness introduced by corrosion pits, for a first attempt at an
automated system it is logical to limit the scope to consider these and thus the low
frequency content.

In terms of yielding a classification result, the techniques used are often either
template matching, neural network, SVM or pixel-level processes. The initial
process usually involves some segmentation of the image to identify the artefact of
interest from the image and then calculates some parameters (colour, shape, texture
etc) that define its features. In some cases the image is divided into blocks or sub-
images and the features calculated for each. In statistical pixel-level processes, the
image may be segmented by iteratively evaluating the class label applied to each
pixel based on its own value and the surrounding pixel labels. The eigenface
approach has been successful in facial recognition and has been applied to some
medical applications however as yet this has not been attempted on NDE data. In
contrast with the previous methods of feature extraction, this technique derives the
features automatically through maximisation of the variance and so only the most
statistically relevant features are used. The tolerance of such an approach to noise
is better than for more computationally simple algorithms with the added
advantage that it does not adopt a black box approach and thus the performance
may be traced directly back to the original training data set. It may be possible to
define a set of classes to describe a structure in a similar manner to the eigenface
approach and to then employ the statistical methodology that follows from this.
Thus different conditions of the pipe would be represented by a combination of
these features. In facial recognition systems, the subject of interest (i.e. the face) is
the consistent parameter (in a template sense) upon a varying background.
Considering the primary goal, it is realistic that the undamaged pipe can be assumed
to be the consistent parameter and it should therefore be possible to represent this
condition as a 'face'. The variance of the image set for this class will be small and
therefore it should be possible to differentiate such images from ones that contain
other artefacts (e.g. defects, support structure). Thus in the first instance, anything
that is not classifiable to this is of interest to the NDE technician. If the grayscale
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image is fed into such a system then it is likely that it would be possible to
discriminate between pipes that contain no defect and those that do. However due
to the positional uncertainty of defects within the image frame it would not be
possible to determine the nature of the defect within the same system framework;
this would require a separate algorithm to identify defect borders and classify
according to perhaps its shape or some other relevant parameter. Furthermore, the
variance associated with different classes of defect will also be greater due to the
organic nature of their creation. However, if the data is pre-processed to map the
original image to a space such that the signature for each defect is broadly similar
then the technique could again be applied with the advantage of the inherent
tolerance of the statistical approach.

3.3.2  System Specification

The aim is to design an automated pattern recognition system capable of detecting
images that contain defects from those that do not. The eigenface approach should
be adopted to achieve this in order to demonstrate whether or not this technique
is appropriate for this type of NDE. A secondary goal will be to develop this system
further so as to attempt to sub-classify an image to a particular type of defect. A
defect/no-defect classification rate of 100% is desired however given the
performance of systems produced by dedicated research teams in this field this is
regarded as a goal that may not be achievable. A more appropriate measure, given
the novelty of the technique to this application, is to benchmark the performance
against an established technique such as the KNN algorithm. The system will be
developed for finding defects consisting of slots and drill holes since these can be
readily fabricated and will yield a signature composed mainly of low frequency
content (and therefore will be more readily distinguishable from surface scratches).
Artificial corrosion pits will be created to test the performance on a more noisy, and
more representative, set of defects. The application of the system for fatigue cracks
will not be considered and will instead be left for future work. Finally, the system
will be developed in MATLAB to make use of the plethora of image processing
toolboxes available.

3.4  Eddy Current System

3.4.1  Discussion

The argument for using a differential eddy current system in mobile robotics
applications was made clear in Chapter 2. The need to inspect the full
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circumference of the pipe makes an array particularly attractive. Fundamentally,
there are two options that would allow full circumferential coverage during an
inspection: a mechanical scanning system to translate the eddy current probe or a
multi-coil array wrapping around the circumference. The advantage of the former
is two-fold in that it requires a very simple electronic drive system and that the
transverse scanning resolution can be made as high as desired by reducing the
transverse scanning interval. However, although lift-off suppression is inherent for
the differential probe type, the inverse relationship of sensitivity to coil lift-off
means that the coils should be positioned as close to the pipe surface as possible.
Achieving a consistent distance within a moving mechanism would require a high
degree of precision and it is likely that a practical system would exhibit some degree
of lift-off (and hence sensitivity) variation proportional to either the position of the
coil on the pipe and/or the rate at which it is moved. Furthermore, such a design
would result in slower inspection speeds. The opposite is true of a multi-coil array
with mechanical positioning of each coil to achieve constant lift-off very simple
while having the added electronic complexity of either including multiple drive
circuits or using a single circuit in conjunction with a multiplexer. The latter
solution is preferable for a measurement system where repeatability and
compactness are desired qualities. As producing high precision mechanical
components is of greater difficulty and expense than producing the array
electronics, the array approach is the most appropriate solution. One drawback of
the array within the RPC platform is that due to the constraints associated with
obstacle avoidance the array cannot extend around the full circumference of the
pipe and hence in this instance only half of the circumference will be inspectable.
Since the addition of circumferential motion to the robot is an ultimate goal of
future work, this is seen as an appropriate compromise.

The advantage of a multi-frequency eddy current array is that data is gathered over
a range of frequencies and can therefore be averaged to potentially yield higher
sensitivity. Single frequency inspection can achieve very sensitive results however
relies on a feedback loop (usually in the form of an expert NDE technician) to
adjust the frequency so that the best SNR is achieved for the defect. Swept
frequency eddy current removes this need by exciting the coils across appropriate
range of frequencies. Pulsed eddy current is undoubtedly a very popular and
promising technique however, given that the research element of the eddy current
array payload lies in its integration with the overall inspection system, the added
simplicity of the SFEC system is more attractive.
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Measurement of a signal’s phase is generally regarded as a more reliable method of
detecting defects than amplitude measurement. Phase measurement may be done
in the time domain or the frequency domain. Time-domain measurement has a
more simple algorithmic implementation however requires either a very fast
analogue-to-digital converter (ADC) or a slower ADC and the use of upsampling
(see Chapter 6). Frequency-domain implementations involve calculating the Fast
Fourier Transform (FFT) which requires less data (and hence little or no
upsampling) however is more complex to implement efficiently. In the first
instance, to minimise the design complexity, the time-domain approach should be
used. 

The diameter of detectable defect is related to the probe diameter, as outlined in
Chapter 2. In general, the performance is scalable and thus a system designed for
one size of defect could be made to operate on smaller defects by simply changing
the coil size; this principle explains the multiple probe offerings from commercial
ECT equipment suppliers. Discussions with industrial end-users yielded the
conclusion that an automated system capable of detecting defects in the region of
0.1 mm deep would be considered as satisfactory. 

3.4.2  System Specification

The aim is to develop a differential, eddy current array using phase measurement
to detect the presence of defects. A swept frequency system will be used to attempt
to gain a high sensitivity while maintaining simple payload design and interpretation
of the results. The coil diameter will be 12 mm (equivalent to that of a previous
differential system developed within CUE [81]). To make the problem a little
simpler, and given the scalability of the coils, the diameter of the defects that should
be detected will be 10 mm, which is slightly smaller than that of the coils. This is
quite a large defect however will allow the sensitivity to depth to be assessed while
ensuring that the defects are of suitable size so as also to be detected visually by the
visual payload. Given that the novelty of the research is in the synthesis of all the
component parts into a single inspection system this is deemed to be justified
however system scaling should be addressed in future work. The minimum depth
of defect that should be detectable is 0.1 mm (i.e. 10mm x 0.1mm).
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Chapter 4

Robotic Pipe Crawling Platform

4.1  Introduction

It has been established that robotic systems offer the attractive solution of
conducting inspections remotely, thereby ensuring that there is reduced health and
safety risks to personnel while providing significant savings in terms of cost and
time. The design and development of such a system for the inspection of pipes is
the subject of this Chapter. 

4.2  Locomotion and Climbing Mechanisms

4.2.1  Traction System

Following the discussion of possible traction methods in Chapter 2, an analysis can
be made as to the most appropriate solution for the pipe inspection system in light
of the specification outlined in Chapter 3. 

The substantial performance reduction that chemical adhesion suffers, when
exposed to relatively mild levels of dirt and grime, coupled with the inherent lack
of control over when the adhesion is applied, makes it unsuitable for the given
inspection task. While showing considerable promise, the relative immaturity of the
biomimetic and electroadhesion technologies coupled with the lack of commercial,
off-the-shelf availability make it currently unsuitable for use in this application.
Vacuum adhesion systems can provide good adhesion capabilities on flat, smooth
44



surfaces. In instances of rough or contoured surfaces, where containment of the
vacuum may be compromised, such a system would provide an unreliable method
of traction. A further concern with implementing this technology as the sole
traction system arises from the reliance of the adhesion on the application of
constant power, since the operating environment is such that a loss of traction
cannot be tolerated. A hybrid traction system utilising this technology as the
primary adhesion mechanism but with the incorporation of a fail-safe adhesion
mechanism is conceivable but introduces a level of complexity into the design with
no obvious benefit over simply using the fail-safe mechanism alone. The
infrastructure required to generate and maintain the vacuum is significant in terms
of weight and furthermore, the power requirements of such a system do not lend
themselves particularly well to a battery powered system. A vacuum array would
offer a solution that is lower power in comparison with the more traditional single
cup design however an actuated force must still be applied to the array in order to
extend/retract the array for contact with the pipe. This, then, can be seen as simply
an extension to a mechanical adhesion system and therefore, unless the grip
possible by friction is insufficient to support the robot, it is unnecessary and the
additional traction provided by the array is thus redundant. The mechanical
method of traction is both simple and well understood. Furthermore, through the
appropriate choice of actuators and/or gearing, a robot could be made to maintain
its grip on the pipe in the event of a power failure. Thus, mechanical adhesion is
the most fail-safe system and provides the desired traction with minimum
infrastructure and no functional redundancy. Two principal methods of
mechanical adhesion present themselves. Firstly, a wheeled system where the
traction force is generated between the wheel and the surface of the pipe and
secondly, a gripper-pair system which, when engaged, forms a clamp around the
outside of the pipe. Both methods are discussed in conjunction with the design of
the chassis which forms the subject of the following section.

4.2.2  Chassis Design

Having elucidated the advantages of a mechanical traction system, the design of the
chassis can be restricted accordingly to those suitable to incorporate this adhesion
mechanism. Numerous morphologies of chassis and interconnect were identified
and considered to allow selection of the optimum combination of partial solutions.
Table 4.1 shows the possible partial solutions for the adhesion support structures
and Table 4.2 shows the options for structures allowing locomotion along a pipe.
By decoupling the design in this way, the best combination of partial solutions from
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Table 4.1 and Table 4.2 can be selected to provide the optimum design to meet the
given specification.

Collar 
Type 

Illustration Description

C1 Circular collar with two wheels

C2 Circular collar with three wheels

C3 Circular collar with four wheels

C4 Semi-circular collar with two wheels

C5 Semi-circular collar with three wheels

C6 Semi-circular collar with two grippers

C7 Semi-circular collar with two grippers
fitted with wheels

C8 Dockable modules fitted wheels collec-
tively gripping pipe

Table 4.1:  Chassis collar options.
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Interconnect
 Mechanism

Illustration Description

IC1 Single circular collar

IC2 Single semi-circular collar

IC3 Two circular collars connected
by rigid links on linear bearing
at one end

IC4 Two semi-circular collars con-
nected by one rigid link on lin-
ear bearing at one end

IC5

 

Two semi-circular collars con-
nected by multiple rigid links
on linear bearing at one end

IC6 Two semi-circular collars con-
nected by one rigid link with
hinge at one end. Linear bear-
ing at one end

IC7 Two semi-circular collars con-
nected by one rigid link with
hinge at both ends. Linear
bearing at one end 

Table 4.2:  Interconnection mechanisms.

axial view

axial view

axial view

axial view

axial view

axial view

axial view
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In terms of simply obtaining the optimum chassis for support of a mechanical
adhesion system, in this case, a circular collar of the type shown in C1, C2 and C3
provides the best solution and allows for motion around pipe bends. Critically
however, this design does not have the ability to overcome pipe hangers and
therefore this, coupled with its associated interconnect IC1, must be eliminated as
design options. The modular design shown in C8 consists of multiple, small
actuated units interfaced together to surround the pipe and scaling the design to
larger diameters would be the trivial matter of adding additional modules. Both the
semi-circular and modular morphologies are suitable for passing pipe hangers. The
latter, however, has significantly more mechanical, electronic and control system
complexity and it can therefore be concluded that, in this case, the most practical
base structure is the semi-circular collar. Having identified this, further
simplification can be made to the connection mechanisms through a simple
stability analysis. A single collar design requires a wheeled or inchworm solution for
locomotion however, if the collar is too thin, the system will be highly unstable and
will require significant control to overcome the 'inverted pendulum' effect. A four
wheeled, wide wheel-base system could be used, however the width of the frame
required for stability would not represent a minimum weight solution and IC5
would be superior. Thus, in this instance, a dual collar design, of the form shown
in IC4-IC7, is the most suitable one. 

Having identified a dual semi-circular collar design as the most appropriate base
structure for the chassis, the relative merits of a wheel and gripper system can be
analysed in this context. The simplest system in terms of achieving traction is
clearly the gripper system since adhesion is achieved through the application of a
motor of some description to cause the gripper to clamp to the pipe. In contrast, a
wheeled system would require a bi-directional gearing mechanism to allow the
wheel to lock when stationary, so that grip could be maintained without either
backward driving the motor or having to exert constant torque by the motor. This
issue is particularly significant for vertical sections. Furthermore, in order to ensure
that a constant contact force is generated and to allow for an element of
abnormality in the contour of the surface, a clamping mechanism would be
required for each wheel. In its most basic form, this would involve a non-actuated
spring-loaded mechanism or, at the expense of added complexity and additional
motors, a hybrid system such as that shown in C7 could be used to actively control
the force applied by each wheel. An advantage of a gripper system, in comparison
with all of the wheeled designs, is that the gripping mechanism is decoupled from
the locomotion system. Thus, if the latter fails the results are unlikely to be
catastrophic. Such a decoupled system would ultimately be slower due to the need
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to apply and remove the gripper prior to moving forward. However, since robot
safety is a higher priority than operational speed, it can be concluded that a gripper
pair solution is the most suitable for this NDE robot.

All interconnect options now fall into two basic categories: either a rigid link (IC4
and IC5) or some form of flexible link such as a hinge (IC6 and IC7). The ability
to negotiate corners was identified as a key kinematic requirement and any
interconnect system must allow for this. A hinged mechanism allows a rotation
about an axis perpendicular to the plane of the page, however in order for a robot
to travel around a bend, each collar would need to be hinged at both ends. If this
was not the case then when the forward collar attempted to move around the
radius, the rigid connection at the rear collar would act to inhibit it. In order to
make the mechanical system robust, each hinge would need to be actuated, thereby
introducing a significant overhead in terms of the control system requirements. A
flexible link fabricated from a conformable material could be used, however both
this and the dual hinge option would lead to a similarly 'limp' design which would
lack the durability for industrial use. A better alternative would be to connect each
collar with rigid links whilst allowing the grippers to rotate. Such a system would
require one collar to be mounted on the interconnecting links using linear bearings
in order to allow translation. In this way the chassis can be made highly robust
without sacrificing the overall kinematic goal. A single rigid link system as shown
in IC4 while satisfying the minimum weight criteria, would allow torsion of the
chassis which could result in damage to the robot components. The optimal
combination of partial solutions is therefore determined to be a combination of
collar configuration C6 and the multiple rigid links interconnect configuration IC5.

4.2.3  Design of Gripper for Mechanical Adhesion

Having concluded the merits of a gripper pair traction system, the specifics of the
design can now be considered. To eliminate the need for additional actuation, the
use of a pincer gripper, whose action is similar to the opening and closing of a pair

Figure 4.1:  Profiles for pipe gripper: (a) curved gripper, (b) semi-square gripper
and (c) semi-triangular degree gripper

(a) (b) (c)
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of scissors, was eliminated and therefore the gripping force should be generated
entirely by the force used to engage/retract the gripper unit. Three basic gripper
profiles were identified from which other variants may be derived and are shown
in Figure 4.1. The curved gripper provides a solution which, for the particular pipe
diameter it is designed, gives the largest contact area and hence best traction.
However, it is unsuitable for use on pipes of whose diameter is greater than that
for which it was designed and its performance reduces for pipes of smaller diameter
as the contact area is reduced. The semi-square profiled gripper is similarly
unsuitable in these conditions and furthermore, due to the flat vertical surface,
performs less well than the curved gripper for any diameter less than that for which
it is designed. The semi-triangular gripper provides four points of contact at
tangents to the pipe circumference. However in contrast to the previously
discussed profiles, the grip performance is constant for varying pipe diameters
providing the diameter is not too great that contact is made only by the tip of the
gripper or too small that the tips of the gripper pair collide. The latter issue can be
addressed through use of an intermeshing design [31] which allows the tips of the
gripper to pass through each other in much the same way as a person clasps their
hands. In accordance with the varying inline diameter stipulation in the
specification, a semi-triangular, intermeshing gripper was selected.

In order to ensure a lightweight design with high structural strength, corrosion
resistance and tolerance to the elevated temperatures that may be encountered at
the pipe surface, the gripper should be fabricated from aluminium. Since the
friction force between metal-metal surfaces is not typically very high, additional
rubber pads can be added to the contacting face of each 'finger' of the gripper.
These pads may be replaced due to friction and/or thermal wear as necessary 

4.2.4  Cornering Mechanism

As discussed in Section 4.2.2, in order to allow the robot to travel around a bend,
the gripper must be capable of rotation. This may be either passively or actively
controlled. Active control allows the gripper to be precisely positioning however
the control/sensing system required is complex since the gripper must orient itself
to the correct angle prior to its engagement. If the orientation is incorrect then the
gripper will not contact the surface in the optimum manner and sufficient grip may
not be achieved to support the weight of the robot. Further control could be added
to allow a successive approximation approach which would overcome this,
however such a system would introduce greater complexity still. A passive system,
in contrast, allows the grippers to freely rotate and hence, as each gripper is
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engaged, the reaction force from the point of contact with the pipe causes the
gripper to automatically orient itself to the correct angle. However, due to the dual-
collar chassis design, in a passive system, if both gripper pairs are initially engaged
and one subsequently releases, due to the rotational freedom the chassis will rotate
about the axis of the other gripper pair. Thus during locomotion, the disengaged
gripper pair will either drag or be pushed along the surface of the pipe. While both
options have their negative attributes, the passive system offers the simplest and
lowest power solution and therefore is the most suitable. In order to limit the
extent of the 'drag' effect, each gripper can be constrained to provide only a small
rotation (± ) which, while still allowing the pipe crawler to adjust its orientation
with each application of the gripper, limits the extent to which the chassis can
rotate back when one gripper pair is disengaged. This process may be understood
more clearly through reference to Figure 4.2 which shows the robot in a position
midway around a bend with the gripper for collar 1 at an angle of  and that of
collar 2 at an angle of  to the axis of the chassis, and with each gripper
perpendicular to the tangent of the bend, TC1 and TC2, respectively. As the
platform progresses through the bend it will naturally attempt to follow the tangent
to the radius of the curve however the step size must be limited to ensure that the
rotation required by the grippers to correctly orient themselves does not exceed the
limits of ±  from the axis of the chassis.

4.3  Mark I - Linear Crawler

4.3.1  Overview

In order to assess the performance of the semi-circular collar structure and refine
the locomotion system, it was concluded that the Mark I robot should be a linear
crawler, omitting the cornering capabilities discussed in Section 4.2.4. This two-
stage design process ensured that the knowledge base derived from Stage 1 could
be brought forward to refine the final system. In particular, the performance of the
mechanical adhesion mechanism for vertical locomotion could be analysed in a
simplified kinematic form.

θmax
2

------------

θC1

θC2

θmax
2

------------
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Figure 4.2:  Cornering Mechanism. Each gripper is free to rotate within the con-
straint of ±  from the axis of the chassis. As the robot travels around the bend,
each gripper attempts to orient itself to the tangent to the radius of the bend.

θmax
2

------------

Figure 4.3:  Mark I collar design highlighting bearing block mounting points and
shaft bearing mounting holes.
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A modular approach to the design was taken, with the aim of creating standard
mechanical units which could be connected together to form the working system.
Such a design strategy minimised the impact of damage or manufacturing
tolerances on the operability of the system. As discussed in Section 4.2.2, multiple
shafts are required to connect the two collar units in order to prevent torsion of the
chassis and, in this instance, three shafts were used as shown in Figure 4.3. Linear
bushings were mounted in bearing block modules which could be attached to the
main collar using screws at the locations shown. The motor to control axial
separation of the collars was mounted on the top of the collar above the central
interconnecting shaft. In order to ensure that all the manufactured components
were lightweight and furthermore to facilitate easy fabrication, all chassis
components were fabricated from grey PVC. Simona(R) PVC-CAW [82] was
selected for its high rigidity, relatively low density and easy availability.

4.3.2  Selection of Motors

4.3.2.1  Gripping System

The gripping force is generated by four miniature linear actuators [83] each
consuming 250 mA of current at peak efficiency and geared to provide 18 N of
force and 6 mm s-1 maximum speed. At no load, each actuator has a maximum
speed of 12 mm s-1 which results in the minimum time to reach full extension being
1.67 s. Frictional forces and slow-down effects at the instant that contact is made
with the pipe result in a grip time that is slightly greater than this and dependent on
the pipe diameter. When grip has been established, power to the motors is
disconnected to maximise battery life and traction is maintained, providing the
actuators’ 40 N backward drive force is not exceeded. Each actuator comprises a
built-in potentiometer to provide positional feedback with a rated non-linearity of
no more than 1%. 

4.3.2.2  Axial Motion

Axial motion is generated by a 12 V, two-phase, bi-polar stepper motor [84] with a
120 mm stroke connected to collar 1 and provides 25 N of thrust while consuming
230 mA/phase. The motor housing is ‘non-captive’, meaning the screw rail can
pass through the centre in either direction allowing flexibility in the positioning of
the motor on the robot. A stepper motor was used in this instance because it
allowed a customisable stroke length through the use of longer screw rails, thereby
offering scalability while providing the best trade-off between thrust, power
consumption, speed and cost compared to alternatives such as the linear actuators.
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4.3.2.3  Selection of Gripper Material to Maximise Traction

The following factors were identified as critical parameters for the gripper material:

•High friction coefficient

•Resistance to wear

•Suitable for use at rated temperature

•Machinable - ability to be cut to size and texture put on surface

•Resistance to water, oil and other chemicals

•Available in low order quantities

•Low cost

The surface temperature of the pipes on which the RPC will operate is a critical
parameter and it must be ensured that the breakdown temperature of the material
is greater than maximum temperature expected at the pipe surface. For the Mark I
design, rubber gasket material was used which typically has operating temperatures
in the range of -40 to +120 oC [85].

4.3.3  Finite Element Analysis

4.3.3.1  Introduction

In order to test the ability of the PVC collars to withstand the forces generated by
the actuators a 3D, small displacement, linear-elastic, finite-element (FE) stress
analysis was conducted using PTC ProEngineer/Mechanica Wildfire 2.0. The
properties of PVC-CAW [82] are given in Table 4.3.

Material Property Standard Value

Density DIN 53479 1.42 g cm-3

Bending Modulus DIN 53457 3000 N mm-2

Yield Stress DIN 53455 58 N mm-2

Vicat Softening Temperature DIN 53460 78 oC

Table 4.3:  PVC-CAW material properties
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4.3.3.2  Simulation Loads and Constraints

Observation of Figure 4.3 shows that the collar exhibits symmetry in the X-Y and
Y-Z plane. Utilising this symmetry, a simplified collar model can be simulated, with
a smaller number of mesh elements, thereby reducing the simulation time. The
centre point on the inner circumference of the collar is fixed in the z-direction
providing the datum point and stabilising the model. A bearing load of magnitude
10 N is applied, in the -x direction, to each of the two bearing block mounting holes
as shown in Figure 4.4.

4.3.3.3  Assessment Criteria and Assumptions

If the action of the grippers causes the collar to displace to a significant extent then
the direction of the applied force from each gripper ceases to be coaxial, meaning
that the gripper performance will be reduced, coupled with a marginal increase in
the centre of gravity. The maximum displacement criterion was set to 1mm,
meaning that the maximum allowable displacement of any part of the collar is 1

Figure 4.4:  Loads and constraints. A 10 N bearing load is applied to both bearing
holes, totalling the 20 N maximum reaction force exerted by the actuators. Two
symmetry constraints are applied in the X-Y and Y-Z directions and the model is
fully fixed in the z direction to stabilise the model. 
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mm. Von Mises stress is a commonly used failure criterion for ductile materials
and, if greater than the appropriate yield stress, indicates the failure of a design [86].
Flexural yield strength is a measure of a material’s ability to resist deformation
under load and, from Table 4.3, for PVC-CAW is 58 N mm-2.

Any FE analysis requires a set of assumptions to be defined which dictate the
boundaries over which the simulation may be regarded as valid. In the case of the
collar model, the first assumption is that Young's modulus can be considered to be
constant. In reality there will be a time dependent deformation of the material due
to creep under load which will lead to a non-constant value of the modulus. During
locomotion, the load is applied to each collar for only the time it takes to drive the
opposite collar to its destination and apply its grippers. The longest period that each
collar will be subject to the load will be during the inspection process when both
collars are gripping. It is expected that any single inspection will not take longer
than ten minutes to complete and so it is assumed that creep effects can be
neglected.

The second assumption is that the RPC will be operated at 20 oC corresponding to
the testing standards for which the data in Table 4.3 is valid. The Vicat B test [87]
is used to define the softening point of materials such as PVC that have no defined
melting point. The Vicat B softening temperature is that at which a 1mm2 flat-
ended needle penetrates to 1mm at a load of 49.05N and for the grade of PVC used
in this simulation it is 78 oC.

4.3.3.4  Results

Figures 4.5 and 4.6 shows the Von Mises stress distribution and the displacement
of the model respectively. The maximum stress of 1.467 N mm-2 is well below the
yield stress and occurs at the inner surface of the collar about the Y-Z plane.
Further regions of high stress occur at the bearing block mounting holes which are
to be expected since these are the points at which the force is transmitted from the
bearing block to the collar. The maximum displacement to the applied 20 N net
load can be seen to be 0.1928 mm which is well below the maximum displacement
criterion and thus satisfies the assessment criteria outlined in Section 4.3.3.3. The
mass of the collar predicted by the simulation is 212.8 g which is in reasonably good
agreement with the measured value of 232.2 g. 
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Figure 4.5:  Von Mises stress analysis of Mark I collar design using PTC ProEngi-
neer/Mechanica. The maximum stress is 1.467 N mm-2.

Figure 4.6:  Displacement analysis of Mark I collar design using PTC ProEngi-
neer/Mechanica. The maximum displacement is 0.1928 mm.
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4.3.4  Overview of Mark I Design

The Mark I platform is shown in Figures 4.7, 4.8 and 4.9. As discussed in
Section 4.3.4, the vehicle consists of two rigid, semi-circular collar units oriented
axially on the pipe and connected by three support shafts. Collar 2 has three linear
bearings and slides along these support shafts relative to collar 1, powered by the
stepper motor identified in Section 4.3.2.2. This motor is mounted in an aluminium
housing which is fitted to collar 1. Both collars 1 and 2 are fitted with a pair of
bearing blocks. A set of two retractable grippers are mounted on linear bearings
housed within these blocks and allow the robot to clamp on to the outside of the
pipe. The multi-fingered, intermeshing gripper design provides flexibility for
operation on pipes that have a varying in-line diameter while still providing a high
degree of surface contact area. Grip performance is maximised through the
addition of high friction coefficient, rubber pads to each finger. The power
delivered by the linear actuators outlined in Section 4.3.2.1 is transmitted to the
shaft via a motor-shaft coupling. Each linear actuator sits on a motor cradle to
provide mechanical support and to minimise the lateral stress applied to the motor
shaft. Safety caps are fitted to the ends of the support shafts as a fail-safe
mechanism to prevent the system over-extending during axial motion. The
electronic hardware is mounted on rear of collar 1 and acts as a partial
counterweight to collar 2. The total weight of the vehicle is 1.375 Kg. 

Starting in the fully retracted position and with both collars 1 and 2 gripping the
pipe, forward motion is generated by repeating the following routine. The grippers
of collar 2 are retracted and then the collar is extended along the pipe (away from
collar 1). Once in the fully extended position, collar 2 then re-establishes its grip on
the pipe. Collar 1 then releases its grip and is driven along the pipe (this time
towards collar 2) before finally re-gripping when it is in the fully contracted
position. The current prototype is configured to allow both forward and reverse
motion. As outlined earlier, a common feature in any pipeline is the presence of
flanges for interconnection and pipe hangers for support. It is critical to the
practical use of a robotic pipe inspection system that such obstacles can be
overcome with minimal overhead. Because of the mechanical design of the RPC,
the actual locomotion algorithm does not change when such obstacles are
encountered; the grippers are fully retracted and the RPC simply 'steps over' the
obstacle as though it were not there, as shown in Figure 4.10.
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Figure 4.7:  Mark I robotic pipe crawler (RPC) on 40mm diameter pipe (Axial
view).

Figure 4.8:  Image of collar 1 on 40mm diameter pipe. Bearing blocks mounted
on the collar house a linear bearing on which the gripper slides. The intermeshing
gripper accommodates varying diameters of pipe.
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Figure 4.9:  Profile of Mark I design on 40mm diameter pipe. A stepper motor
with a 120mm screw rail facilitates axial motion. Power transmission to the grip-
pers is achieved through a motor-shaft coupling. Safety caps are included to pre-

Figure 4.10:  Navigating past pipe stands. Both collars start in the gripping state.
Collar 2 then opens and extends past the pipe stand before re-gripping. Collar 1
releases its grip and is then contracted before re-establishing its grip.
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4.4  Mark II - Pipe Crawling System

4.4.1  Evaluation of Mark I platform

The Mark I platform is capable of travelling along horizontal pipes of diameter
50mm and below, however vertical locomotion presents a challenge. During tests
on vertical pipes, the RPC could maintain traction when both sets of grippers were
engaged, however it was not possible using only one gripper pair. Since the
locomotion mechanism requires the release of one pair of grippers prior to the
initiation of the axial translation mechanism, this issue meant that reliable vertical
ascent/descent was not possible. In order to address this problem for the Mark II
platform, two potential solutions were identified:

•Increase the gripping force

•Reduce weight of platform 

A discussion of a strategy to increase the gripping force is provided in
Section 4.4.1.1 followed by a detailed examination of the weight reduction
measures in Section 4.4.1.2. 

4.4.1.1  System for Increasing Gripping Force 

A drawback of using motors with a greater output force to overcome the grip
deficiency is that this is coupled with an increase in power consumption. In keeping
with the low power, battery operated philosophy, a passive system utilising springs
was designed to increase the gripping force generated by each of the existing linear
actuators.

Springs come in two main varieties: compression and extension. Compression
springs, as their name suggests, exert a reaction force as they are compressed while
extension springs do the opposite, exerting their reaction force as the spring is
extended. Due to space constraints between the gripper and the inside radial
surface of the collar, the use of compression springs is problematic and thus
extension springs, mounted as shown in Figure 4.11, is the preferred solution.
Increasing the gripper force through the use of springs has the potential to reduce
the working stroke of the actuator depending on the spring constant and the spring
extension at zero actuator extension, since the force required to extend the spring
increases with distance. The extent to which the stroke is reduced is determined by
the spring length at which the force equals the 20 N maximum force of the actuator
and hence the spring stiffness, k. In order to ensure no loss in stroke, the former
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should be greater than the 20 mm maximum stroke of the actuator. The optimum
spring, however, will provide a maximum force of 20 N when the actuator
extension is 20 mm whilst also maximising the force exerted at 0mm actuator
extension. The total gripping force, , generated by a spring-assisted actuator
system is given by Equation (4.1)

(4.1)

where x is the extension (m) and Fm is the force generated by the linear actuator. A
suitable spring was sourced with a spring constant of 0.59 N mm-1 and nominal
length 24.2 mm. As stated, the maximum extension possible of the spring
corresponds to the extension at which the spring force is 20 N which, by re-
arranging the equation  for x and substituting the value for the spring
constant and maximum force, is 33.9 mm. Setting this as the limit in order to
maximise the contribution of the spring, the spring extension at zero actuator
extension, and therefore the pre-load value xu, must be 33.9 - 20 = 13.9 mm. Thus
for a 50 mm pipe diameter, corresponding to an actuator extension of 10 mm, an
additional 14.1 N will be supplied by the spring. Similarly for a 40 mm and 60 mm
pipe the additional force will be 8.2 N and 20 N respectively. As a consequence
however, the power consumption of the actuators will increase during the grip
release phase due to the additional energy required to extend the springs.
Furthermore, the speed with which the grippers can be released will be reduced due
to the greater load the actuator must now push against. Due to these issues, and the
effectiveness of the weight reduction measures outlined in the next section, this
system was not implemented.

Ft

Ft kx Fm+=

F kx=

Figure 4.11:  System for increasing gripping force through the use of springs.
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4.4.1.2  Weight Reduction Measures

Figure 4.12 shows the composition, by mass, of the Mark I robotic pipe crawler.
The main contributions arise from the collars, the bearing blocks and the grippers
which total 1007.6 g or 69.1% of the total RPC weight. Of the remaining
components, the stainless steel bushings form the most significant proportion
followed by the payload bracket and then screws and miscellaneous fittings. Based
on this data, a significant weight reduction strategy was implemented.

The diameter of the Mark I collar can be reduced slightly while still providing
enough space for the stroke of the grippers and by removing material strategically
from the body of the collar, a significant weight reduction can be achieved with
little or no reduction in structural strength. By integrating the stepper motor into
the body of the collar the weight reductions are two-fold through the creation of a
25 mm diameter cavity to accommodate the motor and the elimination of the need
for a separate motor housing. The design of a new collar incorporating these
changes is described in more detail in Section 4.4.2.

The desire to have a modular design was driven in part by the desire to have re-
usable building blocks thereby allowing an iterative approach to the initial proof-
of-concept design. This strategy led to the adoption of separate bearing blocks to
house the gripper bushings. The benefit of several design iterations was to provide
valuable data on performance of various configurations however, such flexibility is
no longer required for a Mark II system. Thus, it is now possible to incorporate the
gripper bushing into the main collar thereby allowing the bearing blocks to be
removed entirely at a saving of 18.5% of the total Mark I weight. Substitution of
PVC in place of aluminium used in the Mark I gripper would allow a weight
reduction of the order of 50% of the weight of the aluminium gripper. 

Several smaller measures were introduced including the use of nylon rather than
stainless steel bushings, minimising the number of screws/fittings and reducing the
size of the motor-shaft coupling with a collective saving of approximately 100 g.
The mass breakdown of the Mark II robot platform is shown in Figure 4.13 and
totals 1043.5 g.
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Figure 4.12:  Weight distribution of Mark I design

Figure 4.13:  Weight breakdown of Mark II robot following implementation of
the weight reduction measures.
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4.4.2  Optimisation of Collar Design 

In order to minimise size and weight, a minimum diameter design is required. With
reference to Figure 4.14 (a), if the gripper is designed such that the angle between
the two fingers is 90o then for all pipe diameters, , the pipe will contact the
gripper at a distance of . Using Pythagoras’ theorem, the distance, m,
from the centre of the pipe to the vertex of the gripper is  which
reduces to . Considering the arrangement depicted in Figure 4.14 (b), the
clearance, c, between the pipe surface and the gripper vertex is given by

and therefore:
 . (4.2)

Given that the outside diameter of the collar, D, is defined by Equation (4.3).

(4.3)

a minimum diameter design is obtained by substituting Equation (4.2) into
Equation (4.3) yielding: 

(4.4)

where, s is the actuator stroke and t is the thickness of the collar. For a pipe radius
of 25 mm, stroke of 20 mm and collar thickness 30 mm, from Equation (4.4), the
minimum diameter is 170 mm, 30 mm less than the Mark I design. A 5 mm
allowance was allocated to allow the shaft to be connected to the gripper thus
raising the minimum realisable diameter to 180 mm.

Having established the optimum diameter for the collar design, further weight
reductions measures must involve modifying the design of the collar itself. Due to
limitations in the fabrication facilities within CUE, complex geometry parts are
difficult to achieve and time consuming to manufacture. However, it is well
understood that a structural member can still exhibit significant load bearing
abilities even when a large portion of the structural material has been strategically
removed. This is undoubtedly best performed in nature, with the honeycomb
structure of a bee-hive or a spider's web being prime examples of optimisation of
strength-weight ratio. Analysis of the Mark I collar design led to the conclusion that
a large proportion of the collar material could be removed with an unnoticeable
change in strength. As was outlined in Section 4.4.1.2, a cavity could be created in
collar 1 in which the stepper motor could be housed resulting in a significant
removal of material from its centre. However, in order to ensure correct balance
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between collar 1 and 2, the design of each must be slightly different. Common to
both collars are 24, 6 mm radial and 20, 4 mm axial holes as shown in Figure 4.15
and Figure 4.16 for collars 1 and 2 respectively. However, collar 2 has an additional
six 4 mm axial holes to compensate for the stepper cavity. Furthermore, since the
stepper motor is now housed at the centre of collar 1, the central supporting rod
must be moved adjacently. A fourth supporting rod was added to the design, at the
expense of an additional 18.7 g, to ensure symmetry (and hence balance) about the
axis of the pipe and to enhance the rigidity of the design. A bearing is located at the
centre of collar 2 to accommodate the screw rail of the stepper motor and a locking
screw provides the link between the collar and motor. As the gripper bearing block
has been eliminated, the bearings are now inserted directly into the collar and the
linear actuator attached to the side face. In total the collar optimisation process
achieved a Mark II design that contained 31% less material by mass than the Mark
I design. 

The final modification to the collars involved changing the location of the system
electronics. Having the electronic mounting at the rear of the robot generated a
moment force about the collar. In order to distribute this load more evenly across
the structure, the mounting point was moved to the top of collar 1 so that it
effectively straddles the two collars. 

For simplicity, the Mark I design omitted the cornering mechanism outlined in
Section 4.2.4 however, having established the concept of a linear crawler, this could
be realised in the Mark II design. Due to the linear constraint of the Mark I crawler,
the shaft could be attached directly to the motor for power transmission. However,
since the shaft can now rotate, this is not possible as it would generate an
unacceptable rotational force on the actuator shaft. The motor-shaft coupling was
modified such that the gripper shaft could freely rotate and two transmission discs
were added to either side of it which were fixed to the shaft. The mechanical system
is shown in Figure 4.17. A 1 mm nylon disc bearing is fitted between the coupling
and the transmission discs to provide a smooth rotation. When the linear actuator
contracts or extends, the motor-shaft coupling pushes against the transmission
discs and, since they are firmly attached, thereby moves the gripper shaft. If the
gripper needs to rotate, it is free to do so within the limits dictated by the diameter
of the cornering lugs and the rotational limit cavity. The Mark II platform is shown
in Figure 4.18.
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Figure 4.14:  Collar diameter minimisation. (a) Showing pipe with right-angled
gripper and (b) showing the gripper mounting on the collar. 

(b)

(a)
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Figure 4.15:  Mark II collar 1 minimised weight design.

Figure 4.16:  Mark II collar 2 minimised weight design.
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Figure 4.17:  Cornering mechanism showing modified power transmission sys-
tem. 

Figure 4.18:  Mark II RPC platform featuring optimised collar design.
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4.4.3  Finite Element Analysis

The effect of the optimisation strategy on the structural strength of the Mark II
collar was assessed though a second finite-element analysis. This was once again
performed using the integrated Mechanica package within PTC ProEngineer
Wildfire 2.0. The assessment criteria and assumptions for the previous analysis
given in Section 4.3.3.3 are still valid and remain the same for this design study.

4.4.3.1  Simulation Loads and Constraints

As per the simulation in Section 4.3.3, the collar exhibits symmetry in the X-Z and
Y-Z planes which allows a simplified model to be simulated. The centre point on
the inner circumference of the collar is, once again, fixed in the z-direction and acts
as the datum point. However in this case, as the bearing block is no longer present,
a bearing load vector of 20 N was applied to the motor mounting hole on the side
of the collar.

4.4.3.2  Results

The results of the stress and displacement analyses for collar 1 are shown in
Figures 4.19 and 4.20 respectively. The maximum stress can be seen to be 4.173 N
mm-2 which is well below the yield stress given in Table 4.3. It may be observed
that at two points the stress reaches this maximum value: at the motor mounting
hole and at the opening of the first radial hole on the inner diameter of the collar,
near the outer face. A marginally reduced stress of 3.9 N mm-2 occurs at the inside
of this cavity The stress profile around the circumference of this radial hole is given
in Figure 4.21.   The two maxima can be observed corresponding to the points of
minimum wall thickness at the location between the hole and the axial surface and
the hole and the plane of symmetry. The maximum displacement of 0.221 mm
occurs at the outer edge of the collar along the X-Y plane and, although marginally
greater than the 0.1928 mm of the mark I design, is still well within the maximum
displacement criterion of 1mm. Thus the Mark II collar design achieves a weight
reduction of 31% while easily satisfying the stress/displacement criteria. 
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Figure 4.19:  Von Mises stress analysis of Mark II collar 1.

(b)

(a)
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Figure 4.20:  Displacement analysis of Mark II collar 1.

Figure 4.21:  Von Mises stress around the circumference of hole.
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4.5  Electronic Systems

4.5.1  Electronic and Processing System

The electronic hardware was designed to be highly modular, with the main control
electronics centred on a 40-pin signal bus allowing peripheral circuit boards to be
stacked while providing each layer with access to the same signals. Three layers are
required for the basic operation, referred to collectively as the ‘main processing
stack’, and are shown in Figure 4.22:

•Signal interface board (SIB)

•Motor driver board (MDB)

•Processor Board

An additional payload board is needed to add an inspection capability and is sensor
specific. A block diagram of the vehicle architecture is shown in Figure 4.23. At the
heart of the system is the main processing stack which controls all robot movement
and sensor measurement. Each linear actuator has a positional feedback loop so
that the shaft extension can be measured. The camera payload connects directly to
a serial port on the processing board, however the eddy current array sensor
requires a dedicated payload board as shown; the details of this will be discussed
further in Chapter 6. The following sections will now examine the individual roles
of each element of the main processing stack.

4.5.2  Signal Interface Board (SIB)

All input/output (I/O) signals associated with the robot operation and power
supply come through the signal interface board (SIB). Each motor is connected to
the SIB through a connector allowing each to be isolated if necessary for diagnostic
purposes. The 11.1 V battery output is regulated to 5V with a 1 A maximum output
current and fed into the Primary Signal Bus (PSB) for use by the upper layers of the
stack. The battery voltage is passed though a voltage divider circuit and fed into the
PSB thereby allowing higher levels to sample this on an available analogue-to-
digital converter (ADC) if required. A power on and hardware battery low level
indicator are also provided for convenience. This circuit is shown in Figure 4.24
and uses a transistor, which in normal operation is conducting and hence bypasses
the battery ‘low’ LED. When the voltage drops below the threshold set by the ratio
of resistors R2 and R3, it switches off resulting in the low LED illuminating. The
threshold is set to 9.5 V and is determined by the minimum cell voltage that will
allow recharge (9V) plus 0.5 V. 
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Figure 4.22:  Main processing stack including payload board.

Figure 4.23:  Block diagram of the Mark II platform with eddy current array and
camera payloads.
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The battery itself is connected to the SIB with a connector present to break the 12V
supply, providing a convenient means of current measurement. In normal
operation, this connector is shorted. A secondary signal bus (SSB) is present on the
SIB and carries the motor drive signals as well as several free channels to cater for
future expansion. The signals from this bus are connected directly to the output
connectors.

4.5.3  Motor Driver Board

The motor driver board provides the drive signals for all the motors on the robot.
Input pulse width modulated (PWM) signals from the Primary Signal Bus (PSB) are
fed into two quadruple half H-bridge drivers [88] which provide the drive signals
for the linear actuators. Each linear motor combines two half-bridges to form a full
bridge providing bi-directional control. Motor direction is controlled through
digital direction control signals from the PSB. Each collar has one full bridge
dedicated to its pair of motors allowing the same direction control lines to be
utilised thereby cutting the channel requirements by a factor of two. The output
from each bridge is fed into the secondary signal bus for distribution to the motors.

The stepper motor is controlled using an alternative driver containing internal
clamping diodes for inductive transient suppression. Four digital channels are fed
into the driver from the microcontroller via the PSB and the four outputs are
connected to either side of the stepper motor coils. The coils shown in the winding
diagram in Figure 4.25 are pulsed in the sequence described in Table 4.4. Motor
speed is controlled by the time duration between energising the coils and the
direction of the screw rail can be changed by reversing the coil pulse sequence. The
schematics for the gripper and stepper motor drive circuits are shown in
Figures 4.26 and 4.27.

Sequence Coil 1+ Coil 1- Coil 2+ Coil 2-

1 ON OFF ON OFF

2 OFF ON ON OFF

3 OFF ON OFF ON

4 ON OFF OFF ON

Table 4.4:  Stepper motor firing sequence.
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Figure 4.24:  Battery level indication circuit. In normal operation, the transistor,
T1, is conducting thus bypassing the battery ‘low’ LED. When the voltage drops
below the threshold set by the ratio of resistors R2 and R3, it switches off resulting
in the low LED illuminating.

Figure 4.25:  Coil winding diagram.
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Figure 4.26:  Gripper motor drive circuit.

Figure 4.27:  Stepper motor drive circuit.
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4.5.4  Processor Board

Processing is performed on a 400 MHz embedded computer [89] running the
Linux operating system and having 64 MB RAM. Low level operations including
actuator control and sensor monitoring are performed using an 8-bit
microcontroller [90] interfaced with the main processor via an I2C bus. Four of the
six PWM channels available on the microcontroller are used to generate the drive
signals for the linear actuators, however all six are fed into the PSB leaving two
channels available for future use. All nine ADC channels are connected to the PSB
for sensor monitoring and 14 General Purpose Input-Output (GPIO) channels are
available, of which eight are presently involved in motor control.

While the majority of the robot operation could be performed using a more basic
microcontroller with an RF connection to the host, the use of a powerful processor
allows flexibility and upgradeability which is invaluable in the development stage of
a relatively complex robotic system and is therefore an appropriate choice for such
an undertaking. Furthermore, the processing capabilities facilitate the future use of
on-board image processing algorithms as discussed in Chapter 5.

4.5.5  Payload board

The payload board is an interchangeable layer with dedicated electronics designed
specifically for each sensor and integrated with the main RPC electronics through
the PSB. This will be discussed in Chapter 6.

4.6  Communications

4.6.1  Wireless Protocols

As stated in Chapter 3, the use of an umbilical is impractical and therefore a wireless
communications solution is required. A brief discussion of some of the more
common wireless protocols operating within unlicensed bands is provided in the
following sections.

4.6.1.1  Wireless RS232

Wireless RS232 is a simple, low cost, low data-rate, bi-directional communications
system. Long range communications is possible with basic off-the-shelf systems
[91] capable of 250 m transmission with line-of-sight (LOS) and more advanced
systems offering ranges of several miles. This technology does not support
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networking and is intended as a point-to-point or point-to-multipoint
communications system.

4.6.1.2  Bluetooth (Class 1 and Class 2)

Bluetooth operates in the 2.4 GHz band and is primarily designed for short-
distance, peer-peer communications [92]. Class 1 and Class 2 Bluetooth can both
achieve data rates of 1Mbps with maximum power outputs of 100 mW and 2.5 mW
respectively. Class 2 Bluetooth is only capable of communications within a 10 m
range however Class 1 offers a range of up to 100 m. Both Bluetooth classes are
significantly lower power than their IEEE 802.11g counterpart, described in
Section 4.6.1.3, however this is at the expense of data throughput. 

4.6.1.3  IEEE 802.11g

The IEEE 802.11g standard permits data rates up to 54 Mbps in the unlicensed 2.4
GHz band and is commonly used for wireless local area networks (LANs). Typical
power consumption is approximately 1 W which is ten times greater than
Bluetooth Class 1 however as a factor of achieved data-rate, 802.11g is more power
efficient [93].

4.6.1.4  Certified Wireless USB

Certified Wireless USB is a point to point communications system that is currently
under development and aims to provide short range data-rates equivalent to wired
USB 2.0 with 480 Mbps possible within a 3m range deteriorating to 110 Mbps at
10 m [94]. Currently, no commercial product is yet available with this technology.

4.6.1.5  Discussion

The nature of the inspection problem dictates that an on-board camera would be
useful for navigational assistance inside the processing cell and hence a direct
streaming video link may be required at some stage for a practical solution. The
limited bandwidth of wireless RS232 places a constraint on the data throughput
from the on board sensors to the base station and hence was eliminated as a design
choice. The limited 10 m range supported by Class 2 Bluetooth precluded its use
in this instance since this needlessly constrained the range of the device. In order
to provide a development system which can be built upon without undue
constraint and to provide the option for flexible networking of teams of robots in
the future, it was elected that the communications system should be built around
the 802.11g standard. A significant advantage of using this standard was the
availability of an integrated 802.11g solution for the family of processor. While
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providing a substantial excess in available bandwidth, the benefit in networking
capability and infrastructure for future upgrades was felt to outweigh the increased
power consumption that the technology demands compared with Class 1
Bluetooth. As typical industrial facilities contain significant numbers
electromagnetically reflecting surfaces, multi-path is inevitable. For the purposes of
this research, the impact of multi-path on the communications system will not be
considered however it is recommended as an area for future work.

4.6.2  Robot to Host

The RPC communicates with a host computer over an IEEE 802.11g wireless
connection supporting data rates up to 54 Mbps. Data is transferred using Secure
Shell (SSH), a network protocol that facilitates the transfer of data between two
networked devices. The SSID is the identifier given to a particular wireless network
and in order to establish a network connection the two connecting devices must
use the same SSID. The RPC is assigned a unique internet protocol (IP) address
and when it is powered on the wireless communications automatically initiates the
registration of the IP on the wireless network and prepares the device for incoming
connections. An SSH client with a command line interface is used to control the
low level functionality required for the wireless communications and is embedded
in the graphical user interface (GUI) which is discussed in Section 4.10. Secure
Copy (SCP) is a file transfer protocol associated with SSH. It is used exclusively to
copy files between the RPC and the host and is the means by which images
captured by the visual payload are transferred to the GUI.

4.6.3  Internal

All internal communications between the main embedded computer and the
microcontroller are conducted through the I2C bus. I2C is a common two-wire
(data and clock), bi-directional communications standard allowing 400 kb s-1 data
rates with the current on-board hardware between the master (embedded
computer) and any slave devices (microcontroller). Faster implementations are
available through the 'high speed' mode although this is not supported by the
current family of processors and in any case the current data-rate is ample for the
purposes required.
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4.7  Power

The system is powered from a 11.1 V Lithium-Polymer (Li-Po) battery regulated
to 5 V and 3 V. The breakdown of the power consumption for the RPC in stand-
by mode is shown in Figure 4.28. These are the statistics when no demand is placed
on either the motors or payloads and constitutes the base power level.
Communications accounts for the largest proportion of the overall budget,
totalling more than the main embedded computer and microcontroller collectively.
The SIB constitutes the lowest requirement which is to be expected since this
board only supports signal routing and power regulation. The power consumption
during the key tasks associated with locomotion and inspection is provided in
Figure 4.29. The total stand-by power level is 3.6 W and peaks at 8.4 W during the
application of either pair of grippers. Although both this and the 8.04 W for the
stepper motor operation are quite high, the duration is typically only 2-3 s before
the power is reduced to the standby level and thus the total drain on the battery is
not too severe. The use of both the camera and ECA payloads constitutes a
relatively small increase from the stand-by level to 4.44 W and 4.32 W respectively. 

When performing vertical locomotion, in either direction, the effect of gravity
requires that the set of grippers in contact with the pipe be energised at all times
until the movement is completed. At this point, the robot can engage both grippers
generating a friction force great enough to support the RPC weight and the power
can then be removed, returning it to stand-by power levels. In order to meet the
peak current demand of 1.07 A that occurs during such a task, a second voltage
regulator is mounted on the motor driver board to contribute to the 1 A output of
the primary regulator.

The total current drawn during stand-by mode is 300 mA (at 12 V) and, given the
910 mA h capacity of the battery, this provides a total stand-by time of a little over
three hours on a single charge. For continual vertical locomotion, this reduces to
around 50 minutes. 
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Figure 4.28:  RPC power consumption breakdown in stand-by mode.

Figure 4.29:  Total power consumption during standard tasks.
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4.8  Performance

4.8.1  Vertical Ascent/Descent

The sequence of images in Figure 4.30 shows the robot climbing a 50mm diameter
vertical section of stainless steel pipe. The overall linear motion performance of the
system is very good with the new lightweight design solving the grip issues
encountered in the Mark I platform. Due to the slight backlash in the linear
actuators, when power is removed the gripping force reduces slightly. On
horizontal or minimally inclined sections, this does not present a problem however
on vertical or steeply oriented pipes, the reduction in grip is critical and causes the
robot to lose traction. This is easily solved through the application of constant
power to the gripping collar’s actuators when the platform is engaged in either
vertical ascent or descent. A 170 mm vertical distance was covered in a time of 36
seconds, equating to a speed of 4.7 mm s-1. 

4.8.2  Translation Around Pipe Bend

The sequence of images in Figure 4.31 shows the Mark II RPC crawling around the
inside of a bend in a 50 mm diameter section of aluminium pipe. The radius of the
bend was four times that of the pipe diameter (200 mm) and the cornering
mechanism, outlined in Section 4.2.4, was found to work very well. As discussed
earlier, it is critical that, during such locomotion, the step-size of the RPC is limited
so that the difference in gripper angle between subsequent positions of the collar
does not exceed those permitted by the rotational limits. Consequently, the speed
of motion throughout such a manoeuvre is necessarily slower, at 1.1 mm s-1, than
along straight sections of pipe.

Referring back to Figure 4.17, it can be seen that the upper and lower rotational
limits will act similar to a cantilever beam upon loading by the cornering lugs. This
resulted in a small degree of deflection. Since the cornering lugs are involved when
the grippers are engaged, on smaller diameter pipes this does not present an issue
as the lugs will contact the rotational limits near the collar and the cantilever effect
is minimal. However, for operation on larger diameters, the lugs will contact near
the end of the limiting unit and hence there may be considerable stress induced at
the collar interconnect. This may require an additional supporting member to be
added to the end of the cantilever to eliminate any significant deflection.   
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Figure 4.30:  Sequence of images showing Mark II RPC ascending a vertical pipe.
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Figure 4.31:  Sequence of images showing Mark II RPC travelling around a verti-
cal bend.
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4.9  Future Mechanical Development

As outlined in Section 4.4.2, the manufacturing facilities within CUE prohibited
the fabrication of light-weight, complex parts. A collaboration with the
Department of Design, Manufacturing and Engineering Management (DMEM)
offered a unique opportunity to utilise their recently acquired rapid prototyping
facilities to produce precise parts for the RPC. Due to advantages inherent in such
computer aided fabrication, a high level of alignment precision can be achieved and
resulted in the Mark II(r) prototype, shown in Figure 4.32 with highly smoothe
axial translation. Furthermore, it was possible to manufacture each collar as a single
unit meaning that the resulting design was both structurally strong and lightweight.
This was particularly beneficial in stabilising the flexibility of the cornering control
mechanism through the addition of a cradle both to reinforce the resistance to
deflection and also to support and stabilise the linear actuators. Contoured internal
cavities were generated to house and protect the wiring from external elements and
entanglement while a network of triangular cavities within the collar ensured a
lightweight but strong structure. A mounting point for the payloads was included
allowing each sensor to be easily docked to the main platform.

Figure 4.32:  Mark II(r) crawler manufactured using rapid prototyping facilities.
Techniques such as this allow complex geometrical shapes to be manufactured
as a single part increasing the robustness of the overall product.
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4.10  Graphical User Interface

In order to provide a convenient and centralised way to control both the robot
movement and inspection payloads, a graphical user interface (GUI) was
developed for Windows. All robot control takes place within the main control tab,
shown in Figure 4.33. Each linear actuator has a progress bar which reflects the
measurement of the actuators built-in potentiometer allowing gripper extent to be
determined. The message centre displays any communications from the RPC
system received through the wireless link. The camera payload is also controlled
here with a simple, single-click image capture process initiating communications
with the camera and resulting in the captured image being displayed in the panel
indicated. The eddy current array has a dedicated tab, shown in Figure 4.34, where-
in two operational modes can be controlled. The primary mode involves the
control of the pipe inspection array while the second offers flexibility for use with
a two axis, linear stage for sensor development and accurate imaging of flat plates. 

Figure 4.33:  Robot control interface with visual inspection support.
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Figure 4.34:  Eddy current array control interface featuring support for precise
ECA control using an external, two axis linear stage.
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Chapter 5

Pattern Recognition for NDE 
Images

5.1  Introduction

The aim of this Chapter is to determine if the techniques underlying the Eigenfaces
[56] algorithm can be applied to create a framework for detecting defects in NDE
images. The novelty of this work is primarily in its application to NDE images. An
explanation of the key stages involved in pattern recognition are first discussed
followed by an explanation of the theory behind principal component analysis; the
latter being fundamental to the eigenface algorithm. A detailed explanation of the
proposed system is then outlined followed by an optimisation of the system
parameters. The performance of the optimised system is then benchmarked against
a KNN implementation for synthetic and real corrosion defects.

5.2  Pattern Recognition Methods

5.2.1  Introduction

The complexity of pattern recognition systems has increased with the increasing
processing power of microprocessors, due to their ability to perform very complex
calculations quickly. Research in this area spans several decades [95]. Put simply,
pattern recognition is the process of identifying sequences within a data set. The
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three stages of pattern recognition design defined in [96] by Jain et al have been
extended here to elaborate on the processes involved. That is: 

•Data acquisition

•Pre-processing to convert data to a separable form

•Training of classifier

•Decision making

•Data fusion

The first two steps are rather self-explanatory, however it is perhaps worthwhile
elaborating a little on the rest. Classifier training is a critical step and is required in
order to teach the chosen classifier what patterns are to be identified and/or to
expose the classifier to a representative sample of data. The decision making stage
is the point at which the classification is made based on the input data provided.
Several metrics may be used in this process however, in general, all will require the
comparison of the data representation to a defined decision threshold. Data fusion,
in this context, is the process of combining two or more pattern recognition
systems together to enhance the probability of detection of the pattern(s) of
interest and is common in situations where no single classifier provides sufficiently
good results. This subject and its application will be discussed in detail in
Section 5.4.6. Data fusion can also refer to the combination of two or more data
sets and will be considered in this way throughout Chapter 7.

5.2.2  Feature Selection and Extraction

A feature is a variable and element of a larger feature set (or ‘vector’) to which an
input pattern can be mapped. Using this feature set, a pattern of interest can be
expressed as a weighted combination of the individual features. The term ‘feature’
in image processing is used to describe a wide range of entities ranging from
individual pixels, to particular shapes or collection of pixels, to statistical
parameters all of which can be used to describe the input image. The motivation
for defining a pattern in this way is primarily to reduce the computational
requirements arising from the high number of variables (or dimensionality) of the
input data. A popular method for feature extraction is principal component analysis
which will be discussed in detail in Section 5.2.4. It is clear that as the feature set is
made simpler and smaller there comes a point at which the approximation of the
original data by the feature set is too great and the classification ability of the
subsequent algorithm will suffer as a consequence. It is perhaps less intuitive that
the same may be said of a feature set which is too large. The ominously termed ‘curse
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of dimensionality’, coined by the mathematician Richard Bellman, is used to describe
the problem of the exponential relationship between the number of variables in the
input data and the volume of data required to train a system to classify such a
pattern. This can be illustrated by first considering a single variable which can have
ten discrete values. If a second variable is added which is again able to have ten
values, there are now a total of  possible values that the two-variable
system can have compared with only 10 for the single variable case. Thus for an
increase in dimensionality from one to two, the number of samples required to
cover 100% of the data points increases from 10 to 102. 

5.2.3  Types of Classifiers

The four main families of classification systems can be described as template
matching, statistical classification, structural classification and neural networks.
Template matching involves using a known template and attempting to find this in
an input pattern through correlation. Such a process suffers from poor
performance for instances where distortion of the pattern has occurred or where
there is a difference in perspective. Statistical classifiers represent each pattern by a
series of features and classification is determined by the probability of membership
of the classes. Structural classification is a technique which is useful for patterns
which can be formed from smaller building blocks or ‘primitives’. Handwriting
recognition is an area where such classifiers are useful [97]. An artificial neural
network (ANN) is a classification system comprising of an interconnection of
adaptive elements which seeks to mimic the structure and functionality of
biological neurons. The weights of the interconnections of each of the artificial
‘neurons’ are modified based on a set of input training data in order to achieve a
desired output, while minimising a particular cost function. Following the training
process, the predictive ‘power’ of the neural network can then be used to classify
new test data. The misuse of ANNs has had the unfortunate consequence of
creating a rather negative view of pattern recognition as a whole. The main issue
with all pattern recognition problems is in ensuring that the performance that is
being observed is the result of an underlying pattern and not just a response to
noise. Statistical classifiers will be used in this research because they allow their
performance to be traced back to the underlying statistics of the data set. It is
important, from the outset, to underline the very clear distinction between a neural
network approach to classification problems and the statistical classification
approach that will be outlined in the following sections. 

10 10× 100=
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The reasons for the criticism are well founded and are largely the result of over-
stated claims originating from an over-eagerness to confirm personal bias’ towards
this technology. In their (justifiably) scathing paper on the misuse of neural
networks for the prognostic and diagnostic classification of tumours [98],
Schwarzer et al provide an excellent summary of the common mistakes made. It
concludes that often there is a fundamental misunderstanding of the mathematics
of ANNs and of basic statistical theory. The principal problem with neural
networks lies in the fact that they have a fundamentally non-linear transfer
function. Consequently, they are very sensitive to initial conditions. Consider two
identical networks trained using two identical sets of training data and with two
identical desired outputs. Now, if the two networks are given different initial
weights for the interconnections (prior to training), it is highly likely that the
resulting network (following training) will perform differently on an independent
test set. Furthermore, their ‘black box’ nature [99] means that there is no clear link
between the weights of the interconnections and the actual classification
performance. Thus, the ANN approach boils down to adjusting a set of weights to
achieve the known correct classification on a given training set. The difference
between this and the statistical approach outlined in the remainder of this Chapter,
is that, in the latter, there is no adjustment of some variable in order to obtain a
desired result. Quite simply, if there is no statistical separation in the data itself, then
there can be no system designed to classify them correctly. This is crucially different
to an ANN which insists that, given a large enough network, there must be a way to
separate them. By applying enough neurons, the weights of the connections can be
adjusted to ensure that the data is classified, however this will only work on the
specific training set used. Introduce a new piece of data to the network and ask it
to perform a classification and it will, in all likelihood, fail completely. This is
entirely to be expected since what has actually happened is that the network has
adapted specifically to the training data and not to an underlying differentiable
variable. In the classifier presented here, by inspecting the data itself, it is possible
to check whether there is actually an underlying statistical difference between the
classes and, from this, derive confidence in the resulting performance.      

A classifier may be defined as supervised or unsupervised depending on whether
an input pattern is classified to one of a known set of predefined classes or whether
the classes are learned by the system based on similarities with other patterns in a
given data set respectively. The use of unsupervised learning, or clustering, is an
important technique which has found widespread use in fields such as data mining
[100] however for the purposes of NDE, as the defects of interest are known in
advance, supervised classifiers are more suitable.
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Classifier outputs can be described as either hard or soft depending on whether
they output class labels or probabilities of class membership respectively. Xu et al
[54] categorised the information output by individual classifiers to one of three
groups:

i. The abstract level: the classifier outputs a class label based on an assess-
ment of the input pattern.

ii. The rank level: the classifier outputs a list of the available class labels, 
ordered in terms of their relative likelihood. 

iii. The measurement level: the classifier outputs a confidence level for each 
of the available classes.

The abstract and rank levels are examples of a hard outputs while the measurement
level can be regarded as a soft decision. The system outlined in this Chapter will be
of the measurement level.

5.2.4  Overview of Principal Component Analysis

5.2.4.1  Theory

The following section outlines the theory of principal component analysis (PCA)
that underpins the eigenface approach to pattern recognition. PCA is a statistical
feature extraction technique which can be used to reduce the dimensionality of a
multivariate data set. Such dimensionality reduction is achieved first through a
transformation of the original data set to a new set of uncorrelated variables which
are ordered according to their contribution to the total variance of the data set.
Subsequently, it is possible to select only the components which contribute most

Figure 5.1:  (a) x-y scatter plot of two variable (x1 and x2) data set. (b) axis x1’ se-
lected to coincide with the vector of maximum variance of the original data in (a)
and axis x2’ defined as perpendicular to x1’. If the variance in the direction of x2’ is
relatively small compared with x1’ then it can be assumed to be negligible thus re-
ducing the dimensionality of the data to one. In a 2D case such as in this example,
this reduces to a simple best-fit line as shown in (c). 

(a) (b) (c)
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significantly to the total variance and redefine the original data in terms of this
lower dimensional basis set. As with any dimensionality reduction process there is
an inevitable loss of information however PCA allows the loss of information to
be quantified and controlled. 

As an example, consider Figure 5.1(a) which shows an x-y scatter plot of a data set
consisting of two variables x1 and x2. By inspection it can be seen that there is a
high level of correlation between the two variables, however the main variation in
the data is along a vector roughly 45o from x1. If this vector is defined as x1’ and a
second vector, x2’, is defined as being perpendicular to it, the data can be viewed
relative to these new axes and it can be seen, from Figure 5.1(b), that the level of
variation in the x2’ direction is much smaller than in the x1’ direction. The
dimensionality of the data can therefore be reduced by assuming that the variance
in the x2’ direction is zero and thus entirely in the x1’ direction. For the simple 2D
case, it can be seen from (c) that this reduces to a best-fit line approach, however
the fundamentals can be derived using PCA.

The fundamental theory of PCA is relatively straightforward and can be regarded
as a simple translation/rotation of the co-ordinate system of the original data set.
More formally it can be expressed mathematically as an optimisation problem to
find a set of orthonormal vectors that maximise the variance of a data set, , of
length . The principal components  where  of  can be defined
as the functions  (for ) which maximise the variance of x and which
are uncorrelated with  for . The latter corresponds to stating that the
covariance of x,  for . The variance  of , in the direction , is
given by Equation (5.1)

 . (5.1)
The goal of PCA is first to maximise Equation (5.1) however, by inspection, it is
clear that  may be increased by scaling  therefore a normalising constraint
must be imposed which, for simplicity, is typically the unit vector constraint

. Using the Lagrange multiplier method, the problem can be expressed in
the form  where  is the function to be optimised,

 is the constraint and  is the Lagrange multiplier. This is
demonstrated in Equation (5.2) for the first principal component.

(5.2)

x
m pck k 1 … m, ,= x

ak
Tx k 1 … m, ,=

aj
Tx j k≠

Σjk 0= j k≠ Vark x k

Vark ak
TΣak=

Vark ak

ak
Tak 1=

Λ p λ,( ) f p( ) λ g p( ) c–( )–= f p( )

g p( ) c– 0= λ

Λ a1 λ,( ) a1
TΣa1 λ a1

Ta1 1–( )–=
94



Differentiating Equation (5.2) with respect to  and equating to zero yields 

which is the standard eigenvalue equation. For a non-trivial solution,  must be an
eigenvalue of  with  its associated eigenvector.  is selected as the eigenvector
which has the largest corresponding eigenvalue  and hence variance. The
remaining principal components can be calculated using the same method but with
the additional constraint that the covariance between each new component and all
previous components is zero. In so doing, a set of principal components

 with corresponding variances  is produced.
The eigenvectors are then sorted in descending order of variance such that the 
is the greatest and  the lowest. At this stage, no dimensionality reduction has
been achieved. However, if only  of the  principal components are retained
(where ) and the data is re-expressed according to this reduced feature set,
then the dimension of the subsequent data will also be . The compressed data is
now expressed using the  most significant principal components by variance. In
image processing, the term ‘weight vector’ is used to define the relative proportions
of each of these components that are required to represent each image

For trivial examples, such as that in Figure 5.1, reducing the dimensionality by
selecting the best-fit line for the data is obvious and does not require the problem
to be considered in terms of maximising the variance. Where PCA offers an
important contribution is when the data extends beyond the 2D case to higher
orders of dimensionality. A typical image from a miniature camera may contain 640
x 480 pixels which means there are 307,200 variables. With the exception of an
image containing white noise, the majority of the data is interrelated in some way
and therefore PCA makes it possible to extract the relevant data and re-express
these images using a set of features defined by a subset of the principal
components. 

In order to perform PCA on a set of images, each array of  x  pixels is first
reshaped into a  x 1 vector . Given the mean of the image set, , the
covariance matrix of the D images in the data set can be derived from [56] to be:

(5.3)
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where  and . However, due to the length of vector
, the dimensions of  are  x , which is computationally intractable for

typical image sizes. It was shown in [56] that if the number of images in the data
set, , is less than the dimension of the image space ( ) then there will exist
only  rather than  useful eigenvectors (and hence principal components)
the rest of which will have corresponding eigenvalues of zero and hence no
contribution to the variance. The more computationally efficient method outlined
there-in, involves first calculating the eigenvectors of the  matrix 
which is shown to be related to the eigenvectors of  by:

(5.4)

Thus by pre-multiplying both sides of the eigenvector equation for  by , it can
be seen that the eigenvectors, , of the original covariance matrix  are given by

 and hence by Equation (5.5).

(5.5)

This computationally efficient method for calculating the covariance opens the
power of PCA for use with typical image sizes.

5.3  Development of Visual Inspection System

5.3.1  Image Pre-processing

5.3.1.1  Illumination

Due to the curvature of the pipe, the reflected light detected by the camera will
appear stronger down one column of the image, with the exact pixels involved
dependant on the position and nature of the light source. Such an irregular
illumination effect will generate a region of contrast which may yield similar
intensity gradients between pixels as those due to defects. It should be assumed that
there will be no ambient light within an enclosed processing cell and thus on-board
illumination should be incorporated. Light emitting diodes (LEDs) are a simple and
common analogue light source with a variety of wavelengths commercially
available. The illumination may be made more uniform through either multiple
lights sources, appropriately placed mirrored surfaces or an optically diffuse
housing. Multiple light sources generate multiple instances of the light effect
outlined earlier and so is not suitable without further intervention. The flat surface
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of a mirror is not ideal since this will simply lead to more discrete regions of high
intensity, similar to multiple light sources, rather than producing an even
illumination. The nature of a diffuse housing is such that light will be reflected at a
multitude of angles making it ideal for the purpose required. Thus, the camera used
for image acquisition was placed within a custom housing manufactured using
crushed aluminium foil (providing the diffuse surface) and illuminated using three
white LEDs. It was observed that this setup yielded the most even illumination of
the methods outlined. 

5.3.1.2  Grayscale Image

The use of PCA for dimensionality reduction relies on the fact that there are
underlying statistical similarities in the data set. The use of raw or filtered grayscale
images as inputs to the algorithm suffers from the problem that each image is
relatively unique in that, while several may contain a visually similar defect, the
pixels that it occupies may be different. Consider, for instance, the images shown
in Figure 5.2 (a), (b) and (c). The black line is intended to illustrate a long, thin crack
in an otherwise sound piece of material with the pixel grid superimposed on top. It
can be seen that the defect is 1x9 pixels in length in all three images however its
position within the image is not consistent. Although these three images all belong
to the same class of defect (i.e the ‘long, thin crack’ class) none of the defect pixels
in the raw image represent defect pixels in either of the other two images. As was
discussed in Section 5.2.2, a system using such an input would require an
intractable volume of training data to cover all possible defect locations and sizes.

Figure 5.2:  Illustration of how the use of the raw images leads to problems with
reducing the dimensionality due to lack of similarity in the underlying data. Each
image shows a simplified representation of a long, thin crack however at different
locations in (a), (b) and (c). It can be seen that in each of the 3 images, none of the
pixels shown in red, corresponding to the previous ‘defects’ are the same as in the
associated defect image. 

(a) (b) (c)
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Furthermore, such a system would still lack the uniqueness of pixel values for each
defect type to allow successful recognition. In other words, the variance within
each class of images would be so great that it would be impossible to distinguish
them from another class. Such sensitivity to the position of the artefacts requires
the implementation of a pre-processing stage to re-express the original data in a
more suitable form. There are a number of techniques available that would allow
frequency selection as desired for the defect characterisation outlined in Chapter 3
and one such technique is the Fourier Transform. 

5.3.1.3  Spatial Frequency Spectrum

Fourier theory can be applied to images to represent them in terms of their
frequency and phase components. The magnitude spectrum carries information
which defines the change in intensities of objects within the image while the phase
contains information about where the objects are located in the image. The 2D
Discrete Fourier Transform (DFT) is given by Equation (5.6)

(5.6)

where u and v are spatial frequencies in the x and y directions respectively and
 is the 2D spectrum of the image defined by . Expressed in polar form

this becomes:
(5.7)

Figure 5.3:  (a) and (b) show the magnitude (rad/pixel) of the FFT of the images
in Figure 5.2 (a) and (b) respectively. It can be seen that the magnitude spectrum
for each image is identical. (c) shows the effect of rotating the defect in Figure 5.2
(a) prior to calculating its FFT. It can be seen that there is a corresponding rota-
tion in the magnitude spectrum.
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The DFT of an image, , which is the same as the original image but
translated by  and  in the  and  directions respectively, can be calculated as
follows: 

(5.8)

Using the substitutions  and , Equation (5.8) yields:

which simplifies to:

(5.9)

It can be seen from Equation (5.9) that  and the translation has
therefore appeared solely as a change in phase. This translation invariant property
of the DFT is important since, unlike the raw image data, it allows the position of
a defect to be eliminated as a variable in the input data to the PCA algorithm.
Consequently a particular class of defect can be defined without concern of its
position within the images. The Fourier transform is not rotation invariant and
therefore defects of the same dimensions but different orientation result in unique
magnitude spectra. The effect of translation and rotation is illustrated in Figure 5.3.
In Figure 5.3 (c) the additional harmonics that can be seen are due to aliasing of the
image edges but the principle can still be understood.

5.3.1.4  Frequency Selection

The F(0,0) frequency of an image is usually referred to as the DC component due
to the parallels with the Fourier transform of electrical signals and defines the
average intensity of the image. In most images, this component is significantly
greater than the higher frequencies and consequently tends to dominate the
magnitude spectrum. Given a set of images, the variation in the DC component will
be the most significant even though it carries no information regarding the detail
of the image including any defects that may be present. Since PCA calculates the
vectors of maximum variance, the presence of the DC component in the image set
dictates that the percentage variance due to image detail is very small and
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consequently the algorithm will perform poorly. Therefore, it should be removed
and should not adversely affect the ability to correctly classify an image.

Based on the preceding arguments and the discussion of the frequencies of interest
outlined in Chapter 3, a two-step pre-processing stage was designed. The first stage
comprises of a finite impulse response (FIR) bandpass filter to allow the image
frequencies to be selected. The second stage involves the calculation of the Fourier
coefficients of the filtered image and the subsequent vectorisation of the image
array to create a 1 x MN vector. Through a trial and error approach it was found
that a suitable frequency response was obtained for a filter order of 20 as shown in
Figure 5.4. Following this stage, the image size is reduced by the filter order minus
one in both dimensions. 

5.3.1.5  Definition of Classes

The principal distinction required by the inspection algorithm is to differentiate
between those images that contain defects and those that do not. As the size, shape
and orientation of defects may vary, defining a single ‘defect’ class is not practical
and consequently it is more suitable to define a ‘no-defect’ class since it can be
assumed that the surface of the pipe will look reasonably similar in the absence of
a defect. The main defects expected are cracks and corrosion pits. While it is

Figure 5.4:  Normalised frequency response of image bandpass filter.
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principally the case that any cracks will be in the circumferential direction and
hence the horizontal direction of the plane of the image, other orientations may be
encountered which, as was discussed in Section 5.3.1, would provide unique
magnitude spectra. It is impractical to have a class defined for every orientation of
crack, however it is possible to define a discrete number of crack classes
corresponding to, for instance, circumferential and 45o trans-circumferential
cracks. For convenience, these will be referred to as ‘horizontal’ and ‘diagonal’
cracks respectively, in recognition of their appearance within the image frame.
Thus, four classes are defined: no defect (ND), corrosion pit (CP), horizontal crack (HC)
and diagonal crack (DC).

As discussed in Section 3.4.2, in order to test the feasibility of the algorithm, a set
of synthetic defects was created in an aluminium pipe, as shown in Figure 5.5,
comprising of 12 mm drill impressions and slots oriented at 45o and 90o to the axis
of the pipe. A data set of 180 images was then created with 45 images captured for
each class. As there are only a limited number of synthetic defects, the same defect
was used multiple times, however in different positions within the image, under

Figure 5.5:  Aluminium pipe (40mm diameter) containing synthetic defects. (a)
HC class, (b) DC class and (c) CP class.

(a) (b)

(c)
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different lighting conditions and in some cases with the defect only partially in-
frame in order to maintain a level of uniqueness to every image. Each class was
defined by the mean and covariance of the training image set. The classification tree
shown in Figure 5.6 illustrates the potential classification results. The binary
classification system requires that an unclassifiable class be defined however this is
explained further in Section 5.4.6.4. 
 

5.3.2  Classification Metrics

A classification metric is any measure from which the classification of a particular
image can be determined. Three common metrics are the city block distance,
Euclidean distance and Mahalanobis distance. Any of these classification measures
can be fed into a classifier to determine to which class the corresponding image
belongs. 

The city block, or Manhattan, distance is so called because of the parallels between
a two-dimensional problem to measure the distance that would be covered by
travelling along the grid-like roads of a city such as New York. More specifically it
can be thought of as the sum of the absolute distance between two co-ordinates.
The Euclidean distance is a measure of the distance between two points in space.
In the current context this specifically relates to the distance from the set of weights
produced by the projection of the new image onto the feature space and the

Figure 5.6:  Classification tree showing the possible classification outcomes. An
additional ‘unclassifiable’ class is defined for the binary classification system.
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weights corresponding to a particular class and is essentially the Pythagorean
extension for -dimensional space. The Euclidean distance between a vector 
and  where  is given by Equation (5.10).

(5.10)

In terms of -dimensional space, the Euclidean distance defines the radius of a
hypersphere. The Mahalanobis distance, commonly used in statistics, is a metric
which considers both the mean and covariance of the data set and is given by
Equation (5.11), where  is an image vector,  is the mean vector of a known class
and  is the covariance matrix of the known class. 
 

(5.11)

Because it considers the ‘shape’ of the distribution of known class images through
the covariance term, when calculating the distance of a new image to that class, the
Mahalanobis distance better reflects the actual distance in statistical terms. This
point is demonstrated in Figure 5.7 where two distributions of 2D image weights
exist with strongly elliptical patterns. If a new image, I, is to be classified to one of
the two classes then, using the Euclidean distance metric to the centroid of the
classes, it appears that the correct assignment would be to classify I as a member
of class . However by taking account of the statistics of the two class data sets,
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Figure 5.7:  Two distributions comprising of 2D representations of a number of
images. The Euclidean distance, d1 < d2, indicates that the new image, I, is closer
to the centroid of class c1 however observation of the covariance of the two class
sets shows that the image is much more likely to belong to class c2. The Mahal-
anobis distance accounts for such changes and is therefore better for distributions
which are ellipsoidal in nature. 
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by using the Mahalanobis distance, it is clear that the image is actually more likely
to belong to class .

The calculation of the Mahalanobis distance can be problematic since the required
inversion of the covariance matrix can become intractable for high dimensions and
if insufficient data is present to ensure it is well conditioned, a singular result may
be obtained. As the dimensionality of the 2D FFT data is reduced through PCA,
the use of Mahalanobis distance as a metric is both possible and preferable. 

5.3.3  Statistical Classification: a Bayesian Approach

A Bayesian classifier is a statistical classification system which makes use of Bayes’
rule given in Equation (5.12):

(5.12)

where  is the a posteriori probability of the observed data, x, belonging to class
c,  is the class-conditional probability density function (PDF) or likelihood for
class c,  is the a priori probability of observing an image from class c and 
is the probability density function for x. Bayes’ rule changes a prior belief (i.e.
before any data has been observed) into a posterior belief (i.e. after some data has
been observed). Likelihood is a term that is often encountered in a Bayesian
context. It is subtly different from evidence in that it defines how likely an observation
of x is to occur, given a particular class, rather than the reverse [101].

The PDFs for a hypothetical two-class system with Gaussian distributions are
shown in Figure 5.8(a). In any classification system there must be a threshold or
decision rule by which an image can be classified to a particular class to the
exclusion of the rest. In the context of a statistical system, it is somewhat intuitive
that the classification should be based on classifying an image to the class which
has the greatest posterior probability such that:

If , then the image is classified as belonging to class c1.

If , then the image is classified as belonging to class c2.

This leads to the definition of the optimum (or Bayes’) decision threshold being
defined by the intersection of the two PDFs for this two-class system. It is clear
from the overlapping distributions that, even for this optimum boundary, their
exists a finite probability that an image belonging to class c2 could be classified as
belonging to c1 and vice-versa. 
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It is possible to sub-divide the possible classifications/misclassifications into four
categories which, from the perspective of class c1, are as follows:

•True positive  (TP) : Correctly classified as belonging to class c1
•True negative (TN) : Correctly classified as belonging to class c2
•False positive  (FP) : Incorrectly classified as belonging to class c1
•False negative (FN) : Incorrectly classified as belonging to class c2

It can be shown that the Bayesian threshold is optimal in terms of minimising the
probability of error and hence minimising the FP and FN regions [95].

When more than two classes exist, as in Figure 5.8(b), the definition of the
classification categories becomes more complicated since the aforementioned
regions can now be defined for each pair of density functions. However by
considering the three non-member classes (in this case c2, c3 and c4) to be a sub-
division of a single non-member class whose probability density function is a
mixture of Gaussians the problem, again, reduces to one involving only two classes:
member (c1) and non-member (the rest). In the system proposed, the class with the
maximum probability will be found and if this is any one of the non-member
classes then it will be classified as a non-member.

Figure 5.8:  Probability distribution functions of (a) a two class system (member/
non-member) showing the TP, FP, FN and TN regions separated by the Bayesian
(optimum) threshold and (b) showing the binary classification principal in a four
class system where the non-member class comprises of three classes (in this case
c2, c3 and c4).

(a) (b)

TP

FP FN

TN
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5.3.4  Review of Proposed System

A functional block diagram of the proposed system is provided in Figure 5.9 to give
a high-level overview of how the system operates. The training procedure is
indicated by the flow of red, dashed arrows and normal operation (following
training) is indicated by the solid blue arrows. Prior to first use, the system must be
trained. Each member of the training image database is fed through the two pre-
processing stages to yield their filtered, 2D FFT representations. The principal
components of this training set are then extracted, a subset of these retained to
form the feature vector and the training images then mapped to the feature space
using this subset. The Mahalanobis distances for each image is then calculated and
a set of distributions formed for each class. The mapping and distributions
formation processes are explained in detail in Section 5.4.2. The system is then
ready to be used for new images. Both the training and normal operation processes
involve the same pre-processing stage and so each newly captured image is also fed
through the two pre-processing stages. The image is then mapped to the feature
space using the feature vector derived in training. The Mahalanobis distances are
then calculated and the probability of class membership is obtained using Bayes’
rule in conjunction with the set of known distributions obtained through training.
For development and testing purposes, a validation and test set are used to
optimise and independently quantify the performance of the system respectively.

Figure 5.9:  Functional block diagram of the pattern recognition system. Dashed,
red and solid, blue lines represent training and normal operation respectively
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Both of these sets follow the ‘normal operation’ route of Figure 5.9 and, unlike the
training set, have fixed sizes of 10 and 5 respectively throughout.

5.3.5  Effect of Pre-Processing and Dimensionality Reduction

Figure 5.10 shows the mean 2D FFT magnitude calculated for each class,
comprising of a set of 15 filtered training images, with no dimensionality reduction.
There is good distinction between each of the four classes which satisfies the
principal requirement for the design of an algorithm to successfully separate them.
The effect of the pre-processing filter response can be seen, particularly on the
corrosion pit class where the high frequencies at approximately 45o, 135o, 225o and
315o to the horizontal axis have been attenuated. The strongest inter-class
similarities exist between the no defect and horizontal crack classes, where the chief
difference is the relative magnitudes of the frequency components. 

Figure 5.11 shows the effect of the pre-processing and dimensionality reduction
stages through two step-by-step examples: one for an image with no defect and one
with a drill hole (corrosion pit class). It can be seen from the comparison of (a) with
(c) and (b) with (d) that the pre-processing filter helps to further reduce the effect
of lighting variations across the image, from the on-board source, over and above
that of the hardware method outlined earlier. In the corrosion pit image, it can be seen
that the regions where there are some surface discontinuities, or significant changes
in light intensity, have been retained while for the no defect image there remains some
uncorrelated low frequency content with the central strip of vertical light still
slightly visible. Comparison of the high dimensional 2D FFT data in (e) and (f)
shows significant difference as would be expected from the results in Figure 5.10.
The effect of reducing the dimensionality of the FFT magnitude data using two
principal components is shown in (g) and (h) with certain frequency components
of the original now eliminated, particularly in the no defect image. It should be noted
that the magnitude data is now bipolar due to the mean adjustment of the PCA
algorithm. For completeness, although it is not part of the classification process,
both images have been regenerated from the dimensionally reduced frequency data
and are shown in (i) and (j). There is no significant difference between the filtered
originals of either image and the reconstructions with the defect in the corrosion
pit image still clearly visible.
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Figure 5.10:  Mean 2D FFT magnitude (uncompressed) of the filtered training im-
ages belonging to (a) no defect class, (b) horizontal crack class, (c) corrosion pit
class and (d) diagonal crack class. 

(c) (d)

(a) (b)
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(c) (d)

(a) (b)

Figure 5.11:  Pre-processing and PCA stages. Respectively (a, b) show original im-
ages from the no defect and corrosion pit classes, (c, d) show the filtered images, (e, f)
show the 2D FFT of the filtered images, (g, h) show the 2D FFT magnitudes using
2 principal components and (i, j) show the reconstructed images. 

(g) (h)

(i) (j)

(e) (f)
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5.4   Binary Classification Method 

5.4.1  Introduction

A binary classification system is one which categorises data as either belonging to
a particular class or not: ‘The car is red or the car is not red’. There are two principal
classification methods by which such classifiers can be used to determine
membership in multi-class problems: one-vs.-all or one-vs.-one. The one-vs.-all (OVA)
approach involves comparing each class against all the remaining classes, each time
determining class membership or non-membership. Using the example of coloured
cars once again, this may be illustrated for a three class problem as: ‘The car is not
red, the car is not yellow. The car is blue’. It can be seen that this fits with the system
outlined in the previous section since it equates to one class (c1) against the three
remaining classes. An alternative to OVA is the one-vs.-one approach where, instead
of each class being compared against all the remaining classes, a pair-wise system is
adopted and each classifier is trained to differentiate one class from a single other
class. Such a system requires mutual exclusivity between the defined classes.
Although there is no theoretical basis to suggest which approach is better in terms
of maximising the classification rate, it is clear that the training and computation
requirements are significantly greater for the latter due to the greater number of
individual classifiers. Thus, in this instance, the OVA approach is favourable. 

Recalling the specification outlined in Section 3.4.2 and the class definitions in
Section 5.3.1.5, it can be seen that the ND classifier represents the defect/no-
defect classifier. If an image is not classified as being ‘no-defect’, then it is assumed
to have one. Therefore, the primary target is to achieve 100% classification with
this classifier. The remaining binary classifiers (HC, CP and DC) can be combined
later to try and yield a more specific result. The subject of classifier combination is
covered in detail, a little later, in Section 5.4.6.

5.4.2  Training Process

The training data comprises of K images for each of the four defined classes, with
K being a tunable system parameter. Following the pre-processing stage, the 2D
FFT data for each of the 4K, M-by-N pixel images are vectorised into MN x 1
vectors and subsequently combined to form the MN x 4K, ‘A’ matrix of
Equation (5.3). The resolution of the camera used for the image capture is
adjustable however 320 by 240 pixels was used in order to provide a good
compromise between high image clarity and low computational expense. The
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principal components are then calculated using the PCA algorithm outlined in
Section 5.2.4 for this training set and a feature vector (MN x r) is generated using
the first r of these. Each training image is then re-expressed as a set of r weights
into a ‘weight vector’ (  x 1) using Equation (5.13):

(5.13)

This is essentially a process of mapping the 2D FFT data onto the feature space
resulting in an output vector which defines the original data as a weighting of the
feature vector. As the feature vector is composed of the principal components
(which are unit vectors), the units of the WeightVector are the same as that of the
original data (i.e. rad/pixel). Having constructed a representation of all images in
terms of the relative weights of the feature vector, the a priori knowledge of each
image’s parent class can be exploited. The Mahalanobis distance, , for each of the
training images, , is calculated to a particular class, , using the covariance and
mean data relating to that class in Equation (5.11). Using the a priori knowledge of
class membership, this yields a set of four probability density functions which
describes the distribution of Mahalanobis distances for the four class types (ND,
HC, CP and DC) when measured against class . This process is repeated for each
of the remaining three classes providing, in each case, a further four PDFs. The
critical assumption made here is that images belonging to a particular class will tend
to have similar Mahalanobis distances to a particular class and that the distribution
of these distances will be Gaussian. Assuming a Gaussian distribution, the class-
conditional PDF of the distances of images  belonging to the set of images  to
the class , , given class  is obtained through Equation (5.14):

 
(5.14)

where , ,  is the mean of the Mahalanobis distances of the
images, known to be from class ci, to class cj and  is the variance. The
definition of these density functions along with the creation of the feature vector
are the goals of the training process.
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5.4.3  Validation/Test Process

As with the training stage, each newly captured image is first pre-processed to
obtain the filtered, 2D frequency magnitude data. Following this, the feature vector
defined in the training process is used in conjunction with Equation (5.13) to
obtain a best approximation of the validation/test data defined in terms of
weightings of this feature vector. The Mahalanobis distance to each of the four
known classes is then calculated using the mean and covariance data derived from
the training data. Using the PDFs obtained from the training process, the posterior
probability, P( |x), of the new image belonging to the class  given Mahalanobis
distance, x, can then be estimated. A [1/0] decision rule is applied to convert the
soft outputs of the classifier to hard outputs, as shown in Equation (5.15), however
the probabilities are retained as a confidence measure.

(5.15)

This can be paraphrased by stating that if the probability of the image belonging to
class c1 is greater than for c2 then a logic 1 classification result will be returned,
otherwise logic 0 will be returned. For the two-class system, classes  and  are
redefined as member and non-member respectively. In total, four binary classifiers are
used in the current system and the class which returns a logic 1 is the one to which
the image should be assigned. Since each classification is decoupled from the rest,
clearly there is the potential for conflicting classification results where an image is
classified to more than one class (i.e. a ‘tie’). A thorough discussion of classifier
combination techniques is given in Section 5.4.6 which addresses this issue.

5.4.4  Optimising Classification Parameters

The optimum operating point will be that which maximises the probability of
detecting the particular defects of interest. As stated, this can be estimated for a
multi-class problem by using the optimum Bayesian threshold and thus by
minimising the error regions (FP and FN) or maximising the separation of the
means. An empirical result can also be obtained by maximising the correct
classification rate on the validation set. 

5.4.4.1  Influence of Image Bandwidth

The lower frequencies within an image typically contain information from which
the presence of defects of reasonable size (i.e. spanning several pixels) can be
identified by the naked eye, while the higher frequencies contain finer details such
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as the material grain structure and small surface scratches. In order to assess the
effect of the higher frequency components on the classification performance, a
bandwidth sensitivity analysis was conducted. The goal of this study was to
determine to what extent the presence of the higher frequencies affected the
performance of the PCA algorithm to correctly categorise images to the classes
outlined in Section 5.3.1.5 and to determine if there exists a preferential bandwidth
for the pre-processing filter which maximises the probability of correct
classification for the type of defects used in this study. 

In all cases the DC component of the images was removed since it does not convey
any information regarding the nature of the defects. The lower cut-off frequency
of the image bandpass filter was set to  which ensured that the majority of
the lower frequency content above DC was retained while the upper cut-off was
varied from  to , where  is the sample frequency. For convenience in
discussing the results, the following text will assume the lower cut-off to be
negligibly greater than DC and define the bandwidth as the same as the value of the
upper cut-off frequency. Thus, the frequency range between  and  will
be referred to as having a bandwidth of  although it will be understood that
the actual value is. .

A data set containing K = 15 images of each of the four classes was arbitrarily
selected to train the system and the same images were used for each frequency
interval. This is assessed and refined in the next section. The bandwidth was varied
in increments of , resulting in a total of 19 frequency sets between the stated
bandwidth limits. Note: Given the limited nature of the data set, there is an
inherent limit to the dimensionality (i.e. number of principal components) that can
be used reliably. This is due to the limited number of data points available due to
the finite number of images available. This causes the covariance matrix to become
poorly conditioned and hence, following its inversion during calculation of the
Mahalanobis distance, tend towards a singular result. It was found experimentally
that if N images per class were used, then the covariance matrix would be poorly
defined if more than N - 1 principal components were used. Therefore at each
frequency interval, the system was tested using from 1 up to 14 principal
components producing a total of 266 data sets. The procedure for the bandwidth
sensitivity study can be summarised by the following pseudo-code:

For bandwidth < max(bandwidth)

i. Perform pre-processing on all images at given bandwidth

For number of PCs < max(number of PCs)

ii. Run training algorithm

0.01
FS
2

------

0.1
FS
2

------
FS
2

------ FS

0.01
FS
2

------ 0.1
FS
2

------
0.1
FS
2

------
0.09

FS
2

------

0.05
FS
2

------
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iii. Calculate classification rate for each binary classifier

iv. Increment number of PCs

Loop

v. increment bandwidth

Loop

The mean correct classification rate across the four binary classifiers using the
validation set is shown in Figure 5.12 for one to fifteen principal components. The
result indicates that the classification rate is relatively insensitive to changes in
bandwidth (albeit with a marginal decline as more frequencies are retained). The
maximum variation is approximately ±5% and it is in fact far more influenced by
the level of dimensionality. On this basis it can be concluded that, for the given
image set, the bandwidth choice is relatively unimportant and so  was used
for this classification system. The dimensionality of the data set, however, is likely
to play a more important role in terms of performance. 

0.1
FS
2

------

Figure 5.12:  Bandwidth sensitivity: Mean correct classification rate obtained us-
ing the validation set for varying dimensionality (1 to 14 PCs). 
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5.4.4.2  Sensitivity to Volume of Training Data

This section investigates the sensitivity of the classification rate to the number of
training images provided. As outlined in the previous section, it was found that if
N images per class were used, then in order to ensure the covariance matrix is not
poorly defined, a maximum of N - 1 principal components can be used. Thus the
investigation was limited to between 1 and N - 1 principal components with N
varying from 10 to 30. A lower limit of 10 was selected so as to allow sufficient
scope for intra-class variations to be accounted for and an upper limit of 30 used
so as to allow a 10 image validation and 5 image test set.

The classification rate has been broken down, this time, so as to allow the analysis
of the individual classification rates for each particular class of images. In
subsequent graphs, the legend ND, HC…etc indicates the classification rate
obtained by that particular binary classifier. If there are  images in the
training image set, then there will exist D - 4 useful principal components. Thus, as
the volume of training images used increases, so too will the number of useful
principal components. In order to allow comparison between the different results,
the classification performance is compared against the percentage of the total
variance of the data set retained by the principal components rather than the actual
number of principal components themselves. Therefore it is possible to say that
using a particular number of principal components which will result in a total of
P% of the overall variance being retained, a classification rate of C will be achieved.

The procedure for this study is summarised by the following pseudo-code:
i. Perform pre-processing on all images at given bandwidth

For number of training images < max(number of training images)

For number of PCs < max(number of PCs)

ii. Run training algorithm

iii. Calculate classification rate for each binary classifier

iv. Increment number of PCs

Loop

v. Increment number of training images

Loop

Figure 5.13 (a) to (d) shows the results of this study. It can be seen that, as the
percentage of the variance covered increases above ~50%, the classification
performance actually decreases. This suggests that the data present in the higher
principal components (lower contribution to the total variance) is less important in
terms of identifying the type of defect and may be more concerned with the finer

D 4N=
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details within an image. It was observed that a variance of approximately 40-50%
resulted in the highest classification rate and this generally corresponded to using
two principal components. Figure 5.14 (a) shows the influence of the training
volume on the classification rate for two principal components. It can be seen that
there is no distinct optimum for each class, so a trade-off is required which
provides acceptable performance across the four classes and hence maximises the
performance of the ensemble of classifiers. As the defect/no-defect classification is the
most important, it is best to pick a training volume that first maximises this, and
then subsequently all others as a secondary goal. It can be seen that using more than
14 images results in 100% classification of the validation set for the ND class. This
is a highly significant result and indicates that the primary goal set out in the
specification may be achievable providing the result can be shown to be sufficiently
generalised. Using 24-27 training images gives the best performance across the
three remaining classes and 25 was selected as a suitable overall operating point.

The bandwidth sensitivity study was repeated using 25 training images (rather than
15 as previously) and the results are shown Figure 5.14 (b). The results are broadly
in agreement with the earlier study and the conclusions drawn on the relative
importance of the bandwidth are therefore still valid.

The effectiveness of this result alone in terms of tuning the performance is dubious
since overtraining the system is a danger and could result in a system which is
poorly generalised. It is of critical importance to identify how the performance of
the system varies with the images that are presented for training purposes while
keeping all other system parameters constant. This generalisation issue is the subject
of Section 5.4.4.3.

5.4.4.3  Generalisation

It is important to have a representative collection of images which encompasses all
the variations that may occur for a particular type of defect. If images containing
particular features found in a subset of a given defect class are not included as
training data then such features would be expected to be eliminated when test data
is expressed in terms of the resultant feature vector. Put simply, if a feature isn’t in
the training images then it cannot be retained in any future test images constructed
from the resulting feature vector. Such approximations may then lead to
classification errors and it is therefore important to determine to what extent the
classification performance is influenced by the actual data presented for training. 
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Figure 5.13:  Correct classification rate against the percentage of variance covered
by the principal components for the following binary classifiers: (a) no defect, (b) hor-
izontal crack (c) corrosion pit and (d) diagonal crack. 

(a)

(b)
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(c)

(d)
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Figure 5.14:   (a) The mean classification rate, using the validation set, as a func-
tion of the number of training images. (b) shows the results of the earlier band-
width sensitivity using the new training volume of 25 images. It can be seen that
there are no significant differences to the earlier results. 

(a)

(b)
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This is the process of determining a classifier’s generalisation and the 'leave-one-
out' technique was employed. As the name suggests, this process involves using
N-1 of the N class images for training while generally reserving one image for
testing purposes and is regarded as a good method for testing the sensitivity when
only a limited set of images exists [102]. The downside however is that the process
has to be repeated N times. Following the results of the training volume study, a
data set of 26 images was produced allowing 25 images to be used for training in
each of the 25 training combinations. However, the classification rate of the
validation set was calculated rather than of the image being left out. In order to
isolate the sensitivity between classes, the process was performed for each of the
four classes in turn while keeping the other three image sets constant.

i. Perform pre-processing on all images at given bandwidth

ii. Define a set of N training sets that each have only 1 image different

For Index < N

iii. Set current training set = training set (Index)

For number of PCs < max(number of PCs)

iv. Run training algorithm

v. Calculate classification rate for each binary classifier

vi. Increment number of PCs

Loop

vii.Increment Index

Loop

Figure 5.15 (a) to (d) shows the mean classification performance for a given
number of PCs across all combinations of the training images with an error bar of
± one standard deviation. It can be seen that there is an element of cross-sensitivity
between classes in all cases, with variations in the training images of any one class
affecting (to varying degrees) the classification performance of the remaining
classes. This is reasonable since any change to the training set will have an impact
on the feature vector that is generated. In most cases, however, the error bar is
considerably less than the maximum of approximately ± 2.5%. Each classifier
profile is very similar in the four plots and this is reasonable given that only 1 image
across the four classes is changed each time.

It has therefore been shown that the inter-class cross-sensitivity is relatively small
in proportion to the mean classification rate and therefore does not present a
serious concern at the given dimensionality. 
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Figure 5.15:  Generalisation. Mean classification rate with error bars showing one
standard deviation for (a) varying ND, (b) varying HC, (c) varying CP and (d)
varying DC training images. 

(a)

(b)
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5.4.5  Performance of Individual Binary Classifiers 

The performance of all of the binary classifiers is high (>95%) for 2 PCs. The mean
performance of the ND classifier, across all of the generalisation tests, was 97.5%
which, although is marginally short of the target of 100% outlined in the
specification, is still a very good result. Given that the dimensionality of the data
has been reduced to 2, the resulting weight vectors obtained using Equation (5.13)
representing all of the training images can be viewed as a 2D scatter plot. This is
shown in Figure 5.16 and is a key validation of the algorithm. The figure is colour
coded for each class as follows: Black for the no defect class, red for the horizontal
crack class, green for the corrosion pit class and blue for the diagonal crack class. 

It can be seen that there is very good separation of the four classes within the
feature space and consequently, it should be expected that it would be possible to
design a correspondingly good classifier. There is a strongly elliptical pattern to all
classes other than the ND class, validating the decision not to use the Euclidean
distance as a metric (which would attempt to define a circular decision boundary).
The spread of HC images exhibits significant variation along the x-axis, with much
less along the y-axis, indicating that it is most significantly affected by the first
principal component. Conversely, the DC images have greater variation along the
y-axis and hence, the second principal component. The CP class images occupy the

Figure 5.16:  2D scatter plot showing the location of the images from each of the
four classes within the 2D feature space. 
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‘middle-ground’, with broadly equal variation in the direction of both principal
components. Above all, however, it can be seen that the ND class is distinct from
the other classes and has a relatively low variation in both dimensions. This strongly
supports the classification performance observed by the ND binary classifier. The
importance of this result, in terms of showing that there is a clear distinction
between the defined classes, cannot be overstated and, in contrast with the other
approaches discussed in Section 5.2.3, provides a solid basis for confidence in the
classifier performance.

5.4.6  Combining Multiple Classifiers

5.4.6.1  Introduction

Up until now, the result of each binary classifier has been taken in isolation. The
basic system could operate using a single ND binary classifier to determine the
defect/no-defect case as required to meet the primary goal. However, by
combining the outputs from all available classifiers it may be possible to determine
a more specific classification of the image. This Section will outline the important
background theory on classifier combination and then some combination
algorithms will be implemented on the binary classifiers that have been developed.
The concepts outlined here are not, however, restricted to binary classification, as
will become clear in Section 5.5. 

Consider two groups of classifiers. The first group contains individual classifiers,
each of which can correctly classify a proportion of a particular set of test images
while also generating some classification errors. The images that are misclassified,
however, are relatively classifier specific. The second group of classifiers is similar
except, in this instance, they are all relatively consistent in terms of which images
they can correctly and incorrectly classify. However, this group of classifiers is
affected by random noise. Intuitively it can be seen that there is value in combining
the results of the classifiers within each group to harness the complementary
information and thereby minimise the classification errors. In the first instance this
takes advantage of the uniqueness of the misclassifications associated with each
classifier and in the second instance the random error can be reduced through
averaging across all classifier outputs. In recent years, classifier combination has
enjoyed a period of significant interest within the field of pattern recognition. The
overall aim of the combination, however, is ultimately the same: to achieve a greater
classification performance from the ensemble than can be achieved by any of the
base classifiers separately. 
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The plethora of combination schemes have been categorised in different ways by
a variety of different authors. Kuncheva [103] defined two types of combination:
selection and fusion. Classifier selection involves defining specific classifiers to cover a
restricted portion of the feature space and then subsequently selecting the most
appropriate classifier based on the features present in the particular input image.
This draws parallels with having a panel of experts, each of which has detailed
knowledge of their own field of study, but whom remain relatively ignorant of the
fields of study of their colleagues. Classifier fusion, on the other hand, assumes that
each classifier has knowledge of the entire feature space and can be thought of as
taking the consensus decision of a group of equally qualified experts. Kittler et al
[104], in outlining a theoretical framework for classifier combination, defined two
classes of combination problem for the purposes of analysis. The first involves the
situation where each classifier in the ensemble uses the same representation of the
input data while the way in which this is processed by each classifier varies. For
instance, two classifiers each supplied with the same input data but one calculating
the Euclidean distance to a particular point in the feature space while the other
calculates the Mahalanobis distance to the same point. The second class of problem
involves the situation where each classifier extracts data from the input pattern that
is unique to that classifier. While all images in the data set, for the system described
in Section 5.4, are expressed in terms of the same feature set, the actual data input
to each of the four classifiers, namely the Mahalanobis distance to a particular class
centroid, is different and hence it is to Kittler’s second class of system that the
binary combination problem belongs. Techniques for combining classifiers can be
divided into either trainable or non-trainable, depending on whether they require
further training beyond that required by each individual classifier or not
respectively. Trainable combiners can lead to better classification performance,
however non-trainable algorithms are simpler to implement and, with lower
requirements on the total volume of training data required, are popular for systems
where the volume of training data is limited, such as in this case. The precise
algorithm used for combination depends to a large extent on the nature of the base
classifiers used and the output that they generate. 

5.4.6.2  Combination Algorithms

The combination of a number of one-vs.-all binary classifiers is a problem which
has no universally applicable optimum solution. The simplest, and some of the
most popular, non-trainable methods include the product, sum, mean, median, max, min
and majority vote rules.
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The product and sum rules involve multiplying and adding the output probabilities
for each classifier respectively and assigning the pattern to the class which has the
greatest value across the ensemble. The mean and median rules assign the pattern
to the class which has the greatest mean or median respectively. The max and min
rules select the classifier which has either the greatest (most optimistic) or least
(most pessimistic) confidence, amongst the ensemble, in its classification of the
input pattern respectively. The max rule is susceptible to misclassifications arising
from base classifiers which have been overtrained and consequently have an
artificially high confidence for all input patterns. Both the min and max rules rely
on the fact that the confidence outputs are correctly scaled relative to each other
so as not to allow one classifier to appear more or less confident than the rest of
the ensemble. Given the training strategy adopted in this system, relative scaling is
not an issue since each classifier is subject to the same process. The majority voting
scheme is slightly different in that it uses hard outputs and can be used to combine
the outputs of each classifier to form a single prediction. For the binary OVA
approach, this equates to the ‘winning’ class having a value of one and the rest
having zero. Clearly, however, this leads to the possibility of obtaining a split
decision where more than one classifier claims a particular image as a member or,
alternatively, where no classifier claims the image as a member. In this instance,
either an unknown classification can be returned or the image can be assigned to a
class either according to the a priori class probabilities if they are different or at
random if they are the same.

5.4.6.3  Combination Theory

Using Kittler’s analysis for a Bayesian classifier, given an input pattern (in this case
a particular distance measurement), an image should be assigned to the class which
has the greatest a posteriori probability. For a system consisting of R classifiers each
outputting a measurement  for  the input image will be classified to
class cj if:

(5.16)

where k is the class index. In order to calculate the a posterior probabilities required
by the decision rule shown in Equation (5.16) the joint probability density
functions  must be known. The calculation of this for a multivariate
situation such as this is relatively difficult and so it is necessary to introduce a
number of assumptions to make the analysis simpler. It was shown in [104] that by
assuming that either 

i. the R classifiers are statistically independent or

xi i 1 … R, ,=

P cj x1 … xR, ,( )
m
max
k 1=

P ck x1 … xR, ,( )[ ]=

P x1 … xR ck, ,( )
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ii. in addition to this independence, the a posteriori probability calculated 
by the R classifiers does not vary greatly from the a priori probability

then, from Equation (5.12), the product and sum rules can be derived as
Equation (5.17) and Equation (5.18) respectively, for an m class system. 

(5.17)

(5.18)

If it is assumed that the priors for each class are equal (based on the fact that there
is an equal volume of training data for each class) the prior terms in Equation (5.17)
cancel out yielding the following [102]:

(5.19)

While the assumptions made are unlikely to be strictly true, particularly for large
numbers of classifiers in the case of statistical independence, they are ones from
which, in many applications, useful results can still be obtained. Furthermore, it can
be shown that many of the typical combination mechanisms can be derived by
further simplifications of the product and sum models [104]. It is interesting to
analyse the two basic combination mechanisms, since it allows the behaviour of the
derived combination algorithms to be understood more fully. In the first instance,
consider the product rule. By inspection of Equation (5.17) it can be seen that if
one or more classifiers incorrectly predicts a very low probability of class
membership, then this will result in the combined probability of membership also
being very low. This necessitates that very good estimates of the conditional
probabilities should be available. In contrast, the nature of the sum rule makes it
much less sensitive to single spurious outputs from a particular base classifier. The
error factor is defined as the factor by which the true probability varies from the
estimated probability. It was shown in [104] that the error factor for the product
and sum rules could be given by Equation (5.20) and Equation (5.21) respectively.
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(5.21)
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where  is the extent to which the estimated a posteriori probability deviates from
the true probability, i.e . Since the a posteriori probabilities
must be less than one, the product rule error factor actually shows that the
individual classifier errors will be amplified. However using the sum rule, each time
for the class which is most probable, the summation term will potentially be greater
than unity (because it is the outputs from different classifiers that are being
summed) therefore the error is damped. It can be concluded that in cases where
the estimates of the class-conditional probabilities are likely to contain significant
estimation error, combination algorithms based on the sum rule are likely to
perform better than those based on the product rule, due to the error dampening
effect. Since this is likely to be true of the derivation of the densities as outlined in
Section 5.4.2, it was concluded that the sum rule and its derivatives were most likely
to be the best choice for the combination algorithm in this case.

Starting from the sum rule, the max rule can be derived by first assuming that the
summation term of the sum rule can be approximated by the maximum of the a
posteriori probabilities:

Next, by assuming that each class has equal prior probabilities, the expression can
be simplified to yield the max rule as shown in Equation (5.22):

(5.22)

This rule states that an image should be assigned to class, cj, if the maximum a
posteriori probability of the image belonging to this class, across all the R classifiers,
is equal to the maximum a posteriori probability found in any of the classes across all
the R classifiers. For the less mathematically minded this can be restated as ‘if the
probability of the image being class cj (as determined by any of the R classifiers) is
the greatest, then assign the image to cj’. For further information on the derivations
presented here, the reader is directed to [104].
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5.4.6.4  Binary Fusion Results

Binary combination was performed using the ‘max’ rule by taking each image and
identifying which classifier had the highest probability of the image being a class
member (i.e. "Who is the most confident in their prediction"). If this maximum
probability is greater than 50% then the image is classified as a member of that
particular class; if it is not then this means that all classifiers have returned a higher
probability of the image being a non-member than a member and hence the image,
in this instance, is defined as unclassifiable.

The confusion matrices for the binary classifier are shown for both the validation
and test sets in Table 5.1 and Table 5.2 respectively, where U denotes
unclassifiable. The performance equates to a classification rate of 95% and 85%
respectively. It can be seen that on the validation set, two of the images are
unclassifiable indicating that none of the four binary classifiers indicated a
probability of class membership of greater than 50% for that image. For the test
set, there are two no-defect images which are unclassifiable and one horizontal
crack image. The fact that there are no incorrect classifications is encouraging since
this shows that no other binary classifier is incorrectly 'confident' about its
classification. Also, the classifier output for the correct class may be the highest out
of the 4 classifiers but if it is less than 50% it will still be classified as unclassifiable
because it is more likely to be a non-member. For all five unclassifiable images,
shown in Figure 5.17, this was found to be the case with the Mahalanobis distance
of each being shortest to a member of its own class. However, the distribution of
known class images was such they had, in most instances, a low probability of
membership to any of the classes. Hence, all binary classifiers deemed these images
to be most probably non-members resulting in an unclassifiable assignment. Note:
The 2D FFT data in this figure is presented post-compression and hence has had
the PCA algorithm applied. This explains the bipolar magnitude values arising from
the zero mean requirement of Equation (5.3). 

Direct comparison between the fused classifier and the individual classifiers is
difficult because it is not equating like for like (i.e. the individual system separates
only one class while the fused system separates four). Thus, the two systems must
be taken as ones that each fulfil a different need: the individual ND classifier to
determine simply if a defect exists in an image and the fused binary ensemble to
determine the nature of the defect. A more appropriate comparison for the binary
ensemble classifier would be with a multi-class ensemble classifier. Such a system
will be considered in the following section. 
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Figure 5.17:  Binary system: unclassifiable images. Original images are shown
above their filtered reconstruction using 2 principal components. The 2D FFT
corresponding to the reconstruction is shown in the right-hand column: (a-f) No
Defect data, (g-h) Horizontal Crack data and (i-j) Corrosion Pit data. The proba-
bilities returned by each classifier are shown in the centre of the figure. 

(c) (d)

(a) (b)

(e) (f)

Mem
(%)

non
(%)

ND 12.2 87.8

HC 46.9 53.1

CP 30 70

DC 0 100

Mem
(%)

non
(%)

ND 0 100

HC 4.1 96.9

CP 0 100

DC 0 100

Mem
(%)

non
(%)

ND 44.8 56.2

HC 49.1 51.9

CP 17.4 82.6

DC 0 100
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Table 5.1:  Binary Fusion: Confusion matrix using validation set

Actual\Predicted ND HC CP DC U

ND 9 0 0 0 1

HC 0 10 0 0 0

CP 0 0 9 0 1

DC 0 0 0 10 0

Table 5.2:  Binary Fusion: Confusion matrix using test set.

Actual\Predicted ND HC CP DC U

ND 3 0 0 0 2

HC 0 4 0 0 1

CP 0 0 5 0 0

DC 0 0 0 5 0

(g) (h)

Mem
(%)

non
(%)

ND 0 100

HC 0 100

CP 0.52 99.4

DC 0 100

Mem
(%)

non
(%)

ND 0 100

HC 4.1 96.9

CP 0 100

DC 0 100

(i) (j)
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5.5  Multi-class Sensors to Enhance Probability of De-
tection

5.5.1  Overview

In Section 5.3.3, It was discussed that for a multi-class system, the multiple non-
member classes could be described by a single non-member class with a probability
density function comprising of a mixture of Gaussians, thereby essentially reducing
the problem to one involving two classes. While lending itself well to the simple
binary classifier implementation there is additional information content available
within the non-member distributions which could be harnessed. Using Figure 5.8
as an example, and noting from Section 5.4.2 how the density functions are
defined, it can be seen that for each of the four classes, four probability density
functions are defined, thus yielding a total of 16 distributions. It would be expected
that the Mahalanobis distances of images, belonging to the four-class data set, to a
particular class of interest will fall into four distributions with a distinct mean and
variance corresponding to each class. Assuming that appropriate training data is
used, the distributions obtained in this way from the training procedure could be,
loosely, described as the characteristic of a sensor for this particular class type (e.g.
corrosion pit). New images could then be assigned a probability of membership to
the four known classes derived from this sensor profile. As there are four types of
defect that are of interest, and hence four classes, this provides four different
‘sensor’ measurements of the probability of an image belonging to any given class.
Observing Figure 5.8 and taking c1, c2, c3 and c4 to be the no defect, horizontal crack,
corrosion pit and diagonal crack image classes respectively, it can be seen that this
‘sensor’ has reasonably good separation of the no defect and diagonal crack classes
from their remaining three classes however the horizontal crack and corrosion pit
classes show a high degree of overlap. While there may be varying degrees of
overlap between the distributions, there is still information contained there-in
relating to the class membership probability for a given input Mahalanobis distance
which is discarded in the binary classification system outlined in Section 5.4.
Furthermore, by defining a set of sensors which provide a probability measure for
each class, it is possible to apply a data fusion algorithm to the resulting collection
of soft outputs to potentially enhance the probability of detection of the ensemble.
No further statistical assumptions are made here that differ from that of the binary
case, the key difference is the manner in which the non-member data is utilised. 

Using the same training data as in Section 5.4, the distributions for the four class
sensors are shown in Figure 5.18 (a) to (d) for a bandwidth of  and with a0.1

FS
2

------
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dimensionality of two. A logarithmic scale has been used for clarity. It can be seen
that the distributions of the data is far from ideal with several instances of
overlapping PDFs, however this exposes the raw limit on the resolvability of an
image to a class using the 2D FFT as an input. The performance of the individual
sensors at classification as well as the performance of the fused ensemble is dealt
with in the following section. 

The theoretical analysis of the combination algorithms outlined in Section 5.4.6 is
equally valid in the multi-class instance. As with the binary system, the max rule is
applied this time to the collection of four multi-class sensors however, since each
sensor provides an estimate of the probability of membership of all known classes,
the product rule can also be used. 

5.5.2  Performance of Sensors Approach

5.5.2.1  Individual and Fused Classifiers

The confusion matrices for the four individual sensor are provided in Table 5.4
through to Table 5.7. It can be seen that each exhibits good classification
performance for their primary class (e.g. the ND class is the primary class of the
ND sensor etc) with this in general deteriorating for the remaining three classes, as
would be expected from the distributions shown in Figure 5.18. The ND, HC and
CP sensors all perform more poorly than the binary ensemble classifier. The DC
sensor returns 1 misclassification (CP to HC) on the validation set which in terms
of correct classification rate is higher than the binary ensemble. However, in terms
of the misclassifications, the latter can be considered to perform better. This may
be said because only an unclassifiable result can be returned by the binary ensemble
where-as the DC sensor actually incorrectly assigns a class.   

The confusion matrices for the validation and test sets using the max rule are given
in Table 5.8 and Table 5.9 respectively and for the product rule in Table 5.10 and
Table 5.11 respectively. The classification rates are also summarised in Table 5.3
for convenience. It can be seen that both rules work well, with the product rule
surprisingly providing a 100% classification of both the validation and test image
sets. This is surprising, primarily due to the relatively 'unforgiving' nature of this
combination method in that any classifier which incorrectly outputs a close to zero
probability for a particular case will strongly influence classification in that instance.
Furthermore, it would be expected that such performance would only be possible
where a strong assumption of conditional independence (i.e. the result of one
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classifier would not change the belief in any of the other classifiers) could be made.
Given the nature of the sensor definitions, this is counter-intuitive. 

The correct classification performance of the max rule on the validation set is
comparable with the binary system in that all but two images are labelled correctly.
Analysis of the results of the test set however indicates that the max rule
outperforms the binary system and yields only one incorrect classification
compared with three images identified as unclassifiable by the binary system. 

Comparing the performance of the binary and the multi-class approaches on the
independent test set, the product rule applied to the multi-class data provides the
best classification performance, followed by the max rule on the same data and
lastly the combined binary classification system. There is, however, not a great deal
of difference between the three results. 

Classifier
Validation

(%)
Test
(%)

ND (Individual) 72.5 65

HC (Individual) 80 65

CP (Individual) 90 85

DC (Individual) 97.5 100

Max 95 95

Product 100 100

Table 5.3:  Summary of classification rates for multi-class sensors
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(a)

(b)

Figure 5.18:  Probability density functions for each class of images using two prin-
cipal components and an image bandwidth of . (a) the no defect sensor, (b) the
horizontal crack sensor, (c) the corrosion pit sensor and (d) the diagonal crack sensor.
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(c)
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Table 5.4:  Confusion matrix for ND sensor (Validation Set)

Actual\Predicted ND HC CP DC

ND 9 0 0 1

HC 0 4 6 0

CP 0 0 6 4

DC 0 0 0 10

Table 5.5:  Confusion matrix for HC sensor (Validation Set)

Actual\Predicted ND HC CP DC

ND 10 0 0 0

HC 0 10 0 0

CP 2 0 3 5

DC 1 0 0 9

Table 5.6:  Confusion matrix for CP sensor (Validation Set)

Actual\Predicted ND HC CP DC

ND 9 0 0 1

HC 0 10 0 0

CP 1 0 9 0

DC 2 0 0 8

Table 5.7:  Confusion matrix for DC sensor (Validation Set)

Actual\Predicted ND HC CP DC

ND 10 0 0 0

HC 0 10 0 0

CP 0 1 9 0

DC 0 0 0 10
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Table 5.8:  Multi-Class Fusion: Confusion matrix for max rule combination on 
validation set

Actual\Predicted ND HC CP DC

ND 10 0 0 0

HC 0 10 0 0

CP 1 0 9 0

DC 1 0 0 9

Table 5.9:  Multi-Class Fusion: Confusion matrix for max rule combination on 
test set

Actual\Predicted ND HC CP DC

ND 5 0 0 0

HC 0 5 0 0

CP 0 0 5 0

DC 1 0 0 4

Table 5.10:  Multi-Class Fusion: Confusion matrix for product rule combination 
on validation set

Actual\Predicted ND HC CP DC

ND 10 0 0 0

HC 0 10 0 0

CP 0 0 10 0

DC 0 0 0 10

Table 5.11:  Multi-Class Fusion: Confusion matrix for product rule combination 
on test set

Actual\Predicted ND HC CP DC

ND 5 0 0 0

HC 0 5 0 0

CP 0 0 5 0

DC 0 0 0 5
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5.5.2.2  Explanation for Misclassifications

Figure 5.19 shows the scatter plot of the training images provided earlier, with the
validation images (square marker) and test images (cross marker) superimposed.
The colour coding is as previously outlined, however with the following additions.
Shown in light blue are the images that were misclassified by the binary ensemble
classifier and shown in purple are the images that were misclassified by the max rule
approach to the multi-class sensors. One image is indicated with both a purple
square outline and a light blue fill indicating that it was incorrectly classified by both
methods. As the product rule produced no errors, there is no index corresponding
to it. What is clear from the placement of these images in relation to their co-
members is that, in the cases where an error has occurred, the Mahalanobis distance
of the images is shortest to its parent class. It appears that the misclassifications
arise when the distances are converted to probability estimates based on the
distributions of Mahalanobis distances obtained during the training process. This
can be clearly seen by considering the CP image misclassified by the max rule as
being a member of the ND class. In this instance, the CP sensor returns a strong
probability that the image belongs to the ND class, overriding the less confident,
but correct, predictions made by the other three sensors. Observation of the
probability density functions for the CP sensor, shown in Figure 5.18(c), shows

Figure 5.19:  Scatter plot showing the weights of the training, validation and test
images. It can be seen that they all follow a consistent pattern of distribution.
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that the means of both the ND and CP classes are relatively close together and,
consequently, because the Mahalanobis distance of the image is larger than
expected for a CP image it appears to strongly favour the classification of it as a
ND member. If further training data were used, this would most likely just increase
the standard deviation of the CP class, and consequently the probability of the
image, given the Mahalanobis distance, would always be higher for the ND class.
Since the result of this sensor is strongly in favour of an ND classification, it
overrules the remaining three sensors when the max fusion rule is applied and
results in the misclassification. It is for the same reason that the binary combination
system returns the image as unclassifiable since no classifier returns a >50%
probability of the image being a member of the parent class.

5.6  K-Nearest Neighbour Classification

5.6.1  Overview

The K-nearest neighbour (KNN) method is generally regarded as a good
benchmark for classifier performance [105]. The primary reason for this is that, in
the case where , the error is bounded at the lower extent by the Bayes
probability of error and, as the number of samples tends to infinity, at the upper
extent by twice the Bayes’ error. This is summarised in Equation (5.23), where  is
error rate,  is the Bayesian error rate and c is the number of classes [106].

 (5.23)

This system uses some distance metric (Euclidean, Mahalanobis etc) relating an
image to each of the training images and then selects the K closest images (i.e.
shortest distances). The image is then assigned to the class which the majority of
the K images belong to. A suitable value of K is usually determined following a
training process. 

The KNN algorithm replaces the procedure outlined in the statistical framework
of Section 5.3.3 however the pre-processing and dimensionality reduction steps
remain the same. In order to allow comparison with previous results, the same
bandwidth and dimensionality was used. 

The Mahalanobis distance is the distance to the centre of a particular distribution
rather than a simple point-to-point measurement and so the Euclidean distance is
more commonly used when the KNN algorithm is employed. Following the pre-
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processing stage, the Euclidean distance of each validation and test set image to
each image in the training set is calculated. The K instances which have the smallest
distance are then extracted and the classes of the corresponding training images
recorded. The image under investigation is then assigned to the most frequent class
within this K subset. This is summarised by the following pseudo-code, letting
test_val denote a vector containing all validation and test data and training denote a
vector containing all training data:

i. Perform pre-processing on all images at given bandwidth and dimensionality

For i < length(test_val)

For j < length(training)

ii. Calculate Euclidean distance between test_val(i) and training(j).

iii. Increment j

Loop

iv. Sort distance in descending order and select K smallest values (nearest images)

v. Identify the classes of these images and assign test_val(i) to the class that is most fre-
quently within the K subset.

vi. Increment i

Loop

5.6.2  Results

The results in Figure 5.20 show the performance of the KNN algorithm on both
the validation and test image sets for increasing K value. It can be seen that for

, a classification rate of 100% is achieved for both the training and test sets
however for  the classification rate on the validation set fluctuates and the
performance on the test set reduces to 95%. 

Comparing the merits of the Bayesian approach of Section 5.3.3 with the KNN
method presented here it can be seen that both provide the opportunity of
achieving 100% classification rates. The KNN neighbour method is simple and
takes no specific account of the statistical spread of the data set. The Bayesian
approach, on the other hand, is complex with significant calculation overheads
however it benefits from the ability to assign a level of confidence to its class
prediction. To obtain such a confidence measure within a KNN framework would
require a sufficiently high value for K so as to ensure a good resolution of the
probability measure. Given the results obtained here, this would reduce the
classification rate and therefore a trade-off emerges between simplicity,
performance and functional outputs. It was deemed that the confidence

1 k 4< <
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assignment was sufficiently valuable as an output as to warrant the added
computational expense.

5.7  Performance Comparison Using Real Defects

5.7.1  Creating Samples and Image Set

Thus far, the proof of concept has been achieved using idealised defects. The
‘cracks’ are slots with well defined edges, the ‘corrosion pits’ are drill holes with well
defined circular shape and the ‘no defect’ images, in most instances, are free from
surface aberrations. Real defects are unlikely to be so amenable to distinguishing
between classes. Access to samples containing genuine defects is limited,
particularly in the sort of numbers that are required for training a classifier. In order
to achieve a more realistic and stern test for the pattern recognition system, a
number of defects were artificially corroded into a carbon steel test plate. Each
defect was created using a mould placed on the metal surface and containing saline
water. A positive electrode was placed in the solution and the steel plate connected
to earth, thereby creating an electrochemical cell. A current of 2 A was applied for

Figure 5.20:  K-nearest neighbour results on validation and test sets for increasing
value of K. Classification rate of 100% is achieved on the validation set for

 which results in an equivalent rate for the test set. Increasing K beyond
5 reduces the performance on the validation set and causes the classification rate
of the test set to reduce to 95%.
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a period of approximately 10-12 hours causing corrosion of the parent metal within
the region of the mould. Two varieties of mold were used: a cylinder for a circular
corrosion pit (CP) and a slot for a slot defect (SL). For simplicity only one orientation
of slot was used and so, coupled with the no-defect (ND) images, this yields a three
class system. As the nature of the corrosion cannot be controlled further than the
rate at which it occurs, the resulting defects have less well defined edges than the
machined defects, with particular regions within the mould being more corroded
than others. A sample from each of the three classes is given in Figure 5.21. A total
of 50 images per class were captured using 7 different defects (per class) yielding a
total image set of 150 images. Each image is uniquely different from the rest due to
either the type of defect it included, the lighting conditions or the location of the
defect within the image frame. The image set was divided into a 30 image training
set (of which the optimum volume would be determined as per Section 5.4.4.2), 10
image validation set and a further 10 image test set. 

5.7.2  Training and Optimisation

The procedure outlined in Section 5.4.4.1 to Section 5.4.4.3 was once again applied,
this time to the new image set. As was concluded previously, the image bandwidth
does not play a significant part in the resulting classification rate however, in this
case, a bandwidth of  was marginally superior. A good compromise between
the classification rate of each of the three classes was obtained using a combination
of N = 20 training images while reducing the dimensionality to two as shown in
Figure 5.22. Although this training set size does not yield the maximum ND
classification rate (N = 19 images), it was selected because the SL classification rate
increased significantly for a marginal decrease in ND performance. The
generalisation procedure was conducted, again using the leave-one-out method, for
each of the three classes. The results are shown in Figure 5.23(a), (b) and (c) with
the error bars indicating ± one standard deviation. The suitability of using two
principal components is evident once again. The size of the generalisation error is
larger than that obtained using the synthetic defect images at ± 5%. This is most
probably due to the greater intra-class variability within the training set. 

Having identified the most appropriate system parameters, the system can be tested
using the method outlined previously. The results are presented and discussed in
Section 5.7.3.
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Figure 5.21:  Corrosion defect images: (a) No defect, (b) slot and (c) corrosion pit images
on a steel plate. Both (b) and (c) were generated using an electrochemical cell.

(a)

(c)

(b)
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Figure 5.22:  Classification rate, using the validation set, as a function of the num-
ber of training images for each of the three classes. 

Figure 5.23:  Generalisation to (a) ND Class, (b) SL class and (c) CP class.

(a)
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(b)

(c)
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5.7.3  Classification Results

5.7.3.1  Individual Binary Classifiers

The performance of the ND and CP binary classifiers is significantly poorer than
for the idealised image set although both still produce a 70% correct classification
rate. The ND rate falls some way short of that required to achieve the primary goal.
The SL classifier performs better yielding approximately 95% correct classification
rate. The reason for this can be traced to the spatial distribution of the data set
shown in Figure 5.24. It is clear that there is significant overlap in the ND and CP
classes meaning a perfect decision boundary is impossible. The separation of the
SL images from the rest is better although there are instances of cross-over. This
can be explained using the image in Figure 5.21(a). The ND class images typically
contain a level of surface content that was not present in the idealised images. This
gives rise to an increased frequency content in all directions of the 2D FFT which,
previously, was the defining characteristic of the CP class. The more regular edges
of the SL class result in a better distinction between this and the other classes. 

5.7.3.2  Binary Fusion

Figure 5.24:  2D scatter plot of the three classes of corrosion images within the fea-
ture space.
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A binary combination method using the ‘max’ rule was applied to the new
classifiers and the confusion matrices for the validation and test sets shown in
Table 5.13 and Table 5.14 respectively. Given that the validation and test image
sets contain 10 images per class, the performance translates to correct classification
rates of 63% and 60% respectively. What is interesting to note, and in contrast with
the previous image set, is that on 9 occasions a misclassification occurs meaning
that in these instances, a classifier is incorrectly confident about its result.
Previously, there were no incorrect classifications, instead images were either
correctly classified or deemed unclassifiable. 

5.7.3.3  Multi-Class Sensors

The confusion matrices are shown in Table 5.15 through to Table 5.21 and the
results summarised in Table 5.12. The performance of the individual, multi-class
sensors is generally a little poorer than the binary ensemble with the ND sensor, SL
sensor and CP sensor having a 56%, 53% and 53% correct classification rate
respectively on the validation set. 

Neither the max or product rules have a significant effect on the classification rate
on the validation set however result in better performance on the test set. On
balance, the product rule appears to be the best classification option however given
the results of the generalisation study, there would most probably be very little
difference in overall performance between the binary ensemble, max and product
rule systems. 

Classifier
Validation

(%)
Test
(%)

ND (Individual) 43 56

SL (Individual) 53 53

CP (Individual) 53 53

Max 50 66

Product 53 73

Table 5.12:  Summary of classification rates for multi-class sensors on real images
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Table 5.13:  Binary Fusion: Confusion matrix using validation set

Actual\Predicted ND SL CP U

ND 8 0 1 1

SL 0 9 0 1

CP 4 4 2 0

Table 5.14:  Binary Fusion: Confusion matrix using test set.

Actual\Predicted ND SL CP U

ND 8 0 2 0

SL 0 10 0 0

CP 4 6 0 0

Table 5.15:  Confusion matrix for ND sensor (Validation Set)

Actual\Predicted ND SL CP

ND 4 0 6

SL 0 7 3

CP 8 0 2

Table 5.16:  Confusion matrix for SL sensor (Validation Set)

Actual\Predicted ND SL CP

ND 2 0 8

SL 0 10 0

CP 1 5 4

Table 5.17:  Confusion matrix for CP sensor (Validation Set)

Actual\Predicted ND SL CP

ND 2 3 5

SL 4 4 2

CP 0 0 10
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Table 5.18:  Multi-class Fusion: Confusion matrix for max rule combination on 
validation set

Actual\Predicted ND SL CP

ND 3 2 5

SL 0 8 2

CP 6 0 4

Table 5.19:  Multi-class Fusion: Confusion matrix for max rule combination on 
test set

Actual\Predicted ND SL CP

ND 8 0 2

SL 0 9 1

CP 3 2 5

Table 5.20:  Multi-class Fusion: Confusion matrix for product rule combination 
on validation set

Actual\Predicted ND SL CP

ND 6 2 2

SL 0 5 5

CP 7 0 3

Table 5.21:  Multi-class Fusion: Confusion matrix for product rule combination 
on test set

Actual\Predicted ND SL CP

ND 8 0 2

SL 0 7 3

CP 4 0 6
150



5.7.3.4  K-Nearest Neighbour

The validity of the conclusion of the previous Section is supported by the results
of the KNN method shown in Figure 5.25 where the classification rate lies in the
range of 55-65% and 30-55% for the validation and test sets respectively,
depending on the value of K. This is a significant reduction compared with the 95-
100% achieved on the idealised image set.

Figure 5.25:  KNN applied to corrosion defects for varying value of K.
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5.8  Discussion

In the course of this Chapter, several implementations of a statistical classifier have
been developed using 2D FFT data, extracted from images captured by the on-
board camera, as its input. The system implemented is based on the Eigenface
approach and uses principal component analysis to reduce the dimensionality of
the data set using a set of features. The results are summarised in Table 5.22 and
Table 5.23 for synthetic and real defects respectively. The goal of the approach was
to develop a system that primarily could distinguish between images that contain
defects and those that do not. A classification rate of 100% was specified and was
achieved using a multi-class sensor approach using the product rule on both the
validation and test sets. The individual binary ND classifier yielded 97.5% which,
although marginally short of the required performance, is still a very good result.
The advantage of this system is in its greater simplicity (with no fusion algorithm
required) however at the expense of a less specific assignment of the image class.
Both results are backed up by very good separation of the underlying data set
allowing a high degree of confidence to be placed in the result. A more realistic data
set, generated by artificially corroding steel samples, yielded significantly poorer
results. Again, the product rule performed best with a correct classification rate of
73% with the individual binary ND classifier yielding 70%. Analysis of the class
distributions in Figure 5.24 lead to the conclusion that the poor performance is due
to the fundamental lack of distinction between the classes rather than a failure in
the approach itself. This was particularly evident between the ND and CP classes.
It has therefore been shown that a system based on the Eigenfaces method can be
applied to NDE however, like any system, the performance will vary depending on
the quality of the input data.

It was shown that for the idealised data set, where the defects have regular edges
and the parent metal has little or no surface aberrations visible in the captured
images, excellent classification performance can be achieved. The multi-class
sensor system using the product rule has been shown to achieve a performance
comparable to a KNN algorithm. Furthermore, because of the fundamental
statistical basis of this system, a level of confidence could be attributed to the
classification which, if emulated under a KNN approach, would require a value of
K that would actually reduce the classification rate. However, this capability comes
at the expense of significantly greater computational complexity. The performance
of the system using real defects was, again, comparable to the results obtained by a
KNN approach. Therefore, where good separation can be achieved and where a
statistical confidence is more valuable than computational complexity, a multi-class
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sensor approach is preferable over a simple KNN algorithm. For NDE
applications, it is felt that the hard decision output (class label) of a classifier such
as KNN is less appropriate and that more value is gained by having some concept
of how confident the system is in that classification.

For both data sets, the image bandwidth was found to have less of an effect on the
classification rate than the overall level of dimensionality that the data set was
reduced to. Realistic defect geometry, such as a fatigue crack, is likely to require a
different approach to that outlined in this Chapter. Principally, the pre-processing
stage will need to be modified to account for the higher frequencies of interest
signifying such defects. The classification methodology however could be used
without modification since provided the input data has a statistical difference, the
proposed system will be able to identify this and thus classify accordingly.

The lack of availability of truly independent defect images is an issue which is
common to image classifier development. In truth, the only way to ensure very
good generalisation is to have a large number of unique images in the training set
with further unique images in the validation and test sets. Practically this has not
been, and rarely is, possible and therefore it must be concluded that the
performance demonstrated here is likely to be skewed in favour of a correct
classification. However, the comparison of the system performance against the
KNN algorithm yields a valuable result in terms of relative performance against a
standard benchmark method.
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Classifier

Idealised

Validation
(%)

Test
(%)

Binary Fused 95 85

ND (Individual) 72.5 65

HC (Individual) 80 65

CP (Individual) 90 85

DC (Individual) 97.5 100

Max 95 95

Product 100 100

KNN 100 100

Table 5.22:  Synthetic Data: Summary of classification rates for multi-class 
sensors

Classifier

Real

Validation
(%)

Test
(%)

Binary Fused 63 60

ND (Individual) 43 56

SL (Individual) 53 53

CP (Individual) 53 53

Max 50 66

Product 53 73

KNN 53 66

Table 5.23:  Real Data: Summary of classification rates for multi-class sensors
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Chapter 6

Eddy Current Array

6.1  Introduction

Eddy current testing (ECT) is a commonly used, non-contact means of inspecting
conducting materials [37, 38]. In contrast with air-coupled ultrasound, where the
majority of the incident pressure wave is reflected by any metal-air boundary, the
flux linkage mechanism upon which eddy current testing is founded is much less
sensitive to the existence of such boundaries. A plethora of probe types and
configurations abound, varying from simple, single- or dual-coil systems, to arrays
[107, 108, 109, 110] and ultimately to largely lab-based systems such as the high
precision, cryogenically cooled SQUID probes [111, 112]. The use of array
technology, in particular, is appealing for automated inspection as it removes the
need for a mechanical scanning system to position the probe, while providing
enhanced detection capabilities through the flexibility of tailoring the array
configurations to the inspection task. 

This Chapter describes the development of an eddy current array (ECA) payload
for deployment on a robotic pipe inspection system. The novelty of the work is
primarily in the integration of the two systems, however the techniques used to
improve the sensitivity are also considered to be novel. The Chapter starts with an
overview of ECT theory and then establishes the optimum frequency and defect
metric for greatest probe sensitivity. FEM is then used to relate the defect metric
to actual defect geometries. An overview of the system and imaging algorithm is
provided and finally, the performance is compared against a commercial system.
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6.2  Background

6.2.1  Eddy Current Theory 

Passing an alternating current (AC) through a coil generates a changing magnetic
field which induces eddy currents, of the same frequency, in any conducting
specimen that intersects it. As the induced eddy currents are also AC they, in turn,
establish their own magnetic field which, according to Lenz’s law, is of equal
magnitude but opposite phase to that of the field that established it. For non-
ferromagnetic materials, such as aluminium and stainless steel, this results in a
partial reduction of the primary field. As the coil inductance, L, is directly
proportional to the number of turns, N, and the magnetic flux density, , this
reduction in field causes a reduction in the impedance of the coil relative to its in-
air value. The quantity  is termed the ‘flux-linkage’ and the relationship is given
in Equation (6.1).

(6.1)

For ferromagnetic materials, such as carbon steel, although the underlying
phenomenon is the same, the effect is somewhat different. Due to the ferrite nature
of the material, there is a high concentration of magnetic flux at the coil-metal
boundary which increases the flux linkage and hence impedance of the coil. In both
cases, the presence of a defect interrupts the magnetic field, as shown in Figure 6.1,
thereby modifying the eddy currents induced in the specimen and consequently
changing the impedance of the coil. As the impedance has both real and reactive
elements, the presence of a defect can result in amplitude and phase changes in the
measured coil voltage. 

In the absence of any other variables, designing an inspection system to detect
these changes would be relatively trivial. However, inevitably, there are several
other factors that also influence the coil impedance. Primarily, these include [113]:

i. Excitation frequency, f

ii. Electrical conductivity of the specimen, 

iii. Magnetic permeability,  (for ferromagnetic materials)

iv. Lift-off distance between the coil and the specimen

v. Coil size (number of turns, diameter)

vi. Temperature

Φ

NΦ

L NΦ∝

σ

μ

156



 

Figure 6.1:  (a) Qualitative example showing the field of a coil on a conducting
medium subject to AC excitation and (b) showing that the presence of a defect
alters the magnetic field. The difference in the magnetic field in the two examples
results in a difference in measured coil impedance. 

(a) (b)

Figure 6.2:  Theoretical variation of skin depth with frequency, for aluminium and
304 grade austenitic stainless steel.
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The excitation frequency is perhaps the most obvious factor which affects the
impedance of the coil with higher values directly increasing the reactive
component. Furthermore, the current in a conducting medium is concentrated to
a layer around the outer surface whose thickness, or depth, is inversely proportional
to the frequency of the current passing through it. Thus, as the frequency increases,
the electrons are forced to occupy a smaller area and consequently the resistance of
the coil increases. This phenomena is known as the ‘skin effect’ and the skin depth
( ) of a material, given by Equation (6.2), is defined as the depth at which the
current density reduces to  (37%) of its surface value.

(6.2)

In terms of NDE, a consequence of the skin effect is that, by increasing the
frequency of the excitation current, the eddy current field can be concentrated to
the near-surface of the test specimen thereby producing a high sensitivity to small,
surface-breaking defects. For sub-surface defects, a suitably low excitation
frequency is required to ensure that the field interacts with the defect sufficiently
to cause a change in coil impedance. The skin depth of ferritic materials such as
steel is much less than that of austenitic stainless steel due to the inverse-root
relationship with magnetic permeability, as shown by Equation (6.2). Also since the
conductivity also obeys an inverse-root relationship, materials of high conductivity
such as aluminium and copper will have a lower skin depth than other non-
ferromagnetic materials with low conductivity, such as stainless steel. The variation
of skin depth with frequency for aluminium and 304 grade austenitic stainless steel
is given in Figure 6.2.

The influence of magnetic permeability and coil dimensions can be related back to
the direct proportionality of the inductance and the flux-linkage outlined in
Equation (6.1). Thermal effects, if not compensated for, can lead to significant
repeatability errors and care must be taken in the design of eddy current systems to
minimise the electrical self-heating of coils due to normal operation.

6.2.2  Probe Design 

6.2.2.1  Coil Configuration

Typically, coils are configured as either absolute, differential or reflection probes.
An absolute probe consists of a single coil with the drive signal also acting as the
sensing signal. Such probes are particularly sensitive to lift-off and probe wobble
which can lead to spurious indications of defects. Differential probes consist of a
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pair of coils which usually each form one half of a balanced Wheatstone bridge.
The detection signal, in this case, is the out-of-balance voltage from the bridge
circuit. In this configuration, the effect of lift-off is cancelled out, provided that
each coil experiences it to the same degree, however the sensitivity of both coils is
still inversely proportional to the distance from the conducting surface. The
differential probe is fundamentally a relative system and simply detects a difference in
the conditions under either of its coils. A limitation arising from this, for the
purposes of crack detection, is that if the defect length exceeds the coil spacing then
only the leading and trailing edges of the crack will be detected. Reflection probes
consist of electrically separate coils: one to induce the eddy currents and one or
more sensing coils to detect variations in the induced field. Such probes allow
flexibility in terms of optimisation of the driver/pick-up coils thereby offering the
potential for high sensitivity to very small defects and their performance can be
equivalent to that of the preceding configurations.

The use of an array is an attractive solution in many automated applications for
three primary reasons: 

i. Increases the speed of inspection

ii. Eliminates the need for mechanical scanning

iii. Provides greater data accuracy.

The latter is true because the fixed reference system of the array provides more
accurate information on the position of the coils. The following sections detail the
development of three array configurations consisting of varying numbers of
differentially connected coils. 

6.2.2.2  Design of Coil

Coils are typically wound on a rigid former made from a dielectric (electrically
insulating) material with the centre of the former referred to as the core. A probe
may contain a high permeability, ferromagnetic element in its core, termed 'ferrite-
cored', or may be 'air-cored', with the latter often being used to refer to anything
other than the former. Having much the same effect as a ferromagnetic plate, the
inclusion of a ferrite core at the centre of a coil winding concentrates the magnetic
flux and, therefore, increases the impedance. Because the flux density is greater,
defects cause a bigger reduction and therefore ferrite-cored probes are typically
more sensitive than their air-cored counterparts. The particulate structure of ferrite
means it is electrically non-conducting which also ensures that there are no
unwanted eddy current losses within the core itself. 
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The coil design, for this system, was influenced by the work of Thompson [114]
and Friedrich [81]. In [114], it is concluded from a series of experimental tests that,
for flaw sensitivity, the coil winding should be positioned between 1.5 mm and 2.0
mm from the end of the ferrite rod nearest the inspecting surface. Furthermore, it
is recommended that, where space is not at a premium, the length of the rod should
be as large as possible (minimising the winding-core ratio) in order to maximise the
inductance. In [81], a single coil pair, phase detection system achieved good results
using 400 turn coils of 34SWG wire with former inner and outer diameters of 5 mm
and 10 mm respectively. This successful model was used for the differential eddy
current array. The coil was wound around a PVC former which provided the
recommended coil position and the 1.5mm diameter by 15 mm length ferrite rod
that was used allowed a winding-to-core length ratio of approximately 0.46. The
impedance and phase of a sample of seven such coils were measured, in air, over a
10 to 500 kHz frequency range (encompassing the core optimum operating
frequency of 125kHz) at 500 Hz intervals using a Hewlett Packard 4194A
impedance analyser. The resistance and inductance were calculated and are shown
in Figure 6.3 (a) and (b). In Figure 6.3 (a), the skin-effect induced, frequency
dependence of the coil resistance is quite clearly evident and from (b) the coil
reactance can be seen to vary slightly with frequency due to capacitive effects
within the coil. 

6.3  Analysis of Resistive, Inductive and Capacitive 
Circuit

Independently, a coil has a relatively limited response to a defect, however this can
be enhanced through the use of a resonant configuration such as the RLC network
shown in Figure 6.4. It is important to characterise the behaviour of this circuit
prior to the design of the system and to develop expressions for the measurable
quantities in terms of the basic circuit elements. The following section highlights
the key relationships of interest drawn from the detailed derivation provided in
Appendix B.

6.3.1  Fundamentals of an RLC Inspection Circuit

The impedance, Z, of a circuit consisting of the series combination of a resistor,
inductor and capacitor is given by Equation (6.3).

(6.3)Z R jωL j
ωC
--------–+=
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Figure 6.3:  (a) Resistance and (b) reactance of a sample of seven coils measured
in-air over a 500 kHz bandwidth.

(b)

(a)
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where  is the resistance,  is the angular frequency (rad/s),  is the inductance
of the coil (H) and  is the capacitance (F). The magnitude and phase of the
impedance is thus:

(6.4)

Resonance occurs when the impedance of the circuit is minimum and hence when,

(6.5)
 
At resonance, , the phase, , is  and the magnitude of the impedance is purely
real. The magnitude of the coil voltage, , for a unity voltage input may be
calculated using the voltage divider rule and simplified to Equation (6.6):

(6.6)

The phase, , of the coil voltage is given by Equation (6.7).

(6.7)

From Equation (6.7) it can be seen that, at resonance, the phase of the voltage
across the inductor will be 90o relative to the supply voltage.   

R ω L
C

Figure 6.4:  Circuit diagram of resistor-inductor-capacitor circuit
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The phase difference between two coils, having inductances L1 and L2, is given by:

(6.8)

It is this equation that is fundamental to the phase measurement system
implemented.

6.3.2  Effect of Series Resistance

The resistor in an RLC circuit essentially acts as damping which controls the rate
at which the capacitor charges and discharges and controls the bandwidth over
which the phase transitions from  to  degrees, as shown in Figure 6.5 (a) and
(b). For a hypothetical circuit having zero resistance (and ideal reactive
components), this bandwidth will tend to zero and the transition will occur entirely
at the resonant frequency as illustrated in Figure 6.7. Considering the phase difference
of any two coils, it can be seen that this will either be 0 degrees (when both coils
are identical) or 360 degrees otherwise. Since all eddy current testing is based on a
defect generating a change in impedance in the coil then this provides a potentially
very sensitive metric for detecting defects. Practically it is not possible to have a
circuit with zero resistance and hence the sensitivity to defects will be reduced due
to the slower rate at which the phase transitions with frequency. Furthermore,
instead of there being a step change in phase difference, a frequency response that
rises and falls about a maximum value is obtained, as shown in Figure 6.6 (a) for R
=1 . The maximum phase difference will be related to the relative spacing of the
resonant frequencies and hence related to the change in inductance L. As the
change in inductance increases then an increasing frequency range will appear in
which the coils are in anti-phase ( ) as shown by comparing Figure 6.6(a)
and (b) for L = 100 H. The minimum inductance change at which such a
condition occurs determines the dynamic range of the system, beyond which it
saturates and further changes cannot be detected. Since the resistance of a coil is
dependent on frequency then, in theory, we can improve the sensitivity of the eddy
current system by operating at a lower frequency and taking advantage of the lower
RF resistance of the coil in spite of the increased skin depth in the specimen. This
has the consequence, however, of increasing the uncertainty of the defect location
within the test material since the range of depth being covered has increased. If the
resistance is increased then the dynamic range can be increased at the expense of
sensitivity as shown in Figure 6.6 (b) for R = 50 . 
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Figure 6.5:  Effect of series resistance on (a) magnitude and (b) phase of the coil
voltage for L = 1.2 mH and C = 1 nF.

(a)

(b)
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(a)

(b)

Figure 6.6:  Dependence of eddy current sensitivity and dynamic range on series
resistance (a)R = 1  and (b) R = 50 , for L = 1.2 mH and C = 1 nF.Ω Ω
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6.3.3  Optimum Frequency Selection

In Section 6.3.2, it was established that, for a given value of series resistance and
frequency, there is range of L values over which the phase difference will vary in
magnitude from 0 to 180o. Beyond a particular value of L, the phase difference
will saturate. It follows then that, within this range of inductance, there must exist
at least one optimum frequency at which the phase difference is maximised. 

Given Equation (6.8), the optimum frequency will occur when the derivative of 
with respect to frequency is zero, corresponding to a stationary point in the
gradient:

Figure 6.7:  Effect of change in inductance for RLC circuit with R tending to 0 
for L = 1.2 mH and C = 1 nF.
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Solving for  and taking the positive, real solution the optimum frequency is found
to be:

Neglecting the higher order terms ( ) this reduces to Equation (6.9)

(6.9)

which is real for  and is independent of R. The error in this
approximation increases with the square of resistance and linearly with capacitance.
Taking the limit  in Equation (6.9) yields Equation (6.10) which will be
recognised as the expression for the coil resonant frequency.

(6.10)

The approximate solution is shown in Figure 6.8 against L for L = 1.2 mH and
C = 1 nF along with the error in the approximation for R = 1, 50, 100 and 500 .
The optimum frequencies predicted by Equation (6.9) compare well with those in
Figure 6.6. The non-linearity in the error due to R can be readily observed. Thus
for small values of , Equation (6.9) can be taken to approximate the true
optimum frequency.

6.3.4  Suitable Defect Metrics

An ideal defect measurement metric is one that changes rapidly with changes in the
conditions of interest. Typically, single frequency, differential eddy current
inspection either involves measurement of the out-of-balance voltage or the phase
difference between a pair of coils. An alternative implementation, using multiple
frequencies, involves the measurement of the resonant frequency of the coil,
deriving an indication of a defect based on a shift from the normal on-metal
resonance. The problem with single frequency systems is that, in addition to the
saturation issue outlined in Section 6.3.2, it is unlikely that the inspection frequency
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will ever be the most sensitive for a given inspection. The advantage of the resonant
frequency method is the fundamental relationship between the resonant frequency
and coil inductance. However, for all but the most heavily damped circuits, the
phase difference at the optimum frequency will be relatively large, and hence more
sensitive, for quite a small shift in resonance. An alternative metric has been
identified that provides the benefits of phase detection without the problem of
saturation. 

Consider the two phase responses in Figure 6.9, corresponding to a hypothetical
two-coil situation where one coil is over a defect (L = 1.2 mH) and the other is on
defect-free metal (L = 1.5 mH). As the change in inductance, and hence resonant
frequency, is proportional to the size of a defect, it can be seen that for the
detection of very small defects the difference in resonance will be very small and
hence the resolution of the measurement system must be very high; the phase
difference method suffers from a similar stipulation, albeit to a lesser degree, for
realistic levels of damping. The most sensitive metric is one that combines the
phase information across a range of frequencies and corresponds to calculating the
area between the two responses in Figure 6.9. More formally this phase integral, PI,
may be written as shown in Equation (6.11).

Figure 6.8:  Optimum frequency as a function of L for C = 1 nF and L = 1.2 mH.
Secondary axis shows the error due to the approximation for R = 1, 50, 100 and 500

. 
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(6.11)

By making use of all phase information available, small changes in coil inductance
produces a relatively large change in PI. A further advantage of this method over a
conventional, single-frequency phase difference approach, is in its relative
insensitivity to the series resistance of the resonant circuit. As was shown in
Section 6.3.2, the resistance has a damping effect and therefore increasing values
reduce the size of phase-difference for a given LC configuration. As illustrated in
Figure 6.10 (a), for a low resistance (10 ) the phase transition occurs over a short
bandwidth and the peak phase difference reaches a relatively high value.
Conversely, for a higher resistance (100 ) the phase transitions much less rapidly
and the peak phase-difference reduces by 70%. In both instances, however, this
reciprocal nature leads to only a 2% variation in PI using Equation (6.11) and,
consequently, a much more stable defect metric.

If both coils are positioned over identical material, then the relative phase
difference will be zero for all frequencies. Assuming that the resistance is constant,
as the defect depth approaches zero the change in inductance will tend to zero and
the optimum frequency will tend to the resonant frequency of the coil for zero lift-
off, . The response of the coil to a 100% through thickness defect can be
modelled by the coil response in air, thus the second frequency limit occurs at the
resonant frequency of the coil in air, . As the change in inductance due to the
presence of ferromagnetic and non-ferromagnetic materials is of opposite polarity,
the required frequency sweep range in order to guarantee at least one optimum
operating point is given by Table 6.1. In reality, the resistance will change with the
defect size and furthermore, since the PI metric uses data from all frequencies that
yield a non-zero phase difference, a wider frequency sweep range will be required.
For the purposes of this system, it was found that a sweep range of 100 to 200 kHz
was suitable.

Table 6.1:  Optimum frequency sweep range

Metal Type Frequency 
Range

Non-ferromagnetic

Ferromagnetic

PI Δφ Fd
f1

f2

∫=

Ω

Ω

fzero

fair

fair f fzero< <

fzero f fair< <
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Figure 6.9:  Phase response of two coils for varying frequency. The large change
in area between the curves for small inductance changes highlights the superior-
ity of this metric compared with phase difference, , or resonant frequency,

, measurement methods shown.
ΔΦ

Δf

Figure 6.10:  Sensitivity of the RLC series resistance on the PI and single fre-
quency phase difference defect metrics.
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6.4  Finite Element Modelling

6.4.1  Introduction

Having established a relationship between the measurable defect metric and the
coil parameters, the logical progression is to extend this to relate to the actual defect
geometry. The use of finite element modelling (FEM) for the characterisation of
eddy current coils for NDE is particularly attractive since it allows the response to
a variety of defect geometries to be explored that would otherwise be
mathematically intractable to solve. The system can be modelled using a variety of
FEM software packages including COMSOL Multiphysics [115], Vector Fields
Software [116], Quickfield [117] and Maxwell 2D [118] or semi-analytical packages
such as EXTENDE CIVA [119]. The advantage of the latter is that it is relatively
fast compared with FEM techniques and can model complex geometry more
efficiently. As the novelty of the ECA is in its integration with the robotic platform,
it was deemed sufficient to consider only simple geometry. Furthermore, since
speed was not critical and due to the well-established knowledge-base within the
research group, a FEM approach was adopted. As with all numerical
approximations, there is an element of error introduced and a trade-off exists
between the size of this error and the size of the model; with larger models
requiring more time to execute. Furthermore, as it does not produce a closed-form
solution, the response to varying geometrical parameters can only be obtained by
collating the results from a multitude of individual models. This can be a time
consuming but, ultimately, necessary process.

6.4.2  Basic Model

6.4.2.1  Overview

The COMSOL ‘Azimuthal Induction Currents’ application mode of the AC/DC
module was used and, for reasons of computational efficiency, a 2D axi-symmetric
model was defined. Constraining the model to two dimensions also limits the
modelled defects to axi-symmetric geometry however for the simple analysis that
will be investigated in this instance, the approximation is justified. The basic model
consists of five elements, or ‘sub-domains’ as shown in Figure 6.11: the ferrite rod,
wire, metal block, defect and the free-space region which encompasses the entire
model. The z-axis acts as the axis of symmetry around which the model is revolved.
While the use of the inherent symmetry provides a convenient means to simplify
the problem, it does also limit the nature of the defects that can be modelled to
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those that are similarly axi-symmetric. The free space region has a magnetic
insulation boundary condition which sets the magnetic potential to zero along this
boundary. The defect sub-domain is modelled as a free space region having the
same material properties as the free-space sub-domain minus the magnetic
boundary condition. The number of turns, N, the geometry of the defect and all
material properties can be configured, allowing a plethora of inspection scenarios
to be simulated. Table 6.2 shows the properties assigned to each of the sub-
domains. For an aluminium block, the conductivity is 3.7x107 S m-1 and the relative
permeability is one. In order to realistically model the system, and thereby achieve
an accurate prediction of the coil inductance, each coil loop must be modelled as a
separate sub-domain and the skin-effect accounted for. The input current is
defined as 170 mA, equivalent to the maximum output current from a buffer
amplifier [120]. This affects the magnitude of the eddy currents in the plate
however does not affect the flux density/linkage and consequently does not affect
the inductance of the coil (neglecting thermal effects). The total current in each coil
loop consists of two components: the input current (Io) and the induced current,
the latter of which is calculated within the model. As the helical nature of the coil
winding cannot be represented geometrically in a 2D plane, a series of global
constraints are applied to ensure the current in each conductor is constant. An
ordinary differential equation (ODE) is defined for each loop voltage, VN, which
adapts so that the loop current, IN, equals the input current. The loop current is
defined as:

(6.12)

where  is the total current density in the sub-domain of area S. The total voltage
across the coil is given by the sum of the loop potentials as defined in
Equation (6.13).

(6.13)

Assuming the capacitive effects to be negligible, the coil inductance, L, and
resistance, R, are given by the imaginary and real parts of the impedance
respectively:

(6.14)

(6.15)

where f is the excitation frequency (Hz). For a N-turn coil wound around a
cylindrical ferrite core, the inductance can be calculated using Equation (6.16).
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(6.16)

where, K is the inductance factor,  is the permeability of free-space,  is the
rod permeability, Ae is the cross-sectional area of the core and l is the length of the
core taken up by the coil winding. The rod permeability differs from the material
relative permeability in that it describes the increase in inductance between an air-
cored and ferrite rod cored coil rather than the actual relative permeability of the
material; this is typically much higher. The inductance factor takes account of the
extent to which length of the rod is occupied by the current carrying conductor and
is provided by the core manufacturer. For the selected core, having K = 1.6
(corresponding to a winding-core ratio of 0.46),  = 48, Ae = 0.01770 cm2 and
l = 1.5 cm, the calculated inductance is 1.82 mH compared with a simulated
prediction of 1.4 mH. This discrepancy is possibly due to the fact that
Equation (6.16) doesn’t take account of the wire gauge which is 36 SWG (0.2 mm
diameter).
.

L
KμoμrodN

2Ae104

l
--------------------------------------------=

μo μrod

μrod

Figure 6.11:  Basic model consisting of a coil wound around a ferrite core mounted
on top of a metal block containing a defect. The number of turns, nature of the
defect and all material properties can be configured.
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6.4.2.2  Mesh Sensitivity Analysis

In finite element modelling, a mesh is a discretisation of the model geometry into
a series of small elements of some simple shape for the purposes of computation.
As with any such process, the accuracy of the resulting model is dependent on the
level of approximation and hence the mesh element size. Within COMSOL it is
possible to specify several parameters to the free mesh algorithm that specify the
nature of the resulting mesh. The maximum element size defines, unsurprisingly, the
maximum size of any element that may be used and therefore is the minimum
resolution of the model. It is possible to assign different values to particular sub-
domains and edges in order to increase/decrease the local resolution. In the
absence of explicit instructions, the meshing engine determines the element size
throughout the various regions of the model, ensuring that this is always below the
defined maximum. The element growth rate defines the rate at which the size of the
elements can increase from one element to the next. The greater this value, the
larger the potential variation in size between adjacent elements. This parameter is
particularly important where there is a significant difference between the largest
and smallest elements used in the model. 

A mesh sensitivity analysis is important in order to obtain a quantitative estimation
of the scale of the meshing error. The basic model shown in Figure 6.11 is used for
the study, since it contains a defect in the centre of the metal block and therefore
is likely to have the greatest meshing requirements. Initially, the default growth rate
of 50% is kept constant and the element size varied from 7.5x10-5 to 5x10-3. Taking

Property/
Sub-domain

Relative
Permeability

External
Current
Density

 

(A m-2)

Conductivity

(S m-1)

Relative
Permittivity

Ferrite Core 0 0 1

Metal Block 0 1

Defect 1 0 0 1

Coil 1 0 1

Table 6.2:  Properties of model sub-domains

μr Jϕ
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the finest mesh to exemplify the best approximation to the inductance, , the
‘error’ in the coil inductance,  , is calculated as the difference in inductance
for a given mesh size relative to this.

(6.17)

where  is the calculated inductance for a model with a maximum mesh size of 0.1,
0.25, 0.5, 0.75, 1.0, 2.5 and  mm. The mean error and standard deviation is
calculated for 15 different models in which the position of the defect relative to the
axis of symmetry is varied. Table 6.3 shows that the percentage error due to the
maximum mesh size is relatively small at <1.22%. This is understandable given the
fact that the finer regions of geometry will automatically have a denser mesh
applied by the meshing algorithm. 

Thus the maximum element size will only be significant in the less densely
populated regions of the model geometry, such as the upper-right region of the

Max. Element Size (mm) Mean Error (%) Standard Deviation (%)

0.1 0.16 0.0047

0.25 0.72 0.0128

0.5 1.05 0.0155

0.75 1.16 0.0139

1.0 1.22 0.0226

2.5 1.22 0.0214

5.0 1.22 0.0214

Table 6.3:  Mean and standard deviation of error due to max. element size

Growth Rate (%) Mean Error (%) Standard Deviation (%)

1 0.02 0.0052

5 0.13 0.0100

10 0.51 0.0109

25 2.40 0.0391

50 6.86 0.1515

Table 6.4:  Mean and standard deviation of error due to growth rate

Lbest
Lerror

Lerror
L Lbest–

Lbest
---------------------x100=

L
5.0
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model boundary sub-domain. A value of 7.5x10-4 was selected since this ensured
an error of only ~1.1% with an acceptable standard deviation. 

The mean error was subsequently calculated using this new maximum element size
of 7.5x10-4 for element growth rates of 1%, 5%, 10%, 25% and 50% relative to an
assumed best approximation value of 0.5%. It can be seen from Table 6.4 that for
growth rates of 10% and below the mean error is less than ~0.5% where-as for
25% and 50% it is significantly larger, with a significant increase in the standard
deviation. A growth rate of 5% was deemed to be a suitable compromise between
inductance error and model size (and hence execution time).

6.4.3  Lift-off

The response of the coil to lift-off from an aluminium surface is shown in
Figure 6.12 for three frequencies: 100 kHz, 150 kHz and 200 kHz. In this instance,
the original model is modified such that the defect width is that of the metal block
width, and consequently as the depth of this is increased, the air-gap (and hence
lift-off) is increased. The inductance follows a first-order response from a contact
inductance of 1.07 mH tending towards an in-air value of 1.4 mH. As would be
expected, the gradient is steepest for lower levels of lift-off indicating that even
small differences in the height of two coils above a surface will result in a relatively
large change in inductance and hence phase difference. The effect of frequency is
relatively small on the predicted inductance, however there is a significant variation
in the coil resistance between the three frequency intervals, resulting from the skin
effect within the coil. The variation due to the defect is evident at each frequency
interval and also follows a first order response. Figure 6.13 (a) shows the qualitative
distributions of induced current density for a coil placed directly on top of an
aluminium surface while (b) shows the same but for a lift-off of 3 mm. It can be
seen that the current density within the metal block reduces when there is lift-off
resulting in a lower opposing magnetic field and hence a larger coil inductance. 

6.4.4  Sensitivity to Lateral Position and Radius

As discussed in Section 6.2.1, the presence of a ferrite core concentrates the
magnetic flux and hence results in the existence of a region of peak sensitivity along
the probing face of the coil. Any defect within this region which is sufficiently large
that it interrupts the eddy currents in the conducting material would be expected to
have a more significant impact on the measured coil inductance than in any other
region. The sensitivity profile of a coil to the lateral position of a 6 mm deep defect
176



is quantified in Figure 6.14 at 200 kHz for three defect radii: 1 mm, 3 mm and 6mm.
Noting the axi-symmetric constraint, once again, for each defect size the inside
radius is varied from 0.1 mm to 12 mm in 0.1 mm increments. It is evident, from
the inductive response, that a peak exists for a defect positioned at 0.8mm from the
centre of the coil in all cases and that for a radius greater than 10mm the response
of the coil is negligible. As would be expected, the larger the width of the defect the
less conducting area for the eddy currents to occupy and thus the greater the
relative change in coil inductance. As the radius of the ferrite core is 0.75 mm, the
region of maximum sensitivity lies beneath the boundary between the core and the
winding. The response of the coil resistance is more complex. For a 1mm defect,
the maximum occurs at 0.8 mm, in agreement with the inductive results, however
as the width is increased the distinction of this point reduces becoming a local
maximum for a 3 mm width and ultimately just a transition point in the rate of
change of the coil resistance for a 6 mm width. Figure 6.15 (a) and (b) shows the
qualitative eddy current distribution for a 1mm wide slot, of the same depth,
positioned at a radius of 0.8 mm and 6 mm respectively. 

Figure 6.16 shows the effect of varying the radius of a 1 mm, 3 mm and 6 mm deep
defect from 0.1 mm to 15 mm, again in increments of 0.1 mm. As the defect size
increases beyond that of the coil itself, the model tends to that of a lift-off model
and consequently the coil parameters approaches that predicted by Figure 6.12 for
a lift-off equal to the defect depth. Figure 6.17 (a) and (b) shows the qualitative
eddy current distribution for a 1.8x3 mm deep and a 10x3 mm deep defect
respectively.

6.4.5  Sub-Surface Defect

In some instances, a defect, such as erosion in the inner surface of a pipe or
delamination in a multi-layered structure, does not emanate from the inspection
surface. To assess the performance on sub-surface defects, a 1 mm thick cavity was
modelled for varying depths below the inspection surface. As there is a conducting
layer above the defect and in direct contact with the coil, eddy currents will be
generated in this region meaning the reduction in coil inductance due to the void
will be much less significant than for the previous cases. This is exemplified in
Figure 6.18 where the change in inductance can be seen to be very small and
sensitivity confined to a region less than 0.5 mm below the surface. The change in
resistance is more significant with a change of approximately 20  however with a
similar level of depth sensitivity. As for the previous examples, the qualitative eddy
current distribution is shown, this time for a frequency of 100 kHz in Figure 6.19 

Ω
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Figure 6.12:  Lift-off characteristics as predicted by COMSOL simulation for
100kHz, 150kHz and 200kHz.

Figure 6.13:  (a) Qualitative distribution of eddy currents at 200 kHz for a probe in
contact with an aluminium plate and (b) for a lift-off of 3mm.

(a) (b)
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Figure 6.14:  Effect of position of a slot from the centre of the probe on the coil
inductance and resistance for three widths of defects at 200 kHz: 1mm, 3mm and
6mm at 200kHz.

Figure 6.15:  (a) Qualitative distribution of eddy currents at 200 kHz for 1 x 6mm
defect positioned at 0.8 mm from centre of the coil. (b) shows the induced currents
for the same defect at 6mm where the inductance has almost reached its ‘on alu-
minium’ value. 

(a) (b)
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Figure 6.16:  Effect of the radius of a 10mm deep hole from the centre of the probe
on the coil inductance and resistance at 200 kHz.

Figure 6.17:  Qualitative distribution of eddy currents at 200 kHz for coil centred
on a (a) 1.8 mm radius x 3 mm deep defect a (b)10 mm radius x 3 mm.

(a) (b)
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Figure 6.18:  Effect of the depth of a sub-surface cavity from the probing surface
on coil inductance and resistance at 100 kHz. 

Figure 6.19:  Qualitative distribution of eddy currents at a probing frequency of
100kHz for an intermediate defect positioned at (a) 0.1mm and (b) 0.5mm below
the probing surface.

(a) (b)
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(a) and (b) for a cavity located 0.1 mm and 0.5 mm beneath the probing surface
respectively. Given the ideal nature of the model and the limited change in
inductance (and hence resonant frequency), it can be concluded that by using the
frequency range 100-200 kHz, it is unlikely that such a defect could be detected in
practice.

6.4.6  Depth Detection Using Frequency Sweep

In this section, the theoretical analysis outlined in Section 6.3.1 is combined with
the FEM results by inputting the coil resistance and inductance predicted by the
model into Equation (6.8) for a fixed circuit capacitance of 1 nF. This is performed
for different defect geometries. Figure 6.20 (a) shows that by increasing the defect
depth while keeping the radius fixed at 5 mm, the peak phase difference increases
and the frequency at which this occurs varies. This is consistent with the analysis
in Section 6.3. As predicted, the greater the series resistance, the lower the peak
phase difference and wider the range over which the phase difference is non-zero.
Figure 6.20 (b) shows the computed PI against defect depth for various defect radii
in aluminium. The effect of the fixed RLC resistance is shown for a value of 10
ohms (solid line) and for 100  (dashed line). There is a clear relationship between
PI and defect depth, given a fixed radius, and the effect of series resistance can be
seen to be minimal. However, it can be seen that, for a given value of PI, there
exists multiple solutions for the defect geometry meaning that precise defect sizing
cannot be obtained from a single probe position. Similar results are evident in
Figure 6.21 for 304 stainless steel (  and ) albeit with
lower magnitudes, consistent with that expected from the significantly lower
material conductivity. A two-stage imaging process where-by a first pass estimates
the defect dimensions and the second stage re-processes the data to calculate the
depth based on this may be possible although this would be complicated in the,
quite likely, situation where a defect straddles more than one coil. A priori
information of the defect surface dimensions, possibly derived from a visual
payload, could be used in conjunction with the PI to identify the depth of the
defect. The combination of visual and ECA data in this way results in a system
which has greater NDE value than each sensor provides individually. The concept
of sensor fusion will be explored in greater detail in Chapter 6. 

Having derived a sound theoretical basis for a frequency agile ECA system for
defect sizing, Section 6.5 will now outline the development of the system.
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Figure 6.20:  (a) Phase versus frequency plots for different hole depths in alumin-
ium and (b) the phase integral (PI) plotted against hole depth for varying defect
diameters. In (b), the solid and dashed lines represent a RLC fixed resistance of
10  and 100  respectively. Ω Ω

(a)

(b)
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Figure 6.21:  Theoretical phase integral (PI) plotted against defect depth for vary-
ing defect diameters in 304 austenitic stainless steel. The solid and dashed lines
represent a RLC fixed resistance of 10  and 100  respectively. Ω Ω
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6.5  System Overview

6.5.1  Introduction

The eddy current array payload consists of five functional units, as shown in
Figure 6.22: signal generation, drive signal conditioning, coil selection, received
signal conditioning and digital signal processing (DSP). The hardware can be
separated into four modules: the main motherboard, a combined DSP/function
generator (DSP/FG) unit, a received signal conditioning board and the array probe
unit. The DSP/FG board is a multi-purpose, flexible processing unit developed
within CUE for mobile robotics applications and docks into the main
motherboard. It contains a DSPIC33F family microprocessor [121] interfaced with
an AD5930 programmable sweep function generator [122] and performs both the
signal generation and DSP functions. The DSP/FG board slots into the main eddy
current array motherboard containing the electronics that provide the drive signal
conditioning. The eddy current coils are mounted on the separate array probe unit
which contains a bank of multiplexers (MUXs) that determine which coils are
energised. The probe is connected to the main motherboard via a 10-wire custom
interface which allows it to be situated remotely from the main electronics housing.
As the MUXs are mounted on the probe itself, the interface is standard, regardless
of the number of coils, and therefore different probe arrangements can be
connected to the motherboard by simply defining the number of coils in the main
GUI and eliminating the need for any hardware modifications. The received signal
conditioning board provides a hardware filter and amplification stage for the coil
signals and, as with the DSP/FG board, docks directly into the main motherboard.
The loop is completed with a direct connection between the output of the received
signal conditioning board and the analogue-to-digital conversion (ADC) input on
the DSP/FG unit. The final, digital signal processing, stage then takes place on the
microprocessor. The eddy current array motherboard forms a layer of the main
robot electronics stack and interfaces through the primary signal bus. The
communications with the robot central processor occurs over an RS232 interface.
Separate ground and power sources are used for digital and analogue components
throughout, to minimise the effect of noise in the measurement system.

6.5.2  Signal Generation

The AD5930 programmable sweep function generator is programmed to produce
a frequency sweep from 100-200 kHz in 1 kHz increments. As the signal generation
and sampling is performed on the same unit (i.e. the DSPIC processor), each
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frequency interval can be restricted so that it is output only for the length of time
taken by the processor to sample the signal, thereby keeping power consumption
to a minimum. The frequency sweep parameters are set upon initialisation of the
main payload software which occurs at start up. All communications between the
DSPIC processor and the AD5930 takes place over a serial peripheral interface
(SPI) in a master-slave arrangement, with the latter being the slave. The burst
period and frequency increment occur in unison through transitioning the GPIO
connected to the CNTRL pin of the FG board either low-high (start output/
increment frequency) or high-low (stop output). The output signal is a 3.3 Vpk-pk,
DC biassed to 1.65 V with a maximum current of 4 mA.

6.5.3  Drive Signal Conditioning

Each coil is connected in an LC series resonant circuit and forms one arm of a
balanced Wheatstone bridge. The relatively low maximum current output of the
function generator stage is insufficient to drive such a circuit with a reasonable
degree of sensitivity and therefore the signal is first fed through a LMH6718
programmable gain buffer [120], capable of producing 170mA with a bandwidth of
110 MHz from a single +5 V supply. When considering how best to excite the coils,
a trade-off is required between using a current that is high enough to generate a
strong field in the test specimen but which is adequately small that the thermal
effect of coil expansion on the coil inductance can be neglected. Such thermal

Figure 6.22:  System overview separated into the functional units implemented on
the RPC electronics stack and on the probe. 
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effects are important to avoid, in order to prevent time varying measurement
errors. This issue is more pertinent in ferrite-cored probes which can also suffer
from magnetic hysteresis effects due to over-excitation. A variable, ‘tuning’,
resistor is connected in series with the output of the buffer, as shown in
Figure 6.23, to allow the current to be adjusted. The buffer is configured in
inverting mode with a gain of one and the input biassed to 2.5V using resistors R3
and R4 to conform with the single supply operation. This bias is removed by the
capacitor preceding the coil to ensure there is no additional heating of the inductive
element due to the DC excitation.   

6.5.4  Coil Selection

The two coil drive signals, ‘drive-signal 1’ and ‘drive-signal 2’, form part of the 10-
wire probe interface, along with the communications, power and ground. Typical
MUX current ratings are in the region of tens of mA and consequently cannot be
used to directly drive the eddy current coils of a resonant circuit. Instead, a dual-
bank, 16 channel multiplexer [123] is used to drive the activation LED of an opto-
isolated MOSFET [124] as shown in Figure 6.24. Bank A controls the switching of
drive-signal 1 to any of the coils in a particular probe (maximum of 16) and bank
B performs the same task for drive-signal 2. The 0.7 ohm on-resistance of the
MOSFET device ensures there is minimal unwanted damping effect on the LC
circuit and has the advantage that the gate signal is completely separate from the
switched signal thus minimising potential cross-talk. Since each coil can be
connected to either of the drive signals, it is necessary to have a dedicated
MOSFET for each channel. A dual chip package is used to minimise the form
factor of the probe electronics.

The switching process is controlled, for reasons of simplicity of integration with
the main robot software, by the main robot processor through the I2C interface
however this operation could ultimately be shifted to the DSPIC processor in order
to produce a self-contained unit.   

6.5.5  Received Signal Conditioning

The received signal conditioning hardware is a two-stage buffer-filter combination,
shown in Figure 6.25, that docks into the EC array motherboard. While it is not
strictly correct to refer to the coil signal as a ‘received’ signal as in the usual context
of a reflection probe (since it is actually the same as the coil drive signal), it is helpful
here to use such terminology to distinguish the stage at which the signal
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conditioning occurs. The unity gain buffer has a 1.65V bias applied to the non-
inverting input in order to produce a DC offset output signal suitable for
subsequent input into the ADC stage. As the inductive qualities of the coil harbour
the high possibility for electrical interference from the environment, and following
good design practice for the front end of a sampling system, a lowpass filter stage
bandlimits the signal to the range of 0 to 300kHz, set by components R12, C2. The
upper limit is selected so as to ensure a relatively flat response over the sweep range.   

Figure 6.23:  Coil drive circuit diagram consisting of a unity-gain buffer amplifier
feeding into the resistive and capacitive elements of the RLC circuit.
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Figure 6.24:  Coil selection circuit with the connections for channel 1 illustrated.

Figure 6.25:  Received signal conditioning circuit.
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6.5.6  Digital Signal Processing (DSP)

The DSP unit comprises of three stages: data capture, upsampling and phase
measurement. 

Data capture is performed using the integrated ADC chip of the DSPIC33F
processor, configured for 10-bit operation. Each eddy current signal is fed into a
separate ADC channel, both of which are sampled simultaneously when instructed
by the eddy current program. The inputs to the ADC have built-in protection
diodes which prevent damage occurring in the event of a temporary over-voltage.
Each sample is stored in a 16-bit integer format within the 256 byte ADC sample
register and, consequently, only 128 data-points are contained within. The
particular DSPIC used has a 2.2 Msps ADC yielding a Nyquist frequency of 1.1
MHz. Given the 100 to 200 kHz sweep range, this equates to between 11 and 5
sample points per period respectively. Clearly such a low number of sample points
is insufficient for an accurate phase comparison system and would yield
considerable rounding error. It is therefore necessary to perform upsampling. 

Upsampling is the process of increasing the sample rate of a signal in post-
processing. After a signal has been captured using an ADC at a sample rate  then,
for a desired sample rate of ,  zeros are inserted between the original
samples as shown in Figure 6.26 for . This process is known as ‘zero-
padding’ and intuitively it can be seen that, since the time window of the signal has
not changed but there are now -times more sample points, it has resulted in an
increase in the sample rate. When a signal is sampled at a frequency , spectral
repetitions appear at integer intervals of the Nyquist rate of . While the process
of zero-padding does not change the frequency content of the signal, since the
sample rate has now been increased by a factor, , it does result in the appearance
of spectral repetitions below the new Nyquist rate of . Furthermore, the
addition of zeros in the signal, on its own, is not particularly helpful for the purpose
of gaining more points of reference to do phase measurements from. In order to
remove these aliased frequency components and return the signal to something
similar to the original, an ‘interpolating’ filter is used to filter out frequency
components greater than . In the time domain, this low-pass filter interpolates
the zero samples inserted between the original points, thereby recovering the
original signal but sampled at a higher rate. A multi-rate system ensures the most
efficient upsampling system and therefore a different filter is needed for each
upsampling stage. This process is shown in Figure 6.27 for a typical captured signal
upsampled by a factor of two
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Figure 6.26:  Depiction of upsampling process. Signal is upsampled by a factor of
two yielding an effective increase in the sample rate.

Figure 6.27:  Signal captured by ADC before and after upsampling by a factor of
two.
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The original signal captured by the ADC is first fed into a peak detector function
which determines how many periods of the signal were captured. In order to allow
averaging of the subsequent phase measurements to be performed, it is desirable
to have several periods of each waveform available. However, there is a trade-off
between storing this additional data and utilising that memory for upsampling a
more limited number of periods and hence increasing the resolution of each of the
individual phase measurements. Due to the finite memory resources available on
the chip, the maximum size of each upsampled signal buffer is 1030 samples.
Although the data size doubles with each upsampling stage, the removal of the
group delay and limiting the maximum number of periods that are stored mean that
a maximum of four upsampling stages can be performed if necessary. A heuristic
approach was employed to define a maximum of 9 periods and thus, if the original
data contains more than this, only those are retained. In all cases the data is
upsampled at 2.2 MHz, 4.4 MHz and 8.8 MHz with an optional 17.6 MHz stage.
In real terms this equates to three stages of upsampling for frequencies between
100 and 140 kHz and four for frequencies from 141 to 200 kHz. It will be obvious
that sampling a frequency sweep will generate a number of sample points per
period which decreases as the frequency increases. This in turn results in a
decreasing phase measurement resolution. While the upsampling regime does not
solve this problem, it does ensure that the average number of point per period over
the entire sweep is higher and therefore the average resolution of the phase
measurement is greater.

Following the initial capture and peak detection stage, the following steps are
repeated each time the signal is upsampled with the only difference being the filter
that is used. The signal is first scaled in software to occupy the full 16-bit integer
resolution and zero padded, before being shifted through the digital low-pass filter.
Each filter is an equi-ripple low pass implementation ensuring a sharp cut-off
frequency and passband and stop band attenuations of 0 and 30 dB respectively.
Following this, the filter group delay is removed and the process repeated for either
three or four times as is appropriate. The filter length and group delay of each filter
is shown in Table 6.5. The magnitude response of the 4.4 MHz filter is shown in
Figure 6.28.

Once the signal has been processed to ensure there are a sufficient number of data
points per period, the phase measurement algorithm is invoked. As the location of
the peaks will have been affected by the upsampling process, the same peak
detection routine is applied for a second time to ensure that spurious peaks are not
registered. The average period across both signals is calculated and used to calculate
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the phase difference between the peaks of signals one and two. The phase is then
wrapped to -179 to +180 degrees by adding/subtracting one period length as
necessary. The average of all the phase values for this particular frequency interval
is then stored as the resulting phase measurement. Prevention measures are
employed to ensure overflow does not occur and to prevent excessive rounding
errors which could result in incorrect measurements.

6.5.7  Phase Measurement Error

The accuracy of the software phase detection system was quantified at 100 kHz,
150 kHz, 200 kHz, 250 kHz and 300 kHz using a 3V sinusoidal input to the ADC
from a dual channel signal generator. The phase was set on the signal generator and
the EC array software routine, outlined in Section 6.5.6, triggered. Five samples
were taken at each 5 kHz frequency increment over the full range of phase
difference and the mean error calculated. A normal distribution was assumed and
is shown in Figure 6.29 for the tested frequencies. The observed bias is due to the
rounding down preference adopted in the algorithm. Aside from a phase overlap
issue at phases close to o, which were omitted in this instance, the magnitude
of the mean error in the 100 kHz to 200 kHz range is less than 1 degree, indicating
good accuracy from the software algorithm. As the frequency is increased there is
a general trend towards greater mean error coupled with a greater standard
deviation due to the reduction in data points available per period within the
operational frequency range of the ECA system however, the error is acceptable. 

Table 6.5:  Group delay for each multi-rate filter.

Filter Frequency (MHz) Filter taps Group Delay

2.2 16 8

4.4 32 16

8.8 64 32

17.6 151 75.5

180±
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Figure 6.28:  Active bandpass filter frequency response for 4.4MHz upsampling
stage. The Direct-Form FIR implementation passband is between 0 and 300kHz
and the stop frequency is 400kHz. 

Figure 6.29:  Phase measurement error for five frequency intervals. The mean error
of the hardware/software system is shown to be <1% for the frequency range 100
to 200 kHz.
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6.6  Transducers

6.6.1  Linear Array

Initial research centred on the development of a linear array and was focussed on
the inspection of a flat aluminium plate. The geometry and arrangement of the
array both play a critical role in the ultimate performance of the device. Considering
defects whose geometry in one dimension is significantly greater than in another,
such as fatigue cracks, consistent successful detection at the most basic level
necessitates that the inter-coil spacing either be smaller than the lesser dimension
of the defect or a multi-row array be employed where no line across the probe face
fails to cross a coil. The corollary of the former is that there can be no mechanical
support structure to hold the coils and consequently the only realisable solution is
to have multiple rows with each offset such that the centre of each coil in row 
is equidistant between each pair of coils in row . The minimum requirement is
two rows and, as each row is added in the scanning direction, additional rows allow
greater inspection coverage per probe position (and hence speed) but no greater
defect detection capability. To minimise the multiplexing requirements, a dual row
design was adopted as shown in Figure 6.30.  

6.6.2  Circular Array

An alternative design, termed the ‘circular array’, was explored which differs from
the linear design by having a central coil with six satellite coils at 30o intervals. In
this instance, the important design parameter is the radius of the satellites relative
to the central coil, again with the stipulation that no line must exist across the probe
face which does not intersect with at least a single coil. An exploded diagram of the
model and the final realised design is shown in Figure 6.31 (a) and (b) respectively.
The advantage of this probe over its linear counterpart is in situations where there
are a series of points of interest and where a larger field of inspection at each of
these points is valuable.        

6.6.3  Pipe Inspection Array (Fusion Probe)

For pipe inspection scenarios it is necessary to have a probe that conforms to the
diameter of the pipe under test. A single probe, containing spring loaded coils
would provide the greatest flexibility however, for simplicity, a fixed 50 mm
diameter probe was developed. The design itself is similar to a linear array wrapped
in a semi-circle around the diameter and consists of 11 coils as shown in

n 1+

n
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Figure 6.32 (a) and (b). Situated in front of the array is a camera mounting set at a
33 mm offset from the pipe surface to ensure that the full diameter of the pipe is
captured in an image frame. This dual mode sensor is fundamental to the fusion
process that will be discussed in Chapter 7. The sensor unit has two bearings which
allow to it to be scanned in the axial direction of the pipe powered by a linear
actuator. In this way it is possible to capture an image of the pipe and then scan the
eddy current array over the same area, before ultimately fusing the two data sets.    

Figure 6.30:  Linear array comprising of a 16 coil probe in a staggered two row
arrangement.
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Figure 6.31:  Circular array consisting of a central coil with 6 satellite coils. (a)
Exploded solid model showing key components and (b) fabricated probe.

(a)

(b)
197



Figure 6.32:  Pipe inspection array from two perspectives (a) and (b).

(a)

(b)
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6.7  Results

6.7.1  Coil Performance

The magnitude and phase responses of the coils were obtained using a Hewlett
Packard HP4194A impedance analyser and the calculated resistance and
inductance compared against that predicted by FEM. Figure 6.33 (a) and (b) show
the results for a coil on a piece of aluminium containing no defects over a frequency
range of 100 to 200 kHz. It can be seen that the trend is reasonably similar, albeit
with the FEM predicting higher values of both resistance and inductance than was
found experimentally. The difference in the latter is 0.153 mH and remains
relatively constant throughout the frequency range. However, the rate at which the
resistance of the coil increases with increasing frequency is lower in reality than is
expected from the simulation leading to a difference in resistance of 3.9  and 18.3

 at the lower and upper limit respectively. The response of the coils to lift-off
follows much the same trend with, in general, the FEM over-estimating the true
value as shown in Figure 6.34. The rate at which the resistance decreases with
increasing lift-off is lower in reality than predicted from FEM and the relative
difference at each frequency is also smaller leading to an intersection between the
measured and theoretical responses for 100 and 150 kHz. Once again, the
predicted inductance variation shows good consistency with the experimental
results while showing a relatively fixed offset across the 0 to 5 mm lift-off range. 

It is likely that the discrepancy in resistance as a function of frequency is the result
of inadequate modeling of the skin effect in each conductor. A solution to this
would be to implement a finer mesh however this is at the expense of considerably
higher simulation time. This is supported by Figure 6.35 which shows spatial
quantisation of the induced eddy currents in the outer conductors. It is concluded
that for fine coil diameters such as are used, a semi-analytical approach may be
more favourable and result in more accurate results. The coil resistance as a
function of frequency is likely to be further affected by the assumption that the
number of coil windings along the model z-axis is consistent which, in practise, is
very difficult to achieve without professional orthocyclic winding facilities.
Professional manufacture of coils is therefore recommended for future sensors.

Ω

Ω
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Figure 6.33:  (a) Resistance and (b) inductance of a coil against frequency com-
pared with that predicted from FE modelling. 

(a)

(b)
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Figure 6.34:  (a) Resistance and (b) inductance of a coil for varying degrees of lift-
off compared with that predicted by FE modelling. 

(a)

(b)
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6.7.2  Eddy Current Array Imaging

6.7.2.1  Imaging Algorithm 

A multitude of imaging algorithms have been proposed for eddy current systems
however these are typically designed for absolute or reflection probe configurations
and typically involve the calculation of the absolute coil parameters [125, 126, 127,
128]. The following algorithm differs from this in that it is designed specifically to
address the issue of imaging using an array of differentially connected coils. 

The location of the centre of each coil is fixed relative to the local, or ‘probe’,
reference system. As both the linear and circular arrays are designed for the
inspection of flat surfaces, the z co-ordinate of each coil is constant and
consequently can be ignored; for the pipe inspection array, this simplification does
not hold. Figure 6.36(a) depicts the circular array situated such that coil 5 is placed
over a defect. The footprint of each coil is approximated by  pixels. As each coil
is wound by hand, there is an inevitable variation in their construction and hence
performance. Small errors in the number of turns and factors such as non-
uniformity of wire placement around the former will result in an unwanted phase
variation with frequency between any coil pair. It is therefore necessary to perform
a calibration measurement on a sound specimen of metal prior to the start of the
scan. The result of this process is a set of phase vectors, , for each coil pair
( ), which define the ‘ambient’ response of the coil-pairs for each frequency

Figure 6.35:  Induced current distribution showing quantisation in the outer con-
ductors. 

N
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interval. This vector is then used to correct the corresponding result in all
subsequent probe locations, by direct frequency subtraction using Equation (6.18).

(6.18)

where,  is the phase difference vector for coil pair (m, n) at
frequency interval, k, and .

The imaging algorithm is represented in Figure 6.36(b) for two positions, xj and
xj+1 along the x-axis. In both cases, coil 5 is situated over a defect, represented in
the diagram as a black rectangle. As the system is differential and not absolute, it is
not possible to know, directly, under which coil the defect is present. However, it
would be expected that every result that involves this coil would result in a
differential phase response. Thus, by combining the information from all coils of
the array, the most likely location of the defect can be determined. 

The size of the defect can also be determined to a level of accuracy proportional to
the size of the coil and relative coil spacing. 

The phase integral is calculated for each pair of M coils using Equation (6.18) and
the average of all values involving a particular coil,  for m = 1...M, is
then assigned to the N pixels representing that coil footprint equally, as shown in
Figure 6.36(b). For a given probe location, (j, k), the phase data mapped to the pixel
footprints of each coil is transformed from the probe reference system to the image
reference system using Equation (6.19). 

(6.19)

where,  and  are the 2D position of the coil relative to the probe

axis system and the position of the centre of the probe relative to the image axis
system respectively. The appropriate pixels in the image plane are then updated by
adding the mapped values to the existing pixel value. Finally, each pixel is averaged
by the number of samples that it received, to account for multiple measurements
of the same region. 
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Figure 6.36:  (a) Schematic of circular probe showing the relative location of the
centres of each coil relative to the probe reference system. (b) diagrammatic rep-
resentation of the imaging algorithm combining the phase data, Pcoil5(j) and
Pcoil5(j+1), from two probe locations, j and j+1.

(a)

(b)
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This process produces three distinct levels within the resulting image: 

•Noise floor - representing the coil response to areas of no defect.

•Defects - representing the coil response to defects.

•Unscanned areas - where no data has been captured. 

The latter can be minimised, and in fact eliminated, through judicious choice of
scanning resolution.

6.7.2.2  Imaging Simulation

A simulation algorithm was developed, in MATLAB, in order to assess the effect
of different defect configurations on the resulting images. As the imaging system is
independent of the probe used, for simplicity and validation of the later fusion
probe results in Chapter 6, the linear/curved array coil configuration was modelled
for a seven coil probe. This is shown in Figure 6.37 and comprises of a two
dimensional surface, corresponding to the ‘unwrapped’ circumference of the pipe
(x-axis), containing two 10 mm diameter defects modelled using a 1 mm mesh. The
array is scanned along the axial length of the pipe in the y-direction. The model
itself consists of three elements: the pipe (including defects), the array and the
image matrix. The pipe is defined by an N x N matrix of pixels with a value of one
assigned to those pixels that represent a defect and a value of zero assigned
elsewhere. The array is similarly modelled, this time as an M x N array, with the
pixels corresponding to the coil footprint defined as having a value of one. For
simplicity, it is assumed that the sensitivity profile of the coil is uniform. As with a
real inspection, the array template is moved along the pipe in the scanning
direction, in this case in 2 mm increments for speed. At each interval, the pixels of
each coil are multiplied with the coincident pixels of the pipe and the sum across
the coil footprint calculated. This is equivalent to calculating the overlapping region
indicated in Figure 6.37. If the coil is entirely over a defect-free region, this total
will equal zero. If any part of a defect overlaps the coil footprint, this will result in
a total value which is proportional to the extent to which the defect covers the coil.
For each pair of coils, the difference in the total is calculated and added to the pixel
values, corresponding to the coils, of the image matrix, in the same way that the
phase difference is assigned in the real imaging algorithm. This process can be
likened to the increase in the phase difference (in this case pixel difference) as a
defect encompasses more of a coil compared with another coil that is unaffected
by the defect. 

The result of the simulation is shown in Figure 6.38 where two defects regions are
indicated by peaks in the image matrix. As defect 1 and 2 are identical and cover
205



each coil to the same extent, the peak magnitude associated with each defect is the
same. The shape of the defects is not well represented due to the relative size of the
coils and defects, as well as the approximation of the circular shape by the 1 mm
mesh. The ‘noise’ regions are an artefact of the differential system and are an
inherent part of the algorithm as it is not possible to know under which coil the
defect exists, as discussed in Section 6.7.2.1. Figure 6.39 shows the effect of
moving defect 1 by negative 2 mm along the x-axis such that the area of overlap
with coil 0 is reduced while the overlap with coil 6 is increased. The result of this is
that the peak pixel value of the defect 1 indication is now less than for defect 2 and
there is an increased pixel value associated with coil 6. This can be thought of as
‘leakage’ due to the fact that the detection of defect 1 is now less dominated by the
response of coil 0 and increasingly by coil 6. This effect leads to the conclusion that,
for an unknown inspection situation where it cannot be assured that any defects
will be positioned favourably, the pixel intensity cannot be guaranteed to indicate
the defect depth. Rather, the intensity of the pixels in the area surrounding the
defect must also be considered. Scanning at a finer resolution and in the x and y
dimensions would solve this however the inspection time would be much longer.

Figure 6.37:  Imaging model. The difference in the area of overlap between each
coil pair is used to determine the value added to each pixel under the coil footprint
in the image matrix.
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Figure 6.38:  Simulated output of the imaging algorithm, where coils 0 and 1 are
positioned symmetrically over the defects. The resulting pixel values of the image
matrix indicating the defect are equal.

Figure 6.39:  Simulated output of the imaging algorithm, where the centre of
defect 1 is shifted by -2 mm along the x-axis. The resulting pixel values of the
image matrix, indicating this defect, are reduced and there is an increase in the
pixel values corresponding to coil 6. 
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6.7.3  C-Scan Results

6.7.3.1  Comparison with Commercial System

The imaging algorithm outlined in Section 6.7.2 was applied experimentally to a
scan of a section of aluminium containing 16 mm diameter manufactured drill-
holes of depths: 1.1 mm, 0.9 mm, 0.7 mm, 0.5 mm, 0.2 mm, 0.1 mm and 0.05 mm
as shown in Figure 6.40. The circular probe was positioned at 132 positions in a
regular grid covering a region of 150 x 400 mm within which the defects were
located. Following the results of the imaging simulation, the grid was designed such
that the centre of the probe would coincide with the centre of the defects, at the
corresponding location. Figure 6.41 (a) shows the results from the inspection with
the average PI (i.e. corrected for the number of samples per pixel) plotted on the
z-axis and the x and y axes referring to the corresponding axes of the plate. It can
be seen that the four largest defects can be clearly identified with the 0.2 mm defect
also detectable but quite close to the noise floor. As predicted, the value of PI
decreases with defect depth meaning that the relative size of the defects can be
identified from the results. 

In order to benchmark the performance of the system against an industry standard
device, the same defects were inspected using the commercially available Olympus
NDT OMNIScan MX ECA [49]. This 32 coil device uses similar diameter coils and
has an operational frequency range of 20 Hz to 6 MHz depending on the type of
probe used. 

Figure 6.40:  Aluminium test plate containing seven defect with depths from right-
left of 1.1 mm, 0.9 mm, 0.7 mm, 0.5 mm, 0.2 mm, 0.1 mm and 0.05 mm. 
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(a)

(b)

Figure 6.41:  (a) C-scan image generated from data obtained using the ECA sys-
tem at 132 regular locations on an aluminium test plate. (b) shows the same area
of plate inspected using the commercially available OlympusNDT OMNIScan
MX ECA system (largest defect shown on right).
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The use of a frequency sweep is possible only in a piecewise fashion, using this
system, with post-processing then needed to combine the C-scans from each
frequency interval into a single resultant image. Typically, a lower frequency than
the ECA developed in this Chapter is used (5-30 kHz for absolute probe and 5-100
kHz for reflection probe) which minimises the unwanted lift-off effects. The
results of a scan using a manual probe fitted with an encoder are shown in
Figure 6.41 (b) and in this instance, due to the direction in which the probe was
scanned, the largest defect appears on left. It can be seen that all seven defects are
clearly detectable

6.7.3.2  Using Multi-Frequency Data to Reduce Noise

In Section 6.3.1, a relationship for the phase difference between 2 coils was
derived. Setting  = + , where  is the change in inductance, Equation (6.8)
becomes Equation (6.20):

   (6.20)

The use of frequency sweep excitation allows this known functional relationship
with frequency to be exploited to fit a curve to the experimental data and in so
doing significantly reduce the noise. Such a technique could not have been used if
single excitation had been used since this relationship could not be determined.
Assuming that L, R and C are known for all K frequencies within the sweep range,
the mean squared error (MSE) can be calculated for each value of  using
Equation (6.21):

(6.21)

By selecting the value of  that minimises the MSE, a best estimate of  can be
produced for each coil pair, at each probe position. The data from Figure 6.3 (a)
was used to correct the resistance as a function of frequency and  was varied
from 0 to 1 mH in 0.01 mH increments. Figure 6.42 (a) shows a phase
measurement captured containing significant noise and the associated best-fit data
yielded by the above process. Re-processing the data from the plate scan shown in
Figure 6.41 (a) using this technique yields the result in Figure 6.42 (b). It is
immediately apparent that the noise levels have been reduced with many areas
having zero value due to the best fit occurring for  = 0. Consequently, the
0.2mm defect is now much more clearly visible.
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(a)

(b)

Figure 6.42:  (a) Best-fit to experimental data. (b) Re-processed plate scan using
best-fit correction.  
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6.8  Discussion

The novelty of this Chapter is primarily in the integration of the ECA with the
robotic platform. Also, the theory presented on reducing the sensitivity of the
system to the choice of inspection frequency, noise at the inspection frequency and
changes in the circuit resistance using the phase integral approach along with the
estimation of the optimum frequency for phase detection could not be found in any
literature reviewed and is therefore also considered as a contribution. The use of a
frequency sweep excitation has the additional advantage over a single frequency
excitation of being able to exploit the known functional relationship between the
phase difference and excitation frequency of two coils to reduce the noise. 

The ECA system developed has been tested on a variety of defect depths and
found to produce results consistent with those expected through simulation. This
has been benchmarked against an industry standard device and found to detect five
out of the seven defects found using this system. The diameter of the defects used
are of the order of that of the coils however the detection of 0.2 mm depth is
considered reasonably good considering the fabrication facilities available although
falls short of the 0.1 mm depth defined in the specification set out in Chapter 3.
The coil diameter can be scaled down to allow smaller diameter defects to be
detected however this will require more sensitive electronics to detect the signals
resulting from the lower generated field they produce. This is unlikely to present a
significant design challenge, particularly in light of the fact that commercial systems
allow the use smaller coils, however this would need to be evaluated more
thoroughly. The poorer performance in comparison with the commercial system is
believed to be a combination of the variability of the hand-wound coils and the
quality of the electronics used. It is recommended that future systems incorporate
precision, orthocyclic coils and that professional standard fabrication facilities used
to create the PCBs. The significant advantage of the in-house system, however, is
that it can be integrated into a lightweight, low power robotic platform. Although
the OMNIScan MX ECA was capable of detecting the two smallest defects tested
(0.1 mm and 0.05 mm), the associated electronics comes at a significantly greater
size (244 mm x 182 mm x 57 mm), weight (1.2 Kg) and cost (£20-30k). Additional
noise is introduced in the custom ECA through the limitation of a 10bit ADC; the
Moore’s Law nature of microprocessor development means that currently better
ICs are available which could address this problem. As all of the electronics have
been developed using relatively limited in-house facilities, there is an inevitable
compromise in terms of the achievable signal-to-noise ratio. Although the current
speed for complete data capture, processing and communications is approximately
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50 seconds for a 7 coil (21 pair) system, the dominant overhead is the phase
detection at each frequency interval. With the luxury of more development time, it
is conceivable that this could be reduced by an order of magnitude. Given that each
coil pair has 100 frequency intervals, the total number of equivalent single
frequency measurements for a 7 coil probe is 2100. This equates to an interval
acquisition rate of 42 Hz which, when considering the developmental nature of the
system, is reasonably high. Operational speed could be significantly increased
through the use of additional channels and parallel measurement however such
work is beyond the scope of this research.

The FEM approach was found to have limitations for the given wire gauge
manifested by spatial quantisation in the outer conductors of the winding. This led
to an inadequate model of the skin effect resulting in a noticeable discrepancy in
the resistance vs. frequency characteristic. Furthermore, the poor quality coil
windings noted earlier also contributed to a deviation in the model of the resistance
as a function of lift-off. This necessitated the implementation of a calibration
procedure however an element of error was also introduced here. As the frequency
response of the coil varies with defect size (and frequency of peak phase difference
changes), the subtraction of a calibration measurement taken on sound metal on a
frequency-by-frequency basis becomes less accurate with increasing defect size.
Again, through precision construction of the coils, to ensure consistent windings
per layer, the variation between coil performance will be much lower and therefore
the error introduced through calibration will be much less significant.

An upshot of the differential nature of the inspection system is that, for each probe
position, there are two possible solutions that generate the same output data.
Consider the scenario shown in Figure 6.43, where there exists a crack under coils
4 and 5 of the circular probe, termed the ‘defect coils’. As data is collected for each
coil-pair, any results which involve either of the defect coils will produce a higher
value of PI than are produced by any other pair of coils. Crucially, this includes the
result from the two defect coils themselves. As the name suggests, the differential
probe is sensitive to differences in conditions between coils but if two coils experience
the same conditions, whether this be over a defect or over sound metal, the result
will be similarly small. Consequently, defect scenario 1, shown in Figure 6.43 (a) is
indistinguishable from defect scenario 2, shown in Figure 6.43 (b) for a single
probe position. This limitation may be overcome in one of two ways. Firstly it can
be assumed that, in general, as the expected defects are most likely to be small, it
can be assumed that the largest area is non-defective. This naturally leads to a
different limitation whereby very large defects would be assumed to be smaller than
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they actually are. The second solution involves using the data from subsequent
probe positions to update the prediction of the defect size and shape. Considering
the situation depicted in Figure 6.43 (a) where a defect is under coils 4 and 5, if the
probe is shifted to the right and the phase information calculated, two new
possibilities can be defined as shown in red in Figure 6.44 (a) and (b). At this point,
the data from the previous step can be compared with the current results and
consistencies identified. Had defect scenario 2 been the correct form, then it would
be expected that, for the given change in probe position, the coils in the green
region of the probe would be affected instead of the coils in the red regions.
However, the predicted response of the new probe position to defect scenario 1 is
consistent and therefore it can be concluded that this is the correct solution. This
process involves greater computational complexity however provides greater SNR
over the solution outlined earlier as no phase contributions are assigned to coils
which do not result in the expected consistent result for defect location. 

A list of parameters that can affect the performance of any eddy current system was
outlined in Section 6.2.1 and of particular applicability to industrial scenarios is the
variation in magnetic permeability. It was identified in Chapter 2 that all grades of
austenitic steel have some remnant ferromagnetic properties. Cold work can lead
to a partial transformation from austenite to the ferromagnetic martensite phase
resulting in variations in the magnetic permeability. Due to the local nature of such
variations, the effect of cold work could not be calibrated for and hence this
represents a fundamental limitation of the eddy current modality and not of any
particular inspection system itself. 
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Figure 6.43:  (a) Defect scenario 1 and (b) defect scenario 2 are indistinguishable
in a differential phase system.

(a) (b)

Figure 6.44:  (a) Defect scenario 1 and (b) defect scenario 2 where, in both
instances, the probe has been shifted to the right from those shown in Figure 6.43.
In (b), if the defect was of the type of defect scenario 2, the coils affected would be
in the area shown in green rather than in the area shown in red. Thus, there is no
consistent progression for defect scenario 2 leading to the conclusion that the
defect is of the form of defect scenario 1.

(a) (b)
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Chapter 7

Multi-Sensor Data Fusion

7.1  Introduction

Due to the short wavelength associated with optical inspection, the spatial
resolution of a typical camera far exceeds the resolution realisable from a discrete
array of non-optical sensors. However, the increased level of detail exacerbates the
problem of distinguishing true defects from defect-free surfaces. In Chapter 5, the
eddy current array was shown to be capable of detecting defects of varying size and
ultimately providing an estimation of the defect depth. However, to achieve the
required fidelity to accurately determine the shape of a defect requires an
unrealisably small coil diameter and impractically high number of elements. The
corollary of this is to combine data from both sensors into a single inspection result
and thereby gain the benefits of both. Following an indication of likelihood from
the pattern classifier, the area would then be scanned using the eddy current array
and finally an appropriate shape extraction algorithm would be employed and
fusion performed. Such data fusion [129, 130] ties together the three main threads
of this research and is the subject of this Chapter. 

The Chapter begins with an outline of a framework for on-board fusion for any
type of defect while limiting the specific implementation to corrosion pit defects.
Future work will involve extending this to develop the algorithms to process other
types of defect. The Chapter concludes with two examples of on-board data fusion
on a sample containing two artificial corrosion pits (drill holes) and a slot, both in
304 austenitic stainless steel.    
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7.2  Development of a Data Fusion Framework

7.2.1  Scope

Designing an all-encompassing data fusion system for any defect geometry would
consist of a significant research undertaking in itself and the scope within this
research project must therefore be more limited. The aim of the data fusion is
simple: to obtain a better understanding of the defect by the combination of the
visual and ECA data. The available inputs to the fusion algorithm are the ECA
image, the predicted defect class based on the output from the classification system
and finally, the raw image itself from which the defect shape can be determined.
Two data sets are often combined using either a Bayesian inference or pixel-level
approach [129]. A Bayesian system would involve determining the uncertainty in
the defect shape resulting from the shape extraction process along with the
uncertainty in the size of the defect from the eddy current array and then
combining the two data sets using Bayes’ theorem in the same manner as was used
in Chapter 5. The main difficulty with this approach lies in quantifying the
uncertainty in the defect shape for complex geometries. A pixel-level approach may
be implemented in a number of ways including addition, subtraction,
multiplication, division and weighted versions of each of the two data sets. Such
systems require perfect registration and are algorithmically very simple to
implement. The use of Bayesian techniques in the application presented in this
thesis is rather involved and a pixel level approach is favoured with the former
discussed in more detail as part of the programme of future work. The fusion will
combine the defect shape with the corresponding depth indication from the ECA
as shown in Figure 7.1(a). This lends itself well to a pixel-level multiplication
combination since one wishes an eddy current indication of depth within an area
suspected as being a defect to register a strong output while eddy current
indications outwith (that cannot be visually observed) to register a small output.
Adopting a modular approach, a framework for such a system can be established
that involves use of the full complement of data available to the robotic inspection
system and which can be tailored in future as research in this area progresses. For
simplicity, the shape extraction process will be designed primarily for broadly
circular defects (simulating corrosion pits) however the fusion will also be tested
on slots for completeness. A block diagram of the shape extraction process for
corrosion pits is given in Figure 7.1(b). The output from the classifier is fed into
the decision block which implements an appropriate pre-processing method based
on the estimation of the defect class to yield a first guess at the defect shape. 
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Figure 7.1:  Functional block diagram of (a) the data fusion and (b) the shape ex-
traction processes.

(a)

(b)
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Only circular defects will be implemented in this case and therefore only one shape
extraction method is shown. All methods feed the initial shape (or contour)
estimate into the geometric active contour (GAC) block, discussed in
Section 7.2.2.1, which then adapts to arbitrary shapes and ensures a closed contour
solution.

7.2.2  Overview of Procedure for Artificial Corrosion Pits

The shape extraction process used for corrosion pits involves four separate stages
of image processing: edge detection, dilation, Hough transform and GAC
processing. The use of GAC has a large bearing on the processing stages that
precede it and hence the discussion in the following sections will be taken in the
reverse order in which they are applied with GAC being outlined first followed by
the Hough transform as used for circles.

MATLAB was used to perform the processing due to the availability of image
processing toolboxes for the key operations (GAC, Hough transform etc). The task
of porting this functionality so that the data can be entirely processed ‘on-board’ is
one that would require a significant investment of time, however the hardware
resources have been put in place, during the design process, to cater for this. This
final stage of automation is recommended as an area for future work. 

7.2.2.1  Geometric Active Contours

Active contours is an image processing technique that seeks to identify internal
boundaries within an image [131-139]. The original active contour algorithm, or
‘snakes’, modelled a contour as a spline [137]. A set of points defined around the
target object then evolve to encompass it in an energy minimisation process. The
energy function consists of three terms: an internal energy representing the
weighted effects of spline bending and stretching, an image energy constituting the
factor driving the spline to the image features (such as edges and lines) and finally,
an external constraint energy that ensures the spline ends near a local minimum.
The shape of interest should represent a minimum of such an energy function with
each iteration yielding a set of spline points having collectively a lower value of the
energy function and thus a better match to the target feature. The main limitations
of this parametric approach are the dependency of the result on the initial contour
and the difficulty associated with accounting for merging contours. Geometric
active contours (GAC) was introduced to address these limitations and employs the
level set method [138, 139]. Instead of explicitly defining a contour using splines,
in GAC it is defined implicitly as the zero-level set of a level set function. The level
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set function is a 3D surface and so the contour is a 2D slice through it at the zero-
level. Rather than evolving the contour directly, as in the parametric formulation,
the level-set function is evolved according to a particular partial differential
equation (PDE) and consequently so is the contour. This process is shown in
Figure 7.2 with the level-set function being shown in the left-hand column and the
associated contour shown in the right-hand column. An initial guess of the shape
is provided in (a), superimposed on an artificial image, and the initial level set
function in (b) is then calculated based on this starting contour. Following this, the
operation then essentially operates in reverse, with the contours in (b) and (c) being
extracted as slices at the ‘zero-level set’ (x-y plane at ) of their associated
level-set function. In this way, it can be seen that it is possible for the contour to
separate and/or merge in a way that would be very difficult to achieve in a
parametric system, yielding an important advantage over the ‘snakes’ method.
Many variants of the technique exist, with differing methods for implementing the
curve evolution, however the method presented in [131] provides a suitably
automated implementation. Many GAC systems require the level-set function to be
periodically re-initialised to a signed distance function (a function that is
differentiable at all necessary points) in order to ensure numerical stability during
evolution. However, this implementation defines an energy function which
penalises deviations from this function (similar to the internal energy term of the
snakes algorithm) and hence is inherently more stable. The second, ‘external’,
energy term is one that drives the zero-level to the image features.

The main advantage of GAC is that it allows arbitrary shapes to be detected and is
thus much more suitable for NDE applications. For each specific type of defect,
having its own characteristic shape, it may be that in some cases a far simpler
algorithm would provide similar results at a lower computational expense.
However, the advantage of the GAC approach is that it can be used on any defect
and therefore is far more flexible. Thus rather than implementing many different
shape extraction algorithms, each with their own performance characteristics,
GAC provides this functionality within a single system.

As stated, in order to be able to employ the algorithm an initial estimate of the
contour must be provided which is then modified during the search for boundaries.
This can be defined as the outer extremes of the image frame however, it was found
that this did not always guarantee segmentation of two defects due to the effect of
lighting and surface curvature. Significantly better results were achieved by first
identifying the centre points of the defects and then expanding out to find the
boundaries. 

Z 0=
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Figure 7.2:  Evolution of the level-set function. (a) Shows the initial contour on
the image from which the shape is to be extracted, (b) shows the associated level-
set function and contour and (b) and (c) show the evolved functions and contours
for 100 and 300 iterations respectively. 

(b)

(c)

(d)

(a)
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In order to achieve this, and given the a priori knowledge of the defect class (in this
case a circular defect), an edge detection process is used followed by a Hough
transform to identify the centres of any circles having a radius, r. The initial contour
is then defined as a circle of radius  centred at these points, from which point the
active contour algorithm determines the precise shape of the defect. In this way,
the process allows defects that are not perfectly circular to be extracted. The scale
of the captured image is reduced for this process in order to increase the processing
speed of the active contour algorithm and to ensure pixel-pixel registration for the
subsequent data fusion.

7.2.3  Hough Transform

The Hough transform is best known for linear edge detection applications where
each point on an edge can have a range of straight lines of gradient, m, and
intercept, c, defined that intersect it. Each of these lines defines a single point in
Hough space. For points lying on the same straight line there will be one particular
point in the Hough space (and hence one value of m and c) that is dominant and
this corresponds to the true edge parameters. The same theory can be adapted for
detecting circles. Figure 7.3 (a) shows a binary image containing a circular defect
and an additional unrelated artefact generated from a hypothetical edge detection
filter. The resolution of the image is such that the circle is represented by 13 pixels
(0 to 12) and the unwanted artefact by 1 pixel. 

Using a priori knowledge that the artefact of interest has a radius, r, for each edge
pixel, a circle of radius, r, is defined with the pixel as the centre point. This is shown
in Figure 7.3 (b) for three edge pixels, 1 to 3, defining the circle and for edge pixel
13 defining the unwanted artefact. It can be seen that the circles defined on the
circular defect all intersect at its centre-point. An accumulator is used to count the
number of times each pixel is intersected by one of these circles. Extrapolating this
to use all of the detected edge points, it can be seen that a ‘hot-spot’ will appear at
the true defect centre and a threshold can be set to pick it out from the
accumulator. For practical edge detection however, the results are imperfect and a
degree of uncertainty must be tolerated. This is particularly the case for circular
shapes on curved surfaces, viewed in only two dimensions, where the perspective
results in an elliptical representation. Ideally a perspective transformation step
would precede any shape extraction and is a recommended area of future work.
The detection of edges belonging to a circle can, to some extent, be improved be
enhancing (or thickening) the edges prior to the application of the Hough
algorithm. This can be done through a morphological process called ‘dilation’. 
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Figure 7.3:  (a) Image containing a circular defect and an unrelated artefact. (b)
Illustration of the Hough transform.

(a)

(b)
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The dilation operator effectively thickens the binary edges by the size of a given
structuring element (e.g. a disk). The net effect of doing this prior to the Hough
transform is that there is greater tolerance to imperfect circularity however, this is
at the expense of greater uncertainty in the precise location of the centre. This can
be overcome by an additional validation step which discards any centres that are
within a small number of pixels of each other. In practice, the correct radius is not
known in advance and consequently a search process must be employed to find the
correct value. This process in itself can be problematic yielding multiple solutions
however, for the purposes of demonstrating the principle, this will be overlooked
in order to focus on the more important issue of data fusion.

Image registration is inherent through the use of the fusion probe array, outlined
in Chapter 5, and is illustrated in Figure 7.4.   Due to the axial offset between the
EC coils and the array, following the capture of an image using the camera, the
array is driven forward through a distance LensOffset - CamScopey to take it to its
start position. Data capture can then commence with the array being moved
through a distance of 2 x CamScopey.

Figure 7.4:  Image registration is solved by the fixed link between the camera and
the ECA of the fusion probe.   After an image is captured, the array is simply driv-
en forward by a distance LensOffset - CamScopey and the EC scan started from
there.
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7.3  Data Fusion on Real Data

The following section demonstrates the principle of the data fusion process
through a step-by-step example of an inspection on a 50mm diameter section of
304L austenitic stainless steel pipe containing two 10mm through-thickness,
circular defects. The fusion probe fitted with seven coils was used for the
inspection, allowing the same control electronics to be used as for the circular array
probe used in Chapter 6. Figure 7.5 shows an image captured using the built-in
camera module. Both defects are identical however defect two is situated in the
centre of the x-axis of the frame and defect 1 is situated approximately 12mm to its
left and slightly lower with respect to the y-axis. The effect of the curvature can be
clearly seen in the elliptical appearance of defect 1. The effect of a Sobel edge
detection filter and dilation using a two pixel radius, disk-shaped structuring
element is shown in Figure 7.6. Having reduced the resolution of the original data
by a factor of 9, for the computational efficiency of the GAC algorithm, the
necessity for this step is evident by the imperfect circular shape of the defects.
Without this dilation process, the peak magnitude in the Hough accumulator would
be smaller and more distributed, making centre detection difficult. 

The Hough space representation of the dilated image is given in Figure 7.7 with
two regions of local maxima indicated corresponding to the most likely centres of
the two defects. There is less certainty surrounding the position of defect 1
(manifested as a lower peak value) which is to be expected, given its elliptical
representation. The regional maxima (pixels of the same intensity whose value is
greater than those of its boundary) of the accumulator is calculated and those
maxima that exceed a specified threshold are returned as possible centres. The
threshold, t, for this process is specified as , which equates to a pixel having
at least 180o of the circle at a radius, r, from it. Figure 7.8 shows the locations of
possible centres superimposed on the scaled grayscale image. Two clusters can be
identified and the mean of each is defined as the true centre. The initial contour is
generated for each defect, using this data, and fed into the active contour algorithm
in two separate steps. The results of the shape extraction process are shown in
Figures 7.9 and 7.10 at 20, 100, 200 and finally 300 iterations for both defect 1 and
2 respectively. While yielding slightly smaller results than in reality, the algorithm
performs well at adapting to the basic shape of both defects and is stable by 300
iterations. A region of high intensity pixels around defect 2, caused by reflection of
the on-board light source from the rear-inner surface of the pipe, causes the
boundary to be pulled towards the centre at this point, however the adaption to the
remaining boundary is relatively good. 

t πr=
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Figure 7.5:  26mm x 36mm image of 304L austenitic stainless steel pipe containing
two 10mm through thickness defects.

Figure 7.6:  Edge processing stage. This involves applying a Sobel filter to the
grayscale image followed by the application of a morphological dilation operation
using a disk shaped structuring element having a 2 pixel radius.
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Figure 7.7:  The Hough space representation of the edge detected image shows
the locations where the hough circles intersect, indicating the likely centres of a
circle defined by the edges.

Figure 7.8:  Location of centres that have accumulator values that exceed the
threshold and have different values. 
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Having extracted the shape of the defect from the original image, this can now be
fused with the eddy current image. Combining both of the extracted contours while
setting all pixels within each to logic one and all pixels outwith to logic zero yields
the defect mask shown in Figure 7.11. The results of the eddy current scan of the
pipe are given as a 2D representation in Figure 7.12 and wrapped to the diameter
of the pipe in Figure 7.13. Although there is a clear indication of the existence of
some form of defect through the presence of two peaks above the noise level, the
shape information has been poorly represented. This is consistent with the results
of the imaging simulation for the same defect scenario in Chapter 5, and is to be
expected given the relative dimensions of the coils and the defects.   

Fusion is performed, through the multiplication of the ECA data by the defect
mask. This equates to a probabilistic system where the uncertainty associated with
the camera data set is zero. The result of this is to combine the two data sets
yielding zeroes everywhere except within the area defined by the defect mask.
Fusion is performed on a pixel-by-pixel basis as given by Equation (7.1), where i
and j are the pixel co-ordinates and ,  and  are the
ECA, defect mask and fused image values, respectively, at pixel ( ). 

(7.1)

This fusion strategy was adopted due to its computational simplicity, however an
alternative Bayesian method is outlined in Chapter 7 as part of the programme for
future work. 

It can be seen from Figure 7.14 that the result of this yields a far more
representative indication of the type of defect with the 2mm region between the
two defects now visible. The correct registration of the two data sets is evident in
the accuracy of the mapping of the two peaks to the defect mask. That being said,
the inaccuracy of the size of the defect mask means that some data is lost. A
limitation of data fusion in this way lies in the binary nature of the defect mask. If
part of a defect is obscured in the image, and therefore undetectable by the shape
extraction algorithm, then the fused data will be zero at this point. Developments
of the methodology will be discussed as part of a future work programme in
Chapter 7. A criticism of this form of fusion is that any shape of defect that lies
over a noise region of the eddy current image may appear to be defective as all other
regions are masked to zero. This issue can be illustrated by introducing a
registration error into the previous data set such that the camera data coincides with
noise pixels in the ECA data. 

IECA i j,( ) Imask i j,( ) Ifused i j,( )

i j,

Ifused i j,( ) IECA i j,( ) Imask i j,( )×=
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Figure 7.9:  Active contour algorithm on defect 1.

Figure 7.10:  Active contour algorithm on defect 2.
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Figure 7.11:  Defect mask, extracted from camera image, defined as logic one in
the region within the identified contours and logic zero elsewhere.

Figure 7.12:  2D representation of the eddy current array data from the fusion
probe on the test specimen.
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Figure 7.13:  Eddy current data wrapped to pipe circumference with no fusion per-
formed.

Figure 7.14:  Result of the fusion of camera image and eddy current array data
wrapped to circumference of the pipe.
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Figure 7.15 demonstrates that, in this scenario, while the outline of the defect is still
obvious the magnitude is significantly lower than for the correctly registered image
and therefore the interpretation should be straightforward.

A more challenging inspection task is the 2.5mm wide by 1.5mm deep, two-angled
slot, again in 304L austenitic stainless steel, shown in Figure 7.16. The shape
extraction algorithm method was applied again, however in this case the initial
contour was manually created using MATLAB so that, when overlaid on the
original image, its boundary was within the region of the slot. As the edges are more
poorly defined in the case where a defect is not through-thickness, a contrast
enhancing ink was applied to the surface of the slot. Without this, the active
contour algorithm performed very poorly even when a good initial contour was
defined. The defect mask generated by this process is shown in Figure 7.17 and it
can be seen that the shape of the circumferential region of the slot has been
detected reasonably well, however the remainder is less well represented. In
particular, the length of the angled section is underestimated by several millimeters
and the width at the junction of the two slots is only a few pixels wide. The ECA
results, in Figure 7.18, are much more poorly defined than for the larger, through-
thickness defects. However two peaks can be identified, corresponding to the
circumferential section of the slot. 

Figure 7.15:  Effect of registration mismatch on the fusion result.
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Figure 7.16:  26mm x 36mm image of 304L austenitic stainless steel pipe contain-
ing slot coated in a contrast enhancing agent.

Figure 7.17:  Defect mask generated by manually specifying an initial contour
within the region of the slot and subsequently allowing it to adapt.
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Figure 7.18:  Eddy current data wrapped to the circumference with no fusion per-
formed

Figure 7.19:  Fused image and eddy current array data wrapped to pipe circumfer-
ence.
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Although the magnitude of these are only 10% of that of the previous example,
they are still discernible from the background noise level. As in the previous
example, a phase response greater than the noise level is attributed to the image
where any coil is in contact with the defect, which in this instance, occurs over a
larger axial extent. The fusion process provides a more representative illustration
of the defect geometry, as shown in Figure 7.19, however the inaccuracies of the
shape extraction process are evident in the reduction in peak intensity of the fused
ECA data compared with that of Figure 7.18. This is due to the mask being smaller
than it should be and therefore being zero in the pixels corresponding to the
maximum total PI. 

7.4  Summary

In this Chapter, a framework for processing and fusing eddy current array and
visual images has been presented, built around the GAC algorithm. The techniques
outlined represent a first-attempt at data fusion using the full complement of data
available to the robot and are not intended to be regarded as an optimum solution.
Good results have been achieved on relatively ideal synthetic defects (drill holes)
where contrast within the image was good and the ECA gave strong indications of
defect presence. A more comprehensive system must be developed in order to fully
handle different defect geometries and the suitability of the framework must then
be assessed based on its overall performance. The potential for further work within
this area is extensive and the framework presented here will allow for a variety of
methodologies to be implemented. The current system implements a pixel-level
combination technique which is made possible by the inherent registration
provided by the fusion probe. This, rather rudimentary, fusion technique is ideal as
a means of proving the concept of the integrated inspection system, however, does
not take account of any statistical variation in the two data sets. As part of the
programme for future work, a Bayesian fusion system will be suggested which has
very close similarities with the approach adopted in Chapter 5 and could be
considered to be the statistically optimum method of fusion.   
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Chapter 8

Conclusions and Future Work

8.1  Conclusions

8.1.1  Robotic Platform

Previous research within CUE had focussed on the concept of miniature magnetic
wheeled robots however the limitation of this technology to ferromagnetic
surfaces, coupled with their unsuitability for anything other than large diameter
pipes precluded their use in this instance. The result of the present research has
been to create an entirely new robotic platform specific to pipe inspection
applications. An iterative design methodology was adopted yielding, in the first
instance, a linear pipe crawler capable of locomotion along straight sections of pipe.
This model was refined and enhanced in a second design step yielding the lighter-
weight Mark II system, featuring a range of kinematic abilities including
horizontal/vertical motion and movement around bends having a radius of 4 times
the pipe diameter or greater. The fundamental design of both Mark I and II
platforms centres on two interconnected, semi-circular collars whose separation is
controlled by a stepper motor and which constituted the method of generating axial
motion. The semi-circular structure was used for its strength, facility for easy
insertion onto a pipe, ability to overcome pipe hangers and the ease with which it
could be manufactured. The optimised collar design of the Mark II RPC represents
the minimum size solution for the given pipe diameter using such a mechanical
morphology. With the advent of rapid prototyping facilities offering the ability to
create highly complex geometrical shapes, more compact solutions may now be
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possible that would allow the form-factor to be reduced in ways not previously
possible. This was explored with the Mark IIr platform, yielding promising results.

A modular approach was taken to the design of the on-board electronics meaning
that much of the hardware could be used for both the Mark I and II mechanical
platforms. Four modules were used, three of which formed the main processing
stack involved in robot control with the fourth being specific to the NDE payload.
The central processor consists of a 400MHz embedded computer running Linux
interfaced with an 8-bit microcontroller for low-level control. Significant additional
capacity exists over and above that required for the robot control and payload
management creating the ability for substantial processing to take place on-board.
Communications occurs over an 802.11g wireless connection thereby allowing a
fully wireless inspection platform and circumventing practical issues concerned
with the use of an umbilical in the inspection environment. The power
consumption of the system in standby mode is 3.6 W which, using the 11.1 V,
910 m Ah, Li-Po battery leads to a 3 hour standby battery life. Due to an element
of mechanical backlash in the actuators used for gripping, during vertical
locomotion, the effect of gravity requires that one set of grippers be energised at
all times in order to maintain traction. This results in the highest power demand
and thus the biggest drain on battery capacity. For continual vertical locomotion
the battery lifetime reduces from 3 hours to approximately 50 minutes however,
this may be increased through the use of better quality motors with equivalent
backward drive force but lower backlash.

In Chapter 1, the key motivations for remote inspection and deployment of an
intelligent inspection platform were identified as facilitating inspection of areas
where access is restricted, increasing the efficiency of inspection and increasing the
accuracy of the quantitative results. The platform that has been developed has
achieved the first and, by providing a much quicker means of conducting the
inspection than is required to send a human into a processing cell, also the second
goal. The specification outlined in Chapter 3 required the ability to travel along
pipes with a nominal diameter of 50 mm and allow for inline variations of ±10 mm.
This has been achieved through the inclusion of intermeshing grippers. The speed
of the platform was regarded as a secondary design consideration behind kinematic
ability and mechanical stability. Thus, for vertical ascent on a straight section of
pipe, the speed equates to 4.7 mm s-1 however as the cornering mechanism requires
a smaller step-size to be adopted, this reduces to 1.1 mm s-1 around bends. The
significant challenge of maintaining traction on austenitic stainless steel (and other
non-ferromagnetic materials) has been overcome through the application of
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mechanical adhesion whilst still ensuring a low form-factor design. Furthermore, a
fail-safe mechanism has been implemented through high backward drive force
motors to prevent traction loss in the event of a power failure. One limitation that
was not addressed, however, was the inclusion of a system for circumferential
motion. Such kinematic ability is essential for inspecting typical facilities so that the
robot can orient itself correctly in order to pass pipe hangers. While ultimately
necessary for practical inspection, this additional degree of freedom presented an
engineering obstacle that detracted from the key research objectives concerned
with NDE sensing and could not therefore be justified within the given time-scale. 

Given the limited resources and knowledge-base within CUE regarding the
radiation hardening of materials, it was deemed to be beyond the scope of this
research. While ultimately necessary for a multi-use inspection platform, this would
represent no additional contribution to the field over and above that of the
development of the platform and consequently was omitted from the specification.
This approach allowed the focus of the research to be on the creation of the novel
platform coupled with the sensing and fusion capabilities while ultimately
acknowledging this basic limitation.   

Two NDE payloads were integrated with the robotic platform: a camera and an
eddy current array. The camera served a dual purpose role, providing the input for
both defect classification and geometric shape extraction, and is discussed next.

8.1.2  Visual NDE Pattern Classification

A statistical pattern recognition system was created using 2D FFT representations
of the NDE images as inputs and yielding a probability of class membership as its
output. The system was first developed using a set of idealised images featuring
synthetic defect geometry that was congruent with the generation of unique
frequency spectra and latterly using real defects. Four classes were defined for the
development system, corresponding to images having no defects, corrosion pits
and horizontal or diagonal slots (with respect to the image frame). This was
condensed to three for the case of real defects, with only a single orientation of slot
being considered. These (more realistic) defects were created by corroding carbon
steel within circular and rectangular moulds of varying dimensions. In both cases,
the classification system procedure was the same and is based on the eigenfaces
technique used in facial recognition systems. Principal component analysis was
used to extract the eigenvectors ordered according to descending value of the
variance. By constructing a feature vector consisting of a subset of these and re-
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expressing the original 2D FFT data solely in terms of this subset, the size of the
data set was reduced to only two dimensions for both the ideal and real defect
cases. The Mahalanobis distance of each image was finally calculated to each of the
known classes, assuming Gaussian distributions and concludes the classifier
training procedure. As new images are gathered, the frequency data is first
calculated and then expressed in terms of the feature vector before finally the
probability of class membership is determined using the calculated Mahalanobis
distance and the known distributions. For each class, a set of distributions, and
therefore a set probability estimates, are obtained. For both data sets a validation
set consisting of 10 images per class was used to fine-tune parameters such as image
bandwidth, number of training images and size of the feature vector and a test set
consisting of 5 and 10 images per class used, respectively, to characterise the
classifier performance. Several classifier implementations were investigated:
individual binary, binary fusion, individual multi-class and multi-class fusion. The
performance on both data sets was benchmarked against the K-nearest neighbours
algorithm in order to establish a benchmark to assess their performance. 

A statistical classifier, such as this, has an important fundamental difference over
other classification systems, particularly artificial neural networks, in that it is based
on a measurable difference in the actual statistics of the data set. Thus, in contrast
with neural networks where the result is input in advance and a set of weights
adjusted to achieve the desired result, there is no design bias involved in this
system, and therefore it can be confidently concluded that the classifier is
responding to quantifiable underlying statistical differences in the data.

The goal of the approach was to develop a classification system, in MATLAB, that
could primarily distinguish between images containing defects and those that do
not. For the idealised data set it as found that excellent classification performance
could be achieved. A classification rate of 100% was specified and was achieved
using a multi-class sensor approach using the product rule on both the validation
and test sets. The individual binary ND classifier yielded 97.5% which, although
marginally short of the required performance, is still considered to be a very good
result. The greater computational simplicity (no fusion) of the individual binary
approach comes at the expense of a less specific assignment of the image class.
Both results are backed up by very good separation of the underlying data set
allowing a high degree of confidence to be placed in the result. Significantly poorer
performance was achieved using the real data set generated by artificially corroding
steel samples. The product rule, once again, performed best with a correct
classification rate of 73% with the individual binary ND classifier yielding 70%.
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Analysis of the class distributions for this data set indicated that the poor
performance was due to the fundamental lack of distinction between the classes
rather than a failure in the system itself. This was particularly evident between the
ND and CP classes.

The multi-class sensor system using the product rule was shown to achieve a
performance comparable to a KNN algorithm on both data sets. In addition to
this, because of the fundamental statistical basis of this system, a level of
confidence could be attributed to the classification which, if emulated under a
KNN approach, would require a value of K that would actually reduce the
classification rate. The advantage, however, of the KNN algorithm is that it has
significantly less computational overhead associated with it and is therefore
potentially more suitable for on-board, real time processing. Overall, it can be
concluded that, where good separation can be achieved in the underlying data and
where a statistical confidence is more valuable than computational complexity, a
multi-class sensor approach is preferable over a simple KNN algorithm. For NDE
applications, it is felt that the hard decision output (class label) of a classifier such
as KNN is less appropriate and that more value is gained by having some concept
of how confident the system is in that classification. Given the high level of
processing capabilities designed into the platform the computational expense is not
considered to be too significant, particularly since the training process can be done
offline.

For both data sets, the image bandwidth was found to have less of an effect on the
classification rate than the overall dimensionality of the data set. The results of the
real image set highlights a key limitation of the system. The pre-processing stage is
based on the 2D FFT and, as real defects are unlikely to have straight edges,
frequency components are likely to appear at a range of orientations. Furthermore,
regions of high contrast, such as dirt deposits, on the surface will generate
frequency content in the same way that a defect of the same shape would, resulting
in false positives. Lastly, due to the translation invariant property of the 2D FFT,
distributed regions of high contrast will generate frequency content in a wide range
of orientations, mimicking the defining characteristic of a corrosion pit class. The
latter two points can be easily addressed through the incorporation of a treatment
phase, such as dye penetrant with an associated developer, prior to the pre-
processing stage in order to generate a monochrome image. Adoption of such a
system would largely eliminate the effect of contrast regions within images having
no defect and thus would offer a significantly improved correct classification
potential for this high priority class. However, this is at the expense of the
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incorporation of a system for dispensing these fluids in an appropriately controlled
manner. For defects such as a fatigue crack, it is likely that a different approach to
pre-processing would be required. Principally, the subject of differentiating
between scratches and cracks would need to be investigated as well as a suitable
filtering strategy to account for the higher frequencies of interest signifying such
defects. The classification methodology however could be used without
modification since provided the input data has a statistical difference, the proposed
system will be able to identify this and thus classify accordingly.

In practice, it is difficult to obtain the large volume of unique images required for
a truly unbiased performance assessment. Consequently it is acknowledged that the
results reported are likely to be skewed in favour of a correct classification. While
this may be true, the relative comparison of the system against a recognised
benchmark such as the KNN yields a valuable result in itself.

Ultimately, this research has demonstrated that the Eigenfaces technique for
pattern recognition can be successfully applied to NDE images. Further research
is, however, required in order to address the limitations that have been identified.

8.1.3  Eddy Current Array

An integrated eddy current array has been developed that uses a frequency sweep
(100-200kHz) as the excitation signal. The motivation for the use of such a drive
signal lay in the observation that the excitation frequency that maximised the phase
difference between two coils (where one was positioned over a defect) varied with
the actual geometry of the defect itself. An equation specifying the optimum
frequency for a phase detection systems, in terms of the RLC components of the
drive circuit, has been established. Due to the variation in conditions of the
underlying material, a single frequency system is unlikely to be operating at the
optimal frequency and so a swept frequency approach is desirable. A theoretical
framework established a relationship between defect geometry and the integrated
phase difference of the coil voltages across the frequency range. For small defects,
while the phase difference at each frequency interval may also be small, the
accumulated difference across the frequency range yields a metric with a relatively
large change and thus, in theory, a more sensitive system. For both aluminium and
304 austenitic stainless steel, it was found that, given the diameter of a circular
defect, the depth could be determined and vice-versa. In contrast to other multiple
frequency methods, a significant advantage of using this defect metric was in the
relative insensitivity to the drive circuit series resistance. It was shown that for a
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given change in inductance, the peak phase difference reduced by 70% while the
PI reduced by only 2%. The use of a frequency sweep excitation has the additional
advantage over a single frequency excitation of being able to exploit the known
functional relationship between the phase difference and excitation frequency of
two coils and was shown to reduce noise in an image of an aluminium plate. 

The aim of the ECA research was to develop a differential sensor array that could
be integrated with the robotic pipe inspection system and was capable of detecting
defects down to 0.1 mm in depth. The ECA was found to be capable of detecting
a 0.2 mm deep defect which falls short of the required performance. A standard
commercial system as tested on the same specimen and was able to detect all test
defects (down to 0.05 mm). However, the hardware associated with this device
constituted a size, weight and cost that was not feasible for adaption within a
lightweight, low power, mobile inspection platform. Furthermore, access to the
raw data for post-processing is not available. Given the theoretical basis
underpinning the integrated system, it is concluded that the reduced sensitivity is
largely associated with the quality of the electronic design. The limitation of the 10
bit sampling accuracy coupled with the relatively limited in-house manufacturing
facilities mean that achieving comparable SNR with that of a system produced on
a commercial budget is unrealistic. However, the significant advantage of an
integrated solution, as opposed to an adapted off-the-shelf solution, lies firstly in
the flexibility to tailor to an inspection task and secondly in the ability to access data
for further processing. The latter is particularly important where the evaluation of
different imaging algorithms may be desirable. The speed of the system, given its
developmental nature, is relatively high and equates to 42 single frequency
acquisitions and phase calculations per second. As the dominant overhead is the
phase detection algorithm, given further development and refinement of the
program code, the speed could be increased considerably. The use of additional
channels for parallel processing would increase this further and is suggested as part
of the future work programme.

As the coils were wound manually, there was an inevitable variation in performance
and consequently a calibration procedure was necessary. As the frequency response
of the coil is related to the defect size, a frequency-by-frequency correction
becomes less accurate as the defect size increases (and the frequency of the peak
phase difference changes). It was concluded, therefore, that the only way to
substantially improve the result was to limit the variation in coil response through
higher precision construction ensuring consistent numbers of total windings and
consistent number of windings per layer.
242



The full coil was modelled using a FEM package. Limitations in this model arose
due to the small wire gauge and were manifested by spatial quantisation in the outer
conductors of the winding. This led to an inadequate model of the skin effect
resulting in a noticeable discrepancy in the resistance vs. frequency characteristic. 

The differential nature of the ECA was established for its suitability to mobile
robotic applications. However, this restricted the applicability of more common
imaging techniques that utilise impedance calculations and therefore a custom
algorithm was developed. One of the difficulties arising from imaging the phase
difference of a differential pair of coils lies in the fact that it is not possible, from a
single probe position, to know under which coil a defect lies. Thus, the measured
phase difference must be assumed to belong to either coil and therefore added to
the corresponding pixels of the resulting image. However, it would be expected
that if a coil lies over a defect then any phase comparison between this and a coil
on defect-free metal would yield a difference. An unavoidable uncertainty,
however, arises from the fact that the same result would be obtained in the former
situation as would be in the inverse case, where all coils but one are affected by a
defect. This leads to two possible solutions for a given probe location. The first
solution to this is to assume that, given the size of the array, a defect is unlikely to
occupy the majority of the surface and therefore it should always be assumed that
the defect is the smaller of the two solutions. This, however, leads to errors where
in fact such large defects are encountered. The second, more computationally
demanding, solution involves using the data history from a series of probe
positions to update the prediction of the defect size and shape. Such a technique
would result in greater SNR since no phase contributions would be added to pixels
corresponding to coil locations that do not have a defect.      

The fundamental limitations of the ECA system are primarily the limitations of the
eddy current modality. Local variations in magnetic permeability and conductivity
in an otherwise consistent material represent an inspection issue that cannot be
calibrated for and will therefore, in all probability, result in a false positive for
structural defects. The fusion of ECA data with another modality (e.g. visual)
should provide a means of overcoming this.

8.1.4  Data Fusion and the Integrated Inspection System

The data fusion implementation was shown to yield a valuable improvement in the
clarity of the defect over either data set individually. The shape extraction system
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was built around the geometric active contours algorithm in order to provide a very
flexible means of detecting arbitrary defect shapes. In order to achieve best
performance it was found that an initial starting contour should be supplied to the
GAC algorithm and this was implemented for circular defects. The initial contour,
in this instance, was generated using the Hough transform to identify the location
of the centre of any circles having a radius, r. Following this, an initial contour is
estimated as a circle having a radius  and centred at these points. Once a stable
solution has been achieved for each defect, a combined binary mask is created
representing the shape of any identified defect regions within the image frame.

A pixel-level multiplication approach was used to combine the defect mask and the
eddy current array, with image registration provided intrinsically through the use of
the fusion probe. The multiplication algorithm is basically a probabilistic approach
with the uncertainty of the camera set to zero and thus, any areas not suspected by
the camera as having a defect, are taken as defect free. Good results were achieved
for the two circular defects with a significantly better correlation between the
appearance of the fused data and the actual defect than was evident from the eddy
current data alone. The presence of the defect is confirmed through strong
indications from the eddy current array at the precise location and has been shown
to be a distinguishable characteristic, that can minimise the risk of false positives
due to irrelevant surface aberrations. However, the effect of surface curvature was
such that the contrast in certain areas of the defect was poor and subsequently the
adaption to the defect shape suffered at these locations. The fusion process was
repeated for a 2.5mm wide by 1.5mm deep, two-angled slot in the same pipe
material. It was found that if an initial contour was manually defined to lie within
the region of the slot, a reasonably good representation of the defect shape could
be extracted. The size of the defect relative to that of the coils meant that the peak
magnitude of the eddy current image in the location of the defects was only 10%
of the previous result, although still discernible from the background noise level.
The result of the data fusion was consequently poorer than for the well defined
through-thickness holes, however still yielded a more accurate representation of
the shape than the ECA data taken in isolation. Having said that, the inaccuracies
of the shape extraction process coupled with the severity of the multiplication
operator resulted in attenuation of the eddy current data in certain regions. 

An issue with the data fusion mechanism is the effect of surface curvature on the
shape extraction process which tends to distort the natural defect shape. It was
shown that this effect caused circular objects to appear elliptical and, consequently,
so to was the extracted defect mask. This can be addressed through the
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implementation of a matrix transformation using the known lens position relative
to the pipe surface and the lens’ optical parameters. The need to detect the defect
centres in order to define the initial contour complicates the process for unknown
radii of defects and therefore requires a repeated implementation of the Hough
process for radial increments. The primary issue with the method of combination
is the zero uncertainty assumption of the camera. An extension is therefore
proposed in the future work section to address this.   

This research has taken a significant step towards developing an extensive
inspection system that can be used for real industrial pipe inspection applications.
The complete inspection system is shown in Figure 8.1 performing an inspection
of a 50mm diameter, 304L austenitic stainless steel pipe and depicted as a
functional block diagram in Figure 8.2. All sensing capabilities rely on the robotic
platform to deliver them to the desired location and provide a stable structure on
which to perform the inspection. Each payload provides a result that can either be
assessed individually or fed into the data fusion process. A fusion probe has been
developed to provide a means of directly registering the eddy current and visual
data sets. Thus, having arrived at the inspection point, the camera is used to capture
an image of the pipe and, following this, the eddy current array is scanned over the
area of the captured image frame. The process of combining the sensor results links
all of the units of this research and yields a single unified inspection result, that
enhances the clarity of the defect. Following the defect classification process, an
additional processing stage is required, to extract the shape of the defect. This has
been demonstrated convincingly for a 304L austenitic stainless steel pipe
containing two 10mm diameter through-thickness holes. 

8.2  Future Work

The suggestions for further work can be broadly characterised into one of the
following two divisions: robot design and NDE payloads. The robot design is
further sub-divided into mechanical and electronic design and these along with
each of the sensing payloads will be addressed in turn. 

8.2.1  Robot Design

The primary goal of the robotic research within CUE is to produce systems that are
capable of operating in real industrial environments and that would be adopted by
the end-users. Consequently, it is of critical importance that the RPC be developed
to incorporate a means of circumferential motion. 
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Figure 8.1:  Mark IIr RPC inspecting a 50mm diameter, 304L austenitic stainless
steel pipe using the fusion probe.

Figure 8.2:  Integration of the inspection system with each ascending level build-
ing on the functionality of the previous level.
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As outlined earlier, such kinematic ability is essential in order to allow the robot to
correctly orient itself for passing pipe hangers and inspection of the full extent of
the pipe surface. A possible solution that minimises the effect on the overall chassis
design, would be to create a bespoke gripper fitted with omni-directional wheels
[140]. The advantage of this would be two-fold, with the ability to travel around the
circumference being complemented by a means of travelling along straight sections
of pipe much more quickly. Although this increases the kinematic redundancy, as
discussed in Section 3.3.2, this may be advantageous where long sections of pipe
must be traversed. By modifying the gripper rather than the structure of the chassis,
the means of obstacle avoidance is preserved. 

In addition to this, the gripping force should be increased to allow heavier payloads
to be carried as well as increasing the reliability of the traction mechanism and
facilitating low power battery operation through judicious motor control. This is
most effectively achieved through the use of more powerful motors, rather than
the passive spring system outlined in section 4.4.1.1, which is more complex. A key
feature of the motors would be a low mechanical backlash together with a
backward drive force sufficient to support the weight of the robot and payload. The
results of the FEA have been supported by the observed performance, with the
structural strength more than capable of handling the forces exerted on it. Given
these results, there is scope to increase the motor force, as indicated, while still
meeting the minimum displacement criterion.

With the most significant proportion of the development complete, the modularity
of the stack electronics becomes less critical. The integration of these into a single
commercially manufactured board would minimise the form-factor and allow them
to be encased in a shielded housing. This would provide a more robust system with
less risk of the associated interconnect becoming entangled on the surrounding
infrastructure as well as providing a degree of ‘weather-proofing’. At present, the
bandwidth of the communications is not really utilised to any significant degree.
Addition of a real-time video link, ideally mounted on a 2 DOF platform, would be
invaluable for robot control and as a navigational tool. Furthermore, this would
allow visual inspection of adjacent pipework thereby increasing the power of the
system as an inspection tool. The performance effect of the (potentially) severe
multi-path from densely packed pipework should also be assessed. One area in
particular that has not been investigated within this project has been that of
accurate positioning however, this is currently a very active area of research within
CUE. The use of trilateration is limited by the lack of available access ports and the
desire to minimise the number that are opened at any one time. Laser tracking
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technology [141] is a possible solution with the RPC being fitted with a reflective
beacon and the laser tracker automatically following the reflected signature. The
accuracy of such systems is reputed to be in the sub-millimeter range over tens of
meters and algorithms are generally built-in to allow a degree of failure of LOS.

8.2.2  NDE Payloads

It was discussed in Chapter 5 that where a unique frequency spectra could be
obtained, good classification performance could be achieved. The deterioration of
this for more representative images suggests that a pre-treatment phase should be
introduced prior to capturing images. In so doing, the effect of dirt deposits would
be less detrimental to the classification performance since these would be largely
masked by the application of the developer fluid. Furthermore, the effectively
monochrome image rather than the highly reflective, grayscale image of the pipe
surface would yield an input that was significantly less sensitive to the effect of the
surface curvature on the level of light reflection. While the use of such a technique
cannot change the intrinsically less uniform edges found in real defects, the
performance of the defect/no-defect classification would be increased. As the cost
of an error is greater for this classification compared with that of sub-categorising
which class of defect may be present, this would be a significant improvement.
However, the inclusion of such a process would increase the overall time required
to perform an inspection. Finally, the vast processing capacity of the main
processor leads to the obvious idea of implementing the classifier on-board the
RPC. The advantage of this would be to obtain a greater level of autonomy, with
the inspection system then able to operate unsupervised until a defect is
encountered. 

The main improvement in terms of the eddy current array payload involves the
creation of a set of precision coils with a more consistent frequency response across
the working range. Coupled with the production of higher quality drive and sensing
electronics, this would achieve a much higher SNR and potentially allow smaller
defects to be detected. The inclusion of a simultaneous drive and receive signal
capture would allow the phase of each coil to be detected relative to the input
signal. In so doing, the polarity of the phase shift could be determined and
consequently the location of the defect could be identified to a particular coil. This
would greatly improve the resulting image generated by eliminating this positional
uncertainty in a computationally efficient way. Given the luxury of more time, more
robust and time efficient software could have been developed. The use of the
digital filtering capacity of the DSP unit led to a self-contained payload system
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however, by capturing the data and then processing it on the higher memory, main
processor, the accuracy of the phase calculation could be increased leading to a
lower rounding error. Finally, the speed of the system should be increased through
the implementation of parallel coil excitation and processing.

Given the statistical nature of the defect classification system and combination, the
obvious extension is to apply this to the data fusion process. By quantifying the
uncertainty in the shape extraction process along with the uncertainty in the size of
the defect from the eddy current array, the two data sets can be combined using
Bayes’ theorem in exactly the same manner as was used to enhance the
classification results of the multi-class sensor ensemble. The main difficulty with
this lies in quantifying the uncertainty in the defect shape. For simple geometry
such as circles, this can be achieved relatively simply through repeated
measurement of the defect diameter. However, for more complicated geometry
which cannot be characterised by a single metric, the complexity of the problem
increases with the number of varying dimensions. The significant advantage of
such a fusion approach, however, is that it would represent the statistically
optimum solution. An additional suggestion is to implement the functionality of
the data fusion process on-board in order to achieve true, semi-autonomous
operation. Given the extensive processing capabilities designed into the platform,
this will be a trivial, albeit time-consuming, process. 

The concluding suggestion involves the integration of a new sensor payload in the
form of an integrated ultrasonic phased array system. With advances in electronic
technology increasing the processing capabilities within a given form-factor, the
development of a phased array controller suitable for mobile robot applications will
soon be realised. This will combine the benefits of robotic inspection with a highly
flexible, precision sensing system.

8.3  Technology Transfer

This section is intended to be a footnote to the thesis and will briefly outline some
of the key points that must be addressed before this system can be usefully used by
the industrial end-user.

The system in its current shows a high level of potential for inspection use however
it is not yet suitable for deployment in a nuclear processing cell. The design and
kinematic functionality of the system is good however the addition of
circumferential motion must be pursued. The issue of radiation hardening must
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also be given a more thorough analysis and a review of the material choices for all
mechanical and electrical components undertaken (particularly to remove any
Chlorides). The results of the pattern recognition system are promising and some
dedicated research on this could yield a system that could then be implemented on
the robotic platform. In its present state, while the theoretical basis is sound, none
of the classifiers are regarded as being robust enough for field use and require a
more rigorous verification process, ideally with images from the cells in which the
inspections would typically take place. The integrated eddy current array as an
inspection payload also shows significant promise and ultimately only requires
ruggedising and professional quality fabrication before it can be usefully used for
NDE. As the demand for remote inspection in industry increases it is expected that
external pipe inspection systems, such as that outlined in the thesis, will form a
meaningful part of a regular inspection programme.
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Appendix A

Eddy Current Array

A.1  Analysis of Resistive, Inductive and Capacitive 
(RLC) Circuit

The following section provides a derivation of the phase difference for a RLC cir-
cuit as used in Chapter 5.

A.1.1  RLC Impedance

The impedance (Z) of the circuit consisting of a series combination of a resistor,
inductor and capacitor (RLC), shown in Figure A.1 is given by Equation (A.1).

(A.1)

where  is the resistance,  is the angular frequency (rad/s),  is the inductance of
the coil (H) and  is the capacitance (F). Expressed in polar form:

Thus, the magnitude and phase are given by:
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Resonance occurs when the impedance of the circuit is minimum and hence when,

 And at resonance,  and .

The voltage across the eddy current coil may be calculated using the voltage divider
rule as follows:

Figure A.1:  Circuit diagram of resistor-inductor-capacitor circuit (RLC)
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Separating the real and imaginary parts of H yields:

with the magnitude of the voltage given by Equation (A.3).

(A.3)

The magnitude of the coil voltage, , for a unity voltage input, , is given by:

Expanding and simplifying, the following expression is obtained:

(A.4)

The phase of the coil voltage is given by :
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(A.5)

From Equation (A.5), its can seen that, at resonance, the phase of the voltage
across the inductor will be 90o relative to the supply voltage. The phase difference
between two coils, L1 and L2, is given by Equation (A.6).

(A.6)
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