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Abstract

The occurrence, severity, and duration of patient adverse events are routinely

recorded during randomised clinical trials. This data is used by a trial’s Data

Monitoring Committee to make decisions regarding the safety of a treatment and

may lead to the alteration or discontinuation of a trial if real safety issues are de-

tected. There are many different types of adverse event and the statistical analysis

of this data, particularly with regard to hypothesis testing, must take into ac-

count potential multiple comparison issues. Unadjusted hypothesis tests may lead

to large numbers of false positive results, but simple adjustments are generally too

conservative. In addition, the anticipated effect sizes of adverse events in clinical

trials are generally small and consequently the power to detect such effects is low.

A number of recent classical and Bayesian methods, which use groupings of adverse

events, have been proposed to address this problem. We illustrate and compare a

number of these approaches, and investigate if their use of a common underlying

model, which involves groupings of adverse events by body-system or System Organ

Class, is useful in detecting adverse events associated with treatments. For data

where this type of grouped approach is appropriate, the methods considered are

shown to correctly flag more adverse event effects than standard approaches, while

maintaining control of the overall error rate.

While controlling for multiple types of adverse event, these proposed methods do

not take into account event timings or patient exposure time, and are more suited

to end of trial analysis. In order to address the desire for the early detection of

safety issues in clinical trials a number of Bayesian methods are introduced to

analyse the accumulation of adverse events as the trial progresses, taking into

account event timing, patient time in study, and body-system. These methods are

suitable for use at interim trial safety analyses. The models which performed best

were those that had a common body-system dependence over the duration of the

trial.
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Chapter 1

Safety in the Context of Clinical

Trials

1.1 Introduction

Randomised clinical trials (RCTs), conducted under the supervision of a Data

Monitoring Committee (DMC), are the standard method for establishing the effi-

cacy and safety of new treatments [1]. The DMC, in conjunction with an Institu-

tional Review Board (IRB) or Research Ethics Committee (REC), is responsible

for ensuring that a trial is carried out to the highest possible ethical and scien-

tific standards [1], [2]. The DMC will meet at several prearranged times over the

course of the trial to discuss the progress of the trial and consider the impact of

any issues which may have arisen since the last meeting [2]. If deemed necessary

(for example if an unexpected incident has occurred) the DMC may also meet at

other times during the trial. The DMC may make recommendations about the

conduct of the trial based on the evidence available to it when it meets. This may

include recommendations regarding the continuation or termination of the whole

trial or individual trial arms. Reasons for termination before the scheduled end of

the trial may include early demonstrations of the efficacy of the new treatment,

such that it would be unethical to withhold the treatment from the control or

comparative groups. Alternatively, concerns regarding possible safety issues may

arise where the new treatment group is at a higher risk of a serious health issue. In

this case it would again be unethical to continue the new treatment. In addition to

demonstrated benefit or harm, it is also possible that continuing the trial may be

considered futile. In this case the DMC may take the view that it is very unlikely

that the trial will be able to show any efficacy for the new treatment over the

remaining planned duration of the trial [2].

Many different clinical outcomes or events are routinely measured and recorded in
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the course of a randomised clinical trial, and the statistical analysis of these events

may have several different uses within the context of any given trial. In particular

a trial’s DMC may use the analysis of these collected clinical events to recommend

changes to the future conduct of the trial, or to make an interim or final decision on

the overall safety of the treatment. Consequently the analysis of the safety related

data, in particular what are termed adverse events (AEs), is extremely important.

The anticipated effect sizes of adverse events in clinical trials are generally small.

In order to accumulate the number of events to detect statistically such effect sizes,

with a sufficiently high power, either the follow up time has to be very long, or

a large number of patients need to be recruited. While the recruitment of large

numbers of patients may be both expensive and logistically difficult, a further issue

arises from the fact that safety is generally not the primary clinical question of

interest in a trial. The recruitment of large numbers of patients for this purpose

alone may be considered unethical in that it has the potential to expose them to

unnecessary harm.

The statistical analysis of safety or adverse event data from clinical trials is com-

plicated by the large number of different variables recorded. If a hypothesis testing

approach is taken, unadjusted significance tests may lead to large numbers of false

positive results (Type-I errors). However, simple multiple comparison adjustments

risk compromising the already possibly low power to detect important treatment

differences. Consideration also needs to be given to the relative importance of false

positive and false negative errors (Type-II errors). A false negative result could al-

low a potentially serious safety issue to go undetected, which in turn could lead to

health consequences for patients. In effect we must consider both false positive and

false negative errors as equally important when analysing safety data. Recently, a

variety of classical (Mehrotra and Adewale [3], Siddiqui [4]) and Bayesian (Berry

and Berry [5], DuMouchel [6]) methods have been proposed to address this prob-

lem. Although promising, these methods do not yet address the full complexity

of the problem in that they are all generally restricted to the analysis of simple

incidence data and make no use of the severity or, Siddiqui apart, the timing of ad-

verse events. The methods are also relatively complex to implement and there is, to

date, little experience among practitioners in their use. A major part of this study

is to review and compare these and other methods for analysing clinical adverse

event data, and to consider how they may be extended to interim (longitudinal)

data.
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In the remainder of this chapter, we discuss in more detail safety analysis in Ran-

domised Clinical Trials. We give a brief overview of clinical trials and define what

we mean by an adverse event (§1.2). We discuss the role and function of the DMC

(§1.3) and how it relates to safety analysis. We describe the International Council

for Harmonisation (ICH) guidelines, particularly those relevant to statistical analy-

ses in clinical trials (§1.4). We look at some possible typical primary and secondary

outcomes of RCTs, and at the other types of data that can accrue, particularly

safety events, and at how they may be used to evaluate the safety of a treatment

(§1.5). Data recording and the categorisation of adverse events by medical dictio-

naries, for example MedDRA, is discussed in §1.6. The conduct of a clinical trial

(GlaxoSmithKline plc. (GSK) Study EGF100151) is discussed in §1.8, particularly

with regard to safety. We then look at a categorisation and structure for adverse

events which uses an underlying body-system or system organ class (SOC), such

as those provided by standard medical dictionaries, to group the adverse events,

and discuss how this may be used in a safety analysis (§1.9). The chapter ends

with a discussion of the main research questions the project will address (§1.10).

Chapters 2 and 3 provide a review and discussion of some of the statistical methods

currently used to control multiplicities in safety data analysis. We also examine in

some detail the recent new methodologies from the papers [3], [4], [5], [6] with a

view to possibly extending these methods to cover some of the types of analysis not

currently generally performed. In Chapter 4 the methods are applied to the safety

data from GSK Study EGF100151 and discussed. Chapter 5 is a simulation study

on typical trial data with a view to fitting some of the models from Chapters

2 and 3. We wish to gauge their suitability and compare them on data where

the underlying model is known. We also wish to assess if the use of the body-

system information makes a difference to the correct detection of adverse events

associated with treatment. In Chapter 6 we further discuss a number of approaches

to modelling adverse event data at trial interim analyses, and define a number

of models which may be suitable for this purpose. These are demonstrated on

simulated trial data in Chapters 7, and the models which are the most suitable

are identified. Chapter 8 summarises the study conclusions.

1.2 Overview

A clinical trial is a prospective study comparing the effect of an intervention (a

treatment) against a control (for example a standard treatment or comparator

medication) in people [1]. In this project we are primarily concerned with Phase
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III trials. These are large trials, often containing several hundreds or thousands

of participants randomised to treatment or control groups, whose main aim is to

confirm the effectiveness or efficacy of the treatment in a wider population and

to monitor the treatment for possible safety concerns. There are many possible

designs for Phase III trials (see [1], [2] for further discussion).

A Phase III trial generally has a study protocol which provides the context for the

trial and is essentially a roadmap for the overall conduct of the trial. Among other

things the protocol will describe the background for the trial, the trial design, the

definitions of the study population, the identification of population sub-groupings

which may be important, patient enrolment procedures, trial duration, objectives,

and follow-ups.

The trial is usually overseen by a Data Monitoring Committee who tend to be an

independent group of people with relevant expertise. The DMC meets at regular

intervals during the trial and makes decisions regarding the conduct of the trial.

The trial itself may be run in a number of different centres or locations, possibly

starting at different times, so it is important that the DMC receives timely and

accurate data from all centres before it meets.

No treatment is completely safe so there will always be the possibility of safety

issues for patients. Safety issues in clinical trials are usually characterised by what

are termed adverse events. In order to investigate the relationships between these

safety issues and treatments, we need to define exactly what is an adverse event.

The United States National Cancer Institute (NCI) provides the Common Termi-

nology Criteria for Adverse Events (CTCAE) which gives the following definition

which we will use in this study:1

An Adverse Event (AE) is any unfavorable and unintended sign (in-

cluding an abnormal laboratory finding), symptom, or disease tempo-

rally associated with the use of a medical treatment or procedure that

may or may not be considered related to the medical treatment or pro-

cedure. An AE is a term that is a unique representation of a specific

event used for medical documentation and scientific analyses.

The accurate assessment of adverse events is an important part of the role of the

DMC.

1CTCAE Version 4.0: http://evs.nci.nih.gov/
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1.3 Data Monitoring Committees

The Data Monitoring Committee has a number of functions with regard to the

conduct of a clinical trial. In particular, it must ensure that the trial is conducted

as per the protocol and to the highest ethical standards, and it must ensure that

the participants are not unduly harmed [2]. Monitoring trial progress is an ongoing

process for the duration of the trial.

The membership of the committee will typically consist of a statistician or statisti-

cians, clinical experts in the area of the trial and other relevant fields and possibly

an ethicist. Friedman et al. recommend that the committee members be indepen-

dent of the participants, trial investigators and sponsors of the trial [1].2 This will

ensure no conflict of interest should the committee make a decision which may be

contrary to the wishes of the trial sponsor, for example if the committee decide to

end the trial early for safety reasons. The committee may have voting and non-

voting members and meet in in both open and closed sessions. Typically, open

sessions may be attended by trial sponsors, whereas for closed sessions sponsor

attendance may not be allowed, or limited to the principal investigator [1].

The DMC has a number of different priorities. The primary priority is to protect

trial participants from harm. The DMC also has responsibilities to the Institutional

Review Board or Research Ethics Committee, the trial sponsor, and any concerned

regulatory agencies, to ensure trial integrity and that, where applicable, mandatory

reports of serious adverse events are made to the relevant authorities.

The committee will meet at regular intervals during the trial to review the accu-

mulated data presented by a study statistician or, in certain cases, from a separate

statistical centre. The committee will look at data relating to the primary and

secondary objectives of the trial as well as any accumulated safety data. Care

must be taken when making decisions, especially early in the trial where the rates

of recruitment may be different for the individual arms of the trial resulting in

possibly biased data. The committee may look at the blinded data or, if it is nec-

essary, ask for the data to be unblinded. This may occur for example if there is an

apparent serious safety issue on one arm of a trial which, if related to treatment,

2This is in contrast to Pocock who considers that the principal investigator should be included
in the monitoring committee (possibly as chairman)[7]:“...major trials usually need a monitoring
committee which meets periodically to assess the trial’s overall progress. It should include the
principal investigator...The monitoring committee should operate in an advisory capacity leaving
the principal investigator to implement any decisions.”
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may require an alteration to, or even termination of, the trial [2]. In addition to

safety issues, the DMC may also recommend termination of a trial if significant

evidence of beneficial effects is found before the scheduled end of the trial, if it

would be futile to continue the trial, if there are unfixable logistical or data issues,

or the question the trial is designed to answer has already been decided or is in

some sense no longer considered to be important [2].

1.4 ICH Guidelines

The International Council for Harmonisation3 of Technical Requirements for Phar-

maceuticals for Human Use (ICH)4, created in 1990, brings together regulatory

authorities and the pharmaceutical industry to discuss the scientific and technical

aspects of drug registration. As part of its remit the ICH produces guidelines for

many different aspects of clinical trials. These are divided into four main cate-

gories: Quality Guidelines (Q), Efficacy Guidelines (E), Safety Guidelines (S), and

Multidisciplinary Guidelines (M). Of particular interest for safety analysis in clin-

ical trials are the Safety and Efficacy Guidelines which cover safety studies and

clinical trial safety in some detail.

1.4.1 Long-Term Treatment

Document ICH E1 (Clinical Safety for Drugs used in Long-Term Treatment) gives

guidelines for the safety evaluation of drugs intended for the long-term treat-

ment (chronic or repeated intermittent use for longer than 6 months) of non-

life-threatening diseases and raises some issues with detecting rare adverse events.

In particular it states that

safety evaluation during clinical drug development is not expected to

characterise rare adverse events, for example, those occurring in less

than 1 in 1000 patients.

However, it is expected that during clinical drug development there should be

some characterisation or quantification of the safety profile of a drug over a rea-

sonable duration of time, consistent with its intended long-term usage, and that

the safety evaluation should be based on previous experience of the occurrence

and detection of adverse events. ICH E1 makes recommendations regarding the

3Formerly the International Conference on Harmonisation.
4http://www.ich.org/
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size of cohort and length of treatment for the cases where adverse events occur

early in the trial, stating that the number of patients treated for six months at the

expected clinical dosage level should enable the pattern of adverse events to be

determined. For drugs which may cause adverse events later in the trial, or cause

events that increase in severity or frequency over time, the guidelines are for larger

or longer-term safety analyses. For approved treatments, post-marketing surveil-

lance of adverse events provides this type of longer-term safety analysis outside of

the trial environment.

1.4.2 Pharmacovigilance

Documents ICH E2A-E2F deal with Pharmacovigilance. Document E2A gives the

definition of an adverse event, details of how an adverse event’s seriousness and

severity may be classified (discussed further in §1.6.2), and what events should be

subject to expedited reporting. The definition of an adverse event in ICH E2A is

almost identical to that given by the NCI (§1.2). In addition to adverse events,

ICH E2A defines a number of similar safety related terms. Adverse Drug Reactions

are considered to be

all noxious and unintended responses to a medicinal product related to

any dose.

An Unexpected Adverse Drug Reaction is defined as an

adverse reaction, the nature or severity of which is not consistent with

the applicable product information (e.g. Investigator’s Brochure for an

unapproved investigational medicinal product).

E2D and E2E deal with post-approval safety data management and pharmacovig-

ilance planning. For treatments in the post-marketing phase there are Sponta-

neous Report Adverse Event Databases for the collection of the occurrences of

adverse events. Some regulatory agencies and drug monitoring centres have de-

veloped computerised methods for identifying potential reporting relationships in

large databases [8], for example the US Food and Drug Administration (FDA) use

a Bayesian data-mining approach [9], and the World Health Organization (WHO)

use a Bayesian neural network[10].
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1.4.3 Reporting and Statistical Analysis

Document ICH E3 deals with the compilation of a clinical study report which would

be acceptable to all regulatory authorities of ICH regions and includes guidelines

for safety reporting. ICH E3 recommends that safety related data be considered at

three levels. Firstly, a measure of the exposure (duration, dose, drug concentration)

should be given in order to evaluate to what degree safety can be assessed in the

study. Secondly, there should be a summary of the common adverse events, with

tabulations of their occurrences and a comparison of the rates between treatment

groups. This comparison is often done using crude adverse event rates but ICH

E3 also states that not every adverse event needs to be subject to a “rigorous

statistical evaluation” but that it may be appropriate to include life tables or

similar analyses which may be more informative than the crude rate. Thirdly,

serious adverse events, other significant adverse events, related withdrawals and

deaths should be identified and tabulated and if any of these events represents a

previously unsuspected adverse effect of the treatment then this should be noted.

Again, life tables or similar analyses may be used to assess the overall risk.

1.4.4 Statistical Principles for Clinical Trials

Document ICH E9 (Statistical Principles for Clinical Trials) sets out the statistical

guidelines for assessing efficacy and safety in clinical trials. ICH E9 §4.5 describes

interim analyses and a number of reasons for early stopping in a trial, mainly

concentrating on the use of stopping boundaries, and also discusses the possibility

that monitoring multiple endpoints may require the adjustment of significance and

confidence levels (described in more detail in ICH E9 §5.6). With regard to safety

analysis, ICH E9 §6.1 states:

The incidence of a certain adverse event is usually expressed in the form

of a proportion relating number of subjects experiencing events to num-

ber of subjects at risk. However, it is not always self-evident how to

assess incidence. For example, depending on the situation the number

of exposed subjects or the extent of exposure (in person-years) could

be considered for the denominator. Whether the purpose of the calcu-

lation is to estimate a risk or to make a comparison between treatment

groups it is important that the definition is given in the protocol. This

is especially important if long-term treatment is planned and a sub-

stantial proportion of treatment withdrawals or deaths are expected.
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For such situations survival analysis methods should be considered and

cumulative adverse event rates calculated in order to avoid the risk of

underestimation.

With reference to the potential multiplicities of adverse events, the guidelines

suggest using descriptive statistics with confidence intervals, but if a hypothesis

testing approach is taken, then statistical methods to control the multiplicities are

appropriate. The issue of “background noise” when accounting for adverse events

is also discussed. Methods suggested for dealing with this include ignoring adverse

events of mild severity, or requiring that an event should be observed at repeated

visits to qualify for inclusion.

1.5 Clinical Trial Outcomes

1.5.1 Primary and Secondary Clinical Trial Outcomes

The primary objective is the main interest for the trial and will often be framed

in terms of a hypothesis test where interest lies in whether the treatment has a

different outcome than the control. The primary objective is the basis for choosing

the size of the study [1] and may be something as simple as a decrease in all-

cause mortality between the treatment and control groups. The primary response

variable could be the time to a clinical outcome, such as death in this case. There

may be a small number of secondary objectives which are additional questions of

interest that the study may be designed to help answer. The trial investigator may

also be interested in the responses of a number of (protocol defined) population

subgroups under treatment versus control. As the trial is sized to answer the

primary objective, the power to detect differences for the secondary objectives, or

in sub-group analyses, is reduced.

The multiplicity of objectives, possibly combined with a number of planned interim

data analyses, even excluding additional hypotheses regarding adverse events, pro-

vide a number of issues for the analysis of the trial data. Continued retesting of

accumulating data has the potential to inflate the Type-I error. (Group) Sequen-

tial Methods with various stopping rules or α-spending functions may be used to

control this phenomenon [11], [12], [1]. Similarly, there are a number of procedures

for controlling the error rates when testing multiple hypotheses (§2.3).
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1.5.2 Safety Outcomes in Clinical Trials

While laboratory investigations and early stage (Phase I) trials may indicate possi-

ble safety issues with a treatment, it is not ethically feasible to run a Phase III trial

with safety as the primary outcome [1]. However, even though treatment safety is

not the primary focus of Phase III trials, it is still extremely important and there

are a number of advantages to conducting a detailed safety analysis as part of the

trial.

An analysis of the adverse events during the trial, as opposed to post-hoc observa-

tions, can be considered a prospective study and adds to the overall credibility of

the trial [1]. In addition, as many trials are blinded and balanced with regard to

trial arms we may get an unbiased, fair comparison of adverse event occurrences

on each arm. Outcomes from safety analysis may lead to further research on ad-

verse events, even if no statistically significant differences between treatment and

control are detected. However, there are limitations to what such an analysis can

tell us. Trial participants are a selected sample of a particular population based

on the trial protocol defined criteria. They may be healthier than the population

with the condition the treatment is designed for and certain groups, such as preg-

nant women or individuals with specific types of medical conditions, may have

been excluded. The absence of adverse events in lower risk groups does not nec-

essarily mean that a treatment is safe and it is possible that safety issues may be

understated [1].

The lower statistical power of secondary hypotheses means that randomised clinical

trials may be unreliable in detecting rare adverse events and if the trial duration

is relatively short, but the treatment is for longer term or chronic use, then later

occurring adverse events may be missed. Many types of adverse events are found

post-approval and, in particular, chronic use treatments need to have a continued

safety evaluation. Low power concerns could be overcome by larger and longer

trials, however these may have the same ethical issues as running a trial primarily

for safety analysis, as well as logistical and economic difficulties, although ICH

document E1 does allow for larger or longer safety analyses in certain circumstances

(§1.4.1).

A possible alternative is to combine safety data from multiple trials in a meta-

analysis, although these types of analysis are not always straightforward. Friedman

et al. highlight several issues including, but not limited to, the difficulties finding
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and including all relevant studies due to possible publication bias, differences in the

treatments administered, different study populations, different follow-up periods,

different measures of outcome, and difficulty accessing all relevant data [1, Ch. 17].

1.6 Recording Data in Clinical Trials

On enrolment in a trial a large amount of subject data is recorded. This will

generally include non-clinical variables such as sex, age, and other information that

the investigator has decided is of interest. In addition, there will be a number of

clinical variables which will be used to monitor the patients’ responses to treatment

and may include other aspects of a patient’s clinical history. Some of these variables

may not be directly of interest in a statistical analysis, but others may be relevant.

Both clinical and non-clinical variables may be used to segment the population into

subgroups and hence may be used as covariate information in statistical models

for the trial. Pocock classifies patient evaluation into four categories [7] (§3.5):

• Baseline assessment before treatment.

• Principal criteria for patient response.

• Subsidiary criteria, e.g. side-effects (including adverse events).

• Other aspects of patient monitoring.

In many jurisdictions the collection and reporting of adverse events is a regulatory

requirement. If individual patients are assessed regularly by a clinician then the

timing, duration and severity of any adverse events the patient may have experi-

enced can be recorded. In order for this information to be useful for analysis, both

within the trial and for comparison with other trials, a common terminology for

the adverse events is required. The NCI CTCAE, or medical dictionaries such as

MedDRA (§1.6.1), provide such a reference terminology.

The NCI CTCAE provides a relatively straightforward format for identifying ad-

verse events. It consists of a number of adverse event categories or System Organ

Classes (SOCs), 26 as of version 4.0, and individual definitions for identifying the

adverse events within a particular SOC. It also provides a mapping of its terms to

MedDRA and has the added advantage that it does not require a subscription.

11



1.6.1 Medical Dictionaries

A Medical Dictionary is a dictionary of the various terms used in medical practice.

A suitable dictionary should be usable in clinical settings and related areas. There

are a number of medical dictionaries in current use all of which provide similar

services.

MedDRA (Medical Dictionary for Regulatory Activities)5 was developed by the

ICH. It is widely used by regulatory bodies, clinical research organisations (CROs),

and pharmaceutical companies, and is maintained by the Maintenance and Sup-

port Services Organization (MSSO) which releases updated versions twice a year.

COSTART (Coding Systems for a Thesaurus of Adverse Reaction Terms) is a

dictionary provided by the FDA for the classification of adverse events. It has

largely been replaced by MedDRA. WHO-ART (World Health Organisation Ad-

verse Reaction Terminology) is a similar dictionary to COSTART maintained by

the Uppsala Monitoring Centre (Sweden)6 for the World Health Organisation Col-

laborating Centre for International Drug Monitoring7.

Both WHO-ART and MedDRA have a similar hierarchical structure consisting

of System Organ Classes (SOC) and various grouping and descriptor terms. The

hierarchy allows for a medical condition or possible adverse event to be expressed

in a number of different ways. A goal of the hierarchical structure is to standardise

a medical condition by linking all of its possible descriptions. The WHO-ART

dictionary describes a four level hierarchy consisting of a System Organ Class

(SOC), High Level Terms (HLT), Preferred Terms (PT), and Included Terms (IT).

Figure 1.1 shows an example from the Heart rate and rhythm disorders SOC.

MedDRA describes a similar hierarchy to WHO-ART and in fact it includes aspects

of both COSTART and WHO-ART. It has a hierarchical structure with five levels

consisting of System Organ Class (SOC), High Level Group Terms (HLGT), High

Level Terms (HLT), Preferred Terms (PT), and Lower Level Terms (LLT). The

PT is a single medical description of a symptom or observation while the LLT is

how a patient or data recorder would describe a symptom or observation. Each

LLT belongs to one PT and, in general, data will be recorded at the LLT level

but reported at the PT level. The MedDRA LLT corresponds to the WHO-ART

IT. There are 26 SOCs and over 70,000 LLTs. MedDRA supports Special Search

5http://www.meddra.org/
6http://www.umc-products.com
7http://bioportal.bioontology.org/ontologies/WHO-ART
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Figure 1.1. WHO-ART hierarchy for Heart rate and rhythm disorders.

Image reproduced with permission from the Uppsala Monitoring Centre.

Categories (SSOs) which allow PTs, which have similar causes but which belong to

different SOCs, to be grouped in the same category, and has a querying technology,

Standardised MedDRA Queries (SMQs), which give groupings of terms that are

related to a particular medical condition or syndrome. MedDRA also supports

dictionary terms belonging to more than one SOC.

1.6.2 Recording and Classifying Adverse Events

The recording of adverse events may be done in a number of ways. A trial form

with a pre-prepared checklist of adverse events may be used, or information can

be solicited directly from the patient. Occurrence is only one aspect of an adverse

event. The frequency of occurrence of the event and a measure of its severity are

also of interest. The exposure time for the patient may be important if a treatment

does not cause an adverse event until it has been in use for a certain period, or

if the adverse event occurs shortly after a treatment is administered. If a patient

is taken off treatment or has their dose reduced, then this could be considered a

measure of the severity of the adverse event.

Freidman et al. consider three general categories of adverse event: (1) serious ad-

verse events (SAEs), (2) general adverse events, and (3) adverse events of special

interest [1]. Severe adverse events are those which are life threatening, result in

hospitalisation, are in some sense irreversible or persistent or result in significant

disability, congenital anomaly, or birth defect. There is usually a requirement to
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report these to relevant regulatory agencies within a certain time period of their

occurrence. This is essentially the definition given in ICH E2A (II.B) (§1.4). Spe-

cial interest adverse events are events whose occurrence may indicate potential

issues with the treatment. These are often identified before the trial commences

and defined in the trial protocol. General adverse events are those other events

which may be recorded and whose symptoms may range from mild to severe.

The NCI CTCAE includes a simple numerical grading system for the severity of

adverse events from 1 to 5, with the explanation of each grade shown in Table 1.1.

Severity Grade Description

1 Mild

2 Moderate

3 Severe

4 Life-threatening

5 Death

Table 1.1. NCI CTCAE: Adverse event severities.

For each individual adverse event in the NCI CTCAE the actual definition of what

constitutes a particular grade of adverse event is given. Not all adverse events

have all grades defined. As an example, the NCI CTCAE defines Hyperkalemia

as a disorder characterised by a laboratory test that indicates an elevation in the

concentration of potassium in the blood. It is associated with kidney failure or

with the use of diuretic drugs. It is in included in the Metabolism and nutrition

disorders system organ class. The different grades of Hyperkalemia adverse events

are given in Table 1.2.

Serious Adverse Events as defined in [1] correspond to Grades 4-5 in the NCI

CCTAE classification, with General Adverse Events corresponding to Grades 1-3.

The Safety Planning, Evaluation and Reporting Team (SPERT), a technical group

of the Pharmaceutical Research and Manufacturers of America formed in 2006, de-

fines a three tier categorisation of Adverse Events, used in a number of publications,

as follows: Tier 1 events are those events for which we have a specific hypothe-

sis; Tier 2 events are those other events which are routinely collected during the

trial but about which there is no hypothesis (common events); Tier 3 events are

rare (possibly serious) events, these may be clinically important and may require
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Severity Grade
Concentration of Potassium
(millimols/litre); Characterisation

1 ULNa - 5.5 mmol/L;

2 5.5 - 6.0 mmol/L;

3 6.0 - 7.0 mmol/L; Hospitalization indicated

4 > 7.0 mmol/L; Life-threatening consequences

5 ; Death

Table 1.2. NCI CTCAE: Adverse event severity grade definitions for
Hyperkalemia.

a Upper Limit of Normal.

specific evaluation [13], [14].

While it is possible to use any medical dictionary which provides a classification

of adverse events, or syndrome groupings, as the basis for a modelling approach,

the models we will investigate, which primarily use hierarchical groupings, do not

directly depend on the dictionary, if any, chosen.

1.7 Safety Analyses in Clinical Trials

Safety analysis in clinical trials is mainly concerned with the analysis of adverse

events suffered by patients over the course of the trial. Of primary interest is

any difference in the occurrences of adverse events on the arms of a trial. For

our purposes, following Freidman et al., we define a safety signal as a concern

about an excess of adverse events on a treatment arm as compared to the control

[1]. We wish to determine as far as possible if this safety signal is associated

with the treatment or has occurred by chance. It may also be of interest if the

occurrence of adverse events in patients under any treatment is higher than in the

general population. This will occur naturally if the control arm is a placebo, but

it may also be possible to make statements regarding the general population if

the background rates of event occurrence are known. Care must be taken as the

necessarily restricted treatment population may not be directly comparable with

the general population. Within the context of a safety analysis we must be aware

that some adverse events may be “anticipated on the basis of known biochemical

properties of the investigational product or similar products or possibly from prior

preclinical or clinical data” ([15], ICH E2A). For these adverse events the trial may

incorporate specific hypotheses about their occurrence, or they may be an accepted
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risk for the patients in the trial (Tier 1 events). These adverse events are often

considered of special interest (§1.6.2) and a particular focus on the occurrence of

these events is required. However, for a large number of the adverse events recorded

there will be no pre-defined hypotheses regarding their occurrence, and their role

in the safety profile of a particular treatment will be unknown.

The statistical methods suggested for analysing safety data in the ICH Efficacy

Guidelines range from tabulations of adverse events and descriptive statistics, to

analysis of the crude event rates and lifetable and survival analysis. Whatever

methods or models are used, if we take the approach of hypothesis testing the

occurrence of adverse events under treatment versus control, we will have the

following issues:

• as there are a large number of adverse events there will be a correspondingly

large number of hypotheses, particularly if we analyse safety data at interim

points in the study, leading to the possibility that adverse events may be

flagged as associated with treatment by chance;

• as trials are sized for efficacy of the primary outcome the power of any tests

performed will generally be relatively low unless the rate of occurrence of the

adverse events is large.

Rather than a direct hypothesis testing approach it can also be considered that a

safety analysis is required to provide some sort of assessment of the association of

adverse events with a treatment. This is more of an exploratory approach to safety

analysis than the hypothesis testing approach which, when unadjusted, and given

the large number of potential hypotheses, could in fact be considered a form of

data-dredging. In §1.8 we look at both the general conduct of, and safety analysis

in, a specific clinical trial.

The recent approaches to the analysis of adverse events in [3], [5] and [6] have

used groupings to address the issues noted above. Bayesian methods ([5], [6]) also

have the advantage of being able to address directly the multiplicity issues through

the choice of prior distributions. These methods are discussed in more detail in

Chapters 2 and 3.
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1.8 Lapatinib and Capecitabine versus

Capecitabine in Women with Refractory

Advanced or Metastatic Breast Cancer

In this section we look at the application of some of the principles described above,

particularly with regard to safety analysis, in a clinical trial for women with ad-

vanced or metastatic breast cancer.

1.8.1 HER2 Positive Breast Cancer

HER2 (human epidermal growth factor receptor 2) is a protein encoded in the

ErbB2 gene and found on the surface of normal breast cells. Overexpression of

ErbB2, leading to high numbers of HER2 receptors, plays a role in the progression

of certain types of aggressive breast cancer, often referred to as HER2 positive

(HER2+) breast cancers. These cases account for approximately 25-30% of all

breast cancers and the prognosis for the patients is generally poor [16].

A number of targeted therapies are currently available and research is active in

this area [17]. The most common targeted therapy is trastuzumab (Herceptin R©),

a monoclonal antibody which works by binding on to the HER2 receptor and

preventing the cells from dividing and growing. Chemotherapy (anthracyclines,

taxanes, and other drugs) may also be given in combination with trastuzumab.

However, trastuzumab is associated with cardiac dysfunction ([18]) and many pa-

tients do not respond to this treatment, with resistance to it also developing over

time [19], [20].

1.8.2 Trial Overview

EGF1001518 was a GSK sponsored Phase III randomised clinical trial evaluating

Lapatinib and Capecitabine versus Capecitabine in women with refractory advanced

or metastatic breast cancer, overexpressing ErbB2, who had prior treatment which

included anthracyclines, taxanes, and trastuzumab. The study period was from 29

March 2004 to 18 February 2010. Capecitabine, a chemotherapy, is considered to

be the control in this trial. Lapatinib is a targeted therapy which inhibits HER2

[21]. There were three clinical study reports (CSRs), two during the study, and a

final report at the end of the study, details of which are given in Table 1.3. All

8ClinicalTrials.gov identifier: NCT00078572

17



the data, trial descriptions, and a number of different publications referenced in

this section, which reflect various aspects of the trial, are based on these reports,

which are available through the GSK clinical study register.9

Effective
Date

Study Period GSK ID Description

09/08/06 29/03/04 - 15/11/05 UM2004/00001/00
Planned interim
analysis (§1.8.4).

08/09/06 29/03/04 - 03/04/06 ZM2006/00137/00
Enrolment
complete (§1.8.4).

14/03/11 29/03/04 - 18/02/10 2010N107773 00 End of trial.

Table 1.3. Trial EGF100151: Clinical study reports.

1.8.2.1 Primary and Secondary Outcomes

The primary outcome was time to tumour progression (TTP) as assessed by

blinded independent review based on imaging data and investigator assessment.

Secondary outcomes included overall survival, progression-free survival, 6-month

progression-free survival, overall response rate, clinical benefit response rate, time

to response, duration of response, and safety measured according to the NCI CT-

CAE (Table 1.1).

1.8.2.2 Data Monitoring Committee Role

The Data Monitoring Committee was to review efficacy and safety data during

the trial with the possibility of stopping the trial early if:

• there were strong safety issues (harm);

• there was strong evidence of superiority of lapatinib and capecitabine over

capecitabine (benefit);

• there was strong evidence that lapatinib and capecitabine would fail to show

superiority over capecitabine if the trial was to run to completion (futility).

9http://www.gsk-clinicalstudyregister.com/

18

http://www.gsk-clinicalstudyregister.com/


1.8.2.3 Interim and Final Analyses

The interim analysis of TTP was planned after 133 events (progressions or deaths

due to breast cancer) using O’Brien-Fleming stopping-boundaries for assessing

efficacy or futility in the lapatinib and capecitabine arm [22]. The final analysis of

TTP and secondary endpoints was planned to occur when 266 or more events had

occurred, with survival data collected until 457 deaths had been observed, when

another analysis of overall survival was to be performed [21].

1.8.2.4 Statistical Methods

The primary outcome was framed in terms of a hypothesis test, with the null

hypotheses being that the hazard ratio (HR) for TTP for lapatinib and capecitabine

compared to capecitabine, λ, was greater than or equal to 1, and the alternative

hypothesis being λ < 1. The study was designed to have 90% power to detect a 50%

increase in median TTP, estimated to be 3 months for capecitabine and 4.5 months

for lapatinib and capecitabine, and 80% power to detect a 30% improvement in

median overall survival, estimated at 8 months for capecitabine and 10.4 months for

lapatinib and capecitabine. The planned power for the trial required the enrolment

of 528 subjects.

Efficacy measures for the primary outcome, overall survival, progression-free sur-

vival and progression-free survival at 6 months were based on survival analysis

techniques with stratified log-rank tests, estimates of hazard ratios (Pike estima-

tor), Kaplan-Meier curves, and estimates of medians and quartiles all being used.

For overall tumour response rate treatment arms were compared using Fisher’s

exact test. There were no adjustments for multiplicity and no specific statistical

analysis was planned for safety other than summary statistics (§1.8.2.6).

1.8.2.5 Study Populations and Randomisation

The study population consisted of non-pregnant, non-lactating women over the

ages of 18 with a confirmed diagnosis of invasive, progressive mestastatic advanced

breast cancer, with ErbB2 (HER-2/neu) overexpression, who had been exposed to

a number of therapies excluding capecitabine. A full description of the inclusion/ex-

clusion criteria may be found in the study reports (Table 1.3).

The randomisation of the subjects was stratified into three groups according to

stage and site of the disease, with the intention of balancing the groups. The

planned, randomised, and actual totals under treatment and control are given in
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Table 1.4.

Lapatinib plus
Capecitabine

Capecitabine

Planned 264 264

Randomised1 198 201

Total Under Treatment 207 201

Table 1.4. Trial EGF100151: Population randomisation.
1 There was a change to enrolment after the first interim analysis (§1.8.4).

There was a difference in the populations used for the efficacy analyses and the

safety analyses. The population used for the efficacy analyses was the intention-

to-treat population, while for the safety analyses the population was based on

the actual treatment received. The per-protocol population was only used in a

supplementary analysis of the TTP data.

1.8.2.6 Safety

Adverse events were coded using MedDRA and grouped by system organ class.

They were graded by the NCI CTCAE where applicable. Summaries were provided

by frequency, percentage of total subjects, system organ class, and preferred term.

Serious adverse events were given additional separate reports.

Phase I studies had indicated that orally administered lapatinib is well tolerated

in doses up to 1,800 mg daily, with the majority of adverse events reported ei-

ther grade 1 or 2 including diarrhea,10 skin rash, fatigue, anorexia, nausea, and

vomiting. Some serious adverse events were reported: dyspnoea, dehydration, neu-

tropenia, episodes of interstitial pneumonitis, and decrease in left ventricle ejection

fraction [23]. The adverse events in Table 1.5 were identified as being of special

interest for the trial.

PPE is a frequent adverse event for capecitabine and has its own capecitabine

specific toxicity rating (UM2004/00001/00).

10The spellings diarrhea and diarrhoea are used interchangeably in the CSRs.
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Adverse Event CTCAE System Organ Class

LVEF1 Cardiac disorders

PPE2 Skin and subcutaneous tissue disorders

Diarrhea Gastrointestinal disorders

Table 1.5. Trial EGF100151: Adverse events of special interest.
1 Left Ventricular Ejection Fraction.
2 Palmar-Plantar Erythrodysaesthesia / Hand-foot syndrome.

In addition to adverse events of special interest, the trial also defined serious ad-

verse events (§1.6.2) to be those which resulted in death, were life threatening,

required hospitalisation or prolonged existing hospitalisation, resulted in disability

or incapacity, were congenital anomalies or birth defects, were grade 4 laboratory

tests, were grade 3+ or 20% decrease from baseline LVEF (cardiac dysfunction),

were grade 3+ symptoms of pneumonitis, were hepatobiliary events where Alanine

Aminotransferase (ALT) > 3 × Upper Limit of Normal (ULN) and total bilirubin

> 2.0 × ULN (> 35% direct). It was a study requirement that SAEs be reported to

GSK within 24 hours to allow GSK to fulfil its legal obligations to report adverse

events to the relevant regulatory authorities.

1.8.3 Trial Conduct

1.8.3.1 Data Collection and Recording

Safety and efficacy assessments were performed every 6 weeks for the first 24 weeks,

and then every 12 weeks, and at end of treatment. Additional safety checks were

performed on all subjects every 3 weeks. Laboratory and clinical responses were

used to determine toxicity and disease progression.

The investigator had responsibility for detection and documentation of adverse

events (UM2004/00001/00, pg: 38). Events which were part of the natural course

of the disease were excluded. Any abnormal laboratory finding or assessment de-

tected at baseline, or during the study, which significantly worsened and met the

definition of an adverse event was recorded. All adverse events were collected from

first dose to 30 days after last dose and the intensity of the adverse events as

graded by the NCI CTCAE was recorded. Ongoing adverse events were reviewed

at subsequent assessments and followed until resolution. The investigator was re-

quired to assess the relationship between the treatment and the occurrence of any
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adverse event using clinical judgement to determine that relationship with alterna-

tive causes being considered. The investigator was also required to identify study

defined serious adverse events.

Information was recorded during the study on GSK case report forms (CRFs)

which were reviewed for completeness and accuracy and entered into the study

database. The CRF contains specific pages for recording general and serious ad-

verse events. The non-serious adverse event form is shown in Figure 1.2.

The importance of serious adverse events to study progress is reflected in the

CRF where several pages are available to record safety data. The SAE part of

the CRF contains information at the individual patient level, including details

of the treatment the patient received, relevant medical conditions or risk factors,

concomitant medications, and details of assessments or examinations that were

part of the subject’s care for the adverse event. The first page of the SAE form is

shown in Figure 1.3.

Figure 1.2. Trial EGF100151: Non-serious adverse event recording form.
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Figure 1.3. Trial EGF100151: Serious adverse event recording form.

1.8.4 Interim Analysis and Trial Changes

The clinical cut-off date for the planned interim analysis was 15 November 2005

(Table 1.3). By this date investigators had identified 146 TTP events in 321 ran-

domised subjects. However, an independent review committee who were blinded

identified only 114 TTP events, lowering the power of the interim analysis and,

as a result, the O’Brien-Fleming stopping-boundaries were adjusted. The interim

analysis showed a significantly longer TPP for lapatinib and capecitabine compared

to capecitabine, HR = 0.49 (0.34, 0.71) and, based on the recommendations of the

data monitoring committee, enrolment to the trial to the trial was discontinued

and, as of 3 April 2006, cross-over was offered to subjects receiving capecitabine.

The 15 November 2015 data was queried and re-validated, resulting in the inde-

pendent identification of 121 events in 324 randomised subjects, but the difference

between the groups remained significant. The median TTP was 36.7 weeks in the

lapatinib and capecitabine group compared to 19.1 weeks in capecitabine.

By the termination of enrolment 399 patients in total had been randomised, 9 were
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being screened and were then offered lapatinib and capecitabine, giving the totals

in Table 1.4. In addition 36 patients crossed-over to lapatinib and capecitabine.

The early termination of enrolment and cross-over reduced the power to detect

differences in overall survival [21].

1.8.5 Efficacy Results

For the primary outcome lapatinib and capecitabine increased TTP with a hazard

ratio of 0.57 (0.43-0.77). The addition of lapatinib to capecitabine provides a sta-

tistically significant and clinical benefit for subjects with HER-2+ advanced breast

cancer [24].

For overall survival, the median survival times were 75.0 weeks for lapatinib and

capecitabine versus 64.7 weeks for capecitabine, with hazard ratio 0.87 (0.71, 1.08),

p-value = 0.210. The trial changes following the interim analysis resulted in a loss

of power to detect differences in overall survival, but there were indications of a

trend towards better survival with lapatinib and capecitabine [21].

While treatments may delay disease progression, toxicity can negatively impact

on subjects. Quality of life was assessed during the study using the Functional

Assessment of Cancer Therapy-Breast (FACT-B) and EuroQoL (EQ-5D) ques-

tionnaires [25]. While no statistically significant differences were detected between

the groups, the quality of life (QoL) direction was consistently in favour of the

lapatinib and capecitabine treatment.

1.8.6 Safety Analysis

The toxicity of the treatments was to be assessed by clinical and laboratory pa-

rameters and classified by the NCI CTCAE. If necessary, treatment delays of up to

two weeks were possible for both lapatinib and capecitabine to allow for reduction

in toxicity. Subjects with more than two weeks toxicity were generally withdrawn

from lapatinib. For the adverse events of special interest (Table 1.5) additional

precautions were taken, with subjects with an NCI CTCAE grade 3 or 4 LVEF

or interstitial pneumonitis being withdrawn from lapatinib (UM2004/00001/00).

We have seen in §1.8.3.1 that in addition to the clinical and laboratory analysis

investigator judgement was an important part of adverse event analysis.
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1.8.7 Interim Analysis Safety Report

Two reports were produced as a result of the interim analysis (Table 1.3). The first

report included data up to the interim analysis cut-off date (15 November 2005).

The second report included data up to the end of enrolment (03 April 2006).

In this section we look at the data from the first interim analysis (15 November

2005). The actual safety population (based on treatment taken) consisted of 164

patients for the lapatinib and capecitabine arm and 152 for the capecitabine arm.

The safety aspects of the report are summarised in [26]. The most common ad-

verse events are shown in Table 1.6 where the p-values are from a Fisher exact test.

Adverse Event
Lapatinib plus
Capecitabine

(164)

Capecitabine
(152)

p-value

Diarrhea 98 60 <0.001

Nausea 72 64 0.830

Vomiting 43 37 0.800

Stomatitis 24 18 0.570

Abdominal pain 25 32 0.230

Constipation 16 17 0.820

Dyspepsia 18 5 0.014

PPE 80 74 1.000

Rash 45 23 0.011

Dry skin 18 8 0.100

Fatigue 29 41 0.060

Mucosal inflammation 18 19 0.800

Asthenia 10 18 0.110

Headache 15 20 0.340

Pain in extremity 21 13 0.300

Back pain 17 9 0.220

Anorexia 25 30 0.370

Dyspnea 18 10 0.240

Table 1.6. Trial EGF100151: Incidence of the most common adverse events (all
grades), 15 November 2005 [26].
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The most common adverse events are diarrhea, nausea, vomiting, PPE, fatigue,

and rash and most were grade 1, 2, or 3. Looking at the data from a purely hy-

pothesis testing point of view, using a significance level 0.05 and not accounting

for multiplicities, we can see that diarrhea (0.0005), rash (0.011), and dyspep-

sia (0.014) would be considered significant. Applying the Bonferroni correction

(§2.3.1.1) leaves diarrhea as the only significant adverse event. The difference in

incidence of diarrhea was due to an increased number of grade 1 and 2 adverse

events in the lapatinib and capecitabine group. For rash the difference was mainly

due to grade 1 events.

The proportions of serious adverse events considered by investigators to be related

to the study treatments were similar between the groups. For the adverse events

of special interest 6 subjects in the lapatinib and capecitabine arm and 1 in the

capecitabine arm experienced a decreased LVEF. All 6 in the combination therapy

were considered drug related and 4 were considered serious adverse events. None of

these adverse events resulted in subject discontinuation. For PPE, approximately

half of the subjects in the each group had an adverse event, with the mean duration

shorter in the lapatinib and capecitabine group.

The safety conclusions from the interim report were that while diarrhea was more

common in the lapatinib and capecitabine group, this was due to lower grade events,

and the overall incidence of adverse events between the groups was similar, as was

the incidence of serious adverse events. Other aspects of safety based on clinical

chemical toxicities were considered, and similar incidences were reported for each

group. Overall, at this stage of the trial, the conclusion was that lapatinib and

capecitabine was well tolerated by the subjects.
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1.8.8 Final Safety Report

The final clinical study report (CSR: 2010N107773 00) concluded that the inci-

dence and type of adverse events was consistent with previous analyses (§1.8.7),

with the majority of adverse events seen being grade 1 or 2. The most common

serious adverse events, those experienced by more than 1% of the trial subjects,

are listed in Table 1.7. None of these are statistically significant at the 0.05 level

using a Fisher exact test. Of the recorded adverse events, 326 affected one percent

of the population or less (on both treatment arms).

Adverse Event
Lapatinib plus
Capecitabine

(210)

Capecitabine
(191)

Diarrhea 15 12

Dehydration 7 5

Vomiting 4 4

Dyspnea 4 4

Ejection Fraction Decreased 5 2

Pulmonary Embolism 4 2

Anemia 3 1

Hypokalemia 3 1

Pyrexia 2 2

Convulsion 2 1

Hyponatremia 2 1

Left Ventricular Dysfunction 0 3

Mucosal inflammation 1 2

Nausea 0 3

Table 1.7. Trial EGF100151: Serious adverse events experienced by more than
1% of subjects, final clinical study report.

For adverse events of any grade Table 1.8 show the most frequent adverse events,

the top 10 in each group, along with the p-values from a Fisher exact test.
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Adverse Event
Lapatinib plus
Capecitabine

(210)

Capecitabine
(191)

p-value

Diarrhea 145 78 <0.0011

PPE 130 106 0.223

Nausea 98 85 0.689

Vomiting 63 43 0.112

Fatigue 51 49 0.817

Decreased Appetite 44 42 0.809

Rash 61 20 <0.0012

Abdominal Pain 31 30 0.889

Stomatitis 37 23 0.125

Headache 29 30 0.672

Mucosal Inflammation 33 25 0.480

Asthenia 27 24 1.000

Constipation 24 24 0.760

Dyspnea 31 16 0.061

Table 1.8. Trial EGF100151: Most common adverse events (all grades), final
clinical study report.

1 Actual p-value: 0.000000015.
2 Actual p-value: 0.000003.

We can see from the table that diarrhea and rash have much higher counts on the

lapatinib and capecitabine arm and this is confirmed by the very small p-values of

the Fisher exact test. Both the adverse events remain significant at the 5% level

when applying a Bonferroni correction over the adverse events in the table. If we

look at most common adverse events by grade on each arm (Tables 1.9 and 1.10),

we can see that rash is not among the top six most common adverse events on

the capecitabine arm and counts consist of mostly grade 1 and grade 2 events,

with only 2 grade 3 events recorded, both on the lapatinib and capecitabine arm.

For diarrhea, again the majority of events are of grade 1 and 2, but there were 2

grade 4 events on the lapatinib and capecitabine arm and more grade 3 events, 31

compared to 20. We know from Table 1.7 that diarrhea was the leading serious

adverse event for both trial treatments.
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Adverse Event
Severity

Total
1 2 3 4 5

Diarrhea 64 28 31 2 0 145

PPE 27 67 36 0 0 130

Nausea 62 31 5 0 0 98

Vomiting 36 22 5 0 0 63

Rash 41 18 2 0 0 61

Fatigue 23 21 7 0 0 51

Table 1.9. Trial EGF100151: The six most common adverse events by grade on
the lapatinib and capecitabine arm, final clinical study report.

Adverse Event
Severity

Total
1 2 3 4 5

PPE 23 53 30 0 0 106

Nausea 55 27 3 0 0 85

Diarrhea 32 26 20 0 0 78

Fatigue 21 21 6 1 0 49

Vomiting 26 14 3 0 0 43

Decreased 31 10 1 0 0 42

Rash 16 6 0 0 0 20

Table 1.10. Trial EGF100151: The six most common adverse events, and rash,
by grade, on the capecitabine arm, final clinical study report.

A number of deaths were determined to have occurred from serious adverse events,

6 on each arm, and a small number of patients experienced LVEF events [21]. Eight

of the subjects who experienced LVEF events were considered to have had serious

adverse events, but all of them reported as asymptomatic.

The overall conclusion from a safety point of view was, in agreement with the

interim analyses, that lapatinib and capecitabine is well tolerated. There are higher

incidence of some adverse events, particularly diarrhea, but the majority of these

were grade 1 and 2.
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1.9 Grouping of Adverse Events and the

Body-System Approach to Safety Analysis

In §1.8 we have seen a standard approach to safety analysis in a clinical trial.

The trial protocol defined special interest adverse events and what constituted a

serious adverse event, with clinical judgement playing an important role in the

safety analysis. Based on the most common adverse events (Table 1.8) diarrhea

appears to be, at least statistically, associated with the lapatinib and capecitabine

arm of the trial, as is rash. However, it was known from Phase I studies (§1.8.2.6)

that diarrhea and rash were adverse events whose appearance might have been

expected, and diarrhea was defined in the trial protocol as an adverse event of

special interest (Table 1.5). Most diarrhea and rash events were grade 1 or 2,

and the conclusion of the safety study was not just that diarrhea or rash were

expected adverse events of lapatinib and capecitabine, but that the treatment was

well tolerated.

Even though the treatment is considered to be well tolerated, the confirmation

of diarrhea and rash as expected adverse events is of interest. We have seen that

when applying a multiplicity controlling procedure to the most common adverse

events, that both remain significant (§1.8.8). However, the correction was applied

only over the set of 14 adverse events from Table 1.6. The actual total number of

different adverse events (or, more specifically, preferred terms) recorded in the trial

was 497 over 23 system organ classes summarised in Table 1.11. In fact even for this

large a number of potential hypotheses, when we apply a Bonferroni multiplicity

correction, both diarrhea and rash remain significant, such is the strength of the

signals associated with these events.

Table 1.12 shows the 10 adverse events which were significant at the 5% level for

a Fisher exact test. After the application of the Bonferroni correction, 8 of the

10 adverse events which are individually significant at the 5% level are no longer

deemed significant, they are being swamped by the number of potential hypotheses.

Even epistaxis and dyspepsia, which have what could be considered small p-values,

are not flagged. This issue is further compounded by the fact that of the 497 adverse

events considered, 326 had incidences of 1% or less on both treatment arms. When

controlling for multiple hypotheses, these very low incidence adverse events make

it difficult to flag any but the strongest signals.

In this particular trial, where no multiplicity controls were applied and diarrhea
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System Organ Class
Number of

Adverse Events

Gastrointestinal disorders 58

Skin and subcutaneous tissue disorders 46

General disorders and administration site con-
ditions

31

Nervous system disorders 37

Musculoskeletal and connective tissue disorders 23

Infections and infestations 53

Respiratory, thoracic and mediastinal disorders 36

Metabolism and nutrition disorders 17

Eye disorders 26

Investigations 42

Psychiatric disorders 11

Blood and lymphatic system disorders 12

Reproductive system and breast disorders 16

Vascular disorders 16

Hepatobiliary disorders 8

Injury, poisoning and procedural complications 17

Cardiac disorders 17

Renal and urinary disorders 12

Ear and labyrinth disorders 2

Neoplasms benign, malignant and unspecified
(incl cysts and polyps)

11

Immune system disorders 3

Surgical and medical procedures 2

Endocrine disorders 1

Total 497

Table 1.11. Trial EGF100151: System organ classes and adverse event totals.
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System Organ
Class

Adverse
Event

Lapatinib plus
Capecitabine

(210)

Capecitabine
(191)

p-value

Gastrointestinal
disorders

Diarrhea 145 78 0.0001

Skin and
subcutaneous tissue
disorders

Rash 61 20 0.0002

Respiratory, thoracic
and mediastinal
disorders

Epistaxis 18 4 0.004

Gastrointestinal
disorders

Dyspepsia 24 7 0.004

Skin and
subcutaneous tissue
disorders

Dermatitis
acneiform

8 0 0.008

Musculoskeletal and
connective tissue
disorders

Muscle
spasms

12 3 0.035

Infections and
infestations

Localised
infection

10 2 0.038

Musculoskeletal and
connective tissue
disorders

Arthralgia 22 9 0.039

Musculoskeletal and
connective tissue
disorders

Back pain 27 13 0.047

Skin and
subcutaneous tissue
disorders

Nail
disorder

13 4 0.049

Table 1.12. Trial EGF100151: Adverse events significant at the 5% level, final
clinical study report.

1 Actual p-value: 0.000000015
2 Actual p-value: 0.000003
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and rash are expected adverse events, this may not be an issue, particularly if any

adverse events which may be significant are not clinically interesting. However, if a

number of unexpected adverse events had arisen on one particular treatment arm

and were possibly of interest, we could consider how we would determine if these

events were associated with treatment in an environment where we wish to control

for multiplicities. So, for example, epistaxis (nose bleed) may not be of clinical

interest in this trial but could be potentially distressing for a subject. The 10

adverse events flagged were from were from 5 different system organ classes, with 3

from Musculoskeletal and connective tissue disorders, 3 from Skin and subcutaneous

tissue disorders, 2 from Gastrointestinal disorders, and 1 each from Respiratory,

thoracic and mediastinal disorders and Infections and infestations. This raises the

possibility of the existence of potential relationships between the adverse events

within a system organ class, and one possible approach is to attempt to use this

type of relationship in an analysis.

For EGF100151 the proportion of subjects who experienced at least one adverse

event within a particular system organ class is graphed in Figure 1.4.

Lapatinib plus capecitabine
Capecitabine

Proportions of subjects who experienced
at least one adverse event by system organ class
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Figure 1.4. EGF10015: Proportion of subjects who experienced an adverse event
by system organ class.

Based on Figure 1.4, the system organ classes Gastrointestinal disorders (contain-

ing diarrhea), Skin and subcutaneous tissue disorders (containing rash), Muscu-

loskeletal and connective tissue disorders, Infections and infestations, and Respi-

ratory, thoracic and mediastinal disorder have the largest raised incidences on the

33



lapatinib and capecitabine arm. The actual incidence numbers and p-values from

Fisher exact tests are given in Table 1.13. As it turns out, at the 5% significance

level only the following system organ classes are significant:

1. Musculoskeletal and connective tissue;

2. Gastrointestinal disorders ;

3. Respiratory, thoracic and mediastinal disorders ;

4. Neoplasms benign, malignant and unspecified (incl cysts and polyps);

and applying a multiple hypothesis controlling procedure (Bonferroni) leaves just

two:

1. Musculoskeletal and connective tissue;

2. Gastrointestinal disorders.

We note that even though Rash was an expected adverse event, and its individual p-

value was very small, its system organ class, Skin and subcutaneous tissue disorders,

is not flagged as significant by the tests based on incidence at the system organ

class level.

The analysis of adverse incidence at the system organ class level leads us to con-

sider if we can use the system organ class or body-system when performing safety

analyses. The body-system approach to safety analysis is to group related adverse

events into a single body-system and to use the additional body-system informa-

tion in a statistical analysis. If a treatment affects a particular body-system then

we may expect to see raised adverse event counts for all adverse events in that

body-system [5]. We are in effect trying to take advantage of any relationship

(biological or otherwise) between the adverse events. The information within the

body-systems may also be used as one approach to handling multiplicities, with

the additional information available used to shrink non-significant effects towards

zero [27].

Choosing which adverse events to group together will have an effect on the results

of any analysis. We can see above that the 326 events experienced by less than 1%

of the subjects on each arm of EGF10015 swamp some potential safety signals.

Possible approaches to this are to include these events as they are, or alternatively
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System Organ Class
Lapatinib plus
Capecitabine

(210)

Capecitabine
(191)

p-value

Gastrointestinal disorders 174 133 0.002

Skin and subcutaneous tissue
disorders

156 126 0.080

General disorders and
administration site conditions

115 106 0.920

Nervous system disorders 73 72 0.603

Musculoskeletal and connective
tissue disorders

91 53 0.001

Infections and infestations 72 54 0.199

Respiratory, thoracic and
mediastinal disorders

78 46 0.005

Metabolism and nutrition
disorders

63 51 0.507

Eye disorders 40 31 0.513

Investigations 41 27 0.183

Psychiatric disorders 37 21 0.065

Blood and lymphatic system
disorders

33 24 0.393

Reproductive system and breast
disorders

18 13 0.577

Vascular disorders 10 17 0.113

Hepatobiliary disorders 18 8 0.103

Injury, poisoning and procedural
complications

17 9 0.223

Cardiac disorders 14 10 0.674

Renal and urinary disorders 13 7 0.262

Ear and labyrinth disorders 9 5 0.423

Neoplasms benign, malignant
and unspecified (incl cysts and
polyps)

11 2 0.022

Immune system disorders 2 2 1.000

Surgical and medical procedures 1 1 1.000

Endocrine disorders 1 0 1.000

Table 1.13. Trial EGF100151: Number of subjects who experienced at least one
adverse event in a system organ class.
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they could either be ignored in the statistical analysis as suggested in ICH E9

(§1.4.4), or they could aggregated into a common summary event. DuMouchel [6]

referencing [28] states:

The question of how to classify and group adverse drug reaction re-

ports can be controversial because different assignments can change

the statistical significance of count data treatment effects, and meth-

ods and definitions for comparing adverse drug event rates are not well

standardized.

Given this, it is important that adverse event groupings should be made before

the trial commences, with medical dictionaries, such as MedDRA or WHO-ART,

which provide defined hierarchies or groupings of adverse events, well suited to

this task. It would also be beneficial to have an indication that a model which

uses a body-system grouping is appropriate for the data. This could possibly be

accomplished at an early interim analysis by looking at the incidence counts of

the common adverse events by system organ class to see if they are from a small

number of SOCs, as we did for EGF10015 above. Finally, the use of a body-system

approach in clinical trials has been discussed a number of times in the literature

with an early use described in [29].

1.10 Research Questions

There have been a number of clinical trials which failed to pick up safety issues

before a drug or treatment received regulatory approval and was released for use in

the general population [4]. In the most serious of cases this late detection of safety

issues has resulted in drugs being withdrawn completely from use. In less serious

cases restrictions on use of the drug, or the inclusion of warnings on the packaging,

have been considered sufficient to address the safety issues. In either case the

detection of safety issues in the post-marketing phase of a treatment’s life cycle, as

opposed to the trial phase, can have a serious effect on the health of patients and

also a financial impact both for the companies developing the treatments, and the

regulatory bodies responsible for overseeing them. Consequently, an improvement

in the early or accurate detection of safety issues would be a welcome development.

The main research questions that we address in this project are with regard to the

use of the body-system in the detection of treatment related adverse events.

The first question addressed is whether the introduction of the body-system is
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useful for detecting adverse events. A number of the methodologies from Chapters

2 and 3, which use a body-system approach, are applied to the safety data from

EGF10015 in Chapter 4, and then compared in Chapter 5 using a simulation study.

The next question looked at is whether we can develop methods using the body-

system which are able to take into account the rates and timings of occurrences of

adverse events, and, if so, can these methods be used to identify events which are

associated with treatment. This is addressed in the remainder of the thesis.

The methods we look at may be considered complimentary to those set out in

ICH E9. While Tier 1 events have specific hypotheses, for many of the other

adverse events there will be no definite prespecified hypothesis and we are primarily

interested in whether we can say anything about these adverse events, while taking

into account any relationships which may exist between them at the system organ

class level.
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Chapter 2

Error Controlling Procedures in

Safety Analysis

2.1 Introduction

Two issues which may complicate the analysis of data from clinical trials are the

possibility of multiple outcomes, and the interim analysis of accumulated trial

data. Both of these are of particular importance in a safety analysis where large

amounts of patient safety data are recorded, but about which there may be no

specific hypotheses in the trial protocol (§1.6.2). Such data accumulates during

a trial’s progress and is presented periodically when the trial’s Data Monitoring

Committee meets. An ability to analyse such data at these interim periods, taking

into account possible multiplicity issues, would be a useful aid to the DMC’s de-

cision making process. A trial’s continuation may be in doubt if there are serious

concerns about the safety of a treatment, so it is important that this be assessed

correctly. Simple methods for the comparison of adverse event incidence on differ-

ent trial arms, such as Fisher exact tests, lead directly to the potential issue of

multiple hypotheses. In this chapter we review some approaches to safety analysis

in clinical trials, concentrating on error rate controlling procedures for multiple

hypotheses. Modelling, and in particular Bayesian approaches, are reviewed in

Chapter 3.

ICH Guidelines (§1.4.4) suggest a number of approaches for the statistical analysis

of safety data, including the use of tabulations, descriptive statistics, crude event

rates, and survival analysis. The guidelines state that it is not always clear how

to assess event incidence and none of these methods directly address the issue

of multiplicities, although controlling for multiplicities is part of the statistical

guidelines (ICH E9). Some of these methods are briefly reviewed in §2.2. If we wish

to perform multiple hypothesis tests, then many methods are available to adjust
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for multiple comparisons. Typically, these methods are used to control the Type-I

error rate, and do not say anything about the control of the Type-II error rate.

These methods are reviewed in §2.3. For safety and regulatory reasons controlling

the Type-I and Type-II error rates often need to be considered of equal importance

when analysing adverse event data, and a balance between these found (ICH E9).

Consequently alternative approaches are of interest.

One approach to handling multiplicities is to group related adverse events by body-

system and use this additional information in the analysis. Grouped methods are

the main focus of this study and as part of this review we will look at a number

of these which have recently appeared in the literature, including a more in-depth

discussion (§2.3.2.5) of the following papers, which use grouped methods:

• D. V. Mehrotra and A. J. Adewale. Flagging clinical adverse experi-

ences: reducing false discoveries without materially compromising power for

detecting true signals [3].

• Hu, J. X., Zhao, H., and Zhou, H. H. False Discovery Rate Control

With Groups [30].

The approaches taken in [3] and [30] are different to methods which model safety

data in that they directly address multiplicity issues and require p-values, derived

from test statistics, to compare the different trial arms.

These methods use an assumed relationship within the data (body-systems or sim-

ilar groupings) to help directly control the error rates. Apart from this assumption,

and the assumption that the Benjamini-Hochberg (BH) False Discovery Rate con-

trolling procedure [31] can be applied (i.e. the hypotheses being tested satisfy the

dependency assumptions of [32]), there are no further requirements. It is hoped

that this approach controls the Type-II error rate although, as we will see, this is

actually not directly addressed. Unlike modelling approaches, which are more in

line with the derivation of a safety profile of a particular treatment, based on the

data available and possibly an assumed model or structure for the data, statements

can be made directly about the Type-I error rate.

2.2 ICH Guidelines

The methods suggested by the ICH guidelines (§1.4.4) are standard descriptive

statistics or survival analysis methods. Survival methods applicable for adverse
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event incidence comparisons between treatment and control include estimation of

the survival curve (e.g. Kaplan-Meier or Cutler-Ederer estimate [1]), comparison

of survival curves at a particular time point, comparison of median survival times,

and total survival curve comparison by log-rank (Mantel-Haenszel) or Generalised

Wilcoxon tests. If the survival curves cross, then the log-rank and generalised

Wilcoxon tests may not be reliable [1], and other options, such as the modified

Kolmogorov-Smirnov test [33], [34], are available. Semi-parametric approaches,

such as the Cox proportional-hazards model, and fully parametric approaches are

possible, and these are discussed in Chapter 3. These methods are well understood

and are also discussed in a general way in [1, Ch. 15]. The ICH guidelines also

recommend the use of crude event rates for comparisons between groups. We define

these here for future reference:

The crude incidence rate (CRI) is defined as the number of subjects with a specific

event divided by the total number of subjects in the relevant study group [4]:

CRI =
n

N

where n is the number of subjects in the group having the adverse event, and N

is the total number in the group.

For long-term follow up the crude incidence rate has a number of potential prob-

lems. It may not be a good measure of occurrence because it does not include a

subject’s total exposure time in the calculation, and in some trials it may be un-

realistic to assume that all patients are followed to study end time. The CRI may

therefore be biased if some subjects discontinue their trial participation before the

end of the study [4]. Also, the CRI cannot deal with the possibility of multiple

occurrences of events per subject. Fisher exact tests as well as normal approxima-

tions to the CRI may be used to compare treatment arms. Liu et al. discuss these

and a number of other possible approaches [35].

Due to this difficulty in interpreting the crude incidence rate in the presence of

subjects who drop out of the trial an alternative, the exposure-adjusted incidence

rate, is often used [4].

The Exposure-Adjusted Incidence Rate (EAIR) is defined as the number of sub-

jects with a specific event divided by the total exposure-time among the subjects
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in the group:

EAIR =
n∑
i ti

where n is the number of subjects in the group having the ith type event and ti is a

subject’s exposure time until having an ith type event or, if a subject has no event

of type i, ti is the last follow-up time for that subject. If a subject has multiple

events of the ith type then ti is the time of the first event of that type. n is also

the numerator in the crude incidence rate.

The total exposure-time of all randomised subjects in a study group is
∑
ti. While

the EAIR as defined above is for event incidence it could be extended in a straight-

forward way to recurrent events.

The EAIR may be interpreted as the number of events occurring in a popula-

tion per unit time, and it is a valid statistic for a treatment comparison when

the incidence rate is relatively constant over the study duration [35]. Treatment

comparisons using EAIR are biased for events which usually occur early in the

study, events whose incidence rates decrease over time, or events which occur on a

delayed basis [35]. Liu et al. discuss comparing the EAIR between treatment arms

[35].

It may be difficult to assess whether incidence rates are constant over time for

any adverse event, particularly at an interim analysis, so both the crude incidence

rate and the event-adjusted incidence rate need to be used with caution when

evaluating or comparing adverse event incidence during a clinical trial.

2.3 Error Rate Controlling Procedures

Error controlling procedures are generally used to control the overall Type-I error

rate when performing multiple hypothesis tests. Let Hi, 1 ≤ i ≤ m, be a family of

m hypotheses with pi their associated p-values. Table 2.1, based on Table 1 from

[31], is used to describe the characteristics of the hypotheses.
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Test Result
Null

hypothesis
true

Alternative
hypothesis

true

Total

Declared
significant

V S R

Declared
non-significant

U T m−R

Total m0 m−m0 m

Table 2.1. Null and Alternative Hypotheses: actual status and test outcomes.

In Table 2.1, m is the total number of hypotheses tested, m0 is the number of true

null hypotheses, R = V + S is the number of rejected null hypotheses (“discover-

ies”), T is the number of false negatives (Type-II errors), S is the number of true

positives (“true discoveries”), U number of true negatives, and V is the number of

false positives (Type-I errors, “false discoveries”).

2.3.1 The Familywise Error Rate

The Familywise Error Rate (FWER) is defined as the probability of making one

or more Type-I errors when analysing multiple hypotheses (the “family”):

FWER = P(V ≥ 1) (2.1)

The FWER is said to be controlled at a level α if FWER ≤ α. α is often referred

to as the nominal significance [12].

2.3.1.1 Controlling the FWER

Possibly the simplest method for controlling the FWER is the Bonferroni correc-

tion which rejects Hi if pi ≤ α
m

[12]. A simple calculation shows that FWER ≤ α.1

1If I0 is the set of p-values corresponding to true null hypotheses then:

FWER = P
(
∪pi∈I0

{
pi ≤

α

m

})
≤
∑
pi∈I0

P
{
pi ≤

α

m

}
≤
∑
pi∈I0

α

m
= m0

α

m

≤ α
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The Bonferroni correction makes no distributional or dependency assumptions

about the hypothesis tests being performed, and hence there are no restrictions on

its applicability [12]. However, the Bonferroni correction may be considered to be

too conservative for many clinical trial needs as, depending on the correlation

structure of the p-values, it may control the error rate at a much lower level

than the nominal α value [5]. This may also increase the Type-II error rate with

consequently reduced power.

A method similar to Bonferroni correction, with the additional requirement of

independence of the test statistics, that again controls the FWER at the level α,

is the Šidák (or Dunn-Šidák) procedure [36]. In this case each hypothesis is tested

at the level:

αSID = 1− (1− α)
1
m

Similar approaches are the Holm or Holm-Bonferroni procedure [37] (no depen-

dency assumptions about the test statistics), and the Hochberg procedure which

requires the test statistics be independent, and is also applicable under some forms

of positive dependency [38]. Other testing procedures which are applicable in cer-

tain situations are Scheffé’s method for linear regression [39], the Tukey range test

for pairwise comparisons which can be used within an ANOVA approach [40], and

Dunnett’s test which uses a t-statistic and attempts to exploit correlations which

may exist between the test statistics [41].

2.3.2 False Discovery Rate

An alternative to the conservative procedures for controlling the FWER is to

control instead what is called the False Discovery Rate (FDR). In their 1995 paper

Benjamini and Hochberg consider that often control of the FWER is not needed,

and that an alternative rate to control is the expected proportion of errors [31].

Essentially, control of the FDR assumes that when many of the tested hypotheses

are rejected it may be preferable to control the proportion of errors, rather than

the probability of making even one error, with a potential gain in power associated

with controlling the FDR, as opposed to controlling the FWER [31],[32]. Mehrotra

and Heyse claim that as the FDR controls the FWER when all null hypotheses are

true, and that when not all null hypotheses are true, the FDR has higher power

than the FWER, it is suitable for use in a safety context [15].

From Table 2.1 we have that the proportion of errors committed by falsely rejecting
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null hypotheses can viewed through the random variable:

Q =

 V
V+S

V + S 6= 0

0 V + S = 0

The FDR is then defined to be:

FDR = Qe = E[Q] = E

[
V

V + S

]
= E

[
V

R

]
(2.2)

2.3.2.1 Control of the FDR by the Benjamini-Hochberg Procedure

The BH-procedure for controlling the FDR is as follows [31]:

Let p(1) ≤ p(2) ≤ . . . ≤ p(m) be the ordered p-values and let H(i) be the null

hypothesis corresponding to p(i).

1. For a given α find the largest k such that p(k) ≤ k
m
α.

2. Reject (i.e. declare positive discoveries) all H(i), i = 1, . . . , k. If no such k

exists reject no hypothesis.

In [31] it was shown that this procedure controls the FDR at level α, under the

assumption of independent test statistics. In fact in [31] control of the FDR is

shown to be tighter:

FDR ≤ m0

m
α

with equality for continuous test statistics, but as m0 is generally unknown control

can only be claimed to level α.

The BH procedure was shown to be extendable to certain types of dependency con-

ditions by Benjamini and Yekutieli (§2.3.2.2) [32]. Benjamini and Liu [42] provided

an alternative procedure for controlling the FDR (under independence) which, un-

der a simulation study where the number of tested hypotheses was small and many

of the null hypotheses were not true, was more powerful than the procedure in [31].

2.3.2.2 Extension to Positive Regression Dependent Test Statistics

If X1, ..., Xm are the test statistics of the hypotheses in Table 2.1, X is their joint

distribution, and I0 is a subset of {1, ...,m}, then Benjamini and Yekutieli define
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the property Positive Regression Dependency on each one from a Subset I0 (PRDS

on I0) as follows [32]:

For any increasing set D and each i ∈ I0, P (X ∈ D|Xi = x) is non-decreasing in

x.

Benjamini and Yekutieli show that if the joint-distribution of the test statistics, X,

is PRDS on the subset of test statistics corresponding to the true null hypotheses,

then the BH-procedure controls the FDR at level α [32].

The positive association of the test statistics is expressed by the fact that larger

values for the test statistics corresponding to true null hypotheses increase the

probability that the joint test statistic distribution is in the set D.

2.3.2.3 Adjusted BH p-values

An equivalent formulation of the BH-procedure using adjusted p-values is as fol-

lows:

p̃(m) = p(m) (2.3)

p̃(j) = min

(
p̃(j+1),

m

j
p(j)

)
, j ≤ m− 1 (2.4)

If p̃(j) ≤ α then H(j) is rejected (as are all H(i), i < j).

2.3.2.4 Further Extensions of False Discovery Rate Control

The original assumptions in [31] and [42] were that the m0 tests were independent,

but Benjamini and Yekutieli were able to extend the procedure to testing under

positive dependency [32]. They also introduced an adjusted procedure which allows

control of the FDR in all dependency cases, but which is less powerful than the

BH-procedure. Benjamini, Krieger and Yekutieli introduced a number of adaptive

linear step-up procedures for controlling the FDR in their 2006 paper [43]. An

estimate of the number of true hypotheses, m0, is made as a first part of the

process. As the BH-procedure actually controls the FDR at the level m0

m
α ([31]),

knowledge of the value of m0 would allow control of the FDR precisely at, or

close to, α, leading to a potential increase in power. However, as in general m0 is

unknown, an estimator is used, and a simulation study does show a gain in power

over the original BH-procedure.

Storey introduces the positive FDR
(
pFDR = E

[
V
R
|R > 0

])
as an alternative to
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the FDR and explores some of its properties [44]. The pFDR is related to both

Bayesian modelling and classification theory. In [45] Storey uses the idea of fixing

the rejection region to estimate α, rather than fixing α and estimating k. The idea

is to provide point estimates. The data is used to estimate m0 and the pFDR and

FDR are estimated under the assumption of independent test statistics. Storey

and Tibshirani extend this to dependent statistics [46], [47]. Storey, Taylor, and

Siegmund also show that the point estimate of the FDR may be used to define

valid FDR controlling procedures [48]. Efron considers what he calls a local FDR,

which is an empirical Bayes version of the BH-procedure [49]. In [50] and [51]

Efron et al. relate an empirical Bayes approach to the FDR when analysing data

from gene expression experiments. Genovese and Wasserman discuss some of these

approaches in [52], [53].

Muller et al. investigate using a Bayesian decision-theoretic approach to control

the FDR and derive a Bayes rule which is a variation of the BH-procedure [54]

while, in a similar manner, León-Novelo et al. take a Bayesian approach to the

False Discovery Proportion (FDP), whose posterior mean is the False Discovery

Rate [55]. These methods are discussed further in §3.6.4.

Genovese, Roeder, and Wasserman look at applying a weighting to the p-values

in their approach [56], work which is extended by Hu et al. who use a group BH

approach (GBH) with a weighting procedure which uses the relative importance of

each group [30]. This is essentially an estimate of the number of true hypotheses

in the group. They take the view that prior information may allow the hypotheses

to be divided into subgroups based on the characteristics of the problem. They

discuss a number of adaptive models, including one from [43], but with groupings.

The asymptotic properties of the various GBH procedures are discussed. In the

case where m0 is known in advance they show the GBH procedure controls the

FDR at the required level and, in other cases, the procedure controls the FDR

asymptotically. The GBH is discussed is more detail in §2.3.2.5.

In 2004 Mehrotra and Heyse introduced a double FDR (DFDR) or Mehrotra-

Heyse-Tukey approach, which is also a grouped BH method [15]. The BH-procedure

is applied at two levels: first at an overall grouping level, where hypotheses were

grouped by body-system, and then at the individual hypothesis level. Due to some

theoretical issues with the original double FDR it was updated by Mehrotra and

Adewale in 2012 [3]. This approach is discussed in detail in §2.3.2.5.

Yekutieli provides a modification of the BH-procedure for testing non-positive
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dependent statistics where the set of p-values is divided into separate subsets, each

of which have a BH-procedure applied to them (ssBH) [57]. Within each subset

there is the assumption that the test statistics are positive regression dependent.

This approach is at most as powerful as the BH-procedure.

2.3.2.5 Increasing the Power through Grouped False Discovery Rate

Methods

A possible source of additional information about test statistics or p-values lies

in groupings of hypotheses. If the p-values within these groupings are related in

some way, then it may be possible to use this information to maintain control

of the FDR while gaining power over the standard BH-procedure. The Double

False Discovery Rate (DFDR) [3], [15] and Group Benjamini-Hochberg process

(GBH) [30] are two recent methods which look to take advantage of a grouping

structure within the hypotheses being tested to provide some gain in power over

other approaches. While the two methods are different, they do have a number

of common characteristics in that they either restrict (GBH), or remove (DFDR),

the contribution of certain groups of hypotheses from the list of hypotheses to be

tested.

The GBH method estimates the proportion of true hypotheses in each group and

uses this to apply weights to the p-values. The procedure is shown to asymptotically

control the FDR, and increase power compared to the BH-procedure under certain

conditions [30]. The GBH procedure is considered to work well when the number

of potential signals is small among a large number of hypotheses, and where the

proportions of true hypotheses may be different in the different groups. The data

discussed and analysed in the paper are from gene expression experiments in which

typically a large number of genes are monitored, but only a few are expected to

be associated with a disease. Before applying the method the authors use a step

to cluster the genes into groups. In contrast, in a clinical trial the groups will be

predefined body-systems or system organ classes. Asymptotic results for the GBH

are obtained by assuming a finite number of groups, but with the overall number of

hypotheses increasing while the proportions of true hypotheses tend to a limiting

value. The details of the method are discussed in §2.5.

The Mehrotra and Adewale DFDR method [3] is an adjustment of the original dou-

ble FDR, introduced by Mehrotra and Heyse [15], to analyse adverse event data

which is grouped into defined subsets by body-system or other clinical character-

istics. The main focus is the analysis of Tier 2 events with regard to the control of

47



false discoveries (Type-I errors), however they also discuss the importance of con-

trolling Type-II errors as detailed by the ICH Expert Working Group [58], making

the point that an over-stringent adjustment for false positives can lead to false

negatives. It is hoped that the less stringent approach of the new DFDR proce-

dure will in some way control the false negative rate, although no attempt is made

to control it directly in this approach. The major assumption for the paper is to

“assume that the underlying test statistics have a non-negative dependency struc-

ture [32] that enables the generation of valid BH FDR”. Two simulation studies

were used to compare the new procedure to a number of existing methods. A small

hypothetical simulation of a clinical trial, and a larger study which made the addi-

tional assumption that adverse events in different body-systems are independent.

For illustrative purposes the methods were also applied to two examples of real

clinical data. The technical details of the approach are discussed in §2.4 but, in

summary, the new DFDR method applies the BH-procedure at the body-system

level first and gathers all p-values for any body-system deemed significant into a

single family F . It then applies the BH-procedure to F . Adverse events are flagged

if both the body-system and individual (adjusted) p-values are significant at some

level α.

The simulation studies in [3] are interesting to us because they compare the DFR

and GBH to unadjusted significance testing (NOADJ) and the standard BH-

procedure. The four different methods are applied and the rates tabulated and

compared using a significance level of α = 10% for the DFDR (justified below).

For the small clinical trial study the new DFDR correctly identified the 6 adverse

events which were known to be different between the control and treatment groups.

The other NOADJ and GBH methods also identified these six, plus an additional

three adverse events, whereas the BH approach, ignoring the body-systems, per-

formed least well and flagged only one adverse event.

The methods were also compared using a larger simulation study whose goal was

to assess the competing approaches (including the original version of the DFDR

[15]) and their power properties. The simulation data used were correlated binary

random variables representing occurrence or non-occurrence of adverse events as

described by Lunn and Davis [59]. Adverse events in different body-systems were

considered to be independent and the power was defined to be the expected value

of C
T

, where C is the number of adverse events correctly flagged, and T is the corre-

sponding number of adverse events with underlying true signals. They considered

two simulations in total with 5000 simulated trials for each. Again a significance
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level of α = 10% was used for the new DFDR method. The four main conclusions

from the simulation study were:

1. The NOADJ approach (with significance level 5%) results in too many false

discoveries.

2. The BH approach (one step FDR) and new DFDR approaches were at or

below the target α level in all the simulations. The GBH and the original

DFDR were above the target level α in many cases.

3. The BH approach was consistently less powerful than the new DFDR ap-

proach. The new DFDR is able to capitalise on the groupings by body-

system. The power for GBH and the original DFDR were both higher than

the new DFDR.

4. The power for the new DFDR was generally comparable to the NOADJ

approach when α = 10%, and was higher when α = 15%. For α = 5% it was

not possible to ensure no power loss relative to the NOADJ approach. This

is the reason α = 10% that was chosen for the new DFDR approach.

The authors state that the simulation studies strongly support the new DFDR

approach for flagging adverse events as it provides a balance between no adjustment

and over adjustment.

The DFDR is an example of what could be considered a more general 2-STEP

method where we consider groups or families of hypotheses and we:

1. Select a subset, F , of the families of hypotheses based on some criteria, for

example based on a function of the p-values and some threshold value tF ,

where tF may be a function of the data.

2. Apply the BH-procedure at level α to F .

Trivially (§D.1) any general 2-STEP method controls the FDR, however the choice

of the final family affects the power of the method. No exact or asymptotic results

for the DFDR are given in [3].

Comparisons between the DFDR and GBH methods should take into account the

different situations for which they are designed. We should expect each method to

perform well in its chosen area. Comparisons between the methods can be made
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based on control of the FDR, and the overall power of the procedure or the false

non-discovery rate (FNR). Typically, determining the power of such procedures

requires knowledge of the distributions of the p-values under the alternative hy-

potheses. For any 2-STEP procedure this is complicated by the first step which

selects a subset of the hypotheses. For example, in the DFDR procedure (defined

in §2.4.3) knowledge of the distribution of the order statistics for each group under

the null and alternative hypotheses is required, complicated by possible dependen-

cies among the statistics. For this reason the power of a method is often established

via simulation studies or, as for the GBH, asymptotically. It is though sometimes

possible to set bounds on the power in comparison to other methods. The ssBH is

shown to be at most as powerful as the BH-procedure by showing that the number

of hypotheses it rejects is a subset of those rejected by the BH-procedure [57].

For the DFDR (and any 2-STEP procedure) the step which reduces the number

of hypotheses before applying the BH-procedure to the reduced set introduces an

additional random variable, the number of hypotheses in the final set, increasing

the difficulty of obtaining analytic results.

2.4 Double False Discovery Rate

In this section we briefly describe the original double FDR approach [15] as it cov-

ers the main ideas behind the updated DFDR [3]. We then describe the updated

version of the method. As stated above the main focus of the DFDR approach is

the analysis of Tier 2 events (§1.6.2) with regard to the control of false discover-

ies (Type-I errors). Although the method is applicable to any situation involving

grouped p-values, Mehrotra and Heyse only consider adverse event incidence data

counts, grouped by body-system, in control and treatment groups [15].

2.4.1 Notation

Let there be s body-systems with ki adverse events in body-system i, and let pij

be the between-group2 p-value for the jth adverse event within body-system i. So,

for example, in the MMR vaccine trial considered in the paper [15], the pij value

is from a two-sided Fisher Exact Test.

2.4.2 Original Double FDR Approach

The original DFDR procedure is defined as follows:

2Between treatment and control.
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1. Remove adverse events for which the total incidence within body-system (in

both treatment and control groups) is so low that a rejection even at the

unadjusted 5% level is impossible.

2. Among the remaining adverse events flag those for which the p-value achieves

statistical significance after adjusting for multiplicity using a double FDR

approach as follows:

i) Define P ∗i = min(pi1, . . . , piki) and consider this as the representative

p-value among the ki adverse events in body-system i. This minimum

value can be considered to represent the strongest safety signal in body-

system i.

ii) A first level of adjustment is made by applying the FDR to the P ∗i

for the s body-systems. A second level of adjustment is applied within

each body-system. That is the FDR is applied to pi1, . . . , piki for each

body-system i = 1, 2, ..., s. Define P̃ ∗i to be the adjusted BH p-value

representative for body-system i and p̃ij be the FDR adjusted p-value

for the ki adverse events grouped as body-system i.

3. The DFDR flagging rule is to “flag” adverse event (i, j) if P̃ ∗i ≤ α1 and

p̃ij ≤ α2 for specified values of α1, α2.3

We consider how the method works in practice. For Step 1, Mehrotra and Heyse

consider the removal of low incidence adverse events to be important in reducing

the multiplicity problem to the essential number of dimensions ,and they state that

adverse events with low incidence can be investigated within Tier 3, i.e. examined

by a clinician to see if they are important. However, what may be considered low

incidence adverse events in terms of significance varies according to trial size and

significance tests. Xia et al. detail this step as being the removal of adverse events

with counts of less than 5 in both groups combined [60]. The ICH guidelines (§1.4.4)

also allow for the possibility of removal of low severity or low count adverse events.

It should be noted that this step removes some information from the procedure

and potentially lessens the overall power.

The method does not include a mechanism for determining values for α1 and α2

for flagging adverse events such that the FDR is controlled at any particular level.

In the paper values for α1 and α2 are chosen using a non-parametric bootstrap

3(i, j) is the jth adverse event in body-system i.

51



sampling procedure, where the data from both groups is pooled and then repeat-

edly re-sampled (with replacement), with patients assigned to either treatment or

control group at random, thereby “ensuring a null situation”, to simulate many

repetitions of the original trial. Mehrotra and Heyse set α2 = α and then used the

bootstrap to determine the largest data-dependent α1 ≤ α2 that ensured FDR ≤ α,

under the hypothesis that the true adverse event incidence profile is the same for

both groups.

We may also consider the asymptotic behaviour of the method by holding the

number of groupings, s, fixed, but allowing the group body-system sizes, ki, to

increase. With P ∗i = min(pi1, . . . , piki) = pi(1), Step 2, ii) in the method applies a

BH p-value adjustment at the body-system level. For body-systems with no true

alternative hypotheses and continuous independent test statistics, P ∗i is the first

order statistic for a set of uniform variables on [0, 1], so P ∗i ∼ Beta(1, ki), and

E[P ∗i ] = 1
ki+1
→ 0 as ki →∞. The flagging rule P̃ ∗i ≤ α1 may be ineffective in this

case for large body-systems, leaving just the rule p̃ij ≤ α2 to be applied.

In addition to the possibility that for large body-systems the method may not be

as effective as hoped, Mehrotra and Adewale report a number of issues with the

resampling step [3]. Firstly, it may provide an implementation or computational

obstacle to the use of the method, and the suggested ad-hoc approach from [15]

to avoid bootstrapping by setting α1 = α2

2
may in fact cause the actual FDR to

be inflated to 2-3 times the size of the target level α. Secondly, based on work in

[61], they report that there are a number of potential theoretical issues with the

resampling approach.

Confidence intervals for the double FDR are given in [15, §8], where it is pro-

posed that using the significance level corresponding to the largest FDR signifi-

cant p-value in the family can be used to construct a single interval width for all

comparisons. If the double FDR flags j adverse events, then confidence intervals

based on
(
j
m
α
)

would be computed for all adverse events. This is based on a paper

by Williams et al. which addresses confidence intervals for the BH and Hochberg

controlling procedures [62].

2.4.3 Double FDR Approach Procedure (2012)

In this section we give the details of the updated DFDR of Mehrotra and Adewale

[3]. The new DFDR method addresses the issues with the version in [15] by remov-

ing the resampling step and changing the representative p-value for body-system
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i to be:

p∗i = min(p̃i1, . . . , p̃iki)

where p̃ij, j = 1, ..., ki, are the adjusted BH p-values for body-system i. This allows

the elimination of the re-sampling step because p∗i can be employed as a valid

p-value [63], [64]. Mehrotra and Adewale considered three alternatives for p∗i but

the chosen value generally provided more power in their simulation studies. It is

interesting to note that because of the definition of adjusted BH p-values, the

representative value is weighted by the body-system size, unlike the representative

value in the original double FDR. We will see how this affects the behaviour of the

DFDR in §D.1.

The new DFDR approach is as follows:

1. Initial dimension reduction step: Remove adverse event types for which the

total incidence is so low (rare adverse events) that statistical significance at

the conventional 0.05 level is impossible, even without a multiplicity adjust-

ment.4

2. Apply a BH adjustment to the p∗i , 1 ≤ i ≤ s, where p∗i = min(p̃i1, . . . , p̃iki),

and let p̃∗i denote the corresponding adjusted BH p∗i .

3. Let F = {pij : p̃∗i ≤ α}. Apply a single BH adjustment to the p-values in

family F . If pij ∈ F then let p̃
(F )
ij be its adjusted BH value.

4. The new DFDR approach flags adverse event (i, j) if p̃∗i ≤ α and p̃
(F )
ij ≤ α.5

In summary, the new DFDR method applies the BH-procedure at the body-system

level first and, for any body-systems whose adjusted p-values are significant, gath-

ers all their individual adverse event p-values into a single family F . It then applies

the BH-procedure to F again generating adjusted p-values. Adverse events are

flagged if both the body-system and individual adjusted p-values are significant at

level α. There are two main differences between the original and the new DFDR

procedure. The first is that the original double FDR has a representative value

which is not in any way weighted by the size of the body-system, whereas for the

DFDR it does in effect take the overall size of the grouping into account. The sec-

ond is that original double FDR applies separate FDR adjustments to each of the

4In the paper the value 0.05 is specified rather than a significance level α [3].
5(i, j) is the jth adverse event in body-system i.
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body-systems flagged. In contrast the new DFDR applies a single FDR adjustment

to the family of p-values collected from all the flagged body-systems in Step 2.

The authors make the following points regarding the new procedure:

1. The FDR for the new DFDR procedure is at most α at the body-system level

regardless of how many body-systems contain at least one true signal.

2. While FDR control at the adverse event level is guaranteed under the global

null, the actual FDR might theoretically exceed α in some rare cases. This

is the same situation as with the original FDR. The authors consider this to

be unlikely in practice.

2.5 Group Benjamini-Hochberg

In the Group Benjamini-Hochberg (GBH) procedure hypotheses are grouped and

a probability weighting procedure, based on the estimated number of true null

hypotheses in each group, is used to weight the p-values, effectively inflating the

p-values of hypotheses which are considered not likely to be significant [30].

2.5.1 Notation

Following [30] we consider G families of p-values/hypotheses with mg0 the number

of true null hypotheses, and mg1 the number of true alternative hypotheses, in

family g. The total number of hypotheses in family g is then mg = mg0 +mg1. Let

pg,i be the p-value for hypothesis i in group g.

The total number of true null and alternative hypotheses are given by: m0 =∑G
g=1mg0 and m1 =

∑G
g=1mg1 respectively, with m, the overall total number of

hypotheses considered, given by m = m0 +m1.

Let Ig,0 and Ig,1 be the sets of true null and true alternative hypotheses in family g

respectively, with Ig = Ig,0 ∪ Ig,1 the set of hypotheses in family g. Let I = ∪Gg=1Ig

be the total set of all hypotheses.

2.5.2 Group Benjamini-Hochberg Procedure

The GBH procedure is as follows:

1. Estimate the proportion of true null hypotheses in each group (π̂g,0) and the
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overall proportion of true hypotheses (π̂0). If π̂g,0 = 1 for all g we accept all

the hypotheses and stop.

2. Calculate weighted p-values in each group g as follows:

PW
g,i =

π̂g,0
1− π̂g,0

pg,i

If π̂g,0 = 1 we let PW
g,i = ∞, i = 1, ...,mg, effectively preventing the null

hypotheses in the group from being rejected.

3. Pool and order the weighted p-values: PW
(1), . . . , P

W
(m). Here we need to main-

tain a mapping between the ordered weighted p-values
{
PW

(j)

}
and the un-

ordered weighted p-values
{
PW

(g,i)

}
to ensure we can correctly identify the

null hypotheses that the ordered values represent.

4. Find kGBH = max
{
i : PW

(i) ≤
i
m
αW
}

where αW = α
1−π̂0 . If such a kGBH ex-

ists reject the hypotheses associated with PW
(1), . . . , P

W
(kGBH), otherwise do not

reject any hypotheses.

The method is independent of the estimators chosen for π̂g,0, π̂0 but two are dis-

cussed in [30]. These are Two-Stage Method (TST) [43] and the Least-Slope

Method (LSL) [65]. The GBH asymptotically controls the FDR at level α and

is asymptotically at least as powerful as the BH-procedure.

We note that in Step 2 the weighted p-values pWg,i may exceed 1.0 however this does

not necessarily mean that the null hypothesis is never rejected as the value it is

compared to in Step 4 is also weighted.

We can see that weighting the p-value has the effect of inflating the p-value if π̂g,0

is large (1 − π̂g,0 is small). So if the proportion of p-values believed to represent

true null hypotheses in the group is large all p-values are inflated, meaning they

are less likely to be flagged. The controlling value α, used in the comparison step of

p-values for the BH-procedure, is also weighted, and this has the effect of changing

the comparison part of the BH-procedure to use the size of those groups which

have been “included”, similar to the DFDR procedure. Here, it is the values of

the estimators for πg,0 and π0 which determine how the groups are “included”, in

contrast to the DFDR, where a step actually excludes the groups.

We can see this more clearly by looking at what Hu et al. call the oracle case [30].
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This is the case where we know the actual values mg, πg,0, π0:

π0 =
1

m

∑
mgπg,0

αW =
α

1− π0

=
mα

m−
∑
mgπg,0

The threshold for calculating the rejected hypotheses is:

kGBH = max

{
i : pW(i) ≤

i

m
αW
}

= max

{
i : pW(i) ≤

i

m−
∑
mgπg,0

α

} (2.5)

In this case
∑
mgπg,0 is the total number of true hypotheses, so that the value

m −
∑
mgπg,0, used in the denominator in the comparison (2.5), has excluded

the number of true null hypotheses. For the case where πg,0 = 1, groups with

all true null hypotheses, these groups are excluded in sense that they are part of∑
mgπg,0 and their weighted p-values are never significant because they are set to

an “infinite” value.

2.6 Comparison Between DFDR and GBH

As both the DFDR and GBH are grouped false discovery rate controlling methods

it is of interest to compare them more closely. With m as the total number of

hypotheses and m0 as the total number of true null hypotheses, in GBH we are

effectively looking to compare the weighted p-values, pW(i), with i
m−m̂0

α, where as

the DFDR process compares the unweighted p-values, pF(i) in the reduced set of

hypotheses F , with i
|F |α.

m− m̂0 is an estimate of the number of false null hypotheses out of the total num-

ber of hypotheses, whereas |F | is an estimate of the total number of hypotheses

in groups that contain at least one false null hypotheses. We may surmise that in

general m − m̂0 ≤ |F | and that i
m−m0

α > i
|F |α, leading to the possibility that in

certain circumstances the GBH is the more powerful approach. This is consistent

with the simulation results from [3]. However, the GBH comparison uses weight-

ings which have the possibility to inflate or reduce the p-values, so there may well

be circumstances where the DFDR approach may be more powerful. We may com-

pare the methods using the criteria in Table 2.2.
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Criterion DFDR GBH

Inclusion of Family p̃∗g
1 π̂g,0

2

Effective total number of
hypotheses tested

|F | m

Denominator of test threshold |F | m− m̂0

p-value for comparison p(i) pW(i)

Table 2.2. Comparison of DFDR and GBH procedures for
controlling the FDR.

1 Representative group p-value.
2 Estimated proportion of true null hypotheses in group.

The GBH uses different estimators for each group to effectively decide group inclu-

sion and increase power. In contrast the DFDR uses a single estimator or threshold

for group inclusion, hoping to exclude groups which aren’t significant and thereby

increase the power.

Both GHB and DFDR have properties that may make them useful for analysing

clinical trial safety data. However, as GBH is designed for use with sparse data

there are certain circumstances under which we may expect to see some error

inflation. In particular use of the least-slope method (LSL) for estimating the

proportion of true hypotheses in a group of size one always returns the value 1.0,

effectively excluding that family from consideration. More generally we may expect

to see error inflation in GBH for groupings where most null hypotheses are false.

In this case the remaining weighted p-values will be reduced substantially. For

example: if the estimated proportion of true null hypotheses is 1
5

then we have an

inflation factor of
1
5

1− 1
5

= 0.25. In this case the remaining p-values will be weighted

to a quarter of their actual value. In the application of the method in [30], where

a cluster analysis has already gathered likely genes together, this may not be a

problem. In the case of predefined groupings, such as body-systems in clinical

trials, where it may be that quite a number of adverse events in a body-system

have raised treatment rates, this reduction in the size of the p-values may result in

other adverse events in the group, which do not have raised rates, being flagged.

Where most hypotheses are true in groups we may also expect that the GBH may

give relatively poor performance detecting adverse events. In this case there is the

possibility that the p-value weighting will overwhelm the remaining hypotheses’

p-values. For example, if the estimated proportion of true hypotheses is 4
5
, the p-
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value inflation factor is
4
5

1− 4
5

= 4, leading to inflated weighted p-values and possibly

leading to adverse events with raised treatment not being detected, unless they

have a very strong signal.

2.7 Discussion

The procedures we have reviewed control error rates for hypothesis testing so, in

a sense, they don’t have anything to say directly about clinical safety data. The

clinically important issues of severity, timings, and censoring don’t have any direct

impact on these methods. However, any of the procedures when applied to safety

data do directly control for multiple comparisons and provide a definite flagging

mechanism for adverse events whose occurrence may be related to treatment.

The extensions to the more common error controlling procedures which use group-

ings are of particular interest to us. For the DFDR the main idea is that, in some

sense, the body-system has to be significant, and an adverse event within a sig-

nificant body-system, has to be significant, before it is flagged. The method is

designed for non-rare Tier 2 events, with rare or serious events (Tier 3) requiring

a different type of evaluation. This fact is explicitly encoded into the procedure

where very low incidence events are removed before the procedure proper is ap-

plied. The GBH approach is similar to the DFDR in that the estimated weights

of the p-values are based on the estimated proportions of true hypotheses they

contain, effectively eliminating any groups where the estimate is 1.0 or close to it.

A number of asymptotic error controlling and power results exist for the GBH.

The DFDR method can be considered to lie somewhere between the original BH-

procedure and a grouping/proportion estimating procedure such as the GBH. It

is a particular implementation of a general approach where a decision is made to

exclude certain groups of hypotheses because there are believed to be not signif-

icant. We assume the method of identifying which groups to exclude is based in

some way on an analysis of the p-values within those groups, and we are guar-

anteed that, theoretically, the FDR will be controlled at the required level. The

interesting question is whether, and under what circumstances, it provides a gain

in power compared to other procedures. Unlike the GBH, which uses estimates of

the proportions of true null hypotheses within groups, in their method Mehrotra

and Adewale only take into account whether a group may contain significant hy-

potheses or not. If a group is determined to contain only true hypotheses then that

group is excluded. Once this is achieved the groupings are ignored. They do not
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make any estimate of the number of true hypotheses in their controlling procedure

beyond this inclusion/exclusion criteria.

As stated in §2.4.2, it could also be argued that removing “non-significant” adverse

events from the analysis is ignoring important trial information, possibly leading

to a reduction in power. This is in contrast to modelling methods, such as the

Berry and Berry model (§3.6.1) [5], who also use the body-system and apply their

method to Tier 2 events. In these methods there is no need for this restriction and,

in fact, the low incidence of some adverse events within a body-system may have

an important effect on the models, and hence any conclusions drawn. One solution

to the issue of low frequency events is to aggregate within body-system.

Mehrotra and Adewale state that an advantage of the DFDR, and in fact of any

error controlling procedure, is that we understand more about the error structure

of the method than we do for modelling approaches such as the Berry and Berry

model. For Bayesian modelling approaches little is known about the FDR or power

properties. This can be seen as an advantage of the DFDR or GBH approach.

In fact the Mehrotra and Adewale definition of power could possibly be used to

generate a decision rule for the Bayesian modelling approaches of [5] or [6]. Xia

et al. have looked at this or similar in their simulation studies [60]. Bayesian and

other types of modelling approaches to safety are reviewed in Chapter 3.

In conclusion, the DFDR and GBH are purely error controlling procedures. They

do not explicitly take into account any of the properties of clinical trials or adverse

events we may wish to include. If we wish to take into account the timing and

severity of adverse events, patient censoring, sub-group analysis, or trial interim

analysis, then this must all be done in some manner before the method can be

used. As the methods require p-values we must have some test statistic or model

which can take into account any properties we wish to include. The DFDR or GBH

approaches do have the advantage of giving direct rules for flagging adverse events

and, based on simulation studies, we may be able to give some sort of estimate of

their power.

The DFDR and GBH form part of the simulation study of methods in Chapter

5. There we will compare the power and error rates of the methods with each

other and some additional grouped methods based on modelling approaches which

we identify in Chapter 3. The DFDR and GBH are also compared directly in

Appendix D.
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Chapter 3

Modelling Methods for Safety

Analysis

3.1 Introduction

Trial safety data may be considered as the occurrence, or the recurrence, of adverse

events of varying severity in patients, which may have durations, may be related to

each other, to patient censoring, and to terminal events in the trial. In this chapter

we review some approaches to safety analysis in clinical trials, concentrating on

modelling to analyse the occurrences of adverse events. Similar to the approach in

Chapter 2, we look to take into account the issue of multiple types of events, and

we are also interested in the possibility of performing interim data analyses.

ICH Guidelines (§1.4.4) suggest survival analysis as a potential approach to analysing

safety data, but often common implementations of standard models for survival

data tend to consider one type of event only. We are interested in modelling all

of the adverse events which occur in a trial. As we will see below, one approach

to handling multiple events in models is to group similar adverse events by body-

system, and use this additional information to shrink non-significant adverse event

effect differences towards zero. Bayesian modelling approaches are often used for

this, although other approaches are possible. In fact, for a Bayesian analysis, it is

often considered that the appropriate choice of prior distributions is able to provide

multiple comparison robustness, thereby removing the need for any further error

control [27], [66]. In this review we will discuss a number of methods, including

grouped methods, from the recent literature, including a more detailed discussion

of the following papers:

• S. M. Berry and D. A. Berry. Accounting for Multiplicities in Assessing

Drug Safety: A Three-level Hierarchical Mixture Model [5], §3.6.1.
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• William DuMouchel. Multivariate Bayesian Logistic Regression for Anal-

ysis of Clinical Study Safety Issues [6], §3.6.11.

• O. Siddiqui. Statistical Methods to Analyze Adverse Events Data of Ran-

domized Clinical Trials [4], §3.3.1.1.

Berry and Berry [5] and DuMouchel [6] take a Bayesian approach and are, to quote

DuMouchel, “similar in spirit”, while Siddiqui [4] takes a classical or frequentist

approach. Berry and Berry use the body-system, or system organ class grouping,

described in §1.9, when analysing adverse event incidence data. DuMouchel takes

a more ambitious approach, including covariates and treatment covariate interac-

tions in his model, stressing that the adverse events included in the analysis should

be in some sense medically related, but not directly using a body-system or sim-

ilar grouping. Siddiqui, on the other hand, analyses adverse event incidence data

using the non-parametric Mean Cumulative Function, which also allows groupings

of adverse events if required, and is the only one of the three papers which directly

addresses the timings and cumulative presence of the adverse events [4].

Before discussing the above papers in detail, it is worth considering some of the

different philosophies behind these and other approaches to analysing clinical in-

cidence data, such as the DFDR [3] discussed in Chapter 2. Bayesian modelling

approaches, such as those used by [5] and [6], or their frequentist counterparts,

fit particular models to the data. In a Bayesian context, they use the data, to-

gether with certain prior distribution assumptions, to make statistical statements

based on the derived posterior distributions. These types of Bayesian models do

not directly address the issue of Type-I or Type-II error rates or power for test-

ing multiple hypotheses about clinical outcomes. They may be considered in some

sense exploratory approaches. In a clinical context though, where we need to decide

if a particular treatment is associated with raised adverse event levels, the models

must be used to help determine if this is indeed the case. Similarly, frequentist

modelling approaches, for example multi-level modelling, also make assumptions

about suitable model forms, and use the data to estimate the model parameters.

Again, while the model may not directly address the issue of multiple comparisons

or tests, it must be used in some way to make a decision about the clinical effects

of the treatment and the adverse event occurrence rates.

1Originally a presentation: Du Mouchel. Multivariate Bayesian Logistic Regression for Clin-
ical Safety Data) at the 4th Seattle Symposium in Biostatistics (2010).
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On the other hand, the approaches taken by the methods described in Chapter 2

directly address multiplicity issues. In particular, the DFDR and GBH approaches

use an assumed relationship among the data (body-systems) to help directly con-

trol the error rates. Apart from this assumption, and the assumption that the

Benjamini-Hochberg False Discovery Rate controlling procedure [31] can be ap-

plied, there are no further assumptions, and statements can be made directly

about the error rates.

Siddiqui takes a different approach, using the non-parametric Mean Cumulative

Function (MCF) [4]. This investigates what the average occurrence of adverse

events tells us about the differences between treatments. The MCF allows for

the analysis of multiple re-occurring adverse events and comparisons of different

groupings within the clinical data, including by body-system. However, applying

the MCF to multiple subgroups and performing hypothesis testing raises issues of

multiple comparisons. Siddiqui suggests that, due to the nature of safety analysis in

clinical trials, the approach should be explorative rather than based on hypothesis

testing, and the MCF is a suitable tool for this. Following this approach, Siddiqui

does not directly address the issue of controlling Type-I or Type-II error rates.

Other methods reviewed in this chapter include approaches based on survival anal-

ysis, recurrent event analysis, and longitudinal analysis. Many of the methods we

will discuss are designed to be used in an exploratory or confirmatory sense rather

than as direct replacements for existing procedures, although Berry et al. [67] ad-

vocate an overall Bayesian approach to the analysis of Clinical Trials as they move

through their different phases. Advocacy for this type of approach is growing in

the literature [68], [69], [70].

Some of the Bayesian approaches we consider here [5], [6], and the approach used

by Siddiqui [4], are more in line with the derivation of a safety profile of a particular

treatment based on the data available and, possibly, an assumed model or structure

for the data, or choice of prior distributions.

Despite the differences in philosophy between modelling approaches, such as [5],

and error controlling approaches, such as [3], there is a common underlying as-

sumption that dependencies or correlations that may exist in the data may be

used in a statistical analysis.
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3.2 Survival Analysis Models

Survival Analysis is the analysis of data in the form of times from a well-defined

time origin until the occurrence of some particular event or end-point. Parametric,

semi-parametric, and non-parametric approaches are all possible and tend to focus

either on the event time, such as the Kaplan-Meier estimate of the survival curve,

or the event rate, such as the Cox model [71]. In this section we look at the

parametric and semi-parametric approaches to survival analysis.

Two import concepts when modelling survival data are the survivor (survival) and

hazard functions. If the survival time of an individual is modelled by a random

variable T , then the survivor/survival function S(t) is defined to be [72]:

S(t) = P (T > t) (3.1)

and the hazard function to be [72]:

h(t) = lim
δt→0

P (t ≤ T < t+ δt|T > t)

δt
= −S

′(t)

S(t)
= − d

dt
logS(t) (3.2)

assuming T is a continuous variable.

The survival time of an individual is said to be censored when the end-point of

interest has not been observed for that individual. The main approach to fitting

survival models is through likelihood estimation. If we have non-informative2 right

censored3 data (t1, δ1), ..., (t1, δ1), where δi = 1 for a real event time, and δi = 0

for a censored time, the likelihood is:

L =
n∏
i=1

Li =
n∏
i=1

f(ti)
δiP (T > ti)

1−δi (3.3)

where f(t) is the density function of T .

Parametric approaches to survival analysis assume a form for f(t), with the Weibull

distribution being one such form commonly used for this purpose, as its shape and

scale parameters allow it to model many different hazard functions [73].

Assuming a parametric form for T has a number of drawbacks. Among these is

the problem of justifying the chosen distribution, leading to corresponding diffi-

2The event and censoring time are independent.
3Right censored data occurs when the event occurs after the last known survival time.
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culties in model checking. Non-parametric and semi-parametric approaches do not

have this disadvantage. The Cox proportional hazards model is one such semi-

parametric approach which is widely used in survival analysis [71]. Here no prob-

ability distribution is assumed. The hazard function is assumed to have the form:

h(t) = h0(t) exp(β1x1 + ...+ βnxn) (3.4)

where x1, ..., xn are explanatory variables recorded at the time of origin, β1, ..., βn

are model parameters to be estimated, and h0(t) is known as the baseline hazard

function (to which all others hazard functions are proportional). Lack of knowledge

of h0(t) means that maximum likelihood estimators for the parameters cannot be

calculated, but a partial likelihood approach may be used in its place [74], [75],

[76]. A number of extensions to the Cox model have been introduced, including

time-dependent covariates and stratification [72]. An example of the use of the Cox

model to investigate adverse events is [77] where O’Neill considers the relationship

between the occurrences of adverse events (what he terms toxicity) and dose,

using a proportional hazard model approach adapted to these competing risks

(the competition between toxicity and survival).

Bayesian approaches to (semi-parametric) survival analysis, or the analysis of re-

current events, are discussed by Kalbfleisch [78], Burridge [79], Clayton [80], Sinha

[81], Ibrahim et al. [82], Kalbfleisch and Prentice [83], Duchateau and Janssen [84],

Dunson and Herring [85], and Shaban and Mostafa [86]. Kalbfleisch considers the

proportional hazards model, treating the cumulative baseline hazard function as

a “nuisance” parameter by dividing the time domain into a number of disjoint

intervals, and using Dirichlet and Gamma processes as priors [78]. Burridge ex-

tends this model using an empirical Bayes approach, and, additionally, looks at

tied and grouped data [79]. Clayton assumes Gamma priors for the baseline haz-

ard [80], an approach which is also used by Duchateau and Janssen [84]. Sinha

[81] considers a similar model to [78] for multiple events but includes a frailty

term. Shaban and Mostafa, who look at an additive hazard frailty model, assume

a piecewise linear baseline hazard function with a Gamma prior for its parameters

[86]. This is a slightly different approach than using a Gamma process as a prior.

Dunson and Herring look at the choice between multiplicative and additive models

as a Bayesian model selection problem [85]. They concentrate on inference while

accounting for model selection. They also choose a piecewise constant baseline

hazard with Gamma prior. Kottas, on the other hand, looks at non-parametric

Bayesian estimation using a Dirichlet process mixture, with a Weibull kernel, for
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modelling the survival distribution [87].

The are a number of approaches to extending survival analysis to multiple events,

including random effects and frailty based models, multiple event Cox models,

stratified models with different baselines hazards for each event type [88], [89],

and similar marginal models [90]. While the random effects and frailty models can

account for relationships between the model parameters, the other approaches all

require some method of accounting for correlations between the model parameters,

for example by an estimator such as the jackknife [88]. In this context multiple

events can mean multiple occurrences of the same event (recurrent events) or the

occurrence of multiple types of event. Recurrent event analysis is reviewed in §3.3.

There are a number of issues we may need to consider when using these types of

models. Many subjects may experience only a small number of adverse events over

the course of a trial and, as survival analysis deals with individual subjects rather

than summary level data, this may lead to many censored observations. In the

case of random effects or frailty models, for large trials there is also the possibility

of large numbers of parameters making model fitting difficult. In clinical trials we

also have the complication that death is a terminating adverse event for a patient,

essentially there are competing risks for the events at the patient level.

3.3 Recurrent Event Analysis

Methods from the theory of recurrent events can also be used to analyse adverse

events. There are many methods available for modelling such recurrent data, in-

cluding, but not limited to, inter-event time models, time to event models, marginal

methods based on multivariate failure time data, general intensity modelling, and

methods based on event counts. Andersen et al. provides the relevant theoretical

background for a large number of the papers in this area [91]. Cook and Lawless

describe many of these and other approaches to recurrent data analysis, including

two-state and Markov process models [74]. They consider that there are really

three general approaches to recurrent event analysis:

1. Count models based on the intensity function (conditioned on the process

history) defined as:

λ(t|H(t)) = lim
∆t↓0

P(∆N(t) = 1|H(t))

∆t
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where N(s, t) is the number of events which occur in the interval (s, t],

N(t) = N(0, t) for t > 0, ∆N(t) = N(t + ∆t−) − N(t−), and H(t) =

{N(s) : 0 ≤ s < t}, t > 0, is the history of the process.

2. Gap times models based on hazard functions (conditioned on the process

history). If the time between events has a common distribution W with

density f(w) and survivor function S(w) = P(W ≥ w), then this is defined

in a similar way to the hazard function in survival analysis (3.2):4

h(w) = lim
∆w↓0

P(W < w + ∆w|W ≥ w)

∆w
=
f(w)

S(w)

3. General Intensity functions (conditioned on the process history) which may in

some sense be considered a combination of the intensity and hazard function

approach.

These cover everything from simple Poisson models and renewal models, to semi-

parametric and non-parametric additive and multiplicative models, and acceler-

ated failure time models. Inference is generally carried out using the likelihood

function or, for semi-parametric models, the partial likelihood.

Models for multitype recurrent events can be constructed in a straightforward way

using the intensity function approach. Incorporating dependencies between the

event processes is possible through stratification and time dependent covariates

[74]. These types of dependencies can also be achieved by introducing a random

effect into the model [74]. So, for example, if there are n subjects and J event

types we could model the intensity function as:

λij(t|Hi(t), uij) = uijλij(t|Hi(t)) i = 1, ..., n; j = 1, ..., J

where uij is a random effect.

There are many possible extensions to these general recurrent event formulations.

Cook and Lawless consider the case of adverse events where a terminal event for

a subject is dependent on the adverse events [92]. Their model is a multivari-

ate counting process which is a joint model for recurring and terminal events.

They consider both non-parametric and semi-parametric approaches using rate

and mean cumulative functions. Wang et al. [93] and Rosenkranz [94] also con-

4A number of slightly different definitions of the survivor function are used in the literature.
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sider the case of adverse events where a terminal event for a subject is dependent

on the adverse events. They assume a multivariate counting process where the re-

lationship between recurrent events and the terminal event is via a latent variable.

The recurrent event process, conditional on the latent variable, is a non-stationary

Poisson process, and a semi-parametric form is taken for the rate function. A key

assumption is that conditional on the latent variable the terminal event time and

the counting process are independent. A multiplicative intensity model is assumed.

Rosenkranz [94] describes three models which directly model the dependence: a

parametric model based on a method of Heitjan [95], a semi-parametric bivariate

local shift model [96], and a copula based dependence model [97]. Cook et al. take

an approach which conditions on enough of the event history to render the cen-

soring conditionally independent, and analyse marginal features by averaging over

prior event history [98]. This can be achieved by an approach based on multi-state

Markov models. They model using marginal rate functions, marginal survivor func-

tions for event times, and partially conditional rate functions employing Markov

assumptions. Inverse probability of censoring weighted (IPCW) versions of the es-

timators are also given to provide robustness to event-dependent censoring. Frailty

model approaches to event analysis are discussed in [84], and discussions of the

frailty model for recurrent events in the presence of a terminating event are given

in [99], [100], [101].

Lawless and Nadeau describe methods for the analysis of recurrent events using a

counting process and non-parametric estimation of a common Mean Cumulative

Function (MCF), under the assumption of a Poisson process generating the events

[102]. They derive an estimate for the variance of the MCF and extend the approach

to include covariates. They consider the comparison of two such MCFs and derive a

test statistic, an approach which they say is generalisable. Nelson describes a non-

parametric approach based around the MCF [103]. Nelson’s approach and the MCF

in general are described in more detail in §3.3.1. More recently, Wang and Quartey

[104], [105] have considered non-parametric and semi-parametric approaches for

the Mean Cumulative Duration function (MCD), an approach similar to the MCF

but concerned with the duration as well as the occurrence of the adverse events,

extending their results to include dependent censoring using the IPCW method

[98]. Zhao and Zhou use the MCF approach to model gap times between events

[106].
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3.3.1 The Non-Parametric Estimate of the Mean

Cumulative Function

The non-parametric estimate of the Mean Cumulative Function (MCF) is one

approach to exploring the occurrence of adverse events as recurrent events, while

making minimal assumptions. Siddiqui provides an example of the use of a non-

parametric estimate of the MCF in an analysis of adverse events in clinical trials

[4]. Nelson describes the non-parametric MCF in detail [103].

The Mean Cumulative Function (MCF), M(t), is defined as the mean of the dis-

tribution of the number of events at time t. More precisely if N(t) is the number

of events to have occurred by time t, then M(t) = E[N(t)].

The MCF is a representation of a simple counting process of a cumulative number

of discrete events. Nelson describes a non-parametric estimator, M̂(t), for M(t),

where M̂(t) is the estimator of the mean cumulative number of adverse events up

to time t [103]. The estimate involves no assumptions about the form of M(t).

At time t, a fraction of subjects have accumulated one occurrence, a fraction two

recurrences, and so on. This distribution differs at time t and has a mean M(t).

The estimate is the pointwise average of all subjects’ cumulative adverse event

curves passing through the vertical line at each time t. For a large sample the

estimate of the MCF is usually regarded as a smooth curve. Cook and Lawless

have applied a similar non-parametric method to analyse recurrent safety data in

clinical trials [74, §3.4].

The estimate M̂(t), and its confidence limits for recurrence data, are analogous

to the Kaplan-Meier (KM) estimate and Greenwood’s variance for life data [4].

Plots of M̂(t) and confidence intervals versus time t yield information such as the

number of cumulative events expected by time t, whether the rate of occurrence is

increasing, decreasing or constant, and whether the two groups differ significantly

in the expected number of events. In contrast, Kaplan-Meier analysis includes only

time to the first adverse event. The derivative m̂(t) = dM̂(t)
dt

is called the instan-

taneous recurrence rate, or intensity rate, of an event at time t. The assumptions

for the use of the MCF are as follows:

1. The target population is clearly specified and sampled.

2. The sample units are a simple random sample from the target population.
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3. Random/Non-informative censoring: the cumulative history functions of all

sample units are statistically independent of their censoring ages.

The MCF can be applied to exact and interval age randomly censored data, and is

unbiased for exact age data. The MCF for interval age data is biased, but the bias

is likely to be small compared to the statistical randomness in most applications

[103]. There are a number of possible confidence intervals which can be calculated

for the MCF, all of which require certain assumptions (e.g. normal approximation

[103]). Nelson suggests the possibility of using the jackknife, bootstrap, or other

re-sampling methods to obtain an empirical sampling distribution for the limits, as

these do not entail a normal approximation. This has the advantage that for count

data, such limits are always positive, whereas normal based confidence intervals

may have a negative lower limit.

One interesting property of MCFs is that they are additive, so they can be applied

to different combinations of events. This allows us to consider the “total” MCF,

and then the individual contributions of each event type to the overall total.

There are a number of methods suggested for comparing the MCFs from two

samples. This is similar to comparing two (or more) survival curves. Point-wise

approaches include comparison using calculated confidence intervals, permutation

tests of the two MCFs at a particular time, all pairwise differences (multiple com-

parison issues would need to be handled by some form of error controlling proce-

dure), analysis-of-variance comparisons (this requires a normal approximation and

results in a chi-squared test), and simultaneous intervals where wider simultaneous

intervals which have approximate probability that all difference confidence inter-

vals enclose their corresponding true values. Under this assumption, if an interval

does not enclose zero we have stronger evidence of a real difference. This requires

a Bonferroni type correction in the interval calculation [103, Chapter 7, pg: 115].

It is also possible to consider an overall MCF comparison using weighted differences

over their common age ranges. In this case the sampling distribution of the test

statistic must be obtained through an approximation, using permutation methods

or a simulation method like boot strapping. The two-sample statistic is analogous

to the Hotelling T 2-test, and the k-sample statistic is just an extension of the

two-sample approach [103]. Parametric based comparisons are also possible.

We should note that many of the comparison methods make the assumption that

the two samples being compared are statistically independent. This may not be
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the case if, for instance, we were comparing two adverse events within one body-

system. The individual cumulative histories of the subjects may be viewed on an

event chart for graphical comparison [107].

3.3.1.1 Using the MCF to Analyse Adverse Event Data from

Randomised Clinical Trials

In his 2009 paper, Siddiqui analyses randomised trial data using the non-parametric

MCF [4]. While there are several proposed parametric counting process models to

analyse recurrent adverse event data, which we have reviewed above, Siddiqui

considers that these models may make assumptions that are either unrealistic,

or unverifiable, in safety analysis for clinical trials, for example the assumption

of constant hazard rate over time. These types of assumption are not required

by the non-parametric MCF approach. With a smaller number of assumptions,

the non-parametric mean cumulative function makes use of all the adverse event

information of all randomised subjects in a trial.

Siddiqui briefly discusses the withdrawal of a number of drugs (specifically the

COX-2 inhibitor Vioxx R©, Bextra R©, and Rezulin R©) due to higher risk of heart

attack or stroke, and also withdrawals due to significantly more adverse events

in women than men [108], possibly for physiological reasons. He considers the

possibility of a flawed safety analysis for these drugs being due to low power or

short trial duration. The MCF is one possible tool which may be suitable for

exploring adverse event occurrences for these types of situations as it may give

some idea of the occurrences of events over time.

In any safety analysis we need to consider that recurrences of adverse events of the

same or different kinds (which might be correlated with adverse events which have

previously occurred) are often seen in clinical trials, and all subsequent occurrences

of adverse events might be correlated with the time to discontinuation of a patient

in a trial. Recurrent adverse events consist of the inter-event times of repeated

adverse events of the same or different type for each subject, and times between

adverse events within a subject are not necessarily independent. Further, it is

recognised that some clinically important adverse events occur on a delayed basis,

and Phase II and Phase III trials may fail to capture these. However, adverse

events which do show up early in a trial may individually or collectively be good

indicators of these delayed adverse events, and the possibility exists that one type

of adverse event, or several adverse events jointly, might lead to another type of

delayed adverse event in the future. For example, heart abnormalities leading to
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a heart attack. The goal here is to understand, and possibly use in a predictive

sense, the cumulative prevalence, as well as the trajectories, of each adverse event

type over the study period, rather than just analysing the final totals.

Siddiqui compares the MCF approach to the Crude Incidence Rate and the Exposure-

Adjusted Incidence Rate (§2.2) by applying the methods to clinical data from a

trial of a COX-2 selective, non-steroidal anti-inflammatory drug (NSAID). The

trial was a 12 week double blind trial where the start date and end date for each

clinically apparent adverse event was recorded for each subject, some of whom

had recurrent adverse events. Both serious and non-serious clinical adverse events,

including recurrent events, were analysed together, using the MCF approach to

compare the safety profiles of the study drug versus placebo. A comparison of the

safety profiles was also carried out for all adverse events related to eight organ

systems. This statistical analysis of observed adverse events as they relate to a

particular organ system may provide additional information to indicate or detect

potential safety issues, and the grouping of adverse events on an organ system

basis is very reminiscent of the body-system approaches of [3] and [5].

There is no reference for the trial in the paper and the complete data set is not

given. However, Siddiqui reports that among the eight organ systems it was found

in the analysis that the study group had a different safety profile of cardiovascular

related adverse events compared to the corresponding profile for the placebo group.

The results from the CRI and EAIR analysis, without controlling for multiple

comparisons, and with adverse events aggregated for organ class, were that:

1. The CRI and EAIR for all adverse events, and for cardiovascular adverse

events, were higher in the study group compared to the placebo group.

2. The rates of cardiovascular adverse events were even higher for females com-

pared to those for males.

3. The rates for organ systems other than cardiovascular were similar between

the study drug and placebo, indicating that the overall differences between

the arms was due to cardiovascular adverse events.

For all adverse events, the MCF estimate, M̂(t), showed that while there were more

events in the drug group than control, the two curves had become parallel after

a few days, indicating that intensities of adverse events had become constant and
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were similar. The confidence intervals calculated at the end of the trial period for

M̂(t) overlapped. However, for the study drug group the MCF estimate indicated

that more females than males suffered adverse events, with the confidence intervals

at the end of the study separated.

On the other hand, the MCF estimate for cardiovascular adverse events showed

a higher intensity rate for treatment than study, with a subject from the study

group having more than two times higher cardiovascular related adverse events on

average than a patient from the placebo group. Although by the end of the study

the confidence intervals for the different curves still overlapped, the trajectories

indicated that the confidence intervals would become separated for pro-longed

drug use, provided the intensity rates remained similar. A similar pattern existed

in the drug study group for females versus males, while there were more adverse

events for females the confidence intervals overlapped, but continued use would

indicate that they would be come separated.

A weakness of the crude incidence rate and exposure-adjusted incidence rate is

that they do not provide the trajectories of adverse event occurrence over the

study period. In particular, as they are incidence related statistics, they ignore the

occurrence of more than one adverse event of the same type which may occur for

the same subject. Siddiqui considers that these are important to understanding

the cumulative history of all adverse events over the study period. The MCF

analysis has suggested that the intensity of the cardiovascular adverse events has

increased with a higher rate for the study group as opposed to the control group,

in particular for females. This could also be considered as a future indicator of

delayed serious adverse events, such as heart attacks, due to prolonged use of the

drug, and further investigation is required here to understand why the rate was

higher for these adverse events.

The argument is that the MCF, as a simple approach to representing a stochastic

counting process of a cumulative number of discrete events, not overly dependent

on statistical assumptions, can be used to understand the safety profiles of a study

drug, including gender specific safety profiles. In fact any possible subgroup analy-

sis is possible, and as there is no assumption of constant hazard rate, the intensity

of hazard rates can be compared throughout the study period. However, confidence

intervals calculated based on a normal approximation may not be appropriate for

small frequency or individual adverse events. For safety purposes, the Type-II error

rate in clinical trials should be as small as possible, but, due to low power, this is
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not always possible to achieve. So this type of exploratory approach to safety anal-

ysis, trying to understand the expected safety profile of a drug under prolonged

use, rather than performing hypothesis tests, may be of benefit.

3.3.1.2 Further Discussion

The MCF method can be used in multiple contexts. It can be used with any

population sub-groupings within the trial, either specified in the trial protocol

or not, for an explorative analysis for any adverse event or groupings of adverse

events. In common with [3] and [5] it can be used for body-system based analysis.

Use of the MCF does not say anything about control of Type-I or Type-II errors,

and Siddiqui does not advocate a hypothesis testing approach to safety analy-

sis, but rather uses the MCF and its graphical representation to gain an insight

into differences between the occurrences of adverse events for different groups [4].

Analysis of confidence intervals, and the respective intensity levels of the MCFs as

indicated by the graphs, are used to gauge the possibility of differences between

the different groupings, and also their future behaviour. For example, with regard

to cardiovascular events in the trial considered, Siddiqui says that while the con-

fidence intervals for the two groups overlap on the last day of the study, they are

expected to be separated for prolonged use of the drug due to the higher inten-

sity rate of adverse events for females during the study period. This continued

intensity could lead to further, possibly serious, adverse events for females in the

future. Even though the MCF estimate is non-parametric, and no relationships are

explicitly modelled, this type of prediction, and use of possible correlations among

the adverse events, is, in a sense, “encoded” in the MCF, just by the inclusion of

all the event occurrences, and the chosen sub-groupings analysed. The MCF plot

shows an increasing intensity for the study group, and it is this increasing intensity

that may indicate future delayed adverse events, such as heart attacks, which may

not have occurred by the end of the study, but may occur some time later. In this

sense the groupings of the adverse events are important when using the MCF.

The use of the MCF in an explorative manner is not dissimilar to a Bayesian ap-

proach in the sense that the data is telling us something about the occurrences

of adverse events, but we are not performing any hypothesis tests. However, the

Bayesian approach is limited by the definition of a model, choice of covariates,

parameters, and prior distributions, whereas the MCF could in theory be applied

to any combination of adverse events and subgroups. Even without explicit hy-

pothesis testing, this indiscriminate use of the MCF would be open to the dangers
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of any analysis that uses unadjusted multiple comparisons. There is also a possi-

ble danger in crossing from exploratory analyses to data-dredging [109]. However,

when analysing the clinical data, Siddiqui looks at a limited number of groups:

all adverse events, cardiovascular adverse events, and females versus males. Other

organ groups, which had similar rates between treatment and control, were ig-

nored. So in a sense his analysis was fairly limited, and it could be said that he

effectively dealt with the issue of multiple comparisons by only looking at certain

predefined groupings. This type of analysis, limited to certain groups of events, is

often specified in a trial’s protocol.

The non-parametric MCF is an interesting approach which extends the analysis of

count data to include repeated events and their timings. It is primarily exploratory.

However, the assumption of random censoring may not be valid for clinical trials.

Wang and Quartey use IPCW to extend the MCD approach to dependent censoring

[104]. It is possible that a similar approach could be applied to the non-parametric

MCF approach of Siddiqui, although we do not do that in this study.

In addition to not catering for non-random censoring, the non-parametric MCF

approach has a number of other limitations. It does not provide a framework

for handling multiple comparisons, it is mainly descriptive, and while inference

is possible, this requires parametric assumptions. It also does not cater for the

possibility that a large number of adverse events may be from a single subject.

The indications or predictions of future occurrences or re-occurrences of adverse

events are based on finding an increased intensity rate in one arm of the study. In

order to find such indications, we may need to analyse the MCF of a set of related

adverse events. Any indications are then dependent on the choice of groupings (or

body-systems) analysed. Consequently, the non-parametric MCF does not provide

a straightforward method for flagging adverse events, although it is possible to test

hypotheses. However, multiple hypothesis tests are not automatically adjusted by

the approach, so care is needed when applying the MCF as described.

3.4 Random and Mixed Effects Models

The introduction of random terms in linear and generalised linear models has

greatly increased the scope of these methods. Mixed effects models are particularly

useful when the number of potential model parameters is large, but the number

of observations per parameter is limited. For the standard General Linear Model

(LM) with y an N × 1 vector of responses, X an N × p design matrix for fixed
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effects β, and Z an N × q design matrix for random effects b, the Normal linear

mixed model is defined as:

y = Xβ + Zb + e

e ∼ N(0,Σ)

b ∼ N(0, D)

where e and b are independent, and Σ and D are covariance matrices.

In a similar fashion the Generalized Linear Mixed Model (GLMM) is a straight-

forward extension of the Generalized Linear Model (GLM) where, conditional on

b, the model is a GLM, and if µi = E[yi|b] the link function is given by [76]:

h(µ) = Xβ + Zb (3.5)

These models are well understood. The framework for analysing them is discussed

in [110], with associated software packages such as lme4 [111] and nlme [112]

available for R [113]. An alternative model fitting approach is given in [114]. There

are a number of similarities between these models and Bayesian models, although

the philosophy is quite different. The use of a standard generalised linear model

based approach means that current implementations are limited to exponential

families of random variables (e.g. Binomial or Poisson), with few choices for the

random effects (usually just Normal). As well as being useful in themselves, these

models often form a starting point for longitudinal approaches (§3.5) and more

complicated models, which can also be analysed by Bayesian methods. We will see

a number of these types of approaches described below when we look at Bayesian

approaches to safety analysis (§3.6.2.7). Random effects can also be incorporated

into survival analysis. In the R package coxme [115], Therneau fits the survival

model with hazard function given by:

h(t) = h0(t) exp (Xβ + Zb)

b ∼ N(0,Σ)
(3.6)

where, conditional on b, observations are independent.

For the type of end of trial data that we see in §1.8, a Binomial GLMM could

potentially be suitable for analysing this data, taking into account the groupings

given by the body-systems or system organ classes. The probabilities of the adverse
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events for such a model would have the general form:

logit p = Xβ + b

b ∼ N(0, σ2I)
(3.7)

where p is a vector of probabilities and X is a design matrix indicating treatment

or control. With i indexing body-systems, j indexing adverse events within a body-

system, k ∈ (0, 1) indicating treatment or control, and x0 = 0, x1 = 1, we can write

this more simply as:

logit pijk = αj + xkβj + bijk

bijk ∼ N(0, σ2)
(3.8)

where αj is an overall body-system effect, βj is a change in body-system effect

due to treatment, and bijk are adverse event random effects. This is just one of a

number of potential models for this data.

3.5 Longitudinal Analysis

Standard longitudinal data analysis methods, such as those described in [116], are

also applicable to safety analysis. In addition to Poisson type regression for counts,

other types of analyses are possible. Zeger and Diggle describe a semi-parametric

model for analysing the counts of CD4 cell numbers in HIV Seroconverters [116],

[117]. They model the mean response non-parametrically using a kernel estimator.

Their model is:

Yij = µ(t) + xTijβ +Wi(t) + Zij (3.9)

where Yij is the jth measurement on individual i, xij is a vector of covariate values,

β is a vector of regression parameters, and µ(t) is a smooth function of time. The

Wi are independent replicates of a zero-mean stationary Gaussian process with

covariance function γ(u) = σ2
wρ(u; θ). The Zij are mutually independent mea-

surement errors, each distributed normally as N(0, σ2
z). The data is an array of

measurements: {yij(tij)}. The Gaussian assumptions are not required for parame-

ter estimation, only for inference. The model is also interesting in that the response

variable Y is not a discrete variable even though we are dealing with cell counts.

Many different covariance structures have been studied for this type of normal ap-

proach, but random effects models are also useful for modelling this, particularly

for count data.
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A Bayesian hierarchical approach to longitudinal analysis, also for CD4 cell counts,

is described by Lange et al. [118]. They model the squareroot of the counts over an

interval as a piecewise linear growth curve with random effects. The parameters

are themselves random variables.

The model of Schildcrout et al. is another such model, although they look at a

continuous response variable (liver enzyme activity with alanine aminotransferase)

[119]. Their general model is:

Yi(tij) = Xi(tij)
Tβ(tij) + εi(tij) (3.10)

where Yi(tij) is the response of subject i at time tij, Xi(tij) is a vector of covariates,

β(tij) is a time-dependent vector of parameters, and εi(tij) is a mean zero error

term. They base their inference on a mean model using natural splines, and take

into account subject selection, dropout mechanisms, and treatment received.

3.6 Bayesian Approaches to Clinical Trials

In their 2010 book, Bayesian Adaptive Methods for Clinical Trials [67], Berry et

al. describe some of the advantages and methods available for a Bayesian approach

to the analysis of data from clinical trials. In particular, they stress the fact that

Bayesian methods use all available evidence, that previous information may be

encoded in the prior distributions or that uninformative or minimally informative

priors may be used, that inferences depend only on the observed data and choice of

prior, are flexible in the sense that they can be updated as more data accumulates,

and they allow for prediction and are thus suitable for decision making. This

flexibility can also be used to apply Bayesian methods over the various phases of

clinical trials, and to meta-analyses of trials [120].

Before proceeding, we consider the following point about multiple comparison pro-

cedures, which papers introducing Bayesian approaches often make as a part justi-

fication for using Bayesian statistics in place of frequentist or classical approaches

[109]:

Why, from the scientific point of view, should the act of measuring

a variable affect inferences about another variable? The issue here is

that using a standard Multiple Comparison Procedure (e.g. Bonferroni)

changes the significance levels (or adjusts p-values) used for hypothesis

testing.
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To quote Berry [109]:

An investigator who carried out only one test might find a significant

difference whereas the same difference would not have been significant

had the investigator tested enough other variables.

The Bayesian view of this is that the results of the analysis performed seem to

depend on the intentions of the investigator rather than on the data. Further, the

Bayesian approaches used by Berry and Berry [5] and DuMouchel [6] claim to

bring a number of advantages above frequentist methods:

• Multiple Comparison Robustness. The idea that posterior distributions tend

towards the true distribution of the parameters provides multiple comparison

robustness (shrinkage) [27], [66].

• Trials tend to be sized based on efficacy of treatment rather than safety

concerns [4]. Typically safety events are rare leading to what DuMouchel

calls the granularity problem [6]. There may not be a large amount of data

available on which to base inferences. In the Bayesian approach assumed re-

lationships between the parameters allow us to say more about the individual

adverse event rates than we would otherwise (borrowing strength).

From a Bayesian perspective the multiple comparison problem can be considered

as an issue of appropriately choosing a prior to account for dependency in multiple,

related hypotheses [27], [66]. Scott and Berger also emphasise that multiplicities

must be handled through choice of prior [121].

3.6.1 Bayesian Models for Adverse Event Incidence

In their 2004 paper Berry and Berry propose a hierarchical Bayesian model for

the analysis of incidence data consisting of counts of occurrences of adverse events

in control and treatment groups from clinical trials [5]. They use the 2004 paper

of Mehrotra and Heyse as the basis for introducing their model, using the same

nomenclature and example data [15].

Bayesian hierarchical models have many applications [122]. They are particu-

larly applicable in areas where there is a natural hierarchical or population/sub-

population structure to the data being modelled [123], where the parameters in-

volved can be regarded as connected or related in some way [122], or where the
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data has high dimensionality. Hierarchical models are also appropriate where there

is a level of uncertainty about the prior distributions and we wish to include this

uncertainty in the Bayesian model [123]. In comparison, non-hierarchical models

are usually inappropriate for hierarchical data [122], either they do not fit large

data sets accurately, or they overfit the data, leading to inferior predictions.

The method of grouping adverse events by body-system has a natural hierarchical

structure (Figure 3.1) around which Berry and Berry base their model. We can

consider a body-system to be, in a sense, a dimension of the body, and the adverse

events to be different aspects of it. There is no need to discard rare events, as

Mehrotra and Heyse [15] and Mehrotra and Adewale [3] do in an attempt to

reduce dimensionality, and in fact this would violate one of the main assumptions

of Berry and Berry’s approach as we will see.

Body

1 2 b B Body­Systems

AE
b1

AE
bj

AE
bk

b

Adverse
  Events

Figure 3.1. Adverse events grouped by body-system.

Bayesian hierarchical models also have a number of properties which make them

computationally attractive. The assumption of conditional independence within

the model [122], [123] allows the easy factorisation of the joint parameter distri-

bution to derive the complete conditional distributions up to a constant, thereby

facilitating the implementation of Markov Chain Monte Carlo (MCMC) fitting
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algorithms for Gibbs sampling [124]. Quite often Bayesian hierarchical models use

conjugate priors for hyperparameters on the basis that the analysis is robust, which

further simplifies the computations required for simulation [123].

Berry and Berry suggest four considerations to be taken into account regarding

flagging adverse events [5]:

1. The actual significance levels of the individual adverse events.

2. The total number of types of adverse events being considered.

3. The rates of adverse events not considered for flagging.

4. The biological relationship among the adverse events.

The first two are standard considerations in any frequentist analysis of the data.

The latter two are not relevant to a frequentist approach, but are for a Bayesian

approach. Removing rare events, as Mehrotra and Adewale [3] do in their method,

would not be appropriate to the Bayesian approach that Berry and Berry wish to

pursue.

Berry and Berry make the following assumptions regarding the data:

• It is important whether adverse events considered for flagging are in the same

body-system. The assumption here is that rates of adverse events are more

likely to be similar within a body-system than across body-systems.

• It is also important to take into account in some manner the rates of adverse

events in the same body-system which may not be considered for flagging.

The approach is to assess whether a treatment causes an adverse event based on

all available information.

DuMouchel introduces quite a similar approach which he calls Multivariate Bayesian

Logistic Regression (MBLR) [6]. We will discuss this paper in more detail below

(§3.6.3). Here again the emphasis is on adverse events with a clinical or other re-

lationship, modelled by a hierarchical model looking to exploit these relationships

to borrow strength.
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3.6.2 Berry and Berry Model

The Berry and Berry approach to applying a Bayesian analysis to safety is a model

consisting of [5]:

1. A Binomial distribution for the adverse event counts in the control and treat-

ment groups.

2. A logistic model linking the Binomial probabilities to a three stage hierar-

chical model.

The model, which is described in more detail in below, explicitly includes the

possibility of no differences between treatment and control by including a point-

mass term.

3.6.2.1 Model Notation

We assume that there are B body-systems, within body-system b there are kb types

of adverse event labelled:

AEbj, j = 1, . . . , kb

There are NC patients in the control group and NT in the treatment group.

We let Xbj and Ybj be the number of occurrences of AEbj in the control and

treatment groups respectively, with the probability of experiencing Abj being cbj

for the control group, and tbj for the treatment group.

3.6.2.2 Data Model

The data model is Binomial:

Xbj ∼ Bin(NC , cbj)

Ybj ∼ Bin(NT , tbj)
(3.11)

Letting

logit(cbj) = log
cbj

1− cbj
= γbj

logit(tbj) = log
tbj

1− tbj
= γbj + θbj

(3.12)
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γbj is the log-odds in the control group, and θbj = logit(tbj) − γbj is the relative

increase in this log odds rate in the treatment group, i.e. θbj = log
[
tbj(1−cbj)
cbj(1−tbj)

]
is

the log odds-ratio.

3.6.2.3 First Level

The log-odds in the control group are modelled by normal distributions:

γbj ∼ N(µγb, σ
2
γb) b = 1, . . . , B j = 1, . . . , kb (3.13)

From above, the θbj are log-odds ratios and if θbj = 0 then the probability of a

patient experiencing AEbj is the same in both groups, i.e. cbj = tbj. The model

assigns a positive probability, πb, to this possibility by using a mixture of a normal

distribution and a point-mass at zero in the prior distribution:

θbj ∼ πb I[θbj=0] +(1− πb) I[θbj 6=0] N(µθb, σ
2
θb) b = 1, . . . , B, j = 1, . . . , kb (3.14)

where I is the indicator function.

3.6.2.4 Second Level

The standard Bayesian hierarchical approach is to assign a prior distribution to

the hyperparameters which creates the second stage of the prior structure:

µγb ∼ N(µγ0, τ
2
γ0) b = 1, . . . , B

σ2
γb ∼ IG(αγ, βγ)

(3.15)

where IG is the inverse-gamma distribution (§A.6).

The probability πb, that θbj = 0, is assumed to be the same for all adverse events

j in body-system b. The prior chosen for πb is:

πb ∼ Beta(απ, βπ) b = 1, . . . , B (3.16)

For the hyperparameters of the normal part of the mixture distribution we assume:

µθb ∼ N(µθ0, τ
2
θ0) b = 1, . . . , B

σ2
θb ∼ IG(αθ, βθ)

(3.17)
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3.6.2.5 Third Level

In the third level of the hierarchical model the hyperparameters have distributions:

µγ0 ∼ N(µγ00, τ
2
γ00)

τ 2
γ0 ∼ IG(αγ00, βγ00)

(3.18)

The prior distributions for απ, βπ are truncated exponentials:

απ ∼ M(λα) I(απ > 1)

βπ ∼ M(λβ) I(βπ > 1)
(3.19)

Berry and Berry take λα = λβ , this means that 0.5 is the a priori probability that

θbj = 0.

Finally the hyperparameters of the normal prior of µθb have the distributions:

µθ0 ∼ N(µθ00, τ
2
θ00)

τ 2
θ0 ∼ IG(αθ00, βθ00)

(3.20)

The parameters λα, λβ, µγ00, τ
2
γ00, µθ00, τ

2
θ00, αγ, βγ, αθ, βθ, αγ00, βγ00, αθ00, βθ00 are as-

sumed to be fixed constants and Berry and Berry give these the values:

µγ00 = 0, τ 2
γ00 = 10, αγ = 3, βγ = 1, αγ00 = 3, βγ00 = 1, λα = 1

µθ00 = 0, τ 2
θ00 = 10, αθ = 3, βθ = 1, αθ00 = 3, βθ00 = 1, λβ = 1

(3.21)

The importance of fixed values in a hierarchical model is reduced by the model’s

robustness and the above values were used in this study [123].

In the original implementation of the model the mean parameters µγb had a shared

variance σγ [5]. In the implementation used in this study we follow [60] and [125]

and replace σ2
γ by a body-system variance σ2

γb.

3.6.2.6 Modelling the Body-System

The directed acyclic graph (DAG) for the hierarchical model is shown in Figure

3.2.
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Figure 3.2. Directed acyclic graph for the Berry and Berry Model.

Graphical representations for model DAGs are described in [126, Ch. 2].

We can see the proposed hierarchical Bayesian model is in effect a reflection of

the body-system described in Figure 3.1, with the body-system means, µγb, µθb,

sampled from body means, µγ0, µθ0. Uncertainty about the body-means is reflected

in the fact that µγ0, µθ0 themselves have prior distributions. A key part of the model

is the use of a mixture distribution for the θbj. This explicitly models the possibility

that the probabilities of the occurrences of adverse events in both groups is the

same. A number of similar models [6], [60] either ignore the point-mass or use

mixtures of normal distributions with a small variance as a point-mass equivalent.

Implementation of these models is more straightforward. The use of the point-mass

is discussed in some detail in [127].

In the simulation study in Chapter 5 we will look at the Berry and Berry model

both with and without the point-mass. We expect the presence of the point-mass to

reduce the Type-I error rate compared to similar models without the point-mass.

A strong safety signal may be required to overcome the effect of including this

term in the model. This may result in an increase of the Type-II error rate when

differences between the treatment and control are small. For models without the

point-mass, we may expect more Type-I errors, particularly if some of the adverse
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events have high treatment rates compared to the control, in effect pulling up the

overall rates.

3.6.2.7 Discussion

Berry and Berry apply the model to the data from [15, Table 1] and give a brief

overview of the results, which are in agreement with those of Mehrotra and Heyse

[15]. In addition, they make a small investigation of the effect of moving a “flagged”

adverse event to a different body-system. They report that this materially affects

the results, indicating that the assignment of adverse events to body-systems is an

important consideration.

It is not really possible to say much about the results from the model as applied to

the data in [15], the true treatment and control differences for individual adverse

events are not known. To investigate further Berry and Berry fitted the model to

simulated data with the intention of exploring how well it fits. The main conclu-

sions from the paper are that:

• The inclusion of the point-mass in the model can be considered important

in that it is reasonable that some adverse events will not be affected by the

treatment.

• The model is sensitive to body-system. Moving an adverse event from one

body-system to another can have a (dramatic) effect on the findings.

Berry and Berry further state that it should be possible to model dependencies

among adverse events at the patient level, if the data were available, allowing more

precise conclusions about treatment effects.

While Berry and Berry concentrate on Tier 2 adverse events, they make no real

modelling distinction about rare or serious events. Compared to the Mehrotra and

Adewale [3], who consider Tier 3 events to be those rare serious events that require

separate clinical evaluation, the Berry and Berry approach has the advantage that

this type of event is always included in their model. The model does not require

any monitoring in this sense. There is no justification within the paper for the

choice of priors or the parameter values given, although a number of citing papers

consider the prior choices suitable or discuss alternatives [127].

The Berry and Berry model has limitations. It is useful for marginal incidence

data only, it does not take into account timings of events, it does not take into
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account the severity of events, no account is taken of patient data or censoring,

and no sub-group analysis is possible.

The Berry and Berry model takes adverse events in the same body-system as

exchangeable and the assignment to body-system as given. These assignments are

critical for making any clinical decisions. However, the paper deals mostly with

the suitability and fitting of the model, which is just one part of the procedure.

The model must be used to make a decision or at least flag a potential safety

signal. Unlike the error controlling procedures discussed in Chapter 2, Berry and

Berry do not put forward any clear decision rule. In essence they just examine

the posterior probabilities of an increase in incidence and any decisions are based

on this. In particular, it is not clear how to determine error rates and power.

Simulated studies, with known error rates, could be used to determine thresholds

for the posterior distributions to achieve an estimated prespecified power. In a

sense Type-I and Type-II error rates become our decision criteria. Xia et al. take

this approach [60]. In contrast, it is worth noting that Bayesian decision theoretic

approaches to controlling the False Discovery Rate exist [54], [55].

The Berry and Berry model can be considered to be over-parameterised in the

sense that that there could possibly be more parameters than data points. In the

model there are essentially 4/5 parameters for each body-system. However, over-

parameterised hierarchical models have a number of advantages in that they may

improve mixing and convergence [126], and they may have enough parameters to

both fit the data and to model some dependence between the parameters [122,

Ch. 5], in a sense avoiding overfitting. Indeed Gelman et al. state that it is often

sensible to fit hierarchical models with more parameters than data-points [122].

3.6.3 Multivariate Bayesian Logistic Regression

DuMouchel [6] introduces Multivariate Bayesian Logistic Regression (MLBR) which,

like Berry and Berry [5], is a Bayesian Hierarchical model for the analysis of ad-

verse event incidence data. However, DuMouchel’s model includes covariates and

treatment-covariate interactions, and allows for subgroup analysis. The data he

considers are sparse response data, such as adverse events from clinical trials. In

his paper he analyses 10 medically related issues from a pool of 8 studies, so he

is performing a meta-analysis. One advantage of working with pooled data is that

the number of events is increased.

The predictor variables in the model are assumed to be categorical (or dichoto-
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mous) and observable at the time of subject randomisation. The analysis is cross-

sectional rather than longitudinal, the timings of the events or observation times

are not considered in the analysis. The response data is assumed to arise from

individuals enrolled in the studies, the subjects, and for each subject the response

is 0 or 1 for each safety issue, depending on whether a subject has experienced

that particular safety issue or not, thus giving overall counts of the incidences of

various safety events when taken in summary form.

As may be expected, the primary explanatory or predictor variable is Treatment

vs. Control, which DuMouchel calls study Arm with values “Treatment” or “Com-

parator”. Other subject level covariates may be included, e.g. gender, age cate-

gories, medical history variables, as well as treatment-covariate interactions and,

if data is pooled from multiple studies, a study identifier covariate.

DuMouchel gives two main reasons for his approach, which we have previously

mentioned:

1. Shrinkage can provide multiple comparison robustness.

2. MBLR fits the same model to each response variable which allows borrowing

of strength.

The assumptions here are therefore that the different adverse events should be

medically related in some way, such as being part of the same body-system, or all

based on the same underlying process. As noted in §1.9, classifying or grouping

adverse drug reaction reports may be controversial, and different groupings may

change the statistical significance of the adverse event count data [28]. Berry and

Berry illustrated this issue in their paper [5].

DuMouchel considers a Bayesian approach as a good compromise between attempt-

ing an analysis of safety events that are so rare that reliable comparisons are not

possible, and using a single analysis for all adverse events which could potentially

submerge a few important safety signals. The model is positioned as an additional

support for safety analysis in an exploratory or confirmatory sense when there are

many parameters of interest. DuMouchel claims that in the model the Bayesian

estimates of the treatment-covariate interactions are conservative, in the sense that

estimates are “shrunk” toward null hypothesis values, in order to reduce the false

alarm rate due to high variance in small sample sizes. This conservativeness can

be considered a form of adjustment for multiple comparisons.
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In discussing comparisons of MBLR with other methods, DuMouchel states that

a standard logistic regression approach (without treatment-covariate interactions)

to analysing the data can fail because the likelihood function has no unique finite

maximising set of parameters [128]. Instead, a favourable comparison is made with

what he terms Regularized Linear Regression (RLR), a “weak Bayes” method

which corresponds to setting certain variance components (that are estimated by

MBLR) to values selected to be so large that resulting estimates would be virtually

the same as those for standard logistic regression, if the data were not so sparse.

3.6.3.1 The Model

We assume that there are S subjects in total and K types of adverse event. All

covariates are assumed to be categorical, subjects are grouped by covariate pattern

into m separate groups, with ni subjects in group i, so that
∑m

i=1 ni = S. We

assume that there are J predictor variables (all categorical), excluding treatment,

and that the jth predictor has gj categories, let G =
∑J

j=1 gj be the number of

subgroups within these categories. Within group i, Nik subjects experience issue

k and Ti is the treatment indicator. For the ith group of subjects the probability

of experiencing issue k is:

Pik =
1

1 + exp(−Zik)
( or alternatively logit (Pik) = Zik) (3.22)

where

Zik = α0k +
∑

1≤g≤G

Xigαgk + Ti

(
β0k +

∑
1≤g≤G

Xigβgk

)
(3.23)

with the constraints that
∑G

g=1 αgk =
∑G

g=1 βgk = 0, and X is the design matrix of

dummy variables for the J covariates (with G total categories over all covariates).

The priors for the model are a 2-stage hierarchy:

αgk|Ag ∼ N(Ag, σ
2
A) k = 1, . . . , K; g = 1, . . . , G

β0k|B0 ∼ N(B0, σ
2
0) k = 1, . . . , K

βgk|Bg ∼ N(Bg, σ
2
B) k = 1, . . . , K; g = 1, . . . , G

Bg ∼ N(0, τ 2) g = 1, . . . , G

(3.24)

The priors for {α0k, Ag, B0} are assumed uniform within (−∞,∞). The vari-

ances (σ2
A, σ

2
0, σ

2
B, τ

2) are assumed to have prior distributions uniform in the 4-

dimensional cube 0 ≤ σA, σB, σ0, τ ≤ d. The model is structured in such a way
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that:

1. The assumptions that coefficients for the same predictor across multiple is-

sues cluster around predictor specific values (A1, . . . , AG, B0, . . . , Bg) is im-

plemented in the hyper-priors for αgk, β0k, βgk. This clustering is dependent

on the variances (σ2
A, σ

2
0, σ

2
B), smaller values giving tighter clustering and

larger values leading to no discernible patterns among the coefficients.

2. The hyper-prior for Bg, where Bg = 0 means no treatment by covariate inter-

actions (when averaged across responses), ensure that the “null hypothesis”

Bg = 0 is given priority in the analysis. This is similar to Berry and Berry’s

use of a point-mass to model the possibility of no differences between control

and treatment [5]. The value of τ 2 determines how strongly to shrink the

prior means towards 0.

For large G there will be many possible subgroup comparisons and caution is

needed in interpreting estimates which are unadjusted for multiple comparisons

(i.e. any frequentist fit of the data). The MBLR estimates are designed to be

more reliable in the presence of these multiple comparisons because of subgroup-

by-treatment interaction shrinkage (towards 0), and the possibility of borrowing

strength provided there is an observed similar pattern of treatment and subgroup

effects in most of the K issues being analysed. When configuring a MBLR approach

issues should be selected for which there is some suspicion of a common medical

mechanism involved. This requires that we just analyse one set of adverse events,

for example from a single body-system or organ grouping, in contrast to Berry and

Berry who include all adverse events in their model [5].

3.6.3.2 Interpretation of Coefficients

The αgk, with the constraint that
∑

g αgk = 0, define the risk of issue k for the

comparator subjects (i.e. the controls), in the sense that α0k + αgk is the log-odds

that a subject in subgroup g will experience issue k, averaged across the categories

of other predictors not defined by subgroup g. For treatment effects, β0k + βgk are

the estimated log-odds ratios for the risk of issue k (Treatment vs. Comparator),

that a subject in subgroup g will experience issue k, averaged across the categories

of other predictors not defined by subgroup g. There is a similar constraint to the

α’s:
∑

g βgk = 0.
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3.6.3.3 Model Fitting

DuMouchel describes in some detail the process for fitting the model in Section 3

of the paper. In contrast to Berry and Berry ([5]), DuMouchel does not use a direct

MCMC simulation approach to approximate the posterior distributions. Instead a

discrete approximation approach is taken. The standard deviations (σA, σ0, σB, τ)

are assumed fixed and known and the other parameters are estimated, conditional

on these values, using Newton-Raphson maximisation of the log of the joint pos-

terior distribution of the parameters. DuMouchel’s rational is that he feels inexpe-

rienced scientists would have difficulty assessing convergence of high-dimensional

MCMC runs, and that certain users might be uncomfortable with the fact that

a repeat analysis on the same data would typically lead to slightly different an-

swers (repeatability concerns) for parameter values, even if the MCMC runs had

converged.

3.6.3.4 Discussion

DuMouchel briefly discusses his model in comparison to the Berry and Berry model

[5]. While Berry and Berry do not include covariates, and concentrate on treat-

ment/control odds-ratios only, they have a more complex model with many more

variance components. The inclusion of covariates and treatment-by-covariate inter-

actions in MBLR allows the possibility of detecting vulnerable subgroups that have

different responses to treatment. DuMouchel considers that without the “smooth-

ing effect” of Bayesian shrinkage of the interaction terms in the model, estimates

of interactions affecting rare events would be so variable as to be useless.

DuMouchel defends his choice of normal priors from the criticism that, since they

generate few outliers, using these priors may in fact suppress them. Alternative

priors, such as t-distributions or double exponential (“lasso”) distributions, could

be considered as these tend to shrink outliers less, but the double exponential

distribution has properties which make computation difficult, and so DuMouchel

does not consider it for his model. Similarly, t-distributions are difficult to handle

computationally in a complex model like MBLR. In the proposed implementation

MBLR is guaranteed to converge as it has a log-concave posterior density function.

DuMouchel applies MBLR to the analysis of 10 adverse events from the pooled

data of 8 studies to investigate:

1. the commonality of the safety issues;
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2. the possibility that certain subgroups of subjects may be more (or less)

affected;

and uses a simulation study to investigate the statistical properties of MBLR.

He concludes that while safety issues with low frequencies will produce standard

logistic regression estimates with wide confidence intervals, MLBR can be seen as a

compromise between the analysis of finely distinguished events and a single analysis

of a pooled event. It requires a selection of medically related issues, potentially

exchangeable with respect to their dependence on treatment and covariates. In fact

the key concept is that the set of K issues have been pre-specified as important

and likely to be biologically and clinically related.

Although the main data analysis discussed in the paper is a meta-analysis, there

is no particular reason why the approach could not be used within a single trial.

While not directly using body-systems, and in fact it is not possible to include

multiple body-systems in MBLR, DuMouchel ([6, §4]) stresses that the

selection of which issues to include in an MBLR is important. There

needs to be at least a superficial plausibility that all or many of the

selected outcome issues might have similar odds ratios with treatment

and with the covariates in the model, what Bayesians call exchange-

ability.

While DuMouchel states that his paper is inspired by, and similar in spirit to, the

Berry and Berry model [5], there are a number of differences. He includes grouping

by covariate, with the possibility of borrowing strength if there is an observed

similar pattern of treatment and subgroup effects in most of the K issues being

analysed. This is a separate layer of possible meaningful groupings (by covariate

values). However, his model is a restriction of [5] in the sense that his requirement

that all adverse events be medically related can be considered to restrict the model

in effect to a single body-system, whereas [5] include all body-systems in their

model. This is why MBLR does not have a third level to the hierarchical model.

We can consider MBLR to be one body-system with covariates, and the Berry and

Berry model [5] to be multi-body-systems with no covariates. Further, it would be

possible to use a similar approach to Bg ∼ N(0, τ 2) with small τ 2 in the Berry and

Berry model, rather than the zero point-mass probability πb (§3.6.2.6).
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In common with the Berry and Berry model, the DuMouchel model has the fol-

lowing limitations: it is useful for marginal (incidence) data only, it does not take

into account timings of events, it does not take into account the severity of events,

no account is taken of patient data or censoring. However, unlike [5], in MBLR

subgroup analyses are possible. Due to their respective similarities any approach

to taking clinical decisions based on the model would essentially be the same as

those for the Berry and Berry model (§3.6.2.7).

3.6.4 Further Discussion

Both the Berry and Berry model [5] and MBLR [6] have been discussed a number

of times in the literature, with both being considered interesting approaches to

safety, but also the subject of some criticism, with a number of extensions or

alternative models proposed for similar data.

Evans [68], Berry [69], McEvoy et al. [70] and Shaddox et al. [129] all consider

MBLR as an important step in the development of statistical methods for the

analysis of safety data, particularly with regard to the borrowing of strength be-

tween related adverse events. However McEvoy et al. are critical of MBLR as

a meta-analysis tool because the model does not preserve the trial specific ran-

domised comparison between the treatment and control groups, and consider that

the model could be improved by taking this into account. They present a mod-

ified MBLR formulation with trial specific terms, and performed a comparisons

between the two models using a fully Bayesian approach (using OpenBUGS [126]),

rather than the approximation approach used in [6].

The Berry and Berry model has also been criticised in the literature. Crooks et al.

[130] consider that, while Berry and Berry have shown that including a Bayesian

hierarchy can be important in analysing adverse events, the model is unadjusted

and overly simplistic. The Crooks et al. approach is to use a Bayesian model of

information sharing as opposed to groupings. They propose a Bayesian hierarchical

model which is integrated with methods to allow for confounding and interactions.

Their information sharing model was constructed by a practitioner (a gastroen-

terologist) who defined a 3-level hierarchy. Potential confounding and interactions

were assessed by a non-Bayesian analysis, and separate logistic regression models

were constructed for the various combinations. The results from this multivari-

ate analysis were included in the Bayesian hierarchy and re-estimated by MCMC

methods. It is difficult to assess this approach as the authors do not give the model
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details in their paper.

Chen et al. [125] extend the Berry and Berry model [5] to a group sequential

method with the aim of early detection of adverse events that might be associated

with treatment, while controlling Type-I and Type-II error rates. The approach is a

standard Bayesian update of the posterior distributions based on the data available

at the interim analyses. They use a decision-theoretic approach to both minimise

the posterior expected loss due to the misclassification of an adverse event, and

to determine the threshold values for a group sequential signalling process for the

safety data. There is no discussion of the possibility that the rate of occurrences

of adverse events may not be constant over the lifetime of the trial, or if this is

important. However it is an approach that is suitable for interim analyses.

Other similar modelling approaches have also been proposed. Agresti and Klingen-

berg [131], who briefly discuss [5], use a test statistic which considers the count data

in a multivariate manner and applies tests which are the analogue of the Hotelling

T 2-test for vectors of binary responses. A not dissimilar multivariate approach is

discussed by Chuang-Stein, Mohberg and Musselman [29]. They use clinical and

patient information to group safety data into classes by body-system, and a score

or grade is assigned at a patient level to the levels of “acceptability” within each

class. A multivariate test is performed to determine if the safety profile for treat-

ment and control is the same. Xia et al. offer a WinBUGS ([126]) implementation

of the Berry and Berry model and discuss five very similar models [60]. Models 1a

and 1b in the paper are based on [5], Models 2a, 2b are very similar to [5], but use

a Poisson model to take into account the total subject exposure time and incidence

rates for the different adverse events. Decisions regarding flagging adverse events

are made using cut-off points determined by simulation studies. The fifth model

they discuss is a non-hierarchical approach to end of trial count data with fixed

parameters.

Goldberg-Alberts and Page take an alternative view on adverse events, grouping

them by “constellation” and using a log-linear model to estimate the magnitude

of association between them [132]. They do not address the issue of multiplicities.

Gould proposes an alternative Bayesian method [133]. He regards the incidences

of adverse events as realisations from a mixture of distributions, and looks to find

the element of the mixture which corresponds to each adverse event. The actual

adverse event counts are considered to be Binomial distributions, with the control

probabilities having Beta priors, and the treatment probabilities having mixture
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distributions. In this way it is similar to the top level of the Berry and Berry model

[5], although it does not use a point-mass or directly take advantage of a body-

system relationship. The model is applied to the data in [15] and compared to the

Berry and Berry results. Kim et al. propose a number of (non-Bayesian) regression

models which model adverse events grouped by body-system over time [134]. Their

method is called stratified quasi-least squares (SQLS) and is an extension of the

General Estimating Equations (GEE) approach for correlated data. They assume

a within-patient correlation between the adverse events, giving a general form for

the covariance matrix. The general theory is developed before a simulation study is

analysed. The data for the study is generated from Binomial and Poisson variables,

and a number of log-linear models are fitted.

Rosenkranz uses an empirical Bayes approach for adverse event data [135]. This is

a Poisson model with a subject dependent rate and log-normal priors. The rate is

assumed constant leading to a summary Poisson model at the SOC (System Organ

Class) level. Schildcrout et al. discuss a general time dependent linear model for

longitudinal data which can be used in post-marketing surveillance or for meta-

analyses [119]. They do not address the issue of multiplicities and concentrate on a

single adverse event only, although this could also be used for multiple occurrences

(§3.5). Simo ([136]) presents a Poisson regression multilevel model with random

effects, based on a model of Christiansen and Morris [137], and uses it to analyse

the data in [15]. The Christiansen and Morris model itself uses “overall” Poisson

rates to model the sum of individual Bernoulli trials where the probabilities are

small and the data is modelled by Negative Binomial distributions. Southworth and

O’Connell [138] discuss a number of approaches to analysing clinical adverse event

data, including the Berry and Berry model [5], as alternatives to hypothesis testing.

They stress data-mining or explorative approaches and a final analysis based on

graphs and summaries which are easy to interpret. The first approach discussed

is a logistic regression with a penalised likelihood (including the assumption that

the adverse events are independent), the second is what is termed an “inside-out”

approach where the adverse events are used to classify the subjects to treatments

(a form of machine learning), the third approach discussed is the Berry and Berry

model. Their recommendation is that all discussed methods are useful and should

be applied where possible. The paper does not contain a full description of the

data or the models used apart from the Berry and Berry model [5]. In a 2009

presentation Prieto-Merino et al. ([127]) discuss Bayesian Hierarchical Modelling,

with reference to [5], for clinical adverse event data. No new models are introduced,
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rather they discuss choosing the prior distributions for use in the model and, in

particular, the effect of the point-mass and possible replacements for it, giving as

an example a model that is the same as Model 1a from [60]. They also discuss the

issue of assigning adverse events to groups.

A number of similar methods have been applied to the area of pharmacovigilance.

DuMouchel describes a method using empirical Bayes modelling for data mining

Spontaneous Report Adverse Event Databases [9]. Gould ([8]) describes a similar

Bayesian method and compares it to both the empirical Bayes approach, and the

positive FDR [44]. Bate et al. use a Bayesian neural network method for a similar

purpose [10]. Recent work in the area of data mining Longitudinal Observational

Databases (LODs) for pharmacovigilance by Shaddox et al. uses the Bayesian

Self-Controlled Case Series regression model (BSCCS) [129]. This approach uses a

Poisson regression to model multiple outcomes (adverse drug events) for multiple

drugs over what are termed drug eras.5 The data is at the patient level and rela-

tionships between all outcomes for any particular single drug are modelled using

a hierarchy. In this approach outcomes that are considered related are grouped

together, but in this case not by using a body-system. Another property of these

pharmacovigilance studies is the absence of control data, the LODs record adverse

event occurrence only so no baseline risk estimates are possible.

Not all Bayesian approaches directly model the data as in the Berry and Berry

model or MBLR. As mentioned in §2.3.2.4 Muller et al. investigate using a Bayesian

decision-theoretic approach to control the FDR [54] and León-Novelo et al. take a

Bayesian approach to the False Discovery Proportion (FDP), whose posterior mean

is the False Discovery Rate [55]. They consider the decision theoretic problem of

controlling the FDR in this Bayesian context, and an alternative decision approach

based on a utility function. The data considered are modelled by a Poisson Bayesian

hierarchy over three distinct stages (time periods). The utility function approach

weights on the size of changes over the stages. They found that strictly using

statistical significance for flagging interesting events may in fact be inappropriate

and that a criterion which is closer to biological significance may be required.

5A Drug Era is defined as a span of time when the Person is assumed to be exposed to a
particular drug. Source: Observational Medical Outcomes Partnership (OMOP) (http://omop.
org/) Common Data Model (CDM) Version 4.0.
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3.7 Discussion

Many of the methods discussed above are designed to handle incidence data only,

but some include timings in their approach, and also per-patient data. In the case

of patient data, generally the individual patients’ data is considered to be inde-

pendent, possibly given some covariate information. However, some of the models

which include timings have assumed constant incidence rates and do not take into

account the possibility of changing incidence over time. We are looking for rela-

tively simple summary models, easily interpretable, which take into account both

the cumulative presence of adverse events and their trajectories, while control-

ling for multiple comparisons, and none of the methods above provide all these

elements.

3.7.1 Bayesian Models

In the Bayesian approaches discussed the incidence data models tend to deal with

marginal count data only, typically no patient level data is taken into account. The

event timing models tend to either semi-parametric or Poisson based models for

counts, and generally rates are assumed constant. Often the duration and severity

of the events is not taken into account, nor is the possibility of a single patient being

responsible for many adverse events, although some of the per-patient Bayesian

models are able to cater for this. The models often ignore censoring. Control for

multiple comparisons is automatic, via the choice of the prior, but deciding which

adverse events to flag may require a decision theoretic approach. However, Bayesian

models are a suitable choice for interim analyses as updating model parameters is

part of the Bayesian framework.

3.7.2 Frequentist Models

Frequentist approaches include incidence data models often with patient timings,

event duration models, survival models, recurrent event models, and general lon-

gitudinal models for counts or rates. They can be parametric, semi-parametric, or

non-parametric. Parametric and some semi-parametric models often include as-

sumptions of an underlying Poisson model. The severity of the events is generally

not taken into account. The possibility of a single patient being responsible for

many adverse events could be handled by a frailty model. Models exist which take

into account both random and dependent censoring. There is no straightforward

way to control for multiple comparisons although mixed model methods may be
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one such approach. Unlike Bayesian models there is no obvious framework for

handling interim analyses. These models are usually fitted by maximum likelihood

estimation or some variation on it.

3.7.3 Further Extensions of the Above

The use of the non-parametric MCF, compared to the crude incidence rate or

event-adjusted incidence rate in §3.3.1.1, shows the value of including event tim-

ings where possible. The grouped methods of [3] and [5] also bring advantages

when controlling for multiple comparisons. Another advantage of the Bayesian ap-

proaches is ability to update parameters at interim time points, such as clinical

trial interim analyses. The approach we will look to take will combine adverse event

timings and groupings by body-system in easily an interpretable model,suitable for

use at interim analyses.
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Chapter 4

Adverse Event Detection in GSK

EGF100151

4.1 Introduction

In this chapter we apply a number of the methods discussed in Chapters 2 and 3,

which are suitable for analysing adverse event incidence data at the end of a trial,

to the safety data from GSK EGF100151 (§1.8). The data is taken from Table 8.11

in the end of trial study report (Table 1.3).

We are interested primarily in grouped methods for a number of reasons. There

may be a relationship between the adverse events, and using groupings which

reflect this in a statistical analysis may provide more power for certain error con-

trolling procedures. For Bayesian models, a hierarchical choice of priors may reflect

a structure in the data, and provide multiple comparison robustness. Grouped data

is also a common way of presenting safety data in clinical trial reports. From the

unadjusted test data in Table 1.12, we can see that the adverse events with the

smallest Fisher exact test p-values come from a small number of body-systems,

and this does appear to indicate that there may be a body-system effect within

the adverse events, or that this possibility is worth investigating.

We apply a number of the grouped error controlling procedures to the safety data

(DFDR [3], GBH [30]), and also the Bayesian approach of Berry and Berry [5],

rather than the more limited approach of DuMouchel [6]. These methods will

also form the basis of a simulation study in Chapter 5. The models and method

definitions are given in Chapters 2 and 3 and listed in Table 4.1. Some of the

results we see below will give pointers to the types of behaviour we may expect to

see in the simulation study.

1Table 8.1. Summary of All Adverse Events (AE attributed to Randomization Phase).
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All the methods are implemented in the c212 package for R (Appendix A, [139]).

BUGs implementations of the Bayesian models were run using OpenBUGS ([126]) for

comparative purposes (§A.8). For the Bayesian models all results are presented

under the assumption that model fitting has reached (approximate) convergence.

Model convergence and parameter tuning is discussed in Appendix C.

Method Name Description

c212.BB Berry and Berry model [5] (model 1b from [60])

c212.1a
Berry and Berry model without point-mass [5]
(model 1a from [60])

DFDR Double false discovery rate [3]

GBH Group Benjamini-Hochberg [30]

Table 4.1. Trial EGF100151: Methods applied to safety data.

For the Bayesian models the posterior probability that the log-odds ratio of the

incidence of adverse events on the treatment arm compared to the control arm, θ,

is greater than 0 is used to determine which adverse events may be of interest.

4.2 End of Trial Safety Data

The final clinical report, 2010N107773 00 (Table 1.3), contains the safety data for

the trial. Figure 4.1 shows the total incidence for six of the adverse events in the

Gastrointestinal disorders body-system. Here, Group indicates either the control

group (1) or treatment group (2), Count is the total incidences of the adverse events

through the trial on each trial arm, and Total is the total number of participants

on each trial arm. For example, we can see that 78 out of a total of 191 participants

in the control group experienced the adverse event Diarrhea, compared to 145 out

of 210 in the treatment group.
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Body-system/SOC Adverse Event Group Count Total

Gastrointestinal disorders Diarrhea 1 78 191

Gastrointestinal disorders Diarrhea 2 145 210

Gastrointestinal disorders Nausea 1 85 191

Gastrointestinal disorders Nausea 2 98 210

Gastrointestinal disorders Vomiting 1 43 191

Gastrointestinal disorders Vomiting 2 63 210

Gastrointestinal disorders Abdominal pain 1 30 191

Gastrointestinal disorders Abdominal pain 2 31 210

Gastrointestinal disorders Stomatitis 1 23 191

Gastrointestinal disorders Stomatitis 2 37 210

Gastrointestinal disorders Constipation 1 24 191

Gastrointestinal disorders Constipation 2 24 210

Figure 4.1. GSK EGF100151 - End of Trial Data.

4.3 Berry and Berry Model

In this section we apply the Berry and Berry model with and without the point-

mass to the final safety data from EGF100151 using the c212 and OpenBUGS soft-

ware.

4.3.1 Model with Point-Mass (c212.BB)

The Berry and Berry model results for the top 10 adverse events by posterior

probability are presented in Tables 4.2 and 4.3.

We can see that there is very good agreement between the two implementations.

The only difference in content is the tenth adverse event which is Dry skin in the

R implementation and Back pain in the OpenBUGS implementation. In fact Back

pain has posterior probability 0.879 in the R implementation, and is the eleventh

highest posterior probability, while for the OpenBUGS implementation Dry skin has

posterior probability 0.875, and is also the eleventh highest posterior probability.

The models are fit by random sampling so this type of variation is not unexpected.

Comparing the top 10 events in Table 4.2 to the ten events significant at the 5%

level for Fisher exact tests in Table 1.12, we can see that the top 6 adverse events

in each are the same although with slightly different ordering, and overall 8 out of

the 10 adverse events with significant Fisher exact tests appear in Table 4.2. The

two missing are Localised infection and Back pain, with posterior probabilities of

0.772 and 0.879 respectively. Although, as noted above, Back pain appears in place
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System Organ Class
Adverse
Event

Posterior1

probability
θ > 0

Gastrointestinal disorders Diarrhea 1.000

Skin and subcutaneous tissue
disorders

Rash 1.000

Gastrointestinal disorders Dyspepsia 0.986

Respiratory, thoracic and
mediastinal disorders

Epistaxis 0.980

Skin and subcutaneous tissue
disorders

Dermatitis
acneiform

0.967

Skin and subcutaneous tissue
disorders

Nail disorder 0.941

Respiratory, thoracic and
mediastinal disorders

Dyspnoea 0.910

Musculoskeletal and connective
tissue disorders

Arthralgia 0.905

Musculoskeletal and connective
tissue disorders

Muscle
spasms

0.892

Skin and subcutaneous tissue
disorders

Dry skin 0.890

Table 4.2. Trial EGF100151: Top 10 adverse events by posterior probability,
Berry and Berry point-mass model (c212.BB), R implementation.

1 θ is the log-odds ratio for the adverse event (§3.6.2.2).

of Dry skin in the OpenBUGS implementation. We can see the body-system effect

here with Localised infection being the only significant adverse event in the system

organ class Infections and infestations in Table 1.12, but not having a correspond-

ingly high posterior θ probability. So, overall, the model does reflect the Fisher

exact test output, while taking into account the assumed relationships between

the system organ classes or body-systems. Diarrhea and Rash remain the adverse

events most associated with lapatinib and capecitabine, but other possible adverse

events in Respiratory, thoracic and mediastinal disorders and Musculoskeletal and

connective tissue disorders are also indicated. Using a cut-off point of 90% poste-

rior probability we would have flagged 8 events using the Berry and Berry model.

For a cut-off of 95% this drops to 5 flagged events.
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System Organ Class
Adverse
Event

Posterior
probability
θ > 0

Gastrointestinal disorders Diarrhea 1.000

Skin and subcutaneous tissue
disorders

Rash 1.000

Respiratory, thoracic and
mediastinal disorders

Epistaxis 0.985

Gastrointestinal disorders Dyspepsia 0.984

Skin and subcutaneous tissue
disorders

Dermatitis
acneiform

0.965

Skin and subcutaneous tissue
disorders

Nail disorder 0.936

Respiratory, thoracic and
mediastinal disorders

Dyspnoea 0.903

Musculoskeletal and connective
tissue disorders

Arthralgia 0.903

Musculoskeletal and connective
tissue disorders

Muscle
spasms

0.889

Musculoskeletal and connective
tissue disorders

Back pain 0.880

Table 4.3. Trial EGF100151: Top 10 adverse events by posterior probability, Berry
and Berry point-mass model (c212.BB), OpenBUGS implementation.

4.3.2 Model without Point-Mass (c212.1a)

Tables 4.4 and 4.5 give the top 10 adverse events by posterior probability for an

analysis using the Berry and Berry model without the point-mass term.

The output from both implementations is almost identical. As is the case for the

model with the point-mass, the top 10 adverse events in Table 4.4 are very similar

to Table 1.12. Again Localised infection is missing, evidence of the body-system

effect. Of interest are the higher posterior-probabilities compared to the point-

mass model. The effect of the point-mass is to reduce the posterior probabilities

that θ is positive.
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System Organ Class
Adverse
Event

Posterior
probability
θ > 0

Gastrointestinal disorders Diarrhea 1.000

Skin and subcutaneous tissue
disorders

Rash 1.000

Respiratory, thoracic and
mediastinal disorders

Epistaxis 0.999

Gastrointestinal disorders Dyspepsia 0.999

Skin and subcutaneous tissue
disorders

Dermatitis
acneiform

0.995

Respiratory, thoracic and
mediastinal disorders

Dyspnoea 0.995

Skin and subcutaneous tissue
disorders

Nail disorder 0.993

Musculoskeletal and connective
tissue disorders

Arthralgia 0.993

Musculoskeletal and connective
tissue disorders

Back pain 0.991

Skin and subcutaneous tissue
disorders

Dry skin 0.989

Table 4.4. Trial EGF100151: Top 10 adverse events by posterior probability, Berry
and Berry model without point-mass (c212.1a), R implementation.
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System Organ Class
Adverse
Event

Posterior
probability
θ > 0

Gastrointestinal disorders Diarrhea 1.000

Skin and subcutaneous tissue
disorders

Rash 1.000

Respiratory, thoracic and
mediastinal disorders

Epistaxis 0.999

Gastrointestinal disorders Dyspepsia 0.999

Respiratory, thoracic and
mediastinal disorders

Dyspnoea 0.995

Skin and subcutaneous tissue
disorders

Dermatitis
acneiform

0.995

Skin and subcutaneous tissue
disorders

Nail disorder 0.993

Musculoskeletal and connective
tissue disorders

Arthralgia 0.993

Musculoskeletal and connective
tissue disorders

Back pain 0.992

Skin and subcutaneous tissue
disorders

Dry skin 0.989

Table 4.5. Trial EGF100151: Top 10 adverse events by posterior probability, Berry
and Berry model without point-mass (c212.1a), OpenBUGS implementation.

4.4 Error Controlling Procedures

Table 1.12 shows the adverse events which are significant at the 5% level for an

end of study Fisher exact test. These are unadjusted test results and typically we

would consider applying a multiple hypothesis error controlling procedure to this

output.

4.4.1 Double False Discovery Rate

Applying the DFDR at the 5% or 10% levels to final safety data from GSK

EGF100151, without removing the adverse events referenced in Step 1 of the DFDR

procedure, flags the following adverse events as significant:
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System Organ Class Adverse Event

Gastrointestinal disorders Diarrhea

Skin and subcutaneous tissue disorders Rash

Table 4.6. Trial EGF100151: adverse events flagged as significant by the Double
False Discover Rate.

This is in agreement with the trial conclusions. We can see how the DFDR works,

and in particular the effect that Step 1 has on the process, by working through the

steps of the procedure (§2.4.3). The overall structure of the adverse events is given

in Table 1.11. We let α = 0.05 and look at two body-systems, Gastrointestinal

disorders, which contains 58 adverse events, and Respiratory, thoracic and medi-

astinal disorders, which contains 36. For Gastrointestinal disorders the p-values

from the Fisher exact test for this body-system are as follows:

< 0.0000001, 0.0044047, 0.0700341, 0.0917583, 0.1071696, 0.1122317, 0.1252955,

0.2184040, 0.2259454, 0.2498130, 0.2498130, 0.2704908, 0.3746945, 0.4763092,

0.4763092, 0.4763092, 0.4763092, 0.4763092, 0.4763092, 0.4763092, 0.4763092,

0.4763092, 0.4763092, 0.4763092, 0.4998753, 0.4998753, 0.4998753, 0.6070449,

0.6248167, 0.6248167, 0.6248167, 0.6284277, 0.6887956, 0.7263064, 0.7596677,

0.8894033, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000,

1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000,

1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000,

1.0000000, 1.0000000

Applying a BH-adjustment, as described in §2.3.2.3, gives the following values:

0.000001, 0.127736, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000
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where, for example, we have p̃(2) = min
(
p̃(3),

58
2
p(2)

)
= min

(
1.0, 58

2
0.0044047

)
≈

0.127736. The representative value for Gastrointestinal disorders, p∗ = p̃(1), is

0.000001.

The ordered p-values from the Fisher exact test for Respiratory, thoracic and me-

diastinal disorders are as follows:

0.0042055, 0.0614218, 0.2262469, 0.2498130, 0.2498130, 0.2885880, 0.4763092,

0.4763092, 0.4763092, 0.4763092, 0.4763092, 0.4763092, 0.4763092, 0.4998753,

0.4998753, 0.4998753, 0.5073516, 0.6248167, 0.6254917, 0.6872757, 0.7132041,

1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000,

1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000,

1.0000000

and the corresponding adjusted p-values are:

0.151398, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000

The representative p-value here is 0.151 (to 3 decimal places). Overall, the ordered

representative values for the body-systems are as follows:

0.000001, 0.000147,0.151398, 0.356819, 0.666500,

0.685699, 0.772535, 0.928340, 0.942332, 0.952618,

0.952618, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000

with Gastrointestinal disorders and Respiratory, thoracic and mediastinal disor-
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ders highlighted in bold. Applying the p-value adjustment gives:

0.000020, 0.001685, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000, 1.000000, 1.000000,

1.000000, 1.000000, 1.000000

Only two body-systems are included in the final family F at the 0.05 level. These

are Gastrointestinal disorders and Skin and subcutaneous tissue disorders. Respira-

tory, thoracic and mediastinal disorders is not included in the final family. In fact

only these two will be included for any α level over 0.001658. The large numbers of

adverse events which have incidence values of only 1 or 2 increase the magnitude

of the representative p-values. The final step is to apply the BH procedure to F ,

which gives the results in Table 4.6.

We can repeat the analysis following Step 1 of the procedure if we remove the ad-

verse events with very low counts. Removing the 326 adverse events which effect

one percent of the population or less and re-running the analysis gives the same

results for the 5% level, but the following results at the 10% level:

System Organ Class Adverse Event

Gastrointestinal disorders Diarrhea

Skin and subcutaneous tissue disorders Rash

Gastrointestinal disorders Dyspepsia

Skin and subcutaneous tissue disorders Dermatitis acneiform

Table 4.7. Trial EGF100151: Adverse events flagged at 10% significance level by
the Double False Discover Rate (low counts removed).

Removing the low count adverse events has made a difference to the overall results.

We now have two additional flagged adverse events. Comparing to Table 4.2, for

example, we can see that these adverse events are four of the top five flagged by

the Berry and Berry model.
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4.4.2 Group Benjamini-Hochberg

Applying the GBH at the 5% or 10% level to the final safety data from GSK

EGF100151 gives the following adverse events as significant:

System Organ Class Adverse Event

Gastrointestinal disorders Diarrhea

Skin and subcutaneous tissue disorders Rash

Table 4.8. Trial EGF100151: Adverse events flagged as significant by the Group
Benjamini-Hochberg procedure.

which is in agreement with original trial conclusions and the DFDR for all safety

data. Stepping through the method allows an understanding of how this conclusion

is reached. We look at the Gastrointestinal disorders and Respiratory, thoracic and

mediastinal disorders as we did for the DFDR. Using method TST to estimate the

value of πg,0 gives a value of 0.9827586 for Gastrointestinal disorders and 1.000000

for Respiratory, thoracic and mediastinal disorders. The value 1.000000 effectively

excludes Respiratory, thoracic and mediastinal disorders from the analysis. Out of

the 23 body-system only Gastrointestinal disorders and Skin and subcutaneous tis-

sue disorders have values less than 1.0, meaning they are they only body-systems

considered. The result of the final step of the GBH to is re-weight the p-values as

follows:

System Organ
Class

Adverse
Event

p-value
Weighted1

p-value

Gastrointestinal
disorders

Diarrhea 1.487018e-08 8.476002e-07

Skin and
subcutaneous tissue
disorders

Rash 3.185761e-06 1.433593e-04

Table 4.9. Trial EGF100151: Adverse events flagged as significant by the
Group Benjamini-Hochberg procedure, with re-weighted p-values.

1 The weighted p-value is defined in §2.5.2.

The p-values have been increased but are still flagged by the GBH. The possibility
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of this type of p-value inflation, and how it may affect the method, was discussed

in §2.6. Repeating the analysis with the 326 low count events removed gives the

following results at the 5% level:

System Organ Class Adverse Event

Gastrointestinal disorders Diarrhea

Skin and subcutaneous tissue disorders Rash

Respiratory, thoracic and mediastinal disorders Epistaxis

Table 4.10. Trial EGF100151: Adverse events flagged as significant at the 5%
level by the Group Benjamini-Hochberg procedure (low counts removed).

and at the 10% level:

System Organ Class Adverse Event

Gastrointestinal disorders Diarrhea

Skin and subcutaneous tissue disorders Rash

Respiratory, thoracic and mediastinal disorders Epistaxis

Gastrointestinal disorders Dyspepsia

Skin and subcutaneous tissue disorders Dermatitis acneiform

Table 4.11. Trial EGF100151: Adverse events flagged as significant at the 10%
level by the Group Benjamini-Hochberg procedure (low counts removed).

Unlike the DFDR, the GBH has included an adverse event from the Respira-

tory, thoracic and mediastinal disorders body-system. For the 10% α-level, the

five flagged adverse events match the top five from the Berry and Berry model

(Table 4.2).

4.5 Discussion

Applying the Bayesian methods leads to a list of potential adverse events associated

with lapatinib and capecitabine (Tables 4.2 and 4.4). How important these are is a

decision for the trial’s clinical investigators. We can see that the effect of the point-

mass in the Berry and Berry models is to reduce the posterior probability that θ

is greater than zero compared to what it would be otherwise. This will control
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the Type-I error rate but possibly at the expense of a loss of power. Without the

point-mass, more adverse events have higher posterior probabilities, leading to the

possibility of incorrectly flagging an adverse event.

For the DFDR and GBH including the numbers of small count adverse events in

the analysis has a definite effect on the results. For the DFDR this is part of the

procedure, but we can ask should such data really be discarded for the analysis?

The Bayesian methods do not require this type of data discard. The GBH and

DFDR effectively exclude certain groups from being tested, unlike the Bayesian

approach which gives a posterior probability for all adverse events, with the ad-

verse events with larger probabilities (that θ is positive) considered more likely to

be associated with the treatment. Overall, the methods gave results similar to the

trial conclusions, but with the addition of a number of adverse events for consid-

eration highlighted by some of the methods. Table 4.12 shows the adverse events

which look to be of potential interest according to the grouped methods.

System Organ
Class

Adverse
Event

Method

Gastrointestinal
disorders

Diarrhea c212.1a, c212.BB, DFDR, GBH

Skin and
subcutaneous tissue
disorders

Rash c212.1a, c212.BB, DFDR, GBH

Respiratory, thoracic
and mediastinal
disorders

Epistaxis c212.1a, c212.BB, GBH (5%)1

Gastrointestinal
disorders

Dyspepsia c212.1a, c212.BB, DFDR (10%)1,
GBH (10%)1

Skin and
subcutaneous tissue
disorders

Dermatitis
acneiform

c212.1a, c212.BB, DFDR (10%)1,
GBH (10%)1

Table 4.12. Trial EGF100151: Adverse events of interest flagged by method.
1 Flagged with low count adverse events removed.

In addition to flagging a number of adverse events of potential interest, the appli-

cation of the grouped methods has shown a number of properties which we will

investigate further in the simulation study in Chapter 5.
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Chapter 5

Simulation Study

5.1 Introduction

In Chapters 2 and 3 we reviewed a number of approaches to safety analysis in

clinical trials. These included both methods for testing multiple hypotheses and

methods for modelling clinical data. In Chapter 4 we applied a number of the meth-

ods, which used groupings of events by body-system, to real clinical trial safety

data. In this chapter we use a simulation study to investigate further how these

grouped methods compare to each other, and to standard non-grouped approaches,

over a number of different trial scenarios.

The methods we consider may be divided into two distinct categories, error con-

trolling procedures, and modelling approaches. The error controlling procedures

we include are control of the False Discover Rate by the Benjamini-Hochberg

procedure (BH) [31], the Double False Discovery Rate (DFDR) [3], the Group

Benjamini-Hochberg procedure (GBH) [30], the subset Benjamini-Hochberg pro-

cedure (ssBH) [57], the Bonferroni correction (BONF) [12], and unadjusted hy-

pothesis testing (NOADJ). While the DFDR and GBH use groupings to attempt

to take advantage of certain relationships in the data, the ssBH method uses group-

ings of hypotheses to extend the range of dependent test statistics to which a BH

type FDR controlling procedure can be applied, and still control the FDR at the

desired level. It is known to be as or less powerful than the BH-procedure itself

in all circumstances, and is included purely for completeness. The models we look

at are the hierarchical Bayesian model of Berry and Berry, with and without the

point-mass [5], [60]. The methods included in the study are listed in Table 5.1.

The error controlling procedures and unadjusted hypothesis testing require the

calculation of p-values. The simulated trial data we use in this chapter is binomial

(§5.2) and we will follow [5] and use an exact Fisher two-sided test to calculate the

p-values for differences between treatment and control. Direct comparisons between
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Method Name Description

c212.BB Berry and Berry model [5] (model 1b from [60])

c212.1a
Berry and Berry model without point-mass [5]
(Model 1a from [60])

NOADJ No error controlling procedure

BONF Bonferroni correction [12]

BH FDR control by the BH-procedure [31]

DFDR Double false discovery rate [3]

GBH Group Benjamini-Hochberg [30]

ssBH Subset Benjamini-Hochberg [57]

Table 5.1. Methods used in the Simulation Study.

these error controlling procedures are possible. However, direct comparisons with

the Bayesian models require that the Bayesian approaches have a defined criteria

for flagging adverse events. None of the models we look at have such criteria defined

so, in this chapter, when comparing across the different methods, we will use, as

the event flagging mechanism for the Bayesian models, nominal threshold values

of 95% and 90% posterior probability that the log-odds ratio of adverse event

incidence on the treatment arm compared to the control arms, θ, is greater than

zero. We will also look at the model fits where appropriate, and discuss the model

behaviour for the known underlying model data. For the grouped FDR methods

(DFDR, GHB) we will use significance levels of both 5% and 10%.

Comparisons between the methods focuses on the numbers of adverse events cor-

rectly identified as having raised treatment rates, and on control of the error rates.

We are particularly interested to see if the grouped methods perform better than

comparable ungrouped approaches. As we are comparing frequentist and Bayesian

methods we use definitions of error rates based on classical approaches. We define

as Type-I errors those events which are flagged as having raised rates when the

underlying rate in the simulation model is known not to be raised. Type-II errors

are defined as those events whose underlying rates in the simulations are known to

be raised but which are not flagged by the methods. Despite the classical nomen-

clature, the error rates for the Bayesian methods are based on Bayesian inference

using the posterior distributions of the model parameters. For the Bayesian meth-

ods we are also interested in the estimates of the underlying model parameters.

In the analyses of the relative performance of the methods we discuss below, the
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error rates are given as totals of events over all the simulations included in that

analysis. In the most general case, where all simulations are included, this gives an

overall view of how the methods compare. However, this approach does have the

disadvantage that the performance of the methods and the corresponding error

rates in individual simulations is not easily assessed. To address this we also look

at a number of individual simulations in more detail (§5.5.1).

The Bayesian models are fitted using the MCMC algorithms described in §A.2. For

model c212.1a we performed sampling in two separate ways. The first approach

used Metropolis-Hastings (MH) steps for the non-standard distributions, while the

second approach used a slice sampler (SL). For c212.BB we used slice samplers for

all non-standard distributions, apart from θ, which used an MH step as described

in §A.2. The global parameter values required by the MH and SL steps used in

the fitting algorithms are given in Table A.4.

All the methods are implemented in the c212 package for R (Appendix A, [139]).

For the Bayesian models, all results are presented under the assumption that the

model has reach (approximate) convergence. Parameter tuning and model conver-

gence is discussed in Appendix C.

5.2 Simulated Adverse Event Incidence Data

Model

The trial data we simulate for the study is marginal trial incidence data. When

considering incidence data, only the first occurrence of an adverse event for a

particular subject is of interest, multiple occurrences of the same event are not

taken into account. The data is marginal in the sense that we consider the overall

probabilities of occurrences on each trial arm, rather than for individual trial

subjects. We do not take event timings into account. The data generated is similar

to that presented in clinical trial safety reports, an example of which is shown in

Figure 4.1.

The simulation uses a logistic regression model to generate the trial incidence data.

The data is assumed to correspond to the binomial model:

Control Group: Xbj = Bin(NC , p1bj) 1 ≤ b ≤ B

Treatment Group: Ybj = Bin(NT , p2bj) 1 ≤ j ≤ kb
(5.1)
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where NC , NT are the number of patients in the control and treatment groups

respectively, B is the number of body-systems, body-system b contains kb adverse

events, and p1bj and p2bj are the probabilities of an event occurring in the control

and treatment groups respectively.

The logistic model in its most general form is:

logit(ptbj) = µtbj + Utbj, t = 1, 2 (5.2)

where

• t = 1, 2 are the control group and treatment group respectively.

• µtbj is a fixed underlying adverse event rate for adverse event j in body-

system b and treatment group t.

• Utbj is an underlying random effect for adverse event j in body-system b and

treatment group t.

The probabilities can then be recovered from:

logit(ptbj) = s (5.3)

where s is the simulated value giving:

ptbj =
es

1 + es
(5.4)

The log-odds ratio for AEbj between treatment and control group is:

(µ2bj + U2bj)− (µ1bj + U1bj)

For the purposes of the simulation we are interested in detecting increases in the

odds ratios or, assuming rare events, the relative risks of adverse events between

the two groups.

5.3 Trial Layout and Body-Systems

In order to simulate trial data a structure for the trial must be defined based

on the overall simulation goals, the number of simulations planned, and the com-

putational resources available. Adverse events are expected to be quite rare, and
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we have seen for GSK trial EGF100151 (§1.8.8) that many adverse events have

extremely low occurrence rates, and that only a limited number of body-systems

may have adverse events with raised rates. Taking these factors into account, we

selected a relatively modest total of 8 body-systems, with the number of events in

each body-system varying between 1 and 11, to give some disparity between the

body-systems. Table 5.2 give the numbers of adverse events in each body-system.

Body System
(b)

Number of AEs
(kb)

1 1

2 4

3 7

4 5

5 8

6 11

7 3

8 6

Table 5.2. Simulation body-systems and numbers of adverse events.

As well as the body-system layout, we must consider the total number of patients

enrolled in each trial arm. For this study we considered three different trial sizes

with participant numbers given in Table 5.3.

Trial Size
Control Numbers

(NC)
Treatment Numbers

(NT )

Small 110 110

Medium 450 450

Large 1100 1100

Table 5.3. Trial Sizes and numbers of participants used in simulation study.
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5.4 Simulation Definition

5.4.1 Simulation Data Model Parameters

We split the fixed part of the data model (5.2) as follows:

µtbj = µ+ γt + δtb + αtbj (5.5)

where µ is an overall mean, γt is a trial arm effect, δtb are body-system effects,

and αtbj are individual adverse event effects. For all the simulations, the overall

mean (µ) and control trial arm (γ1) effects have the fixed values given in Table 5.4.

Model Parameter Value

µ -4

γ1 0

Table 5.4. Simulation study: overall mean and treatment arm parameter values.

There are seventeen different simulation scenarios in total, which may be broken

into three different groups. In the first group, Table 5.5, there are possible treat-

ment arm effects and body-system effects only. In the second group, Table 5.6,

there are possible treatment arm effects and adverse event effects only.In the third

group, Table 5.7, there are possible treatment arm effects and both body-system

and adverse event effects.
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Simulation
Name1 Description

TDM1
There is a possible treatment arm effect. There are no
body-system or adverse event effects.

TDM2
There is a possible treatment arm effect. There is a
body-system effect for body-system number 3 for treat-
ment only. There are no adverse event effects.

TDM3

There is a possible treatment arm effect. There is a
body-system effect for body-system number 3 for both
treatment and control. There are no adverse event ef-
fects.

TDM4a

There is a possible treatment arm effect. There is a
body-system effect for body-system number 5 for both
treatment and control. There is a body-system effect for
body-system 3 for treatment only. There are no adverse
event effects.

TDM4b

There is a possible treatment arm effect. There is a
body-system effect for body-system number 5 for both
treatment and control, with additional raised body-
system effect for body-system 5 for treatment only.
There are no adverse event effects.

Table 5.5. Simulations with trial arm and body-system effects only.
1 Each set of simulations has a name of the form TDMn, where n is an identifier, and

TDM stands for Trial Data Model.
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Simulation
Name

Description

TDM5
There is a possible treatment arm effect. There are no
body-system effects. There is a treatment adverse event
effect for one adverse event in body-system 2.

TDM6
There is a possible treatment arm effect. There are no
body-system effects. There are treatment adverse event
effects for two adverse events in body-system 2.

TDM7
There is a possible treatment arm effect. There are no
body-system effects. There are treatment adverse event
effects for three adverse events in body-system 2.

Table 5.6. Simulations with trial arm and adverse event effects only.

Simulation
Name

Description

TDM8

There is a possible treatment arm effect. There is a
body-system effect for body-system 3 for treatment only.
There is a treatment adverse event effect for one adverse
event in body-system 2.

TDM9

There is a possible treatment arm effect. There is a
body-system effect for body-system 3 for treatment only.
There are treatment adverse event effects for two adverse
events in body-system 2.

TDM10

There is a treatment arm effect. There is a body-system
effect for body-system 3 for treatment only. There are
treatment adverse event effects for three adverse events
in body-system 2.

TDM11

There is a treatment arm effect. There is a body-system
effect for body-system 3 for both treatment and control.
There is a treatment adverse event effect for one adverse
event in body-system 2.

TDM12

There is a treatment arm effect. There is a body-system
effect for body-system 3 for both treatment and control
There are treatment adverse event effects for two adverse
events in body-system 2.

TDM13

There is a treatment arm effect. There is a body-system
effect for body-system 3 for both treatment and con-
trol. There are treatment adverse event effects for three
adverse events in body-system 2.
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TDM14

There is a treatment arm effect. There is a body-system
effect for body-system 5 for both treatment and con-
trol. There is a body-system effect for body-system 3
for treatment only. There is a treatment adverse event
effect for one adverse event in body-system 2.

TDM15

There is a treatment arm effect. There is a body-system
effect for body-system 5 for both treatment and con-
trol. There is a body-system effect for body-system 3
for treatment only. There are treatment adverse events
effects for two adverse events in body-system 2.

TDM16

There is a treatment arm effect. There is a body-system
effect for body-system 5 for both treatment and con-
trol. There is a body-system effect for body-system 3
for treatment only. There are treatment adverse event
effects for three adverse events in body-system 2.

Table 5.7. Simulations with trial arm, body-system, and adverse event effects.

The parameters for the fixed parts of the model are given in Tables 5.8, 5.9 and

5.10, where any effect in the tables whose value is not specified is assumed to

be zero. The γ, δ, δ1, δ2, and α values in these tables represent trial arm effects,

body-system effects, and adverse event effects. These vary over the ranges defined

in Table 5.11.

The random part of the model (5.5) used in the simulation is:

Utbj = Ub ∼ N(0, σ2
I )

with σ2
I = 0.001 for all simulations.
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Simulation
Name

Treatment
Arm
Effect (γ2)

Control
Body-
system
Effect (δ1b)

Treatment
Body-
system
Effect (δ2b)

Adverse
Event
Effect
(αtbj)

TDM1 γ 1 1 0

TDM2 γ 1
1 b 6= 3

δ1 b = 3
0

TDM3 γ
1 b 6= 3

δ1 b = 3

1 b 6= 3

δ1 b = 3
0

TDM4a γ
1 b 6= 5

δ1 b = 5

1 b 6= 3, 5

δ1 b = 5

δ2 b = 3

0

TDM4b γ
1 b 6= 5

δ1 b = 5

1 b 6= 5

δ1 + δ b = 5
0

Table 5.8. Simulations with trial arm and body-system only effects: fixed param-
eter values.

Simulation
Name

Treatment
Arm
Effect (γ2)

Control
Body-
system
Effect (δ1b)

Treatment
Body-
system
Effect (δ2b)

Adverse
Event
Effect
(αtbj)

TDM5 γ 1 1 α221 = α

TDM6 γ 1 1
α221 = α

α222 = α

TDM7 γ 1 1

α221 = α

α222 = α

α223 = α

Table 5.9. Simulations with trial arm and adverse event only effects: fixed pa-
rameter values.
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Simulation
Name

Treatment
Arm
Effect (γ2)

Control
Body-
system
Effect (δ1b)

Treatment
Body-
system
Effect (δ2b)

Adverse
Event
Effect
(αtbj)

TDM8 γ 1
1 b 6= 3

δ1 b = 3
α221 = α

TDM9 γ 1
1 b 6= 3

δ1 b = 3

α221 = α

α222 = α

TDM10 γ 1
1 b 6= 3

δ1 b = 3

α221 = α

α222 = α

α223 = α

TDM11 γ
1 b 6= 3

δ1 b = 3

1 b 6= 3

δ1 b = 3
α221 = α

TDM12 γ
1 b 6= 3

δ1 b = 3

1 b 6= 3

δ1 b = 3

α221 = α

α222 = α

TDM13 γ
1 b 6= 3

δ1 b = 3

1 b 6= 3

δ1 b = 3

α221 = α

α222 = α

α223 = α

TDM14 γ
δ1 b = 5

1 b 6= 5

δ1 b = 5

δ2 b = 3

1 b 6= 3, 5

α221 = α

TDM15 γ
δ1 b = 5

1 b 6= 5

δ1 b = 5

δ2 b = 3

1 b 6= 3, 5

α221 = α

α222 = α

TDM16 γ
δ1 b = 5

1 b 6= 5

δ1 b = 5

δ2 b = 3

1 b 6= 3, 5

α221 = α

α222 = α

α223 = α

Table 5.10. Simulations with trial arm, body-system, and adverse event effects:
fixed parameter values.
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Parameter Description Value Range

γ Trial arm effect
1.099, 0.693, 0.405,

0.262, 0.095, 0.0

δ Body-system effect 0.1, 0.5, 1

δ1 Body-system effect 1.1, 1.5, 2

δ2 Body-system effect 1.1, 1.5, 2

α Adverse Event Effect 0.1, 0.5, 1

Table 5.11. Simulation Study: Parameter ranges.

In summary, in addition to possible treatment arm effects, simulations TDM1-

TDM4b include only body-system effects, TDM5-TDM7 include only adverse event

effects in one body-system, and TDM8-TDM16 include both body-system and

adverse effects. For example, TDM2 has raised adverse event rate in body-system

3 compared to control, TDM8 has raised treatment event rates in body-system

3 for all adverse events, and for the first adverse event in body-system 2, and

TDM15 has adverse event rate raised in body-system 5 for both treatment and

control, body-system 3 for treatment only, and two adverse events in body-system

2 for treatment only. The trial arm effects are chosen to be zero on the control arm

for all simulations (γ1 = 0, Table 5.4).

For each scenario above simulations were run for each combination of parameters.

So, for example, TDM14 has the parameters γ, δ1, δ2 and α, which take on 6, 3, 3,

and 3 different values respectively, giving a total of 162 different combinations.

5.4.2 Simulation Structure and Adverse Events with

Raised Treatment Rates

The simulation is structured to examine the methods in two separate but related

ways. The first simulated data that we look at examines the effect of varying the

treatment arm effect (γ2) over the different values given in Table 5.11. When this is

raised, all adverse events in the trial simulation on the treatment arm have raised

rates compared to the control arms. As overall there are 17 simulation scenarios

(TDM1-TDM16) where the value of γ2 is varied, effectively repeating many cases

where all treatment events in the trial have raised rates, it was felt that it was

not necessary to run any repeated simulations for these cases. The numbers of

adverse events with raised treatment rates are given in Table 5.12. For example,
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for TDM16 where we have 45 adverse events in total, when γ2 6= 0 all 45 adverse

events have raised treatment rates, when γ2 = 0 we have 10 adverse events with

raised treatment rates. As we have 27 different combinations of parameters other

than γ, we have 10× 27 + 45× 27× 5 = 6345 adverse events with raised rates, out

of an overall total of 45× 27× 6 = 7290 events.

Simulation
Name

Adverse Events
with Raised

Treatment Rates

Total Adverse
Events

TDM1 225 270

TDM2 696 810

TDM3 675 810

TDM4a 2088 2430

TDM4b 2097 2430

TDM5 678 810

TDM6 681 810

TDM7 684 810

TDM8 2097 2430

TDM9 2106 2430

TDM10 2115 2430

TDM11 2034 2430

TDM12 2043 2430

TDM13 2052 2430

TDM14 6291 7290

TDM15 6318 7290

TDM16 6345 7290

Total 39225 45630

Table 5.12. Treatment Arm Effect Simulations: Total numbers of adverse events.

The second simulated data we wish to look at is where there is no treatment arm

effect (γ2 = 0). This is the case in which we are most interested. In general, in a

clinical trial, we expect that there may only be a small number of adverse events

with increased rates on the treatment arm, with most rates being the same on both

trial arms. For each of these simulation scenarios 500 repeated simulations were

run. The total numbers of adverse events with raised treatment rates for these
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simulations are given in the Table 5.13. These numbers can be calculated from

Tables 5.8, 5.9, 5.10 and Table 5.11. For example, for TDM8 we have 45 adverse

events in total, and raised rates for all 7 adverse events in body-system 3, and for

one adverse event in body-system 2, giving 8 adverse events in total with raised

rates on the treatment arm. We have 9 different combinations of parameters and

this is repeated 500 times giving an expected total of 8× 9× 500 = 36000 events

with raised rates, out of an overall total of 45× 9× 500 = 202500.

Simulation
Name

Adverse Events
with Raised

Treatment Rates

Total Adverse
Events

TDM1 0 22500

TDM2 10500 67500

TDM3 0 67500

TDM4a 31500 202500

TDM4b 36000 202500

TDM5 1500 67500

TDM6 3000 67500

TDM7 4500 67500

TDM8 36000 202500

TDM9 40500 202500

TDM10 45000 202500

TDM11 4500 202500

TDM12 9000 202500

TDM13 13500 202500

TDM14 108000 607500

TDM15 121500 607500

TDM16 135000 607500

Total 600000 3802500

Table 5.13. Repeated Simulations (no treatment arm effects): Total numbers of
adverse events.
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5.5 Results

The simulations were run as described in section §5.4.2, using the parameter values

from §5.4.1. We describe the outputs and compare the methods by their overall

adverse event detection rates, and by their Type-I and Type-II error rates. We split

the analysis of the simulation up into two parts. We first look in detail at how the

methods performed in a number of possibly interesting cases as the difference in

treatment and control rate for adverse events varies from no difference to larger

differences over the trial sizes. We also look at Bayesian model (c212.1a, c212.BB)

estimation of the underlying model parameters. This is described in §5.5.1. In

§5.5.2 we give the overall simulation results for both the treatment arm effect and

repeated simulations.

5.5.1 Individual Simulations and Model Parameter

Estimation

In this section we look at a number of simulations where γ2 = 0. These are repeated

simulations with equal underlying adverse event rates on both arms (5.2), but

increased rates for some body-systems and adverse events on the treatment arms.

We look at four different cases, described in Table 5.14, one from TDM1 (Table

5.8) where there is no difference in rates between treatment and control, and three

from TDM15 (Table 5.10) where the increase in log-odds of an adverse event in the

treatment arm compared to control is 1 (High), 0.5 (Medium), and 0.1 (Low). We

use the posterior mean, averaged over the number of simulations, as the estimator

for the underlying parameters in models c212.1a and c212.BB (in Bayesian decision

theory the posterior mean estimator assumes a quadratic loss function). We use

a 95% posterior probability threshold for the c212.1a models, and both 95% and

90% thresholds for the c212.BB model.

5.5.1.1 Equal Treatment and Control Event Rates (TDM1, SIM6)

With equal event rates between treatment and control only the Type-I error rate

is of interest. For unadjusted testing using a 5% significance level we theoretically

expect an error rate of 5%. However, a number of authors consider the Fisher

exact test to be conservative, with the possibility that the error rate will be lower

than the nominal significance level, particularly for small sample sizes [140], [141].

This type of issue may occur for any test which uses a fixed significance level when

dealing with sets of discrete data.
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Simulation
Name

Simulation
Identifier1

Increase in
log-odds

Number of
Repetitions

TDM1 SIM6 0.0 500

TDM15 SIM6 0.1 500

TDM15 SIM84 0.5 500

TDM15 SIM162 1.0 500

Table 5.14. Individual simulation cases.
1 Each individual simulation within a set, e.g. TDM1, has an identifier of

the form SIMn where n is a numeric identifier. For example, in the first
row of the table SIM6 is the 6th simulation within TDM1.

The results of the 500 repeated simulations are as follows:

Method
Large1

Trial
Medium2

Trial
Small3

Trial
Total4

Events

c212.1a(MH) 784(3.5%) 619(2.8%) 243(1.1%) 22500

c212.1a(SL) 776(3.4%) 626(2.8%) 237(1.1%) 22500

c212.BB 0(0.00%) 4(0.0%) 0(0.0%) 22500

c212.BB(90%) 2(0.0%) 5(0.0%) 2(0.0%) 22500

BONF 11(0.0%) 17(0.1%) 3(0.0%) 22500

DFDR(5%) 14(0.1%) 21(0.1%) 7(0.0%) 22500

DFDR(10%) 35(0.2%) 43(0.2%) 22(0.1%) 22500

BH 12(0.1%) 19(0.1%) 3(0.0%) 22500

GBH(5%) 154(0.7%) 126(0.6%) 81(0.4%) 22500

GBH(10%) 312(1.4%) 274(1.2%) 169(0.8%) 22500

NOADJ 840(3.7%) 832(3.7%) 521(2.3%) 22500

ssBH(5%) 11(0.0%) 17(0.1%) 3(0.0%) 22500

ssBH(10%) 31(0.1%) 28(0.1%) 12(0.1%) 22500

Table 5.15. TDM1, SIM6: Type-I error rates (number of events incorrectly
declared significant) by trial size.

1 The number and percentage of events declared significant in the Large trial.
2 The number and percentage of events declared significant in the Medium trial.
3 The number and percentage of events declared significant in the Small trial.
4 There are 500 repeated simulations each containing 45 adverse events giving 22500

events in total.

The Type-I error rates for unadjusted testing (NOADJ) from Table 5.15 are ap-
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proximately 3.7%, 3.7%, and 2.3%, for the Large, Medium and Small trials respec-

tively, which is consistent with our expected error rate, but lower than the nominal

5% level as noted above.

The method which performed best was c212.BB, with very low Type-I error rates,

even at the 90% threshold. We can see the effect of the point-mass by comparing

to c212.1a, which has the second highest error rate, lower than NOADJ, but still

considerably higher than the other methods. As expected, NOADJ performed the

worst of all the methods considered. All the direct error controlling procedures

performed well in comparison to NOADJ, with GBH having the highest error rate

here.

5.5.1.2 Low Increase in Treatment Event Rate (TDM15, SIM6)

For small increases in the adverse event rate we expect that all the methods will

have trouble correctly identifying significant events. The results are given in Tables

5.16, 5.17 and 5.18.

Here clearly c212.1a has the best results in terms of detecting adverse events with

raised rates. For this criterion it performs better that all the other methods with

only NOADJ, for the small trial size, coming close. c212.1a has better control of

the Type-I error rate than NOADJ, particularly for the small trial, however the

Type-I error rate is substantially higher than the other methods, NOADJ apart.

For the error controlling procedures, GBH performed the best in terms of event

detection. c212.BB is able to detect very few significant events and, along with the

BH-procedure, is probably the poorest performing method overall. For these low

event rates c212.BB is unable to overcome the effect of the point-mass, even for

the medium and large trials.

The underlying model parameters (without the random effects) and the parameter

estimates from the Bayesian models are plotted below (Figures 5.1, 5.2 and 5.3).

For the large and medium trials c212.1a gives better estimates than c212.BB. We

can see in both Figure 5.1 and Figure 5.2 that, compared to c212.1a, c212.BB

underestimates the increase in log-odds in both body-system 2 and body-system 3

for treatment. For the small trial, Figure 5.3, the methods struggle to estimate the

underlying model parameters, but model c212.1a is closest to the known underlying

model log-odds.
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Method Correct1 Type-I2 Type-II3 Raised4

Rates
Total5

Events

c212.1a(MH) 489(10.9%) 633(3.5%) 4011(89.1%) 4500 22500

c212.1a(SL) 482(10.7%) 638(3.5%) 4018(89.3%) 4500 22500

c212.BB 3(0.1%) 2(0.0%) 4497(99.9%) 4500 22500

c212.BB(90%) 8(0.2%) 4(0.0%) 4492(99.8%) 4500 22500

BONF 9(0.2%) 13(0.1%) 4491(99.8%) 4500 22500

DFDR(5%) 9(0.2%) 13(0.1%) 4491(99.8%) 4500 22500

DFDR(10%) 15(0.3%) 33(0.2%) 4485(99.7%) 4500 22500

BH 10(0.2%) 13(0.1%) 4490(99.78%) 4500 22500

GBH(5%) 56(1.2%) 95(0.5%) 4444(98.8%) 4500 22500

GBH(10%) 117(2.6%) 230(1.3%) 4383(97.4%) 4500 22500

NOADJ 280(6.2%) 680(3.8%) 4220(93.8%) 4500 22500

ssBH(5%) 9(0.2%) 13(0.1%) 4491(99.8%) 4500 22500

ssBH(10%) 17(0.4%) 25(0.1%) 4483(99.6%) 4500 22500

Table 5.16. TDM15, SIM6: Large trial results.
1 The total number of adverse events with raised rates that were correctly identified by the

model as having a raised rate.
2 The total number of adverse events without raised rates that were (incorrectly) identified

by the model as having a raised rate.
3 The total number of adverse events with raised rates that were not identified by the model

as having a raised rate.
4 For each simulation in TDM15 there are 9 adverse events with raised treatment rates.

There are 500 repeated simulations giving 4500 events in total.
5 Each simulation contains 45 events. There are 500 repeated simulations giving 22500 events

in total.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 261(5.8%) 488(2.7%) 4239(94.2%) 4500 22500

c212.1a(SL) 257(5.7%) 489(2.7%) 4243(94.3%) 4500 22500

c212.BB 0(0.0%) 3(0.0%) 4500(100.0%) 4500 22500

c212.BB(90%) 0(0.0%) 3(0.0%) 4500(100.0%) 4500 22500

BONF 0(0.0%) 9(0.1%) 4500(100.00%) 4500 22500

DFDR(5%) 1(0.0%) 10(0.1%) 4499(100.0%) 4500 22500

DFDR(10%) 7(0.2%) 32(0.2%) 4493(99.8%) 4500 22500

BH 0(0.0%) 9(0.1%) 4500(100.0%) 4500 22500

GBH(5%) 34(0.8%) 111(0.6%) 4466(99.2%) 4500 22500

GBH(10%) 64(1.4%) 237(1.3%) 4436(98.6%) 4500 22500

NOADJ 171(3.8%) 699(3.9%) 4329(96.2%) 4500 22500

ssBH(5%) 0(0.0%) 9(0.1%) 4500(100.0%) 4500 22500

ssBH(10%) 4(0.1%) 18(0.1%) 4496(99.9%) 4500 22500

Table 5.17. TDM15, SIM6: Medium trial results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 104(2.3%) 176(1.0%) 4396(97.7%) 4500 22500

c212.1a(SL) 107(2.4%) 177(1.0%) 4393(97.6%) 4500 22500

c212.BB 0(0.0%) 1(0.0%) 4500(100.0%) 4500 22500

c212.BB(90%) 0(0.0%) 1(0.0%) 4500(100.0%) 4500 22500

BONF 0(0.0%) 7(0.0%) 4500(100.0%) 4500 22500

DFDR(5%) 0(0.0%) 8(0.0%) 4500(10.00%) 4500 22500

DFDR(10%) 2(0.0%) 18(0.1%) 4498(100.0%) 4500 22500

BH 0(0.0%) 7(0.0%) 4500(100.0%) 4500 22500

GBH(5%) 17(0.4%) 68(0.4%) 4483(99.6%) 4500 22500

GBH(10%) 39(0.9%) 137(0.8%) 4461(99.1%) 4500 22500

NOADJ 100(2.2%) 398(2.2%) 4400(97.8%) 4500 22500

ssBH(5%) 0(0.0%) 7(0.0%) 4500(100.0%) 4500 22500

ssBH(10%) 2(0.0%) 12(0.1%) 4498(100.0%) 4500 22500

Table 5.18. TDM15, SIM6: Small trial results.
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Figure 5.1. TDM15, SIM6: Large trial parameter estimates.
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Figure 5.2. TDM15, SIM6: Medium trial parameter estimates.
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Figure 5.3. TDM15, SIM6: Small trial parameter estimates.

5.5.1.3 Medium Increase in Treatment Event Rate (TDM15, SIM84)

We expect improved performance for all the methods compared to the low in-

creased treatment rate. The simulation results are in Tables 5.19. 5.20 and 5.21.

We can see evidence of the body-system effect in model c212.1a which, even in

the small trial, detects many more events than NOADJ, but with smaller Type-

I error. Overall, the results are similar to those above for low increase in event

rate. c212.BB does not perform well for this lower rate, and even more poorly

as the trial size decreases. However, its results are better than the DFDR (5%)

for medium and small trials, and overall better than the BH-procedure. For the

error controlling procedures, GBH detects most events with raised rates, but with

relatively high Type-I error rate compared to the others.

Figures 5.4, 5.5, and 5.6 show how the estimated parameters match the actual

underlying model parameters (without the random effects). We can see that for

both control and treatment the models have successfully estimated the parameter

values for the large and medium sized trials. For the small trial the estimates are

not quite as good. In all cases we can also see in the treatment plots that the

estimated increase in log-odds for the adverse events in body-system 2 are not as
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close to the underlying values as those in body-system 3, even for the large trial

size. This is not unexpected as only two of the four adverse events in body-system 2

have increased rates and have “pulled” the estimated values slightly towards each

other. This is particularly noticeable for the small trial size where the models,

particularly c212.BB, have trouble discerning the differences between treatment

and control.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 4128(91.7%) 745(4.1%) 372(8.3%) 4500 22500

c212.1a(SL) 4131(91.8%) 755(4.2%) 369(8.2%) 4500 22500

c212.BB 2483(55.2%) 4(0.0%) 2017(44.8%) 4500 22500

c212.BB(90%) 2966(65.9%) 12(0.1%) 1534(34.1%) 4500 22500

BONF 1344(29.9%) 10(0.1%) 3156(70.1%) 4500 22500

DFDR(5%) 2934(65.2%) 50(0.3%) 1566(34.8%) 4500 22500

DFDR(10%) 3466(77.0%) 153(0.9%) 1034(23.0%) 4500 22500

BH 2099(46.6%) 84(0.5%) 2401(53.4%) 4500 22500

GBH(5%) 3621(80.5%) 145(0.8%) 879(19.5%) 4500 22500

GBH(10%) 4068(90.4%) 365(2.0%) 432(9.6%) 4500 22500

NOADJ 3475(77.2%) 755(4.2%) 1025(22.8%) 4500 22500

ssBH(5%) 1835(40.8%) 10(0.1%) 2665(59.2%) 4500 22500

ssBH(10%) 2274(50.5%) 26(0.1%) 2226(49.5%) 4500 22500

Table 5.19. TDM15, SIM84: Large trial results.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 2891(64.2%) 522(2.9%) 1609(35.8%) 4500 22500

c212.1a(SL) 2886(64.1%) 518(2.9%) 1614(35.9%) 4500 22500

c212.BB 711(15.8%) 1(0.0%) 3789(84.2%) 4500 22500

c212.BB(90%) 1047(23.3%) 7(0.0%) 3453(76.7%) 4500 22500

BONF 250(5.6%) 5(0.0%) 4250(94.4%) 4500 22500

DFDR(5%) 505(11.2%) 20(0.1%) 3995(88.8%) 4500 22500

DFDR(10%) 898(20.0%) 59(0.3%) 3602(80.0%) 4500 22500

BH 334(7.4%) 14(0.1%) 4166(92.6%) 4500 22500

GBH(5%) 1176(26.1%) 102(0.6%) 3324(73.9%) 4500 22500

GBH(10%) 1822(40.5%) 212(1.2%) 2678(59.5%) 4500 22500

NOADJ 1668(37.1%) 626(3.5%) 2832(62.9%) 4500 22500

ssBH(5%) 305(6.8%) 5(0.0%) 4195(93.2%) 4500 22500

ssBH(10%) 477(10.6%) 15(0.1%) 4023(89.4%) 4500 22500

Table 5.20. TDM15, SIM84: Medium trial results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 1003(22.3%) 228(1.3%) 3497(77.7%) 4500 22500

c212.1a(SL) 1012(22.5%) 226(1.3%) 3488(77.5%) 4500 22500

c212.BB 43(1.0%) 0(0.0%) 4457(99.0%) 4500 22500

c212.BB(90%) 110(2.4%) 2(0.0%) 4390(97.6%) 4500 22500

BONF 14(0.3%) 4(0.0%) 4486(99.7%) 4500 22500

DFDR(5%) 20(0.4%) 4(0.0%) 4480(99.6%) 4500 22500

DFDR(10%) 40(0.9%) 14(0.1%) 4460(99.1%) 4500 22500

BH 14(0.3%) 4(0.0%) 4486(99.7%) 4500 22500

GBH(5%) 101(2.2%) 57(0.3%) 4399(97.8%) 4500 22500

GBH(10%) 188(4.2%) 128(0.7%) 4312(95.8%) 4500 22500

NOADJ 418(9.3%) 401(2.2%) 4082(90.7%) 4500 22500

ssBH(5%) 14(0.3%) 4(0.0%) 4486(99.7%) 4500 22500

ssBH(10%) 28(0.6%) 8(0.0%) 4472(99.4%) 4500 22500

Table 5.21. TDM15, SIM84: Small trial results.
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Figure 5.4. TDM15, SIM84: Large trial parameter estimates.
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Figure 5.5. TDM15, SIM84: Medium trial parameter estimates.
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Figure 5.6. TDM15, SIM84: Small trial parameter estimates.

5.5.1.4 High Increase in Treatment Event Rate (TDM15, SIM162)

Here we expect all methods to perform well in terms of detecting significant events.

The results are given in Tables 5.22, 5.23, and 5.24.

For the large trial nearly all the methods detected all the adverse events with

raised rates, with only BONF, BH, and ssBH failing to detect 100% of the events.

c212.BB is the best performing method with the lowest Type-I error rate. For

the medium sized trial all the methods did quite well, with c212.1a detecting

most events with a Type-I error rate less than NOADJ, but a lot higher than

the other methods. c212.BB, DFDR(5%), and GBH(5%) detected high numbers

of events, but with better error control than c212.1a. For the small trial c212.1a

detected substantially more events than any other method, again with lower Type-

I error rate than NOADJ. In terms of event detection, c212.BB was the next best

performing, with very tight Type-I error control.

The plots of the estimated and actual parameter values are also shown below

(Figures 5.7, 5.8, and 5.9). We can see that for both control and treatment the

models have successfully estimated the parameter values for the large and medium

sized trials. Again, as in the medium increase in treatment log-odds case, for the
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small trial the estimates are not quite as good, and in all cases we can also see in

the treatment plots that the estimated increase in log-odds for the adverse events

in body-system 2 are not as close to the underlying values as those in body-system

3, even for the large trial size.

Comparing Figure 5.9 to Figure 5.6 we can see very similar patterns in the esti-

mates of the underlying parameters. For body-system 3 model c212.1a has more

closely estimated the underlying log-odds rates. For body-system 2 the c212.1a

estimates on the treatment arm are larger than those for c212.BB. This means

that for the two adverse events with raised rates in body-system 2 the estimates

are closer to the underlying log-odds, but for the two which do not have raised

rates c212.BB has estimated them more accurately.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 4500(100.0%) 730(4.1%) 0(0.0%) 4500 22500

c212.1a(SL) 4500(100.0%) 733(4.1%) 0(0.0%) 4500 22500

c212.BB 4499(100.0%) 5(0.0%) 1(0.0%) 4500 22500

c212.BB(90%) 4500(100.0%) 13(0.1%) 0(0.0%) 4500 22500

BONF 4492(99.8%) 16(0.1%) 8(0.2%) 4500 22500

DFDR(5%) 4500(100.0%) 71(0.4%) 0(0.0%) 4500 22500

DFDR(10%) 4500(100.0%) 161(0.9%) 0(0.0%) 4500 22500

BH 4499(100.0%) 153(0.9%) 1(0.0%) 4500 22500

GBH(5%) 4500(100.0%) 153(0.9%) 0(0.0%) 4500 22500

GBH(10%) 4500(100.0%) 335(1.9%) 0(0.0%) 4500 22500

NOADJ 4500(100.0%) 725(4.0%) 0(0.0%) 4500 22500

ssBH(5%) 4497(99.9%) 17(0.1%) 3(0.1%) 4500 22500

ssBH(10%) 4500(100.0%) 34(0.2 %) 0(0.0%) 4500 22500

Table 5.22. TDM15, SIM162: Large trial results.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 4490(99.8%) 527(2.9%) 10(0.2%) 4500 22500

c212.1a(SL) 4490(99.8%) 526(2.9%) 10(0.2%) 4500 22500

c212.BB 4280(95.1%) 5(0.0%) 220(4.9%) 4500 22500

c212.BB(90%) 4363(97.0%) 16(0.1%) 137(3.0%) 4500 22500

BONF 3290(73.1%) 10(0.1%) 1210(26.9%) 4500 22500

DFDR(5%) 4324(96.1%) 75(0.4%) 176(3.9%) 4500 22500

DFDR(10%) 4408(98.0%) 151(0.8%) 92(2.0%) 4500 22500

BH 4054(90.1%) 123(0.7%) 446(9.9%) 4500 22500

GBH(5%) 4439(98.6%) 140(0.8%) 61(1.4%) 4500 22500

GBH(10%) 4472(99.4%) 290(1.6%) 28(0.6%) 4500 22500

NOADJ 4369(97.1%) 609(3.4%) 131(2.9%) 4500 22500

ssBH(5%) 3869(86.0%) 10(0.1%) 631(14.0%) 4500 22500

ssBH(10%) 4099(91.1%) 26(0.1%) 401(8.9%) 4500 22500

Table 5.23. TDM15, SIM162: Medium trial results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 3600(80.0%) 314(1.7%) 900(20.0%) 4500 22500

c212.1a(SL) 3604(80.1%) 311(1.7%) 896(19.9%) 4500 22500

c212.BB 1590(35.3%) 1(0.0%) 2910(64.7%) 4500 22500

c212.BB(90%) 2194(48.8%) 6(0.0%) 2306(51.2%) 4500 22500

BONF 215(4.8%) 5(0.0%) 4285(95.2%) 4500 22500

DFDR(5%) 513(11.4%) 12(0.1%) 3987(88.6%) 4500 22500

DFDR(10%) 954(21.2%) 43(0.2%) 3546(78.8%) 4500 22500

BH 298(6.6%) 11(0.1%) 4202(93.4%) 4500 22500

GBH(5%) 1287(28.6%) 72(0.4%) 3213(71.4%) 4500 22500

GBH(10%) 1999(44.4%) 163(0.9%) 2501(55.6%) 4500 22500

NOADJ 1845(41.0%) 440(2.4%) 2655(59.0%) 4500 22500

ssBH(5%) 268(6.0%) 5(0.0%) 4232(94.0%) 4500 22500

ssBH(10%) 452(10.0%) 10(0.1%) 4048(90.0%) 4500 22500

Table 5.24. TDM15, SIM162: Small trial results.
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Figure 5.7. TDM15 - SIM162: Large trial parameter estimates.
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Figure 5.8. TDM15 - SIM162: Medium trial parameter estimates.
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Figure 5.9. TDM15 - SIM162: Small trial parameter estimates.

5.5.1.5 Assessment

Based on this simulation we can see that c212.1a identifies the most significant

adverse events in all cases, but that its Type-I error rate is high, sometimes ap-

proaching, or on occasion, exceeding that of NOADJ. It performs best of all the

methods when the increase in treatment rate is low or the trial size is small. Its

Type-I error rate appears to increase as the difference between treatment and

control rates becomes larger. This could be anticipated based on the information

sharing between body-systems in the model. c212.BB, on the other hand, has the

addition of a point-mass to control the Type-I error rate. Based on the above re-

sults this works well when the difference between treatment and control rates is

high, even for smaller trial sizes, but the model becomes very much less effective

as the differences between treatment and control decrease. Here the effect of the

point-mass becomes difficult to overcome. Dropping the flagging level for the pos-

terior probability from 95% to 90% does improve the detection rate, but it does

not approach that of c212.1a.

For the error controlling procedures, GBH detects most adverse events but with a

higher Type-I error rate. DFDR also performs better than non-grouped methods,
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but does not appear to be as powerful as the GBH in this simulation. However, it

does have better control of the Type-I error rate than GBH.

5.5.2 Overall Results

The total numbers of adverse events and expected significant adverse events for

the simulations are given in Tables 5.12 and 5.13.

5.5.2.1 Treatment Arm Effect Simulations

The results of the treatment arm effect simulations (§5.4.2, Table 5.12), in terms of

the numbers of adverse events declared to have raised treatment rates or otherwise,

are given in Tables 5.25, 5.26, 5.27, and 5.28, and shown graphically in Figure 5.10.

In terms of correctly identifying adverse events we can see from Figure 5.10a that

the model c212.1a correctly identifies more adverse events with raised rates than

any of the other models, even the unadjusted method (NOADJ). Unsurprisingly

the Bonferroni method, as might have been expected, identifies the least number

of adverse events, confirming that it may be too conservative for this type of data.

The two subset BH methods (ssBH(5%) and ssBH(10%)) also perform poorly. This

is expected, they are known to be less powerful than the BH-procedure. The other

methods, including model c212.BB, which is similar to c212.1a with an additional

point-mass, all perform as well as or better than the standard BH-procedure,

indicating that for this data set taking the body-system into account improves

adverse event detection performance.

The Type-I error rates in Figure 5.10b show that all approaches have low error

rates for the data considered. As expected the unadjusted approach, NOADJ,

always has the highest error rate. Model c212.1a, which correctly detects the most

significant adverse events, also has high error rate, although it is an improvement

on the unadjusted approach, especially for low increase in treatment rates. Of the

methods which outperform the BH-procedure in terms of adverse event detection,

only c212.BB has a lower Type-I error rate.
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Method Correct1 Type-I2 Type-II3 Raised4

Rates
Total5

Events

c212.1a(MH) 28141(71.7%) 237(3.7%) 11084(28.3%) 39225 45630

c212.1a(SL) 28135(71.7%) 232(3.6%) 11090(28.3%) 39225 45630

c212.BB 22285(56.8%) 2(0.0%) 16940(43.2%) 39225 45630

c212.BB(90%) 23685(60.4%) 3(0.0%) 15540(39.6%) 39225 45630

BONF 17853(45.5%) 5(0.1%) 21372(54.5%) 39225 45630

DFDR(5%) 22355(57.0%) 18(0.3%) 16870(43.0%) 39225 45630

DFDR(10%) 24152(61.6%) 37(0.6%) 15073(38.4%) 39225 45630

BH 22313(56.9%) 15(0.2%) 16912(43.1%) 39225 45630

GBH(5%) 23413(59.7%) 46(0.7%) 15812(40.3%) 39225 45630

GBH(10%) 25447(64.9%) 97(1.5%) 13778(35.1%) 39225 45630

NOADJ 24677(62.9%) 238(3.7%) 14548(37.1%) 39225 45630

ssBH(5%) 19173(48.9%) 5(0.1%) 20052(51.1%) 39225 45630

ssBH(10%) 20259(51.6%) 9(0.1%) 18966(48.4%) 39225 45630

Table 5.25. Treatment Arm Effect Simulations: Large trial results.
1 The total number of adverse events with raised rates that were correctly identified by the

model as having a raised rate.
2 The total number of adverse events without raised rates that were (incorrectly) identified

by the model as having a raised rate. There are 6405 events in the simulation which do not
have raised treatment rates.

3 The total number of adverse events with raised rates that were not identified by the model.
4 Total events with raised treatment rates (Table 5.12).
5 Total events in the simulation (Table 5.12).
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 24146(61.6%) 185(2.9%) 15079(38.4%) 39225 45630

c212.1a(SL) 24157(61.6%) 184(2.9%) 15068(38.4%) 39225 45630

c212.BB 17579(44.8%) 1(0.0%) 21646(55.2%) 39225 45630

c212.BB(90%) 19110(48.7%) 4(0.1%) 20115(51.3%) 39225 45630

BONF 11571(29.4%) 6(0.1%) 27654(70.6%) 39225 45630

DFDR(5%) 16169(41.2%) 12(0.2%) 23056(58.8%) 39225 45630

DFDR(10%) 17970(45.8%) 22(0.3%) 21255(54.2%) 39225 45630

BH 16118(41.1%) 17(0.3%) 23107(58.9%) 39225 45630

GBH(5%) 17596(44.9%) 48(0.7%) 21629(55.1%) 39225 45630

GBH(10%) 19522(49.8%) 98(1.5%) 19703(50.2%) 39225 45630

NOADJ 18925(48.2%) 230(3.6%) 20300(51.8%) 39225 45630

ssBH(5%) 12956(33.0%) 6(0.1%) 26269(67.0%) 39225 45630

ssBH(10%) 14169(36.1%) 12(0.2%) 25056(63.9%) 39225 45630

Table 5.26. Treatment Arm Effect Simulations: Medium trial results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 17364(44.3%) 71(1.1%) 21861(55.7%) 39225 45630

c212.1a(SL) 17353(44.2%) 69(1.1%) 21872(55.8%) 39225 45630

c212.BB 9527(24.3%) 0(0.0%) 29698(75.7%) 39225 45630

c212.BB(90%) 11550(29.4%) 1(0.0%) 27675(70.6%) 39225 45630

BONF 2146(5.5%) 0(0.0%) 37079(94.5%) 39225 45630

DFDR(5%) 5180(13.2%) 0(0.0%) 34045(86.8%) 39225 45630

DFDR(10%) 6953(17.7%) 5(0.1%) 32272(82.3%) 39225 45630

BH 4922(12.5%) 1(0.0%) 34303(87.5%) 39225 45630

GBH(5%) 6466(16.5%) 19(0.3%) 32759(83.5%) 39225 45630

GBH(10%) 8725(22.2%) 39(0.6%) 30500(77.8%) 39225 45630

NOADJ 8657(22.1%) 138(2.2%) 30568(77.9%) 39225 45630

ssBH(5%) 2746(7.0%) 0(0.0%) 36479(93.0%) 39225 45630

ssBH(10%) 3575(9.1%) 1(0.0%) 35650(90.9%) 39225 45630

Table 5.27. Treatment Arm Effect Simulations: Small trial results.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 69651(59.2%) 493(2.6%) 48024(40.8%) 117675 136890

c212.1a(SL) 69645(59.2%) 485(2.6%) 48030(40.8%) 117675 136890

c212.BB 49391(42.0%) 3(0.0%) 68284(58.0%) 117675 136890

c212.BB(90%) 54345(46.2%) 8(0.0%) 63330(53.8%) 117675 136890

BONF 31570(26.8%) 11(0.1%) 86105(73.2%) 117675 136890

DFDR(5%) 43704(37.1%) 30(0.2%) 73971(62.9%) 117675 136890

DFDR(10%) 49075(41.7%) 64(0.3%) 68600(58.3%) 117675 136890

BH 43353(36.8%) 33(0.2%) 74322(63.2%) 117675 136890

GBH(5%) 47475(40.3%) 113(0.6%) 70200(59.7%) 117675 136890

GBH(10%) 53694(45.6%) 234(1.2%) 63981(54.4%) 117675 136890

NOADJ 52259(44.4%) 606(3.2%) 65416(55.6%) 117675 136890

ssBH(5%) 34875(29.6%) 11(0.1%) 82800(70.4%) 117675 136890

ssBH(10%) 38003(32.3%) 22(0.1%) 79672(67.7%) 117675 136890

Table 5.28. Treatment Arm Effect simulations: Combined results.
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Figure 5.10. Treatment Arm Effect Simulations: Correctly flagged adverse events
and Type-I error rates.
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5.5.2.2 Repeated Simulations

The results of the repeated simulations where γ2 = 0 (§5.4.2, Table 5.13) are given

in Tables 5.29 - 5.32, and shown graphically in Figure 5.11.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 407421(67.9%) 120161(3.8%) 192579(32.1%) 600000 3802500

c212.1a(SL) 407448(67.9%) 120088(3.7%) 192552(32.1%) 600000 3802500

c212.BB 310101(51.7%) 612(0.0%) 289899(48.3%) 600000 3802500

c212.BB(90%) 331023(55.2%) 1427(0.0%) 268977(44.8%) 600000 3802500

BONF 260527(43.4%) 2606(0.1%) 339473(56.6%) 600000 3802500

DFDR(5%) 331331(55.2%) 7617(0.2%) 268669(44.8%) 600000 3802500

DFDR(10%) 355487(59.2%) 17498(0.5%) 244513(40.8%) 600000 3802500

BH 293364(48.9%) 12134(0.4%) 306636(51.1%) 600000 3802500

GBH(5%) 366965(61.2%) 25409(0.8%) 233035(38.8%) 600000 3802500

GBH(10%) 387336(64.6%) 53869(1.7%) 212664(35.44%) 600000 3802500

NOADJ 369017(61.5%) 127726(4.0%) 230983(38.5%) 600000 3802500

ssBH(5%) 283092(47.2%) 2642(0.1%) 316908(52.8%) 600000 3802500

ssBH(10%) 304764(50.8%) 5485(0.2%) 295236(49.2%) 600000 3802500

Table 5.29. Repeated Simulations: Large trial results.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 343723(57.3%) 90053(2.8%) 256277(42.7%) 600000 3802500

c212.1a(SL) 343700(57.3%) 90081(2.8%) 256300(42.7%) 600000 3802500

c212.BB 220915(36.8%) 631(0.0%) 379085(63.2%) 600000 3802500

c212.BB(90%) 241437(40.2%) 1733(0.1%) 358563(59.8%) 600000 3802500

BONF 158820(26.5%) 2052(0.1%) 441180(73.5%) 600000 3802500

DFDR(5%) 216998(36.2%) 4962(0.2%) 383002(63.8%) 600000 3802500

DFDR(10%) 239266(39.9%) 11763(0.4%) 360734(60.1%) 600000 3802500

BH 193068(32.2%) 7514(0.2%) 406932(67.8%) 600000 3802500

GBH(5%) 253302(42.2%) 20710(0.6%) 346698(57.8%) 600000 3802500

GBH(10%) 285172(47.5%) 44459(1.4%) 314828(52.5%) 600000 3802500

NOADJ 280286(46.7%) 112932(3.5%) 319714(53.3%) 600000 3802500

ssBH(5%) 186440(31.1%) 2061(0.1%) 413560(68.9%) 600000 3802500

ssBH(10%) 203764(34.0%) 4291(0.1%) 396236(66.0%) 600000 3802500

Table 5.30. Repeated Simulations: Medium trial results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 213809(35.6%) 42250(1.3%) 386191(64.4%) 600000 3802500

c212.1a(SL) 213884(35.6%) 42164(1.3%) 386116(64.4%) 600000 3802500

c212.BB 73995(12.3%) 298(0.0%) 526005(87.7%) 600000 3802500

c212.BB(90%) 102629(17.1%) 1020(0.0%) 497371(82.9%) 600000 3802500

BONF 12577(2.1%) 701(0.0%) 587423(97.9%) 600000 3802500

DFDR(5%) 27575(4.6%) 1113(0.0%) 572425(95.4%) 600000 3802500

DFDR(10%) 47894(8.0%) 3086(0.1%) 552106(92.0%) 600000 3802500

BH 16551(2.8%) 1037(0.0%) 583449(97.2%) 600000 3802500

GBH(5%) 65540(10.9%) 10239(0.3%) 534460(89.1%) 600000 3802500

GBH(10%) 102900(17.2%) 23711(0.7%) 497100(82.8%) 600000 3802500

NOADJ 106421(17.7%) 73353(2.3%) 493579(82.3%) 600000 3802500

ssBH(5%) 15835(2.6%) 710(0.0%) 584165(97.4%) 600000 3802500

ssBH(10%) 24613(4.1%) 1735(0.1%) 575387(95.9%) 600000 3802500

Table 5.31. Repeated Simulations: Small trial results.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

c212.1a(MH) 964953(53.6%) 252464(2.6%) 835047(46.4%) 1800000 11407500

c212.1a(SL) 965032(53.6%) 252333(2.6%) 834968(46.4%) 1800000 11407500

c212.BB 605011(33.6%) 1541(0.0%) 1194989(66.4%) 1800000 11407500

c212.BB(90%) 675089(37.5%) 4180(0.0%) 1124911(62.5%) 1800000 11407500

BONF 431924(24.0%) 5359(0.1%) 1368076(76.0%) 1800000 11407500

DFDR(5%) 575904(32.0%) 13692(0.1%) 1224096(68.0%) 1800000 11407500

DFDR(10%) 642647(35.7%) 32347(0.3%) 1157353(64.3%) 1800000 11407500

BH 502983(27.9%) 20685(0.2%) 1297017(72.1%) 1800000 11407500

GBH(5%) 685807(38.1%) 56358(0.6%) 1114193(61.9%) 1800000 11407500

GBH(10%) 775408(43.1%) 122039(1.3%) 1024592(56.9%) 1800000 11407500

NOADJ 755724(42.0%) 314011(3.3%) 1044276(58.0%) 1800000 11407500

ssBH(5%) 485367(27.0%) 5413(0.1%) 1314633(73.0%) 1800000 11407500

ssBH(10%) 533141(29.6%) 11511(0.1%) 1266859(70.4%) 1800000 11407500

Table 5.32. Repeated Simulations: Combined results.
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Figure 5.11. Repeated Simulations: Correctly flagged adverse events and Type-I
error rates
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As we have seen in the case of the treatment arm simulations (§5.5.2.1), the model

c212.1a performs the best in terms of correctly identifying adverse events with

raised treatment rates (Figure: 5.11a). Apart from the Bonferroni correction and

ssBH(5%), all the methods outperform the BH-procedure, again indicating that

including the body-system in the analysis is appropriate for this data.

The Type-I error rates (Figure 5.11b) have similar structure to those in Figure

5.10b, with the unadjusted approach, NOADJ, having the highest (Type-I) error

rate, and model c212.1a having the second highest rate, so again it is an improve-

ment on the unadjusted approach. Of the methods which outperformed the BH in

terms of significant adverse event detection, both the DFDR(5%) and the c212.BB

have lower (Type-I) error rates than the BH-procedure. ssBH again performs com-

paratively poorly. The (Type-I) error rates appear to be increasing with trial size

for many of the methods, most obviously NOADJ and C212.1a. For NOADJ this

is a reflection of the type of test being performed [140], [141]. For c212.1a though,

for large trial sizes, we have seen this type of behaviour occur before in §5.5.1,

the reason being that for adverse events with high treatment rates, the informa-

tion sharing between body-systems in the model tends to pull up the posterior

probabilities of other adverse events, and this is more evident at larger trial sizes.

The point-mass in c212.BB controls this behaviour at the expense of lower adverse

event detection (increased Type-II error).

5.6 Conclusions

There is an obvious need to be careful when drawing conclusions from simulation

studies, due both to the nature of the data generating process used for the simu-

lation, and the choice of cut-off points for determining adverse event significance.

Analytic results regarding the FDR are well known ([31], [32]), and for the di-

rect error controlling procedures GBH and ssBH, asymptotic and exact results are

given in [30] and [57] respectively. The DFDR controls the FDR at both the event

and body-system level (§D.1, §2.4.3). Mehrotra and Adewale recommend a cut-off

value of 10%, which does improve the event detection rate without over-inflating

the Type-I error rate in the simulations that we have studied [3].

The 95% and 90% posterior probability cut-offs chosen for the Bayesian models,

c212.1a and c212.BB, are somewhat arbitrary. Moving from 95% to 90% improves

the performance of the c212.BB model somewhat, without inflating the Type-

I error rate, particularly for higher rate adverse events. For low treatment and
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control differences the effect of the point-mass is felt most strongly, and lowering

the threshold does not lead to a very large increase in the numbers detected. Xia

et al. use a simulation approach to determine a suitable cut-off value for adverse

event significance [60], whereas Chen et al. use a decision theoretic approach for the

same purpose [125]. For our purposes the use of the 90% and 95% cut-offs allows

suitable comparisons to be made between the methods, and the determination of

a cut-off is not the main goal of the simulation study.

Given this we can tentatively make the following conclusions:

• For smaller sizes and lower treatment rates, c212.1a performed best of all

the methods, with more events detected, and Type-I error rate lower than

unadjusted testing.

• The larger the trial sizes the better all the methods and models perform

in terms of event detection, although for model c212.1a there was increased

Type-I error rate.

• The simulations have indicated that, for data where there are believed to

be relationships between the adverse events, using groupings (body-systems)

does appear to make a difference to the results. All of the group methods,

with the exception of ssBH as noted in §5.1, detect more adverse events with

raised treatment rates than the BH or BONF methods. However, there is

a price to be paid for some of these methods in that the Type-I error may

become inflated in comparison to the other methods, e.g. c212.1a. However

the Type-I error rate is not excessive (less than 5% in all cases studied) and

is generally lower than the unadjusted error rate. In particular, the body-

system as described by Berry and Berry [5] looks to be a worthwhile structure

to consider for use when modelling data.

• The point mass in the model c212.BB makes a quantitative difference to the

model results. The effect of the point-mass is most noticeable for smaller

trials with low rate differences between treatment and control compared to

the model without a point-mass (c212.1a). This effect is perhaps larger than

might have been anticipated, given that the models are closely related with

one nested within the other. Although Berry and Berry [5] consider the point

mass an important part of their model, in a related paper when considering

hierarchical models, the authors actually choose model c212.1a (ignoring the
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point mass) [67]. We can see in our simulations that with the same cut-

off point for both models, the effect of the point mass is to both reduce

the numbers of correctly detected adverse events and the Type-I error rate.

c212.BB performs best when the differences between control and treatment

are large and the trial size is large. In this case it is able to control both the

Type-I and Type-II errors. For smaller rate increases c212.BB cannot detect

differences between treatment and control as well as c212.1a. There is a trade-

off to be made. Which model is actually more useful may depend on whether

the anticipated difference, or a clinically important difference, is large, and

on the relative importance of Type-I and Type-II errors. However, even with

this is mind, model c212.1a appears to have more attractive properties for

detecting adverse events, while still performing better than unadjusted or

group adjusted error controlling procedures.

• There was no appreciable difference between using the slice sampler and MH

step in fitting model c212.1a.

• For the error controlling methods, such as the DFDR, GBH, and ssBH, it

may objectively be difficult to pick a method of analysing the data before

the trial. The original papers proposing these methods give some asymptotic

and exact results, or results based on simulations, and claim the methods are

designed for specific purposes. The methods give similar results in certain

cases and overall for our data, as expected, ssBH performed the worst of all

these methods.

While concluding that the models and methods compared above are useful, there

are also a number of areas that they do not address. None of the methods take into

account timings of the events, event recurrence, or total exposure time for patients.

Indeed it is not clear how best to extend the methods to handle longitudinal data

and the necessity of early decision making in a clinical trial context. The severity

of the adverse events (§1.6.1) is not taken into account. Individual patient data

is not accounted for, and population subgroup analyses are not possible. We will

look in more detail at some of these issues in the following chapters.
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Chapter 6

Methods for Interim Data

Analysis

6.1 Introduction

An interim analysis is a data analysis performed before data collection is com-

plete. In the context of a clinical trial, where data is continually recorded over the

trial’s duration, the interim analyses are generally planned in advance. The trial’s

Data Monitoring Committee, which typically meets at predefined times during

the trial, may use the results of the interim analyses to make decisions regarding

the trial’s progress. Many trial designs include mechanisms for early stopping if

the data indicates large differences between treatment groups (§1.4.4). For safety

data, with potentially large numbers of hypotheses and low power to determine

differences between groups, the decision to alter or stop a trial is not straightfor-

ward, especially early in a trial when recruitment may not be complete and fewer

events may have occurred. In this chapter we will look to extend or develop some

of the methods discussed in Chapters 3 and 5 to handle interim or final study data,

using a body-system approach. The questions we wish to answer are whether any

particular adverse event is associated with a treatment, how early in the trial can

we see this happening, and how does this relationship change over time?

6.2 Adverse Event Data

Before we consider models for the analysis of interim data, we first define exactly

what data is available. As mentioned in §1.6, subjects in a clinical trial are regularly

monitored and occurrences of adverse events recorded. Many of the events that

may occur to a subject within a clinical trial have a duration, e.g. a rash which lasts

for a number of days. Case report forms are used to collect this data (examples

for non-serious and serious adverse events are shown in §1.8.3.1). We assume we

152



have the following data for each subject in either exact or approximate form:

D1 The patient enrolment time.

D2 The numbers, severity, and occurrence times of each adverse event, for each

patient, unless that patient’s data has been censored.

D3 If relevant, a censoring time for the patient.

We expect that at specific points in time (e.g. the interim analyses) we will know

the exact total of all adverse events that have occurred, and the total time in

study for each patient. However, in reality patients may leave the trial, miss ap-

pointments, or otherwise be unobserved. We discuss this in more detail in §6.3.1.

An example of the type of raw data which we assume is available for the trial is

given in Figure 6.1.

Patient Id Time of Occurrence Body-system Adverse Group Severity

(days) Event

1 113.55626497276 Bdy-sys_1 Adv-Ev_1 1 3

2 392.25414706485 Bdy-sys_1 Adv-Ev_1 1 1

3 3356.37957151388 Bdy-sys_1 Adv-Ev_1 1 1

4 132.45600207784 Bdy-sys_1 Adv-Ev_1 1 1

5 64.82706422834 Bdy-sys_1 Adv-Ev_1 1 1

Figure 6.1. Sample raw trial data.

Here the patients are identified by a numeric identifier, and the patient treatment

group, time, severity, body-system, and name of each adverse event is recorded.

The times are assumed to be in days relative to the date of the patients’ recruitment

or start of treatment.

In a recurrent event process we may characterise events as incidental or non-

incidental, where non-incidental events are ones which alter the process generating

the events for the future. For example, if a subject had a myocardial infarction

they may now be more likely to have another one at some later stage. For these

events there may be a dependence on the previous event history, with the risk of

recurrence related to having previously experienced an event over a certain time

period. In addition, subjects may not always be at risk from all adverse events, or

there may be certain time periods where the subject is not at risk. For instance,
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if an adverse event has occurred then there may be a certain amount of time

before the subject is at risk of a recurrence, or, if an adverse event has a duration,

then the subject may not experience that adverse event again during this period,

although it may be possible that its severity increases. Additionally, there may

be some events which if they have once occurred may not reoccur. We may also

have additional information, either from clinical knowledge, for example due to

an understanding of the treatment mechanism, or from early trial results, which

may lead to an expectation that particular adverse events may have raised rates

on certain treatment arms.

6.3 Analysing Interim Data

The reviews in Chapters 2 and 3 highlighted a number of approaches to analysing

safety data. Many of the Bayesian approaches proposed (e.g. [5], [6] and [60]) may

be considered end of study or summary methods. In contrast to this we wish to

understand the cumulative presence and the trajectories, rather than just the totals

of adverse events, or, in certain instances, the time to the first (possibly severe)

adverse event. Models for this type of analysis need to include event timings. For

frequentist approaches, parametric and semi-parametric models are common with

inference generally made using maximum likelihood or partial likelihood methods,

although the Mean Cumulative Function (MCF) approach of Siddiqui [4] is a

non-parametric frequentist approach to this type of analysis, and [84] describes a

semi-parametric Bayesian approach.

When deciding on an approach we need to establish exactly what we consider to be

of importance in determining the occurrence of adverse events, how our approach

will take any assumptions we make into account, and finally how the approach will

allow us to flag or give some indication that an adverse event is associated with

treatment. We focus mainly on treatment effects, the timings of adverse events, and

the relationship between the adverse events as expressed by the body-system as

the main determining features. We make three initial assumptions for the models

we will introduce in this chapter:

A1 Adverse events occur in continuous time.

A2 We consider an adverse event to have occurred at a single point in time.

A3 The adverse events are related by a body-system in the sense that if a treatment

affects a particular body-system then we may expect to see raised adverse event
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counts for all adverse events in that body-system.

6.3.1 Censoring, Observation, Terminal Events, and Time

Scales

The issues of censoring, subject observation, and the existence of terminal events

may generally be considered to be related to the type of trial being performed.

In certain trials the subjects may be considered to be under observation for their

whole participation in the trial, in others we must consider if the subject can

temporarily cease to be under observation.

There may be one or more terminal events, such as death, which may or may not

be related to the recurrent events. Patients may also leave the trial, or miss an

appointment, due to the occurrence of certain types of adverse events. In this case

the occurrence of the events may be correlated with the censoring time of a patient.

For a given patient, leaving the trial will end the event process for that patient,

but, at a summary level, the death or loss to follow-up of an individual patient will

not end the potential occurrence of these type of events. Any dependency between

the adverse events and the terminal event will either need to be explicitly handled

or not accounted for. Another important consideration is whether we may assume

that the event and observation processes are conditionally independent, given the

process history. We will look at the effect of patients missing from the trial due to

one particular approach to censoring in §7.8.2.

There are a number of time scales which may be considered for use in the analysis.

The most obvious are calendar time and study time. Many of the methods consid-

ered in Chapters 2 and 3 are based either on the time since randomisation in the

study or the start of treatment. The actual time units used (e.g. hours, days, weeks

etc.) will be dependent on the trial being analysed. In addition to the timescale

used, there is also the possibility that time since last treatment or time since last

event may be of importance. For trials where treatments are administered at time

intervals, we could consider the possibility that events may occur more frequently

in the immediate aftermath of a treatment, and then possibly less frequently until

the next treatment is administered.
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6.3.2 Body-System

The implementation of assumption A3 is dependent upon the modelling approach

chosen. In a number of the models we consider we will use a body-system approach

closely related to that described in the Berry and Berry model [5]. The parameters

in the models will be random samples from distributions whose parameters are

themselves random variables. This is a hierarchical approach which matches an

assumed corresponding clinical view of how the body behaves under treatment,

with regard to adverse events. Another way of looking at it is that we have ex-

changeability between the parameters within the body-systems at each level [142],

[126]. This will be further discussed below §6.5.2.

The body-system is one means of expressing a relationship between the adverse

events. However, it is essentially static in the sense that it is an assumed fixed

relationship structure. There are other possible relationships between the adverse

event rates which may need to be taken into account. For example, as mentioned

in §6.3.1, once an adverse event has occurred it may be more likely to reoccur,

and this may have an impact on what we choose to model. If we were to model

occurrences of all adverse events we may need to consider the effect on the rates of

adverse events in the same body-system. If we are modelling event incidence (first

occurrence of an adverse event) then this will not have to be taken into account.

6.3.3 Detecting Raised Adverse Event Rates

We are primarily interested in determining which adverse events have raised rates

in the treatment group as opposed to control, and when this occurs. Typically,

when monitoring data in a clinical trial, all available data is analysed at each

interim analysis. For example, data that has been analysed at the first interim

analysis is included in the second interim analysis. As we are interested in the

trajectories of the adverse event occurrences, as well as their cumulative presence,

comparisons between the numbers of adverse events that have occurred over an

interim analysis period are of interest. Increased rates or numbers of events on a

treatment arm may be interpreted as a safety signal.

The detection of raised adverse event levels could also be considered an indicator

for prediction of future adverse events. Siddiqui considers the possibility that it

may be possible to use higher rates of certain adverse events to predict later oc-

curring adverse events [4]. Similarly, adverse events may not occur for a long time.

This could happen if a treatment cumulatively damages an organ but it takes a
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long time for this to become apparent. These are examples of the toxicity of a

treatment, where we would relate increased numbers of adverse events to dose

incidence (higher doses or longer exposure implying more adverse events). Alter-

natively, adverse event rates may be raised after treatment, but then decline with

time to non-significant levels. For example, allergic reactions or rashes may occur

early in the trial but then not reappear.

6.4 Modelling Approach

We look for a modelling approach based on the assumptions of §6.3 which is

relatively general and computationally tractable. Given that we assume we have

access to patient level data, we could choose to model the occurrences of adverse

events either at the patient level or at a summary level. As well as considering

whether to model at patient or summary level, we also need to decide what aspects

of the adverse events we wish to model. For example, we could consider either

the total incidences of adverse event occurrence, or the total number of adverse

event occurrences, as a measure of difference between two arms of a trial. Both

approaches are of potential interest to trial investigators.

6.4.1 Patient Level Models

General approaches to modelling count or event data at the patient or subject level

were discussed in §3.2 and §3.3. In these models each individual subject would need

to be treated as a multi-event process. Information regarding the exact timings

and durations of adverse events, and the periods when the patient was under

observation, should be available for each individual. Incorporating this additional

patient level information into the model should allow more accurate modelling of

the data compared to summary models. Further, patient level models are capable

of handling the case where one subject is responsible for a large number of what

are otherwise rare adverse events, for example through the use of frailty terms.

Censoring mechanisms are also more readily incorporated into these models in

ways which may not be possible with summary models, where a censored individual

does not prevent the adverse event generating process from continuing.

There are a number of drawback to using such patient level models. Multi-event

processes are complex and not all subjects will experience a wide range of adverse

events, particularly for rare events. Handling an over-proliferation of zero counts

in this type of process may not be straightforward. There may be thousands of
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individuals in any particular trial who may require explicit inclusion in the model

through subject level parameters. This over-parameterisation may in effect make

the model useless. We will see in Chapter 7 that even for summary level models

there are occasions when this is also the case, and the models are unable to detect

any events with raised rates in certain circumstances.

6.4.2 Summary Models

Summary level models require that the data for individual patients be gathered

in some suitable format. Incorporating the timings of events in summary models

is complicated by the fact that they occur among multiple individuals. The same

is also true of censoring and numbers at risk. Two pieces of information which are

important in this type of modelling are therefore the time in study for each patient,

and the total number of patients in the study at any particular time-point.

For recurrent events a natural statistic for answering the question of whether any

adverse event rates are the same or different in both groups over any interim

period, which incorporates the event counts, numbers of subjects, and times, is

the average rate of occurrence (or incidence) over that period, for both treatment

and control. These values are naturally paired by the time periods, and also have

the advantage of being relatively easy to explain to clinicians. As would also be the

case with patient level models, in order to formulate an approach for analysing the

data, we may need to take into account possible correlations between time periods

for the adverse event generating processes [116], and the (assumed) body-system

relationship among the adverse events. Perhaps the simplest such model is the

Poisson model discussed in [60]. In this model we have a single analysis point, the

end of trial, and the counts are assumed to be Poisson based. A single parameter,

θbj, is used to indicate an increased relative-risk in the treatment arm.

Summary models are more in keeping with the ICH guidelines (§1.4.3) than their

equivalent patient level models, and, given that they both model the same data,

we may expect that summary models and patient level models should give broadly

similar results in many situations.

6.4.3 Incidence and Recurrent Event Analysis

The time to the first event, or time to the first event of a certain severity, is

considered an important measure of the safety of a treatment. A severe adverse

event on the treatment arm in a much shorter time than on the control arm may be
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an indicator of a potential safety issue. We may consider the incidence of adverse

events as a survival process, where a subject drops out of the risk set for an adverse

event when they experience that event. In §6.5 and §6.6 we look in more detail

at a number of models based on the relationship between the Poisson process

and proportional hazards models for the interim analysis of summary data, which

includes the Poisson models discussed in [60] as a subset.

An alternative to looking at event incidence is to consider all events which occur

over the duration of a trial, a recurrent event analysis. As discussed in §3.3.1.1 this

has the advantage of giving an overall view of the trajectories of all adverse events

over the clinical trial, and not just the first occurrences.

6.4.4 Sequential Analysis of Interim Data

One of the aims of interim analyses is to try to identify as early as possible in

the trial if more adverse events are accumulating on the treatment arm, and if

this is related to the treatment as opposed to being by chance. One approach for

data sets consisting of a single type of event is to use α-spending functions with

higher initial threshold or boundary earlier in the trial, and then lower boundaries

as the trial goes on, but with over all (Type-I) error rate of α, where typically

α = 5% [11]. For multiple types of adverse events using this or similar approaches

is complicated by the multiplicity of events, and their possible relationships. One

advantage to using a Bayesian approach to modelling is that models with body-

system structures or hierarchies have the possibility of providing a level of multiple

comparison robustness through the choice of prior [27]. Another advantage is that

a Bayesian approach is naturally suited to this type of sequential analysis, where

more and more data arrives over time. We expect the power to detect adverse

events to be quite low (§1.5.1) and so it may be only with the accumulation of

data over time that any relationships between the treatment and the adverse events

will become apparent.

6.5 Models for Interim Adverse Event Analysis

In this section we introduce models for analysing counts of events as they occur

over the duration of the trial. For reasons given in §6.4.1 and §6.4.2 we look at

summary models. We are particularly interested in assessing the incidences of

adverse events at particular time points, both in terms of calendar dates, such as

for the interim analysis meetings of the DMC, and also relative to the start of
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the trial, such as the number of events which occur in the first six months under

treatment as opposed to control.

We model the occurrences of adverse events as stochastic processes1 generated by

the individuals in the study. One way of doing this is to consider counts of the

incidence of adverse events over time as a survival process as follows:

1. when a patient is enrolled to the study they become a part of the set of

individuals who can generate a particular adverse event - a risk set for the

adverse event;

2. when a patient experiences an adverse event (possibly of a particular severity)

they are removed from the corresponding risk set for that adverse event, only

the first adverse event for that patient is counted.

Referring to Figure 6.1 the patient with identifier 1 will leave the risk set of

Adv-Ev 1 after approximately 113.6 days have elapsed.

This type of survival-counting procedure is compatible with, and comparable to,

the approach of [5], where adverse event incidence is compared between trial arms,

for example at the end of a trial. It removes the possibility of one patient being

responsible for a large number of adverse events on a particular arm of a trial,

and also the possibility that the occurrence of the event in a patient may in some

way change later occurrences of the same event (non-incidental adverse events). A

typical frequentist approach to this type of problem would be via a proportional

hazards model. We wish to introduce a body-system so we look to fit a Poisson

model which should provide a good approximation to the survival type approach

[143], [144], [145], [146]. These Poisson models are also interpretable in there own

right. Indeed there is an exact correspondence between proportional hazard models

(and many different types of recurrent event models) and Poisson models [76], [147].

In particular, for piecewise constant baseline hazard models, the correspondence

with a Poisson model with piecewise constant rates is exact.

As well as providing a useful approximation for more complicated hazard models,

the Poisson process is often considered the canonical approach for modelling count

data via an intensity function [74]. For adverse event data there is the possibility

that events in the same body-system may be related in some systematic way, and

that the independent intervals property may not hold. Random or mixed models,

1One for each adverse event and covariate pattern.
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for example the hierarchical model proposed in [5], are one way of extending the

Poisson approach. As we are interested in analyses at certain time points, in the

models we discuss here, we break the overall trial duration into a number of non-

overlapping intervals, and attempt to use this approach to understand differences

between different arms of the trial. This requires that raw trial data, such as that

in Figure 6.1, be summarised by interval. Figure 6.2 gives an example of this type

of summarised data for all event severities. Here, for each interval, body-system,

adverse event, and treatment group, the total number of events (Count) and the

total time at risk in the interval for all patients (Exposure) in each particular in-

terval has been tabulated.

Interval Body-system Adverse Group Count Exposure (days)

Event

0.0-180.0 Bdy-sys_1 Adv-Ev_1 1 87 160133.6919932150

0.0-180.0 Bdy-sys_1 Adv-Ev_1 2 103 163224.6442895000

180.0-360.0 Bdy-sys_1 Adv-Ev_1 1 80 145054.3643045380

180.0-360.0 Bdy-sys_1 Adv-Ev_1 2 63 149107.1982650570

360.0-540.0 Bdy-sys_1 Adv-Ev_1 1 71 114792.3812445560

360.0-540.0 Bdy-sys_1 Adv-Ev_1 2 61 120634.9665069450

540.0-720.0 Bdy-sys_1 Adv-Ev_1 1 34 74648.9007535142

540.0-720.0 Bdy-sys_1 Adv-Ev_1 2 47 76697.2180531145

Figure 6.2. Sample summary trial data (all event severities).

6.5.1 Poisson Process Models for Adverse Events

We divide the trial duration, follow-up, and later periods into intervals I1, ..., IH+1

with t1, ..., tH the end times for the first H intervals. Relatively speaking an indi-

vidual joins the trial at the start of interval I1 and, if not lost to follow-up, leaves

the trial at the end IH . For incidence models, if an individual first has an adverse

event AEbj in interval Ih, then we consider the individual is no longer at risk of

this type of adverse event from this time point onward.

The model is a piecewise constant conditional Poisson model over the intervals or,

to look at it another way, we have an assumption of constant hazard rate over the

intervals [145], [146]. The data model is defined as follows:

Let there be B body-systems with kb adverse events in body-system b, and let

AEbj be the jth adverse event in body-system b. If there are C different covariate
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patterns2 among the data, let R(c)
bj,h be the set of patients at risk of the adverse

event AEbj at the start of the interval Ih with covariate pattern c, let tih be the

length of the time individual i spends in interval Ih, x(c) be a vector of covariates,

and θbj,h a vector of parameters. The model is:3

X
(c)
bj,h|λ

(c)
bj,h ∼ Poisson

(
λ

(c)
bj,hT

(c)
bj,h

)
T

(c)
bj,h =

∑
i∈R(c)

bj,h

tih

log λ
(c)
bj,h = γbj,h + xT(c)θbj,h

c = 1, . . . , C

h = 1, . . . , H

b = 1, . . . , B

j = 1, . . . , kb

(6.1)

T
(c)
bj,h is the total time spent in interval h for all subjects with covariate pattern c

who have not yet experienced the adverse event j in body-system b. X
(c)
bj,h is the

count of events in interval h for all subjects with covariate pattern c who have not

yet experienced the adverse event j in body-system b, and λ
(c)
bj,h is the corresponding

underlying rate parameter.

6.5.2 Independence and Exchangeability

In order to construct likelihoods or joint probability distributions and perform

inference some assumptions regarding the dependence of the response variables,

in our case the counts or timings of events, must be made. Exchangeability is

a formal expression of the idea that we find no systematic reason to distinguish

between individual variables.4 Exchangeability is closely related to the idea of in-

dependently and identically distributed random variables in that a sequence of

identical random variables which are independent, conditional on an underlying

2Typically there will be just 2: treatment and control.
3If the actual times of the events are not recorded accurately then we could, for example, let

T
(c)
bj,h = |R(c)

bj,h||Ih|. In this case we have made the assumptions that the events occur at the end
of the interval Ih.

4Exchangeability may be defined as follows: Let Yi be a sequence of random variables, then
the Yi are exchangeable if the joint density of Yi1, . . . , Yin is invariant under a permutation of
the indices i1, . . . , in.
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distribution, is exchangeable. Exchangeability is a key concept for Bayesian analy-

sis as well as classical analysis. If we consider the data model in §3.6.1, the counts

in the model are considered independent given the model parameters. This is a

common assumption in hierarchical models. The likelihood function or joint prob-

ability density corresponding to the model (6.1) (assuming independence of the

variables and fixed effects) is:

L =
C∏
c=1

H∏
h=1

B∏
b=1

kb∏
j=1

exp
(
−λ(c)

h,bjT
(c)
h,bj

) [
λ

(c)
h,bjT

(c)
h,bj

]x(c)h,bj
x

(c)
h,bj!

(6.2)

A fixed effect modelling approach means treating all counts as either indepen-

dent of each other over the intervals, or requires the specification of a correlation

structure for the data. The model can be extended to account for possible relation-

ships between the counts within different adverse event groupings (body-systems),

and also over the time intervals, by introducing random effects. When the λ
(c)
bj,h

are themselves a hierarchy of random variables there are a number of possible

approaches for fitting the model. Taking a Bayesian approach, we can choose a

hierarchy of prior distributions and, assuming conditional independence in the

model, fit the parameters using Markov Chain Monte Carlo (MCMC) methods,

for example using a Gibbs sampler [124]. Bayesian fitting is not the only possi-

ble approach to fitting random effect models. Generalised Linear Mixed Model

(GLMM) techniques, using likelihood approaches, are also possible, although they

do not have the flexibility of the Bayesian approach, and, in particular, it is not

clear how they would handle a point-mass term such as that in [5].

6.5.3 Modelling Body-System and Longitudinal

Relationships

The (hierarchical) relationship proposed by [5] is one approach for within body-

system correlation. To model possible correlations between the counts in the dif-

ferent intervals a dependency between interval counts could be introduced. We

consider this type of three-level hierarchical model in §6.6.

In Chapter 5 we have seen that the Berry and Berry model with point-mass does

not perform as well as some of the other modelling approaches when the rate dif-

ferences between trial arms is low, or the trial size is small. For a full three-level hi-

erarchical implementation, including point-mass, we may expect similar problems,
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particularly when we consider the larger number of parameters used to model the

rates over the intervals. We can reduce the number of parameters in the models

by removing part of the hierarchy. This may be achieved in a number of ways,

the most straightforward of which is to remove the lowest level of random vari-

ables (§3.6.2.5), the parameters
{
µγ0, µθ0, τ

2
γ0, τ

2
θ0, απ, βπ, ασγ, βσγ, αθγ, βθγ

}
, leav-

ing a two-level hierarchy, but still containing a body-system grouping. We look at

these reduced parameter models in §6.7.

For modelling possible relationships between the different intervals we consider

three levels of dependence as follows: level 0, where counts in different interval

are considered to be independent; level 1, where there is a common body-system

mean across the intervals; and level 2, where, in a three-level hierarchy, there is a

common set of random parameters at the lowest level in the hierarchy.

The models we investigate are listed in Table 6.1 and their definitions given below.

We consider models with and without a point-mass, and use the notations BB and

1a respectively to refer to the various versions of these models in the remainder of

this study. We use subscripts to indicate the number of levels in the hierarchy and

the level of dependency assumed in the model. For example, BB31 is a point-mass

model, with a three-level hierarchy, and common body-system means across the

intervals. The joint distributions and complete conditional distributions are given

in Appendix B. The most general case is the three-level model with a point-mass

where counts in each interval are considered to be independent (level 0) (§6.6.1).
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Method1 Hierarchy2 Interval
Dependency3 Description

BB30 3-level level 0
Point-mass;
Independent intervals (§6.6.1)

BB31 3-level level 1
Point-mass;
related intervals (§6.6.2)

BB32 3-level level 2
Point-mass;
weakly related intervals (§6.6.3)

1a30 3-level level 0
No point-mass;
independent intervals (§6.6.4)

1a31 3-level level 1
No point-mass;
related intervals (§6.6.4)

1a32 3-level level 2
No point-mass;
weakly related intervals (§6.6.4)

BB20 2-level level 0
Point-mass;
independent intervals (§6.7.1)

BB21 2-level level 1
Point-mass;
related intervals (§6.7.3)

1a20 2-level level 0
No point-mass;
independent intervals (§6.7.4)

1a21 2-level level 1
No point-mass;
related intervals (§6.7.4)

Table 6.1. Hierarchical methods for interim analyses.
1 BB methods are those models with a point-mass term. 1a methods are those models without a

point-mass term. The subscripts on the methods refer to the number of levels in the hierarchy
and the level of dependence between the intervals. For example, BB31 is a three-level hierarchy
with level 1 dependence between the intervals.

2 The models may implement either two-level or three-level Bayesian hierarchies.
3 Level 0 dependence means different intervals are independent. Level 1 dependence has common

body-system means across the intervals. Level 2 dependence has relationships between the
intervals at the lowest level of the hierarchy, where applicable.

6.6 Poisson Bayesian Models: Three-Level

Hierarchies

The models we consider in this section use a body-system based on the model

structure from [5] described in §3.6.1.
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6.6.1 BB30 Poisson Point-mass Model (level 0)

This is the most general model we consider which includes a point-mass and a

body-system hierarchy based on [5]. There is an individual hierarchy for each trial

interval, and each interval is considered to be independent of the other intervals.

This is the most straightforward extension of the Berry and Berry model to mul-

tiple interval data [5], [60].

X
(c)
bj,h ∼ Poisson(λ

(c)
bj,hT

(c)
bj,h)

T
(c)
bj,h =

∑
i∈R(c)

bj,h

tih

log λ
(c)
bj,h = γbj,h + x(c)θbj,h

h = 1, . . . , H, b = 1, . . . Bh, j = 1, . . . kbh

c = 1, 2; x(1) = 0, x(2) = 1

(6.3)

The priors for the model parameters and hyperparameters are given in equations

(6.4) - (6.6). As this is a three-level hierarchical model we have three levels of

priors.

γbj,h ∼ N(µγb,h, σ
2
γb,h) θbj,h ∼ πb,h I[θbj,h=0] +(1− πb,h)N(µθb,h, σ

2
θb,h) (6.4)

µγb,h ∼ N(µγ0,h, τ
2
γ0,h) µθb,h ∼ N(µθ0,h, τ

2
θ0,h)

σ2
γb,h ∼ IG(αγ, βγ) σ2

θb,h ∼ IG(αθ, βθ)

πb,h ∼ Beta(απ,h, βπ,h) (6.5)
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µγ0,h ∼ N(µγ00, τ
2
γ00) µθ0,h ∼ N(µθ00, τ

2
θ00)

τ 2
γ0,h ∼ IG(αγ00, βγ00) τ 2

θ0,h ∼ IG(αθ00, βθ00)

απ,h ∼M(λα) I(απ,h > 1) βπ,h ∼M(λβ) I(βπ,h > 1) (6.6)

The following model hyperparameters all have common values over the intervals

based on the values used in [5]:

µγ00 = 0, τ 2
γ00 = 10, αγ = 3, βγ = 1, αγ00 = 3, βγ00 = 1, λα = 1

µθ00 = 0, τ 2
θ00 = 10, αθ = 3, βθ = 1, αθ00 = 3, βθ00 = 1, λβ = 1

(6.7)

Let

Xbj,h = X
(1)
bj,h, T

(1)
bj,h = Cbj,h

Ybj,h = X
(2)
bj,h, T

(2)
bj,h = Tbj,h

From the parameters

log λ
(1)
bj,h = γbj,h

log λ
(2)
bj,h = γbj,h + θbj,h

we have that θbj,h is the log of the relative risk for AEbj in interval h. A positive

value for θbj,h indicates an increased risk of adverse event AEbj occurring on the

treatment arm over interval Ih. The joint probability distribution for the model

and its complete conditionals are given in §B.12.

6.6.2 BB31 Poisson Point-mass Model (level 1)

We may expect that the occurrences of any particular adverse event over different

intervals may be similar in some way, for example the rates may be raised over

all trial intervals or for early intervals in the trial, and we may wish to take this

into account in our model. Introducing a random effect into a standard Poisson

model, such as that described in [92, Ch. 2], introduces a correlation between the

intervals. We can introduce a similar relationship by restricting the parameters in

§6.6.1 as follows:
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µγ0,h = µγ0, µθ0,h = µθ0

τ 2
γ0,h = τ 2

γ0, τ 2
θ0,h = τ 2

θ0

µγb,h = µγb, µθb,h = µθb

σ2
γb,h = σ2

γb, σ2
θb,h = σ2

θb

απ,h = απ, βπ,h = βπ

πb,h = πb

(6.8)

In this case we have common body-means across the intervals, and a common

hierarchy below them, with corresponding changes to the joint distribution and

complete conditional distributions. These are given in §B.13.

6.6.3 BB32 Poisson Point-mass Model (level 2)

Parameter relationships, such as those specified in BB31, are not the only ones

that can exist within this type of model. Due to the model’s hierarchical nature,

we can also consider a weaker relationship between the intervals by restricting the

model BB30 in §6.6.1 as follows:

µγ0,h = µγ0, µθ0,h = µθ0

τ 2
γ0,h = τ 2

γ0, τ 2
θ0,h = τ 2

θ0

απ,h = απ, βπ,h = βπ

(6.9)

with the definitions of other model parameters remaining unchanged. Compared to

BB31, the relationship between the parameters is “lower” in the hierarchy, and may

be expected to provide a weaker correlation. The joint distribution and complete

conditionals are given in §B.14.

6.6.4 Poisson Models Without Point-mass

The models without the point-mass (1a3l, l = 0, 1, 2) may be defined by setting

πb,h = 0 in §6.6.1, §6.6.3, and πb = 0 in §6.6.2. The complete conditional distri-

butions may be derived in a similar fashion. The joint and complete conditional

distributions are given in §B.9, §B.10 and §B.11.
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6.6.5 Summary

The body-system we use is the same as that introduced by [5]. The 1a models

are nested within their BB equivalents at each interval dependence level (0, 1, 2).

Based on the simulation study in Chapter 5 we expect the 1a models to detect

more events with raised treatment rates than their BB equivalents, but to have

higher Type-I error rates. For lower rate differences, or small trials, we may expect

that the BB models will detect very much less events with raised treatment rates

than their 1a counterparts, due to the difficulty of overcoming the effect of the

point-mass and the proliferation of additional parameters compared to the 1a

models.

6.7 Poisson Bayesian Models: Two-Level

Hierarchy

We can consider a modelling approach with a reduced number of parameters by

removing the lowest part of the three-level hierarchy. This allows two possible lev-

els of dependence only, independent intervals, and common body-system means

across the intervals. For models without the point-mass this is relatively straight-

forward, but for models with a point-mass care needs to be taken. In the three-level

hierarchical models with point-mass the parameters πb,h, πb are modelled by Beta

priors whose parameters are themselves random variables. In moving to a two-level

model the parameters will have fixed values and we will see (§6.7.2) that choosing

these values may not be straightforward.
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6.7.1 BB20 Poisson Point-mass Model (Level 0)

The most general two-level model we consider includes a point-mass, independent

intervals, and a body-system hierarchy as follows:

X
(c)
bj,h ∼ Poisson(λ

(c)
bj,hT

(c)
bj,h)

T
(c)
bj,h =

∑
i∈R(c)

bj,h

tih

log λ
(c)
bj,h = γbj,h + x(c)θbj,h

h = 1, . . . , H; b = 1, . . . Bh, j = 1, . . . kbh

c = 1, 2; x(1) = 0;x(2) = 1

(6.10)

with the following priors for the model hyperparameters:

γbj,h ∼ N(µγb,h, σ
2
γb,h) θbj,h ∼ πb,h I[θbj,h=0] +(1− πb,h)N(µθb,h, σ

2
θb,h) (6.11)

µγb,h ∼ N(µγ0, τ
2
γ0) µθb,h ∼ N(µθ0, τ

2
θ0)

σ2
γb,h ∼ IG(αγ, βγ) σ2

θb,h ∼ IG(αθ, βθ)

πb,h ∼ Beta(απ, βπ) (6.12)

There is an individual hierarchy for each trial interval. Apart from απ and βπ,

the lowest level model hyperparameters,
{
µγ0, τ

2
γ0, αγ, βγ, µθ0, τ

2
θ0, αθ, βθ

}
, all have

common values over the intervals based on the values used in [5]:

µγ0 = 0, τ 2
γ0 = 10, αγ = 3, βγ = 1

µθ0 = 0, τ 2
θ0 = 10, αθ = 3, βθ = 1

(6.13)

As for the three-level models we write

Xbj,h = X
(1)
bj,h, T

(1)
bj,h = Cbj,h

Ybj,h = X
(2)
bj,h, T

(2)
bj,h = Tbj,h
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and we have:

log λ
(1)
bj,h = γbj,h

log λ
(2)
bj,h = γbj,h + θbj,h

and θbj,h is again the log of the relative risk. The joint distribution and complete

conditional distributions are given in §B.7.

6.7.2 Choice of Prior for πb,h

The prior Beta(a, b) is a natural choice for a probability in a hierarchical model

[126]. When a and b are both 1 this becomes the (uninformative) uniform distribu-

tion. When a and b are both less than 1 the probability may become concentrated

close to 0 or 1. In particular, in the limit as a or b tend to zero, the Beta distribution

approaches a point-mass at 0 or 1. In [5], where the prior for πb is Beta(απ, βπ),

this possibility is handled by restricting απ and βπ, which are themselves random

variables, to having values greater than 1. We would ordinarily like to choose the

uninformative uniform distribution as our prior for πb,h. However, this does include

the possibility that the probabilities may become concentrated at the edges in the

complete conditional distributions (B.37). When using a Gibbs sampling MCMC

approach to model fitting the values of the parameters change on each iteration of

the sampler. This may or may not be a serious issue, but choosing values of απ,h

and βπ,h larger than but close to 1 would allow an approximation of a uniform prior

while, excluding the possibility of an edge concentrated complete conditional.

6.7.3 BB21 Poisson Point-mass Model (level 1)

We restrict the parameters in §6.7.1 to have common body-system means across

the intervals as follows:

µγb,h = µγb, µθb,h = µθb

σ2
γb,h = σ2

γb, σ2
θb,h = σ2

θb

πb,h = πb

(6.14)

The joint distribution and complete conditionals are given in §B.7.
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6.7.4 Poisson Models Without Point-mass

The models without the point-mass (1a2l, l = 0, 1) may be defined by setting

πb,h = 0 in §6.7.1 and πb = 0 in §6.7.3. The complete conditional distributions may

be derived in a similar fashion. The joint and complete conditional distributions

are given §B.5 and §B.6.

6.8 Flagging Adverse Events as Having Raised

Treatment Rates

None of the models discussed above have a formal process for flagging an adverse

event as having a raised treatment rate, but as they are updated at each interim

analysis, they may provide an emerging picture of how the adverse events occur

on each trial arm. The model parameter θbj,h, the log relative risk (§6.6.1), is one

approach to assessing increased treatment rates. A large posterior probability that

this is greater than zero is an indication of a raised treatment rate over an interval.

The value of θbj,h may change over the course of the trial as more data accumulates.

There are two important times we may need to consider when deciding to flag an

event. The first is the time of the recruitment of the last patient to the trial.

After a time |I1| from this point all patients will have been through the first

interval, I1, of the trial, and no more events can occur during this interval. If we

choose to model the intervals independently, then any estimates from the model

for this interval will not change, subject to minor differences due to the random

nature of MCMC fitting. Fitting independent models to each interval leaves any

unadjusted conclusions vulnerable to the type of multiple comparison issue which

we are trying to avoid. For models where the intervals are not considered to be

independent this will not be the case and the estimates will continue to change

as more data accumulates later in the trial, so we are more limited in what we

can say, especially early in the trial, particularly for the higher level of dependence

(level 1).

The second time we need to consider is the time when the first recruited patients

have been followed up to the end of their participation in the trial. At this point

we will have information on the rates over all intervals and can possibly be more

confident in what we say, particularly about earlier intervals. This also raises the

issue of there being no information at early analyses for the later intervals. The

straightforward approach to this is to fit the models without this information, just
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fitting parameters for which data exists. Interim analyses where intervals may have

only a small number of events of each particular type may occur throughout the

early part of the trial. This will affect the model fitting process, particularly for

the point-mass models where we have extra parameters but little data.

Assessing the reliability of early interval results is not straightforward. As more

data accumulates we should be more confident that our conclusions are correct.

A possible approach to assessing early model predictions of differences between

treatment and control would be to examine how the parameters would vary un-

der different assumptions about the following intervals. We could assume, for any

intervals for which we do not have any information, that the rates for treatment

and control are equal to a background rate, if such a rate exists. For models with

related intervals this would ensure that any early conclusions regarding increases

in treatment rate versus control rate would be more robust.

We will look at some of these issues and explore some of differences between the

models’ performance when we compare them in a demonstration analysis in the

next chapter.
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Chapter 7

Demonstration Interim Analyses

7.1 Introduction

We illustrate the methods from Chapter 6 using simulated data for a number of

complete (Phase III) clinical trials. The trial data is simulated at the individual

patient level with the adverse events experienced by the patients having both a

time of occurrence and a severity grade. There are many different possible com-

binations of event rates and severities which could be applied to each patient in

the simulation but unlike the study in Chapter 5, where we compared the different

methods over a number of varying parameters with regard to event flagging and

error rates, our goal here is to demonstrate the methods, so we take only a small

number of possibly interesting scenarios and look to give an indication of how the

methods work in practice, and how they compare to each other over this small

data set.

The trial data simulation is mainly based on the hierarchical body-system approach

(Figure 3.1). We choose an underlying overall adverse event rate, or possibly rates,

for the trial. The adverse event rate in each particular body-systems is then a

random sample from a normal distribution whose mean is an overall rate. A number

of adverse events on the treatment arm have increased rates compared to the

control over some intervals. The mechanism for generating the simulated adverse

event data and event severities is described in Appendix E.

The major assumptions of the data simulation process are that the underlying

adverse event rates for the control arm do not vary over the intervals, and that the

event rates and the probability of an event of a particular severity are the same

for each patient in the trial. We also assume that each trial has similar numbers

of recruits on each arm and that the recruitment rates are constant. While these

assumptions are open to criticism in terms of how generally applicable they may

be, they are in line with the body-system approach we are taking, and are suitable
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to the type of demonstration analysis we wish to perform.

In the first part of the demonstration analysis we look at a single underlying rate

and three different trial scenarios. In the first scenario the adverse event rate is

raised for treatment in one body-system over the whole duration of the trial. In

the second, the adverse event rate is raised for treatment in one body-system early

in the trial but then the rates fall-off to the same levels as for control. In the third,

the adverse event rate between body-systems are the same early in the trial but

become raised for one body-system later in the trial. For each trial we look at

the effects of different increases in event rate for treatment arm. We consider two

different types of analysis, an incidence analysis where we look at only the first

occurrence of an event for a patient, and an analysis where all events are included.

For each type of analysis we consider two cases, one where we include events of

all severities, denoted severity 1+, and a second case where we just include severe

events, grade 3 or higher, denoted severity 3+. The methods are also applied to

the clinical trial GSK EGF100151 (§1.8) although here the absence of adverse

event timings means we have to make a number of assumptions when applying the

models.

A sensitivity analysis is then performed where we consider much lower treatment

rates, a mixture of two different treatment rates, the effect of changing the thresh-

olds used for flagging events, and the effect of missing data on the models. For

trials consisting of the lower rate events we are interested in seeing how the in-

crease in treatment rate affects the correct flagging of events and the error rates,

given the already low rate of occurrence.

Although we are performing a Bayesian analysis, for consistency we use the same

terms for the error rates (Type-I and Type-II) as we used in Chapter 5. All the

results and parameter estimations reported are derived from a Bayesian inference

based on the posterior distributions of the model parameters.

The models, described Table 6.1, are implemented in the c212 package for R and

fitted using Markov Chain Monte Carlo (MCMC) methods (Appendix A, [139]).

Slice samplers were used for all non-standard distributions apart from the point-

mass models where θ was sampled using a Metropolis-Hastings step (§A.2). All

results are presented under the assumption that the models have reached (approx-

imate) convergence (Appendix C).
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7.2 Trial Structure

The simulated trials have the common structure described Table 7.1. Patients are

recruited for the first 720 days of the trial (approximately 2 years), at a rate of 1.3

per day on each arm, up to a maximum of 1000 patients per arm. Each patient is

followed up for a total 1800 days (approximately 5 years). The trial will be com-

pleted after a maximum of 2520 days corresponding to last possible recruitment

time for a patient on the trial (720 days) plus the follow-up period (1800 days),

approximately 7 years in total.

Trial Parameter Value

Unit of Time Day

Trial Start Time 0

Patient Recruitment Period 0 - 720

Patient Follow-up 1800

Trial End 2520

Control Recruitment Rate 1.3 per day

Treatment Recruitment Rate 1.3 per day

Table 7.1. Demonstration Analysis: Common trial details.

The Data Monitoring Committee (DMC) planned safety reviews are scheduled to

take place every 360 days from the start of the trial until the end of follow up for

the last recruited patient. They are as follows:

Time Analysis

360 Initial Safety Review (1)

720 Safety Review (2)

1080 Safety Review (3)

1440 Safety Review (4)

1800 Safety Review (5)

2160 Safety Review (6)

2520 Final Safety Review (7)

Table 7.2. Demonstration Analysis: Planned safety reviews.
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7.2.1 Body-Systems and Adverse Event Severity

The adverse events for each trial are grouped into 15 Body-systems with 155 ad-

verse events in total. The total events in each body-system is given in Table 7.3.

Body System
Number of AEs

(kb)

Bdy-sys 1 10

Bdy-sys 2 8

Bdy-sys 3 7

Bdy-sys 4 8

Bdy-sys 5 9

Bdy-sys 6 11

Bdy-sys 7 7

Bdy-sys 8 6

Bdy-sys 9 9

Bdy-sys 10 14

Bdy-sys 11 19

Bdy-sys 12 8

Bdy-sys 13 16

Bdy-sys 14 14

Bdy-sys 15 9

Table 7.3. Demonstration Analysis: Simulation body-systems and numbers of
adverse events.

Associated with each event is a severity grade ranging from 1-5 based on the NCI

CTCAE (Table 1.1). The probability that any adverse event has a particular sever-

ity is assumed to be the same for treatment and control. These probabilities are

given in Table 7.4. If a patient has a severity 5 adverse event then he/she no longer

contributes to the trial.
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Severity Description Probability

1 Mild 0.5

2 Moderate 0.3

3 Severe 0.1

4 Life-threatening 0.0999

5 Death 0.0001

Table 7.4. Demonstration Analysis: Adverse event severity probabilities.

7.2.2 Intervals

The approach we have taken in defining our models (§6.5.1) is to split the trial

duration up into a number of intervals. The intervals need to be large enough

to accumulate enough events to allow us to determine which, if any, events have

increased rate on the treatment arm. We split the trial into the following 10 in-

tervals covering the total 1800 days a patient is under observation. In this case a

number of the interval end-points coincide with the DMC safety reviews (Table

7.2) although this may not always be appropriate:

[0, 180], (180, 360], (360, 540], (540, 720], (720, 900], (900, 1080],

(1080, 1260], (1260, 1440], (1440, 1620], (1620, 1800]

7.2.3 Trial Types

We simulate data for the following 3 trial types:

Trial Type Description

I Rate raised for one body-system across all intervals.

II Rate raised for one body-system over first two intervals.

III Rate raised for one body-system over final two intervals.

Table 7.5. Demonstration Analysis: Trial types.
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7.3 Trial Simulation Parameters

7.3.1 Background Trial Adverse Event Rates

Each trial in the demonstration analysis has a background event rate. The follow-

ing table gives the probability of an event, and the expected number of number

of events per patient, over the course of the trial, assuming events occur at the

background rate according to a Poisson process:

Rate1 Expected Number2

of Events
Probability of3

an Event

0.0005555 0.9999 0.6320838

Table 7.6. Demonstration Analysis: Background trial ad-
verse event rate.

1 In units of events per day.
2 Expected number of events over the course of the trial (1800 days):

0.0005555 * 1800 = 0.9999.
3 The probability an individual has one or more events over the course

of the trial.

7.3.2 Increased Treatment Rates

For all trials the treatment rates are the same as the control rates apart from

one body-system, Bdy-sys 3. The increased treatment rates, given as a percentage

increase of the corresponding control adverse event rates, and the intervals over

which they apply are given in Table 7.7. We look at a number of different treat-

ment increases for each trial type.
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Simulated1

Trial
Body-System Intervals2 Relative Increase in3

Treatment Rate

I(a) Body-sys 3 All 100%

I(b) Body-sys 3 All 50%

I(c) Body-sys 3 All 10%

II(a) Body-sys 3 [0-180] 100%

II(a) Body-sys 3 (180-360] 50%

II(b) Body-sys 3 [0-180] 50%

II(b) Body-sys 3 (180-360] 25%

II(c) Body-sys 3 [0-180] 20%

II(c) Body-sys 3 (180-360] 10%

III(a) Body-sys 3 (1440-1620] 50%

III(a) Body-sys 3 (1620-1800] 100%

III(b) Body-sys 3 (1440-1620] 25%

III(b) Body-sys 3 (1620-1800] 50%

III(c) Body-sys 3 (1440-1620] 10%

III(c) Body-sys 3 (1620-1800] 20%

Table 7.7. Demonstration Analysis: Body-systems and intervals with increased
treatment rates.

1 Unique simulation name consisting of trial type (I, II, III) and identifier ((a), (b), (c)).
2 The intervals over which the background treatment rate is increased.
3 For example, for Trial III(c) there is a 10% increase in the underlying treatment rate in Body-

sys 3 over the interval (1440-1620]. The background underlying rates are given in Table 7.6.

7.4 Adverse Events with Raised Treatment

Rates

There are 7 adverse events in Bdy-sys 3 and 155 adverse events in total. The trial

duration is split into 10 intervals (§7.2.2). Table 7.8 gives the total numbers of

adverse events with raised treatment rates where an adverse event is counted once

in each interval in which its rate is raised.
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Time
Trial
Type

Number of1

Intervals
in Analysis

Adverse Events2

with Raised
Treatment Rates

Total3

Adverse
Events

360 I 2 14 310

720 I 4 28 620

1080 I 6 42 930

1440 I 8 56 1240

1800 I 10 70 1550

2160 I 10 70 1550

2520 I 10 70 1550

360 II 2 14 310

720 II 4 14 620

1080 II 6 14 930

1440 II 8 14 1240

1800 II 10 14 1550

2160 II 10 14 1550

2520 II 10 14 1550

360 III 2 0 310

720 III 4 0 620

1080 III 6 0 930

1440 III 8 0 1240

1800 III 10 14 1550

2160 III 10 14 1550

2520 III 10 14 1550

Table 7.8. Demonstration Analysis: Adverse event and interval totals per
trial.

1 The number of intervals for which we have patient data.
2 Total number of adverse events in Bdy-sys 3 (7) × Number of intervals with raised

rates (Table 7.7).
3 Total number of adverse events (155) × Number of Intervals in Analysis.

For the first 4 analyses we do not have data for a number of intervals. For example,

for the analysis at day 720 there are no patients who have been in the trial for

longer than 720 days. The total number of events over all simulated trials at each

interim analysis is given in Table 7.9.
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Time
Number of
Intervals

in Analysis

Adverse Events1

with Raised
Treatment Rates

Total2

Adverse
Events

360 2 84 2790

720 4 126 5580

1080 6 168 8370

1440 8 210 11160

1800 10 294 13950

2160 10 294 13950

2520 10 294 13950

Table 7.9. Demonstration Analysis: Adverse event and interval
totals, all trials combined.

1 There are 7 adverse events in Bdy-sys 3 and 9 different trials as specified
by the rates in Table 7.7. At time 360, for example, there are 2 intervals
in the analysis and 6 of the 9 trials will have raised rates over these 2
intervals giving 7 × 2 × 6 = 84 events with raised treatment rates.

2 There are 155 adverse events in total and 9 different trials as specified by
the rates in Table 7.7. So, for example, at time 360 there are 2 intervals
in the analysis giving 155 × 9 × 2 = 2790 total events.
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7.5 Patient Recruitment

Patients are recruited into the trial up to day 720 or until a maximum of 1000 have

been recruited on each arm. The simulated numbers in the trials at each interim

analysis are as follows:

Simulated
Trial

Time1 Control Treatment

I(a) 360 445 490

I(a) 720 - End of trial 893 962

I(b) 360 469 454

I(b) 720 - End of trial 930 927

I(c) 360 441 460

I(c) 720 - End of trial 950 903

II(a) 360 486 426

II(a) 720 - End of trial 947 876

II(b) 360 410 474

II(b) 720 - End of trial 946 931

II(c) 360 456 493

II(c) 720 - End of trial 946 951

III(a) 360 463 453

III(a) 720 - End of trial 919 904

III(b) 360 453 494

III(b) 720 - End of trial 930 955

III(c) 360 493 443

III(c) 720 - End of trial 954 898

Table 7.10. Demonstration Analysis: Simulated trial patient enrolment
totals.

1 The number of patients recruited to the trial at this particular time.

7.6 Flagging Adverse Events as Having Raised

Treatment Rates

We use the posterior probability that θbj,h (the log relative risk) is greater than

zero as the method for flagging adverse events with raised treatment rates (§6.8).
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This is similar to the approach taken in the simulation study in Chapter 5. We

have seen in the simulation study that point-mass models perform best in larger

trials with higher rate differences between treatment and control. We have also

seen that lowering the threshold for flagging an adverse event from 95% to 90%

does not inflate the Type-I error rate. With this in mind we use a 90% posterior

probability that θbj,h is greater than zero as the cut-off for flagging events for these

models. For the models without the point-mass we use a 95% posterior probability.

In §7.8.1 we investigate the effect of changing the significance thresholds in some

of the models.

7.7 Demonstration Analysis Results

In this section we first look in detail at the outputs for a single trial (Trial II(a))

before looking at the overall results for all trials. Unlike Trial Type I, where the

background rates are fixed over the course of the trial and the choice of the interval

durations may not overly influence the results, for Trial II(a) the rates for Bdy-

sys 3 are raised over the first two intervals before returning to the control rates

thereafter (Table 7.7). In this case the choice of interval will allow us to investigate

in more detail how the methods cope with changing rates over the course of the

trial.

For Trial II(a) the rate increase between treatment and control is quite large for

the first interval, up to day 180, before declining over the following interval, so

we expect that we should see events flagged in these intervals, and the detection

rate should increase and then stabilise over the course of the trial as more events

accumulate.

7.7.1 Trial II(a) Incidence Event Analysis

7.7.1.1 Cumulative Adverse Event Incidence Totals

As the trial proceeds the total incidences of events in each interval increases until

there are no more patients left within that time interval. Figures 7.1, 7.2, and 7.3

below show the overall incidence counts for severity 1+ and severity 3+ events for

body-system Bdy-sys 3 at the different interval time points in the trial. We can see

that early in the trial (Figure 7.1), even before all patients have been recruited, that

the counts are raised for treatment in Bdy-sys 3 compared to control. The pattern

over the whole trial is similar for both severity 1+ and severity 3+ incidence.

More events occur earlier in the trial on the treatment arm than on the control
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arm, but as the trial proceeds the rates appear to coalesce for later intervals.

This is consistent with an earlier higher rate of event incidence on the treatment

arm. In Figure 7.3 we can also see that the counts of events are decreasing for

later intervals, particularly for severity 1+ events. This is because subjects are

dropping out of the risk set so there are less patients at risk for later intervals. We

know from Table 7.10 that more patients have been recruited to the control arm

than the treatment arm, 947 as opposed to 876, and this will have an effect on

the total numbers of events for the trial. In this case, even with less patients on

the treatment arm, there appear to be many more events early in the trial on this

arm.
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Figure 7.1. Demonstration Analysis: Adverse event cumulative incidence counts
(Bdy-sys 3) by interval up to day 720 of the trial. Severity 1+ events on left,
severity 3+ events on the right.
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Figure 7.2. Demonstration Analysis: Adverse event cumulative incidence counts
(Bdy-sys 3) by interval up to day 1800 of the trial. Severity 1+ events on left,
severity 3+ events on the right.
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Figure 7.3. Demonstration Analysis: Adverse event cumulative incidence counts
(Bdy-sys 3) by interval up to the end of trial. Severity 1+ events on left, severity
3+ events on the right.

7.7.1.2 Interim and Final Adverse Event Incidence Counts

The total incidence of adverse events that have occurred at each interim safety

analysis (Table 7.2) is given for each trial arm in Table 7.11. We can see that

overall there are more events on the control arm at each interim analysis. However

less patients have been recruited on the treatment arm (Table 7.10). A simple

analysis for all adverse events would possible submerge any potential safety signal

associated with Bdy-sys 3.
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Time1 Severity 1+ Severity 3+

Control Treatment Control Treatment

360 7340 6661 1548 1393

720 26607 24356 5890 5522

1080 48090 44436 11449 10665

1440 65403 60565 16726 15585

1800 79324 73594 21775 20228

2160 88206 81853 25360 23602

2520 90638 84570 26464 24804

Table 7.11. Demonstration Analysis: Trial II(a) total adverse event incidence
by trial arm at each interim safety analysis.

1 The time of the safety analysis relative to the start of the trial (Table 7.2).

The incidence counts for Bdy-sys 3 only are shown in Table 7.12. We can see dif-

ferences in the body-system counts for treatment and control emerging at the first

interim analysis with approximately 50% more events on the treatment arm de-

spite the lower number of patients. By the end of the trial the numbers of severity

1+ events are almost the same but for severity 3+ events a larger number have

occurred on the treatment arm.

Time1 Severity 1+ Severity 3+

Control Treatment Control Treatment

360 405 604 89 138

720 1465 1896 331 453

1080 2655 2996 645 767

1440 3480 3691 937 1049

1800 4114 4261 1194 1301

2160 4525 4560 1398 1500

2520 4642 4652 1458 1565

Table 7.12. Demonstration Analysis: Trial II(a) total adverse event incidence
for Bdy-sys 3 by trial arm at each interim safety analysis.

1 The time of the safety analysis relative to the start of the trial (Table 7.2).
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7.7.1.3 Model Analyses: Model 1a (No Point-mass)

Running the 1a models (Table 6.1) over the data available at the interim analy-

ses, using a 95% posterior probability that θbj,h > 0 as the threshold for flagging

an event (corresponding to a 5% significance level), gives the results presented in

Tables 7.13, 7.14, 7.15, and 7.16.

Time1 Model2 Flagged3 Correct4 Type-I5 Type-II6

360 1a20 16 9 7 5

360 1a21 16 11 5 3

360 1a30 16 9 7 5

360 1a31 16 11 5 3

360 1a32 16 9 7 5

720 1a20 39 13 26 1

720 1a21 30 13 17 1

720 1a30 39 13 26 1

720 1a31 30 13 17 1

720 1a32 39 13 26 1

1080 1a20 52 14 38 0

1080 1a21 33 14 19 0

1080 1a30 51 14 37 0

1080 1a31 35 14 21 0

1080 1a32 51 14 37 0

Table 7.13. Demonstration Analysis: Trial II(a) model 1a severity 1+
adverse event incidence analysis results for the first 3 safety analyses.

1 The time of the safety analysis relative to the start of the trial (Table 7.2).
2 The models are defined in Table 6.1.
3 The number of adverse events flagged by the model. The total number of adverse

events with raised treatment rates is give in Table 7.8.
4 The number of flagged events which have raised treatment rates compared to

control.
5 The number of flagged events which do not have raised treatment rates compared

to control.
6 The number of events with raised treatment rates compared to control which are

not flagged by the model.
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Time Model Flagged Correct Type-I Type-II

1440 1a20 53 14 39 0

1440 1a21 28 14 14 0

1440 1a30 51 14 37 0

1440 1a31 29 14 15 0

1440 1a32 52 14 38 0

1800 1a20 63 14 49 0

1800 1a21 39 14 25 0

1800 1a30 62 14 48 0

1800 1a31 39 14 25 0

1800 1a32 62 14 48 0

2160 1a20 69 14 55 0

2160 1a21 40 14 26 0

2160 1a30 69 14 55 0

2160 1a31 40 14 26 0

2160 1a32 64 14 50 0

2520 1a20 73 14 59 0

2520 1a21 42 14 28 0

2520 1a30 72 14 58 0

2520 1a31 42 14 28 0

2520 1a32 73 14 59 0

Table 7.14. Demonstration Analysis: Trial II(a) model 1a severity 1+ adverse
event incidence analysis results for the final 4 safety analyses.
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Time Model Flagged Correct Type-I Type-II

360 1a20 6 5 1 9

360 1a21 6 6 0 8

360 1a30 5 4 1 10

360 1a31 6 6 0 8

360 1a32 5 4 1 10

720 1a20 21 7 14 7

720 1a21 16 7 9 7

720 1a30 21 7 14 7

720 1a31 16 7 9 7

720 1a32 20 7 13 7

1080 1a20 24 8 16 6

1080 1a21 15 7 8 7

1080 1a30 21 7 14 7

1080 1a31 15 7 8 7

1080 1a32 21 7 14 7

1440 1a20 31 8 23 6

1440 1a21 14 7 7 7

1440 1a30 30 7 23 7

1440 1a31 14 7 7 7

1440 1a32 29 7 22 7

1800 1a20 39 8 31 6

1800 1a21 16 7 9 7

1800 1a30 38 7 31 7

1800 1a31 16 7 9 7

1800 1a32 34 7 27 7

2160 1a20 45 8 37 6

2160 1a21 16 7 9 7

2160 1a30 40 7 33 7

2160 1a31 16 7 9 7

2160 1a32 40 7 33 7

Table 7.15. Demonstration Analysis: Trial II(a) model 1a severity 3+ adverse
event incidence analysis results for the first 6 safety analyses.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 43 8 35 6

2520 1a21 15 7 8 7

2520 1a30 41 7 34 7

2520 1a31 15 7 8 7

2520 1a32 40 7 33 7

Table 7.16. Demonstration Analysis: Trial II(a) model 1a severity 3+ adverse
event incidence analysis results for the final safety analysis.

When taking into account both event detection and control of the Type-I error

rate, the level 1 models (Table 6.1), which have a correlation between the intervals,

performed best overall. There was very little to choose between the two models,

although 1a21 possibly performed better than 1a31 for this data set as it has slightly

fewer Type-I errors for some of the safety analyses. In terms of event detection 1a20

correctly detected most adverse events with raised treatment rates by the end of

the trial but its Type-I error rate was much higher than the level 1 models.

We have seen over-estimation of the numbers of adverse events with raised treat-

ment rates in the simulation study for the models without the point-mass, and

while the number of Type-I errors made is quite high for some of the models, the

1a21 and 1a31 models control the error rates much more tightly than the other

models. Overall the error rates are less than 5%. For severity 1+ events by the

end of the second interim analysis period, day 720, the models had flagged the

majority of events with raised treatment rates, and after day 1080 (interim safety

analysis (3)) all events with raised rates had been detected. For severity 3+ events

the detection rates weren’t as good but again by day 1080 the models had correctly

identified their maximum number of events.

From prior knowledge we know that all adverse events with raised treatment rates

should occur before day 360, and that all patients have been recruited by day 720.

So by day 1080 all patients have been through their first 360 days of treatment. For

the independent model (1a level 0) we expect that there should no change in the

number of events correctly detected from this point on, other than possibly due

to sampling variation in the MCMC methods used to fit the models, and this is

indeed the case. For the methods which have relationships between the intervals we

can’t make such statements, however in this case the numbers correctly detected

remained constant after day 1080.
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Figures 7.4, 7.5, 7.6, and 7.7 show the proportion of events correctly detected (out

of those with raised treatment rates) and the Type-I error rates for severity 1+

and severity 3+ events respectively. We can clearly see that the error rates for the

level 1 models decline after day 720, and are lower than any of the other models

considered.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correctly Flagged Severity 1+ Adverse Events as a
Proportion of Adverse Events with Raised Treatment Rates

Interim Analysis

P
ro

po
rt

io
n 

C
or

re
ct ●

●

● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ●

360 720 1080 1440 1800 2160 2520

●

●

●

●

●

Models

1a20
1a21
1a30
1a31
1a32

Figure 7.4. Demonstration Analysis: Trial II(a) model 1a adverse event incidence
analysis. Proportion of severity 1+ adverse events with raised treatment rates
correctly flagged.

The total number of events with raised treatment rates is given in Table 7.8.
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Figure 7.5. Demonstration Analysis: Trial II(a) model 1a adverse event incidence
analysis. Proportion of severity 3+ adverse events with raised treatment rates
correctly flagged.
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Figure 7.6. Demonstration Analysis: Trial II(a) model 1a adverse event incidence
analysis. Type-I error rates severity 1+ events.

The total number of events is given in Table 7.8.
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Figure 7.7. Demonstration Analysis: Trial II(a) model 1a adverse event incidence
analysis. Type-I error rates severity 3+ events.

The total number of events is given in Table 7.8.
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7.7.1.4 Model Analyses: Model BB (Point-mass)

Running the BB models (Tables 6.1) over the data available at the interim anal-

yses, using a 90% posterior probability threshold for flagging an event, gives the

results in Tables 7.17, 7.18, 7.19, and 7.20. The 90% threshold is lower than that

used for the 1a models for the reasons given in §7.6.

Time1 Model2 Flagged3 Correct4 Type-I5 Type-II6

360 BB20 7 7 0 7

360 BB21 9 9 0 5

360 BB30 7 7 0 7

360 BB31 8 8 0 6

360 BB32 6 6 0 8

720 BB20 9 9 0 5

720 BB21 10 9 1 5

720 BB30 8 8 0 6

720 BB31 9 9 0 5

720 BB32 8 8 0 6

1080 BB20 13 13 0 1

1080 BB21 11 11 0 3

1080 BB30 11 11 0 3

1080 BB31 10 10 0 4

1080 BB32 9 9 0 5

Table 7.17. Demonstration Analysis: Trial II(a) model BB severity 1+
adverse event incidence analysis results for the first 3 safety analyses.

1 The time of the safety analysis relative to the start of the trial (Table 7.2).
2 The models are defined in Table 6.1.
3 The number of adverse events flagged by the model. The total number of adverse

events with raised treatment rates is give in Table 7.8.
4 The number of flagged events which have raised treatment rates compared to

control.
5 The number of flagged events which do not have raised treatment rates compared

to control.
6 The number of events with raised treatment rates compared to control which are

not flagged by the model.
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Time Model Flagged Correct Type-I Type-II

1440 BB20 13 13 0 1

1440 BB21 11 11 0 3

1440 BB30 11 11 0 3

1440 BB31 10 10 0 4

1440 BB32 9 9 0 5

1800 BB20 13 13 0 1

1800 BB21 13 11 2 3

1800 BB30 11 11 0 3

1800 BB31 11 10 1 4

1800 BB32 9 9 0 5

2160 BB20 14 13 1 1

2160 BB21 10 10 0 4

2160 BB30 12 11 1 3

2160 BB31 10 10 0 4

2160 BB32 10 9 1 5

2520 BB20 13 13 0 1

2520 BB21 11 10 1 4

2520 BB30 11 11 0 3

2520 BB31 10 10 0 4

2520 BB32 9 9 0 5

Table 7.18. Demonstration Analysis: Trial II(a) model BB severity 1+ adverse
event incidence analysis results for the final 4 safety analyses.
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Time Model Flagged Correct Type-I Type-II

360 BB20 3 3 0 11

360 BB21 3 3 0 11

360 BB30 3 3 0 11

360 BB31 2 2 0 12

360 BB32 1 1 0 13

720 BB20 6 6 0 8

720 BB21 5 5 0 9

720 BB30 4 4 0 10

720 BB31 4 4 0 10

720 BB32 4 4 0 10

1080 BB20 6 6 0 8

1080 BB21 5 5 0 9

1080 BB30 5 5 0 9

1080 BB31 4 4 0 10

1080 BB32 4 4 0 10

1440 BB20 6 6 0 8

1440 BB21 5 5 0 9

1440 BB30 5 5 0 9

1440 BB31 4 4 0 10

1440 BB32 4 4 0 10

1800 BB20 6 6 0 8

1800 BB21 5 5 0 9

1800 BB30 6 6 0 8

1800 BB31 3 3 0 11

1800 BB32 4 4 0 10

2160 BB20 6 6 0 8

2160 BB21 4 4 0 10

2160 BB30 5 5 0 9

2160 BB31 3 3 0 11

2160 BB32 3 3 0 11

Table 7.19. Demonstration Analysis: Trial II(a) model BB severity 3+ adverse
event incidence analysis results for the first 6 safety analyses.
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Time Model Flagged Correct Type-I Type-II

2520 BB20 6 6 0 8

2520 BB21 4 4 0 10

2520 BB30 5 5 0 9

2520 BB31 3 3 0 11

2520 BB32 3 3 0 11

Table 7.20. Demonstration Analysis: Trial II(a) model BB severity 3+ adverse
event incidence analysis results for the final safety analysis.

The two-level hierarchical model BB20 performed best overall taking into account

both severity 1+ and severity 3+ events. There were eight Type-I errors for the

severity 1+ events and none for severity 3+ events. The Type-II error rate is higher

than for the corresponding 1a models. Even with the lower threshold of 90% the

BB models have not performed as well as the 1a models in terms of event detection.

Figures 7.8 and 7.9 show the proportions of correctly identified events.
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Figure 7.8. Demonstration Analysis: Trial II(a) model BB adverse event incidence
analysis. Proportion of severity 1+ adverse events with raised treatment rates
correctly flagged.

The total number of events with raised treatment rates is given in Table 7.8.
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Figure 7.9. Demonstration Analysis: Trial II(a) model BB adverse event incidence
analysis. Proportion of severity 3+ adverse events with raised treatment rates
correctly flagged.

The total number of events with raised treatment rates is given in Table 7.8.

7.7.1.5 Assessing the Adverse Event Rates by Posterior Distribution

The analyses in §7.7.1.3 and §7.7.1.4 concentrated mainly on comparing the num-

bers of correctly detected adverse events, and the Type-I and Type-II error rates,

between the different models using specific posterior probability cut-offs. In this

section we look at how two of the models, 1a31 and BB21, may be used to assess

the adverse events for the end of trial data (day 2520).

For model 1a31 the top 10 adverse events with the highest posterior probability that

θbj,h > 0, together with their means and 95% credible intervals (Highest Posterior

Density Intervals (HPI)), are shown in Figure 7.10. For severity 1+ events (Figure

7.10a) at the 95% cut-off all 10 events would be correctly flagged as having raised

treatment rates over their corresponding intervals (Table 7.14). For severity 3+

events (Figure 7.10b) 7 out of the 10 events would be correctly flagged at the 95%

level (Table 7.16). Comparing the two figures we can see that the more common

severity 1+ events generally have higher posterior probabilities of being associated

with treatment than the severity 3+ events.
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For model BB21 the equivalent data is shown in Figure 7.11. Here all 10 severity 1+

events would be correctly flagged at the 90% cut-off (Table 7.18). For the severity

3+ events, which are much rarer, the top 7 events all have raised treatment rates

over their corresponding intervals, but in this case only 4 events would be flagged at

the 90% cut-off (Table 7.20). Nevertheless there does appear to be a strong body-

system effect for Bdy-sys 3. From Figure 7.11b we can see that the probability that

θbj,h > 0 decreases rapidly for severity 3+ events and that the credible intervals

for these lower probability events are truncated at 0. This is an effect of the point-

mass term in the θbj,h parameter (6.4). For adverse events with no differences in

rate between treatment and control we expect that the posterior distribution of

θbj,h will retain a substantial point-mass component, and that many of the values

sampled during the model fit will be 0.
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Figure 7.10. Model 1a31: Top 10 adverse events by posterior probability at the
end of trial (day 2520).
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Figure 7.11. Model BB21: Top 10 adverse events by posterior probability at the
end of trial (day 2520).

It is also informative to compare the adverse event rates between different body-

systems. Figure 7.12 shows the estimated rates from model 1a31 for Bdy-sys 3

and Bdy-sys 1 over the first trial interval. We can see (Figures 7.12a, 7.12a) that
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adverse events in Bdy-sys 3 have higher rates than Bdy-sys 1, even for the rarer

severity 3+ events. This agrees with what we know of the underlying data model

where the rates for adverse events in Bdy-sys 3 are higher for treatment than

control and those for Bdy-sys 1 are the same for both treatment and control. In

the equivalent plots for model BB21, Figure 7.13, this difference between the rates

in the different body-systems is even more clear. Here the rates for majority of

the adverse events for Bdy-sys 1 remain clustered around 0, strongly indicating no

treatment effect.
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Figure 7.12. Model 1a31: Bdy-sys3 and Bdy-sys 1 end of trial rates.
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Figure 7.13. Model BB21: Bdy-sys3 and Bdy-sys 1 end of trial rates.
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7.7.2 Trial II(a) Total Adverse Event Analysis

Here we include all the events that have occurred over course of the trial. We expect

the results to be very similar to the incidence event analysis as the underlying

occurrence rates of the events are the same.

7.7.2.1 Cumulative Adverse Event Totals

Figures 7.14, 7.15, and 7.16 show the evolution of the overall counts for severity

1+ and severity 3+ events for body-system Bdy-sys 3, with higher rate of adverse

events on the treatment arm early in the trial. These graphs are very similar to

those in Figures 7.1-7.3, but we can see that by the end of the trial overall more

events have been accumulated (Figures 7.3, 7.16).
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Figure 7.14. Demonstration Analysis: Total adverse event counts (Bdy-sys 3) by
interval up to day 360. Severity 1+ events on left, severity 3+ events on the right.
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Figure 7.15. Demonstration Analysis: Total adverse event counts (Bdy-sys 3) by
interval up to day 1440. Severity 1+ events on left, severity 3+ events on the right.
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Figure 7.16. Demonstration Analysis: Total adverse event counts (Bdy-sys 3) by
interval to end of trial. Severity 1+ events on left, severity 3+ events on the right.
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7.7.2.2 Interim and Final Analyses Adverse Event Counts

The total counts for all events are given in Table 7.21. As for the incidence case

we have more events on the control arm than the treatment arm.

Time1 Severity 1+ Severity 3+

Control Treatment Control Treatment

360 7853 7176 1574 1421

720 30576 28180 6065 5700

1080 60035 55787 12002 11183

1440 89778 83195 17958 16666

1800 119051 110627 23827 22120

2160 140768 130993 28139 26117

2520 147489 138582 29481 27606

Table 7.21. Demonstration Analysis: Trial II(a) total adverse events by trial
arm at each interim safety analysis.

1 The time of the safety analysis relative to the start of the trial (Table 7.2).

Looking at the counts for Bdy-sys 3 in Table 7.22 we can again see differences in

the body-system counts for treatment and control emerging quite early in the trial.

Time
Severity 1+ Severity 3+

Control Treatment Control Treatment

360 443 689 89 140

720 1740 2374 339 481

1080 3448 4148 681 831

1440 5084 5700 1015 1162

1800 6639 7302 1317 1493

2160 7847 8451 1566 1745

2520 8253 8879 1640 1841

Table 7.22. Demonstration Analysis: Trial II(a) total adverse events by trial arm
at each interim safety analysis for Bdy-sys 3.
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7.7.2.3 Model Analyses: Model 1a (No Point-mass)

The results of running the models over the data available at the interim analyses

gives the following results using a nominal 95% cut-off for flagging an event are

given in Tables 7.23, 7.24, 7.25, and 7.26.

Time Model Flagged Correct Type-I Type-II

360 1a20 16 10 6 4

360 1a21 15 10 5 4

360 1a30 17 10 7 4

360 1a31 16 10 6 4

360 1a32 17 10 7 4

720 1a20 39 13 26 1

720 1a21 29 13 16 1

720 1a30 39 13 26 1

720 1a31 27 13 14 1

720 1a32 41 13 28 1

1080 1a20 45 14 31 0

1080 1a21 35 13 22 1

1080 1a30 48 13 35 1

1080 1a31 33 13 20 1

1080 1a32 44 13 31 1

1440 1a20 59 14 45 0

1440 1a21 31 13 18 1

1440 1a30 56 13 43 1

1440 1a31 31 13 18 1

1440 1a32 55 13 42 1

1800 1a20 72 14 58 0

1800 1a21 38 13 25 1

1800 1a30 77 14 63 0

1800 1a31 39 13 26 1

1800 1a32 75 13 62 1

Table 7.23. Demonstration Analysis: Trial II(a) model 1a severity 1+ total ad-
verse event analysis results for the first 5 safety analyses.

211



Time Model Flagged Correct Type-I Type-II

2160 1a20 75 14 61 0

2160 1a21 44 13 31 1

2160 1a30 76 14 62 0

2160 1a31 43 13 30 1

2160 1a32 74 13 61 1

2520 1a20 82 14 68 0

2520 1a21 46 13 33 1

2520 1a30 82 14 68 0

2520 1a31 47 13 34 1

2520 1a32 82 13 69 1

Table 7.24. Demonstration Analysis: Trial II(a) model 1a severity 1+ total ad-
verse event analysis results for the final 2 safety analyses.

Time Model Flagged Correct Type-I Type-II

360 1a20 7 5 2 9

360 1a21 7 7 0 7

360 1a30 5 4 1 10

360 1a31 6 6 0 8

360 1a32 5 4 1 10

720 1a20 22 8 14 6

720 1a21 17 7 10 7

720 1a30 20 7 13 7

720 1a31 17 7 10 7

720 1a32 19 7 12 7

1080 1a20 27 10 17 4

1080 1a21 13 8 5 6

1080 1a30 23 9 14 5

1080 1a31 13 8 5 6

1080 1a32 20 7 13 7

Table 7.25. Demonstration Analysis: Trial II(a) model 1a severity 3+ total ad-
verse event analysis results for the first 3 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1440 1a20 29 10 19 4

1440 1a21 14 8 6 6

1440 1a30 29 9 20 5

1440 1a31 14 8 6 6

1440 1a32 26 7 19 7

1800 1a20 39 10 29 4

1800 1a21 18 8 10 6

1800 1a30 35 8 27 6

1800 1a31 18 8 10 6

1800 1a32 33 7 26 7

2160 1a20 39 9 30 5

2160 1a21 21 8 13 6

2160 1a30 41 10 31 4

2160 1a31 21 8 13 6

2160 1a32 34 7 27 7

2520 1a20 41 10 31 4

2520 1a21 20 8 12 6

2520 1a30 39 8 31 6

2520 1a31 20 8 12 6

2520 1a32 34 7 27 7

Table 7.26. Demonstration Analysis: Trial II(a) model 1a severity 3+ total ad-
verse event analysis results for the final 4 safety analyses.

The results here are very similar to the incidence data results. The level 1 models

with the stronger dependence (1a21, 1a31) performed the best overall in all cases.

Model 1a20 detected all severity 1+ events and the most severity 3+ which had

raised treatment rates, but at the expense of much higher Type-I errors. The extra

dependence in the level 1 models has had the effect of controlling both the Type-I

and Type-II error rates compared to the other models. More adverse events with

raised treatment rates were detected overall than in the event incidence case. This

is expected as we have more event data. For severity 1+ events we have detected

nearly all events with raised treatment rates by day 720, even though these events

were still occurring. Figures 7.17 and 7.18 show the proportion of correctly flagged

adverse events and Type-I errors respectively.
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Figure 7.17. Demonstration Analysis: Trial II(a) model 1a total adverse event
analysis. Proportion of adverse events with raised treatment rates correctly flagged
(severity 1+ on the top, severity 3+ on the bottom).

The total number of events with raised treatment rates is given in Table 7.8.
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Figure 7.18. Demonstration Analysis: Trial II(a) model 1a total adverse events
analysis. Type-I error rates (severity 1+ on the top, severity 3+ on the bottom)

The total number of events with raised treatment rates is given in Table 7.8.
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7.7.2.4 Model Analyses: Model BB (Point-mass)

Running the models over the data available at the interim analyses gives the re-

sults (using a nominal 90% threshold for flagging an event) in Tables 7.27, 7.28,

7.29, and 7.30.

Time Model Flagged Correct Type-I Type-II

360 BB20 7 7 0 7

360 BB21 10 10 0 4

360 BB30 6 6 0 8

360 BB31 9 9 0 5

360 BB32 6 6 0 8

720 BB20 10 10 0 4

720 BB21 10 10 0 4

720 BB30 9 9 0 5

720 BB31 10 10 0 4

720 BB32 8 8 0 6

1080 BB20 12 12 0 2

1080 BB21 12 12 0 2

1080 BB30 12 12 0 2

1080 BB31 11 11 0 3

1080 BB32 10 10 0 4

1440 BB20 13 13 0 1

1440 BB21 11 11 0 3

1440 BB30 12 12 0 2

1440 BB31 10 10 0 4

1440 BB32 10 10 0 4

1800 BB20 12 12 0 2

1800 BB21 11 11 0 3

1800 BB30 12 12 0 2

1800 BB31 10 10 0 4

1800 BB32 10 10 0 4

Table 7.27. Demonstration Analysis: Trial II(a) model BB severity 1+ total ad-
verse event analysis results for the first 5 safety analyses.
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Time Model Flagged Correct Type-I Type-II

2160 BB20 12 12 0 2

2160 BB21 10 10 0 4

2160 BB30 12 12 0 2

2160 BB31 10 10 0 4

2160 BB32 10 10 0 4

2520 BB20 12 12 0 2

2520 BB21 10 10 0 4

2520 BB30 12 12 0 2

2520 BB31 10 10 0 4

2520 BB32 10 10 0 4

Table 7.28. Demonstration Analysis: Trial II(a) model BB severity 1+ total ad-
verse event analysis results for the final 2 safety analyses.

Time Model Flagged Correct Type-I Type-II

360 BB20 3 3 0 11

360 BB21 3 3 0 11

360 BB30 2 2 0 12

360 BB31 2 2 0 12

360 BB32 0 0 0 14

720 BB20 6 6 0 8

720 BB21 5 5 0 9

720 BB30 4 4 0 10

720 BB31 4 4 0 10

720 BB32 4 4 0 10

1080 BB20 6 6 0 8

1080 BB21 5 5 0 9

1080 BB30 6 6 0 8

1080 BB31 5 5 0 9

1080 BB32 4 4 0 10

Table 7.29. Demonstration Analysis: Trial II(a) model BB severity 3+ total ad-
verse event analysis results for the first 3 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1440 BB20 6 6 0 8

1440 BB21 5 5 0 9

1440 BB30 5 5 0 9

1440 BB31 4 4 0 10

1440 BB32 3 3 0 11

1800 BB20 6 6 0 8

1800 BB21 5 5 0 9

1800 BB30 5 5 0 9

1800 BB31 4 4 0 10

1800 BB32 4 4 0 10

2160 BB20 6 6 0 8

2160 BB21 5 5 0 9

2160 BB30 5 5 0 9

2160 BB31 4 4 0 10

2160 BB32 4 4 0 10

2520 BB20 6 6 0 8

2520 BB21 5 5 0 9

2520 BB30 6 6 0 8

2520 BB31 4 4 0 10

2520 BB32 3 3 0 11

Table 7.30. Demonstration Analysis: Trial II(a) model BB severity 3+ total ad-
verse event analysis results for the final 4 safety analyses.

The extra events included in the data have generally allowed the models to perform

better than the corresponding incidence models and, in terms of event detection

for severity 1+ events, they perform well compared to their 1a equivalents. Their

overall Type-I error control is much better than for 1a models as expected. This

is shown in Figure 7.19.
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Figure 7.19. Demonstration Analysis: Trial II(a) model BB total adverse event
analysis. Proportion of severity 1+ adverse events with raised treatment rates
correctly flagged (severity 1+ on the top, severity 3+ on the bottom).

7.7.2.5 All Events versus Event Incidence Analysis

The results of the analysis when including all events are very similar to including

event incidence only, particularly for the 1a (no point-mass) models. For the BB

(point-mass) models the extra events have improved the performance of some of
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the models, particularly for severity 1+ events. We have seem similar behaviour

for point-mass models in the simulations study in Chapter 5, where the models

perform best for larger trials and higher event rates. The adverse events may also

be assessed as in §7.7.1.5 for the incidence data. In this case the outputs are very

similar to those shown in Figures 7.10 - 7.13.

7.7.2.6 Model Parameter Estimation

The posterior distributions of the γ and θ parameters may be used to find point-

estimates of the underlying model parameters and the underlying rate function.

We look at the 1a21 and BB21 models and, as in §5.5.1, we use the posterior mean

to estimate the underlying parameters. Figures 7.20 and 7.21 show the estimated

underlying control and treatment rates for Bdy-sys 3 at the final analysis (day

2520) for the models. The overall trial background rates are given in Table 7.6 for

the control arm. Table 7.7 gives the increase in rate for treatment.

Figure 7.20 shows the parameter estimates for model 1a21. The point estimates are

able to capture the underlying rates quite well, even for severity 3+ events, which

have much lower rates of occurrence.

For BB21 the estimates are shown in Figure 7.21. Here we can see that for the

severity 1+ events the parameter estimates are quite good, particularly for the first

interval. For the second interval, 180.0-360.0, there is not as clear a differentiation

between treatment and control as there is in Fig 7.20. For severity 3+ events, which

are rarer, the model is less able to distinguish differences between treatment and

control, particularly for the second interval where the treatment rates are generally

underestimated. We have seen similar behaviour for models with a point-mass in

§5.5.1.4.
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Figure 7.20. Demonstration Analysis: Day 2520 underlying parameter estimates
model 1a21 (Bdy-sys 3) (severity 1+ on top, severity 3+ on bottom).
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Figure 7.21. Demonstration Analysis: Day 2520 underlying parameter estimates
model BB21 (Bdy-sys 3) (severity 1+ on top, severity 3+ on bottom).
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7.7.3 Overall Results

The results for the other trial types (I, III) are in line with for Trial II(a) discussed

above. Rather than look at each individual trial, in this section we present the

results for all trials combined. We note that while the rates differences between

treatment and control for Trial II(a) were relatively high, for smaller rate increases

the models’ performances will not be as good. Further, for Trial III, where the

treatment rates increase over the last two intervals of the trial only, we should

expect to see poorer performance for incidence data compared to Trial II, even

when the rates are similar. This is because patients will leave the risk sets for both

treatment and control at fixed rates (based on the background trial rate (Table

7.6)) up until the final two intervals, so there will be less patients to experience

the raised rates as the trial progresses.

7.7.3.1 Incidence Event Analysis

The outputs of the 1a models over all the trials in terms of event detection and

error rates, using a 95% posterior probability cut-off for flagging an event, are

given in Tables 7.31, 7.32, 7.33, and 7.34.

Time Model Flagged Correct Type-I Type-II

360 1a20 99 39 60 45

360 1a21 95 42 53 42

360 1a30 98 37 61 47

360 1a31 93 40 53 44

360 1a32 95 37 58 47

720 1a20 217 67 150 59

720 1a21 167 75 92 51

720 1a30 213 64 149 62

720 1a31 168 75 93 51

720 1a32 208 64 144 62

Table 7.31. Demonstration Analysis: All trials model 1a severity 1+ adverse event
incidence results for the first 2 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1080 1a20 334 93 241 75

1080 1a21 237 109 128 59

1080 1a30 322 91 231 77

1080 1a31 236 107 129 61

1080 1a32 313 87 226 81

1440 1a20 413 127 286 83

1440 1a21 276 138 138 72

1440 1a30 405 121 284 89

1440 1a31 276 137 139 73

1440 1a32 386 116 270 94

1800 1a20 494 151 343 143

1800 1a21 330 169 161 125

1800 1a30 483 145 338 149

1800 1a31 327 168 159 126

1800 1a32 474 141 333 153

2160 1a20 578 180 398 114

2160 1a21 364 188 176 106

2160 1a30 579 177 402 117

2160 1a31 363 188 175 106

2160 1a32 562 173 389 121

2520 1a20 589 181 408 113

2520 1a21 369 191 178 103

2520 1a30 589 181 408 113

2520 1a31 374 191 183 103

2520 1a32 575 176 399 118

Table 7.32. Demonstration Analysis: All trials model 1a severity 1+ adverse event
incidence results for the final 5 safety analyses.

224



Time Model Flagged Correct Type-I Type-II

360 1a20 42 13 29 71

360 1a21 41 19 22 65

360 1a30 35 11 24 73

360 1a31 35 15 20 69

360 1a32 32 10 22 74

720 1a20 131 38 93 88

720 1a21 92 44 48 82

720 1a30 115 34 81 92

720 1a31 91 42 49 84

720 1a32 109 32 77 94

1080 1a20 207 63 144 105

1080 1a21 140 67 73 101

1080 1a30 191 57 134 111

1080 1a31 138 66 72 102

1080 1a32 169 46 123 122

1440 1a20 261 73 188 137

1440 1a21 164 92 72 118

1440 1a30 241 66 175 144

1440 1a31 160 88 72 122

1440 1a32 225 59 166 151

1800 1a20 326 98 228 196

1800 1a21 192 113 79 181

1800 1a30 312 84 228 210

1800 1a31 187 111 76 183

1800 1a32 277 72 205 222

2160 1a20 382 117 265 177

2160 1a21 213 136 77 158

2160 1a30 368 108 260 186

2160 1a31 215 136 79 158

2160 1a32 333 90 243 204

Table 7.33. Demonstration Analysis: All trials model 1a severity 3+ adverse event
incidence results for the first 6 safety analyses.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 404 128 276 166

2520 1a21 228 144 84 150

2520 1a30 397 120 277 174

2520 1a31 226 143 83 151

2520 1a32 362 103 259 191

Table 7.34. Demonstration Analysis: All trials model 1a severity 3+ adverse event
incidence results for the final safety analysis.

The models with the stronger dependence (1a21, 1a31) performed the best overall.

The extra dependence in these models has had the effect of controlling both the

Type-I and Type-II error rates compared to the other models, which have either no

dependence (1a20, 1a30), or weaker dependence (1a32). There is not much difference

in performance between the two-level and three-level hierarchies with 1a21 possibly

performing slightly better for the data considered.

The BB models were run using a 90% cut-off and the results are given in Tables

7.35, 7.36, 7.37, and 7.38.

Time Model Flagged Correct Type-I Type-II

360 BB20 21 21 0 63

360 BB21 24 24 0 60

360 BB30 14 14 0 70

360 BB31 20 20 0 64

360 BB32 13 13 0 71

720 BB20 46 45 1 81

720 BB21 64 63 1 63

720 BB30 42 42 0 84

720 BB31 50 50 0 76

720 BB32 40 40 0 86

Table 7.35. Demonstration Analysis: All trials model BB severity 1+ adverse
event incidence results for the first 2 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1080 BB20 71 68 3 100

1080 BB21 94 94 0 74

1080 BB30 55 52 3 116

1080 BB31 76 76 0 92

1080 BB32 45 44 1 124

1440 BB20 91 90 1 120

1440 BB21 121 121 0 89

1440 BB30 78 77 1 133

1440 BB31 108 108 0 102

1440 BB32 70 69 1 141

1800 BB20 104 103 1 191

1800 BB21 151 149 2 145

1800 BB30 85 84 1 210

1800 BB31 134 133 1 161

1800 BB32 77 76 1 218

2160 BB20 137 135 2 159

2160 BB21 156 156 0 138

2160 BB30 104 102 2 192

2160 BB31 142 142 0 152

2160 BB32 89 87 2 207

2520 BB20 135 134 1 160

2520 BB21 153 152 1 142

2520 BB30 107 106 1 188

2520 BB31 143 143 0 151

2520 BB32 96 95 1 199

Table 7.36. Demonstration Analysis: All trials model BB severity 1+ adverse
event incidence results for the final 5 safety analyses.
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Time Model Flagged Correct Type-I Type-II

360 BB20 8 6 2 78

360 BB21 9 8 1 76

360 BB30 6 5 1 79

360 BB31 5 5 0 79

360 BB32 1 1 0 83

720 BB20 20 20 0 106

720 BB21 27 27 0 99

720 BB30 10 10 0 116

720 BB31 15 15 0 111

720 BB32 8 8 0 118

1080 BB20 35 35 0 133

1080 BB21 52 52 0 116

1080 BB30 21 21 0 147

1080 BB31 41 41 0 127

1080 BB32 16 16 0 152

1440 BB20 52 50 2 160

1440 BB21 75 75 0 135

1440 BB30 33 32 1 178

1440 BB31 55 55 0 155

1440 BB32 23 22 1 188

1800 BB20 56 54 2 240

1800 BB21 96 96 0 198

1800 BB30 34 34 0 260

1800 BB31 73 73 0 221

1800 BB32 23 23 0 271

2160 BB20 66 64 2 230

2160 BB21 109 109 0 185

2160 BB30 42 41 1 253

2160 BB31 82 82 0 212

2160 BB32 26 26 0 268

Table 7.37. Demonstration Analysis: All trials model BB severity 3+ adverse
event incidence results for the first 6 safety analyses.
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Time Model Flagged Correct Type-I Type-II

2520 BB20 78 76 2 218

2520 BB21 111 111 0 183

2520 BB30 50 49 1 245

2520 BB31 86 86 0 208

2520 BB32 29 29 0 265

Table 7.38. Demonstration Analysis: All trials model BB severity 3+ adverse
event incidence results for the final safety analysis.

Here the models with the level 1 dependence (BB21, BB31) performed best overall

with the two-level hierarchy model, BB21, performing better than the three-level

model, particularly for severity 3+ events. The reduced number of parameters in

BB21, compared to BB31, has enabled this better performance.

7.7.3.2 Total Event Analysis

We again expect an analysis including all events to give similar results to the

incidence data. The outputs for models 1a, with 95% cut-off, are given in Tables

7.39-7.42, and for BB, with 90% cut-off, in Tables 7.43-7.46.

Time Model Flagged Correct Type-I Type-II

360 1a20 97 41 56 43

360 1a21 86 39 47 45

360 1a30 102 40 62 44

360 1a31 89 39 50 45

360 1a32 100 39 61 45

720 1a20 230 71 159 55

720 1a21 181 78 103 48

720 1a30 228 68 160 58

720 1a31 178 78 100 48

720 1a32 224 68 156 58

Table 7.39. Demonstration Analysis: All trials model 1a severity 1+ total adverse
event results for the first 2 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1080 1a20 352 105 247 63

1080 1a21 251 111 140 57

1080 1a30 350 103 247 65

1080 1a31 250 111 139 57

1080 1a32 333 96 237 72

1440 1a20 495 133 362 77

1440 1a21 326 140 186 70

1440 1a30 487 130 357 80

1440 1a31 323 139 184 71

1440 1a32 476 128 348 82

1800 1a20 625 177 448 117

1800 1a21 384 185 199 109

1800 1a30 624 171 453 123

1800 1a31 385 185 200 109

1800 1a32 612 162 450 132

2160 1a20 686 192 494 102

2160 1a21 447 202 245 92

2160 1a30 684 190 494 104

2160 1a31 449 202 247 92

2160 1a32 670 186 484 108

2520 1a20 705 201 504 93

2520 1a21 465 208 257 86

2520 1a30 707 200 507 94

2520 1a31 463 207 256 87

2520 1a32 705 196 509 98

Table 7.40. Demonstration Analysis: All trials model 1a severity 1+ total adverse
event results for the final 5 safety analyses.
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Time Model Flagged Correct Type-I Type-II

360 1a20 44 13 31 71

360 1a21 44 21 23 63

360 1a30 35 11 24 73

360 1a31 36 16 20 68

360 1a32 33 11 22 73

720 1a20 140 39 101 87

720 1a21 93 44 49 82

720 1a30 119 34 85 92

720 1a31 92 42 50 84

720 1a32 108 32 76 94

1080 1a20 203 64 139 104

1080 1a21 129 68 61 100

1080 1a30 190 56 134 112

1080 1a31 129 68 61 100

1080 1a32 172 47 125 121

1440 1a20 256 76 180 134

1440 1a21 160 95 65 115

1440 1a30 242 67 175 143

1440 1a31 155 91 64 119

1440 1a32 222 61 161 149

1800 1a20 333 105 228 189

1800 1a21 189 112 77 182

1800 1a30 318 88 230 206

1800 1a31 190 112 78 182

1800 1a32 287 71 216 223

2160 1a20 391 123 268 171

2160 1a21 220 134 86 160

2160 1a30 384 115 269 179

2160 1a31 218 134 84 160

2160 1a32 344 99 245 195

Table 7.41. Demonstration Analysis: All trials model 1a severity 3+ total adverse
event results for the first 6 safety analyses.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 413 130 283 164

2520 1a21 238 143 95 151

2520 1a30 406 119 287 175

2520 1a31 236 140 96 154

2520 1a32 368 104 264 190

Table 7.42. Demonstration Analysis: All trials model 1a severity 3+ total adverse
event results for the final safety analysis.

Time Model Flagged Correct Type-I Type-II

360 BB20 25 24 1 60

360 BB21 29 29 0 55

360 BB30 14 14 0 70

360 BB31 21 21 0 63

360 BB32 14 14 0 70

720 BB20 47 46 1 80

720 BB21 64 64 0 62

720 BB30 44 44 0 82

720 BB31 52 52 0 74

720 BB32 40 40 0 86

1080 BB20 71 70 1 98

1080 BB21 95 95 0 73

1080 BB30 61 60 1 108

1080 BB31 83 83 0 85

1080 BB32 57 56 1 112

1440 BB20 101 100 1 110

1440 BB21 123 122 1 88

1440 BB30 86 85 1 125

1440 BB31 113 112 1 98

1440 BB32 77 76 1 134

Table 7.43. Demonstration Analysis: All trials model BB severity 1+ total adverse
event results for the first 4 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1800 BB20 131 129 2 165

1800 BB21 159 159 0 135

1800 BB30 101 100 1 194

1800 BB31 145 145 0 149

1800 BB32 89 89 0 205

2160 BB20 149 148 1 146

2160 BB21 171 171 0 123

2160 BB30 126 126 0 168

2160 BB31 160 160 0 134

2160 BB32 110 110 0 184

2520 BB20 151 151 0 143

2520 BB21 176 176 0 118

2520 BB30 130 130 0 164

2520 BB31 165 165 0 129

2520 BB32 119 119 0 175

Table 7.44. Demonstration Analysis: All trials model BB severity 1+ total adverse
event results for the final 3 safety analyses.

Time Model Flagged Correct Type-I Type-II

360 BB20 7 6 1 78

360 BB21 9 8 1 76

360 BB30 3 3 0 81

360 BB31 4 4 0 80

360 BB32 1 1 0 83

720 BB20 22 22 0 104

720 BB21 28 28 0 98

720 BB30 13 13 0 113

720 BB31 17 17 0 109

720 BB32 9 9 0 117

Table 7.45. Demonstration Analysis: All trials model BB severity 3+ total adverse
event results for the first 2 safety analyses.
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Time Model Flagged Correct Type-I Type-II

1080 BB20 38 38 0 130

1080 BB21 49 49 0 119

1080 BB30 23 23 0 145

1080 BB31 40 40 0 128

1080 BB32 18 18 0 150

1440 BB20 47 46 1 164

1440 BB21 75 75 0 135

1440 BB30 30 29 1 181

1440 BB31 54 54 0 156

1440 BB32 23 23 0 187

1800 BB20 56 55 1 239

1800 BB21 91 90 1 204

1800 BB30 36 35 1 259

1800 BB31 74 74 0 220

1800 BB32 28 28 0 266

2160 BB20 71 70 1 224

2160 BB21 107 107 0 187

2160 BB30 43 42 1 252

2160 BB31 83 83 0 211

2160 BB32 33 33 0 261

2520 BB20 82 81 1 213

2520 BB21 116 116 0 178

2520 BB30 60 59 1 235

2520 BB31 89 89 0 205

2520 BB32 43 43 0 251

Table 7.46. Demonstration Analysis: All trials model BB severity 3+ total adverse
event results for the final 5 safety analyses.

As in the case for the incidence data, the models with the stronger level depen-

dence (1a21, 1a31, BB21, BB31) performed the best overall. We look at the relative

performances of the models with respect to event detection and error control in

the next section.
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7.7.3.3 Model Comparison

We compare the models using the numbers of flagged events which were correctly

identified as having raised treatment rates, and the overall Type-I error control.

For both severity 1+ and severity 3+ events we can see for the incidence data in

Figures 7.22 and 7.23 that overall 1a21 and 1a31 correctly detect the most adverse

events with raised treatment rates. The best performing point-mass model is BB21

which is comparable to some of the 1a models in terms of event detection.

All the models controlled the Type-I error rate at less than 5% with the BB models

having very low rates. The results including all events, Figure 7.24 and 7.25, are

similar to those for the incidence data. The results are consistent with what we

saw in the simulation study in Chapter 5. The point-mass controls the Type-I error

rate but reduces the number of correctly flagged adverse events.

For the data analysed, 1a21 and BB21 are arguably the best performing models

without point-mass and with point-mass respectively.
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Figure 7.22. Demonstration Analysis: All trials adverse event incidence data
severity 1+ events. Proportion correct and Type-I error rates.
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Figure 7.23. Demonstration Analysis: All trials adverse event incidence data
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Figure 7.24. Demonstration Analysis: All trials total adverse event data severity
1+ events. Proportion correct and Type-I error rates.
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Figure 7.25. Demonstration Analysis: All trials total adverse event data severity
3+ events. Proportion correct and Type-I error rates.
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7.8 Sensitivity Analysis

We are also interested in the behaviour of the models under a number of different

circumstances. Here we consider how changing the thresholds for adverse event

detection will change the model outputs and how well the models will perform

with regard to missing patient data at the interim safety analyses. We also look

at how the models perform when the background event rates are very much lower

than in the demonstration analysis, and at a mixture of two different background

rates, when one is considerably larger than the other.

7.8.1 Changing the Flagging Threshold

In §7.7.3.3 we tentatively identified models 1a21 and BB21 as the best performing

models without and with a point-mass. In this section we re-analyse the outputs

of these models for the trial incidence data using cut-offs for flagging events of

97.5% and 80% respectively. Here the cut-offs values are chosen based on our

knowledge of the demonstration analyses, with the aim of seeing how the number

of correctly flagged adverse events and Type-I error rates vary compared to the

original analysis in §7.7.3.1.

7.8.1.1 Incidence Data (All Trials)

The results for 1a21 at the 97.5% cut-off are given in Tables 7.47 and 7.48, and for

BB21 at the 80% cut-off in Tables 7.49 and 7.50.

Time Model Flagged Correct Type-I Type-II

360 1a21 47 33 14 51

720 1a21 101 66 35 60

1080 1a21 132 93 39 75

1440 1a21 180 127 53 83

1800 1a21 207 154 53 140

2160 1a21 234 172 62 122

2520 1a21 242 177 65 117

Table 7.47. Sensitivity Analysis: Changed threshold model 1a21 results (all trials),
severity 1+ events.
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Time Model Flagged Correct Type-I Type-II

360 1a21 20 12 8 72

720 1a21 44 35 9 91

1080 1a21 75 55 20 113

1440 1a21 103 78 25 132

1800 1a21 117 94 23 200

2160 1a21 135 109 26 185

2520 1a21 146 116 30 178

Table 7.48. Sensitivity Analysis: Changed threshold model 1a21 results (all trials),
severity 3+ events.

Time Model Flagged Correct Type-I Type-II

360 BB21 33 33 0 51

720 BB21 73 71 2 55

1080 BB21 102 102 0 66

1440 BB21 129 129 0 81

1800 BB21 162 160 2 134

2160 BB21 169 167 2 127

2520 BB21 166 163 3 131

Table 7.49. Sensitivity Analysis: Changed threshold model BB21 results (all tri-
als), severity 1+ events.

Time Model Flagged Correct Type-I Type-II

360 BB21 15 13 2 71

720 BB21 37 37 0 89

1080 BB21 63 63 0 105

1440 BB21 94 94 0 116

1800 BB21 120 119 1 175

2160 BB21 131 131 0 163

2520 BB21 133 133 0 161

Table 7.50. Sensitivity Analysis: Changed threshold model BB21 results (all tri-
als), severity 3+ events.

For model 1a21, comparing for example Table 7.47 with Tables 7.31-7.32, we can
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see that the numbers of detected adverse events have necessarily fallen but that

the equivalent drop in the Type-I error rate is much more dramatic. On the other

hand, for model BB21, comparing Table 7.49 with Tables 7.35-7.36, we can see that

the number of Type-I errors with the new threshold is still very low, but there is

increased adverse event detection. For the severity 3+ events we can see from

Tables 7.49 and 7.50 that the BB detection rate is better than 1a for the changed

thresholds, but not quite as good as 1a under the original analysis (Tables 7.33-

7.34). We plot the new results for 1a21 at the 95% cut-off and BB21 at the 90%

cut-off in Figures 7.26 and 7.27.

In Figures 7.26 and 7.27 we can see that effect of lowering the threshold for BB21

is to improve the model’s ability to flag adverse events correctly, and that for

severity 1+ events the model is second only to 1a21 at the 95% threshold in terms of

correctly detecting adverse events. For severity 3+ events BB21 with 80% threshold

detects similar numbers of events as 1a21 at 95%. We can say that that for 1a21

increasing the threshold has the effect of reducing the numbers of Type-I errors

and the number of events detected, which is now comparable to BB21 at the 90%

cut-off. For BB21 the lower threshold has increased the numbers correctly detected,

but the Type-I error rate remains very low compared to the other methods.
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Figure 7.26. Sensitivity Analysis: Changed threshold results severity 1+ adverse
event incidence data (all trials).
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7.8.2 Missing Data

The results in §7.7 use all available simulated data. In this section we investigate

the performance of the methods when patient data is missing. We do this by as-

suming that a patient who suffers a serious adverse event, severity 3 or higher,

within a number of days of an upcoming interim analysis, is excluded from that

interim analysis. The idea behind this approach is if events occur at a higher rate

on the treatment arm then we may expect more treatment patients to be excluded

from the analysis. The patients are not excluded from the trial in general. We

wish to investigate how this reduction in events affects a model’s ability to flag

correctly adverse events with raised treatment rates at the interim safety analyses

of interest. We confine the analysis to event incidence data for models 1a21 and

BB21. When flagging adverse events we use a 95% posterior probability threshold

for the 1a models and 90% for the BB model. This allows for comparison with the

results in §7.7.3.1. The four different cases we look at are:

Missing Data Scenario Exclusion Criterion

Missing Data Case 1
Serious event within 2 days of an
upcoming interim safety analysis.

Missing Data Case 2
Serious event within 5 days of an
upcoming interim safety analysis.

Missing Data Case 3
Serious event within 10 days of an
upcoming interim safety analysis.

Missing Data Case 4
Serious event within 20 days of an
upcoming interim safety analysis.

Table 7.51. Sensitivity Analysis: Missing data scenarios.
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7.8.2.1 Missing Data Case 1

Time Model Flagged Correct Type-I Type-II

360 1a21 88 38 50 46

720 1a21 171 74 97 52

1080 1a21 245 107 138 61

1440 1a21 285 141 144 69

1800 1a21 341 168 173 126

2160 1a21 381 186 195 108

2520 1a21 389 191 198 103

Table 7.52. Sensitivity Analysis: Missing data case 1, model 1a21 results (all
trials), severity 1+.

Time Model Flagged Correct Type-I Type-II

360 1a21 41 20 21 64

720 1a21 93 40 53 86

1080 1a21 133 67 66 101

1440 1a21 161 94 67 116

1800 1a21 189 113 76 181

2160 1a21 214 131 83 163

2520 1a21 228 141 87 153

Table 7.53. Sensitivity Analysis: Missing data case 1, model 1a21 results (all
trials), severity 3+.

Time Model Flagged Correct Type-I Type-II

360 BB21 25 25 0 59

720 BB21 61 61 0 65

1080 BB21 93 93 0 75

1440 BB21 123 123 0 87

1800 BB21 152 150 2 144

2160 BB21 153 153 0 141

2520 BB21 155 155 0 139

Table 7.54. Sensitivity Analysis: Missing data case 1, model BB21 results (all
trials), severity 1+.
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Time Model Flagged Correct Type-I Type-II

360 BB21 9 8 1 76

720 BB21 27 27 0 99

1080 BB21 51 51 0 117

1440 BB21 75 75 0 135

1800 BB21 93 93 0 201

2160 BB21 103 103 0 191

2520 BB21 107 107 0 187

Table 7.55. Sensitivity Analysis: Missing data case 1, model BB21 results (all
trials), severity 3+.

7.8.2.2 Missing Data Case 2

Time Model Flagged Correct Type-I Type-II

360 1a21 93 40 53 44

720 1a21 163 73 90 53

1080 1a21 244 107 137 61

1440 1a21 282 138 144 72

1800 1a21 322 167 155 127

2160 1a21 368 186 182 108

2520 1a21 374 192 182 102

Table 7.56. Sensitivity Analysis: Missing data case 2, model 1a21 results (all
trials), severity 1+.

Time Model Flagged Correct Type-I Type-II

360 1a21 38 18 20 66

720 1a21 100 41 59 85

1080 1a21 136 69 67 99

1440 1a21 163 90 73 120

1800 1a21 193 112 81 182

2160 1a21 215 127 88 167

2520 1a21 232 138 94 156

Table 7.57. Sensitivity Analysis: Missing data case 2, model 1a21 results (all
trials), severity 3+.
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Time Model Flagged Correct Type-I Type-II

360 BB21 24 24 0 60

720 BB21 65 64 1 62

1080 BB21 92 92 0 76

1440 BB21 120 120 0 90

1800 BB21 148 148 0 146

2160 BB21 149 149 0 145

2520 BB21 153 153 0 141

Table 7.58. Sensitivity Analysis: Missing data case 2, model BB21 results (all
trials), severity 1+.

Time Model Flagged Correct Type-I Type-II

360 BB21 11 10 1 74

720 BB21 26 26 0 100

1080 BB21 50 50 0 118

1440 BB21 71 71 0 139

1800 BB21 92 92 0 202

2160 BB21 103 103 0 191

2520 BB21 109 109 0 185

Table 7.59. Sensitivity Analysis: Missing data case 2, model BB21 results (all
trials), severity 3+.

7.8.2.3 Missing Data Case 3

Time Model Flagged Correct Type-I Type-II

360 1a21 77 36 41 48

720 1a21 156 65 91 61

1080 1a21 261 106 155 62

1440 1a21 298 139 159 71

1800 1a21 340 175 165 119

2160 1a21 381 194 187 100

2520 1a21 390 197 193 97

Table 7.60. Sensitivity Analysis: Missing data case 3, model 1a21 results (all
trials), severity 1+.
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Time Model Flagged Correct Type-I Type-II

360 1a21 39 14 25 70

720 1a21 83 36 47 90

1080 1a21 123 64 59 104

1440 1a21 142 83 59 127

1800 1a21 165 103 62 191

2160 1a21 196 122 74 172

2520 1a21 204 129 75 165

Table 7.61. Sensitivity Analysis: Missing data case 3, model 1a21 results (all
trials), severity 3+.

Time Model Flagged Correct Type-I Type-II

360 BB21 24 24 0 60

720 BB21 58 58 0 68

1080 BB21 91 91 0 77

1440 BB21 118 118 0 92

1800 BB21 148 148 0 146

2160 BB21 157 157 0 137

2520 BB21 159 159 0 135

Table 7.62. Sensitivity Analysis: Missing data case 3, model BB21 results (all
trials), severity 1+.

Time Model Flagged Correct Type-I Type-II

360 BB21 8 8 0 76

720 BB21 23 23 0 103

1080 BB21 48 48 0 120

1440 BB21 64 64 0 146

1800 BB21 87 87 0 207

2160 BB21 96 96 0 198

2520 BB21 103 103 0 191

Table 7.63. Sensitivity Analysis: Missing data case 3, model BB21 results (all
trials), severity 3+.
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7.8.2.4 Missing Data Case 4

Time Model Flagged Correct Type-I Type-II

360 1a21 61 32 29 52

720 1a21 134 68 66 58

1080 1a21 224 102 122 66

1440 1a21 280 136 144 74

1800 1a21 319 168 151 126

2160 1a21 363 194 169 100

2520 1a21 375 193 182 101

Table 7.64. Sensitivity Analysis: Missing data case 4, model 1a21 results (all
trials), severity 1+

Time Model Flagged Correct Type-I Type-II

360 1a21 29 15 14 69

720 1a21 60 31 29 95

1080 1a21 103 61 42 107

1440 1a21 130 81 49 129

1800 1a21 151 102 49 192

2160 1a21 174 116 58 178

2520 1a21 190 125 65 169

Table 7.65. Sensitivity Analysis: Missing data case 4, model 1a21 results (all
trials), severity 3+.

Time Model Flagged Correct Type-I Type-II

360 BB21 20 20 0 64

720 BB21 51 51 0 75

1080 BB21 80 80 0 88

1440 BB21 111 111 0 99

1800 BB21 138 138 0 156

2160 BB21 150 150 0 144

2520 BB21 150 149 1 145

Table 7.66. Sensitivity Analysis: Missing data case 4, model BB21 results (all
trials), severity 1+.
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Time Model Flagged Correct Type-I Type-II

360 BB21 7 7 0 77

720 BB21 19 19 0 107

1080 BB21 45 45 0 123

1440 BB21 66 66 0 144

1800 BB21 84 84 0 210

2160 BB21 96 95 1 199

2520 BB21 100 100 0 194

Table 7.67. Sensitivity Analysis: Missing data case 4, model BB21 results (all
trials), severity 3+.

7.8.2.5 Discussion

Comparing the results above to Tables 7.31-7.38 we can see that the missing data

does not generally affect the detection of severity 1+ events but, for severity 3+

events, the detection rates appear to decline as the range for excluding events

increases towards 20 days (Figure 7.28). So for model 1a21 we correctly detect 191

severity 1+ by the end of the trial with no missing data but, for the case where

patients are removed from the trial if they have a severe event within 20 days of

an interim analysis, the number detected is actually 193. For BB21 the equivalent

numbers are 152 and 149. However, for severity 3+ events, the numbers are 144

versus 125 detected for 1a21, and 111 versus 100 for BB21. The event detection

fall-off is not every dramatic, and the methods look to be quite robust to this

type of patient censoring. However, it should be stressed that for rare events with

low rates of occurrences there may not be much differences between the numbers

excluded on each arm of the trial, and hence the differences between the detection

of adverse events from the full data set and reduced data may not differ by a large

amount, as we see here.
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Figure 7.28. Sensitivity Analysis: End of trial detection totals for missing data
by case (model 1a on top, model BB on bottom).

7.8.3 Lower Background Trial Adverse Event Rates

Here we look at how the different models perform for lower background rates. The

rate we use, specified in Table 7.68, is one tenth that used in the demonstration

analyses above (Table 7.6).
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Rate
Expected Number

of Events
Probability of

an Event

0.00005555 0.09999 0.09515353

Table 7.68. Sensitivity Analysis: Low background rate adverse event rate.

As in §7.5 patients are recruited into the trial up to day 720 or a maximum of 1000

on each arm. The simulated numbers in the trials at each interim analysis are as

follows:

Simulated1

Trial
Time Control Treatment

I(d) 360 453 479

I(d) 720 -End of Trial 916 950

II(d) 360 434 457

II(d) 720 -End of Trial 891 879

III(d) 360 439 441

III(d) 720 -End of Trial 914 952

Table 7.69. Sensitivity Analysis: Low background rate trial patient
enrolment totals.

1 Unique simulation name consisting of trial type and identifier (d).

The increased treatment rates, relative to the corresponding control adverse event

rates, and the intervals over which they apply are given in Table 7.70.

Simulated
Trial

Body-System Intervals
Relative Increase in

Treatment Rate

I(d) Body-sys 3 All 100%

II(d) Body-sys 3 [0-180] 100%

II(d) Body-sys 3 (180-360] 25%

III(d) Body-sys 3 (1440-1620] 25%

III(d) Body-sys 3 (1620-1800] 100%

Table 7.70. Sensitivity Analysis: Low rate events, body-systems and intervals
with increased treatment rates.
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7.8.3.1 Results

We look at the results for event incidence, the results for including all events in

the analysis are very similar. The severity 1+ results for adverse event incidence

early in the trial are given in Table 7.71, and for the end of trial in Table 7.72.

We can see from Table 7.71 that for severity 1+ events early in the trial model

1a21 performs best overall, with highest detection rate and a low number of Type-I

errors. The only comparable BB model is BB21 whose event detection rate rises

sharply in the second interval. By the end of the trial (Table 7.72) the level 1

models have all performed the best in terms of both detection and error control.

For severity 3+ events all models struggle to detect events in the first interval

(Table 7.73) but, by the second interval, 1a21 is the best performing model. None

of the BB models detect any events until the third interval. By the end of trial

(Table 7.74) model 1a21 has detected most events, with a low overall number of

Type-I errors. Of the BB models only BB21 has a comparable performance.

Overall, for severity 1+ and severity 3+ events, the model which performs best

is 1a21. Early in the trial it detects events more quickly than the other methods,

and, by the end of the trial, it has correctly detected most events, while keeping a

low overall number of Type-I errors. As in the simulation study (Chapter 5) and

the demonstrations analysis (§7.7), the BB models keep very tight control of the

Type-I errors at the expense of increased Type-II errors.
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Time Model Flagged Correct Type-I Type-II

360 1a20 6 5 1 23

360 1a21 12 10 2 18

360 1a30 3 2 1 26

360 1a31 4 3 1 25

360 1a32 3 2 1 26

360 BB20 1 1 0 27

360 BB21 2 2 0 26

360 BB30 1 1 0 27

360 BB31 1 1 0 27

360 BB32 1 1 0 27

720 1a20 27 17 10 25

720 1a21 30 24 6 18

720 1a30 23 15 8 27

720 1a31 26 21 5 21

720 1a32 24 15 9 27

720 BB20 9 9 0 33

720 BB21 14 14 0 28

720 BB30 4 4 0 38

720 BB31 6 6 0 36

720 BB32 4 4 0 38

1080 1a20 56 31 25 25

1080 1a21 43 40 3 16

1080 1a30 46 29 17 27

1080 1a31 43 39 4 17

1080 1a32 42 28 14 28

1080 BB20 16 16 0 40

1080 BB21 36 36 0 20

1080 BB30 9 9 0 47

1080 BB31 20 20 0 36

1080 BB32 4 4 0 52

Table 7.71. Sensitivity Analysis: Low rate severity 1+ adverse event incidence
early trial results.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 123 62 61 36

2520 1a21 86 75 11 23

2520 1a30 109 56 53 42

2520 1a31 86 75 11 23

2520 1a32 94 50 44 48

2520 BB20 29 29 0 69

2520 BB21 70 70 0 28

2520 BB30 15 15 0 83

2520 BB31 55 55 0 43

2520 BB32 5 5 0 93

Table 7.72. Sensitivity Analysis: Low rate severity 1+ adverse event incidence
end of trial results.
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Time Model Flagged Correct Type-I Type-II

360 1a20 3 2 1 26

360 1a21 3 2 1 26

360 1a30 3 2 1 26

360 1a31 2 1 1 27

360 1a32 1 0 1 28

360 BB20 0 0 0 28

360 BB21 0 0 0 28

360 BB30 0 0 0 28

360 BB31 0 0 0 28

360 BB32 0 0 0 28

720 1a20 9 7 2 35

720 1a21 12 10 2 32

720 1a30 5 4 1 38

720 1a31 5 5 0 37

720 1a32 2 2 0 40

720 BB20 0 0 0 42

720 BB21 0 0 0 42

720 BB30 0 0 0 42

720 BB31 0 0 0 42

720 BB32 0 0 0 42

1080 1a20 31 15 16 41

1080 1a21 33 27 6 29

1080 1a30 13 10 3 46

1080 1a31 26 22 4 34

1080 1a32 11 7 4 49

1080 BB20 3 3 0 53

1080 BB21 13 13 0 43

1080 BB30 0 0 0 56

1080 BB31 0 0 0 56

1080 BB32 0 0 0 56

Table 7.73. Sensitivity Analysis: Low rate severity 3+ adverse event incidence
early trial results.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 60 30 30 68

2520 1a21 75 67 8 31

2520 1a30 35 20 15 78

2520 1a31 73 64 9 34

2520 1a32 24 14 10 84

2520 BB20 4 3 1 95

2520 BB21 55 55 0 43

2520 BB30 0 0 0 98

2520 BB31 23 23 0 75

2520 BB32 0 0 0 98

Table 7.74. Sensitivity Analysis: Low rate severity 3+ adverse event incidence
end of trial results.

7.8.4 Mixed Adverse Event Background Rates

In a mixed background event rate trial simulation we allow the events to occur at

either of the background rates from Tables 7.6 or Table 7.68. The adverse events

which occur at the higher background rate (Table 7.6) are given in Table 7.75. All

other events occur at the lower frequency.

Body-system Adverse Event

Bdy-sys 1 Adv-Ev 1

Bdy-sys 2 Adv-Ev 12

Bdy-sys 3 Adv-Ev 19

Bdy-sys 3 Adv-Ev 21

Bdy-sys 3 Adv-Ev 23

Bdy-sys 4 Adv-Ev 28

Bdy-sys 5 Adv-Ev 41

Bdy-sys 6 Adv-Ev 53

Bdy-sys 7 Adv-Ev 54

Table 7.75. Sensitivity Analysis: Mixed event rates, adverse events with higher
background rates.
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The simulated patient recruitment is give in Table 7.76, and the increased treat-

ment rates and the intervals over which they apply are given in Table 7.77.

Simulated
Trial

Time Control Treatment

I(e) 360 442 479

I(e) 720 -End of Trial 887 926

II(e) 360 478 472

II(e) 720 - End of Trial 969 952

III(e) 360 494 427

III(e) 720 -End of Trial 985 876

Table 7.76. Sensitivity Analysis: Mixed event rates, patient enrolment totals.

Simulated
Trial

Body-System Intervals
Relative Increase in

Treatment Rate

I(e) Body-sys 3 All 100%

II(e) Body-sys 3 [0-180] 100%

II(e) Body-sys 3 (180-360] 25%

III(e) Body-sys 3 (1440-1620] 25%

III(e) Body-sys 3 (1620-1800] 100%

Table 7.77. Sensitivity Analysis: Mixed event rates, body-systems and intervals
with increased treatment rates.

7.8.4.1 Results

The mixed background rate trial results for event incidence are given below. For

severity 1+ event we can see from Tables 7.78 and 7.79 that 1a21 and BB21 perform

the best overall. However, for severity 3+ events (Tables 7.80 and 7.81), only the

1a models are capable of detecting events early in the trial, and even by day 1080

the best performing BB model, BB21, has only correctly detected just over half the

number that 1a21 has, albeit with a lower number of Type-I errors. As is the case

for the lower frequency events, model 1a21 could be considered the best performing

of all the models. As in the other trial types we analysed, the results including all

events were similar.
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Time Model Flagged Correct Type-I Type-II

360 1a20 7 2 5 26

360 1a21 5 2 3 26

360 1a30 6 2 4 26

360 1a31 6 2 4 26

360 1a32 7 2 5 26

360 BB20 0 0 0 28

360 BB21 2 2 0 26

360 BB30 0 0 0 28

360 BB31 0 0 0 28

360 BB32 0 0 0 28

720 1a20 39 22 17 20

720 1a21 32 26 6 16

720 1a30 33 22 11 20

720 1a31 31 25 6 17

720 1a32 32 21 11 21

720 BB20 13 11 2 31

720 BB21 23 22 1 20

720 BB30 11 9 2 33

720 BB31 11 11 0 31

720 BB32 8 7 1 35

1080 1a20 59 33 26 23

1080 1a21 46 34 12 22

1080 1a30 60 34 26 22

1080 1a31 47 34 13 22

1080 1a32 57 33 24 23

1080 BB20 17 17 0 39

1080 BB21 31 31 0 25

1080 BB30 13 13 0 43

1080 BB31 19 19 0 37

1080 BB32 11 11 0 45

Table 7.78. Sensitivity Analysis: Mixed rate severity 1+ adverse event incidence
early trial results.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 121 65 56 33

2520 1a21 93 73 20 25

2520 1a30 117 64 53 34

2520 1a31 94 73 21 25

2520 1a32 106 61 45 37

2520 BB20 40 39 1 59

2520 BB21 67 65 2 33

2520 BB30 29 28 1 70

2520 BB31 51 49 2 49

2520 BB32 23 22 1 76

Table 7.79. Sensitivity Analysis: Mixed rate severity 1+ adverse event incidence
end of trial results.
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Time Model Flagged Correct Type-I Type-II

360 1a20 6 2 4 26

360 1a21 3 2 1 26

360 1a30 3 1 2 27

360 1a31 3 2 1 26

360 1a32 3 1 2 27

360 BB20 0 0 0 28

360 BB21 0 0 0 28

360 BB30 0 0 0 28

360 BB31 0 0 0 28

360 BB32 0 0 0 28

720 1a20 24 7 17 35

720 1a21 19 11 8 31

720 1a30 18 8 10 34

720 1a31 17 10 7 32

720 1a32 14 6 8 36

720 BB20 4 0 4 42

720 BB21 4 3 1 39

720 BB30 2 0 2 42

720 BB31 0 0 0 42

720 BB32 2 0 2 42

1080 1a20 34 13 21 43

1080 1a21 22 15 7 41

1080 1a30 31 14 17 42

1080 1a31 21 15 6 41

1080 1a32 27 12 15 44

1080 BB20 5 4 1 52

1080 BB21 10 8 2 48

1080 BB30 5 3 2 53

1080 BB31 5 4 1 52

1080 BB32 3 2 1 54

Table 7.80. Sensitivity Analysis: Mixed rate severity 3+ adverse event incidence
early trial results.
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Time Model Flagged Correct Type-I Type-II

2520 1a20 65 27 38 71

2520 1a21 47 42 5 56

2520 1a30 60 31 29 67

2520 1a31 45 40 5 58

2520 1a32 44 22 22 76

2520 BB20 8 7 1 91

2520 BB21 33 32 1 66

2520 BB30 6 5 1 93

2520 BB31 14 14 0 84

2520 BB32 2 1 1 97

Table 7.81. Sensitivity Analysis: Mixed rate severity 3+ adverse event incidence
end of trial results.

7.9 Discussion

The demonstration and sensitivity analyses above are based on a very small num-

ber of the total possible trial scenarios which may exist. They were chosen to cover

a number of specific types of treatment adverse event rate increases, namely in-

creased rates over the whole course of the trial, increased rates early in the trial,

and increased rates later in the trial. The fact that most events with increased

rates will be from Trial Type I (increased rates over the whole course of the trial)

has the potential to bias any conclusions that we may draw from the absolute

numbers of flagged events in the analyses above, and care must be taken when

drawing conclusions.

From the simulation study in Chapter 5 we may expect that the models without

the point-mass will detect the most number of adverse events with raised treatment

rates but have higher Type-I error rate, and we see this in the demonstration and

sensitivity analyses. However, the BB21 model performed quite well in comparison

to a number of the 1a models, with much tighter error control, and lowering the

flagging threshold from 90% to 80% did increase the number of flagged adverse

events without inflating the Type-I error rates.

Overall we can say that:

• The 1a21, 1a31 models perform the best over all the demonstration analyses
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in terms of correctly identifying adverse events with raised rates. On the

occasions where the 1a20 or 1a30 models performed slightly better in terms of

detecting adverse events with raised treatment rates, they have higher error

rates. However, models 1a20 and 1a30 essentially assume that each interval is

independent, so there is no direct or indirect control for multiplicities over the

intervals. If we did wish to apply some control mechanism then the number

of flagged adverse events would fall in comparison to 1a21 or 1a31. The level

1 (and 2) models already take a dependency into account and do not need

the addition of an extra error controlling step.

• As the difference in rates becomes smaller the power to detect the differences

drops off rapidly for all methods, but 1a21 and 1a31 control the Type-1 error

rate more tightly than the other 1a methods and correctly detect more events.

The BB21 model is the best performing point-mass model in this case. In

Chapter 5 we have seen that 1a models perform better than BB models in

terms of adverse event detection, when the differences in rates are small and

we find similar results here.

• For low treatment rates model 1a21 detects more events early in the trial than

any of the other methods. This is particularly true for severity 3+ events.

Its control of the Type-1 error rate is tighter than the other 1a methods.

The BB21 model is the best performing point-mass model in these cases,

but it does not detect any severity 3+ events until much later in the trial

when more events have accumulated (Table 7.73). This is the effect of the

point-mass.

• The estimates of the underlying parameters produced by the models are quite

accurate for high treatment rates, with the 1a models giving slightly better

estimates than the BB models for the same data.

• The BB models generally need a strong signal in order to detect an adverse

event with a raised treatment rate. This keeps the Type-I error rate very low

but militates against the detection of events, particularly when the occur-

rence rates are low, and especially for low rate severity 3+ events. Some of

the three-level models do not flag any events at all and the posterior prob-

ability that θbj,h > 0 is very small. This also leads to poor point estimates.

We have seen similar behaviour in Chapter 5 for point-mass models with

low rates. The three-level BB models have too many parameters, leading to

overfitting, and this makes overcoming the effect of the point-mass difficult.
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Removing a level of the hierarchy, as in §6.7.3, reduces the number of pa-

rameters required and produces better results overall, sometimes on a par

with the 1a models.

• The 1a models have less parameters and converge more quickly than the

equivalent BB models. In the demonstration analyses we rarely had to al-

ter any of the global simulation parameters for the 1a models. For the BB

models on a number of occasions we needed to change the global defaults for

certain body-systems and adverse events. Convergence and parameter tuning

is discussed in Appendix C.

Based on the demonstration analyses it looks that overall model 1a21 is the better

model for the data we considered. Its control of the Type-I error rate is the best

of all 1a models. However, there are occasions where the other 1a models perform

slightly better at certain stages of the analysis. For trials with low rates, or low

rate differences between treatment and control, the BB models have difficulty

overcoming the influence of the point-mass. We can also see the effect of this in

the estimates of the parameters. For higher rate differences the BB models do

detect more events but only BB21 gives a performance anywhere near as good as

the 1a models in terms of event detection. Given that this model has better Type-I

error control than the 1a models, we investigated further the effect of lowering the

flagging threshold for this model and this did show improved results (§7.8.1).

The results for models 1a21 and 1a31 are very similar apart from the early intervals

of the low frequency event trials (Tables 7.71, 7.73). For the data considered here

the addition of the third level to the hierarchy does not appear to have any ad-

vantages compared to the equivalent two-level hierarchical model, and in fact the

extra parameters appear to impede slightly the three-level model’s performance

compared to the two-level model. Looking at the estimates for a number of the

parameters for the Trial II(a) at day 360 (the first interim analysis) for severity

1+ incidence data, given in Table 7.82, we see that the parameter estimates are

very similar across the body-systems, and that for 1a31 the parameter µγ0, which

is the third level parameter, also has a very similar value. The two-level model is

able to adequately account for the variation in the trial data, and this is true even

in the mixed background rate trials (§7.8.4.1).
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Parameter
1a21 1a31

Mean 95% HPI Mean 95% HPI

µγ1 -7.43 (-7.63, -7.24) -7.44 (-7.63, -7.26)

µγ10 -7.23 (-7.37, -7.09) -7.25 (-7.39, -7.11)

µγ11 -7.40 (-7.52, -7.28) -7.41 (-7.53, -7.29)

µγ12 -8.22 (-8.51, -7.94) -8.16 (-8.42, -7.88)

µγ13 -7.35 (-7.48, -7.21) -7.36 (-7.49, -7.22)

µγ14 -7.48 (-7.63, -7.32) -7.48 (-7.63, -7.33)

µγ15 -7.78 (-8.01, -7.55) -7.77 (-7.99, -7.55)

µγ2 -7.52 (-7.75, -7.30) -7.53 (-7.74, -7.31)

µγ3 -7.30 (-7.55, -7.05) -7.32 (-7.56, -7.09)

µγ4 -7.48 (-7.70, -7.25) -7.49 (-7.70, -7.27)

µγ5 -7.49 (-7.69, -7.28) -7.50 (-7.70, -7.30)

µγ6 -7.80 (-7.99, -7.61) -7.79 (-7.97, -7.61)

µγ7 -7.65 (-7.94, -7.38) -7.66 (-7.91, -7.40)

µγ8 -7.23 (-7.49, -6.97) -7.27 (-7.53, -7.02)

µγ9 -7.61 (-7.84, -7.38) -7.62 (-7.84, -7.41)

µγ0 - - -7.53 (-7.74, -7.31)

Table 7.82. Demonstration Analysis: Trial II(a) model 1a level 1 parameter esti-
mates.

7.10 Lapatinib and Capecitabine versus

Capecitabine in Women with Refractory

Advanced or Metastatic Breast Cancer

In this section we apply the methods to the safety data from GSK Trial EGF100151

(§1.8). The publicly available data does not contain the timings of patient recruit-

ment or adverse event occurrence. However, we may still look to apply the interim

analysis methods to final adverse event data, provided we make a number of as-

sumptions. The median survival time of a subject under treatment (lapatinib and

capecitabine) is 75 weeks (525 days) versus 64.7 weeks (452.9 days) for the control

(capecitabine) [21]. We may use these as estimates of the time each subject remains

in the trial and to calculate total exposure times. As we do not know when each

patient experienced their adverse events, and thus dropped out of the risk-set for
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that adverse event, this will give an over-estimate of the exposure times for the

trial, and we should expect that this will have some impact on our results. The

top 10 adverse events in terms of posterior probability for the methods 1a21 and

BB21 are given in Tables 7.83 and 7.84.

System Organ Class Adverse Event
Posterior1

probability
θ > 0

Skin and subcutaneous tissue
disorders

Rash 1.000

Gastrointestinal disorders Diarrhoea 0.998

Respiratory, thoracic and
mediastinal disorders

Epistaxis 0.995

Gastrointestinal disorders Dyspepsia 0.990

Skin and subcutaneous tissue
disorders

Dermatitis
acneiform

0.983

Skin and subcutaneous tissue
disorders

Nail disorder 0.978

Respiratory, thoracic and
mediastinal disorders

Dyspnoea 0.972

Musculoskeletal and connective
tissue disorders

Arthralgia 0.965

Hepatobiliary disorders Hyperbilirubinaemia 0.964

Musculoskeletal and connective
tissue disorders

Back pain 0.957

Table 7.83. Trial EGF100151: Top 10 adverse events by posterior probability for
1a21.

1 θ is the log relative risk (§6.8).

Comparing Table 7.83 to Table 4.4 we see very similar results with one exception.

Hyperbilirubinaemia is now in the top 10. However, for the c212.1a model Hyper-

bilirubinaemia also had a high posterior probability but was not in the top 10

adverse events.
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System Organ Class Adverse Event
Posterior

probability
θ > 0

Skin and subcutaneous tissue
disorders

Rash 0.996

Skin and subcutaneous tissue
disorders

Dermatitis
acneiform

0.893

Respiratory, thoracic and
mediastinal disorders

Epistaxis 0.863

Gastrointestinal disorders Diarrhoea 0.800

Gastrointestinal disorders Dyspepsia 0.796

Skin and subcutaneous tissue
disorders”

Nail disorder 0.788

Skin and subcutaneous tissue
disorders

Pruritus 0.652

Skin and subcutaneous tissue
disorders

Rash macular 0.651

Hepatobiliary disorders Hyperbilirubinaemia 0.601

Skin and subcutaneous tissue
disorders

Dry skin 0.600

Table 7.84. Trial EGF100151: Top 10 adverse events by posterior probability for
BB21.

Comparing Tables 7.84 and 4.2 we can see that the top 6 are the same, with slightly

different orderings, but after that the posterior probabilities drop off. However the

overall trend is similar to results from 1a21. We know from the simulation study in

Chapter 5, and the results above, that point-mass models generally do not flag as

many events as models without a point-mass and, in this case, the over-estimation

of the time at risk for each patient will also have had a greater effect on the

point-mass model as it will lower the estimated rates, so the fall off in posterior

probability is not unexpected. Additionally, the fact that we have only one interval

in the analysis means that there is no possibility of borrowing strength across the

intervals. Overall the results are consistent with those in Chapter 4.

7.11 Conclusions

In this demonstration analysis we have looked at a number of possible different

scenarios which could occur during the course of a clinical trial, as well as one real
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world example. As for the simulation study in Chapter 5, care should be taken

when drawing conclusions based on a small number of examples. Bearing this in

mind, we can see that for point-mass models using a three-level hierarchy is not a

suitable choice for these types of interim analyses. The proliferation of parameters

and presence of the point-mass means that a very strong signal is required for the

detection of adverse events with raised treatment rates. For two-level hierarchy

point-mass models a lower threshold may be required to increase the power. For

the data considered here the presence of the point-mass reduces the Type-I error

rate dramatically compared to other models. An adverse event is either correctly

flagged or not flagged at all, only rarely was an event incorrectly flagged.

For models without the point-mass the three-level and two-level hierarchies give

similar results. For the data we looked at the two-level model was capable of

adequately modelling the variation in the data. Here, the effect of missing out the

point-mass is to increase the Type-I error rate. Where the point-mass models give

a binary output, an event is generally correctly flagged or not flagged at all, the

models without a point-mass correctly flag adverse events but with a corresponding

number of Type-I errors which, in the demonstration analyses, are well controlled

for models with common body-system means over the intervals (level 1 models).

Overall, the models which perform the best are those with a strong dependence

between the body-system means over the trial. These are models 1a21, 1a31, and

BB21. For the same cut-off the models without a point-mass will correctly detect

more adverse events than the point-mass models, but with higher Type-I error

levels. The 1a models are also better at detecting events earlier in the trial, par-

ticularly for low frequency events (§7.8.3.1), which may be crucial in the early

exploration of safety issues. The choice of which model to use, and the cut-off

threshold, will likely be dependent on the type of data being analysed, how much

data has accrued, the importance of detecting serious adverse events, the toler-

ance for error rates, and the acceptance or otherwise of using a lower threshold

posterior probability when exploring the data. Finally, we again note that these

are tentative conclusions from demonstration analyses which cover only a small

number of trials and trial scenarios.
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Chapter 8

Conclusions
Clinical trials are the standard method for establishing the efficacy and safety of

new treatments. In this study we have looked at safety analysis in clinical trials with

the main focus being the detection of adverse events. During the course of a clinical

trial the occurrence and severity of patient adverse events are routinely recorded.

The assessment of these adverse events is an important part of the safety analysis of

a clinical trial and is also useful in establishing a safety profile for a new treatment.

The statistical analysis of adverse events is complicated by two difficulties. Firstly,

large numbers of different adverse events may be recorded during the trial. If a

hypothesis testing approach is taken to compare between treatment arms, then

there is the possibility of inflated Type-I error rates due to multiple comparisons.

Secondly, many adverse events are expected to be rare. As trials are generally

sized to answer the primary outcome, there is reduced power to detect differences

in adverse rates between trial arms.

The International Council for Harmonisation (ICH) provides guidelines for many

aspects of clinical trials. With regard to safety, the ICH recommends summary ta-

bles of the most common adverse events, along with comparisons of rates between

the different trial arms (§1.4.3). Comparison methods may range from crude rate

comparisons to more sophisticated techniques, such as survival analysis. While the

ICH state (E3) that not every event need be the subject of a statistical evalua-

tion, for longer-term treatment (§1.4.2) there should be some characterisation of

the safety profile for the treatment. As there are many different types of adverse

event, the ICH recommends that where a hypothesis testing approach is taken

for comparing events, multiple comparison error controlling procedures should be

used.

The conduct of a clinical trial is generally detailed in the trial protocol and this

will include important aspects of the safety analysis to be performed. The protocol

may also define certain adverse events as being of special interest. These may be
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events which, based on the results of earlier trials or the clinical properties of the

treatment, may be expected to occur over the course of the trial. Additionally,

protocol defined serious events may require special attention, such as notification

to a regulatory authority. While specific hypotheses for certain adverse events may

be defined in the trial protocol (often referred to as Tier 1 events), this will not

be the case for the majority of adverse events.

Given the expected rarity of adverse events, one approach to increasing the power

to detect increased event rates is to use groupings of related adverse events into

body-systems or system organ classes (§1.9), and use this additional relationship

in a statistical analysis. Handling potential multiple comparison issues can be ap-

proached in a number of ways. In Chapter 2 we looked at a number of approaches

to testing multiple hypotheses. In particular we looked at the Double False Dis-

cover Rate (DFDR) and Grouped Benjamini-Hochberg (GBH) procedures which

are recent methods for error control when testing multiple hypotheses. These are

based on the False Discovery Rate (FDR) but use grouping of related hypothe-

ses to increase their power, under the appropriate assumptions, compared to the

FDR. In Chapter 3 we looked at general approaches to adverse event modelling,

including a number of models which used event groupings or analysed related

events, including the Berry and Berry hierarchical model (§3.6.2) and Multivari-

ate Bayesian Logistic Regression (MBLR) (§3.6.3). Many modelling approaches

allow body-system adverse event groupings, either directly, or through random

effects. Bayesian approaches to fitting models have a number of potentially attrac-

tive properties. The assumption of relationships in the data, such as body-system

groupings, allows us to share information about the adverse events within the

model (borrowing strength), and this is particularly important for the case of rare

events. The Bayesian modelling approaches also contains the idea that, given the

data and prior distributions, the posterior distributions tend towards the true dis-

tribution of the parameters, and that this in effect provides multiple comparison

robustness [27], [66]. In particular, the Berry and Berry model implements these

ideas [5], the hierarchical structure of the model reflects an assumed relationship

between the adverse events, and, given the data, we should expect the posteriors

to be close to the true parameter distributions, in effect controlling for multiple

comparisons.

In Chapter 4 we illustrated these ideas by applying a number of the grouped meth-

ods to real trial data from GSK Trial EGF100151 (Lapatinib and Capecitabine

versus Capecitabine in Women with Refractory Advanced or Metastatic Breast
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Cancer). The Berry and Berry models gave results which were very similar to

those from applying Fisher exact tests to the adverse event data. However, there

was a body-system effect, with Localised infection and Back pain missing from

the top 10 adverse events by posterior probability for the point-mass model, and

Localised infection missing from the top 10 adverse events for the model without

a point-mass. The direct error controlling procedures flagged two events as signif-

icant at the 5% level, with both the DFDR and GBH flagging the same events.

Both of these methods are affected by the presence of many very low count ad-

verse events within some of the body-systems. Removing the 326 events which

affected less than 1% of the patients resulted in more events being flagged. This

idea of removing very low count events is explicitly considered to be part of the

DFDR procedure ([3]), and the ICH guidelines also allow for the removal of low

count adverse events (§1.4.4). For the Bayesian methods this type of step is not

required.

In Chapter 5 a simulation study was used to investigate further how the meth-

ods compared with regard to flagging adverse events with raised treatment rates

and overall error control. Here we found that, where a grouping structure exists

within the data, the grouped methods performed better than unadjusted testing

or error controlling procedures such as the Bonferroni correction or the Benjamini-

Hochberg procedure. For small trials and low adverse event rates the Berry and

Berry model without the point-mass (c212.1a) could be considered the best, cor-

rectly detecting more events, but with lower Type-I error rate than unadjusted

testing. All the methods performed well for large trial sizes, although for c212.1a

there were increased Type-I error rates. The point-mass plays an important role

in the Berry and Berry models. When using the same posterior probability cut-off

point for event flagging for both the model with point-mass (c212.BB) and without

(c212.1a), the effect of the point-mass is to both reduce the numbers of correctly

detected adverse events, and also the Type-I error rates. c212.BB performs best

when the differences between control and treatment are large, and the trial size

is large. In this case it is able to control both the Type-I and Type-II error rates.

For smaller rate increases, c212.BB does not detect differences between treatment

and control as well as c212.1a.

The methods compared in the simulation study are suitable for end of trial analysis

and are not generally directly applicable for use at interim analyses. For short

trials this may be acceptable, but for longer studies, where the Data Monitoring

Committee may meet on a number of occasions, we would like to be able to say
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something about the occurrences of adverse events at the times of the interim safety

analyses. For analyses which occur early we may have unbalanced trial arms in

terms of recruitment rates or time in study, and the adverse event rates themselves

may vary over different periods of the trial as it progresses. For an approach that

may be more useful at interim analyses we need to take into account the facts that

the adverse event data accumulates over time, that the adverse event rates may

change over time, and that, as there are multiple types of adverse events, we need

some way of controlling for multiple comparisons. A Bayesian approach is natural

way of handling accumulating data, and we have seen in the simulation study

that, where applicable, a suitable choice of model and priors may help control for

multiple comparisons. To do this we looked in particular at the Bayesian three-level

hierarchy proposed by Berry and Berry [5].

The Berry and Berry model has a number of interesting features. The hierarchi-

cal approach, use of body-systems, and choice of priors provide a level of built-in

multiple-comparison robustness to the model (§3.6). The data model is condition-

ally binomial and has a simple interpretation. The model also contains a point-mass

term which explicitly takes into account the possibility of there being no difference

between the treatment and control arms of the trial. With this in mind, we looked

at conditional Poisson models for event occurrences which have a relatively simple

interpretation in terms of average event rates (Chapter 6). The approach taken

was to divide the trial time period into intervals, and use piecewise constant rates

with a body-system hierarchy of random parameters to model the incidence (and

total) adverse event occurrence. We considered models which treated each inter-

val as independent, and models with relationships between the intervals. Models

with and without a point-mass were investigated. These are summary level models

which are in keeping with ICH guidelines. Patient level models were considered

but not developed for reasons given in §6.4.1.

One consequence of hierarchical models is the large number of parameters needed

to define the models, and splitting the trial duration into intervals greatly increases

the number of parameters needed compared to the end of trial models. This over-

parameterisation of the model has the potential to affect a model’s usefulness, so,

for each model considered, we also included models where we removed the lowest

level of the hierarchy, leaving an equivalent two-level hierarchical model (§6.7). The

Bayesian approach to fitting the models allows accumulating data to be handled

in a straightforward manner. However, unlike error controlling procedures, the

modelling approach does not come with a definitive method for flagging an adverse
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event. In the Berry and Berry model the posterior probability of an increased event

risk is used to determine if an event is to be flagged and we follow this approach

for the interim analysis Poisson models.

To illustrate the methods a number of demonstration analyses were performed on

simulated trial data (Chapter 7). The demonstration analyses consisted of a num-

ber of trials with differing event rates between treatment and control for a single

body-system. In order to flag an adverse event as significant, we used threshold

or cut-off points for the posterior probability that the increase in rate of event

occurrence on the treatment arm is positive. The choice of cut-off point has an

effect on the results. For the same cut-off point models with and without the point-

mass give different results. Due to the presence of the point-mass a lower cut-off

point was needed to give broadly similar numbers of correctly identified adverse

events to the models without a point-mass (§7.8.1). We did not see an inflation of

the Type-I error rate when this was done. As our approach has been to develop

methods which may be suitable for use at an interim analysis in an exploratory

sense (§1.10), rather than trying to define trial stopping-rules, the determination

of a suitable cut-off point was not part of the study.

Overall, we found that for the interim analyses the models that performed best

had a stronger dependence between the body-system means over the duration of

the trial, and the use of the body-system approach, when applicable to the data,

improved the performance of the models in terms of adverse event detection. The

three-level hierarchy model with the point-mass was not suitable for the type of

interim analyses we performed. The number of parameters, along with the presence

of the point-mass, made detection of significant adverse events difficult, especially

early in the trial. For the models without the point-mass, we did not find any

great difference between the two-level and three-level hierarchies in terms of per-

formance. The two-level hierarchy was capable of accounting for the variation in

the data we considered. For lower event rates, the models without a point-mass

were able to flag adverse events correctly much earlier in the trial than those with

a point-mass. This was particularly noticeable for severity 3+ events. In one case

it was day 1080 of the trial before any of the point-mass models were capable of

flagging an adverse event as having a raised rate on the treatment arm (Table

7.73). This alone may make the models without a point-mass more suitable for

early interim analyses. We also looked at the effect of missing data on the model

results. Here we assumed that a patient who had a serious adverse event within

a certain number of days of an upcoming interim analysis would be censored (at
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that analysis). Under our assumptions the models held up quite well. In this case,

the relatively low rates of event occurrence meant that not enough events were

removed from the higher rate trial arm to affect detection greatly.

Model inferences about adverse event rates are based on MCMC simulations for

the models. Within each MCMC chain the generated samples are correlated, and

inference based on correlated samples may be less precise than those drawn inde-

pendently, but at convergence this is generally not a problem [122]. However, the

correlation may cause inefficiencies in the simulations, leading to slow convergence.

In our simulations and demonstration analyses we chose not to thin the samples.

Although the models have large numbers of parameters, we did have enough mem-

ory to store all generated simulations. Once the chains have reached approximate

convergence they can be used directly for inference about the various model pa-

rameters, regardless of whether they have been thinned or not, and this is the

approach we followed [122].

All of the methods used in the study have been implemented in the R package c212

[139]. The coda package was used for convergence checking (Gelman-Rubin statis-

tic), and a number of other post sampling tasks [148]. Overall, the models without

a point-mass run more quickly than their point-mass counterparts, and generally

appear to converge faster, with less simulation parameter tuning required. Tuning

the simulations for the point-mass models may not be straightforward. For each

non-standard distribution there are one (for Metropolis-Hastings sampling) or two

(for slice sampling) parameters which control how the samples are generated and,

in Metropolis-Hastings sampling, the acceptance rates. Consideration needs to be

given to the size of any potential treatment differences and any target acceptance

rates when adjusting the parameters. In order to check the convergence of the

model all samples generated must be retained. This requires a large amount of

memory, particularly if multiple chains are run. The software does include the

possibility of just retaining certain families of parameters if there are memory

constraints on the system on which the software is being executed. Potential im-

provements to the software include a step to identify suitable simulation parameter

values based on the acceptance rates and convergence diagnostics (auto-tuning),

the ability to retain only individual model parameters rather than whole families,

bringing improved memory performance, and the implementation of a number of

the convergence diagnostics as native methods in c212, thereby improving the over-

all runtime. The sampling approaches implemented are Metropolis-Hastings and

slice sampling within a Gibbs sampler, and these worked well with the data we
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considered. However a number of alternatives approaches, such as reversible jump

MCMC methods [124], were investigated but not implemented in the current soft-

ware release. We also investigated methods by Ji and Schmidler who introduced a

number of what are termed Adaptive Metropolized Independence Samplers, which

include methods suitable for distributions which contain point-masses, and which

are claimed to produce samples with very little auto-correlation [149].

We may also consider what further work can be achieved with regard to the cur-

rent models. The possibility exists to explore further data scenarios in order to

identify when a three-level model is more useful than a two-level model. We have

seen for our data, with its limited number of simulations, that there is very lit-

tle difference between the 1a level 1 models and investigating this further would

be of interest. We could also look to investigate further the differences between

similar models. The models without a point-mass are nested within an equivalent

point-mass model, and one interesting aspect of the study is the difference the

point-mass makes between the two similar models in terms both of error control

and event detection. For small trials and low rates the point-mass models have

very low detection rates, while for large differences between treatment and control

the point-mass models are capable of identifying the adverse events with very low

error rates. In effect, the point-mass acts as a barrier which must be overcome in

order for an event to be considered as having an increased treatment arm rate.

The models without a point-mass have a different effect, they may correctly detect

more events but have an increased error rate. It appears, for the data studied, that

point-mass models have possibly too high a barrier for very rare events, but the

models without a point-mass have a higher than hoped for error rate. One approach

to this is to lower the threshold for flagging an event in point-mass models, and

we have seen that this may be possible without inflating the error rates (§7.8.1).

However, alternative approaches to the models would also be worth considering,

while keeping the basic underlying body-system structure. We could reduce the

point-mass parameters to a single overall trial parameter and see how this affects

the model performance. Also, given that we are potentially looking for a model

which is in some way between one with a point-mass and without a point-mass,

we could consider the effect of Bayesian Model Averaging (BMA) on our results

[150]. In this approach we have a number of different possible models for the data,

and the posterior distribution of the effect of interest is an average of its posterior

distribution under each of the models considered, weighted by the posterior prob-

ability of the these models. Here, for example, we could assume that the effect of
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interest is the flagging of an adverse event as having a raised treatment event rate,

and it would be interesting to compare the results under this approach.

The models we have considered are summary conditional Poisson models, where

the rates do not apply to the individual patients in the study, but are overall rates

on the individual trial arms. The point-mass term is used to model the possibility

of no differences between the trial arms. As an alternative, in order to handle

the non-increase of events on the treatment arms, or general low or zero event

counts, we could look again at patient level models. In §6.4.1 we considered that

these models have the potential to very complicated. However, they do allow the

possibility of using zero-inflated Poisson (ZIP) or hurdle models ([151]) to handle

zero counts at the patient level, and a prudent choice of a limited number of

model parameters, while still maintaining a body-system relationship, may allow

potentially interesting models to be investigated.

Finally, we consider how the methods may be used over the course of a clinical

trial. For the Data Monitoring Committee (DMC) (§1.3) ensuring the safety of

patients in the trial is of paramount importance [2]. The DMC must expect un-

foreseen adverse events and must be prepared to alter its procedures in response.

Once a trial is under way the DMC will meet regularly to look at the accumulat-

ing data, including adverse events. The DMC must decide if the adverse events

reported are such that continuing the trial cannot be justified, even if these are

not statistically significant, or have not been specified as of special interest in the

trial protocol [2]. Making these decisions is not a clear cut process. This is often

a medical or ethical judgement rather than a clear statistical decision. Stopping

a trial too early or too late can cause patient harm. In addition to this, repeated

looks at the data leads to an increase in the possibility of seeing a significant result

by chance, and the potentially large numbers of adverse events recorded during a

trial complicates the statistical analysis. The methods developed in this project

are designed to help the DMC achieve these safety goals. A Bayesian framework

ensures that accumulating data is naturally handled and the body-system based

hierarchy ensures that multiple types of adverse events are catered for. The meth-

ods as implemented (Appendix A) are simple to apply to the accumulating data

and the study statistician, or the statistical centre analysing the trial data, could

include the model outputs or any potentially interesting adverse events indicated

by the models, in the presentation to the DMC at the relevant interim analysis

meeting. The DMC could then choose to consider this additional information when

making any decisions about the future conduct of the trial.
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Appendix A

Software Implementations and

Model Fitting Algorithms
Unless otherwise stated, all the methods and models used in this study are im-

plemented in the c212 package for R [139]. Table A.1 gives the methods and their

corresponding R functions:

Method
Name1 R Function Description

NOADJ c212.NOADJ No error controlling procedure.

BONF c212.BONF Bonferroni correction [12].

BH c212.BH Benjamini-Hochberg procedure [31].

DFDR c212.DFDR Double false discovery rate [3].

GBH c212.GBH Group Benjamini-Hochberg [30].

ssBH c212.ssBH Subset Benjamini-Hochberg [57].

c212.BB c212.BB Berry and Berry model [5].

c212.1a c212.1a
Berry and Berry model without
point-mass [5], [60].

1a2l c212.interim.1a.hier2
Two-level-hierarchy, no point-mass
(§6.5.3).

1a3l c212.interim.1a.hier3
Three-level-hierarchy, no
point-mass (§6.5.3).

BB2l c212.interim.BB.hier2
Two-level-hierarchy, point-mass
(§6.5.3).

BB3l c212.interim.BB.hier3
Three-level-hierarchy, point-mass
(§6.5.3).

Table A.1. Methods implemented in the package c212.
1 The subscript l on the 1a and BB models refers to the model dependency level

(Table 6.1).
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A.1 MCMC Approach to Bayesian Model

Fitting

The Bayesian models are fitted using a Gibbs sampling Markov Chain Monte

Carlo (MCMC) method [124]. This approach, in which the complete conditionals

are sampled, is particularly useful for decomposing high-dimensional target dis-

tributions into smaller targets for sampling. The joint posterior distributions and

complete conditionals for the Bayesian models are given in Appendix B.

A.2 MCMC Sampling Algorithms

Many of the complete conditionals are from standard distributions and may be

sampled directly in R. Within the Gibbs sampler, for non-standard distributions

we either use a Metropolis-Hastings (MH) ([124]) or a slice sampler ([152]) step.

The presence of the point-mass in a number of the models makes the implemen-

tation of the sampler slightly difficult as the complete conditional distribution of

the θ parameters will contain a point-mass, and this means that any proposal dis-

tribution used in an MH step will need a similar term. Technically the proposal

must be absolutely continuous with respect to the dominating measure, a mixture

of the point-mass at zero and the Lebesgue measure. The approach taken in [5]

is to use a mixture proposal distribution consisting of a point-mass at zero, with

probability weighting 0.5, and a normal distribution centred on the current value.

We follow this as the default approach for θ in the point-mass models. For the

non-standard distributions without a point-mass, we use either an MH step with a

normal distribution centred on the current value as the proposal distribution, or a

slice sampler. For the MH steps the variance (σ2
MH) must be sepcified, and may be

tuned if necessary. For slice sampling a width parameter (w) is required and also, if

chosen, a control parameter (m), which limits the distance the algorithm traverses

within the domain of the distribution from the current location when looking for

the next sample [124]. Table A.2 lists the parameters with non-standard complete

conditional distributions and their implemented sampling steps. The default num-

bers of chains, burn-in period, and total iterations in each chain are given in Table

A.3.
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Method Name Parameter Family Sampler

c212.BB θ MH

c212.BB γ, απ, βπ Slice or MH

c212.1a θ, γ Slice or MH

1a2l θ, γ Slice or MH

1a3l θ, γ Slice or MH

BB2l θ MH

BB2l γ Slice or MH

BB3l θ MH

BB3l γ, απ, βπ Slice or MH

Table A.2. Model parameters with non-standard distributions.

Method Name Parallel Chains Burn-in Total Iterations

c212.BB 3 20000 60000

c212.1a 3 10000 40000

1a2l 3 10000 40000

1a3l 3 10000 40000

BB2l 5 20000 60000

BB3l 5 20000 60000

Table A.3. Model MCMC defaults.

A.3 Default Simulation Parameter Values

The global parameter values required by the MH and SLICE steps, used in the

fitting algorithms for the simulation study and demonstration analyses in Chap-

ters 5 and 7 respectively, are given in Tables A.4 and A.5. The choice of default

parameter values was guided by their function within the MCMC simulation, and

expectations of the input data. The σMH and w parameters control the exploration

of the target distribution and, for the input data we are dealing with, we expect

that non-standard distributions may lie close to some underlying true parameter

value. The value of defaults for σMH and w were chosen to be relatively small

to reflect this, and then tuned further over a number of different data sets. The

m parameter also reflects the overall width of the distribution, and the relatively

large value chosen should ensure that the distribution is explored as far as possible.
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Model
Model

Parameters
Sampling
Parameter

Value

c212.1a (SLICE) γbj, θbj w 1.00

c212.1a (SLICE) γbj, θbj m 6.00

c212.1a (MH) γbj, θbj σMH 0.35

c212.BB θbj σMH 0.20

c212.BB (SLICE) γbj wγ 1.00

c212.BB (SLICE) γbj mγ 6.00

c212.BB (SLICE) απ wα 1.00

c212.BB (SLICE) απ mα 6.00

c212.BB (SLICE) βπ wβ 1.00

c212.BB (SLICE) απ mα 6.00

c212.BB (MH) γbj σMH 0.20

c212.BB (MH) απ σMH 3.00

c212.BB (MH) βπ σMH 3.00

Table A.4. Global MCMC parameters for end of trial models.

Model
Model

Parameters
Sampling
Parameter

Value

BB2l (2-level hierarchy) θbj,h σMH 0.5

BB3l (3-level hierarchy) θbj,h σMH 0.25

BBhl (all models) γbj,h wγ 1.0

BBhl (all models) γbj,h mγ 6.0

BB30, BB31, BB32 απ,h, απ wα 1.0

BB30, BB31, BB32 απ,h, απ mα 6.0

BB30, BB31, BB32 βπ,h, βπ wβ 1.0

BB30, BB31, BB32 βπ,h, βπ mβ 6.0

1ahl (all models) γbj,h, θbj,h w 1.0

1ahl (all models) γbj,h, θbj,h m 6.0

Table A.5. Global MCMC parameters for the interim analysis models.
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A.4 Initial Values for MCMC Chains

The model parameters are defined in §3.6.2 for the end of trial methods, and in

§6.6 and §6.7 for the interim analysis methods. The Gibbs sampler requires an

initial value for each parameter in the model. If these are not supplied by the user

then initial values are generated by the software.

A.4.1 Top-Level Parameters

The top-level parameters are used to model the trial data and the initial values

are derived from the data for the first chain in the MCMC simulation.

A.4.1.1 End of Trial Methods

The general method we use for calculating the initial values of the top-level pa-

rameters (γbj, θbj), for a given set of trial data (Xbj, Ybj) (§3.6.2), is:

1. Cbj =


Xbj
NC

Xbj 6= 0

1
NC

Xbj = 0

NC−1
NC

Xbj = NC

2. Tbj =


Ybj
NT

Ybj 6= 0

1
NT

Ybj = 0

NT−1
NT

Ybj = NT

3. γbj = log
Cbj

1−Cbj

4. θbj = log
Tbj

1−Tbj
− γbj

Table A.6 summarises the approach.
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Model
Parameters

First Chain Subsequent Chains

γbj, θbj

Use steps 1 to 4
above with the trial
data.

Use steps 1 to 4 above where Xbj

and Ybj are sampled with
replacement from 0, 1, ..., NC and
0, 1, ..., NT respectively.

Table A.6. End of trial methods: top-level initial value generation for MCMC
simulation.

A.4.1.2 Interim Analysis Methods

The approach for the first chain is similar to that for the end of trial (§A.4.1.1).

For a given set of trial data (§6.5.1) we proceed as follows:

1. L
(1)
bj,h =

X
(1)
bj,h

T
(1)
bj,h

2. L
(2)
bj,h =

X
(2)
bj,h

T
(2)
bj,h

3. γbj,h =

 log
(
L

(1)
bj,h

)
L

(1)
bj,h 6= 0

−10 L
(1)
bj,h = 0

4. θbj,h =


log
(
L

(2)
bj,h

)
− γbj,h

L
(1)
bj,h 6= 0

L
(2)
bj,h 6= 0

−10 otherwise

Table A.7 summarises the approach.

Model
Parameters

First Chain Subsequent Chains1

γbj,h, θbj,h
Use steps 1 to 4 above with
the trial data.

Sample from U(−10, 10).

Table A.7. Interim analysis methods: top-level parameter initial value genera-
tion for MCMC simulation.

1 U(a, b) is the continuous uniform distribution on [a, b].
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A.4.2 Hyperparameters

Tables A.8 and A.9 describe how the initial values for the model hyperparameters

are generated for the different chains in the MCMC simulation.

Model Parameters First Chain Subsequent Chains

µγ0 0 Sample from U(−50, 50).

τ 2
γ0 10 Sample from U(5, 20).

µθ0 0 Sample from U(−50, 50).

τ 2
θ0 10 Sample from U(5, 20).

µγb 0 Sample from U(−50, 50).

σγb 10 Sample from U(5, 20).

µθb 0 Sample from U(−50, 50).

σθb 10 Sample from U(5, 20).

απ 1.5 Sample from U(1.25, 100).

βπ 1.5 Sample from U(1.25, 100).

πb 0.5 Sample from U(0, 1).

Table A.8. End of trial methods: hyper-parameter initial value generation
for MCMC simulation.

Model Parameters First Chain Subsequent Chains

µγ0,h, µγ0 0 Sample from U(−10, 10)

τ 2
γ0,h, τ

2
γ0 10 Sample from U(5, 20)

µθ0,h, µθ0 0 Sample from U(−10, 10)

τ 2
θ0,h, τ

2
θ0 10 Sample from U(5, 20)

µγb,h, µγb 0 Sample from U(−10, 10)

σγb,h, σγb 10 Sample from U(5, 20)

µθb,h, µθb 0 Sample from U(−10, 10)

σθb,h, σθb 10 Sample from U(5, 20)

απ,h, απ 1.5 Sample from U(1.25, 100)

βπ,h, βπ 1.5 Sample from U(1.25, 100)

πb,h, πb 0.5 Sample from U(0, 1)

Table A.9. Interim analysis methods: hyper-parameter initial value gener-
ation for MCMC simulation.
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A.5 Convergence Diagnostics and Summary

Statistics

The main convergence diagnostic available within the package, and used to assess

convergence in this study, is the Gelman-Rubin statistic ([122]), discussed in more

detail in Appendix C. Summary statistics and Highest Probability Intervals (HPI)

are available for the posterior distributions.

A.6 Inverse Gamma Distribution

The joint posterior distribution and complete conditional distributions for the

parameters of the model c212.BB are given in the appendix of [5] as well as a

description of the simulation algorithms used in the paper. In our implementation

we use an inverse-gamma distribution, IG(α, β), where β is a scale parameter. This

has the following density function [122]:

f(x) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
In the original model description in [5] Berry and Berry use 1

β
as the scale parameter

with corresponding density function:

f(x) =
1

βαΓ(α)
x−α−1 exp

(
− 1

βx

)
With the default parameters from [5] (§3.21), all the scale parameters for the

inverse-gamma distributions are set to 1 and there is no difference between the

distributions.

A.7 Direct Error Controlling Methods

The error controlling methods in Table A.1 are purely deterministic and the trans-

lation of the methods to R code is straightforward, with each method fully specified

in the paper which introduced it. A common interface to each function was used

with the data supplied to the function required to be in a tabular format specified

either in a data frame or a file. Each function returns the subset of the data passed

in which corresponds to the hypotheses deemed significant.
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A.8 BUGs Models

The BUGS modelling language and related software (WinBUGS, OpenBUGS) provide

a generic approach to implementing Bayesian models using Gibbs sampling [126].

The models below are those provided by [60].

A.8.1 c212.BB

model{

for (i in 1:Nae) {

X[i] ~ dbin(c[b[i], j[i]], Nc)

Y[i] ~ dbin(t[b[i], j[i]], Nt)

logit(c[b[i], j[i]]) <- gamma[b[i], j[i]]

logit(t[b[i], j[i]]) <- gamma[b[i], j[i]] + theta[b[i], j[i]]

gamma[b[i], j[i]] ~ dnorm(mu.gamma[b[i]], tau.gamma [b[i]])

p0[i] ~ dbern(pi[b[i]]) # prob of point mass

theta1[b[i], j[i]] ~ dnorm(mu.theta[b[i]], tau.theta[b[i]])

theta[b[i], j[i]] <- (1- p0[i]) * theta1[b[i], j[i]]

OR[b[i],j[i]] <- exp(theta[b[i],j[i]] )

PGT0[b[i], j[i]] <- 1 - step(0 - theta[b[i],j[i]])

D[i]<-X[i]*log(c[b[i], j[i]])+(Nc-X[i])*log(1-c[b[i], j[i]])

+ Y[i]*log(t[b[i], j[i]])+(Nt- Y[i])*log(1-t[b[i],j[i]])

}

Dbar<- -2* sum(D[]) # -2logL without normalizing constant

# SOC level parameters

for(k in 1:B) {

pi[k] ~ dbeta(alpha.pi, beta.pi)

mu.gamma[k] ~ dnorm(mu.gamma.0, tau.gamma.0)

tau.gamma[k] ~ dgamma(3,1)

mu.theta[k] ~ dnorm(mu.theta.0, tau.theta.0)

tau.theta[k] ~ dgamma(3,1)

}

mu.gamma.0 ~ dnorm(0, 0.1)

tau.gamma.0 ~ dgamma(3,1)

mu.theta.0 ~ dnorm(0, 0.1)

tau.theta.0 ~ dgamma(3,1)

alpha.pi ~ dexp(1.0) I(1, )

beta.pi ~ dexp(1.0) I(1, )

}

Figure A.1. c212.BB BUGs model.
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A.8.2 c212.1a

model{

for (i in 1:Nae) {

X[i] ~ dbin(c[b[i], j[i]], Nc)

Y[i] ~ dbin(t[b[i], j[i]], Nt)

logit(c[b[i], j[i]]) <- gamma[b[i], j[i]]

logit(t[b[i], j[i]]) <- gamma[b[i], j[i]] + theta[b[i], j[i]]

gamma[b[i], j[i]] ~ dnorm(mu.gamma[b[i]], tau.gamma[b[i]])

theta[b[i], j[i]]~ dnorm(mu.theta[b[i]], tau.theta[b[i]])

OR[b[i],j[i]] <- exp(theta[b[i],j[i]])

PGT0[b[i], j[i]] <- 1 - step(0 - theta[b[i],j[i]])

}

for(k in 1:B){

mu.gamma[k] ~ dnorm(mu.gamma.0, tau.gamma.0)

tau.gamma[k] ~ dgamma(alpha.gamma, beta.gamma)

mu.theta[k] ~ dnorm(mu.theta.0, tau.theta.0)

tau.theta[k] ~ dgamma(alpha.theta, beta.theta)

}

mu.gamma.0 ~ dnorm(mu.gamma.0.0, tau.gamma.0.0)

tau.gamma.0 ~ dgamma(alpha.gamma.0.0, beta.gamma.0.0)

mu.theta.0 ~ dnorm(mu.theta.0.0, tau.theta.0.0)

tau.theta.0 ~ dgamma(alpha.theta.0.0, beta.theta.0.0)

# Hyperparameters

mu.gamma.0.0 <- 0 #

tau.gamma.0.0 <- 0.1 #

alpha.gamma.0.0 <- 3 #

beta.gamma.0.0 <- 1 #

mu.theta.0.0 <- 0 #

tau.theta.0.0 <- 0.1 #

alpha.theta.0.0 <- 3 #

beta.theta.0.0 <- 1 #

alpha.gamma <- 3

beta.gamma <- 1

alpha.theta <- 3

beta.theta <- 1

}

Figure A.2. c212.1a BUGs model.
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Appendix B

Joint Distributions and Complete

Conditional Distributions

B.1 Distributions

Table B.1 lists the probability distributions used in this study.

Name Description

U(a, b) Continuous uniform distribution on [a,b] [122].

N(µ, σ2) Normal distribution with mean µ and variance σ2 [122].

Gamma(α, β) Gamma dsistribution [122].

IG(α, β) Inverse-Gamma distribution (§A.6).

Poisson(λ) Poisson distribution with rate λ [122].

Beta(a, b) Beta distribution [122].

Bin(n, p) Binomial distribution [122].

Table B.1. Probability distributions.

B.2 General Results

Many of the complete conditionals for the models in this study may be derived

from known results about conjugate priors. We use the following general results

in the derivation of the complete conditionals for the Bayesian models used in the

study:

Result 1. ([122]) If Xi
i.i.d.∼ N(µ, σ2), i = 1, ..., N , and µ ∼ N(µ0, σ

2
0), then

µ

∣∣∣∣X1, . . . , XN ∼ N

(
µ0σ

2 + σ2
0

∑N
i=1 xi

σ2 +Nσ2
0

,
σ2σ2

0

σ2 +Nσ2
0

)
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Equivalently, in terms of density functions we have:

exp

(
−(µ− µ0)2

2σ2
0

) N∏
i=1

exp

(
−(xi − µ)2

2σ2

)

∝ exp

−1

2

(
σ2σ2

0

σ2 +Nσ2
0

)−1
µ−

(
µ0σ

2 + σ2
0

∑N
i=1 xi

)
(σ2 +Nσ2

0)



Result 2. If Xij
i.i.d.∼ N(µ, σ2), i = 1, ..., N, j = 1, ..., ki, and µ ∼ N(µ0, σ

2
0), then

µ

∣∣∣∣X11, ..., XN,kN ∼ N

(
µ0σ

2 + σ2
0

∑N
i=1

∑ki
j=1 xij

σ2 + σ2
0

∑N
i=1 ki

,
σ2σ2

0

σ2 + σ2
0

∑N
i=1 ki

)

This is a straightforward generalisation of Result 1.

Result 3. If Xi
i.i.d.∼

[
p I[xi=0] +(1− p) I[xi 6=0] N(µ, σ2)

]
, i = 1, ..., N , and µ ∼

N(µ0, σ
2
0), then

µ

∣∣∣∣X1, . . . , XN ∼ N

(
µ0σ

2 + σ2
0

∑N
i=1 xi

σ2 +KNσ2
0

,
σ2σ2

0

σ2 +KNσ2
0

)

where KN =
∑N

i=1 I[xi 6=0]. Equivalently, in terms of density functions we have:

exp

(
−(µ− µ0)2

2σ2
0

) N∏
i=1

[
p I[xi=0] +(1− p) I[xi 6=0]

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)]

∝ exp

−1

2

(
σ2σ2

0

σ2 +NKσ2
0

)−1
µ−

(
µ0σ

2 + σ2
0

∑N
i=1 xi

)
(σ2 +NKσ2

0)


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Proof. The distribution of µ

∣∣∣∣X1, . . . , XN is proportional to:

exp

(
−(µ− µ0)2

2σ2
0

) N∏
i=1

[
p I[xi=0] +(1− p) I[xi 6=0]

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)]

= exp

(
−(µ− µ0)2

2σ2
0

) N∏
i=1

[
pI[xi=0]

[
(1− p) 1√

2πσ2
exp

(
−(xi − µ)2

2σ2

)]I[xi 6=0]

]

∝ exp

(
−(µ− µ0)2

2σ2
0

) N∏
i=1

[
exp

(
−(xi − µ)2

2σ2

)]I[xi 6=0]

= exp

(
−(µ− µ0)2

2σ2
0

) N∏
i=1
xi 6=0

[
exp

(
−(xi − µ)2

2σ2

)]

Denoting the non-zero values of {xi}Ni=1 by {yi}NKi=1 and applying Result 1 with yi

and N = KN we have:

µ

∣∣∣∣X1, . . . , XN ∼ N

(
µ0σ

2 + σ2
0

∑KN
i=1 yi

σ2 +KNσ2
0

,
σ2σ2

0

σ2 +KNσ2
0

)

As
KN∑
i=1

yi =
N∑
i=1
xi 6=0

xi =
N∑
i=1

xi

we have:

µ

∣∣∣∣X1, . . . , XN ∼ N

(
µ0σ

2 + σ2
0

∑N
i=1 xi

σ2 +KNσ2
0

,
σ2σ2

0

σ2 +KNσ2
0

)
(B.1)

Result 4. If Xij
i.i.d.∼ p I[xij=0] +(1 − p) I[xij 6=0] N(µ, σ2), i = 1, ..., N, j = 1, ..., ki

and µ ∼ N(µ0, σ
2
0), then

µ

∣∣∣∣X11, ..., XN,kN ∼ N

(
µ0σ

2 + σ2
0

∑N
i=1

∑ki
j=1 xij

σ2 + σ2
0

∑N
i=1Ki

,
σ2σ2

0

σ2 + σ2
0

∑N
i=1Ki

)

where Ki =
∑ki

j=1 I[xij 6=0].

This is a straightforward generalisation of Result 3.
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Result 5. ([122]) If Xi
i.i.d.∼ N(µ, σ2), i = 1, ..., N , and σ2 ∼ IG(α, β), then

σ2

∣∣∣∣X1, . . . , XN ∼ IG

(
α +

N

2
, β +

1

2

N∑
i=1

(xi − µ)2

)

Result 6. If Xij
i.i.d.∼ N(µ, σ2), i = 1, ..., N, j = 1, ..., ki and σ2 ∼ IG(α, β), then

σ2

∣∣∣∣X11, . . . , XN,kN ∼ IG

(
α +

∑N
i=1 ki
2

, β +
1

2

N∑
i=1

ki∑
j=1

(xij − µ)2

)

This is a straightforward generalisation of Result 5.

Result 7. If Xi
i.i.d.∼ p I[xi=0] +(1−p) I[xi 6=0] N(µ, σ2), i = 1, ..., N and σ2 ∼ IG(α, β).

Then

σ2

∣∣∣∣X1, . . . , XN ∼ IG

(
α +

KN

2
, β +

1

2

N∑
i=1

I[xi 6=0](xi − µ)2

)
where KN =

∑N
i=1 I[xi 6=0].

Proof. The distribution of σ2

∣∣∣∣X1, . . . , XN is proportional to:

βα

Γ(α)

(
σ2
)−α−1

exp

(
− β

(σ2)

) N∏
i=1

[
p I[xi=0] +(1− p) I[xi 6=0]

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)]

∝
(
σ2
)−α−1

exp

(
− β

(σ2)

) N∏
i=1

[
pI[xi=0]

[
(1− p) 1√

2πσ2
exp

(
−(xi − µ)2

2σ2

)]I[xi 6=0]

]

∝
(
σ2
)−α−1

exp

(
− β

(σ2)

) N∏
i=1

[
1√
σ2

exp

(
−(xi − µ)2

2σ2

)]I[xi 6=0]

(B.2)

Denoting the non-zero values of {xi}Ni=1 by {yi}NKi=1 and applying Result 5 with yi

and N = KN we have:

σ2

∣∣∣∣X1, . . . , XN ∼ IG

(
α +

KN

2
, β +

1

2

KN∑
i=1

(yi − µ)2

)
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which may be written as:

σ2

∣∣∣∣X1, . . . , XN ∼ IG

(
α +

KN

2
, β +

1

2

N∑
i=1

I[xi 6=0](xi − µ)2

)

Result 8. If Xij
i.i.d.∼ p I[xij=0] +(1 − p) I[xij 6=0] N(µ, σ2), i = 1, ..., N, j = 1, ..., ki

and σ2 ∼ IG(α, β), then

σ2

∣∣∣∣X11, . . . , XN,kN ∼ IG

(
α +

∑N
i=1Ki

2
, β +

1

2

N∑
i=1

ki∑
j=1

I[xij 6=0](xij − µ)2

)

where Ki =
∑N

j=1 I[xij 6=0].

This is a straightforward generalisation of Result 7.

B.3 Model c212.1a

From §3.6.2.2 we have:

cbj =
eγbj

1 + eγbj

tbj =
eθbj+γbj

1 + eθbj+γbj

and the probability function for Xbj is proportional to:

c
xbj
bj (1− cbj)NC−xbj =

(
eγbj

1 + eγbj

)xbj (
1− eγbj

1 + eγbj

)NC−xbj
=

(
eγbj

1 + eγbj

)xbj ( 1

1 + eγbj

)NC−xbj
= (eγbj)xbj

(
1

1 + eγbj

)NC
=

eγbjxbj

(1 + eγbj)NC
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Similarly for Ybj we have:

t
ybj
bj (1− tbj)NT−ybj =

e(γbj+θbj)ybj(
1 + e(γbj+θbj)

)NT
The joint posterior distribution for the parameters is proportional to:

B∏
b=1

kb∏
j=1

[
eγbjxbj

(1 + eγbj)NC

]

×
B∏
b=1

kb∏
j=1

 e(γbj+θbj)ybj(
1 + e(γbj+θbj)

)NT


×
B∏
b=1

kb∏
j=1

 1√
2πσ2

γb

exp

(
−(γbj − µγb)2

2σ2
γb

)
×

B∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
×

B∏
b=1

[
βγ

αγ

Γ(αγ)
(σ2

γb)
−αγ−1 exp

(
− βγ
σ2
γb

)]

×
B∏
b=1

kb∏
j=1

[
1√

2πσ2
θb

exp

(
−(θbj − µθb)2

2σ2
θb

)]

×
B∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
B∏
b=1

[
βθ

αθ

Γ(αθ)
(σ2

θb)
−αθ−1 exp

(
− βθ
σ2
θb

)]
× 1√

2πτ 2
γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)

× 1√
2πτ 2

θ00

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)
× βγ00

αγ00

Γ(αγ00)
(τ 2
γ0)−αγ00−1 exp

(
−βγ00

τ 2
γ0

)
× βθ00

αθ00

Γ(αθ00)
(τ 2
θ0)−αθ00−1 exp

(
−βθ00

τ 2
θ00

)

(B.3)

The complete conditionals may be read directly from the joint distribution.
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B.3.1 Complete Conditional Distributions

[γbj

∣∣∣∣...] ∝ eγbjxbj

(1 + eγbj)NC
e(γbj+θbj)ybj(

1 + e(γbj+θbj)
)NT exp

(
−(γbj − µγb)2

2σ2
γb

)
(B.4)

[θbj

∣∣∣∣...] ∝ e(γbj+θbj)ybj(
1 + e(γbj+θbj)

)NT exp

(
−(θbj − µθb)2

2σ2
θb

)
(B.5)

[µγb

∣∣∣∣...] ∝ exp

(
−(µγb − µγ0)2

2τ 2
γ0

) kb∏
j=1

exp

(
−(γbj − µγb)2

2σ2
γb

)

From Result 1 with µ = µγb, σ
2 = σ2

γb, µ0 = µγ0, σ2
0 = τ 2

γ0, N = kb, and xb = γbj

we have:

[µγb

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb + τ 2

γ0

∑kb
j=1 γbj

σ2
γb + kbτ 2

γ0

,
σ2
γbτ

2
γ0

σ2
γb + kbτ 2

γ0

)
(B.6)

[µθb

∣∣∣∣...] ∝ exp

(
−(µθb − µθ0)2

2τ 2
θ0

) kb∏
j=1

exp

(
−(θbj − µθb)2

2σ2
θb

)

[µθb

∣∣∣∣...] ∼ N

(
µθ0σ

2
θb + τ 2

θ0

∑kb
j=1(θbj)

σ2
θb + kbτ 2

θ0

,
τ 2
θ0σ

2
θb

σ2
θb + kbτ 2

θ0

) (B.7)

[µγ0

∣∣∣∣...] ∝ exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

) B∏
b=1

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)

From Result 1 with µ = µγ0, σ2 = τ 2
γ0, µ0 = µγ00, σ2

0 = τ 2
γ00, N = B, and xb = µγb

we have:
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[µγ0

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0 + τ 2

γ00

∑B
b=1 µγb

τ 2
γ0 +Bτ 2

γ00

,
τ 2
γ0τ

2
γ00

τ 2
γ0 +Bτ 2

γ00

)
(B.8)

[µθ0

∣∣∣∣...] ∝ exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

) B∏
b=1

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)

[µθ0

∣∣∣∣...] ∼ N

(
τ 2
θ0µθ00 + τ 2

θ00

∑B
b=1 µθb

τ 2
θ0 +Bτ 2

θ00

,
τ 2
θ00τ

2
θ0

τ 2
θ0 +Bτ 2

θ00

) (B.9)

[σ2
γb

∣∣∣∣...] ∝ (σ2
γb)
−αγ−1 exp

(
− βγ
σ2
γb

)
kb∏
j=1

1√
σ2
γb

exp

(
−(γbj − µγb)2

2σ2
γb

)

Applying Result 5 with σ2 = σ2
γb, µ = µγb, xj = γbj, α = αγ, β = βγ, N = kb gives:

[σ2
γb

∣∣∣∣...] ∼ IG

(
αγ +

kb
2
, βγ +

1

2

kb∑
j=1

(γbj − µγb)2

)
(B.10)

[σ2
θb

∣∣∣∣...] ∝ (σ2
θb)
−αθ−1 exp

(
− βθ
σ2
θb

) kb∏
j=1

[
1√
σ2
θb

exp

(
−(θbj − µθb)2

2σ2
θb

)]

[σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

kb
2
, βθ +

1

2

kb∑
j=1

(θbj − µθb)2

) (B.11)

[τ 2
γ0

∣∣∣∣...] ∝ (τ 2
γ0)−αγ00−1 exp

(
−βγ00

τ 2
γ0

) B∏
b=1

1√
τ 2
γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)

Applying Result 5 with σ2 = τ 2
γ0, µ = µγ0, xb = µγb, α = αγ00, β = βγ00, N = B

gives:
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[τ 2
γ0

∣∣∣∣...] ∼ IG

(
αγ00 +

B

2
, βγ00 +

1

2

B∑
i=1

(µγb − µγ0)2

)
(B.12)

[τ 2
θ0

∣∣∣∣...] ∝ (τ 2
θ0)−αθ00−1 exp

(
−βθ00

τ 2
θ00

) B∏
b=1

[
1√
τ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

[τ 2
θ0

∣∣∣∣...] ∼ IG

(
αθ00 +

B

2
, βθ00 +

1

2

B∑
b=1

(µθb − µθ0)2

) (B.13)
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B.4 Model c212.BB

The joint posterior distribution is proportional to:

B∏
b=1

kb∏
j=1

[
eγbjxbj

(1 + eγbj)NC

]
×

B∏
b=1

kb∏
j=1

 e(γbj+θbj)ybj(
1 + e(γbj+θbj)

)NT


×
B∏
b=1

kb∏
j=1

 1√
2πσ2

γb

exp

(
−(γbj − µγb)2

2σ2
γb

)
×

B∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
×

B∏
b=1

[
βγ

αγ

Γ(αγ)
(σ2

γb)
−αγ−1 exp

(
− βγ
σ2
γb

)]

×
B∏
b=1

kb∏
j=1

[
πb I[θbj=0] +(1− πb) I[θbj 6=0]

1√
2πσ2

θb

exp

(
−(θbj − µθb)2

2σ2
θb

)]

×
B∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
B∏
b=1

[
βθ

αθ

Γ(αθ)
(σ2

θb)
−αθ−1 exp

(
− βθ
σ2
θb

)]
× 1√

2πτ 2
γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)

× 1√
2πτ 2

θ00

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)
× βγ00

αγ00

Γ(αγ00)
(τ 2
γ0)−αγ00−1 exp

(
−βγ00

τ 2
γ0

)
× βθ00

αθ00

Γ(αθ00)
(τ 2
θ0)−αθ00−1 exp

(
−βθ00

τ 2
θ00

)
×

B∏
b=1

[
Γ(απ + βπ)

Γ(απ)Γ(βπ)
παπ−1
b (1− πb)βπ−1

]
× λα

exp(−λααπ)

exp(−λα)
I[απ>1]

× λβ
exp(−λββπ)

exp(−λβ)
I[βπ>1]

(B.14)
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B.4.1 Complete Conditional Distributions

As for model c212.1a the complete conditional can be read from the posterior. The

only differences from model c212.1a are:

[θbj

∣∣∣∣...] ∝ e(γbj+θbj)ybj(
1 + e(γbj+θbj)

)NT
×

[
πb I[θbj=0] +(1− πb) I[θbj 6=0]

1√
2πσ2

θb

exp

(
−(θbj − µθb)2

2σ2
θb

)] (B.15)

[πb

∣∣∣∣...] ∝ πb
απ−1 (1− πb)βπ−1

×
kb∏
j=1

[
πb I[θbj=0] +(1− πb) I[θbj 6=0]

1√
2πσ2

θb

exp

(
−(θbj − µθb)2

2σ2
θb

)]
= πb

απ−1 (1− πb)βπ−1

×

π∑kb
j=1 I[θbj=0]

b

(
(1− πb)

1√
2πσ2

θb

exp

(
−(θbj − µθb)2

2σ2
θb

))∑kb
j=1 I[θbj 6=0]


∝ πb

απ−1 (1− πb)βπ−1

[
π

∑kb
j=1 I[θbj=0]

b (1− πb)
∑kb
j=1 I[θbj 6=0]

]
= πb

απ−1+
∑kb
j=1 I[θbj=0] (1− πb)βπ−1+kb−

∑kb
j=1 I[θbj=0]

[πb

∣∣∣∣...] ∼ Beta

(
απ +

kb∑
j=1

I[θbj=0], βπ + kb −
kb∑
j=1

I[θbj=0]

)
(B.16)
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[απ

∣∣∣∣...] ∝ λα
exp(−λααπ)

exp(−λα)
I[απ>1]

B∏
b=1

[
Γ(απ + βπ)

Γ(απ)Γ(βπ)
πb
απ−1 (1− πb)βπ−1

]

∝ exp(−λααπ) I[απ>1]

(
Γ(απ + βπ)

Γ(απ)Γ(βπ)

)B B∏
b=1

πb
απ−1

∝ exp(−λααπ)

(
Γ(απ + βπ)

Γ(απ)

)B [ B∏
b=1

πb

]απ−1

I[απ>1]

(B.17)

[βπ

∣∣∣∣...] ∝ λβ
exp(−λββπ)

exp(−λβ)
I[βπ>1]

B∏
b=1

[(
Γ(απ + βπ)

Γ(απ)Γ(βπ)

)
πb
απ−1 (1− πb)βπ−1

]

∝ exp(−λββπ) I[βπ>1]

(
Γ(απ + βπ)

Γ(απ)Γ(βπ)

)B B∏
b=1

(1− πb)βπ−1

∝ exp(−λββπ)

(
Γ(απ + βπ)

Γ(βπ)

)B [ B∏
b=1

(1− πb)

]βπ−1

I[βπ>1]

(B.18)

[µθb

∣∣∣∣...] ∝ exp

(
−(µθb − µθ0)2

2τ 2
θ0

)
×

kb∏
j=1

[
πb I[θbj=0] +(1− πb) I[θbj 6=0]

1√
2πσ2

θb

exp

(
−(θbj − µθb)2

2σ2
θb

)]

Applying Result 3 with Kb =
∑kb

j=1 I[θbj 6=0] and µ = µθb, σ
2 = σ2

θb, µ0 = µθ0,

σ2
0 = τ 2

θ0, N = kb, p = πb, and xj = θbj we have:

[µθb

∣∣∣∣...] ∼ N

(
µθ0σ

2
θb + τ 2

θ0

∑kb
j=1 θbj

σ2
θb +Kbτ 2

θ0

,
σ2
θbτ

2
θ0

σ2
θb +Kbτ 2

θ0

)
(B.19)
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[σ2
θb

∣∣∣∣...] ∝ (σ2
θb)
−αθ−1 exp

(
− βθ
σ2
θb

)
×

kb∏
j=1

[
πb I[θbj=0] +(1− πb) I[θbj 6=0]

1√
2πσ2

θb

exp

(
−(θbj − µθb)2

2σ2
θb

)]

Applying Result 7 with Kb =
∑kb

j=1 I[θbj 6=0], σ
2 = σ2

θb, µ = µθb, xj = θbj, α = αθ,

β = βθ, and N = kb we have:

[σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

Kb

2
, βθ +

1

2

kb∑
j=1

I[θbj 6=0](θbj − µ)2

)
(B.20)
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B.5 Model 1a20

From §6.7.4 the joint posterior distribution of the parameters is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
×

H∏
h=1

Bh∏
b=1

[
β
αγ
γ

Γ(αγ)

(
σ2
γb,h

)−αγ−1
exp

(
− βγ(

σ2
γb,h

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
×

H∏
h=1

Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

×
H∏
h=1

Bh∏
b=1

[
βαθθ

Γ(αθ)

(
σ2
θb,h

)−αθ−1
exp

(
− βθ(

σ2
θb,h

))]

(B.21)

The complete conditionals may be read directly from the joint distribution.
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B.5.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

] [(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)]

[γbj,h

∣∣∣∣...] ∝ (eγbj,h)xbj,h e−e
γbj,hCbj,h (eγbj,h)ybj,h e−e

(γbj,h+θbj,h)Tbj,h

× exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
(B.22)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]
×

[(
exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

))]

[θbj,h

∣∣∣∣...] ∝(e(θbj,h))ybj,h e−e(γbj,h+θbj,h)Tbj,h
(

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

))
(B.23)

[µγb,h

∣∣∣∣...] ∝
[

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)]
kbh∏
j=1

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)]

Applying Result 1 with µ = µγb,h, σ
2 = σ2

γb,h, µ0 = µγ0, σ2
0 = τ 2

γ0, N = kbh, and

xj = γbj,h we have:

[µγb,h

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb,h + τ 2

γ0

∑kbh
j=1 γbj,h

σ2
γb,h + kbhτ 2

γ0

,
σ2
γb,hτ

2
γ0

σ2
γb,h + kbhτ 2

γ0

)
(B.24)
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[µθb,h

∣∣∣∣...] ∝
[

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]
kbh∏
j=1

[(
exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

))]

[µθb,h

∣∣∣∣...] ∼N

(
µθ0σ

2
θb,h + τ 2

θ0

∑kbh
j=1 θbj,h

σ2
θb,h + kbhτ 2

θ0

,
τ 2
θ0σ

2
θb,h

σ2
θb,h + kbhτ 2

θ0

) (B.25)

[σ2
γb,h

∣∣∣∣...] ∝
[(
σ2
γb,h

)−αγ−1
exp

(
− βγ(

σ2
γb,h

))] kbh∏
j=1

 1√
σ2
γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
Applying Result 5 with σ2 = σ2

γb,h, µ = µγb,h, xj = γbj,h, α = αγ,h and β = βγ,h,

N = kbh gives:

[σ2
γb,h

∣∣∣∣...] ∼ IG

(
αγ +

kbh
2
, βγ +

1

2

kbh∑
j=1

(γbj,h − µγb,h)2

)
(B.26)

[σ2
θb,h

∣∣∣∣...] ∝
[(
σ2
θb,h

)−αθ−1
exp

(
− βθ(

σ2
θb,h

))] kbh∏
j=1

 1√
σ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)

[σ2
θb,h

∣∣∣∣...] ∼ IG

(
αθ +

kbh
2
, βθ +

1

2

kbh∑
j=1

(θbj,h − µθb,h)2

)
(B.27)
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B.6 Model 1a21

From §6.7.4 the joint posterior distribution of the parameters is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)
×

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
×

Bh∏
b=1

[
β
αγ
γ

Γ(αγ)

(
σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
1√

2πσ2
θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

×
Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
Bh∏
b=1

[
βαθθ

Γ(αθ)

(
σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

)]

(B.28)
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B.6.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝
[

(eγbj,hCbj,h)
xbj,h e−e

γbj,hCbj,h

xbj,h!

]
(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

 1√
2πσ2

γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)

[γbj,h

∣∣∣∣...] ∝ (eγbj,h)xbj,h e−e
γbj,hCbj,h (eγbj,h)ybj,h e−e

(γbj,h+θbj,h)Tbj,h exp

(
−(γbj,h − µγb)2

2σ2
γb

)
(B.29)

[θbj,h

∣∣∣∣...] ∝ (eθbj,h)ybj,h e−e(γbj,h+θbj,h)Tbj,h
(

exp

(
−(θbj,h − µθb)2

2σ2
θb

))
(B.30)

[µγb

∣∣∣∣...] ∝ exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
H∏
h=1

kbh∏
j=1

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)]

Applying Result 2 with µ = µγb, σ
2 = σ2

γb, µ0 = µγ0, σ2
0 = τ 2

γ0, N = H,
∑N

i=1 ki =∑H
h=1 kbh, and xhj = γbj,h we have:

[µγb

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb + τ 2

γ0

∑H
h=1

∑kbh
j=1 γbj,h

σ2
γb + τ 2

γ0

∑H
h=1 kbh

,
σ2
γbτ

2
γ0

σ2
γb + τ 2

γ0

∑H
h=1 kbh

)
(B.31)
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[µθb

∣∣∣∣...] ∝ exp

(
−(µθb − µθ0)2

2τ 2
θ0

)
H∏
h=1

kbh∏
j=1

[
exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

[µθb

∣∣∣∣...] ∼ N

(
µθ0σ

2
θb + τ 2

θ0

∑H
h=1

∑kbh
j=1 θbj,h

σ2
θb + τ 2

θ0

∑H
h=1 kbh

,
τ 2
γ0σ

2
θb

σ2
θb + τ 2

θ0

∑H
h=1 kbh

) (B.32)

[σ2
γb

∣∣∣∣...] ∝ (σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

)) H∏
h=1

kbh∏
j=1

 1√
σ2
γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)
Applying Result 6 with σ2 = σ2

γb, µ = µγb, xhj = γbj,h, α = αγ, β = βγ, and N = H

we have:

[σ2
γb

∣∣∣∣...] ∼ IG

(
αγ +

∑H
h=1 kbh

2
, βγ +

1

2

H∑
h=1

kbh∑
j=1

(γbj,h − µγb)2

)
(B.33)

[σ2
θb

∣∣∣∣...] ∝ (σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

) H∏
h=1

kbh∏
j=1

[
1√
σ2
θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

[σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

1

2

H∑
h=1

kbh, βθ +
1

2

H∑
h=1

kbh∑
j=1

(θbj,h − µθb)2

)
(B.34)
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B.7 Model BB20

The joint posterior distribution is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
×

H∏
h=1

Bh∏
b=1

[
β
αγ
γ

Γ(αγ)

(
σ2
γb,h

)−αγ−1
exp

(
− βγ(

σ2
γb,h

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
×

H∏
h=1

Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

×
H∏
h=1

Bh∏
b=1

[
βαθθ

Γ(αθ)

(
σ2
θb,h

)−αθ−1
exp

(
− βθ(

σ2
θb,h

))]

×
H∏
h=1

Bh∏
b=1

[
Γ(απ + βπ)

Γ(απ)Γ(βπ)
παπ−1
b,h (1− πb,h)βπ−1

]
(B.35)

307



B.7.1 Complete Conditional Distributions

[θbjh

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]

×

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.36)

[πbh

∣∣∣∣...] ∝ [παπ−1
b,h (1− πb,h)βπ−1

]
×

kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
=
[
παπ−1
b,h (1− πb,h)βπ−1

]
×

π∑kbh
j=1 I[θbj,h=0]

b,h

(1− πb,h)
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
∑kbh
j=1 I[θbj,h 6=0]


∝
[
παπ−1
b,h (1− πb,h)βπ−1

] [
π

∑kbh
j=1 I[θbj,h=0]

b,h (1− πb,h)kbh−
∑kbh
j=1 I[θbj,h=0]

]
∝
[
π
απ+

∑kbh
j=1 I[θbj,h=0]−1

b,h (1− πb,h)βπ+kbh−
∑kbh
j=1 I[θbj,h=0]−1

]

[πbh

∣∣∣∣...] ∼Beta

(
απ +

kbh∑
j=1

I[θbj,h=0], βπ + kbh −
kbh∑
j=1

I[θbj,h=0]

)
(B.37)
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[µθb,h

∣∣∣∣...] ∝
[

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

×
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
Applying Result 3 with µ = µθb,h , σ2 = σ2

θb,h, µ0 = µθ0, σ2
0 = τ 2

θ0, xj = θbj,h, and

N = Kb, where Kb =
∑kb

j=1 I[θbj,h 6=0] we have:

[µθb,h

∣∣∣∣...] ∼ N

(
µθ0σ

2
θb,h + τ 2

θ0

∑kb
i=j θbj,h

σ2
θb,h +Kbτ 2

θ0

,
σ2
θb,hτ

2
θ0

σ2
θb,h +Kbτ 2

θ0

)
(B.38)

[σ2
θb,h

∣∣∣∣...] ∝
[(
σ2
θb,h

)−αθ−1
exp

(
− βθ(

σ2
θb,h

))]

×
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
Applying Result 7 with σ2 = σ2

θb,h, µ = µθb,h, xj = θbj,h, α = αθ, β = βθ, and

N = Kb, where Kb =
∑kb

j=1 I[θbj,h 6=0] we have:

[σ2
θb,h

∣∣∣∣...] ∼ IG

(
αθ +

Kb

2
, βθ +

1

2

kb∑
j=1

I[θbj,h 6=0](θbj,h − µθb,h)2

)
(B.39)
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B.8 Model BB21

The joint posterior distribution is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)
×

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
×

Bh∏
b=1

[
β
αγ
γ

Γ(αγ)

(
σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

×
Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
Bh∏
b=1

[
βαθθ

Γ(αθ)

(
σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

)]

×
Bh∏
b=1

[
Γ(απ + βπ)

Γ(απ)Γ(βπ)
παπ−1
b (1− πb)βπ−1

]
(B.40)

B.8.1 Complete Conditional Distributions

The complete conditionals may be read from the joint distribution. Many are the

same as for model 1a21. The different distributions are:
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[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

] [(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)] (B.41)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]
×

[
πb I[θbj,h=0] +(1− πb) I[θbj,h=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]
(B.42)

[µγb

∣∣∣∣...] ∝ exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
H∏
h=1

kbh∏
j=1

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)]

[µγb

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb + τ 2

γ0

∑H
h=1

∑kbh
j=1 γbj,h

σ2
γb + τ 2

γ0

∑H
h=1 kbh

,
τ 2
γ0σ

2
γb

σ2
γb + τ 2

γ0

∑H
h=1 kbh

) (B.43)

[µθb

∣∣∣∣...] ∝ exp

(
−(µθb − µθ0)2

2τ 2
θ0

)

×
H∏
h=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]
(B.44)

Applying Result 4 with p = πb, xhj = θbj,h, N = H, µ = µθb, σ
2 = σ2

θb, µ0 = µθ0,
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σ2
0 = τ 2

θ0 we have:

[µθb

∣∣∣∣...] ∼ N

(
µθ0σ

2
θb + τ 2

θ0

∑H
h=1

∑kbh
j=1 θbj,h

σ2
θb + τ 2

θ0

∑H
h=1Kbh

,
τ 2
θ0σ

2
θb

σ2
θb + τ 2

θ0

∑H
h=1 Kbh

)

where Kbh =
∑kbj

k=1 I[θbj,h 6=0].

[σ2
γb

∣∣∣∣...] ∝ (σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

)) H∏
h=1

kbh∏
j=1

 1√
σ2
γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)

[σ2
γb

∣∣∣∣...] ∼IG
(
αγ +

1

2

H∑
h=1

kbh, βγ +
1

2

H∑
h=1

kbh∑
j=1

(γbj,h − µγb)2

)
(B.45)

[σ2
θb

∣∣∣∣...] ∝ (σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

)
×

H∏
h=1

kbh∏
j=1

[(
πb I[θbj,h=0] +(1− πb)

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

))]
(B.46)

Applying Result 8 we have:

[σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

1

2

H∑
h=1

Kbh, βθ +
1

2

H∑
h=1

kbh∑
j=1

I[θbj,h 6=0] (θbj,h − µθb)2

)
(B.47)

where Kbh =
∑kbj

j=1 I[θbj,h 6=0].
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[πb

∣∣∣∣...] ∝ παπ−1
b (1− πb)βπ−1

×
H∏
h=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

∝ παπ−1
b (1− πb)βπ−1

[
π

∑H
h=1

∑kbh
j=1 I[θbj,h=0]

b (1− πb)
∑H
h=1

∑kbh
j=1 I[θbj,h 6=0]

]
∝ π

απ+
∑H
h=1

∑kbh
j=1 I[θbj,h=0]−1

b (1− πb)βπ+
∑H
h=1

∑kbh
j=1 I[θbj,h 6=0]−1

[πb

∣∣∣∣...] ∼Beta

(
απ +

H∑
h=1

kbh∑
j=1

I[θbj,h=0], βπ +
H∑
h=1

kbh∑
j=1

I[θbj,h 6=0]

)
(B.48)
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B.9 Model 1a30

From §6.6.4 the joint posterior distribution for the parameters is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

γ0,h

exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)
×

H∏
h=1

Bh∏
b=1

[
β
αγ,h
γ,h

Γ(αγ,h)

(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×
H∏
h=1

 1√
2πτ 2

γ00

exp

(
−(µγ0,h − µγ00)2

2τ 2
γ00

)
×

H∏
h=1

[
β
αγ00
γ00

Γ(αγ00)

(
τ 2
γ0,h

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0,h

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

θ0,h

exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)
×

H∏
h=1

Bh∏
b=1

[
β
αθ,h
θ,h

Γ(αθ,h)

(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]

×
H∏
h=1

[
1√

2πτ 2
θ00

exp

(
−(µθ0,h − µθ00)2

2τ 2
θ00

)]

×
H∏
h=1

[
βαθ00θ00

Γ(αθ00)

(
τ 2
θ0,h

)−αθ00−1
exp

(
− βθ00(

τ 2
θ0,h

))]

(B.49)
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B.9.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

]
×
[(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

× exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

) (B.50)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]
×

[
exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)] (B.51)

[µγb,h

∣∣∣∣...] ∝
[

exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)]
kbh∏
j=1

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)]
(B.52)

Using Result 1 with xj = γbj,h, µ = µγb,h, σ
2 = σ2

γb,h, µ0 = µγ0,h, σ
2
0 = τ 2

γ0,h, and

N = kbh we have:

µγb,h

∣∣∣∣...] ∼ N

(
µγ0,hσ

2
γb,h + τ 2

γ0,h

∑kbh
j=1 γbj,h

σ2
γb,h + kbhτ 2

γ0,h

,
σ2
γb,hτ

2
γ0,h

σ2
γb,h + kbhτ 2

γ0,h

)
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[µθb,h

∣∣∣∣...] ∝ exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)
×

kbh∏
j=1

[
exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)]

µθb,h

∣∣∣∣...] ∼N

(
µθ0,hσ

2
θb,h + τ 2

θ0,h

∑kbh
j=1 θbj,h

σ2
θb,h + kbhτ 2

θ0,h

,
σ2
θb,hτ

2
θ0,h

σ2
θb,h + kbhτ 2

θ0,h

) (B.53)

[σ2
γb,h

∣∣∣∣...] ∝
[(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×
kbh∏
j=1

 1√
σ2
γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

) (B.54)

Applying Result 5 with σ2 = σ2
γb,h, µ = µγb,h, xj = γbj,h, α = αγ,h and β = βγ,h,

N = kbh gives:

[σ2
γb,h

∣∣∣∣...] ∼ IG

(
αγ,h +

kbh
2
, βγ,h +

1

2

kbh∑
j=1

(γbj,h − µγb,h)2

)
(B.55)

[σ2
θb,h

∣∣∣∣...] ∝
[(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]

×
kbh∏
j=1

 1√
σ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)

[σ2
θb,h

∣∣∣∣...] ∼ IG

(
αθ,h +

kbh
2
, βθ,h +

1

2

kbh∑
j=1

(θbj,h − µθb,h)2

)
(B.56)
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[µγ0,h

∣∣∣∣...] ∝ exp

(
−(µγ0,h − µγ00)2

2τ 2
γ00

)
Bh∏
b=1

[
exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)]
(B.57)

Applying Result 1 with µ = µγ0,h, σ
2 = τ 2

γ0,h, µ0 = µγ00, σ2
0 = τ 2

γ00, N = Bh, and

xb = µγb,h we have:

[µγ0,h

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0,h + τ 2

γ00

∑Bh
b=1 µγb,h

τ 2
γ0,h +Bhτ 2

γ00

,
τ 2
γ0,hτ

2
γ00

τ 2
γ0,h +Bhτ 2

γ00

)
(B.58)

[µθ0,h

∣∣∣∣...] ∝ exp

(
−(µθ0,h − µθ00)2

2τ 2
θ00

)
Bh∏
b=1

[
exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)]

[µθ0,h

∣∣∣∣...] ∼N

(
µθ00τ

2
θ0,h + τ 2

θ00

∑Bh
b=1 µθb,h

τ 2
θ0,h +Bhτ 2

θ00

,
τ 2
θ0,hτ

2
θ00

τ 2
θ0,h +Bhτ 2

θ00

) (B.59)

[τ 2
γ0,h

∣∣∣∣...] ∝ (τ 2
γ0,h

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0,h

)) Bh∏
b=1

 1√
τ 2
γ0,h

exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)
(B.60)

Applying Result 5 with σ2 = τ 2
γ0,h, µ = µγ0,h, xb = µγb,h, α = αγ00, β = βγ00, and

N = Bh gives:

[τ 2
γ0,h

∣∣∣∣...] ∼ IG

(
αγ00 +

Bh

2
, βγ00 +

1

2

Bh∑
b=1

(µγb,h − µγ0,h)
2

)
(B.61)
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[τ 2
θ0,h

∣∣∣∣...] ∝ (τ 2
θ0,h

)−αθ00−1
exp

(
− βθ00(

τ 2
θ0,h

)) Bh∏
b=1

 1√
τ 2
θ0,h

(
exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

))

[τ 2
θ0,h

∣∣∣∣...] ∼ IG

(
αθ00 +

Bh

2
, βθ00 +

1

2

Bh∑
b=1

(µθb,h − µθ0,h)2

)
(B.62)
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B.10 Model 1a31

From §6.6.4 the joint posterior distribution for the parameters is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)
×

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
×

Bh∏
b=1

[
β
αγ
γ

Γ(αγ)

(
σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

))]

×

 1√
2πτ 2

γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)
×

[
β
αγ00
γ00

Γ(αγ00)

(
τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
1√

2πσ2
θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

×
Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
Bh∏
b=1

[
βαθθ

Γ(αθ)

(
σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

)]

×

[
1√

2πτ 2
θ00

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)]

×
[
βαθ00θ00

Γ(αθ00)

(
τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

)]

(B.63)
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B.10.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

] [(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)] (B.64)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]
×

[
exp

(
−(θbj,h − µθb)2

2σ2
θb

)] (B.65)

[µγb

∣∣∣∣...] ∝ exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
H∏
h=1

kbh∏
j=1

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)]
(B.66)

Applying Result 2 with µ = µγb, σ
2 = σ2

γb, µ0 = µγ0, σ2
0 = τ 2

γ0, N = H,
∑N

i=1 ki =∑H
h=1 kbh, and xhj = γbj,h we have:

[µγb

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb + τ 2

γ0

∑H
h=1

∑kbh
j=1 γbj,h

σ2
γb +

∑H
h=1 kbhτ

2
γ0

,
σ2
γbτ

2
γ0

σ2
γb +

∑H
h=1 kbhτ

2
γ0

)
(B.67)
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[µθb

∣∣∣∣...] ∝ exp

(
−(µθb − µθ0)2

2τ 2
θ0

)
H∏
h=1

kbh∏
j=1

[
1√

2πσ2
θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

[µθb

∣∣∣∣...] ∼N

(
µθ0σ

2
θb + τ 2

θ0

∑H
h=1

∑kbh
j=1 θbj,h

σ2
θb +

∑H
h=1 kbhτ

2
θ0

,
σ2
θbτ

2
θ0

σ2
θb +

∑H
h=1 kbhτ

2
θ0

) (B.68)

[σ2
γb

∣∣∣∣...] ∝ (σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

)) H∏
h=1

kbh∏
j=1

 1√
σ2
γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)
(B.69)

Applying Result 5 with σ2 = σ2
γb, µ = µγb, xhj = γbj,h, α = αγ, β = βγ, N = H,

and
∑

i=1 ki =
∑H

h=1 kbh gives:

[σ2
γb

∣∣∣∣...] ∼ IG

(
αγ +

∑H
h=1 kbh

2
, βγ +

1

2

H∑
h=1

kbh∑
j=1

(γbj,h − µγb)2

)
(B.70)

[σ2
θb

∣∣∣∣...] ∝ (σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

) H∏
h=1

kbh∏
j=1

[
1√
σ2
θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

[σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

∑H
h=1 kbh

2
, βθ +

1

2

H∑
h=1

kbh∑
j=1

(θbj,h − µθb)2

)
(B.71)

[µγ0

∣∣∣∣...] ∝ 1√
2πτ 2

γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)
Bh∏
b=1

[
exp

(
−(µγb − µγ0)2

2τ 2
γ0

)]
(B.72)
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Applying Result 1 with µ = µγ0, σ2 = τ 2
γ0, µ0 = µγ00, σ2

0 = τ 2
γ00, N = B, and

xb = µγb we have:

[µγ0

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0 + τ 2

γ00

∑B
b=1 µγb

τ 2
γ0 +Bτ 2

γ00

,
τ 2
γ0τ

2
γ00

τ 2
γ0 +Bτ 2

γ00

)
(B.73)

[µθ0

∣∣∣∣...] ∝ exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)
Bh∏
b=1

[
exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

[µθ0

∣∣∣∣...] ∼N

(
µθ00τ

2
θ0 + τ 2

θ00

∑B
b=1 µθb

τ 2
θ0 +Bτ 2

θ00

,
τ 2
θ0τ

2
θ00

τ 2
θ0 +Bτ 2

θ00

) (B.74)

[τ 2
γ0

∣∣∣∣...] ∝ (τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

)) Bh∏
b=1

 1√
τ 2
γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

) (B.75)

Applying Result 5 with σ2 = τ 2
γ0, µ = µγ0, xb = µγb, α = αγ00, β = βγ00, and

N = B gives:

[τ 2
γ0

∣∣∣∣...] ∼ IG

(
αγ00 +

B

2
, βγ00 +

1

2

B∑
b=1

(µγb − µγ0)2

)
(B.76)

[τ 2
θ0

∣∣∣∣...] ∝ (τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

) Bh∏
b=1

[
1√
τ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

[τ 2
θ0

∣∣∣∣...] ∼ IG

(
αθ00 +

B

2
, βθ00 +

1

2

B∑
b=1

(µθb − µθ0)2

) (B.77)
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B.11 Model 1a32

From §6.6.4 the joint posterior distribution for the parameters is proportional to:

H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
×

H∏
h=1

Bh∏
b=1

[
β
αγ,h
γ,h

Γ(αγ,h)

(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×

 1√
2πτ 2

γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)
×

[
β
αγ00
γ00

Γ(αγ00)

(
τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
×

H∏
h=1

Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

×
H∏
h=1

Bh∏
b=1

[
β
αθ,h
θ,h

Γ(αθ,h)

(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]

×

[
1√

2πτ 2
θ00

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)]

×
[
βαθ00θ00

Γ(αθ00)

(
τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

)]

(B.78)
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B.11.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

]
×
[(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[(
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

))] (B.79)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]
×

[
exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)] (B.80)

[µγb,h

∣∣∣∣...] ∝ exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
kbh∏
j=1

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)]
(B.81)

Applying Result 1 with µ = µγb,h, σ
2 = σ2

γb,h, µ0 = µγ0, σ2
0 = τ 2

γ0, N = kbh, and

xj = γbj,h we have:

[µγb,h

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb,h + τ 2

γ0

∑kbh
j=1 γbj,h

σ2
γb,h + kbhτ 2

γ0

,
σ2
γb,hτ

2
γ0

σ2
γb,h + kbhτ 2

γ0

)
(B.82)
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[µθb,h

∣∣∣∣...] ∝ exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)
kbh∏
j=1

[
exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)]

[µθb,h

∣∣∣∣...] ∼N

(
µθ0σ

2
θb,h + τ 2

θ0

∑kbh
j=1 θbj,h

σ2
θb,h + kbhτ 2

θ0

,
σ2
θb,hτ

2
θ0

σ2
θb,h + kbhτ 2

θ0

) (B.83)

[σ2
γb,h

∣∣∣∣...] ∝ (σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))× kbh∏
j=1

 1√
σ2
γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
(B.84)

Applying Result 5 with σ2 = σ2
γb,h, µ = µγb,h, xj = γbj,h, α = αγ, β = βγ, and

N = kbh gives:

[σ2
γb,h

∣∣∣∣...] ∼ IG

(
αγ +

kbh
2
, βγ +

1

2

kbh∑
j=1

(γbj,h − µγb,h)2

)
(B.85)

[σ2
θb,h

∣∣∣∣...] ∝ (σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

)) kbh∏
j=1

 1√
σ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)

[σ2
θb,h

∣∣∣∣...] ∼ IG

(
αθ +

kbh
2
, βθ +

1

2

kbh∑
j=1

(θbj,h − µθb,h)2

)
(B.86)

[µγ0

∣∣∣∣...] ∝ exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)
×

H∏
h=1

Bh∏
b=1

[
exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)]
(B.87)
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Applying Result 2 with µ = µγ0, σ2 = τ 2
γ0, µ0 = µγ00, σ2

0 = τ 2
γ00, N = H,∑N

i=1 ki =
∑H

h=1Bh, and xhb = µγb,h we have:

[µγ0

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0 + τ 2

γ00

∑H
h=1

∑Bh
b=1 µγb,h

τ 2
γ0 +

∑H
h=1 Bhτ 2

γ00

,
τ 2
γ0τ

2
γ00

τ 2
γ0 +

∑H
h=1Bhτ 2

γ00

)
(B.88)

[µθ0

∣∣∣∣...] ∝ exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)
H∏
h=1

Bh∏
b=1

[
exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

[µθ0

∣∣∣∣...] ∼N

(
µθ00τ

2
θ0 + τ 2

θ00

∑H
h=1

∑Bh
b=1 µθb,h

τ 2
θ0 +

∑H
h=1 Bhτ 2

θ00

,
τ 2
θ0τ

2
θ00

τ 2
θ0 +

∑H
h=1Bhτ 2

θ00

) (B.89)

[τ 2
γ0

∣∣∣∣...] ∝ (τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

)) H∏
h=1

Bh∏
b=1

 1√
τ 2
γ0

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
(B.90)

Applying Result 6 with σ2 = τ 2
γ0, µ = µγ0, xhb = µγb,h, α = αγ00, β = βγ00, N = H,

and
∑N

i=1 ki
∑H

h=1 Bh gives:

[τ 2
γ0

∣∣∣∣...] ∼ IG

(
αγ00 +

∑H
h=1Bh

2
, βγ00 +

1

2

H∑
h=1

Bh∑
b=1

(µγb,h − µγ0)2

)
(B.91)

326



[τ 2
θ0

∣∣∣∣...] ∝ (τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

) H∏
h=1

Bh∏
b=1

[(
1√
τ 2
θ0

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

))]

[τ 2
θ0

∣∣∣∣...] ∼ IG

(
αθ00 +

∑H
h=1Bh

2
, βθ00 +

1

2

H∑
h=1

Bh∑
b=1

(µθb,h − µθ0)2

)
(B.92)

B.12 Model BB30

The joint posterior distribution is proportional to:
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H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

[
Γ(απ,h + βπ,h)

Γ(απ,h)Γ(βπ,h)
π
απ,h−1

b,h (1− πb,h)βπ,h−1

]

×
H∏
h=1

[
λα exp(−απ,hλα)

exp(−λα)
I(απ,h > 1)

] H∏
h=1

[
λβ exp(−βπ,hλβ)

exp(−λβ)
I(βπ,h > 1)

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

γ0,h

exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)
×

H∏
h=1

Bh∏
b=1

[
β
αγ,h
γ,h

Γ(αγ,h)

(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×
H∏
h=1

 1√
2πτ 2

γ00

exp

(
−(µγ0,h − µγ00)2

2τ 2
γ00

)
×

H∏
h=1

[
β
αγ00
γ00

Γ(αγ00)

(
τ 2
γ0,h

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0,h

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

θ0,h

exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)
×

H∏
h=1

Bh∏
b=1

[
β
αθ,h
θ,h

Γ(αθ,h)

(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]

×
H∏
h=1

[
1√

2πτ 2
θ00

exp

(
−(µθ0,h − µθ00)2

2τ 2
θ00

)]

×
H∏
h=1

[
βαθ00θ00

Γ(αθ00)

(
τ 2
θ0,h

)−αθ00−1
exp

(
− βθ00(

τ 2
θ0,h

))]
(B.93)
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B.12.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

]
×
[(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)] (B.94)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]

×

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.95)

[µγb,h

∣∣∣∣...] ∝
[

exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)]
kbh∏
j=1

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)]
(B.96)

Applying Result 1 with µ = µγb,h, σ
2 = σ2

γb,h, µ0 = µγ0,h, σ
2
0 = τ 2

γ0,h, N = kbh, and

xj = γbj,h we have:

[µγb,h

∣∣∣∣...] ∼ N

(
µγ0,hσ

2
γb,h + τ 2

γ0,h

∑kbh
j=1 γbj,h

σ2
γb,h + kbhτ 2

γ0,h

,
σ2
γb,hτ

2
γ0,h

σ2
γb,h + kbhτ 2

γ0,h

)
(B.97)
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[µθb,h

∣∣∣∣...] ∝
[

exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)]

×
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.98)

Applying Result 3 with µ = µθb,h, σ
2 = σ2

θb,h, µ0 = µθ0,h, σ
2
0 = τ 2

θ0,h, N = kbh, and

xj = θbj,h we have:

[µθb,h

∣∣∣∣...] ∼ N

(
µθ0,hσ

2
θb,h + τ 2

θ0,h

∑kbh
j=1 θbj,h

σ2
θb,h +Kbhτ 2

θ0,h

,
σ2
θb,hτ

2
θ0,h

σ2
θb,h +Kbhτ 2

θ0,h

)
(B.99)

where Kbh =
∑kbh

j=1 I[θbj,h 6=0].

[σγb,h

∣∣∣∣...] ∝
[(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×
kbh∏
j=1

 1√
σ2
γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

) (B.100)

Applying Result 5 with σ2 = σ2
γb,h, µ = µγb,h, xj = γbj,h, α = αγ,h, β = βγ,h,

N = kbh gives:

[σγb,h

∣∣∣∣...] ∼ IG

(
αγ +

kbh
2
, βγ +

1

2

kbh∑
j=1

(γbj,h − µγb,h)2

)
(B.101)
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[σθb,h

∣∣∣∣...] ∝
[(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]

×
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.102)

Applying Result 8 with σ2 = σ2
θb,h, µ = µθb,h, xj = θbj,h, α = αθ,h, β = βθ,h,

N = kbh gives:

σθb,h

∣∣∣∣...] ∼ IG

(
αθ +

Kbh

2
, βθ +

1

2

kbh∑
j=1

I[θbj,h 6=0](θbj,h − µθb,h)2

)
(B.103)

where Kbh =
∑kbh

j=1 I[θbj,h 6=0].

[µγ0,h

∣∣∣∣...] ∝ exp

(
−(µγ0,h − µγ00,h)

2

2τ 2
γ00

)
Bh∏
b=1

[
exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)]
(B.104)

Applying Result 1 with µ = µγ0,h, σ
2 = τ 2

γ0,h, µ0 = µγ00, σ2
0 = τ 2

γ00, N = Bh, and

xb = µγb,h we have:

[µγ0,h

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0,h + τ 2

γ00

∑Bh
b=1 µγb,h

τ 2
γ0,h +Bhτ 2

γ00

,
τ 2
γ0,hτ

2
γ00

τ 2
γ0,h +Bhτ 2

γ00

)
(B.105)
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[µθ0,h

∣∣∣∣...] ∝ exp

(
−(µθ0,h − µθ00)2

2τ 2
θ00

)
Bh∏
b=1

[
exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)]

[µθ0,h

∣∣∣∣...] ∼N

(
µθ00τ

2
θ0,h + τ 2

θ00

∑Bh
b=1 µθb,h

τ 2
θ0,h +Bhτ 2

θ00

,
τ 2
θ0,hτ

2
θ00

τ 2
θ0,h +Bhτ 2

θ00

) (B.106)

[τ 2
γ0,h

∣∣∣∣...] ∝
[(
τ 2
γ0,h

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0,h

))] Bh∏
b=1

 1√
τ 2
γ0,h

exp

(
−(µγb,h − µγ0,h)

2

2τ 2
γ0,h

)
(B.107)

Applying Result 5 with σ2 = τ 2
γ0,h, µ = µγ0,h, xb = µγb,h, α = αγ00, β = βγ00,

N = Bh gives:

τ 2
γ0,h

∣∣∣∣...] ∼ IG

(
αγ00 +

Bh

2
, βγ00 +

1

2

Bh∑
b=1

(µγb,h − µγ0,h)
2

)
(B.108)

[τ 2
θ0,h

∣∣∣∣...] ∝
[(
τ 2
θ0,h

)−αθ00−1
exp

(
− βθ00(

τ 2
θ0,h

))] Bh∏
b=1

 1√
τ 2
θ0,h

exp

(
−(µθb,h − µθ0,h)2

2τ 2
θ0,h

)

τ 2
θ0,h

∣∣∣∣...] ∼ IG

(
αθ00 +

Bh

2
, βθ00 +

1

2

Bh∑
b=1

(µθb,h − µθ0,h)2

)
(B.109)
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[πb,h

∣∣∣∣...] ∝ [παπ,h−1

b,h (1− πb,h)βπ,h−1
]

×
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
∝
[
π
απ,h−1

b,h (1− πb,h)βπ,h−1
] [
π

∑kbh
j=1 I[θbj,h=0]

b,h (1− πb,h)
∑kbh
j=1 I[θbj,h 6=0]

]
=π

απ,h−1+
∑kbh
j=1 I[θbj,h=0]

b,h (1− πb,h)βπ,h−1+
∑kbh
j=1 I[θbj,h 6=0]

=π
απ,h−1+

∑kbh
j=1 I[θbj,h=0]

b,h (1− πb,h)βπ,h−1+kbh−
∑kbh
j=1 I[θbj,h=0]

[πb,h

∣∣∣∣...] ∼Beta

(
απ,h +

kbh∑
j=1

I[θbj,h=0], βπ,h + kbh −
kbh∑
j=1

I[θbj,h=0]

)
(B.110)

[απ,h

∣∣∣∣...] ∝ [exp(−απ,hλα) I[απ,h>1]

] Bh∏
b=1

[
Γ(απ,h + βπ,h)

Γ(απ,h)
π
απ,h−1

b,h

]
(B.111)

[βπ,h

∣∣∣∣...] ∝ [exp(−βπ,hλβ) I[βπ,h>1]

] Bh∏
b=1

[
Γ(απ,h + βπ,h)

Γ(βπ,h)
(1− πb,h)βπ,h−1

]
(B.112)

B.13 Model BB31

The joint posterior distribution is proportional to:
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H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

Bh∏
b=1

[
Γ(απ + βπ)

Γ(απ)Γ(βπ)
παπ−1
b (1− πb)βπ−1

]
×
[
λα exp(−απλα)

exp(−λα)
I(απ > 1)

]
×
[
λβ exp(−βπλβ)

exp(−λβ)
I(βπ > 1)

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

)
×

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
×

Bh∏
b=1

[
β
αγ
γ

Γ(αγ)

(
σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

))]

×

 1√
2πτ 2

γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)
×

[
β
αγ00
γ00

Γ(αγ00)

(
τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

×
Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
Bh∏
b=1

[
βαθθ

Γ(αθ)

(
σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

)]

×

[
1√

2πτ 2
θ00

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)]

×
[
βαθ00θ00

Γ(αθ00)

(
τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

)]
(B.113)
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B.13.1 Complete Conditionals Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

]
×
[(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)] (B.114)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]
×

[
πb I[θbj,h=0] +(1− πb)

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)] (B.115)

[µγb

∣∣∣∣...] ∝
[

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)]
H∏
h=1

kbh∏
j=1

[
exp

(
−(γbj,h − µγb)2

2σ2
γb

)]
(B.116)

Applying Result 2 with µ = µγb, σ
2 = σ2

γb, µ0 = µγ0, σ2
0 = τ 2

γ0, N = H, and

xhj = γbj,h we have:

[µγb

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb + τ 2

γ0

∑H
h=1

∑kbh
j=1 γbj,h

σ2
γb +

∑H
h=1 kbhτ

2
γ0

,
σ2
γbτ

2
γ0

σ2
γb +

∑H
h=1 kbhτ

2
γ0

)
(B.117)
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[µθb

∣∣∣∣...] ∝
[

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

×
H∏
h=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]
(B.118)

Applying Result 4 with µ = µθb, σ
2 = σ2

θb, µ0 = µθ0, σ2
0 = τ 2

θ0, N = H, and

xhj = θbj,h we have:

[µθb

∣∣∣∣...] ∼N

(
µθ0σ

2
θb + τ 2

θ0

∑H
h=1

∑kbh
j=1 θbj,h

σ2
θb +

∑H
h=1 Kbhτ 2

θ0

,
σ2
θbτ

2
θ0

σ2
θb +

∑H
h=1Kbhτ 2

θ0

)
(B.119)

where Kbh =
∑kbh

j=1 I[θbj,h] 6=0.

[σ2
γb

∣∣∣∣...] ∝
[(
σ2
γb

)−αγ−1
exp

(
− βγ(

σ2
γb

))]

×
H∏
h=1

kbh∏
j=1

 1√
σ2
γb

exp

(
−(γbj,h − µγb)2

2σ2
γb

) (B.120)

Applying Result 6 with σ2 = σ2
γb, µ = µγb, xhj = γbj,h, α = αγ, β = βγ, and N = H

gives:

σ2
γb

∣∣∣∣...] ∼ IG

(
αγ +

∑H
h=1 kbh

2
, βγ +

1

2

H∑
h=1

kbh∑
j=1

(γbj,h − µγb)2

)
(B.121)
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[σ2
θb

∣∣∣∣...] ∝ [(σ2
θb

)−αθ−1
exp

(
− βθ

(σ2
θb)

)]
×

H∏
h=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]

σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

∑H
h=1 kbh

2
, βθ +

1

2

H∑
h=1

kbh∑
j=1

(θbj,h − µθb)2

)
(B.122)

Applying Result 8 with α = αθ, β = βθ, µ = µθb, σ
2 = σ2

θb, xhj = θbj,h, and N = H

we have:

σ2
θb

∣∣∣∣...] ∼ IG

(
αθ +

∑H
h=1Kbh

2
, βθ +

1

2

H∑
h=1

kbh∑
j=1

I[θbj,h]6=0(θbj,h − µθb)2

)
(B.123)

where Kbh =
∑kbh

j=1 I[θbj,h] 6=0.

[µγ0

∣∣∣∣...] ∝
[

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)]
Bh∏
b=1

[
exp

(
−(µγb − µγ0)2

2τ 2
γ0

)]
(B.124)

Applying Result 1 with µ = µγ0, σ2 = τ 2
γ0, µ0 = µγ00, σ2

0 = τ 2
γ00, N = Bh, and

xb = µγb we have:

[µγ0

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0 + τ 2

γ00

∑Bh
b=1 µγ,b

τ 2
γ0 +Bhτ 2

γ00

,
τ 2
γ0τ

2
γ00

τ 2
γ0 +Bhτ 2

γ00

)
(B.125)

337



[µθ0

∣∣∣∣...] ∝
[

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)]
Bh∏
b=1

[
exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

[µθ0

∣∣∣∣...] ∼N

(
µθ00τ

2
θ0 + τ 2

θ00

∑Bh
b=1 µθ,b

τ 2
θ0 +Bhτ 2

θ00

,
τ 2
θ0τ

2
θ00

τ 2
θ0 +Bhτ 2

θ00

) (B.126)

[τ 2
γ0

∣∣∣∣...] ∝
[(
τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

))] Bh∏
b=1

 1√
τ 2
γ0

exp

(
−(µγb − µγ0)2

2τ 2
γ0

)
(B.127)

Applying Result 5 with σ2 = τ 2
γ0, µ = µγ0, xb = µγb, α = αγ00, β = βγ00, and

N = Bh gives:

[τ 2
γ0

∣∣∣∣...] ∼ IG

(
αγ00 +

Bh

2
, βγ00 +

1

2

Bh∑
b=1

(µγb − µγ0)2

)
(B.128)

[τ 2
θ0

∣∣∣∣...] ∝ [(τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

)] Bh∏
b=1

[
1√
τ 2
θ0

exp

(
−(µθb − µθ0)2

2τ 2
θ0

)]

[τ 2
θ0

∣∣∣∣...] ∼ IG

(
αθ00 +

Bh

2
, αθ00 +

1

2

Bh∑
b=1

(µθb − µθ0)2

)
(B.129)
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[πb

∣∣∣∣...] ∝ [παπ−1
b (1− πb)βπ−1

]
×

H∏
h=1

kbh∏
j=1

[
πb I[θbj,h=0] +(1− πb) I[θbj,h 6=0]

1√
2πσ2

θb

exp

(
−(θbj,h − µθb)2

2σ2
θb

)]
∝
[
παπ−1
b (1− πb)βπ−1

]
×
[(
π

∑H
h=1

∑kbh
j=1 I[θbj,h=0]

b (1− πb)
∑H
h=1

∑kbh
j=1 I[θbj,h 6=0]

)]
=

[
π
απ+

∑H
h=1

∑kbh
j=1 I[θbj,h=0]−1

b (1− πb)βπ+
∑H
h=1

∑kbh
j=1 I[θbj,h 6=0]−1

]

[πb

∣∣∣∣...] ∼Beta

(
απ +

H∑
h=1

kbh∑
j=1

I[θbj,h=0], βπ +
H∑
h=1

kbh∑
j=1

I[θbj,h 6=0]

)
(B.130)

[απ

∣∣∣∣...] ∝× [exp(−απλα) I[απ>1]

] Bh∏
b=1

[
Γ(απ + βπ)

Γ(απ)
παπ−1
b

]
(B.131)

[βπ] ∝
[
exp(−βπλβ) I[βπ>1]

] Bh∏
b=1

[
Γ(απ + βπ)

Γ(βπ)
(1− πb)βπ−1

]
(B.132)

B.14 Model BB32

The joint posterior distribution is proportional to:
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H∏
h=1

Bh∏
b=1

kbh∏
j=1

[
(eγbj,hCbj,h)

xbj,h e−e
γbj,hCbj,h

xbj,h!

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1


(
e(γbj,h+θbj,h)Tbj,h

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h

ybj,h!


×

H∏
h=1

Bh∏
b=1

[
Γ(απ + βπ)

Γ(απ)Γ(βπ)
παπ−1
b,h (1− πb,h)βπ−1

]

×
H∏
h=1

[
λα exp(−απλα)

exp(−λα)
I(απ > 1)

] H∏
h=1

[
λβ exp(−βπλβ)

exp(−λβ)
I(βπ > 1)

]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

 1√
2πσ2

γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)
×

H∏
h=1

Bh∏
b=1

 1√
2πτ 2

γ0

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
×

H∏
h=1

Bh∏
b=1

[
β
αγ,h
γ,h

Γ(αγ,h)

(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×

 1√
2πτ 2

γ00

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)
×

[
β
αγ00
γ00

Γ(αγ00)

(
τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

))]

×
H∏
h=1

Bh∏
b=1

kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
×

H∏
h=1

Bh∏
b=1

[
1√

2πτ 2
θ0

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

×
H∏
h=1

Bh∏
b=1

[
β
αθ,h
θ,h

Γ(αθ,h)

(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]

×

[
1√

2πτ 2
θ00

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)]

×
[
βαθ00θ00

Γ(αθ00)

(
τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

)]
(B.133)
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B.14.1 Complete Conditional Distributions

[γbj,h

∣∣∣∣...] ∝ [(eγbj,h)xbj,h e−e
γbj,hCbj,h

]
×
[(
e(γbj,h+θbj,h)

)ybj,h
e−e

(γbj,h+θbj,h)Tbj,h
]

×

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)] (B.134)

[θbj,h

∣∣∣∣...] ∝ [(e(γbj,h+θbj,h)
)ybj,h

e−e
(γbj,h+θbj,h)Tbj,h

]

×

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.135)

[µγb,h

∣∣∣∣...] ∝
[

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)]
×

kbh∏
j=1

[
exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

)]
(B.136)

Applying Result 1 with µ = µγb,h, σ
2 = σ2

γb,h, µ0 = µγ0, σ2
0 = τ 2

γ0, N = kbh, and

xj = γbj,h we have:

[µγb,h

∣∣∣∣...] ∼ N

(
µγ0σ

2
γb,h + τ 2

γ0

∑kbh
j=1 γbj,h

σ2
γb,h + kbhτ 2

γ0

,
σ2
γb,hτ

2
γ0

σ2
γb,h + kbhτ 2

γ0

)
(B.137)
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[µθb,h

∣∣∣∣...] ∝
[

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

×
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.138)

Applying Result 3 with µ = µθb,h, σ
2 = σ2

θb,h, µ0 = µθ0, σ2
0 = τ 2

θ0, N = kbh, and

xj = θbj,h we have:

[µθb,h

∣∣∣∣...] ∼N

(
µθ0σ

2
θb,h + τ 2

θ0

∑kbh
j=1 θbj,h

σ2
θb,h +Kbhτ 2

θ0

,
σ2
θb,hτ

2
θ0

σ2
θb,h +Kbhτ 2

θ0

)
(B.139)

where Kbh =
∑kbh

j=1 I[θbj,h] 6=0.

[σ2
γb,h

∣∣∣∣...] ∝
[(
σ2
γb,h

)−αγ,h−1
exp

(
− βγ,h(

σ2
γb,h

))]

×
kbh∏
j=1

 1√
σ2
γb,h

exp

(
−(γbj,h − µγb,h)2

2σ2
γb,h

) (B.140)

Applying Result 5 with σ2 = σ2
γb,h, µ = µγb,h, xj = γbj,h, α = αγ,h, β = βγ,h, and

N = kbh gives:

[σ2
γb,h

∣∣∣∣...] ∼ IG

(
αγ +

kbh
2
, βγ +

1

2

kbh∑
i=j

(γbj,h − µγb,h)2

)
(B.141)
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[σ2
θb,h

∣∣∣∣...] ∝
[(
σ2
θb,h

)−αθ,h−1
exp

(
− βθ,h(

σ2
θb,h

))]
kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
(B.142)

Applying Result 7 with σ2 = σ2
θb,h, µ = µθb,h, xj = θbj,h, α = αθ,h, β = βθ,h, and

N = kbh gives:

[σ2
θb,h

∣∣∣∣...] ∼ IG

(
αθ +

Kbh

2
, βθ +

1

2

kbh∑
i=j

I[θbj,h 6=0](θbj,h − µθb,h)2

)
(B.143)

where Kbh =
∑kbh

j=1 I[θbj,h] 6=0.

[µγ0

∣∣∣∣...] ∝
[

exp

(
−(µγ0 − µγ00)2

2τ 2
γ00

)]
×

H∏
h=1

Bh∏
b=1

[
exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)]
(B.144)

Applying Result 2 with µ = µγ0,h, σ
2 = τ 2

γ0, µ0 = µγ00, σ2
0 = τ 2

γ00, N = H, and

xhb = µγb,h we have:

[µγ0

∣∣∣∣...] ∼ N

(
µγ00τ

2
γ0 + τ 2

γ00

∑H
h=1

∑Bh
b=1 µγb,h

τ 2
γ0,h +

∑H
h=1Bhτ 2

γ00

,
τ 2
γ0τ

2
γ00

τ 2
γ0 +

∑H
h=1Bhτ 2

γ00

)
(B.145)
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[µθ0

∣∣∣∣...] ∝
[

exp

(
−(µθ0 − µθ00)2

2τ 2
θ00

)]
H∏
h=1

Bh∏
b=1

[
exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

[µθ0

∣∣∣∣...] ∼N

(
µθ00τ

2
θ0 + τ 2

θ00

∑H
h=1

∑Bh
b=1 µθb,h

τ 2
θ0 +

∑H
h=1Bhτ 2

θ00

,
τ 2
θ0τ

2
θ00

τ 2
θ0 +

∑H
h=1 Bhτ 2

θ00

) (B.146)

[τ 2
γ0

∣∣∣∣...] ∝
[(
τ 2
γ0

)−αγ00−1
exp

(
− βγ00(

τ 2
γ0

))] H∏
h=1

Bh∏
b=1

 1√
τ 2
γ0

exp

(
−(µγb,h − µγ0)2

2τ 2
γ0

)
(B.147)

Applying Result 6 with σ2 = τ 2
γ0, µ = µγ0, xbj = µγb,h, α = αγ,00, β = βγ,00, and

N = H gives:

[τ 2
γ0

∣∣∣∣...] ∼ IG

(
αγ00 +

∑H
h=1 Bh

2
, βγ00 +

1

2

H∑
h=1

Bh∑
b=1

(µγb,h − µγ0)2

)
(B.148)

[τ 2
θ0

∣∣∣∣...] ∝ [(τ 2
θ0

)−αθ00−1
exp

(
− βθ00

(τ 2
θ0)

)] H∏
h=1

Bh∏
b=1

[
1√
τ 2
θ0

exp

(
−(µθb,h − µθ0)2

2τ 2
θ0

)]

[τ 2
θ0

∣∣∣∣...] ∼ IG

(
αθ00 +

∑H
h=1 Bh

2
, βθ00 +

1

2

H∑
h=1

Bh∑
b=1

(µθb,h − µθ0)2

)
(B.149)
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[πb,h

∣∣∣∣...] ∝ [παπ−1
b,h (1− πb,h)βπ−1

]
×

kbh∏
j=1

πb,h I[θbj,h=0] +(1− πb,h) I[θbj,h 6=0]
1√

2πσ2
θb,h

exp

(
−(θbj,h − µθb,h)2

2σ2
θb,h

)
∝
[
παπ−1
b,h (1− πb,h)βπ−1

] [(
π

∑kbh
j=1 I[θbj,h=0]

b,h (1− πb,h)
∑kbh
j=1 I[θbj,h 6=0]

)]
=

[
π
απ+

∑kbh
j=1 I[θbj,h=0]−1

b,h (1− πb,h)βπ+
∑kbh
j=1 I[θbj,h 6=0]−1

]

[πb,h

∣∣∣∣...] ∼Beta

(
απ +

kbh∑
j=1

I[θbj,h=0], βπ + kbh −
kbh∑
j=1

I[θbj,h=0]

)
(B.150)

[απ

∣∣∣∣...] ∝ [exp(−απλα) I(απ>1)

] H∏
h=1

Bh∏
b=1

[
Γ(απ + βπ)

Γ(απ)
παπ−1
b,h

]
(B.151)

[βπ

∣∣∣∣...] ∝ [exp(−βπλβ) I[βπ>1]

] H∏
h=1

Bh∏
b=1

[
Γ(απ + βπ)

Γ(βπ)
(1− πb,h)βπ−1

]
(B.152)
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Appendix C

Model Tuning and Monitoring

Convergence

C.1 Approach to Determining Approximate

Convergence

In order to make inferences from Markov Chain Monte Carlo (MCMC) based mod-

els, such as those used in this study, the samples generated must have converged,

at least approximately, to the Markov chain’s stationary distribution [122]. There

is no definitive diagnostic tool for assessing MCMC convergence but there are a

number of approaches, both graphical and numerical, which may indicate non-

convergence to stationarity. Assessing convergence of the MCMC fit by graphical

means is suitable for a small number of parameters. However given the large num-

ber of parameters in the models in this study, and the large number of simulations,

it is not feasible to inspect them all visually, and a more general approach is needed.

In this study the Gelman-Rubin (GR) convergence diagnostic is the method cho-

sen to assess convergence for the general simulations where applicable [122]. This

statistic can be considered to provide a measure of similarity between the parallel

chains when they start from over-dispersed initial values. Values close to 1 are con-

sidered to be consistent with convergence and Gelman et al. ([122, pg. 501]) use a

check that the values are less than 1.2, while Kenneth ([153]) suggests a value of

less than 1.1, when monitoring for convergence. While checking this statistic may

indicate issues with convergence, it does not in itself indicate that the MCMC

simulation has converged.

When using the GR statistic to assess the convergence of the θ parameters in

models with a point-mass we need to consider how the point-mass may influence

the statistic. The GR statistic is based on the means and variances of the gen-

erated MCMC samples and may not work as well for distributions which are far
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from normal [122], which is the case for the θ parameters in the point-mass mod-

els. These parameters are absolutely continuous with respect to a mixture of the

Lebesgue measure and a point-mass at zero. In this case transformation of the

data to approximate normality is not an option, so we consider the GR statistic

only as an assessment of a level of similarity between the different chains, which

we might expect to see at approximate convergence. If we consider the case of ad-

verse events where there is no difference between the control and treatment arms,

we may expect that the chains in the simulation will contain mostly zeros. This

means that only a small number of the samples actually contribute to the variabil-

ity within the chains, and that differences between chains as measured by the GR

statistic will thus be dependent on a small number of values, the number of chains

and their lengths. Consequently, we should be careful about over-interpreting the

GR statistic for the θ parameters for point-mass models. When dealing with a

single data set a graphical assessment is a possible alternative, but for the large-

scale simulations in this study where this is not an option we have chosen the

GR statistic as a guide while acknowledging the above considerations. Another

potential issue which may arise when fitting the θ parameters in the point-mass

model is that it can be difficult to distinguish when the simulation is remaining

at zero due to no differences between treatment and control, or if the model fit is

not functioning correctly. For individual simulations we can investigate the fitting

process by varying the simulation parameters and the sampling initial values to

see what effect this has on the fit.

The general approach taken in Chapters 5 and 7 is to estimate a burn-in period and

total number of iterations for the simulations, based on a number of preliminary

runs, and then use this for all simulations. The inital values for the Markov chain

may be highly dispersed and the chain may start and remain in a low probability

region for a number of iterations. The burn-in period is used to allow the Markov

chain to enter a higher probability region where the samples drawn should provide

better approximations of the underlying distributions. If the GR statistics reported

were less than 1.2 we considered the simulation to have reached approximate con-

vergence. Simulations with larger GR statistics had their parameters tuned and

were re-run until all the GR statistics were less than 1.2. The default numbers of

chains, burn-in period, and total iterations in each chain are given in Table A.3.
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C.2 Tuning Model Fitting Parameters

For MH sampling, using a normal proposal distribution centred on the current

value, the variance (σ2
MH) of the proposal must be supplied and tuned. For slice

sampling a width parameter (w) is required and also, if chosen, a control parameter

(m) [124]. For the simulation study in Chapter 5 a single parameter was generally

suitable for all distributions of a particular type. The global values used in the

simulations and demonstration analyses are given in Tables A.4 and A.5.

Generally, when using MH sampling, acceptance rates should be monitored with

target acceptance rates of between 25% and 50% considered as optimal, depending

on the dimensionality of the problem, for distributions absolutely continuous with

respect to the Lebesgue measure [154]. For the MH steps as we have implemented

them, the variance (σ2
MH) controls how the next candidate is sampled. We may

consider how this affects the acceptance rate in non-point mass models for the

parameter θ. If there is no difference between treatment and control then we expect

that θ should be close to 0. If the variance (σ2
MH) is too large then many candidates

will not be close to 0 and may be rejected. Conversely, if there is a difference

between treatment and control, and σ2
MH is too small, then the proposal may not

adequately explore the domain of the target distribution.

For the case of point-mass models where the θ distributions are not absolutely

continuous with respect to the Lebesgue measure, target acceptance rates are

more difficult to assess. When considering proposal distributions for MH sampling

there is the possibility of changing the weightings given to the mixture of the

point-mass and normal distribution which, by default, is 0.5. With the default

weightings, in the case where θ is actually non-zero approximately half of the

proposed values will be zero and these may be rejected, especially if the difference

between treatment and control is large, driving down the overall acceptance rate,

with a similar problem when θ is actually zero but approximately 50% of the

proposed values are non-zero. Further, we can consider that when there is no

difference between treatment and control the possibility exists that most of the

proposed zeros will be accepted. In this case the only way to control the acceptance

rates for proposed zeros is by changing the weightings of the proposal distributions.

To counter these sorts of issues the implementation allows both the MH variance

(σ2
MH), and the proposal point-mass weightings, to be overridden on a parameter

by parameter basis.
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C.3 Simulation Study

For the simulation study in Chapter 5 model c212.1a used three parallel chains of

40000 iterations, with the first 10000 iterations considered to be burn-in. Model

c212.BB also used three parallel chains, but in this case of 60000 iterations with

a 20000 burn-in period. The samples were not thinned [155]. The global defaults

were generally suitable for all distributions of a particular type, particularly for the

c212.1a models, but these global values were occasionally overridden by individual

parameter values to improve model fit.

C.3.1 Individual Simulations

For the individual simulations described in §5.5.1, the Gelman-Rubin (GR) statis-

tics from the models overall were consistent with MCMC convergence. For the

c212.1a model with slice sampling just one simulation had a GR statistic greater

than 1.2, with the largest value being 1.276755. For the model with MH sam-

pling just two simulations had GR statistics exceeding 1.2, with the maximum GR

statistics in these cases being 1.242543 and 1.273888. For the more complicated

c212.BB model the GR statistic exceeded 1.2 in a maximum of 42 of the simula-

tions (out of a possible 6000), with the maximum value being 1.294176. The vast

majority of GR statistics in all simulations were less than 1.1.

Figures C.1, C.2 show the posterior distributions and traceplots for the single

adverse event in body system 1 (AE1), and the fifth adverse event in body system

3 (AE10), for a number of different simulations. In Figure C.1a, a large trial with

a high increase in treatment rate, we can see that for c212.1a the posterior for θ

for AE1 remains roughly centred at zero, whereas for AE10 it is almost entirely

greater than zero. For the equivalent c212.BB plots (Figure C.2a) the posterior

distribution for AE1 is effectively a point-mass at zero, whereas the posterior for

AE10 is very similar to that for c212.1a. For the smaller trial with low increase in

treatment rate for c212.1a (Figure C.1b) the posterior for AE1 is centred about 0

and for AE10 it looks to be centred about a negative value, the equivalent c212.BB

posteriors (Figure C.2b) are effectively point-masses. This is not too surprising, for

the smaller trial with low increased treatment event rate the models have trouble

determining significant events. The plot for AE10 in Figure C.2a is not as smooth

at that in Figure C.1a. We know from the parameters for the simulation that there

is a large increase in the adverse event rate under treatment. Using a Metropolis-

Hastings step with a proposal which gives equal weightings to both sides of the
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mixture will, in this case, lead to many of the proposed zero values being rejected,

and this contributes to lack of smoothness in the plot. A solution to this would be

a re-weighting of the proposal distribution.
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Figure C.1. c212.1a: Traceplots and posterior distributions for θ.
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Figure C.2. c212.BB: Traceplots and posterior distributions for θ.
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C.3.2 All Simulations

Overall, for all the simulations considered in Chapter 5, the Gelman-Rubin statis-

tics were largely consistent with convergence. For model c212.1a (MH) 119 sim-

ulations had GR statistics which exceeded 1.2, with the maximum value being

1.300655. For c212.1a (SLICE) 109 simulations had statistics which exceeded 1.2,

the largest being 1.276755. For c212.BB 2109 simulations had statistics which ex-

ceeded 1.2, with the maximum value being 1.746533. To put this in perspective,

there are 5121000 sets of parameters families (θbj, γbj, ...) in the total c212.BB sim-

ulations, of which 2536 had a GR statistic greater than 1.2, covering 2109 separate

simulations out of a total of 253500.

C.4 Lapatinib and Capecitabine versus

Capecitabine in Women with Refractory

Advanced or Metastatic Breast Cancer

In this section we look at the model fit for BB21 for the GSK trial results presented

in §7.10. With the default parameters for BB21, the largest reported GR statistic

is 1.453476 for the θ parameter for the adverse event Weight increased in the

Investigations body-system. The MH acceptance rates are between 15% and 68%.

A traceplot for the data excluding the burn-in period is shown in Figure C.3.
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Figure C.3. Traceplot and posterior distribution for Weight increased with de-
fault simulation parameters.
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We can see that while most of the simulated samples are gathered about 0, there

are some quite significant departures for some of the chains, with some remaining

in low probability regions for prolonged periods, and overall poor mixing. Even

with this behaviour, the Top 10 adverse events by posterior probability are very

nearly identical to those in Table 7.84, with only slight variation in the posterior

probability values. Making a number of changes to the overall global defaults, and

to a number of parameter specific values, and fitting the model again, gives an

overall maximum GR statistic value 1.091287, and for Weight increased the GR

statistic was 1.018458. The MH acceptance rates are now between 27% and 62%.

The traceplot of the chains is shown in Figure C.4. With the updated simulation

parameters the traceplot exhibits improved mixing and the chains do not remain

in lower probability regions for as long as in the default parameter case. Further

tuning is possible, but overall this traceplot may be considered to show consistency

with approximate convergence. This fit of the model was used to generate the Top

10 adverse events reported in Table 7.84.
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Figure C.4. Traceplot and posterior distribution plot for Weight increased with
updated simulation parameters.

Increasing the number of chains from 5 to 10, and the number of iterations from

60000, with a burn-in of 20000, to 200000 with a burn-in of 40000, does not make

any significant difference to the model outputs. For this case the traceplot for

Weight increased is given in Figure C.5. The MH acceptance rates remain between

27% and 62%, and the Top 10 adverse events are almost identical to those in Table

7.84.
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Figure C.5. Traceplot for Weight increased with 10 chains and increased itera-
tions.

C.5 Demonstration Interim Analyses

For the 1a models in the demonstration interim analyses in Chapter 7, we ran three

parallel chains of 40000 iterations, with the first 10000 iterations considered to be

burn-in. The BB model fitting consisted of five parallel chains with 60000 iterations

and a 20000 burn-in period. As in the simulation study (§C.3) the samples were

not thinned [155].

The point-mass models always use Metropolis-Hastings sampling for the θ vari-

ables, and in this case it is also possible to monitor the MH acceptance rates for the

sampler. For the purposes of this demonstration analysis we considered MH accep-

tance rates greater than 15% to be acceptable. Due to the much larger number of

parameters in the interim analysis models, and their more complex relationships,

it was expected that, at least for the BBhl models, the default parameters in Table

A.5 would have to be overridden.

Overall, for the 1ahl models using the values from Table A.5 the largest Gelman-

Rubin statistic was 1.116676. For the BBhl model fitting a number of the global

parameters in Table A.5 were overridden to enable better fit. In this case the largest

Gelman-Rubin statistic was 1.199224. The acceptance rates for the MH sampler

for the θ parameters varied between 15% and 75%, with most being between 20%

and 60%. Overall these results are consistent with model convergence.

353



C.6 Sensitivity Analysis

C.6.1 Low Background Event Rate

For the 1a models a number of the defaults in Table A.5 had to be overridden.

The largest Gelman-Rubin statistic was 1.195431, with the vast majority being

under 1.1. For the BBhl models with the default parameters most of the Gelman-

Rubin statistics were under 1.2, but a small number did not converge using the

default parameters values from Table A.5. This was particularly evident early in

the trials when few events had occurred. This required that adjustments be made

to the simulation parameters. With the overridden parameter values the largest

Gelman-Rubin statistic was 1.199963, with MH acceptance rates ranging from 17%

to 70%.

For example, with the default parameters, a model fit from the low background

event rate analysis (§7.8.3.1) for model BB21 produced a maximum GR statistic

1.569185 for the θ model parameter for Adv 131 in the interval 1260.0-1440.0. The

traceplot is shown in Figure C.6 where we can see that one of the chains remains

in a low-probability region for a prolonged period.
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Figure C.6. Traceplot for Adv 131 in interval 1260 - 1440 with default simulation
parameters.

After tuning, the GR statistic for this parameter reduced to 1.074047, and the

overall mixing improved. The traceplots are shown in Figure C.7. A number of the
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chains remain in low probability regions for small numbers of iterations and while

it is likely that further parameter tuning could yield quicker convergence, overall

this traceplot is acceptable. Running the simulation with additional numbers of

iterations (100000 in total, 20000 burn-in) (Figure C.8) yields a smaller GR statis-

tic for the parameter (1.027956), but still gives a very similar traceplot with no

chains remaining in low probability regions for long numbers of iterations.
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Figure C.7. Traceplot for Adv 131 in interval 1260 - 1440 with tuned simulation
parameters.
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Figure C.8. Traceplot for Adv 131 in interval 1260 - 1440 with tuned simulation
parameters and additional iterations.
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C.6.2 Mixed Background Event Rates

For the 1a models, as in the low frequency case, a number of the defaults in Table

A.5 had to be overridden. The largest Gelman-Rubin statistic was 1.190395, with

the vast majority being under 1.1. For the BBhl models with the default parameters

a number of the simulations did not converge using the default parameter values

from Table A.5. Once adjustments were made to the simulation parameters the

largest Gelman-Rubin statistic was 1.199455, with MH acceptance rates ranging

from 15% to 75%.

C.7 Summary

The tuning of simulation parameters may be necessary to ensure approximate

convergence is achieved in a reasonable period of time, particularly when perform-

ing large numbers of simulations. For the c212.1a, c212.BB, and 1ahl models this

is generally a straightforward procedure, with most of the simulations achieving

convergence using the default global values, or common sets of values for partic-

ular types of simulations. For the BBhl models this is less straightforward due

to the existence of the point mass, the larger number of parameters, and their

interdependent relationships. Unfortunately there is no straightforward globally

applicable procedure to easily determine a set of simulation parameters suitable

for any particular model and data set.
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Appendix D

Grouped FDR Controlling

Methods

D.1 Controlling Error Rates for DFDR

Any 2-STEP FDR controlling procedure as described in §2.3.2.5 controls the FDR

at level α. This follows trivially by conditioning on the included families. Referring

to Table 2.1, if PR is such a procedure used to select a set of families F , then

assuming the conditions in [31] are met we have:

FDRPR

∣∣∣∣F = E

[
FDP

∣∣∣∣F] = E

[
V

R

∣∣∣∣F] ≤ mF
0

|F |
α ≤ α

where mF
0 is the number of true hypotheses in F and by taking expectations we

have:

FDRPR ≤ α

Unlike applying the BH-procedure, where we have control at level m0

m
α, the actual

level of control of the FDR is dependent on the distribution of the random set F .

We could consider an approach to increasing the power by estimating mF
0 and |F |

which may allow control of the conditional FDR at level α as opposed to
mF0
|F | α.

Although this is not investigated in this study, it is not dissimilar to the GBH

approach to weighting p-values as discussed in §2.6, and to the approach in [43].

D.1.1 Large Body-System Properties for the DFDR

Under Independence Assumptions

While the DFDR controls the FDR at both the group and overall level, there are

currently no asymptotic results for the DFDR method with regard to power, but

we can give some indication that the behaviour becomes stable even as the sizes

of the groups increases.
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One key element of the DFDR compared to the BH-procedure is the desire to ex-

clude groups containing only true null hypotheses from the final set of hypotheses,

F . This is controlled by the body-system representative p-value. Mehrotra and

Adewale considered a number of alternative possibilities for the choice of body-

system representative p-value [3] for a group g of hypotheses of size kg, including

kgpg(1), which is the original DFDR representative p-value, weighted by the body-

system size.

If we let g be a group of size kg > 1, where all the null hypotheses are true, and let

gp be the corresponding p-values. Then if pgi ∈ gp we have pgi ∼ U(0, 1), at least

approximately (and exactly for continuous test statistics).

Assuming (approximate) independence of the p-values in group g, the lth order

statistic is Beta(l, kg + 1− l) with

E

[
kg
l
pg(1)

]
=
kg
l

l

kg + 1
=

kg
kg + 1

The body-system representative p-value for the DFDR may be defined as:

P ∗g = min

(
kgpg(1),

kg
2
pg(2), . . . , pg(kg)

)
(D.1)

and we can investigate the behaviour of P ∗g , as the body-system size increases,

with a small simulation study.

The results in Table D.1 gives the estimated expected value of P ∗g as the body-size

increases where, at each body-system size, the set of random variables

kgpg(1),
kg
2
pg(2), . . . , pg(kg)

was sampled 20,000 times, and the minimum of each set of samples recorded. The

estimated expected value of P ∗g is the mean of the recorded minimum values.

The results indicate that the expectation of the representative p-value does not

decay to 0 as it does in the original DFDR, or approach 1, as it would do theoret-

ically if kgpg(1) was used as the representative p-value, but remains stable as the

body-system size increases. This agrees with Mehrotra and Adewale’s assertion

that their chosen p-value is more powerful than kgpg(1) in the sense that it may be

less restrictive.
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Body-System Size (kg) Estimated Expected Value of P ∗g

10 0.206655

100 0.237527

1000 0.250395

10000 0.255120

100000 0.258390

Table D.1. DFDR representative p-value as body-system size increases for body-
systems containing only true null hypotheses.

This indicates that the probability of including a set which contains only true

null hypotheses is controlled, at least in the case of independent or approximately

independent test statistics, and that this behaviour is maintained as the sizes of

the groups increase, leading to a potential increase in power over the standard

BH-procedure. We will see this is the case in the simulation below (Table D.9).

D.2 Comparison of DFDR and GBH using

Simulated Data

As discussed in §2.6 the Double False Discovery Rate (DFDR) and Group Benjamini-

Hochberg (GBH) methods have some similar characteristics. The main purpose of

this simulation is to examine the DFDR and GBH particularly with regard to the

discussion in §2.6, and also to investigate the asymptotic properties of the DFDR

(§D.1.1). In order to do this we look at the relative performance of these methods,

the Benjamini-Hochberg (BH) procedure, and hypothesis testing unadjusted for

multiplicities (NOADJ), when different proportions of adverse events have raised

treatment rates within a body-system, and when the number of adverse events in

each body-system becomes large but the proportion of adverse events with raised

rates remains the same.

We are interested in the number of events correctly identified by the methods as

having raised treatment rates, the number of type-I errors, and also the power of

the DFDR as the body-system size increases.

D.2.1 Simulation Definition

We consider a Medium size trial (Table 5.3) with B body-systems and raised ad-

verse events in one body-system, k, only. The proportion of events with raised
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rates in k is q. We consider four body-system sizes: 10, 20, 50, and 100. The back-

ground probability of an adverse event occurring is p1, the probability of a raised

treatment rate adverse event occurring is p2. The details of the simulations and

parameter values are given in Table D.2.

Simulation
Name

B k q
Body-system
Size

p1 p2

LBS0 10 3 0 10, 20, 50, 100 0.047 0.047

LBS1 10 3 0.1 10, 20, 50, 100 0.047 0.052, 0.076, 0.12

LBS2 10 3 0.5 10, 20, 50, 100 0.047 0.052, 0.076, 0.12

LBS3 10 3 0.9 10, 20, 50, 100 0.047 0.052, 0.076, 0.12

LBS4 10 3 1 10, 20, 50, 100 0.047 0.052, 0.076, 0.12

Table D.2. Large body-system simulation parameter values.

Each simulation is repeated 500 times.

D.2.1.1 Adverse Events with Raised Treatment Rates

The total number of adverse events with raised treatment rates is given in the Table

D.3. For example, for LBS2 we have 10 body-systems each containing 10, 20, 50, or 100

adverse events. There are 3 choices for p2 and each simulation is repeated 500 times

giving:

10× (10 + 20 + 50 + 100)× 3× 500 = 2700000

adverse events in total. A proportion of 0.5 adverse events in body-system 3 have

raised treatment rates:

(10 + 20 + 50 + 100)× 0.5× 3× 500 = 135000
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Simulation
Name

Raised Rates1 Total Events2

LBS0 0 900000

LBS1 27000 2700000

LBS2 135000 2700000

LBS3 243000 2700000

LBS4 270000 2700000

Total 675000 11700000

Table D.3. Adverse events totals - all simulations
1 Total number of adverse events with raised treatment rates in

the simulation.
2 Total number of adverse events in the simulation.

D.2.2 Results Summary

The overall results of the simulation are given in Table D.4. We used a significance

level of 5% for BH and NOADJ, and 5% and 10% for DFDR and GBH. We can

see that overall both the DFDR and GBH have performed better than the BH-

procedure and the GBH is also the most powerful method, in agreement with

[3], although because the simulations include tests where the known differences

between control and treatment is small, overall the power is low. The Type-I error

rate is inflated for the GBH compared to the other methods, at the 5% level it is

more than 4 times that of the equivalent DFDR method, although still well below

the nominal significance level.

Looking at the individual simulations we can see that in terms of correctly identi-

fying significant adverse events that the GBH outperforms the DFDR at the same

level in each simulation, but at the cost of a higher Type-I error rate. At the higher

10% significance level, recommended in [3], the Type-I error rate for GBH can be

as high as 7 times that of DFDR (Table D.7).

Comparing LBS3 and LBS4, where we go from a proportion of 0.9 to 1.0 of signif-

icant events in body-system 3, we can see that there is both a reduction in overall

total number of Type-I errors and the Type-I error rate for GBH as anticipated

in §2.6. There is also a reduction in Type-I error for DFDR but, as might be ex-

pected, an increase for the BH-procedure, which does not have a group effect. The

GBH performs best when we can group likely significant events into groups such
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as by a cluster analysis in the gene expression experiment described in [30].

Method Correct1 Type-I2 Type-II3 Raised4

Rates
Total5

Events

BH 192519(28.52%) 6262(0.06%) 482481(71.48%) 675000 11700000

DFDR(5%) 235685(34.92%) 2636(0.02%) 439315(65.08%) 675000 11700000

DFDR(10%) 262675(38.91%) 6317(0.06%) 412325(61.09%) 675000 11700000

GBH(5%) 262547(38.90%) 12128(0.11%) 412453(61.10%) 675000 11700000

GBH(10%) 301698(44.70%) 27673(0.25%) 373302(55.30%) 675000 11700000

NOADJ 315955(46.81%) 384998(3.49%) 359045(53.19%) 675000 11700000

Table D.4. Overall results.
1 The total number of adverse events with raised rates that were correctly identified by the

method as having a raised rate.
2 The total number of adverse events without raised rates that were (incorrectly) identified

by the method as having a raised rate.
3 The total number of adverse events with raised rates that were not identified by the model

as having a raised rate.
4 Total from Table D.3.
5 Total from Table D.3.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

BH 5908 (21.88%) 359(0.01%) 21092(78.12%) 27000 2700000

DFDR(5%) 7757(28.73%) 525(0.02%) 19243(71.27%) 27000 2700000

DFDR(10%) 8342(30.90%) 1203(0.05%) 18658(69.10%) 27000 2700000

GBH(5%) 8349(30.92%) 1996(0.07%) 18651(69.08%) 27000 2700000

GBH(10%) 9128(33.81%) 4383(0.16%) 17872(66.19%) 27000 2700000

NOADJ 12652(46.86%) 93255(3.49%) 14348(53.14%) 27000 2700000

Table D.5. LBS1 Results.
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Method Correct Type-I Type-II
Raised
Rates

Total
Events

BH 36758(27.23%) 1300(0.05%) 98242(72.77%) 135000 2700000

DFDR(5%) 44808(33.19%) 1094(0.04%) 90192(66.81%) 135000 2700000

DFDR(10%) 48407(35.86%) 2538(0.10%) 86593(64.14%) 135000 2700000

GBH(5%) 48922(36.24%) 3412(0.13%) 86078(63.76%) 135000 2700000

GBH (10%) 54051(40.04%) 7604(0.30%) 80949(59.96%) 135000 2700000

NOADJ 63336 (46.92%) 89335(3.48%) 71664(53.08%) 135000 2700000

Table D.6. LBS2 Results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

BH 70481(29.00%) 2139(0.09%) 172519(71.00%) 243000 2700000

DFDR(5%) 86014(35.40%) 639(0.03%) 156986(64.60%) 243000 2700000

DFDR(10%) 96431(39.68%) 1570(0.06%) 146569(60.32%) 243000 2700000

GBH(5%) 96432(39.68%) 4549(0.19%) 146568(60.32%) 243000 2700000

GBH(10%) 111386(45.84%) 11172(0.45%) 131614(54.16%) 243000 2700000

NOADJ 113839(46.85%) 85843(3.49%) 129161(53.15%) 243000 2700000

Table D.7. LBS3 Results.

Method Correct Type-I Type-II
Raised
Rates

Total
Events

BH 79372(29.40%) 2388(0.10%) 190628(70.60%) 270000 2700000

DFDR(5%) 97106(35.97%) 300(0.01%) 172894(64.03%) 270000 2700000

DFDR(10%) 109495(40.55%) 846(0.03%) 160505(59.45%) 270000 2700000

GBH(5%) 108844(40.31%) 1562(0.06%) 161156(59.69%) 270000 2700000

GBH(10%) 127133(47.09%) 3292(0.14%) 142867(52.91%) 270000 2700000

NOADJ 126128(46.71%) 84915(3.49%) 143872(53.29%) 270000 2700000

Table D.8. LBS4 Results.

From §D.1.1 we expect that as the number of adverse events in each body-system

increases the DFDR will maintain its power. In Table D.9 we can see that the

estimated power for the DFDR at the 5% level does remain relatively constant as
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the body-system sizes increase confirming our expectations.

Body-System
Size

Correct Type-II
Raised
Rates1

Estimated
Power

10 13104 24396 37500 0.349

20 26126 48874 75000 0.348

50 65386 122114 187500 0.349

100 131069 243931 375000 0.350

Table D.9. DFDR power as body-system size increases.
1 For each body-system size, n, the number of events with raised treatment rates is given

by: n× 3 × 500 × (0 + 0.1 + 0.5 + 0.9 + 1). There are 3 different values of p2 (Table
D.2), 500 repeated simulations, and 0, 0.1, 0.5, 0.9 and 1 are the proportions of events with
raised treatment rates in body-system 3.

D.2.3 Conclusions

As with the main simulation study in Chapter 5 we can see that for this data both

DFDR and GBH control the Type-I error rate very tightly, with DFDR providing

better overall control, and GBH being the more powerful of the two methods, with

GBH using a 5% significance level comparable to DFDR at the 10% level. The

DFDR maintains its power as the body-system sizes increase (Table D.9), which

we expect from D.1.1.
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Appendix E

Trial Adverse Event Simulation
The generation of the simulated trial data used in Chapter 7 is described in this

appendix. There are two parts to the simulation, patient recruitment, and event

generation.

E.1 Simulating Patient Recruitment

Patients are recruited to each arm of the trial according to a Poisson process up

to a maximum number of patients. The recruitment rates used in Chapter 7 are

given in Table 7.1.

E.2 Simulating Adverse Event Data

Apart from the data in §7.8.4, the adverse events are simulated by choosing an un-

derlying overall adverse event rate for the trial (Tables 7.6, 7.68), with the adverse

event rate in each particular body-systems being a random sample from a normal

distribution whose mean is this overall rate. The standard deviation of the normal

distribution used in the simulation is given in Table E.1. The data in §7.8.4 used

a combination of normal centred samples from the rates in Tables 7.6 and 7.68

as the adverse event background rates, with the adverse events with higher rates

given in Table 7.75.

Parameter Value Description

σ 0.0001
The standard deviation of the normal
distribution used when sampling from
the adverse event background rates.

Table E.1. Interim analysis trial simulation parameters.

As part of the simulation we also specify which adverse events on the treatment
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arm will have increased rates compared to the control, the size of the increase, and

the intervals over which the rates are increased (Tables 7.5, 7.7, 7.70, 7.77).

Once the adverse event rates have been established, the simulated event data is

generated by a marked or compound inhomogeneous Poisson process. Each indi-

vidual adverse event generated by the simulation process is independently assigned

a severity from 1-5, corresponding to the NCI CTCAE severities (Table 1.1), based

on a predefined probability of occurrence (Table 7.4). If λ(t) is the intensity or rate

function of the Poisson process we let:

λ̄ = max
t∈[0,1800]

λ(t)

and proceed as follows:

1. For each subject in the trial generate events according to a Poisson process

with rate: λ̄.

2. If an event is generated at time T ∗, generate u ∼ U(0, 1). Accept the event

as belonging to the process if λ(T ∗)
λ̄

< u.

3. Assign a severity to the event with the probabilities from Table 7.4.

4. If an event has severity 5 no further events are generated for that subject for

any adverse event.

Where the rates are constant within the intervals, as it is in Chapter 7, λ(t) is a

step-function.
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Appendix F

Table of Methods
A number of the methods reviewed in Chapter 2 and 3, representing the different

modelling or error controlling approaches to safety data, are summarised in the

Table F.1. The headings in the table are as follows:

1. Reference: The authors and references to the paper originating the methods.

2. Data: The type of data the method uses, e.g. adverse event count data.

3. Model/Method Type: The method may be a model (parametric, non-parametric,

etc.) or a statistical procedure.

4. Error Control: The method may control error rates.

5. Body-system: The method may be suitable for use with body-systems.

6. Subgroupings: The method may allow the data (population) to be divided

into subgroupings, for example by covariates.

7. MCP (Multiple comparison procedure): The method may control for multiple

comparisons.

8. Censored Data: The method may be suitable for analysing censored data.
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[136] Annick Joëlle Nembot Simo. Approximation de la distribution a posteriori
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