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Abstract

Image super-resolution is the process of creating a high-resolution image from a

single or multiple low-resolution images. As one low-resolution image can yield

several possible solutions for high-resolution images, image super-resolution is

an ill-posed reversed problem. Deep learning-based approaches have recently

emerged and blossomed, producing state-of-the-art results in image, language,

and speech recognition areas. Thanks to the capability of feature extraction and

mapping, it is very helpful to predict the details lost in the low-resolution image.

In real-world problems, however, there are many existing factors that significantly

affect the super-resolution results, including the model design, characteristics of

a low-resolution image, and how features are exploited or combined from given

data. This thesis focuses on improving the quality of image reconstruction using

CNN-based models by tackling three problems or weaknesses in existing models

and algorithms. First, the commonly used skip connection proposed in ResNet

lacks discriminative learning ability for image super-resolution. It ignores the

fact that natural images have a lot of structure, i.e., strong correlations between

neighboring pixels, and some information is more important to predict HR im-

ages than others. The second problem that appears in image fusion CNN-based

models is inadequately fusing features from multiple sources as well as a lack

of regularisation for improving the generality of fusion-based models. Finally, a

gradient regularisation approach has recently been proposed to improve the con-

vergence of GAN but has shown instability during training. Hence, addressing
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this issue of instability in this method will contribute to a super-resolution area

that incorporates GAN.

Initially, contributions are introduced for a single image super-resolution us-

ing a novel highway connection-based architecture. The new highway connection,

which composes of a non-linear gating mechanism, has efficiently learned differ-

ent hierarchical features and recovered much more details in pixel-wise based

image reconstruction. Besides, the introduced highway connection-based model

can achieve faster and better convergence, which is less prominent in training

problems than those using common skip connections in the well-known residual

neural networks.

Second, a deep learning-based framework has been developed for enhancing

the spatial resolution of the low-resolution hyperspectral image (Lr-HSI) by fus-

ing it with the high-resolution multispectral image (Hr-MSI). To tackle the ex-

isting discrepancy in spectrum range and spatial dimensions, multi-scale fusion

is proposed to efficiently address the disparity in spatial resolution between two

source inputs. Furthermore, an auxiliary unsupervised task is proposed, which

acts as an additional form of regularisation to further improve the generalisation

performance of the supervised task.

Finally, the parameter-free framework that adaptively adjusts the strength of

gradient regularisation is proposed to improve the stability and performance of

Generative Adversarial Networks. The method proposes automatically differenti-

ating the strength of the regulariser based on the difference in the discriminator’s

behaviour off the convergence point.

In summary, the outcome of this thesis makes contributions to the deep

learning-based super-resolution community by proposing one architecture for sin-

gle image super-resolution, one fusion-based framework for HSI super-resolution

and one adaptive method for gradient regularisation in the Generative Adversar-

ial Network. The novelty and robustness of the proposed methods have been fully
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demonstrated by extensive experiments. The quantitative results are compared

to the state-of-the-art, and thus give the potential to many users of signal and

image analysis to improve the resolution of their final outputs.
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Chapter 1

Introduction

1.1 Motivation and aims

Image resolution describes the level of details contained in an image. The higher

the resolution, the higher the quantity of information or precision in the im-

age. The image resolution is first limited by the density of sensing elements in

the imaging acquisition device. The higher the number of sensor elements per

unit area, the higher the resolution of an imaging system can gain. Image res-

olution is also affected by the optical lens, where diffraction limit, aberration,

and defocusing can lead to image degradation. To increase the image resolution,

one straightforward way is to increase the density of the sensor and construct

high-quality optical components. The imaging devices necessary to acquire very

high-resolution images, therefore, are prohibitively expensive and not practical

in most real applications, such as security surveillance cameras and cell phones.

The super-resolution (SR) term is generally applied to the problem of overcom-

ing the physical constraints of imaging systems by employing image processing

algorithms that are reasonably inexpensive to implement. Basically, image SR

is a process to obtain a high-resolution (HR) image from one or multiple low-

resolution (LR) images. In other words, image SR aims to estimate the high-
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resolution details that are missing in the original image. In recent years, image

SR has attracted increasing attention for its wide range of applications, including

medical imaging [1, 2], scene recognition [3], security surveillance imaging [4, 5],

remote sensing [6], object detection [7, 8], and facial recognition [9, 10], among

many others.

Image SR aims to solve an ill-posed inverse problem, as multiple high-resolution

images can be reduced to the same LR image. Aggregation from multiple images

that are captured the same scene is a plausible approach to producing a single

high-resolution image. This approach refers to image fusion-based SR, which

requires performing image registration for aligning the low-resolution images, de-

termining the sensor’s properties, and regularising the possible solution using a

priori information from the image class. Unfortunately, all information is not

usually available for image fusion, except for low-resolution images. Single image

super-resolution, on the other hand, is based on a single image. This problem

is more challenging than the multiple-image case, as less information about the

scene is available.

The past few years have witnessed tremendous advances in SR where deep

learning-based approaches have been applied. The remarkable capability of ex-

tracting and mapping features in Convolutional Neural Network (CNN) has been

beneficial for SR task. By learning the relationship between LR-HR images

through external training data, the missing details in the image can be precisely

estimated. Although CNN-based SR approaches have demonstrated outstanding

performance [11], the CNN is still described as a black-box model and the per-

formance of CNN-based models is sensitive to the choice of parameters. There

have been an increasing number of architectures and algorithms proposed for im-

age SR, but an optimal solution has not been found yet. Tackling the ill-posed

problem of SR using CNN requires improved accuracy in training and generali-

sation in testing. Achieving both targets is challenging for image SR in different
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scenarios.

For single image super-resolution, most CNN-based architectures have widely

employed residual connections proposed in ResNet to extend the network’s ca-

pacity. Although this component helps to increase the network’s depth, the very

deep structure may not lead to improved performance [12]. Also, common prob-

lems in the feed-forward network, exploding gradients [13] and dying ReLU [14],

are still present in the deep network. A fundamental question in single image

super-resolution is the development of a CNN-based model that can better learn

the relationship between the LR and HR images.

Different from conventional RGB image, which divide the light spectrum into

broad visible Red, Green, and Blue bands, Hyperspectral Image (HSI) consists

of contiguous bands over the specific electromagnetic spectrum, providing the

representations of scenes, materials, and sources of illuminations. With the aid

of rich spectral bands, HSI has been widely used in a range of applications,

including precision agriculture [15], [16], [17], [18], target detection [19], image

enhancement [20–22], land cover analysis [23], as well as measurement of chemical

substances [24], and change detection [25], where required information relies upon

an invisible spectrum. However, due to the limitations of the optical device and

signal-to-noise ratio, there is always an inevitable trade-off between the spatial

and spectral resolutions in capturing the HSI. This means that HSI images can

not be acquired with both high spatial and high spectral resolutions at the same

time. As HSI is high-dimensional, generating a high-resolution HSI from a single

low-resolution HSI faces severe distortion. Fortunately, when additional high-

resolution Multispectral Image (MSI) is provided, the fusion-based SR method

can help to reduce the ill-posed problem and achieve promising high-resolution

HSI. The question here is how to combine high spatial resolution MSI and high

resolution HSI into an integrated product with both high spatial and high spectral

resolution. Besides, due to the high dimensional and non-linear capacities of
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HSI, research on regularisation methods can help improve the generality and

performance of the HSI SR model.

The image can be reconstructed with high pixel-wise accuracy but may not be

realistic to human eyes. With the development of GAN [26], images can be gener-

ated with high quality and visual perception. However, training the GANs model

is usually unstable, and there has been increasing work to improve the stability

of GAN training. One of the most effective methods for stabilising GAN training

is the gradient penalty [27–29]. However, setting a predefined value of penalty

weight is still challenging and can not adapt well to different training status. For

example, GANs are notoriously difficult to train and usually face overfiting of the

discriminator at any phase of the training process. Unfortunately, increasing the

penalty weight to mitigate overfitting will over-penalise the model, resulting in a

poor quality image. Therefore, the issue of how to enhance the effectiveness of

the gradient regularisation with an adaptive method requires further study.

1.2 Research Objectives

The work presented in this thesis aims to improve the accuracy, generality,

and stability of CNN-based models/algorithms for image super-resolution, which

ranges from single image super-resolution, fusion-based image super-resolution

and image generation. Specifically, the following objectives are defined:

1. To develop an optimal model-based architecture for a single image super-

resolution approach that aims to improve accuracy while minimising the common

problems of dying ReLU and exploding gradient in CNNs training.

2. To develop a framework that effectively fuses two data sources and a novel

regularisation for fusion-based HSI super-resolution.

3. A dynamic scheme to adaptively select the strength of gradient penalty in

GANs-based SR. This will improve the convergence of GAN model and ease the
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notoriously unstable phenomenon inGAN.

1.3 Methodologies and Contributions

With the limitations already mentioned in mind, this thesis investigates several

aspects of improving the quality of image reconstruction, which is in the context

of both single image and multiple image super-resolution problems. The major

original contributions of this thesis can be summarised as follows:

1.3.1 Methodology in Chapter 3

Chapter 3 deals with the single image super-resolution problem, where a CNNs-

based architecture is introduced to learn a function which maps from a space of

low-resolution patches to a space of target high-resolution patches. The network is

trained to perform end-to-end upsampling from the training image. By examining

the shortcomings of a ResNet connection that is widely used in deep networks,

a new mechanism gate is designed for better performance in pixel-wise-based

super-resolution.

Contributions:

1. Introducing a highway connection-based SISR architecture that differs

from the majority of existing models while achieving competitive performance in

widely used benchmarks and impressive visual performance.

2. The introduced highway connection-based model can achieve faster and

better convergence, which is less prominent to the dying Rectified Linear Unit

(ReLU) and exploding gradient problems than those using skip connections.

This work was published as a journal article, as detailed in A.2, Section 1.4.

5



Chapter 1. Introduction

1.3.2 Methodology in Chapter 4

In Chapter 4, a method is proposed to fuse a low-resolution hyperspectral image

with a high-resolution multispectral image to produce a high-resolution hyper-

spectral counterpart that contains both high spatial and spectral resolutions. A

CNN-based approach is employed by extracting and fusing the spatial and spec-

tral features at multiple spatial scales and levels. Furthermore, multitask learning

is constructed to regularise the estimator. The proposed multi-task framework

benefits from the fact that the observed input image and to-be-estimated output

image must share the same content representation.

Contributions:

1. A multi-scale spatial and spectral CNN-based architecture is proposed,

which can effectively exploit and fuse the spatial and spectral features of both

Hr-MSIs and Lr-HSIs.

2. An additional auxiliary unsupervised task is proposed, which acts as a

form of regularisation to further improve the generalisation performance of the

supervised task.

3. The above two frameworks are universal and can be widely applied to boost

the performance of other CNN-based HSI-SR architectures. A simple addition of

the auxiliary task can provide a solid improvement over the baseline.

This work was published as a journal article, as detailed in A.3, Section 1.4.

1.3.3 Methodology in Chapter 5

In Chapter 5, a dynamic schedule method is proposed for the zero-centered gra-

dient penalty in GANs. The regularisation strength is modelled as a function of

the training loss. According to the change of training loss, regularisation strength

can be dynamically adjusted in the training procedure, thus balancing the un-

derfitting and overfitting of GANs.
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Contributions:

1. Improving the stability of the GANs by dynamically adjusting the gra-

dient regularisation strength in the discriminator. This approach improves the

convergence of GANs compared to the predefined schedule.

2. The proposed approach is the derivation of a parameter-free method, which

does not increase the complexity of the existing model. The quantitative and

visual results have validated that using a dynamic schedule can produce the

synthesised images with higher quality and diversity.

This work is under preparation for submission, as detailed in C.1, Section 1.4.

1.4 Publications

To support the research in this thesis, the following research articles have been

published/produced:

A. Journal publications

1. Ha, V.K., Ren, J., Xu, X., Zhao, S., Xie, G. and Vargas, V.M., Hussain,

A., “Deep learning based single image super-resolution: a survey,” International

Journal of Automation and Computing, vol. 16(4), pp. 413-426, 2019.

2. Ha, V.K., Ren, J., Xu, X., Liao, W., Zhao, S., Ren, J. and Yan, G., “Op-

timized highway deep learning network for fast single image super-resolution re-

construction,” Journal of Real-Time Image Processing, vol. 17(6), pp.1961-1970,

2020.

3. Ha, V.K., Ren, J., Wang, Z., Sun, G., Zhao, H., and Marshall, S., “Multi-

scale spatial fusion and auxiliary task for Hyperspectral Image Super-Resolution,”

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-

ing (JSTARTS), vol. 15, pp.4583-4598, 2022.

B. Conference publications

1. Ha, V.K., Ren, J., Xu, X., Zhao, S., Xie, G. and Vargas, V.M., “Deep learning

7



Chapter 1. Introduction

based single image super-resolution: A survey,” in International Conference on

Brain Inspired Cognitive Systems, pp. 106-119, 2018.

C. Journal papers under preparation

1. Ha, V.K., Ren, J., and Marshall, S. “Dynamic schedule for gradient penalty

in GANs”, plan to submit on May 2023.

1.5 Thesis organisation

The remaining parts of this thesis are organised as follows:

Chapter 2 provides a survey of related work and the research background

which is split into three main sections. The first section discusses the concept

of super-resolution and reviews the current deep-learning-based approaches, cor-

responding to the topics covered in the three contribution chapters. The next

section outlines the main theoretical notions and mathematical backgrounds that

underlie the work of the thesis. Finally, this chapter ends with a summary of the

practical applications that most CNN-based models have along with the intro-

duction to some typical architectures. This chapter is supported by two published

review articles, as detailed in A.1 and B.1, Section 1.4.

Chapter 3 presents the proposed single image super-resolution model that in-

corporates a new connection to regulate information through the network. This

connection, which composes of a designed nonlinear gating mechanism, is demon-

strated to be more suitable for pixel-wise regression than those widely using skip

connection.

In Chapter 4, a fusion framework is presented to produce a high-resolution hy-

perspectral image from a low-resolution hyperspectral image and a high-resolution

multispectral one. The difference in spatial and spectral resolutions of the two

inputs is facilitated by spatial down-sampling one and fusing them at multiple

levels. In addition, an unsupervised auxiliary task is proposed to further improve
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the generalisability of proposed model.

In Chapter 5, a dynamic method is studied to control the gradient regular-

isation strength based on the change in the training loss. With this method,

Experiments on both synthesis and real data have shown its efficacy in dealing

with instability of recent proposed gradient penalty and its capacity of generating

highly realistic images.

Finally, Chapter 6 concludes the work of the thesis and along with prospects

for future work that can be expected to further improve the performance of the

proposed methodologies.
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Chapter 2

Related work and research

background

Based on the motivations and objectives summarised in Chapter 1, the related

work and relevant research background are introduced in this chapter. Section

2.1 briefly describes the different types of digital images. Section 2.2 first de-

scribes the concept of super-resolution, followed by reviews of the previous work

on image super-resolution, including single image super-resolution, fusion-based

image super-resolution, and image generation. A comprehensive description of

the elements in convolutional neural networks is provided in Section 2.3. Al-

though the great details of this topic are covered in various textbooks, the most

relevant aspects used in the context of the thesis are briefly presented. Section 2.4

provides an overview of the network architectures, which can be widely applied

to the CNN-based model of image super-resolution. Finally, a brief summary is

given in Section 2.5.
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𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑚)𝑦

𝑥

RGB MSI HSI

Figure 2.1: The difference between RGB, MSI, and HSI images.

2.1 Digital image

In digital imaging, understanding the content of captured images is the first step

toward achieving fine-grained image reconstruction. Grayscale, colour, and hy-

perspectral images are among the most well-known types of images. A grayscale

term refers to an image in which each pixel value presents the intensity of inci-

dent light. The darkest black to the brightest white are typically displayed in

the grayscale image. In other words, the image only features black, white, and

gray, in which gray has many levels. A colour image is a combination of three

separate monochromatic images. Each pixel represents three data measurements,

each captured from a different coloured filter. Different from conventional RGB

images, which divide the light spectrum into broad visible Red, Green, and Blue

bands, Hyperspectral Image (HSI) consists of contiguous bands over the specific

electromagnetic spectrum, providing the representations of scenes, materials, and

sources of illumination.
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2.2 Deep learning-based Super-Resolution

The term “super-resolution” relates to image-enhancement techniques. As a re-

sult, the image has an increased number of pixels. This section provides an

overview of the most prevalent uses of the term, as it can be applied to a variety

of scenarios. Unless otherwise noted, the phrase super-resolution refers to the

increase in the spatial resolution.

2.2.1 Single image super-resolution

Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR)

image from its corresponding low-resolution (LR) version. This image recon-

struction problem is known as an ill-posed problem since there exist multiple

solutions HR for any given LR image. Super-resolution methods can be di-

vided into three main categories, i.e., interpolation-based, reconstruction-based,

and learning-based methods. Interpolation-based methods approximate missing

pixels based on the values of surrounding pixels. Image interpolations include:

nearest neighbor, bilinear, bicubic, spline, sinc, lanczos, etc. Interpolation-based

methods are the most classical and straightforward and tend to smooth the recon-

structed image regardless of the image statistics. Reconstruction-based methods

predefine certain knowledge prior or constraints, such as local structure similar-

ity, non-local means, or edge prior to restrict the possible solution space. This

prior knowledge is broad and varies depending on a particular dataset, which

makes them challenging in practical applications. Example-based methods at-

tempt to reconstruct the prior knowledge from a massive amount of internal or

external LR-HR patch pairs. The relationship between LR and HR was applied

to an unobserved LR image to recover the most likely HR version. Example-

based methods can be classified into two types: internal learning and external

learning-based methods.
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Internal learning-based methods: The natural image has a self-similarity

property that tends to recur many times within the same scale or across different

scales inside the image. Glasner et al [30] first compared the original image and

Figure 2.2: Pyramid model [30] for SISR. From the bottom, when a similar patch
is found in a down-scale patch (dark green, dark red), its parent (light green,
light red) is copied to an unknown HR image with an appropriate gap in scale
and support of different kernels.

multiple cascades of images of decreasing resolution to determine the similarity.

After that, a scale space pyramid procedure was used to match LR and HR pairs,

as shown in Fig 2.2. To take advantage of abundant feature similarity, Huang et

al. [31] expanded the search space to include both planar perspective and affine

transforms of patches. However, the most important limitation lies in the fact

that self-similarity-based methods lead to high complexity of computation due

to huge numbers of searches, and the accuracy of algorithms varies according to

natural properties of images.

External learning-based methods: The external learning-based methods

attempt to search for similar information from other images or patches instead.

13
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It was first introduced to estimate an underlying scene X with the given image

data Y [32]. The algorithm aims to learn the posterior probability P (X|Y ) =
1

P (Y )
P (X, Y ), by adding image patches X and its corresponding scenes Y as

nodes in a Markov network. It was then applied for generating super-resolution

images, where the input image is LR and the scene to be estimated is replaced

by a HR image [33].

Locally linear embedding (LLE) is one of the manifold learning algorithms,

based on the idea that the high dimensionality may be represented as a function of

a few underlying parameters. LLE begins by finding a set of nearest neighbors for

each point that can best describe that point as a linear combination of its neigh-

bors. It is then determined to find the low-dimensional embedding of points, such

that each point is still represented by the same linear combination of its neigh-

bors. However, one of the disadvantages is that LLE handles non-uniform sample

densities poorly because the feature represented by the weights vary according

to regions in sample densities. The concept of LLE was also applied in SISR

neighbor embedding [34], where the features are learned in the LR space before

being applied to estimate HR images. There were several other studies based

on local linear regression, such as: ridge regression [35], anchored neighborhood

regression [36,37], random forest [38], and manifold embedding [39].

Another group of algorithms that have received attention is sparsity-based

methods. In the sparse representation theory, the data or images can be described

as a linear combination of sparse elements chosen from an appropriately over-

complete dictionary. Let D ∈ Rn×K be an over-complete dictionary (K � n),

we can build a dictionary for most scenarios of inputs and then any new image

(patch) X ∈ Rn can be represented as X = D × α, where α is a set of sparse

coefficients. Hence, there were dictionary learning problems and sparse coding

problems to optimise D and α, respectively. The objective function for standard
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sparse coding is:

arg min
D

N∑

i=1

arg min
αi

1

2
‖ xi −Dαi ‖2 + λ‖αi‖ (1)

Unlike standard sparse coding, the SISR sparsity-based method works with two

dictionaries to learn the compact representation of these patch pairs. Assuming

that the observed low-resolution image Y is blurred and a down-sampled version

of the high-resolution X:

Y = S.H.X (2)

where H represents a blurring filter and S the down-sampling operation. Because

the dictionary is over-complete or very large, the sparest α0 can be unique for

both dictionaries under mild conditions. Hence, the joint sparse coding can be

represented as:

arg min
Dx,Dy

N∑

i=1

arg min
αi

1

2
‖ xi −Dxαi ‖2

+
1

2
‖ yi −Dyαi ‖2 + λ‖αi‖ (3)

The two dictionaries of high-resolution Dh and low-resolution Dl are co-

trained to find the compact coefficients αh = αl = α [40], such that sparse

representation of a high-resolution patch is the same as the sparse representation

of the corresponding low-resolution patch. A dictionary Dl was first trained to

best fit the LR patches, then the Dh dictionary was trained that worked best

with αl. When these steps were completed, αl was then used to recover a high-

resolution image based on the high-resolution dictionary Dh. One of the major

drawbacks of this method is that the two dictionaries are not always linearly con-

nected. Another problem is that HR images are unknown in the testing phase,

hence the equivalence constraint on the HR sparse representation does not guar-
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antee as it has been done in the training phase. Yang et al. [41] suggested a

coupled dictionary learning process to pose constraints for two spaces of LR and

HR. The main disadvantage of this method is that both dictionaries are assumed

to be strictly aligned to achieve alignment between αh and αl or the simplifying

assumption of αh = αl. To avoid this invariance assumption, Peleg et al. [42]

connect αh, αl via a statistical parametric model. Wang et al. [43] proposed

semi-couple dictionary learning, in which two dictionaries are not fully coupled.

It was based on an assumption that there exists a mapping in sparse domain f(.):

αl → αh or αh = f(αl). Therefore, the objective function has one additional

error term ‖αh − f(αl)‖2 and other regularisation terms. A Beta process for

joint dictionary learning was proposed in [44], which enables the decomposition

of these sparse coefficients to the element multiplication of dictionary atom in-

dicators and coefficient values, providing the much-needed flexibility to fit each

feature space. Although sparsity-based algorithms yield good results, they have

remaining limitations in feature extraction and mapping, which are important

for the success of external example-based SR methods. A large dataset or model

can pose challenges for sparsity-based methods. For example, finding a dictio-

nary of image patches from a huge image dataset would significantly increase the

computational time and work burden. Moreover, the sparsity-based method is

an iterative process, which usually solves separately optimization problems on

usage. Therefore, it has a limitation of jointly predicting the SR images.

In recent years, deep learning-based algorithms, especially those based on Con-

volutional Neural Networks (CNNs), have recently proved extremely powerful for

SISR tasks [11, 45–49]. The CNN-based SR methods are fully feed-forward [11],

and do not need to solve complex optimisation on usage. In other words, all

layers in a feed-forward model are jointly optimised for final prediction, instead

of handling each component separately in conventional methods. As the result,

the CNN-based SR methods can provide an efficient computation while also al-
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lowing layers to learn hierarchical features from images. With the development

of the deep network, i.e., ResNet [50], there have been increasing architectures

employing residual learning approach to improve the performance of SR model.

Indeed, ResNet can benefit most tasks but does not provide sufficient discrimina-

tive learning ability for SR. The skip connection in ResNet would treat all pixels

of previous feature maps with an equal weight of 1. It does not offer detailed

attention to some channels or spatial parts of feature maps, meaning capturing

the structure of natural images is still limited.

2.2.2 Fusion-based hyperspectral image super-resolution

There is always an inevitable trade-off between the spatial and spectral resolutions

in captured hyperspectral images. Because of the high dimension of hyperspectral

imaging (HSI), recontructing Hr-HSI from only Lr-HSI usually introduces spectral

or spatial distortions. Given the auxiliary information, such as a panchromatic,

RGB, or multispectral image, the fusion-based HSI super-resolution has received

increasing attention recently [21,51–60]. This technique is originated from image

pan-sharpening, in which a high-resolution Panchromatic (PAN) image and a

low-resolution MS image are fused to construct a single high-resolution MS image

[61,62].

The MS/HS fusion is more challenging to solve than the pan-sharpening due

to several major factors: (1) the PAN image is collected with a higher spatial

resolution than an MS image because the PAN image contains only one wideband

with a broad spectral range and therefore enables it to be captured with smaller

detector while keeping a high signal-to-noise ratio; (2) the hyperspectral data has

a high spectral dimension, which means a larger number of variables is required

to use for MS/HS fusion.

Recently, various techniques have been proposed for MS/HS fusion based HSI

SR. Typically, the HSI SR approaches can be roughly categorised into three
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classes: i.e., dictionary-based sparse representation, maximum a-posteriori-based

Bayesian, and deep learning. In sparse representation approaches, the source

images are represented by a dictionary and the corresponding sparse coefficients,

where the matrix factorisation and the tensor factorization are most commonly

used.

A matrix factorisation can be used to decompose high dimensional data and

fuse MS/HS data [63, 64]. Dong et al. [65] proposed a non-negative structured

sparse representation (NSSR) method to jointly estimate the dictionary and

sparse coefficients based on the prior knowledge of the spatial-spectral sparsity in

the source images. Since the observed Lr-HSIs and Hr-MSIs have captured the

same scene as the target Hr-HSIs, they are assumed to share the same underly-

ing spectral materials or endmembers. Lanaras et al. [66] proposed the coupled

spectral unmixing (CSU) method for the fusion problem, where the Lr-HSI and

Hr-MSI are alternatively unmixed to estimate the spectral basis and abundances.

The tensor factorisation is an extension of the matrix factorisation to higher-

order tensors, which are used to extract the underlying factors in high-order

dataset [57,67,68]. Dian et al. [67] proposed non-local sparse tensor factorisation

(NLSTF) assuming that each patch of estimated Hr-HSI as a core coefficient ten-

sor and dictionaries of width the mode, the height mode and the spectral mode.

The non-local spatial self-similarity of Hr-MSI is exploited through a clustering

method to constrain the spatial correlation in the Hr-HSI. In other work, they pro-

posed a low tensor-train rank representation (LTTR) [69] method by considering

Hr-HSI as a four-dimension tensor and used non-local LTTR prior from Hr-HSI to

regularise the fusion problem. The various tensor factorisation based approaches

have been used for the super-resolution fusion problem, including non-local patch

tensor sparse representation [70], subspace-based low tensor multi-rank regular-

isation [71], etc. The issue with the factorization-based method is that there is

not a single unique decomposition and it is difficult to know how to choose the
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basic elements or factorization rank. Some prior information of the Hr-HSI are

introduced to regularise the super-resolution problem in previously mentioned

work, including priors of spectral unmixing [66], nonlocal spatial similarities [65],

sparse priors [67], and the nonlocal LTTR prior [69].

A Bayesian approach is a different framework, which typically builds the pos-

terior distribution with maximum a posteriori probability (MAP) based on the

prior knowledge of the observation model [51–53,72–75]. The major drawback of

all these methods is that their performance is dependent on the prior assumption,

for example, the pre-defined spectral response function for generating Hr-MSI,

and therefore less flexible to adapt to unobserved real-world datasets.

As compared with conventional methods, deep learning-based methods im-

pose fewer assumptions on the prior knowledge of the to-be-estimated Hr-HSI

and achieve good performance for MS/HS fusion task. The CNN is commonly

employed network structure for image fusion, including pan-sharpening [61,76,77]

and a MS/HS fusion [54,55,59,60]. Hu et. al [60] proposed a CNN-based HS/MS

fusion architecture including channel attention and spatial attention to refine de-

tails from Lr-HSI and Hr-MSI, respectively. The work in [54,55,59] formulates a

fusion problem with iterative algorithms, then incorporates CNN to repeatedly

refine estimation at each step. The summation and concatenation are the only two

operations for fusing feature maps or tensors, and both operations require that

tensors have identical spatial dimensions. The common drawback of these CNN-

based models is that they employ upsampling/downsampling the Lr-HSI/Hr-MSI

to a desired space for convenience in order to fuse features by summation or con-

catenation. This will introduce more noise, which makes it difficult to refine

information in a high-dimensional image like HSI as well as incur a high compu-

tational cost. For example, both Lr-HSI and Hr-MSI are one-step upsampled to

an image size of Hr-HSI [55, 59, 60] or Hr-MSI is upsampled to an image size of

Hr-HSI at each repeated phase in [54]. How to effectively fuse features extracted
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from high spatial and high spectral resolution images is a central question in the

fusion-based method. Without solving this question, more extracted features are

redundant, and the model cannot achieve high performance. Second, there have

been very few research papers on novel regularisation that can especially apply

for HS/MS fusion. The widely used regularisation in CNN, such as L1, L2 may

not be sufficient for specific problem.

2.2.3 Generative Adversarial Networks for Image super-

resolution

The Generative Adversarial Network (GAN) [26] has been established as a key

deep neural network model for unsupervised high-resolution image generation.

The GAN typically is composed of a generator and a discriminator. The genera-

tor and the discriminator are parametrized as deep neural networks and optimise

a mini-max (or zero-sum game) objective function. The task of the generator

is to generate an image from a noise vector, whereas the discriminator’s task is

to distinguish the generated image (fake image) from the real image. The GAN

will converge to its Nash equilibrium when the discriminator cannot distinguish

the faked image from the real one. Ledig et al. [78] introduce a Super-Resolution

Generative Adversarial Network (SRGAN) model in which a generative network

up-samples the LR image to SR image and a discriminative network distinguishes

between the ground truth HR image and SR image. The pixel-wise quality as-

sessment metric has been widely criticised for showing poor perception quality

for human vision. Incorporating an adversarial loss from GAN can solve the

problem and produce highly perceptive, naturalistic images. Another work [79]

that employ adversarial loss on the feature domain has improved the perceptual

quality of the SR result significantly. First, the generated and real images are

first fed to a pre-trained network to obtain intermediate feature maps. Then, the

discriminator can use those feature maps as its input. One of the key weaknesses
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of the previously mentioned GAN-based SR approaches is the quality of the re-

constructed images, which is affected by the performance of GAN. Also, they are

all supervised GAN-based approaches that rely on a pair of high-quality and low-

resolution images, which is limited. They have still not tackled problems with

super-resolutions, such as unknown degradation factors. Therefore, enhancing the

stabilities of GANs as will be discussed below, using self-supervised method [80]

that does not use high-quality reference images, and learning the degradation fac-

tor in an unsupervised manner [81,82] are among the straightforward approaches

in the image super-resolution.

Compared to other deep networks, GAN models suffer from several training

issues, such as non-convergence, mode collapse [83–87], diminishing gradients

[27, 88–90]. To address the vanishing gradient issue due to the utilisation of

cross-entropy loss in the original GAN, the Least Squares Generative Adversarial

Network (LSGAN) [90] employs a least squares loss function for the discriminator.

By using the Wasserstein-1 distance for the loss function, the Wasserstein GAN

(WGAN) [27,88] resolves the non-convergence and mode collapse problems. The

hinge loss-based GAN [89] and maximum mean discrepancy-based GAN [91–93]

have also shown improvement over the original GAN.

Introducing new loss functions is not the only option to enhance the stability

of GAN training. Deep Convolutional Generative Adversarial Network (DC-

GAN) [86] is one of the earliest and most important modifications to the GAN

design. The configurations for model architecture and training in DCGAN lead

to surprising stable training and high performance. The Progressive Growing

GAN [94] progressively increases the model depth during the training process,

can produce large, high-quality images of size 1024 × 1024, which is challenging

for all previous GAN models.

The Lipchitz regularisations [27,29,95] have shown great success in stabilising

general GAN training. The gradient penalty in [27] significantly improve the
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stability of WGAN. Specially, using zero-center gradient penalty [29], an original

GAN can generate large high-quality images without employing the Progress

Growing GAN. Spectral normalisation technique [95] enforces Lipchitz continuity

in operator space by regularising the spectral norm of the weights in the network.

This technique has significantly improved the stability of GAN and has been

widely used in various models.

Generally, GAN-based SR models can produce large, high-quality images,

which was previously a difficult task for working with the large down-sampled

factor. Although various regularisation approaches have been proposed for sta-

bilising the training of GAN, achieving both convergence and stability for GAN

is still challenging. For example, the gradient penalty methods in [27, 28] do

not usually lead to convergence in most cases compared to zero-center gradient

penalty [29] but guarantee more stable training. This leads to an approach that

either improving the convergence of the former or the stability of the latter.

2.3 Convolutionnal Neural Networks

A CNN is a type of multi-layer perceptron that is especially well suited to image

and audio processing. It is based on biological processes and takes advantage

of the patterns of connectivity found between neurons in the human visual cor-

tex. CNN is typically composed of multiple layers, such as convolution, pooling,

and fully-connected layers, as well as activation functions, to learn the hierar-

chies of features automatically and adaptively via a back-propagation algorithm.

The convolution and pooling layers perform feature extraction, while the fully-

connected layers map extracted features to the output. In some cases, not all

three types of layers are used. For example, CNN-based super-resolution mod-

els do not use a fully connected layer. The convolution layer, using particular

strides, can replace the pooling layer for feature reduction. In this section, we
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first introduce different related components of the CNN-based SR model that will

be employed in Chapter 3, Chapter 4, and Chapter 5. Then the loss functions

and quantitative metrics for image SR are presented. Finally, some architectures

in single image super-resolution are reviewed.

2.3.1 Receptive field

The receptive field is a basic concept in deep CNNs, referring to the area of an

input image that was used to calculate a specific feature [96]. When applying

a convolution layer to an image, another image can be produced, whose each

pixel has a limited view of the original image. The output size of the new image

depends on the choice of kernel size, zero padding, and stride. The two basic

hyper-parameters that determine the convolution operation are the kernel size

and the number of kernels. The former is normally 3×3, but sometimes 5×5 or

7×7 and the latter is arbitrary, which defines the depth of output feature maps.

The convolution operation does not allow the center of the kernel to overlap the

input’s outermost, and when the kernel size is greater than 1, this operation

always leads to a reduction in the size of the output compared to the input. As

a result, the CNN model can not go too deep. Padding, often zero padding, is a

strategy to handle this issue, where rows and columns of zeros are placed on each

side of the input, so as to fit the center of the kernel on the outermost elements

and maintain the same size during the convolution operation. A stride is the

distance between two successive kernel positions.

2.3.2 Convolution layer

Convolution layers are a specific sort of linear operation that is used for feature

extraction in CNNs. It is performed by applying a small array of numbers called a

kernel over the input, which is an array of numbers called a tensor. At each point
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of the tensor, an element-wise product between each element of the kernel and

the input tensor is computed and added together to generate the output value in

the corresponding place of the output tensor, referred to as a feature map. This

process is repeated with different kernels to generate a number of feature maps

that represent different features of the input tensors; thus, different kernels can

be thought of as different feature extractors.

1 0 1 0

0 1 1 0

1 0 1 0

0 1 1 0

Input

1 0 1

0 1 1

1 0 1

Image patch

1 2 3

4 5 6

7 8 9

*

Kernel

31 19

32 23

Output

Figure 2.3: An example of convolution with kernel size = 3 and stride = 1.

The mathematical formulation of a 2-D convolution is given by:

y[i, j] =
∞∑

m=−∞

∞∑

n=−∞

h[m,n] · x[i−m, j − n] (2.1)

where x represents the input image matrix to be convolved with the kernel matrix

h to result in a new matrix y. The indices i and j refer to the image matrices,

whereas m and n refer to the kernel matrices. If the convolution kernel is 3 × 3

in size, the indices m and n range from -1 to 1.

Assuming the input has a square shape, the output size for convolution can

be formulated as follows:

O =
I + 2× P −K

S
+ 1 (2.2)

where O, I are the output and input size; P , K, and S denote a padding, kernel

size, and stride, respectively.
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2.3.3 Transposed convolution

The requirement for transposed convolutions [97] typically arises from the desire

to perform a transformation in the opposite direction of a normal convolution

while retaining a connectivity pattern compatible with said convolution. This

transformation can be used as the decoding layer of a convolutional autoencoder

or to project feature maps into a higher-dimensional space. The process of the

transposed convolution is illustrated in Fig. 2.4. Each element in the input is

multiplied by the kernel to produce the corresponding values in the output. The

final output, shown at the bottom of Fig. 2.4, is the sum of the products.

1 1

0 1

Input

1 2 3

4 5 6

7 8 9

Kernel

*

1 2 3

4 5 6

7 8 9
=

1 2 3

4 5 6

7 8 9
+

0 0 0

0 0 0

0 0 0

+
1 2 3

4 5 6

7 8 9

+

1 3 5 3

4 10 13 9

7 19 22 15

0 7 8 9

=

Output

Figure 2.4: Transposed convolution with kernel size = 3, stride = 1 and padding
= 0.

As opposed to convolution in Eq. (2.2), the formula for the transposed con-

volution can be calculated as follows:

O = (I − 1)× S − 2× P +K (2.3)
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2.3.4 Pooling layer

The pooling (POOL) layer, which is generally used after a convolution layer, is a

down-sampling operation. Using the pooling function, the output is replaced by a

summary statistic of the neighbourhood inputs. Therefore, the pooling layer can

reduce the dimensions of feature maps without additional parameters. Another

advantage of the pooling operation is that the representation becomes invariant

to small spatial translations of the input. The invariance property benefits the

task, i.e., classification, for which detecting whether an object is present in the

image is more important than its exact location. The most common pooling

functions are max pooling and average pooling, where the maximum and average

values of nearby inputs are taken, respectively. Fig. 2.5 illustrates an example of

max pooling and average pooling. Assuming a one-pixel object has a pixel value

of 8 at (0, 0), it is still included in the output using the max pooling function. If

this object is not present at (0, 0), but at (1, 4) instead, the output will still be

8.

8 1 6 3

3 4 7 8

0 3 5 7

4 1 2 2

8 8

4 7

max pooling

4 6

2 4

average pooling

Figure 2.5: Max pooling and average pooling with 2×2 pool size, stride = 2.

Average pooling is distinct from max-pooling because it preserves less sig-
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nificant information about a block. While max pooling discards them entirely

by selecting the maximum value, average pooling incorporates them. This can

be advantageous in a variety of circumstances where such knowledge is neces-

sary. For example, max-pooling performs well in generalising the line on a black

background, however, the line on a white backdrop vanishes completely. While

average pooling does not suffer from such extreme consequences, max pooling is

more successful when the images have a comparable dark background.

2.3.5 Fully-connected layer

The final convolution or pooling layer’s output feature maps are typically flat-

tened, that is, converted to a one-dimensional (1D) array of numbers (or vector),

and connected to one or more fully connected layers, namely dense layers, in which

the corresponding input is connected to each output via a learnable weight. Once

the features extracted by the convolution layers and down-sampled by the pool-

ing layers are formed, they are transferred to the network’s final outputs, such

as the probabilities for each class in classification tasks, using a subset of fully

connected layers. Typically, the final fully linked layer has the same number of

output nodes as the requested number of classes. In Fig. 2.6, the final output

for two classes is followed by two fully-connected layers, which contain 11 and 6

nodes, respectively.

2.3.6 Activation functions

For image super-resolution, the commonly used activation functions are Sigmoid,

Softmax, and Rectified Linear Unit (ReLU) [98], as detailed below.

Sigmoid A sigmoid activation function of a value z is defined by

f(z) =
1

1 + e−z
(2.4)
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Figure 2.6: Fully-connected layer.

When z → −∞, f(z) → 0; and when z → ∞, f(z) → 1. For this property,

the sigmoid function is often used to produce the probability of a binary output.

The sigmoid function was previously used as the activation function of the hidden

layer to keep it within a range of [0, 1]. However, the hidden activation values are

saturated to 0 or 1 when the input is strongly negative or positive, respectively.

In other words, when f(z) is close to 0 or 1, the derivative of sigmoid f ′(z) =

f(z)(1− f(z)) is nearly 0 and can cause a neural network to be stuck in training.

Furthermore, the sigmoid function also slows the learning process due to its non-

zero mean as shown in Fig. 2.7.

Softmax A softmax activation function of a vector z of K real numbers is

defined by

f(z)i =
ezi∑K
j=1 e

zj
(2.5)

where z = (z1, · · · , zK) and i = 1, · · · , K.
The Softmax is an activation function that is mostly used in a classification

task. The Softmax function, when given an input vector, returns the probability

distribution for all the classes of the model. The total of the distribution’s values

equals 1. Typically, the Softmax function receives the output of the last layer of
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Figure 2.7: Sigmoid function and its derivative.

a neural network as its input.

ReLU A Rectified Linear Unit (ReLU) activation function of a value z is

defined by:

f(z) =




z, if z ≥ 0

0, otherwise

(2.6)

Since the ReLU was first introduced, it has been one of the most often used

activation functions in deep neural networks [50, 98–100]. The ReLU activation

function has several advantages. First, this activation helps to train or run the

model faster. It is a simple function that does not involve any computational cost.

Furthermore, the slope of the gradient does not saturate when the input gets large

in comparison with the sigmoid and tanh functions. The second advantage of the

ReLU is sparsity. Some of the outputs are set to zero if their inputs are negative.

As a result, it is likely for any given unit not to activate at all, which leads to

an a sparse network. The neurons in a sparse network are probably capturing

meaningful aspects of the problem.

However, there are some problems with the ReLU activation, such as the

exploding gradient and dying ReLU. It can be seen from Eq. (2.6), the output of

the ReLU function is unbound for z ≥ 0. The successive multiplication of large
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positive output might cause the exploding problem, as the output of a ReLU

will be an input to another ReLU. The dying ReLU occurs when the input to

ReLU is negative and ReLU neurons would output 0 for the input. As the input

does not receive the gradient to improve learning due to the 0 output, the output

may not escape the negative part of the ReLU. Even if not all neurons are dead,

the majority of them being inactive would lead to several problems, including

computational cost, time consuming, and poor performance.

2.3.7 Batch Normalisation layer

In neural networks, the output of the first layer feeds into the second, the output

of the second layer feeds into the third layer, and so on. During training, the

parameters of a layer change, as does the distribution of inputs to the subsequent

layers. The Internal covariate shift [101] is defined as a change in the input

distribution to the network. When the input distribution changes, the hidden

layers in turn try to learn and adapt to the new distribution. The training

process is slowed down and badly affected as a result of this. Another issue arises

when the statistical distribution of the input to the networks differs significantly

from the input it has previously seen. The proposed solution to the Internal

covariate shift problem is to move all mini-batches to the standard location.

Each layer and activation function would deal with their input data within a

closely resemble range. Using batch normalisation [101], each layer’s inputs are

normalised by using the mean and standard deviation (variance) of the values in

the current batch.

µB =
1

m

m∑

i=1

xi //mini− batch mean

σ2
B =

1

m

m∑

i=1

(xi − µB)2 //mini− batch variance
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x̂i =
xi − µB√
σ2
B + ε

//nomalise

yi = γx̂i + β //scale and shift

where γ and β are parameters to be learned. B is the set of mini-batch (B =

x1,x2...xm) and m is batch size. During testing, the mean µB and deviation σB

are estimated based on the entire training dataset.

2.3.8 Autoencoders - Unsupervised learning

An Auto-encoder (AE) [102] is an unsupervised learning technique that employs

neural networks to learn representations. A neural network topology is specifically

designed to induce the bottleneck, forcing a compressed representation of the

original input as shown in Fig. 2.8. Principal Component Analysis (PCA) and

AE can produce the same result if no non-linear function is used in the AE and

the number of neurons in the hidden layer is smaller in dimension than the input.

Otherwise, the AE can discover a new subspace. In the AE, the unlabelled

x1

x2

x3

x4

Input
layer

h1

h2

Hidden
layer

“bottleneck”
x̂1

x̂2

x̂3

x̂4

Output
layer

Figure 2.8: An autoencoder network.
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dataset can be framed as a supervised learning problem using the output X̂,

which is a reconstruction of the original input. This network can be trained

by minimising the reconstruction error L(X, X̂) which measures the difference

between the original input and the consequence reconstruction. The encoder

function h = g(1)(W(1)x + b(1)) and the decoder function that reproduces the

output x̂ = g(2)(W(2)h+b(2)), where W(1), W(2), b(1), and b(2) are the learnable

weights and biases, respectively. The loss function L(x, x̂) can be simply defined

as:

L(X, X̂) =
1

N
‖ X− X̂ ‖2

2 (2.7)

The bottleneck is the key attribute of the network design. Without the presence

of an information bottleneck, the network can easily learn to memorise the input

value. An auto-encoder with more hidden layers than the inputs runs the risk

of learning an identity function. Thus, a further constraint is needed to separate

useful information.

There are various types of AEs proposed to prevent the output layer directly

copying the input data, e.g. Denoising Auto-Encoder (DAE) [103], Sparse Auto-

encoder (SAE) [104], and Contractive Auto-encoder (CAE) [105]. In DAE [103],

the input is randomly induced by noise while the last two explicitly impose penal-

ties on the cost function. When the auto-encoder works well, the hidden layers

contain most of the information from inputs and can be used as the input for

classification instead of using the original input.

2.3.9 Generative Adversarial Network

The Generative Adversarial Network (GAN) was introduced in [42], targeting the

minimax game between a discriminative network D and a generative network G.

The generative network G takes the input z ∼ p(z) as a form of random noise,

then outputs a new data G(z), whose distribution pg is supposed to be close
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to that of the data distribution pdata. The discriminative network D’s task is to

distinguish a generated sample G(z)∼ pg(G(z)) and the ground truth data sample

x ∼ pdata(x). In other words, the discriminative network determines whether the

given images are natural-looking ones or artificially created ones. As the model is

trained through alternative optimisation, both networks improve until reaching a

point called Nash Equilibrium, where fake images are indistinguishable from the

real images. This concept is consistent with the problem solved in image SR. The

Figure 2.9: Generative Adversarial Networks.

Super-Resolution Generative Adversarial Network (SRGAN) model, in which a

generative network upsamples LR images to super-resolution (SR) images, and

the discriminative network is to distinguish between the ground truth HR images

and the generated SR images. The pixel-by-pixel quality assessment metric has

been criticised for performing poorly relative to human perception. As shown in

Fig. 2.10, the distribution of reconstructed images using L2 loss has one peak,

which cannot match the multi-modal distribution of data. By combining an

adversarial loss and L2 loss, the GAN-based approach has resolved the problem

by encouraging pg(G(z)) = pdata.

The GAN-based SISR model has been developed further, which has an im-

proved SRGAN [78] by fusion of pixel-wise loss, perceptual loss, and texture

transfer loss. The GAN-based model is to encourage reconstructed images to

have a similar distribution as the ground truth images, which refer to adversarial
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Figure 2.10: Distribution of image reconstruction using L2 loss function cannot
match distribution of real data.

loss as part of the perceptual loss in SRGAN. Adversarial learning is actually

useful when faced with complicated manifold distributions in natural images.

2.3.10 Loss functions for super-resolution

A. Content loss

The classical content loss function for the regression problem are LAD (Least

Absolutes Deviations) (or L1) and LSE (Least Squared Errors) (or L2) defined

as follows:

L1 =
N∑

i=1

|IHR − ISR| (2.8)

L2 =
N∑

i=1

(IHR − ISR)2 (2.9)

where IHR and ISR are the ground-truth and reconstructed images, and the

distance is calculated over all training examples. Using CNNs, the ISR is the

network’s output of low-resolution input ILR.

Note that the content loss will assume images are withdrawn from a uni-

modal distribution with a single peak, which will not predict well for images from

multi-modal distributions. Furthermore, a minor change in an image’s pixels, i.e.,
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shifting, can result in a significantly lower PSNR [106], even though both images

appear identical to the human eye.

B. Adversarial loss

A key relationship between images and statistics is that images can be interpreted

as samples from a high-dimensional probability distribution. The probability

distribution goes over the image pixels and is what is used to define whether an

image is natural or not. The adversarial loss measures the difference between two

probability distributions, which is different from the Euclidean distance, i.e., L1

and L2 losses. Using GAN, the adversarial loss Ladv can be constructed based on

the probability of the discriminator DθD(GθG(ILR)) given an input GθG(ILR).

Ladv =
N∑

i=1

−logDθD(GθG(ILR)) (2.10)

where θD and θG are parameter of the discriminator D and the generator G,

respectively. DθD(GθG(ILR)) is probability that reconstructed image GθG(ILR) is

natural image.

C. Feature loss

The feature space loss is calculated by comparing two images based on high-

level representations from pre-trained Convolutional Neural Networks (trained

on Image Classification tasks, i.e., the ImageNet dataset [107]). As shown in

Fig. 2.11, the image is first trained by the Image Transform Net to produce an

output, which is then fed to the pre-trained Loss Network. The feature loss can

be defined by differences in ReLU activation between images.
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Figure 2.11: Model structure for calculating perceptual loss

2.3.11 Quantitative metrics for super-resolution

There are several quantitative metrics for image quality measurement. In this

section, we present the most popular quantitative methods that will be employed

in subsequent chapters. Note that, for the same metric, the calculation for RGB

and HSI can be different. Let denotes X ∈ RNW×NH×S and X̂ ∈ RNW×NH×S are

the ground-truth and the estimated images, respectively.

A. Quantitative metrics for single image super-resolution

Peak signal-to-noise ratio (PSNR) is the most widely used full-reference objective

quality assessment metric for image restoration, which is defined as:

PSNR(X, X̂) = 10 log10(
L2

MSE
) (2.11)

where MSE = 1
NW×NH×S

‖ X− X̂ ‖2 denotes the mean squared error between X

and X̂, and L is the maximum pixel value of the image.

Structural SIMilarity (SSIM) index [108] is measured between two windows
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x, y of the same size, i.e.,

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.12)

where µ and σ are the mean intensity and the standard deviation, respectively.

The subscript x denotes reference and subscript y denotes the test image. C1

and C2 are two constants. The RGB image is assumed to be a grayscale image

for calculating SSIM. The SSIM is used to compare the local patterns of pixel

intensities between the two compared images and its values range between 0 and

1. The value of SSIM equal to 1 indicates that the reference and reconstructed

images are identical.

B. Quantitative metrics for hyperspectral image super-resolution

Four quantitative picture quality indices (PQI) are utilised for performance evalu-

ation, which include the Root Mean Square Error (RMSE), Structural SIMilarity

(SSIM) index [108], Spectral Angle Mapping (SAM) [109] and the relative dimen-

sionless global error in synthesis (ERGAS) [110].

The RMSE between the reconstructed and the original HSIs is defined as the

average RMSE of all bands, e.g.,

RMSE(X, X̂) =
1

S

S∑

i=1

RMSE(X i, X̂ i) (2.13)

where X i and X̂ i denote the ith band images of the ground-truth X and the

estimated Hr-HSI X̂, respectively, and RMSE(X i, X̂ i) =

√∑N
j=1‖Xi

j−X̂i
j‖2

N
where

N = NH ×NW . The RMSE is commonly used to compare the difference between

two images by computing the variation in pixel values. The reconstructed image

is close to the reference image when the RMSE value is near zero.

The structure similarity index measure is defined as the average value of all
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bands, i.e.,

SSIM(X, X̂) =
1

S

S∑

i=1

SSIM(X i, X̂ i) (2.14)

where SSIM(X i, X̂ i) is calculated by Eq. (2.12).

The Spectral Angle Mapping (SAM) is defined as an angle between the esti-

mated pixel x̂j and the ground truth pixel xj over the whole image:

SAM(X, X̂) =
1

N

N∑

j=1

arcos
x̂Tj xj

‖ x̂j ‖2‖ xj ‖2

(2.15)

The SAM is performed on a pixel-by-pixel base. A value of SAM equal to zero

indicates no spectral distortion.

Finally, the ERGAS is defined as:

ERGAS(X, X̂) =
100

d

√√√√ 1

S

S∑

i=1

MSE(X̂ i, X i)

µ2
X̂i

(2.16)

where µX̂i is the mean of X̂ i and MSE(X̂ i, X i) is the mean squared error between

X̂ i and X i, d is a spatial downsampling factor. The ERGAS is used to determine

the image’s quality in terms of the normalised average error of each band. A larger

ERGAS indicates that the reconstructed image is distorted, whereas a smaller

ERGAS means that the reconstructed image is more similar to the reference

image.

C. Quantitative metrics for image generation

An in-depth overview of GAN evaluation measures is discussed in [111]. The

two most widely used metrics to measure the quality of generated images are the

Inception Score (IS) and the Frechet Inception Distance (FID).

Inception score [87] provides a method for quantitatively evaluating the

quality of the generated samples. A large number of generated images are classi-
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fied using the Inception v3 Network pre-trained on ImageNet. The probability of

the image that belongs to each class is predicted and summarised for the incep-

tion score. Two properties of the generated image are reflected in the inception

score: image quality and image diversity. Intuitively, the class label conditional

on the generated image should have a low entropy, and the variety of generated

images is expected to be high.

IS = exp (Ex∼ pgDKL(p(y|x) ‖ p(y))

= exp (H(y)− Ex∼ pg [H(y|x )])
(2.17)

where x is an image sampled from pg, DKL(p(y|x) ‖ p(y)) is the KL-divergence

between the conditional class distribution and the marginal class distribution

p(y) =
∫
x
p(y|x) pg(x). H(x) represents the entropy of variable x. The drawback

of IS is that it does not consider the real image for measurement, which means

one cannot interpret how well the generator approximates the real distribution.

An in-depth review can be found in [112].

Frechet Inception Distance [113] is an alternative for determining the

similarity of two images. Image samples from pd and pg are embedded into a

feature space. Assuming that both the embedded data are followed a multivariate

Gaussian distribution, the FID can be computed, i.e.

FID =‖ µx − µy ‖2
2 +Tr(Σx + Σy − 2(Σx Σy)

1
2 ) (2.18)

where (µx,Σx) and (µy,Σy) are the mean and covariance of the embedded samples

from pd and pg, respectively. The shortcoming of FID is that it employs a pre-

train Inception model and limited statistics (i.e., mean and covariance), which

may not be able to capture all the features. In addition, the FID measure requires

a large sample size for high accuracy (i.e., a minimum of 10,000 samples), which

can be computationally expensive for large images.
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The high IS and low FID indicate that the generated samples are a realistic

approximation of the distribution of natural images.

2.4 Network Architectures for single image super-

resolution

The CNN-based methods use gradient descent training on a set of learnable pa-

rameters. Following that, the pre-trained network is utilised to predict the HR

image from an input. The methods for CNN-based SR are always accompa-

nied by up-sampling processes. Up-sampling can be classified into three types:

interpolation, transposed convolution, and pixel shuffle. Up-sampling through

interpolation is typically based on heuristics and does not incorporate learnable

parameters.

Figure 2.12: Transposed convolution of a 3 × 3 kernel over a 4 × 4 input with
no padding and 1 × 1 strides results in an output of size 6 x 6.

Transposed convolution (see Section 2.3.3) [97] is the most widely used up-

sampling method. It not only up-samples feature maps but also fills in details

using the learnable parameters, as illustrated in Fig. 2.12. This method is more

flexible than regular interpolation, as it can be trained jointly with convolutional
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layers during the training process. One drawback of transposed convolution is

that it may introduce checkerboard artifacts when the kernel size is not divisible

by the stride [114]. To avoid such artifacts, pixel shuffle [115] is used as an efficient

alternative for transposed convolution. Pixel shuffle implements efficient sub-pixel

convolution, which first performs a standard convolution in a low-resolution space,

and then follows by re-arranging a tensor of shape (∗, H,W,C × r2 ) to a tensor

of shape (∗, H × r,W × r, C). Here, r is an upscale factor (see Fig. 2.13). The

Pixel shuffle is a variant of transposed convolution. As shown in Fig. 2.4 (Section

2.3.3), the transposed convolution is equivalent to applying a smaller convolution

on the input and then re-arranging the elements. The advantage of using pixel

shuffle is twofold: first, its standard convolution works in a low-resolution space

with a smaller spatial size, thereby reducing the computational cost; second, it

avoids padding zero between pixels, which is one of the main causes of artifacts.

High-resolution Image

rW*rH

r2 feature map

W*H

Figure 2.13: Re-arrange elements for up-sampling in pixel shuffle.

The CNN-based model for the SISR, namely the Super-Resolution Convolu-

tional Neural Network (SRCNN), was first introduced in [11], which contains only

three layers. Given a training set of LR and corresponding HR images xi, yi, i =

1. . . N, the objective is to find an optimal model f, which will then be applied to
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accurately predict Y = f(X) on an unobserved example X. The SRCNN consists

of the following 4 steps, as illustrated in Fig. 2.14.

Figure 2.14: SRCNN model for SISR.

1. Preprocessing: Upscale the LR image to a desired HR image using the

bicubic interpolation.

2. Patch extraction and representation: Extract a set of feature maps from

the upscaled LR image.

3. Non-linear mapping: Maps the features between the LR and HR patches.

4. Reconstruction: Produce the HR image from the HR patches.

Going into deep networks, [45, 46] proposed Very Deep Convolutional Net-

works (VDSR) [45] and Deeply Recursive Convolutional Network (DRCN) [46]

models, which both contained 20 convolutional layers. The VDSR is trained with

a very high learning rate to speed up the training process, and gradient clipping

is used to control the explosion problem. Instead of predicting the whole image,

the VDSR used global residual connection to force the inside module to learn

the difference between the input and the output. To further ease the training,

DRRN employs both global and local residual connections. The use of residual

learning in VDSR and DRRN has shown improvements in SISR. Since then, nu-

merous CNN-based SISR architectures have been proposed. Some aspects that

contribute to image reconstruction accuracy are discussed below.
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Channel attention: Each of the learned filters operates with a local re-

ceptive field, and the interdependence between channels is entangled with spatial

correlation. Therefore, the transformation output is unable to exploit information

such as the interrelationship between channels outside the region. The Residual

Channel Attention Network (RCAN) [116] has been the deepest model (about 400

layers) for the SISR task. It integrated a channel attention mechanism inside the

residual block, as shown in Fig. 2.15. The input with the shape of H × W × C

is squeezed into the channel descriptor by averaging through a spatial dimension

of H × W to generate the output shape of 1 × 1 × C. This channel descriptor is

put through a gate activation of the sigmoid f and an element-wise product with

the input in order to control how much information from each channel is passed

up to the next layer in the hierarchy.

Figure 2.15: Channel attention block.

Feature concatenation: As the model goes deeper, the features in each layer

are hierarchical, with different receptive fields. The information from each layer

may not be fully used by recent residual learning methods. The Residual Dense

Network (RDN) [117] proposed feature concatenation inspired by the DenseNet

[118] to best use features from all layers, as shown in Fig. 2.16.

Figure 2.16: Residual dense block [117]. All features from previous layers are
concatenated to build hierarchical features.
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Wide activation in residual block: The efficiency and higher accuracy of

SR model can be achieved [119] with fewer parameters by expanding the number

of channels with a factor of
√
r before RELU activation in residual blocks. As

such, the residual identity mapping path slimmed as a factor of
√
r to maintain

constant output channels.

Feature cascading using 1 × 1 convolution: There are similar mech-

anisms in MemNet [120], RDN [117] and Cascading Residual Network (CARN)

[121] models. In addition to the ResNet-based architecture, the 1 × 1 convolution

layer is used as a fusion module to incorporate multiple features from previous

layers, which has shown improved results.

Information Distillation Network (IDN): The IDN model [122] uses the

distillation block, which combines an enhancement unit with a compression unit.

In this block, the information is distilled inside the block before it passes to the

next level.

RNN-CNN-based models: A ResNet with weight sharing can be inter-

preted as an unrolled single-state Recurrent Neural Network (RNN) [123]. A

Dual-State Recurrent Network (DSRN) [124] allows both the LR path and the HR

path to capture information in different spaces and connect at every step to con-

tribute to the learning process. However, the average of all recovered SR images

at each stage may have a deteriorated result. Furthermore, the down-sampling

operation at every stage can lead to information loss at the final reconstruction

layer.

In the view of memory in RNNs, CNNs can be interpreted as: Short-term

memory. The conventional plain CNNs adopt a single-path feed-forward archi-

tecture, in which the latter feature is influenced by a previous state. Limited

long-term memory: When the skip connection is introduced, one state is influ-

enced by a previous state and a specific point in the prior state. To enable the

latter state to see more prior states and decide whether the information should be
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Figure 2.17: Dual State Model [124]. The top branch operates in the HR space,
while the bottom branch works in the LR space. A connection from LR to HR
using transposed convolution; a delayed feedback mechanism is to connect the
previous predicted HR to LR at the next stage.

kept or discarded, Memory Network (MemNet) [120] uses recursive units followed

by a memory unit to allow the combination of short and long-term memory, as

illustrated in Fig. 2.18. In this model, a gate unit controls information from the

prior recursive units, which extract features of different levels.

Non-local module: Different from the convolutional operation, which cap-

tures features by repeatedly processing local neighbourhoods of pixels, the non-

local operation describes a pixel as a combination of weighted distance to all other

pixels, regardless of their positional distance or channels. The convolutional oper-

ation can merely use the relevant local information, while the non-local operation

can exploit the image self-similarity globally. However, the local and non-local

Gate Unit

Figure 2.18: The memory block in MemNet [120] includes multiple Recursive
Units(green circles) and a Gate Unit.
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Figure 2.19: A non-local block.

based methods are treated separately, thereby not taking account of their ad-

vantages. The non-local block was first introduced in [125], where non-local

operations were integrated into end-to-end training with local operation-based

models such as CNNs. Each pixel at point i in an image can be described as:

yi =
1

C(x)

∑

j∈Ω

f(xi, xj)g(xj) (4)

where f(xi, xj) = eΘ(xi)
T ∅(xj) is a weighted function, measuring how closely

related the image at point i is to the image at point j. Thus, by choosing

Θ(xi) = WΘxi, ∅(xj) = W∅xj and g(xj) = Wgxj, the self-similarity can be

jointly learned in embedding space by block shown in Fig. 2.19.

For a SISR task, Li et al. [126] incorporated non-local blocks into the RNN

network and maintained two paths: a regular path that contains convolution
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operations on an image and the other path that maintains non-local information

at each step. Using non-local blocks has achieved a considerable performance

gain. However, it consumes excessive computational resources when calculating

the weighted distance between pixels.

Finally, Table 2.1 provides brief information of CNN-based SISR models, in-

cluding SRCNN [11], VDSR [45], DRCN [46], DRRN [47], RED30 [127], RCAN

[116], SRCliqueNet [128], RDN [117], CARN [121], IDN [122], LapSRN [48],

EDSR [129], Zero Shot [80], and MemNet [120]. The brief performance com-

parison of those models is presented in Fig. 2.20. The four standard benchmark

datasets are used, including Set5 [130], Set14 [131], BSD100 [132], Urban100 [31],

which are popularly used for comparison of SR algorithms. The down-sampling

scale factor is 4x, and the missing information that was not provided by the au-

thors is marked by [-]. All quantitative results are duplicated from the original

papers.

From Fig. 2.20, CARN stand out through their high accuracy using a small

model. SRCliqueNet+ and RCAN+ have achieved higher accuracy in comparison

with EDSR in term of PSNR/MMSI measurement whilst requiring a smaller

model size. It is observed that all compared models perform best with Set5 [130]

and worst with Urban100 [31] while CARN [121], RCAN [116], SRCliqueNet [128],

RDN [117], and EDSR [129] among show better performance with Urban100 [31].

Set5 [130] is a quite small dataset of common image scenes. The Urban100 [31]

is the most challenging because of its larger, more diverse dataset and is also

the easiest to fool the super-resolution methods with its repeated features. The

training DIV2K dataset contains images that cover some urban scenes; thus, the

models that were trained on DIV2K [133] perform better with the testing dataset

of Urban100 [31] than those that were not. The models that were trained on

the BSD200 [132] perform better with the testing dataset of the BSD100 [132] as

they are split from a larger dataset of 500 images.
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Figure 2.20: Comparing the PSNR accuracy of different algorithms on 4 Testing
Datasets with factor of 4x.

2.5 Summary

This chapter describes the background and related work on image super-resolution,

focusing specially on CNN-based SR methods. The concepts of super-resolution

are introduced first, followed by a brief review of the literature on various ar-

eas of super-resolution, such as single image super-resolution, fusion-based im-

age super-resolution, and generative adversarial network-based super-resolution.

Compared to conventional methods, the CNN-based approaches can achieve su-

perior performance thanks to the capacity of extracting high-level abstractions

and mapping between LR and HR images. However, CNN-based models soon

encounter diminishing returns, where increasing the network width or depth does

not gain significant improvement. Therefore, to further improve the performance
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of super-resolution requires developing specific architectures or methods that fit

the desired task, i.e., single image super-resolution, fusion-based image super-

resolution. Besides, even when the model seems to be optimally designed for the

task, the unstable training is still present and degrades the performance, espe-

cially in GAN model. Addressing the instability issue would eventually lead to

improved results.

Next, the technical background of Convolutional Neural Networks is presented

to provide details of the components or subnetworks that are later employed in

subsequent chapters. Finally, an overview of the network architectures in single

image super-resolution, which can be widely applied to the CNN-based model

of image super-resolution, is discussed. From the quantitative comparison of

different architectures, it can be seen that architectural design has played an

important role in the performance of a model.
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Single Image Super-Resolution

3.1 Introduction

Developing an architecture that learns to map from a low-resolution space to

a high-resolution target image is inevitable for CNN-based SR. The depth of

the network is of crucial importance not only for image recognition but also

for image SR. From a shallow architecture [11] to deep ResNet-style SR net-

works [11, 45–47, 117, 118, 120, 121, 129], the learning-based networks have shown

significant improvements over those using conventional methods. However, the

performance reaches a point of diminishing returns when a network goes deeper.

Although ResNet architecture [50] enables us to build an extremely deep archi-

tecture as of 1001 layers, the 28-layer ResNet with increased width [12] of filters

has outperformed it significantly. Furthermore, [135] showed that the effective

pathways are short in contrast to the total length of the network. The pathways

that are just 10-34 layers deep provide the majority of the gradient in a residual

network of 110 layers. This means that depth and width representations are both

important for SR performance. Simply stacking residual blocks to build a deeper

network can hardly yield better results. How to construct a relatively shallow

SR network with more powerful representation than those using a ResNet-based
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baseline remains to be explored.

On the other hand, learning-based methods optimally tune and deduce fea-

tures for desired outcomes. Only underlying features that are relevant to the task

are retained, while others are discarded. Accordingly, it is reasonable to expect

that networks can have the ability to let relevant information go through and

forget the ones that are not useful. A ResNet connection-based SR model, un-

fortunately, does not have that ability. The features are decided by whether they

are being used yet, not how much. This inability to perform precise attention

will hinder the representational power of the SR network.

To construct a compact model and practically resolve a precise attention abil-

ity that is missing from ResNet, a Highway Network for SISR (HNSR) is proposed.

This model stacks the same topology with a new type of connection that is ex-

pected to improve the ability of attention. With the same target of mitigating

gradient vanishing as skip connections, the highway connection design helps to

stabilise the training and recover fine details of the lost high-frequencies.

The remaining parts of this chapter are organised as follows: Section 3.2

revisits the gradient regularisations and then the proposed approach is introduced.

Section 3.3 presents the experimental results, including an ablation study and

discussion. Some summary remarks are drawn in Section 3.4.

3.2 Proposed approach

3.2.1 Skip connection and Highway connection

Training deep learning networks can be challenging for several reasons, including

the gradient vanishing and information morphs problems. Let xn denote the net-

work’s input at layer n, constantly transforming at each layer xn+1 = T (xn) leads

to information morphs, where it is difficult to exploit the best usable information

in the past layers properly. Instead, both the Residual Networks (ResNet [50])
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and the Highway Network [136] can be regarded as an application of LSTM, fol-

lowing the similar way of any state change: xn+1 = xn + ∆xn+1. ResNet indeed

does exactly that, which utilises extra identity connections to enhance informa-

tion flow such that very deep neural networks can be effectively optimised. Such

skip connections guarantee the direct propagation of signals among different lay-

ers, thereby avoiding gradient vanishing and also information morphs. Given the

input xn at layer n and a transformation Fn(xn,Wfn), the output at layer n + 1

is as follows:

xn+1 = xn + Fn(xn,Wfn). (3.1)

where Fn(xn,Wfn) is equivalent to ∆xn+1, the residual between xn and xn+1.

In practice, although the gradient vanishing has been solved, the subsequent

change in distribution through the network can still lead to dying ReLU or explod-

ing gradient problems. For example, if F function is as Conv1−RELU −Conv2,

and the incoming neurons to ReLU are entirely negative, the backpropagation

gradients through ReLU will vanish, making Conv1 difficult to learn. Over time,

a large part of the network will be rendered unusable if such neurons are unable

to recover from their negative state. In other words, the ReLU is always dying

for those neurons. The converse of the range could lead to an exploding gradi-

ent. The ideal distribution of the input to ReLU should be symmetric with a

zero mean. For that purpose, the batch normalisation [101] will normalise the

distribution of layers before the ReLU activation, which can help to address both

vanishing and exploding gradient problems. While batch normalisation enables

faster and more stable training of deep networks, it can nevertheless be argued

that batch normalisation loses scale information of images and reduces the range

of activation. Therefore, removing batch normalisation would improve the per-

formance in super-resolution [129].

The Highway Network [136] is another approach to solve the gradient vanish-
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ing problem.

xn+1 = σn � xn + (1− σn)�∆xn+1 (3.2)

where σn is a sigmoid function (0 ≤ σn ≤ 1) with trainable parameters, and �
is a Hadamard product or element-wise product. The best usable neurons in the

past can be exploited by adaptively setting a particular σi to 1, avoiding gradient

vanishing. By using such a highway connection in (3.2), the layer distribution

hardly shifts to the extreme range in the network, since the output of a layer is

always a convex combination of the input and the transformation. This property

could allow the model to further increase the learning rate, speeding up the

training whilst minimising gradient exploding or vanishing. A learning rate of 4e-

4 is used with the baseline model but with different connections. The percentage

of the positive responses induced by ReLU activation is measured. The lower

the skp is, the more skewed the distribution is. It can also interpret
1

skp
as a

Coefficient of Variation (CV), which shows how much variance there is around

the mean in the data. Assuming that xi in x are independent but have the same

mean and variance. The linear transform before the ReLU activation, named

pre-activation z = wTx, will approach a normal distribution, according to the

central limit theorem. The distribution is skew after the ReLU activation with

mode = 0,mean ≥ 0, and standard variance ≥ 0. The Pearson’s coefficient of

skewness can be determined by:

skp =
mean−mode

standard variance
=

mean

standard variance
(3.3)

It is well-known that network training converges faster if the average of each

input variable over the training set has a zero mean [137]. From Fig. 3.1, it can

be seen that most ReLU activations in the skip connection-based model have an

extremely skewed distribution (spk ≈ 0.2). This is caused by a significant number

of 0 values outputted by ReLUs. In other words, the mean of the pre-activation z
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Figure 3.1: The Pearson’s coefficient of skewness (spk) of ReLUs activation vs
the network depth.

is more negative, therefore most values were zeroed out by the ReLU activation.

A few last ReLU activations continuously aim to correct the bias shift introduced

by previous ReLUs. At this learning rate, the model with skip connections can not

learn effectively. The highway connection-based model, on the other hand, keeps

all ReLU distributions in a stable range (spk ≈ 0.4) with less correction. This

advantage of highway connections can be explained by the convex combination

giving an upper estimation of expectation of all Frobenius p-norms lower than

that of skip connections.

E[‖xn+1‖p] ≤ E[‖cn � xn‖p] + E[‖(1− cn)� hn‖p]

< E[‖xn‖p] + E[‖hn‖p]
(3.4)

where the first inequality holds by the Minkowski inequality and the second

inequality holds since cn is a sigmoid function (0 ≤ cn, 1− cn ≤ 1).
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Figure 3.2: A proposed HNSR model.

3.2.2 Overall network structure

In this section, the proposed Highway Network for Super-Resolution (HNSR) is

described, as shown in Fig. 3.2. A carry gate is inspired by the Gated Recurrent

Unit (GRU [138]). The only global residual connection was used in the HNSR

model. For each HNSR block, assume that xn is the network’s representation

of the input x0 at layer n. Let hn = Fn(xn,Wfn) be the intermediate transform

function of the input xn, cn = Cn([xn, hn],Wcn), and tn = Tn([xn, hn],Wtn) are

the carry and the transform gates, typically utilise a sigmoid nonlinear function.

The transform gate tn is set to 1− cn. The carry gate bias, bcn as following is set

to +1 at the start of training. Given the input xn, the HNSR model is defined

by:

hn = Fn(Wfnxn + bfn). (3.5)

cn = Cn(Wcn[xn, hn] + bcn). (3.6)

xn+1 = cn � xn + (1− cn)� hn. (3.7)

where W denotes the trainable weights, and b is the trainable biases. The motiva-

tion behind this model is two-fold. First, we use highway connections to constrain
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Figure 3.3: The structure of each HNSR block, transforming input xn to output
xn+1.

the distribution of the output at the end of each block from going out of the

optimal range for ReLUs activation, which helps to speed up the training. The

significant change in the distribution will cause dying ReLUs, exploding gradient,

or the ReLUs activation has to continuously correct the bias shift, which leads to

slower training [139]. Second, an attention mechanism is formed that combines

both the input xn and the intermediate output hn to enhance the discrimina-

tive learning ability. Since xn and hn have many features in common, combining

them will help cn to decide whether to disregard or retain features in xn. This

design is the difference between HNSR and the original Highway Network [136],

where the latter blindly regulate information based on xn only. The details of a

HNSR block illustrating Eq. (3.5)-(3.7) are shown in Fig. 3.3. The transform

function Fn in Eq. (3.5) is designed in the same way as a pre-activation Residual

block [140], i.e. ReLU-Conv-ReLU-Conv. To form the attention or carry gate as

in Fig. 3.3 (middle), the outputs of intermediary features hn and input xn are
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convolved with filters of size 1 × 1 before being added and finally squashed by a

sigmoid function. The 1 × 1 kernels will learn how much information from xn and

hn being used. In Fig. 3.3 (bottom), the output, xn+1 is the result of a convex

combination of xn and hn. It is worth noting that the cn has the same dimension

as the xn and is pixel-wise multiplied with the xn. A simple combination of the

xn and hn will mitigate the gradient vanishing as it enables the backpropagation

gradient to go through several routes. Meanwhile, the design of attention working

on the pixel level helps to enhance the feature learning. In Fig. 3.2, the pixel

shuffle operation, which was previously discussed in Section 2.4 is used for the

up-sampling layer.

3.3 Experiments

3.3.1 Experiment settings

The Tensorflow framework is used to implement the proposed model. The HNSR

model is evaluated by comparing the test accuracy with state-of-the-art SR ar-

chitectures on the same dataset. The Nvidia GeForce GTX 1080 is utilised to

conduct experiments.

3.3.2 Datasets

The 800 training images from the DIV2K dataset [133] were used for a train-

ing set. To fairly compare with other state-of-the-art methods, four benchmark

datasets are used for testing: Set5 [130], Set14 [131], BSD100 [132], and Ur-

ban100 [31]. These four datasets are commonly used as benchmarks for evaluating

algorithms in single super-resolution. They contain images that have abundant

high-frequency components as well as low-frequency ones. In addition, those

datasets also show the diversity of image scenes. For instance, BSD100 [132]
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contains 100 images with key contents of animals, buildings, food, landscapes,

people, and plants. Urban100 [31] is a collection of 100 images depicting urban

scenes such as architecture, cities, structures, and urban. While BSD100 [132]

intend to fail super-resolution approaches due to their low resolution images, the

high resolution images in Urban100 [31] have repeated structure, making any

prediction difficult. Although Set5 [130] and Set14 [131] are quite small datasets

and the image patterns can be found in BSD100 [132], they were used for further

validation of the super-resolution methods. Details of these datasets are given in

Appendix A.

For training data, the three color channels (RGB) of the image are used [11]

rather than transforming it into YCbCr and using only the luminance (Y) as

in [141]. Compared to YCbCr, the RGB channels have a higher cross-correlation

between them. When training using RGB, the PSNR result is up to 4 dB greater

than when training with just the Y channel [11]. For each training mini-batch, 32

random LR patches and their corresponding HR patches are cropped as the input

and the ground truth, respectively. To augment the training data, these training

samples are randomly rotated by 90◦, 180◦, 270◦ and horizontally flipped. The

input is normalised by subtracting the mean from each pixel and then dividing the

result by the standard deviation. Noisy patches are also detected and removed

from the training dataset. The commonly used mean squared error (MSE) is used

as the loss function. Given a training set {I iLR, I iHR}Ni=1, which contains N pairs

of LR inputs and their HR counterparts, the goal of the training is to minimise

the following loss function:

L =
N∑

i=1

‖fθ(I iLR)− I iHR‖2. (3.8)

where fθ presents a neural network and its parameter θ.
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3.3.3 Hyperparameters

The batch size is set to 32, and the initial learning rate is 4e-4. A small batch

size may lead to slower convergence of the learning algorithm than one using a

larger batch size. In contrast, large batch sizes can help the learning algorithm

to converge faster but may cause bad generalisation due to overfitting. The

generalisation of small batch sizes is due to the fact that a small batch size

can have a regularisation effect due to its high variance. Furthermore, the use

of small batch size also requires a significant smaller Graphics Processing Unit

(GPU) memory. To tune the learning rate, we choose the initial learning rate at

1e-3 and reduce it by a small amount if unstable training is observed. In training,

the learning rate is decreased if the validation loss does not decrease after two

additional epochs. The training process will be stopped when the loss ceases to

reduce after three successive decreases in the learning rate. Only the checkpoint

of the best validation accuracy is used to evaluate the test accuracy. The Adam

optimisation [142] with default parameters is utilised for training.

3.3.4 Network depth

Due to the limitation of the GPU’s capacity, the network uses 18 blocks for all

experiments. We tune the number of blocks by monitoring the relative training

error and validation error curves. Starting from a shallow network with a few

blocks, when both training loss and validation loss are high, which refers to

an underfitting case, we increase the depth of the network until we reach the

hardware capacity. To make a fair comparison, we would like to compare the

proposed model with similar small-size models.
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Table 3.1: Average PSNR/SSIMs for scale 2x, 3x and 4x. Red color indicates the
best, blue color indicates the second best performance, and missing information
that was not provided by the authors is marked by [-/-].

Model
Set5 Set14

PSNR/SSIM PSNR/SSIM
Scale = 2

SRCNN [11] 36.66±0.48/0.954±0.001 32.42±0.54/0.906±0.002
FSRCNN [143] 37.00±0.35/0.955±0.0002 32.63±0.42/0.908±0.0002
VDSR [45] 37.53±0.25/0.958±0.0004 33.03±0.27/0.912±0.0002
DRCN [46] 37.63±0.26/0.958±0.0004 33.04±0.19/0.911±0.0003
LapSRN [48] 37.52±0.19/0.959±0.0005 33.08±0.20/0.913±0.0008
DRRN [47] 37.74±0.12/0.959±0.0006 33.23±0.13/0.913±0.001
MemNet [120] 37.78±0.13/0.959±0.007 33.28±0.14/0.914±0.002
SelNet [144] 37.89±0.04/0.959±0.004 33.61±0.11/0.916±0.005
IDN [122] 37.83±0.05/0.960±0.0004 33.30±0.08/0.914±0.004
CARN [121] 37.76±0.08/0.959±0.0007 33.52±0.10/0.916±0.004
HNSR 37.89±0.04/0.960±0.0003 33.33±0.07/0.915±0.003

Scale = 3
SRCNN [11] 32.75±0.56/0.909±0.009 29.28±0.34/0.821±0.008
FSRCNN [143] 33.16±0.43/0.914±0.005 29.43±0.27/0.824±0.006
VDSR [45] 33.66±0.21/0.921±0.003 29.77±0.20/0.831±0.003
DRCN [46] 33.82±0.16/0.922±0.002 29.76±0.18/0.831±0.003
DRRN [47] 34.03±0.14/0.924±0.001 29.96±0.17/0.835±0.003
MemNet [120] 34.09±0.11/0.925±0.0009 30.00±0.14/0.835±0.004
SelNet [144] 34.27±0.07/0.925±0.002 30.30±0.19/0.840±0.004
IDN [122] 34.11±0.09/0.925±0.001 29.99±0.14/0.835±0.002
CARN [121] 34.29±0.05/0.925±0.001 30.29±0.12/0.840±0.002
HNSR 34.27±0.06/0.926±0.001 30.06±0.11/0.839±0.002

Scale = 4
SRCNN [11] 30.48±0.78/0.862±0.016 27.49±0.53/0.750±0.007
FSRCNN [143] 30.71±0.4/0.865±0.012 27.59±0.34/0.753±0.009
VDSR [45] 31.35±0.24/0.883±0.006 28.01±0.26/0.767±0.005
DRCN [46] 31.53±0.21/0.885±0.004 28.02±0.24/0.767±0.006
LapSRN [48] 31.54±0.19/0.885±0.004 28.19±0.2/0.772±0.003
DRRN [47] 31.68±0.15/0.888±0.005 28.21±0.18/0.772±0.004
MemNet [120] 31.74±0.13/0.889±0.004 28.26±0.15/0.772±0.005
SelNet [144] 32.00±0.19/0.893±0.003 28.49±0.22/0.778±0.003
IDN [122] 31.82±0.21/0.89±0.003 28.25±0.16/0.773±0.0025
CARN [121] 32.13±0.18/0.893±0.004 28.60±0.20/0.780±0.003
HNSR 31.98±0.17/0.892±0.003 28.34±0.18/0.777±0.002

(a) Quantitative results from Set5 and Set14 testing datasets.
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Model
BSD100 Urban100

PSNR/SSIM PSNR/SSIM
Scale = 2

SRCNN [11] 31.36±0.15/0.887±0.003 29.50±0.21/0.894±0.007
FSRCNN [143] 31.53±0.16/0.892±0.004 29.88±0.18/0.902±0.009
VDSR [45] 31.90±0.11/0.896±0.004 30.76±0.13/0.914±0.004
DRCN [46] 31.85±0.09/0.894±0.003 30.75±0.13/0.913±0.004
LapSRN [48] 31.80±0.12/0.895±0.006 30.41±0.16/0.910±0.004
DRRN [47] 32.05±0.05/0.897±0.003 31.23±0.13/0.918±0.006
MemNet [120] 32.08±0.05/0.897±0.004 31.31±0.09/0.919±0.005
SelNet [144] 32.08±0.06/0.898±0.04 -/-
IDN [122] 32.08±0.04/0.898±0.004 31.27±0.15/0.919±0.006
CARN [121] 32.09±0.02/0.897±0.004 31.92±0.06/0.925±0.003
HNSR 32.13±0.03/0.899±0.02 31.49±0.09/0.932±0.003

Scale = 3
SRCNN [11] 28.41±0.19/0.786±0.01 26.24±0.45/0.799±0.02
FSRCNN [143] 28.53±0.26/0.791±0.04 26.43±0.31/0.808±0.007
VDSR [45] 28.82±0.16/0.797±0.008 27.14±0.26/0.828±0.006
DRCN [46] 28.80±0.10/0.796±0.006 27.15±0.24/0.827±0.005
DRRN [47] 28.95±0.08/0.8±0.005 27.53±0.20/0.837±0.005
MemNet [120] 28.96±0.07/0.8±0.005 27.56±0.18/0.837±0.004
SelNet [144] 28.97±0.06/0.802±0.004 -/-
IDN [122] 28.95±0.08/0.801±0.002 27.42±0.24/0.836±0.004
CARN [121] 29.06±0.006/0.803±0.003 28.06±0.10/0.849±0.003
HNSR 29.04±0.005/0.805±0.002 28.04±0.11/0.851±0.003

Scale = 4
SRCNN [11] 26.90±0.36/0.71±0.009 24.52±0.42/0.722±0.01
FSRCNN [143] 26.98±0.38/0.715±0.006 24.62±0.40/0.728±0.013
VDSR [45] 27.29±0.11/0.725±0.008 25.18±0.16/0.752±0.008
DRCN [46] 27.23±0.14/0.723±0.007 25.14±0.18/0.751±0.007
LapSRN [48] 27.32±0.12/0.728±0.005 25.21±0.19/0.756±0.006
DRRN [47] 27.38±0.13/0.728±0.005 25.44±0.16/0.763±0.008
MemNet [120] 27.40±0.14/0.728±0.004 25.50±0.18/0.763±0.008
SelNet [144] 27.44±0.14/0.732±0.003 -/-
IDN [122] 27.41±0.12/0.729±0.002 25.41±0.26/0.763±0.007
CARN [121] 27.58±0.10/0.735±0.002 26.07±0.14/0.783±0.005
HNSR 27.53±0.13/0.736±0.001 25.97±0.14/0.784±0.004

(b) Quantitative results from BSD100 and Urban100 testing datasets.
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3.3.5 Results

A. Benchmark results

Table 3.1 compares the proposed method with bicubic interpolation and several

state-of-the-art SR methods, including SRCNN [11], FSRCNN [143], VDSR [45],

DRCN [46], LapSRN [48], DRRN [47], Memnet [120], SelNet [144], and CARN

[121], which are considered as small-size models for a fair comparison. Follow-

ing [11], the performance is evaluated with PSNR and SSIM [108] (presented in

Subsection 2.3.11 (A)) on the Y channel (luminance) after transforming the im-

ages to the YCbCr space. As seen from Table 3.1, none of these methods can

consistently outperform the others. Using large testing datasets, such as the Ur-

ban 100 and the BSD100, the proposed model and CARN both achieved the best

performance in terms of PSNR and SSIM. Our PSNRs are slightly lower than

those of CARN [121] by 0.58%, 0.11%, and 0.29% for scales of x2, x3, and x4,

respectively, but our SSIMs consistently outperform those of CARN by 0.44%,

0.21%, and 0.05%, respectively. The CARN [121] is a ResNet-based model that

implements a global skip connection and multiple-level local shortcut or skip

connections. This strategy was previously employed in DRCN [46], DRRN [47],

Memnet [120], and SelNet [144] to provide multiple paths for gradients flowing be-

tween layers. CARN’s competitive result is likely due to the large training dataset

combining DIV2K [133], Yang91 [134], and BSD200 [132] (see Table 2.1). Fur-

thermore, the ResNet-based model, like CARN, shows ensemble-like behaviour.

The final outcome will be a combination of multiple predictions, which provide

a certain level of generality. However, the output image would be less sharp due

to the averaged results. As expected, our model performs better than others in

terms of SSIM. The structure of images is captured more easily with attention

mechanisms.
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B. Visual performance on test images

(a) Image067 from Urban100

(b) HR
(PSNR/SSIM)

(c) Bicubic
(16.98/0.7041)

(d) LapSRN
(18.60/0.8358)

(e) IDN
(18.77/0.8413)

(f) CARN
(19.38/0.8712)

(g) HNSR
(19.46/0.8719)

Figure 3.4: Visual qualitative comparison on the Image067, Urban100 dataset,
magnified by a factor of 4.

As seen from Fig. 3.4, for image 067, most of the compared methods produce

blurring artifacts along the diagonal lines, while the HNSR produces more sharp,

faithful details. To make a fair comparison, the image image 083 is tested, which

achieved a slightly lower PSNR/SSIM, to demonstrate the detailed reconstruction

ability. As seen from Fig. 3.5, most of the compared methods are incapable of
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(a) Image083 from Urban100

(b) HR
(PSNR/SSIM)

(c) Bicubic
(20.51/0.5578)

(d) LapSRN
(21.90/0.6767)

(e) IDN
(21.81/0.6740)

(f) CARN
(22.28/0.7013)

(g) HNSR
(22.22/0.7023)

Figure 3.5: Visual qualitative comparison on the Image083, Urban100 dataset,
magnified by a factor of 4.
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(a) HR
(PSNR/SSIM)

(b) Bicubic
(19.66/0.6127)

(c) LapSRN
(20.82/0.7120)

(d) IDN
(20.67/0.7046)

(e) CARN
(21.28/0.7394)

(f) HNSR
(21.38/0.7399)

Figure 3.6: Visual qualitative comparison on the Image073, Urban100 dataset,
magnified by a factor of 3. All compared methods generate the wrong direction
for the right diagonal lines except the HNSR method.
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(a) HR
(PSNR/SSIM)

(b) Bicubic
(20.14/0.6203)

(c) LapSRN
(21.08/0.6881)

(d) IDN
(21.12/0.6856)

(e) CARN
(21.44/0.6986)

(f) HNSR
(21.51/0.6988)

Figure 3.7: Visual qualitative comparison on the Image052, BSD100 dataset,
magnified by a factor of 4.

recovering the lattices and suffer from blurring artifacts. In contrast, the HNSR

can alleviate the blurring artifacts better and recover more details. It can be
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(a) HR
(PSNR/SSIM)

(b) Bicubic
(25.56/0.6483)

(c) LapSRN
(26.77/0.7014)

(d) IDN
(26.76/0.7015)

(e) CARN
(26.86/0.7048)

(f) HNSR
(26.87/0.7058)

Figure 3.8: Visual qualitative comparison on the Image038, BSD100 dataset,
magnified by a factor of 4. Only HNSR can produce the forehead and legs of
horses that are closest to the ground truth.

explained by the help of the gating mechanism, to forget irrelevant parts instead

of remembering all features from the previous layer. Such obvious comparisons
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demonstrate that the gating mechanism provides a more powerful representa-

tional ability to extract sophisticated features from the LR images. The more

visual and quantitative comparisons are given in Fig. 3.6, Fig. 3.7, and Fig. 3.8.

It is noticed that although CARN achieves high PSNR scores, the visual images

are much more similar to those of the skip connection-used LapSRN and IDN

methods, which show poor perceptual quality as reflected by their SSIM scores.

C. Ablation study

1) Comparison with skip connections

Since the learning rate of 4e-4 is not optimal for the skip connection-based

model as discussed previously, a learning rate of 1e-4 is chosen for a fair compar-

ison. As can be seen from Fig. 3.9, the highway-based model shows marginally

faster convergence than the skip-based model right from the beginning, achieving

a 27 dB accuracy at a step of 13.6K compared with 23.4K in the model with

skip connections. At the step of 604K, the skip-based model is unable to improve

further, while highway-based methods continue to learn more before stopping at

the step of 676K. This observation is compatible with the results in Fig. 3.10,

where we evaluate the loss of training and validation at the end of each epoch.

As can be seen from Fig. 3.10, the highway-based models outperform those us-

ing skip-connections in both training and validation evaluation. Increasing the

learning rate to 4e-4 enables the HNSR model to converge faster and to a better

solution. In contrast, the performance of the skip connection-based model at that

learning rate is worst, which verifies the previous observation in Fig. 3.1. With

the same initialization, the HNSR takes the benefit of the convex combination

property in highway connection to provide more stable training, thereby making

the training faster. Meanwhile, the proposed attention mechanism enhances the

discriminative learning ability and achieves better convergence.
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Figure 3.9: Training PSNR of the model with different types of connections. All
parameters were initialised with the same seed values.
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Figure 3.10: Training error and the corresponding validation error of models with
different connections and learning rates.
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2) Visual gate unit

(a) Gate 1 (b) Gate 2 (c) Gate 3 (d) Gate 4 (e) Gate 5 (f) Gate 6

(g) Gate 7 (h) Gate 8 (i) Gate 9 (j) Gate 10 (k) Gate 11 (l) Gate 12

(m) Gate 13 (n) Gate 14 (o) Gate 15 (p) Gate 16 (q) Gate 17 (r) Gate 18
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Figure 3.11: The attention of 18 carry gates in 18 HNSR blocks on the image of a
“baby” in Set5. The colormap from 0 to 1 shows the increasing level of attention
on a particular area on the image.

To examine the attention of gates, the features through the carry gate, which

is a sigmoid function are extracted. The feature maps of all the channel dimen-

sions are averaged, then normalised to a range from 0 to 1, before associating with

a heat map. Note that the gates regulate the information; they do not capture

features to feed to the next layer. As seen in Fig. 3.11, the carry gates do not

assign the same priority to a different position but give distinct attention to some

specific regions. Because the CNNs have complicated interaction, it is difficult to

explain why each gate gives particular attention. However, it can be seen that the

focus on on one specific area is reducing or emphasising on the successor layer.

Finally, the carry gate 18 achieves a balance for focused intensity.

3) Mitigating gradient vanishing and paying attention at the same time in

each block

The following signs will help you identify the vanishing gradient problem: (1)
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there are large changes in parameters of later layers, whereas the parameters

of earlier layers change slightly or stay unchanged; (2) the model learns at a

slow pace. It may obviously observe the vanishing gradient by replacing the

ReLU activations with the sigmoid activations. The sigmoid function saturates

at two end points where gradient or derivative values are significantly small.

By comparing the gradient magnitude of the last layers to those of the earlier

ones, the gradient issue can be detected. Unlike sigmoid activation, the ReLU

activation does not saturate and therefore helps mitigate the problem. As the

ReLU is now commonly used in CNN, it is better to identify the issue with the two
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Figure 3.12: Mean of ReLU activations in a baseline network which does not
contain any connection.
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above criteria. The deep network still faces gradient issues, even with ReLU being

used. To demonstrate the case of vanishing gradient in training CNN and how

the highway connection can mitigate this problem, the experiments are conducted

with a base network where all connections are not present and a highway network

where a local highway connection is introduced in every block.
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Figure 3.13: The average values of ReLU activations in a highway network.

Fig. 3.12 and Fig. 3.13 show the means of ReLU activation, which were

measured at each of 18 blocks for the two compared networks. The mean of

ReLU activations in the baseline network starts to increase for the first 8 blocks,

reaching a peak of around 30 before decreasing back to a small non-zero value
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of about 0.02. The first three blocks are less effective; they do not learn well or

even provide noise to the rest. The next 5 blocks are correcting, resulting in a

high value for the mean of ReLU in order to meet the range of output. Noting

that the range of input and output images are normalised into a range of [-1,

1]. Therefore, high values of ReLU are unusual. The vanishing gradient issue

does happen at the first three blocks in the baseline network. In contrast, the

activation range for ReLU in the highway network is kept at a small non-zero

value. All weights, from the first to the last layer, are learned. In theory, the

highway connection can keep gradients flowing by setting sigmoid(.) = 1, which

is equivalent to the skip connection in ResNet. The Fig. 3.14 shows the baseline

network learning at a slow pace compared to that using highway connections.
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Figure 3.14: The PSNR of a network with/without highway connections.

The mean values of carry gates, which are calculated across both spatial and

channel dimensions, are shown in Fig. 3.15. Their values range from 0 to 1,
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Figure 3.15: Mean of 18 carry gates.

indicating how much the features from the previous layers will be used. Fig.

3.15 also shows how the highway connection solves the gradient vanishing in the

baseline network by setting high values for carry gates 2-4, ranging around 0.825.

As a result, the mean values of ReLU 2-4 and subsequent ones do not increase

as rapidly as the baseline one. The activation range of ReLU in the first block is

not large, so the mean value of the first carry gate does not need to increase. The

network’s input is normalised with a zero mean, so its output is also expected

to have a zero mean. As a result, the mean value of the 18th carry gate must

be the lowest, close to 0.5 (sigmoid(0) = 0.5). The visual observation in Fig.

3.11 is compatible with the mean values of carry gates. They prove that the

highway connections help to focus on particular parts of the image as well as
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Figure 3.16: Convergence plots for various depths of network.

adjust gradients differently between blocks for the best learning.

To demonstrate whether performance will degrade with a deeper structure,

several lightweight networks with the same proposed highway but varying depths

are trained. Because the weight can learn to set the output of a sigmoid at

1, which is equivalent to skip connections, it is expected that the performance

of a deeper network will not be worse than a shallower one. Fig. 3.16 shows

the convergence plot for networks of 18, 36, and 50 blocks, respectively. It has

shown no sign of optimisation difficulties for deeper networks. The network with

a depth of 50 blocks achieves the lowest training error, followed by a network

of 36 blocks. While there is a notable gap between the training errors of 18-

and 36-block networks, the performances of networks with 36 and 50 blocks are
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insignificantly different. Further experiments with network depths of more than

50 blocks have not shown a large improvement.

While the number of parameters is almost the same as for the skip connection,

the downside of the proposed highway connection is that it is computationally

expensive due to its exponent calculations. Models using highway connections

are more likely to converge into local minima than those using skip connections.

As previously discussed, the skip connection-based networks are less susceptible

to that problem due to their ensemble behavior. However, training the ensemble

network would prevent it from reducing training errors. Therefore, a highway

connection inside a skip connection can balance the trade-off between accuracy

and generality. The future of work with multiple-level highway connections is

worth researching.

3.4 Summary

In this chapter, a novel CNN-based architecture is proposed for improving the

accuracy of image reconstruction in single image super-resolution. The proposed

model has a similar architecture to the ResNet [50] except for using highway con-

nections instead of residual connections. It does not require the implementation

of a complicated structure and enables stable training with fewer problems of

exploding gradients or dying neurons. The quantitative results have shown the

competitive performance of the proposed architecture compared to other skip-

based networks. Visual observations reveal that all skip-based methods have

a similar structural pattern of errors, despite their different architectures and

PSNRs that vary widely. Hence, building a deeper network with skip connec-

tions will not guarantee improved perceptual quality. As opposed to SSIM, the

MSE and thus PSNR perform badly in discriminating structural content in images

since various types of degradation applied to the same image can yield the same
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value of the MSE [145]. The SSIM approach is motivated by the observation that

image signals are highly structured, meaning that samples of image signals have

strong neighbor dependencies, and these dependencies carry important structures

of objects in the image. As expected, the proposed model provides a higher value

of SSIM than those using skip connections. With the attention mechanism, a

different weight is forced to be learned for each pixel rather than treating every

pixel equally as with skip connection. By this way, the neighboring dependencies

can be captured, which will improve SSIM.
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Fusion-based Image

Super-Resolution

4.1 Introduction

When the high spatial resolution data of the interest scene is available, one can

employ data fusion algorithms to increase the spatial resolution of the hyper-

spectral data. Unfortunately, using multiple sources for MS/HS fusion is still

limited. A few satellite platforms that incorporate two imagers, including Spot-

5, Gaofen-2, and Gaofen-5, have just provided panchromatic and multispectral

images, which are used for pan-shapening rather than MS/HS fusion. Some plat-

forms, such as EO-1, PROBA-1, PRISMA, EnMap, etc., acquire only hyperspec-

tral data. Theoretically, data fusion requires source data to have been collected

using the same platform and under the same conditions of observation, such as

the same atmosphere and illumination. Also, the images should capture the same

scene with accurate image registration. Finally, it is important to provide relative

sensor properties such as spectral response functions and point spread functions.

Recently, the hyperspectral imager suite (HISUI) has become the first earth-

observing sensor composed of hyperspectral and multispectral imagers, satisfying
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these assumptions. The Hr-MSI and Lr-HSI are suitable for fusion algorithms

due to their trade-offs and are now available in practice thanks to technological

advances. Although the CNN-based methods have shown impressive performance

in SISR, an effective approach to fuse two image sources for HSI SR is still ques-

tionable. With the aid of CNNs, the hierarchical features of Lr-HSI and Hr-MSI

can easily be extracted, but the fusion-based approach requires to specify how to

combine them. Furthermore, since HS data usually shows high dimensional and

non-linear capacities, reconstructing HSI is more likely to suffer from distortions.

Effectively fusing two types of extracted features and reducing ill-posed problems

are needed to be considered for fusion-based HSI SR.

Improperly tackling the difference in spectrum range and spatial dimensions

between the Lr-HSI and Hr-MSI may hinder the performance. For example, bicu-

bic upsampling both Lr-HSI and Hr-MSI to the space of to-be-estimated HSI for

the inputs of network [59,60] has increased the computational complexity, which

is the case for HSI SR. This approach will certainly impede discriminative learning

ability. The interpolated images would contain uninformative pixels that could

be treated as equally important as the original pixels by the network. Combining

feature maps from different levels may cause performance degradation. The CNN

is well-known for extracting features in raw data at various abstract levels. Each

layer represents a different abstract feature representation of the input, where

deeper levels provide more sophisticated and abstract features. When jointing

feature maps from two inputs, the deep level feature maps from Hr-MSI may

not provide useful spatial information for shallow feature maps from Lr-HSI, and

vice versa. Therefore, the disparity in feature abstraction level should be paid

attention when joining two sources of input images.

The reconstruction of high-dimensional HSI requires constraints to restrict the

possible solutions and make the model generalisable. The regularisation methods

in the generic CNN-based framework may not be sufficient for specific tasks or
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image types. Hence, finding additional constraints to regulate HSI-SR solution

is still a subject of active research. As the Hr-MSI and the Hr-HSI are both HR

images and capture the same scene, the representation of Hr-MSI can be utilised

to further improve the generality of the MS/HS fusion network.

The organisation of this chapter is described as follows: Section 4.2 introduces

the proposed CNN-based method for HSI SR, where the theoretical basis that

forms a proposed model is described, followed by a detailed network structure.

Section 4.3 presents the experiment results, including the ablation learning, com-

parison analysis, and further discussions. Finally, some summary remarks are

given in Section 4.4.

4.2 The proposed method

4.2.1 Progressive downsampling and upsampling

The joint learning operation in a CNN-based model is to combine features using

the summation or concatenation of the tensors, which normally requires tensors

to have the same spatial dimension. Since the observed Hr-MSI and Lr-HSI

have different spatial resolutions, two stages are employed for the fusion frame-

work, as detailed below. In the first stage, the Hr-MSI is progressively downsam-

pled into multi-scales and then fused with the Lr-HSI of the same spatial size.

For the second phase, there are three commonly used upsampling techniques for

image super-resolution, i.e., pre-upsampling, post-upsampling, and progressive-

upsampling. When the upsampling factor is large, the first two techniques in-

crease either the parameters of the network or the difficulty of training. The

progressive upsampling method, however, allows the training to gradually shift

its attention from the large-scale structure of image to finer-scale details, instead

of having to learn all scales simultaneously. Therefore, the architecture appears

similar to the U-Net [147], which can not only significantly reduce the learning
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difficulty but also improve the performance.

4.2.2 Multi-Task learning

Multi-task learning [148] has been shown to improve the generalisation perfor-

mance. Apart from the Hr-HSI task, an auxiliary unsupervised task is introduced,

which reconstructed Hr-MSI from given Hr-MSI. Intuitively, the observed Hr-MSI

and estimated Hr-HSI must share similar spatial information, as shown in Fig.

4.1; otherwise, the MS/HS fusion task becomes trivial.

Hr-HSI Hr-MSI
Shared

Representation

Figure 4.1: Both observed Hr-MSI and estimated Hr-HSI share the spatial rep-
resentation.

This shared representation is essential for estimating both the Hr-MSI and

Hr-HSI, where this feature is representative for the Hr-MSI data and also crucial

for estimating the Hr-HSI. Directly estimating of the Hr-HSI from any given Lr-

HSI and Hr-MSI is likely an under-constrained problem. This means solutions

can be found to well fit the data but often fail to extract the underlying patterns

in the data, resulting in poor generalisation. Introducing an auxiliary task for

reconstructing Hr-MSI will train the model to find the solution over a small

area of the intersection of two tasks rather than on a broader area of a single

task. Therefore, this can help the network achieve faster and better convergence.

Moreover, the auxiliary task acts as a regulariser by introducing a reductive bias,
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Hr-MSI

Shared layer

Shared layer

HSI Task layer

HSI Task

MSI Task layer

MSI Task

Figure 4.2: Hard parameter sharing for multi-task learning in deep neural net-
works.

where the number of possible solutions can be reduced.

Hard parameter sharing is the most commonly used approach in multi-task

learning with a neural network, as shown in Fig. 4.2. It is generally applied

by sharing the hidden layers between all tasks while keeping several task-specific

output layers. When training jointly, both Hr-MSI and Hr-HSI tasks must have

agreement on features to reduce the total error reconstruction, which enables the

shared layer to capture the common features of both. This is equivalent to the

sparse representation-based method, for example, the Non-Local Sparse Tensor

Factorisation (NLSTF) [67] method, that uses the non-local self-similarity of Hr-

MSI to impose spatial constraints on estimated Hr-HSI.

4.2.3 Denoising with the autoencoders

Given Hr-MSI as the high-resolution image, an autoencoder can also be used as an

auxiliary task for learning a compressed representation of Hr-MSI, which is then

used to impose regularisation on the HSI SR. The convolutional autoencoder is an

unsupervised learning method that first learns the representations by performing
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convolution and downsampling on the input. These representations are then

decoded by up-sampling and convolutions to reconstruct the original image of

the input. The denoising autoencoders [103], is an extension to the classical

autoencoder, which reconstructs the input from a corrupted version of it.

4.2.4 Network architecture

For notational convenience, all Lr-HSI, Hr-MSI, and Hr-HSI are denoted as two-

dimensional matrices. Let the matrix representing the Lr-HSI be Z ∈ RC×hw with

C bands and spatial dimension hw, and let denote Y ∈ Rc×WH the obtained Hr-

MSI with c spectral bands and spatial dimension WH. The goal is to estimate the

Hr-HSI, present as X ∈ RC×WH , with both high spatial and spectral resolutions.

In general, Hr-MSI has much higher spatial resolution than Lr-HSI (HW � hw),

and Lr-HSI has a much higher spectral resolution than the Hr-MSI (C � c).

The Lr-HSI can be regarded as a spatially down-sampled version of the Hr-

HSI:

Z = XBS (4.1)

where B ∈ RWH×WH represents a convolution between the point spread function

(PSF) of the sensor and the Hr-HSI band, and S ∈ RWH×wh is a downsampling

matrix. Similarly, the Hr-MSI, e.g. a RGB/PAN image, can be taken as a

spectrally downsampled version of the Hr-HSI:

Y = RX (4.2)

where R ∈ Rc×C is the corresponding camera spectral response function.

The problem of HSI SR can be solved by learning the mapping between X

and the coupled Y, Z below in a fully convolutional fashion using the gradient
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descent. The proposed multi-task objective is represented as:

argmin
θ,ψ

‖ f(X|θ,Y,Z)−X ‖2
2 +γ ‖ g(Y|ψ, Ỹ)−Y ‖2

2 +ηR(X) (4.3)

where f(X|θ,Y,Z) and g(Y|ψ, Ỹ) are the outputs of the proposed network; θ

and ψ are trainable parameters of two sub-networks. During the multi-task

learning, part of θ and ψ is shared, as illustrated in Fig. 4.2. The first and

second terms are the pixel-wise L2 distance between the network outputs and the

corresponding ground-truth X and Y, respectively. The final term refers to the L2

regularisation, which aims to penalise more with large learnable parameters and

less with smaller ones. The regularisation coefficients γ and η are two predefined

values that need to be chosen to balance generality and accuracy in the main task.

When γ and η are large, the denoising task and the L2 regularisation outweigh

the primary task and prevent it from reducing training errors.

There are two major objectives for designing the proposed fusion network.

One is to reduce the spatial discrepancy between the two observed data. The

other is to improve the generalised representation by sharing the main supervised

task with an unsupervised auxiliary task. These representations are not only

useful to support the decision for the supervised task but also work as a regulariser

for more effective HSI SR [149].

A MS/HS fusion network is detailed in Fig. 4.3, in which Fig. 4.3 (a) illustrates

the baseline architecture and Fig. 4.3 (b) a baseline architecture extended with the

proposed auxiliary task. The construction of proposed model involves a top-down

pathway, a bottom-up pathway, an auxiliary task, and some lateral connections,

as introduced below.

Top-down pathway (MSI branch). In this pathway, the given training Hr-

MSI is progressively down-sampled with a scaling factor of 2 into five hierarchical

spatial levels, starting from an image sized of 96 × 96 × 3 to 3 × 3 × 31. Often,
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Figure 4.3: The architecture of proposed MSAT. The same yellow or green colour
boxes indicates that those variables are shared between supervised and unsuper-
vised tasks.

there are many layers that produce output maps of the same size, which are

defined in the same network stage or level. Let Y (s−1) and Y (s) denote the input

and output feature maps of the s-th level in the MSI branch, and the relation
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between Y (s−1) and Y (s) is formulated by:

Y (s−1) = Resblock(Downsample(Y (s))) (4.4)

where Resblock(·) and Downsample(·) denote respectively the ResNet block and

a downsample operation using a convolution layer with strike = 2. The highest

level (s = 5) is the feature maps extracted from the observed Hr-MSI without

downsampling.

An auxiliary task (Denoising branch): In the proposed model (Fig. 4.3b),

a light Denoising Auto-Encoder (DAE) is introduced as an auxiliary task, which

is trained to reconstruct the original observation Y from its corrupted version Ỹ

by minimising the error between the input Y and its reconstruction g(Y|ψ, Ỹ)

from the corrupted Ỹ. With the presence of noise, the DAE is forced to learn

the representation of the data, which later is able to reconstruct the original

input. The corrupted Ỹ = Y+N (µ, σ2) is used to train the DAE with the clean

version Y fed into the Encoder to extract the underlying representation for both

tasks. Formally, the representation of Hr-MSI at multiple levels Ȳs, Ȳs−1, . . . , Ȳ0

are extracted as follows:

Ŷs, Ŷs−1, . . . , Ŷ0 = Encoder(Ỹ ) (4.5)

Ẏs, Ẏs−1, . . . , Ẏ0 = Decoder(Ŷs, Ŷs−1, . . . , Ŷ0) (4.6)

Ȳs, Ȳs−1, . . . , Ȳ0 = Encoder(Y ) (4.7)

The features Ȳs, Ȳs−1, . . . , Ȳ0 that come after the ReLU activation are used for a

supervised task, and proposed model is trained in an end-to-end manner.

Lateral connections between the main task and the auxiliary task:

The DAE relies on a certain number of training (noisy) examples to learn the

representations/patterns before transferring them to the main task. Our pri-
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mary task should thus be to determine when to use such information and when

to discard irrelevant ones. The simple mechanism is to use a 1×1 convolution

layer. However, one problem with this is that the main task may neglect shared

representations by setting the kernel parameters to zero. The total loss is then

minimised by decreasing each supervised and unsupervised loss separately. The

representations learnt by the DAE thus are of no use to the main task. To avoid

this unwanted effect, a compression mechanism is introduced by taking advantage

of a 1×1 convolution layer. Concretely, the feature maps extracted from Hr-MSI

in both the denoising task and the main task are concatenated and sent to a 1×1

convolution layer. This layer performs dimensionality reduction and forces the

main task to utilise the information from the denoising task.

Y
(l)
fused = Conv1x1(Concatenate(Y (l), Ȳ (l))) (4.8)

Bottom-up pathway (HSI branch): The bottom-up pathway hallucinates

higher resolution features by up-sampling the spatial feature maps from lower

levels of the Lr-HSI.

X(s−1) = Upsample(Resblock(X(s−2))) (4.9)

where Resblock(·) denotes ResNet block and Upsample(·) is a upsampling oper-

ation using a transposed convolution layer. The up-sampled map is then merged

with the corresponding top-down map by element-wise addition.

X̂(s−1) = X(s−1) + Y
(s−1)
fused (4.10)

The top-down pathway is rich in spatial information, while the bottom-up path-

way contains a high level of spectral information.

To build a deep network without changing the network topology, the param-
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eters α and β control the depth of the network. Only one residual block (α = 1,

β = 1) is used at a certain spatial levels unless stated otherwise. Our residual

block is derived from the MobileNetV1 [150], in which the conventional 3 × 3

convolution is replaced by a 3 × 3 depth-wise separable convolution. The down-

sampling and up-sampling blocks refer to one-step convolution with stride = 2

and a transpose convolution, respectively.

4.3 Experimental results

4.3.1 Experimental Datasets

For performance evaluation, we conduct experiments on five public benchmark

datasets: CAVE [151], Harvard [152], ICVL [153], Chikusei [154], and a space-

borne image of Roman Colosseum acquired by World View-2. The first three

datasets are widely used in hyperspectral image super-resolution. They contain

images with sufficient high spatial and spectral resolutions, as well as showing

the diversity of objects, conditions in which images were captured, and number

of bands. The airborne and spaceborne hyperspectral datasets are limited; they

do not satisfy the above requirements or even lack ground truth, or their dataset

size is insufficient. Therefore, Chikusei and Roman Colosseum are airborne and

spaceborne, respectively, and were simply chosen to follow previous work [54].

Additional details of five datasets are given in Appendix A.

The CAVE dataset [151] comprises 32 indoor HSIs captured under controlled

illumination. The images have 31 spectral bands with a spatial dimension of 512

× 512 pixels, and a spectral sampling gap of 10nm from 400nm to 700nm. The

Harvard dataset [152] has 50 indoor and outdoor images, recorded under daylight

illumination, where 27 images were under artificial or mixed illumination. With a

spatial size of 1392 × 1040 pixels, each HSI has 31 spectral bands, with a 10-nm

spectral sampling gap within [420, 720] nm. The ICVL dataset [153] contains
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201 HSIs of real-world indoor and outdoor scenes, has 31 spectral bands each

ranging from 400 nm to 700 nm at a 10 nm increment. Only the top left 1024 ×
1024 pixels is used for convenience of the spatial down-sampling. The Chikusei

scene [154] is an airborn HS image taken over Chikusei, Ibaraki, Japan. The

image has a spatial dimension of 2517 × 2335 pixels, comprising 128 bands in

the spectral range from 363 to 1018 nm. A 500 × 2210 pixel-size image from the

top area of the original data is selected for training. Besides, 16 non-overlapped

448 × 448 images are extracted as the testing set.

Figure 4.4: Procedure to create training data when the Hr-HSI is unavailable.

The sample images of the Roman Colosseum contain an Hr-MSI (RGB image)

of size 1676 × 2632 × 3 and Lr-HSI image of size 419 × 658 × 8. The 208 × 658

and 836 × 2632 pixels image from Lr-HSI and Hr-MSI are selected for training

and the remaining for testing data. Since the ground truth is not available in

this case, we follow Wald’s protocol [155] to create the simulated experiments,

as illustrated in Fig. 4.4. All original images are blurred by a 9 × 9 Gaussian
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smoothing kernel and downsampled by a factor of 4. These downsampled images

are treated as training data, and the original Lr-HSI is regarded as the ground

truth. For each of four other databases, the original Hr-HSI are used as the

ground-truth images. The Hr-HSI is then downsampled by averaging the 32 ×
32 disjoint spatial blocks to generate the Lr-HSI. The Hr-MSI (RGB image) of

the same scene is stimulated by down-sampling X with a spectral model using

a spectral down-sampling matrix derived from the response of a Nikon D700

camera. The CAVE, Harvard, and ICVL datasets are split into a training set of

20 images, 30 images, and 75 images and a test set of 12 images, 20 images, and

25 images, respectively.

To prepare the training samples, the 96 × 96 overlapped patches from the

training images are extracted as reference Hr-HSI images. The Hr-HSI, Hr-MSI

and Lr-HSI images are sized of 96 × 96 × S, 96 × 96 × 3 and 3 × 3 × S, re-

spectively, where S refers to the number of spectral bands in each experimental

datasets. The weighting factor γ is fixed within [1e-3, 1e-2] to balance the super-

vised loss and the unsupervised loss. When γ is too small, i.e., 1e-4, the problem

(4.3) is reduced to solving one single-task learning problem. On the other hand,

when γ is too large, i.e., 1e-1, the auxiliary task can prevent the primary task

from reconstructing the details.

4.3.2 Training Setup

All experiments are run on TensorFlow with CUDA 9.0 and cuDNN backends on

an NVIDIA GeForce GT 1030 GPU. We train the model with 40,000 iterations

using a batch size of 16. The ADAM optimization [142] algorithm was used

with an initial learning rate of 0.00035, which reduces by 30% after every 10,000

iterations. Only the flipping was used as a data augmentation to reduce the

training time. In the denosing branch, Gaussian noise added to the original

inputs is zero-mean with a variance within [0.05, 0.2].
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4.3.3 Experimental results

The parameters α and β refers to the numbers of Residual blocks that would be

used in the top-down pathway and bottom-up pathway shown in Fig. 4.3. We

have found that increasing the number of blocks in a top-down pathway does not

improve accuracy while introducing more computational cost. The bottom-up

pathway is the main part, which is responsible for reconstructing the HSI, and its

depth will affect the accuracy. The number of blocks at each stage in the bottom-

up pathway is set according to the size of the dataset. Therefore, the MSAT is set

up with α = 0 and β = 1 for small training dataset of CAVE, Harvard, Chikusei,

and Roman Colosseum and α = 0 and β = 2 for large dataset of ICVL. Since

deep learning-based method needs training, the performance on the testing set

is compared instead of the full dataset. The comparion methods include: non-

local sparse tensor factorization (NLSTF) 1 [67], non-negative structured sparse

representation (NSSR) 2 [65], and low tensor-train rank representation (LTTR)

3 [69] methods, which represent the state-of-the-art sparse representation based

approaches; the hyperspectral super-resolution network (HSRnet) 4 [60] and the

model-guided deep convolutional network (MoG-DCN) 5 [59] represent the state-

of-the-art deep learning-based SR methods. For quantitative evaluation, RMSE,

ERGAS, SAM and SSIM (see Subsection 2.3.11 (B)) are utilised. Table 4.1 shows

the average results of the compared methods on the CAVE testing set, where the

best results are highlighted in bold for clarity. As seen, the proposed method

achieves the better performance than all others in terms of ERGAS, SAM and

SSIM, although the RMSE is not the least. With just a few samples used for

training suggests that proposed model has the potential to further improve the

RMSE scores when more training images are available.

1https://github.com/renweidian/NLSTF
2https://see.xidian.edu.cn/faculty/wsdong/HSI SR Project.htm
3https://github.com/renweidian/LTTR
4https://github.com/liangjiandeng/HSRnet
5https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-Super-resolution
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Table 4.1: Average quantitative results of the compared methods using 12 testing
images on the CAVE dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
NLSTF [67] 3.14±1.24 0.46±0.30 6.57±2.41 0.976±0.012

NSSR [65] 2.77±1.29 0.42±0.31 5.70±2.02 0.980±0.011

LTTR [69] 2.64±1.59 0.38±0.26 6.24±2.25 0.982±0.010

HSRnet [60] 3.36±1.70 0.39±0.33 4.78±1.14 0.980±0.010

MoG-DCN [59] 3.33±1.68 0.37±0.28 4.57±0.99 0.984±0.007

MSAT 3.25±1.61 0.36±0.25 4.25±0.93 0.985±0.005

The quantitative averages on the Harvard database are compared in Table 4.2.

Although none of these methods can consistently outperform others, the LTTR

[69] seems to perform better on the Harvard dataset. The proposed approach

achieves competitive results in terms of RMSE and SSIM, where the ERGAS and

SAM are slightly worse than others.

Table 4.2: Average quantitative results of the compared methods over 20 testing
images on the Harvard dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
NLSTF [67] 2.66±1.30 0.31±0.21 3.36±1.72 0.974±0.014

NSSR [65] 2.52±1.24 0.34±0.22 3.23±1.60 0.975±0.014

LTTR [69] 2.19±1.15 0.34±0.21 3.09±1.29 0.979±0.011

HSRnet [60] 2.62±1.33 0.36±0.26 3.46±1.17 0.973±0.016

MoG-DCN [59] 2.21±1.13 0.35±0.24 3.39±1.50 0.979±0.011

MSAT 2.18±1.05 0.35±0.23 3.39±1.49 0.979±0.010

Fig. 4.5 shows a reconstructed image from the Harvard test dataset. As the

NLSTF [67] method is actually a variation of the NSSR [65] algorithm, visual

inspection validates that the former closely resembled patterns in the latter. The

reconstructed images from three deep learning-based methods also follow the

closely mirrored patterns. Among them, the LTTR [69] and the proposed MSAT

recover more spatial details of the HSI.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.5: First and second row: the reconstructed images and the corresponding
error images of the compared methods for Harvard at 460nm band. Third row
and Fourth row: reconstructed images and corresponding error images of the
compared methods for Harvard at 620nm band. (a) the NLSTF method [67]
(RMSE = 3.33, ERGAS = 0.19, SAM = 2.34, SSIM = 0.96). (b) the NSSR
method [65] (RMSE = 3.36, ERGAS = 0.20, SAM = 2.51, SSIM = 0.96). (c)
the LTTR method [69] (RMSE = 1.87, ERGAS = 0.161, SAM = 2.27, SSIM =
0.972). (d) the HSRnet method [60] (RMSE = 3.12, ERGAS = 0.193, SAM =
2.59, SSIM = 0.963). (e) the MoG-DCN method [59] (RMSE = 2.62, ERGAS =
0.189, SAM = 2.41, SSIM = 0.972). (f) Proposed MSAT (RMSE = 2.37, ERGAS
= 0.173, SAM = 2.38, SSIM = 0.972). (g) Ground-truth.

Obviously, deep learning-based methods require sufficient features by a grant

from a larger amount of training data or properties of the datasets. As a re-

sult, the small training dataset, as well as the high training/test split ratio from

CAVE (20 images/12 images ≈ 62.5/37.5%) or Harvard (30 images/20 images ≈
60/40%), will cause high variance in the training of model or overfitting. An-

other issue is an unrepresentative training dataset, which means that the data
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Table 4.3: Average results of the compared methods (25 testing images, 75 train-
ing images).

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
NLSTF [67] 1.73±0.63 0.12±0.05 1.06±0.37 0.991±0.003

NSSR [65] 1.74±0.60 0.128±0.047 1.05±0.35 0.991±0.003

LTTR [69] 1.13±0.39 0.08±0.04 0.10±0.32 0.994±0.001

HSRnet [60] 1.65±0.56 0.11±0.04 1.09±0.36 0.996±0.001

MoG-DCN [59] 1.24±0.38 0.08±0.04 1.03±0.34 0.998±0.002

MSAT 1.03±0.32 0.07±0.04 0.99±0.31 0.998±0.000

available during training is insufficient to capture the model, relative to the val-

idation dataset. Without increasing the model complexity, 100 images from the

ICVL dataset are randomly chosen, where 75 images are used for training and

the remaining 25 for testing. The performance of the proposed method now

consistently outperforms the compared methods significantly with a more con-

siderable margin, as shown in Table 4.3. As seen from Table 4.3, the proposed

MSAT method significantly outperforms the compared models of NLSTF [67],

NSSR [65], LTTR [69], HSRnet [60], and MoG-DCN [59] in terms of all the four

quantitative metrics. Furthermore, the proposed model produced consistently

lower variance around the average score than all others.

In Fig. 4.6 and Fig. 4.7, the reconstructed images and the error images are

shown, where the test results are for an outdoor image BGU 0403-1419-1 and

an indoor image objects 0924-1629 from the ICVL dataset. The NLSTF [67]

and NSSR [65] again perform worse as shown in the changed brightness while

the LTTR [69] and the proposed MSAT approaches perform better regarding the

well preserved spatial and spectral structures. The HSRnet [60] and the MoG-

DCN [59] are still unable to surpasses the LTTR [69] in ICVL dataset.

Table 4.4 compares the quantitative average of all compared methods using

16 testing images on the Chikusei dataset. As the training and test samples are

cropped from the same image, they have common features and do not suffer from
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.6: The reconstructed images and corresponding error images of the
compared methods for ICVL at 460nm band (first two rows) and at 620 nm (the
last two rows). (a) the NLSTF method [67] (RMSE = 1.96, ERGAS = 0.13,
SAM = 1.17, SSIM = 0.99). (b) the NSSR method [65] (RMSE = 1.93, ERGAS
= 0.13, SAM = 1.07, SSIM = 0.99). (c) the LTTR method [69] (RMSE = 1.15,
ERGAS = 0.085, SAM = 1.06, SSIM = 0.994). (d) the HSRnet method [60]
(RMSE = 1.36, ERGAS = 0.091, SAM = 1.07, SSIM = 0.994). (e) the MoG-
DCN method [59] (RMSE = 1.13, ERGAS = 0.067, SAM = 0.098, SSIM =
0.995). (f) Proposed MSAT (RMSE = 0.96, ERGAS = 0.05, SAM = 0.90, SSIM
= 0.996). (g) Ground-truth.

overfitting and unrepresentative training dataset. Fig. 4.8 shows the composition

of test samples with bands of 70, 100, and 36 as a false-color image with the error

image given in all three channels. As seen, the three sparse representation-based

approaches perform worse compared to deep learning-based methods. The pro-

posed method significantly outperforms three sparse representation-based meth-

ods with a large margin while still performing better than the HSRnet [60] and

the MoG-DCN [59]. The composition image obtained from the proposed method
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.7: The reconstructed images and corresponding error images of the
compared methods for ICVL at 540nm band (first two rows) and at 620 nm (the
last two rows). (a) the NLSTF method [67] (RMSE = 1.75, ERGAS = 0.07,
SAM = 0.64, SSIM = 0.98). (b) the NSSR method [65] (RMSE = 1.69, ERGAS
= 0.07, SAM = 0.60, SSIM = 0.99). (c) the LTTR method [69] (RMSE = 1.26,
ERGAS = 0.548, SAM = 0.69, SSIM = 0.992). (d) the HSRnet method [60]
(RMSE = 1.48, ERGAS = 0.067, SAM = 0.62, SSIM = 0.990). (e) the MoG-
DCN method [59] (RMSE = 1.22, ERGAS = 0.534, SAM = 0.68, SSIM = 0.993).
(f) Proposed MSAT (RMSE = 1.19, ERGAS = 0.04, SAM = 0.64, SSIM = 0.993).
(g) Ground-truth.

is closest to the ground truth, while other methods show obvious unsatisfactory

reconstruction.

The fusion result on the real spaceborne HS dataset is shown in Fig. 4.9. As

the ground-truth Hr-HSIs are unavailable, the procedure of training is followed

and the performance is measured by comparing the result image with an up-

sampled image of Lr-HSI. As seen, the result image obtained from the proposed

method is much closer to Lr-HSI and Hr-MSI. Furthermore, Fig. 4.10 compares

97



Chapter 4. Fusion-based Image Super-Resolution

Table 4.4: Average results of the compared methods over 16 testing samples in
the Chikusei dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
NLSTF [67] 2.55±0.67 0.478±0.056 2.78±0.66 0.971±0.007

NSSR [65] 3.94±1.11 0.772±0.112 3.90±0.92 0.943±0.015

LTTR [69] 4.53±1.32 0.683±0.121 3.11±0.53 0.952±0.013

HSRnet [60] 2.32±0.44 0.827±0.163 2.94±0.49 0.970±0.005

MoG-DCN [59] 1.36±0.26 0.483±0.060 2.64±0.32 0.989±0.001

MSAT 0.93±0.12 0.475±0.053 2.09±0.30 0.992±0.001

Groundtruth NSSR NLSTF LTTR HSRnet MoG-DCN MSAT

Figure 4.8: The HSI-SR results on the Chikusei dataset of all competing methods.
First and Fourth row: the false-color image with bands (70, 100, 36). Second and
Fifth row: the corresponding error images compared to the ground-truth.

the performance of three deep learning-based HS/MS fusion methods over the

validation set. The HSRnet [60] performs the worst among the three methods,

while the MoG-DCN [59] cannot outperform the proposed smaller-size baseline
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Lr-HSI
(RMSE/SSIM)

Hr-MSI
(RMSE/SSIM)

NSSR
(0.241/0.991)

NLSTF
(0.239/0.991)

LTTR
(0.257/0.990)

HSRnet
(0.236/0.992)

MoG-DCN
(0.234/0.992)

MSAT
(0.225/0.992)

Figure 4.9: The Hr-MSI (RGB) and Lr-HSI images are of the left bottom area of
Roman Colosseum acquired by World View-2. The composite image of the HS
image with bands 5-3-2 as R-G-B is displayed.
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Figure 4.10: Comparison of the proposed MSAT to two deep learning-based meth-
ods (HSRnet [60] and MoG-DCN [59]) over the validation set in the Roman
Colosseum dataset.
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model. An introduced auxiliary task provides a consistent gain in generality and

achieves the best performance.

4.3.4 Ablation study

A. The effectiveness of multi-scale image decomposition and auxiliary

task

An ablation study is performed to verify the effect of Hr-MSI decomposition and

the proposed auxiliary task used in training on the CAVE dataset, where the L2

regularisation is turned off for a fair comparison in these evaluations. w/o 3×3

is denoted as the case without Hr-MSI decomposition to the spatial size of 3×3

whilst keeping other settings the same. It is observed that more scales the Hr-MSI

is decomposed, the better performance it generates. As shown in Fig. 4.11 and
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Figure 4.11: The training loss of model with different level of decomposition and
with/without unsupervised loss.
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Figure 4.12: The validation loss of model with different level of decomposition
and with/without unsupervised loss.

Fig. 4.12, the lowest reconstruction loss in both the training and validation sets

is achieved when the Hr-MSI is decomposed into the maximum scales of five, of

which the final scale has a spatial size equal to that of the Lr-HSI. Reducing one

level of decomposition may result in performance degradation. The main reason is

that each smaller scale of the image contains features to approximate the original

image, and the early applying of the joint-training can further refine information

in a coarse-to-fine manner. Although the Lr-HSI can not be decomposed further

from the image of size 3×3, the results shown in Fig. 4.11 and Fig. 4.12 suggest

that joint learning from the smallest levels would reduce the reconstruction error.

Finally, the combination of both five-level decompositions and an unsupervised

loss induced by the auxiliary task significantly outperforms all others after about

only 10 epochs during the training or about 5 epochs during the validation. The
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turbulences at 8 and 15 epochs indicate the outliers of the unsupervised features

from the auxiliary task. Although they do not degrade the final performance,

reducing the noise level in the auxiliary task or global learning rate can avoid

these spikes.

Table 4.5 shows the testing results with and without the auxiliary task on

the ICVL dataset. As seen, the introduced auxiliary task does improve the over-

all performance in both shallow and deeper networks. The accuracy, however,

does not improve further while increasing the number of residual blocks. One

possible reason here is that the lightweight model can sufficiently fit with the 75

training images, thus increasing the depth of the model can not produce further

improvement.

Table 4.5: Average performance of the Baseline network (without the proposed
auxiliary task) and MSAT (with the auxiliary task) over testing images of the
ICVL dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
Baseline (β = 1) 1.37±0.45 0.086±0.043 1.043±0.327 0.994±0.0012

MSAT (β = 1) 1.15±0.34 0.072±0.035 0.998±0.314 0.995±0.0010

Baseline (β = 2) 1.26±0.33 0.079±0.038 1.041±0.347 0.998±0.0005

MSAT (β = 2) 1.03±0.32 0.065±0.035 0.990±0.306 0.998±0.0005

To further demonstrate the effectiveness of multi-scale reconstruction, com-

parisons with other CNN-based methods, such as SRCNN [11] and VDSR [45]

are included, where pre-upsampling is used. The SRCNN [11] model has only 3

simple convolutional layers, while the VDSR [45] contains 20 convolutional lay-

ers. In addition, experiments with a more powerful architecture based on the

ResNet, namely HSI-ResNet, are re-conducted with the same configurations as

the ResNet, including the number of blocks, optimization method of network

training, epoch number, training and testing samples, etc. The HSI-ResNet does

not fuse Lr-HSI and Hr-MSI at multi-stages as it has done in the proposed MSAT
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model. As shown in Fig. 4.13, the Lr-HSI is spatially upsampled before concate-

nated with the Hr-MSI. The CNN network consists of five residual blocks, which

has a similar depth as the proposed model. Table 4.6 illustrates that progressive

fusion at multiple stages has an obvious advantage over single-stage fusion.

Figure 4.13: HSI ResNet model.

Table 4.6: Quantitative results on CAVE dataset. Baseline model indicate that
the proposed model do not include auxiliary task.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
SRCNN [11] 4.32±2.22 0.54±0.41 6.17±1.47 0.961±0.018

VDSR [45] 4.14±2.15 0.49±0.37 5.98±1.36 0.970±0.014

HSI-ResNet 3.96±1.87 0.44±0.31 5.33±1.20 0.977±0.007

Baseline 3.45±1.69 0.38±0.25 4.81±1.07 0.981±0.006

B. Tuning the noise level in denoising autoencoders

Several denoising autoencoders are trained with different noise levels to under-

stand the qualitative effect of the noise across different datasets. The variation

of RMSE, ERGAS, SAM, and SSIM values when varying the noise levels from

0.0 to 0.3 for CAVE, Harvard, ICVL, Chikusei, and Roman Colosseum datasets

are shown in Fig. 4.14. As can be seen in Fig. 4.14, with the increased level of

noise, the performance metric also begins to improve, which may become plateau
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and then degrade for all datasets. The appropriate noise levels were discovered

to be dependent on the quality of collected images as well as the number of train-

ing samples, which may affect the training performance and the model accuracy.

Adding a large amount of noise to noisy images could degrade the performance.

The images in the CAVE dataset, for example, are clean and contain fewer noises

than those in the Harvard and the ICVL datasets. Therefore, applying a large

noise level (σ = 0.2) leads to improving performance for the CAVE dataset, while

increasing errors for the Harvard and the ICVL. As the training set for the Chiku-

sei and Roman Colosseum datasets is limited, only the top part of an image is

used, the smaller noise level of 0.05 is the most appropriate.
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Figure 4.14: The variation of RMSE, ERGAS, SAM, and SSIM with the noise
levels σ in the denoising autoencoder for five datasets. (a) the CAVE. (b) the
Harvard. (c) the ICVL. (d) the Chikusei. (e) the Roman Colosseum. We select
σ = 0.2 for the CAVE dataset, σ = 0.1 for both Harvard and the ICVL datasets,
σ = 0.05 for both Chikusei and the Roman Colosseum, respectively.
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C. Noise Robustness
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Figure 4.15: Quantitative result of noisy cases on CAVE testing set.

In practice, noise from various aspects can corrupt the Lr-HSIs and Hr-MSIs

during image acquisition, transmission, and compression. To test the robustness

against noise of all compared methods, the Gaussian noise is added to the Lr-HSI

and Hr-MSI inputs and then fuse them to produce a Hr-HSI. The SNRs of the

noisy Lr-HSI and Hr-MSI are set to 20dB and 25dB, respectively. The quality

metric values in the noisy cases are shown in Table 4.7 and visually compared

with those noise-free ones (as referred to Table 4.1) in Fig. 4.15. As seen, the

performance of NLSTF [67], NSSR [65], and LTTR [69] methods drops faster than

three deep learning-based methods in all four metrics and degenerates sharply in

the SAM measure. The RMSE of the LTTR [69] increases from 2.640 ± 1.590
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to 4.064± 1.913 by 53.9% ± 20.3% while the proposed approach is more robust,

increasing only from 3.245 ± 1.610 to 4.282 ± 1.712 or by 31.9% ± 6.1%. The

architecture of the MoG-DCN contains autoencoders that are robust to noise.

The RMSE of the MoG-DCN [59] increases from 3.330± 1.676 to 4.390± 788 by

31.9%±6.6%.

Table 4.7: Quantitative results of a noisy case on the CAVE dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
NLSTF [67] 4.81 ±1.87 0.70 ±0.28 20.07±7.07 0.851±0.047

NSSR [65] 4.90±1.64 0.71±0.33 19.06±7.09 0.850±0.053

LTTR [69] 4.06±1.91 0.58±0.26 15.62±5.81 0.902±0.051

HSRnet [60] 4.58±1.85 0.58±0.35 10.08±3.93 0.894±0.058

MoG-DCN [59] 4.39±1.79 0.55±0.27 9.53±3.25 0.902±0.056

MSAT 4.28±1.71 0.49±0.25 9.44±3.09 0.902±0.050

D. Feature map

Differing from RGB images, HSIs have the characteristics of high spectral resolu-

tion across many narrow bands. Therefore, it is not straightforward to interpret

the meaningful feature maps at the lower layers, which typically display features

in a spatial manner. To visualise the features learnt from the proposed CNN-

based network, one testing image is selected from the CAVE dataset, followed

by a forward path to show the learnt feature maps from the fifth (top) block in

Fig. 4.16. It is worth noting that the transposed convolutions are used when

up-sampling the input feature map at each stage. This is a well-known operation

that may introduce severe checkerboard artifacts and tends to be most prominent

with a higher up-sampling scale factor [114]. The checkerboard pattern can be

observed in the feature maps of Fig. 4.16 (b) and Fig. 4.16 (c), where they have

shown that the feature maps extracted from the model without the unsupervised

loss will suffer more from horizontal and vertical stripes in the final prediction.

By contrast, the feature maps from the model with the proposed additional un-

supervised loss can successfully suppress such artifacts.
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(a) An example of RGB image bgu-0403-1523 from the ICVL dataset.

(b) Feature maps from 32 channels learned by fifth block without unsupervised loss.
Each channel has the size of 96 x 96 pixels. Feature maps at (row, column) (1,2), (1,
7), and (4, 4) still suffer checkerboard artifacts.

(c) Feature maps from 32 channels learned by fifth block with unsupervised loss. Each
channel has the size of 96 x 96 pixels. Only feature map at (row, column) (4, 5) has a
checkerboard artifact.

Figure 4.16: Visualization of feature maps learned by the fifth block of the recon-
struction network: (a) 3 channels of the observed RGB image; (b) Without using
the proposed unsupervised auxiliary loss. (c) Using the unsupervised auxiliary
loss.
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4.4 Summary

This chapter has presented an effective CNN-based method for fusing the observed

Lr-HSI and Hr-MSI to reconstruct high-resolution HSI. By decomposing the Hr-

MSI into multiple spatial scales, the discrepancy in spatial resolution between the

observed Lr-HSI and Hr-MSI is facilitated, and the spectral features from Lr-HSI

can fuse with spatial-reduced features from Hr-MSI to reconstruct high-resolution

HSI in a coarse-to-fine manner. In addition, the primary task is integrated with

a proposed auxiliary task to form a multi-task learning framework, which can

help to reduce overfitting and improve the generalisation capability of the main

task. By using a denoising autoencoder for the auxiliary task, our model is

naturally more robust to noise presented in the image than all other methods

tested. The testing results on five public datasets have demonstrated that the

proposed method can provide improvements over the state-of-the-art methods

in terms of both objective assessment and subjective visual quality. In future

research, automatic and adaptive determination of balance between the primary

task and the proposed auxiliary task will be explored. In addition, a natural

progression of this work is to investigate other auxiliary tasks for improving the

performance of the primary task.
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Generative Adversarial

Networks-based

Super-Resolution

5.1 Introduction

Since Goodfellow presented the Generative Adversarial Network (GAN) [26], it

has made significant progress and has been deployed to a variety of applica-

tions, including image in-painting [156], image super-resolution [78], style trans-

fer [157–160], and image editing [161,162]. Researchers are still working on ways

to improve GANs, particularly for strategies to address GANs’ problems of mode

collapse and instability. Training a GAN-based model is difficult owing to three

significant issues: non-convergence, vanishing gradient, and mode collapse.

These three major problems in GAN training arise from the fact that the

discriminator always tends to learn better than the generator. The optimal

discriminator does not provide informative feedback for the generator to make

progress. Stabilising the GANs in training can be accomplished in a variety of

ways, mostly by the choice of architectures [50, 86], loss functions [88, 90], nor-
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malisation [95] and regularisations [27–29, 163]. There have been several näıve

ways to balance competition between the discriminator and the generator. The

simplest and most effective way is to guarantee that the discriminator and the

generator have a symmetric architecture. Another simple approach is to update

the discriminator k time for every update of the generator. However, neither

approach is adequate for the complex training scenario of GANs. The spectral

normalisation [95] and gradient penalty [27, 29] methods for imposing the Lips-

chitz regularisation on the discriminator have shown great success in stabilising

the training of GANs. Among the gradient penalty methods, the zero-gradient

and coupled gradient penalties are the most widely discussed. In this chapter, we

will particularly study the unstable behaviour of the zero-centre gradient penalty

proposed in [29]. Although this gradient penalty method has improved perfor-

mance, there is still a limitation with a pre-defined gradient penalty strength.

Concretely, setting a fixed penalty weight cannot avoid the overfitting of the dis-

criminator through training and also leads to an over-penalised model even when

the overfitting problem is not detected.

The contribution made here is the development of a parameter-free adaptive

schedule that increases the resilience of the generator by adaptively adjusting

the strength of regularisation on the discriminator. The regulation strength is

adjusted based on the relative change of the training loss between generator

and the discriminator, hence enabling the generator to catch up with the dis-

criminator. When compared to the original regularisation [29] using a prede-

fined schedule, introducing a dynamic schedule can improve both convergence

and generality. The proposed schedule will improve the performance of various

GAN-based applications where there are significant differences in features be-

tween generator’s input and groundtruth, such as image generation [26], image-to-

image translation [157,159,164], text-to-image translation [165,166], photograph

editing [167, 168], and photo inpainting [169, 170]. For those applications, the
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discriminator is more likely to perform better than the generator. In the image

super-resolution area, if the input of the generator is a low-resolution image in-

stead of noise, then the imbalance between the generator and the discriminator is

not significant. However, the benefits of the proposed method can still be seen in

several aspects. First, when the up-scaling factor is large, for example, 256 times

in [94], the unstable training still suffers. Second, the degradation and down-

sampling kernels are unknown in a real-world scenario, GAN-based model can

be used to learn how to degrade and downsample a high-resolution image [171],

estimate unknown degradation/downsampling kernels [81, 82]. In other words,

improving the pure GAN will support a super-resolution approach to real-world

problems where degradation factors and ground truth are unavailable.

The remaining parts of this chapter are organised as follows: Section 5.2

revisits the gradient regularisations and presents the proposed approach. Section

5.3 shows the experimental results, including an ablation study and discussion.

Some concluding remarks are drawn in Section 5.4.

5.2 Adaptive method for gradient penalty

5.2.1 Gradient penalty

The objective of classical GANs [26] is given by the following minimax objective

function:

min
G

max
D
L(D,G) = min

G
max
D

Ex∼pd [log(D(x))] + Ez∼pg [log(1−D(G(z))] (5.1)

which can be achieved by an alternatively training G and D, presented in Eq.

(5.2) and Eq. (5.3), respectively.

max
D
L(D) = max

D
Ex∼pd [log(D(x))] + Ex∼pg [log(1−D(x))] (5.2)
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min
G
L(G) = min

G
Ex∼pg [log(1−D(G(x))] (5.3)

The quality of the image output by G depends on the gradients that receive

from D, which is

∇xL(D,G) = ∇D(x)L(D,G)︸ ︷︷ ︸∇xD(x)︸ ︷︷ ︸ (5.4)

The first term on the right-hand side of Eq. (5.4) is defined by the GAN objective,

or the choice of distributional divergence. The second term is the gradients of

output D(x) w.r.t input x. As previously mentioned in Sec 5.1, the stability of

GAN training is dependent on the choice of the loss function represented by the

first term, normalisation and regularisation, according to the second term. As

the discriminator is generally observed to be too powerful for the generator, the

gradient may not be reliable. One regularisation strategy is to employ gradient

penalty to limit the discriminator’s modelling capabilities. The common gradient

penalties for discriminators take the following form:

max
D

Ex∼pd [log(D(x))] + Ex∼pg [log(1−D(x))] + λE[R(‖ ∇vD(v) ‖2] (5.5)

where λ ∈ R is the weight of the gradient penalty term, R is the real function, and

v is the sample point where the gradient is computed w.r.t. Table 5.1 shows the

details of the distribution and function R used in the common gradient penalty.

Such gradient penalties can be broadly classified into two categories: 1-GP, where

the gradient penalty regulariser aims to enforce 1-Lipschitz continuity; and 0-GP,

where the regulariser forces the gradient norm to be zero. Details of the two

categories are discussed as follows:

1-GP. As the gradient penalty is computed with specific samples, the 1-GP is

imposed at different points in WGAN-GP [27] and DRAGAN [28]. The WGAN-

GP forces the norm of gradients w.r.t. points at an interpolation between the

real images and the faked images to be 1. The DRAGAN penalises the norm

112



Chapter 5. Generative Adversarial Networks-based Super-Resolution

Table 5.1: The property of different gradient penalties for general GANs.

GP LGP v Lipschitz continuity

1-GP [27] λE[(‖ ∇Dv ‖2 −1)2] (1− α)x+ αx̂ K → 1

1-GP [28] λE[(‖ ∇Dv ‖2 −1)2] x+ ε K → 1

0-GP [29] λE[(‖ ∇Dv ‖2)2] x or x̂ K → 0

0-GP [172] λE[(‖ ∇Dv ‖2)2] (1− α)x+ αx̂ K → 0

of gradients w.r.t. points around the data manifold. Although WGAN-GP has

been successful, imposing regularisation on the space outside the support of the

generator and data distribution may hinder the convergence. Obviously, the

interpolated point of two real images is often not a real image. Also, 1-GP allows

the gradient norm to be smaller than 1 in some regions and larger than 1 in

others.

0-GP. In [29], it is reasonable to argue that the zero-centered gradient penalty

makes the GAN training converge. However, improperly applying 0-GP can result

in worse convergence. Let X and Ω be the domain and the range of a neural

network D with a scalar output, respectively (i.e., f : X→ Ω). Over-penalising or

continuously penalising would restrict the output of f to a very small interval. At

this point, the gradient penalty term is also zero, as long as the generator does

not produce samples whose output by D still remains within that interval. This

proposed 0-GP is highly aimed at convergence while providing less support to the

generator, which aims to learn features and fool the discriminator. Unfortunately,

the 0-GP regulariser does often lead to over-penalising and is unstable for long

training. Unless the generator improves through training, the strength of GP is

hard to reduce. The size of label data is finite, while the generator takes noise

inputs of infinite size. Therefore, the discriminator will always go ahead of the

generator, and the gradient penalty will be imposed continuously (see Fig. 5.1).

The quality of generated images starts to improve from the beginning of training,

reaches the plateau with the best quality, and then becomes worse.
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Figure 5.1: The
1

gradient penalty
value have shown that the strength of gradient

penalty keep increasing during the training.

5.2.2 Parameter-free dynamic schedule for gradient penalty

In Eq. (5.4), the gradient penalty is always proportional to the error distance of

the discriminator given real and fake examples when λ is fixed. Unfortunately,

the error distance is usually high at the start of training and decreases later, and

the loss curve has complicated local minima and maxima. As a result, fixing the

trade-off λ will not be well adapted and will run into a gradient over-penalising

problem and even overfitting of the discriminator. This section presents an Adap-

tive 0-GP schedule, which iteratively selects strength λ for adaptively mitigating

these problems. The objective of the discriminator is presented as:

min
D

min
λ

Ex∼pd [log(D(x))] +Ex∼pg [log(1−D(x))] +λE[R(‖ ∇x∼pdD(x) ‖2] (5.6)

However, this is a min-min problem and is computationally infeasible to solve.

Therefore, a common approach is to find an approximate solution. The proposed

method here is to find the smallest λ at the current point. This can be done by

reducing the strength of GP when the generator learns well and increasing the
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strength of regularisation when the discriminator goes far ahead of the generator.

The outputs of the discriminator for the real and the generated samples are

evaluated to determine if the generator has caught up with the discriminator. The

trust region algorithm [173] is employed to decide the strength of the gradient

penalty based on the predetermined threshold. Let f(x) = D(x, θ) be the output

of discriminator before taking into account the cross-entropy. It is worth noting

that increasing λ would lead to tighten Lipschitz constant and f(x) getting closer

to f(x + ξ) for arbitrary small ξ. The fact that the penalty is applied to real

samples does not imply that the K-Lipschitz is satisfied at any generated sample.

The original trust region methods define a region in which they trust the model

to be an appropriate approximation of the objective function and then choose

the step to be the approximate minimiser of the model within this trust zone.

Let freal(x) be the objective function x ∈ pd and ffake(x) denote a model with

x ∈ pg, with latter’s minimiser attempting to be an adequate representation of the

former. The purpose of the dynamic scheduler is to iteratively select the smallest

value of λ when ffake(x) is accurately approximated by freal(x). To define the

trust region, let dist(f ireal, f
i
fake) = f ireal − f ifake denote the distance between two

functions at step i. The strategy for choosing λ is based on the trust region radius

at step i. This choice can be based on the agreement between the model function

f ifake and the object function f ireal :

ρi =
f ireal − f ifake
f i−1
real − f i−1

fake

(5.7)

The numerator and the denominator in Eq. (5.7) are called predicted reduction

and actual reduction, respectively. Instead of using an intermediate output of the

discriminator freal and ffake at step i, we define f ireal and f ifake as an exponential

moving average of each output until step i, which is usually less noisy. Note

that the discriminator attempts to maximise the distance between f ireal and f ifake
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when the use of 0-GP is to minimise that distance. The value of λ at step i-1 will

determine the value of ρi in Eq. (5.7).

Generally, if the f ifake is a poor approximation of the f ireal, the λ is increased

and vice versa. Concretely, if ρi is greater than σ1 (σ1 > 1), this indicates that

f ifake is moving far away from f ireal, then λ will be increased by the factor of

η+ > 1 (λi+1 = η+λi) for the next iterations. If, on the other hand, ρi is less than

σ2 (σ2 < 1), this means that f ifake and f ireal are well matched, the coefficient λ

will be reduced by the factor η− < 1 (λi+1 = η−λi) for the subsequent iterations.

Otherwise, when σ2 < ρi < σ1, then the λi is kept the same for λi+1. Using

this approach, the dynamic schedule can iteratively find the appropriate λ to

mitigate overfitting and over-penalising of the discriminator. It is important to

note that two consecutive reductions of λ still guarantee that the generator can

be improved, but it is not the case for two consecutive rises of λ. The latter

will cause the over-penalising problem. To avoid this case, λ will be bound by a

constant value λmax.

Note that ρi > σ1 or ρi < σ2 each can be divided in two cases. If ρi > σ1, the

two cases are: (1) f ifake and f ireal are both going far away from the equilibrium;

and (2) the speed of f ireal moving away from equilibrium is faster than the speed

of f ifake getting close to the equilibrium. The λ will only be increased for the

latter by including the second condition f ifake < f i−1
fake. Finally, rather than using

arbitrary values for η+ and η−, we chose η+ = η− = ρi. When ρi > σ1 then

η+ = ρi > 1. In contrast, when ρi < σ2 then η− = ρi < 1 (note that we have

σ2 < 1 < σ1). Using this setting, λ can be precisely adjusted based on the

magnitude of ρi.

The algorithm 1 describes the schedule that adaptively adjusts the strength of

0-GP regularisation. The algorithm 2 describes the overall training update with

GAN that includes Algorithm 1 as a procedure.
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Algorithm 1 Dynamic Schedule of Adjusting Regularisation Strength of 0-GP

1: Initial gradient penalty weight λ0, fix number of iterations T (typically, T =
1000) to adjust λ, threshold 0 < σ2 < 1 < σ1.

2: while discriminator updating do
3: for every T iterations do
4: Calculate ratio ρi from 5.7
5: if ρi > σ1 and f ifake < f i−1

fake then

6: λi+1 = min{ρiλi, λmax}
7: else if ρi ≤ σ2 and f ifake > f i−1

fake then

8: λi+1 = ρiλi

9: else
10: λi+1 = λi

11: end if
12: end for
13: end while

Algorithm 2 Minibatch stochastic gradient descent training

1: Initialization: Number of iteration M, number of iteration T for updating
λ, minibatch size m, and variables in Algorithm 1.

2: for i = 1,...,M do
3: while discriminator updating do
4: Sample minibatch of m real examples from pr
5: Sample minibatch of m latent variables from prior pg
6: Update the discriminator by ascending its stochastic gradient
7: for every T iterations do
8: Update a balanced parameter with Algorithm 1
9: end for

10: end while
11: Sample minibatch of m fake examples
12: Update the generator by ascending its stochastic gradient
13: end for

5.3 Experimental results

5.3.1 Implementation details

To verify the effectiveness of the proposed dynamic schedule for GP method, the

DCGAN [86] architecture is chosen as the backbone. This is mainly because the

architecture of the DCGAN can propose stable training without using any regu-
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larisation. The hyper-parameters are set according to the recommended default

values. Concretely, both the generator G and the discriminator D models are

implemented using convolutional neural networks (CNNs) with batch normali-

sation [101]. The Adam optimiser [142] is used to train both G and D with a

learning rate of 2e-4 and momentum β1 of 0.5 as default recommended in DC-

GAN [86]. The G and D are alternatively updated once in each iteration, and

the GAN model is trained for 200,000 generator steps. All experiments are im-

plemented on TensorFlow with CUDA 9.0 and cuDNN back-ends using a GPU,

NVIDIA GeForce GT 1030. The batch size is set to 32, which is to balance the

trade-off between performance and available GPU memory resources.

5.3.2 Experiments on synthetic datasets

The performance of GAN using different gradient penalties is tested on the three

most widely used toy datasets [27]: i.e., 8 Gaussians, 25 Gaussians, and Swiss

Roll. The datasets of 8 Gaussians and 25 Gaussians are generated using a mixture

of 8 Gaussians and 25 Gaussians, respectively, with the modes that are uniformly

distributed in a circle or in a grid. The contours of the generator’s samples and

discriminator’s samples are displayed in varying and transparent colours, respec-

tively. Fig. 5.2 shows that all 1-GP and 0-GP can guarantee the convergence and

discover all the modes. With both 0-GP methods, the generated samples from

one mode often do not lie in regions like those generated for other modes. The

contours displayed in the third and fourth rows have shown that the Adaptive

0-GP model outperforms the conventional 0-GP model. The generated points

from the Adaptive 0-GP can not only approximate the label data but also well

separate each mode. Both 1-GPs cannot converge on Swiss Role toy data. They

assign the same level set for all real data, which results in a high loss for the dis-

criminator. The corresponding losses are presented in Table 5.2, which compares

the performance of the discriminator with different gradient penalty methods. In
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Figure 5.2: Discriminator contour patterns generated while training a model on
2D toy datasets. The orange points are samples from the true data distribution,
the green points are samples from the generator distribution.

all three toy datasets, the 0-GP model cannot converge, given a fixed trade-off

parameter λ. However, when combining it with an additional dynamic schedule,

it can achieve convergence successfully.

5.3.3 Experiments on real datasets

Two publicly available datasets are used in the experiments, including CIFAR-

10 [174] with 60,000 images from 10 object classes and CelebA [175] with more
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Table 5.2: The losses of discriminators using different gradient penalty methods
were evaluated on 8 Gaussians, 25 Gaussians, and Swiss Roll datasets.

1-GP [27] 1-GP [28] + 0-GP + Adaptive 0-GP

8 Gaussian 0.6921 0.6930 0.690020 0.693138

25 Gaussian 0.6925 0.6930 0.692249 0.693147

Swiss-roll 0.6958 0.6964 0.693234 0.693151

Ideal equilibrium 0.693147 0.693147 0.693147 0.693147

than 200,000 face images from 10,177 celebrities. All the images of size 178 ×
218 from the CelebA dataset are center cropped and resized to a small resolution

of 64 × 64 to reduce the computation cost and model parameters. Additional

details of two datasets can be found in Appendix A. For quantitative evaluation

of generative models, the Frechet Inception Distance (FID) and the Inception

Score (IS) (see Subsection 2.3.11 (C)) are utilised.

The visual results with different gradient penalty approaches on the CIFAR-

10 and the CelebA datasets are shown in Fig. 5.3 and Fig. 5.4, respectively. The

objects from images generated by Adaptive 0-GP are in more detail compared

to those from all other gradient penalty methods. Both 1-GP methods perform

similarly, roundly highlighting the objects against the background, but fail to

generate detailed structures and fine object boundaries. We find that both 1-GP

cannot converge with further training and the generated images have not shown

better results. It seems both 1-GP methods perform worse in the real dataset

than in the toy datasets. The main reason for the better result in the toy case

is that both 1-GP methods impose on the data point, which is also Gaussian

noise lying inside the training data distribution. However, in real image data,

linearly interpolated data points between two images are not usually an image.

Therefore, performing the gradient penalty on that interpolated image does not

have the desired effect. The 0-GP and the Adaptive 0-GP have both produced

clear visual results on the two datasets, while Adaptive 0-GP generates images
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(a) 1-GP [27] (b) 1-GP [28]

(c) 0-GP [29] (d) Adaptive 0-GP [29]

Figure 5.3: Randomly generated 100 images by the generator at step 100K using
different gradient penalty methods on a CIFAR-10

that are smooth and less distorted. This superior performance is mainly due

to the utilisation of the proposed dynamic schedule in adaptively adjusting the

penalty weight based on the training status, which has enhanced the stability of

GAN training than using a fixed penalty weight. Fig. 5.5 compares the images

generated from the same noise with the baseline 0-GP and the Adaptive 0-GP

methods. The 0-GP baseline generates images with limited changes in facial
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(a) 1-GP [27] (b) 1-GP [28]

(c) 0-GP [29] (d) Adaptive 0-GP [29]

Figure 5.4: Generated images at iteration 50K using different gradient penalty
methods on a CelebA dataset.

attributes, and some images have been almost unchanged from iteration 20K

to 80K. This indicates that the 0-GP method over-penalising model results in

degrading the generality. The Adaptive 0-GP method has produced smoother

and more diverse faces compared to its counterpart.

Table 5.3 shows the qualitative results of the compared gradient penalty meth-

ods on the CIFAR-10 and the CelebA. As seen, the Adaptive 0-GP surpasses three

other gradient penalty methods in both datasets and metrics. The Adaptive 0-GP

consistently outperforms the 0-GP in all cases.
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(a) 0-GP at 20K (b) Adaptive 0-GP at 20K

(c) 0-GP at 40K (d) Adaptive 0-GP at 40K

(e) 0-GP at 80K (f) Adaptive 0-GP at 80K

Figure 5.5: Compare images generated from the same random noise vector using
the 0-GP and the Adaptive 0-GP methods.
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Table 5.3: FID (↓) and IS (↑) scores of different gradient regulation methods
on CIAFR-10 and CelebA datasets. The DCGAN architecture [86] is used as a
baseline model.

CIFAR-10 CelebA

Method FID (↓) IS (↑) FID (↓) IS (↑)
DCGAN 45.32 6.49 35.61 2.53

+ 1-GP [27] 31.94 6.98 29.93 2.68

+ 1-GP [28] 32.88 7.02 28.75 2.64

+ 0-GP [29] 29.23 6.97 26.38 2.84

+ Adaptive 0-GP [29] 28.68 7.21 21.23 2.91

Fig. 5.6 shows the result of image interpolation produced by 0-GP and the

Adaptive 0-GP methods at different iterations. A series of noise vectors obtained

by linearly interpolating between two noise vectors is propagated through the

pre-trained models, and the resulting images in the image space are expected to

show smooth transposition. In Fig. 5.6, the leftmost and rightmost images of

each row are generated from two noises, and 8 middle images result from a series

of linear interpolated noises. As seen, images from the 0-GP baseline are more

distorted than those from the Adaptive 0-GP ones. The Adaptive 0-GP shows

smooth transposition between the leftmost and rightmost images. The use of

dynamic schedule helps to achieve greater image quality while maintaining the

smoothness of image transposition.

The process of adapting gradient penalty weight in training is illustrated in

Fig. 5.7. The weight is initially in a downtrend for about 150K iterations, then

increases afterwards. As the size of the noise input can be considered indefinite,

the weight is usually increased at the end, but it is more stable and less spiky

compared to the first phase. In Fig. 5.8, the gradient norms are shown for the 0-

GP and the Adaptive 0-GP methods that were trained on the CIFAR-10 dataset.

The mean and variance of the gradient norm of the 0-GP method keep increasing

with increased iterations. As a result, the generated images would worsen, and
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(a) 0-GP at 20K (b) Adaptive 0-GP at 20K

(c) 0-GP at 40K (d) Adaptive 0-GP at 40K

(e) 0-GP at 80K (f) Adaptive 0-GP at 80K

Figure 5.6: Interpolation of training examples on the CelebA 64 × 64 dataset.
Both the 0-GP and the Adaptive 0-GP generate images with the same random
noise vector.

125



Chapter 5. Generative Adversarial Networks-based Super-Resolution

0K 50K 100K 150K 200K 250K 300K
Iterations

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

Gr
ad

ie
nt

 p
en

al
ty

 w
ei

gh
t (

)

Figure 5.7: The gradient penalty weight is adapted through the training process.

(a) 0-GP method. (b) Adaptive 0-GP method.

Figure 5.8: Gradient norms measured from 0-GP and Adaptive 0-GP methods
with the CIFAR-10 dataset.

each object would not be clearly shown due to the mixing of the features of more

than one object. This means the generator does not learn well to reduce the

norm with a fixed λ. In contrast, the gradient norm from the Adaptive 0-GP is

lower and does not follow an increasing pattern. As a result, the Adaptive 0-GP
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provides more stable training and higher quality of generated images.

5.3.4 Comparison with predefined schedule methods

In order to compare the effectiveness of the proposed dynamic schedule and the

predefined schedule in adjusting the strength of regularisation, two predefined

schedules are defined, including (1) the λ is set to a fixed value; and (2) the λ is

decaying annealed from an initial high value to a small non-zero value through the

training, following the work in [176]. The λ value is initially set to 0.1, for which

all schedules do not suffer from either overfitting or underfitting problems. From

Fig. 5.9, it can be seen that the annealing schedule does not outperform the fixed

schedule. The annealing schedule surpasses the fixed schedule from the beginning

of training until iteration of 40K and then starts to perform worse than the fixed

schedule. Due to the indefinite number of noise samples compared to a fixed

Figure 5.9: Comparison on FID score of various regularisation schedule.
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number of real data samples, the error would gradually increase. Reducing the

strength of regulation would, therefore, lead to overfitting of the discriminator.

In other words, the annealing schedule is possibly effective when the size of the

noise sample is limited. The variance of FID with the fixed schedule is the highest

among the three compared schedules. Penalising with a high value of λ leads the

model to converge to local minima, resulting in higher errors corresponding to

incoming training samples. The dynamic schedule achieves the lowest FID score,

consistently outperforming both the fixed schedule and the annealing schedule.

Adaptively adjusting the strength of regulation can provide stable training and

avoid both over-penalising and overfitting problems.

5.3.5 Ablation study on parameters of the Adaptive 0-GP

We study two key elements of the Adaptive 0-GP, i.e., the threshold σ1, σ2, and

the magnitude η+, η−. The version used with our main experiment is denoted as

the “main” version. The σ1 > 1 and σ2 < 1 are set as 1 + τ and 1 − τ , where τ

is arbitrarily small number (τ < 1). The η+ > 1 and η− < 1 are empirically set

to 1.1 and 0.9, respectively.

Table 5.4: Ablation study on thresholds and magnitudes of the gradient penalty
of the Adaptive 0-GP train on the CelebA dataset.

η+ = η− = ρ η+ = 1.1, η− = 0.9

Metric τ = 0.1 τ = 0.15 τ = 0.2 τ = 0.25 τ = 0.1 τ = 0.15 τ = 0.2 τ = 0.25

FID (↓) 21.23 24.51 26.98 26.89 23.46 25.71 26.79 26.74

IS (↑) 2.91 2.76 2.80 2.85 2.77 2.76 2.77 2.83

As reported in Table 5.4, when τ is set to 0.2 and 0.25, the model with

the Adaptive 0-GP and the one with original 0-GP perform similarly (see Table

5.3). When τ is 0.1 and 0.15, the Adaptive 0-GP achieves the best results with

adaptive η+ = η− = ρ. Setting η+ and η− to fixed values requires more iterations
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to adjust strength. This is mainly because the adjustment step is high when λ is

high, which is less precise when λ is naturally increasing.

5.4 Summary

This chapter has addressed the instability of GAN training, focusing particularly

on the gradient penalty [29]. The drawback of 0-GP [29] is that it often over-

penalises the model in order to achieve convergence. As a result, the model

converges to local minima, resulting in increasing errors after a long time of

training, thus degrading the generality. Furthermore, setting a penalty weight

to a fixed value cannot efficiently prevent the overfitting of the discriminator

through training. A dynamic schedule for adjusting the strength of the gradient

penalty is a new approach to tackling these problems. The variant of trust-region

methods is first developed by defining a region around the current point in which

the agreement between the generator and the discriminator is measured. If the

generator is catching up to the discriminator, the dynamic schedule would reduce

the strength of the gradient penalty to avoid the over-penalising problem. When

the discriminator starts to overfit, it adaptively increases the magnitude of the

gradient penalty to mitigate this problem. By adaptively selecting the proper

strength of regularisation, the informative feedback from the discriminator to

the generator is maintained. The quantitative and visual results have shown

that combining 0-GP and a dynamic schedule can outperform the model that

uses 0-GP with a pre-defined schedule. Finally, this proposed method reduces

the sensitivity of the choice to a penalty weight and does not require additional

computation.
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Discussion, Conclusion and

Future Work

6.1 Advantages and disadvantages of deep learn-

ing for super-resolution problems

Deep learning-based methods for super-resolution have several advantages and

disadvantages compared to conventional methods. Two major advantages of deep

learning-based models are reconstruction accuracy and efficiency. The ability to

learn from massive amounts of data and identify complex patterns is the key

to their accuracy. The efficiency of deep learning-based models is considered in

two aspects. At first, there is no need for feature engineering, which is really

burdensome work for engineers dealing with large datasets. Instead, the end-

to-end mapping scheme will adjust the kernels to enable choosing the relevant

features for a given task. Secondly, the architecture of deep learning is reusable,

which means one architecture can apply to many scenarios and types of problems.

For example, EfficientNet [177] and U-Net [147] have shown great architectures

for classification and segmentation, respectively, but they share the same pattern

with super-resolution in terms of transforming features from one space to another.
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Therefore, these architectures have been beneficial for super-resolution tasks as

well.

Besides its advantages, a deep learning-based model has faced several chal-

lenges for SR tasks. First, the prominent challenge of DL is that it requires an

extensively large amount of data to achieve good performance. Some imaging

datasets are not always available to collect; for example, hyperspectral images

are discussed in Chapter 4. Second, one of the most common criticisms of deep

learning is its black box behavior. In recent years, although some research has

been proposed to understand how the model works, interpretability is still the

biggest challenge for deep learning-based methods. The output is usually the

result of interactions between thousands or millions of parameters. Therefore,

it is difficult to explain the learned representations, individual predictions, and

model behavior, and hence improve the model’s performance. Third, choosing the

complexity of the model is another challenge, and it is difficult to find the sweet

spot between over-fitting and under-fitting. To achieve the best performance, the

complexity of the model must be appropriate to the complexity of the data. The

common solution for overfitting is using regularisations to restrict the capacity of

the model, and the solution for underfitting is increasing the model’s complex-

ity. Fourth, as deep learning-based models are trained based on gradient descent,

the vanishing and exploding gradient problems exist for all tasks. Fortunately,

with the choice of architecture and regularisation, these two problems have been

addressed. Fifth, the model, like CNN for SR, is incapable of multitasking. Mod-

els can only perform targeted tasks and process data on which they are trained.

They perform worse if there is a discrepancy between the distributions of training

and testing data. Finally, all deep learning-based methods require memory and

computational resources, which are frequently limited on mobile devices.
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6.2 Conclusion

The main objective of this thesis was motivated by the rapid development and the

rise in demand for effective deep learning-based SR approaches. The contribu-

tions cover a wide range of super-resolution areas, including single image super-

resolution, the fusion-based hyperspectral image super-resolution, and GAN-

based image super-resolution.

Producing a high-resolution image from one or multiple LR images is always a

challenging problem and has been intensively investigated for decades. Recently,

with the rapid growth of deep learning-based techniques, the implementation of

deep learning-based SR models has been a great success and has achieved state-

of-the-art performance on various benchmarks. However, the problem remains

unsolved, particularly due to the ill-posed problem of image SR and the diffi-

culty in training the deep learning models. There are always multiple HR images

corresponding to a given low-resolution image, the LR and HR examples of ex-

periments are generated by a pre-defined degradation. In the real world, the

quality of LR images is affected by a variety of factors, such as the image system

and imaging conditions, resulting in much more complicated and unknown degra-

dation of LR images. The performance of algorithms trained on artificial pairs

would certainly suffer when being applied to actual LR images, due mainly to

the significant disparity between the real and artificial LR images. The difficul-

ties in applying deep learning-based methods involve both general and particular

aspects. In general, the deep CNNs are considered black boxes, as it is difficult

to comprehensively understand and explain the behaviour of these networks, for

example, how neurons interact with each other to make decisions, especially when

the connections are complicated.

Various contributions have been proposed in this thesis to address these prob-

lems as well as their limitations, which are summarised below.
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1. In Chapter 3, a new highway connection for CNN-based SR architecture is

proposed to replace the commonly used local skip connection. With the design

of the attention mechanism, each block in the proposed SR architecture can pay

attention to more detail of the information it should retain and forget rather than

the binary decision in the ResNet block. As a result, this highway connection-

based model will capture image structure better than skip connection-based ones.

Furthermore, the convex combination (Eq. 3.7) in proposed connection improves

the model’s robustness to dying ReLU and gradient vanishing/exploding prob-

lems than those using skip connections. When batch normalisation and layer

normalisation are successfully applied to tackle these two problems in CNNs,

they also degrade the distinguishing features for recovering pixel accuracy. The

proposed architecture helps to avoid the use of batch normalisation while still

achieving stability in training and high accuracy in image reconstruction. The

faster convergence and better generality validate the effectiveness of the proposed

connection over the ResNet connection. The major limitation of this architec-

ture is its high computational cost due to the use of the sigmoid function in the

proposed connection, meaning it may not be suitable for very deep architectures.

2. In Chapter 4, a novel fusion-based method is proposed for hyperspectral

image super-resolution. The multi-scale spatial fusion strategy is used to tackle

the spatial disparity between the low-resolution hyperspectral image (Lr-HSI)

and the high-resolution multispectral image (Hr-MSI). Under this strategy, the

hierarchical feature maps extracted from two data sources can be fused at various

levels, allowing for the reconstruction of coarse-to-fine detail of a high-resolution

hyperspectral image (Hr-HSI). Besides, a multi-task learning framework is intro-

duced for a novel regularisation. The input Hr-MSI and the estimated Hr-HSI

must have common representation because they both capture the same scene.

Because Hr-MSI has a high resolution, using features extracted from it is far

more reliable than using those extracted from Lr-HSI. As a result, the denoising
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autoencoder performed on Hr-MSI input is introduced as an auxiliary task. Intu-

itively, when two Hr-MSI inputs produce very similar features in the bottleneck of

the denoising autoencoder, the two output Hr-HSIs must not have much feature

disparity. The various experimental results validate that the introduced auxil-

iary denoising autoencoder is found to improve the generality and reconstruction

accuracy of the proposed model. One drawback of the proposed architecture is

the additional parameters introduced by the denoising subnetwork. Moreover,

although multi-task learning has been shown in several studies to improve main

task performance, the exact trade-off weight between the main task and auxiliary

task must be predefined.

3. In Chapter 5, a novel dynamic schedule for choosing the strength of the

gradient penalty is proposed for GAN-based image super-resolution. This method

aims to improve the performance of the 0-GP approach, whose results are sensi-

tive to the choice of penalty coefficient and are still unstable through the GAN

training. The trust region method is proposed to adjust the penalty weight. We

first define a region around the current best solution to assess whether a given

generated image can approximate a real image through the loss of the discrimina-

tor. The strength of the gradient penalty then requires an appropriate adjustment

within the region. Using this schedule, the capacities of the discriminator and

the generator are balanced, which helps to mitigate both the overfitting of the

discriminator and the over-penalising of the discriminator. This proposed sched-

ule does not introduce additional computation, and experimental results demon-

strated that using a dynamic schedule can improve both the training stability and

the high quality of images compared to those using a pre-defined schedule. The

major drawback of the proposed schedule is that it only applies to zero-centered

gradient penalties and does not work for 1-Lipchitz regularisation, including com-

monly used one-centered gradient penalties. Moreover, the threshold set in the

schedule varies according to the dataset used.
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6.3 Future Work

From the presented results and conclusions, some areas are identified that can be

explored further in future work. These can be summarised as follows:

1. To deal with the highly computational cost of the proposed highway connec-

tion, dimension reduction may be employed on the input of the sigmoid function,

then the dimension of its output would be expanded back to the original dimen-

sion. Although replacing the local skip connections with the proposed highway

connections has shown improvements, the global skip connection must keep guar-

anteeing the stability of training. The skip connection is still essential for a deep

network; therefore, investigating the optimal proportion of highway connections

to skip connections within a deep network is still an open question for future

research.

2. The performance and robustness of the proposed multi-task learning frame-

work will be enhanced by choosing the best trade-off between losses. One ap-

proach, for instance, modifies task weighting based on the gradient norm ratio

for each task [178]. The application of this research to the proposed model would

be an interesting topic to investigate in the future.

3. In Chapter 4, only a high-resolution multispectral image is employed for

the auxiliary task. Though the observed hyperspectral image is of low resolution,

the question is whether it can be considered for another auxiliary task or under

what conditions?

4. In Chapter 5, although the weight coefficient of regularisation can be

adapted, the range for which it is adjusted still must be predefined. Setting a

small range may result in the coefficient alternately switching between two values,

causing the discriminator to have insufficient time to learn meaningful patterns.

Conversely, when the range is set too wide, the dynamic schedule becomes a

pre-defined schedule. Therefore, developing theoretical support for choosing the
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appropriate threshold is an important direction for future research and will tackle

the weakness of the proposed schedule.

5. The gradient penalty is not the only type of regularisation that can penalise

the model. There are also other forms of regularisation, such as data augmenta-

tion, consistency regularisation [179], etc. The combination of two or more types

of regularisation may affect the effectiveness of the selected strength of gradient

penalty on the dynamic schedule process. In future work, studying the adaptive

schedule in the combination of various regularisation approaches is a topic worth

researching.
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conditional gans for image editing,” arXiv preprint arXiv:1611.06355, 2016.

[168] H. Zhang, V. Sindagi, and V. M. Patel, “Image de-raining using a condi-

tional generative adversarial network,” IEEE transactions on circuits and

systems for video technology, vol. 30, no. 11, pp. 3943–3956, 2019.

[169] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Con-

text encoders: Feature learning by inpainting,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 2536–2544.

[170] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing, M. Hasegawa-Johnson,

and M. N. Do, “Semantic image inpainting with deep generative models,” in

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2017, pp. 5485–5493.

[171] A. Bulat, J. Yang, and G. Tzimiropoulos, “To learn image super-resolution,

use a gan to learn how to do image degradation first,” in Proceedings of the

European conference on computer vision (ECCV), 2018, pp. 185–200.

[172] H. Thanh Tung, T. Tran, and S. Venkatesh, “Improving generaliza-

tion and stability of generative adversarial networks,” arXiv preprint

arXiv:1902.03984, 2019.

158



References

[173] T. Steihaug, “The conjugate gradient method and trust regions in large

scale optimization,” SIAM Journal on Numerical Analysis, vol. 20, no. 3,

pp. 626–637, 1983.

[174] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep., 2009.

[175] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in

the wild,” in Proceedings of International Conference on Computer Vision,

December 2015.

[176] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training of

generative adversarial networks through regularization,” Advances in Neu-

ral Information Processing Systems, vol. 30, 2017.

[177] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in International conference on machine learning. PMLR,

2019, pp. 6105–6114.

[178] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm:

Gradient normalization for adaptive loss balancing in deep multitask net-

works,” in International conference on machine learning. PMLR, 2018,

pp. 794–803.

[179] H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency regularization for

generative adversarial networks,” arXiv preprint arXiv:1910.12027, 2019.

159



Appendix A

Image Data Sets

A.1 Set5 and Set14

The Set5 dataset [130] consists of 5 images, which are one medium size image

(baby) and four small ones ( bird, butterfly, head, and woman). The Set14 dataset

[131] contains 14 images and more diverse than the Set5 dataset.

(a) Set5 dataset.

(b) Set14 dataset.

Figure A.1: Set5 and Set14 datasets.
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A.2 BSD100

BSD100 is a set of 100 testing images from Berkeley Segmentation Dataset [132].

The BSD100 dataset contains 100 images of natural and cultural scenery.

Figure A.2: BSD100 dataset.
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A.3 Urban100

Urban100 [31] contains 100 images of building in urban areas with repetitive

patterns and high self-similarity.

Figure A.3: Urban100 dataset.
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A.4 DIV2K

DIV2K [133] contains 1000 DIVerse 2K resolution images, in which each image

has a high resolution of 2K pixels on at least horizontal or vertical axes. DIV2K

covers a large diversity of contents, ranging from people, handmade objects and

environments, to flora and fauna, and natural sceneries. The dataset is split into

training, validation, and test sets with 800 images, 100 images, and 100 images,

respectively.

Figure A.4: DIV2K 100 training images.
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A.5 CAVE

The CAVE dataset [151] comprises 32 indoor HSIs captured under controlled

illumination. The images have 31 spectral bands with a spatial dimension of

512×512 pixels, and a spectral sampling gap of 10nm from 400nm to 700nm.

Figure A.5: Multispectral images of the CAVE dataset.

Table A.1: Image Capture Information.

Camera Cooled CCD camera (Apogee Alta U260)

Resolution 512 x 512 pixel

Filter VariSpec liquid crystal tunable filter

Illuminant CIE Standard Illuminant D65

Range of wevelength 400nm - 700nm

Steps 10nm

Number of band 31 band

Focal length f/1.4

Focus Fixed (focused using 550nm image)

Image format PNG (16bit)
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A.6 Harvard

The Harvard dataset [152] has 50 indoor and outdoor images, recorded under

daylight illumination, where 27 images were under artificial or mixed illumination.

With a spatial size of 1392×1040 pixels, each HSI has 31 spectral bands, with a

10-nm spectral sampling gap within [420, 720] nm.

Figure A.6: Multispectral images of the Harvard dataset.

A.7 ICVL

The ICVL dataset [153] images were acquired using a Specim PS Kappa DX4 hy-

perspectral camera and a rotary stage for spatial scanning. The dataset contains

201 HSIs of real-world indoor and outdoor scenes, has 31 spectral bands each

ranging from 400nm to 700nm at a 10nm increment. The images of dataset cap-

tured from a variety of urban (residential/commercial), suburban, rural, indoor

and plant-life scenes.
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Figure A.7: 42 multispectral images from the ICVL dataset.

A.8 Chikusei

The Chikusei scene [154] is an airborn hyperspectral image taken over Chiku-

sei, Ibaraki, Japan. The image has a spatial dimension of 2517 × 2335 pixels,

comprising 128 bands in the spectral range from 363 to 1018 nm.

A.9 Roman Colosseum

The Roman Colosseum dataset contains a spaceborne image taken by World

View-2 over Roman Colosseum in Rome, Italy. The high-resolution multispectral
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Figure A.8: The false-color image with bands (70, 100, 36) as a RGB from Chiku-
sei dataset.

image is of size 1676 × 2632 × 3 and low-resolution hyperspectral is of size 419

× 658 × 8, while the high-resolution hyperspectral image is not available. 8

spectral bands include: Red, Green, Blue, Red Edge, Coastal, Yellow and two

near-infrared (NIR) bands.

A.10 CIFAR-10

The CIFAR-10 dataset [174] consists of 60,000 32×32 colour images in 10 classes,

with 6,000 images per class. There are 50,000 training images and 10,000 test

images. The dataset is divided into five training batches and one test batch, each

with 10,000 images. The test batch contains exactly 1,000 randomly-selected

images from each class. The training batches contain the remaining images in

random order, but some training batches may contain more images from one class

than another. Between them, the training batches contain exactly 5,000 images
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Figure A.9: Roman Colosseum image acquired by World View-2.

from each class.

A.11 CelebA

CelebFaces Attributes Dataset (CelebA) [175] is a large-scale face attributes

dataset with more than 200000 celebrity images of the size 178 × 218, which

mainly contains frontal portraits and is particularly biased towards groups of

ethnicity white. The CelebA has a wide variety, a huge quantity, and rich an-

notations. The images of dataset cover a wide range of poses and cluttered

backgrounds. With 10,177 identities, 202,599 face photos, 5 landmark locations,

and 40 binary attribute annotations per image. The dataset can be used as the

training and test sets for the computer vision tasks, including: face attribute

recognition, face recognition, face detection, landmark (or facial component) lo-

calisation, and face editing and synthesis. The fact that it presents very controlled

illumination settings and good photo resolution, makes it considerably easy.

168



Appendix A. Image Data Sets

Figure A.10: Example of the original CIFAR-10 images in 10 classes. From top to
bottom: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck.

Figure A.11: Image samples on the CelebA dataset with 128 × 128 resolution.
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