
 

 

Automated Fault Detection for Wind Farm Condition 

Monitoring 
 

 

 

 

 

 

 

 

Ammar S. Zaher 
 

 

 

 

 

 
A thesis submitted for the degree of Doctor of Philosophy 

 

 

 

 

 

Department of Electronic and Electrical Engineering 

University of Strathclyde 

Glasgow G1 1XW 

 

 

 

September 2010 

 

 
 

 

 

 

 

 



 II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The copyright of this thesis belongs to the author under the terms of the United 
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.49. Due 
acknowledgement must always be made of the use of any material contained in, or 
derived from, this thesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 III 

Contents  
 

 

 

 

Contents ............................................................................................................................ III 
Index of Figures & Tables ................................................................................................ VI 
List of Abbreviations ........................................................................................................ IX 

List of Variables ................................................................................................................ XI 
Abstract ............................................................................................................................ XV 
Acknowledgements ........................................................................................................ XVI 

1. Introduction and Motive for Research ............................................................................ 1 
1.1 Limitations affecting the efficiency of wind turbine CM systems ........................... 2 
1.2 An Automated Solution ............................................................................................ 3 
1.3 Key Challenges & Research Direction ..................................................................... 4 

1.4 Thesis Overview ....................................................................................................... 6 
1.5 Dissemination of Research Contributions ................................................................ 8 

1.5.1 Publications ........................................................................................................ 8 
1.6 Chapter References ................................................................................................... 9 

2. Wind Turbine Monitoring ............................................................................................. 10 

2.1 The Modern Wind Turbine ..................................................................................... 10 
2.2 Component Failure Rates and Typical Downtime: ................................................. 13 

2.3 Breakdown, Periodic & Condition Based Maintenance Policies ............................ 17 

2.3.1 The Concept of Condition Based Maintenance and Its Issues ......................... 19 

2.4 Review of Wind Turbine Condition Monitoring: ................................................... 21 
2.4.1 Sensor Technologies Applicable to Wind Turbines: ....................................... 21 

Vibration Analysis & Acoustic Emission: ............................................................ 22 
Oil Analysis: ......................................................................................................... 23 
Temperature Monitoring ....................................................................................... 24 

Strain & Pressure Monitoring: .............................................................................. 24 
2.4.2 Review of Research Projects Undertaken in Wind Turbine CM Systems ....... 25 
2.4.3 Review of Wind Turbine Condition Monitoring Data Analysis & Interpretation 

Systems ..................................................................................................................... 29 
2.5 Chapter Summary ................................................................................................... 39 

2.6 Chapter References ................................................................................................. 42 

3. Wind Turbine Fault Detection through SCADA Data Analysis ...................................... 47 

3.1 Initial Analysis of SCADA Data............................................................................. 47 

3.1.2 Correlations between SCADA Parameters ...................................................... 49 
3.2 Artificial Intelligence and Statistical Based Techniques for Fault Detection and 

Diagnosis of Industrial Mechanical Systems ................................................................ 51 
3.2.1 Knowledge (Expert) Based Systems in Fault Detection .................................. 52 

Derivatives of Knowledge-Based System architectures ....................................... 53 

Reasoning Approach ............................................................................................. 54 
Example Knowledge-Based Systems ................................................................... 54 
Summary of Knowledge Based System Characteristics ....................................... 57 

3.2.2 Clustering Based Fault Detection .................................................................... 58 



 IV 

Supervised and Un-supervised Training Modes ................................................... 59 
Example Clustering Algorithms ........................................................................... 60 
Summary of Clustering Techniques for Fault Detection ...................................... 67 

3.2.3 Artificial Neural Network Based Models for Fault Detection ......................... 68 

Neural Network Operation .................................................................................... 70 
Back Propagation Algorithm ................................................................................ 72 
Overtraining and Generalisation ........................................................................... 76 
Example applications ............................................................................................ 77 
Summary of Neural Network Characteristics ....................................................... 79 

3.2.4 Support Vector Machines ................................................................................ 81 
Summary of Support Vector Machine Characteristics ......................................... 84 

3.3 Utilising the Anomaly Detection Approach for SCADA Data Interpretation .......... 86 

3.3.1 Anomaly Detection Challenges and Issues ...................................................... 88 

3.3.2 Defining SCADA Anomalies .......................................................................... 90 
Anomaly Classes ................................................................................................... 91 

3.2.6 Summary of SCADA Data Modelling Requirements ...................................... 92 
3.3 Technique Selection ................................................................................................ 93 

3.4 Chapter Summary ................................................................................................... 94 
3.5 Chapter References ................................................................................................. 96 

4. Multi-Agent Systems for Online Condition Monitoring ............................................ 101 
4.1 Overview ............................................................................................................... 101 
4.2 Requirements of Data Analysis for CM Systems ................................................. 103 

4.3 Grid computing and Web services, Alternatives to Multi-Agent Systems? ......... 104 

4.4 The FIPA Platform, Multi-Agent System Standards ............................................ 106 

4.4.1 The Java Agent DEvelopment framework (JADE) ....................................... 108 
4.5 Agent Communication .......................................................................................... 109 

4.5.1 FIPA Agent Communication Language (ACL) ............................................. 112 
4.5.2 Adapting MAS to a Problem Domain through Ontologies ............................ 115 

4.5.2.1 FIPA Content Languages, Specifications for Defining an Ontology ..... 117 

4.6 A Review of Multi-Agent Systems CM solutions ................................................ 118 
4.7 Chapter Summary ................................................................................................. 123 

4.8 Chapter References ............................................................................................... 124 
5. Methods and Applications I: Training, Testing and Validating Normal Behaviour 

SCADA Models .............................................................................................................. 129 

5.1 Data Preparation and Selection ............................................................................. 130 
5.1.2 Data Selection for Turbine Specific Model ....................................................... 138 

......................................................................................................................................... 141 
5.1.3 Data Selection for Generic Model ..................................................................... 141 

5.2 Neural Network Training Parameters ................................................................... 144 
5.2.1 Network Topology ......................................................................................... 144 
5.2.2 Neuron Transfer Function .............................................................................. 145 
5.2.3 Performance Function Minimisation Training Algorithms ........................... 148 
5.2.4 Training Epochs and Mean Square Error target ............................................ 152 

5.3 Training and Testing Results for SCADA Fault Detection Models ..................... 153 
5.4 Validating the Model Inputs ................................................................................. 159 
5.5 Gearbox Bearing and Oil Model Results with corroboration ............................... 160 



 V 

5.6 Generator Winding Model Results ....................................................................... 166 
5.7 Wind Turbine Power Output Modelling ............................................................... 168 

5.7.1 Model Input Data and Training Methodology ............................................... 170 
Method 1 (NN): Neural Network Power Estimation .......................................... 170 

Method 2 (Statistical): Learning the Averaged Power Curve ............................. 174 
5.7.2 Analysis of power performance results and corroboration with temperature 

model outputs .......................................................................................................... 177 
5.9 Model Results conclusion ..................................................................................... 182 
5.10 Chapter 5 summary ............................................................................................. 183 

5.11 References ........................................................................................................... 185 
6 Methods and Applications II: The Design of a flexible Multi-Agent System 

Architecture for the CM of wind farms .......................................................................... 188 

6.1 System Design and Architecture ........................................................................... 189 
6.1.2 The Ontology Design ..................................................................................... 191 
6.1.3 The System‘s Agents ..................................................................................... 196 

The Data-Parser Agents ...................................................................................... 196 
The Data Management Agent ............................................................................. 199 

The Data Interpretation Agents ........................................................................... 202 
6.1.5 Summary of System Architecture .................................................................. 207 

6.2 Testing Agent Interaction ..................................................................................... 210 

6.3 Research Outcomes & Contributions.................................................................... 214 
6.4 References ............................................................................................................. 216 

7. Discussion, Conclusions and Further Work................................................................ 217 

7.1 Further Work ......................................................................................................... 220 

7.1.2 More Data and More Parameters Containing Interesting Events .................. 220 
7.1.3 The Addition of New Interpretation Agents .................................................. 221 

7.1.4 The Inclusion of a System User Interface ...................................................... 222 
7.1.5 Testing the System in an Industrial Environment .......................................... 223 

Appendix I ...................................................................................................................... 224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 VI 

Index of Figures & Tables 
 

Figure 2.1: A three bladed ‗Danish concept‘ turbine (Europa Energy Research 2010) ... 10 
Figure 2.2: the internals of a Vestas V52-850kW turbine (Vestas 2009) ......................... 13 
Figure 2.3: Distribution of failure rates of wind turbine components from 3 surveys 

(WSD, WSDK, and LWKD) averaged over 11 years from over more than 7000 turbines. 

(Tavner et al 2006) ............................................................................................................ 15 
Figure 2.4: Downtime hours associated with various turbine components (Tavner et al 

2006) ................................................................................................................................. 16 
Figure 3.1: SCADA Data parameters relations................................................................. 50 

Figure 3.2: A 4 x 4 Node SOM with a 2 input vector ....................................................... 64 

Figure 3.3: The Biological Neuron ................................................................................... 69 
Figure 3.4: The Perceptron processing element ................................................................ 70 

Figure 3.5: Back Propagation Neural Network Architecture............................................ 73 
Figure 3.6: Sigmoid activation function ........................................................................... 75 
Figure 3.7: Two possible linear discriminant planes ........................................................ 82 

Figure 3.8: Range of techniques surveyed by (Chandola et al 2009) ............................... 89 
Figure 3.9 Key components associated with an anomaly detection technique (Chandola et 

al 2009) ............................................................................................................................. 90 

Figure 4.1: The FIPA Agent Management Reference Model (AMRM) (FIPA 2004). .. 107 
Figure 4.2: An example of a JADE Agent created by extending the Agent Class 

(Catterson 2006).............................................................................................................. 110 

Figure 4.3: An example of a JADE Agent‘s behaviour. This particular behaviour extends 

the cyclic behaviour class which allows for repeated triggering (Catterson 2006). ....... 111 
Figure 4.4: FIPA message structure (Bellifimine et al 2007a) ....................................... 112 

Table 4.1: ACL message parameters .............................................................................. 113 
Figure 4.5: The FIPA Request Interaction Protocol (FIPA 2002c) ................................ 114 
Table 4.2: Commonly used ACL communicative acts and the type of communication 

they indicate (FIPA 2002e) ............................................................................................. 115 
Figure 5.1: Hag Shaw Hill Wind Farm Turbine layout .................................................. 130 

Figure 5.2: Bonus 600kW Manufacturers Power Curve ................................................. 133 
Figure 5.3: T3‘s Power Characteristic for the month of January 06 (Data is sorted in 

ascending order for the month) ....................................................................................... 133 

Figure 5.4a: Active power falls to zero once fault occurs .............................................. 136 
Figure 5.4b: gearbox oil temperature of T16 compared to neighbouring turbines ......... 136 
Figure 5.5: T16 with neighbouring turbines‘ operation during April – June 05 ............. 138 
Figure 5.6: Seasonal data from T3 .................................................................................. 140 

Figure 5.7: T16 Specific training data set ....................................................................... 141 
Table 5.1: Summary of training data sets created ........................................................... 142 
Figure 5.8: Training data set for generic models ............................................................ 143 
Figure 5.9: The different neuron transfer functions available in the MATLAB toolbox 

(MATLAB NN 1984-2007) ............................................................................................ 146 

Figure 5.10: Network Weights Error Surface ................................................................. 148 
Table 5.2: Error Minimisation training algorithms provided in the MATLAB NN toolbox

......................................................................................................................................... 149 

Thesis%20final%20corrections%20v6.doc#_Toc277754962
Thesis%20final%20corrections%20v6.doc#_Toc277754964
Thesis%20final%20corrections%20v6.doc#_Toc277754965
Thesis%20final%20corrections%20v6.doc#_Toc277754966
Thesis%20final%20corrections%20v6.doc#_Toc277754967
Thesis%20final%20corrections%20v6.doc#_Toc277754968
Thesis%20final%20corrections%20v6.doc#_Toc277754978
Thesis%20final%20corrections%20v6.doc#_Toc277754984
Thesis%20final%20corrections%20v6.doc#_Toc277754985
Thesis%20final%20corrections%20v6.doc#_Toc277754987
Thesis%20final%20corrections%20v6.doc#_Toc277754988
Thesis%20final%20corrections%20v6.doc#_Toc277754988
Thesis%20final%20corrections%20v6.doc#_Toc277754990
Thesis%20final%20corrections%20v6.doc#_Toc277754990


 VII 

Table 5.3: Speed comparison of various training algorithms for SIN problem (all trained 

to an MSE of 0.002) ........................................................................................................ 150 
Table 5.4: Speed comparison of various training algorithms for ENGINE problem (all 

trained to an MSE of 0.005) (MATLAB NN 1984-2007) .............................................. 151 

Figure 5.11: Initial NN architecture ................................................................................ 153 
Table 5.5: Gearbox oil Generic model, training and testing results for 3 different network 

architectures tested on previously 3 months of unseen data ........................................... 154 
Table 5.6: Gearbox oil Specific model, training and testing results for 3 different network 

architectures tested on previously 3 months of unseen data ........................................... 154 

Figure 5.12: 4-5-3-1 Gearbox oil Specific Model showing signs of over-fitting when 

tested against the data for the month of November 06 ................................................... 156 
Table 5.7: Gearbox bearing Generic model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data ............................. 156 
Table 5.8: Gearbox bearing Specific model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data ............................. 157 

Table 5.9: Generator Winding Generic model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data ............................. 157 

Table 5.10: Generator Winding Specific model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data ............................. 158 
Table 5.11: Mean and RMS errors for each model input configuration for input validation 

purposes. ......................................................................................................................... 160 
Figure 5.13: T16 conforming to model estimates signifying healthy gearbox operation.

......................................................................................................................................... 161 

Figure 5.14a: Gearbox failure detected T16: gearbox cooling oil model output, anomalies 

detected from aug05-jan06. ............................................................................................ 162 
Figure 5.14b: Gearbox failure detected: gearbox cooling oil model error signal, anomalies 

detected from aug05-jan06. ............................................................................................ 163 
Figure 5.15a: Gearbox failure detected: Corresponding gearbox bearing model output 

detected during aug05-jan06. .......................................................................................... 164 

Figure 5.15b: Gearbox failure detected T16: gearbox bearing model error signal detected 

during aug05-jan06 showing no significant or prolonged periods of deviation. ............ 165 

Figure 5.16a: Gearbox problems: detected by gearbox cooling oil model in T17 April 05.

......................................................................................................................................... 165 

Figure 5.16b: Gearbox problems: cooling oil model error signal anomalies detected in 

T17 April 05. ................................................................................................................... 166 

Figure 5.17a: Generator Failure or brought offline (November 06) detected in Generator 

Winding temperature parameter. .................................................................................... 167 
Figure 5.17b: Generator Failure: corresponding error signal ......................................... 167 
Table 5.12: Power model training results for T 8, 15 and 16 ......................................... 172 
Figure 5.18a: Power model output for a healthy turbine (T15) during December 05. ... 173 

Figure 5.18b: The corresponding error signal between actual data and the model 

estimation during December 05. ..................................................................................... 173 
Figure 5.19a: Learned curve for T8 from healthy period of operation before generator 

failure .............................................................................................................................. 175 
Figure 5.19b: Learned curve for T15 from healthy period of operation. ........................ 175 

Thesis%20final%20corrections%20v6.doc#_Toc277754991
Thesis%20final%20corrections%20v6.doc#_Toc277754991
Thesis%20final%20corrections%20v6.doc#_Toc277754992
Thesis%20final%20corrections%20v6.doc#_Toc277754992
Thesis%20final%20corrections%20v6.doc#_Toc277754993
Thesis%20final%20corrections%20v6.doc#_Toc277754994
Thesis%20final%20corrections%20v6.doc#_Toc277754994
Thesis%20final%20corrections%20v6.doc#_Toc277754995
Thesis%20final%20corrections%20v6.doc#_Toc277754995
Thesis%20final%20corrections%20v6.doc#_Toc277754996
Thesis%20final%20corrections%20v6.doc#_Toc277754996
Thesis%20final%20corrections%20v6.doc#_Toc277754997
Thesis%20final%20corrections%20v6.doc#_Toc277754997
Thesis%20final%20corrections%20v6.doc#_Toc277754998
Thesis%20final%20corrections%20v6.doc#_Toc277754998
Thesis%20final%20corrections%20v6.doc#_Toc277754999
Thesis%20final%20corrections%20v6.doc#_Toc277754999
Thesis%20final%20corrections%20v6.doc#_Toc277755000
Thesis%20final%20corrections%20v6.doc#_Toc277755000
Thesis%20final%20corrections%20v6.doc#_Toc277755001
Thesis%20final%20corrections%20v6.doc#_Toc277755001
Thesis%20final%20corrections%20v6.doc#_Toc277755002
Thesis%20final%20corrections%20v6.doc#_Toc277755002
Thesis%20final%20corrections%20v6.doc#_Toc277755003
Thesis%20final%20corrections%20v6.doc#_Toc277755003
Thesis%20final%20corrections%20v6.doc#_Toc277755004
Thesis%20final%20corrections%20v6.doc#_Toc277755004
Thesis%20final%20corrections%20v6.doc#_Toc277755005
Thesis%20final%20corrections%20v6.doc#_Toc277755005
Thesis%20final%20corrections%20v6.doc#_Toc277755006
Thesis%20final%20corrections%20v6.doc#_Toc277755006
Thesis%20final%20corrections%20v6.doc#_Toc277755007
Thesis%20final%20corrections%20v6.doc#_Toc277755007
Thesis%20final%20corrections%20v6.doc#_Toc277755008
Thesis%20final%20corrections%20v6.doc#_Toc277755008
Thesis%20final%20corrections%20v6.doc#_Toc277755009
Thesis%20final%20corrections%20v6.doc#_Toc277755009
Thesis%20final%20corrections%20v6.doc#_Toc277755010
Thesis%20final%20corrections%20v6.doc#_Toc277755011
Thesis%20final%20corrections%20v6.doc#_Toc277755012
Thesis%20final%20corrections%20v6.doc#_Toc277755013
Thesis%20final%20corrections%20v6.doc#_Toc277755013
Thesis%20final%20corrections%20v6.doc#_Toc277755014
Thesis%20final%20corrections%20v6.doc#_Toc277755014
Thesis%20final%20corrections%20v6.doc#_Toc277755015


 VIII 

Figure 5.19c: Learned curve for T16 from healthy period of operation before gearbox 

failure. ............................................................................................................................. 175 
Figure 5.20: Power and wind data pairs are classified into the shown groups according to 

which alarm limits they fall within. ................................................................................ 176 

Table 5.13: Power performance efficiency for T8 (blue), T15 (white) and T16 (orange) 

from both trained power models ..................................................................................... 179 
Figure 5.21: Generator Temperature anomalies for T8 during the month of May06. .... 181 
Figure 6.1: The Proposed System Architecture .............................................................. 190 
Figure 5.19: Power and wind data pairs are classified into the shown groups according to 

which alarm limits they fall within. ................................................................................ 190 
Figure 6.2: Power Data Ontology Concept ..................................................................... 192 
Figure 6.3: The Designed System Ontology ................................................................... 195 

Figure 6.4: Extract from Exported SCADA file from SCADA Database ...................... 197 
Figure 6.5: Summary of Data Flow through Data parser Agents (the data preparation 

stage) ............................................................................................................................... 199 

Figure 6.6: Summary of Data Flow through the Data Management Agent .................... 201 
Figure 6.7: Summary of Data flow through the Data-Interpretation Layer .................... 207 

Figure 6.8: The Data Flow through the System‘s Various Layers ................................. 209 
Figure 6.9: SCADA Wind farm network infrastructure ................................................. 210 
Figure 6.10: Agent interaction as the system is initialised ............................................. 211 

Figure 6.11: Data preparation and management based messages ................................... 213 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis%20final%20corrections%20v6.doc#_Toc277755016
Thesis%20final%20corrections%20v6.doc#_Toc277755016
Thesis%20final%20corrections%20v6.doc#_Toc277755017
Thesis%20final%20corrections%20v6.doc#_Toc277755017
Thesis%20final%20corrections%20v6.doc#_Toc277755018
Thesis%20final%20corrections%20v6.doc#_Toc277755018
Thesis%20final%20corrections%20v6.doc#_Toc277755019
Thesis%20final%20corrections%20v6.doc#_Toc277755021
Thesis%20final%20corrections%20v6.doc#_Toc277755021
Thesis%20final%20corrections%20v6.doc#_Toc277755023
Thesis%20final%20corrections%20v6.doc#_Toc277755028
Thesis%20final%20corrections%20v6.doc#_Toc277755030
Thesis%20final%20corrections%20v6.doc#_Toc277755031


 IX 

List of Abbreviations 
 

ACL  Agent Communication Language 

AMRM Agent Management Reference Model 

AmbientParser Ambient Temperature SCADA Data parsing agent 

ANN  Artificial Neural Network 

API  Application Programming Interface 

BFGS  Broyden–Fletcher–Goldfarb–Shanno 

BMU  Best Matching Unit 

CA  Collation Agent 

CBR  Case Based Reasoning 

CCL  Constraint Choice Language 

CMS  Condition Monitoring System 

COMMAS Condition Monitoring Multi-Agent System 

DataManagement The Data Management Agent 

DF  Directory Facilitator 

EAA  Engineering Assistant Agent 

FDD  Fault Detection and Diagnosis 

FDS   Fault Detection System 

FIPA  Foundation for Intelligent Physical Agents 

FIPA-ACL See ACL 

FIPA-SL See SL 

FRI  Fault Record Interpretation 

FRR  Fault Record Retrieval 

GB  Gearbox 

GBBearingParser Gearbox Bearing SCADA data parsing agent 

GBOilDataParser Gearbox oil SCADA data parsing agent 

GBOilProcessing Agent Gearbox oil SCADA data processing agent 

GUI  Graphical User Interface 

HTTP  Hypertext Transfer Protocol 

IEI  Incident and Event Identification 

IIOP  Internet Inter-Orb Protocol  

IP  Interaction Protocol 

JADE  Java Agent DEvelopment  

JOONE Java Object-Oriented Neural Engine 

KIF  Knowledge Interchange Format 

LWKD Landwirtschaftskammer Deutschland  

MAS  Multi-Agent System 

MSE  Mean Square Error 

NN  Neural Network 

PDataParser Power SCADA Data parsing agent 

PEDA  Protection engineering Diagnostic Agents 

PVD  Protection Validation and Diagnosis 

RDF  Resource Description Framework 

SCADA Supervisory Control And Data Acquisition 

SL  Semantic Language 



 X 

SOM  Self-Organising Map 

SVM  Support Vector Machine 

UHF  Ultra High Frequency  

WDataParser Wind speed SCADA data parsing agent 

Wffdagent System initialisation agent, performs necessary start up routines.  

WSD  Windstats Deutschland 

WSDK Windstats Denmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XI 

List of Variables & Equations 
 

(t)    Current time point 

(t-1)    previous time point (10 minutes ago) 

(t-2)    previous time point (20 minutes ago) 

(t-3)    previous time point (30 minutes ago) 

 

 

 

Euclidean distance metric (similarity measure):  







ni

i

ii WVDist
0

2)(    

Dist     Distance between two points (Vi, Wi) in feature space  

Vi    Current input vector 

Wi    Cluster centre 

 

 

Radius of BMU:  













t

t o exp)(  

 

)(t     Radius at current iteration 

o     Initial width of lattice 












t
    Time constant at current iteration of loop (t) 

 

 

 

Adjusted Weight of node based on varying distance from BMU: 

))()()(()()()1( tWtVtLttWtW   

 

)1( tW    Adjusted weight of node 

)(tW     Weight of node from previous iteration 

)(t     Degree of influence based on distance from BMU 

)(tL     Learning rate 

)(tV     Input vector 

    

 

 

 

 



 XII 

Degree of Influence based on distance from BMU:  











)(2
exp)(

2

2

t

dist
t


 

 

)(t   Degree of influence based on distance from BMU at current iteration 

dist   Current distance of node from BMU 

   Current width of lattice 

 

 

Learning Rate: 












t
LtL exp)( 0

 

 

)(tL     Learning rate 

0L     Constant learning rate value 












t
    Time constant at current iteration of loop (t) 

 

 

 

Net input (summation of inputs into a NN): 

i

ni

i

ij xwnet 





1  

 

jnet     Net input 

iw     Connection weights at node w connection i 

ix     Input value  

 

 

Activation Level based on transfer function used: 

)( jj netfy   

 

 

jy     Calculated activation level 

jnet     Net input 

f    Chosen transfer function 

 

 

 

 

 



 XIII 

Sigmoid Transfer function: 

)1(

1
)(

jnetjj

e
netfy






 

 

jnet     Net input 

 

 

Back Propagated Error at Output Node: 

 

)()( '

jjjj netfot   

 

j     Error at current node 

jt     Target output at node 

jo     Actual output at node 

jnet     Net input 

 

 

Back Propagated Error at Hidden Node: 

 


k

kkjj wnetf  )('  

 

j     Error at current node 

k     Error at k  weight connection at current node 

kw     Weight at k connection at current node 

jnet     Net input 

 

 

Classification Plane in High Dimensional Space SVM:  

)()( bxwsignxf   

 

sign     Signum function returns the sign of a real number 

w.x    Vector determining orientation of plane 

b    Scalar determining offset of plane from the origin  

   

 

 

 

 

 

 

 



 XIV 

Data Set Normalisation Scaling: 

Xn = (X-Min)/(Max-Min)  

 

Xn    The new scaled value 

X    Value to be scaled, 

Min    Smallest value in the training data set, 

Max    Largest value in the training data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XV 

Abstract 
 

 

Wind turbines are becoming more established as an economically viable alternative to 

fossil-fuelled power generation. Recently wind farms consisting of hundreds of units are 

being built in various locations around the country adding a significant amount of 

electrical generating capacity. As the size of wind farms continues to increase, business 

economics dictate the need for effective condition monitoring systems that allow for 

careful asset management to minimise downtime and maximise availability and profits. 

Most modern turbines are built with integrated condition monitoring systems that acquire 

data and store this through Supervisory Control and Data Acquisition (SCADA) Systems. 

This data quickly becomes unmanageable and brings with it the problems of managing 

and interpreting it.  

 

 This thesis considers the development of an automated SCADA data analysis 

system that aims to interpret the large volumes of data that are generated, with the 

intention of identifying faults in their early stages before they manifest into more serious 

catastrophic failures. A number of different analysis techniques for interpreting the 

SCADA are considered and a methodology of identifying faults in their incipient stages 

in the gearbox and generator using basic SCADA temperature data is described. Most 

CM techniques in the research literature focus on one aspect of a wind turbine with 

regards to identifying faults that may manifest within it. This research also puts forward 

the development of a multi-agent platform capable of combing multiple data sources and 

analysis techniques into one system to improve the opportunity of extracting and 

interpreting interesting information found in the SCADA and present it through a single 

point of contact for the operator. This provides the possibility of developing a more 

complete condition monitoring system that can monitor all of the main components of 

each turbine across a complete wind farm using both, existing and future condition 

monitoring techniques developed for the interpretation of wind farm data.  
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1. Introduction and Motive for Research 
 

Wind energy is becoming the fastest growing renewable energy source around the world 

(EWEA 2009). An increasing number of wind farms are being built around the UK by 

utility companies with the aim of achieving their desired carbon emission targets, and 

providing alternative energy sources for consumer supply. Although modern wind 

turbines have reached high technical standards, there is still a strong potential for further 

development especially with large, megawatt size machines, where enhancements in 

availability, reliability and lifetime of the turbine are all viable factors for improvement.  

 

The benefits that condition monitoring (CM) offers in traditional power plants is well 

documented (Leaney and Sharpe et al 1997) and the advantages they pose are arguably 

indispensable for the high value equipment being monitored. It is seen as a key 

requirement for electrical utilities to monitor the condition of their large plant items in 

order that they can maximise plant availability and minimise the number of unplanned 

outages, to ultimately capitalize on profits. Unplanned outages that occur at plants can 

result in significant losses in revenue due to the lengthy procedures involved in shutting 

down the plant, identifying and removing the damaged equipment and then finally 

replacing the necessary components. CM systems are essentially designed to avoid such 

undesirable scenarios by providing operators with information concerning the health of 

their machines, which in turn can help them improve the wind farm‘s operational 

efficiency by allowing more informed decisions to be taken regarding maintenance.  

 

Most modern turbines are now manufactured with some form of integrated CM system 

that can monitor the main internal components. This monitored data is collated and stored 

via a supervisory control and data acquisition (SCADA) system that archives the data for 

the monitored components in a convenient manner. Ideally this SCADA data would then 

be analysed by a trained operator to deduce the health or state of the turbine‘s 

components, where this information would be used to counteract unplanned outages and 

help plan effective maintenance schemes. This ideal scenario is not always the case 

however, as practical difficulties and economic issues can impact the operation and 
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maintenance of wind farms which can lead to CM systems not being exploited in an 

effective manner where their full potential is maximised.  

1.1 Limitations affecting the efficiency of wind turbine CM 

systems 

 

The first issue that can limit their efficacy arises from the data collected by the CM 

systems. It quickly accumulates to create large and unmanageable volumes making data 

analysis extremely difficult, impractical and more often than not an impossible task to be 

carried out manually. The second issue that limits their use originates from the complex 

operational characteristics of a turbine, mainly due to its close coupling with the weather 

conditions. This makes the analysis of its behaviour and hence its operation and 

maintenance (O&M) much more challenging due to the dynamic nature of these 

imposing factors (e.g. veer, shear). This leads to the need for trained experts who are able 

to interpret the data. This poses a problem since the number of engineers who would be 

able to use the output of the CM system is limited to those who have a thorough 

knowledge of the operational mechanics and characteristics of the machines and how this 

is reflected in the data, which is a very specific and rare skill set. The last issue is a matter 

of cost, there is of course an added expense of hiring such expert operators to carry out 

this tedious and time consuming task.  

 

Turbine manufacturers are keen to exploit the commercial opportunity with wind farm 

operators by arguing from a theoretical perspective concerning the benefits associated 

with CM. Operators are more cautious however and tend to question the technical and 

economic value of CM systems until they are comfortable that the benefits have been 

demonstrated in the industry. Most wind farm operators in the UK (at the time of 

writing), experience this problem of information overload and the difficulty associated 

with the interpretation of their CM data (Patel 2007) and (Wind Energy Update 2009). 

Therefore more often than not they tend to ignore the output of their systems completely 

―unless some failure requires an analysis on a reactive basis‖ (Clive et al 2008). They are 

quite content in the meantime to carry on applying periodic maintenance to their sites 

until it can be demonstrated that the output of their CM systems can be understood and 
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utilised in a more effective manner even though this approach may not be the most 

economical solution.  

 

 

1.2 An Automated Solution 

 

In order to overcome these problems and maximise the potential of CM systems to make 

their benefits more apparent, a system that can automate the process of analysing and 

interpreting the large volumes of data is needed. This would remove the burden from 

operators since generalised high level information regarding the condition of the plant 

would be available automatically, dramatically reducing the complexity of having to 

manually carry out the data analysis task and help  the operators to make a more informed 

decision regarding the maintenance of their machines. 

 

The aim of this research is to develop an online SCADA data analysis fault detection 

system (FDS). Online FDS have been developed for a number of applications but 

expertise in the domain of wind turbine CM, as will be shown by the literature review in 

the following chapter, is not yet established to the point which would enable a robust and 

effective FDS to be developed. FDS do not replace the operator but aim to provide them 

with a form of decision support. They can be seen as an addition to the already existing 

integrated CM systems as they enhance the usability of the CM output providing 

meaningful results which inherently exist in the data but may not be initially apparent 

through the use of data analysis algorithms.  Therefore a complete CM system can be 

seen as being made up from the interaction of two main closely coupled components and 

one without the other can often render the system inefficient and, arguably, incomplete. 

These are:  

 

 The monitoring (hardware/sensors) technologies dedicated to recording 

important measurands on the turbine and; 

 The data analysis algorithms that make it possible to identify and diagnose 

failures and possibly identify warning signs before problems occur. 
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This thesis will illustrate the development of a FDS system using multi-agent system 

technology which uses machine learning techniques to analyse and interpret SCADA 

from a live operational wind farm. It has been identified from the literature that most of 

the techniques and research focuses on the monitoring of a specific problem or 

component of the turbine in isolation. This is mainly due to the complex nature of each 

individual problem. A key feature of this research is the use of multi-agent technology to 

address this gap and provide a platform for wind farm FDS. This, as is discussed in this 

thesis, will allow a number of independent analysis techniques to be brought together, 

processing data from multiple sources and therefore allow a more complete view of the 

turbines‘ condition in the wind farm. To the best of the author‘s knowledge there has 

been no other research found in the literature (at the time of writing) that addresses the 

automated SCADA data analysis to provide both a flexible and extensible platform for 

the monitoring of wind farms in the manner presented in this thesis. 

 

1.3 Key Challenges & Research Direction 

 

In order to manually analyse SCADA successfully, it is necessary that the analyst 

undertaking the task has the knowledge and understanding of the connection between 

actual defects that may occur in a wind turbine‘s components, and what they manifest in 

the data. The ideal scenario for the development of a FDS is that this information would 

be readily available to capture, and therefore build systems that would go through the 

same thinking process of a trained operator in order to interpret the data. This is not 

however the case and such information is not easily attainable as few operators have had 

the extensive experience required to acquire this knowledge. This is mainly due to the 

relatively recent introduction of wind turbine CM systems and the limited amount of 

historical data available.  

 

In the case where this information is non-existent or unavailable, then detailed data 

mining activities (the process of analysing data from different perspectives and 
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summarising it into useful information) (Usama 1996) can be used in an attempt to derive 

useful relationships. Successful interpretation of the data is therefore predicated upon 

either of the following pre-requisites (McArthur & Booth et al 2005): 

 

1. Access to detailed knowledge of how defects manifest themselves in the 

monitored data i.e. human expertise; and or 

2. The availability of extensive historical data along with records of the actual 

defects in order to allow data mining activities to be used to extract defect 

knowledge for fault identification. 

 

Fault record information is viewed by wind farm operators as commercially sensitive, and 

gaining access to this kind of data was not possible within the scope of this research 

project. Gaining access to historical data was not so problematic however and permission 

was obtained to access almost 2 years worth of SCADA from a wind farm sited in 

Scotland comprising 26 Bonus 600kW stall regulated turbines commissioned in 

November 1995. While this is not an extensive data set, a sufficient number of interesting 

events were found in order to prove the novel concepts and contributions from this 

research. 

 

The lack of access to defect records and expertise in how faults manifest themselves in 

the data is ultimately the main challenge which has to be overcome. This highlights the 

author‘s main reason for using anomaly detection (also referred to as novelty detection). 

Such an approach places minimal dependence on the requirement of having access to this 

experience and knowledge whilst still achieving the objective of analysing the data to 

identify faults as early as possible. Anomaly detection can capture a model of the 

‗normal‘ behaviour of the data recorded through the sensors from an item of plant. This 

model captures how the data evolves and changes with respect to the factors that may 

influence it under normal circumstances. This model of ‗normality‘ allows for the 

detection of anomalous behaviour, even when this type of behaviour has not been seen 

previously highlighting its strengths for effectively meeting the problem specification.  
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The key research questions which arise here are: 

 What techniques can be used to achieve the desired novelty detection suited for 

application to the wind farm SCADA in order to identify problems early on in the 

components of the turbine? 

 Once this process of detection is attained, how can the process of automating the 

whole procedure of data analysis from its inception to the interpreted results 

output from the system be realised into an online FDS? 

This thesis will aim to discuss the main issues revolving around these two questions and 

present a suitable solution which can be used as a framework for wind farm FDS. 

 

 

1.4 Thesis Overview 

 

This thesis is organised into a number of chapters which take the following form: chapter 

2 provides a summary of wind turbine technology, the typical failures experienced by a 

turbine and the traditional methods of CM systems that are used to monitor the various 

components in a turbine. An outline of the typical maintenance schemes in place in wind 

farms today is also detailed. It then goes on to explain existing key contributions to wind 

turbine SCADA data analysis.  

 

Chapter 3 introduces some common techniques used for industrial fault detection. 

Applicable techniques such as neural networks, various clustering algorithms, support 

vector regression and self organising maps along with their applications and suitability 

are explored. 

 

Chapter 4 provides information on the notion of automating the data analysis process. 

Multi-agent systems are explained detailing the level of control and flexibility they offer 

and their advantages over other programming methods for developing an automated 

online FDS are discussed.  
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Chapter 5 then goes on to outline the process that was used to develop the novelty 

detection models. An explanation of the data that was used along with the training, 

validation and testing methods are all presented as well as case studies detailing 

confirmed results of a gearbox failure and other problems detected in the SCADA. It also 

introduces the concept of how the output of the various models can be corroborated 

offering a more comprehensive view of the status of the turbines in a wind farm. 

 

Chapter 6 details the development of the multi-agent FDS, discussing its implementation, 

architecture, its ontology design and its application to monitor the SCADA from a 

complete wind farm.  

 

Finally chapter 7 provides discussion and a critical review of the results and system 

developed along with possible avenues for future work. 
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1.5 Dissemination of Research Contributions 

 

Throughout this research an effort has been made by the author in order to help convey 

the ideas and methodologies proposed in this thesis to a variety of different audiences 

through both peer reviewed publications and presentations. The publications made 

throughout the duration of the author‘s research are listed below: 

1.5.1 Publications 

 

Zaher A and McArthur S.D.J (2007), ―A Fault Detection System for Wind Turbine 

Defect Identification and Diagnosis‖, Science, Engineering and Technology Event (SET 

‗07), Westminster, London, March 2007 (poster) 

 

Zaher A and McArthur S.D.J (2007), ―A Multi-Agent Fault Detection System for Wind 

Turbine Defect Recognition and Diagnosis‖ Proceedings of Power Tech Conference 

(Power Tech 2007), Lausanne, July 2007 (conference paper) available online at: 

http://www.prosen.org.uk/pub/powertech07-zaher.pdf  

 

Catterson V.M, McArthur S.D.J, Judd M.D, Zaher A., (2008), ―Managing Remote Online 

Partial Discharge Data‖ IEEE Transactions on Power Delivery, Vol. 23, No.4, October 

2008 (Journal paper). 

 

Zaher A, McArthur S.D.J, Infield D.G, Patel Y., (2009), ―Online Wind Turbine Fault 

Detection through Automated SCADA Data Analysis‖ 2009, Wind Energy Volume 12, 

Issue 6, Pages 574-593, September 2009, Online ISSN: 1099-1824, Print ISSN: 1095-

4244 Copyright  2009 John Wiley & Sons, Ltd, (Journal paper). 

 

Zaher, A, Cruden A, Booth C, Liethead W.  2009.  Database Management for High 

Resolution Condition Monitoring of Wind Turbines. Proceedings of the 44th 

International Universities Power Engineering Conference (conference paper). 

 

http://www.prosen.org.uk/pub/powertech07-zaher.pdf
http://www.upec2009.org/content/papers/author/128
http://www.upec2009.org/content/papers/author/129
http://www.upec2009.org/content/papers/author/65
http://www.upec2009.org/content/papers/author/130
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1.6 Chapter References  

 

Clive P.J.M, McLaughlin D., McKenzie J.H, (2008), ―Making the Most of SCADA data: 

wind farm performance assessment‖, Accessed September 2009, Available at: 

http://www.taplondon.co.uk/bwea30/pdf/3_Dave%20mcLaughlin-web.pdf 

 

European Wind Energy Association (EWEA). (2009), ―2008 statistics: wind now leads 

EU power sector‖, Accessed September 2009. Available at: 

http://www.ewea.org/fileadmin/ewea_documents/documents/statistics/2008_wind_map.p

df 

 

Leaney V., Sharpe D., Infield D., Twidell J., (1997), ―Condition Monitoring of Wind 

Farms using 10 Minute Average SCADA Data‖, Proceedings of European Wind Energy 

Conference, October 1997. Pp. 234-237. 

 

McArthur S.D.J, Booth C.D, McDonald J.R, McFadyen I.T., (2005), ―An agent-based 

anomaly detection architecture for condition monitoring‖, IEEE Trans. Power Systems, 

Volume 20,  Issue 4,  Nov. 2005 pp:1675 – 1682 

 

Usama M. Fayyad, (1996), ―Advances in data mining and knowledge discovery‖, 

Published by MIT press, 1
st
 edition, 1996, ISBN 0262560976 

 

Wind Energy Update, (2009), Weekly Intelligence Brief, ―IN-DEPTH: Understanding 

How Much Information Can be Extracted from Routine SCADA data‖, Available at: 

http://social.windenergyupdate.com/news/depth-understanding-how-much-information-

can-be-extracted-routine-scada-data Accessed (November 2009) 

 

Author Discussions 

Yusuf Patel, (2007) Author discussion. Wind farm operator 

 

 

http://www.taplondon.co.uk/bwea30/pdf/3_Dave%20mcLaughlin-web.pdf
http://www.ewea.org/fileadmin/ewea_documents/documents/statistics/2008_wind_map.pdf
http://www.ewea.org/fileadmin/ewea_documents/documents/statistics/2008_wind_map.pdf
http://social.windenergyupdate.com/news/depth-understanding-how-much-information-can-be-extracted-routine-scada-data
http://social.windenergyupdate.com/news/depth-understanding-how-much-information-can-be-extracted-routine-scada-data
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2. Wind Turbine Monitoring 
 

2.1 The Modern Wind Turbine 

 

To put it simply, a wind turbine generates electricity by converting the force of the wind 

(kinetic energy) into torque by acting on the rotor blades. It then uses this rotational 

torque to drive a generator to produce electrical energy. There are two main types of wind 

turbine designs used to carry out this process of energy conversion, namely they are the 

horizontal axis and vertical axis turbines. Horizontal axis wind turbines also known as 

(HAWT) can be considered as the prototype design for the majority of wind turbines 

installed in wind farms all over the world today. Designed by Johannes Juul a student of 

Danish origin, then known as the Gedser wind turbine (Danish wind energy association 

2008) it has now come to be referred to as the ‗Danish concept‘ due to its place of origin. 

An example of a typical modern turbine based on the ‗Danish concept‘ is shown in Figure 

2.1.  

 

 

Figure 2.1: A three bladed ‘Danish concept’ turbine (Europa Energy Research 2010) 
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The modern Danish concept turbine has its 3-bladed rotor and hub placed upwind of the 

tower (i.e. facing the wind) in order to avoid the irregular and turbulent air current caused 

by the wind shade behind the tower. Electromechanical yaw systems monitor the current 

wind direction and rotate the turbine accordingly into the prevalent wind direction on its 

vertical axis in order to keep the turbine facing towards the wind.  

 

Most modern designs yield maximum electrical energy at wind speeds of around 15 

metres per second (around 30 - 33 knots) due to the fact that it is not ideal to design 

turbines that maximise their output at stronger winds which are too unusual and 

infrequent. In the case of stronger winds however, it becomes necessary that a form of 

power control is in place to dispose of the excess energy in the wind in order to avoid 

undesired damage to the turbine. Power control is achieved safely through two main 

methods. The first is through passive or stall control designed rotors which 

aerodynamically limit the lifting force acting on the rotor in excessive winds. The second 

method is achieved by actively varying the angle of the rotor blades to the wind using 

electronic or hydraulic mechanisms. These forms of power control are referred to as stall 

control and pitch control respectively.  

 

An increasing number of larger wind turbines (typically 1MW and above) are developed 

with a modified form of power control known as the active stall power control 

mechanism. Technically this mechanism resembles that of pitch controlled machines 

since they also have pitched control blades. The machines will usually be programmed to 

pitch their blades much in the same way as a pitch controlled machine during periods of 

low wind speeds, however an important difference is in higher wind speeds when there is 

a risk of the generator being overloaded. Once the turbine has reached its rated power, the 

active stall control pitches the blades in the opposite direction from what a typical pitch 

controlled machine would do in order to increase the angle of attack on the blades, 

forcing them into a deeper stall therefore wasting the excess energy in the wind. This 

allows for a more accurate form of power output control which avoids the turbine 

overshooting the rated power in the event of a wind gust while also allowing the machine 

to be run almost exactly at rated power at all high wind speeds. 
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In the modern turbine, the generator is normally driven indirectly via a gearbox, both of 

which can be found in the nacelle of the turbine. The gearbox is used to step up the 

rotational speed of the rotor to a suitable level that can drive a relatively small light 

weight generator which is required in order to minimise the weight in the nacelle at the 

top of the tower. The gearbox must step up the rotation from tens of revolutions per 

minute to thousands at the output due to the relatively low number of poles found in the 

necessary smaller light weight generators.  

 

The most common form of electrical configuration found in modern turbines is the 

doubly fed induction generator (DFIG), a form of variable slip generator. This is coupled 

to the electrical grid through an indirect connection (power converter interface). This 

allows the turbine to run at variable speed while the generator remains in synchronism 

with the electrical grid. There are a number of advantages associated with the ability to 

run a turbine at variable speed. Firstly in a pitch controlled machine the pitching 

mechanism is a mechanical process that has its associated response time. Having a 

variable slip generator means the generator can be run at half of its maximum slip when 

the turbine is operating near its rated power. In the event of a wind gust, the control 

mechanism can then increase generator slip to allow the rotor of the turbine to run at a 

faster rotational speed reducing stress and fatigue on the gearbox and generator while the 

pitching mechanism pitches the blades out of the wind to cope with the situation. Once 

the pitching mechanism has responded the slip can be reduced again. This process occurs 

in reverse if the wind speed suddenly drops. The second advantage is that reactive power 

can be controlled through power electronics in order to improve the power quality in the 

grid which is especially important if the turbine is running on a weak electrical grid. 

 

The latest design concept in wind turbine technology is the direct drive turbine concept. 

These machines have no gearbox or drive train and use large synchronous generators 

driven directly by the rotor with the aim of circumventing the high failure rates of 

gearboxes in mind. Accommodating the larger diameter due to the number of required 

stator poles is still however an issue. Additionally, the full electrical converter necessary 
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for such a configuration can result in a higher level of faults when compared to the 

induction generator in the more traditional configurations, as well as increasing the cost 

(Tavner et al 2006).  

 

2.2 Component Failure Rates and Typical Downtime:  

 

Large modern onshore wind turbine reliability is improving and the technology has 

matured over the years. A number of researchers have investigated the reliability of a 

variety of wind turbine configurations and models. Figure 2.2 shows the internals of a 

Danish Vestas V52-850kW wind turbine. From a condition monitoring outlook one can 

consider the mechanical wellbeing of all the major components in the turbine of 

paramount importance in order to ensure healthy operation.  

 

Figure 2.2: the internals of a Vestas V52-850kW turbine (Vestas 2009) 
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Naturally however some components are of greater significance than others mainly due to 

economic issues, such as their cost and replacement expenses, let alone the duration of 

downtime caused by their failure which will be discussed later. Consequently information 

available regarding the individual component failure rates is of particular interest and key 

to develop a good understanding of the requirements an online FDS should be tailored to. 

Using this information we can determine which components are of importance from an 

economic viewpoint and ideally should be kept in a healthy mechanical state of 

operation, in order to gain a better understanding of wind farm operation & maintenance 

(O&M). 

 

There is a large spread of reliability figures which have been published in the literature. 

Some of these reliability figures are estimates based on authors opinions such as (Sayas 

& Allan, 1996) and others are based on expert judgement of wind farm operators (Van 

Bussel & Zaaijer‘s 2001) and (Negra 2007). The work of (Tavner et al 2006) and 

(Ribrant & Bertling 2007) represent more statistically plausible estimates of overall wind 

turbine failure rates since both of their work is based on actual wind turbine failure 

statistics data.  

 

The work of (Tavner et al 2006) investigates the failure rates for the major internal 

components. This information is shown in Figure 2.3 below: 



 15 

 

Figure 2.3: Distribution of failure rates of wind turbine components from 3 surveys (WSD, WSDK, and 

LWKD) averaged over 11 years from over more than 7000 turbines. (Tavner et al 2006) 

 

Figure 2.3 shows the results from a total of three surveys. The surveys are based on data 

collected over a period of 11 years, from Windstats surveys in Denmark and Germany 

shown in figure 3 as WSDK and WSD respectively. LWKD is another survey carried out 

on a population of turbines installed in Schleswig Holstein in Germany also. The output 

of the studies shown is limited in the sense that the periods of the data collected differ for 

each population. WSDK was collected monthly, WSD quarterly and LWKD was 

collected annually. WSDK consists of a large mixed population decreasing in number 

from 2345 – 851 turbines of an average age of 15 years and predominantly based on stall 

regulated turbines. WSD is based on a larger mixed population growing in number from 

1295 – 4285 turbines from a variety of turbine models with different control 

configurations of average age < 3 years. LWKD is based on a smaller segregated 

population again growing in number from 158 – 643 turbines of average age >3 years. 

Tavner et al refer to these limitations as having some effect on the results presented. 

Nevertheless their purpose is to offer an idea of the typical rates for a wide range of 

turbine types which proves a useful statistic to have in order that we can gain a better 

understanding of wind turbine O&M. From the failure rates presented in the diagram, it 

can be seen that the highest failure frequencies occur in: the electrical system & electric 
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controls, rotor or blades (i.e. hub & blades), generator, yaw system, hydraulics and finally 

the gearbox. 

 

The paper then goes on to detail how these failure rates reflect in the actual downtime 

hours caused by the specific failure modes. Downtime refers to the total time it takes 

from the point of component failure to when the turbine is brought back online for 

generation. This involves the process of diagnosing the problem (whether by manual 

observation of SCADA data or by a site visit) as well as the repair or replacement of the 

component required. In the case of more severe failures and a replacement is necessary, 

the time it takes to source the component as well as any special equipment needs to be 

considered since it can contribute significantly to the overall downtime caused.  Another 

major factor for consideration is the appropriate weather windows that are required in 

order to carry out the maintenance tasks which again can often be a major constraint 

adding several days to turbine downtime. It is important that we understand how failure 

rates reflect in downtime. This is critical from a wind farm operator‘s perspective as it is 

the components that contribute significantly to a turbine‘s downtime that will be their 

main concern. This is also extremely important so that we can begin to appreciate what 

an operator requires from an online FDS. The downtimes of the various components 

identified from the study from the LWK population of turbines are shown in figure 2.4:  

 
Figure 2.4: Downtime hours associated with various turbine components (Tavner et al 2006) 
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The various failure modes of the larger data sets in the study were not available. This is 

usually due to the commercial sensitivity of such data. Utility companies are not 

comfortable with releasing this information stemming mainly from the competitive nature 

of the market. Figure 4 shows the downtime in hours for the various components from the 

LWK study. From figure 2.4 it can be seen that the major downtime contributors in order 

of most significant first are the gearbox, electrical system, generator, main shaft and the 

rotor. The results from the studies carried out by (Ribrant & Bertling 2007) on Swedish 

wind power plants during 1997 – 2005 shows the most significant downtime contributors 

listed in the following order: gearbox, control system, electric system, rotor and the 

generator. Since downtime is affected by many factors, it is inevitable that various studies 

might vary considerably and possibly result in a different order of significance. 

Nevertheless both studies show that the components listed are the major contributors to 

overall wind turbine downtime. 

 

2.3 Breakdown, Periodic & Condition Based Maintenance 

Policies  

 

Maintenance policies are employed in most major power plants which contain high value 

machinery and equipment. These policies define how the overall operation and 

maintenance of the plant is handled and how failures or any problems that may arise are 

dealt with. Wind farms typically employ the same maintenance policies as other forms of 

power plant such as coal fired or oil and gas thermal plants. Maintenance can take the 

form of one of three different policies. These policies are referred to as: breakdown 

maintenance, periodic maintenance, and condition based maintenance.  

 

The breakdown policy as the name suggests involves running equipment until it breaks 

down or ceases to function. Maintenance is then carried out at this point to return the 

equipment to a functioning state. This form of policy is only employed in plants whose 

failure is not seen as critical from both an economical and safety viewpoint. For most 

power systems assets this policy is not typically used for any items of high value 

(Schneider et al 2006). 
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Periodic maintenance is the predominant policy utilised in a large number of industries 

(Schneider et al 2006) e.g. transformers in high voltage electricity grids and the 

automotive industry. This policy involves a time based maintenance schedule where 

items of plant are taken offline and undergo inspection and maintenance actions at set 

intervals. The main reasons behind its popularity are the simplicity of its implementation. 

Some wind farm operators employ this policy mainly for this reason and perceive it as the 

logical choice to onshore wind farm maintenance based on the comfort associated with 

applying a scheme which they are familiar with.  The main disadvantage with periodic 

maintenance however, is that it does not offer the most economic solution to O&M 

especially for offshore wind farms. The reason behind this is that it fails to take into 

consideration the operational state of the machinery as a deciding factor to performing the 

maintenance procedures. For example a turbine that does not require maintenance will 

still be taken offline, checked and then brought back online. The result of this is that most 

of the maintenance performed is unnecessary quite often leading to an adverse effect of 

adding substantial wear to the machinery. From an economic perspective this is not seen 

as a cost effective approach given that the time it takes to carry out such procedures will 

result in substantial downtime and cost, which otherwise, could have been avoided had 

the turbine been kept online generating more revenue. One can perceive the extent of the 

impact being further augmented as this procedure is replicated over the scale of the 

complete wind farm. Moreover, another negative implication of periodic maintenance can 

be perceived in the case where a turbine requires attention between maintenance 

schedules. For example if an incipient problem develops in the components, failure to 

respond to such an event within an appropriate time scale will often lead to a greater 

possibility of actual failure in the component. This can often occur before maintenance is 

next scheduled, meaning an outage which possibly could have been avoided results due 

to the late identification of the incipient problem. It is important to note at this point that 

both breakdown and periodic maintenance policies do not make use of Condition 

Monitoring (CM) systems.  

 



 19 

Condition based maintenance (CBM) on the other hand attempts to overcome the 

deficiencies of periodic maintenance through the use of CM systems. A number of issues 

can however impact the degree of success of a CBM policy. The following section goes 

on to look at the concept of CBM, its implications and some of the specific problems that 

often arise with the implementation of this approach to maintenance.  

 

2.3.1 The Concept of Condition Based Maintenance and Its Issues 

 

The principle of CBM is that maintenance is carried out only when needed, therefore 

optimising the process of O&M. This process can be achieved through manual visual 

inspections of the machinery or through the use of condition based data which is acquired 

through CM systems that provide real time information regarding the state of the 

machinery. The availability of this kind of information theoretically gives operators the 

advantage of being able to schedule maintenance actions in an optimal manner taking into 

consideration the resources available and the associated costs of carrying out the work. In 

this way healthy turbines which do not require attention can be left to operate generating 

revenue while the resources and effort of personnel can be focused on the turbines with 

problems detected. 

 

While the initial perceptions of such an approach would typically seem very positive, a 

number of issues arise with the implementation of a CBM policy which currently affects 

the success of its operation, therefore making its employment less encouraging. The first 

is the issue of usability, the aforementioned problems of information overload and data 

interpretation associated with CM systems can hinder the value of CM making the 

argument for their case unclear. (McMillan et al 2007) raise a number of points in their 

research which evaluates the techno-economic issues associated with the application of 

CM for wind turbines and attempts to quantify the benefit of its use. The negative aspects 

which the authors mention stem mainly from the economical perspective and can be 

summarised as follows: 

1. The value of using CM systems for wind turbine monitoring is currently unclear 

due to the difficulty in accurately quantifying the benefit. This is even more 
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apparent in onshore wind which is considered a low-profit margin plant by 

operators. This therefore makes it difficult to justify an economic argument. 

2. The initial investment in monitoring tools is high. The costs associated with the 

SCADA system, the sensors required and the expert personnel needed to 

constantly monitor the output data and extract meaningful information from the 

system, all add up resulting in a substantial cost which must be economically 

justifiable in the long run. Such costs are justifiable for single large rotating plant 

rated at hundreds of MW; however, the case is not quite as clear for wind 

turbines.   

3. The final issue is a matter of accuracy regarding the CM systems themselves. 

False positives and negatives (false alarms and failure of an alarm activating 

respectively) can lead to unnecessary shutdowns which can neutralise the added 

benefits of their use.  

While the economic points mentioned are important to consider, they would be less of a 

concern to a wind farm operator if the third point mentioned regarding the accuracy of the 

systems was less of an issue i.e. the CM systems actually provide accurate and useful 

output. Operators could pragmatically assess and identify if the use of a CBM policy 

would be beneficial for them in their wind farms. As an example, it has been said that the 

CM system at Horns Rev wind farm based in Denmark has caused more downtime than it 

has saved due to false positives. This is clearly undesirable; however it is aspects like 

these that further rationalize the reasons for looking into online FDS which can automate 

the analysis and interpretation process in a robust and effective manner consequently 

helping to prove their value. What is important is that the operators are aided by the 

output rather than being confused, which can lead to adverse decisions being made 

regarding maintenance. The research presented in this thesis attempts to address these 

issues through the development of accurate normal behaviour models embedded in a 

multi-agent framework which allows more robust CM platforms to be built. This will be 

discussed in greater detail in a later chapter. 
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Despite these issues surrounding wind turbine CM, it has been extensively researched 

over the years and is still an important topic of which a large range of information can be 

found in the literature. The next section provides an overview of the various monitoring 

techniques detailing the key research contributions that have influenced this research.   

 

2.4 Review of Wind Turbine Condition Monitoring: 

 

There are three main groups in which the literature regarding wind turbine CM can be 

split. The first is the literature which focuses on the techno-economic analysis of wind 

turbine CM systems and the reliability of the turbines. The important findings and how 

they tie in with the research presented in this thesis has already been discussed in section 

2.2 of this chapter. The second section in the literature is devoted to the sensor 

technologies / CM approaches that are applicable to wind turbine monitoring, and finally 

the third section encompasses the data analysis and processing algorithms that are 

focused at interpreting the data generated. Naturally there is an overlap between the 

second and the third groups mentioned as the relation between the data acquisition and 

data processing technologies are closely coupled. A brief overview of the hardware and 

sensor technologies will be discussed first in the next section, where as the section which 

follows will present the advances and contributions in research tailored towards the CM 

of wind turbines including a section devoted to the key existing research in data analysis 

and interpretation influencing the anomaly detection models / system presented in this 

thesis.  

 

2.4.1 Sensor Technologies Applicable to Wind Turbines: 

 

A number of papers have been published which provide a review of the majority of the 

monitoring techniques applicable to wind turbines. The number and variety of sensor 

technologies applicable for turbine monitoring is somewhat diverse.  Modern turbines 

typically utilise a number of different types of sensor to monitor the various components. 

The main monitoring technologies found in the literature concerning wind turbines are 

vibration, temperature, oil analysis, strain, pressure, acoustic, current transformer (CT) 
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and voltage transformer (VT) sensors. A particularly comprehensive and insightful 

review of the key techniques as well as the techniques being researched was carried out 

by (Hameed et al 2007), (Verbruggen T.W. 2003) and (Lu et al 2009). The papers 

summarise the most common technologies applied indicating their suitability for the 

various components. A summary of their findings is provided in the following sub-

sections.   

 

Vibration Analysis & Acoustic Emission: 

Vibration analysis is the most widely applied technology in condition monitoring for 

rotating machinery. Different types of vibration sensor are required to measure the 

different frequency ranges. Position transducers are used to measure low frequency 

vibrations, velocity sensors are for mid range and accelerometers are used to measure the 

high frequency range. Spectral emitted energy (SPEE) sensors are used for very high 

frequency ranges such as acoustic vibrations.  

 

Acoustic monitoring has a strong similarity with vibration monitoring however the 

principal difference is in the higher orders of frequencies that they are typically applied 

to. Vibration sensors register local motion on the component while acoustic sensors 

―listen‖ for vibration; therefore they are often capable of giving an indication of defects 

in their developing stages.  

 

Most incipient problems which occur in rotating mechanical systems will innately result 

in vibrations. This highlights the main reasons of the technology being widely applicable 

and well suited to detecting problems which develop in a number of components.  

With respect to the monitoring of wind turbines, vibration monitoring has been found to 

be used for detecting gearbox bearing and gear wheel damage, the main bearing 

associated with the main shaft of the turbine, torsion and oscillation of the main tower 

and in some cases acoustic vibrations in the blades through the use of the mentioned 

SPEE very high frequency sensors.  
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While vibration monitoring has been extensively used in other traditional forms of 

rotating mechanical machinery, its application and working methods for wind turbines 

differs with respect to the low rotational speeds as well as the dynamic load 

characteristics associated with them. In other applications loads and speeds are 

characteristically constant for the most part which simplifies the required signal analysis. 

There is limited experience for dynamic applications especially as complex as wind 

turbines.  

 

Another difference brought to light by (Hameed et al 2007) is the high investment costs 

in relation to production losses. For more traditional types of power plant, the investment 

costs in CM equipment are typically covered by the benefit of their utilisation which is 

seen through a reduction in production losses. For wind turbines, especially onshore, the 

production losses are already relatively low meaning the benefit gained is not so evident.  

 

Oil Analysis: 

Oil analysis is usually executed offline through taking samples and assessing their quality 

after specified lengths of operation. The application of online sensors is increasingly 

being used however in order to safeguard the quality of the lubrication oil internal to the 

components which can easily become contaminated by particles, dust and moisture. The 

prices of such sensors are now available at acceptable price points which allow for the 

detection of moisture and particle counting while the machine is running. The size and 

count of particles found in the oil gives an indication of the rate of wear in the 

components.  

 

Online oil analysis is typically used in the gearbox of the turbine. It can give an indication 

of gear tooth damage as well as any contamination that may occur in the lubrication oil. 

Contamination of the lubrication oil can significantly contribute to wear in the gearbox 

internals. Moisture in the oil can also dramatically reduce the efficacy of its lubrication 

properties again leading to an increase in wear. A direct relationship can be seen between 

the working lifetime of the gearbox and the size and number of particles found in the oil. 

Optimal oil management can effectively reduce costs with the respective damage and oil 
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replacement that may well be necessary, and therefore, can lead to a reduction in 

downtime. (Quail & Hamilton 2010) provide a comprehensive analysis of the current on-

line / in-line oil analysis techniques with regards to wind turbine gearbox CM. Quail and 

Hamilton recommend the use of a combination of sensors that could be used to analyse 

different characteristics of the oil stating that individually the information resulting from 

the sensors would not be highly accurate, however their integration into one system is 

expected to obtain greater accuracy. Quail and Hamilton state that ―since the elemental 

composition‖ of wind turbine gearboxes is known, a list of the potential particulates can 

be established allowing sensors to be developed to that can selectively identify each of 

them. Some of the suitable techniques mentioned for oil analysis in terms of cost, size, 

accuracy and development are: online ferrography, selective fluorescence spectroscopy, 

sold state viscometers and photo-acoustic spectroscopy.  

 

Temperature Monitoring 

Temperature monitoring is frequently used in wind turbines (Lu et al 2009). Excessive 

friction and wear between metal components in mechanical machinery will generally 

result in an undesirable and disproportionate amount of heat being given off. This heat 

will be in excess of the normal operating temperatures which result from the typical 

amount of stress and friction levels which occur under normal healthy operation. 

Monitoring the temperature of components can therefore also give an indication of 

excessive grinding and wear.  With respect to turbines, parameters such as the gearbox 

oil, gearbox bearing, generator winding and ambient nacelle temperature as well as the 

temperature of other specific components depending on the sophistication of the CM 

system are typically monitored (Yusuf Patel 2007).  

 

Strain & Pressure Monitoring: 

Strain and pressure sensors are a common form of monitoring technique. Strain gauges 

attach to an object‘s surface, and as the object is deformed, the properties of the strain 

gauge are also changed. They are typically made from flexible electrically conducting 

material. Stretching or deforming an electrical conductor within its limits such that it does 
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not break or permanently deform will change its electrical resistance.  This resulting 

change in electrical resistance allows the level of stress on the object to be measured 

respectively. There has been interest in using strain gauges for monitoring the stress 

levels on the blades of wind turbines however methods are not yet well developed.  The 

cost of implementing a robust sensor system suitable for the large scale of the turbine 

blades is often too high to be justified and is largely the reason that this type of 

monitoring is not common place. Optical fibre and acoustic methods are currently under 

research as they are applicable for detecting failures in the blades too.  

 

Pressure sensors are used to measure the pressure of gasses or liquids, and as such are 

typically used in the hydraulic systems installed in the turbine. The hydraulics are 

primarily used in the pitch control systems of the blades. A failure in the pitch control 

system can lead to increased mechanical stress which in turn would lead to a reduced 

energy yield and therefore its monitoring is critical.  

 

This section has summarised the main sensor technologies that are applicable to wind 

turbine monitoring. Research in wind turbine monitoring is an ongoing process which is 

still in its early stages. An important point found during the review process was that there 

is still no definitive standard for wind turbine CM systems and the majority of the 

systems applied in industry monitor different parameters using various techniques. This 

aspect is reviewed in the next section.  

 

2.4.2 Review of Research Projects Undertaken in Wind Turbine CM 

Systems 

 

A number of research projects undertaken have looked at attempting to define the 

technology and methods that should be used for particular aspects of wind turbine 

monitoring (one of which the author is also involved in (Zaher & Cruden et al 2009)). 

This is understandable, given that this increase in wind turbine technology is relatively 

recent, and yet to mature. The literature available on these research projects is now 

reviewed.  
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(Wilkinson et al 2006) explore the notion of building and installing a CM system for 

offshore wind farms. Their work looks at designing a CM scheme using reliability based 

information of existing onshore turbines through an analysis of the failure modes, and the 

consequent effects they have on the turbines. They investigate the reliability of the 

different turbine design concepts in particular the differences between direct and indirect 

drive machines. The results of their reliability analysis showed that indirect drive 

machines based on the typical Danish concept turbine appear more reliable despite the 

fact that they incorporate gearboxes. Direct drive machine reliability issues are dominated 

by electrical sub-assembly failures. The findings show that the slow speed synchronous 

generators exhibit a failure rate of double that of the higher speed indirect drive 

machines. The reason given is stated to be possibly linked with the larger diameter of the 

generator leading to sealing and insulation problems. The gearbox for indirect drive 

machines display higher mean time to repair (MTTR) however and so are deemed as 

being the major problem for the indirect drive turbine concept.  

A failure mode effects analysis (FMEA) was carried out for each of the failure modes 

identified and a numerical value reflecting the risk of each mode was calculated by a 

subjective process of weighting the significance of the severity, frequency and the 

probability of detection associated with each failure mode. The results of this process are 

said to be incorporated into the CM test rig which consisted of a DC motor, a two stage 

gearbox and generator.  Transducers which measure shaft speed, shaft torque and shaft 

vibration were fitted. The test rig was driven using real wind data for the purpose of 

simulating an actual wind turbine in a wind farm. The paper claims that the wind model 

driving the rotation of the drive train excites an array of harmonics, enabling the natural 

frequency of the main components (in the drive train) and faults in the generator to be 

detected. The techniques were not tested on a real turbine, however it is claimed that 

applying signal processing reduced the noise ratio which the authors suggest can be 

applied to monitoring the generator of a full size wind turbine.  

 

(Amirat et al 2007) review well established condition monitoring techniques developed 

for induction motors. The emphasis of the work revolves around faults and detection 
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methods that can be monitored using the wind turbine generator (DFIG) terminals.  The 

authors comment on the fact that it seems possible to detect drive train faults through the 

terminals of the associated generator through their review of the literature. Imbalances 

and defects in small wind turbine blades can also be diagnosed by measuring the power 

spectrum density at the generator terminals. They state that wind turbine generator 

operations are predominantly transient and therefore the use of non-stationary techniques 

is required for fault detection.  

 

(Popa & Jensen et al 2003) carried out an experimental investigation on the incipient fault 

detection methods found in the literature suitably adapted for use in wind turbine systems 

using the DFIG electrical configuration. Three main experiments were reported to have 

been carried out namely: one to detect stator phase unbalance, one for rotor phase 

unbalance and finally one for turn-to-turn faults in order to study the electrical behaviour 

of the DFIG. The experimental system was developed as a model of a wind turbine which 

consisted of a wound rotor DFIG with slip rings driven by a gearbox. An induction 

machine CM system was developed measuring the stator and rotor currents, stator 

voltages, rotor speed, and temperature of the windings.  The faults were simulated using a 

variety of methods. The paper reports that the simulated faults can be detected through 

time and frequency domain analysis and that the frequency spectrum of the stator and 

rotor line currents was found to give the best results.  

 

A recent trend emerging in wind turbine CM research is the focus on methods for rotor 

blade monitoring. (Burnham & Pierce 2007), (Dutton et al 2003) and (Rumsey et al 2008) 

all consider acoustic emission technology as a novel approach for blade monitoring. Each 

of these streams of research is at the early stages of development mainly due to the 

expense of adopting such a technique for blade monitoring. (Dutton et al 2003) developed 

interesting pattern recognition damage classification software based on cluster analysis to 

process the acoustic emission data. One particular cluster was found to emerge frequently 

in the data as a result of the simulated stress tests. It was identified to occur across a 

number of blade tests and originated only in blades with developing damage. The authors 

state that the pattern recognition software could form the centre of a wind farm acoustic 
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emission monitoring system due to its potential to learn new damage cluster signatures. 

(Burnham & Pierce 2007) discuss the limiting aspects of acoustic based techniques based 

on the physics of acoustic wave propagation in typical structured components. They carry 

out a comparison between acoustic technology approaches and the conventional active 

ultrasound approach. (Rumsey et al 2008) implement a structural health monitoring 

system using an off the shelf acoustic emission Non-Destructive Testing (NDT) system. 

The experiment was carried out on a 9 meter glass-epoxy and carbon-epoxy wind turbine 

blade. The blade failed in fatigue after 4 million load cycles on the tensile side of the 

blade. The authors state that the system detected significant acoustic emission events 

early in the test providing a very informative diagnostic tool.  

 

Other wind turbine rotating elements such as gearboxes and bearings seem to receive less 

attention in the literature than rotor blades. This may be due to the fact that algorithms for 

condition estimation of rotating elements have already been extensively researched. 

(Carden & Fanning 2004) claim that the majority of the research in this area however is 

for systems with operation at near constant rotational speed such as aero-engines and 

steam turbines. (Becker & Poste 2006) however, state that the variable speed operation of 

a wind turbine dramatically limits the efficacy of these existing algorithms.   

 

While there are quite a number of techniques which are applicable to wind turbine CM it 

can be seen that much of the proposed research is at a low level of technical maturity with 

no definitive CM standard. A large number of the research projects are still investigating 

various instrumentation setups and how they can be used to portray the condition of the 

machines, which indicates that wind turbine CM is still in its early stages. One proactive 

step for CM in the German wind energy market is the introduction of a review clause in 

2002 (see Becker & Poste 2006)  by German insurance companies due to the high 

incidence of gearbox failures and damage found to occur after only a few thousand hours 

of operation. As a cost deterrent to encourage an improvement in machine operating life, 

insurers require that all roller bearings in a drive train be replaced after either 40,000 

operating hours or five years (whichever is earlier), unless an appropriate CM system 

certified by them is installed. This approach rewards wind farm owners for the 
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introducing CM systems into their wind farms encouraging the industry as a whole 

towards the notion of CBM policies.  

 

The next section goes on to look at the research devoted to understanding which factors 

affect wind turbine performance and component degradation and how it is portrayed in 

the data collected from CM systems. 

 

 

 

 

 

2.4.3 Review of Wind Turbine Condition Monitoring Data Analysis & 

Interpretation Systems  

 

This section covers the research found in the literature that is more closely related to the 

data analysis and interpretation aspect of wind turbine CM. This area of literature is more 

closely related to the research presented in this thesis, particularly the SCADA data 

analysis methods since they are directly applicable to the systems that are already 

integrated into the turbine at the time of manufacture. The research efforts devoted to this 

area of the literature are therefore seen to be of paramount important since they present 

less concerns and issues in terms of the integration and cost of having to retrofit new CM 

systems to the turbine. This makes them a convenient and practical option for wind farm 

operators. This however does not disregard the research into new sensor and hardware 

technologies as data analysis and interpretation is based primarily on the output of such 

systems. 

 

The Condition Monitoring for Offshore Wind farms (CONMOW) was a collaborative 

project carried out by a number of large and well established institutes in wind turbine 

research (see Wiggelinkhuizen et al 2007). Its purpose was to investigate the notion of a 

cost effective integral CM system for wind turbine monitoring with a specific focus on 

the development of data analysis algorithms. These algorithms were to be integrated in 

the SCADA systems to produce accurate information to aid O&M while also attempting 
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to lower the cost of CM systems. The authors state that, at the time of drafting the state of 

the art CM techniques report, no successful applications of wind turbine CM examples 

were found in the literature. A number of turbines were instrumented, monitoring the 

drive train, gearbox and bearings using different vibration measurement systems. Load 

measurement systems for the blades and tower as well as weather data using the wind 

farm met mast and the operational SCADA data available from the turbines were also all 

used for the project.   

 

The interesting points noted from this project was its tendency towards data analysis, 

particularly the SCADA data analysis, since it is in line with the ideology of the research 

carried out in this thesis.  The authors explore the idea of ‗normal‘ behaviour modelling 

for the generator bearing temperature SCADA parameter using a combination of 

statistical techniques. The model is built as a function of power output vs. generator 

bearing temperature which has been linearly corrected for ambient temperature over a 

small rotational speed range. The data is averaged and binned over 0.1m/s widths. The 

authors make use of the ‗normal‘ behaviour model as a means to detect an increase in 

bearing temperature which could arise due to bearing wear or possibly shaft 

misalignment. In practice, the authors state that monitoring the real-time trend of this 

function allows comparisons to be made with the ‗normal‘ bounds captured through 

historical data. Observations consistently above the maximum levels set by the bounds of 

the models can therefore easily be spotted allowing problems that manifest themselves in 

the generator bearing to be detected. Another model of ten minute averaged nacelle 

vibrations plotted as a function of the square of the wind speed was also developed in an 

attempt to detect abnormal vibration levels in the nacelle. Again the authors give 

examples of the kinds of abnormal behaviour that might be detected however they also 

state that the effectiveness of both the models developed could not be demonstrated due 

to no major failures occurring during the time period the turbines were instrumented for 

the project and hence the data sets only provided normal operation which conformed well 

with the models built. The majority of the data analysis therefore focused on fault 

simulations.  
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The objectives of the project were ambitious and very positive, regrettably however the 

project was hampered by mainly non-technical issues which led to less data being 

collected. Time was an issue meaning no online oil monitoring could be installed as well 

as no experiments with the SCADA processing algorithms were carried out resulting in 

little novel output from this work.  

 

(Caselitz & Giebhardt 2005) developed a number of CM techniques specifically designed 

for the rotor. They summarise the rotor faults into three main types, blade surface 

roughness, rotor mass imbalance and aerodynamic asymmetries. The authors then go on 

to describe their methods of detecting each of these problems. They utilise statistic 

evaluation of the wind speed and power output of a wind turbine to monitor the overall 

rotor performance but more specifically for the detection of increased surface blade 

roughness. The process involves using data averaged over 5 minutes for both the wind 

speed and the power output binned into wind speed groups of 0.1m/s width. The 

associated average power output for each wind speed bin is calculated resulting in a 

power curve for the turbine which can be used to establish the normal bounds of 

operation. Alarm limits are also calculated using the standard deviation of the power 

values grouped in each wind speed class. Deviations from this learned model can then be 

flagged as alarms by the CM system. The model attempts to take into consideration 

fluctuations caused by external factors such as gusting by only flagging an alarm if a 

certain number (defined by the programmer) of consecutive readings fall out with the 

calculated bounds. However no case studies of the algorithm detecting failures are 

shown. For both rotor imbalances and aerodynamic asymmetries, the authors use 

vibration monitoring and spectral analysis to detect any manifesting problems  

 

(Hart et al 1997), (Li et al 2001) and (Singh et al 2007) approach the problem of normal 

power models using artificial Neural Networks (NN) as a tool for nonlinear function 

estimation in an attempt to capture the complex relationship between the recorded wind 

speed and the actual power output of the turbine.  
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(Hart et al 1997) were the first to utilise this approach as part of the new and renewable 

energy programme managed by the energy technology support unit (ETSU). The 

approach seeks to use the neural network for the purposes of power performance analysis 

by training the network to output the averaged power generated by the turbine based on 

relevant SCADA parameters being fed as inputs to the network. In order to detect power 

performance anomalies, the network was initially trained on a data set comprising of 

‗good‘ turbine performance. The main difficulty with this approach is that it requires a 

data set which one can assume does not contain any defects or fault conditions. In order 

to counter this, the authors claim that by performing clustering analysis on the data it may 

be possible to detect anomalous values in the data set such as obvious outliers which 

could potentially reduce successful training. In practice however no such pre-processing 

was carried out before the training process. The input parameters used on the network 

were mean wind speed, mean shaft speed and mean nacelle direction to provide the 

associated output of mean active power. A second attempt at retraining a model was 

carried out after observing large errors in the estimation of power output making it 

difficult to utilise the model to track genuine subtle changes in turbine performance. In an 

attempt to reduce the effect of erroneous readings made by the anemometer the second 

model developed was trained using nacelle direction and the measured power output of 

adjacent turbines only. The authors claim that by doing so this removes the requirement 

for accurate wind speed measurements. In order to ensure the precision of this approach it 

was necessary to utilise data from adjacent turbines which were not subject to any 

operating restrictions, this restricted the amount of available data. When blind testing the 

models developed, power performance faults had to be simulated in the form of step 

changes, ramps, sinusoids and random spikes. The authors summarise that errors of 

power performance consistently greater than 4.5kW and nacelle angle orientation errors 

greater than 15˚ should be detectable. However they stress a shortcoming of their 

research in that their results are based on relatively few tests and that there is a trade off 

between the sensitivity of detection and the speed at which the system is able to detect a 

particular fault.  
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(Li et al 2001) examine and compare statistical based regression models and NNs for the 

same purpose of power performance modelling. The models developed however, are 

intended to be used for power generation forecasting only, and not the detection of 

turbine performance degradation. The input parameters used for the models built are 

averaged wind speed measurements and directions taken at a height of 40m, while the 

respective output is the estimated power generated. The regression models are shown to 

be function dependent where as the NN model obtains its function estimation through the 

typical training procedure using pre-processed data sets. The authors apply this pre-

processing to speed up the training process and improve the outcome of the learned 

model. They apply normalisation to the wind speed measurements from a range of 0 – 

50mph to a range of 0-4. Secondly they apply a transform function on wind direction 

from 0˚ - 360˚ into a more limited range which is not specified. The regression models 

are found to be more difficult to develop due to their requirement of defining an explicit 

function, while the NNs have a fairly simple training process which is constrained by the 

available data and consequently the effectiveness of the training algorithm on the data set. 

The outcome of the comparison of both models shows that the NN outperforms the 

regression model in its power estimation capability. While the authors do not use all of 

the following parameters as inputs to their models they do state that wind power 

generation can also be affected by other factors such as air density, the vertical wind 

profile, season and the time of day. Under the complicated influence of these numerous 

factors selection of an appropriate function for a regression model would be extremely 

difficult. This gives the NN the added advantage of practicality in implementation. Again 

no details of actual or even simulated faults are mentioned. The models built seem to be 

tested only on trying to replicate the normal operation of a turbine. 

 

(Singh et al 2007) are the most recent group of researchers to utilise the NN approach for 

wind turbine power estimation again for power generation forecasting. They mention the 

various factors aside from the obvious wind speed and direction which can affect turbine 

power output. Factors such as air density, topography of the site such as hills, mountains 

etc which can cause the wind profile to deviate from the ideal case are noted. However 

since accurate measurement of wind speed is impractical and expensive and subject to 
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topographical constraints the use of similar inputs is used to train a NN. A number of 

interesting training differences are used. Pre-processing of the input data is made use of 

to compress the input patterns in order to enable the NN to learn faster. More 

interestingly however is the use of pre-processing on the output data which is the 

generated power. The NN is trained to produce an output of the output power ratio 

(generated power against rated power). This can be easily converted to the actual power if 

required at any time. The authors do not explore the effect this has over modelling the 

generated power output directly. The paper concludes with a comparison between the 

traditional methods used for power estimation using the manufacturer‘s power curve 

based simply on a function of wind speed and the NN approach. The results show that the 

NN offered a much more accurate estimation (closer to the actual generated power) over 

a monthly period than the traditional method which produced a far more optimistic but 

considerably inaccurate estimation. 

 

The work of (Garcia et al 2006) focuses on the development of a predictive maintenance 

support system which attempts to incorporate the integration of every task involved in a 

formal predictive maintenance strategy, from the detection of incipient faults to the actual 

scheduling of maintenance taking into consideration technical and economic criteria. The 

authors‘ state that the system developed, named SIMAP, is a general tool oriented to the 

diagnosis and maintenance of industrial processes.  The system is split into a number of 

components: a fault detection module based on normal behaviour modelling utilising 

NN‘s tailored towards the gearbox of a wind turbine; a diagnosis module based on a 

simple fuzzy expert system consisting of three main rules; and, an automated 

maintenance scheduling calendar. The rules within the expert system as well as the 

suggested maintenance effectiveness metrics used appear to be highly subjective and 

turbine specific to be generalised. The result of the NN normal behaviour model shows its 

capability in detecting a gearbox fault 2 days before the actual failure which is an 

interesting and positive result. The approach used by the authors in this study is the 

closest piece of work carried out in the literature to date which relates to the study 

presented in this thesis. The main drawback of the system developed by the authors in 

this paper however is how they detach the operator‘s control by attempting to replicate 
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the judgements that should typically be carried out by the operator. This is achieved using 

a series of NN and fuzzy estimation models which attempt to forecast the time to failure 

of the gearbox by utilising a limited set of turbine specific historic failures. This casts 

some doubt on the re-usability of the approach and the yielded results. In contrast, the 

notion behind the system developed in this thesis is to aid the operator in their decision 

making process by informing them of events that are important to them. In this way they 

can make the decision based on the evidence supplied by the system, rather than being 

detached from the decision making process completely.  

 

(Hawker et al 2007) a group of UK based consultants describe a SCADA data based 

downtime analysis tool which attempts to improve wind farm operator decision making. 

The system makes use of 10 minute operational data, alarm event logs, technician reports 

and reference anemometry. Initially periods of downtime are identified from the 

operational data. Environmental conditions are then matched to the associated period of 

downtime using information reported in the alarm logs detailing wind speed, temperature 

or known grid status. Finally using a case base where downtimes have been previously 

analysed and classed by a human operator, the system makes use of pattern matching 

algorithms to match the frequency and duration of the specific alarms reported in the 

data. Finally the operator post processes the output of the system to cross check it against 

all available data and alter it accordingly to any technician notes from repairs or 

maintenance. While such a tool can be useful for learning the cause behind specific 

turbine failures, it does not provide a means to identifying failures before they occur. 

Therefore from the perspective of implementing a CBM scheme, such a system would 

not aid an operator in their decision making regarding maintenance of their farm.  

 

(Christensen & Anderson 2009) present a remote condition monitoring system which 

uses the vibro remote CM system of Bruel & Kjaer. The system monitors the vibration 

levels across the main bearing, the gearbox and the generator. In order to provide a 

reliable measurement of vibration severity, the vibration levels are trended into active 

power bins to accommodate the vibration response of the machine components as it 

varies with external loading. A set of alarms are then defined for each power bin group 
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indicating a severity level. Two examples of real bearing faults as well as one instance of 

shaft misalignment detected by the vibration system were presented by Christensen & 

Anderson, proving the success of their approach. An alarm processing program filters the 

multitude of alarms that can be generated by all of the turbines and transforms them into 

a single alarm for each part of the turbine for every turbine monitored. This severity level 

produced by the system is then verified by diagnostic experts.   

 

(Gray & Watson 2009) present a methodology for damage calculation applied to a typical 

3 stage wind turbine gearbox design based on the concept of physics of failure. Gray & 

Watson state that damage is generally accumulated due to an ―irreversible change that 

takes place in the microstructure of a component subjected to certain loading or 

environmental conditions‖. A detailed assessment of the system and its potential failure 

modes as well as the definition of acting loads and modelling of the damage kinetics was 

carried out to identify critical operating conditions. Damage models were built on the 

basis of this assessment that were then used to estimate the accumulated bearing damage 

for a number of wind turbines. The proposed methodology by Gray & Watson is 

extremely positive. It is clear however that the methodology requires an in depth 

understanding of the dynamics of the gearbox under all kinds of conditions and loads. 

Gray & Watson state themselves that the development of highly accurate damage models 

should generally be viewed as an iterative long term process where ―all failure modes that 

have a significant influence on the wind turbine reliability‖ need to be understood in full 

detail to allow for accurate model development. A possible limitation of the proposed 

methodology however when compared to nonlinear function capture methods such as 

NNs is the difficulty involved and effort required to undergo the analysis process for 

different types of gearbox models. Different gearboxes will undoubtedly have different 

operational characteristics which will require yet another full analysis to understand its 

operation. Non-linear function capture methods will only require simple retraining 

procedure which will automatically fit models to the relations found in the data.  

 

(Garlick et al 2009) present a model based approach for the CM of wind turbine generator 

bearings. They make use of a least squares algorithm coupled with an AutoRegresive 
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with eXogeneous input (ARX) model structure applied to raw SCADA data. Before 

training the model on fault free data, the data undergoes a correlation check where the 

generator winding temperature parameter was found to exhibit the highest correlation 

with generator bearing temperature. Using this outcome only the generator winding 

temperature parameter was used as an input to the model which would then go on to 

provide an estimation of the generator bearing temperature. Garlick et al state that the 

results obtained show that significant discrepancies between model estimates and actual 

bearing temperature can be used to identify a problem exists in the bearing. As a 

comparison of the NN models developed for this thesis published in (Zaher et al 2009) 

however the ARX model does not perform as well. The NN model conveniently allows 

for multi-variable input without complicating the model development process anymore 

than for a single input variable model allowing higher levels of accuracy to be obtained. 

The ARX model development process however becomes far more complex as described 

in (Li et al 2001) and therefore is more difficult to achieve the same level of accuracy. 

Another comparison in the model development process is that the NN model 

automatically fits itself to the data supplied in the training data sets. With the ARX 

model, as shown in the paper by (Garlick et al 2009), the structure of the equation used to 

fit the model to the data must be chosen by the developer. (Li et al 2001) also state that 

this can introduce a potential difficulty in the model development process since an 

incorrect model function will not be capable of fitting itself to the supplied data. This is 

especially true if the relationship being modelled is not well understood also. The results 

presented by (Li et al 2001) in their comparison of NN and ARX regression models 

shows that the NN outperforms the ARX model.  

 

 

Finally the work of (Leaney et al 1999) describes the development of a methodology to 

analyse wind farm SCADA data with the aim of enhancing early detection of problems 

which develop in wind turbines. The authors comment on the fact that while there is a lot 

of ongoing research that makes use of vibration and high frequency power output 

measurements to detect specific failures, they typically require a large amount of 

additional monitoring equipment and sophisticated data analysis. They also point out that 
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there is a lack of techniques that are able to predict when components are likely to wear 

out and fail.  

 

Their approach makes use of basic 10 minute averaged SCADA parameters which are 

widely available across most turbines to highlight general and specific turbine problems. 

The concept behind their approach is that problems in the turbine can be detected by 

general turbine performance degradation. One of the methods developed is a long term 

wind speed prediction model for all wind directions which is used as an input into a wind 

farm performance prediction package to measure long term turbine performance. The 

wind speed prediction model uses one year‘s worth of meteorological data so that long 

term wind speeds for all wind directions can be deduced. The meteorological and external 

physical factors such as roughness of the site terrain, obstacles, topography, location of 

the turbines, wake effects and each turbine‘s associated manufacturer power curve are all 

input into the wind farm performance package along with wind speed prediction model. 

This information enables a prediction for each of the individual turbines and the whole 

wind farm. 

 

An interesting aspect highlighted in the paper is the trends which were observed in 

component performance prior to failure. Power fluctuation data analysis based on 

experimental data by calculating power turbulence and power variability was used. The 

authors state that noticeable changes in the power variability curve (plotted against wind 

speed) were observed prior to a gearbox bearing failure. A small decrease at the same 

time was also observed in the power curve. The results of this analysis formed the basis 

of the authors going on to develop normal behaviour models for anemometer degradation, 

wind direction misalignment, pitch settings, general power deterioration, gearbox faults 

and clutch faults. The respective data sets used to build the models were mainly based on 

averaged data over a period of time. What is interesting is the normalising process that is 

applied to the data sets to build the normal behaviour models. Two techniques are 

compared, one based on linear regression and the other is known as Kriging, a linear 

least-squares based interpolation algorithm. The authors demonstrate that Kriging gives 

lower errors for long term estimates (i.e. longer than 3 months). They state that any 
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departure in the data sets outside of the error range should trigger an alarm but no cases 

of fault detection are shown. The analysis is done offline however the authors indicate 

that an online system is possible since the calculations are not prohibitively time 

consuming.  

 

It is interesting to note that quite a large proportion of the work carried out by researchers 

in wind turbine CM and data analysis is based on simulation and is quite often heavily 

influenced by assumptions. This is most likely due to the lack of extensive historical data 

sets and fault records which are available due to the relatively young nature of wind 

turbine CM due to its recent adoption. This contributes to the lack of experience and 

knowledge in how faults manifest themselves in the data. Another issue worth 

mentioning is the difficulty in actually acquiring data which exhibits actual component 

failures due to its commercially sensitive nature. This in itself can also pose boundaries 

which can significantly restrict the valuable outcome of research projects that are 

undertaken.  

 

 

2.5 Chapter Summary 

 

It is evident that although CM systems for wind farms are widely deployed, wind farm 

operators in industry are still unsure as to whether condition-based maintenance is an 

appropriate operational policy for their assets. This is based on a combination of factors 

which originate mainly from the perception of CBM as a complex maintenance concept 

when compared to the more traditional periodic maintenance policies. Condition based 

maintenance of machines and plants encompasses measuring and evaluating actual 

machine conditions, detecting problems which arise in their incipient stages and 

determining the remaining service life in order to allow effective operation and 

maintenance decisions to be made. The initial costs and the complexity of the hardware 

and software systems required to provide such a complete CBM solution can easily be 

perceived as being the more complicated approach and can be off-putting to operators. 

When coupled also with the difficulty of developing algorithms adapted and suited to the 
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interpretation and analysis of new wind turbine technology the current lack of enthusiasm 

expressed by operators for the CBM approach can be understood. 

 

The theoretical benefits of CBM shown nevertheless offer persuasive arguments for its 

use in wind farms, not least the probable future growth of offshore sites. The 

development of flexible, extensible and robust systems must be accelerated in order that 

these theoretical benefits can be achieved in reality.  

 

It can be identified from the literature that most of the techniques and research focus is on 

a specific problem or component of the turbine in isolation. This is mainly due to the 

complex nature of each individual problem. A key feature of the research described in 

this thesis is to address this gap and provide a platform for wind farm CM systems using 

multi-agent technology. This framework will allow a number of independent analysis 

techniques to be brought together, processing data from multiple sources and focus on a 

wider range of components or problems. In this way, a more complete view of the current 

status of the turbines in the wind farm can be achieved. This also provides the 

opportunity for corroborating the output of the various techniques which can allow users 

of the system to gain an understanding of how faults and problems are reflected in the 

various SCADA parameters. 

 

The normal behaviour models proposed and developed in this thesis are based on typical 

data parameters collected by commercial wind turbine SCADA systems. This means the 

approach developed here can be widely applied by wind farm operators on older existing 

machines with less sophisticated CM systems. While the models developed in this thesis 

model the parameters available in the SCADA data acquired, the development of the 

agent platform contributes to the novelty and archival value of the system in that future 

researchers can build upon the framework easily integrating new techniques for 

interpreting and analysing the data that may become apparent as research in this area 

continues over the coming years. New sensor based technologies may also emerge and 

become adopted for the monitoring of specific components such as the recent research in 

acoustic emission technology for detecting problems that occur in the blades. The 
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platform developed can easily be extended to analyse new data sets and incorporate the 

findings in the output of the system.  

 

The methodology presented in this thesis is designed with the notion of supporting wind 

farm operators to make more informed maintenance policy decisions. These systems are 

becoming especially pertinent with the view that in the coming decades a large number of 

wind turbines will come out of their warranty period and the responsibility for O&M will 

(generally) be transferred from the manufacturers to the utilities themselves.  

 

The need for the research presented in this thesis has been established in this chapter, 

with reference to the gap found in the literature in this area of study. This thesis is 

concerned with the development of an extensible and flexible online FDS for wind farms 

based on the principle of anomaly detection models. The models developed therefore 

must be capable of capturing the complex relationships between SCADA parameters 

accurately in order that the normal behaviour can be correctly estimated under varying 

and dynamic operational range of turbine conditions. The techniques suited for 

developing such models are discussed and described in chapter 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 42 

2.6 Chapter References 

 

Amirat Y., Benbouzid M.E.H., Bensaker B., Wamkeue R., (2007), ―Condition 

Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review‖, 

Electric Machines & Drives Conference, 2007, IEMDC 07, IEE International, Volume 2, 

pp.1434-1439 

 

 

Becker, E. and Poste, P. (2006) ‗Keeping the blades turning. Condition monitoring of 

Wind Turbine gears‘, Refocus, v7, n2, March 2006, p26-32 

 

 

Burnham, K. and Pierce, S.G. (2007) ‗Acoustic techniques for wind turbine blade 

monitoring‘, Key Engineering Materials, v 347, 2007, p 639-44 

 

 

British Wind Energy Association, (BWEA 2008), ‗Wind Energy Technology‘, Accessed 

February 2009, Available at:  http://www.bwea.com/ref/tech.html. 

 

 

Carden, P. and Fanning, P. (2004) ‗Vibration Based Condition Monitoring: A Review‘, 

Structural Health Monitoring, Volume 3, Issue 4, 2004, pp.355-377 

 

 

Caselitz, P. and Giebhardt, J. (2005) ‗Rotor Condition Monitoring for Improved 

Operational Safety of Offshore Wind Energy Converters‘, Transactions of the ASME: 

Journal of Solar Energy Engineering, volume 127, issue 2, May 2005, pp.253-61 

 

 

Danish Wind Energy Association. (2008) ―The Wind Energy Pioneers: The Gedser Wind 

Turbine‖, Accessed February 2009. http://www.windpower.org/en/pictures/juul.htm 

 

 

http://www.bwea.com/ref/tech.html
http://www.windpower.org/en/pictures/juul.htm


 43 

Dutton A.G., Blanch M.J., Vionis P., Lekou D., van Delft D.R.V., Joosse P.A., 

Anastassopoulos A., Kouroussis D., Kossivas T., Philippidis T.P., Assimakopoulou T.T., 

Fernando G., Doyle C., Proust A., (2003), ―Acoustic Emission Condition monitoring of 

Wind Turbine Rotor Blades: Laboratory Certification Testing to Large Scale In-Service 

Deployment‖, proceedings of  European Wind Energy Conference 2003. 

Europa Energy Research, (2010), European Commission Research Website, Accessed 

June 2010, Available at: http://ec.europa.eu/research/energy 

 

 

Hart D.J., Baines N., Riddle A.F., (1997), ―Intelligent data management system for wind 

farm monitoring and operation optimisation‖, 1997 to be published under ETSU contract 

W/36/00281/29/00 

 

 

Hameed, Z., Hong, Y.S., Cho, Y.M., Ahn, S.H. and Song, C.K (2007) ‗Condition 

monitoring and fault detection of wind turbines and related algorithms: A review‘, 

Renewable and Sustainable Energy Reviews, Available online August 2007, 

doi:10.1016/j.rser.2007.05.008 

 

Hawker G., Hall S., Douglas N., (2007), ―Downtime Analysis for Improved Decision 

Making‖, proceedings of European Wind Energy Conference (EWEC 2007). 

 

 

Li S., Wunsch D.C., O‘Hair E., Giesselmann M.G., (2001), ―Comparative Analysis of 

regression and Artificial Neural Network Models for Wind Turbine Power Curve 

Estimation‖, Journal of Solar Energy Engineering, 2001, Volume 123, pp. 327-332, 

Transactions of the ASME. 

 

 

Leaney, V.C., Sharpe, D.J. and Infield, D. (1999) ‗Condition Monitoring Techniques for 

Optimisation of Wind Farm Performance‘, International Journal of COMADEM, 1999 

http://ec.europa.eu/research/energy


 44 

 

Lu Bin, Li Yaoyu, Wu Xin, Yang Zhongzhou, (2009), ―A Review of Recent Advances in 

Wind Turbine Condition Monitoring and Fault Diagnosis‖, Power Electronics and 

Machines in Wind Applications, PEMWA June 2009, pp1-7.   

 

McMillan D., (2008), ―Techno-Economic Evaluation of Condition Monitoring and its 

Utilisation for Operation and Maintenance of Wind Turbines using Probabilistic 

Simulation Modelling‖, Thesis submitted July 2008, Institute for energy and 

Environment, University of Strathclyde.   

 

Negra, N.B., Holestrom, O., Bak-Jensen, B. and Sorensen, P. (2007) ‗Aspects of 

Relevance in Offshore Wind Farm Reliability Assessment‘, IEEE Transactions on Energy 

Conversion, March 2007, 22, (1), pp. 159-166 

 

Popa L.M., Jensen B., Ritchie E., Boldea I., (2003), ―Condition Monitoring of Wind 

Generators‖, Industry Applications Conference, 2003. 38th IAS Annual Meeting. 

Conference Record of the, Volume 3, Issue 1, 12-16 October 2003, pp.1839-1846. 

 

Ribrant, J. and Bertling, L. (2007) ‗Survey of Failures in Wind Power Systems with 

Focus on Swedish Wind Power Plants During 1997-2005‘, IEEE Trans. Energy 

Conversion, March 2007, 22, (1), pp. 167-173 

 

Rumsey, M. A. and Paquette, J. A. (2008) ‗Structural health monitoring of wind turbine 

blades‘, Proceedings of SPIE - The International Society for Optical Engineering, v 6933, 

Smart Sensor Phenomena, Technology, Networks, and Systems 2008, p 69330E 

 

Sanz-Bobi, M.A., Garcia, M.C. and del Pico, J. (2006) ‗SIMAP: Intelligent System for 

Predictive Maintenance. Application to the health condition monitoring of a wind turbine 

gearbox‘, Computers in Industry, Aug 2006, Volume 57, Issue 6, pp. 552-568 

 



 45 

Sayas F.C., and Allan R.N., (1996) ‗Generation availability assessment of wind farms‘, 

IEE Proceedings- Generation, Transmission, Distribution, volume 143, issue 5, 

September 1996, pp.507-518 

 

 

Schneider, J., Gaul, A.J., Neumann, C., Hografer, J., Wellssow, W., Schwan, M. And 

Schnettler, A. (2006) ‗Asset Management Techniques‘, Electrical Power and Energy 

Systems, Nov 2006, 28, (9), pp. 643-654 

 

 

 

Singh S., Bhatti T.S., Kothari D.P., (2007), ―Wind Power Estimation Using Neural 

Network‖, Journal of Energy Engineering, ASCE, pp.46-52  

 

Tavner, P.J., van Bussel, G.J.W. and Spinato, F. (2006) ‗Machine and Converter 

Reliabilities in Wind Turbines‘, of IEEE Power Electronics Machines and Drives 

Conference, April 

2006, pp. 127-130 

 

van Bussel G.J.W., and Zaaijer M.B., (2001) ‗Reliability, Availability and Maintenance 

aspects of large-scale offshore wind farms‘, Proceedings of MAREC, Newcastle, March 

2001 

 

Verbruggen T.W., (2003), ―Wind Turbine Operation & Maintenance based on Condition 

Monitoring WT-OMEGA; Final Report‖, ECN Windenergie 01-04-2003, ECN-C—03-

047 ECN Report.  

 

Vestas, (2009), ―Vestas Wind Power Solutions v52-850kW the turbine that goes 

anywhere‖, product brochure, accessed February 2009, http://www.vestas.com/en/wind-

power-solutions/wind-turbines/kw.aspx  

 

http://www.vestas.com/en/wind-power-solutions/wind-turbines/kw.aspx
http://www.vestas.com/en/wind-power-solutions/wind-turbines/kw.aspx


 46 

Wiggelinkhuizen, E.J., Rademakers, L.W.M.M., Verbruggen, T.W., Watson, S.J., Xiang, 

J., Giebel, G., Norton, E.J., Tipluica, M.C., Christensen, A.J., and Becker, E. (2007) 

‗Conmow Final Report‘, ECN Report, June 2007. Accessed February 2009 

http://www.ecn.nl/docs/library/report/2007/e07044.pdf  

 

Wilkinson, M.   Spianto, F.   Knowles, M. , (2006), ―Towards the Zero Maintenance 

Wind Turbine‖, Universities Power Engineering Conference (UPEC 2006) proceedings 

of the 41
st
 International 6-8 Sept 2006, Volume 1 pp.74-78 

 

Zaher, A, Cruden A, Booth C, Liethead W.  (2009).  Database Management for High 

Resolution Condition Monitoring of Wind Turbines. Proceedings of the 44th 

International Universities Power Engineering Conference (conference paper). 

 

 

Author Discussions 

Yusuf Patel, (2007) Author discussion. Wind farm operator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ecn.nl/docs/library/report/2007/e07044.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20spianto%20%20f.%3cIN%3eau)&valnm=+Spianto%2C+F.&reqloc%20=others&history=yes
http://www.upec2009.org/content/papers/author/128
http://www.upec2009.org/content/papers/author/129
http://www.upec2009.org/content/papers/author/65
http://www.upec2009.org/content/papers/author/130


 47 

3. Wind Turbine Fault Detection through SCADA Data Analysis 
 

The purpose of this chapter is to identify a suitable technique that can provide useful and 

powerful interpretation capabilities for the SCADA data sets provided by the project‘s 

industrial partner, with the purpose of achieving early wind turbine fault detection. The 

literature reviewed in chapter 2 (section 4.3), has demonstrated that minimal research has 

been undertaken in the area of fault detection and diagnosis of wind turbines, utilising the 

SCADA data collated through the integrated CM systems installed in modern turbines. 

 

The chapter begins with an examination of the SCADA data available to determine some 

of its basic characteristics and the meaningful information that can be extracted from it 

through possible correlations that may exist between the parameters for the purpose of 

fault identification. It then proceeds by reviewing some of the typical techniques utilised 

in the domain of data analysis for Fault Detection and Diagnostics (FDD) in industrial 

systems, in an attempt to explore typical approaches to the problem, examining their 

suitability for analysing wind farm SCADA. The challenges associated with SCADA data 

analysis and interpretation are analysed, and an explanation of why the anomaly detection 

approach adopted is required for the development of a successful fault detection 

mechanism for this particular problem. Finally the reasoning behind the chosen technique 

is summarised defining its selection for the models developed for this research.  

 

 

 

3.1 Initial Analysis of SCADA Data 

 

There are a number of parameters that are included in the SCADA data. Some integrated 

CM systems are more sophisticated than others, and this reflects in the range of 

parameters that are monitored. The parameters existing in the data sets acquired from the 

industrial partners involved in this research project are listed below: 

 Active power output (10 min average and standard deviation (SD) over 10 min 

interval) 
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 Anemometer measured wind speed (10 min average and SD over 10 min interval) 

 Nacelle temperature (1 hour average) 

 Gearbox bearing temperature (10 min average) 

 Gearbox lubricant oil temperature (10 min average) 

 Generator winding temperature (10 min average) 

 Power factor (10 min average) 

 Reactive power (10 min average) 

 Phase currents (10 min averages) 

 

21 months worth of data consisting of the above parameters from April 05 to December 

06 was acquired from a wind farm consisting of 26 Bonus 600kW stall regulated wind 

turbines. The parameters listed above are typical of data collected by commercial wind 

turbine SCADA systems, meaning an approach which can successfully utilise this data to 

provide early detection of faults as they occur in the components of the turbine would be 

widely applicable by wind farm operators. It is important to note that no failure or fault 

data records were supplied meaning the data is unlabelled and that the parameters cannot 

be correlated with a specific failure scenario. 

 

In order to achieve the fault detection objectives of this research, it is necessary to first 

determine the parameters from the provided data sets that will be used to provide early 

fault detection information, before defining the nature of the fault detection mechanisms 

themselves. The importance of the gearbox and generator components has already been 

established from the review carried out in Section 2 of Chapter 2. Failures in both these 

components leads to a significant loss in revenue due to the considerable cost and 

downtime associated with obtaining replacements (Yusuf Patel 2007) and (Polinder H. 

2006).  

 

From the SCADA data made available for this project, it was decided that three SCADA 

parameters could be modelled and utilised for the identification of faults manifesting 

themselves in the turbine‘s components based on simple physics. The three parameters 

are the gearbox oil, bearing temperature and the generator winding parameter. As has 



 49 

already been demonstrated from the review in Chapter 2 (section 2), a number of research 

groups have investigated techniques for estimating the power performance of a turbine, or 

range of turbines across a wind farm for the purposes detecting performance degradation. 

Because some power and wind speed data is provided in the SCADA data sets acquired, 

there is potential therefore for the development of a power performance model to be used 

in conjunction with the three SCADA parameters identified earlier in an attempt to 

corroborate any faults identified. Estimating power performance is an extensive research 

problem in its own right, however a model was replicated from the literature and built for 

corroboration purposes to investigate the potential benefit that can be gained from 

combining power performance estimation with fault detection modules. The power 

performance model developed and the corroboration results are detailed at a later stage in 

chapter 5 section 7. The remainder of this chapter focuses on the development of the fault 

detection aspect for the three component oriented SCADA parameters. 

 

3.1.2 Correlations between SCADA Parameters 

 

The two gearbox parameters which can be found in the SCADA data, namely the gearbox 

main bearing and lubrication oil temperature, give an indication of how hot the gearbox is 

running, and therefore, modelling the normal behaviour of these parameters offers the 

possibility of detecting gearbox overheating. While a straightforward threshold check 

could be used to flag up temperatures exceeding a certain limit, this might well be too late 

to avoid significant damage to the gearbox.  The desired functionality should take into 

consideration any relevant aspects of turbine operation. This approach would allow 

temperatures to be detected that are too high in the context of the concurrent level of 

power generation, leading to a quicker and more effective identification of anomalous 

behaviour.  

 

In order to capture the normal behaviour of the two gearbox temperature parameters, the 

variables that can affect those temperatures must be taken into consideration so that an 

accurate model can be built. Wind turbines can only aerodynamically capture a 

proportion of the energy in the incident wind (Danish wind energy association 2008). 
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This energy is converted by the rotor blades into mechanical power and is transmitted to 

the gearbox by the low speed shaft. The gearbox then steps up the rotation rate to around 

1500 rpm on the high speed shaft that drives the electrical generator to produce electrical 

power. This means that the mechanical load and stress that the gearbox undergoes, and 

therefore its temperature, is closely related to the amount of power generated by the 

turbine. The temperature of the gearbox will also be affected by the ambient temperature 

inside the nacelle of the turbine and so this also should be taken into consideration. 

Similarly the generator‘s temperature will be proportional to the active power i.e. the 

power generated by the generator, as well as the ambient temperature inside the nacelle. 

It can therefore be seen that the SCADA parameters which bear the most significant 

impact on the gearbox oil, bearing and generator winding parameters, are the active 

power output and the ambient temperature. Hence the gearbox oil, bearing and winding 

temperature must be related to the power and ambient temperature values via some form 

of function which affects each of the three parameters to some degree.  

 

The nature of the data should also be taken into consideration when assessing suitable 

data analysis techniques. According to (Chandola et al 2009), data can be grouped into 

the following categories: Binary, Categorical, Continuous or a combination of these. 

Wind farm SCADA data is continuous in nature; it is seen as measurements recorded 

continuously over time, and as such the relationship among the data instances (each 

measurement) is seen as being sequential, with a temporal aspect relating the previous 

measurement with the next recorded measurement.  
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Figure 3.1: SCADA Data parameters relations 
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The multivariate nature of the data mentioned above also inherently imposes the 

requirement of techniques that can exploit multiple input data streams without difficulty, 

providing the opportunity to more accurately capture the non-linearity that exists between 

the parameters. 

 

The next section goes on to explore a variety of techniques that exist in the area of fault 

detection and diagnosis applied to sensor data, monitoring different types of industrial 

equipment. The aim is to explore their characteristics and to identify the kinds of data and 

problems they are most suited to solving. 

 

3.2 Artificial Intelligence and Statistical Based Techniques for 

Fault Detection and Diagnosis of Industrial Mechanical Systems 

 

Artificial intelligence (AI) and statistical based techniques have become increasingly 

utilised in the field of Fault Detection and Diagnosis (FDD) of industrial systems. In the 

online fault detection review article published by (C. Angeli & A. Chatzininkolaou 2004), 

the authors‘ state that ―in the case of very complex time-varying and non-linear systems, 

where reliable measurements are very complicated and valid mathematical models do not 

exist‖ techniques in the field of artificial intelligence ―allow for the development of new 

approaches to fault detection in dynamical systems‖. The reasons behind their use is that 

they provide the necessary association, reasoning and decision making processes that 

mimic the thought process of a human brain when solving diagnostic problems. At the 

heart of most problems in this field of research, a large amount of historical data collected 

from some item of plant or machinery monitored through sensor technologies exists. The 

dynamic nature of the environment in which a turbine operates and is constantly 

subjected to, makes the development of mathematical models that can capture and 

interpret the operational behaviour of the turbine extremely difficult. These AI and 

statistical based techniques can be used in a variety of ways which can transform this data 

into knowledge for the purpose of achieving a suitable mechanism for fault detection or 
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diagnosis. These reasons formulated the basis for the author‘s decision to investigate this 

particular domain of techniques.  

 

A review of literature in the area of AI and statistical based FDD for commercial 

industrial systems was undertaken throughout the duration of this research. The aim of 

this exercise was to gain a detailed understanding of techniques which had been applied 

to tasks of a similar nature, and identify an appropriate approach for the application of 

early fault identification for wind turbines. The techniques which have been found to be 

utilised in this field are very diverse, often borrowing from the principles of anomaly 

detection and data mining disciplines with solutions specifically formulated for their 

particular application.  Some of the common techniques which have been found to be 

utilised in this area of research can be categorised into knowledge (or expert) based 

systems (KBS), classification based approaches such as neural networks and support 

vector machines and statistical based techniques such as clustering based algorithms. All 

of these techniques can be used for the purpose of extracting or inferring knowledge from 

large volumes of sensor data. The following sections provide an outline of the named 

methodologies along with some examples from the literature detailing applications of 

how they have been utilised while highlighting some of the influential contributions. The 

review covered in the next section is by no means an extensive and complete review of 

all possible techniques that can be applied to the data, but rather serves as an insight into 

identifying some of the commonly applied techniques in the area of FDD.  

 

3.2.1 Knowledge (Expert) Based Systems in Fault Detection 

 

Expert systems have been defined by (Feigenbaum 1982) as ―an intelligent computer 

program that uses knowledge and inference procedures to solve problems that are 

difficult enough to require significant human expertise for their solution‖. What 

distinguishes an expert system from a conventional program, are the facts that an expert 

system provides a simulation of human reasoning regarding a problem domain, where the 

main focus is the expert‘s ability of problem solving and choosing how to perform 

relevant tasks under the constraints of a specific scenario. Some of the first diagnostic 
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expert based systems developed for technical fault diagnosis were built as early as the 

1970‘s at the Massachusetts Institute of Technology (C. Angeli & A. Chatzininkolaou 

2004). 

Derivatives of Knowledge-Based System architectures 

 

The architecture of a KBS generally consists of two main components namely, a 

knowledge-base and a reasoning mechanism. The knowledge-base holds the facts, 

procedural rules and heuristics of the system which essentially determine the expert 

capability of the system. The knowledge representation schemes for a knowledge-base 

can typically take the form of one of three main types, rule based, case based or model 

based. The selected scheme can influence the design of the reasoning mechanism.  

 

Rule based knowledge-bases are the most common form of KBS. They are typically 

focused on a very specific problem which is well understood by a number of domain 

experts. The process of capturing this knowledge which can be either explicit (well 

defined) or tacit (generally experiential) (Luger & Stubblefield 1997) is important for the 

success of this approach.  

 

Model based systems on the other hand utilise a model that describes a particular 

engineering plant function that is derived from design studies. These models simulate 

how a device should be functioning and any deviation from the expected behaviour 

would imply that the device has malfunctioned. The mechanism involves an initial phase 

which generates a set of hypothesis for a given symptom (Davidson et al 2005). The 

derived set of hypotheses is then reduced to a set which appropriately covers all of the 

current observed behaviours of the device.  The final phase involves selecting candidate 

hypotheses as explanations of the discrepancy between the observed and expected 

behaviour on the foundation of additionally acquired discriminating information. This 

approach differs from the rule based approach in that it assesses the possible explanations 

for an observed symptom in terms of the device model rather than the captured probable 

causes in a rule base.  
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Finally, Case based reasoning systems exploit solutions to previous problems of a similar 

nature to solve current problems (Watson & Marir 1994) and (Luger & Stubblefield 

1997). It essentially functions by measuring the similarity of the currently observed case, 

to the cases present in the ―case base‖. This measure of similarity is used to distinguish 

between potentially matching cases. Therefore rather than a chain of inferences 

explaining the causes of a problem as with rule based and model based systems, a more 

detailed solution of a similar case can be presented along with the supporting evidence of 

why this particular case was selected. This approach is highly dependent on the 

availability of suitable cases to provide experienced diagnostic knowledge of an 

engineering plant or device.  

 

 

Reasoning Approach 

 

This part of the system is responsible for the reasoning strategy of the system. It enables 

it to respond to varying situations and to infer new knowledge from the existing 

knowledge in the knowledge-base (Davidson et al 2005). The reasoning mechanisms for 

the three derivatives of KBS differ in their method of how they infer information from the 

knowledge stored in the rules, models or case libraries. Storing all possible combinations 

of knowledge in a particular problem domain would be largely impractical as the number 

of elements would increase excessively reaching a combinatorial explosion (Rolston 

1988). Because of this high level knowledge can be captured for use in general 

applications, or, detailed knowledge regarding a very specific and well defined 

application as shown in (Strachan et al 2008) can be used in KBS.  

 

Example Knowledge-Based Systems  

 

A good example of a knowledge-based system developed for the purpose of fault 

detection and diagnosis is that developed by (Strachan et al 2008) which presents a 

system which provides a comprehensive diagnosis of the defects responsible for partial 

discharge activity detected in oil-filled power transformers. The authors propose a means 
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to abstracting the important features which characterise the observed phase resolved 

partial discharge patterns. The system then makes use of captured knowledge which 

describes the visual interpretation of these patterns to provide both the location and 

diagnosis of the defect. The system essentially mimics an expert‘s visual interpretation of 

these phase resolved partial discharge patterns. The particular system developed by 

Strachan et al in this paper uses a number of rule bases. Each of the rule bases 

encapsulates knowledge which is associated with a specific stage of the partial discharge 

interpretation process. The inference engine utilises input data to decide which rules in 

the rule base to invoke. If the conditions of a rule are satisfied, then it is invoked, and the 

rule concludes that some predefined action should be performed, for example, to report a 

diagnosis or to invoke another rule. The particular inference engine utilised by Strachan 

et al is a forward chaining reasoning mechanism across the different rule bases which 

underpins the incremental approach of knowledge-based diagnosis to the possible causes 

of partial discharge. 

 

An interesting point which (Strachan et al 2008) stress, are the advantages of the KBS 

approach over other successfully applied machine learning and pattern recognition 

techniques for the same application. The authors comment on the fact that while the 

trained classifier approach can be successful for fault detection and diagnosis, it remains 

specific to the transformer data set from which the model was initially derived from. This 

highlights the fact that the classifier approach requires historical data for training, further 

leading to another limitation where the classifier will only be capable of recognising 

defects for which it has been trained. The diagnostic rules for the paper presented by 

(Strachan et al 2008) were said to be elicited from partial discharge experts.  

 

(McArthur et al 1996) developed a model based reasoning system applied to protection 

system performance analysis in the electricity supply industry.  In a Similar fashion to the 

more recent wind farm power plants, the use of SCADA systems result in an increased 

amount of data becoming available, overwhelming utility engineers. The authors state the 

need for intelligent data interpretation systems that can convert data into appropriate 

information for engineers. A decision support system is presented which aims to perform 
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three main tasks, alarm processing, fault diagnosis and comprehensive validation of 

protection performance. The third task employs a model-based reasoning paradigm where 

as the other tasks are developed as rule-based systems.  

 

A consistency based reasoning mechanism is adopted where the correct behaviour of 

individual components and their interconnections is modelled in a logical or 

mathematical fashion.  The authors utilise the diagnostic approach for current techniques 

for feeder protection and protection relays. For these components knowledge of how each 

of these components should operate is built into the models, for example the operation of 

the protection relays are modelled using mathematical equations which define the relay 

response to fault currents. The authors state that the advantages of the adopted model 

based diagnostic approach only require a single model of correct behaviour to diagnose 

all scenarios of problems assuming the component is modelled correctly. They can also 

be utilised to predict system states given specific conditions which can function as a 

useful tool for training engineers.  

 

What is clear from this model based approach is that a robust definition of how the 

monitored item of plant or machinery operates is necessary to build the models. This 

approach is very effective when the components and their characteristics are completely 

understood.  It can therefore be concluded that it is un-applicable in conditions where the 

operation of the components is not well understood or defined through logical or 

mathematical expressions. 

 

For the application of case based reasoning (CBR), the authors (Olsson et al 2004) 

propose a CBR system for fault diagnosis of industrial robots at ABB Robotics. The 

methodology proposes a combination of signal processing to filter out noise from 

received sensor signals which are then forwarded to a case-based classification 

component to recommend a fault class. The main strengths mentioned regarding the case-

based approach are its direct reuse of concrete examples in history. The method provides 

the opportunity for learning from experiences without the need for data training which 

omits the problem of over-fitting which can arise with classifier techniques explained at a 
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later stage in the chapter. They also provide the ability for incremental learning if new 

useful cases are properly inserted into the case library. The author‘s state that a complete 

case library is not required for the system to function properly. This is not entirely 

accurate however as a case-based system diagnosis capability is only as good as the 

scenarios in the case-base which have been encountered and if such scenarios can be 

generalised to previously unseen but similar scenarios. (McDonald et al 1997) state that 

where suitable cases exist, CBR provides the option of rapidly developing a KBS. The 

authors also comment that it remains to be seen ―how many cases, particularly in 

complex engineering domains are sufficient to realise a KBS capable of providing 

sensible conclusions for the range of problems which might occur”. Because of this CBR 

systems are said to be likely to remain as part of a larger hybrid system which augments 

the abilities of the system rather than being the main diagnosis module.  

 

Summary of Knowledge Based System Characteristics  

 

In conclusion, it is clear that knowledge based systems are built around highly specific 

areas of expertise where detailed knowledge is available, allowing for the development of 

rule-based, case-based or model-based systems. Each of the three systems is dependent 

on the availability of specific types of information. Rule-based systems require rules 

which can be elicited from experts in the domain or from documentation. Model-based 

systems require information which allows the development of accurate models that can 

completely define the operation of the monitored system. Finally case-based systems 

require historic cases with solutions to similar situations which might be faced.  

 

While the advantages of the KBS approach are evidently favourable, it is immediately 

apparent that it is not suitable for the SCADA data application presented in this thesis. 

The main reason for this is the lack of available domain knowledge or access to 

previously recorded cases of failure which can suitably aid fault detection and diagnosis 

through the analysis of SCADA data through rule, model or case type knowledge-based 

systems. Through collaboration with the industrial partners (Scottish Power) it was 

explained that examples of such domain knowledge with respect to the faults which can 
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develop in a wind turbine was unavailable at the time of writing and only the SCADA 

data supplied was available.  

 

3.2.2 Clustering Based Fault Detection  

 

The process of clustering is used to group similar data instances or vectors consisting of n 

features into groups known as clusters in n-dimensional space (Tan et al 2005). These 

clusters apparently reflect a mechanism that causes individual instances to bear a stronger 

resemblance to each other than they do to the remaining instances. From the data mining 

perspective (extracting knowledge from data (Witten & Frank 2005), clustering can be 

used to identify groupings within the data that correspond to specific fault instances for 

example (Strachan 2005) where specific groupings in the data correspond to a specific 

fault type. Equally however from an anomaly detection outlook these groupings can be 

used to highlight normal classes of behaviour while instances of data that do not conform 

to any of the clusters or that which conform to a specific cluster represent an anomaly. 

In fact, in the comprehensive literature survey on anomaly detection, the authors 

(Chandola et al 2009) split clustering based anomaly detection into three categories based 

on the following assumptions: 

1. Normal data instances belong to a cluster in the data, while anomalies do not 

belong to any cluster. 

2. Normal data instances lie close to their closest cluster centroid, while anomalies 

are far away from their closest cluster centroid.  

3. Normal data instances belong to large and dense clusters, while anomalies either 

belong to small or sparse clusters. 

These two different types of fault detection, namely fault classification and anomaly 

detection based fault detection give rise to the concepts of supervised and un-supervised 

training. It is important that the difference between these training modes is explained so 

that the ‗learning’ mechanisms of the remainder of the techniques reviewed in this 

chapter can be put into perspective. 
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Supervised and Un-supervised Training Modes 

 

Machine learning techniques such as statistical based clustering algorithms and classifiers 

are typically used in one of two main modes, namely: supervised (and semi supervised), 

and unsupervised anomaly detection. These modes refer to the training procedure and 

how its requirements can affect successful model capture. Typically supervised training 

requires the data to be fully ‗labelled‘ in the sense that each instance of data is associated 

with either a normal or anomalous class. Any unseen data is compared against the trained 

model to determine which class it belongs to. In real world applications this is rarely the 

case as labelled data is normally unavailable.  

 

Semi-supervised training is essentially the same as supervised training. The main 

difference however is the assumption that the training data instances used are labelled for 

only the normal class. That is only normal ―looking‖ data is used for training. This 

assumption should be fairly accurate and based on compelling evidence however as if 

abnormal data is used to train the model, an inaccurate representation of normal 

behaviour will be captured. Its applicability is therefore dependent on whether this 

assumption can be made regarding the training data. Semi-supervised training is 

considered to be applicable to a larger range of applications since there is no requirement 

for labels of the fault classes which are not always present in data sets.  

 

Finally unsupervised training operates in a manner which does not require labelled data. 

This therefore makes techniques which can carry out unsupervised training the most 

widely applicable approach out of the two main training modes since most data sets fall 

into this category. Techniques which operate in this mode make the implicit assumption 

that normal instances of data are far more frequent than abnormal instances in data sets. 

Both self organising maps, as well as the expectation maximisation clustering algorithms 

operate in this manner and are explained within this section. 

 

When considering wind farm SCADA, the data is not ―labelled‖ in classes of anomalous 

and normal behaviour. This limits the scope of the applicable techniques which are 
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compatible with the semi-supervised and unsupervised training modes, making the 

training process substantially more complex. While the SCADA data is not labelled into 

any groups, techniques which operate in semi-supervised mode can be applied through 

assumptions regarding which portions of data constitute normal turbine operation. These 

assumptions can however often lead to the possibility of inaccuracies being built into the 

model during the training process. Therefore, it is particularly important that the selection 

of data for training purposes accurately represents the behaviour which is to be modelled.  

 

Example Clustering Algorithms 

 

While there are a large variety of clustering algorithms available, they typically revolve 

around the unchanged principle of grouping similar instances into groups. Modifications 

can be made to aspects such as the similarity measure used, how the number of clusters is 

identified, as well as constraints placed on a cluster‘s shape and size, which essentially 

allows for a diverse range of clustering mechanisms. Two powerful clustering techniques 

are described in the following section along with example applications in the area of fault 

detection and diagnosis. 

 

K Means Clustering 

 

The most classic form of the clustering technique is known as the k-means algorithm. The 

algorithm‘s clustering process operates by an initial specification of the number of 

clusters that are being sought after known as the parameter K. K points are then chosen at 

random by the algorithm to be used as cluster centres in the n-dimensional feature space 

(where n is determined by the number of features an instance of data has i.e. a vector‘s 

features). Each data instance in the data set is then assigned to the closest cluster centre 

according to the Euclidean distance metric shown in equation 3.1: 
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Once all of the instances have been assigned, the centroid (mean) of the instances in each 

cluster is calculated and taken to be the new centre values for the respective cluster 

group. The entire process is then repeated with the new centre values in an iterative 

manner until the same instances are assigned to the same cluster centres i.e. the cluster 

centres no longer change. At this point the centres are stabilised and will not change for 

that particular training data set. New previously unseen input data instances (or vectors) 

can then be assigned to the cluster which closest matches its position in the n-dimensional 

feature space.  

 

(Strachan 2005) makes use of K means clustering as one of a number of techniques used 

for the classification of six particular kinds of defect which occur as a result of partial 

discharge events in oil filled transformers. The data set used to train the K-means 

classifier model is labelled for each partial discharge event, noting its associated cause 

(one of six defined defect types). The data is pre-processed using a feature extraction 

process which calculates a number of statistical features that characterise a 3-dimensional 

phase resolved pattern, where the pattern represents the recorded partial discharge event. 

In total, 101 features were deduced per feature vector to characterise the phase resolved 

pattern, based on the work of (Gulski 1991). The work of Gulski has demonstrated its 

relation to the causing defect rather than processing the data in its raw format. These 

parameters are basic, deduced and statistical features such as mean pulse height, variance, 

standard deviation, kurtosis and skewness to name a few. A dimensionality reduction 

process known as Pearson‘s correlation coefficient (Godfrey et al 1988) was then used to 

reduce the size of the feature vector by identifying correlations between the features. The 

coefficient varies between +1 and -1 indicating a positive or negative linear correlation 

respectively, and zero indicates no correlation. This process reduced the feature set to 

approximately half the size in view of the fact that the removed features were seen as 

offering no new discriminatory information from a data mining perspective. This 

emphasises the need for the selected features of the data instances present within the data 

set to exhibit some form of spatial relation when mapped to the feature space which 

allows them to be differentiated in order to ensure the success of the K-means clustering 

process. This also stresses the fact that the data in its raw format, might not be correctly 
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suited to the clustering process and that some form of feature extraction is a prerequisite 

to the techniques success. 

 

The training process involved specifying and setting the ‗number of clusters‘ parameter 

K, which incidentally is the only variable parameter used in the development of the K-

means model. It is initially set prior to the training process and then adjusted accordingly 

throughout the development process in tandem with the evaluation and refinement 

phases.  

 

The specification of the K parameter is considered a ―trial and error‖ process as opposed 

to one of scientific judgement. This is considered the main shortcoming of the K-means 

model development process. A ‗rule of thumb‘ proposed by (Dasarathy 1991) does 

however exist which states that the number of K-means clusters should lie in the range 

indicated by the following rule: 

 

Number of Classes <= Number of Clusters <= SQRT (Number of training Data 

Records) 

 

Based on this assumption, (Strachan 2005) incremented the ‗number of clusters‘ 

parameter iteratively through the calculated range until the classifier model performed 

satisfactorily.  

 

While there maybe a specific set of desired classifications for a particular application, 

typically the number of clusters which are found to be formed in the n-dimensional space 

after the clustering process do not equate to the number of classifications. There is also a 

large possibility that each cluster of data does not entirely consist of data instances 

belonging to one class, which would be the desired case, but instead contain instances 

from multiple classes. In order to extract meaning from the output of the clustering 

process once the clusters have been established, it is necessary to assign labels to the 

clusters found. Strachan overcomes this through assessing the proportion of each class 

represented within each cluster. Labels are then assigned corresponding to the dominant 
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class of instances in the cluster. A confidence rating is also assigned to the cluster where 

this is calculated as a percentage of data instances associated with the dominant class 

present in the corresponding cluster against the total number of instances present in the 

cluster.  

 

In conclusion from this application it is apparent that in order to classify the various 

defects which can result from partial discharge events using the K-means clustering 

algorithm, the data must be labelled accordingly. While this is an implication on the data 

rather than the technique itself, this implication is necessary for its success as it allows 

the technique to be trained to recognise the characteristics of each of the defects to 

successfully classify them.   

 

The previous feature extraction research carried out by (Gulski 1991) which allowed the 

important characteristics of the data instances to be accurately summarised, formed the 

basis for applying the clustering technique with success.  

 

Self Organising Maps 

 

The Self Organising Map (SOM) is another popular clustering algorithm which has been 

developed. It uses a different mechanism to achieve the basic clustering process. The 

SOM (also known as the Kohonen Map) uses a neural network to discover the underlying 

structure of the data. It provides a means of representing multi-dimensional data into 

lower dimensional spaces, usually one or two dimensions. It can therefore function as a 

powerful visualisation tool as it makes use of a set of neurons mapped to a two 

dimensional Cartesian plane making them easy to inspect.  

 

If we consider a two dimensional SOM consisting of a 2D lattice of connected nodes as 

shown below in figure 3.2, the workings of their clustering process can be better 

understood. Each neuron is fully connected to the input layer; (in the case of figure 3.2, a 

2 dimensional vector) which is presented to the network. Each of these nodes (neurons) 

has a specific topological position in the lattice and contains a vector of weights of the 
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same dimension as the input vectors. For example, if the training data presented to the 

network consists of a set of vectors of n dimensions, then each node will also contain a 

corresponding weight vector of n dimensions.  

 

Figure 3.2: A 4 x 4 Node SOM with a 2 input vector 

 

A SOM does not require a target output to be specified like other classic multi-layer 

neural networks during their training phase. This allows it to operate in an unsupervised 

manner.  

 

The initial distribution of weights for each node is randomly set. The input vector is then 

presented to the network. Where the node weights match the input vector, that area of the 

lattice is selectively optimized to more closely resemble the data for the particular class 

the input vector belongs to. Therefore, from an initial distribution of random weights, and 

over multiple iterations, the SOM eventually settles into a map of stable zones. Each zone 

can be thought of as a feature classifier, allowing the graphical output of the network to 

be envisaged as a type of feature map of the input space. The algorithm operates the 

following steps in the order listed and occurs over multiple iterations: 

1. The weights of each node are initialized to random values. 

2. An input vector is then chosen randomly from the set of training data instances 

and presented to the lattice. 
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3. Each node in the lattice is examined in order to assess which node‘s weights are 

most similar to the input vector. The resulting node found to most closely 

resemble the input vector is commonly known as the Best Matching Unit (BMU). 

This is calculated through a similarity metric, typically the Euclidean distance 

shown in equation 3.1 above.  

4. The radius of the neighbourhood of the BMU is then calculated. This is a value 

that starts large, typically set to the 'radius' of the lattice, but diminishes each 

time-step for example through the use of an exponential decay function expressed 

in equation 3.2. Using Pythagoras theorem, any nodes found within this radius are 

deemed to be inside the BMU's neighbourhood. 
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5. The BMU as well as each neighbouring node's (the nodes found in the previous 

step) weights are adjusted to make them more like the input vector. The closer a 

node is to the BMU; the more its weights get altered. This is carried out according 

to the following equation  
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Where Ө and L are calculated using the exponential decay function using the 

respective equations: 
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6. The process from step 2 is then repeated for N iterations. 

Through this process it can be observed that the specification of the parameter K i.e. the 

number of clusters, is automatically identified based on the data set through the training 

process without the need for its specification as with other clustering mechanisms. 

 

(Germen et al 2007) make use of a SOM for the classification of mechanical faults in 

induction motors. They are used to classify broken rotor bars and misalignment type 

faults in the motors. The research was conducted in a laboratory environment with a total 

of four induction motors each displaying a different mechanical fault. Two of the motors 

exhibit a different number of broken rotor bars 3 and 5 respectively, the third is used for 

misalignment tests and the last is a healthy motor to draw comparisons. In order to 

classify the possible faults of the motors using a SOM, An important step which the 

authors‘ state significantly influences the success of the SOM for classification is to 

determine adequate features for the clustering process. The authors make use of 

knowledge that exists from previous related research which proves that broken rotor bars 

give rise to certain side-band frequencies in the line current spectrum, while 

misalignment fault frequencies fall anywhere around the supply frequency. (Germen et al 

2007) encapsulate this information as a feature vector through signal processing which 

offers discriminatory properties for the faults considered.  

Germen et al‘s objective was to use SOM to discriminate data from the defective 

induction motors from the healthy one while also classifying the type of defect. A data set 

of 80 experiments was utilised where 20 were obtained from the misaligned motor, a 

further 20 obtained each from both the motors with 3 and 5 broken bars, and the last set 

of 20 were obtained from the healthy motor. Each of the 80 experiments was then 

converted into its corresponding feature vector. The results of the clustering process 

produced 3 different cluster sets. The first cluster formed the data from the healthy motor; 
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the second formed the data from the misaligned motor, while the last cluster combined 

both the broken rotor bar data from the two motors.  

 

This application of SOM demonstrates that, in-line with most clustering techniques, its 

success is again determined on the ability to extract discriminative feature vectors from 

the data which requires knowledge of the data or the domain to form a data set which is 

compatible with the clustering process. This is perhaps considered the most challenging 

aspect of the clustering process and heavily influences its success rate.  

 

 

Summary of Clustering Techniques for Fault Detection 

 

The following conclusions are reached after considering the three clustering algorithms 

described in this section. The various applications reviewed demonstrate that clustering 

can be applied to both fault classification and for anomaly detection based fault detection.  

 

 For classification based fault detection, where specific faults are diagnosed, the 

data instances must be labelled into their respective fault classes for successful 

training and diagnosis of previously unseen data. This requirement is not specific 

to the clustering technique but rather is considered a prerequisite for fault 

classification in general. 

 For anomaly detection based fault detection with unlabelled data, labelling the 

clusters which are formed in terms of anomalous or normal classes can be an issue 

especially in data sets which contain larger numbers of clusters.  

 Several clustering based techniques are effective only when anomalies do not 

form significant clusters among themselves as this makes it more difficult to infer 

useful information from the clustering process.  

 The success of the clustering process is highly dependent on the structure of the 

data used for training. Most applications tend to pre-process the data carrying out 

some form of feature extraction which offers discriminative features suitable for 
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clustering the data into their appropriate groups. Data in its raw format is rarely 

suited for clustering.  

 The testing phase for clustering algorithms is relatively fast due to the typically 

small number of clusters which every test instance must be compared to. The 

number of clusters is normally fixed once the training phase is complete and 

remains unchanged for the majority of applications. This again simplifies the 

testing phase. 

 

The most important points that emerge from this analysis of clustering techniques and 

their applicability to data processing for FDD is that they rely heavily on the structure of 

the data, and the extent of the differentiable features which can be extracted from the 

data. The significance of the feature extraction process is apparent in the range of 

applications reviewed where they were all built on previous substantial research that 

focused on the identification of distinguishable features in the data. 

 

Through consultation with industrial wind farm operators, at the time of writing, it was 

advised that wind turbine SCADA data was not well understood (Yusuf Patel 2007) and 

hence such discriminative features were not readily available. Techniques which are 

therefore able to process the data in its raw format would be deemed more suited and less 

complicated to apply.  

 

 

 

 

3.2.3 Artificial Neural Network Based Models for Fault Detection 

 

The principle of an artificial neural network is a biologically inspired technique which is 

based on the parallel architecture of the human brain. The human brain consists of vast 

numbers of neurons which have been estimated to be in the order of 10-500 billion 

(Haykin 1994). Each of these neurons is interconnected with branches known as dendrites 

(inputs) and axons (output) shown in figure 3.3. These branches form a highly complex 
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biological neural network. The axon of a neuron is connected to the dendrites of multiple 

other neurons through a junction known as the synapse. When the combined signals 

received by a neuron from connected neurons exceeds a particular threshold, the neuron 

fires passing an impulse signal down its axon. This signal is then input at the dendrites of 

other connected neurons through their synaptic connections. The synapse can have an 

excitatory or inhibitory influence on the signal passed between the neurons, modifying 

the amount of signal transferred. It is this synaptic efficiency (or strength of connection) 

that is modified as the brain learns and memorises.  

 

 

 

 

In an artificial Neural Network (NN), the neuron, often referred to as the perceptron, is 

mathematically modelled to replicate the functionality of a biological neuron. The NN 

works in an identical manner where the weighted connection between the perceptrons is 

analogous to the memory effectively stored in the synaptic weights of the biological 

neuron.  

 

Figure 3.4, illustrates the composition of a perceptron processing element. Each neuron 

input is multiplied by its corresponding weight which signifies the strength of the 

connection. The output of the neuron fires if the summation of the inputs modified by the 

weights, totals to a value greater than some threshold value.  

 

Figure 3.3: The Biological Neuron 
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All of the neurons combined in an NN effectively provide a powerful non-linear data-

processing structure. This gives the NN the ability to perform tasks similar to that of the 

biological neural network such as pattern matching and learning. These abilities work 

well in tasks where it is difficult to formulate a step by step algorithmic solution, but have 

access to many examples of the kind of behaviour required; they have therefore been 

proven useful for data analysis, capturing patterns and relations between multiple 

parameters in data sets. The neurons are arranged into a number of layers which consists 

of an input layer, output layer and any number of intermediate hidden layers in between, 

linking the input layer to the output layer. The hidden layers are essentially responsible 

for performing the activation function between the input and output data. NN fall into the 

category of classifier techniques, where the name is derived from the techniques ability to 

learn a model (classifier) from a set of (labelled) instances, and then classify a test 

instance into one of the classes using the learnt model. Their applications are not however 

limited to classification only as will be explained in the following sections. 

 

 

Neural Network Operation 

 

A neural network (NN) operates in one of two modes, the training mode, where the 

network attempts to learn some function, or the testing mode where the network uses 

what it has learned in the training phase to provide some output to previously unseen 

Figure 3.4: The Perceptron processing element 
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input data. The training and testing data samples are presented to the network through the 

input layer. The training mode can operate in any of the two main modes supervised (and 

semi-supervised), or unsupervised depending on the data available. The SOM‘s detailed 

earlier are an example of a neural network operating in an unsupervised manner 

performing clustering which displays their flexibility. The supervised training process is 

achieved through splitting the data into training and testing data sets. The supervised 

process entails the training data consisting of inputs and their associated outputs, which 

the network attempts to relate through a non-linear function by exposure to a sufficient 

number of examples. The weights in each neuron are initially set at random values. The 

input values are then propagated through the network yielding an output with an error 

between the initial value and the desired output. This error is then fed back through the 

network and used to adjust the weights accordingly with the aim of minimising the 

magnitude of the error term. This process of adjusting the weights is determined by the 

algorithm used to train the network. This process is then iterated until the weights no 

longer change, or the set number of training cycles is complete and the network is 

considered ‗trained‘. The network can then be tested on the second data set which 

deliberately comprises data that the network has not been trained on or previously 

exposed to. Its success at estimating values that are as close as possible to the desired 

output values determines how well the network has learned or captured the relation 

between the inputs and outputs. (Rumelhart et al 1986) compares the operation of a 

neural network to a “parallel computer that can program itself to compute some function, 

given suitable exemplars specifying that function”. He describes it as a system where we 

do not require the knowledge of how to write the program in order to get the system to 

carry out the desired task.  

 

This description serves to elucidate the mysterious self-learning nature of NNs. The fact 

that we do not have to know how to write the program to achieve a particular task implies 

that we do not know how the NN arrives at its output. NNs have often been referred to as 

‗black-boxes‘ as they effectively learn by example, where their inputs and outputs are 

clearly defined, but their internal functionality remains hidden and unexplained. They are 

therefore heavily dependent on the quality of data used for training, as accurate and 
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representative data is required for an effective learning procedure. The ‗black-box‘ nature 

of NNs is considered their main limitation as this leads to the inability to provide an 

explanation or justification for the output provided. Despite this, NNs have been 

extensively used and successfully applied to a wide range of domains requiring pattern 

recognition, estimation and prediction as well as fault classification.  

 

 

Back Propagation Algorithm 

 

The back propagation algorithm is one of a number of variations of NN training 

algorithms. These variations mainly differ in topology (i.e. interconnections between 

nodes), weight adjustment and activation function used. The back propagation algorithm 

is the most popular supervised learning strategy used in neural networks. It was 

considered a significant breakthrough in NN research when the algorithm also known as 

the ‗multi-layer feed-forward network‘ was first developed (Rumelhart et al 1986). This 

specific derivation of neural network has been used to address the problem of FDD across 

a large number of fields and applications for both fault classification and anomaly 

detection. Its ability for pattern recognition gives it the necessary mechanic to perform 

prediction and estimation allowing it to lend itself well to applications such as, speech 

recognition, image classification, medical diagnosis and condition monitoring to name a 

few. This pattern recognition ability is achieved through their capacity for effectively 

characterising non-linear relationships.  

 

Figure 3.5 shows the topology of a back propagation network consisting of three layers 

an input layer, one hidden layer and the output layer. The number of input nodes is 

typically determined by the number of inputs fed into the input of the network.  The 

number of hidden nodes as well as layers is determined empirically, while the number of 

output nodes is dependent on the output requirements of the application.  
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Each of the nodes in each layer is connected to the nodes in the adjacent layer as shown 

in figure 3.5. Preparing the training data set consists of pairing each of the training input 

patterns presented to the network with its corresponding target pattern e.g. (input pattern 

1) is paired with (T1) in the case of the diagram.  

 

The back propagation algorithm consists of two main steps, the forward propagation step 

and a backward propagation step. This is repeated for each input pattern presented during 

training. The algorithm has been defined by (Tarassenko 1998) as follows: 

1. Feed-forward step 

a. Select a training pair (inputs and associated target output) from the 

training data set and apply it to the network input  

b. Calculate the actual network output for the given input pattern 

c. Calculate the error between the actual network output and the 

target output. 

2. Back-Propagation step 

a. Modify the weights of the network in a manner which minimises 

the calculated error. This is achieved by propagating the calculated 

Figure 3.5: Back Propagation Neural Network Architecture 
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error back through the network from the output layer to the input 

layer. 

3. Repeat steps 1 and 2 for each of the training patterns in the data set until 

the error for the entire set is acceptably low. 

Effectively, this algorithm can be viewed as a gradient descent method (Rumelhart et al 

1986), tasked with finding the weights for a multi-layer feed forward network with non-

linear processing elements. In this way it presents a procedure for learning, where in 

principle it evolves a set of weights to produce an arbitrary mapping between the input 

and output (i.e. mapping a relation between the training pairs).   

 

A total of three calculations are carried out at each node for every iteration of the training 

procedure. Two of these calculations are performed during the feed-forward step, where 

each node determines whether it will fire to provide an output. The third calculation is 

performed to calculate the error at the network node where a slight difference in this 

calculation exists depending on the type of node i.e. a hidden or output node.  

The first calculation involves calculating the net input. This is essentially the summation 

of the products of the inputs (i1, i2, i3…) multiplied by the connection weights (w1, w2, 

w3…) summarised by equation 3.6.  
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 (eq3.6) 

 

The second calculation involves determining the activation level of each node by 

assessing the value of net j computed in the first step to the activation function used 

equation 3.7.  

)( jj netfy   (eq3.7) 

 

There are a variety of activation functions that can be used in a neuron to determine 

whether it fires or not. The most typical function used for the back-propagation NN 
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however is the sigmoid shown in figure 3.6. The value of net input is represented along 

the x-axis and the output of the neuron is shown on the y-axis also illustrated by equation 

3.8  

 

 

 

The sigmoid function often referred to as the squashing function due to its shape, 

effectively compresses the range net j such that it lies between a value of zero and one. 

The shape of the function inherently provides a form of automatic gain control where a 

small increase in net j close to the zero results in a higher gain due to the steeper nature of 

the curve at lower net j values. This allows for the accommodation of larger signals 

without saturation and small signals without excessive attenuation. (Chapter 5 Section 2.2 

details other commonly used activation functions and how networks can include layers 

consisting of more than one type of transfer function). 
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Once the actual output of each node is established, the third calculation, the error between 

the actual output and the target output, must be determined. If the node is an output node, 

Figure 3.6: Sigmoid activation function 
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the back-propagated error is calculated using equation 3.9. For a hidden node the error is 

calculated using equation 3.10.  

)()( '

jjjj netfot   (eq3.9) 
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Where δ is the error at the node, t is the target output, o is the actual output and w is the 

node weighting. From these equations it can be seen that the amount by which a given 

weight will change is proportional to the derivative of the nonlinear activation function. 

Consequently the largest change in a weight will occur for neurons that have an output 

mapping near the mid range of the function i.e. neurons that have not yet committed to 

being on or off. (Rumelhart et al 1986) believes that this characteristic contributes to the 

stability of the learning system.  

 

These non-linear capabilities of the back-propagation NN allows it to effectively model 

non-linear activation functions between several input variables and one or more output 

variables, making it well suited to pattern recognition, classification, parameter 

estimation, forecasting and prediction applications.  

 

 

Overtraining and Generalisation 

 

An important aspect which should not be overlooked during the training process is the 

issue of overtraining a network. When training a neural network with examples, the 

purpose of the training process is to capture a relationship between the inputs and outputs 

presented to the network, which will allow it to generalise to patterns out with the 

training data set.  Overtraining can occur when the number of training samples is 

relatively small in comparison to the complexity of the network (i.e. too many nodes with 
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a large number of connections (weights) which can be used to capture relations). In such 

cases the network can essentially replicate the training data set with great accuracy since 

it effectively memorises it. Initially the network appears to perform well but when tested 

on previously unseen patterns which deviate slightly from those used in training, it 

exhibits a high generalisation error since the system has the freedom to take advantage of 

spurious correlations in the data. Constraining this degree of freedom is therefore 

important in order that the network adapts to only the dominant regularities as opposed to 

the spurious irregularities that might exist in the training data, effectively generalising the 

underlying correlation which exists to provide reasonable solutions to new previously 

unseen inputs. 

 

Determining the size of the network for a specific application is considered the main 

challenge of the training process, and is often referred to as something of a ‗black art‘. 

Typical approaches include training smaller networks, incrementing the size with each 

iteration until the smallest one is found that will learn from the data and generalise 

successfully on a predefined data set. Another approach is to train a network larger than 

necessary and then employ one of a number of pruning techniques to remove or penalise 

network weights (Reed 1993). 

Example applications 

 

The comprehensive review by (Zhang 2000) covers an extremely wide range of 

applications which utilise neural networks for classification. Zhang states that since 

neural networks are non-linear models, this makes them flexible in modelling real world 

complex applications. The vast range of literature reviewed in the paper on neural 

networks for classification indeed supports this statement.  

(Tarassenko et al 2000) investigate the principle of novelty detection (also referred to as 

anomaly detection) as an approach to the problem of fault detection. The paper introduces 

the concept of a neural network predictor as a model of normality. The approach only 

requires normal class data to be defined, where a model of this normality is learnt by 

including only normal examples in the training data. Abnormalities are then identified by 

testing for novel instances against this description.  The neural network was applied to 
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detect subtle changes in the temperature profile of aero-derivative gas turbine engines. 

The data was acquired via 17 thermocouples and several thousand hours of normal 

operation was available to build models of normality. No data on any occurrence of 

engine malfunction or failure was available however and so the anomaly detection 

approach was deemed suitable. The compressed air heated up in the engines nine 

combustors swirls outwards towards the 17 thermocouples giving rise to a characteristic 

thermocouple signature. The signature varies with engine speed where all of the 

thermocouple outputs increase by similar amounts when the engine speed is increased 

respectively. A secondary nonlinear distortion of the signature caused by minute changes 

in the swirl angle also results with an increase in speed.  

 

The authors argue that when a fault develops in one of the combustion chambers in the 

engine, there is a local effect on the temperature profile. Only a small number of 

contiguous thermocouples are significantly affected while the remainder remain 

unchanged. The models of normality were therefore built around learning the function 

relating the temperature values which are affected so that a thermocouple reading can be 

predicted based on these readings. The nonlinear effect caused by the change in speed 

was also required to be captured and so a multi-layer perceptron model was used as a 

nonlinear predictor using speed as an input along with the temperatures values of the 

contiguous thermocouples. These values were used to predict the output of a 

thermocouple on the opposite side of the turbine casing. The models of normality were 

engine specific and so testing involved constructing models for each of the engines and 

testing on unseen patterns of data for the corresponding engine. A real fault detected by 

the model is presented in the paper demonstrating the value of novelty detection 

conclusively and proving the success of the modelling methodology capturing the 

nonlinear relations required between the inputs and outputs. 

 

The work of (Garcia et al 2006), reviewed in chapter 2 section 2.4.3 is the most similar 

work found in the literature and considered an influential contribution to the fault 

detection aspect of the work presented in this thesis. The authors present a system 

developed for the purpose of health condition monitoring of a wind turbine gearbox. The 
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part of the system abbreviated as SIMAP which is of interest here, is the fault detection 

module focused on identifying incipient faults in a wind turbine gearbox. The models are 

NN based models, utilised to capture the normal behaviour of the gearbox oil and bearing 

temperature, as well as the thermal difference between the gearbox oil before and after it 

is cooled by the heat exchanger. The authors do not state if the data used is SCADA data, 

however the parameters utilised to train the NN normal behaviour models are similar to 

the monitored parameters in the data sets acquired for this thesis. The parameters used for 

the models consist of the two regressive inputs for the parameter modelled, as well as the 

generated power, the nacelle temperature, and cooler fan slow run or fast run inputs 

detailing the state of the cooling mechanism. No detailed information of the training 

process or the kind of NN used is discussed in the paper however. The authors present a 

case study in which the models detect a gearbox problem 2 days in advance of its failure. 

While 2 days may not provide sufficient time to schedule an appropriate maintenance 

action, it does display promising results for the analysis of SCADA parameters. An in 

depth comparison between the models / results of their work and the workings presented 

in chapter 5 of this thesis is published in the journal of Wind Energy by (Zaher et al 

2009).  

 

Related to the theme of wind energy, (Moghaddas-Tafreshi et al 2007) make use of two 

NN models to forecast the power to be generated by a wind turbine one hour in advance. 

They make use of multi-layer networks for both models, trained using the back-

propagation algorithm for its prediction and estimation capabilities. One model makes 

use of the last eight hourly wind speed inputs to predict the next time step of wind speed 

(one hour in advance) at a number of different wind masts in the wind farm and hub-

height for the turbine in question. The outputs of this model are then used as inputs to the 

second model which is used to provide an estimation of the expected power output.  

 

Summary of Neural Network Characteristics 

 

The following conclusions are reached after considering neural networks for the use of 

FDD through the analysis of its mechanics and the various applications reviewed.  
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 Their non-linear nature allows complex non-explicit relations to be learned 

making them well suited for forecasting, estimation and pattern recognition  

 They are able to handle multi-variate data without adding complexity to the 

development process as inputs and outputs are automatically mapped during the 

training phase.  

 They are useful for situations where no mathematical algorithm exists, but 

plentiful examples of the kind of behaviour required is available. 

 They have high data requirements for successful training 

 They can be utilised for both, classification of faults as well as anomaly detection 

modules through normal behaviour capture as shown in the literature reviewed. 

It is interesting to note the large range of applications which neural networks have been 

applied. Their main limitation as discussed is the black box nature they possess where no 

reasoning is provided for how they arrive at a particular result. This limitation can affect 

certain types of applications more so than others, where perhaps a classification based 

application might benefit from some form of explanation as to how it arrives at its result. 

The normal behaviour applications reviewed however have been shown to be extremely 

useful at capturing the relations between the data parameters while the emphasis of how 

the NN arrives at its results is not considered to be as important.  

 

The characteristics which they possess lend themselves very well to the wind farm 

SCADA data, due to the fact that they can incorporate multiple variables and capture the 

undefined, non-linear relations that exist between them where no mathematical functions 

exist to define this non-linearity. The data which exists also provides a large number of 

examples of the desired behaviour. Their application by (Garcia et al 2006) to the wind 

farm gearbox oil and bearing data along with the results obtained suggest that they are a 

suitable technique for analysing the SCADA data to provide the capability of fault 

detection through anomaly detection. It would therefore be interesting to explore their 

ability to capture the relations between similar parameters as well as the generator 
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winding temperature parameter from a different wind farm consisting of different wind 

turbine models to achieve early fault detection.    

 

3.2.4 Support Vector Machines  

 

Support Vector Machines (SVM) are a relatively new computational learning technique 

based on statistical learning theory developed by (Vapnik Chervonenkis 1995). They 

have recently emerged as a general mathematical framework for estimating dependencies 

between a finite number of samples.  Similarly to Neural Networks, they fall within the 

classifier group of techniques and demonstrate the capability to perform pattern 

recognition and prediction. The difference between them however is the method used for 

minimising the error for the training data set during the training process. Neural networks 

utilise empirical risk minimisation while SVMs make use of structural risk minimisation 

which is stated to provide better generalisation abilities achieved through the 

minimisation of the upper bound of the generalisation error (Vapnik 1995).  

 

In order to better understand the SVM‘s principle of operation (Bennet et al 2000) 

explain that three key concepts must be grasped, these are margins, duality and kernels. 

Consider the example of a simple case of binary classification (Bennett et al 2000) where 

a set of data points Xi (i=1,….., m), have the corresponding labels of Yi = ±1. Each of the 

data points is represented in N dimensional attribute space. Initially let us imagine the 

scenario where the data points belonging to each of the two sets are linearly separable in 

the N dimensional space i.e. a plane exists that can correctly classify all of the data points 

in both sets. If we let the classification function be: 

 

     )()( bxwsignxf     (eq3.11) 

 

where w is a vector that determines the orientation of the discriminant plane, sign 

represents the signum function which returns the ―sign‖ of a real number, and the scalar b 

determines the offset of the plane from the origin. There are an infinite number of 

possible separating planes that correctly classify the training data. A plane which 
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maximises the margin between the classes however would be the preferred discriminant, 

since minor perturbations of any data point would not introduce misclassification errors 

as shown in Figure 3.7. Generalisations on previously unseen data are also more likely to 

classify correctly with such a discriminant without the need for additional information.  

 

In order to construct the optimal hyper-plane which maximises the distance, we can 

examine the convex hull of each class‘ training data (indicated by the dotted lines 

surrounding each class of data), and then locate the closest points in the two convex hulls 

indicated by the arrow as shown in Figure 3.6. These two points from each class are 

incidentally named the support vectors. There are a number of mathematical methods that 

can be used to determine the optimal discriminant hyper-plane. One method is to find 

these support vectors by solving a quadratic problem as shown in (Bennet et al 2000). 

The other is to maximise the margin between two parallel supporting planes also 

discussed by (Bennet et al 2000). Effectively both methods result in the same solution 

and the choice can be made regarding which method is used which highlights the 

mathematical concept of duality.  

 

(Bennet et al 2000) state that from a statistical learning theory perspective, the quadratic 

program formulations required to solve these problems are well founded. Statistical 

learning theory is said to “prove that the bounds on the generalisation error on future 

points not in the training set can be obtained. These bounds are a function of the 

misclassification error on the training data and terms that measure the complexity or 

capacity of classification function.” 

 

Figure 3.7: Two possible linear discriminant planes 
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For the linear case briefly described above, maximising the margin between both classes 

reduces the function complexity. Therefore, by explicitly maximising this margin, the 

bounds on the generalisation error are also being minimised leading to better 

generalisation with high probability.  

 

For non-linear function capture, SVM‘s utilise Kernels. In the typical case where the data 

classes are not linearly separable and no linear discriminant function will work, methods 

are needed to convert the linear classification algorithm into a nonlinear algorithm. A 

classic method is to add additional attributes to the data that are nonlinear functions of the 

original data. In this way existing linear classification algorithms can be applied to the 

now expanded data set in feature space to produce nonlinear functions in the original 

input space. A quadratic classification example is provided in (Bennet et al 2000).  

Some of the more popular kernels are the degree d polynomial, radial basis function and 

the two layer sigmoid neural network. Research into new Kernels is ongoing with 

specific domain requirements in mind. Therefore, in order to change from linear to non-

linear classification, only the kernel method should be substituted instead of the original 

linear function described earlier with no algorithmic changes required from the linear 

case. SVM‘s have been applied successfully to a number of applications, ranging from 

text categorisation (Dumais et al 1998), Particle identification (Barabino N. et al 1999) 

and engine knock detection (Rychetsky M. et al 1999).  

 

An interesting application of SVM is that of (Assuncao et al 2006). The authors‘ make 

use of the least squares SVM approach to develop a model for the estimation of 

transformer top oil temperature. What is interesting about this application is the 

comparison of the results against an NN model developed for the same purpose. Both the 

SVM and NN models are used as tools for the purpose of building normal behaviour 

temperature regression models that can be used to predict future values of oil 

temperature. The NN model was formed as a two layer feed-forward structure using 

ambient temperature and transformer loading as inputs. The number of hidden nodes was 

varied between 2 and 20 during the training process in an attempt to find the optimal 

network architecture. The data was also normalised between the range of -1 and +1 
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minimising the range of values the network must accommodate in its output in order to 

yield better training results.  

 

The least squares SVM was trained on the same data using an optimisation algorithm to 

tune the hyper parameters σ (specifying the width of the kernel used) and φ 

(regularisation penalty parameter, determines trade off between the error minimisation 

and smoothness of the estimated function). In order to avoid over fitting, the authors state 

that a small data set was required, as larger sets resulted in poor generalisation 

performance.  The final results showed that the SVM estimation performance was 

marginally better than the neural network, with both models however performing better 

than the IEEE model standard proposed in Annex G (IEEE Transformers Guide 1996) 

cited by (Assuncao et al 2006).   

 

(Hao & Lewin et al 2008) make use of a SVM to improve the detection of partial 

discharge monitoring in high voltage oil filled power transformers.  The authors compare 

a passive hardware filter and the SVM technique. Their results from a laboratory 

experiment are stated to indicate that the SVM approach provides better performance 

than the passive hardware filter, reliably detecting discharge signals.  

 

(Widodo et al 2007) published a review article surveying the application of SVMs to the 

diagnosis of rolling element bearings, induction motors, diagnosis of machine tools and a 

number of other industrial CM based scenarios. The authors state that while SVM 

provides good performance for classification, their use is not as established as other 

classical approaches such as neural networks, expert systems and case based systems for 

condition monitoring and fault diagnosis.  

 

Summary of Support Vector Machine Characteristics 

The following can be concluded regarding the use of Support vector machines for data 

analysis tailored towards the application of fault detection and diagnosis. 
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 Like NN‘s they provide a general methodology for a range of problems, with the 

ability to perform similar tasks such as classification, regression and anomaly 

detection providing the necessary characteristics for powerful data mining.  

 (Bennet et al 2000) state that problems such as local minima which can occur in 

neural networks are eliminated due to their statistical learning mechanisms. The 

results which they produce are stable and reproducible independent of the specific 

algorithm used to optimise the SVM model.  In comparison the results of an NN 

are dependent on the particular algorithm and the initial values of weights of the 

network connections and so results may vary with each training process.  

 There is no need to be an SVM expert and understand the statistical theory behind 

their learning mechanism making the method relatively simple to use. 

 Model selection parameters such as the type of kernel to use (including its 

associated parameters) and penalty regularisation are still present in the training 

process however and can highly influence the success of the approach.  

 Similarly to neural networks incorporation of domain knowledge is achieved 

mainly through the preparation of the data sets used for training, and the 

interpretation of the results such as the support vectors found by the algorithm do 

not offer much information meaning they too exhibit a black box nature.   

While some of the reviewed applications have shown that SVM‘s provide optimistic 

classification results often outperforming neural networks, they have not been applied as 

extensively as neural networks have. More literature, tutorials and therefore examples 

exist of how to successfully apply neural networks to a variety of applications. The 

similar abilities which they share with neural networks would also allow for suitable fault 

detection models to be developed from the wind farm SCADA data parameters.  
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3.3 Utilising the Anomaly Detection Approach for SCADA Data 

Interpretation 

 

After assessing the techniques reviewed and considering the unlabelled SCADA data 

available, it quickly becomes evident that the anomaly detection approach is the method 

most suited for achieving fault detection. The reasoning behind this is the absence of 

domain related knowledge regarding the relation with how incipient component faults are 

represented in the SCADA data parameters. A lack of resources, as well as the time 

consuming and tedious nature of analysing arduous volumes of data is regarded as the 

primary reason why current wind farm owners do not analyse the data as was previously 

discussed in the introduction. The limited documented knowledge of wind turbine fault 

detection available in the literature however (discussed and reviewed in chapter 2) 

prohibits the development of expert or knowledge-based systems making them currently 

an unsuitable solution to the wind turbine application that would not offer much value to 

wind farm operators. The lack of extensive historical data with access to fault records 

also rules out the development of case based system solutions that would typically be 

trained on specific fault signatures that can be used to offer useful diagnostic information 

based on previous failure scenarios. Clustering based classification has also been shown 

to be highly dependent on the availability of labelled data which corresponds to specific 

fault scenarios. As labelled data is not available, they too cannot be utilised as viable 

solutions for processing the SCADA data. These limitations ultimately led towards the 

decision of utilising anomaly detection as a means to achieving fault detection through 

the observation of abnormal behaviour.  

 

The concept of anomaly detection corresponds to the discovery of events that typically do 

not conform to expected behaviour. Anomalies, by definition, are infrequent; however 

their importance is quite high when compared to other events, making their detection 

extremely important. The process consists mainly of an attempt to capture an accurate 

model of the normal behaviour of some process or machine in operation with the aim of 

being able to differentiate between normal and otherwise abnormal behaviour.  With 

regards to wind turbine SCADA data, a model of the ‗normal‘ behaviour would be 
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captured in the form of sensor data, recorded from the various sensors mounted on the 

monitored components of the turbine. The objective of this model is to capture how the 

data evolves and changes with respect to factors that may influence it under normal 

circumstances. This would therefore allow for the detection of anomalous behaviour, 

even if this type of behaviour has not been seen previously. The model is used to provide 

an estimate of the sensor output based on the inputs that can affect the values recorded by 

the sensor. This estimation can then be compared to the real value recorded by the sensor, 

where a significant deviation from the estimated value would be viewed as an 

abnormality. In this way incipient faults can be highlighted and presented to the operator, 

dramatically reducing the complexity of their task since only significant information of 

relevance to the health of the turbine is presented to them.  

 

While it can be argued that anomaly detection cannot be used to accurately classify faults 

given that no knowledge of the different types of faults is included in the models. Its use 

in this research (where knowledge of faults in SCADA data is unavailable) however, is to 

provide the initial stage of the fault identification process. Early detection of failures and 

problems would allow operators to schedule maintenance schemes appropriately, 

optimising the efficiency of their resources and hence the potential of their wind farms. 

Once the anomalies are detected, the opportunity of ‗labelling‘ them according to specific 

fault classes can be achieved through the help of an experienced operator as the industry 

and knowledge of wind turbine CM progresses. The operator‘s knowledge could be 

captured as rules and then used to classify various instances of failure. This however is 

out with the scope of this piece of research and can be regarded as a viable solution to be 

implemented in the future once this kind of knowledge and information becomes 

available.  

 

The success of the anomaly detection approach is determined by the accuracy of the 

developed models. An inaccurate model might produce erroneous estimates causing the 

system to flag up false alarms. It is therefore imperative that the accuracy of the model 

captured does in fact represent ‗normal operation‘ of the modelled item of plant as 

closely as possible to ensure the development of robust fault identification mechanisms. 
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This factor can often pose difficulties with the anomaly detection approach to fault 

detection, as a large data set with fault free regions is obligatory for its success. The most 

effective process to testing how accurately the models represent ‗normal behaviour‘ is 

through testing how the output of the model compares with different instances of 

previously unseen operational behaviour which can be classed as normal. The next 

section goes on to look at the associated challenges of anomaly detection and the 

difficulties which are faced when employing this approach. 

 

 

3.3.1 Anomaly Detection Challenges and Issues 

 

The key challenges associated with anomaly detection have been summarised by the 

comprehensive review article on anomaly detection carried out by (Chandola et al 2009). 

Figure 3.8 summarises the scope of their review while the following set of points 

summarise the challenges: 

 

 Defining a representative normal region in the data is challenging 

 The boundary between normal and outlying behaviour is often not precise 

 Availability of labelled data for training and validation  

 The exact notion of an outlier is different for different applications 

 Data might contain noise 

 Normal behaviour keeps evolving and a current notion of normal behaviour might 

not represent normal behaviour in the future possibly requiring retraining 

 Appropriate selection of relevant features 
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Figure 3.8: Range of techniques surveyed by (Chandola et al 2009) 

 

These issues are generic in nature to achieving anomaly detection regardless of the 

application. The authors (Chandola et al 2009) state that due to these challenges ―the 

anomaly detection problem, in its most general form, is not easy to solve‖. It is important 

to understand that each instance of data in any data set can be described by a set of 

attributes. The nature of these attributes determines the applicability of anomaly detection 

techniques since most of the techniques ―solve a specific formulation‖ of the anomaly 

detection problem. By assessing the data available, its nature and the required output 

from the anomaly detection mechanisms, a formulation can be induced and an improved 

sense for the most suited technique(s) can be achieved. These factors are often 

determined by the application domain in which the anomalies are to be detected. Figure 

3.9 shown below portrays how the application domain imposes its requirements on the 

chosen anomaly detection technique.   
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Figure 3.9 Key components associated with an anomaly detection technique (Chandola et al 2009) 

 

It is necessary that the techniques used have the ability to capture the dynamic nature of 

the operational behaviour of a turbine. It is also important that the normal behaviour 

modelling solutions are capable of utilising multiple parameters in order to provide an 

accurate estimate of the evolution of the SCADA parameters, whilst also taking into 

consideration the current operating conditions.  

 

3.3.2 Defining SCADA Anomalies 

 

Attaining an understanding of the application domain is important in order that a context 

for the anomaly is defined based on domain knowledge. In this way we can be sure that 

the anomalies detected offer some useful information regarding the monitored item of 

plant or machinery making it easier to interpret the output of the anomaly detection 

mechanism developed. This section describes the different types of anomaly classes that 

can be identified in data sets and then goes on to identify which particular class SCADA 

data anomalies would fall under. 
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Anomaly Classes 

 

Anomalies can be classed as one of three main types, namely point, contextual and 

collective anomalies. A point anomaly describes a single instance of data which is 

―anomalous‖ with respect to the remainder of its data set. The majority of the anomaly 

detection research which can be found in the literature is focused on identifying this type 

of anomaly (Chandola et al 2009). Contextual anomalies on the other hand, are 

characterised by an instance of data which is anomalous in a specific context and would 

not be considered abnormal unless viewed within this context. The concept of a context is 

evoked by an inherent structure which can be found within the data set and must be 

specified as a part of the problem formulation. Each instance of data is defined using the 

following two sets of attributes.  

 

1. Contextual attributes: these are used to determine the context for a specific 

instance. For example in time series data, time is a contextual attribute which 

verifies the position of an instance with respect to the entire sequence of data. 

Some examples of the typical forms of contextual attributes which can be defined 

are listed by (Chandola et al 2009): 

o Spatial attributes: these define the location of a data instance and therefore 

a spatial neighbourhood. 

o Graph attributes: edges that connect data instances define the 

neighbourhood for each instance. 

o Sequential attributes: the attributes of an instance of data are its position in 

a sequence.  

o Profile attributes: when data does not have an explicit spatial or sequential 

structure but nevertheless can be grouped into components using a set of 

contextual attributes. For example grouping users in activity monitoring 

systems (e.g. cell-phone fraud detection).  

 

2. Behavioural attributes: define the non-contextual aspects of an instance of data. 

For example in a data set where the instances exhibit a spatial relationship such as 
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the average rainfall of the entire world, the calculated average rainfall at any 

location can be considered a behavioural attribute. 

 

Finally collective anomalies, as the name suggests relate to the notion of an anomaly 

arising from a collection of related data instances being anomalous with respect to the 

data set. Each individual data instance might not necessarily be anomalous in its own 

sense, but rather the occurrence of these related instances together is regarded anomalous. 

An important point to be noted here is that while a point anomaly is not confined to any 

particular type of data set and can occur in any data set, collective anomalies are only 

possible in a data set whose instances are related in some manner. Contextual anomalies, 

on the other hand, are distinguished through their occurrence entailing the availability of 

context attributes in the data.  

 

When considering the required output from an anomaly detection mechanism with 

regards to the SCADA data parameters, anomalies occur mostly because of an unusual 

observation for a given set of operational conditions. With the parameter relationships 

identified at the beginning of the chapter it can be seen that SCADA data anomalies 

would best fall within the class of collective anomalies, since a collection of related data 

instances are anomalous with respect to the entire data set (i.e. across multiple 

parameters). The following section provides a summary of the characteristics which 

define the nature of the acquired wind turbine SCADA data.  

 

3.2.6 Summary of SCADA Data Modelling Requirements  

 

From this preliminary analysis of the SCADA data, a number of points emerge that can 

be used to summarise its key characteristics.  

 

 The data is multivariate and continuous in its nature (time series). 

 The data is unlabeled which requires techniques which can operate in an 

unsupervised or semi-supervised manner. 
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 Anomalies are best viewed as being collective anomalies. As described in the 

previous section an anomalous reading in one parameter can be considered 

abnormal with respect to other related readings from different parameters. A 

preference towards the collective anomaly approach is prompted mainly due to 

the following favourable advantage regarding the nature of the wind turbine 

application: 

 A clearer understanding of how the turbine is operating can be 

achieved through a technique which can utilise multiple related 

parameters to support its evidence of an abnormal temperature 

instance. Therefore a more accurate model of normality can be 

captured as the turbine‘s current operating conditions are taken into 

consideration. This limits the chances of flagging false anomalies, 

leading to the development of a more accurate fault detection 

mechanism. 

Taking these modelling requirements into consideration, the next section details the 

reasoning behind the technique selected for testing from the set of reviewed methods. 

 

3.3 Technique Selection 

 

Considering the techniques reviewed and the SCADA data available, there are two 

techniques which offer practical characteristics that would allow for the development of 

anomaly detection mechanisms given the requirements described in the previous section. 

These are the back propagation neural network and support vector machines.  

 

While both techniques provide the necessary characteristics required to capture normal 

behaviour models of the SCADA parameters, and exploring which one would provide the 

best results would prove interesting, a decision was taken to utilise NN‘s as the method to 

model the relationships between the SCADA parameters. They were chosen as the 

approach to be used to model the SCADA data parameters due to their extensive 

application to similar problems, coupled with the fact that resources and tools required 
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were more readily available to build NN models. Also their application to similar data by 

(Garcia et al 2006) also offered positive results with the detection of a gearbox failure 

two days in advance. From a wind turbine maintenance perspective however, the 

detection two days in advance would not be considered practical, as scheduling 

maintenance activity or arranging for the replacement of a gearbox in this time frame 

would not be considered plausible. Despite this, the positive aspect of this result is the 

fact that the non-linear function capture ability of the NN shows potential for successfully 

capturing the relations between the parameters modelled. Therefore through their 

application to another data set with plentiful examples of the desired behaviour from 

another turbine model, there is potential for improving the result through a more refined 

data preparation and training process.  

 

 

3.4 Chapter Summary 

 

This chapter served the purpose of reviewing a number of techniques commonly utilised 

in the area of industrial fault detection and diagnosis where little to sometimes no domain 

knowledge exists regarding the data collected through condition monitoring systems. For 

this particular application, the anomaly detection approach was shown to be the necessary 

approach with two of the reviewed techniques offering the characteristics to satisfy the 

requirements for developing fault detection mechanisms. The decision to initially test 

neural networks to develop normal behaviour models is summarised through the 

following points: 

1. They lend themselves well to this particular application where plentiful data exists 

of the desired behaviour which is to be captured and have been extensively 

applied to similar applications.  

2. The SCADA parameters exhibit undefined non-linear relations between one 

another. Therefore the non-linear function capture ability of NN‘s makes them 

suited to such a problem.  
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3. The resources and tools required to build the NN models were readily available in 

comparison with the other techniques. 

4. The work of (Garcia et al 2006) explored NN models tested on gearbox oil and 

bearing data but from a different turbine model with positive results without 

detailing the steps behind the training and testing process. Investigating whether 

or not the method lends itself well to other wind turbine models and the generator 

winding parameter along with the possibility of improving model accuracy would 

prove interesting.  

5. The outcome of their models (Garcia et al 2006) which detected a gearbox failure 

2 days in advance could serve as a benchmark of performance which could be 

used to determine the effectiveness of the data pre-processing and training 

procedures undertaken to see if the sensitivity to faults propagating in the 

components could be improved.  

 

Chapter 5 goes on to detail the training and testing of the normal behaviour models 

developed along with case studies of their application to unseen SCADA data. Before this 

however, chapter 4 describes the technology suited to achieving a flexible and extensible 

automated framework for carrying out the data analysis process.  
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4. Multi-Agent Systems for Online Condition Monitoring 
 

 

This chapter of the thesis aims to describe Multi-Agent technology and assess its 

suitability for the development of an online automated data analysis CM system.  It will 

begin by providing the relevant definitions for the field and propose the reasoning behind 

why the technology is seen as being of value for developing such systems. It will take a 

look into technologies that are closest in functionality to MAS and discuss how they 

compare against one another. It will then proceed to describe the workings of the various 

components that constitute MAS and how they can be tailored to support processes that 

are specific to the developer‘s problem domain. It aims to highlight how the framework 

can give a developer the flexibility to build autonomous systems which can split their 

problem into sub-components (agents) which can negotiate with one another to achieve 

the overall desired objectives.  Examples of a number of systems showing how the 

framework has been used to build similar CM data analysis systems found in the 

literature will also be discussed. 

 

4.1 Overview 

 

In order to put MAS‘s into perspective, a convenient and logical place to start is by 

addressing the question of ―what is an agent?‖ (McArthur & Davidson et al 2007). 

Having posed this question, it seems inherently difficult to answer, since there is no 

single straight forward definition that can be found. The most referenced definition in the 

literature is that proposed by (Wooldridge 1999). He provides some high level definitions 

through two concepts, namely an agent and an intelligent agent.  In its simplest sense, an 

agent is described as being a software or hardware entity that is capable of autonomously 

reacting to changes in its environment. Its means to doing so is by monitoring its 

environment, through sensors or other data and information sources. This definition 

offers a blurred description however as a wide range of existing systems such as 

protection relays, or even a thermostat, can fall under this description.  
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The concept of an intelligent agent builds further on the agent definition by taking into 

consideration how it reasons about its reaction to the environment. An intelligent agent 

must be capable of displaying flexible autonomy which is characterised by the mixture of 

a number of features namely: reactivity, pro-activeness and social ability. Reactivity can 

be best described as the agent‘s ability to react to changes in its environment, in a timely 

and appropriate manner, where some action based on the changes and the function it is 

designed to achieve, is carried out. Pro-activeness is the agent‘s ability to take 

responsibility for how to achieve its own goals, without explicitly being hard coded to do 

so. Social ability determines the agent‘s ability to interact with other agents, in terms of 

the various forms and complexity of interaction that it supports. The degree, to which an 

agent exhibits these characteristics, is determined by the level to which the developer 

builds them into the software. These three properties can be present in varying quantities, 

which directly affects the extent an agent demonstrates the characteristic of flexible 

autonomy.  

 

A Multi-Agent system consists of more than one agent and intelligent agent combined 

within a co-operative system. The result is a system which is capable of dynamic re-

organisation of its overall function, modifying its actions over time as it needs, in order to 

ensure that the overall desired objective is met. These dynamic and flexible properties are 

realised through the inherent capabilities that intelligent agents offer.   

 

These specific characteristics allow agent technology to offer new methods of developing 

solutions to issues and problems in power applications through their offered suite of 

techniques and abilities. (McArthur & Davidson et al 2007) cite a number of different 

research areas where the technology has been applied including diagnostics (Davidson et 

al 2004), condition monitoring (McArthur & Strachan et al 2004), power system 

restoration (Nagata & Sasaki 2002), market simulation (Widergren et al 2004) and 

(Koesrindartoto et al 2005), and finally automation (Buse et al 2003). 

 

While the white paper by (McArthur & Davidson et al 2007) cites a diverse range of 

applications, the system proposed in this thesis is concerned with the development of an 
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automated CM system. This chapter will therefore focus mainly on how MAS 

characteristics can be used to benefit the development of such CM systems. In light of 

this, an important aspect which should be considered is to determine the challenges that 

are posed by CM systems. This in turn will allow us to understand the requirements of 

such an application as well as assess the suitability of Multi-Agent System technology as 

a platform for wind turbine CM.   

 

4.2 Requirements of Data Analysis for CM Systems 

 

Condition monitoring of equipment and plant items offers a number of challenges 

(McArthur & Davidson et al 2007). These challenges can be generalised since they are 

issues which are associated with the management and interpretation of data regardless of 

the specific plant type being monitored. The authors (McArthur & Davidson et al 2007) 

state that the challenges can be summarised as follows: 

 

 Gathering data from a variety of sensors; 

 Interpreting the data to extract meaningful information. This often requires the use 

of multiple algorithmic and intelligent system based approaches; 

 Combining the evidence and information from different interpretation algorithms 

to generate an overall diagnostic conclusion; 

 Delivering diagnostic information in the correct format, to relevant engineers; and 

 Automatically altering power system and plant settings based on the conditions of 

the plant.  

It can be seen from the list of points that these issues also concur with the data analysis 

aspects of wind turbine monitoring, just as they do for any plant type since they are 

general issues of data management and interpretation, and not specific to any one CM 

plant application.  
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Before exploring the potential benefits of MAS technology for CM applications, it is 

important at this point that methods which are comparable to Agent technology are 

explored in order to identify if there are other approaches that also lend themselves well 

to CM applications. While there are no direct alternatives that offer what the MAS 

framework offers, they have been compared to web services and grid computing. The 

similarities and differences are discussed in the following section. 

 

4.3 Grid computing and Web services, Alternatives to Multi-

Agent Systems? 

 

The two other paradigms that are compared to Agent technology are Web services and 

grid computing. Grid computing is the application of several computers to a single 

problem at the same time. Grid computing depends on software, to divide and apportion 

pieces of a program among several computers. The primary advantage of grid computing 

is that each node can be purchased as commodity hardware, which when combined can 

produce similar computing resources to a multiprocessor super computer, but at a much 

lower cost. While a grid may be constructed with a specialised application in mind, they 

are often developed with the aid of general purpose grid software libraries and 

middleware, making them capable of accommodating the execution of a different range 

of problems.  

 

Web services on the other hand are defined by the World Wide Web Consortium (W3C) 

as ―a software system designed to support interoperable machine-to-machine interaction 

over a network‖. They are often just web Application Programming Interfaces (API‘s), 

that contain sets of functions, procedures and methods that can be accessed over the 

internet (or a network) and executed on a remote system hosting the requested services.  

 

The commonality between the three technologies is described by (McArthur & Davidson 

et al 2007) as each of the technologies offering a perspective on the problems associated 

with distributed computing. They harness distributed hardware and software resources to 

complete a specific task, while supporting some form of messaging between their 
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component parts. The differences between them on the other hand are prominent due to a 

number of factors. The first noted difference is in the scope of the application that each 

technology is focused on solving. Grid computing primarily tends to focus on harnessing 

the computational power available in the hardware resources of the grid, to solve 

computationally complex problems. Web services are designed to offer interoperability 

between software systems by providing the necessary mechanisms required for both the 

discovery of those systems and their communication across a network.  

 

Initially, web services and MAS can seem similar. Often similar styles of interaction 

diagrams are used to describe both web services and agent interactions. The notion of 

modules providing a ―service‖ acting as intermediaries for other modules to utilise and 

accomplish their objectives is common to both the technologies.  However a distinct 

dissimilarity is noticed in the standards and support of a richer set of interactions, which 

allow negotiation to occur between modules that can be found in MAS. So while web 

services and MAS both share the functional ability to support interoperability between 

software systems, the interoperability is considered to be more restricted than that of 

MAS. These interactions will be discussed in greater detail in a later section in the 

chapter.  

 

The principal difference that (McArthur & Davidson et al 2007) state exists between 

MAS, grid computing and web services, is the aforementioned notion of autonomy. The 

authors cite the reference for current standards (Huhns 2002) which they state has no 

provision for autonomy in web services. Similarly there is no requirement for the nodes 

in computational grids to exhibit autonomy. It is the cooperative and proactive nature of 

agents that set them apart from grid computing and web services. MAS technology has 

even been debated as a mechanism suited to deliver improved web and grid computing 

services (Huhns 2002). 

 

Now that we have established that there is no direct alternative to the MAS framework, 

the remainder of the chapter takes a more in depth look at MAS technology in order to 

establish its suitability for the requirements described in the previous section.  
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4.4 The FIPA Platform, Multi-Agent System Standards  

 

FIPA, the Foundation for Intelligent Physical Agents was established in 1996 as an 

international non-profit association to develop a collection of standards relating to 

software agent technology (Bellifemine F. 2007a). At that time software agents were 

already very well known in the academic community but even to this date they have only 

received limited attention from commercial enterprises beyond an exploratory 

perspective. The purpose of the FIPA consortium was to produce standards that would 

form the foundations of a new industry, by being usable across a vast number of 

applications.  

 

At the core of FIPA the following set of principles are stated to exist by (Bellifemine 

2007a): 

1. Agent technologies provide a new paradigm to solve old and new problems; 

2. Some agent technologies have reached a considerable degree of maturity ; 

3. To be of use some agent technologies require standardisation ; 

4. Standardisation of generic technologies has been shown to be possible and to 

provide effective results by other standardisation forums ; 

5. The standardisation of the internal mechanics of agents themselves is not the 

primary concern, but rather the infrastructure and language required for open 

interoperation.   

The evolution of FIPA led to the proposition of many agent-related ideas, which lead to 

the definition of standards revolving around the concepts of agent management and agent 

communication. The FIPA Agent Management Reference Model (shown in Figure 4.1) 

defines the framework in which FIPA compliant agents exist and operate. It provides the 

necessary reference model required for the creation, registration, location, 

communication, migration and retirement of agents (FIPA 2004).  
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Figure 4.1: The FIPA Agent Management Reference Model (AMRM) (FIPA 2004). 

 

The Agent Management Reference Model (AMRM) consists of a number of logical 

components namely two utility agents: the Agent Management System (AMS), and the 

Directory Facilitator (DF) as well as a message transport system. The AMS is a 

mandatory component of the agent platform. It provides supervisory control over access 

and use of the agent platform. Only one AMS can exist within a single platform. It also 

allocates agent identifiers (AIDs) to each agent that registers with it and provides a 

―white pages‖ like service, where an agent can ask for the address for another, whilst also 

monitoring the life cycle of each agent within the platform.  The DF is an optional 

component within the agent platform. It provides a ―yellow pages‖ service which allows 

each agent to register with it the services (tasks / information) it provides, along with the 

information or services it is interested in. In this way agents within the platform can 

query the DF, to find out what services are offered by other agents. The message 

transport service is the software component that supports the exchange of all messages 

within a platform, including messages to and from remote platforms as shown in figure 

4.1. Agent communication will be discussed in further detail in a later section of the 

chapter.  
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4.4.1 The Java Agent DEvelopment framework (JADE) 

 

JADE is an open source FIPA compliant agent platform which implements this agent 

abstraction over the object oriented Java programming language. It treats agents as 

collections of behaviours, where a behaviour, can be regarded as one element of 

functionality within a task (Bellifimine et al 2007b). Every JADE agent is composed of a 

single execution thread, and the behaviours run in a sequential manner, where one 

executes completely before another can run. This means more than two agents can 

execute their behaviours at the same time, but each agent can only have one behaviour 

running at any time. The behaviours are scheduled on a simple queuing mechanism, and 

it remains up to the agent designer to implement the behaviours in such a way that the 

correct one is run at the correct time. This round robin non pre-emptive scheduling policy 

is carried out on all behaviours that are in their ready state. This scheduling is hidden 

from the programmer, keeping agent management simple and efficient. Behaviours can 

therefore begin execution based on a check whether certain conditions have been met. If 

the condition has not been met, then the behaviour goes into a queue of blocked 

behaviours, allowing another behaviour in the ready queue to begin execution.  

 

As a simple example, if we consider the scenario of an elevator in a building with two 

floors. The elevator itself as well as the user can be modelled as separate agents. For 

simplicity the elevator can have two behaviours, one that opens and closes its door, and 

the other moves the lift between floors. The user agent has only a single behaviour which 

is simply to make a call to the elevator to request its use.  If the lift is on the top floor, and 

a user agent requests it on the ground floor, the elevator agent would execute its close 

door behaviour and once this is complete, execute its move behaviour in response to the 

user‘s request. During the process of the open/close door behaviour, the move behaviour 

would be in the ready queue waiting for the open/close door behaviour to complete since 

all behaviours run to completion without pre-emption. Once the move behaviour is in 

execution, the open and close behaviour cannot run, i.e. it will be in its blocked state. 

Only once the elevator is stationary, and at either floor one or two, is the open and close 

door behaviour available for execution in the ready queue once more.  These pre-
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conditions essentially represent the conditions which must be satisfied, before a 

behaviour can execute.  

 

Another important aspect to note which simplifies the development task, is how the 

JADE platform hides certain low-level detail from the developer (Catterson 2006). Two 

examples of this can be seen in the code snippets shown in figures 4.2 and 4.3. The first 

(figure 4.2) is the process of the agent registering with the DF. It can be seen that this is 

handled by simply creating a ServiceDescription object and calling the 

register() method. The second (figure 4.3), is the sending and receiving of messages 

is handled simply by calling send() and receive() methods. In this way the JADE platform 

ensures that it conforms to the FIPA reference model specification, whilst making the job 

of the engineer as convenient and simple as possible. This is indeed an important aspect 

of any engineering system, since conforming to standards plays an important role in 

aiding others‘ understanding of the system, allowing interoperability between 

independently developed systems. On the other hand, the specific detail of how an agent 

performs behind the scenes processing of tasks, (such as sending and receiving 

messages), is of no real interest to the developer, who is concerned only with the final 

result. This allows engineers to focus on the challenges of their application, designing the 

higher level actions and abilities of the agent, while keeping the need for knowledge of 

unnecessary detail to a minimum. 

 

While this abstraction of agent messaging is present within the JADE platform, it does 

not remove the fundamental design aspects of agent communication from an agent 

designer. The following section will go on to describe the level of details of agent 

communication an agent developer is required to consider, when designing their system.  

 

4.5 Agent Communication 

 

Agent communication can be perceived as being split over three levels: the message 

transport protocol, the agent communication language (ACL), and the content language 

and ontology. 
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Figure 4.2: An example of a JADE Agent created by extending the Agent Class (Catterson 2006) 
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Figure 4.3: An example of a JADE Agent’s behaviour. This particular behaviour extends the cyclic 

behaviour class which allows for repeated triggering (Catterson 2006). 

 

The message transport protocol is a service provided by an agent platform, to transport 

FIPA-ACL messages between agents on any given agent platform and between agents on 

different agent platforms. Messages provide a transport envelope that comprises the set of 

parameters, detailing, for example the sender and receiver of the message. The general 

structure of a FIPA compliant message is depicted in figure 4.4 below (Bellifimine et al 

2007a). 
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Figure 4.4: FIPA message structure (Bellifimine et al 2007a) 

 

FIPA specify a number of message transport protocols, including the likes of HTTP and 

IIOP (FIPA 2002a and FIPA 2002b). FIPA specifies how these protocols can be used to 

transfer agent messages. This low level detail of messaging is taken care of by the agent 

platform, and it is not imperative that the developer is aware of the specific protocol 

being used and the precise details of its internal workings.   

 

4.5.1 FIPA Agent Communication Language (ACL) 

 

A FIPA-ACL message contains a set of one or more message parameters. These 

parameters are shown in table 4.1. FIPA defines communication in terms of a function or 

action called the communicative act or the performative. The only mandatory parameter 

in all ACL messages is the performative. This indicates the type of communication that is 

being attempted with the message.  While the remainder of the other parameters in an 

ACL message are optional, it is expected that most will contain information regarding the 

sender, receiver and content parameters.  
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Parameter Description Category 

Performative Type of the communicative act of the message Required 

sender Identity of the sender 

Participant receiver Identity of the intended recipients 

reply-to 
Which agent to direct subsequent messages to within a 

conversation thread 

content  Content of the message Content 

language Language in which the content parameter is expressed 

Content 

descriptor 
Encoding Specific encoding of the message content 

Ontology  
Reference to an ontology to give meaning to symbols in the 

message content 

Protocol Interaction protocol used to structure a conversation 

Conversation 

control 

Conversation-id Unique identity of a conversation thread 

Reply-with 
An expression to be used by a responding agent to identify the 

message 

In-reply-to Reference to an earlier action to which the message is a reply 

Reply-by A time/date indicating by when a reply should be received  

 

Table 4.1: ACL message parameters 

 

This level of communication protocol is the second level in this three layer model 

presented, but incidentally, the first with which the developer is concerned with. The use 

of performatives allows the designer to decide the types of messages that can be sent 

between the agents, and determine how they interact (FIPA 2002e). Examples of some of 

the most common performatives and the communicative act they represent are shown in 

table 4.2. An idea of the type of conversations that can arise between agents can be 

garnered by glancing at the various communicative acts. As an example, the FIPA request 

interaction protocol as defined in FIPA 2002c allows one agent to request another to 

perform some action (see figure 4.5). The participant processes the request, and makes a 

decision whether to accept or refuse the request.  
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Figure 4.5: The FIPA Request Interaction Protocol (FIPA 2002c) 

 

FIPA specify a number of interaction protocols that deal with pre-agreed message 

exchange protocols for ACL messages (FIPA IP Spec). The use of these interaction 

protocols is indicated by setting the Protocol ACL message parameter.  

 

Multiple conversations between agents can take place at any one time. These are handled 

by the conversation control parameters specified in table 4.1. For example if an agent sets 

the reply-with parameter, the immediate reply message in the conversation copies this 

value into the in-reply-to parameter, while the conversation-id remains consistent 

throughout the conversation.  When designing agents, it is up to the developer to decide 
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which ACL parameters are required for their messages, and what they should contain in 

order for them to conform to the FIPA interaction protocols. While this level of 

communication will allow agents to interact carrying out conversations on a basic level, it 

is the specification of the ontology that dictates the topic and concepts which the 

conversations revolve around. This is discussed in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Commonly used ACL communicative acts and the type of communication they indicate (FIPA 

2002e) 

4.5.2 Adapting MAS to a Problem Domain through Ontologies 

 

An important aspect of building systems with the MAS framework is the flexibility they 

offer in allowing a developer to adapt them to deal with problems specific to their 

domain. This is essentially achieved through the third layer of the communication 

protocol model, (the second level that an agent designer is concerned with). This level 

involves the design of the concepts and terms that the agents utilise, known as the 

ontology. By defining the language and concepts that an agent system is associated with, 

FIPA Communicative Act Description 

Agree 
Agreeing to perform some action, e.g., in response 

to a Request 

Refuse Refusing to perform an action, with an explanation 

Call for Proposal Calling for proposals to perform some action 

Failure 
Informing an agent that an action was attempted, 

but failed 

Inform Informing an agent that a given proposition is true 

Not Understood 
An agent does not understand what another did, 

e.g., a message was sent but not understood 

Propose Submitting a proposal to perform an action 

Query Ref   
Asking another agent for the object referred to by a 

referential expression 

Request Requesting that an agent perform some action 

Subscribe 
Requesting persistent notification when a reference 

object changes 
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the MAS framework can be tailored to solving problems that are specific to the 

developer‘s requirements, since the agents can begin to understand the significance of 

each piece of information and its context within the problem domain they are dealing 

with.  

 

Ontologies were primarily developed ―to bridge the gap between what exists and the 

languages, both natural and artificial, for talking and reasoning about what exists‖ 

(Sowa 1999). Essentially they were used to show how concepts were related to one 

another by categorising like entities and listing the common properties of each category.  

 

Naturally when developing MAS‘s, a more practical approach is to design an ontology 

that encompasses only the general concepts which are immediately related to the 

developer‘s problem domain. There is no need for an agent ontology to feature a 

complete classification of concepts. The lack of a general ontology that can be used for 

agent messaging means that there is no FIPA standard for governing ontologies. The 

vocabulary used by any agent is not generic enough to define a general specification for 

all agent ontologies, therefore, developing a specialised ontology at the system 

specification stage of development, is a more convenient approach for an agent designer.  

The ontology development 101 tutorial (Noy & McGuiness), defines some fundamental 

ideologies for ontology design, which essentially revolve around the notion that there is 

no single correct way to model a domain. The best solutions tend to depend on the 

application that the developer has in mind, and the extensions and concepts that can be 

anticipated. The other general rule stated which should be observed, is that concepts in 

the ontology should be based closely to objects both physical and logical in the field 

being modelled. Therefore it is apparent that in order to design an ontology suited to a 

particular domain, thorough knowledge of the domain as well as the sort of messages and 

information that will be exchanged between the agents, is necessary.   
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4.5.2.1 FIPA Content Languages, Specifications for Defining an Ontology 

 

The ACL specifications discussed in the previous sections do not confine what should be 

in the content parameter of a message, but rather dictate the format of the content. The 

content descriptor parameters in a message namely: the content language, ontology and 

encoding, entirely define the format of a message‘s content. The encoding simply 

provides a standard for how characters in a message string are represented; whereas the 

content language and ontology provide the syntax and semantics of the content 

respectively.  FIPA supports a total of four content languages (FIPA 2003) namely: 

FIPA-SL (Semantic Language), KIF (Knowledge Interchange Format), RDF (Resource 

Description Framework) and CCL (Constraint Choice Language). Each of these 

languages is developed with different purposes in mind. KIF is largely tailored towards 

data transfer without the capability of representing actions that agents can perform. CCL 

is focused on representing constraint satisfaction problems, by providing the ability to 

describe variables, the domain of possible values for those variables, and the constraints 

placed on pairs of variables. RDF and SL were both developed with a more general 

purpose in mind. They provide general grammars for expressing data and actions, making 

them suitable for communication in a complex and dynamic multi-agent system. Only 

FIPA-SL however, has reached a stable standard (FIPA 2002d), while the other three 

content languages are still in an experimental phase. It is largely due to this and its more 

generic nature, that this thesis will adopt the use of FIPA-SL as the chosen content 

language.  

 

The chosen content language influences and shapes the structure of the ontology. The 

FIPA-SL content language allows the developer to define an ontology through the use of 

a list of concepts, predicates and actions. The concepts model domain concepts, for 

example in the case of a wind farm typical concepts might be a wind turbine, a gearbox, a 

generator, or even intangible concepts such as a type of data measurement, a fault, or 

type of alarm.  Predicates specify concept relationships, and can always be evaluated to 

true or false. An action is a special type of concept, specifically developed for 
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communicative acts such as Request and Call for Proposal, where agents discuss an event 

happening for example.   

 

It can be seen that the MAS development environment is fairly extensive, offering new 

and interesting solutions to solving both new and existing problems. The JADE API 

provides a level of control to the developer which allows them to build complex systems, 

without the inconveniences of having to provide solutions to the lower level aspects of 

MAS design and development. The next section provides a review of some applications 

where MAS have been applied to in the recent years in the area of CM and automation.  

 

4.6 A Review of Multi-Agent Systems CM solutions 

 

This section provides a review of how agents and their properties are being used in the 

research literature. While they have been utilised for a wide range of applications as is 

described in the white paper by (McArthur & Davidson et al 2007). This section will 

focus on how their characteristics can benefit the development of automated data analysis 

for CM systems.  

 

Agent based solutions in the area of monitoring and diagnostics is mostly concerned with 

assisting engineers with data management and interpretation of plant data, through 

simplified data gathering, reducing overall data flow, and automatically extracting useful 

information from the raw data collected from the CM systems. An example of this is the 

Protection Engineering Diagnostic Agents system (Hossack et al 2003). It uses agent 

technology to integrate a legacy SCADA interpretation system and new data retrieval 

systems to automatically collate and analyse power system data, relating to protection 

operation. This reduces the extent of manual effort required to determine the cause of 

certain incidents, by prioritising digital fault recorder data based on analysis of live 

SCADA data, and presenting the underlying links between various system events. Rather 

than simply managing this flow of data by filtering, PEDA uses multiple data sources to 

extract a higher level of meaning, presenting interpreted information to the user, instead 

of just raw data.  
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The system comprises of an Incident and Event Identification (IEI) agent, a Fault Record 

Retrieval (FRR) agent, a Fault Record Interpretation agent (FRI), the Protection 

Validation and Diagnosis (PVD) agent, the Collation (CA) Agent and finally the 

Engineering Assistant (EAA) Agent. Each of these agents has its own specific skill set 

and forms part of the overall diagnosis and interpretation process. By splitting the system 

into a number of different independent agents, the developer can utilise the benefits of the 

agent framework allowing multiple data sources to be independently analysed through 

one system and their results easily combined. This feature provides the potential for 

identifying matching trends in multiple parameters to strengthen evidence for fault 

detection or diagnosis using a number of different processing techniques. This is 

particularly useful for most CM applications since items of plant or machinery are 

typically monitored using a number of different sensing technologies leading to multiple 

data streams. For example in the PEDA system the IEI agent wraps an expert system 

which uses the rules within its rule base, to identify and classify power system incidents 

such as disturbances and switching operations through SCADA data. The FRR agent 

connects and retrieves the utility‘s fault record database, while the FRI agent also makes 

use of a rule-based expert system for classifying and interpreting digital fault recorder 

data. The EAA agent provides the information from the remainder of the agents, via a 

customisable user interface to the engineers.  

 

It can be seen that the agents within the system all work collectively, carrying out their 

own part of the diagnostic process to provide useful, interpreted information, from the 

raw data to the end user. An interesting point to note is that PEDA was designed to 

conform to FIPA standards for agent messaging, using both FIPA-ACL and FIPA-SL for 

the communication language and content language respectively. By adhering to the 

standards, this served as the main driver for successfully interfacing the legacy systems 

within its framework. 

 

Another example of an agent system designed for data interpretation is the Condition 

Monitoring Multi-Agent System (COMMAS), developed for use in transformer 

monitoring (McArthur & Strachan et al 2004). The paper describes how a multi-agent 
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system was designed to employ the data generated by Ultra High Frequency (UHF) 

monitoring of partial discharge activity. The authors include an interesting discussion on 

the functional requirements of a UHF monitoring system.  A number of requirements are 

derived from the issues which are associated with UHF monitoring and are stated in the 

following manner: 

 

 Automatic capture and conditioning/formatting of relevant data; 

 Automatic interpretation of the conditioned/formatted data to identify incipient 

and serious defects; 

 Discrimination between a sensor failure and an actual plant failure. (Achieved 

through corroborating the interpretation results and sensor data with other relevant 

data sources. 

 Provision of clear and concise defect information and remedial advice to the 

operational engineers; 

 Finally extensibility and flexibility to include further interpretation techniques and 

monitoring technologies. 

It can be seen that the requirements discussed in section 4.2 have been slightly tailored to 

accommodate the specifics of the UHF transformer data interpretation application. The 

guidelines described by McArthur et al can in fact be applied to the general data 

interpretation CM application, as will also be shown in the application presented in this 

thesis. The slight dissimilarities arise in the specific data flow and processing required by 

each different application only. The authors of COMMAS detail the design process, 

describing how the agent system was split into separate tasks and subtasks, assigned to 

specific agents and their behaviours.  

 

Another point which should be noted is how the agent designers split the agent 

architecture over 4 layers, namely a data monitoring layer, an interpretation layer, a 

corroboration layer and finally the information layer. The raw data can therefore be seen 

to take a path flowing from the data monitoring layer, passing through each of the layers, 
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where each of the agents present in every layer process the data in some way, so that at 

the information layer, only useful information is presented to the user. The use of agents 

in this CM system benefit the solution in that a number of different interpretation 

processes can be easily adopted throughout the processing of the data, which is 

implemented by the agents in the interpretation layer. This layer allows the bringing 

together of a number of artificial intelligence based diagnostic techniques that interpret 

the data in their own specific way leading to a particular diagnosis. In this way a more 

accurate diagnosis is achieved especially if the differing techniques produce the same 

result. The corroboration layer then concludes the final result of the system so that only 

one diagnosis (the most likely, based on the evidence supplied by the data) is presented to 

the user.  

 

Another system developed by (McArthur & Booth et al 2005) is an agent based anomaly 

detection architecture designed for the purpose of condition monitoring. The paper 

describes how MAS technology can be used as the underpinning platform for a system 

which can learn the characteristic behaviour of an item of plant over time and alert 

engineers to unusual behaviour instances, even in the absence of knowledge of plant 

failure modes. The agent based approach allows for the addition of different data 

processing techniques to be applied in an online manner while the system is operating.  

 

The notion that new interpretation techniques can be introduced at any time and 

incorporated into the existing system, is seen as a strong advantage for CM / data 

interpretation systems. This particular characteristic also strengthens the motives behind 

employing the technology for the system presented in this thesis. 

 

From this review it can be seen that there are a number of features which the MAS 

framework employs that are favourable for the development of CM data analysis systems. 

These points are summarised by the two points below: 
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 Their ability to allow for the analysis and interpretation of multiple data sources 

using independent processing techniques combining all the results and evidence 

found in one system.   

 

 And the ability to introduce new interpretation techniques on the fly at runtime to 

the system as agents into the system automatically forming themselves as the part 

of the overall system without the need to modify any already existing agents 

within the system. 

 

If we consider the monitoring of wind turbines we can also see that these features would 

prove extremely useful for a CM system developed for wind farms. There are various 

sensors mounted on the internal components of wind turbines used to monitor them. For 

example the aforementioned sensor and measurement technologies in chapter 2 such as 

oil analysis sensors, temperature sensing, wind speeds and active power output etc. The 

use of MAS technology allows individual sensors and information sources to be 

combined in the condition monitoring/data interpretation and diagnosis process. 

Importantly it allows information to be used when it is available or relevant. For example 

the monitoring of a specific component might require a number of measurement readings 

from different parameters taken at different time points to determine the evolution of the 

component with respect to the factors influencing it.  This data must be collected as and 

when it is created and then formatted in a way in which the data processing agent that is 

passed this information can understand. Once this information is ready, it can be sent to a 

data processing agent, which then decides when a significant event needs to be relayed to 

the engineer or operator. The agent determines when such information should be 

communicated and to whom (other agents or the user). This approach allows the flexible 

integration of as much diagnostic data, information and knowledge as is available. It also 

permits new sensors and data analysis / interpretation algorithms to be introduced 

seamlessly into the overall system, since there is no higher level central systems 

integration control.  
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It can be seen that MAS technology is capable of manipulating distributed information 

and knowledge which lends itself particularly well for a wind farm based CM application.   

4.7 Chapter Summary 

 

While the multi-agent framework has not been adopted widely for CM applications in the 

literature, the features they provide allow for the development of advanced automated 

data processing paradigms, which are capable of processing multiple streams of data from 

independent data sources to provide robust data interpretation solutions.  The two key 

issues hindering the development and implementation of condition-based maintenance 

schemes with regards to wind farms and transformer monitoring (as has been showcased 

by the COMMAS system (McArthur & Strachan et al 2004) discussed in section 4.6), are 

issues concerning the overwhelming volume of data acquired by CM systems, and the 

second is an issue of robust and accurate data interpretation.  The author‘s choice of 

adopting the multi-agent framework as an advanced multi-data processing paradigm is an 

attempt at solving the volume of data issue. The key to such a problem would clearly 

benefit from automation in a manner which is both robust and can adapt to a changing 

environment without the need for user intervention. The use of agents allows developers 

to achieve this notion of autonomy within their systems by automating the data 

processing procedure. This removes the tedious and practically ―impossible‖ nature of 

analysing these vast streams of data collected manually.    

 

The ability to develop agents which are solely focused at interpreting a specific stream of 

data lends itself well to the multiple-sensor nature of current CM systems installed in 

wind turbines. 

 

The information presented in this chapter has illustrated the requirements of the data 

analysis aspect associated with CM applications. It therefore elucidates why the author 

perceives MAS as a suitable solution for an online fault detection system. The next 

chapter explains the normal behaviour models developed for the purpose of detecting 

abnormal behaviour in the SCADA parameters. The chapter details the subject of data 
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selection, data normalisation, training, validating and testing processes of the models 

developed and how each of these phases has a bearing on model performance.  
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5. Methods and Applications I: Training, Testing and 
Validating Normal Behaviour SCADA Models 
 

 

The previous chapters have described the rationale behind the MAS technology and NN 

approaches selected to develop an automated fault detection system capable of analysing 

wind farm SCADA data to provide early component fault identification. This chapter 

aims to describe the detailed process involved in training and testing the NN-based 

normal behaviour models for the selected SCADA parameters, namely the gearbox oil 

temperature, gearbox bearing temperature and the generator winding temperature for fault 

detection. A power estimation model will also be detailed for the purposes of 

corroboration with the fault detection models to be used within the MAS framework 

developed, described in chapter 6.  

 

The importance of the 3 parameters to be used for fault detection and their associated 

components has already been determined. Successfully identifying faults in their incipient 

stages within these components while providing sufficient time for a maintenance 

decision to be made would prove extremely helpful to wind farm operators. This requires 

a model which is capable of accurately capturing the normal operational behaviour of the 

SCADA parameters in order to have the ability to identify subtle deviations early on. The 

application of NN to similar wind turbine gearbox bearing and oil temperature data by 

(Garcia et al 2006), is to the best of the authors knowledge, the only application of NN to 

this problem found in the literature at the time of writing. As mentioned in chapter 3 

previously however, (Garcia et al 2006) do not describe the model training procedure in 

any way. It is therefore important to note that this thesis does not claim the use of NN as 

a novel means to normal behaviour modelling of gearbox SCADA parameters. Rather it 

illustrates novelty in how the gearbox oil and bearing models were developed, tested and 

evaluated noting the improvement in the results presented in the case studies of this 

chapter and published in (Zaher et al 2009). It also demonstrates novelty in its application 

to the generator winding temperature parameter to explore the success of this approach to 

capturing its normal behaviour.  
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There are a number of stages associated with training and testing NN models, these 

involve data preparation and selection, Training the models, validating the model inputs 

and finally testing on previously unseen data. This chapter provides the details for each of 

these stages clearly setting out the normal behaviour model development process along 

with the results produced. 

 

5.1 Data Preparation and Selection 

 

 

The first step involved in developing the normal behaviour models is the selection of data 

to be used to train the models. It is important that the data used is representative of the 

expected normal behaviour of the turbine under its complete operational range. The 

turbines modelled were the Bonus fixed-speed stall-regulated machines (Bonus Energy 

2009), which theoretically, at rated power should produce a maximum of 600kW.  

 

 
Figure 5.1: Hag Shaw Hill Wind Farm Turbine layout 
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The 26 turbines at the wind farm as shown in figure 5.1 are spread out over a large area 

of land, each experiencing their own specific conditions due to the differing locations of 

each turbine. These site specific external factors include: roughness of the site terrain, 

topography of the land, obstacles and wake effects caused by neighbouring turbines 

(Leany et al 1997).  The terrain surface roughness reflecting vegetation and buildings in 

the proximity for example can influence the wind incident on the turbine. The lower the 

roughness (i.e. smoother surfaces such as sand, water and snow), the less the wind speed 

is impeded and the greater the output of the turbine and vice versa.  In addition 

orographic effects such as hills and cliffs, exert a marked influence on the wind speed. 

The wind speed increases or decreases near the crest or foot of these features 

respectively, therefore the physical location of the turbine in relation to the hill, cliff or 

valley will also affect the wind profile a turbine experiences. Wake effects from 

neighbouring turbines can also distort the stream of wind passing through a turbine, 

increasing turbulence and decreasing the mean wind speed. 

 

Because of these imposing complex external conditions, it was decided that both turbine 

specific models as well as a generic model would be developed and tested. The specific 

model would be trained on turbine specific data used to capture the specific imposing 

environmental factors affecting each individual turbine, where such characteristics should 

be reflected through each turbine‘s data. The generic model would be trained to 

determine whether or not these specific characteristics would affect the performance of 

fault detection if a generic data set, not specific to any particular turbine, was used. The 

benefit of using a generic model would be to considerably reduce the overall volume of 

data requiring processing given that the system would have to incorporate only 3 fault 

detection models for all 26 turbines against 78 (3 x 26) models if the turbine specific 

approach is used. Such a large number of models would be considered taxing for a 

centralised online fault detection system to process this volume of data in real-time. 

When considering applying such a system to more newly developed wind farms of a 

larger size, the amount of processing could become prohibitive for the typical centralised 

architecture of the data processing systems currently installed in wind farms (see figure 
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6.9 chapter 6). The results of both a turbine specific model and the generic model will be 

compared against the same data set to evaluate their performance. By comparing the 

results of the two models, the degree to which the generic model affects fault detection 

performance can be evaluated and a decision towards its suitability for accurate fault 

detection can be determined.  

 

The Bonus 600kW turbine has a theoretical (manufacturer rated) cut in speed of 3-4m/s 

wind speed, achieves rated power at 16-17m/s and cuts out at approximately 25m/s 

(Bonus Energy 2009) shown in figure 5.2. By plotting the active power against the 

corresponding wind speed for all of the turbines the actual operational range could be 

compared with the theoretical manufacturer power curve to identify the actual bounds of 

operation. Figure 5.3 shows the power characteristic (power against wind speed) of T3. 
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Figure 5.2: Bonus 600kW Manufacturers Power Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: T3’s Power Characteristic for the month of January 06 (Data is sorted in ascending order for 

the month) 

 

T3 
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As depicted in figure 5.3, it can be seen that the manufacturer‘s theoretical power curve 

(figure 5.2) is a relatively good match to the actual performance of the turbine.  

 

When visually inspecting the data, a number of features were found which had to be 

considered before data from any particular turbine was used for training.  

 

 Feature 1: The first aspect apparent in the data is periods where the SCADA 

telemetry is switched off i.e. no data is recorded. Throughout these durations, all 

parameters recorded for the particular turbine are zero in value. Through 

consultation with the project‘s industrial partners (Yusuf Patel, 2007) it was said 

that this could be interpreted as one of two possible scenarios. The first 

interpretation could be the turbines going under scheduled maintenance where the 

turbines are switched off before such an operation. The second case could be due 

to the turbine experiencing isolation from the electrical grid where it becomes 

temporarily disconnected; this is referred to as ―islanding‖. This results in all 

power and communication to and from the machines being cut off, resulting in no 

data being recorded for the related duration.  

 

 

 Feature 2: The second aspect found in the data is periods where the active power 

output is zero, but the remainder of the parameters are not. Through consultation 

the author was informed that this could be attributed to the turbine experiencing a 

failure, where the telemetry continues to record data up to and after the point of 

failure. Another alternative could also be that the turbine has been taken offline 

for unscheduled maintenance due to some problem but the telemetry system has 

not been switched off for the associated duration.   

 

Processing the complete data set to identify any ―interesting‖ instances of failure as 

described in feature 2 above requires an accurate anomaly detection mechanism that can 

provide a means to discover faulty scenarios.  
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When constructing the data set for both the specific turbine and generic model it was 

considered important to attempt to avoid using data from months which exhibited 

instances which fell under feature 2. By avoiding using data which leads up to instances 

of failure (which would almost certainly represent faulty operation) to train the normal 

behaviour models, a more accurately developed model of ―normality‖ could be 

anticipated.  

 

At the same time however, a turbine which experienced some form of failure would 

prove essential for test purposes. Because of this it was important to identify if any of the 

turbines experienced such a failure, and then utilise data from earlier months before the 

incident occurred which appear to be normal when compared to other operational 

neighbouring turbines for training. Again by trending all parameters for all turbines, 

visual inspection allowed for the identification of a potential problem in turbine 16 in the 

month of January 06 which conformed to the characteristics of feature 2 shown in figure 

5.4 (a and b) below. 
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Figure 5.4a: Active power falls to zero once fault occurs 

 

Figure 5.4b: gearbox oil temperature of T16 compared to neighbouring turbines 

 

The trend in figure 5.4a above shows that the turbine is producing power where activity is 

shown in the first half of the figure. It abruptly drops to zero however for the remainder 

of the month. From figure 5.4b below, it can be seen that the gearbox oil temperature for 

T16 begins to decrease at the same point in time as the power drops to zero.  
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The trend for T16 is also noticeably running excessively higher than that of T15 and T17 

under the same conditions (where T15 and T17 are neighbouring turbines see figure 5.1). 

This suggests that this is in fact a gearbox problem which turbine 16 is experiencing. The 

trend for T16 does not go to zero immediately as with the active power output (as 

described in feature 1), but gradually decreases as the turbine is experiencing no activity 

(no power generation) during its failed state, therefore leading to the temperature 

decreasing.   

 

Another point worth noting is the operating temperature of T15 and T17. Both of the 

turbines‘ gearboxes are operating between the range of 40 and 50°C for the majority of 

the month. When compared with the remainder of the turbines in the data set, they too 

were found to reveal operating temperatures within the same range. This suggests that a 

normal healthy gearbox should operate around such temperatures when the turbine is 

generating power. When observing the active power output of turbine 16 in figure 5.4a, it 

is also clear that the power output is extremely variable in nature. This is understandable 

since it can be attributed to the constant wind speed and environmental changes the 

turbine experiences. The corresponding gearbox temperatures however are much less 

varying in nature thus making for a more predictable parameter for function 

approximation.  

 

The process of selecting data from an unlabelled data set can be considered an undefined 

process. It mainly consists of a visual analysis and interpretation of the data which can 

lead to an element of subjectivity. There is no analytical method associated with such a 

process and the outcome is only apparent in the testing phases of NN development. The 

following sections describe how features 1 & 2 were used to attempt to deduce ―normal 

behaviour‖ for both the generic and turbine specific models.  
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5.1.2 Data Selection for Turbine Specific Model 

 

Since turbine 16 appears to have experienced a gearbox failure, it can be used as a means 

for testing both the generic and turbine specific models. For an unlabelled data set, the 

main method which can be used to class data as normal behaviour is through a direct 

visual comparison with multiple turbines which operate within the same vicinity. The 

SCADA data set acquired began from the month of April 05 and ended at December 06. 

Since turbine 16 experienced the failure during the month of January 06, the months 

April – June 05 were inspected to view its operation during those months in an attempt to 

avoid utilising data from months close to the time of failure. This period of operation is 

shown in figure 5.5. 

 

Figure 5.5: T16 with neighbouring turbines’ operation during April – June 05 

 

From figure 5.5, it can be seen that T17 seemed to experience a problem during the 

month of April 05. This is apparent since the trend for T17 exhibits the characteristics 

where the active power drops to zero but the SCADA Telemetry is not switched off (apart 

from sample 4201 to approx 6000 where all turbines are switched off) thus falling within 

the category of feature 2. For the latter part of the data set shown in figure 5.5 T14 and 

T16 seem to be operating at a higher temperature than T15 with peaking temperatures 

that approach 60˚C. This is higher than the 40-50°C range which the remainder of the 

April 05  May 05  June 05 
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turbines operate at, possibly suggesting that the failure may be in its incipient stage and 

yet to manifest completely. Because of this data from after the failure was investigated, as 

this ideally would provide a more accurate representation of a healthy turbine gearbox.  

 

Another issue considered to be of importance is the element of seasonality and how it 

affects the data.  The data had to be examined to identify if the weather season at 

different times of the year has an effect on the temperatures of the various components 

within the turbine. Figure 5.6 displays the temperature trends for T3 at different months 

of the year representing summer, spring, autumn and winter. From the graphs it can be 

seen that the temperature at different times of the year does not appear to affect the 

temperature of the components, with the temperature fluctuating between the same ranges 

(40 -50˚C) for an operational turbine throughout the year.  

 

Therefore in order to avoid segmenting the data set further for the testing phase it was 

decided that the months directly after the gearbox replacement in turbine 16 (April 06 – 

December 06) could be considered suitable for training purposes. Three months were 

used (April, May and June 06) in order to leave a sufficient amount of data for testing 

purposes.  In this way the remainder of the months could be used to create a coherent test 

data set allowing any interesting events occurring within the data to be tracked 

sequentially as they develop. The complete data set used with all of the input parameters 

sorted in ascending order is shown in figure 5.7. This depicts the range of ―normal‖ 

operation values used to train the model. 
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Figure 5.6: Seasonal data from T3 

Winter 

Autumn 

Spring 

Summer 
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5.1.3 Data Selection for Generic Model 

 

The benefit of considerably reducing data processing from training a generic model has 

already been established. Aside from this, training a generic model would also serve the 

purpose of identifying whether turbine location specific factors at a wind farm site have a 
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perceptible effect on the operation of a turbine‘s internal components. If so, then this 

would be reflected as reduced accuracy in the model output.  

 

The process used to select data for the generic model was the same approach adopted for 

the turbine specific model described earlier. It is important that the range of each of the 

parameters is as varied as possible while still ensuring that they are still within the bounds 

of normal operation. In order to achieve this, the trends for all 26 turbines were plotted 

across April, May and June 05. A large number of operating turbines were found to 

exhibit similar trend patterns within the same range of temperatures during this period of 

operation. The data trends for each of the parameters from these turbines were selected 

and their values averaged to produce one set of training data for each parameter. The 

resulting data set is shown in figure 5.8 whereas table 5.1 below summarises the 

information regarding both generic and specific data sets created for training.  

 

Data set Data period 

selected 

Turbine (s) 

used 

Comments Shown in 

Figure 

 

Specific  

 

 

 

April – June 

06 

 

T16 

 
Healthy Data from 
after the gearbox 

failure 

 

Figure 5.6 

 

Generic  

 

 

 

April – June 

05 

 
Multiple 

T3-T7, T9,T10 

 
Data from a 

collection of turbines 

all averaged 

 

Figure 5.7 

   

   
Table 5.1: Summary of training data sets created 
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What Figure 5.8 shows is the typical spread of values under normal healthy turbine 

operation sorted in ascending order. (Hong et al 2001), states that one of the best ways to 

avoid over-fitting when training NN models is to use ―lots of representative data‖. 

Therefore both the turbine specific and generic data sets were made to consist of a large 

number of data samples (approx 13000 data points). The following section describes the 

stages involved in the training process. 

 

 

Figure 5.8: Training data set for generic models 
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5.2 Neural Network Training Parameters 

 

Model training is the point when the training data set built is presented as inputs to the 

NN. There are different software packages which are commercially available which 

enable the training of these models. The software utilised for this thesis is the MATLAB 

7.01 neural network toolbox. This package allows for the modification of a number of 

parameters that allow the user to refine the training process for their particular data set in 

order to yield the best model output. This process of refinement is generally achieved 

over a trial and error process. The parameters which need to be defined through the 

MATLAB NN software package before training can commence are: 

 

 Determining the network topology (i.e. the size and structure of the network, the 

number of neurons in each of the layers and the number of layers) 

 Selection of the neuron transfer function 

 Selection of the error performance function minimisation algorithm  

 Setting the number of training epochs (i.e. the number of times the data set is 

presented to the NN) and the target Mean Square Error (MSE) (error performance 

function) to be achieved across the training data set. 

 

 

 

5.2.1 Network Topology 

 

In general the number of inputs nodes in the input layer of the neural network is defined 

by the number inputs for the application. Similarly the number of output nodes in the 

output layer is defined by the required number of outputs from the network. The number 

of hidden layers and the number of nodes within them are left at the discretion of the 

network developer. Typically an arbitrary number of hidden layers and nodes are initially 

selected and then refined until an acceptable level of generalisation (determined by the 
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developer during testing) is achieved for their particular application. It is the hidden layer 

that is used to facilitate generalisation of the learning algorithm (Luger 2002).  

 

A number of authors have demonstrated that neural networks which contain more than 

one hidden layer are more prone to falling into a local minimum (Hong et al 2001) 

(Gulski et al 1993). (Hong et al 2001) also states that by limiting the number of layers 

and neurons, the number of weights can be reduced therefore less data is required to train 

and test the network. It is therefore important to consider the size of the training data set 

when determining the size of the hidden layers of the neural network. Perhaps the most 

useful definition found in the literature is that of (Tarassenko 1998) who defines a general 

rule of thumb which can be used as an initial starting point for the number of hidden 

nodes to be used in the hidden layer. This rule is based on the number of inputs and 

outputs required for the application. This is defined below in equation 5.1: 

 

     eq5.1  

 

Where J is the number of hidden nodes to be used, I the number of network inputs and K 

the number of network outputs. Using this equation and the models defined in chapter 3 

section 3.3.2, the number of hidden nodes for the input layer would be sqrt (4 inputs x 1 

output) = 2 hidden nodes in the hidden layer. Based on this the architecture of 4-2-1 (4 

inputs, 2 hidden nodes, 1 output) is formed. While this node count seems somewhat low 

considering the size of the training data sets (13000 input vectors) it was used as a 

starting point for training and testing purposes. 

 

 

5.2.2 Neuron Transfer Function 

 

As detailed in chapter 3 the neuron transfer function (or activation function) determines if 

a neuron fires to provide some output which either feeds into the input of another neuron 

or provides the end result if it is an output layer neuron. The MATLAB 7.01 NN toolbox 
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offers the choice of three different types of transfer function. The log-sigmoid transfer 

function, the tan-sigmoid function and the linear function displayed below in figure 5.9: 

 

 

 

Each of the layers in the neural network can utilise any of the three transfer functions. 

What is important to note is the effect the neuron transfer function has on its output. For 

the SCADA models developed here it is necessary that the model output can support a 

large range of values as shown in figure 5.7 and 5.8. A common configuration is to utilise 

either the log-sigmoid or tan-sigmoid transfer functions in the input and hidden layers, 

and then utilise the linear transfer function in the output layer. Using this configuration 

the model output can support a large range of values (MATLAB NN 1984-2007). An 

alternative configuration stated in the MATLAB neural network help file (MATLAB NN 

1984-2007) is to utilise non-linear transfer functions for all three layers, but scale the 

target output range of the model between a value of 0 and 1. The reason for this is if 

sigmoid layers are used for the output layer (MATLAB NN 1984-2007) the output of the 

trained model is limited to a small range (between 0 and 1). This method of scaling was 

also made use of by (Hong et al 2001) where the authors state that the benefits to be 

gained lead to ―rapid training‖, a reduced possibility of the training algorithm ―getting 

stuck‖ in local minimum (as will be explained at a later stage) and an improved pattern 

recognition ability. Based on this information, the second configuration where all three 

layers make use of sigmoid functions and the output is scaled was chosen to be 

implemented.  

Figure 5.9: The different neuron transfer functions available in the MATLAB toolbox (MATLAB 

NN 1984-2007) 
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This scaling process can be applied to either the inputs or outputs (Hong et al 2001). As 

the inputs for the SCADA models used in this thesis were to be used in an online fault 

detection system which requires real-time processing, there is no way of knowing before-

hand the complete range of input values that can arise during wind turbine operation. 

Therefore placing a bound on the input values presented to the model would introduce an 

element of inaccuracy. Because of this only the outputs were chosen to be scaled. This 

was helpful as with a ratio of inputs to outputs being 4:1; the amount of extra data 

processing would be limited during system use. Only one de-scaling operation for 1 

output would be required as opposed to 4 scaling operations (for each input) would be 

required to provide a real temperature value at the model output. The equation used for 

the scaling process is defined by equation 5.2 below: 

 

Xn = (X-Min)/(Max-Min)   eq 5.2 

 

Where Xn is the new scaled value, 

X is the actual value to be scaled, 

Min is the smallest value in the training data set, 

Max is the largest value in the training data set. 

 

A range of 0-70˚C (0 being min and 70 being max) was selected for the gearbox oil 

model; a range of 0-100˚C was used for the gearbox bearing model and finally a range of 

0-160˚C to support the allowed range of generator winding temperatures. These ranges 

were definitively selected through trending and observation of each parameter‘s data sets. 

They were chosen to be larger than the typical operational ranges for each parameter in 

order so the ranges would be large enough to accommodate the typical operational ranges 

of each parameter whilst also providing a degree of latitude for the models to avoid 

saturating the model outputs. This way the models can produce values which are 

considered to be within the ranges of faulty operation in the case that the input values 

(namely the power generated and ambient temperatures) are correspondingly high enough 

to warrant such undesirable output values. This ensures that the output of the models is 
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not constrained to only the healthy normal operating range and can handle an increased 

range of input values.  

5.2.3 Performance Function Minimisation Training Algorithms 

 

 

The next parameter which needs to be set through the MATLAB NN toolbox is the 

training algorithm. The training process uses the training data set created which features 

network inputs and target outputs. During the training process the weights and biases 

present in each neuron of the network is iteratively adjusted to minimise the network 

performance function (the MSE). The MSE is defined as ―the averaged squared error 

between the network outputs and the target outputs‖ in the training data set (MATLAB 

NN 1984-2007). The training process can be better explained if we picture an error 

surface which is derived during network training as shown in figure 5.10 (Strachan 2005).  

 

 

 

Figure 5.10: Network Weights Error Surface 

 

This error surface is formed from the combination of weights and biases from all nodes in 

the network where each point on this surface characterises a unique weight configuration. 
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This surface consists of local minima and a global minimum. The global minimum 

represents the weight configuration which provides the lowest mean squared error 

between the network and target outputs across the complete training data set. This global 

minimum can be found using a gradient descent based search algorithm (Nielsen 2004) 

which in essence constitutes the model learning process. 

 

Before this can occur however it is necessary that the weights are randomly initialised 

(MATLAB NN 1984-2007). This is an important initial step since equal valued weights 

would prevent the system from learning. This would occur due to the nodes in the hidden 

layer receiving matching error signals resulting in identical weight adjustments as the 

error is propagated back through the network nodes in proportion to the weights.  

 

The MATLAB toolbox offers a number of training algorithms presented in table 5.2 

which all make use of the gradient of the performance function to determine how to 

adjust the weights to minimise the MSE.  

 

 

 

It is difficult to know without trial which algorithm will provide the best performance in 

terms of speed of training and model output accuracy. However a speed and memory 

Table 5.2: Error Minimisation training algorithms provided in the MATLAB NN toolbox 
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comparison of each of the available training algorithms is provided in the MATLAB NN 

help file (MATLAB NN 1984-2007). A comparison which tests all of the algorithms for 

two different types of problems, namely function approximation and pattern recognition 

with three different applications for each type of problem is presented. The SCADA 

models to be developed for this thesis fall under the category of function approximation, 

where the inputs to the model provide information regarding the turbine operation levels 

and the output required is an estimation of component temperatures based on these 

operation levels. Therefore the results from the function approximation tests were of 

interest, in particular the SIN and ENGINE applications shown in tables 5.3 and 5.4 

respectively.  

 

The SIN application is described as a simple function approximation problem which 

makes use of a 1-5-1 network architecture (1 input, 5 nodes in the hidden layer and 1 

output) to approximate a single period of a sine wave. The results for this application are 

presented below: 

 

 

 

The fastest algorithm for this function approximation problem is the Levenberg-

Marquardt algorithm (Roweis). From the training times it can be seen that it is over four 

times as fast as the next fastest algorithm. Incidentally the (MATLAB NN 1984-2007) 

Table 5.3: Speed comparison of various training algorithms for SIN problem (all trained to 

an MSE of 0.002) 
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states that the LM algorithm is best suited for function approximation problems where the 

network has fewer than 100 weights in total across all layers and where it is necessary 

that the approximation is very accurate.  

 

The ENGINE function approximation problem also reinforces these findings. This 

application can be considered to be the most similar in nature to the models presented in 

this thesis.  It utilises data obtained from an engine where the inputs to the model are 

engine speed and fuelling levels and the required outputs are the resulting torque and 

emission levels. The network architecture used for this problem is a 2-30-2 network. The 

results are shown in the table below (5.4 (MATLAB NN 1984-2007)). 

 

 

 

The LM algorithm again performs the fastest with the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) Quasi Newton algorithm only performing slightly slower. This is due to 

the larger number of weights in the larger sized network, making its speed less apparent 

when compared to the other algorithms.  

 

Because the initial NN model which will be used for training the SCADA models is a 4-

3-1 architecture as described previously, the total number of weights will fall 

Table 5.4: Speed comparison of various training algorithms for ENGINE problem (all trained 

to an MSE of 0.005) (MATLAB NN 1984-2007) 
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significantly under the 100 weight mark. Because of this the LM algorithm would be the 

best suited algorithm for training based on the comparison of results presented. 

5.2.4 Training Epochs and Mean Square Error target 

 

The final parameters which must be defined before training can commence are the 

number of training epochs and the target MSE. Ideally the target MSE should be set at a 

value which is considered acceptable for the application. For the SCADA models 

developed in this thesis, in order to yield models that are as accurate as possible, an 

excessively low target MSE of 0.00001 was used. The lowest MSE value which can be 

achieved is dictated by the global minimum in the weight space. Therefore by setting the 

target MSE to a value as small as 0.00001 ensures that the training algorithm will attempt 

to achieve the global minimum.   

 

The number of Epochs defines the number of times the complete data set is presented to 

the NN. Again this value is left at the discretion of the developer but should not be set too 

high in order to avoid network over-fitting., According to (Hong et al 2001) the method 

of ―early stopping‖ can be used to avoid this. Using this method, training is considered to 

be complete when the MSE error made on the training data set stops decreasing. This 

method was chosen to be adopted and an epoch of 1000 was selected.  
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5.3 Training and Testing Results for SCADA Fault Detection 

Models 

 

Figure 5.11 shows the initial topology used for training the SCADA models. Each input 

vector from the training set consisting of: 

 

 Power generated (t-3) i.e. three time steps before current time step (t) 

 Ambient temperature (t)  

 Two regressive temperature inputs (t-1) and (t-2) for the modelled parameter 

(gearbox oil, gearbox bearing and generator winding temperatures) (t-1),(t-2) 

one and two time steps before current time step respectively. 

 

is presented to the input layer of the neural network.  For both the generic and specific 

model training data sets there are approximately 13000 input vectors. With an epoch of 

1000 this results in a total of 13000 input vectors * 1000 epochs = 13000000 input trials 

to the network. 

 

A number of network architectures were tried and tested during this stage. The number of 

neurons present in the hidden layer was varied as well as the number of hidden layers.  

The results of the initial architecture and two other architectures which were found to 

yield relatively accurate estimations for the generic and specific gearbox oil models are 

Figure 5.11: Initial NN architecture 

Temperature 
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Input 
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presented in table 5.5 and 5.6 respectively. The tests are based on three months worth of 

previously unseen data for turbine 16 i.e. data which the models have not been trained on.  

 

Generic Gearbox oil 

Network Architecture 

Training 

MSE 

Mean / RMS 

error T16 Oct 

06 

Mean / RMS 

error T16 Nov 

06 

Mean / RMS 

error T16 Dec 

06 

 

4-2-1 

 

 

 

5.684e-5 

 

0.047 / 1.034 

 

0.128 / 0.6913 

 

0.1329 / 0.87 

 

4-3-1 

 

 

 

4.419e-5 

 

0.024 / 1.061 

 

-0.283 / 1.109 

 

-0.055 / 0.844 

 

 

4-5-3-1 

 

 

1.359e-5 

 

0.0106 / 0.92 

 

1.182 / 9.336 

 

-0.085 / 2.72 

 

 

 

Specific Gearbox oil 

Network Architecture 

Training 

MSE 

Mean / RMS 

error T16 Oct 

06 

Mean / RMS 

error T16 Nov 

06 

Mean / RMS 

error T16 Dec 

06 

 

4-2-1 

 

 

 

1.9e-4 

 

-0.233 / 1.24 

 

-0.27 / 0.722 

 

-0.277 / 1.04 

 

4-3-1 

 

 

 

6.1793e-5 

 

-0.09 / 2.55 

 

-1.323 / 4.62 

 

-0.34 / 1.38 

 

 

4-5-3-1 

 

 

5.27165e-5 

 

-0.169 / 3.12 

 

-6.17 / 18.7 

 

-2.97 / 11.79 

 

 

 

For each month worth of data (which amounts to approximately 4500 data points) the 

model estimations were compared with the actual temperature for T16. A direct 

subtraction between the model estimate and the actual temperature was used to obtain an 

Table 5.5: Gearbox oil Generic model, training and testing results for 3 different network 

architectures tested on previously 3 months of unseen data 

Table 5.6: Gearbox oil Specific model, training and testing results for 3 different network 

architectures tested on previously 3 months of unseen data 
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error signal across all data points for each month‘s data set. The differences between each 

instance of data where then used to calculate the mean and RMS (Root Mean Square) 

errors. 

 

The months October, November and December 06 were chosen for testing as they offered 

the best representation of healthy gearbox operation assuming the gearbox replacement 

procedure identified in section 5.1 did in fact take place. As can be seen from the 

numbers presented in tables 5.5 and 5.6, for both the generic and specific models, the 4-2-

1 network model offered the best generalisation ability with consistently low error values 

for T16 across all three months despite the higher training MSE errors obtained during 

the training process. Another interesting point to note between the generic and specific 

model is the consistently lower error values produced by the generic model across all 

three model architectures trained. This suggests that the generic training data set used was 

a more accurate representation of normal operating behaviour therefore leading to more 

accurate model estimations.  

 

For both the generic and specific models, the 4-layer network (4-5-3-1) produces the 

largest RMS errors for the month of November and December 06 in particular for the 

specific model. When viewing the model output trends (figure 5.12) the model shows 

signs of over-fitting which are evident in its mostly accurate estimations between the 

ranges of 40-50C but its incapability to generalise estimations for temperatures out-with 

this range therefore producing poor estimates. These are highlighted in figure 5.12.  
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The same training and testing process was adopted for both the gearbox bearing and the 

generator winding temperature models. Again both generic and turbine specific models 

were trained and the results are presented in tables 5.7-5.10.  

 

 

 

Generic Gearbox bearing 

Network Architecture 

Training 

MSE 

Mean / RMS 

error T16 Oct 

06 

Mean / RMS 

error T16 Nov 

06 

Mean / RMS 

error T16 

Dec 06 

 

4-2-1 

 

 

 

0.000158 

 

-0.175/ 1.378 

 

-0.058 / 0.768 

 

-0.0675 / 

0.929 

 

4-3-1 

 

 

 

7.58e-5 

 

-0.076 / 1.15 

 

-0.104 / 0.784 

 

-0.08 / 0.952 

 

 

4-5-3-1 

 

 

6.13e-5 

 

0.09 / 1.08 

 

-0.098 / 0.751 

 

-0.15 / 0.951 

 

 

 

 

 

4-5-3-1 Specific Model output
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Figure 5.12: 4-5-3-1 Gearbox oil Specific Model showing signs of over-fitting when tested against 

the data for the month of November 06 

Table 5.7: Gearbox bearing Generic model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data 
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Specific Gearbox bearing 

Network Architecture 

Training 

MSE 

Mean / RMS 

error T16 Oct 

06 

Mean / RMS 

error T16 Nov 

06 

Mean / RMS 

error T16 

Dec 06 

 

4-2-1 

 

 

 

0.00027 

 

-0.075/ 1.235 

 

-0.074 / 0.8072 

 

0.01707 / 

0.92 

 

4-3-1 

 

 

 

0.00029 

 

-0.005 / 1.29 

 

-0.253 / 1.185 

 

-0.05 / 0.995 

 

 

4-5-3-1 

 

 

0.000264 

 

-0.015 / 1.26 

 

-0.084 / 0.859 

 

-0.01 / 0.914 

     

 

 

 

 

 

 

 

Generic Generator Winding 

Network Architecture 

Training 

MSE 

Mean / RMS 

error T16 

Oct 06 

Mean / RMS 

error T16 Nov 

06 

Mean / RMS 

error T16 

Dec 06 

 

4-2-1 

 

 

 

0.000188 

 

-0.54 / 

1.2507 

 

-0.644 / 

1.1688 

 

-0.604 / 1.31 

 

4-3-1 

 

 

 

0.000189 

 

-0.578 / 

1.2784 

 

-0.691 / 

1.2179 

 

-0.635 / 

1.348 

 

 

4-5-3-1 

 

 

0.000179 

 

0.141 / 1.475 

 

-0.073 / 1.303 

 

-0142/ 1.384 

 

 

 

 

 

Table 5.8: Gearbox bearing Specific model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data 

Table 5.9: Generator Winding Generic model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data 
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Specific Generator Winding 

Network Architecture 

Training 

MSE 

Mean / RMS 

error T16 

Oct 06 

Mean / RMS 

error T16 Nov 

06 

Mean / RMS 

error T16 

Dec 06 

 

4-2-1 

 

 

 

8.66e-5 

 

-2.232/ 

2.913 

 

-3.377 / 

3.9184 

 

-3.22 / 3.862 

 

4-3-1 

 

 

 

8.48e-5 

 

-2.315 / 

3.0333 

 

-3.587 / 

4.1227 

 

--3.41 / 

4.162 

 

 

4-5-3-1 

 

 

5.3343e-5 

 

0.0102 / 

2.042 

 

1.052 / 2.217 

 

1.0012 / 

2.5007 

     

 

 

 

 

The results obtained from the three trained models for both the generic and specific data 

sets show that the generic models consistently offer better results over the specific 

models. The 4-2-1 generic model for the most part offered the best generalisation 

capability with the lowest RMS errors over the 4-3-1 and 4-5-3-1 generic models. For the 

generic gearbox bearing model the 4-5-3-1 architecture did perform slightly better than 

the 4-2-1 architecture model, however to avoid the possibility of over-fitting, the 4-2-1 

generic model was still considered the most appropriate.  

 

The error values produced by the trained models were deemed at an acceptable level for 

the diagnostics required by the project industrial partner for successful fault detection. 

The 4-2-1 generic model was therefore chosen as the model architecture to use for all of 

the trained fault detection models. The low errors produced by each model means that the 

output can be used directly as a comparison with the actual temperature trend to assess 

whether an anomaly is present. A straightforward difference of the two signals (actual 

and estimate) can be used. If the difference between the estimated value produced by the 

model and the actual value increases for a continuous number of instances i.e. a 

Table 5.10: Generator Winding Specific model, training and testing results for 3 different 

network architectures tested on previously 3 months of unseen data 
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prolonged period of time and not a minor fluctuation, then this would flag as an anomaly.  

This is to exclude false identification of anomalies as a result of erroneous but transient 

data.  

 

5.4 Validating the Model Inputs 

 

In order to ensure that the use of each input parameter to the models is valid and is not 

used unnecessarily, a process of cross correlation is undertaken. The significance of each 

input is determined by assessing the model accuracy as each input is omitted one by one. 

The model accuracy can be quantified by the ability of the model to provide an estimation 

that is as close to the real value as possible. In this way the significance of each input can 

be understood by assessing the impact on the models‘ accuracy when omitting each 

parameter. The same set of data was used for training and testing the models in order to 

ensure fair results. The results of this cross correlation process are listed in table 5.10. 

The numbers show that each model performs best with all 4 inputs being used where the 

lowest mean and RMS errors are produced across all three component models. Both the 

gearbox oil and gearbox bearing models follow a similar trend with the RMS errors 

increasing in size with the ambient nacelle temperature input omitted first followed by the 

regressive inputs and finally, the power omitted last. This shows that the importance of 

the input variables for both of the models starts with power being the most important, 

followed by the regressive inputs and lastly the ambient nacelle temperature making the 

least impact on model accuracy. The generator winding model on the other hand does not 

follow the exact same trend on the period of data tested. The results show that the 

regressive inputs are the most important followed by ambient temperature and the power 

input comes in giving the least impact on model performance. The outcome from this 

process allows us to conclude that each of the input parameters used is of significant 

importance, each improving the model accuracy by adding information that aids the 

models to produce realistic estimates therefore justifying their use as an input.  
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5.5 Gearbox Bearing and Oil Model Results with corroboration 

 

Once the normal behaviour models were trained, the complete 2 years worth of data 

acquired was processed in order to see how well the model estimates agreed with the 

remainder of the data set to which they hadn‘t previously been exposed. Figure 5.13 

shows how T16, during its normal period of healthy operation conformed to the model 

estimates during the month of October 06.  

 

Table 5.11: Mean and RMS errors for each model input configuration for input validation 

purposes. 
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As can be seen from the error signal obtained the majority of the differences lie between 

the ranges of -2 to 2°C. There is no consistent positive or negative divergence between 

the two signals for a sustained period of time.  

 

Figure 5.13: T16 conforming to model estimates signifying healthy gearbox operation. 
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Figure 5.14a shows the evolution of the gearbox cooling oil temperature trend for T16 

from the period of August 2005 to January 2006 where it eventually fails. Figure 5.14b 

shows the corresponding error signal which depicts the difference between both the 

estimated output trend from the model as well as the actual temperature. The first 

significant deviation from the model estimates occurred towards the end of August 2005. 

From that point onwards the frequency of deviations and their duration increased. In this 

specific example it can be seen that the cooling oil model built here detected incipient 

problems in the form of overheating almost 6 months in advance of the actual failure. For 

comparison, the model built by Garcia et al was capable of detecting an incipient problem 

only 2 days before the actual failure. 

 

 

Figure 5.14a: Gearbox failure detected T16: gearbox cooling oil model output, 

anomalies detected from aug05-jan06. 

T16 Cooling Oil model output 
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Figure 5.15a and 5.15b show the gearbox bearing model temperature output for the same 

time period and the error signal respectively. Throughout this period the deviations from 

the model estimations were minimal and not significant enough to be classed as gearbox 

bearing anomalies when compared to other anomalous temperatures detected by the 

model. An interesting point to note from the results was that the minimal deviations 

occurred at the same time the cooling oil deviations were spotted which depicts the 

expected heat transfer between the gearbox components. According to these results, 

overheating was detected in the gearbox cooling oil while the gearbox bearing 

temperature conformed to the normal behaviour model. Corroborating the output from 

both models suggests that the failure was in fact a problem internal to the gearbox and not 

the gearbox bearing or cooling mechanism. This failure has been confirmed with the 

industrial contacts who supplied the data.  

 

 

Figure 5.14b: Gearbox failure detected: gearbox cooling oil model error signal, 

anomalies detected from aug05-jan06. 

T16 Cooling Oil model error signal 
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Figure 5.16a and 5.16b show another example of gearbox problems detected by 

abnormally high temperatures in T17‘s gearbox oil parameter. In this example the T17 

experienced problems towards the end of April 05 where it was taken offline as depicted 

by the trends. Data from before April 05 was not available however to identify when the 

first model deviations occurred. Nevertheless deviations were detected at the start of the 

month. These results highlight the importance of model accuracy, which in turn is 

achieved through good model selection and the effective training used to capture the 

normal behaviour of each parameter. 

 
Figure 5.15a: Gearbox failure detected: Corresponding gearbox bearing model output detected 

during aug05-jan06. 

T16 Gearbox bearing model output 
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Figure 5.15b: Gearbox failure detected T16: gearbox bearing model error signal 

detected during aug05-jan06 showing no significant or prolonged periods of deviation. 

T16 gearbox bearing model error signal 

Figure 5.16a: Gearbox problems: detected by gearbox cooling oil model in T17 April 05. 

T17 Gearbox oil model deviations 
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5.6 Generator Winding Model Results 

 

The method used for temperature anomaly detection for the gearbox was also adopted for 

the generator winding parameter available in the SCADA data. The approach used to 

train and test the model was identical to that of the gearbox. A malfunctioning generator 

was detected using the trained generator model within the 2 year data set. The last month 

of its operation before failure or it being brought offline is shown in figure 5.17a and b. 

The first noticeable deviations were detected in August 05 and continued to increase in 

size and frequency until its failure in November 06. A generator typically has a safety 

mechanism which cuts off power generation for a period of time whenever the windings 

overheat (Yusuf Patel 2007). This safety feature attempts to prolong the lifetime of the 

generator by preventing continued operation of the generator at a dangerously high 

temperature. The repetitive spikes seen in figure 5.17a are the effects on the temperature 

seen when the safety mechanism activates, interrupting normal power generation.  

 

Figure 5.16b: Gearbox problems: cooling oil model error signal anomalies detected in 

T17 April 05. 

T17 Gearbox oil model anomalies April 05 

April 05 
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Figure 5.17a: Generator Failure or brought offline (November 06) detected in 

Generator Winding temperature parameter. 

November 06 

T8 Generator Failure Nov 06 

Figure 5.17b: Generator Failure: corresponding error signal 

November 06 

T8 Generator Failure Nov 06 
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5.7 Wind Turbine Power Output Modelling 

 

The significance of modelling the power output of a turbine for the purpose of monitoring 

its condition has been discussed by a number of papers published in the literature, namely 

(Caselitz et al 2005) and (Li et al 2001), both of which have been reviewed in chapter 2 

section 4.3. As described previously the power characteristic of a turbine essentially 

represents the typical power output values plotted against the entire range of wind speeds 

which its operation covers. By keeping track of both wind speed and power output 

parameters, (Caselitz et al 2005) states that the overall health of the turbine can be 

supervised. Every manufactured turbine model design has a set power output 

performance level which it is expected to sustain in its everyday normal operation. By 

comparison of the actual power output and the expected output, an indicator of the 

turbines‘ generation performance is possible. Any degradation in this value will 

automatically reflect degradation in the turbines‘ condition. 

 

Ensuring that a wind turbine‘s performance is optimal for a given set of operating 

conditions is an important factor to be taken into consideration if the operation and 

maintenance (O&M) costs are to be minimised. Assessing wind turbine performance is a 

relatively complex procedure since each turbine in a wind farm can be affected by many 

site specific factors (mentioned previously in section 5.1) that can greatly impact its 

operation and produce significant variations in its power performance, (Leaney et al 

1997).  Each of these aforementioned aspects makes it impractical to record ideal wind 

data. Most SCADA systems record only basic wind information such as mean wind speed 

over 10 minute intervals, the standard deviation over that 10 minute interval and in some 

more recent systems the wind direction (Yusuf Patel 2007). The estimation of power 

generation for diagnostic purposes is currently accomplished by comparing generated 

power to the manufacturers ratings for a given wind speed. A turbine will follow the 

power generation of this curve if the following conditions are met (Li et al 2001). 

 

1) The wind speed is measured at the height of the turbine‘s nacelle; 

2) The wind speed is uniform horizontally across the face of the turbine; 
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3) The vertical wind speed profile is the same as that experienced during the power 

performance testing of the turbine; and 

4) The air density is the same as that during the calibration. 

These conditions are rarely met at a wind farm for each turbine especially with the effect 

of site specific factors influencing the wind. Therefore deviations from the 

manufacturer‘s power curve cannot on their own be used for diagnostic purposes. 

   

 

The data available in the research presented in this thesis is the averaged 10 minute 

intervals and standard deviation of both wind speed and active power available in the 

SCADA.  The rationale behind the development of a mechanism for power performance 

estimation is primarily for the purpose of attaining an insight into the overall health and 

condition of a turbine, while possibly detecting performance degradation through 

pollution building up on the rotor blades (Caselitz et al 2005). Therefore its main purpose 

for the Fault Detection System (FDS) being developed in this thesis is to provide the user 

with an indication of how well the turbine is performing at a glance and also for 

corroboration purposes with the temperature fault detection models. Power performance 

estimation used in conjunction with the temperature anomaly detection models described 

earlier, will also serve the purpose of determining the time it takes from when an anomaly 

is detected in one of the turbines‘ internal components (i.e. the generator or gearbox) to 

the time it takes for this to be reflected in the turbines‘ overall performance. This will 

give an indication as to how long it takes faults to manifest themselves in the turbine to 

the point where they actually begin to impair the turbines generation ability. 

 

 

The information and applicability (to the acquired SCADA Data) of the method used for 

the detection of blade surface roughness from the approach used by (Caselitz et al 2005) 

and the NN power estimation research found in the literature (Li et al 2001) stimulated 

the decision to build and test both of these mechanisms for power performance 

estimation. In this way the potential benefit that can be gained from corroborating a 

particular turbines‘ power performance with the temperature anomaly detection models 
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built for the gearbox and generator can be more readily examined. Also, by building and 

testing both of these applicable methods to the data it was thought that this could lead to a 

more informative set of results that would allow the author to examine which 

methodology of the two yields the better output for the data sets available. The following 

section explains both of their internal workings in greater detail.  

 

5.7.1 Model Input Data and Training Methodology 

Method 1 (NN): Neural Network Power Estimation  

 

The NN training and testing procedure closely followed the same methodology used for 

both the gearbox and generator anomaly detection models described in the earlier 

sections of this chapter. The reason behind this is due to the fact that this problem also 

falls under function approximation, where the NN attempts to approximate the relation 

between the current wind speed and the corresponding power generated by the turbine i.e. 

its power curve. A number of NN models were trained on some of the data available. The 

mean wind speed data available for each turbine is recorded from the nacelle mounted 

anemometer and therefore these readings give a better indication (ignoring anemometer 

sensor errors) of the turbine‘s experienced wind profile than a meteorological tower 

mounted some distance away from the turbine. An ideal case would be to have access to 

both sets of data since nacelle mounted anemometers also face their share of disturbances 

that affect the validity of the recorded measurements (Smith et al 2002). In this way the 

nacelle mounted anemometer readings could be verified against the tower readings in 

order to help eliminate anemometer inaccuracies, however this data was not available to 

provide this verification.  

 

The averaged readings from the anemometer are taken over a period of 10 minutes 

meaning that the data loses detail in how the wind varied and fluctuated throughout that 

period. This means that there is a strong possibility that the power generated could easily 

be misrepresented since the power available in the wind is proportional to the cube of the 

wind speed (Danish Wind Energy Association 2008). Because of this, only problems that 



 171 

build up over a long period of time such as dirt on the blade and increasing blade surface 

roughness due to erosion mentioned by (Caselitz et al 2005) are the only form of fault 

that can be detected with this relatively low resolution data. In order to improve the 

quality of the data, the turbulence intensity was calculated to gain an insight into how 

varied the wind was during each 10 minute period. The turbulence intensity Iu gives an 

indication of the fluctuation of the wind speed over the averaged period (Infield Wind 

Resource notes) and is calculated by dividing the standard deviation by the mean 

recorded wind speed U.    

    
U

 = I
u

u

     eq5.3 

A month‘s worth of calculated turbulence intensity data was used along with the mean 

wind speed as inputs to train a NN on the associated power output for each turbine in an 

attempt to aid the NN approximate the relation between power and wind.  In order to help 

further improve the overall accuracy of the model, the corresponding power output data 

was normalised between a range of -100 to 700, a large enough scale to support the range 

of output from a Bonus 600kW turbine.  As each turbine experiences its own specific 

wind profile due to the many external factors mentioned previously, only turbine specific 

models were created i.e. using only turbine specific data to train the models as opposed to 

generic data averaged from a collection of turbines. Models were created for T8, T15 and 

T16 from the wind farm, where T8 and T16 experienced failures in the generator and 

gearbox respectively, and T15 was used for benchmark purposes since it experienced no 

failures. T15 is also situated next to T16 in the wind farm and so will have experienced a 

similar wind profile to that of T16. 

 

The issue of data selection for training the power models was less defined than for the 

case with the temperature models. The reason for this is that there is no information 

regarding the condition of each turbine‘s rotor blades. Therefore the purpose behind 

training the power models was to capture the current condition of the turbine‘s rotor 

blades and determine if its performance degrades from that point in time and onwards, 

rather than attempting to capture the best example of ‗normal‘ healthy operation. The 

only condition that would have to be satisfied is to ensure that data from a period where 
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the turbine was experiencing faults in its other components namely the gearbox and 

generator was not used to train the models. This would allow for the investigation of 

whether the power output of a turbine is affected by the manifestation of faults in its 

gearbox and generator.  

 

The model architecture selected for the power models was calculated using the same 

formula (eq5.1) used for the temperature fault detection models. The results produced by 

the models using this formula provided the better accuracy as shown previously and 

therefore it was also adopted as the method for selecting the appropriate model 

architecture for the power model. With 2 inputs and 1 output required from the NN, a 

hidden layer consisting of 2 nodes was used resulting in a 2-2-1 architecture.  The model 

training results are shown below in table 5.12: 

 

 

 
Power Network Architecture Training 

MSE T8 Apr 
06 

Training MSE 
T15 Apr 06 

Training 
MSE T16 
Apr 06 

 
2-2-1 

 
 

 
0.00057 

 
0.00106 

 
0.000609 

    

 

 

Figure 5.18a shows the output from a NN model trained for T15 against actual data. 

Figure 5.18b shows the corresponding error signal between the two signals where the 

actual turbine output (blue) is subtracted from the model estimate (red). When compared 

to the accuracy of the temperature fault detection models described earlier, it is clear that 

the output of the model is not sufficiently accurate to detect whether any one particular 

power measurement can be classed as an anomalous reading or not. From the error signal, 

the predominantly negative values shown in figure 5.18b also demonstrate that the model 

underestimates the turbine output more so than it over estimates. Therefore for 

performance assessment purposes, cases where the model underestimates the actual 

Table 5.12: Power model training results for T 8, 15 and 16 
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recorded power output of the turbine can be disregarded since the turbine has actually 

met and exceeded the estimate of the model. Calculations showed that typically over 90% 

of the estimations made by the trained model in any given month fall within a 30kW 

envelope of the actual recorded power output values for the healthy normal operation of 

T15. These calculations are presented in section 5.7.2.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.18a: Power model output for a healthy turbine (T15) during December 05. 

Figure 5.18b: The corresponding error signal between actual data and the model estimation 

during December 05. 
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Method 2 (Statistical): Learning the Averaged Power Curve  

 

This method of analysis is based mostly on the research of (Caselitz et al 2005). A slight 

difference is that Caselitz used 5 minute averaged data instances of both wind and power 

values to learn the power characteristic of the turbine as opposed to the 10min averaged 

values used for the research in this thesis.  

 

Learning the averaged power curves for each turbine was carried out in the following 

manner. The wind speeds are initially split into bins of 0.5m/s. The associated power 

values are then sorted into these groups. The average power value for each group is then 

calculated to give the learned power curve. Figures 5.19a, b and c show the learned 

power curve as well as the inner and outer alarm limits. These diagrams are screen 

captures from the output of the power performance agent software developed. The 

software learns the curves from data in an online manner and calculates the curves 

automatically once enough data has been gathered. The specific details of how the agent 

carries out this process is described in chapter 6. The inner alarm limits are calculated 

through the standard deviation of each of the groups and then added to either side of the 

averaged power curve. The outer alarm limits are chosen by the developer through the 

study of a number of turbines operating under normal conditions. A number of outer and 

inner alarm limits were tested in order to observe a strategy that attempts to minimise the 

number of false alarms generated. The resulting trained curves for T8, T15 and T16 are 

shown in figures 5.19 a, b and c respectively.  
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Figure 5.19a: Learned curve for T8 from healthy period of operation before generator failure 

Figure 5.19b: Learned curve for T15 from healthy period of operation. 

Figure 5.19c: Learned curve for T16 from healthy period of operation before gearbox failure. 
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Once the power curves for the turbines are learnt the power performance agent 

automatically switches to monitor mode. In monitor mode subsequent wind and power 

pairs can then be classified against the alarm limits calculated and consequently each 

given a performance classification. Figure 5.20 shows an example of a mock curve and 

how the classifications are assigned to pairs of points depending on where they fall within 

the calculated alarm limits by the Power performance agent described in chapter 6. While 

the classifications shown below are self-explanatory, it is important to note that the 

downtime classification refers to periods of unscheduled maintenance (feature 2 of the 

data see section 5.1).  

 

 

 

 

 

The total number of performance classifications can be totalled at the end of the month to 

give an overall indication of how well the turbine performed. Observing the trend of this 

performance indicator over a number of months can give an indication of turbine 

performance degradation. 

 

Figure 5.20: Power and wind data pairs are classified into the shown groups according to which alarm limits 

they fall within. 
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In order to calculate this performance figure for a particular month the sum of all of the 

pairs which fall above the moderate alarm limit is calculated. Points which fall above this 

line are assumed to represent ―healthy‖ performance from the turbine and are therefore 

taken as a percentage of the total number of data points recorded for that specific month. 

The resulting percentage provides an indication of how well the turbine performed for 

any particular month. The next section goes on to provide an analysis of the output of 

both techniques as well as exploring the possibility of corroborating the power module 

output with the temperature fault detection model outputs. 

 

5.7.2 Analysis of power performance results and corroboration with 

temperature model outputs 

 

As mentioned previously the learned models from both technques were trained using the 

same data from T 8, T15 and T16 to allow for a fair comparison of the results. It is 

important to also note that both methods do not count periods where the turbine is 

switched off (scheduled maintenance) or islanding ( described earlier as feature 1 of the 

data, see section  5.1) as durations of bad performance. This allows for a fair evaluation 

of performance between the two methods since periods of (scheduled) maintenance as 

well as islanding both do not reflect poor power performance on the turbine‘s behalf, but 

rather occur as a result of external circumstances outwith the turbine‘s own control. 

Unshceduled maintenance (feature 2 of the data see section 5.1 also) however is assumed 

to affect the performance figures for both methods since they are periods where the 

turbine should be generating electricity but is not.  

 

This inclusion of feature 1 and omission of feature 2 for the performance figures is done 

automatically with the NN model since it is exposed to the conditions of feature 1 in the 

training data but not feature 2. In order to replicate this behaviour for the statistical 

averaged curve method, islanding / scheduled maintenance classifications are added to 

the totals of the ―healthy‖ groups (moderate, good, high and abnormally high) described 

in the previous section. The number of Downtime and Bad performance classifications 

however are not. Summing these together therefore gives an indication of the duration of 
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poor performance for the turbine under study in any given month. The totals for each 

classification from the statistical method output are given in Appendix I. The 

performance figures from both methods are shown in Table 5.13 below.
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Turbine Analysis 

Method 

(see 

section 

5.7.1) 

Aug 

05 

Sep 

05 

Oct 

05 

Nov 

05 

Dec 

05 

Jan 06 Feb 

06 

Mar 

06 

Apr 

06 

May 

06 

June 

06 

July 

06 

Aug 

06 

Sep 06 Oct 06 Nov 06 Dec 06 

 

 

T8 

Method 1 

NN 
 

99% 91.6% 99.6% 95.7% 99.4% 90.8% 98.4% 99% 96% 77.2% 74.4% 96.3% 97.4% 71.9% 87.4% 64.9% 

Generator 
failure 

Na 

Offline 

Method 2 

Statistical 

90.8% 82.3% 91.5% 90.2% 95% 87.1% 93.7% 92.7% 91.9% 71.7% 71.3% 91.5% 89.6% 64.9% 81.1% 57.9% 

 

Na 

offline 

 

 

T15 

Method 1 
NN 

97.6% 95.2% 96.7% 97.7% 98.9% 97.2% 99.5% 97.6% 98.1% 96.6% 96% 96.2% 84.5% 82.4% 87.8% 86.5% 85% 

Method 2 

Statistical 

87.3% 85.9% 91.8% 94.3% 97% 96.9% 94.5% 93.9% 93.6% 88.8% 93.2% 86.4% 75.6% 74.9% 81% 76.2% 78.1% 

 

 

T16 

Method 1 
NN 

96.5% 93.3% 95.9% 96.8% 98% 61.8% 
Gearbox 

failure 

Na 
offline 

78.7% 
 

97.5% 96% 92.7% 95% 92.3% 82.7% 93.9% 84.6% 93% 

Method 2 

Statistical 

87.4% 86.2% 89.8% 90.4% 87.8% 56.3% Na 

offline 

71.1% 90.5% 84.3% 79.1% 79.7% 75.7% 68.6% 81.5% 74.6% 85.5% 

 

 
Table 5.13: Power performance efficiency for T8 (blue), T15 (white) and T16 (orange) from both trained power 

models 
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From the numbers shown in Table 5.13 the first thing which can be noticed is that both 

sets of numbers from the models display the same fluctuations in turbine performance. 

Another point which is noticeable is the higher efficiency figures given across the 

complete range from the NN models for all three turbines. This indicates that the NN 

model captures a closer representation of each turbine‘s actual power performance curve 

over the statistical model.  

 

T16 and T8 experienced failures in the gearbox and generator respectively. They were 

used here for power performance assessment for corroboration purposes in order to 

inspect if these problems were reflected in the turbine‘s power output.  T15‘s data was 

processed for both gearbox and generator anomalies and the results showed no sign of 

problems in either component and so it was used here as a reference turbine with healthy 

internals. From the figures shown in the table it does not appear that the gearbox 

problems of T16 are reflected in the turbine‘s ability to produce power. T8‘s generator 

problems however are evident in the power performance figures in the later months when 

the generator windings overheat and the safety mechanism interrupts power generation. 

This overheating is shown in the generator model outputs presented in section 5.6 earlier.  

 

 

T8 experiences a generator failure in November 06 where the performance figures for 

both models is very low. Examining the figures leading up to this point reveals that T8 

initially starts off with high efficiency between Aug 05 – April 06. It then drops in the 

months of May, June and September 06 due to the generator cut-offs resulting from 

excessively high temperatures. Examining the breakdown of the performance 

classifications presented in Appendix I shows that in the month of May06, T8 

experienced a large proportion of unscheduled downtime which is mainly responsible for 

this relatively low efficiency figure. The output from the generator temperature model 

shown in figure 5.21 also corroborates this information depicting a few cases of high 

temperature which caused the generator to cut off, as well as a large duration where the 

temperature was below typical power generation temperature. This behaviour is repeated 
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(shown in Appendix I) in the months of June and September before the generator finally 

fails in Novmeber 06.   

 

 

 

 

 

What is interesting to note from the results presented is that both the power models 

developed showcase different strengths. The NN model provides a more accurate 

representation of the turbine‘s actual power performance characteristics. It doesn‘t 

however provide the breakdown of activity in any given month which provides a clearer 

picture  of a specific turbine‘s performance. Therefore their use in conjunction with one 

another  results in a more informative output to the wind farm operator.  

 

The numbers from table 5.13 show that the performance of T15 decreased from August 

06 onwards. Since no other problems were reported for T15, one might assume that this 

reduction in performance could be down to rotor blade problems. The main problem 

however hindering a proper analysis of these results is that the state of the rotor blades is 

Figure 5.21: Generator Temperature anomalies for T8 during the month of May06. 
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not monitored for any of the turbines. Therefore gaining access to information which 

would allow the author to correlate the drop in performance to a problem in the rotor 

blades was not possible.  

 

5.9 Model Results conclusion 

 

The results produced by the models developed for this research are very positive. They 

provide an early warning of problems developing in the gearbox and generator that 

become apparent through abnormal temperatures. The anomalies detected by the models 

reduce the volume of data that must be analysed considerably, making the task of the 

operator much more practical. The models also supply this information in good time 

allowing for a more informed decision regarding the appropriate action to be made. Also 

the concept of the methods used here for power performance assessment has one 

significant advantage. It provides a performance metric in order to measure how well a 

turbine is performing while removing the dependencies on effects of site specific factors. 

In this way a turbine‘s performance is judged according to its own circumstances which 

makes the performance metric fair across all turbines in a wind farm. While the results 

presented do not show an immediate use for diagnostics purposes, they do however 

provide a means to monitoring the efficiency of all of the turbines across a complete wind 

farm. This serves to provide a key element of decision support for wind farm operators by 

helping to provide a more complete view of the current status of the turbines in the wind 

farm. 

 

 

It can be seen that all of the factors involved in developing and training the NN models 

can have a significant impact on the accuracy of the relationship captured. Factors such as 

the training algorithm, the architecture of the network as well as the data selected for 

training the model all affect the output. The research carried out by (Garcia et al 2006) 

was the most advanced research to date found in the literature in this area of study. 

However, the results of the models developed and described provide earlier fault 

identification on the data set they were applied to.    
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5.10 Chapter 5 summary 

 

This chapter has described the means used to interpret the SCADA data, converting it 

from raw data to information which can be of benefit to a wind farm operator. The 

methodology used to develop the fault detection (gearbox and generator) and power 

estimation models was detailed. A number of different neural network architectures were 

trained and tested for both a turbine specific and a turbine generic training data set. The 

results of the fault detection models of both the generic and turbine specific models were 

compared and the generic models were found to consistently provide better accuracy 

across all of the models developed. The models were then applied to the remainder of the 

data set and a confirmed gearbox fault was detected in its incipient stages 6 months 

before complete gearbox failure. When compared with the result of 2 days for the model 

developed by (Garcia et al 2006) this improvement is considered substantial as the 6 

month window offers a much more practical time-frame for wind farm operators to 

determine a maintenance plan.   

 

The results of the generator winding model also provided early detection of overheating 

16 months before failure again giving considerable time for maintenance decisions.  

 

The results of the power estimation model were not as accurate as the fault detection 

models due to the imposing external factors described which can dramatically affect the 

accuracy of sensors measurements. This coupled with the limitations of the data available 

recorded by the SCADA system made real-time estimations less reliable. By introducing 

error bounds on the model estimations, an indication of turbine performance over the 

complete month could be used to provide an insight into the overall health of the turbine.     

 

It has been shown that corroborating the output between the gearbox based models (oil 

and bearing) as well as both power estimation models and generator model can provide 

useful information that allows for a more informative and holistic view of a turbine‘s 

current condition.  
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The next chapter will detail how the models developed in this chapter will be 

encapsulated into a system which can automate the complete data analysis process 

dealing with all aspects of data management and processing to monitor a complete wind 

farm. In this way the combined information extracted from the data by the models can be 

provided through one convenient point of contact for the operator.  
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6 Methods and Applications II: The Design of a flexible 
Multi-Agent System Architecture for the CM of wind 
farms 
 

In order to integrate all of the analysis techniques described in the previous chapter into 

one convenient point of contact for an operator, a framework that is capable of integrating 

multiple data sources and multiple independent processes is needed. Multi-agent systems 

(MAS) as detailed in chapter 4, provide the necessary framework for designing such 

systems, allowing different tasks to be encapsulated into separate modules (agents) with 

independent objectives.  

 

The deficiencies of the scheduled maintenance approach currently used for the condition 

monitoring of wind farms have already been outlined in chapter 2. The integrated 

monitoring system installed on the wind turbine produces large volumes of data which 

requires interpretation by an expert that can extract meaningful information from it. 

Currently the data is collated and left unused due to a limitation in resources of 

experienced personnel that can analyse the data. Because of this, unexpected failures 

which are not discovered during scheduled maintenance operations will only become 

apparent once the failure has actually occurred. A maintenance decision of whether to 

replace or fix the failed component is then decided based on an inspection of the plant. As 

has been discussed in chapter 2, this procedure is time consuming, unnecessarily 

lengthening turbine downtime leading to an un-optimised operating wind farm. These are 

considered problems which are apparent in all conventional monitoring systems which 

employ breakdown and scheduled maintenance policies.   

 

The purpose of this chapter is to describe the architecture of the MAS software developed 

using the JADE API (mentioned in chapter 4) for this thesis with the intention of 

attempting to realise and employ a condition based maintenance policy for wind farm 

O&M. In order to be of benefit to wind farm operators, the large volumes of SCADA 

data acquired must be automatically analysed in order so the operator is relieved of the 

process of manually analysing and interpreting the data. This chapter will describe how 

this automation process is realised through a delegation of tasks and responsibilities to a 
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number of different software agents working in conjunction with one another to achieve 

the overall system objective of automating the data analysis process.  Each agent‘s 

responsibilities and processes will be detailed along with the ontology designed and 

developed to allow the agents within the system to communicate with one another. The 

system is designed to be applicable to wind farms consisting of any number of turbines 

and model, where the data management and data processing required can be modified to 

accommodate such differences between wind farm sites. 

 

6.1 System Design and Architecture 

 

The initial stage of the system design is to decide how the overall task of automating the 

data analysis process should be split into sub-tasks and delegated to independent agents. 

Each agent is then responsible for processing and carrying out the necessary negotiations 

with the other agents within the system to achieve its own objective. In this way the 

overall system objective can be met.  

 

The main factor found to affect this design choice was the extent of the flexibility 

required by the application. For this thesis it was necessary to develop a system which is 

adaptable to any wind farm. This includes being able to process data stored in any format, 

carry out the appropriate data management to prepare the data for processing, route the 

data to the appropriate data processing agent, and finally present the processing output to 

the user.  

 

This stage of the development was iterative in nature and the final proposed system 

design was not reached instantly. The final proposed system architecture is shown in 

figure 6.1 below. 
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Figure 6.1: The Proposed System Architecture 

 

The system is composed of 3 different kinds of agents consisting of four independent 

interpretation modules, data parser agents to handle and prepare the data for processing, 

and, finally the data management agent. The data management agent is responsible for 

collecting and formatting the required parsed data reducing the overall volume of data 

into feature vectors which can then be sent ready for processing by the appropriate 

interpretation module. By simply adding in a new data parser agent, this gives the system 

the capability of reading data files of different formats from different wind farms, while 

the data interpretation agents can be easily retrained and updated to detect faults for 

different turbine models. The data management agent can also easily be given a new 

behaviour that can accommodate the new data type and incorporate this in its feature 
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vector creation and sending process. This architecture gives the system the flexibility to 

be applied to any wind farm of any size. 

 

For a final revised system, the output of the data processing agents would ideally be 

presented through a clear and concise user interface. This was however considered out-

with the scope of this research as the main focus is to prove the concept of an extensible 

and flexible automated fault detection system which provides the necessary framework 

for automating the data analysis process and offering the capability of simultaneously 

corroborating the output between a number of different analysis techniques  

 

6.1.2 The Ontology Design  

 

An integral part of the system design is the design of the ontology which allows the 

agents within the MAS to communicate with one another (see chapter 4). The ontology 

must be defined when the agents are being developed so that an understanding of the 

necessary communication between agents can be envisaged. The development of an 

ontology can often impede the flexibility and extensibility of the system in the future. As 

these are both important features necessary for the development of the system it is 

therefore vital to consider how an ontology is likely to extend over time rather than 

attempt to define a complete ontology from the beginning. Attempting to define a 

complete ontology from the start can potentially lead to the development of a closed 

ontology which in turn can lead to complications when upgrading the system. By keeping 

the ontology as simple as possible, covering only the modes of necessary interaction 

envisaged at the time of development (Noy & McGuiness) without trying to anticipate 

future extensions, an open ontology can be anticipated. Ironically by not anticipating 

future extensions, future additions to the system can be more easily implemented without 

the need for any of the existing agents already developed requiring modification.  

 

As described in chapter 4 (see section 4.5.2.1) an ontology can be defined through the use 

of concepts and predicates. A concept is used to represent objects and a predicate is a 

statement which evaluates to true or false. For the system designed for this thesis, a 
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concept only based ontology was used as the need for application specific predicates was 

not necessary. The FIPA-SL content language described in chapter 4 provided the basic 

predicates such equals, and, and implies which were found to be sufficient for the 

communication requirements necessary for this application.  

 

Each concept contains attributes (or ‗slots‘ to which they are sometimes referred), which 

help define the information it holds.  For example a power data concept used to represent 

one SCADA data instance from the active power measurement recorded is shown below 

in figure 6.2  

 

 

 

 

 

Figure 6.2: Power Data Ontology Concept 

 

As shown from figure 6.2, the attributes can be different data types such as float, string or 

even an instance of another concept within the ontology. For example the use of the 

turbine slot would mean the power data measurement read from the data files would be 

associated with the turbine from which the measurement was taken. In this way the power 

data concept holds more useful information.  

 

For future modifications to an ontology, an easily upgradable change would include for 

example introducing a new concept or a new slot which provides more information 

regarding a particular concept. However modifications which require the removal of slots 

or whole concepts would require amendments being made to the existing agents and 

therefore this should be avoided at all costs.  

 

Bearing these points in mind the final ontology designed for the system developed was 

modelled to capture all aspects of the data and any concepts necessary for its processing 

as wells as any information that may be generated as a result of this processing. The 
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ontology designed is shown in figure 6.3. The ontology was developed through the 

protégé v3.3 software. This software allows the user to define the ontology, and then once 

finished automatically create the ontology as a collection of classes (in JAVA) which can 

easily be imported and used within the intended piece of software.   

 

The ontology (shown in figure 6.3) consists of four parent concepts, namely Wind-farm, 

Turbine, Component and Data. The ontology developed aims to split the concepts into 

two main types, real world objects and intangible software objects necessary for data 

processing. The wind-farm, turbine and component concepts all model real world objects 

which allow them to be individually identified by the Agent within the system while the 

Data concept represents the items being processed and generated by the system. The 

wind-farm concept holds basic information such as the string based site name and 

location as well as the integer based no. of turbines. It also holds multiple instances of the 

turbine concept one for each turbine installed in the wind farm which allows each one to 

be individually identified. Each turbine concept consists of a string based turbine-name 

attribute, a gearbox and generator both of which are instances of the component concept. 

As the system evolves with new data processing techniques dedicated to process data 

associated with different turbine components, new component concepts can be added 

under the component hierarchy and included as slot instances within the turbine concept.  

The Data concept represents all forms of intangible objects prepared (Parameter), 

processed (Feature Vector) and generated (Generated Output) by the system. Any 

instance of the Data concept can take one of these forms. Each of these 3 different forms 

of data can further go on to take different forms which define exactly what object they 

represent to give further meaning to the various data forms used by the system.  

 

As can be seen from figure 6.3, only the necessary concepts which will allow 

communication to occur between the agents regarding the SCADA data, the expected 

processing and the generated system output taking place between the agents for the 

current level of system processing was included into the ontology. The parent concepts 

where defined to be of a general nature, in this way any future addition to the system can 

easily be added under the appropriate hierarchical heading.  For example if new forms of 
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data are acquired and are to be included in the system‘s processing, then this can be 

added under the DATA concept. Each agent within the system is responsible for creating, 

sending and or processing particular concepts from the ontology. The following section 

describes the functionality of each of the system agents detailing how the ontology 

concepts are used by the system for inter-agent communication.  
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6.1.3 The System’s Agents   

 

As was briefly described in chapter 4 (see section 4.4.1) agents are built around what is 

known as a behavioural architecture. Each agent‘s responsibilities are split into 

behaviours that are executed and coordinated in such a way that enable it to complete its 

task. When developing an agent, the programmer is given the flexibility to produce the 

desired functionality using a number of different behaviour types. There are generic 

behaviours that can be called at any point in time, reactive behaviours that can react to a 

specific situation and timer-based behaviours that execute in a timely fashion at set time 

intervals. More details on the different types of behaviours available for use are 

documented by Bellifimine et al 2007. Regardless of the type of behaviour, they each 

must implement two main methods, namely the action() method and the done() method. 

The action method is the segment of code which defines the behaviours‘ actions and the 

done method defines the state or conditions where the behaviour is considered to be 

completed.   The Agent scheduler (hidden from the programmer) which is implemented 

by the base agent class controls the behavioural operation of each agent using these 

methods.  It runs the action methods of all the behaviours in the ready queue and then 

checks the done method to determine if the behaviour has been completed. Once the 

conditions set in the done method are met, the behaviour is removed from the ready 

queue by the scheduler and this process is repeated as the agents add and remove 

behaviours as necessary to complete their objective.  

 

The following sections describe the functionality of the different system agents, the 

behaviours they implement and the ontology concepts they utilise for communication.  

 

 

The Data-Parser Agents 

 

The data parser has the responsibility of reading the data files, parsing them for the 

appropriate data and then sending this data in an understandable format to the processing 
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agents. It does so by reading the SCADA data files and creating the appropriate Data 

Concepts for the SCADA parameter read. This allows the ‗parameter type‘ of each data 

point read by the parsers to be identified by the remainder of the agents within the 

system. For example, the power data parser agent accesses the power data files, reads one 

measurement for all of the turbines within the wind farm at the current time stamp, 

creates a power data concept for each measurement read, and then completes the 

attributes with the appropriate information. In this format the data is ready to be put into 

the appropriate input vectors required for each model detailed in chapter 5, encapsulated 

in the interpretation agents. 

 

There is a data parser agent for every data type used by the system as this allows for more 

flexibility. New data types can easily be added to the system by introducing a new parser 

agent and similarly data types no longer used by the system can easily be removed by 

removing the particular parser agent. The data files acquired for this thesis were stored in 

comma separated files (.CSV format). Figure 6.4 shows an extract from the active power 

file for the month of April 06.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Extract from Exported SCADA file from SCADA Database 

 

In order to simulate a real-time environment, the parser agents were developed to operate 

in a manner which polls the data files periodically to read the next data point. This 
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method can be applied in the same manner to a real-time environment, the only difference 

being the data source polled for the newest data would be updated as necessary to collect 

new data instances as they are generated by the turbine monitoring system.  

The functionality of the data parsers is split into the following three main behaviours:  

 

1. Parse data behaviour 

2. Parse waker behaviour 

3. Subscription responder behaviour 

The parse data behaviour is responsible for accessing the data file, finding the required 

data and storing it temporarily in a format that can be sent to the data management agent. 

The parse waker behaviour is a timed behaviour that controls the time interval between 

readings of the data file to parse the next available measured value. The data parser 

agents are data providers, so upon initiation they register with the DF that they can 

provide a specific type of data. In order to do so they must exhibit a subscription 

manager (FIPA IP Spec) interface that allows them to handle any number of agents that 

are interested in receiving this data that they can provide. The subscription responder 

behaviour allows it to do this by handling any subscriptions sent to it. It then takes care of 

all the subscribed agents (the data management agent that requires this data to prepare the 

data for processing) by sending out the data to it as soon as it becomes available.  

 

To summarise, the overall functionality of the data parser agents can be described by 

figure 6.5 below. The raw data is streamed through the appropriate data parser, one data 

point at a time. This data is converted into the appropriate data concepts so they can be 

identified by the remainder of the agents within the system and then sent off to the 

subscribed agents.  
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Figure 6.5: Summary of Data Flow through Data parser Agents (the data preparation stage) 

 

The Data Management Agent 

 

The role of the data management agent is to organise the data received by the data parsers 

into the corresponding input vectors required by the fault detection agents. It therefore 

subscribes to all of the data concepts prepared by the parsers temporarily storing this data 

until there are a sufficient number of data points available to create the input vectors. The 

reason for this is that each input vector contains regressive inputs, with the last of these 

readings going back to t-3 previous readings for the power input used for the three fault 

detection models. As the data is read into the system by the parsers one data point at a 

time at the current time stamp, a moving window is stored for the last four readings (t, t-

1, t-2, t-3) for each SCADA parameter type.  Upon initiation the data-management agent 

is supplied with the number of turbines installed in the wind farm (information supplied 

by the operator). The data-management agent then uses this information to prepare the 
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data storage windows, creating an individual window for each data type for every turbine. 

With the current system setup and the data available (i.e. 5 data types), there would be 5 

data windows created per turbine each holding 4 data instances.  

 

As the data is streamed through the system, the stored data points are propagated through 

the data storage window allowing new vectors to be created with each data point received 

by the parsers. In other words each of the 26 data concepts are moved from time point (t) 

in the data storage windows to time point (t-1) when a new set of data type concepts is 

read into the system. This process is repeated as the data is read into the system. These 

actions are depicted more clearly in figure 6.6 which details the data flow through the 

data management agent below. It is important to remember that each of the data parsers is 

an independent agent which can reside on different computing resources (i.e. different 

machines). Therefore the data concepts sent by them are not necessarily sent and received 

by the data management agent in a synchronised manner. Therefore, in order to avoid 

synchronisation errors at the data processing stage by the data processing agents, the data 

management agent consistently checks if there is sufficient data stored in the data 

windows to create the input vectors before attempting to send them off for processing. 

This described functionality is carried out through the following main behaviours: 

 

1. Power data Subscription Initiator 

2. GB Oil Subscription Initiator 

3. GB Bearing Subscription Initiator 

4. Ambient Subscription Initiator 

5. Wind Speed Subscription Initiator  

6. Store Data 

7. Create Vectors 

8. GB Oil Vector Subscription Responder  
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9. GB Bearing Vector Subscription Responder  

10. Generator Vector Subscription Responder  

11. Power Estimation Vector Subscription Responder 

The subscription Initiator behaviours are responsible for subscribing to the appropriate 

Data-Parser agent in order to receive the required data. The store data behaviour stores 

the data received from the parsers into the corresponding data-storage window depending 

on the type of data received by the data-management agent. Once there is sufficient data 

stored in the data windows, the create-vectors behaviour is initiated which then sorts the 

data into the appropriate input vectors before sending them on to the subscribed agents 

via the subscription responder behaviours. Figure 6.6 depicts the data flow through the 

data-management Agent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Summary of Data Flow through the Data Management Agent 
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The Data Interpretation Agents 

 

The role of the Interpretation Agents is to identify the abnormal SCADA data instances in 

the parameters monitored which represent the manifestation of faults within the turbines‘ 

components. These agents encapsulate the 3 fault detection models as well as the power 

estimation model developed and described in chapter 5. The models developed are 

utilised by the agents to give them the ability to analyse the large volumes of SCADA 

data prepared and formatted by the data-parsers and the data management agent. These 

agents automate the process of data analysis to determine which data is of interest to the 

wind farm operator. By identifying these abnormal instances of data automatically, only a 

considerably reduced volume of data is required to be passed on to the operator for their 

attention. This dramatically can save both time and resources from the operation and 

maintenance perspective.  

 

By highlighting the information of interest to the operator the important and final 

decisions regarding the maintenance of the machines is still determined by the operator. 

This ensures that this way the system can offer a form of decision support to the operator 

without interrupting wind farm operation as was intended. 

In order to encapsulate the 3 NN-based fault detection models developed (described in 

chapter 5), an open source neural network Application Programming Interface (API) 

named JOONE (Java Object Oriented Neural Engine) was utilised to allow the NN 

models developed and trained in the MATLAB package to be incorporated into the 

Interpretation agent‘s code. The MATLAB NN toolkit conveniently provides the ability 

to view the trained NN weights and biases. This was useful as these values hold the 

knowledge attained by the models therefore allowing them to be exported and 

incorporated into the Agent code. The same NN could therefore be re-constructed using 

the JOONE API where networks with the same number of layers, neurons and neuron 

transfer function used by the models to be reconstructed and utilised within the 

Interpretation agent‘s behaviours.  

The three fault detection based agents are built using the same behavioural architecture as 

they all operate in the same manner using a NN-based model which provides some 
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numerical output. Their operation is identical in nature with the only discrepancy between 

them being the NN model loaded in to the each agent‘s memory. The power estimation 

agent operates in a different manner due to the differences in the model built and its 

resulting output.  

 

NN-Based Fault Detection Agents 

 

The functionality of the fault detection agents is split over the following three behaviours: 

 

1. load Model 

2. Feature Vector Subscription Initiator (for the appropriate Feature Vector)  

3. Process Vector (for the appropriate Feature Vector) 

As described in chapter 5, the temperature based fault detection models are trained in an 

offline fashion where the appropriate data sets are specifically prepared for this purpose. 

Therefore upon initiation, each fault detection agent loads up the previously trained NN 

model stored in the numerical form of weights and bias values, and then creates the 

corresponding NN with the appropriate number of layers and nodes. This model is stored 

in the agent‘s memory so that it can be called up for use at any point in time. The process 

of updating the model can therefore be carried out in a simple straightforward manner as 

a new model (represented by different weights and biases) can easily be loaded giving the 

agent different interpretation capabilities depending on the skill learned and captured by 

the NN used.  

 

The Feature Vector Subscription Initiator behaviour takes care of subscribing to the agent 

(Data-management agent) which provides the particular vector needed for processing. 

Finally the process Vector behaviour uses the feature vector received, feeds this as an 

input to the loaded NN model, which in turn provides an output to the user. The form of 

the output is the value of the model estimation as well as the actual measured output. In 
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this way the results can be graphed to provide a visual representation of the model 

estimates compared to the actual temperature trends recorded in the SCADA data.  

 

The important instances of data are highlighted to the user through Alarm concepts which 

can be generated by each of the processing agents. An Alarm concept is generated 

depending on whether anomalous behaviour (abnormally high temperatures) is detected 

for a sustained period of time. This functionality is achieved through a direct difference 

check between the model estimate and the actual temperature recorded. A difference 

greater than 3˚C (larger than the 2.21 RMS estimation offset error listed in table 5.10 and 

the results of the generic models presented in chapter 5 section 3) between the two values 

triggers a monitoring process in the Process Vector behaviour to determine the severity of 

the deviation. This monitoring process carries out checks on consequent pairs of model 

estimates against actual temperatures for a duration of one hour. As data instances are 

generated every 10 minutes, this represents 6 data pairs which must be checked and 

compared. If the consequent pairs produce a difference of 3˚C or greater i.e. the 

deviations consistently become more severe within this duration of one hour, then an 

alarm concept is generated by the processing agent. This process of monitoring helps to 

avoid transient errors in both the data recorded by the CM system and the model 

estimates resulting in a generated alarm concept, thus dramatically reducing the chances 

of false alarms (or false positives). The sensitivity of these alarms can be adjusted by 

modifying the duration for which this monitoring process occurs where increasing the 

duration would result in a less sensitive alarm threshold, and decreasing the duration 

would create a more sensitive alarm generation system. This level of sensitivity can be 

left to be determined by the operator as different turbine models are not guaranteed to 

operate with the same operational characteristics. The results presented in chapter 5 (see 

sections 5.5 & 5.6) showcase the number of alarms flagged by the system for the faults 

detected by each model.  
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Power Performance Agent 

 

The principal difference in operation between the power performance agent and the fault 

detection based interpretation agents is due to the online training process used to learn the 

power characteristic of each turbine as opposed to the offline training used for the fault 

detection models.  The functionality of the power performance agent is distributed across 

four behaviours: 

 

1. PowerPerformance feature Vector Subscription Initiator 

2. TrainData 

3. LearnCurve 

4. MonitorData 

Upon initiation, before any of the behaviours are called, the power performance agent 

prepares the appropriate memory space for creating and storing the learned power 

characteristic curve for each turbine in the wind farm. A Boolean based variable which 

states whether a learned curve for each turbine exists is also created and set initially to 

false since the curves have not yet been learned as the agent is initially started. This 

Boolean variable controls the mode of operation of the power performance agent calling 

one of two behaviours, namely the TrainData or MonitorData behaviours. When the 

turbine exists variable is set to false for a particular turbine, the mode of operation for that 

particular turbine is set to training mode. Similarly if the Boolean variable is set to true 

then the corresponding mode of operation is set to Monitoring mode. For each mode of 

operation the appropriate behaviour is called. In a wind farm employing a CBM policy, 

each turbine in the wind farm will undergo maintenance operations at different times 

according to its current health conditions. The functionality provided by the Boolean 

variable is therefore considered advantageous since it gives the agent the capability of 

simultaneously operating in different modes for each turbine in the wind farm monitored 

by the system. This provides the flexibility required by the system to operate in the 

appropriate mode in order to accommodate every turbine‘s specific operating schedule.  

Since the mode of operation is simply controlled by a Boolean variable, a new power 
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curve for any particular turbine can easily be learned at the request of the operator by 

simply resetting the value of this variable to false.  

 

The subscription initiator behaviour is responsible for requesting and receiving the power 

performance feature vector data. The power performance feature vector contains the 

appropriately time stamped power, power SD, wind speed and wind speed SD pairs 

necessary for the training and monitoring phases of the developed power performance 

algorithm detailed in chapter 5 (see section 5.7).  

 

Once a feature vector is received, (when operating in training mode) the TrainData 

behaviour is called. This behaviour is responsible for storing the data received until there 

is sufficient data available in the agent memory store to learn the turbines corresponding 

power characteristic. Once sufficient data has been collected, the LearnCurve behaviour 

is called calculating the averaged power curve and the associated alarm limits. The 

turbine exists Boolean variable is then set to true which then triggers the MonitorData 

behaviour whenever a new feature vector is received switching the agents functionality 

from training mode for the specific turbine to monitoring mode.  

 

The MonitorData behaviour is then responsible for classing all consequent power and 

wind speed pairs with the appropriate performance label according to where they lie in 

relation to the learned power characteristic curve. It stores the labels generated for the 

complete month, and then using this information creates a performance concept 

summarising the turbines overall performance over the month. Figure 6.7 below depicts 

the data flow through the Data-Interpretation layer. 
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Figure 6.7: Summary of Data flow through the Data-Interpretation Layer 

 

 

6.1.5 Summary of System Architecture  

 

When figure 6.5, 6.6 and 6.7 are all put together, a complete view of the data flow from 

the point where it enters the system developed as raw data to the point where it leaves the 

system as information can be seen. From figure 6.8 below, it can be seen that the data 

flow is considerably reduced as the data propagates upwards through the layers of the 

system and out through the data-interpretation layer. This is beneficial from a wind farm 

CM perspective especially given that the JADE MAS framework allows agents to be 

distributed and run on a variety of computing resources interconnected through either 

local or wide area networks or even a combination of both. The current data acquisition 

setup currently in place at wind farms (at the time of writing) is through the integrated 

SCADA systems installed at in the wind farms at the time the site is commissioned. 

These systems collate all of the data recorded from each individual turbine installed at the 

wind farm and store it at some central repository such as the central PC pictured in figure 

6.9.  
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By distributing the developed agents (described in this chapter) so that all of the 

processing is carried out on-site at the wind farm, the volume of data for investigating 

potential problems at a wind farm which would require to be transmitted or downloaded 

from a remote location would be dramatically reduced. This would result since only the 

alarm and performance output of the interpretation agents would need to be sent back to 

the remote location accessing the wind farm information. The alarm information sent by 

the processing agents would allow the operator the ease of investigating the turbines of 

interest with sufficient time to decide what maintenance action should be taken from the 

convenience of a remote location. This is especially beneficial for offshore sites where 

access is severely limited.  

 

As mentioned previously, an interface agent could be developed and run at the remote 

offsite location. This is the only part of the system yet to be developed as part of the 

research presented in this thesis and forms part of the useful future work section in 

chapter 7. This agent could subscribe to the alarm and performance information produced 

by the interpretation agents. In this way the alarm information can be presented in a clear 

and concise way to the operator.  
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Figure 6.8: The Data Flow through the System’s Various Layers 
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Figure 6.9: SCADA Wind farm network infrastructure  

 

As has been mentioned before the Agents developed within the system can easily handle 

data from any number of wind turbines. Also the NN based normal behaviour models 

developed and embedded within the processing agents can be retrained to accommodate 

new and different turbine models. This would allow the system to be deployed at larger 

wind farm sites of any size e.g. Whitelee, Europe‘s largest wind farm making the 

developed system extremely flexible.  

 

6.2 System Testing through Agent Interaction 

 

Once the individual software agents were developed, a test run of the system was carried 

out in order to ensure that each agent functioned collectively in conjunction with one 

another to achieve the overall system objective. When the system is initialised and each 

of the agents is launched, the interaction between the agents and the DF can be viewed 

through a JADE graphical user interface (GUI) tool. This tool allows the programmer to 

supervise the operation of the system to ensure correct operation of the system as a whole 
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by monitoring the messages sent between the agents. While each agent can be launched 

individually, to simplify this process, an initialisation agent was created to launch the 

remainder of the agents within the system. For this thesis the agents were all run on the 

same computing resource. This was sufficient for testing purposes as the necessary agent 

interactions for system operation still take place between the agents in the same manner 

regardless of how they are distributed across computing resources. An example of the 

interactions between the agents on system start up and data being read and passed 

through the layers of the system is shown in figure 6.10 below: 

 

 

 

Figure 6.10 (above) and figure 6.11 (below) depict a scenario of communication where a 

number of data parsers and the data management agent are preparing data for one 

processing agent, namely the gearbox oil processing agent. This particular setup was 

chosen to allow for clarity in the explanation and also to portray agent interaction through 

all three layers of the system.  

Figure 6.10: Agent interaction as the system is initialised 
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Figure 6.10 portrays the communication taking place from message 0 – 28. These 

messages display the interaction from the point of system initialisation (i.e. as soon as the 

agents have been launched) up to the point where the agents have registered their services 

with the DF successfully and are now ready to carry out their processing.  The initial 

request and inform messages sent between each agent and the DF signify the agent 

checking with the DF that no other agent with the same name already exists on the 

platform providing the same services. For example messages 3 and 5 represent the 

PDataParser agent carrying out this process.  

 

In the case where an agent must also subscribe to the DF for a service which it requires to 

complete its task, further negotiations must take place between the DF and the involved 

agents in order to set up this link of communication between them. For example the 

DataManagement agent (which requests all data objects to be sent to it in order to 

organise and format it into feature vectors), sends its second request message (message 

14) to the DF requesting information regarding which agent on the platform provides the 

particular data it requires. The DF responds with an inform (message 17) supplying the 

information regarding the agent‘s which supply this information. For the scenario 

presented in figure 6.10, only the gearbox oil processing agent was launched along with 

the appropriate data providers which were required to provide it with the necessary data 

types. The data management agent therefore automatically sets up subscriptions for the 

data types available provided by the four parser agents running for this particular scenario 

sent via the DF (messages 20-23). The DF then responds accordingly to the subscribe 

messages by informing the DataManagement agent of the details and network addresses 

of the agents which can supply it with the data it requires. 



 213 

 

 

 

Another subscription is also set up between the GBOilProcessing agent and the DF 

shown by messages 16, 18, 19 and 24. These messages represent the subscription 

required between the DataManagement agent and the GBOilProcessing agent where the 

former provides the latter with the feature vectors ready for processing. 

Figure 6.11 shows the result of both these subscription procedures. As each parser agent 

parses the data files and creates the appropriate data concepts, it then sends this as an 

inform message to the DataMangement agent as requested.  This process is continued all 

the while the subscription is in place where the duration of how long it is established is 

left at the discretion of the subscribing agent. In the case of this system the process of 

data analysis is ongoing and so the subscriptions are left intact for the entire duration the 

system is operational. 

 

After four data concepts from each data parser have been sent to the DataManagement 

agent (shown by messages 29-40) the data windows contain sufficient data to create the 

Figure 6.11: Data preparation and management based messages 
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feature vector. Only once the feature vectors have been created does the 

DataManagement agent begin sending this information to the GBOilProcessing agent 

regardless of when the subscription was set up. For every four data concepts that are 

parsed and sent to the DataManagement agent, a new feature vector is created and sent to 

the GBOilProcessing agent shown by messages 45, 50 and 55. 

 

For this agent interaction test scenario it can be seen that all of the launched agents 

perform the necessary negotiations which are required to take place in order to facilitate 

the automated data processing and interpretation objective of the system. 

 

6.3 Research Outcomes & Contributions 

 

This chapter has described the multi-agent system software architecture designed and 

developed for the purpose of automating the SCADA data analysis procedure in this 

thesis. It has detailed the different independent modules (agents) within the system and 

the role they play towards achieving the system‘s objective. The ability to automate the 

complete data analysis procedure in real-time as the data is generated by the CM systems 

simplifies the role of a wind farm operator when it comes to determining maintenance 

decisions regarding their machinery.  Every CM system has the potential to generate data 

at a faster rate than can be manually analysed by an engineer. The design of the 

developed system relieves the operator from this problem by highlighting only the 

interesting information within the generated data automatically without any human 

intervention. In this way the operator need not consume valuable time monitoring the 

system as it operates but rather wait until they are notified by the system through the 

alarms which are generated.  

 

The ontology which defines the concepts that allow inter-agent communication has been 

explained in detail. The internal behaviours of each agent and how each functions to 

achieve its desired task as well as the ontology concepts used by each agent have all been 

detailed. The system test undertaken allowed agent interaction and functionality to be 

examined. Using the JADE GUI tool the results of this test showed that the desired 
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system operation was realised, evident through the messages sent between the agents 

which followed the correct course of communication as the data is propagated through 

the different processing layers of the system.  

 

In summary the novel contributions and conclusions presented within the research 

presented in this thesis can be summarised as follows: 

 An investigation of AI based diagnostic techniques suitable for achieving 

successful novelty detection models for a variety of parameters found in a real 

wind farm SCADA data set (chapter 3) 

 Working prototypes of AI based diagnostic techniques and an online learning 

power performance model applied to real wind farm data supplied by Scottish 

Power. (chapter 5) 

 An investigation into the development of an extensible and flexible framework for 

carrying out data formatting, analysis and interpretation of wind turbine SCADA 

data for a collection of turbines in a wind farm of any size with any turbine model. 

(chapter 6) 

 Design of an ontology that can be used between agent modules for the application 

of wind farm SCADA data analysis. (chapter 6) 

 An implementation of a novel working prototype of a flexible and extensible wind 

farm SCADA data analysis multi-agent platform. (chapter 6) 

 Presentation of a case study involving a confirmed gearbox failure detected 

almost 6 months in advance through use of the developed normal behaviour 

models. (chapter 5) 

 Discussion (with a brief example) of how the framework can be used to improve 

an operator‘s decision making through corroborating the output of multiple 

independent data analysis processes. (chapter 5) 
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7. Discussion, Conclusions and Further Work 
 

Condition Monitoring systems installed on wind turbines have the potential to save a 

utility company money through the reduction in frequency of unplanned outages. The 

installation of these CM systems alone is not however sufficient to achieve this and work 

is required to maximise their potential. Automating the collation and formatting of the 

data as well as carrying out the difficult task of extracting meaningful information from 

the raw data streams recorded are all necessary in order to prioritise important 

information to the operator. 

 

It has been established that the Multi-Agent System developed for the CM of wind farms 

in this thesis can provide the necessary framework to automate the SCADA data analysis 

procedure. The normal behaviour models developed can also provide the necessary fault 

detection mechanism to identify faults within the raw SCADA data. The encapsulation of 

the models within this automated framework therefore satisfies the objective of relieving 

the operator from the tedious task of manually analysing and interpreting arduous 

volumes of data. This was achieved through two main areas of research.  

 

The first area considered for this thesis was the development of the mechanisms used to 

allow for the interpretation of the raw SCADA data streams generated by the integrated 

CM systems. Taking into consideration the unlabelled data sets provided for the project a 

number of well established and applicable techniques were explored in the area of fault 

detection and diagnosis for the purpose of developing normal behaviour models. Three 

neural network fault detection models were proposed for the gearbox oil, gearbox bearing 

and the generator winding temperature parameters as well as a statistical based power 

model. The development process of all four models each involved data preparation, 

training and testing phases which have all been described. Both generic and turbine 

specific models were trained, tested and compared for each of the three temperature 

based fault detection models. Each time, the accuracy of the generic model was found to 

outperform its specific model counterpart. A confirmed gearbox fault detected six months 

in advance by the models presented in this thesis was compared to the most similar model 
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developed in the research literature. The performance of the models developed in this 

thesis provided a much improved point of detection in advance of the failure over the two 

day window of the model found in the literature. This earlier point of detection benefits 

the wind farm operator in that it offers a more practical window of opportunity to 

establish the most appropriate maintenance decision leading to an overall improved O&M 

of the wind farm.  

 

Once the fault detection models were developed, the potential for corroborating the 

output of the models was investigated to determine the benefit of combining the extracted 

information from each model. Two potential combinations were defined; the output of the 

two gearbox based models, and, the generator winding model combined with a statistical 

based power model (replicated from the literature for the purposes of corroboration and 

providing an overall indication of turbine performance). The results obtained from this 

investigation showed potential but a limited number of confirmed fault instances in the 

raw SCADA data provided prohibited a more elaborate and detailed study.  

 

The second area considered for this thesis was the automation of the data interpretation 

and fault detection process. The Multi-Agent framework was selected to achieve this task 

for the wind farm CM application. The power of this framework is innate within its 

ability for flexible communication between independent processing modules (agents) 

which enables them to form alliances automatically to solve the desired problem. The 

system designer is also given the flexibility to define the ontology which controls the 

concepts and objects that agents within the system communicate about. The system and 

the ontology developed for this thesis utilised these benefits to provide a flexible, 

extensible and easily distributable framework which can readily incorporate future 

analysis techniques without requiring modifications to the existing system. The ontology 

was developed with a generic wind farm monitoring application in mind making the 

system easily applicable to any wind farm. This was achieved by developing the ontology 

in a manner which does not constrain future additions for new types of communication 

which may become necessary between the agents.  
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The range of agents developed and their ease of distribution on interconnected computing 

resources provide the necessary processing platform for wind farm SCADA data required 

to considerably reduce the flow of the raw data as it propagates through the processing 

layers of the system. The outcome of this process allows the system to provide only the 

information of interest to the operator at a desired remote location. The advantages of 

such a system if implemented in a live operating wind farm has the potential to 

dramatically limit the volume of data which must be transmitted between the onsite wind 

farm data servers and the more convenient offsite locations which can prove to be 

beneficial especially for difficult to reach offshore wind farm locations. This would lead 

to the saving of both time and cost by eliminating the need to implement high capacity 

communication network infrastructures between the onsite and offsite locations. In 

conclusion the novel contributions delivered by the research presented in this thesis are: 

 

 An investigation of AI based diagnostic techniques suitable for achieving 

successful novelty detection models for a variety of parameters found in a real 

wind farm SCADA data set 

 Working prototypes of AI based diagnostic techniques and an online learning 

power performance model applied to real wind farm data supplied by Scottish 

Power. 

 An investigation into the development of an extensible and flexible framework for 

carrying out data formatting, analysis and interpretation of wind turbine SCADA 

data for a collection of turbines in a wind farm of any size with any turbine model. 

 Design of an ontology that can be used between agent modules for the application 

of wind farm SCADA data analysis.  

 An implementation of a novel working prototype of a flexible and extensible wind 

farm SCADA data analysis multi-agent platform. 
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 Presentation of a case study involving a confirmed gearbox failure detected 

almost 6 months in advance through use of the developed normal behaviour 

models.  

 Discussion (with a brief example) of how the framework can be used to improve 

an operator‘s decision making through corroborating the output of multiple 

independent data analysis processes.  

 

7.1 Further Work 

 

The overall system developed is of archival value to future researchers working in this 

field as the platform developed can be easily extended and built upon. While the system 

has satisfied the objectives which were set out to be achieved in this thesis, it is 

recognised that there are a number of areas with room for improvement which can be 

investigated to attain a more robust system. From adding more analysis and interpretation 

techniques, more data sources containing more recorded parameters and the development 

of a user interface. These specific areas of future work are investigated and outlined 

below with descriptions of the benefits they would pose for the system.  

 

 

 

7.1.2 More Data and More Parameters Containing Interesting Events 

 

For the research carried out in this thesis only basic SCADA data parameters were 

available. While the author was fortunate to be supplied with data which contained some 

interesting events (faults), the frequency of these events was limited. This prohibited 

extensive testing to obtain an insight into the reliability and accuracy of each fault 

detection module. By gaining access to more SCADA data along with fault records from 

both different wind farms which monitor different turbine models, this would allow for a 
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more thorough testing phase to gain an insight into how effective the techniques used for 

fault detection actually are.  

 

Using data from different wind farm sites would serve the purpose of determining 

whether the techniques can adjust equally as well to varying environmental conditions 

and still provide good performance in terms of early fault identification. Also data from 

different turbine models would serve the purpose of determining how effective the NN 

models are at capturing different models of normal behaviour.  

 

The use of fault records would prove to be very useful as they could be used to identify if 

the models accurately detect the correct failures. This would allow an empirical study to 

be undertaken to determine the percentage of successful faults detected within a sufficient 

time window thereby determining how robust the methodology is to detecting failures in 

the various components in their early stages. 

 

7.1.3 The Addition of New Interpretation Agents  

 

One of the aims of gaining access to more data sources is to allow further testing and 

refinement of the models developed in this thesis. Another aim however is include new 

data analysis techniques which can classify defects as further research is carried out and 

incorporate them into new Interpretation Agents. In this way the overall diagnostic result 

of the system can be improved. The use of fault records for example can also be used to 

train up classifier techniques reviewed in chapter 3 on diagnosing particular types of 

defects that occur within the components rather than just identifying the faulty 

component. This would result in a system which provides more detailed information to 

the operator.  By gaining access to different parameters such as vibration data for 

example new interpretation techniques can be used to extract meaningful information 

regarding the health of particular aspects of the turbine for example the overall drive train 

or even rotor blade imbalances through structural tower oscillations. Therefore by 

combining new data sources and investigating new data interpretation methods the 

overall diagnostic capability of the system can be increased. The framework of the 
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system developed in this thesis welcomes the addition of new techniques without 

requiring any modifications to the existing system.  

 

 

 

 

7.1.4 The Inclusion of a System User Interface  

 

Work is already under way to develop a User Interface for the system. The purpose of a 

User Interface Agent as has been mentioned in chapter 6 is to provide a clear and concise 

summary of the information provided by the system through one point of contact for the 

user. All of the resulting information from the data processing carried out in the data-

preparation and data interpretation layers of the system would be depicted by this User 

Interface. A modification to the Alarm concept can be the inclusion of all of the recorded 

consequent data instances which are classed as anomalous which trigger one alarm. By 

doing this a visual comparison can also be graphed on the user interface allowing the user 

of the system to visually determine the severity of the anomaly. As highlighted in chapter 

6 this is an addition to the alarm ontology concept, therefore it can be considered a 

straight forward upgrade which can be made to the ontology.  

 

Another aspect where a User Interface would prove advantageous is the fact that it can be 

launched from a remote location where the remainder of the system‘s processing agents 

can be located on the onsite data server. The user interface would subscribe to the 

processing agent‘s output and therefore receive all of the interesting information from the 

convenience of a remote location. This would prove extremely useful particularly for 

offshore wind farm locations since the overall volume of data needing transmitted 

between onsite and offsite locations would be greatly decreased. In this way the 

communications network infrastructure installed in wind farms can be built appropriately 

to suit these lower data transfer rates at a reduced cost.  
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7.1.5 Testing the System in an Industrial Environment 

 

The results presented by the models developed in this thesis are based entirely on data 

recorded from a live operating wind farm. Therefore they accurately replicate how the 

system would operate in a real industrial environment. However the purpose of deploying 

and testing the system in a real live environment would be to gain an understanding of 

other user requirements which may only become apparent once the system is running in 

the proposed environment it was designed for. Other important user features such as 

being able to request access to specific portions of raw data before the anomaly was 

detected for example might prove useful from an operator‘s perspective. The best way to 

determine such features is through further consultation with the projects industrial 

partners and the personnel who would typically be using the system once it is in place. By 

carrying out such a practice, wind farm operators would gain confidence in using the 

system, therefore helping to transition utility companies away from their typical 

scheduled maintenance policies to employ a more condition based maintenance approach.  

The natural evolution of such a process however would be to gain access to more 

SCADA data from live operating wind farms to further test the system and the models as 

detailed in the earlier sections of this chapter to ready the system for industrial 

deployment.  
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Appendix I 
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 Aug 05 Sep 05 Oct 05  Nov 05 Dec 05 

T8  

Good:                              3719 

Islanding/scheduled:       195 

Bad:                                382 

Unscheduled:                  12 

Performance figure:      90.8% 

 

Good:                            3430 

Islanding/scheduled:     115 

Bad:                              559 

Unscheduled:                204 

Performance figure:     82.3% 

 

Good:                            3688 

Islanding/scheduled:     23 

Bad:                              342 

Unscheduled:                0 

Performance figure:     91.5% 

 

Good:                            3885 

Islanding/scheduled:     130 

Bad:                              259 

Unscheduled:                164 

Performance figure:     90.2% 

 

Good:                            4102 

Islanding/scheduled:     14 

Bad:                              210 

Unscheduled:                5 

Performance figure:     95% 

T15  

Good:                            3760 

Islanding/scheduled:     195 

Bad:                              545 

Unscheduled:                3 

Performance figure:     87.3% 

 

Good:                            3700 

Islanding/scheduled:     53 

Bad:                              607 

Unscheduled:                1 

Performance figure:     85.9% 

 

Good:                            3701 

Islanding/scheduled:     50 

Bad:                              327 

Unscheduled:                2 

Performance figure:     91.84% 

 

Good:                            4061 

Islanding/scheduled:     319 

Bad:                              242 

Unscheduled:                5 

Performance figure:     94.3% 

 

Good:                            4188 

Islanding/scheduled:     245 

Bad:                              128 

Unscheduled:                1 

Performance figure:     97% 

T16  

Good:                            3767 

Islanding/scheduled:     51 

Bad:                              508 

Unscheduled:                33 

Performance figure:     87.4% 

 

Good:                            3721 

Islanding/scheduled:     0 

Bad:                              593 

Unscheduled:                3 

Performance figure:     86.2% 

 

Good:                            3619 

Islanding/scheduled:     2 

Bad:                              410 

Unscheduled:                1 

Performance figure:     89.8% 

 

Good:                            3896 

Islanding/scheduled:     33 

Bad:                              389 

Unscheduled:                23 

Performance figure:     90.4% 

 

Good:                            3792 

Islanding/scheduled:     0 

Bad:                              448 

Unscheduled:                11 

Performance figure:     87.8% 

 Jan 06 Feb 06 Mar 06  April 06 May 06 

T8  

Good:                            3761 

Islanding/scheduled:     149 

Bad:                              218 

Unscheduled:                338 

Performance figure:    87.12% 

 

Good:                            3768 

Islanding/scheduled:     298 

Bad:                              206 

Unscheduled:                46 

Performance figure:     93.73% 

 

Good:                            3993 

Islanding/scheduled:     364 

Bad:                              292 

Unscheduled:                23 

Performance figure:     92.7% 

 

Good:                            3957 

Islanding/scheduled:     444 

Bad:                              219 

Unscheduled:                132 

Performance figure:     91.9% 

 

Good:                            3089 

Islanding/scheduled:     203 

Bad:                              218 

Unscheduled:                1001 

Performance figure:     71.7% 

T15  

Good:                            4185 

Islanding/scheduled:     624 

Bad:                              129 

Unscheduled:                3 

Performance figure:     96.9% 

 

Good:                            3799 

Islanding/scheduled:     445 

Bad:                              221 

Unscheduled:                0 

Performance figure:     94.5% 

 

Good:                            4044 

Islanding/scheduled:     444 

Bad:                              258 

Unscheduled:                6 

Performance figure:     93.9% 

 

Good:                            4034 

Islanding/scheduled:     916 

Bad:                              245 

Unscheduled:                29 

Performance figure:     93.6% 

 

Good:                            3825 

Islanding/scheduled:     1287 

Bad:                              482 

Unscheduled:                1 

Performance figure:     88.8% 

T16  

Good:                            2432 

Islanding/scheduled:     166 

Bad:                              121 

Unscheduled:                1764 

Performance figure:     56.3% 

 

Offline for entire duration of 

month 

 

Good:                            3063 

Islanding/scheduled:     275 

Bad:                              402 

Unscheduled:                843 

Performance figure:     71.1% 

 

Good:                            3897 

Islanding/scheduled:     270 

Bad:                              408 

Unscheduled:                3 

Performance figure:     90.5% 

 

Good:                            3632 

Islanding/scheduled:     93 

Bad:                              672 

Unscheduled:                4 

Performance figure:     84.3% 

      



 226 

June 06 July 06 Aug 06  Sep 06 Oct 06 

T8  

Good:                            3071 

Islanding/scheduled:     225 

Bad:                              187 

Unscheduled:                1050 

Performance figure:     71.3% 

 

Good:                            3944 

Islanding/scheduled:     2188 

Bad:                              231 

Unscheduled:                133 

Performance figure:     91.55% 

 

Good:                            3858 

Islanding/scheduled:     758 

Bad:                              363 

Unscheduled:                87 

Performance figure:     89.6% 

 

Good:                            2795 

Islanding/scheduled:     103 

Bad:                              383 

Unscheduled:                1130 

Performance figure:     64.9% 

 

Good:                            3492 

Islanding/scheduled:     221 

Bad:                              324 

Unscheduled:                492 

Performance figure:     81.1% 

T15  

Good:                            4015 

Islanding/scheduled:     1789 

Bad:                              290 

Unscheduled:                3 

Performance figure:     93.2% 

 

Good:                            3721 

Islanding/scheduled:     516 

Bad:                              586 

Unscheduled:                1 

Performance figure:     86.4% 

 

Good:                            3255 

Islanding/scheduled:     147 

Bad:                              634 

Unscheduled:                419 

Performance figure:     75.6% 

 

Good:                            3227 

Islanding/scheduled:     103 

Bad:                              1050 

Unscheduled:                31 

Performance figure:     74.9% 

 

Good:                            3489 

Islanding/scheduled:     222 

Bad:                              754 

Unscheduled:                65 

Performance figure:     81% 

T16  

Good:                            3408 

Islanding/scheduled:     142 

Bad:                              892 

Unscheduled:                8 

Performance figure:     79.1% 

 

Good:                            3433 

Islanding/scheduled:     310 

Bad:                              851 

Unscheduled:                24 

Performance figure:     79.7% 

 

Good:                            3186 

Islanding/scheduled:     0 

Bad:                              1023 

Unscheduled:                25 

Performance figure:     75.7% 

 

Good:                            2956 

Islanding/scheduled:     13 

Bad:                              1234 

Unscheduled:                118 

Performance figure:     68.6% 

 

Good:                            3511 

Islanding/scheduled:     142 

Bad:                              762 

Unscheduled:                35 

Performance figure:     81.5% 

 Nov 06 Dec 06 

T8  

Good:                            2495 

Islanding/scheduled:     66 

Bad:                              368 

Unscheduled:                1445 

Performance figure:     57.9% 

 

Offline for entire duration of 

month 

T15  

Good:                            3284 

Islanding/scheduled:     19 

Bad:                              829 

Unscheduled:                195 

Performance figure:     76.2% 

 

Good:                            3363 

Islanding/scheduled:     50 

Bad:                              740 

Unscheduled:                740 

Performance figure:     78.1% 

T16  

Good:                            3214 

Islanding/scheduled:     47 

Bad:                              513 

Unscheduled:                581 

Performance figure:     85.5% 

 

Good:                            3685 

Islanding/scheduled:     40 

Bad:                              411 

Unscheduled:                212 

Performance figure:     85.5% 

 


