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Abstract 

The industrial sector consumes 55% of the world’s energy consumption [1]. Following 

manufacturing processes, the HVAC system is the second largest energy consumer 

in manufacturing facilities, yet is generally uncounted for and considered an indirect 

cost to maintain a facility [2]. Any current efforts at reducing energy demand in the 

manufacturing sector have been focused towards process machines rather than on 

the manufacturing building as a holistic energy system.  

Currently, HVAC systems are reactive, responding to changes to the environment as 

they happen, based upon requirements for thermal comfort.  Manufacturing facility 

environments however are subject to complex interactions between machine level 

resources, water, heat and compressed air.  

This study questions the suitability of the reactive thermal comfort based HVAC 

system, and proposes a proactive manufacturing based HVAC control system, 

utilising predicted optimum HVAC set points.  

Through the use of simulation, a holistic analysis of a manufacturing facility was 

performed, based on building location and layout, building fabrics, weather 

conditions and manufacturing demand in order to determine the relationship 

between manufacturing demand and HVAC control. A number of predictive models 

were analysed for suitability for use in the manufacturing, before being trained on 

simulation data for the prediction of optimum HVAC set points and corresponding 

facility indoor conditions.  

Simulation was coupled with predictive modelling in order to predict building energy 

and HVAC energy demand, allowing for the identification of potential future spikes 

in consumption, followed by subsequent HVAC and manufacturing schedule 

optimisation, allowing for a 15.1 % reduction in peak energy demand. 

Through simulation and predictive modelling, the research has demonstrated the 

potential energy savings achieved by adopting a proactive HVAC system in the 

manufacturing sector. Such a methodology achieved 14.1 % energy savings over a 12-

month period for an analysed case study environment.  
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1 Chapter 1- Introduction 
 

Buildings consume 40% of the world’s energy [3]. Furthermore, in the UK, heating 

ventilation and air conditioning (HVAC) within buildings are responsible for half of 

the country’s energy demand, and account for the highest energy end use in the non-

residential sector due to inefficient operation and maintenance [4]. In particular, air 

conditioning is costly, with the cost of cooling for the few days of the year the UK 

experiences temperatures over 28 °C equating to a full years’ worth of heating [5].  

HVAC systems are reactive systems, aiming to provide thermal comfort to occupants 

as well as remove toxic and waste gases from the indoor environment. Outdoor 

climatic conditions, solar gains, occupant density, building fabrics, building use, 

condition requirements and internal gains all influence the amount of heat that 

needs to be added or removed from a space, which requires constant monitoring and 

control. Such systems are commonly controlled by thermostats and sensors, 

combatting undesired changes to the environment as and when they happen by 

altering controls accordingly.  

The industrial sector is responsible for 55% of the world’s energy consumption [1], 

with estimates that the industrial sector will remain the largest consumer of energy 

in 2040. With increased pressure from governments worldwide to reduce C02 

emissions, along with a rising global population and demand for more manufactured 

goods, efforts towards improving energy conservation and efficiency is increasing.  

In manufacturing facilities, the highest energy consumer is related to manufacturing 

processes followed by the HVAC system [6]. Manufacturing facilities are complex and 

highly stochastic, with rigid environmental condition requirements to ensure 

optimum temperature and humidity for product quality, as well as worker safety 

through ensuring removal of toxic gases. Such environments are subject to complex 

interactions between machine level resources, water, heat and compressed air with 

building level HVAC systems, climatic influences, occupant behaviour and building 

fabrics.  
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Furthermore, in the industrial sector, approximately 30% of the energy delivered to 

a manufacturing site is lost as waste heat [2].  Manufacturing workshops are subject 

to significant heat gains as a result of high energy consuming equipment, and thus 

hold great potential for heat recovery, utilising high and low grade waste heat for 

steam generation or for space heating.  

Due to the complexity, intense conditions and requirements of industrial 

environments, the suitability of reactive thermal comfort based HVAC systems is 

questionable. Consequently, the manufacturing sector would benefit from a HVAC 

system which anticipates and responds in advance to significant fluctuations in 

environmental conditions and in accordance to manufacturing demand. Thus, 

providing an industrial sector specific system suited to providing required air quality 

and conditions whilst reducing operational costs and providing environmental 

benefits. 

Furthermore, current building analysis involves calculations based on degree-days, 

a climatic indicator used to assess the impact of weather on the energy consumption 

of buildings. The use of degree-days requires a base temperature at which the 

building is thought to require heating or cooling; specified at 15.5 °C [7]. However 

such a method has been criticised in the past, [8][9], as building use, indoor 

temperature and heat gains and losses within the building will significantly impact 

the energy consumption of the building, in addition to climatic conditions. 

Manufacturing facilities in particular vary drastically in size and use, with large 

pieces of equipment contributing a significant amount of latent heat to the indoor 

environment, thus affecting demand of HVAC systems.  

Despite this, the Manual of Recommended Practice [10] for industrial environments 

states that the primary function of heat control ventilation systems is to prevent the 

illness and discomfort of workers, with controls based on a physiological evaluation 

of heat stress for occupants rather than control based on industrial processes or 

workshop use. The use of degree-days as a methodology of building energy analysis 

is deemed questionable for manufacturing facilities. Conversely, a holistic evaluation 

of both the building shell and manufacturing processes aside climatic factors would 
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account for any interacting thermal energy flows and provide a more accurate 

assessment on the demands of a manufacturing facility. 

By adopting cost effective energy reduction strategies, industry has the potential to 

double production value per unit of energy use in 2040 [11]. Furthermore, adopting 

technology to intelligently control energy use has the potential to reduce energy 

consumption by 50% as opposed to making operational improvements, which can 

reduce this by only 10 – 20% [12]. The development of a proactive based 

manufacturing specific HVAC system avoids the need for costly technological retrofit 

and implementation of hardware, yet provides an intelligent control based strategy 

to aid companies in achieving their energy saving potential. 

The main focus for manufacturing production managers is predominately output and 

productivity based, with energy costs generally uncounted for and considered an 

indirect cost to maintain a facility [2]. Although companies are beginning to identify 

energy efficiency as a method of reducing production costs, such a focus is 

predominately on analysis of manufacturing process machines, such as operating 

times and maintenance status, rather than on the facility as a whole. A cost effective 

methodology of integrating manufacturing intelligence across an entire production 

operation does not exist, and business decisions are often made with little and 

incomplete knowledge of the relationship between products and energy use [13]. 

Prior to implementation of energy saving strategies, the key to success is the 

education regarding thermal energy flows and interactions between equipment, 

occupants, weather, the built environment and building control. 

To unlock the energy saving potential in manufacturing facilities, and aid UK based 

companies in their mission to achieve legally binding net zero greenhouse gas 

emissions by 2050 [14], this study aims to provide the methodology needed to 

integrate manufacturing production with building energy analysis. This is coupled 

with the provision of tools which provide the knowledge required to implement 

effective energy saving strategies.  
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In order to mitigate problems associated with high energy demand, energy saving 

strategies by management includes energy audits and employee training programs 

as well as the implementation of energy efficient motors, leak prevention and waste 

recovery systems in boilers [15]. However, such strategies and training programs can 

be costly, and therefore a common tool of system analysis prior to strategy 

implementation is the use of simulation.  

 

1.1 Simulation 

Simulation is a common tool for the analysis of building energy consumption and 

thermal behaviour. Used for both existing and prospective buildings, it can identify 

areas of high-energy consumption and subsequently assess alternative control and 

design strategies according to predefined criteria in both design and retrofit. 

Similarly, analysis of manufacturing processes and tools is performed using 

simulation, analysing energy consumption of individual parts, tools or machine 

processes. However both the building and manufacturing processes are commonly 

analysed in isolation, due to differences in preferred analytical paradigms.  

Building energy modelling is preferably time driven, continuous simulation, where a 

simulation variable is incremented at set time intervals with computation at each 

interval. Thus is suited to analysis of energy flows, weather and variables that 

advance through time. Whereas manufacturing processes are dynamic and thus more 

suited to discrete event simulation (DES), where computation is conducted at each 

event in a sequence, regardless of time between events. An example of which may be 

analysis of queues, decisions or traffic. 

The role of building energy software is determination of the buildings thermal 

envelope, quantifying energy use dependent upon building use, geometry, fabric and 

location. The tools can provide insight into building energy consumption, CO2 

emissions, peak energy demand, renewable energy production for energy 

performance, occupant comfort, ventilation and HVAC performance.  
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Figure 1- Overview of manufacturing research activities towards energy 

efficiency (figure reproduced from [32]) 

 

Currently available software commonly used for analysis of residential, commercial 

and industrial buildings include EnergyPlus [16], Autodesk Revit [17], IES-VE [18], 

ESP-r [19], Trnsys [20] and eQuest [21].  

In manufacturing process modelling, tools are commonly adopted for risk 

management analysis, schedule and system enhancement, bottleneck identification 

and process optimisation through analysis of machining states. Common available 

softwares include Lanners WITNESS [22], Plant Simulation [23], Arena [24], 

SIMUL8 [25] and MATLABs Simulink [26]. Traditionally such manufacturing 

optimisation softwares have not focused on energy use of equipment or building for 

achieving energy efficiency improvements [27].  

The isolation of both manufacturing and building energy flows utilising these 

software tools does not allow for the holistic analysis of a facility (Figure 1), with 

models lacking interaction and interdependencies of parameters and equipment, 

such as influences of machining heat gain on HVAC requirements, or the influence 

of machining schedules on indoor environmental temperature.  
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Although useful in isolation, combining both approaches allows for analysis on both 

system and building level asynchonously. As energy is a continous based parameter 

of which advances through time, adopting the time based tool provides analysis of 

the system at defined intervals throughout the day. The energy consumption of 

manufactuirng systems can be analysed similarly, thus allowing for the asynchonous 

analysis of system and building level. 

In order to develop a manufactuirng specific HVAC system, optimum HVAC set 

points must be determined based upon all interacting thermal energy flows in the 

facility. Although simulation is an effective tool at system analysis and optomisation, 

after initial model development, predictive tools (such as machine learning) are 

subsequently required in order to determine optimum HVAC parameters and avoid 

the need for time consuming simulation model redevelopment.  

 

1.2 Machine Learning 

Machine learning tools can be thought of as a form of data analysis which automates 

analytical model development. Furthermore, models can provide the ability to infer 

patterns in datasets and observations. Thus, enabling predictions and decisions to be 

made in new settings and surroundings based on the learnt patterns and 

relationships. The accuracy of predictions can be constantly improved through 

experience and exposure to new data.  

Machine learning techniques are increasingly being adopted for predictions within 

the energy and building sector due to their ability to determine complex relationships 

within a dataset, handling models with a large number of input parameters, yet 

ignoring excess data of minimal significance to provide conclusions based on key 

patterns in the data.  

Data from the energy and building sector is often noisy and stochastic in nature, 

which is difficult to model using mathematical techniques, yet can be handled by 

machine learning techniques due to their ability to handle large datasets and identify 

patterns and make conclusions in new datasets.   
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Figure 2- Collaboration of Big Data, Deep Learning and simulation [29] 

Artificial neural networks (ANNs) are the most common machine learning technique 

used in the energy sector [28], being used to predict building energy demand, heating 

loads, HVAC demands as well as predict efficiency of renewable energy sources. 

Random forest regression, deep neural networks and support vector machines are 

also increasingly being used in the energy sector for determination of heating and 

cooling demands.  

There is a increase in the convergance of both simulation with machine learning, due 

to the increased size of data sets and improvement in data evaluation such an 

approach can bring (Figure 2) [29].  

 

 

 

 

 

 

 

 

 

The implementation of sensors for data collection in manufactuirng enevrionments 

can be intrusive, time consuming and expensive. Therefore utilising simulation can 

provide a method of data collection that is lower risk and of which can increase 

machine learning model training speed. Learning from simulation is increasingly 

becoming a pre-requisite for studies which require interactions with the real world 

[30], transfer learning, and is predicted to be the next driver of machine learning 

commercial success [31].  
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1.3 Thesis Structure  

The structure of this thesis is as follows;  

Chapter 1 provides context and an introduction to the subject matter within this 

thesis.  

Chapter 2 provides a critical review of literature which identified research gaps. Such 

gaps in literature and knowledge provided a focus for the following research in this 

thesis. The aims and objectives to the research are stated. 

Chapter 3 discusses the simulation methods adopted in this research along with 

underlying simulation theory and software justification. A case study is introduced, 

discussing data collection and HVAC control methodologies. 

Chapter 4 introduces a number of predictive techniques utilised for the development 

of a proactive HVAC system.  The use of simulation data for predictive model training 

is discussed along with statistical methods utilised in model validation.  The highest 

performing predictive modelling method was subsequently utilised for prediction of 

peak energy demand and prediction of optimum HVAC set points.   

Chapter 5 provides results obtained from investigations detailed in the preceding 

chapters of this thesis. A full comprehensive discussion of results is provided, 

discussing suitability of a proactive manufacturing-based HVAC system for 

manufacturing environments. The results and discussion identify research novelty 

along with strengths and limitations to the research. 

Chapter 6 concludes the thesis, and discusses how the conducted research has 

achieved the objectives outlined in section 2.9, of which allows the overall research 

aim specified in section 2.8 to be achieved. The resulting knowledge contribution is 

highlighted, alongside areas for further work to build upon the conducted research. 

Chapter 6 is followed by a complete set of references, listed in order of appearance.  

The Appendix provides supplementary material for Chapters 3, 4 and 5. 
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2 Chapter 2- Literature Review 

 

2.1 Introduction 

This chapter presents a review of current research undertaken in the field of energy 

and manufacturing facility analysis and identified a research gap which was the 

main focus of this research. The latest work performed in the field of manufacturing 

energy analysis was conducted, with a focus on holistic energy analysis of the 

manufacturing processes alongside the built environment and HVAC operation. 

Commonly used techniques such as simulation and machine learning are discussed, 

with the concept of Industry 4.0 for intelligent data analysis in manufacturing 

introduced. A summary of the literature review is provided, along with the identified 

research gap. 

 

2.2 Energy Analysis of Manufacturing Processes  

Simulation has been highlighted as the most appropriate method to model dynamic 

material and energy flows within a manufacturing environment due to the 

complexity of process interactions and large number of variables involved [32]. More 

specifically, Discrete Event Simulation (DES) is noted as being the most favoured 

method for modelling the dynamic nature of  manufacturing process lines, as well as 

commonly being used to evaluate process operation and management, queue times, 

process optimisation, bottleneck identification as well as task scheduling  [33]–[36]. 

DES is suited to the dynamic and often stochastic and non-continuous process of 

machining operations such as milling and turning process, due to analysis at discrete 

points in time. It has been noted that statistical regression models can be used for 

the analysis of manufacturing facilities due to their flexibility, low cost and limited 

amount of data required, however cannot consider the multiple technologies used in 

manufacturing facilities nor cannot identify potential improvements [37]. 

Software for manufacturing processes analysis include WITNESS, Plant Simulation, 

DELMIA, Arena, MATLAB with SIMULINK and FlexSim, however such software 
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packages are aimed at increasing productivity and material throughput, resource 

allocation and utilisation, as well as reducing maintenance time and identifying 

bottlenecks rather than for analysis of energy flows.  

DES analysis in manufacturing is predominately focused on resource management 

and efficient scheduling, mainly seen at machine level. For example Keshari et al. 

[38] utilised DES to investigate scenarios of varying production rate and resource 

management options of a paper and pulp plant. DES was used to model material flow 

from the entering location to the product collection point, with quantity of pulp fibre 

transferred from station to station representing the projected mass flow and capacity 

estimates of each station. The overall aim of the study was to achieve the optimal 

production rate and energy efficiency. Likewise Mouzon and Yildirim et al. [39] and 

Mouzon et al. [40] discussed frameworks to minimise energy consumption by 

schedule optimisation in manufacturing. Gul et al. [41] used DES to analyse a dental 

implant manufacturing facility in order to improve throughput, machine and worker 

utilisation as well as queue time, and was able to identify production bottlenecks. 

Machine states are a common discussion in energy analysis, seeing DES being used 

for analysing energy consumption of actuators [42], with machine state and mode 

analysis for energy efficiency performed by Fysikopoulos et al. [43]. ElMaraghy et al. 

[44] presented a method of energy benchmarking of manufacturing lines, relating 

equipment energy data with machine states to allow for in-depth analysis of each 

machine, determining average energy consumption for different machine states 

(Figure 3). The concept was used to meet challenges of collecting and comparing data 

from different manufacturing facilities with different operational variants. Authors 

concluded energy consumptions for productive and non-productive states are close, 

highlighting the importance of optimising process planning and scheduling as well 

as better equipment utilisation. 
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Figure 3- Collection/processing method for energy use data (figure reproduced from [44]) 

 

Furthermore, an exergy analysis, the potential of materials to do work, was carried 

out by Gutowski et al. [45] by simple mathematical calculation. Exergy was used to 

allow material and energy to be expressed in the same unit, Joules, as well as 

providing a measure of what is ‘used up’ in manufacturing processes. The study 

concluded the importance of process rate in estimating manufacturing energy 

requirements, and stated the need for redesigning manufacturing processes and 

increasing process rates.  

Rodrigues et al. [46] proposed a method to analyse and optimise electrical energy 

consumption in manufacturing through the implementation of DES and optimisation 

software, investigating economic, social and environmental aspects for a more 

sustainable manufacturing process (Figure 4). Various scenarios were evaluated 



12 
 

according to operational restrictions, with results evaluated according to objective 

functions in order to minimise energy consumption and satisfy sustainability 

indicators.  

 

Figure 4- Manufacturing process conceptual model elements  [46] 

 

Although lighting was considered as an indirect consumption of energy, the focus of 

the tool was identification of energy losses in production, through consideration of 

production cycles, duration and process layouts. 

Solding and Thollander [47] used an iron foundry as an example of a high energy 

consuming manufacturing environment, and developed a DES model with the aim of 

achieving an energy efficiency production plan without compromising output. 

Authors discuss the importance of reducing variable energy costs, based on actual 

energy consumption over a period of time, as well as grid costs, which comprises of 

charges for peak load. Thus stressing the importance of reducing energy consumption 

as a total but also peak energy demand from a financial perspective. However due to 

lack of detailed production data, hence inability to produce an accurate simulation 

model, authors focus on maximum load reduction rather than production planning. 

DES was concluded as a suitable tool for simulating energy use of energy intensive 

facilities, in addition to the traditional production planning techniques. The authors 

also highlighted the need and willingness of companies to adopt a greater level of 
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understanding of company energy use, and without worker engagement an energy 

efficiency plan is worthless and impossible to implement.  

Kohl et al. [48] introduced an energy module to be used alongside the commercial 

DES plant simulation software. After each machine state change, load profiles of 

machines were used to calculate energy consumption for each machine, with a 

resulting load curve for a full production line. The simulation was discrete in nature, 

however the resulting load profile was continuous, and the tool was able to provide 

more precise guidelines on the energy consumption of a facility. As the tool depended 

on the properties of the processed product as well as machine state, the tool required 

user input to define attributes which had to be considered for choosing the correct 

power profile (Figure 5). For example, the amount of material used in a process had 

to be selected as a factor that influenced the energy consumption. Such an energy 

module however provided a route to define product related parameters that influence 

the energy consumption of various processes. 

 

Figure 5- User assignment of the load profile based on the attributes of the crimping 

workstation and the product (figure reproduced from [48]) 
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Seow and Rahimifard [49] presented a framework of modelling the total energy 

required to manufacture a unit product, embodied product energy (EPE), using DES. 

The authors took a 'product view' perspective, in order to provide an estimate of the 

breakdown of energy use as well as total energy use. Plant and process level energy 

were considered, with energy consumed during processes such as casting, machining, 

painting, inspection at the process level, and energy for heating, lighting and 

ventilation at the plant level, in order to highlight any energy hotspots for further 

examination. The authors discuss the need for a greater transparency of energy use 

across manufacturing processes, and provided a model to support and identify 

operational improvements in a 'design for energy minimisation' approach (Figure 6).  

 

Figure 6- Design for energy minimisation approach (figure reproduced from [49]) 

 

However, the tool only analysed operational energy consumption, rather than energy 

consumed within a facility on a daily or weekly basis, nor stated the ability to analyse 

energy flows between the manufacturing processes, HVAC system or built 

environment. 

Prabhu and Taisch [50] identified the importance of integrating machine level policy 

with production control policies to characterise energy dynamics and control the 

amount of wasted energy in manufacturing systems, through the use of DES. Energy 

control policy is described as the methodology in which to reduce the energy 
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consumption when the machines are idle, thus the study focuses predominately on 

machine state change optimisation (Figure 7).  

 

Figure 7- Mapping of discrete production states to energy states (figure reproduced from 

[50]) 

 

A software prototype HySPEED was developed, integrating continuously variable 

power consumption at the machine level with the discrete nature of the production 

control level.  

Zou et al. [51] adopted a different approach, which used a continuous flow model to 

model a production line, employing sensor data from a manufacturing facility. The 

model was then used to identify and predict system performance and any energy 

saving opportunities, before implementing a real time feedback control scheme for 

further system improvements. Energy saving opportunity windows were investigated 
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to avoid production loss, as well as stochastic and deterministic scenarios and system 

disruptions. The study reported significant reduction in energy consumption with 

minor influence to productivity. 

Energy analysis or carbon emission analysis of manufacturing systems at tool level 

is seen extensively in literature, for example Tian et al. [52]  who looked into the 

influence of wear conditions of cutting tools, establishing an optimisation model to 

determine cutting parameters and tools with the lowest carbon emissions. Likewise, 

Shi et al. [53] investigated the energy consumption associated with tool wear in 

milling processes, whereas Xie et al. [54] selected optimum turning parameters based 

on high surface quality and minimum energy consumption. Further studies analysed 

energy consumptions associated with machining processes such as multi-pass 

turning and multi-step milling [55], [56]. 

On machine level, Lv et al. [57] investigated the energy characteristics of a CNC 

machine, looking into various components of the machine such as the spindle and 

feed axis, as well as turning and milling processes. Whereas Zhong et al. [58] 

reviewed energy consumption models of machine spindle acceleration and rotation, 

machine tools and material removal, applying evaluation criteria to rank models for 

calculation of energy consumption in metal cutting processes. 

2.2.1 Energy Management 

Modelling of a manufacturing system is a complex undertaking, with multiple 

subsystems, and therefore various classification methods have been described. One 

of which is the 4 level organisational domain presented by Reich-Weiser et al. [59], 

encompassing a product feature level, machine/ device, facility/line/cell and finally a 

supply chain level. Furthermore, the authors discuss the orthogonal manufacturing 

perspective, describing the product design phase, process design phase, process 

adjustment phase and post-processing phase. Duflou, [60], however suggested a 5 

level structure, of which comprised of a device/unit process level, line/cell/multi-

machine system level, facility level, multi-factory system level, and the 

enterprise/global supply chain level.  
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From a managerial level, Schulze [61] and May [62] review strategies for energy 

management, discussing aspects such as strategy and planning, implementation and 

operational perspectives, organisation and culture. Similary, Cai et al. [63] proposed 

a concept of the lean energy-saving and emission reduction (LESER) strategy, used 

to determine value from the customer, environment, society and technology, as well 

as identify the value of energy consumption and waste emissions (Figure 8).  

 

Figure 8- Strategy of the LESER tool in the manufacturing industry (figure reproduced from 

[63]) 

 

The tool considered energy input, use, dissipation and recovery from an economic, 

social and environmental perspective, with the goal of zone cost waste, zero emissions 

and zero pollution. The authors stated that workers are only responsible for 15% of 

energy related problems; the remainder attributed to system processes and thus was 

the focus of the tool strategy. The 5W-1H question method, (What, Where, When, 

Why, Who, How), was used to determine to root cause of waste and emissions.  

Although providing strategies for energy management, the studies by Cai, Schulze, 

May, Duflou and Reich-Waiser focus on a wider perspective of energy use in 
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manufacturing, rather than detailed quantitative analysis of energy consumption at 

machine, process or facility level. 

Gahm et al. [64] developed a framework to guide research on energy efficient 

scheduling (EES) considering the transportation and conversion of primary energy 

sources, as well as applied energy sources (AES), such as electric current or natural 

gas, used for the production process (Figure 9).  

 

Figure 9- Energy conversion chain [64] 

 

Energy unrelated to production such as climate control and lighting, which was 

stated as not being influenced by scheduling, is neglected. Scheduling was defined as 

the allocation of jobs to machines, and the associated sequencing and time on the 

machine. The authors discussed the role of production system energy and conversion 

energy in primary energy resource demand. 

Feng and Mears [37] highlighted the challenge of modelling a manufacturing facility 

comprising of thousands of interacting production processes, and therefore presented 

a systematic modelling hierarchy of an automotive assembly plant with levels of 

models serving as different layers of organisational managers and technicians. The 

approach was able to efficiently identify energy critical components in the plant and 

highlight potential for improvement. The authors also discussed the use of systematic 

models in different levels on the holistic perspective of energy use, and concluded the 

inability for interaction between levels, therefore lacking in accuracy. 
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Many manufacturing facilities store off peak energy in thermal energy storage tanks 

or batteries. Machalek and Powell [65] discussed an approach using an energy peak-

levelling algorithm which required minimal forecasting in order to tap into energy 

stores in order to put them on the smart grid.  The algorithm took advantage of a 

thermal energy storage resource in a bakery which is subject to oscillations in the 

power demand, thus making them well suited to leveraging thermal energy storage. 

The storage tank at the facility along with the peak levelling algorithm was used to 

determine the power demand profile (Figure 10).  

 

 

Figure 10- Peak levelling example of a facility power profile [65] 

 

Authors state the advantage of not requiring a historical data set in order to level 

power oscillation and thus reduce power required. The method was able to reduce the 

energy by 2% over a monthly period. 
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2.2.2 Life Cycle Assessment 

Life Cycle Assessment (LCA) is an environmental assessment method used by 

manufacturing companies to quantify environmental impacts of a product 

throughout its entire lifecycle. However such a method of analysis requires extensive 

data collection, thus a Life Cycle Inventory (LCI) database was developed providing 

average environmental impact data of various processes and materials; which many 

models are based-upon. However the accuracy associated with LCI data is debatable 

[66], with the energy requirements for manufacturing processes not being as 

consistent as LCI assumes [45]. 

Sproedt [66] integrated LCA with DES, looking at process inputs, process operation, 

cycle and set up times, scrap rates, waste materials and machine emissions. 

Lajevardi  et al. [67] used LCA to analysis the energy consumption associated with 

different methods of manufacturing a heat exchanger for use in data centre thermal 

management.  

Sector specific reviews on energy consumption and trends have been performed, an 

example seen from Ladha-Sabur et al. [68] who looked into the energy associated 

with food and drink manufacture. The review quantified energy consumption at 

various stages of preparation, production, transportation and storage of meat, dairy, 

fruits, vegetables and other household goods, including thermal processes such as 

freeze drying, and also the use of water consumption. The review was concluded by 

stating that strategies to optimise the food system, increase resource allocation 

efficiency and adopt tools such as LCA is required to achieve a better insight into 

energy end use. 

The SIMTER tool, [69], was developed to cover the manufacturing planning phase, 

and cover four main areas, DES, ergonomics, levels of automation and environmental 

impacts along with conventional production simulation parameters in order to 

optimise the design of manufacturing systems (Figure 11).  
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Figure 11- SIMTER tool, information flow and shared data within the tool (figure 

reproduced from [69]) 

 

Heilala et al. [70] utilised the SIMTER tool in a hybrid approach combining DES with 

analytical calculations. The tool was able to calculate energy efficiency, CO2 

emissions and environmental impacts of a manufacturing facility. Similarly, 

Johansson et al. [71] utilised the SIMTER framework to develop software showing 

how DES can be coupled with LCA to determine requirements for a sustainable 

manufacturing facility in the design stages. The tool was able to identify 

environmental bottlenecks such as energy consumption and carbon footprint in 

relation to the source of energy utilised. The study discussed CO2 reduction goals, 

however rather than improving the energy efficiency of current processes, it was 

stated that the goals cannot be achieved with the current energy supply and thus 

renewable energy would be required for the environmental goals to be met. 
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2.3 Industry 4.0 and energy analysis 

The concept of the fourth industrial revolution, Industry 4.0, brings an increase in 

digitalisation, automation and interconnected systems, with sensor systems allowing 

data to be captured at every stage a products lifecycle. Machines, production lines, 

raw material suppliers, management, distribution, customers and energy suppliers 

are linked through the use of IT, with data being harnessed for the use of simulation, 

machine learning and digital twinning, which has the potential to improve 

knowledge surrounding interoperability, productivity and energy efficiency (Figure 

12). 

 

 

Figure 12- An architecture for smart manufacturing [72] 

   

However, the concept of Industry 4.0 requires significant data storage capabilities 

and computing power, as well as initial costs associated with transforming a facility 
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into a digital space through sensor implementation, employee training and 

cybersecurity considerations. This can be perceived to be a hindrance to SMEs due to 

limited knowledge, finance and resources. 

Although DES is a common tool within manufacturing analysis, in Industry 4.0 DES 

is adopted as a tool for digital twin creation, and its use in industry 4.0 is 

predominately throughput and maintenance focused rather than for the use of energy 

analysis. 

Cyber-physical systems (CPS) can be defined as the transformative technology 

between physical assets and computation, for managing interconnected systems [73] 

(Figure 13).  

 

 

Figure 13- Architecture for implementation of cyber-physical systems [74] 

CPS can be developed to manage big data and Internet of Things (IoT), leveraging 

the interconnectivity of machines and the production process, logistics and services, 

to develop an idealised fully connected Industry 4.0 concept. Big data refers to data 
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sets which are too large to be managed using traditional approaches, and thus require 

specialist data collection, processing, analytical and storage tools. Recent studies 

have utilised CPS for resource planning and allocation in manufacturing [75]–[77], 

however Macana et al. [78] and Behl et al. [79] introduced energy cyber-physical 

systems (ECPS), and discussed their use in smart grids and university buildings, 

stating their potential for energy conservation and emission reduction.  

However as the use of ECPS in manufacturing is limited, Ma et al. [80] addressed 

this gap by presenting an ECPS enabled management model to minimise emissions 

and waste whilst maximising output, integrating physical, energy and cyber worlds. 

The system comprised of 3 layers, a physical energy layer which included IoT devices 

such as sensors, the cyber-energy layer, which involved processing of collected data, 

and a data knowledge driven layer, which included the ECPS enabled management 

system, setting targets for energy conservation and emission reduction according to 

collected and mined data in the previous 2 layers (Figure 14).  

 

Figure 14- Architecture of ECPS enabled management (reproduced from [80]) 
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A closed loop flow model was developed linking energy, material and information 

flows, analysing logistics, inventory, materials, production plans and performance, 

as well as energy related KPIs, energy management, recycling and energy reuse. The 

authors discussed the ability of the proposed structure to reduce energy consumption 

and emissions during the manufacturing process, however noted that the model was 

proposed without verification, therefore further work is required to develop the model 

further. 

Saez et al. [81] proposed a real time performance assessment tool of manufacturing 

systems using hybrid simulation, utilising IoT to monitor the shop floor and synch 

real and virtual environments. DES was used to estimate performance at a system 

level, with continuous dynamics at a machine level, using a virtual environment 

running in sync with plant floor equipment. Real time monitoring allowed for direct 

comparisons between the virtual and real environment for abnormality detection. 

However the study did not analyse and discuss energy consumption, but was 

highlighted as an area for further work. 

Edgar and Pistikopoulos [13] state that the integration of manufacturing intelligence 

in real time across a production operation does not exist, with decisions made with 

little knowledge on the relationship between product output and energy use. To 

bridge this gap, authors introduced the concept of a smart manufacturing system, 

which integrated simulation, modularisation, real time data, cloud technology, 

dashboards and performance metrics along with existing process control and 

automation systems. The aim was to improve system knowledge and product quality, 

reduce costs, improve energy productivity, workforce performance and safety.  The 

authors discussed optimisation of steam methane reforming, a heat treatment 

furnace and a fuel cell system, using high fidelity models leveraging data from sensor 

systems in order to describe the systems and improve predictability of the model.  

Similarly, Zhang et al. [82] proposed a big data driven framework along with big data 

mining to analyse and reduce the energy consumption and emissions of a pulp 

workshop, as well as optimising production processes and improving material and 

energy efficiency. The authors aimed to overcome the challenge of collection and 
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analytics of multi-source and heterogeneous data from harsh environments such as 

high pressure, acid or high pollutant conditions. Furthermore, the authors presented 

a method of data mining to determine patterns and conclusions from collected data, 

as well as managerial perspectives from government, research and production 

departments (Figure 15).  

 

Figure 15- Interdisciplinary research areas of energy, big data, and manufacturing [82] 

 

However the sensor technology was only proposed in the framework, implementation 

detail was lacking, and further work is required to determine a mathematical model 

for data mining to identify knowledge and rules from energy big data.  

 

2.4 Coupling manufacturing with building simulation 

Although DES is the preferred methodology at process level manufacturing energy 

analysis, such a process cannot account for energy flows beyond that of machining 

states, and therefore cannot model total facility energy consumption alongside 

manufacturing energy consumption. Although production based manufacturing is a 

discrete manufacturing process, the energy utility is continuous. 

A study looking into simulation studies of which consider material flows along energy 

flows stated that of the 75 publications reviewed on simultaneous simulation of 
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material and energy flows, 71% used DES, tools which combined DES with 

continuous approaches were used for 16% of studies. 7% of the reviewed studies 

included no statement on used tools [83]. A procedure model for combining material 

and energy flows was presented, with methods presented for decision making for the 

operation of 8 subsystems supplying the assembly and finish area of a car body shop.  

Furthermore, manufacturing and industrial processes account for approximately 

34% of Europe’s overall heat demand [84], with heat loss from manufacturing 

equipment through electricity conversion further contributing to the waste heat 

within the sector. Although efforts have been made to reduce energy consumption 

and CO2 through a products lifecycle, very few studies have looked into waste heat 

reduction or waste heat recovery. Medium grade waste heat (230-650°C) can be used 

for combustion or steam generation, however lower grade waste heat, typically found 

in large quantities from exhaust streams and compressors, can be used for space and 

domestic water heating [84]. 

The first found study investigating waste heat recovery was performed by Jeong et 

al. in 1998 [85]. The authors presented a numerical simulation to predict 

performance of a heat pump for low-grade waste heat recovery in a chemical plant. 

Similarly, Züst et al. [86] saw the potential of heat in industry, and predicted the 

potential of 32-80% for waste heat recovery within the manufacturing sector. The 

authors used simulation to estimate the heat released from machine tool subsystems 

in order to predict boundary conditions for thermal models in order to reach this 

potential. The approach required both datasheet values as well as experimentally 

obtained variables and it was stated that a methodology to predict such values was 

required to overcome this limitation.  

Kurle et al. [84] used both simulation and mathematical optimisation to assess the 

waste heat potential of different production processes, and addressed the need to 

encompass different levels of manufacturing. A waste heat potential screening tool 

based on machine data was utilised to identify the more relevant waste heat 

processes prior to waste heat machine simulation. Waste heat load profiles were 

determined, with the final stage in the process being determination of process 
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heating and cooling, and optimal waste heat exchanger design.  The approach was 

described as a waste heat-planning tool that can identify waste heat potential on 

minimal information.  

Similarly, Katunsky et al. [87] looked at thermal energy demand of an industrial 

building in Slovakia through the use of building simulation tools, ESP-r and 

BuildOpt-VIE. ESP-r was used for the dynamic simulation of machines and air 

movement, whereas BuildOpt-VIE was used to model the building in multiple zones, 

along with solar radiation. The study concluded that the machinery and occupants 

within the building are extremely influential factors contributing to the energy 

consumption of heating systems, and that methodologies adopted for measurement 

of temperature in residential or commercial building are not suitable for use in 

industrial buildings. Further work would include additional influential factors such 

as lighting, heat recovery and door opening systems, as well as multi-criterion 

analysis and energy auditing.  

Weeber et al. [88] emphasized the importance of assessing interconnections between 

machine operation, process and factory infrastructure, and propose an integrated 

model in order to improve energy efficiency but also reap benefits of non-energy 

related factors such as thermal comfort (Figure 16). The authors translated machine 

load profiles into internal heat gain curves in order to quantify energy savings at 

factory level as a result of implementing energy saving measures. 

However the study assumed 100% of measured machine power was transformed into 

thermal energy and the temperature of the surrounding environment was constant. 

Simulation was concluded to be a valuable tool and is required to determine impacts 

of optimisation measures for an increase in energy efficiency when considering the 

facility as a whole.   
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Figure 16- Energy building simulation methodology during planning and evaluation of 

energy efficiency measures (reproduced from [88]) 

 

 

 

 

Züst [86] looked at a single lathe in their study whereas Kurle [84] looked at an 

automotive process chain, but no studies were found to integrate technical building 

services (TBS) and building behaviour and use into the analysis and potential of 

waste heat for optimisation of HVAC systems. 

Similarly on the topic of sustainability, Giampieri et al. [89] published an extensive 

review on the energy use and sustainability of automotive manufacturing facilities, 

with a focus on thermal management of low grade heat and the potential for heat 

recovery. The review covered vehicle production processes and process energy use, 

analysis of the paint shop and its components including different paint usage, as well 

as the future of the automotive sector discussing electric and autonomous vehicles 

with materials used and steps to low carbon production. The review concluded that 

the paint shop, being the highest energy consuming process, has a large potential for 
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low temperature heat recovery with liquid desiccant technology; a potential method 

of providing significant economic and environmental benefits for the automotive 

industry. 

Integrated DES modelling has also been considered by Wohlgemuth et al. [36] who 

presented an approach at linking DES with material flow analysis, along with Lu et 

al. [90] who presented an integrated DES and Building Information Modelling (BIM) 

framework. Both studies however focused on decision support, construction 

performances and resource planning rather than energy consumption. 

Herrmann et al. [91] presented 3 paradigms which represent current research 

connecting manufacturing analysis with building energy simulation (Figure 17).  

 

 

 

Paradigm A uses DES and evaluation tools, for simple low effort modelling. Such a 

method provides extensive coverage of energy and resource flows as well as 

distinctive evaluation, however simulation and evaluation sit independently from 

one another, and certain energy dynamics and interdependencies between systems 

are disregarded. Paradigm B introduced the additional simulation of TBS alongside 

Figure 17- paradigms for simulating energy in manufacturing environments (figure 

reproduced from [91]) 
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evaluation, allowing the dynamics and interactions between subsystems to be 

considered, which considerably increases complexity of the model, and requires tools 

to be integrated and connected with suitable middleware. Paradigm C introduces a 

fully integrated system, encompassing DES, TBS and evaluation into one 

application. This usability of this system however is dependent upon simulation tools 

and limited by restrictions imposed by many softwares, and the task of integrating 

dynamic energy consumption, TBS and evaluation is not an easy one.  

Hesselbach [92] and Herrmann [91] both discussed the importance of analysing the 

building shell alongside the manufacturing processes due to strong 

interdependencies between equipment and TBS. The former study adopted a hybrid 

multi-layer approach, coupling four discrete and continuous simulation tools for 

analysis of production machines and material flows, production management, TBS 

and climate (Figure 18), whilst the latter provided a single scalable and modular 

simulation environment with a hybrid approach.  

 

Figure 18- Interdependencies between production and TBS in defined production 

environments (figure reproduced from [92]) 
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Case studies performed for both approaches confirmed the need for holistic 

simulation to identify and measure energy efficiency measures, however the studies 

did not analyse building energy consumption, nor model the HVAC systems, 

therefore the interaction between HVAC, building energy consumption and process 

demand is unknown. The tools were also deemed inflexible and cannot be applied to 

other production facilities.   

Herrmann and Thiede [93] developed a process chain simulation to evaluate 

technical and organisational measures to increase energy efficiency from both an 

ecological and economic perspective. In order to cover all energy related aspects 

required, a five-step approach was developed (Figure 19).  

 

Figure 19- Systematic approach to increase energy efficiency in manufacturing companies 

further development 

 

The authors concluded the necessity, potential and practical applicability of the 

developed method. The influence of production management measures on energy 
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consumption were highlighted with measures on a single level, such as a production 

machine, described as not being sufficient to foster energy efficiency due to the 

influences of other levels. 

Liu et al. [94] used EnergyPlus to evaluate and optimise the energy consumption of 

a welding facility, focusing on building design and manufacturing schedules. The 

overall aim was a reduction in energy consumption whilst maintaining production 

throughput. The authors highlight the interdependence between manufacturing 

processes and environmental conditions, and consider manufacturing equipment as 

internal loads within the building. Manufacturing energy consumption was 

calculated analytically, and subsequently added to the estimated building energy 

consumption for the facility as calculated by simulation. The concept achieved the 

optimisation goal, however authors state the need for the consideration of more 

control variables in order to simulate a more realistic environment.  

Thiede et al. [95] presented a multi-level framework, involving coupling concepts and 

data exchange between manufacturing and factory simulation models, with 

assessment of energy demand, costs and environmental impacts (Figure 20).  

 

Figure 20- Framework for multi-level simulation models [95] 
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The authors applied the developed framework to the water-energy nexus of an 

automotive factory to highlight shift issues, and considered future planning with 

relation to energy and water targets (Figure 21).  

 

Figure 21- The relationship between water and energy [95] 

 

Data handling and coupling concept recommendations were made, and the study 

highlighted the importance of a holistic simulation encompassing all relevant energy 

and material flows in order to fully reach energy saving potential.  

Alvandi [96] used DES to tackle scheduling problems in multi-machine 

manufacturing environments. The tool comprised of a unit process module for 

machine representation, a process chain module, and a TBS module for supplying 

services such as steam, compressed air, air purification along with lighting and 

heating services. With the use of a case study, an optimisation tool was used to 

determine the best routing for each product type with a goal of minimising energy 

and lead-time whilst maximising throughput. However the proposed optimal solution 

resulted in a 51% increase in throughput, with an energy consumption increase of 

5%, rather than a decrease in energy.  
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Michaloski et al. [97] investigated the integration of manufacturing execution 

systems (MES), which controls production activities, and energy management 

systems (EMS), which controls energy related activities. MES uses production 

planning to assign factory resources whereas EMS manages power distribution, 

HVAC, lighting and compressed air. Data exchange between these systems is 

commonly limited, which limits the ability to understand interactions between the 

production environment and energy flows, making sustainability improvements 

difficult. The study utilised DES to analyse requirements of the integrated EMS-

MES system, and investigate sustainability opportunities. The authors were posed 

with the common challenge of data integration, with the need for a suitable data 

resolution, resulting in the simulation of energy being performed in parallel. Further 

work is required to validate the tool, along with tests on a case study environment. 

Bleicher et al. [98] utilised three simulation models for a co-simulation approach at 

analysing energy consumption of a manufacturing facility- MATLAB was utilised for 

data models of machine tools and production schedules, Dymola for the energy 

system and EnergyPlus for building models (Figure 22).  

The Authors stated that the use of three sub-models allowed for deeper scenario 

investigation to determine energy saving measures due to clearly defined interfaces, 

and ability to replace sub models without impacting other parts of the system. 

Parameters considered in the model included machine energy consumption, machine 

internal energy conversion, machine thermal behaviour, building energy systems 

along with sub systems such as pumps, chillers and heaters, as well as thermal 

aspects of the building such as occupancy heat gains, lighting and computers, and 

building geometry, structure and floor layout. Although the tool could provide energy 

demand predications in the facility planning stages, authors posed difficulties 

associated with time resolution of sub modules, with machining simulations utilising 

time in the order of milliseconds and energy simulations in the order of multiple 

minutes. Furthermore, the coupled simulation presupposes requirements to the sub 

models, impacting the accuracy of the model. 
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Figure 22- Methodological approach [98] 

 

Aiming to solve the issue of data resolution in hybrid models as found by Bleicher 

and Michaloski. Liang and Yao [99] introduced a hybrid analytic and simulation 

approach, adopting a multi-resolution approach. Arena was utilised for the workshop 

level, with MATLAB utilised for the machining state level and cutting level, with 

VBA and excel used as communication between the two. Authors concluded 

feasibility of the proposed approach, however no case study application, data 

collection or methodology was discussed, nor the inclusion of TBS or thermal flows. 

Schönemann  et al. [100] presented a multi-level simulation framework connecting a 

DES process chain simulation with a physical process model in order to derive LCA 

relevant data (Figure 23).  
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Figure 23- Multi-level framework for holistic analysis (figure reproduced from [100]) 

 

 

 

AnyLogic was utilised to model the process chain, with MATLAB used for modelling 

a single process. Coupled models were able to compare the environmental impacts of 

two product design alternatives in the automotive sector. The authors stated the tool 

provided a good foundation for consideration of product life cycle data from material 

flow in production to energy demand in the design phase, however further work is 

required to validate the model, perform parameter sensitivity analysis and reduce 

number of assumptions made in model development.  

Ball et al. [101] presented a model coupling material, energy and waste of a 

manufacturing facility to show how these flows interact with the surrounding 
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manufacturing environment, with the aim of developing a zero carbon manufacturing 

facility (Figure 24).  

 

Figure 24- Light and heat flows in a manufacturing operation [101] 

 

The production system, infrastructure (offices and facilities) and interface with the 

supply chain and community were encompassed within the zero carbon ideology. The 

authors discussed renewable energy, replacement of old machining with newer more 

efficient systems, reducing inventory, packaging types with supplier collaboration, 

recycling and conversion of waste to energy through the use of biomass. The authors 

however did not detail individual manufacturing processes, and the approach 

presented was qualitative, acting as a starting point for further investigation. The 

approach did not model magnitude, location or quality of flows within the facility, nor 

was the approach dynamic.  

Wright et al. [34] introduced the THERM project, which provides the concept of 

software tools to model energy and utility flows in manufacturing, allowing them to 

be integrated into thermal modelling of buildings. The tool allowed for the 

representation of continuous material flow, energy and water as well as their 
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interaction with TBS. Building geometry, thermal characteristics and use were also 

accounted for, along with the flow of electricity, water and steam.  

Oates et al. [102] discussed energy flow paths in a factory environment, (Figure 25), 

and identified three ‘types’ of manufacturing processes to be analysed using the 

THERM tool; thermal ‘air’ processes (oven), thermal ‘fluid’ processes (vat) and 

electrical processes (motor).  

 

Figure 25- Schematic of the overall energy flow paths of a factory environment [102] 

 

A library of ‘tactics’ was created to determine actions which can be taken to improve 

efficiency of production, resource use and reduce energy. Initially, prototype models 
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were created to estimate energy savings from certain processes, with software 

developed by IES Ltd, which was to be integrated into their commercially available 

software tools. However the authors concluded that the actual development of such 

a tool would be a major undertaking, and discuss the difficulties arising from data 

requirements and collection, such as data management, format and availability.  

The THERM project was extended further into the REEMAIN project, which 

included modelling of energy generation technologies as well as an Organic Rankine 

Cycle (ORC) in order to generate electricity from waste heat. Greenough et al. [103] 

discussed the development of the project, discussing the integration of a decision 

support tool in relation to renewable technologies. However the ORC tool is yet to be 

developed, and currently a fully integrated dynamic simulation is not yet possible. 

Furthermore, Despeisse et al. [104] worked on an aspect of the THERM project, 

presenting a tactics library linking sustainability with operational practice, which 

was then used in a factory model to combine building energy analysis with 

manufacturing resources. The focus of the tool was sustainability, providing a guide 

of modelling and optimising resources.  

Building energy consumption analysis is commonly based upon degree-days, however 

such a methodology results in the building energy performance being a function of 

degree-days, whereas many other influencing factors have an impact on energy 

performance. Although such a methodology has been criticised in the past, with work 

carried out to determine new base temperatures [105], [106],  and despite the harsh 

environmental conditions manufacturing facilities experience, little work has looked 

into the suitability of degree days as a methodology of building energy analysis for 

industrial facilities. Golden et al. [107] analysed two regression models, a three 

change point and cooling degree-day (CDD), for creating baseline energy models in 

industrial facilities and determining energy end usage. In the three-change point 

model, energy use remains constant up to the base temperature, at which point 

energy use increases linearly. In the CDD model, energy consumption is computed 

using degree-days based on the base temperature (Equation 1), where only the 

positive temperature differences are evaluated. 
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𝐶𝐷𝐷𝑖(𝑇𝑏,𝑐) = ∑ (𝑇𝑎𝑚𝑏,𝑖𝑗 − 𝑇𝑏,𝑐)
+𝑁𝑖

𝑗=1
 

Equation 1- Cooling Degree Days ([107]) 

Where Tb,c is the base temperature (K) and Tamb, ij the average outdoor air 

temperature (K) for the jth day of the time interval i.  

Authors also presented a variable base temperature CDD method, which utilised a 

weather independent variable, however the method also utilised an averaged CDD 

value calculated from Equation 1.  

Conductive heat gain, �̇�𝑐𝑜𝑛𝑑,𝑎𝑛𝑛𝑢𝑎𝑙 (W), and infiltration heat gain, �̇�𝑖𝑛𝑓,𝑎𝑛𝑛𝑢𝑎𝑙 (W), was 

calculated based on CDD utilising Equation 2 and Equation 3 respectively. 

�̇�𝑐𝑜𝑛𝑑,𝑎𝑛𝑛𝑢𝑎𝑙 =  
𝐶𝐷𝐷

𝑅
 

Equation 2- Conductive heat gain through the building envelope ([107]) 

Where R (𝑊−1 m2 𝐾) is the thermal resistance through the building envelope. 

 

�̇�𝑖𝑛𝑓,𝑎𝑛𝑛𝑢𝑎𝑙 =  �̇�𝑐𝑝 𝑥 𝐶𝐷𝐷 

Equation 3- Sensible Heat Gain from Infiltration and Ventilation ([107]) 

Where �̇� is the mass flow rate (𝑘𝑔 𝑠−1) and cp the specific heat capacity (𝐽 𝑘𝑔−1 𝐾−1). 

 

In order to estimate motor power and HVAC load required from internal heat gains, 

the energy consumption was estimated through the use of a weather independent 

variable. 

For the three-change point and CDD method, the R2 (coefficient of determination) 

value indicated a poor relationship between ambient temperature and facility energy 

use, however the NMBE (normalised mean bias error) meets the ASHRAE (American 

Society of Heating, Refrigerating and Air Conditioning Engineers) requirements for 
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goodness of fit. For the CDD method, CV-RMSE (coefficient of variation of root mean 

square error) did not meet requirements, but was satisfied for the three-change point 

method. Although the CDD method did analyse energy consumption to a reasonable 

degree, the use of weather independent variables and further calculations were 

required to determine effects of internal gains.  

 

2.5 HVAC optimisation in Manufacturing 

Wang and Ma [1] produced a review on supervisory and optimal control of HVAC 

systems, stating that operation and control of a HVAC system significantly impacts 

the energy or cost efficiency of buildings, and is not solely dependent on its design. 

Determining the optimal control of a system which provides thermal comfort and a 

healthy environment can improve energy and cost efficiency. 

After process heat generation, the largest energy consumer in manufacturing 

facilities is the demands from HVAC systems and lighting [108]. In manufacturing 

facilities, HVAC systems are commonly installed as a centralised unit, with very little 

feedback and control from the supplied area, resulting in ineffective and less than 

optimum distribution of heat and air, as well as not being able to account for 

differences in different condition requirements across the facility. Thermostats or 

temperature sensors are often placed next to ventilation shafts or heaters, leading to 

dependence on a singular measurement for facility control, with regard to a singular 

area, resulting in under or overheating of surrounding areas. For accurate 

determination of facility temperature and required HVAC control, thermal energy 

flows and air flows within the facility need to be determined. Therefore, Posselt [108] 

used computational fluid dynamics and a wireless sensor network to estimate 

temperature and air flows at every position in a building in real time in order to 

improve control strategies of HVAC systems. A total of 38 sensor nodes were placed 

strategically to achieve maximum distribution and minimum overlap in the facility, 

with locations including working height, floor level, close to doors to capture 

temperature drops, above heat emitting machines and downstream of circulation 

fans. The prototype provided insight into thermal energy flows within the building, 
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and was believed to hold potential for optimising HVAC dimensions, as well as 

determining negative effects of zone/window operation or alternative factory layout.  

Research into peak load reduction in the industrial sector is not as well developed as 

in the commercial and residential sector, resulting in a low level of actual peak 

demand reduction compared to its potential (Figure 26).  

 

Figure 26- Demand side management- industrial sector peak load reduction. Comparison of 

potential and actual peak load reduction in the industrial sector (MW) [109] 

 

Therefore, Dababneh [109] investigated electrical demand response, and developed 

an analytical model to reduce peak power demand using a HVAC working load model 

integrated with the manufacturing system. Heat transfer characteristics of five 

machines and four buffers were analysed to determine the effect of the equipment on 

a HVAC system, with manufacturing production then scheduled during off-peak 

periods to reduce HVAC power demand during peak periods. Focus was on peak-

power demand reduction rather than overall energy consumption of the facility. 

Similarly, looking at machine schedules and peak demands, Brundage et al. [110] 

adopted the idea of an energy opportunity window, which allowed machines to be 

turned off at certain times without any reduction in throughput, with the aim of a 

reduction in energy consumption. The authors synced the energy opportunity window 

with times of high energy demand of the HVAC system in order to optimise facility 

energy use. The thermal model was able to account for environmental changes such 

as air temperature, heating loads and solar radiation, however a continuous flow 
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model was used for the manufacturing production line, so cycle times were assumed 

a constant with down times of machines not considered. Although the method 

achieved a reduction in cost, the study was focused on scheduling and financial 

savings rather than determination of energy consumption and analysis of 

interdependencies between the manufacturing systems and built environment. 

Alongside the previous studies focusing on schedules, operational strategies and 

planning, Sun et al. [111] considered the HVAC system alongside the manufacturing 

systems in order to determine an optimal demand response strategy for the facility. 

Optimal production schedules and power curves from the manufacturing systems 

along with building characteristics drove an EnergyPlus simulation. Particle swarm 

optimisation was determined by the facility production capability, electricity pricing, 

power limitation and ambient air temperature in order to determine the demand 

response strategy. Although the authors considered the HVAC system alongside the 

manufacturing processes, significant simplifications and assumptions of the facility 

were adopted, such as constant HVAC performance, constant outdoor temperatures 

with no mention of convective or radiative heat transfer from machines, and therefore 

the facility was not representative of a real facility. The authors discussed further 

plans to relax simplifications and provide real time decision making.  

  

2.6 Predictive techniques 

Multiple authors have reviewed techniques for energy demand forecasting or 

electrical energy use prediction. All studies concluded the most popular technique 

was the use of methods using artificial intelligence (AI) such as neural networks or 

support vector machining, of which greatly outweighed the use of other techniques 

such as statistical regression [112], [113]. The accuracy of AI methods have also been 

seen to outperform statistical methods [112]. 

2.6.1 Regression for energy prediction 

Statistical regression models are used to determine a relationship between input and 

output variables based on a set of historical data. In the area of energy use analysis, 
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regression models have largely been used to determine the relationship between 

variables such as weather, price or customer income with energy use in the 

residential and commercial sector. 

Egelioglu [114] used multiple regression analysis to determine that customer 

numbers, price of electricity and number of tourists correlate with annual electricity 

consumption of a region in Cyprus, and therefore such variables can be used to 

forecast future annual electricity consumption. Likewise, Bessec [115] used 

statistical regression techniques to investigate the relationship between electricity 

demand and temperature in Europe.   

In the industrial sector, Al-Ghandoor [116] used multivariate regression to determine 

that the most important variables to impact electrical power demand was the 

industrial production output and capacity utilisation. 

A few studies have adopted regression-based methods for the prediction of energy 

demand and load forecasting in the commercial and residential sector.  

Ma [117] used multiple linear regression techniques to predict the monthly energy 

consumption for large commercial buildings, whereas Cho [118] used regression 

techniques to predict annual heating energy consumption of a commercial building, 

comparing different measurement periods. The study concluded the importance of 

providing enough data to produce an accurate model for energy predictions.  

However due to their simplicity, statistical regression models lack flexibility and 

require a large amount of data to draw any significant conclusions and relationships 

between data. Most regression techniques are unable to deal with the nonlinear 

behaviour of energy use and efficiency in buildings [113]. 

2.6.2 Machine learning for energy predications 

The most common machine learning technique within the energy sector is the use of 

Artificial Neural Networks (ANNs), with their use being adopted in residential and 

commercial buildings, looking at heat loss, electric efficiency, occupant energy use or 

building energy use, each of which can be classed as a micro model. A macro model, 

is one which encompasses multi fuel, multi sector and region analysis, such as district 
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or country wide energy predictions [119]. Such models are also increasingly being 

used to predict solar radiation or wind speeds in order to maximise renewable energy 

output through efficient planning and resource utilisation [120], [121]. 

One of the first found studies using ANNs for energy demand forecasting was 

performed by Javeed and Al-Garni in 1995 [122], who utilised ANNs to forecast 

electrical energy consumption in the Eastern Province of Saudi Arabia based on 

weather, global solar radiation and population (Figure 27).  

 

Figure 27- Comparison of predicted energy consumption using ANN and regression model 

[122] 

 

The study concluded the advantage of ANNs over regression models and highlighted 

the capabilities of ANNs dealing with large datasets with little information regarding 

relationships between variables.  

In the field of building energy consumption forecasting, the first found study was 

performed by Mozer [123], who used reinforcement learning to monitor a residential 
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environment, infer patterns in occupant behaviour and needs and adjust building 

controls accordingly (Figure 28).  

 

Figure 28- System architecture of the for determination of environmental state (figure 

reproduced from [123]) 

 

The system used an optimal control policy to reduce costs associated with occupant 

discomfort and energy. If occupants manually controlled the environment, the system 

used this as an indication of discomfort, and adjusted the optimum controls 

accordingly in order to reduce the need for manual control. The system also provided 

energy saving strategies by ‘testing’ occupants, setting control intensity lower than 

the believed optimal, and if the occupants did not show signs of discomfort, a new 

lower optimum setting threshold was set. The system was tested and outperformed 

simulation studies, however it was noted that long term testing was required to 
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determine if there was enough regularities and patterns in occupant behaviour for 

suitable and robust training of the system to occur.  

Likewise, in the area of energy control, Benedetti et al. [124] used ANNs to create an 

automatic energy consumption control system, in order to allow for easy maintenance 

and increased energy savings of a tertiary building.  ANNs were trained using a large 

amount of data, but identifying such a vast amount of data is not always possible, 

therefore the authors developed a method of identifying a minimum dataset size 

which could obtain reliable results. The aim was to provide a method that could be 

adopted in any energy consuming system for maximum energy savings. The ANNs 

were trained using data in matrix form, organised using different time steps 

dependant on the energy collection system used. Monitored variables in the system 

included equipment, lighting, air conditioning, water pumps and boilers, lifts, 

external temperature, relative humidity and illuminance.  

Afram et al. [125] used ANNs for a predictive control model to predict dynamic 

temperature set point profiles of the zone air and buffer tank water of a residential 

HVAC system in order to reduce operating costs without a compromise of thermal 

comfort. Such an approach was adopted as authors stated that minimisation of 

energy consumption was not an appropriate objective in the presence of variable 

energy prices, rather focus should be on the reduction of HVAC operating costs. 

However the implemented approach used more energy than when fixed HVAC set 

points were used, but resulted in lower operating costs due to its ability to store the 

energy in building mass during off peak hours.  

Similarly, Chou and Bui [126] compared a number of prediction and data mining 

models including ANNs, regression trees and classification to predict heating and 

cooling loads of residential buildings, for use in the building design stage. Inputs to 

the model included building surface areas, glazing, orientation and compactness, 

which resulted a model with high accuracy for load prediction. 

A number of authors have used both simulation and machine learning, for example, 

Neto and Fiorelli [127] utilised both simulation and ANNs to predict building energy 

consumption of a university building in São Paulo. Multiple models utilising different 
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input parameters were tested, and it was found that humidity and radiation had very 

little effect on energy consumption in comparison to internal heat gains and 

equipment within the building. The ANN model outperformed the simulation model 

for energy predictions by 3%, however the study was classed as preliminary due to a 

large number of model uncertainties and simplifications. Naji et al. [128] also utilised 

simulation with ANNs, estimating residential building energy consumption based on 

building material thickness and their thermal insulation capability. The study 

concluded the importance of the technique for accurate estimation of building energy 

consumption during design and construction stages. Ekici and Aksoy [129] looked at 

building insulation thickness as well as building orientation for predication of 

building heating load using ANNs (Figure 29).  

 

Figure 29- A three layered feedforward ANN [129] 

 

The authors used ANNs along with computational energy calculations performed in 

FORTRAN, and achieved predictions to an accuracy of 94.8-98.5%, however stated 
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that further work was required to include additional parameters such as lighting and 

cooling loads due to their influence on building energy efficiency.  

Use of simulation and machine learning to optimise energy demand of a sporting 

facility whilst maintaining thermal comfort was performed by Petri et al. [130] where 

authors utilised a modular optimisation system in order to explore energy saving 

scenarios. The modular optimisation tool was tested on a sports facility in Rome, 

utilising data collected from sensors and actuators regarding consumption of 

electricity, gas, biomass, water and thermal energy as well occupancy levels. 

Predicted Mean Vote (PMV) was used to assess occupant thermal comfort. HVAC was 

analysed by assessing thermal and electrical energy consumption. The approach was 

able to provide significant electrical and thermal energy savings with control and 

uniformity over consumption intervals over the tested 42-day period. The tool 

provided a balance between optimisation objectives set such as HVAC set point, 

PMV, electrical and thermal energy consumption, energy savings and costs. 

Vázquez-Canteli [131] coupled simulation with self-tuning control algorithms, deep 

reinforcement learning (DRL), for building energy management in the residential 

sector. CitySim building energy simulation software was used to compute heating, 

cooling and lighting energy demands at hourly intervals, with data passed between 

CitySim, the controller, and the deep neural network used for the DRL in a batch 

learning process. Two case studies were investigated, the first of which used DRL to 

minimize energy consumption of a heat pump, chilled water tank and photovoltaic 

array, the second of which looked at storing and releasing cooling energy from the 

chilled water tank for demand response analysis for two buildings. The use of DRL 

allowed the system to tune itself and adapt to sudden changes in the building 

characteristics, as well as being able to identify control policies identified after the 

learning process when the system was offline, using historical data, as well as online, 

when the system is being controlled. In both case studies, electrical energy costs were 

reduced, highlighting the potential for the use of DRL to find optimum control 

strategies and minimize energy consumption and costs in an adaptive manner. 

However communication between CitySim and the DRL program was challenging, 
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with simulation speed depending on the controller and simulation itself, with the 

speed of the controller depending on batch sizes, model convergence, iterations and 

epochs. When multiple buildings were involved, as seen in a second case study, all 

buildings must have finished their commutations before simulation can advance and 

data could be exchanged with new actions taken, resulting in limited simulation 

speed.  

Construction properties have also been used to predict energy consumption, heating 

and cooling loads of buildings during design stages. Khalil et al. [132] predicted 

heating and cooling loads of a building during its initial design stages based on 

compactness, areas of roofs, walls and glazing, height and building orientation. 

A review of modelling and forecasting tools used for building energy consumption was 

performed by Suganthi and Samuel [133], and more recently Bourdeau et al. [113] 

Amasyali [134] used deep neural networks (DNN) to predict cooling energy 

consumption of an office building based on outdoor weather conditions for 5 different 

climatic locations in the USA. The DNN was trained using a simulation-generated 

dataset including hourly cooling energy consumption levels and climatic data. 

Support vector machines, random forest and linear regression models were also 

developed as benchmark tools, trained using MATLAB. The predictions made by the 

DNN for hourly cooling energy consumption achieved good accuracy for all five 

locations tested, based on the CV and R2 metrics, showing the potential for the use of 

DNN for building energy predictions.  

Recurrent neural networks are a form of neural network used for processing 

sequential data with predictions based on both the current input and contextual 

information of previous inputs, making them highly suited to applications utilising 

sensor data. A number of studies have adopted their use for energy demand 

predictions, commonly outperforming other machine learning algorithms and 

statistical techniques, the most common form of recurrent neural network being a 

long short term memory (LSTM). 
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An LSTM coupled with an AutoEncoder for feature extraction proposed by Gensler 

[135] outperformed LSTM, deep belief network and multi-layer perception neural 

networks for solar power forecasting, wheras Bouktif [136] utilized LSTMs to forecast 

medium (few weeks to months) to short term (few days to two weeks) electrical loads. 

Electrical energy consumption data was merged with weather data and time lags, of 

which are known to influence power demand. Feature selection was used to adopt the 

best features for the model, and genetic algorithm to find the optimal number of time 

lags and layers in the model. The model outperformed other commonly used machine 

learning approaches (Linear, K-Nearest, Random Forest, Gradient Boosting, ANN, 

Extra Trees, Ridge) in the prediction of loads of a metropolitan area in France.  

Likewise Mohammad [137] proposed a deep feed forward neural network (FNN) and 

a deep recurrent neural network (RNN) for energy load forecasting in smart grids 

(Figure 30).  

 

Figure 30- Energy load forecasting model (figure reproduced from [137]) 

 

Similar to Bouktif, the authors merged weather data and time effects with the energy 

consumption data to improve accuracy of the model. The deep RNN model 

outperformed the deep FNN model as well as the shallow neural network, ensemble 
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tree bagger and linear regression models tested. Higher error was seen for 

predications in summer due to unexpected variations in electricity consumption 

resulting from high temperatures and social events. The model however is yet to be 

tested on real world datasets.  

Although LSTM are commonly utilized for demand and load prediction, no studies 

were found utilizing such algorithms in the manufacturing sector or for HVAC 

system analysis.  

In the field of indoor climate monitoring and HVAC analysis, in the energy sector, 

Ahmed et al. [138] used random forest along with other predictive modelling methods 

to predict useful hourly energy from thermal collector systems. The use of random 

forest models for building energy predictions has been performed by Wang et al. [139] 

and Smarra et al. [140], the latter of whom discussed heating system scheduling and 

thermal comfort requirements.  

Ahmad et al. [141] used ANNs and random forest models to analyse hourly HVAC 

energy consumption of a hotel based on the input variables outdoor weather 

conditions, hour of day, month of year, number of guests and number of rooms 

booked. The authors concluded the models had comparable predictive power, were 

capable of non-linear mapping generalisation, and were nearly equally applicable 

and suitable for building energy predictions. Random forests however were able to 

handle missing values in datasets, and could accurately predict energy consumptions 

with missing output variables. Although less accurate results for the random forest 

were obtained, such results were within an acceptable range for HVAC energy 

consumption prediction purposes.  

Banihashemi et al. [142] coupled ANNs with decision trees to develop a hybrid model 

allowing for both continuous and discrete parameters of energy consumption to be 

used simultaneously for the prediction of building energy demand. The dataset 

included information regarding the building envelope, building design layout and 

HVAC system. The model was able to resolve the issue of using both continuous and 

discrete parameters of energy whilst enhancing the accuracy of the objective 

functions used in building energy prediction and optimisation. However it was stated 
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that the model may not be applicable to other types of machine learning algorithms, 

and more validation is required in other contexts using larger sample sizes covering 

various building energy parameters and climates. 

2.6.3 Machine learning in manufacturing 

Machine learning in manufacturing has been seen for fault detection [143], [144] and 

parameter investigation [145], [146], however studies on energy prediction and use 

of machine learning techniques in the manufacturing sector is limited, with a focus 

predominately on commercial or residential buildings. 

Studies found on energy consumption in the industrial sector are discussed, however 

no studies were found regarding optimisation of HVAC systems in manufacturing 

nor the use of machine learning or predictive techniques for manufacturing HVAC 

systems.  

In the manufacturing sector, Cupek et al. [147] presented a unsupervised iterative 

k-means clustering approach used to predict the energy consumption profile of 

compressed air systems for an automotive assembly station, in order to monitor 

energy efficiency and detect abnormalities. K-means finds patterns in datasets and 

was used to sort data into one of k groups. The method allowed energy consumption 

profiles specific to system states to be predicted based solely on behavioural 

observation and the classification of the production cycle, without need for data 

regarding control procedures executed by the production station (Figure 31). 

Azadeh et al. [148] used ANNs for long term electrical energy forecasting in high 

energy consuming industrial environments, such as chemical, metal and mineral 

based industries. The authors predicted annual energy consumption based on 

electricity price, the number of electricity consumers, price of fossil fuels, electricity 

intensity and value added, and discussed the advantages of ANNs over regression 

techniques, such as the ability to handle data prone to fluctuations. 
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Figure 31- Method to determine energy consumption profiles (figure reproduced from [147]) 

 

Olanrewaju and Jimoh [119] discussed the development of a model integrating Index 

Decomposition Analysis, (determining factors responsible for energy consumption), 

Data Envelopment Analysis, (assessing energy saving potential), and ANNs to serve 

as a long term planning tool to ensure energy is available to meet demands of 

targeted economic growth in the industrial sector. The authors concluded by stating 

the importance of developing integrated models to analyse and assess energy 

efficiency potential in the industrial sector. 

 

2.7 Research Gap 

Very few studies have been found which investigate the impact of manufacturing 

demand on HVAC control or building energy, with any holistic simulation analysis 

tool merely existing as a planning framework or in discussion. Existing work 

performs such investigations through the use of DES tools, thus interdependencies 



56 
 

between system and building level are neglected and the continuous parameter of 

energy flows is difficult to analyse. Likewise, little work has been done at 

investigating HVAC control in manufacturing environments. The use of predictive 

machine learning models in the industrial sector is limited, with no application to 

peak energy demand reduction, HVAC analysis or indoor climatic condition 

monitoring.  

Upon achieving objectives specified in section 2.9, the aim of this research, ‘Coupling 

Simulation with Machine Learning for the Development of a Proactive HVAC System 

in the Manufacturing Sector’  can be achieved in order to fill this research gap.   The 

critical review of literature in this chapter achieves the first objective of this research. 

 

2.8 Aims 

In Chapter 2.7, a research gap was identified which emphasised a lack of 

investigation into the impact of manufacturing demand on HVAC control or building 

energy. Furthermore, little work has been done at investigating HVAC control in 

manufacturing environments or discuss use of predictive tools in the manufacturing 

sector for building energy optimisation or peak demand monitoring.  

 The research in this thesis therefore focuses on improving knowledge surrounding 

the effects of manufacturing demand on building energy consumption through 

holistic analysis of thermal energy flows and interactions between equipment, 

occupants, weather, the built environment and building control.  

Through the coupling of simulation with machine learning, a novel predictive 

manufacturing based HVAC control strategy was developed in order to improve the 

energy efficiency of HVAC systems. Machine learning techniques can provide the 

automation of optimum HVAC controls, allowing for the continuous improvement of 

an intelligent HVAC control system. 

Such an approach allows facility decisions to be made based upon extensive 

knowledge regarding energy flows within the building. Furthermore, the 



57 
 

implementation of a proactive based HVAC system allows for the maintenance of 

comfortable working environmental conditions and also a reduction in operational 

costs, as well as allowing predictions of peak energy demand. 

The overall aim of the research is therefore; 

‘Coupling Simulation with Machine Learning for the Development of a Proactive 

HVAC System in the Manufacturing Sector’. 

 

2.9  Objectives 

The following objectives were to be satisfied in order to achieve the research aim; 

 

1. Conduct a critical review of literature in order to identify gaps in existing research 

and provide a focus for the research in this thesis. 

2. Modelling of a manufacturing environment utilising simulation tools to analyse 

the link between manufacturing schedules, machining heat gains with building 

energy consumption and HVAC demand through a holistic energy analysis. 

3. Determine effectiveness of the degree-day method for analysing manufacturing 

facilities. 

4. Development of a proactive manufacturing HVAC control system, based upon 

upcoming manufacturing schedules and weather conditions as opposed to the 

traditional thermal comfort based system. 

5. Implement the use of machine learning for prediction of optimum HVAC controls, 

along with prediction of indoor conditions to ensure an optimum thermal 

environment is maintained. 

6. Implement the use of simulation and energy prediction for schedule optimisation 

of machining and HVAC to achieve a reduction in energy consumption spikes. 
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7. Production of a framework on the development of a manufacturing based HVAC 

system, utilising predicted optimum HVAC controls. 

 

2.10  Summary of Literature 

The main findings of the literature review are summarised below.  

1. A common theme which is highlighted as being of upmost importance is the desire 

for increased knowledge surrounding energy use in the manufacturing and industrial 

sector. Knowledge and understanding of energy flows and the interaction between 

manufacturing and the building is essential. Without knowledge and willingness of 

workers, an energy plan is impossible to implement, and a company’s energy saving 

potential will not be reached [17] [49]. 

2. In manufacturing, DES is a common tool for optimising and analysing scheduling, 

process planning and resource management due to its ability to model non-

continuous processes and thus identify machine state behaviour and bottlenecks 

[33]–[36], [38]–[41][48]. Simulation is extensively utilised to determine associated 

energy of various tools and cutting parameters at tool level, being able to determine 

tool wear and related carbon emissions [52]–[56]. 

3. From a financial standpoint, in manufacturing management, energy is generally 

ignored and considered an indirect cost to production. Focus is predominately on 

improving profits and productivity. However energy saving strategies are triggering 

industrial companies to look at their peak energy consumption, of which can be 

responsible for 30% of their total monthly operating cost [47], [65], [149].  

4. Industry 4.0 brings a large increase in interconnected systems and data streams, 

with the potential to utilise this data for efficient planning, resource allocation, 

energy analysis, predictive machine maintenance, connected machining, processes, 

logistics and services. However barriers to knowledge gain are the need for specialist 

data collection systems, processing, analytical and storage tools, as well as knowledge 
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[82]. Furthermore, such data is predominately utilised for improvements in profits, 

resource allocation and product throughput [81]. 

5. The importance of analysing the building shell alongside manufacturing processes 

is highlighted due to the interdependency between equipment, occupants, building 

fabrics and TBS. Efforts to combine manufacturing energy flows with that of the 

building have been performed, with 71% using DES, tools which combined DES with 

continuous approaches were used for 16% of studies [83]. 

6. After process heat generation, the largest energy consumer in manufacturing 

facilities are the demands from HVAC systems and lighting [108], however the 

control and energy requirements of systems are often neglected in manufacturing 

facility analysis. Conflicts exist in literature of whether manufacturing schedules are 

considered to have an impact on the energy consumption of non-production related 

energy consumers such as HVAC and lighting. Katunsky et al. [87] stress the 

importance of machines on HVAC system energy consumption, whereas Gahm et al. 

[64] state that climate control is not influenced by machine scheduling.  

No studies were found to analyse the use of machine heat generation for space 

heating, nor analyse or discuss its effect on HVAC operation or building control and 

energy demand. 

7. Due to the simplicity of statistical regression models, most regression techniques 

are unable to deal with the nonlinear behaviour of energy use and efficiency in 

buildings [113]. Models lack flexibility and require a large amount of data to draw 

any significant conclusions and relationships between data. Alternatively, artificial 

neural networks are the most common predictive technique in the energy sector, 

being used for building energy prediction, district and countrywide energy prediction, 

heating demand and renewable energy efficiency predictions. 

 

8. In the residential and commercial building sector, machine learning techniques 

have been applied to HVAC systems as well as being utilised for heating and building 

energy predictions [122]–[126], [132], [134], [141], with few studies coupling machine 

learning methods with simulation [127]–[131]. In the manufacturing sector, machine 
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learning has predominately been utilised for fault detection and machine parameter 

investigation with few studies found on facility energy consumption [143]–[146]. 

9. Investigations into reducing peak energy demand of a manufacturing facility have 

been performed, however such work has been done looking at altering machine 

schedules, rather than working with both the manufacturing schedules and building 

behaviour as a whole. 

10. Use of degree-days in building energy analysis has been criticised due to its 

questionable accuracy, however little work has been done looking at the applicability 

of degree-days to manufacturing building energy analysis.  
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3 Chapter 3- Simulation Modelling 
 

3.1 Introduction 
This chapter discusses the modelling of a manufacturing environment using 

simulation. Software use justification in section 3.2 is preceded by theory behind the 

modelling tool utilised. A case study is introduced in section 3.4, along with model 

boundary conditions and discussion on the type of case study used. The final section, 

3.5, introduces various HVAC control systems.  

 

3.2 Simulation Theory & Software Justification 

3.2.1 Simulation Theory 

Computational simulation is a popular methodology for analysis of building energy 

systems, and thus there are many commercial simulation tools available such as 

DOE [150], EnergyPlus [16], ESP-r [19], TRNSYS [20] and IES-VE [18].  

Energy models are classed as white, black or grey box approaches. A white box model 

uses specified input variables to a model in order to predict output variables. 

TRANSYS, DOE, EnergyPlus and ESP-r work on these principles. A grey box 

approach uses a physical model from which important parameters and 

characteristics are determined by statistical analysis, however such an approach is 

unsuitable for whole building analysis, rather is suited to fault detection and 

diagnosis [3]. Black box approaches use a model structure estimated by variable 

regression analysis between input variables and measured output variables of energy 

consumption. However for long term simulations, the resultant model bears 

negligible physical resemblance [3].  

3.2.2 Software Justification 

IES-VE was selected as the simulation tool in this study. IES-VE is a time-series 

driven simulation tool used for modelling of thermal energy flows of a building shell. 

IES-VE encompasses a number of modules to determine the impact of certain 

parameters on building energy flows. A SunCast module is utilised for analysis of 
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weather conditions and solar gains, MacroFlo for natural ventilation analysis, 

Apache is provided for thermal analysis, ApacheHVAC for HVAC system 

implementation, ModelIT for geometry definition with results of simulations 

concluded in VistaPro. Furthermore, a Component module allows for the placement 

of furniture or electrical items such as radiators and ovens. 

Although a number of building simulation tools were available, IES-VE was utilised 

in this study due to its availability and reputation, as well as the provision of the 

Component tool. A manufacturing add on was available as part of the component 

module, which allowed for modelling and placement of manufacturing equipment 

within the building. Parameters such as process materials, grades and flow rates can 

be specified, as well as energy inputs to a machine, energy outputs, per product 

energy generation, sensible and latent heat output as well as product outputs. 

Furthermore, energy meters could be set up specific to individual machining 

processes, and allowed for grouping of processes or individual analysis of energy, 

waste heat and product generation. Thus, the tool allowed for analysis of the facility 

alongside the manufacturing processes.  

3.2.2.1 Energy Flows  

IES-VE is based on the first principles of heat transfer. Although IES-VE is a time 

series based modelling software, its ApacheSim module used for modelling thermal 

characteristics, can be classed as a dynamic model according to the Chartered 

Institution of Building Services Engineers (CIBSE) model classification. ApacheSim 

addresses [18]; 

 Thermal insulation (type and placement) 

 Building dynamics & thermal mass  

 Building configuration and orientation  

 Climate  

 Glazing properties  

 Shading, solar gain & solar penetration  

 Casual gains  

 Air-tightness  
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Figure 32- Energy  transfer processes taking place within a building space conditioned by a 

HVAC system (figure reproduced from [200]) 

 

 Natural ventilation  

 Mechanical ventilation  

 HVAC systems  

 Mixed-mode systems 

IES-VE performs heat loss and heat gain calculations based on the principles stated 

by CIBSE, whereas heating and cooling load calculations are performed according to 

the ASHRAE Heat Balance Method. The Heat Balance Method used by IES-VE 

calculates radiative delay effects within the building explicitly, by specification of 

assumptions on surface temperatures.  

Energy transfer processes within a building space of which is conditioned by a HVAC 

system, and thus requiring thermal analysis within the simulation model, is 

displayed in Figure 32. 

 

 

 

IES-VE adopts a finite difference approach, where elements are represented by 

nodes, a point at which thermal calculations are performed. Calculations at each node 
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Figure 34- Electrical network model for thermal energy transfer in buildings- heat 

transfer through an insulated wall (figure reproduced from [201]), where T is surface 

temperature (K) 

Figure 33- Electrical network model for thermal energy transfer in buildings- heat transfer 

for a wall with dissimilar materials ( Figure reproduced from [201]), where kn is thermal 

conductivity (𝑊 m−1 𝐾−1),  𝑄 ̇ is the rate of heat transfer (𝑊) and Rn is thermal resistance 

are performed at each user specified time step, with the number of nodes determined 

by the simulation model resolution. 

Heat flow through a building is often analysed using a network model, and although 

energy flows in reality is a continuum, the network model provides a successful 

approach to thermal building simulation (Figure 33 and Figure 34). The electrical 

network model consists of time dependant resistance and capacitance, with electrical 

current flowing in each branch of the network equivalent to the thermal energy flows 

between building elements and stochastic thermal inputs from sources such as 

occupants, HVAC, manufacturing equipment and solar gains. Each node can be 

thought of as having different capacitance. 
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Figure 35- Thermal resistance across a boundary 

 

Flow paths can be represented as a single path, with flow from a cooler to a warmer 

space, or as a flow of energy across many layers in series or parallel. These layers act 

as resistance to the flow of thermal energy, and therefore transmission of heat 

through a building can be considered as a network of resistances in series (Figure 35) 

or parallel, where the thermal resistance, R (𝑊−1 m2 𝐾), is determined based upon the 

elements thermal conductivity, kt (𝑊 m−1 𝐾−1), and thickness, x (m) (Equation 4 ). A 

high R value is desirable in order to reduce heat loss. 

𝑅 =  
𝑥

𝑘𝑡
 

Equation 4- Thermal Resistance [151] 

 

   

 

 

 

 

 

 

 

 

This thermal transmittance is known as the U value (𝑊 𝑚−2 𝐾−1), expressing heat 

transmittance through a piece of material due to a temperature difference (Equation 

5). 
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𝑈 =  
1

𝑅
 

Equation 5- Thermal Transmittance [151] 

The lower the U value, the more insulated the building will be. However poorly fitted 

insulation, gaps and bridges between partitions or building fabrics can increase a U 

value. 

3.2.2.2 Thermal Bridging 

In buildings, thermal transmittance is not consistent across the entire wall area. A 

thermal bridge is considered to be an area where thermal transmittance is higher, 

and results in a higher rate of conductive heat loss than that of the wall. Thermal 

bridges arise at a break in insulation, window seals, gaps in the walls for piping and 

cables as well as junctions between walls and flooring.  

An allowance for non-repeating thermal bridging can be made in IES-VE, by the 

addition of 10% to the U value.  

 

3.3 Heat Transfer by air movement 

A building is subject to air exchanges due to infiltration and air gaps in a building 

shell, natural ventilation, for example window opening, and mechanical ventilation 

from air exchange units and HVAC systems. Both MacroFlo and ApacheHVAC work 

alongside ApacheSim for the analysis of air flows due to natural ventilation and 

buoyancy flows, as well as from HVAC systems. The rate of heat transfer associated 

with a stream of air entering a space, �̇� (W), is determined by Equation 6. 

 

�̇� = �̇�𝑐𝑝(𝑇 − 𝑇𝑎) 

Equation 6- Rate of heat transfer associated with air entering a space ([152]) 

Where �̇� is the mass flow rate (𝑘𝑔 𝑠−1), cp the specific heat capacity (𝐽 𝑘𝑔−1 𝐾−1), T is 

the supply temperature of air (K) and Ta is the mean air temperature (K).   
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The CO2 concentration of outside air is assumed to be a constant, whereas CO2 gains 

in indoor spaces is calculated based upon CO2 levels of the indoor air and of the supply 

air, as well as upon sensible and latent heat gains of occupants within the space.  

Buildings are subject to ventilation and air exchange, of which is required for a 

reduction in harmful pollutants and water vapour and to provide a fresh air supply 

for occupants. Ventilation in excess however can increase heat loss, therefore a 

balance between clean air requirements and heat loss is required. Heat loss due to 

air exchange is determined by Equation 7. 

 

𝑄𝑣𝑒𝑛𝑡 = 𝜌𝑉𝐶 (𝑇𝑖 − 𝑇𝑜) 

Equation 7- Heat loss due to air exchanges ([152]) 

 

Where ρ is the density of air (kg m-3), V the infiltration rate (m3 s-1), C the specific 

heat capacity of air (kJ kg-1 k-1) and Ti and To the indoor and outdoor temperatures 

(K) respectively.  

3.3.1 Heat Conduction  

Cengel and Boles define conduction as the transfer of energy from a more energetic 

particle to an adjacent less energetic one as a result of particle interaction [152]. The 

rate of heat conduction �̇�𝑐𝑜𝑛𝑑 (W) through a layer of constant thickness ∆x (m) is 

proportional to the temperature difference ∆T (K) across the layer and the area A 

(m2) normal to the direction of heat transfer, and is inversely proportional to the 

thickness of the layer (Equation 8). Kt is the thermal conductivity of the material 

(Wm-1K-1), and specifies the ability of a material to conduct heat. 

 

�̇�𝑐𝑜𝑛𝑑 =  𝑘𝑡𝐴
∆𝑇

∆𝑥
 

Equation 8- Rate of Heat Conduction ([152]) 
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Therefore utilising Equation 4 and Equation 5, in buildings, the heat transfer 

through an element of surface area A such as a wall can be defined by Equation 9. 

 

�̇�𝑐𝑜𝑛𝑑 = 𝑈𝐴(𝑇𝑖 − 𝑇𝑜) 

Equation 9- Conduction through a wall ([151]) 

 

Where Ti and To are the indoor and outdoor temperatures (K) respectively.  

In IES-VE, the thermo-physical properties of building elements such as the density, 

specific heat capacity and conductivity of each layer is assumed to be uniform within 

each layer. Air gaps are also modelled as pure resistances.  

3.3.2 Convection 

Cengel and Boles define convection as the mode of energy transfer between a solid 

and an adjacent liquid or gas in motion [152]. In the absence of motion, the heat 

transfer between the mediums is pure conduction [152]. The rate of heat 

transfer, �̇�𝑐𝑜𝑛𝑣 (W), is determined by Newtons law of cooling (Equation 10); 

 

�̇�𝑐𝑜𝑛𝑣 = ℎ𝐴(𝑇𝑠 − 𝑇𝑓) 

Equation 10- Newtons Law of Cooling ([152]) 

 

Where A is the surface area through which heat transfer occurs (m2), Ts is the surface 

temperature (K), Tf is the fluid temperature (K) away from the surface and h is the 

convection heat transfer coefficient (W m-2 K-1), calculated dependent upon variables 

such as surface geometry, nature of fluid motion, properties of the fluid and fluid 

velocity, of which are calculated iteratively. For example, for external forced 

convection, a wind speed dependant convective heat transfer coefficient is used, and 
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is calculated based upon McAdams empirical equations, based upon weather data 

provided in the IES-VE weather files (Equation 11).  

 

ℎ = 5.6 + 4.0 𝑣 (v < 4.88) 

ℎ = 7.2 𝑣0.78   (v≥ 4.88) 

Equation 11- McAdams wind speed dependent convective heat transfer coefficients ([153]) 

Where v is wind speed (m s-1).   

3.3.3 Radiation 

Radiation is the energy emitted by matter in the form of electromagnetic waves 

(photons) as a result of the changes in the electronic configuration of the atoms or 

molecules. Such a mechanism does not require medium between the two elements 

[152]. The radiation emitted from a ‘real’ surface,  �̇�𝑒𝑚𝑖𝑡 (W), is expressed as stated 

in Equation 12. 

 

�̇�𝑒𝑚𝑖𝑡 = 𝜀𝜎𝐴𝑇𝑠
4 

Equation 12- Emitted Radiation ([152]) 

Where ɛ is emissivity of a surface, σ is a constant (5.67 x10 -8 W m-2 K-4), A is surface 

area (m2) and Ts is surface temperature (K). Emissivity ranges from 0 - 1 and 

determines how closely a surface represents a blackbody, an idealised surface 

emitting radiation at maximum rate. The net heat transfer between two surfaces is 

determined by Equation 13. 

 

�̇�𝑟𝑎𝑑 = 𝜀𝜎𝐴(𝑇𝑠
4 − 𝑇𝑠𝑢𝑟𝑟

4 ) 

Equation 13- Net Radiative Heat Transfer ([152]) 



70 
 

where A is the area of surface (m2) at temperature Ts and Tsurr is the temperature (K) 

of the surrounding surface. IES-VE adopts the mean radiant temperature model 

[154], which assumes the emissivity of the surfaces bounding a volume do not differ 

greatly from one another, which is commonly the case and allows for easier 

computation.  

Water vapour in a room’s atmosphere impacts air emissivity, therefore impacting 

radiant exchanges with building spaces. Humidity level regulation in a building 

space is critical for occupant thermal comfort, and in the case of a manufacturing 

facility, large pieces of equipment greatly influence such a balance. IES-VE models 

the effect of air emissivity due to water vapour adopting the model of Hottel 

(Equation 14) [155], where pw is the partial vapour pressure of the gas (Pa) and Le is 

the length of a gas mass (m).  

 

ln(𝜀𝑎𝑖𝑟) = −0.619 − (2.958 − 0.2184 ln (𝑝𝑤 − 𝐿𝑒))2 

Equation 14- Model of air radiant exchanges ([153]) 

 

3.3.3.1 Solar Radiation 

Thermal radiation in a human environment, such as in a building, is typically 

longwave radiation, whereas solar radiation is considered short wavelength, and is 

therefore calculated separately. ApacheSim calculates solar flux on each building 

surface, accounting for solar shading due to solar location and construction based 

shading devices. Dependent upon external conditions, solar radiation can raise 

exposed surface temperatures as much as 15-20 °C above ambient temperature and 

can directly contribute to changes in internal conditions. Along with direct solar 

radiation, atmospheric scatter and terrain reflection can also impact thermal 

conditions within the building space [156]. Cloud cover and solar attitude and 

azimuth were provided in the IES-VE weather files, whereas building location and 

altitude were specified upon model creation, along with solar shading devices. 
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3.4 Case Study 

The framework for the approach used in this study is shown in Figure 36. 

 

 

Figure 36- Study methodology 

 

The first step in this study was the development of a baseline simulation model, 

which defines minimum energy performance. The ASHRAE Guidelines for 

measurement of energy and demand savings advises a baseline simulating period of 

12 months in order to ensure that a certain month is not over represented in the final 

dataset [157]. Thus a simulation period of 12 months was used in this study. 

Furthermore, the use of a 12-month simulating period provided insight into the 

performance of the facility with energy savings measuring in differing seasonal 

climates.  
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Building simulation studies commonly use a time step of 60 minutes [158], however 

for shorter simulation periods (weeks or months) Albatayneh et al. [159] suggest the 

use of shorter time steps. Due to a simulation period of 12 months in this study, a 

time step of 10 minutes was used, with a 60-minute reporting interval. 

3.4.1  Data Collection 

In this thesis, a case study was used to test the proposed methodology. 

Manufacturing facilities are complex environments, with size, functionality, 

requirements and use varying across the sector, and therefore there is no blueprint 

for a standard manufacturing facility. Therefore, a generalized case study 

environment was utilised to test the proposed methodology, based upon data 

obtained from a number of manufacturing facilities and boundary conditions 

specified in literature, in order to determine a general case of an average facility (see 

Appendix A for further details). A review of literature collated 13 studies, [34], [71], 

[87], [88], [93], [96], [98], [102], [109], [160]–[163] , based on the energy analysis of 

manufacturing environments, providing a set of data including facility location, size, 

building energy and machining energy consumption, operational schedule, room 

conditions, machine types, HVAC operation and employee numbers. Not all variables 

were available for all studies, therefore based upon existing data, mathematical 

relationships were determined between existing variables in order to fill missing 

gaps in data. After data collation, a generalised dataset was produced in order to 

build a simulation model based on the 13 collated studies, including facility floor 

area, occupancy numbers, building energy consumption, machine energy 

consumption and number of machines, as well as trends into HVAC operation and 

room conditions (Table 1). HVAC operation was set based on thermal comfort, with 

100% operation during working hours, as well as shortly prior to and after. HVAC 

systems were set to a reduced level of operation outside of the hours 7am- 6pm, as 

specified in analysed studies. 
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Table 1- Extrapolated Dataset 

Facility 

Size (m2) 

Occupancy (no 

of people) 

Energy 

Consumption 

Estimate 

(MWh/yr) 

Energy 

Consumption 

of Machines 

(MWh/yr) 

Machining 

Schedule 

Lighting 

(W m-2) 

52407  1601 38795 24783 Monday-

Friday 

9am-5pm 

6 

 

However categorical variables such as building location could not be collated, and 

due to the dependence of building energy consumption on outdoor weather conditions, 

the manufacturing facility was simulated in 4 locations found in the studies for a 

period of one year (Table 2).  

 

Table 2- Location data for modelled facility environments 

Location Latitude (°) Longitude (°) Elevation (m) Annual Dry 

Bulb 

Temperature 

Range (° C) 

London, UK 51.48 N 0.45 W 25 8.40 - 31.40 

Ulyanovsk, 

Russia 

54.32 N 48.33 E 127 -4.80 – 34.90 

Munich, 

Germany 

48.13 N 11.55 E 520 7.10 - 32.90 

Chicago, 

Illinois, USA 

41.99 N 87.91 W 205 6.20 – 35.70 

 

The facility was modelled without and with equipment, Figure 37 and Figure 38 

respectively, to determine the impact of manufacturing equipment on the energy 
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consumption trends of the facility and determine to what extent both internal gains 

of equipment and equipment energy consumption impact the seasonal trend of total 

facility energy consumption. 

 

Figure 37- Annual Energy Consumption for the facility in 4 locations without 

manufacturing equipment present 

 

Figure 38- Annual Energy Consumption for the facility in 4 locations with manufacturing 

equipment present 
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 As displayed in Figure 37, outdoor weather conditions has a substantial impact on 

the energy consumption HVAC systems, determining required heating and cooling 

energy demands. Building energy consumption for all four locations varied with a 

seasonal profile, requiring more energy in winter due to additional heating 

requirements. Such a trend is considerable for the building in Ulyanovsk and 

Chicago, locations which experience a large annual range of climatic conditions and 

temperatures, less so for London, of which experiences a much smaller annual 

temperature variation.   

However when manufacturing equipment and internal heat gains were modelled 

within the facility, this seasonal trend was less, if at all apparent (Figure 38). The 

largest monthly energy fluctuation was a 31% difference between the lowest and 

highest monthly consumption, comparatively the fluctuation for the same facility 

without equipment was 255 %. 

 All four locations required a similar amount of energy to run the facility year round, 

due to the requirement for space heating in winter and space cooling in the summer 

due to manufacturing equipment heat gains. Requirements for the boiler system and 

cooling system followed a similar seasonal trend for all four locations (See Appendix 

B for further information), however total consumption for the building did not show 

such a trend.  

In order to determine the extent to which outdoor weather conditions impacts the 

energy consumption of a manufacturing facility, and thus determine the importance 

of location in the generalised case study, Spearmans rank correlation coefficients 

(SCC) between energy consumption and outdoor temperature was determined for 

each manufacturing facility. Furthermore, the SCC for the relationship between 

manufacturing demand and building energy consumption was calculated, in order to 

identify the extent to which manufacturing schedules impact final energy 

consumption of the facility in comparison to temperature. 

The SCC is used to determine monotonic associations between two quantitative 

variables, and ranges from -1 to 1 denoting a negative and positive correlation 

respectively. With a monotonic relationship, variables under analysis change 
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together, but not necessarily at a constant rate, as opposed to a linear relationship, 

where one variable changes proportional to the next.  

 A correlation coefficient of zero indicates no relationship between variables. SCC 

(Equation 15), requires variables to be ranked in size order prior to analysis. 

 

𝑟𝑠 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

 

Equation 15- Spearman Correlation Coefficient [164] 

Where n is the sample size and d the difference between the two ranked variables for 

analysis at index i,.  

The SCC was performed on an hourly basis for all locations. Table 3 displays the 

SCCs for analysis of building energy consumption with outdoor temperature and 

building energy consumption with manufacturing demand over a one-year period for 

a facility with equipment. 

 

Table 3- Spearman Correlation Coefficients for building energy consumption vs outdoor air 

temperature and building energy consumption vs manufacturing demand for a facility 

building with manufacturing equipment 

Location SCC 

 Energy vs Temperature Energy vs Manufacturing  

London -0.12 0.755 

Ulyanovsk -0.14 0.755 

Munich -0.09 0.756 

Chicago -0.13 0.755 
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The relationship between building energy consumption and outdoor temperature was 

weak for all locations, indicated by a SCC of -0.1 for all locations. However the 

relationship between building energy consumption and manufacturing schedule was 

significant, a SCC of above 0.75, indicating that for manufacturing facilities the 

presence of manufacturing equipment is much more influential on building energy 

consumption than outdoor weather conditions.  

Due to the low relationship between outdoor temperature and building energy 

displayed in and Table 3, along with the limited seasonal fluctuation in energy 

consumption displayed in Figure 37, it was concluded that the use of a generalised 

dataset adopting literature data from facilities worldwide was suitable for the 

methodology adopted in this study. Such a method provides a larger dataset to 

extrapolate from in order to build the case study dataset, and therefore provide a 

model that is more representative of a real manufacturing facility. As focus in this 

thesis is the relationship between energy consumption and manufacturing demand 

and schedules, the chosen data selection methodology was justified. Furthermore, 

the use of historical data in such a format provides a pre-validated dataset for use in 

the study. The model in this study utilised suburban London as a default location for 

all simulations. 

The case study data was also used to determine the suitability of the degree-day 

method for analysis of manufacturing facilities. The SCC between degree-days and 

energy consumption, as well as manufacturing schedule and energy consumption was 

determined for all four locations. Furthermore, the SCC between degree-days and 

HVAC energy was determined, along with manufacturing demand vs HVAC energy 

to determine the relationship between degree-days and HVAC energy for a 

manufacturing environment. 

3.4.2  Boundary Conditions 

3.4.2.1 Casual heat gains 

Causal Heat gains within the space included computers in office space, lighting, 

people and manufacturing equipment. The internal gains are composed of a sensible 

and latent component. Latent heat is associated with a phase change, such as 
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addition of moisture to the space due to evaporation, and are considered 

instantaneous loads [165]. Sensible heat is the energy associated with a temperature 

change with no phase change, and can result from conduction, convection and or 

radiation. 

Occupants lose heat both by latent heat, due to respiration or sweating, and also 

sensible heat, for example heat release due to the higher temperature of the skin 

with respect to the environment. Likewise, lighting provides a means of sensible 

internal heat, where radiative energy is emitted to the space only after it has been 

absorbed by room surfaces. Electrical plug loads provide sensible heat gain only, 

however equipment such as cookers provide both sensible and latent heat gains.  

The radiant fraction is used to characterise the amount of radiant heat given off from 

an object, the remainder of heat dissipation being convective. The convective heat is 

transferred to the surroundings instantaneously, whereas the radiative heat is 

absorbed by room surfaces and dissipated over time [166].  A value of 0.0 to 1.0 is 

used to characterise the amount of radiative heat released, with a value of 0.0 

indicating solely convective heat gains to the environment, and 1.0 indicating purely 

radiative gain. The convective component is directly transferred as energy gain to the 

room, whereas the radiative part is distributed to surrounding surfaces. 

Internal gains for the space were referenced from CIBSE Guide A  [167], and 

referenced in Table 4. 

 

Table 4- Internal Gains for the Facility 

Type Sensible Gain  Latent Gain Radiant Fraction 

People 75 W / person 55 W / person 0.20 

Lighting 6 W m-2 - 0.45 

Computers 11000 W - 0.22 

Manufacturing 

Equipment 

20% of machine load  0.1 

 



79 
 

Occupants were set to be distributed with a density of 32 m2 / person based on data 

in Table 1. The diversity factor which account for the percentage of computer 

equipment being idle or turned off can vary from 37-78% [167], thus the heat gains 

specified from computer equipment was set to match an average computational use.  

Due to the method of data collection in this study, individual machine data was not 

known. Therefore, the methodology adopted by  Katunksy et al. [87] in which 

machines are modelled as black boxes detailed by electrical power and dissipated 

thermal energies, was utilised. The Verein Deutscher Ingenieure (VDI), an 

association of German engineers setting standards in engineering, Standard 3082 

state that a value of 15% – 20% of the installed machine load is released as heat gains 

to the surrounding environment [168]. Weeber et al. further confirmed the use of 20% 

of machine load in his study of energy efficiency in factories [88], and was thus used 

in this study. 

The radiant fraction for manufacturing equipment was unknown however a typical 

value is between 0.1 and 0.5 [169]. 

In order to determine the effect of the radiant fraction on HVAC system energy, a 

number of radiant fractions were analysed for a period of one year (Table 5).  

 

Table 5- Manufacturing equipment radiant fraction investigation 

Radiant 

Fraction 

HVAC System 

Energy (kW) 

0.1 17854.07 

0.3 17833.07 

0.5 17812.11 

 

Error between the highest and lowest obtained HVAC system energy consumption 

was deemed negligible at 0.24%. Therefore, a radiant fraction of 0.1 was used for the 

manufacturing equipment throughout all simulations.  
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3.4.2.2 Construction Materials 

Building construction materials are highly location dependant, with different 

climates requiring different levels of insulation, rain and wind protection. As the 

facility was modelled in London, UK-based industrial construction material 

recommendations were utilised to build the simulation model [170] (Table 6).  

 

Table 6- Building Model Construction Parameters 

Description Materials U value ( W m-2 

K-1) 

Internal Ceiling/ 

Floor 

Chipboard- 30mm, SCREED- 170mm, 

Reinforced Concrete- 170mm, Cavity- 

50mm, Plasterboard- 10mm 

1.10 

External Door Steel- 30.4mm 5.86 

Internal Door Plywood- 30mm 2.20 

External Window Outer Pane- 6mm, Cavity- 12mm, 

Inner Pane- 6mm 

1.60 

Exposed Floor Insulation- 98.2mm, Reinforced 

Concrete- 100mm, Cavity- 50mm, 

Chipboard- 20mm 

0.22 

Internal Partition Plasterboard- 12.5mm, Cavity-50mm, 

Plasterboard-12.5mm 

1.79 

Roof Asphalt Roofing-30mm, Membrane- 

400mm, Insulation- 100mm, Steel- 

30mm 

0.23 

External Wall Rainscreen-3mm, Cavity-50mm, 

Insulation- 80mm, Cement Particle 

Board- 12mm, Cavity- 50mm, 

Plasterboard- 12.5mm 

0.26 
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Where studies utilised within the generalised dataset listed construction materials, 

these listed materials were compared with the UK recommended materials in order 

to assess suitability, provided location of the case study was appropriate.   

3.4.2.3 HVAC systems 

The facility was controlled by electrical heating and cooling by means of air 

conditioning. No natural ventilation was utilised as a cooling mechanism in the 

facility. HVAC systems were set to fully operational during manufacturing working 

hours, as well as two hours before this period and one hour after, and set to reduced 

operation outside of these times.  

HVAC set points to ensure thermal comfort conditions were set in accordance to 

formal recommendation for environmental conditions by ASHRAE [171], with 

systems adjusting accordingly if conditions were out of the specified range (Table 7).  

 

Table 7- HVAC Set Points 

 Set Point Range 

Temperature 19-22 °C 

Relative Humidity 30-60% 

 

The CIBSE guide sets a minimum requirement of 0.5 l s-1 m-2 of fresh air supply [167], 

the recommended rate of 0.8 l s-1 m-2 was utilised in this study.  

3.4.2.4 Weather Data and Site Location 

The ApLocate module in IES-VE provided data regarding latitude, longitude and 

height above sea level as well as data regarding daylight saving for the chosen 

location, suburban London. The air surrounding the facility was parameterised with 

an air density of 1.2 kg m-3 and a global current daily average CO2 concentration of 

400ppm.  

Weather data is provided by the MET Office, and provides data at hourly intervals 

over the course of a year including dry-bulb temperature, wet-bulb temperature, dew 
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point temperature, direct beam solar radiation, diffuse solar radiation, solar altitude, 

solar azimuth, wind speed, wind direction, atmospheric pressure, relative humidity 

and cloud cover for use in thermal calculations.  

 

3.5 Development of HVAC Control Systems 

Manufacturing production can be split into categories based upon factors such as 

manufacturing technique, available resources and volume. The categories are as 

follows [172]: 

1. Special project manufacture, where each project is significantly different from 

the previous, and is therefore a flexible process. Eg, custom buildings, bridges, 

roads or space shuttles. 

2. Manufacture to order, where job orders are not necessarily repeated at regular 

intervals, making application of complete production planning and control 

procedures difficult. Eg repair works, jobbing foundries. 

3. Manufacture for stock with variation in assembly or between processes, eg car 

and watch manufacture. Products are made ‘as standard’ for customers in 

anticipation of demand. 

4. Manufacture for stock with little or no variation in the processes for the 

component manufacture, but not for the assembly and finishing operations. 

Eg clothing and shoe production.  

5. Mass production, where a completed product at one operation is automatically 

passed on to the next, adopting a standardised process of creating parts in 

large quantities for a low price.  

6. Continuous Production, where parts are processed without interruption, 24 

hours a day 7 days a week. Holdups in the system could result in production 

loss but could also result in adverse effects to a whole batch, of which would 

have to be rejected. 

7. Intermittent production, covering all non-continuous production and covers 

production such as single project, jobbing or made to order. Most products are 
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produced in smaller quantities than continuous, with flexible systems to suit 

production varieties. 

 

Due to the difficulty of production planning and control procedures associated with 

the manufacture to order technique, a form of intermittent production, this method 

was selected for analysis in this study, along with the contrasting technique of a more 

continuous based method, such as manufacture for stock.  

The distinct differences between the made to order (MTO) and made to stock (MTS) 

approach is the type of production, with MTO being an intermittent process with 

varying machine schedules and work flows throughout the day, whereas MTS is 

generally production on a more continuous basis.  

The methods discussed in this study were applied to both a MTO and MTS based 

facility, in order to determine the effectiveness of the approaches for contrasting 

production  schedule environments.   

Machining in manufacturing is less energy intensive than industries such as food, 

paper and fuel, with energy consumption linked directly to production schedules and 

technological trends [173]. Therefore, it is predicted that this sector will possess a 

relatively flat energy consumption trend.  However with a growing population and 

rising customer demand, adopting energy efficiency strategies is essential to ensure 

the energy consumption profile of this industry does not see an upward trend, and 

therefore the HVAC system holds great potential for reduction of energy consumption 

in this sector, as well as increased energy efficiency in anticipation of an increase in 

machining output. 

All occupied buildings have thermal comfort based requirements, however in contrast 

to a commercial or residential build, these requirements are harder to maintain in 

manufacturing environments due to thermal energy flows associated with 

manufacturing equipment. This study questions the suitability of a traditional 

thermostat based approach to control of a manufacturing HVAC system, and 
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proposes a HVAC system controlled by both occupant thermal comfort requirements 

and manufacturing schedules. 

3.5.1 Thermal Comfort Based HVAC Control 

The manufacturing model was set to operate with the traditional and ‘standard’ 

procedure in the investigation of the thermal comfort controlled (TCC) system for 

both the MTO and MTS facilities. The HVAC system was set to operate based on 

thermal comfort thresholds with a reactive approach, where the system acts to 

combat any undesirable changes to the environment as and when they happen. The 

HVAC systems were set to fully operational during the working day as well as hours 

surrounding working hours, with reduced operation overnight as detailed in section 

3.4.1. The simulation was run over the course of 12 months, with machines operating 

5 days a week, excluding UK bank and public holidays. Total building energy 

consumption, HVAC consumption and indoor temperature and humidity of the 

manufacturing workshop were the main parameters for analysis, analysed for 

comparison with the manufacturing schedule based HVAC system discussed in 

section 3.5.2. 

3.5.2 Manufacturing Schedule based HVAC Control 

In order to implement a manufacturing schedule controlled (MFC) HVAC system, a 

year’s worth of energy consumption data, machining waste heat and weather 

simulation data was exported from the simulation run in section 3.5.1. Data from 

each month was manually analysed on an hourly basis, with energy consumption 

analysed alongside machine waste heat and outdoor temperature. Based upon 

observation, optimum HVAC set points and control profiles were manually 

determined based upon machine waste heat, and therefore machining schedule, and 

outdoor conditions. Determined HVAC system control profiles were imported back 

into IES-VE to determine performance of the environment based upon new HVAC 

operation schedules. Following each simulation run, results were analysed in terms 

of building energy consumption, HVAC system consumption and temperature and 

relative humidity levels to ensure thermal comfort. The methodology was repeated 

until the developed manufacturing based optimum HVAC schedules provided 
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sufficient thermal conditions. This was performed for both the MTS and MTO based 

facility, which is further detailed in the preceding section. 

3.5.3 MTS Based Manufacturing HVAC Control 

The MTS based manufacturing schedule was based on data from the facilities utilised 

to produce the general case study model (section 3.4). The facility was set to operate 

5 days a week, with machining commencing at 9am, with a worker break in the 

morning and afternoon, along with a lunch break. Machining was completed at 5pm 

(Figure 39).  

 

Figure 39- Machine schedule for MTS facility, where an utilisation of 1.0 corresponds to 

100% utilisation 

 

For the TCC system, HVAC control was set to fully operational 7am-6pm based on 

thermal comfort. However for the MFC system, HVAC schedules were based upon 

manufacturing demand and outdoor conditions, with an example of a developed 

HVAC schedule seen in Figure 40.  
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Figure 40- HVAC profile with machine schedule for a day in February, where an utilisation 

of 1.0 corresponds to 100% utilisation 

Further details regarding HVAC schedules for months other than February are 

detailed in Appendix C. 

Boiler systems were turned on at 8:30, prior to worker arrival to ensure comfortable 

working conditions were satisfied. The boiler systems however were turned off when 

machining begun, in order to utilise machining waste heat to provide required space 

heating rather than utilise boiler systems. Chiller systems were modified alongside 

machine schedule, and were turned down during the lunch hour, when machining 

was reduced. Boiler systems were not utilised in the months June, July, August and 

September.  

Thresholds for temperature and relative humidity were set as stated in section 

3.4.2.3 throughout the optimisation process to ensure thermal comfort requirements 

were met.  
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3.5.4 MTO Based Manufacturing HVAC Control  

In order to model a facility with a realistic MTO machining schedule, schedule data 

was obtained for an average working week from a MTO based facility in South 

Yorkshire, UK. This data was used to build up a yearlong manufacturing schedule 

for use in the MTO facility simulation.  Again, the facility was set to operate 

machinery 5 days a week, utilising boundary conditions specified in Table 1, however 

in comparison to the MTS based approach, the facility operated between 8am-4pm, 

as opposed to 9am-5pm, due to operational schedules adopted from the MTO facility 

in South Yorkshire. An example of schedule for one working day is displayed in 

Figure 41. 

 

Figure 41- Machine Schedule for MTO facility, where a utilisation of 1.0 corresponds to 

100% utilisation 

 

For the TCC system, HVAC control was set to fully operational from 6am-5pm based 

on thermal comfort. However for the MFC system, an example of a developed HVAC 

schedule for a typical working day is seen in Figure 42. 
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Figure 42- HVAC profile with machine schedule for a day in February where a utilisation of 

1.0 corresponds to 100% utilisation 

Further details regarding schedules for months other than February are detailed in 

Appendix C. 

Boiler systems were turned on gradually prior to worker arrival to ensure optimum 

working conditions were satisfied, and turned off before machining begun in 

anticipation of machine heat gains, providing space heating. Due to the high 

manufacturing demand at the start of the day, chiller systems were set to compensate 

for heat gains to the space at 80% operational capacity. The chiller systems 

operational capacity was then reduced to 60%, due to a reduction in machining. A 

machining spike was seen at both 10:00 and 10:45, and the chiller profile was set to 

match this demand, with chiller systems increasing slowly from 9:45 to 11:30.  

 This was followed by a reduction in machining demand until the afternoon, where a 

4th machining spike was seen at 13:00, thus an increase in chiller operational demand 

was seen, in comparison to the reduction over the lunch period. The operational 

profile for the chiller system between 12:30 and 13:00 possessed a steeper profile, 

than that seen in the morning, due to residual heat within the space from a morning 

of machining. Such an operational profile was found to consume less energy than 
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maintaining high chiller operation over the lunch period, as well as a higher level of 

thermal comfort. 

 Chiller systems were kept to 80% operational capacity into the mid-afternoon, and 

gradually reduced towards the end of the working day. Although the workshop was 

still in operation when chiller systems were being turned down, the anticipation of 

the end of the working day and thus reduced heat gains to the space meant that 

chiller systems could be turned down without compensating for any loss in thermal 

comfort. Any heat present in the space towards the end of the day did not need to be 

removed, provided thermal comfort was met whilst occupied, as workers were soon 

to leave and no additional heat was to enter the space.   

Thresholds for temperature and relative humidity were set as stated in section 

3.4.2.3 throughout the optimisation process to ensure thermal comfort requirements 

were met. 

 

3.6  Summary  

The key difference between the well researched method of DES for analysis of 

manufacturing environments and the continuous based simulation paradigm used in 

this thesis is the ability to build up a full continuous energy profile of the 

manufacturing environment at defined time steps, as opposed to state based analysis 

with computations conducted at the time of an event/ state change. The use of the 

time based simulation tool IES-VE, allows this continuous computation and analysis, 

alongside modelling of manufacturing schedules, weather effects, occupants and 

building fabrics for a full holistic analysis. Such simulation modelling further allows 

for a complete dataset to be generated for subsequent analysis by predictive 

algorithms, allowing for the development and implementation of an intelligent HVAC 

control system.  

The case study utilised in this study, developed from peer reviewed journal papers, 

provides a pre-validated dataset and manages uncertainties associated with data 

collection from sensor systems. The case study environment was modelled adopting 
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two contrasting production schedules, the stochastic ‘Made to Order’ and more 

continuous ‘Made to Stock’ regime, to determine the effectiveness of the intelligent 

HVAC control approach to different manufacturing environments.   
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4 Chapter 4- Machine Learning Techniques for a 

Proactive HVAC system 

 

4.1 Introduction 

This chapter introduces a number of techniques for the prediction of building and 

HVAC energy consumption as well as indoor conditions utilising the manufacturing 

controlled HVAC approach.  

Predictive analytic models and techniques are used to determine patterns in data 

and to predict outcomes based on these patterns. The technique used is dependent 

upon size of input and output variables, the relationship between variables, data type 

and required output. Amongst the most basic of techniques used for predictive energy 

analysis is linear regression, and with increasing complexity, decision trees, random 

forest, neural networks and deep neural networks.  

Section 4.2 discusses the coupling of simulation and machine learning models. 

Section 4.3 discusses model validation, with predictive models introduced in sections 

4.4, 4.5, 4.6 and 4.7. Section 4.8 utilises the predictions of building energy demand to 

identify spikes in energy consumption, with simulation utilised to optimise schedules 

for a reduction in peak energy demand. The chapter is concluded in section 4.9 where 

a machine learning model is utilised to predict optimum HVAC set points, of which 

were used to run a simulation model utilising a proactive HVAC control approach.  

 

4.2 Training from simulation 

Utilising data from simulation for predictive analysis allows for extensive analysis 

in a low cost, risk free manner without the need for sensor implementation, and also 

allows for the development and testing of predictive control methodologies, for 

example, this method has been utilised in the development of driverless cars. In this 

study, simulation data from investigations discussed in section 3.5.2 is utilised to 

train a number of predictive algorithms.  
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The simulation models of the MFC environment for both the MTS and MTO 

environments are utilised to train linear regression, ANN, DNN and random forest 

models for the prediction of building and HVAC energy, indoor air temperature and 

humidity. 

In the development of such predictive models, data was manually exported from IES-

VE into the subsequent algorithm. The computational language of Python was used 

for algorithm development, along with libraries such as NumPy [174]  and Pandas 

[175] for data manipulation, Matplotlib for data visualisation [176], and Scikit-Learn, 

[177], and Keras on Tensorflow, [178], for development of statistical and machine 

learning models.  

The outputs from simulation, and thus the inputs and outputs to all predictive 

models is displayed in Table 8. 

 

Table 8- Predictive model inputs and outputs 

Inputs Outputs 

Occupancy internal gains (kW) Total building energy consumption 

(kW) 

Outdoor temperature (° C) HVAC energy consumption (kW) 

Outdoor relative humidity (%) Workshop air temperature (° C) 

Outdoor wind speed (m s-1) Workshop relative humidity (%) 

Cloud Cover (oktas)  

Manufacturing demand (kW)  

 

For all predictive models, data at one-hour intervals across a 12-month period was 

utilised.  

4.3 Validation 
For the computational assessment of a whole building, compliance with ASHRAE 

regulations provides the following requirements [157]: 
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- Model 8760 hours per year 

- Include thermal mass effects 

- Occupancy and operating schedules that can be separately  defined  for  

each  day  of  the  week  and  holidays,  

- Individual  set-points  for  thermal  zones  or  HVAC components, 

- Actual weather data  

- User-definable part-load performance curves for mechanical equipment, 

and user-definable capacity and efficiency correction curves for 

mechanical equipment operating at non-rated conditions 

All ASHRAE guidelines were followed, with the exception of the use of efficiency 

correction curves for mechanical equipment, as efficiency corrections were defined for 

each piece of placed equipment. For example, specification of lighting, computer and 

machining schedules, occupancy based lighting switches and power saving 

specifications for computational equipment.  

The performance of predictive models can be determined using accuracy metrics. 

Common metrics include mean absolute percentage error (MAPE), root mean square 

error (RMSE), mean absolute error (MAE), coefficient of variation of the root mean 

square error (CV(RMSE)) and coefficient of determination (R2). A review of energy 

planning models stated that the most commonly utilised metric was RMSE, MAE 

and MAPE  [112].  

Studies commonly use a combination of metrics in analysis of a model due to 

disadvantages and limitations to each metric. For example RMSE and MAE are scale 

dependant, whereas MAPE is scale independent [179]. RMSE and MAE are thus not 

recommended for comparison between different models and studies. MAPE however 

is undefined if Y is zero at any point in time [180], and is not a documented metric in 

the Scikit-Learn library due to such limitations.  

This studied utilised the CV(RMSE) and R2 metric, due to recommendations and 

stated accuracy criteria and recommendations in the ASHRAE guidelines [157] 

(Table 9). 
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Table 9- Calibration criteria and model recommendations set by the ASHRAE guidelines 

Metric  Calibration Criteria 

CV(RMSE) Monthly criteria (%) 15 

Hourly criteria (%) 30 

 Model recommendation 

R2 > 0.75 

 

In this study, CV(RMSE) and R2 was calculated on an hourly basis at each simulated 

time step. The metrics were then averaged over all data points.  

CV(RMSE) (%) measures the variability of the errors between measured and 

simulated values, giving an indication of how well the model can predict the overall 

pattern of the data [181]. It is calculated by normalising the RMSE metric by the 

dependant variable (Equation 16). 

𝐶𝑉(𝑅𝑀𝑆𝐸) =
1

�̅�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

√
∑ (𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑦𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖)2𝑛

𝑖=1

𝑛
∗ 100 

Equation 16- CV(RMSE) metric ([182]) 

Where n is equal to the number of measured data points, 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 are the measured/ 

observed variables, 𝑦𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖  the predicted variables and �̅�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  the mean of the 

measured/ observed variables. 

CV(RMSE) quantifies average error rather than the error over individual data points 

and therefore provides a good metric for overall model performance.  

R2 measures how well the model is likely to perform with new data, and ranges 

between minus one and plus one (Equation 17). The best possible score is one, with a 

score of zero implying that the model predicts the target value whilst disregarding 

any input data, and a negative value implying the model cannot perform predictions 

on new data.  
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𝑅2 = 1 −  
∑ (𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑦𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖)2𝑛

𝑖=1

∑ (𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − �̅�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,)
2𝑛

𝑖=1

 

Equation 17- R2 metric ([183]) 

CV(RMSE) and R2 were used in the model development stage, comparing each 

individual model through hyper-parameter optimisation. R2 and the errors obtained 

on unseen data predictions were used to compare different models.  

The predictive models were also used to predict outputs in Table 8 using an unseen 

dataset consisting of one months’ worth of data in order to determine the accuracy of 

the model for further use. The use of unseen data confirms whether the model has 

successfully learnt patterns in the data, rather than learning specific inputs and its 

corresponding output variables.  

 

4.4 Linear Regression 
Beginning with one of the simplest predictive approaches, ordinary least squares 

multiple linear regression (LSMLR) was first utilised for prediction of building and 

HVAC energy demand as well as indoor temperature and humidity. This technique 

was utilised due to its simplicity and long-standing ability to recognise patterns in 

data. 

Linear Regression is used to determine the relationship between two continuous 

variables (Equation 18), finding a linear relationship between the input, x, and 

output y, returning a line that results in the least error.  

𝑦 =  𝛽𝑜 + 𝛽1𝑥 

Equation 18- Linear Regression ([184])  

Where y is the response variable, βo the intercept of the relationship, β1 the regression 

coefficient and x the input variable. 

Multiple linear regression is the approach taken when there is more than one input 

variable (Equation 19).  
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𝑦 =  𝛽𝑜 + 𝛽1𝑥1 + 𝛽2𝑥2 +  … 𝛽𝑛𝑥𝑛 

Equation 19- Multiple Linear Regression ([184]) 

Where n is the number of input variables. 

Least squares is the most common method for fitting a line of best fit of data by 

minimising the sum of the squares of the vertical deviations from each data point to 

the line. The method treats the data like a matrix and uses linear algebra to estimate 

optimal values for the coefficients.  

Linear regression models are advantageous in that they do not require a large 

amount of input data and provide a simplistic model requiring minimal 

computational cost. 

A LSMLR model was built for both the MTO and MTS environments.  

 

4.5 Artificial Neural Networks 

ANNs are a popular tool for energy demand forecasting and energy planning 

management due to their ability to approximate nonlinear processes to a high degree 

of accuracy. This model was selected for such reasons, along with the model’s 

capability to recognise complex patterns in data with multiple inputs and outputs. 

The model also allows for extensive modifications, such as addition of layers in order 

to determine specific features from the data. A feed forward ANN was utilised, in 

which information flows through the model, from the input, through intermediate 

computations towards the output, with no loops or feedback connections. 

ANNs are based upon the structure of the human brain, utilising nodes or neurons 

in layers connected by pathways or synapses (Figure 43).  
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Figure 43- Artificial Neural Network Architecture 

 

The number of neurons in the input layer corresponds to the number of predictors 

(number of model inputs) whereas the number of neurons in the output layer 

correspond to the number of target or output variables. The hidden layers in the 

model are used to recognise patterns and features, with models with more than one 

layer being considered Deep Neural Networks. The optimum number of layers is 

determined by number of inputs, outputs and sample size, but is commonly 

determined by trial and error or an iterative approach due to the complexity between 

number of layers and size of datasets.  

Neurons in the model are connected by synapses which hold a weight linked to the 

relationship between neurons, which is altered during the training process. A cost 

function quantifies the error of predictions made by the model during the training 

process and is thus used to improve the accuracy of the model. The gradient descent 

algorithm is used to alter the weights to values which make the cost function a 

minimum. The most common gradient descent algorithm is the Back-propagation 
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algorithm, a computationally efficient method used for models in which the outputs 

are known (supervised neural networks). 

The relationship between the input and output of the network is determined by the 

activation function, which performs a nonlinear transformation to the input making 

it able to learn and perform complex tasks. Without such a function, the model 

presents a linear regression approach. Common activation functions include the 

Rectified Linear Unit Function (ReLu), Sigmoid and Hyperbolic Tangent (tanh), with 

suitability of each function dependent upon the models purpose and location of the 

layer. 

There is no standardised method to determine the optimum number of neurons in 

the hidden layer, however Panchal et al. [185] discuss a number of approaches such 

as: 

 The number of hidden neurons should be in the range between the size of the 

input and output layers. 

 The number of hidden neurons should be 2/3 of the input layer size plus the 

size of the output layer. 

 The number of hidden neurons should be less than twice the input layer size. 

 The number of hidden neurons is determined with a trial and error approach, 

starting from 2 neurons.  

 The number of hidden neurons is determined with a configuration of l-m-n, 

where l is the input nodes and n is the output, eg if there are 2 input and 

output nodes, the number of hidden nodes is 2.  

Due to the great amount of uncertainty in the optimum number of hidden neurons, 

a trial and error approach was taken, increasing the number of neurons by 1 after 

analysis of R2 and CV(RMSE) metrics, as well as the error of predictions made on 

unseen data (Table 10).  

The ANN model was built with the inputs and outputs listed in Table 8, for the MTS 

and MTO approach. 
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Table 10- Results for the iterative approach to determining optimum number of neurons in 

the hidden layer 

Model Number of Neurons in 

Hidden Layer 

R2 CV(RMSE) (%) 

MTO 2 0.62 65.12 

 3 0.83 45.4 

 4 0.88 39.5 

 5 0.90 34.5 

 6 0.87 39.5 

 

Model Number of Neurons in 

Hidden Layer 

R2 CV(RMSE) (%) 

MTS 2 0.69 42.1 

 3 0.89 27.8 

 4 0.93 22.2 

 5 0.93 22.0 

 6 0.93 22.8 

 

 

The final model had 5 neurons in the hidden layer. This also follows one of the ‘rules 

of thumb’ for neural network design, such that the number of inputs follows  

𝑛𝑜.𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠+𝑛𝑜.𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

2
; a methodology also adopted by Fan et al. for the use of neural 

networks for building cooling load prediction [179]. 

A one-layered ANN was built in this study, consisting of 6 inputs, 4 outputs and one 

hidden layer. The hidden layer consisted of five neurons (Figure 44).  
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Figure 44- ANN architecture for prediction of building and HVAC energy, and indoor 

conditions 

 

4.5.1 Data Pre-processing 

Prior to model training, data splitting is required to create training, validation and 

testing datasets. The training dataset is the data from which the model learns and 

from which it is trained, the validation set is used to evaluate the model that is fitted 

on the training dataset whilst tuning model hyper-parameters (e.g. learning rate, 

number of iterations, activation function), whereas the test dataset is used to provide 

an evaluation of the final model, and is used once the model is completely trained 

using training and validation sets [186] (Figure 45).  
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Figure 45- Data train, validation, test split (reproduced from [186]) 

 

In order to build this split, a number of methods can be utilised, commonly test-train-

split or K-fold cross validation.  

Test-train-split is a simplistic method in which data is split into groups based on 

percentages of data, of which is commonly a 80:20 train test split [187] (Figure 46). 

However such a methodology has been criticised, with the potential to lead to 

overfitting because depending upon how data is split, there may not be an accurate 

representation of all variables in the training set.  

 

Figure 46- Test-train-split modelling methodology (reproduced from [186]) 

 

Therefore k-fold cross validation is commonly used in order to avoid bias caused by 

the randomness in choosing testing and training sets in the test-train-split method 

[188]. Data is shuffled and split into k folds/groups, where one group is used as a 

validation set and the remainder used to train the model. This process is repeated 

until every fold has been used as the test set (Figure 47).  
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Figure 47- K Fold cross validation methodology (reproduced from [186]) 

 

Due to the use of small weights, data scaling and standardisation of input and target 

variables is required in order to ensure model convergence and accurate predictions, 

as well as reducing the risk of exploding gradients and a slow learning process [189]. 

The aim is to ensure features represent normally distributed data. 

Data in this study was scaled so that all values were within the range of zero to one, 

utilising Scikit-Learns MinMaxScaler (Equation 20).  

 

𝑥𝑛𝑜𝑟𝑚
(𝑖)

=
𝑥(𝑖) − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Equation 20- MinMax scaling ([184]) 

The activation function performs a nonlinear transformation to the input making it 

able to learn and perform complex tasks.  The activation function is applied to the 

sum of the inputs and their corresponding weights in order to obtain the output of 

that layer. The function keeps values moving forward to subsequent layers of the 
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network and towards the output, as well as maintaining values within an acceptable 

range. Popular types of activation function are displayed in Table 11.  

 

Table 11- Popular activation functions ([190]) 

Type Equation Range Graph 

logistic 
𝑓(𝑥) =

1

(1 + exp (−𝑥)
 

0 - 1 

 

tanh 
𝑓(𝑥) =

2

(1 + exp (−2𝑥)

− 1 

-1 – 1 

 

ReLu 𝑓(𝑥) = max (0, 𝑥) 0 - inf 
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Logistic functions are well suited to classification models, and are prone to vanishing 

gradients resulting in slow or no learning. Tanh is a scaled form of the logistic 

function, with stronger gradients, however still suffers a vanishing gradient problem. 

The ReLu function is less computationally expensive as not all neurons are activated 

at the same time. However ReLu can have a ‘dying ReLu’ problem where the gradient 

of the activation function nears zero. In order to determine the best function for this 

study, all functions were tested. Due to similar R2 and CV(RMSE) scores (Table 12), 

each model was used to predict on new unseen data with errors compared. The tanh 

activation function was utilised for both the MTO and MTS models. Although R2 and 

CV(RMSE) metrics were similar for all activation functions, the tanh function 

showed a significant improvement in accuracy for the MTS approach when the model 

was used to make predictions on unseen data (Table 13). For the MTO model, all 

functions performed with similar accuracy, with the tanh approach obtaining a 

slightly lower CV(RMSE). 

 

Table 12- Activation function investigation for the MTO and MTS models, accuracy metrics 

Model Logistic Tanh ReLu 

 R2 CV(RMSE) 

(%) 

R2 CV(RMSE) 

(%) 

R2 CV(RMSE) 

(%) 

MTO 0.90 34.5 0.90 28.1 0.90 34.5  

MTS  0.93 22.1 0.93 17.4 0.93 21.98 
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Table 13- Activation function investigation for the MTO and MTS models, predictions on 

new data 

Model Output 

Parameter 

Activation Function, Error (%) 

  Logistic Tanh Relu 

MTO Building 

Energy 

12.1 12.8 12.5 

 HVAC Energy 11.0 11.2 11.4 

 Temperature 4.68 4.63 4.75 

 Humidity 6.42 6.06 6.73 

MTS Building 

Energy 

17.3 11.0 14.2 

 HVAC Energy 16.7 12.4 12.7 

 Temperature 4.43 4.27 4.58 

 Humidity 6.34 6.38 6.82 

 

The optimisation algorithm is used to change the weights of neurons so that the next 

evaluation is made with a lower error, and therefore the optimisation seeks to 

navigate down a gradient of error.   

Although the most common optimiser is the stochastic gradient descent (SGD), the 

Adam optimiser is increasingly being used to involve accuracy scores and is the 

default optimiser offered by Scikit-Learn. Furthermore, adding momentum to the 

model can be used to accelerate gradient descent smoothing out oscillations and 

accelerating gradient decent where the gradient remains relatively consistent across 

training steps, taking into account previous gradients with each iteration. The use of 

the Nadam optimiser is a form of the Adam optimiser in which Nesterov momentum 

is applied prior to error gradient computation, and has shown significant 

improvements over the use of the Adam optimiser. The use of Nesterov momentum 

can be thought of as an improved momentum, as it ensures that the gradient and 

momentum are facing the correct direction for gradient descent, reducing gradient 



106 
 

overshoot problems. The Nadam optimiser was used for all neural networks in this 

study.  

 

4.6 Deep Neural Networks 

Mawson and Hughes [191], demonstrate the potential for the use of feed forward and 

recurrent deep neural networks for the prediction of energy consumption and indoor 

conditions within the manufacturing sector. The work was expanded on in this study, 

through the adoption of DNNs for prediction of building energy consumption, HVAC 

energy and indoor air temperature and relative humidity for the generalised case 

study discussed in section 3.5.2. 

The DNN model was used with the inputs and outputs listed in Table 8, for the MTS 

and MTO approach. 

The DNN consisted of a similar architecture to that displayed in Figure 44, with an 

additional hidden layer (Figure 48). The number of neurons in each layer of the DNN 

was again determined with an iterative approach. Where j is equal to the number of 

neurons in the first hidden layer, and k the number of neurons in the second hidden 

layer, R2 and CV(RMSE) metrics were analysed for a range of 2-6 for j and k to 

determine the optimum model architecture. Furthermore, R2 and CV(RMSE) metrics 

were analysed for the use of the ReLu, tanh and logistic activation functions. The 

metrics obtained for the optimised model are displayed in Table 14. Moreover, the 

model was used for predictions on unseen data, displayed in Table 15. 
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Table 14- Optimised DNN Models, where i, j, k, z is the number of neurons in the input 

layer, the first hidden layer, the second hidden layer and the number of output neurons 

respectively 

 

Model MTO MTS 

Number of neurons (i, j, k, 

z) 

(6,6,6,4) (6,6,6,4) 

Activation function in 

hidden layer 

tanh tanh 

R2 0.89 0.92 

CV(RMSE) (%) 31.5 19.32 

 

 

Table 15- DNN model errors on unseen dataset 

Model Output parameter Error (%) 

MTO Building Energy 33.8 

 HVAC system energy 15.5 

 Temperature 4.83 

 Humidity 6.93 

MTS Building Energy 36.6 

 HVAC system energy 20.9 

 Temperature 4.53 

 Humidity 6.88 

 

As used in the ANN in section 4.5, the Nadam optimiser was utilised for all DNN.  

The architecture of the DNN is displayed in Figure 48. 
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Figure 48- DNN architecture 

 

4.7 Random Forest 

Although studies have shown the potential of the use of random forests for 

predictions in the energy sector, the methodology is still relatively novel and not yet 

prevalent in building energy predictions. Thus the method was selected in order to 

expand on existing knowledge pertaining to random forests for use in the energy 

sector. 

Random forests consist of many individual decision trees that operate together as an 

ensemble.  A decision tree has a flow chart architecture (Figure 49), where the root 

node represents a dataset, the decision node is created when this root node is split, 

and also at the splitting of each subsequent sub node, and the leaf/terminal node 

represents the decision/ final node. A branch is a sub section of the tree. The splitting 
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process continues until a decision is reached. ‘Pruning’ is the removal of sub nodes, 

in order to prevent overfitting. A random forest model splits branches in a way in 

which reduces the mean squared error of the model. 

 

 

Figure 49- Random Forest model architecture [192] 

 

Such a method provides a higher level of accuracy, as well as more stable predictions, 

than the use of individual trees, as any errors present in one tree do not impact the 

errors of others, the trees in the forest run in parallel, and the model gradually 

achieves the correct result through averaged results of individual trees.  

This is done by utilising Bootstrap Aggregation (Bagging) and feature randomness.  

Bootstrapping is the process in which individual trees take a sample from the dataset 

with replacement (some data will be used multiple times in a single tree). Data is not 

split between individual trees, rather providing all trees with the same size of data 

as the original dataset. Thus, repeatedly using data from the original training set in 

order to produce multiple separate training sets (Figure 50). 
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Figure 50- Data sampling procedure for random forests 

 

Bagging is the process of combining predictions from many individual models or 

algorithms to make a more accurate prediction than a single model. 

Features are used to split nodes, and using the process of feature randomness, 

instead of searching for the most important features when splitting a node, it 

searches for features amongst a random set. Therefore, each individual tree uses 

different features to make decisions. Each time a split is made, a random feature is 

used. 

In contrast to neural networks, cross validation or the use of separate test data sets 

is not required as such similar methodology is applied internally with the use of 

bootstrapping. 

In summary, each tree in the Random Forest is built upon a bootstrapped sample of 

data. Using this dataset, only a subset of variables is used at each step of growing 

the tree, with a random feature used at each node split. This process is repeated, 

using whichever feature gives the best split in order to split nodes iteratively until 
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the trees have grown. With this process repeated for each tree, the resulting forest 

holds a wide variety of trees- thus random forest. This process provides a single 

observation for the forest based on the result of the many trees.  

A random forest regression predictor can be expressed as in Equation 21. 

 

𝑓𝑅𝐹
𝐶 (𝑥) =

1

𝐶
∑ 𝑇𝑖 (𝑥)

𝐶

𝑖=1

 

Equation 21- Random forest regression predictor ([193]) 

 

Where x is the vectored input variable, C the number of trees and Ti(x) is a single 

regression tree constructed from a sample of input variables and bootstrapped 

samples [138].  

Node impurity is used to determine how well trees split the data, and can be thought 

of as the variance in a node. The error drop can be calculated at each split point for a 

certain variable. Therefore, it can be used as a method of determining how 

importance certain features are to the random forest model. This allows certain 

features to be removed from the dataset if deemed un-important.  

The random forest model was built based on the inputs and outputs listed in Table 

8, for the MTS and MTO approach.  

Similar to the study on building energy prediction undertaken by Fan et al. [179], 

the random forest optimisation was performed over tree depth, which specified the 

length of the longest path from a root to a leaf, with a deeper tree having more splits 

and the potential for more information capture. A tree depth of 3 to 21 was analysed 

in this study. Furthermore, the number of estimators and maximum features was 

optimised, where the number of estimators is equal to the number of trees in the 

forest, where increasing the number of trees increases learning ability however also 

slows down the learning process. The number of features specifies how many features 
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should be considered when looking for the best model split, with a larger number 

improving model performance as each tree node is considering a larger number of 

options, but will reduce processing speed [194].  

The number of estimators analysed held values of 10, 100, 500 and 1000, and 

maximum features ranged from 2-4. The Grid Search method was utilized, 

evaluating all possible combinations of tree depth, number of estimators and 

maximum features, thus trialling 272 possible combinations. The parameters utilized 

in the optimised model are displayed in Table 16. 

 

Table 16- Parameters utilised in the Random Forest model for the MTS and MTO approach 

Model Tree depth Estimators Max 

features 

MTS 19 1000 4 

MTO 19 1000 4 

 

Feature Importance was performed, with Table 17 displaying variables in order of 

importance. 

Table 17- Feature importance, from most important to least 

Importance  

 Manufacturing Demand 

Occupancy Internal Gains 

(External) Dry- Bulb Temperature 

Cloud Cover 

Humidity 

Wind Speed 

 

 Although the manufacturing demand and occupancy levels were determined to be of 

higher importance than external climatic conditions, with humidity and wind speed 
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having low feature importance, these features remained in the dataset. It was 

concluded that climatic features were required in order to determine the impact of 

seasonal variations on building energy demand and HVAC requirements.  

 

4.8 Peak demand investigation and spike reduction 

A monetary incentive for manufacturing companies is to reduce their peak energy 

demand in order to avoid associated demand costs.  

The predictive algorithm discussed in 4.7 was utilised to predict future building 

energy demand, and thus identify any potential spikes in energy consumption. 

Identifying these spikes in consumption before they happen allows for manufacturing 

and HVAC schedule optimisation in order to reduce and avoid such spikes, and thus 

avoid the high costs associated with energy spikes. 

The MTO facility was chosen over the MTS facility, due to schedule fluctuations, and 

more flexible scheduling which allowed for optimisation, whereas the more 

continuous nature of the MTS facility had less potential for change. 

Typically, peak demand reduction has been performed by machine schedule 

optimisation. This study adopted a similar approach, however due to the impact of 

manufacturing heat gains on HVAC systems, HVAC system control was optimised 

alongside manufacturing schedules in order to ensure that indoor thermal conditions 

were satisfied. Furthermore, previous peak reduction studies have focused on cutting 

costs and have achieved this at the expense of an increase in energy consumption. 

Therefore in this study, throughout the optimisation process, energy consumption 

was kept as a constant, or aimed to be reduced where possible. 

Machine ramp up is a common cause of spikes in an energy consumption profile due 

to the sudden turn on of systems at the start of production, and thus was a starting 

point at levelling the energy profile by adopting a ‘soft start’ approach to machining. 

Rather than an immediate facility switch-on when workers arrived, machine start-

up was staggered. Alongside the staggered start to machining, HVAC systems were 
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set to a lower setting at the start of the day due to anticipated heat gains from 

equipment. Machining was also reduced towards the end of the day with a staggered 

approach. In a real manufacturing environment, it may not be possible to change 

scheduling of some equipment due to manufacturing demands or operational mature 

of the machine. Thus, throughout the optimisation process, the amount of machine 

utilisation throughout the facility was not reduced below 50%, with the exception of 

staggered starting of machine turn-on, and lunch break operation. 

Furthermore, machine worker breaks were altered, with staggered breaks for 

workers, as well as continuous machining through the lunch hour, in order to avoid 

a rapid reduction in machining energy consumption and to also help to maintain a 

more consistent thermal environment, without fluctuating heat gains from 

machining equipment avoiding the requirement for environmental modification from 

the HVAC system. 

The original manufacturing and HVAC schedule with the corresponding energy 

consumption for a typical working day in May is displayed in Figure 51.  

 

Figure 51- Manufacturing and HVAC schedule along with energy consumption for a 

manufacturing HVAC controlled MTO environment, where an utilisation of 1.0 corresponds 

to 100% utilisation 
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Such a profile was used as the starting point for both HVAC and manufacturing 

schedule optimisation. Again, temperature and humidity levels within the workshop 

was monitored to ensure occupant thermal comfort. 

 

4.9 Prediction of HVAC Set Points 

Section 3.5.2 discussed HVAC control based upon manufacturing demand and 

requirements as opposed to the traditional reactive thermal comfort-based system. 

Such simulations were run based upon manual specification of optimum set points 

based upon manufacturing demand, occupancy levels and outdoor weather 

conditions. Such a system and manual specification of HVAC set points is time 

consuming and requires extensive knowledge based upon the interactions between 

thermal flows within the building, of which required simulation and multiple 

investigations to determine optimum set points. In order for the proactive 

manufacturing based HVAC system to be feasible, these optimum set points needed 

to be determined analytically, and automatically.  

Sections 4.4, 4.5, 4.6 and 4.7 investigated the suitability of a number of predictive 

techniques for the prediction of building and HVAC energy as well as workshop air 

temperature and indoor humidity. The predictive models were modified to allow for 

the addition of HVAC set point as an output parameter, based upon manufacturing 

demand, occupancy levels and outdoor weather conditions, for the development of a 

proactive manufacturing based HVAC system.  

CV(RMSE) determines the closeness of predicted values to actual variables, whereas 

R2 determines how much of the variability in the measured values has been learnt 

by the model, with CV(RMSE) utilised to compare individual models through hyper-

parameter optimisation, rather than to compare the performance of different 

predictive techniques. The method that obtained the best performance in terms of R2 

and the lowest errors in predictions on new data sets was selected for use in further 

development towards a proactive HVAC system.  



116 
 

The random forest method for a MTO manufacturing environment significantly 

outperformed the LSMLR, ANN and DNN model and thus was utilised for 

development of the proactive HVAC. In terms of the MTS environment, both the ANN 

and random forest models performed similarly well, with the ANN outperforming the 

random forest for predictions on new data, however obtaining a lower R2 value. Thus 

both the random forest and ANN models were utilised for the prediction of HVAC set 

points, with predictions on unseen data compared to determine the performance of 

each model and assess suitability for the MTO environment.  

The ANN and random forest models were modified to contain the inputs and outputs 

displayed in Table 18. 

Table 18- Inputs and outputs utilised in the development the predictive models for HVAC 

set point prediction 

Inputs Outputs 

Occupancy internal gains (kW) Total building energy consumption 

(kW) 

Outdoor temperature (° C) HVAC energy consumption (kW) 

Outdoor relative humidity (%) Workshop air temperature (° C) 

Outdoor wind speed (m s-1) Workshop relative humidity (%) 

Cloud Cover (oktas) Boiler Set Point 

Manufacturing demand (kW) Chiller Set Point 

 

Following model training and optimisation, the best predictive models were used to 

predict outputs listed in Table 18, with the predicted HVAC set points fed back into 

a simulation model in order to determine the energy demand of the facility with the 

predicted optimum set points, and to evaluate indoor conditions.  Such a methodology 

provides a means of analytically determining optimum HVAC set points based upon 

manufacturing demand, outdoor weather conditions and occupancy levels, whilst 

maintaining humidity and temperature thresholds. This holds advantages over the 

manufacturing based HVAC system which requires manual specification of optimum 
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set points, of which is time consuming and requires multiple iterations and 

optimisation through the use of simulation. 

 

4.10  Summary 

Linear regression, artificial neural networks, deep neural networks and random 

forests are all utilised for energy forecasting of manufacturing facilities, utilising 

training data generated from simulation. Such predictive techniques hold the 

potential to automate model development, by identifying and linking relationships in 

large datasets.  Key metrics recommended by the ASHRAE guidelines identified the 

most suitable model to be applied to the prediction of optimum HVAC set points for 

the development of the proactive HVAC control system, and for the identification of 

peak energy demand.  

Predicting peak demand can provide a financial incentive for companies to not only 

reduce their peak consumption, but also consider the implementation of tools to 

analyse consumption and subsequently reduce. Improving knowledge surrounding 

energy flows within a manufacturing environment can allow for the optimisation of 

both manufacturing schedules and HVAC schedules asynchronously, for a further 

reduction of peak demand.  
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5 Chapter 5- Results and Discussion 
 

5.1 Introduction 

This chapter presents and discusses results obtained from investigations in Chapter 

3 and Chapter 4. The degree-day method investigation is discussed in section 5.2, 

along with justification for the use of a collaborative generalised dataset. Section 5.3 

compares the thermal comfort based reactive HVAC to the novel manufacturing 

based proactive system.  

This is followed by the investigation into least squares multiple linear regression, 

artificial neural network, deep feed-forward neural networks and random forest 

predictive models investigated for applicability in this study, found in section 5.4. 

The chapter is concluded with the reduction of spikes in energy demand in section 

5.5 and the development of the intelligent proactive manufacturing-based HVAC 

control system in section 5.6. 

5.2  Degree day investigation 

The applicability of the degree-day method to manufacturing facilities was 

investigated by determining the relationship between degree-days and building 

energy consumption. The degree-day method was developed primarily for 

determining building heating demand, but is also used to determine cooling demand 

and building energy consumption. The investigation considered a range of climatic 

conditions by analysing the four locations discussed in section 3.4.1. 

The SCC was assessed to determine the relationship between degree-days and 

building energy consumption, as well as the relationship between manufacturing 

demand and building energy consumption on an hourly basis. Results were averaged 

over a 12-month period and are displayed in Table 19. 
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Table 19- Spearman Correlation Coefficient for degree-day vs energy consumption, and 

manufacturing schedule vs energy consumption for 4 locations 

SCC Location 

 London Ulyanovsk Munich Chicago 

Degree Days vs 

Energy 

0.12 0.14 0.09 0.13 

Manufacturing 

vs Energy 

0.76 0.76 0.76 0.76 

 

 

The investigation was repeated, looking at the energy consumption of the HVAC 

system alongside both degree-days and manufacturing schedule, with results for the 

SCC displayed in Table 20. 

 

Table 20- Spearman Correlation Coefficient for degree day vs HVAC energy consumption, 

and manufacturing schedule vs HVAC energy consumption for 4 locations 

SCC Location 

 London Ulyanovsk Munich Chicago 

Degree Days vs 

HVAC Energy 

0.12 0.13 0.08 0.11 

Manufacturing vs 

HVAC Energy 

0.75 0.75 0.75 0.75 

 

The closer to 1 or -1 a SCC value is found to be, the closer the relationship between 

parameters. The relationship between degree-days and both building energy and 

HVAC energy consumption was negligible, with a maximum SCC of 0.14. In contrast, 

the relationship between manufacturing demand and both building energy and 

HVAC energy consumption was significant, with all SCC values above 0.75. This 

shows that there is little correlation between degree-days, thus outdoor weather 
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conditions, and energy demand within the manufacturing sector. The investigation 

into the use of degree-days has confirmed suspicions questioning the suitability of 

the use of degree-day analysis for building and HVAC energy consumption for 

manufacturing facilities. The influence of heat gains from manufacturing equipment 

outweigh climatic influences in determination of building and HVAC energy, and 

thus HVAC requirements which are required to maintain a suitable production 

environment. Although climate does have an impact on the energy consumption of 

buildings, this cannot be used as an indicator of consumption predictions of building 

energy consumption or HVAC energy consumption in the industrial sector.  

 

5.3 Manufacturing Based HVAC Control 

5.3.1 MTS Scheduled Facility 

Adopting the manufacturing based HVAC control (MFC) as opposed to a thermal 

comfort based control system (TCC) for a MTS scheduled facility resulted in a total 

energy saving of 7.61 % over a 12-month period. Monthly energy savings over a 12-

month period can be seen in Figure 52.  

 

Figure 52- Total facility energy consumption based on utilising the thermal comfort and 

manufacturing schedule controlled HVAC system in an MTS environment 
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This was accompanied by a 78.9 % and 3.99 % saving in boiler and chiller systems 

over a 12-month period respectively (See Appendix D), along with a 16.3 % energy 

saving from HVAC systems. Monthly HVAC energy savings over a 12-month period 

can be seen in Figure 53. 

 

Figure 53- HVAC energy consumption based on utilising the thermal comfort and 

manufacturing schedule controlled HVAC system in an MTS environment 

 

The largest HVAC system energy saving, 25.75 %, was obtained in February, with 

the lowest saving, 4.78 %, obtained in August. 

In the cooler winter month of February, with an average outdoor temperature of 4.06 

°C, the boiler systems utilised 76.4 % times less energy through the MFC approach 

as opposed to the TCC approach, with chiller systems utilising 6.59 % less energy.  

For a typical working day in February, for the MFC approach, boiler systems were 

turned on prior to worker arrival in order to obtain comfortable working conditions 

(Figure 54). The system was subsequently turned off when conditions were met and 

as machining began, in anticipation of waste heat. On addition of this waste heat into 
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the environment, chiller systems were slowly turned on after a time delay to combat 

excess waste heat. 

In contrast, for the thermostat based TCC approach, boiler systems were only turned 

off once the HVAC system detected a temperature increase in the environment due 

to machine waste heat, which resulted in chiller systems being activated, thus for a 

period, both boiler and chiller systems both operated in unison. This resulted in a 

higher demand on the chiller system, and thus higher energy consumption.  

The energy profile for the HVAC systems followed the machining profile, with a 

greater extent in the afternoon, once the environment and the building fabrics had 

reached a stable temperature. 

The implementation of a manufacturing based HVAC control system allowed for a 

significant energy saving from the HVAC system due to the utilisation of machine 

waste heat as space heating. Both boiler and chiller system set points were lowered, 

with more efficient scheduling of both systems.  

 

Figure 54- HVAC energy consumption for a TCC and MFC system, for a working day in 

February in an MTS environment, where a utilisation of 1.0 corresponds to 100% utilisation 
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In the warmer month of August, with an average outdoor temperature of 16.37 °C, 

boiler and chiller systems utilised 100 and 2.26 % less energy respectively adopting 

the MFC approach as opposed to the TCC approach. A lower energy saving was 

obtained in comparison to a cooler month, due to a greater similarity in chiller 

operational profiles in the warmer month. Cooling systems are energy intensive 

systems, with comfort cooling costing as much as one years’ worth of heating for the 

few days that the UK reaches temperatures over 28 °C [5]. During the warmer 

months, the chiller systems were ultimately running constantly throughout the day 

to combat not only manufacturing and occupant heat gains but also solar gains. This 

resulted in operational profiles for the MFC and TCC cooler system that have a 

greater similarity than the requirements of the system in the cooler months (Figure 

55). 

 

Figure 55- HVAC energy consumption for a thermal comfort controlled (TCC) and 

manufacturing schedule controlled (MFC) system, for a working day in August in an MTS 

environment, where a utilisation of 1.0 corresponds to 100% utilisation 

 

Indoor temperature of the facility was maintained in the 19-22 °C range, with relative 

humidity kept below 60%. 

0

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

7

8

08:30 11:30 14:30 17:30

M
ac

h
in

e 
U

ti
lis

at
io

n

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
M

W
h

)

Time

TCC HVAC Energy MFC HVAC Energy Manufacturing Schedule



124 
 

Based on the price of fuel purchased by non-domestic consumers in 2018 [195], for a 

facility consuming between 20,000-69,999 MWh per year, as does the facility in this 

study, the total yearly savings achieved by the MFC HVAC control methodology 

discussed provided a saving of £324 k annually.  

5.3.2 MTO Scheduled Facility 

Adopting the MTO based manufacturing schedule regime, the implementation of a 

manufacturing controlled HVAC system resulted in a total facility energy saving of 

14.1 % over a 12-month period. Monthly energy savings over a 12-month period can 

be seen in Figure 56. 

 

Figure 56- Total facility energy consumption for a TCC and MFC HVAC system in a MTO 

environment 

 

This was accompanied by a 26.9 % saving from the HVAC system, and 86.6 % and 

10.4 % saving from the boiler and chiller systems respectively (See Appendix E). 

Monthly energy savings over a 12-month period can be seen in Figure 57. 
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Figure 57- Total HVAC energy consumption for a TCC and MFC HVAC system in a MTO 

environment 
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temperature and giving rise to a temperature differential between inner and outer 

surfaces, thus driving surface conduction and time lagged thermal gains.  

 

Figure 58- HVAC energy consumption for a thermal comfort controlled (TCC) and 

manufacturing schedule controlled (MFC) system, for a working day in August for an MTO 

environment, where a utilisation of 1.0 corresponds to 100% utilisation 

 

For the month of December, with an average outdoor temperature of 4.85 °C, boiler 

systems were turned on slowly prior to worker arrival, in order to ensure comfortable 

working conditions. Chiller systems were set to an 80% operational profile when 

machining begun, however were instantaneously reduced to a 60% operational profile 

due to a morning machining lull. Chiller operation never reached 100% operational 

throughout the working day, due to cooler external temperatures. Systems were also 

set to reduce progressively at the end of the working day, in anticipation of the end 

of machining (Figure 59). Such operational strategies not only allowed for a reduction 

in energy consumption, but also a reduction in peak energy consumption from the 

HVAC system, a reduction of 11 %. 
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Figure 59- HVAC energy consumption for a thermal comfort controlled (TCC) and 

manufacturing schedule controlled (MFC) system, for a working day in December for an 

MTO environment, where a utilisation of 1.0 corresponds to 100% utilisation 

 

Although the aim was to ensure a total reduction in energy consumption from the 

HVAC system over a working year, thus analysing data over a 24hr period, the 

results were also analysed excluding unoccupied hours, to determine the energy 

savings of the HVAC system and facility over the course of the working day. Analysis 

of the facility during working hours resulted in a 17.7 % energy saving from the 

HVAC system, 6.26 % from the building facility, 54.9% and 20.5 % saving from the 

boiler and chiller systems respectively. 

Based on the price of fuel purchased by non-domestic consumers in 2018 [195], for a 

facility consuming between 20,000-69,999 MWh per year, as does the facility in this 

study, the yearly savings achieved by the MFC HVAC control methodology discussed 

provides a saving of £328 k annually.  
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5.4 Predictive Models 
 

5.4.1 Least squares multiple linear regression 

The LSMLR model was built for the inputs and outputs listed in Table 8, for the MTS 

and MTO approach. The model was provided with a month’s worth of new unseen 

data, with errors based on new predictions displayed in Table 21, along with model 

accuracy metrics.  

 

Table 21- Best LSMLR models for the MTO and MTS approach, averaged over the monthly 

predicted dataset 

 Prediction Error (%) Accuracy Metrics 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

R2 CV(RMSE) 

(%) 

MTS 20.7 21.3 5.75 7.00 0.91 14.6 

MTO 15.6 14.9 5.75 7.31 0.86 20.6 

 

According to the ASHRAE guidelines [157], models are required to obtain an R2 value 

above 0.75, and a CV(RMSE) value over 15% for monthly data, or over 30% for hourly 

data. In this study, CV(RMSE) and R2 was calculated hourly at every time step and 

averaged over all analysed data points. Thus the threshold for models was set at 30% 

for CV(RMSE) and 0.75 for R2.  

Adopting the LSMLR method, both the MTS and MTO models obtained R2 and 

CV(RMSE) values within the threshold specified by ASHRAE, with R2 values of 0.91 

and 0.86 for the MTS and MTO model respectively, and CV(RMSE) values of 14.6 

and 20.6 % for the MTS and MTO models respectively. 

However the MTS model obtained large errors, 20.7% and 21.3% for the prediction of 

building and HVAC energy respectively.  
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It was determined that the large errors in building energy and HVAC system energy 

were obtained at 8:30am, prior to when the manufacturing working day begun at 

9:00am (Figure 60). Through the manufacturing controlled HVAC system operation, 

controls prior to the start of the working day were set differently to that of other 

times, and were not related to current manufacturing demand. The HVAC set points 

were set to ensure comfortable working temperatures prior to worker arrival, and in 

anticipation of upcoming manufacturing heat gains. Within the dataset of 12 months, 

this one-hour period at the start of a working day makes up 0.03% of the total dataset, 

and therefore more data is required in order for the model to determine the 

corresponding energy and HVAC system energy consumptions for this one-hour 

period.  

 

Figure 60- Hourly prediction errors for the MTS model, averaged over the monthly predicted 

dataset 
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manufacturing and outdoor weather conditions on the energy consumption and 

indoor facility conditions. Accurate prediction of air temperature and indoor humidity 

during working hours is essential in order to provide data required for control of the 

HVAC system.  

During unoccupied hours, errors were larger, with obtained errors of 23.1, 23.1, 5.43 

and 7.05 % for building energy, HVAC energy, air temperature and relative humidity 

respectively. 

For the MTO approach, again a high error of 37.5 % was obtained for HVAC energy 

at the start of the working day due to differences in HVAC set points (Figure 61).  

 

Figure 61- Hourly prediction errors for the MTO model, averaged over the monthly 

predicted dataset 
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turned on at once, and turned on gradually over a 30-minute window. Thus obtaining 

less of a spiked profile.  

Higher errors for the prediction of building energy and HVAC energy were obtained 

during manufacturing facility out of hours than errors obtained for the working 

period. Obtaining high levels of predictive accuracy is less crucial during out of hours 

as air temperature and humidity predictions are not required to set optimum HVAC 

controls in the facility during this time. Furthermore, the use of predictive models 

for early identification of spikes in total building energy consumption is not required 

during the out of hours period, as due to the lack of machining and no occupants 

present, a potential spike in consumption would not occur during out of hours’ time.  

During unoccupied hours, errors in building energy, HVAC energy, air temperature 

and relative humidity obtained average errors of 19.2, 16.2, 5.40 and 7.33 % 

respectively. For occupied hours, average errors in building energy, HVAC energy, 

air temperature and relative humidity were 10.2, 13.1, 5.68 and 7.37 % respectively. 

The predicted vs expected building and HVAC energy consumption, air temperature 

and relative humidity for one sample day from the predicted dataset is displayed in 

Figure 62 for the MTS environment and Figure 63 for the MTO environment. 
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MTS Energy Consumption MTS HVAC Energy Consumption 

 
 

MTS Relative humidity MTS temperature 

 

Figure 62- Predicted vs expected outputs utilising the LSMLR approach for the MTS 

environment 

 

 

0

2

4

6

8

10

12

14

16

18

20

00:00 06:00 12:00 18:00 00:00

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
M

W
h

)

Time

0

1

2

3

4

5

6

7

00:00 06:00 12:00 18:00 00:00

H
V

A
C

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

M
W

h
)

Time

30

35

40

45

50

55

60

65

70

75

00:00 06:00 12:00 18:00 00:00

R
el

at
iv

e 
H

u
m

id
it

y 
(%

)

Time

10

12

14

16

18

20

22

24

00:00 06:00 12:00 18:00 00:00

Te
m

p
er

at
u

re
 (
°C

)

Time



133 
 

 
 

MTO Energy Consumption MTO HVAC energy consumption 

  

MTO Relative humidity MTO air temperature 

 

Figure 63- Predicted vs expected outputs utilising the LSMLR approach for the MTO 

environment 
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with each iteration through the training process. The loss curves plotted for the final 

MTO and MTS ANN models display a good fit due to the decrease of loss to a point 

of stability (Figure 64).  

 

  

MTO loss MTS loss 

Figure 64- Loss vs Epoch for the MTO and MTS environments 

 

The accuracy metrics and errors based on predictions on an unseen data set for the 

highest performing ANN models for the MTS and MTO approach are displayed in 

Table 22. 

 

Table 22- Best ANN models for the MTO and MTS approach, averaged over the monthly 

predicted dataset  

 Prediction Error (%) Accuracy Metrics 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

R2 CV(RMSE) 

(%) 

MTS 11.0 12.4 4.27 6.38 0.93 17.4 

MTO 12.8 11.2 4.63 6.06 0.90 28.1 
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Both the MTS and MTO model obtained R2 and CV(RMSE) values within the 

ASHRAE guideline thresholds.  The CV(RMSE) score for the MTO model is relatively 

high at 28.1 % in comparison to the CV(RMSE) for the MTS model at 17.4%. RMSE 

was calculated for each output parameter, and it was found that the prediction of 

HVAC energy obtained a high RMSE value for the MTO model, thus impacting the 

final CV(RMSE) value.   

Errors in predictions made for building energy, HVAC energy, air temperature and 

relative humidity for the MTO ANN model, Figure 65, follows the trend in errors 

made on predictions using the LSMLR MTO model (Figure 61). 

 

Figure 65- Hourly error between predicted and expected results for the MTO model, 

averaged over the monthly predicted dataset 
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lunch break and thus reduction in energy demand makes up only 0.03% of the total 

dataset. Prediction errors for air temperature and relative humidity however 

remained low, < 5.0 %, as such variables did not fluctuate greatly over this hour, 

unlike the building and HVAC energy consumption. For the MTO model, during 

unoccupied hours, errors in building energy, HVAC energy, air temperature and 

relative humidity obtained average errors of 13.9, 11.3, 4.57 and 6.08 % respectively. 

Similarly, Arendt et al. [196] obtained higher errors for predictions of overnight air 

temperature within a building due to low variability in temperature, and stated a 

weakness of feed-forward ANN being the lack of the notion of dynamics. 

For occupied hours, average errors in building energy, HVAC energy, air temperature 

and relative humidity were 10.5, 11.0, 3.55 and 5.59 % respectively. 

Similarly, predictions using the ANN model for the MTS approach showed high 

errors for building and HVAC energy consumption, 54.9 and 55.2 % respectively, at 

the start of the working day (Figure 66). 

 

Figure 66- Hourly error between predicted and expected results for the MTS model, 

averaged over the monthly predicted dataset 
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Such a trend in predictive error is consistent with that of the LSMLR model for the 

MTS approach. The ANN did not return large errors for the prediction of building 

and HVAC energy for the MTS approach over the lunch period (errors of 4.87 and 

5.83 % respectively). Upon inspection of machining schedules, for the MTS approach, 

a more continuous manufacturing operation than the MTO approach, machines 

continued to operate over the lunch period, and thus the energy demand did not 

fluctuate to as great of an extent (Figure 68). Errors in prediction for air temperature 

and relative humidity remained low throughout the working day, less than 7.5 %. 

Such results are promising, as HVAC set points are dependent upon levels of relative 

humidity and air temperature in the facility, thus accurate prediction of these 

variables enable optimum HVAC set points to be determined.  

For the MTS model, during unoccupied hours, errors in building energy, HVAC 

energy, air temperature and relative humidity obtained average errors of 10.9, 13.0, 

4.54 and 6.23 % respectively. For occupied hours, average errors in building energy, 

HVAC energy, air temperature and relative humidity were 11.2, 11.6, 2.87 and 6.38 

% respectively. 

The predicted output variables can be seen against expected values for the MTO and 

MTS in Figure 67 and Figure 68 respectively. The ANN was able to accurately predict 

trends in data, as well as quantitatively determine energy consumption and indoor 

conditions. 

Similar to the results obtained with the LSMLR model, the ANN was able to predict 

building energy consumption, HVAC energy consumption, air temperature and 

relative humidity to a higher level of accuracy during occupied hours. Obtaining high 

levels of predictive accuracy during working hours is more crucial in order to 

determine optimum HVAC set points and identify spikes in energy consumption, as 

well as ensuring thermal comfort requirements for occupants are met. 
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MTO Building Energy MTO HVAC Energy   

  

MTO Relative Humidity MTO Air Temperature 

 

Figure 67- Predicted vs expected outputs utilising the ANN approach for the MTO 

environment 
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Figure 68- Predicted vs expected outputs utilising the ANN approach for the MTS 

environment 

5.4.3 Deep Neural Networks 

Loss curves were plotted for the DNNs to ensure the loss was decreasing with each 

iteration of the training process. The loss curves plotted for the final MTO and MTS 

DNN models display a good fit due to the decrease of loss to a point of stability (Figure 

69).  
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MTO loss MTS loss 

Figure 69- Loss curves for DNN models 

 

The accuracy metrics and errors based on predictions on an unseen data set for the 

best DNN models for the MTS and MTO approach are displayed in Table 23. 

The use of DNN for the prediction of building and HVAC energy consumption 

produced high errors, 36.6 and 20.9 % respectively, for the MTS approach. Similarly, 

the MTO approach obtained errors of 33.8 and 15.5 % respectively (Table 23). 

 

Table 23- Best DNN models for the MTO and MTS approach 

 Prediction Error (%) Accuracy Metrics 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

R2 CV(RMSE) 

(%) 

MTS 36.6 20.9 4.53 6.88 0.92 19.32 

MTO 33.8 15.5 4.83 6.93 0.89 31.5 

 

Both the MTO and MTS models were able to predict air temperature and relative 

humidity to a high accuracy of less than 7.0 %. 
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However the MTO model obtained a CV(RMSE) value of 31.5 %, above that of the 

threshold of 30 % set for model calibration by the ASHRAE guide. Therefore, overall, 

the model cannot reliably be used to provide accurate predictions.  

Both the MTS (Figure 70) and MTO (Figure 71) models obtained a high error of 57.6 

% and 28.4 % for building energy consumption, and errors of 55.7 % and 45.6 % for 

HVAC energy consumption at the start of the working day, similar to that seen with 

predictions made with the LSMLR and ANN models. 

 

Figure 70- Hourly prediction errors for the MTS model, averaged over the monthly predicted 

dataset 

More data is required in order to produce a dataset which contains more entries 

reflecting this hour of the working day.  Likewise, the MTO model obtained a higher 

error for HVAC energy, 45.6 %, at this time.  

For the MTS model, during unoccupied hours, errors in building energy, HVAC 

energy, air temperature and relative humidity obtained average errors of 39.1, 24.9, 

4.94 and 7.29 % respectively. For occupied hours, average errors in building energy, 

HVAC energy, air temperature and relative humidity were 32.2, 14.1, 2.95 and 6.39 

% respectively. 
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Figure 71- Hourly prediction errors for the MTO model, averaged over the monthly 

predicted dataset 

Both the MTS and MTO obtained high errors for building energy consumption after 

the working day, both of which decreased into the evening. The DNN overestimated 

the energy demand in comparison to the expected demand. Due to the manufacturing 

based HVAC controls, energy demand for the HVAC system for non-working hours 

was lower than what would have been expected if the facility was operating or if 

thermal comfort condition thresholds were required. Therefore, a greater energy 

demand was predicted as the model was not able to determine that thermal comfort 

thresholds were not required at this time.  

The model was thus not able to accurately learn the impact of manufacturing demand 

and operation along with the influence of occupants in the building.  

During unoccupied hours, errors in building energy, HVAC energy, air temperature 

and relative humidity obtained average errors of 40.2, 16.6, 4.66 and 7.08 % 

respectively. For occupied hours, average errors in building energy, HVAC energy, 

air temperature and relative humidity were 24.1, 14.5, 3.88 and 6.66 % respectively. 
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Although errors for the building energy consumption and HVAC energy consumption 

were high, the DNN models were able to predict the general trend of energy 

consumption for the MTS and MTO approach (Figure 72 and Figure 73 respectively).  

Figure 72- Predicted vs expected outputs utilising the DNN approach for the MTS 

environment 
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MTO Building Energy MTO HVAC Energy 

  

MTO Relative Humidity MTO Temperature 

 

Figure 73- Predicted vs expected outputs utilising the DNN approach for the MTO 

environment 

 

The DNN was concluded to be an effective tool for determining energy trends, as well 
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and HVAC energy consumption to an appropriate degree of accuracy, and thus is not 

an effective tool for predicting spikes in energy consumption or prediction of energy 

use for financial purposes. 

5.4.4 Random Forest  

The random forest models developed in section 4.7 were used to predict outputs based 

on a months’ worth of unseen data, with results displayed in Table 24, alongside 

model accuracy metrics.  

 

Table 24- Prediction errors and accuracy metrics for the final random forest model for the 

MTS and MTO approach 

 Error (%) Accuracy Metric 

 Building 

Energy  

HVAC 

Energy  

Air 

Temperature 

Relative 

Humidity 

R2 CV(RMSE) 

(%) 

MTS 13.9 14.2 4.35 7.51 0.94 11.2 

MTO 3.48 4.40 4.32 7.60 0.92 14.0 

 

Both the MTS and MTO models accuracy metrics were well within the threshold for 

acceptable models set in the ASHRAE guidelines, with the R2 scores being 0.94 and 

0.92 and the CV(RMSE) scores being 11.2 and 14.0 % for the MTS and MTO models 

respectively. The MTO model performed highly, with a low error of 3.48 % for the 

prediction of building energy demand. 

Following similar trends set by the LSMLR, ANN and DNN models, use of the 

random forest model resulted in high errors of 55.9 % for the prediction of building 

and HVAC energy at the start of the working day for the MTS model (Figure 74).  
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Figure 74- Hourly prediction errors for the MTS model, averaged over the monthly predicted 

dataset 

Errors remained low for all variables throughout the working day, less than 13 %, 

which shows the model was able to determine the impact of manufacturing demand 

and occupancy levels on the thermal energy flows within the building. Higher errors 

were obtained at the end of the working day, 28.2 %, for building energy and HVAC 

energy. The model predicted a higher energy consumption than expected for this 

time. No occupants or machining were occurring during this time, and therefore such 

an error may have occurred due to fluctuating outdoor weather conditions.  

For the MTS model, during unoccupied hours, errors in building energy, HVAC 

energy, air temperature and relative humidity obtained average errors of 14.8, 14.8, 

4.86 and 7.11 % respectively. For occupied hours, average errors in building energy, 

HVAC energy, air temperature and relative humidity were 13.6, 14.3, 2.51 and 7.92% 

respectively. 

The MTO showed low errors at all times, less than 14 % for all variables (Figure 75). 

A higher error was obtained for HVAC energy consumption at the start of the 
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working day, which is consistent with the results obtained from the LSMLR, ANN 

and DNN models, due to a soft start approach to machine start up in contrast to the 

MTS approach. Predictions for relative humidity showed the greatest errors 

throughout the course of the working day. 

 

Figure 75- Hourly prediction errors for the MTO model, averaged over the monthly 

predicted dataset 

 

For the MTO model, during unoccupied hours, errors in building energy, HVAC 

energy, air temperature and relative humidity obtained average errors of 4.48, 4.47, 

5.07 and 7.65 % respectively. For occupied hours, average errors in building energy, 

HVAC energy, air temperature and relative humidity were 1.65, 4.02, 2.02 and 7.26 

% respectively. 

The random forest models were able to predict the general trend of energy 

consumption for the MTS and MTO approach, as well as predict variables with a high 

accuracy (Figure 76 and Figure 77 respectively).  The random forest models for the 
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never greater than 10%, and relative humidity remained within the threshold 

required for thermal comfort.  
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Figure 76- Predicted vs expected outputs utilising the Random Forest approach for the MTS 

environment 
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Figure 77- Predicted vs expected outputs utilising the Random Forest approach for the MTO 

environment 

 

The performance of both the MTS and MTO random forest models displays the 
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requirements for HVAC systems in order to maintain optimum indoor conditions for 

thermal comfort.  

5.4.5 Predictive Models Results Summary 

Approaches were optimised in section 4.4, 4.5, 4.6 and 4.7, with the best model for 

each predictive model approach displayed in Table 25 and Table 26 for the MTS and 

MTO approach respectively. 

Table 25- Summary of predictive models for the MTS approach 

MTS Prediction Error (%) Accuracy Metrics 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

R2 CV(RMSE) 

(%) 

LSMLR 20.7 21.3 5.75 7.00 0.91 14.6 

ANN 11.0 12.4 4.27 6.38 0.93 17.4 

DNN 36.6 20.9 4.53 6.88 0.92 19.32 

Random 

Forest 

13.9 14.2 4.35 7.51 0.94 11.2 

 

Table 26- Summary of predictive models for the MTO approach 

MTO Prediction Error (%) Accuracy Metrics 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

R2 CV(RMSE) 

(%) 

LSMLR 15.6 14.9 5.75 7.31 0.86 20.6 

ANN 12.8 11.2 4.63 6.06 0.90 28.1 

DNN 33.8 15.5 4.83 6.93 0.89 31.5 

Random 

Forest 

3.48 4.44 4.32 7.63 0.92 14.0 

 

All models performed to the level of accuracy required by the ASHRAE guidelines, 

with an R2 value of greater than 0.75 and a CV(RMSE) value of less than 30%, with 
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the exception of the DNN model for the MTO environment, which obtained a 

CV(RMSE) value of 31.5 %.  

Results show that all models have the potential for energy and condition prediction 

in the manufacturing sector, with all models able to learn the pattern of variables 

and determine relationships between the input and outputs variables. Some models 

however, cannot be reliably be used to quantitatively predict required variables due 

to high error, such as the DNN models for both MTS and MTO environment, and 

thus these techniques are only suited to prediction of trends and patterns. The use of 

DNN increases the complexity of the model compared to a neural network with a 

single hidden layer, which requires a large amount of data in order to perform well 

along with extensive training. The use of a DNN is therefore not suited to the problem 

in this study, due to the dataset size and limitations in computational capacity for 

extensive model training.  

More suitably, the ANN and Random Forest models performed highly for the MTS 

environment, with the Random Forest outperforming all models for the MTO 

approach. The accurate prediction of building energy demand allows for early 

identification of costly spikes in energy consumption, and the prediction of indoor 

conditions allows optimum HVAC conditions to be set whilst ensuring a comfortable 

thermal environment is maintained for workers as well as production specific 

environmental conditions. 

  

5.5 Energy Demand Peak Reduction 

The synchronous optimisation of the manufacturing and HVAC schedule discussed 

in section 4.8 allowed for a 15.1 % reduction in peak energy demand over the course 

of a working day (Figure 78). For comparison, machine production and energy 

consumption was kept as a constant throughout the optimisation process with 

negligible change to both parameters (0.07% and 0.15% increase in energy 

consumption and productivity for the optimised approach respectively). 
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Figure 78- Original vs optimised energy consumption due to manufacturing and HVAC 

schedule modification 

 

The original highest energy peak at hour 13:30, coinciding to the start of the 

afternoon shift, was avoided by maintaining a certain level of machining throughout 

the lunch hour. This maintained a more constant thermal environment throughout 

the facility workshop, and avoided the need for fluctuations in HVAC control due to 

avoiding a rapid increase in machining and machining waste heat when work 

resumed after the lunch period, as well as allowing for reduced machining in the 

afternoon without a compromise on productivity. 

Furthermore, the optimisation approach adopted a machine soft start approach and 

reduced heating due to anticipated heat gains from manufacturing equipment at the 

beginning of the workday. HVAC systems also adopted a staggered ‘Turn off’ phase 

in the afternoon, reducing the power demand as machining reduced in anticipation 

of the end of the working day (Figure 79). 
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Figure 79- Optimised HVAC and manufacturing schedule for energy spike reduction 

 

Optimising the HVAC system control alongside the manufacturing schedules not 

only allows for peak demand reduction, but ensures that energy is utilised in the 

most efficient means, through the use of scheduling based upon anticipated heat 

gains and manufacturing schedules. Moderating the energy consumption profile and 

manufacturing schedule reduces fluctuations in changes to the thermal indoor 

environment, thus reducing the requirements of the HVAC system to combat 

environmental changes. HVAC systems can also be set to be controlled based on 

occupant behaviour, as although manufacturing was scheduled for the course of the 

afternoon, HVAC controls were set with a different control regime than the rest of 

the day as excess waste heat in the space was less of a disadvantage than at the start 

of the day (provided thermal comfort conditions were still met), due to workers 

departing. 

For the optimised system, the building energy consumption profile follows the 

manufacturing schedule profile more closely, with the HVAC system working 

alongside the manufacturing schedule. The resultant peak is lower, with a smoother 

total profile.  
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5.6 Prediction of Optimum HVAC Set Points- A Proactive HVAC 

System 

Based on results displayed in Table 25 and Table 26, the best model for the MTS and 

MTO approach was selected for use in the development of the proactive HVAC system 

through HVAC set point prediction. As discussed in section 4.9, the Random Forest 

method outperformed others for the MTO approach, however both the ANN and 

Random Forest methods were utilised for the prediction of HVAC set points for the 

MTS environment. Results for the modified models for the prediction of HVAC set 

points alongside prediction of building and HVAC energy, air temperature and 

relative humidity are displayed in Table 27 and Table 28 for the MTO and MTS 

environments respectively.  

Table 27- Best results for the predictive model built for the MTO environment 

MTO Prediction Error (%) 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

Boiler 

Set 

Point 

Chiller 

Set 

Point 

Random 

Forest 

3.51 4.44 4.22 7.63 0 4.13 

 

MTO Accuracy Metrics 

 R2 CV(RMSE) 

(%) 

Random 

Forest 

0.77 10.13 

 

Similar to the results in Table 25, the ANN and Random forest models performed 

with similar prediction errors and similar R2 values of 0.78 and 0.77 for the ANN and 

Random forest models respectively (Table 28). 
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Table 28- Best results for each predictive model built for the MTS environment 

MTS Prediction Error (%) 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

Boiler 

Set 

Point 

Chiller 

Set 

Point 

ANN 11.65 12.05 4.34 6.16 2.78 3.27 

Random 

Forest 

13.9 14.2 4.35 7.51 2.79 2.85 

 

 

MTS Accuracy Metrics 

 R2 CV(RMSE) 

(%) 

ANN 0.78 21.7 

Random 

Forest 

0.77 11.2 

 

The Random Forest model was selected for use in the development of the proactive 

system. Although the ANN outperformed the random forest model, differences in 

performance were minor. In the manufacturing sector, facilities may not fall into a 

specific MTS or MTO bracket, with some facilities obtaining characteristics of both 

facilities. Therefore, as the random forest model was selected for the MTO approach, 

it was decided that the use of the random forest model for the MTS approach would 

provide more consistency in methods. 

Alongside the R2 and CV(RMSE) metrics, the predicted variables were plotted 

against target variables. A high R2 may be the result of a well-fitting model, but  may 

also be the result of a model with high bias, due to model under fitting, and incorrect 

assumptions on the data made by the model. Therefore, alongside the R2 and 
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Figure 80- Target variables vs predicted  

CV(RMSE), the model residuals were plotted, which displays the predicted variables 

alongside the target (Figure 80). 

 

  

MTO Environment MTS Environment 

 

    

 

The predicted optimum HVAC set points determined from the random forest model 

were fed back into a simulation model in order to determine the energy demand of 

the facility and conditions within the workshop with the adoption of the proactive 

manufacturing based HVAC system, with analytically determined optimum HVAC 

set points.  

The aim of the manufacturing-based HVAC system was to improve the efficiency of 

HVAC control in order to reduce the total energy demand of the building and of the 

HVAC system, whilst maintaining comfortable required indoor conditions. Figure 52 

displayed the energy savings based upon the adoption of the manufacturing-based 

HVAC system adopting the manual determination of optimum HVAC set points for 

a 12-month period. For such a method to be feasible and successful in practise, the 

discussed method for automatic and analytical determination of HVAC set points 

must also provide similar energy savings to that obtained through the manual 

approach. 
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Errors between the simulation conducted utilising the predicted HVAC set points 

and the simulation using manually determined HVAC set points for the energy 

demand and workshop conditions is displayed in Table 29. 

 

Table 29- Errors in variables between predicted HVAC set points and manually determined 

set points for the MTS and MTO environments 

Model Prediction Error (%) 

 Building 

Energy 

HVAC 

Energy 

Air 

Temperature 

Relative 

Humidity 

MTS 0.61 1.47 3.85 7.21 

MTO 0.66 1.44 3.86 7.56 

 

For both the MTS and MTO models, the building energy demand of the manual and 

predicted HVAC set points were within less than 1 % of one another. Similarly, the 

error obtained for the HVAC energy was low at 1.47 and 1.44 % for the MTS and 

MTO environments respectively, with air temperature and relative humidity also 

obtaining low errors (less than 3.9 % for temperature and less than 7.6 % for relative 

humidity). The random forest model was therefore able to predict HVAC set points 

which accurately reflected the original manufacturing-based HVAC system which 

utilised manually obtained HVAC set points. Thus, the predictive approach was able 

to provide an automatic analytical approach to optimum HVAC set point 

determination. 

Table 30 displays the energy savings obtained through the use of predicted HVAC 

set points for a proactive manufacturing-based HVAC system in comparison to the 

traditional reactive thermal comfort based HVAC system for a one month period. For 

comparison, results from Figure 52, Figure 53, Figure 56 and Figure 57 were broken 

down to provide savings between the manual approach to the manufacturing based 

HVAC system and traditional thermal comfort controlled HVAC for the same month 

and displayed alongside savings obtained through the predictive approach. 
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Table 30- Energy savings obtained by adopting the manufacturing based HVAC control 

(MFC) vs thermal comfort control (TCC) for the MTS and MTO environments, utilising 

predictive techniques and manual for set point determination 

Model Energy Savings (%) 

 Predicted MFC vs TCC Manual MFC vs TCC 

 Building 

Energy 

HVAC 

Energy 

Building 

Energy 

HVAC 

Energy 

MTS 4.96 11.1 4.37 9.79 

MTO 8.90 17.8 9.49 19.0 

 

The use of predicted set points provided similar energy savings to the manually 

obtained set points in comparison to the traditional thermal comfort based HVAC 

system. For the MTS environment, predicted set points provided greater building and 

HVAC energy savings, a difference of 0.59 and 1.31 % saving respectively. However 

for the MTO environment, manually obtained set points provided greater building 

and HVAC energy savings, a difference of 0.59 and 1.20 % saving respectively. Such 

differences in savings are minor, and each method resulted in a reduction in both 

building and HVAC energy demand over the traditional reactive based HVAC 

system. The analytical method however, stands out as the most appropriate method 

for determination of optimum HVAC set points to achieve energy savings due to the 

ease of method, and time saved in comparison to the manual approach. 

Figure 81 and Figure 82 display the results for building energy demand, HVAC 

energy demand, air temperature and relative humidity of the MTS and MTO 

environments respectively, for an environment with a HVAC system controlled based 

on thermal comfort, manual manufacturing based control and predicted 

manufacturing based control.  
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MTS Building Energy MTS HVAC Energy 

  

MTS Relative Humidity MTS Air Temperature 

 

Figure 81- Results for thermal comfort controlled HVAC system (TCC), manual 

manufacturing controlled HVAC (MMFC) and predicted manufacturing controlled HVAC 

system for the MTS environment 
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MTO Building Energy MTO HVAC Energy 

  

MTO Relative Humidity MTO Air Temperature 

 

Figure 82- Results for thermal comfort controlled HVAC system (TCC), manual 

manufacturing controlled HVAC (MMFC) and predicted manufacturing controlled HVAC 

system for the MTO environment 
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For the MTS and MTO environment, for both building and HVAC energy, the 

predicted set point method followed that of the manual manufacturing-controlled 

method, both obtaining a reduction in total energy demand.  

However for relative humidity for both the MTS and MTO environment, the predicted 

approach was found to obtain values between the manual manufacturing approach 

and thermal comfort approach in the morning, however obtained a higher relative 

humidity when the machining working day begun. However these values were still 

in the thresholds required to ensure a comfortable working environment. Similarly, 

all approaches for the MTS and MTO environments provided comfortable working 

air temperatures.  

5.7 Summary 

The proactive approach to HVAC control provided energy savings for both the MTO 

and MTS facilities, with greater energy savings obtained in winter months.  

For analytical determination of optimum HVAC set points and prediction of peak 

energy demand, linear regression provides a simplistic approach, both in model 

development and in the predictive capabilities. In contrast, the artificial neural 

network and random forest model provided the most capable models with the highest 

accuracy, however the deep neural networks were suggested to be utilised only for 

detection of patterns in the data.  

The random forest model was selected as the most effective model for the prediction 

of energy consumption, indoor temperature and humidity, and prediction of optimum 

HVAC set points. Such a selection was performed based on model performance in 

accordance to guidelines and ability to make accurate predictions on unseen datasets.  

Following identification of peak energy demands, the optimisation of both 

manufacturing schedules and HVAC schedules allowed for a larger reduction in peak 

energy demand opposed to the optimisation of each in isolation.  
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6 Chapter 6- Conclusion 
 

6.1 Introduction 

This chapter concludes the investigations discussed in this thesis. The aim of the 

research in section 2.8 was stated as the ‘Coupling Simulation with Machine 

Learning for the Development of a Proactive HVAC System in the Manufacturing 

Sector’. Achievement of this aim would result in a more energy efficient methodology 

of HVAC control, specific to the manufacturing sector. Such a methodology would 

provide HVAC and building level energy savings, as well as the ability to monitor 

energy demand resulting in the identification of energy spikes, as well as workshop 

environmental conditions. 

 

6.2 Main Findings 

The main findings from the investigations in this thesis are listed below, in 

accordance to the objectives set in Chapter 1.  

1. A critical review of literature, found in Chapter 2 was conducted in order to identify 

gaps in existing research. The review covered building and manufacturing energy 

analysis, as well as efforts to combine the two. HVAC optimisation was discussed in 

manufacturing, and it was found that no work had been done at investigating HVAC 

control in manufacturing environments, and no studies found providing a holistic 

analysis of manufacturing demand alongside HVAC control and building energy. The 

use and proven capabilities of predictive methods in energy and manufacturing 

analysis was highlighted, however their use in the industrial sector was found to be 

limited, with no studies found utilising the random forest algorithm.  

 

2. IES-VE allowed for the holistic analysis of both the manufacturing equipment and 

building facility, allowing for modelling of manufacturing equipment, their schedules 

and corresponding heat gain profiles, along with occupant behaviour, building fabric, 
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weather conditions and operation of the HVAC system. Use of one modelling tool 

allowed for manufacturing schedules to be analysed and optimised alongside that of 

the HVAC system, encompassing all relevant interacting thermal energy flows to 

develop a more efficient HVAC control approach. The importance of a holistic 

simulation analysis of both building and manufacturing energy flows has also been 

discussed in a peer reviewed journal paper [197]. 

 

3. Through the use of the Spearman rank correlation coefficient, there was found to 

be negligible relationship between the building and HVAC energy demand and 

degree-days for a manufacturing environment. In contrast, a high correlation was 

found between building and HVAC energy demand and manufacturing demand. This 

was further confirmed with the simulation of a manufacturing environment with 

equipment, displaying negligible seasonal variation in energy demand, in contrast to 

the facility with no equipment, showing significant seasonal variations in energy 

demand. It was concluded that although climate had an impact on energy 

consumption of the building, degree days cannot be used as an indicator of 

consumption trends or predictions, and thus for building energy analysis in the 

industrial sector. This result has also been published in a peer reviewed journal paper 

[191]. 

 

4. Through the use of simulation and knowledge regarding the interaction between 

building energy consumption, outdoor weather conditions and manufacturing 

demand, a proactive manufacturing based HVAC control system was developed, 

where optimum HVAC controls were set in advance, and utilised concepts of heat 

recovery from manufacturing equipment. Such an approach resulted in HVAC energy 

savings of 16.3 % for the MTS manufacturing production environment and 26.9 % 

from the MTO environment. Furthermore, a total energy saving of 7.61 % for a MTS 

environment, and 14.1 % for an MTO environment was obtained.  
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5. LSMLR, ANN, DNN and random forests were analysed for suitability towards the 

analytical determination of optimum HVAC set points. Random forest achieved the 

highest accuracy for the prediction of building and HVAC energy, workshop air 

temperature and relative humidity, along with optimum HVAC set points, with 

ANNs also obtaining a high accuracy. The prediction of optimum set points removes 

the need for time-consuming manual control of the HVAC system, and allows HVAC 

systems to be controlled proactively, prior to any significant changes to indoor 

conditions. Furthermore, the prediction of workshop air temperature and humidity 

provides a means of condition monitoring, to ensure the facility maintains a 

comfortable working temperature for occupants, as well as optimum conditions for 

product quality if required. The prediction of building energy consumption and indoor 

conditions was performed in a published journal paper, [191], utilising deep machine 

learning techniques, further emphasising the potential of predictive machine 

learning models in the manufacturing and energy sector.  

 

6. Through the use of a random forest model, upcoming spikes in overall building 

energy demand were identified. The use of synchronous optimisation of both 

manufacturing schedules and HVAC controls allowed for a 15.1 % reduction in peak 

energy demand over the course of a working day. The use of predictive models allowed 

spikes in energy demand to be identified, coupled with simulation for the subsequent 

optimisation of schedules prior to implementation into a real world environment. 

Such a result provides a high incentive for manufacturing companies to adopt energy 

efficiency improvement strategies due to financial savings.  

 

7. Combining the simulation and predictive approaches in this study, a framework 

for the development of a proactive based manufacturing HVAC system can be 

determined. A simulation model of a manufacturing environment can be utilised to 

gather training data for the subsequent development of predictive models. Such 

predictive models can be utilised to predict spikes in building energy demand, HVAC 

demand, along with optimum HVAC set points, and resulting air temperatures and 
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humidity. Through continuous data capture, the predictive models can be 

continuously trained upon new data, for continuous model improvement. 

 

6.3 Contribution to Knowledge 

Highlighted in Chapter 2, a number of gaps were identified in the field of building 

energy analysis in the industrial sector. Through the work conducted in this thesis, 

the following contributions to knowledge were made. 

1. Through the use of a singular simulation tool, a holistic analysis of a 

manufacturing facility was conducted. The relationship between manufacturing 

demand and building energy and HVAC energy demand were identified. with the 

suspicions behind suitability of the degree day method in manufacturing confirmed 

as unsuitable. 

2. The concept of a proactive manufacturing based HVAC control system was 

introduced, of which achieved energy savings of 7.61 and 14.1 % for a MTS and MTO 

manufacturing environment respectively. 

3. The use of machine learning confirmed the suitability of predictive methods for 

energy analysis in the manufacturing sector, and allowed for the determination of 

optimum HVAC set points in development of the proactive manufacturing based 

system. The adoption of the random forest algorithm was successfully applied to 

manufacturing environments. 

4. Optimisation of HVAC control as well as manufacturing schedules provided a 

means of reducing spikes in energy consumption as well as total energy consumption, 

of which can be achieved through predictive modelling.  

5. As a result of this thesis, 4 peer reviewed journal papers have been published, 

[191], [197]–[199],  along with the presentation of 2 papers at an international and 

national conference.  
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6.4 Further Work 

The research presented in this thesis provides a foundation of key findings and 

framework for further research and development, of which is listed below. 

 

1. The accumulation of more training data for predictive models, specifically real data 

from a manufacturing environment, regarding machine schedules, energy 

consumption, occupancy data and climatic data would allow models to improve 

prediction accuracy as well as learn from stochastic events such as machine 

breakdown, occupancy fluctuations and unpredictable climatic events.  

 

2. Applying the methodology to additional case study environments, and facilities of 

varying size, environmental condition requirements and manufacturing demand 

would highlight any need for methodology adjustments or supplementary 

requirements for certain facility types. 

 

3. The implementation of the proactive system into a manufacturing facility 

alongside real time data capture would allow for continuous predictive model 

training and constant model learning to provide continuous improvements in the 

predictive of optimum HVAC set points. 

 

4. The implementation of a feedback loop would be beneficial, allowing for the 

specification of whether predicted optimum HVAC set points provided a suitable level 

of thermal comfort within the manufacturing environment, of which can be used to 

alter HVAC set points accordingly.  

 

5. Prior to implementation into a real manufacturing environment, the ability to 

accurately and quantitatively model heat gain profiles from manufacturing 
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equipment into the surrounding space should be performed and imported into the 

simulation model in order to determine the impact of specific manufacturing 

equipment on the HVAC requirements of the space. 

 

6. The development of a ‘Black Box’ software tool would allow the methodologies 

developed in this thesis to be distributed and allow companies worldwide to acquire 

the benefits of an intelligent HVAC system. Such a tool would provide the knowledge 

required for SMEs to obtain quantifiable measures of energy consumption.  
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Appendix 

 

Appendix A 
Case Study data set 

 

Displayed in Appendix A.1 is the data collected from 13 studies which analysed the 

energy consumption in manufacturing facilities.   
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Appendix A.1 – Data utilised to build a dataset for the generalised case study 
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Oates, 

[102] 

London 105.8 

MWh/

yr 

- 78.46 

Mwh/yr 

M-F, 09:00-

17:00 

M-F, 09:00-

17:00 

 18 °C  Walls; concrete, 0.2m thick, 

density - 2400kg/m3, thermal 

conductivity- 1.5w/m.K, heat 

capacity- 800 J/kg.K, 

absorptivity- 0.65, emissivity- 

0.9. roof;0.01m steel. 

Weeber, 

[88] 

Germany 205 

MWh/

yr 

- - M-F M-F  22 °C, 

20% 

relative 

humidity 

 internal machine heat gains- 

100-200W/m2 or 15-20% of 

machine load 

Alvandi, 

[96] 

- 2635.4

4 

MWh/

yr 

 4.59- 9.24 

kWh/piece 

      

Dababneh, 

[109] 

Chicago    M-F, 9:00-

17:00. 32 

15min 

intervals, 

13 before 

12:00, 19 

after 12:00 

 400 18-22 °C  Peak energy demand; 89.9-94 

kW. 

5 machines, 4 buffers, 320 

parts made per day. 



185 
 

 

 

(Continued) 
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Wilson, [163] - - - 2594 Mwh/yr. 

9.9 kwh/ piece  

235972 

pieces/yr, 

     

Kannan, [160] - 800 MWh 15% of 

total 

energy 

680 Mwh/yr  4575hr/

y, 8hr 

shifts 

950    

Herrmann, 

[93] 

Germany 17.285 

MWh / 

month 

  1part/min, 

366hrs/mon

th 

     

Wright, [34] London 195 

Mwh/yr 

 43.2 MWh/yr M-F, 09:00-

17:00 

     

Johansson, 

[71] 

- - - 3121.72 

Mwh/yr, 85.4 

kwh /piece 
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(Continued) 
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Bleicher, 

[98] 

 8000 

Mwh/yr 

    15000 office 

area, 20500 

production 

area 

 500 45 machines (32 machine 

tools, 8 ovens and 5 laser) 

Fromme, 

[161] 

Russia 97643 

MWh/yr 

47708 

Mwh/yr 

27600 

Mwh/yr 

09:00-

10:00, 

16:00-19:00 

09:00-

10:00, 

16:00-19:00 

120,000  4000 trailer production site, low 

level of automation so 

expected lower energy 

Katunsky, 

[87] 

  492.88M

Wh/yr 

20 

machines 

(400W 

each),  

  648- one 

manufactur

ing room 

 20 Machine heat gains  

12.45W/m2, 4.5W/m2 internal 

gains from lighting, 4000W 

internal gains from people 

Moynihan, 

[162] 

  boiler 

consumpt

ion 88191 

MMBtu/y

r 

1.64MW M-F, 08:00-

17:00 

M-F, 08:00-

17:00, 

reduced 

HVAC 

outside 

these hrs  

16722 18.3-

21.1 °C 

0.0336 

person/

sqm 

Machine internal gains 

60W/m2 

1 boiler (CB700-

100CleaverBrooks), 4ovens 

(1.6MMBtu/hr), 2 compressors 

(air)(300hp and 200hp Quincy 

and Sullair), 5 ammonia 

compressors. 
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Appendix B 
 

Displayed in Appendix B.1- B.4 is the boiler energy profile for each of the analysed locations, 

over a period of 12 months, for a manufacturing environment with and without equipment. 

 

 

 

Appendix B.1- Boiler energy consumption and outdoor air temperature for a facility in 

London, with and without equipment 
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Appendix B.2 - Boiler energy consumption and outdoor air temperature for a facility in 

Russia, with and without equipment 

 

 

Appendix B.3 - Boiler energy consumption and outdoor air temperature for a facility in 

Germany, with and without equipment 
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Appendix B.4 - Boiler energy consumption and outdoor air temperature for a facility in 

Chicago, with and without equipment 

 

 

Displayed in Appendix B.5- B.8 is the chiller energy profile for each of the analysed locations, 

over a period of 12 months, for a manufacturing environment with and without equipment. 

 

Appendix B.5 - Chiller energy consumption and outdoor air temperature for a facility in 

London, with and without equipment 
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Appendix B.6 - Chiller energy consumption and outdoor air temperature for a facility in 

Russia, with and without equipment 

 

 

 

Appendix B.7 - Chiller energy consumption and outdoor air temperature for a facility in 

Russia, with and without equipment 
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Appendix B.8 - Chiller energy consumption and outdoor air temperature for a facility in 

Chicago, with and without equipment 
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Appendix C  
HVAC Schedules, MTO environment 

 

For the MTS environment, manufacturing schedules were consistent throughout the 

year and on a daily basis. Boiler systems were turned off from June-September, 

however in the months October-May, adopted the schedule seen in Figure 40. Chiller 

systems were utilised yearly, again adopting the regime seen in Figure 38. 

For the MTO environment, manufacturing schedules saw greater fluctuations, and 

therefore HVAC schedules adopted a larger seasonal variation.  

Displayed below in Figures C.1-C.5 are sample HVAC and manufacturing schedules 

for the MTO environment for each month of the year. 

 

 

Appendix C.1- Manufacturing, boiler and chiller schedule for January and February 
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Appendix C.2- Manufacturing, boiler and chiller schedule for  March, April and May 

 

 

 

 

Appendix C.3- Manufacturing, boiler and chiller schedule for June, July and August 

0

0.2

0.4

0.6

0.8

1

1.2

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

%
 U

ti
lis

at
io

n

Time

Manuf Schedule Chiller Profile Boiler Profile

0

0.2

0.4

0.6

0.8

1

1.2

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

%
 U

ti
lis

at
io

n

Time

Manufacturing Schedule Chiller Profile Boiler Profile



194 
 

 

Appendix C.4- Manufacturing, boiler and chiller schedule for September and October 

 

 

Appendix C.5- Manufacturing, boiler and chiller schedule for November and December 
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Appendix D 
 

Appendix D.1 and D.2 display chiller and boiler energy consumption profiles for the MFC and 

TCC control HVAC system over a period of 12-months for the MTS environment respectively.  

 

Appendix D.1 - Chiller energy consumption over a 12-month period for the MTS 

environment 

 

 

 

Appendix D.2 - Boiler energy consumption over a 12-month period for the MTS environment 
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Appendix E 
 

Appendix E.1 and E.2 display chiller and boiler energy consumption profiles for the MFC and 

TCC control HVAC system over a period of 12-months for the MTO environment respectively 

 

Appendix E.1 - Chiller energy consumption over a 12-month period for the MTO 

environment 

 

 

Appendix E.2 - Boiler energy consumption over a 12-month period for the MTO environment 
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