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Abstract 
Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy 

has demonstrable clinical ability and is well poised to address numerous clinical needs 

in virtue of operative ease, sample versatility, non-destructive testing, and good 

diagnostic prediction capabilities. Technical barriers stand in the way of clinical 

implementation, namely lack of high-throughput capabilities. Samples are individually 

deposited, prepared, analysed, then removed from a fixed Internal Reflection Element 

(IRE) amounting to a workflow bottleneck. IRE substrates are typically expensive and 

unamenable to manufacture and thus resigned to this workflow. We developed a low 

cost and disposable silicon (Si) IRE (SIRE) and universal infrared spectrometer 

accessory module enabling high-throughput analysis with high spectral quality and 

reproducibility. Spectral reproducibility was optimised through characterisation of 

intrinsic and extrinsic optical variance sources and subsequent mitigation. Si impurity 

variance had little impact on spectral reproducibility. Optimised batch sample 

preparation procedure and surface treatment diminished extrinsic variances. SIREs 

maintain comparable performance to a Diamond IRE in the detection and quantitation 

of archetypal carbohydrates, lipids, and proteins at clinically relevant concentrations 

demonstrating effectiveness across the biochemical ‘fingerprint’ region. A 300% 

increase in sample throughput over a conventional Diamond IRE was achieved. Sepsis, 

SIRS, and control patient samples were discriminated using spectra acquired from 

SIREs to demonstrate clinical suitability. A random forest classifier of sepsis (n=43), 

SIRS (n=59), and control (n=46) constructed from serum samples analysed on SIREs 

achieved high negative predictive value (93.55%), positive predictive value (76.08%), 

sensitivity (84.15%), specificity (90.43%), and accuracy (81.98%) for the detection of 

sepsis. 
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1.1. Introduction 

 

Early and correct diagnosis leads to early intervention which leads to better 

patient outcomes [1]–[7]. Better patient outcomes lead to reduced economic burden on 

healthcare institutions [8]–[11]. These patently observable facts are the force driving 

the continuous advancement of medical diagnostic devices. In theory, patients who are 

diagnosed quicker are given the appropriate course of treatment earlier which increases 

the likelihood of survival, lowers treatment morbidity, and shortens time to recovery 

because the disease is detected at an earlier stage in its development. The longer a 

patient is sick, the greater the demand on resources and the higher the costs. This 

problem is exacerbated in vulnerable populations such as in low income areas and the 

elderly. An aging and expanding population, with the number of people aged over 65 

expected to rise 71% by 2050 in developed countries [12], and an increasing 

prevalence of chronic disease is foreboding of the healthcare crisis that is to come. 

Access to rapid, low-cost, and accurate diagnostic platforms play a critical role in 

improving patient outcomes and alleviating economic strain on healthcare institutions. 

Another less obvious impact of improved accessibility to reliable diagnostic tests is 

the generation of reliable disease statistics which in turn guide policy making decisions 

such as awareness campaigns, resource allocations, and research priorities [13]. 

Improving diagnostic capabilities is therefore an important public health strategy. 

Diagnosis is a process whereby a clinician must determine what is the causative 

conditions behind an array of signs and symptoms [14]. A clinical decision marks the 

beginning of a healthcare pathway aimed specifically at restoring the patient to health. 
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Diagnostic tests are one of the most powerful tools at the clinician’s disposal to help 

guide this decision process and to monitor the effectiveness of therapy. There are 

numerous ways to improve diagnostic test capabilities. Accessibility to diagnostic 

tests, time to diagnosis, and diagnostic performance are critical. Generally, 

accessibility means reducing cost, but simple operation, clear results interpretation, 

ease of manufacture, and high sample throughput also help to improve accessibility to 

diagnostic tests [15]. There are numerous moving parts to improve time to diagnosis 

from the moment a test is ordered to the moment a clinical decision is made [14]. 

Diagnostic tests must therefore consider their place in clinical workflow and logistics. 

Often this necessitates the capacity to process high volumes of patient samples in short 

time frames while having minimal lab footprint. Conforming to existing clinical 

workflows is always preferable, for example by incorporating standard microscope 

slides into the design of the technology if necessary. 

It is estimated that 70% of clinical decisions are influenced by laboratory tests 

[16], [17] and that everyone will experience at least one diagnostic error some of which 

lead to disastrous consequences [18], [19]. Failure to perform a differential diagnosis, 

such as distinguishing sepsis from Systemic Inflammatory Response Syndrome (SIRS) 

or post-surgical inflammation, is one of the root causes for poor outcomes and 

diagnostic tests are the best resource at the clinicians disposal to help through such 

situations [20]. From these findings, one could conclude that diagnostic performance 

has great consequences, and diagnostic tests should therefore be held to a lofty 

benchmark with exemplary specificity, sensitivity, and predictive values. Sepsis, for 

instance, is notoriously heterogenous with no known molecular signature to identify 

the condition [21]. Furthermore, the current diagnostic gold standard, blood cultures, 
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is time-consuming and frequently return false negative results particularly for neonatal 

patients [22].  Consequently, clinicians struggle to rule out sepsis when forming a 

differential diagnosis. This is critical as healthcare pathways must be initiated quickly 

(within 1 hour) and with confidence to avoid detracting from the real pathology, or 

exacerbating the global antibiotic resistance crisis through inappropriate 

administration of empirical antibiotics [23]. A rapid sepsis triage tool with good 

predictive capabilities would therefore be an invaluable resource to clinicians [22], 

[24]–[26].  

 

1.2. Diagnostic Test Selection  

 

Consideration should be given to whether in vivo or in vitro diagnostic testing 

is more desirable for a given application. In vivo has the advantage of capturing the 

physiological or molecular information of the patient in real time while in vitro 

diagnostics (IVDs) are easier to perform under controlled conditions and are repeatable 

[27]. Generally speaking, in vitro tests are less invasive than in vivo as they are 

conducted outside of the body although sampling method can vary from invasive to 

non-invasive (e.g., tissue biopsies versus liquid biopsies), and likewise for in vivo tests 

(e.g., Magnetic Resonance Imaging (MRI) or wearable sensors versus implantable 

sensors) [28]–[32]. Non-invasive in vivo devices generally monitor physiological 

signals (e.g., temperature, blood oxygenation, or electrical activity) or monitor 

secretions, such as sweat or saliva, that may lack pertinent biochemical signatures of 

disease present in other sample types (e.g., blood or serum) [29], [33]. Implantable in 
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vivo devices are useful for continuous monitoring of chronic conditions (e.g., blood 

glucose monitoring in diabetics), but need to be robust to resist degradation from 

foreign body responses (e.g., fibrous encapsulation) that may impair sensor 

functionality, and biocompatible to prevent adverse host reactions [34], [35]. 

Consequently, in vivo device development may require animal testing prior to clinical 

trials incurring ethical issues and stricter regulations [36]. For these reasons, it is 

generally less invasive, cheaper, and easier to standardise in vitro testing environments 

and parameters which in turn can enable high volume testing and widespread 

dissemination of tests at low cost [17], [27], [37]. This is useful when addressing 

prevalent conditions that require accessible and on demand testing such as sepsis [26], 

[38]. 

A diverse range of biosample types are available for in vitro monitoring which 

can be broadly categorised as tissues [39], cells [40], or biofluids [41], [42]. Tissues 

and cells can provide a more direct link to the site of pathological interest but may 

have limited availability, particularly where critical organs (e.g., brain tissue) are 

concerned [43], [44]. In oncological examinations, for instance, histology is 

considered the gold standard for determining the underlying pathology and directing 

personalised medicine [31], [45]. However, it is more likely that triage and periodic 

monitoring would comprise imaging and/or biofluid tests, such as the Prostate Specific 

Antigen (PSA) test for screening prostate cancer, as these tests are less invasive, 

quicker, and lack the subjectivity of tissue biopsies [46]. Liquid biopsies may even be 

on course to replace conventional tissue biopsies as a minimally invasive means of 

extracting neoplasm material from the blood and other biofluids [31], [43], [47]. For 

some systemic conditions biofluids, particularly blood, are an invaluable resource as 
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their molecular signatures reflect systemic physiological changes such as the change 

in pro- and anti-inflammatory cytokine/chemokine expression observed during sepsis 

progression [48], [49]. Acquisition of biofluid samples is generally less invasive, easier 

to obtain, storable, available in greater quantities, available for repeated testing, and 

the preparation before analysis less onerous in comparison to tissue samples [44], [50]. 

Biofluid samples are therefore the more compatible choice for low-cost and timely 

high-throughput testing [51]. 

An array of methods, such as immunochemistry [52], biosensing [38], [53], 

cultures [54], nucleic acid amplification tests (NAATs) [55], and spectroscopic 

techniques [56]–[59], are have been developed to perform in vitro biofluid diagnostic 

tests. In many cases, cultures represent the gold standard for determining infectious 

pathogens but, while highly specific in nature, are often low in clinical sensitivity 

(returning a false negative result in ~40% of patients who have a clinical diagnosis of 

sepsis), require large sample volumes, are labour intensive, and  have notoriously 

lengthy lead times [60]–[63]. 

NAATs (e.g., polymerase chain reaction (PCR)) are also of interest for 

pathogen determination and are faster and often more clinically sensitive in 

comparison to culture tests, but have the potential for false positives due to the 

amplification of contaminating DNA or RNA, have difficulty obtaining quantitative 

results, and have complex sample preparation [64]–[66]. 

Immunoassays are inherently analytically specific since they utilise specific 

antibody interactions, but are notoriously expensive due to the use of antibody 

reagents, limit scope of molecular analysis to antibody-antigen affinity based 
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reactions, and in most cases restrict applicability to a single biomarker species [67], 

[68]. Multiplexed immunoassays do exist that enable detection of numerous biomarker 

targets, but are labour intensive and have proved difficult to implement as concerns 

have been raised over the reliability and reproducibility of these assays [69], [70]. 

Biosensors comprise a bioreceptor and a physicochemical transducer typically 

functioning through optical, thermal, piezoelectric, or electrochemical mechanisms 

[71]. Biosensing platforms are therefore highly customisable enabling ligand specific 

high-throughput screening and device miniaturisation, although impracticalities of 

sample preparation have largely remained a roadblock to clinical translation in 

infectious disease applications [72]–[75]. 

Mass spectrometry techniques enable high analytical specificity and sensitivity 

down to the femtomolar range, but compared to other techniques (e.g. vibrational 

spectroscopy) are slow due to rate limiting sample preparation steps, sample 

destructive, and are generally expensive in instrumentation and operation although 

progress has been made toward miniaturised low-cost systems [76]–[78]. 

Vibrational spectroscopic techniques, broadly categorised as Raman or 

Infrared (IR) spectroscopy, offer rapid, easy to operate, non-invasive, non-destructive, 

and reproducible testing requiring no reagents, low sample volumes, and minimal 

sample preparation [79]–[81]. High dimensional data of the patient sample is acquired 

comprising spectral signatures unique to biochemistry under interrogation enabling 

high chemical specificity [82]. Raman spectroscopy utilises expensive lasers, is 

susceptible to intense fluorescence background noise and suffers a fundamental 

limitation of weak signal produced from Raman scattering requiring long acquisition 
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times to compensate [83], [84]. IR spectrometers do not suffer this limitation and are 

lower in cost because lasers are not required, but perform poorly when interrogating 

aqueous environments often necessitating the drying of biological specimens prior to 

analysis [85]. Both techniques interrogate samples using a single point of analysis, 

however the rate limiting factor of Raman is inherent to the principles of its operation. 

Thus, IR spectroscopy is a good candidate for rapid, low-cost testing provided it is 

possible to establish reproducible sample preparation protocols to enable high-

throughput sample processing [86], [87]. 

The pathophysiology under examination needs to be well defined for 

biomarker specific approaches to be clinically effective as the chemical shifts observed 

must correlate well with the presence and progression of disease. By contrast, 

vibrational spectroscopic analysis of biofluids offer a method for observing a global 

change in biomolecular content reflected by the body’s systemic response to disease 

[88]. In the context of sepsis, this approach likely holds a significant advantage over 

biomarker specific approaches which have thus far not proven effective in reliably 

detecting this condition [89]. Early sepsis management is critical to improving patient 

outcomes, so a test would must return a result in less than 3 hours and ideally less than 

1 hour [26], [90]. Ideally, the test would be inexpensive and high throughput as 

clinicians may wish to order high volumes of precautionary tests in order to rule out 

sepsis from a differential diagnosis. Furthermore, the test should be minimally invasive 

and require only small amounts of sample to enable neonatal testing where sepsis is 

the cause of significant mortality and morbidity [91], [92]. Preferably, the test should 

minimise the prevalence of false negatives, exhibiting high sensitivity and NPV (each 

>98%) for the detection of sepsis, in order to avoid unintentional cessation of empirical 
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antibiotics which may jeopardize patient wellbeing [26]. Good specificity and PPV 

(>85%) is also desirable to limit false positives as inappropriate administration of anti-

biotics can compound the global antimicrobial resistance crisis and has unknown 

impact on the well-being of neonates [22], [26]. For the reasons presented in this 

section, it is believed that an IR spectroscopic biofluid IVD with high-throughput 

capabilities would be well poised to meet these requirements by virtue of minimal 

sample preparation, low cost, reproducibility, rapidity, and ability to observe systemic 

biochemical changes. 

 

1.3. IR Spectroscopic Biofluid Diagnostics 

 

Biofluid diagnostics are a high value diagnostic resource because biofluid 

samples, such as blood, saliva, and urine, are easy to collect, minimally invasive, 

contain a wealth of biochemical information, and can be collected inexpensively. 

Biofluids are perhaps the most effective means to carry out objective, cost-effective, 

and rapid diagnosis and triaging of patients [93]. Novel biofluid diagnostic techniques 

are therefore attractive solutions for improving diagnostic capabilities. However, 

standardisation of the pre-analytical factors of biofluid spectroscopic lab tests need to 

be established as inconsistencies in the pre-analytical phase is a significant source of 

error [94]. A selection of pre-analytical considerations are the methods of collection 

(e.g., sample volume, draw site, patient fasting requirements, transportation), storage 

(e.g., temperature, number of freeze-thaw cycles), processing (e.g., addition of 

anticoagulants, dilution, centrifugation time, droplet deposition), and measurement 
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parameters (e.g., operators, spectrometer configuration/manufacturer, substrates) [95]. 

Most of these factors are dependent on the biofluid type under investigation (e.g. 

cerebrospinal fluid, saliva, serum, etc.) [51]. Hence careful consideration should be 

given to sample type selection. 

Biomolecules, or any other molecule for that matter, interact with light in ways 

unique to the biomolecule under investigation. Molecular bonds continuously vibrate 

at the zero-point energy and most biomolecules will absorb specific frequencies of 

infrared (IR) light unique to their composition causing their bonds to vibrate at a 

greater energy level. The study of these interactions between IR light and matter is 

called IR spectroscopy. Barring symmetric diatomic molecules (e.g., oxygen), all 

biomolecules absorb mid-IR light at specific frequencies, hence it can be inferred that 

almost all the biomolecules in a biofluid sample will interact with a broadband beam 

of incident IR light. Thus, an analysis can be carried out that interrogates the entire 

biochemical profile of a patient sample. The resulting dataset is a spectrum accounting 

for the extent to which each frequency of mid-IR light was attenuated by the sample. 

It is a complex dataset as it is representative of a complex biochemistry and can be 

difficult to interpret through direct inspection of the spectrum. However, this is the 

perfect scenario to employ multivariate or machine learning techniques that can 

automatically recognise patterns indicative of sample class. The underlying principles 

of IR spectroscopy and machine learning are detailed in the next chapter. 

Many widely used biofluidic tests and devices focus on the analysis of a single 

target biomarker, although rarely do diagnostic procedures rely on just one test. 

Instead, a combination of screening and diagnostic tests often influence clinical 

decisions [96]. Univariate analysis of a biomarker can be appropriate when the 
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pathological state is well characterised, for example the monitoring of blood glucose 

levels in diabetics, but can be inadequate when investigating ambiguous differential 

diagnoses, syndromic conditions, or comorbidities. In these cases, an array of 

biomarkers, such as lipid panels as predictors of coronary heart disease [97], in 

combination with patient history and medical imaging may paint a more detailed 

pictured, but numerous results can be difficult for an individual to digest. Systems that 

use scores or classification criteria have been developed that combine screening and 

diagnostic test observations to identify and categorise pathological states such as the 

Glasgow Coma Score (GCS), SIRS criteria and the Sequential Organ Failure 

Assessment (SOFA) score [98], [99]. These are effective tools, but incur an element 

of assessor subjectivity and may not account for patient heterogeneity [100], [101]. 

Machine learning is a rapidly growing field well poised to address these limitations of 

current diagnostic modalities. Algorithms are trained against highly dimensional 

datasets to recognise patterns in the data and classify accordingly [102], [103]. 

Machine learned algorithms are capable of learning and adapting as they are 

exposed to more data. The utility of this in the context of diagnostic devices is clear; 

the human biological system is enormously complex and varies considerably within 

and between patient groups due to intrinsic and extrinsic factors such as age, 

environment, and lifestyle. Machine learning can examine many biological 

components simultaneously whilst also adapting to resist heterogeneity within sample 

data [104]. Some of the difficulties in implementing machine learning approaches to 

clinical diagnostics lie in collecting the large amounts of data required to construct 

predictive models, validation of models according to clinical gold standards, and the 

objective comparison of algorithms  across studies [88], [105], [106]. IR spectroscopic 
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techniques are useful in this regard as they offer a way to quickly generate high 

dimensionality data by probing the entire biochemical profile of a sample 

simultaneously. Machine learning is a subset of Artificial Intelligence (A.I.), a 

discipline gaining traction within the broader healthcare community with applications 

in imaging, genetics, electrodiagnostics, monitoring, disability and/or mental health 

evaluation, mass screening, and more [107]. Scotland is emerging as a leader with 

innovations like Current Health’s remote patient monitor [108], MyWay Digital 

Health’s patient management platform [109], and MindMate’s Alzheimer support app 

[110]. A.I., particularly machine learning, is applicable to a broad range of healthcare 

applications that many feel will transform the healthcare landscape [111]. 

IR spectroscopy is an analytical technique used extensively in the food [112], 

[113], pharmaceutical [114], [115], petrochemical [116], environmental [117], [118], 

and forensics industries [119], [120]. While there has not been widespread 

implementation of IR spectroscopy in the clinical laboratory, there exists a wealth of 

clinical research [121]–[129], and IR spectroscopy is an excellent technique for the 

analysis of biological materials [56]. It is easy to operate, low cost, non-destructive, 

label-free, and requires low sample volumes. A biochemical fingerprint of the sample 

is collected theoretically providing a snapshot of the subject’s health condition. One 

obstacle in IR spectroscopy is the difficulty in analysing samples with high water 

content. Biological samples almost always have a high water content and must be dried 

prior to analysis [86]. Another limitation is the potential for spectral distortions, such 

as resonant Mie scattering or other dispersion artefacts, that occur when structures of 

similar magnitudes to the wavelength of IR light, such as cells, are present in the 

sample [130]. This can scatter IR light and lower signal quality. These particular issues 
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can be avoided through selection of appropriate sample type and IR mode [56]. Whole 

blood, for instance, is full of erythrocytes that can interfere with the spectral 

contribution from other biomolecular species in the sample [128]. Whole blood or 

plasma samples also require anticoagulants to prevent clotting during storage and it 

has been shown that selection of different anticoagulants is represented in the IR 

spectra [95]. This means that different anticoagulation procedures across healthcare 

centres may impact the IR analysis. Serum is an ideal sample type to avoid the extra 

pre-processing or anticoagulants required for the analysis of whole blood or plasma as 

clotting factors (e.g., fibrinogen) and cells (e.g., erythrocytes) are removed through 

centrifugation after a whole blood sample has been allowed to clot [131]. However, 

whilst serum collection can be reproducible, it comes with the caveat of an extra 

coagulation step increasing processing time [132], [133]. Furthermore, precautions 

still need to be taken to minimise pre-analytical variance. Blood collection method 

should standardised and avoid venous stasis, haemolysis, and draw site error (e.g., 

away from drip arm or site of infection) [134], [135]. Serum should be analysed fresh 

if possible as FTIR spectroscopy has been found to be sensitive enough to distinguish 

fresh from a single freeze-thaw cycle [95]. Despite lacking cellular components, serum 

retains a wealth of biochemical information, is easily derived from whole blood, 

accessible, can be obtained reproducibly, and is a common sample type in routine 

clinical laboratory diagnostics [136]. Serum is therefore often favoured for infrared 

spectroscopic analysis [85], [136]. 

Factors limiting the translation of IR spectroscopy to the clinical laboratory are 

variability induced during preanalytical stages and through the requirement to dry 

samples [137], confinement to a single point of analysis [86], and perhaps reluctance 
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form spectrometer manufacturers to dedicate instrument design for clinical 

applications [88]. Use of serum over whole blood may minimise the risk of resonant 

scattering, but samples still need to be dried. Drying can often result in gelation and 

cracking patterns, and a phenomenon known as the ‘coffee ring’ effect whereby dried 

films are chemically and physically heterogeneously distributed across the sample film 

[137]. Consequently, composition can vary greatly across the film presenting a risk of 

undermining reproducibility and sensitivity of analyses. Efforts to minimise the coffee 

ring effect include the analysis of minute volumes (<1µl), dilution of the sample, or 

spraying sample onto the sample site surface [138]–[140]. Measurement of the bulk 

sample using a particularly sensitive mode or IR spectroscopy called Attenuated Total 

Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy has been shown to 

minimise the impact of biofluid drying patterns without need for dilution effectively 

providing an average spectrum of the dried droplet [88], [106], [141]. Furthermore, 

ATR-FTIR is highly favoured in the research community for the analysis of serum as 

samples can be placed directly onto the ATR sampling site for quick measurement 

without sophisticated preparation protocols eliminating spectral contributions from a 

slide substrate while maintaining high reproducibility  [56], [106], [121], [128], [142]–

[145]. ATR is therefore the FTIR spectroscopy mode best suited for reproducible and 

sensitive clinical testing [87]. However, in any FTIR mode multiple sample scans are 

necessary to reduce artifacts and variations in the spectra due to environmental 

conditions and sample heterogeneity [84]. ATR-FTIR is restricted by a fixed point of 

analysis as the optical substrates required to perform ATR are expensive, fixed, high 

refractive index crystals (e.g. Diamond) that are not compatible with the design of a 

high-throughput system (e.g. microtiter plates) [86]. Samples must be laboriously 
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dried individually and removed before subsequent sample analysis culminating in a 

workflow bottleneck and destroying the sample droplets in the process [138]. Hence, 

an alternative, low cost, and readily interchangeable ATR crystal is required to enable 

batch processing and, by extension, rapid analysis capabilities. 

 

1.4. Translation of Infrared Spectroscopy to the Clinic 

 

IR spectroscopic techniques have demonstrable utility in biofluids [93], [137], 

cytological [146], [147], histological [148], and microbiological [149] studies. 

Research articles have promised excellent disease detection capabilities over a wide 

variety of diseases and across numerous biofluid sample types such as whole blood 

[150], serum [151], plasma [152], saliva [153], sputum [154], amniotic fluid [155], 

cerebrospinal fluid [156], urine [157], bile [123], and even tears [158]. The evidence 

that IR spectroscopy is a powerful diagnostic tool with respect to predictive and 

investigative capabilities is clear, so the obvious question is: why is this technique not 

used in the clinical laboratory? The answer is that demonstrating potential as a 

powerful predictive tool does not necessarily demonstrate clinical suitability. New 

diagnostic techniques arise from a wide variety of origins, but broadly speaking they 

are propelled either by ‘technical push’ where existing technologies are adapted to 

enter the clinical market or ‘clinical pull’ where clinical problems call for novel 

technical solutions [159]. Academic or commercial sector researchers and 

entrepreneurs seeking to translate their work into the clinical setting generally fall 

within the former category. Consequently, their technologies may not be suitable for 
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the clinical environment for a variety of reasons such as usability, lab footprint, 

incompatibility with automation, cost, complexity, and length of procedure. All these 

factors could disrupt clinical workflows, a ramification which cannot be 

underestimated. Continued end user input and support from clinicians, laboratory 

technicians, or any other clinical operators, is indispensable for resolving issues during 

the development stages and preparing the most market ready product before initiating 

clinical trials. Infrared spectroscopy is one such ‘technical push’ field that has 

remained on the periphery of the healthcare industry to date. There are, however, 

several examples of start-up companies closing in on this goal and IR spectroscopic 

techniques are widely used in the pharmaceuticals industry [114].  

The projects presented here were carried out in partnership with ClinSpec 

Diagnostics, a Strathclyde University spin-out company developing spectroscopic 

brain cancer diagnostics using artificial intelligence and ATR-FTIR. Other notable IR 

spectroscopy diagnostic companies are: Biotech Resources, Cireca Theranostics, and 

Glyconics. Biotech Resources developed a spectroscopic system to deliver malaria 

screening to low-income areas earning international acclaim [129]. Cireca 

Theranostics developed ‘spectral histopathology’ protocols for objective, reagent free, 

machine learning based analyses of tissue sections for use in situations where 

histopathologists are unable to establish a consensus on how to classify a sample [160], 

[161]. Glyconics, a Cambridge based IR spectroscopy diagnostics company, partnered 

with Spectrolytic, a German IR spectrometer supplier and manufacturer to develop a 

handheld Point-of-Care (POC) infrared spectroscopy device specifically for use in the 

clinic. This partnership presents a good case study for ‘technical push’ clinical 

translation. Spectrometer manufacturers are generally unwilling to adapt their products 



17 

 

to the clinical environment because it is not a market they are established in and 

therefore view expansion into this market as a significant risk. Confirming existence 

of a consumer base through examination of an unmet clinical need, proof-of-concept 

studies, and financial projections through health economic analysis is a good way to 

reassure manufacturers that tailoring their instruments toward clinical applications will 

help the growth of their company. Glyconics are in the early stages of a clinical trial 

to validate claims that the hand-held device can be used to differentiate between 

chronic obstructive pulmonary disease (COPD) from other disease states and monitor 

the conditions progression [162], [163]. 

Above all else, translation of technology into the clinical marketplace requires 

there to be a clearly defined clinical need. There is no shortage of unmet clinical needs, 

but appropriately fitting a solution is difficult. Most entrepreneurial ventures of POC 

diagnostics fail in the development stage because of a fundamental disconnect between 

the technical specifications of the core technology and the clinical needs [164]. Some 

of the common technical oversights, such as complexity or time to result, have already 

been mentioned, but from the clinical view it is equally egregious not to consider the 

specific healthcare pathways the diagnostic fits into. Health economic analysis is a 

wise strategy to determine if a technology is suited to a clinical application. It needs to 

be determined if a medical device, therapy, or diagnostic technique can improve 

patient outcomes whilst being economically feasible. 

 Health economic analysis predicts the cost and effect on public health of a 

specific course of action and compares it to all other alternative courses of action. It is 

an indispensable tool in clarifying that a diagnostic device, therapy, or any healthcare 

pathway is both effective in its purpose and feasible to implement [165], [166]. 
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Convincing important stakeholders, such as healthcare providers, patient groups, 

clinicians, and investors, is made substantially easier through evidence provided by a 

health economic analysis. Such an analysis will also help define the end market 

strategy for the product. 

Manufacturers must obtain regulatory clearance before an IVD can be 

delivered to the clinical market. To operate in the European Union (EU) manufacturers 

must comply with the In Vitro Device Regulation (IVDR) (formerly IVD Directive) 

and in the United States manufacturers must comply with the Food and Drugs 

Administration (FDA) title 21 of the Code of Federal Regulations (21 CFR) [167], 

[168]. Both the IVDR and FDA have classification systems for IVDs which dictates 

the degree of regulatory control necessary and the regulatory pathways that must be 

followed. Although the IVDR and FDA have a different system of IVD classification, 

the principle is the same in the sense that IVDs are classified according to intended use 

and associated risk. In order of increasing risk, the IVDR classifies IVDs as class A, 

B, C, or D, and the FDA classifies IVDs as class I, II, or III. All IVDR compliant 

manufacturers must establish a ISO13485 certified Quality Management System 

(QMS), perform post market surveillance, and prove compliance to a notified body 

prior to CE marking a product [169]. All 21 CFR compliant manufacturers must 

establish ‘general controls’ in alignment with 21 CFR part 807 (e.g., design controls 

and suitable labelling of products) and class II or III devices must establish ‘special 

controls’ (e.g., 21 CFR part 820 compliant QMS and post market surveillance) [37]. 

A critical requirement for IVD regulatory approval is the validation of IVD 

safety and efficacy through clinical trials [170]. Clinical trials assess the performance 

and reproducibility of the IVD on appropriate study populations and under the 
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conditions of intended use [171]. A trial protocol needs to be established and peer 

reviewed during set-up of a clinical trial detailing the aims, scientific rational, 

procedures and methodology, patient eligibility criteria and recruitment plan, and data 

analysis strategy of the trial [172]. In the UK, trial protocols must receive ethical 

approval and authorisation from the Medicines and Healthcare Products Regulatory 

Agency (MHRA) ensuring the trial has been planned in alignment with Good Clinical 

Practice (GCP) standards [173]. An ethics committee will determine if the likely 

benefits of the test will outweigh any possible risks and if steps have been taken to 

mitigate risks for the patient including: the provision of informed consent, 

confidentiality, and appropriate consideration for vulnerable populations such as the 

elderly and disabled [174]. 

 

1.4.1. Previous and Parallel Work 

Two significant bodies of work predated the projects presented within this 

thesis. The first was a series of studies demonstrating the ability to discriminate 

between brain cancer and non-cancer patient through spectroscopic analysis with high 

sensitivity and specificity using only blood serum samples and an ATR-FTIR 

spectrometer [121], [122]. ATR-FTIR is a particularly sensitive technique that holds 

numerous advantages over other IR spectroscopy modes (see chapter 2 section 

2.2.1.3). The first study achieved a sensitivity and specificity of 93.75% and 96.53% 

for cancer vs non-cancer classification respectively from 97 patient samples [121]. The 

second study expanded the patient dataset to 433 patients and achieved sensitivity and 

specificity of 91.5% and 83.0% respectively and also classified patient samples 

according to a greater number of brain cancer subgroups [122]. 
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 The second significant piece of work was a health economic analysis informed 

by an expert clinical focus group that demonstrated that an ATR-FTIR spectroscopy 

serum based brain cancer test could improve patient outcomes in terms of Quality 

Adjusted Life Years (QALYs) in an economically beneficial way by reducing 

diagnostic delays in the current clinical pathway [175]. The findings of this health 

economic evaluation were that such a test has a strong probability of being cost-

effective if the price of the test is less than £40 pounds. The development of the brain 

cancer clinical test ran parallel to the projects described herein and is still under 

development for eventual commercialisation by ClinSpec Dx. The hardware 

developed throughout the projects described within this thesis is the core technology 

that enabled a prospective clinical validation study for the rapid triage of brain cancer 

patients [176]. Brain cancer diagnostics are not the focal point of this thesis but will 

be referred to. This thesis will instead present an ATR-FTIR serum based sepsis test 

to demonstrate the viability of this technology as a general clinical diagnostics 

platform. The technical requirements of the core ATR-FTIR technology developed and 

clinical need for a sepsis serum test are detailed below. 

 

1.4.2. An ATR-FTIR Serum Diagnostics Platform 

ATR-FTIR spectroscopy is a specific form of infrared spectroscopy able to 

achieve high quality spectral data. Operation is simple: samples are placed on top of a 

crystal of high refractive index, typically diamond, called an Internal Reflection 

Element (IRE), and is interrogated by an IR beam directed through the IRE. The IRE 

is fixed within a top-plate so that the IR beam can be delivered at a specific angle such 

that Total Internal Reflection (TIR) occurs in the IRE. The reason for this is because 
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TIR produces a phenomenon known as an evanescent wave which protrudes beyond 

the IRE surface and into the sample (Figure 1.1) [112]. This is the only portion of the 

IR beam to interact with the sample during ATR-FTIR spectroscopy. Detailed 

descriptions on how IR spectroscopy operates and how ATR compares to other FTIR 

spectroscopy modes is discussed in the section 2.2 of the next chapter.  

 

Figure 1.1. Schematic of the IR beam trajectory during ATR-FTIR 

spectroscopy. Image credit: [177] 

This fixed IRE configuration presents the inherent design flaw of traditional 

ATR-FTIR spectrometers. The user is limited to analysing one sample at a time and is 

forced to clear away a sample, destroying it, before preparing the next sample. FTIR 

spectroscopy is otherwise a non-destructive technique. A significant benefit of ATR-

FTIR spectroscopy is that it is reagent free and does not require extensive sample 

preparation usually only requiring samples to be dried upon the IRE [56]. Despite this, 

a fixed IRE creates an inherent process bottleneck that converts even simple sample 

preparation into a laborious and gruelling task. It is common practice to require 

biological sample triplicates for reliable analysis, which compounds this bottleneck 

issue. Typically for biofluid ATR-FTIR analysis sample preparation would take this 

form: sample collection, separation (e.g., centrifugation for serum analysis), sample 
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deposition onto the IRE (ca. ~3µl per well generally), sample dehydration, and finally 

the sample scan. Crucially, the sample dehydration step can take anywhere from 15-

120 minutes. It should be noted that each of these steps may incur unwanted variance 

and should therefore be standardised as far as possible [137], [138]. This is a crucial 

factor in the development of a reproducible and reliable diagnostic tool.  

The solution presented here looks to remove the fixed IRE and replace it with 

an interchangeable and disposable IRE slide capable of carrying multiple samples at 

once. This bears with it a number of technical difficulties. Firstly, IREs are typically 

made from expensive materials, such as diamond, or germanium, which are not 

amenable to scaled production. Scalable and cheap production being an important 

characteristic of a clinical ATR-FTIR platform in view of the health economic analysis 

discussed in section 1.3.1. Silicon is a promising alternative IRE substrate as cheap 

production of silicon-based devices is well demonstrated and its manufacturability is 

well understood. Silicon is used extensively in the semiconductor and microelectronics 

industry. High grade silicon is therefore a ubiquitous low-cost substance and silicon 

foundries are present everywhere. However, the optical properties of conventional 

silicon IREs do not favour IR biospectroscopic applications [178]. Silicon 

unfortunately absorbs light in biologically relevant portions of the IR light spectrum 

(wavenumbers below 1500cm-1) meaning pertinent sample information may be lost. 

This also somewhat undermines the purpose of a machine learning spectral approach 

if the technique is not able to interrogate all components of the sample simultaneously. 

Although this problem cannot be eliminated it can be mitigated. Limiting the length of 

silicon material that the beam must travel through, also simply called the beam 

pathlength, reduces the amount of IR light lost to the silicon lattice. The geometry of 
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the IRE can be designed such that the beam only undergoes a single internal reflection 

as opposed to multiple internal reflections (Figure 1.2) [179]. A single bounce IR 

system has the drawback of reduced sensitivity because the IR beam has less 

opportunities to interact with the sample. Whether or not this is an acceptable 

compromise or if this limitation can be circumvented is one of the core aspects under 

investigation throughout this thesis. 

 

Figure 1.2. Comparison of multi-bounce and single bounce IRE beam 

trajectories. 

The interchangeable IRE slide designed in this project will host multiple 

optically active ‘single bounce’ grooved areas across the length of the slide and has 

been dubbed the Single Internal Reflection Element (SIRE). The envisioned clinical 

workflow is simple (Figure 1.3). A clinician is deliberating on a differential diagnosis 

between sepsis and SIRS or would like to rule out sepsis and requests a SIRE sepsis 

test. Routine blood sample collection techniques are used to acquire patient samples 

[180]. Collection should be done using Rapid Serum Tubes (RTS) to minimise clotting 

time (~5min) and ideally a transilluminator instead of a tourniquet to eliminate venous 

stasis associated errors [181]–[183]. Separation should be done immediately with 

centrifugation parameters sufficient to avoid sedimentation and haemolysis (e.g. 1100-

1500g for 10 minutes ) [134]. To save time, a background scan of the SIRE may be 
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acquired while the patient sample is being centrifuged. A small volume, usually 3µl, 

of serum is then deposited onto each sampling area of the SIRE. The SIREs are then 

moved to a controlled heating environment and allowed to dry for a set amount of 

time. The samples are then ready for analysis, after which the sample slides may be 

stored for analysis at a later date if required. Results are returned to the user in an easily 

interpretable manner. The SIRE slides could easily be equipped with traceability 

mechanisms, such as a barcode, to help ensure patient data is not lost. How the SIRE 

was designed, developed, fabricated, and tested is one of the central discussions of this 

thesis. Since conventional IR spectrometers are not built to interface SIREs, a custom-

built accessory unit with a SIRE docking port was also developed. This too will be 

presented. 

 

1.5. Sepsis: An Unmet Clinical Need 

 

Sepsis is a syndromic condition characterised by the extreme flux of both anti-

inflammatory and proinflammatory cytokines evoked by a blood borne infection. The 

latter is the only characteristic that clearly differentiates sepsis from Systemic 

Inflammatory Response Syndrome (SIRS). Like sepsis, SIRS is described as an 

Figure 1.3. Clinical process flowchart of a SIRE serum test from test ordered to 

results returned. 
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inflammatory cytokine storm, only it can be caused by a variety non-infectious insults 

such as pancreatitis [184], trauma [185], leukaemia [186], invasive surgery, and burns 

[187]. One of the difficulties in distinguishing between SIRS and sepsis is that any one 

of these conditions will invariably affect the microbiome which could lead to infection 

like symptoms. Sepsis has a mortality rate of ca. ~30% which worsens as the condition 

progresses into severe sepsis (20-50%), and septic shock (40-80%) [188], [189]. In the 

USA, there is an incidence of 3 sepsis cases per 1000 people and accounts for 20% 

(210,000) of all annual in-hospital deaths [190], [191]. Sepsis is one of the most 

common neonatal complications and may lead to lifelong disabilities and is the biggest 

killer of children under five [192]–[194]. It is estimated that the condition costs $24 

billion in the USA annually [195]. In the UK the annual cost of sepsis is estimated to 

be between £7.42-£10.2 billion and that effective sepsis management could save £170 

million pounds annually [196]. The former figures account for 3.76-5.17% of the UK’s 

total £197.4 billion healthcare expenditure [197], [198]. The total deaths due to sepsis 

in England are estimated to be approximately 36,900 out of 123,000 cases each year 

[199]. However, an article published in the Lancet in January 2020 reports that global 

sepsis deaths have been underestimated with new estimates of 48 million sepsis cases 

and 11 million sepsis deaths globally each year [200]. This accounts for almost 20% 

of all deaths worldwide each year. Consequently, financial estimates cited previously 

may also be underestimated especially considering the reporters express concern on 

the lack of clarity over incidence, prevalence, and care pathways of sepsis [197]. The 

overwhelming consensus is that early detection and effective triaging of sepsis will 

help alleviate all these alarming statistics [200]–[202]. If the spectroscopic test 

developed within this project could be marketed at £40 per test, a simple calculation 
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forecasts that the cost to healthcare to test every sepsis incidence in the UK would be 

£1.476 million (£40 x 36,900) annually, a fraction of the £170 million that the National 

Institute for Health and Care Excellence (NICE) estimate could be saved by promoting 

effective sepsis management annually. Even at a unit cost of £100 per test (maximum 

£3.69 million annually) it is plausible that the test could be cost effective and still 

represent a sizable market potential. Clearly this is a rudimentary assessment as 

realistically tests would not be utilised in 100% of cases. An in-depth health economic 

assessment would be required for accurate figures. 

The clinical definitions of sepsis have been changed numerous times and there 

does not seem to be a satisfactory resolution to this debate due in large part to the 

highly heterogenous clinical presentation [203], [204]. Clinicians will make a 

judgement on whether or not a patient is presenting with sepsis based on physical 

examinations, vital signs and microbiological tests, but this is largely non-specific 

[205]. Generally, clinicians will make a diagnosis if two of the four SIRS criteria below 

are observed along with a documented or suspected infection [206]: 

1. Temperature >38°C or <36°C 

2. Heart rate >90 beats per minute.  

3. Respiratory rate > 20 breaths per minute or PaCO2 < 32mmHg. 

4. White blood cells count > 12,000/cu mm, or 10% immature (band) forms. 

It remains evident that there is currently no clear way of performing a 

differential diagnosis of SIRS against sepsis. This is important because the clinical 

response is different depending on the diagnosis [207]. In particular, aggressive fluid 

resuscitation within the first six hours and antibiotic administration within the first 
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hour of suspected sepsis is crucial in lowering mortality and morbidity [190], [208]. 

The current standard of care is the administration of a ‘resuscitation bundle’ within six 

hours of suspected sepsis aimed at delivering early goal directed therapy (Table 1.1) 

[209]. Although improvements to patient outcomes following introduction of the 

resuscitation bundle were good (34.4% relative risk reduction for mortality), uptake of 

the bundle was low with a reported 14% of 1232 patients across 18 centres in the UK 

receiving the bundle [210]. To address this the ‘sepsis six’ pathway was introduced as 

an initial resuscitation bundle designed to offer basic intervention within the first hour 

of suspected sepsis [211]. The sepsis six bundle comprises three diagnostic tests and 

three interventions (Table 1.1) [212]. In one hospital, administration of appropriate 

care within the first hour improved form 29% to 63% of sepsis cases using this 

simplified approach [212]. However, non-specific markers are still relied upon to 

triage patients toward these healthcare pathways as there is currently no known 

molecular signature to identify sepsis [21]. An effective test must return a result in less 

than 3 hours to halt inappropriate antibiotic treatments and should return a result in 

less than 1 hour. However, there are few currently proposed molecular diagnostic tests 

capable of returning a result in less than 4 hours [22], [26]. A rapid, objective, 

inexpensive, and reliable spectroscopic serum test could therefore further improve 

uptake of resuscitation bundles. 
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Table 1.1. Steps undertaken for sepsis resuscitation bundle and sepsis six pathway. 

Resuscitation bundle: Sepsis six pathway (all to be completed 

within 1h): 

1. Measure lactate within first 6h 1. Administer high-flow oxygen 

2. Obtain blood cultures (before 

antibiotic administration) 

2. Obtain blood cultures (before antibiotic 

administration) 

3. Administer broad spectrum 

antibiotics within 3h 

3. Administer empiric IV antibiotics 

4. Administer IV fluids 4. Measure serum lactate 

5. Achieve Central Venous Pressure 

(CAP) > 8 mmHg within 6h 

5. Administer IV fluids 

6. Achieve Mean Arterial Pressure 

(MAP) > 65mmHg within 6h 

6. Commence urine output measurements 

7. Achieve central venous oxygen 

saturation (ScvO2) > 70% within 6h 

 

 

To clarify, laboratory biomarker tests are routinely used in the screening of 

sepsis, but none possess the sensitivity and/or specificity to reliably help the clinician 

arrive at a diagnosis [213]. However, it is recognised that biomarker tests do improve 

the classification of sepsis [203]. Lactate tests are the most common laboratory test 

ordered [189]. Sepsis is a highly metabolic condition; therefore, lactate levels rise 

sharply and serve as a strong indicator of disease progression. Lactate tests have high 

sensitivity, but low specificity for sepsis predictions. Of course, anti- and pro-

inflammatory serum cytokines, such as procalcitonin [214], c-reactive protein [215], 

[216], Tumour Necrosis Factor (TNF) [217], [218] and Interleukin-6 [219], and many 

more may also be requested [189], [213]. Unfortunately, none of these have emerged 

as a definitive diagnostic tool although it remains to be seen how well a combination 

of these markers through multivariate analysis or machine learning can predict sepsis 

and monitor sepsis progression. 
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The gold standard diagnostic test for sepsis are blood cultures. Blood cultures 

can take up to five days to return a result [26], require large blood volumes, and 

determine the causative infectious agent in only 20-40% of sepsis cases [62]. Clearly 

this is an ineffectual tool to combat sepsis especially in the neonate where drawing 

large volumes of blood should be avoided. However, it is the only way to confirm the 

presence of infection and clinicians must know the specific causative pathogen as well 

as infection source in order to effectively treat the patient [220]. The inability to 

quickly determine infection and causative pathogen caused the definition of sepsis to 

include ‘suspected infection’ giving clinicians more freedom to act. Clinicians also 

struggle to ‘rule out’ sepsis when forming a differential diagnosis and cannot risk 

delaying sepsis therapy which may lead to inappropriate therapies being administered, 

or detracting from the real underlying pathology [205]. This further highlights the need 

for quick and specific testing to enable triaging of patients with suspected sepsis. 

It is envisioned that an objective, rapid, and low-cost spectroscopic SIRE sepsis 

test could provide a sensitive and specific triaging tool by predicting if a patient has 

sepsis or not which may be particularly useful for scenarios where the clinician is 

seeking to rule out sepsis. A definitive diagnosis would require knowledge of the 

causative agent and infection site, whereas the proposed test would only inform on the 

patients’ status as someone with sepsis or not. A positive result will initiate the sepsis 

six bundle and a negative result will help clinicians decide to terminate administration 

of broad-spectrum antibiotics and prevent resuscitation if not required. For example, a 

patient may present at the emergency department with several days of vomiting, 

diarrhoea, fever (>38◦C), a fast heartbeat (>90bpm), and an acute abdomen [221]. 

Depending on the patient history, a clinician may reasonably determine the patient has 
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pancreatitis, but equally cannot discount the presence of an infection and possibility of 

sepsis. In compliance with sepsis six pathway, the clinician must administer broad 

spectrum antibiotics without yet determining a diagnosis. In this scenario, the clinician 

may order amylase, glucose, or lipid panels to investigate a pancreatitis diagnosis, but 

these tests do not prove the absence of sepsis [222]. The critical factor is therefore to 

confirm if sepsis is present or not and rule it out to pursue other healthcare pathways, 

or indeed initiate the sepsis six pathway. A SIRE sepsis test would be ordered, and a 

positive/negative prediction made on whether the patient has sepsis, SIRS, or neither 

condition.  

Since false negatives are associated with greater risk to the patient than false 

positives, it has been identified from the literature that a NPV and sensitivity in excess 

of 98%, and PPV and specificity in excess of 85% would be desirable to reliably 

identify patients with and without sepsis [22], [24]–[26]. The test developed within 

this project will be measured against these predictive values and compared to 

predictive values achieved with common laboratory biomarker sepsis tests. It is hoped 

that the low cost and speed of the test encourage clinicians to err on the side of caution 

and order a test even in situations where the presence of sepsis is in doubt promoting 

early detection and improving patient outcomes [190], [191]. To be effective, this test 

will likely need to be carried out within the emergency department. This is to achieve 

a low result turnaround time which must be less than 3 hours to enable clinicians to 

focus on the real pathology, halt antibiotic treatments early, and prevent aggressive 

resuscitation and would preferably be less than 1 hour for early detection or to prevent 

antibiotic treatment entirely [26]. Tests would likely be ordered by the emergency 
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department where most sepsis patients are received [211]. Routine serum sample 

collection techniques would be employed to facilitate this. 

Given the prevalence of sepsis, quick onset, lack of detectability, and economic 

burden; the requirement for high-throughput, low-cost, rapid, and reliable blood 

testing methods is clear. ATR-FTIR spectroscopy, using the SIREs described 

previously, is well poised to fulfil these requirements at the point of care. Moreover, 

the low sample volume required to perform ATR-FTIR is especially beneficial given 

the pronounced clinical need in neonatal sepsis diagnostics. The complex and 

heterogenous biochemistry make sepsis an ideal candidate to demonstrate a machine 

learning based spectroscopic approach. Most importantly, the result could be delivered 

quickly and clearly made possible by simple sample preparation requirements and 

envisaged compatibility with existing clinical workflows. Furthermore, this 

technology could be present at the point-of-care instead of in a centralised 

microbiological centre. Crucially, it is probable that this test could deliver results to 

the clinician within 60 minutes of symptom presentation thereby fulfilling a notorious 

unmet clinical need [205]. The diagnostic capabilities of SIREs with respect to sepsis 

detection will be demonstrated in this thesis. 

 

1.6. Aims and Objectives 

 

The central discussion of this thesis is: can infrared spectroscopy be used to 

process a high capacity of samples in a clinically useful way? The fundamental aim of 

this project is to answer this through creation of a clinically useful ATR-FTIR serum 
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diagnostics platform for the triaging of patients with suspected sepsis. Chapters three 

through six will demonstrate each aspect of this aim. 

Lack of high sample throughput capabilities has thus far been a major barrier 

for the translation of ATR-FTIR to the clinical setting. Chapter three will present the 

design and development of a SIRE and spectrometer accessory unit that together 

enable rapid, low cost, and high-throughput ATR-FTIR analysis. Design rationale will 

be led by analytical performance, usability characteristics, cost, and manufacturing 

practicality. 

SIRE spectrum reproducibility will be optimised in chapter four. The SIRE and 

accessory unit will be characterised and evaluated with respect to a conventional ATR-

FTIR spectrometer set-up with a high sensitivity diamond IRE. This is to determine if 

the high-throughput ATR-FTIR system maintains the analytical qualities expected of 

an ATR-FTIR spectrometer. There will be a focus on determining how reliably SIREs 

can analyse serum samples. Optimal pre-analytical serum sample preparation 

procedures for the SIRE slide will also be established. 

SIRE analytical performance in terms of analyte detection and quantitation will 

be characterised in chapter five. Diagnostic tests typically quantify a biomolecule 

concentration within a sample and compare this value to a reference range. To assess 

diagnostic capabilities of SIREs, it is appropriate to determine quantitative abilities of 

clinical biomarkers at clinically relevant concentrations. Quantitative analysis of 

biomolecules within the three of the four major biomolecule groups (carbohydrates, 

lipids, and proteins) will be demonstrated using SIREs. Quantitative capabilities and 

limits of detection have been compared to that of a diamond IRE and to clinically 
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accepted methods characterised within the literature. Biomarkers routinely used in the 

diagnosis and prognosis of sepsis and SIRS were purposefully selected to verify that 

spectral changes could be linked to changes within the sample of relevant 

biomolecules. 

Finally, to support claims that SIREs are clinically useful it is imperative to 

demonstrate that an unmet clinical need can be fulfilled. Chapter six demonstrates that 

SIREs are capable of aiding in the triage of sepsis through classification of sepsis, 

SIRS, and control patient samples from a cohort of 148 patient samples. Predictive 

capabilities are compared against competing sepsis biomarker tests as well as idealistic 

NPV (>98%), PPV (>85%), sensitivity (>98%), and specificity (>85%) as identified 

in the literature [22], [26]. 
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2.1. Vibrational Spectroscopy 

 

Spectroscopy is defined as the study of the resultant spectra when matter 

interacts with or produces electromagnetic radiation (e.g., infrared light). Vibrational 

spectroscopy in particular is the non-destructive interrogation of molecular bonding 

environments for qualitative and quantitative analysis. It is separated into two broad 

categories: Raman and Infrared (IR) spectroscopy. These techniques utilise different 

mechanisms to elicit different spectral responses, but both rely on the principle that all 

molecules continuously vibrate at frequencies unique to the composition of the 

molecule. IR spectroscopy detects light absorption due to changes in dipole moment 

and Raman spectroscopy detects shifts in incident beam frequency due to inelastic 

scattering of light following bond polarization [1]. Generally, the techniques are 

considered complementary because some molecular vibrations are IR active while 

others are Raman active. IR spectroscopy is an absorbance based technique and is the 

technique under development and investigation within the scope of the studies 

presented throughout. 

 

2.1.1. Absorbance 

When a beam of light transmits through an absorbing medium the emerging 

beam is of lower intensity than the incident beam. The pathlength of the beam through 

the material, l (length of material the beam needs to travel through), the molar 

absorptivity of the material, ɛ, and the concentration of the absorbing material, c, all 

increase absorbance of the beam’s energy into the medium and thus reduces beam 
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intensity. The Beer-Lambert law (Equation 2.1) relates these properties to the 

attenuation of the propagating beam [2]. 

𝐴 =  ɛ𝑐𝑙 

Equation 2.1. Beer-Lambert law. 

If the intensity of the incident beam, I0, and intensity of transmitted beam, I, 

are known, the absorbance, A, and similarly the transmittance, T, of the beam can be 

calculated (Equation 2.2). Figure 2.1 shows a graphical representation of the Beer-

Lambert law. 

𝐴 = log (
𝐼0

𝐼
)  =  𝑙𝑜𝑔 (

1

𝑇
) 

Equation 2.2. Intensity, absorbance, and transmittance relationship. 

 

Figure 2.1. Illustration of the Beer-Lambert law. 

Absorbance spectroscopy techniques operate by first acquiring a reference scan 

(also called the background scan) using the exact same experimental set-up, but with 

a blank sample cartridge, then acquiring the sample scan. This captures all the excess 

spectral information gained from the environment, such as from molecules in the air, 
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which is then removed from the sample scan. In this way the spectral profile of the 

sample can be isolated from any environmental factors. The reference scan can be 

considered the incident beam, I0, and the sample can be considered the transmitted 

beam, I, of Equation 2.3., hence: 

𝐴 =  −𝑙𝑜𝑔 (
𝑠𝑎𝑚𝑝𝑙𝑒

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

Equation 2.3. Absorbance, sample spectrum, and reference spectrum 

relationship. 

These relationships are widely used to ascertain the concentration of an 

unknown material in a solution by probing the sample with a single wavelength of 

light [2]. Spectroscopic approaches scan a sample across a range of wavelengths. The 

output is therefore a distribution of absorbance values across a range of discrete 

wavelength intervals. Vibrational spectroscopy is slightly different in that it is common 

practice to represent data using wavenumbers, λ-1 (cm-1), which is the reciprocal of 

wavelength λ (nm). This is because wavenumber is directly proportional to frequency 

according to the wave equation (Equation 2.4). Figure 2.2 shows a simple IR 

absorbance spectrum of water along with the bond vibrations responsible for each 

absorbance peak. Water is capable of three different vibrational modes because it is a 

nonsymmetric triatomic molecule (H2O). The absorption peaks are often referred to as 

bands because they do not cover a singular point, but rather are spread over a small 

range of wavenumbers. This is because absorption bands are typically a combination 

of smaller peaks superimposed on each other to form a larger absorption band [3]. 

𝑣 =  𝑐𝜆−1 

Equation 2.4. Wave equation. v = frequency, c = speed of light, λ-1 = 

wavenumber. 
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Figure 2.2. Simple IR absorbance spectrum of water. Asymmetric and 

symmetric absorption bands superimpose to form a broader peak at roughly 

3300cm-1. Image credit: [4] 

 

2.1.2. Molecular Vibrations 

2.1.2.1. Degrees of Freedom and Dipole Moments 

The atoms in a molecule are continuously moving relative to each other such 

that the centre of mass of the molecule remains fixed. All molecules can move in three 

basic ways: translation, rotation, and vibration. There are three translational directions 

along the x, y, and z axis and three rotational directions around the x, y, and z axis in 

three-dimensional space. All linear molecules, for example carbon dioxide (CO2), have 

a rotational movement around one axis which does not result in relative motion 

between atoms to each other and thus cannot be observed. Vibrational movements, 

called vibrational modes, are a little more complicated and describe how each atom 

within a molecule moves relative to other atoms in the molecule. There are six normal 

vibrational modes: stretching, asymmetric stretching, wagging, twisting, scissoring, 

and rocking. These can be further categorised into stretching, ѵ, in-plane bending, δ, 
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out-of-plane bending, γ, vibrational modes (Figure 2.3). The summation of the possible 

ways in which a molecule can move accounts for the molecules degrees of freedom 

(DF). The degrees of freedom in a molecule is 3N where N is the number of atoms in 

the molecule. Three degrees of freedom are translational (x, y, z) and three rotational 

(xy, xz, yz) which are subtracted from the total degrees of freedom to find the number 

of vibrational modes. From this the number of vibrational modes can be calculated as 

3N-6, or 3N-5 for linear molecules because one of the rotational modes in linear 

molecules cannot be observed. For example, earlier water was shown to have three 

vibrational modes (Figure 2.2) because it is non-symmetric and contains only three 

atoms. 

 

Figure 2.3. Illustrations of the movements observed in the six normal 

vibrational modes of molecular bonds. R indicates an unspecified number of 

atoms in a chain. +ve and -ve symbols represent movement out of and into the 

page, respectively. S = symmetric and as = asymmetric. 



57 

 

A Dipole moment exists in a shared bond where the atoms in the bond possess 

a different electronegative charge. Heteronuclear molecules, such as hydrogen 

chloride (HCl), exhibit dipole moments and are thus polar, but homonuclear 

molecules, such as oxygen (O2), do not exhibit dipole moments and are thus non-polar. 

When molecules vibrate the dipole moment fluctuates which creates an electric field 

that interacts with the electric field of light photons. If the frequency of light 

corresponds to the frequency of vibration, energy from the photon is absorbed into the 

bond and the bond vibrates with a greater amplitude. IR absorption can only occur if 

there is a net change in the dipole moment of the molecule during the vibration [5]. 

For instance, CO2 has polar C=O bonds, but because the molecule is symmetrical the 

dipoles cancel each other out during the symmetric stretching vibrational mode leaving 

a net dipole moment change of zero. If the bonds vibrate in the symmetric stretch 

vibrational mode, then the electric fields generated by each bond also cancel out and 

there is no net change in dipole moment. However, a net change in dipole moment will 

occur if the molecule vibrates in the asymmetric stretch and scissor bend vibrational 

modes. In these modes an electric field is generated which can interact with light 

photons. Frequency matches generally occur in the IR frequency range of 

electromagnetic radiation. Hence, the symmetric stretch mode of CO2 is said to be IR 

inactive because it cannot absorb IR radiation, while asymmetric scissor bending 

modes are said to be IR active because they can absorb IR radiation. 

 

2.1.2.2. Vibrational Frequency and Energy 

Molecular vibrational modes are analogous to the mechanical behaviour of two 

masses adjoined by a spring. Consider a simple diatomic molecule. One atom is fixed 

to a wall and the other is oscillating continuously with equilibrium bond length, r 
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(Figure 2.4). The bond (spring) is continuously stretching and contracting in a motion 

described as a harmonic oscillator due to the attractive forces of the atomic charges 

and the repulsive forces of the atomic nuclei. 

 
Figure 2.4. Schematic of a mass-spring model of a molecular bond. m1 and m2 

represent the mass of two different atoms. 

A relationship between the potential energy of the spring and the frequency can 

be derived by borrowing relationships from classical physics to arrive at an 

approximation of bond behaviour. Hooke’s law (Equation 2.5) provides a relationship 

between the force applied to a spring and the distance the spring is stretched. Newton’s 

second law (Equation 2.6) provides a relationship between the mass of an object and 

acceleration. Since acceleration is a time dependant variable it follows that frequency 

of oscillation can be derived from the system. Reducing the differential equations 

(Equation 2.7) gives a relationship between frequency of oscillation, ν, mass of the 

atoms, m, and the spring constant (bond strength), k (Equation 2.8) [6], [7]. 
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𝐹 =  −𝑘𝑥     𝐹 = 𝑚𝑎 = 𝑚
𝑑2𝑥

𝑑𝑡2
 

Equation 2.5. Hooke’s Law  Equation 2.6. Newton’s 2nd law 

−𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
 

Equation 2.7. Second order linear differential equation 

𝑣 =  
1

2𝜋
√

𝑘

𝑚
 

Equation 2.8. Frequency of oscillation 

Variable assignments: F = force, k = spring constant, x = distance, m = mass, 

a = acceleration, v = frequency. 

The harmonic oscillator can be presented graphically as a parabola of energy 

varying as a function of bond length (Figure 2.5). The equilibrium bond length, r, 

between the atoms will always remain the same, however the amplitude of the 

oscillation can change. The Heisenberg uncertainty principle states that if the location 

of a particle is known its momentum cannot be known and vice versa [1]. Thus, atoms 

are in constant motion since stopping would imply that its position can be known 

which violates the Heisenberg uncertainty principle. Until acted upon, the bond will 

remain oscillating in its ground state which is the lowest energy state and smallest 

bond length the bond can exist at. The ground state is also known as zero-point energy, 

E0. Here the analogy of the mechanical spring and the reality of the molecular bond 

depart. Energy levels of a bond are quantised meaning bond energy can only assume 

discrete magnitudes of energy whereas a spring can oscillate through a continuous 

range of energy levels. Photons can excite bonds to transition from the ground state to 

higher energy levels, but the photon must be of equal energy to the energy difference 

otherwise the photon will simply transmit through the molecule. When a quantum of 
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incident photon is of equal energy to the bond excitation energy the photon energy will 

be absorbed which will evoke a transition from the ground state, E0, to the first energy 

level, E1, also known as the fundamental transition [8]. A photon of double energy will 

excite the bond energy to the second overtone, E2, and triple energy to the third 

overtone, E3, and so on. 

 

Figure 2.5. The harmonic oscillator where bond displacement, X, is a function 

of energy, E. r indicates where the equilibrium bond length lies. Bonds can 

only assume discrete energy levels as indicated by the solid lines. 

There is a problem with the harmonic oscillator model in that it fails to consider 

what happens when too much energy is put into the system. The spring or bond would 

be stretched too far and break. Springs snap and bonds dissociate. An anharmonic 

oscillator is more appropriate to represent this (Figure 2.6). Again, the average 

intermolecular distance remains unchanged regardless of bond energy, but the 

oscillations are increasingly asymmetric as the bond energy increases. If enough 

energy is put into the system, the bond will break. Another effect is that the energy 

levels are not regularly separated like in the harmonic oscillation model. In contrast to 
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the harmonic oscillator model, the impact of this is that photon energy levels required 

to evoke the fundamental transition and successive overtones are not equally spaced. 

 

Figure 2.6. The anharmonic oscillator where increasing bond energy levels 

tend towards bond dissociation. Energy levels the bond can assume are not 

spaced at even energy intervals. r represents the equilibrium bond length at 

every energy level. 

The absorption of photon energy is the observable effect exploited in IR 

spectroscopy. Photon energy and frequency are directly proportional according to 

Planck’s relationship (Equation 2.9). This means precise frequencies of light are 

capable of evoking energy level transitions in molecular bonds. Such frequencies of 

light are said to be resonant with the molecular bond. Resonant frequency is defined 

as the frequency at which an input stimulus will elicit the greatest response, in this case 

excitation of a vibrational mode. Since frequency is inversely proportional to 

wavelength (Equation 2.10), it follows that wavelength is also inversely proportional 

to energy. 

 



62 

 

        𝐸 = ℎ𝑣                  𝑣 =  
𝑐

𝜆
 

Equation 2.9. Planck’s relationship          Equation 2.10. Frequency wavelength 

relationship 

Variable Assignments: E = energy, h = Planck’s constant, v = frequency, c = 

speed of light, λ = wavelength. 

The IR spectrum is generally split into three different regions: far-IR (10-

400cm-1), mid-IR (400-4000cm-1), and near-IR (4000-12500cm-1). Typically, it is the 

mid-IR region that is used in biochemical analysis because fundamental transitions 

tend to occur in the mid-IR wavenumber range. Overtones are generally observed in 

the near-IR region and rotational energies are observed in the microwave region of the 

light spectrum [9]. 

 

2.2. Fourier Transform Infrared Spectroscopy 

 

There are two primary methods used to perform IR spectroscopy: dispersive 

IR spectroscopy, and Fourier Transform IR (FTIR). Dispersive spectroscopy is an 

older technique and has been largely superseded by FTIR spectroscopy. The former 

scans the sample through individual IR frequencies while the latter scans over a wide 

range of frequencies simultaneously and then uses mathematical transforms to 

interpret the data. FTIR spectroscopy holds a few advantages over dispersion IR. The 

two main advantages are known as the Fellgett’s advantage and Jacquinot’s throughput 

advantage [10]. Fellgett’s advantage states that multiplexed measurements, such as in 

FTIR spectroscopy, will observe an improvement to signal to noise ratio in comparison 

to direct measurements. The Jacquinot throughput advantage is due to the 



63 

 

improvement in beam throughput of FTIR spectrometers compared to dispersion 

spectrometers. Dispersion spectrometers require slits to produce monochromatic light 

which reduces light intensity whereas FTIR spectrometers direct polychromatic light 

through a circular aperture called a Jacquinot stop. 

Fourier transformation is a mathematical process for transforming time domain 

data to the frequency domain and vice-versa [11]. It is a powerful tool used to 

decompose a signal into the frequencies that comprise the signal. The significance of 

this in the context of IR spectroscopy is that for a beam of known bandwidth and 

discretised frequencies, all the frequencies of light before and after the beam passes 

through a sample can be known and frequencies of light lost to the sample can be 

inferred. Hence, the absorbance spectrum of the sample can be determined. Equation 

2.11 shows the mathematical expression of a Fourier transformation of a function in 

the time domain, f(t), to the frequency domain, F(ω): 

𝐹(𝜔)  = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡
∞

−∞

  

Equation 2.11. Fourier transform. 

 

2.2.1. FTIR Spectrometer Instrumentation and Modes 

2.2.1.1. The Michelson Interferometer 

FTIR spectrometers deliver the beam to the sample as waveforms known as 

interference fringes [12]. Two beams of matching frequency will interact with one 

another to varying degrees depending on their relative phase. Beams in phase with 

each other (θ = 0°, and θ = 360°) have all constituent wavelengths in sync and will 
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combine in constructive interference to produce a beam of doubled intensity. Out of 

phase beams (θ = 180°) have all constituent wavelengths out of sync and will 

destructively interfere and extinguish each other. Phases in between will boost and 

reduce intensity to varying degrees through elimination and amplification of different 

wavelengths. The reason for generating an interference pattern is because an 

uninterfered (planar) wave contains all unconvoluted frequencies from a broadband IR 

source, whereas an interference fringe contains a distribution of all frequencies 

because every wavelength of light produces a characteristic interference pattern [12], 

[13]. 

In FTIR spectroscopy, interference patterns are made possible by the 

Michelson interferometer; the salient optical component of an FTIR spectrometer. The 

Michelson interferometer consists of a fixed mirror, a linearly translatable mirror, and 

a beam splitter (Figure 2.7). Light enters the interferometer from an IR light source, 

usually a globar light source made form a Silicon Carbide rod heated to 1000-1650°C. 

50% of the light is transmitted through the non-absorbing beam splitter to the fixed 

mirror, and the remaining 50% is reflected to the moveable mirror. The moveable 

mirror is continuously moving back and forth which has the effect of extending and 

reducing the beam pathlength of the moveable mirror relative to the fixed mirror. 

When the two beams recombine at the beam splitter, the beams interact resulting in 

interference. The phase difference is dependent on the position of the moveable mirror 

relative to fixed mirror which is called the Optical Path Difference (OPD). OPD can 

be adjusted to modulate the spectral resolution of the scan. The interference pattern 

passes through the sample and onto a detector, typically a Mercury-Cadmium-

Telluride (MCT) or Deuterated Triglyceride Sulfate (DTGS) detector. Measurement 
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of the interference pattern is called an interferogram where intensity is plotted as a 

function of OPD. A Fourier transformation is performed on the interferogram to 

produce a spectrum of absorbance (or transmittance) against wavenumber (Figure 2.8). 

The large peak in the middle of the interferogram is called the ‘centre burst’ and is 

where all wavelengths constructively interfere since OPD = 0. 

 

Figure 2.7. Schematic of an IR spectrometer set-up including the Michelson 

Interferometer. 
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Figure 2.8. Graphs of the IR signal detected by an IR spectrometer before and 

after Fourier transformation (a) an interferogram as recorded by the FPA 

detector. (b) an IR energy spectrum following Fourier transformation. Image 

credit: [14]. 

 

2.2.1.2. Atmospheric Correction 

A reference scan known as the background spectrum must be acquired prior to 

acquisition of sample spectra. This is achieved by simply scanning the sample 

compartment without a sample in it. Background spectra will contain spectral 

information pertaining to the humidity in the room, material of the optical components 

in the spectrometer, air composition and anything else that may interact with the IR 

beam. Essentially, the background spectrum corrects for environmental and 

experimental set-up factors unrelated to the sample under investigation. Following a 

sample scan, the sample interferogram is divided by the background interferogram and 

Fourier transformation is carried out to obtain a sample only spectrum (see Equation 

2.3. from section 2.1.1). Shown previously in Figure 2.8.(b) is a typical background 

spectrum. 

 

(a) (b) 
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2.2.1.3. FTIR Spectrometer Sampling Modes 

FTIR spectrometers may be configured in numerous ways to facilitate the 

analysis of different sample types. The three most common FTIR spectrometer modes 

are transmission, transflectance, and internal reflectance (such as Attenuated Total 

Reflectance (ATR)) mode. Most FTIR spectrometers are usually capable of employing 

all three modes through use of interchangeable sample compartment accessory units. 

Each have been presented as simplified illustrations in Figure 2.9. 

 

Figure 2.9. Schematics of the three common FTIR spectrometer sampling 

modes: (a) transmission mode, (b) transflectance mode, and (c) attenuated 

total reflectance mode. 

Transmission mode quite simply transmits an IR beam directly through the 

sample; however, the sample usually needs to be supported by an IR transparent 

substrate such as sodium chloride (NaCl), barium fluoride (BaF2) or calcium fluoride 

(CaF2) windows. When using transflectance mode the sample is mounted upon an IR 

(a) (b) 

(c) 
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reflective substrate and the beam is transmitted through the sample, reflected, then 

transmitted back out of the sample approximately doubling the beam pathlength 

through the sample in comparison to transmittance mode [15]. Sample preparation can 

present issues when using both techniques. Solid samples sometimes need to be 

pressed into KBr pellets which can be inconsistent and incur variance in the spectra. 

Aqueous samples may dissolve NaCl windows or contain air bubbles within sample 

windows. Conversely, sample preparation is straightforward when using ATR mode 

and does not experience any of these issues. Liquids can be deposited directly onto the 

ATR crystal as can solids although pressure may need to be applied to create good 

contact between the sample and the ATR crystal [16]. 

ATR mode takes a different approach to transmission and transflectance modes 

in the sense that the IR beam does not directly pass through the sample instead making 

use of the evanescent wave phenomena observed during Total Internal Reflection 

(TIR). TIR occurs when light from travelling through a medium reaches the boundary 

of another medium at such an angle that instead of exiting the medium the light reflects 

inwards (Figure 2.10). This will occur if the light incidence is below the critical angle, 

θc, which is determined by the refractive indices of the respective media (Equation 

2.12). At the point of TIR an evanescent wave is produced that protrudes beyond the 

boundary of the substrate and into the sample, decaying exponentially to a penetration 

depth, dp. The sample attenuates the evanescent wave by absorbing energy at resonant 

frequencies. Since the evanescent wave is the only component of the beam to interact 

with the sample, the effective pathlength in ATR is the penetration depth. The substrate 

is a prism called the Internal Reflection Element (IRE) and is made from a highly 

refractive material such as germanium (Ge), silicon carbide (SiC), diamond (Di), or 
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zinc selenide (ZnSe). Each material holds advantages and disadvantages and are 

generally selected based on application. For instance, Di is resistant to chemical attack 

so would be a good choice for highly corrosive substances and Ge has a high refractive 

index so is good for analysis of thin layers due to the low penetration depth.  

Penetration depth is dependent on the angle of incidence, θi, wavelength, λ, and 

refractive indices of the IRE, n1, and of the sample, n2 (Equation 2.13). Since refractive 

index of a material is dependent on wavelength, the critical angle and penetration depth 

will vary across the mid-IR spectrum [17]. The refractive index is a complex with both 

real and imaginary components where the real component holds when there is no 

absorption, and the imaginary component holds within an absorption band and is 

directly related to the extinction coefficient of the Beer-Lambert law [18]. Thus, in 

ATR anomalous dispersion of the refractive index will occur because the refractive 

index of the sample changes rapidly in the vicinity of an absorbance maxima [19]. This 

leads to shifts in peak position and band shape in comparison to the pure transmission 

spectrum of a substance and requires correction if ATR spectra is to be directly 

compared to transmission mode spectra [20]. 
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Figure 2.10. Illustration of attenuated total reflection displaying total internal 

reflection and protrusion of an evanescent wave at a penetration depth, dp, into 

a sample. 

𝜃𝑐  =  sin−1 (
𝑛2

𝑛1
) 

Equation 2.12. Critical angle formula. TIR will occur when θi < θc. 

𝑑𝑝  =  
𝜆

2𝜋𝑛1√sin 𝜃𝑖 
2  − (

𝑛1

𝑛2
)

2
 

Equation 2.13. Evanescent wave penetration depth formula. 

Variable Assignments: λ = wavelength, n1 = refractive index of IRE, n2 = 

refractive index of sample, θi = angle of incidence. 

IRE prisms may be designed to permit either single or multiple internal 

reflections. Multiple internal reflections allow for a single beam to probe a sample with 

multiple evanescent waves, thus increasing spectral absorbance and signal to noise 

ratio. However, extending beam pathlength through the IRE increases signal lost to the 

IREs own absorptivity. The extent to which this is a problem depends on the IRE 

material. For instance, Di is relatively IR transparent in the 900-1800cm-1 wavenumber 

region and is therefore the preferred choice for biological sample analysis by many 

spectroscopists [16]. It is, of course, prohibitively expensive, and not amenable to 
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high-throughput sample analysis systems. There does not exist a high-throughput 

system for ATR-FTIR spectroscopy. This is thought to be a major roadblock between 

IR spectroscopy and clinical translation [21], [22]. Impracticality of high-throughput 

ATR is owed to the high-cost and low manufacturability of IRE materials and the need 

to reliably clean the IRE between samples [23]. 

As discussed in chapter 1, ATR holds numerous advantages over transmission 

and transflectance modes. Generally, ATR-FTIR spectroscopy is more flexible, 

quicker, and reproducible with a higher signal-to-noise ratio [16], [17], [24], [25]. 

Broadly speaking, this is because there are fewer physical effects requiring correction 

or special sample preparation precautions to be concerned about. In transmission and 

transflection mode the IR beam must transmit through the bulk sample medium. 

Therefore, sample thickness and uniformity must be controlled with respect to the 

samples molar extinction coefficient [26]. ATR only requires that the sample forms 

intimate contact with the IRE and preferably with a minimum sample thickness no 

lower than the penetration depth of the evanescent wave across the IRE surface (~3µm) 

[16], [17], [21]. Thus, the difficulty experienced using transmission and transflectance 

modes to ensure repeatable sample thickness is mitigated [27]. This essentially reduces 

sample preparation requirements and allows better control over experimental 

parameters [28]. 

Transmission spectra are susceptible to a number of artefacts such as light 

scattering [29], thin film interference patterns [30], refraction and dispersion [31] that 

require computational correction. The IR windows used to confine samples in 

transmission mode can cause dispersion and refraction of the polychromatic IR light 

which results in a wavelength dependant focal length (i.e. chromatic aberration) [31]. 
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Thin film interference patterns may arise from the need to sandwich a thin film of 

sample between thick IR window substrate can create multiple reflections within the 

film leading to optical effects such as interference fringes, oscillatory backgrounds, 

and peak shifts [30], [32]. Scattering is where light is deflected away from its trajectory 

preventing light reaching the IR detector which may be erroneously measured as 

absorbance into the sample medium. This can be a major problem for the study of non-

homogenously distributed biological materials in transmission and transflection modes 

[21], [33], [34]. For instance, resonant Mie scattering occurs when an absorbing 

particle of a similar magnitude to the incident light (e.g. 7-8µm erythrocytes) resulting 

in broad oscillations across the baseline and distortion of position and intensity of 

absorbance bands [35]. This effect arises from the dependence of Mie scattering on 

refractive index combined with a wavelength dependent variation of the refractive 

index across particle absorption resonance [36]. The resulting anomalous dispersion 

artefact thus originates from the mixing of the real (reflective) and imaginary 

(absorptive) components of the refractive index [34]. 

Anomalous dispersion of the refractive index and/or scattering effects may 

arise for a number of reasons [16], [19], [37]. In transflection mode the resonant Mie 

scattering contributions to anomalous dispersion can be further complicated by 

reflection artefacts [38]. Moreover, in transflection mode the use of low-emissivity 

slides may influence spectra through an electric-field standing wave artefact 

potentially leading to spectral differences based solely on sample thickness and not 

biomolecular content [39]. By comparison, all of the above effects are either greatly 

reduced or non-existent in ATR FTIR spectroscopy as the sample is interrogated by 

an evanescent wave confined at the interface [17], [21], [24], [25], [33], [40]. 
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2.2.2. Infrared Spectroscopy of Biofluid Samples 

Investigation of biological materials in the field of IR spectroscopy has been 

extensive [29], [41]–[43] leading to a detailed understanding of the spectral responses 

observed from complex biological samples [44], [45]. Vast amounts of information 

exist pinpointing what absorbance peaks will be observed for specific molecular 

bonds. Since molecular vibrational frequencies are unique to the molecular bond, peak 

assignments can be inferred for a sample of unknown molecular composition. Peaks 

on a spectrum from a biological sample can be roughly identified according to the four 

major biomolecule categories: proteins, carbohydrates, lipids, and nucleic acids due to 

the functional groups that are characteristic of each category [46]. For instance, 

carbonyl (C=O) groups tend to absorb around 1740cm-1 through symmetric stretching 

vibrations (C=Ovs) so the presence of a peak here would suggest high lipid content 

[7]. Similarly, a sample with proteins will present prominent peaks at 1650cm-1 and 

1550cm-1 due to vibrations of the amide functional groups (O=C-N) found in proteins. 

Consequently, these peaks are named the amide I (1650cm-1) and amide II (1550cm-1) 

bands. Figure 2.11 shows a typical biological sample spectrum with absorbance peaks 

annotated with the major biomolecule categories, molecular bonds and vibrational 

modes associated to the peaks. The region between 900-1800cm-1 is known as the 

‘fingerprint’ region as this region is particularly rich with absorbance peaks of 

biological samples and is therefore highly useful in discriminant analysis hence the 

name fingerprint. 
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Figure 2.11. Typical biological sample spectrum with significant peaks 

annotated and the major biological classes these peaks are associated with. 

Image credit: [16]. 

Biofluids are of particular interest clinically because they are generally easy to 

acquire and rich in information. A major difficulty when using IR spectroscopy for the 

analysis of biofluid samples is that fresh samples tend to have a high water content. 

Water is a strong absorber of IR light and will obscure other absorbance peaks present 

in the spectrum [23]. In transmission mode the IR beam must travel through the entire 

sample thickness and in transflection mode the effective pathlength is approximately 

twice that of transmission leading the spectra to be dominated by water absorptions. 

The sample thickness could be reduced to 5-8µm to limit pathlength, but neither 

transmission nor transflectance mode are sensitive enough to detect absorbance bands 

of interest at such limited pathlengths [23]. ATR-FTIR spectroscopy is useful for 

analysis of samples with high water content due to the limited effective pathlength of 

the evanescent wave [17], [47], [48]. This means only a thin layer of sample in 
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proximity to the IRE is interrogated limiting interference from bulk water absorption 

[23], [49]. Nevertheless, dehydrating samples prior to analysis is usually the most 

desirable approach to eliminate the water signal in order to ascertain as much 

information as possible on biomolecules of interest as spectral contributions from 

water are still apparent in the fingerprint region of aqueous biofluid samples and could 

lead to false interpretation [50]. Furthermore, water gives rise to anomalous dispersion 

effects which distort the OH band and compromise quantitative analysis in ATR mode 

[37]. ‘Digital drying’ through computational correction of aqueous sample spectra may 

emerge as a quicker approach, but molecular components that exist in low 

concentrations may not be detected at the surface until the droplet is fully dried [51]. 

This is due to the Vroman effect whereby there is a delay in high molecular weight 

proteins (e.g. Kininogen) attaching to the IRE surface while low molecular weight 

proteins (e.g. Albumin) attach quickly from the time the droplet has been deposited 

[52]. Clearly this is pertinent to the ATR spectroscopy study of serum especially since 

constituents that are in proximity to the interface are preferentially sampled [23]. 

However, drying samples may give rise to other issues. Cracked drying profiles can 

affect the contact efficiency of the sample with the IRE, and the ‘coffee-ring’ 

phenomenon can give rise to non-homogenous biomolecule distribution across the 

biofilm [53], [54]. The coffee-ring effect describes a phenomenon whereby molecules 

are distributed in concentric rings dependent on their molecular weight following 

droplet drying [52]. While not as detrimental to ATR measurements compared to 

transmission or transflectance mode because ATR acquires a spectrum averaged across 

the ATR crystal and is less susceptible to scattering [21], [55], drying patterns still 

present a risk of variation across sample measurements since it may not be possible to 
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maintain a minimum sample thickness greater than the evanescent wave penetration 

depth (~3µm) across the sampling area [17]. Well defined and controlled sample 

drying conditions are therefore an essential step of sample preparation and will be 

critical in reducing variance across clinical centres.  

 

2.3. Spectral Pre-Processing 

 

Generally, biological analysis of IR spectra is only interested in investigating 

differences in sample biochemistry, and nothing else. Before analysis it is usually 

desirable to perform signal processing steps to reduce variability and improve 

subsequent analysis. The techniques available to do this are called pre-processing 

techniques because they are steps that precede processing through data analysis such 

as generation of classification algorithms, or construction of concentration calibration 

curves. 

Some aberrations, such as spectral artefacts, cannot be accounted for by using 

a background scan [56]. Differences in samples, the environment, and the instrument 

between scans can accumulate variance and lead to misguided conclusions when, for 

instance, comparing results from different studies. A few examples are differences in 

patient lifestyle, pipetting technique, storage conditions, sample age, room 

temperature, substrate, acquisition parameters, instrument model, scattering, 

instrument age, and instrument calibration [22], [57], [58]. A plethora of pre-

processing techniques are available to reduce the influence of such confounding 

factors and can be broadly categorised as either filtering techniques, or model-based 
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techniques [59]. Filtering techniques perform transformations to remove undesired 

variations and arrive at ‘better’ spectra. Model-based techniques fit the data to a 

mathematical model. Some broad pre-processing categories are data smoothing, 

normalisation, feature selection, baseline correction, quality testing, and class 

balancing. 

 

2.3.1. Baseline Correction 

The baseline can deviate between spectra for various reasons such as light 

scattering, light throughput, or black body radiation [60]. Rubberband baseline 

correction is a common method that calculates a convex polygonal line whose vertices 

touch the troughs of the absorbance spectrum but does not cross spectrum line (Figure 

2.12) [61], [62]. This is called the convex hull and is removed to reposition the 

spectrum at a new level baseline. 

 

Figure 2.12. IR spectrum of human pooled serum before and after baseline 

correction (a) raw IR (b) IR spectrum after rubber band baseline correction. 
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2.3.2. Normalisation 

Normalisation is commonly used to eliminate differences in sample thickness, 

light throughput, or environmental conditions. It is a process that scales all spectra 

within a reference frame. Three simple normalisation methods are min-max 

normalisation, amide I normalisation, and vector normalisation [59], [63]–[65]. Min-

max normalisation finds the minimum and maximum intensity value across the dataset 

then subtracts the minimum value from every datapoint and divides this value by the 

range (Equation 2.14). This sets the minimum value to zero and scales the entire 

dataset between zero and the maximum. Amide I normalisation divides every value by 

the amide I intensity since this is generally the largest value in the dataset (Equation 

2.15). This sets the value of the amide I peak to one and all other datapoints are a ratio 

of this value. As an alternative, vector normalisation is performed by calculating the 

vector length, N, by finding the square root of the sum of all square values in the 

dataset. Each of the raw data variables are then divided by the vector length. All spectra 

are thus scaled to each other by letting the sum of squared standard deviation equal 

one (Equation 2.16). The entire wavenumber range is normalised in vector 

normalisation and min-max normalisation. In amide I normalisation the amide 1 peak 

will always be the same and features at other wavenumbers may be made clearer. There 

are therefore different situations each approach is more appropriate for. For instance, 

vector normalisation is the most widely used since it scales the whole wavenumber 

region, preventing exaggeration of features across the spectrum. Conversely, if 

variation is expected to occur at another place in the spectrum from the amide I peak 

it may make sense to normalise around the amide I peak so that variations elsewhere 

in the spectra are more easily observed. Min-max normalisation guarantees all features 
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will have the same scale but does not handle outliers well as outliers will dictate the 

bounds between which the data is normalized [65].  

𝑆 =  
(𝑆𝑟  − 𝑆𝑚𝑖𝑛) 

(𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)
 

Equation 2.14. Min-max normalisation equation.  

𝑆 =  
𝑆𝑟

𝑆𝐴𝑚𝑖𝑑𝑒𝐼
 

Equation 2.15.  Amide I normalisation equation.  

𝑁 =  √𝑆1
2 + 𝑆2

2+. . . +𝑆𝑛
2  𝑆 =  

𝑆𝑟

𝑁
 

Equation 2.16. Vector length and vector normalisation equations 

Variable Assignments: S = normalised spectrum, Sr = Raw spectrum, Smin = 

minimum value of entire dataset, Smax = maximum value of entire dataset, 

SamideI = average value at amide I peak, N = the vector length. 

Objects with a similar size magnitude to the wavelength of mid-IR light (2.5-

25µm) within the sample under investigation, such as cellular structures, will result in 

light scattering that will distort the absorbance spectrum [58], [59]. This resonant Mie 

scattering typically presents as a large curved band (Figure 2.13) [36], [66]. As 

mentioned previously, other forms of scattering may arise, for example from uneven 

surfaces that can redirect light such that the IR light does not reach the detector. These 

artefacts can be removed by Extended Multiplicative Signal Correction (EMSC) which 

effectively baseline corrects and normalises the data [38]. EMSC is a model-based 

technique aimed at reducing the multiplicative (amplitude) and additive (offset) 

variations between spectra such as variations caused by differences in sample 

pathlength. Raw spectra are fitted to a reference spectrum, relying on the fact that 

overall shape of IR spectra of biological samples is generally consistent [67]. 
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Figure 2.13. FTIR image spectrum of prostate tissue before and after pre-

processing by EMSC (a) raw spectrum where resonant Mie scattering is 

evident (b) corrected spectrum. Adapted from: [29] 

 

2.3.3. Feature Selection 

Feature selection simply aims to focus in on data that are of importance in 

analysis. A single IR spectrum is a complicated dataset that typically includes 

approximately 3600 datapoints (400-4000cm-1 wavenumber range at 1cm-1 

resolution). For a 100 patient sample set with three biological sample repetitions and 

three instrument repetitions there will be a total of 3.24 million datapoints. If the 

analysis is performed using advanced computational techniques such as machine 

learning, it could take days to compute all the variables, many of which will not add 

value to the analysis. Many spectroscopists therefore decide to cut the wavenumber 
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range between 900-1800cm-1 to capture only the fingerprint region of biological 

samples, or they might choose the reduce the dataset further by cutting more precise 

wavenumber ranges if the peaks of interest are already known prior to analysis. 

Another technique for reducing the dataset is by data binning where absorbance 

intensities over a given wavenumber interval, called a binning window, are averaged 

together thereby preserving the wavenumber range, but reducing the resolution. For 

instance, data binning a spectrum range of 400-4000cm-1 with a binning window of 

4cm-1 will reduce the dataset from 3600 datapoints to 900 datapoints. 

 

2.4. Data Analysis Techniques 

 

A single serum sample may contain many thousands of biomolecule species 

and as a result the IR spectrum is complex. Analysis of such data may necessitate 

anything from simple univariate peak intensity analysis to advanced multivariate 

statistical approaches. 

 

2.4.1. Univariate Analysis 

Percentage Relative Standard Deviation (RSD%) and Signal-to-Noise Ratio 

(SNR) are two widely used metrics to assess spectral quality. There are many ways to 

calculate SNR, but the most common method used in FTIR spectroscopy is to take the 

maximum absorbance intensity (e.g., amide I peak) and divide it by the standard 

deviation of a portion of the baseline to represent noise (Equation 2.17) [53], [59], 
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[68]–[70]. Figure 2.14 shows the spectral regions that are typically used to represent 

the signal and noise portions of the SNR equation. RSD% is calculated by dividing the 

standard deviation of a dataset by the mean of the dataset and multiplying the result by 

100 (Equation 2.18). This metric is used to express the precision and repeatability of 

spectral data gathering regimes [71]. The lower the RSD% the less dispersed the 

measurements of a dataset are relative to the mean. 

𝑆𝑁𝑅 =  
𝑥𝑠

𝜎𝑛
 

Equation 2.17. Signal to Noise Ratio Equation 

𝑅𝑆𝐷% =  
𝜎

�̅�
 𝑥 100 

Equation 2.18. Relative Standard Deviation Equation 

Variable Assignments: 𝑥𝑠 = signal at selected peak, 𝜎𝑛 = standard deviation 

of selected noise region, 𝜎 = standard deviation, �̅� = mean. 

 

Figure 2.14. Typical biological IR spectrum with areas commonly used to 

represent regions of noise (yellow) and to represent signal (blue) in SNR 

equations. 
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 The Limit of Detection (LOD) and Limit of Quantification (LOQ) are defined 

as the lowest concentration of a measurand that can be reliably detected at and 

quantified at by an analytical procedure [72]. Both are specific to the molecule under 

investigation but can nevertheless serve as an impartial comparator of the performance 

characteristics of techniques [73]. LOD and LOQ are commonly determined through 

calibration curves using Equations 2.19 and 2.20 below [74]: 

𝐿𝑂𝐷 =  
3𝑆𝑎

𝑏⁄  

Equation 2.19. Limit of Detection equation. 

𝐿𝑂𝑄 =  
10𝑆𝑎

𝑏⁄  

Equation 2.20. Limit of Quantification equation. 

Variable Assignments: 𝑆𝑎 = The standard deviation of the response and 𝑏 = 

The gradient of the regression line. 

 

2.4.2. Multivariate Analysis and Machine Learning 

Big data sets almost always need to be reduced to make sense of them. Feature 

selection techniques described earlier and feature extraction techniques both aim to 

reduce the dimensionality of a dataset to make interpretation easier. In contrast to 

feature selection techniques where portions of the data are deemed superfluous and 

discarded, feature extraction techniques aim to convert large, complicated datasets into 

smaller, interpretable datasets whilst utilising all the available information [75]. Given 

the diverse nature of IR absorbance spectra, it is often appropriate to employ such 

multivariate analysis approaches [22]. Principal Component Analysis (PCA) is a 

dimension reducing technique and the most common multivariate technique used in 
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the field of IR spectroscopy as it provides a robust method to reduce the data into a 

more digestible visualization [57]. Similarly, Partial Least Squares (PLS) is also a data 

reduction technique that helps identify where the variance lies in a dataset [76]. The 

primary difference is PCA does not require knowledge of the sample classes for 

analysis whereas PLS does. This is because PCA is an unsupervised technique and 

PLS is a supervised technique. Supervised techniques are dependent on the labelling 

of the datasets (e.g. cancer vs non-cancer) while unsupervised techniques are not [77]. 

By themselves both PCA and PLS are exploratory techniques used to visualise data 

but can be extended for regression (e.g., PLSR) or discriminant analysis (e.g., PLS-

DA) [57], [76]. 

Data reduction techniques can be used to develop classification algorithms. 

This is especially useful for disease diagnostics as models can be trained to classify 

patient samples into disease or non-disease groups [46], [61]. Training algorithms to 

recognise patterns in data is referred to as machine learning. There is no consensus on 

which multivariate approach is best to build FTIR spectral classification models with 

[22], but two widely used machine learning techniques for IR spectroscopic clinical 

studies are PLS-DA and Random Forest (RF) [78]–[85]. How to perform PCA, PLS, 

and RF methods will be described here. 

 

2.4.2.1. Principal Component Analysis 

Principal Component Analysis (PCA) is a quick, intuitive, unbiased, and 

reliable exploratory technique frequently used to identify clustering patterns, outliers, 

and trends during the initial assessment of complex spectral data [57], [61]. To 



85 

 

distinguish variance in a spectral dataset the correlation between each spectrum at each 

specific wavenumber would need to be observed. The dimensionality of spectral 

datasets is too large to make this possible, thus the dimensionality must be reduced. 

PCA achieves this by finding linear combinations, called Principal Components (PCs), 

which are weighted sums derived from the initial variables (i.e., absorbencies at each 

wavenumber) [86]. In the context of spectroscopy, these PCs are not related to specific 

spectral bands but instead relate to a collection of bands each with a different variance, 

or weighting, contribution to the PC. 

In PCA, the data is restructured along axes that best describes the variance in 

correlation to the wavenumbers. A rigid rotation of the original axes is taken such that 

there is maximum variation across the first new axis (PC1) [87]. The second axis (PC2) 

is the direction of maximum residual variance orthogonal to the first axis and every 

subsequent axis is the direction of greatest residual variance orthogonal to the last [88]. 

Consequently, PCs are uncorrelated and successive PCs explain less variance than the 

last. To help visualise a PCA transformation, Figure 2.15 shows a simple 2D 

scatterplot and where a subsequent PCA would transform the data to. 
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Figure 2.15.(a) Simple two variable scatter plot with PC 1 and 2 annotated 

indicating the directions in the data where the first and second greatest amount 

of variance lies, respectively. (b) the same data readjusted to resemble the 

dataset after PCA transformation indicating where the greatest differences in 

the dataset lie. 

All sample spectra collected can be represented as a data matrix where X 

represents all observations (absorbencies at each wavenumber) and Y represents all 

dependent variables (disease class, or sample concentrations, etc.) (Figure 2.16). 

 

Figure 2.16. Large IR spectral datasets can be separated into the dependant 

variable matrix Y and the data matrix X. 

The focus is on reducing the dimensionality of the data matrix, X. X is a n x p 

matrix where n is the number of samples and p is the number of dimensions (i.e., 

wavenumbers). First, the data matrix is usually mean-centred so that all absorbance 

(a) (b) 
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values are expressed as a deviation from their mean since PCs are only concerned with 

the variation in the data [87]. The mean of each column in X is calculated and 

subtracted from each value in the column setting the mean of each column to zero and 

shifting the centre of X to the coordinate system origin [86]. If large differences in 

variance of the initial variables does not reflect relative importance (i.e., some 

variables are expected to be dispersed across a broader range than others) then the data 

matrix could be standardized since PCA will be sensitive to this [89], [90]. However, 

this should only be done in exceptional circumstances so will not be discussed further 

[91]. The covariance matrix, S, is then found using the data matrix, X, its  transpose, 

XT, and the number of samples, n [89]. 

Variance is a measure of the spread of data within a dataset, but only applies 

to one dimension. Covariance is a measure of how two dimensions vary with respect 

to each other. More specifically, it is a measure of linearity between two dimensions 

whereby large positive covariance indicates well correlated dimensions, large negative 

covariance indicates inverse correlation, and zero covariance indicates uncorrelated 

dimensions [92]. The covariance matrix captures the covariance between all possible 

pairs of dimensions in the original dataset and is fundamental to many multivariate 

analysis techniques [26], [93].  

Variance is extracted from the original dataset through orthogonal linear 

transformation of the intercorrelated variables to a new uncorrelated set of variables 

(PC scores) ranked in decreasing order of explained variance [76]. The covariance 

matrix produced from the original data is decomposed into a score matrix of scaling 

coefficients (eigenvalues), and a loadings matrix (PCs, also called eigenvectors) [57]. 

An eigenvector is a linear view of directions the original data is dispersed across in 
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multidimensional space. Eigenvalues are coefficients of the eigenvectors and are an 

exact measure of how much variance is explained by the linear combinations defined 

by the corresponding eigenvector [94]. Thus, PCs can be ranked according to the 

amount of variance explained. 

Since PCs are uncorrelated, the PCs that account for the least amount of 

variance in the dataset may be discarded. This is how the dimensionality of the dataset 

is reduced. Ideally, PCs representing the least amount of variance would only contain 

information related to spectral noise or any other unwanted experimental signal, 

although this is highly dependent on the study [86]. The number of PCs kept can be 

determined either by setting a threshold for the total variance captured (e.g. >90%) 

[90], using a scree plot [95], or by cross-validation based on mean square error of 

spectrum reconstruction [61], [96]. 

The last step in PCA is to recast the original data onto the PCs that have been 

derived. The variance within the dataset can be visualised from either the sample 

scatter plots, or wavenumber loadings plots (Figure 2.17) [57]. The scores matrix 

represents variance in the sample direction of the original data and is used to deduce 

relationships between samples, with clustering inferring sample homogeneity and 

separation inferring sample heterogeneity. The loadings matrix represents variance in 

the wavenumber direction and is used to associate distinct spectral markers to the 

relationships observed in the PC scores plot. 
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Figure 2.17. PCA transformation inputs and outputs. PC scores of different 

PC directions can be plotted against one another to observe if groups can be 

well discriminated. Loading plots of individual PCs indicate the degree to 

which specific wavenumbers contribute variance in the PC. 

PCA is unbiased due to its unsupervised nature as no information pertaining to 

data class is used to construct the linear combinations. Thus, resultant scores and 

loadings represent true variance within the dataset. However, PCA only identifies total 

dataset variance and does not discriminate within-group from between-group variance 

[97]. Consequently, class separation can only be elucidated if within-class variance is 

less than between-class variance. This is to say that misleading class separation can 

appear in a PCA scores plot if variance is introduce through sample preparation issues, 

inappropriate data processing, or experimental bias [85]. 

 

2.4.2.2. Partial Least Squares Regression 

Partial Least Squares (PLS) is similar to PCA in that wavenumbers are used to 

construct linear combinations, except in PLS both the data matrix and the class matrix 
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are decomposed [88]. PLS is therefore a supervised method as opposed to 

unsupervised. It is an iterative process where latent structures, so called factors, are 

extracted one at a time [85]. Factors, equivalent to PCs, are extracted by finding a 

linear combination of predictors that will have maximal covariance with a linear 

combination of the response [97]. Thus, PLS models attempt to identify factors which 

contribute systematic majority of variance in predictors versus associated response, 

enabling regression analysis [98]. A main advantage of PLS is that it can handle noisy 

data with many collinear, or even missing, variables and is able to model numerous 

response variables simultaneously [99], [100].  

PLS is not a single technique but encapsulates a suite of closely related 

techniques [85], [100]–[104]. Initially, both observation and response matrices are 

typically mean centred. The original variables of each matrix are transformed into new 

latent variables via linear orthogonal transformations capturing maximum variance in 

the data matrix, X, and maximum variance in the response variables, Y [76]. The latent 

structures (latent variable scores and loadings) are then decomposed such that the 

latent variable X scores share maximal covariance with the Y latent variable scores 

[85]. This process is repeated iteratively whereby at each iteration the linear 

combination (i.e., factor, or principal component) of maximal covariance is extracted. 

Doing so deflates the X and Y matrices by subtracting the rank-one principal 

component [101]. The residuals can then be used in the next iteration with this process 

continuing for as many components as is desired [104]. Ultimately, a linear 

relationship, so called PLS Regression (PLSR), is formed whereby the latent variables 

of X serve as predictors of the Y latent variables which can be used to estimate original 

unknown Y response variables [85], [103]. When Y matrix constituents are categorical 
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response variables, (e.g., disease states), a discriminant model can be derived from the 

PLSR method [97], [105]. In this case, class membership must be coded in a class 

membership matrix, Y, as a numerical representation of response categories [101]. 

This is called PLS Discriminant Analysis (PLS-DA). 

PLS models have a tendency to over-fit to data with the ability to create class 

separations even with random input data [88]. Model accuracy and robustness must 

therefore be validated. This can be achieved by partitioning the sample set into a subset 

used to build models (training set) and a subset reserved purely to test the model’s 

predictive capabilities against (test set) [85]. Use of a test and training set is the 

standard across many machine learning methods. In many cases it may not be possible 

to commit portions of the data to the test set due to sample size limitations. To address 

this, resampling procedures known as cross-validation are commonly used. There are 

multiple ways to implement cross-validation regimes, such as the leave-one-out, leave-

n-out, or Monte Carlo cross-validation methods [85], [106]. Essentially a predefined 

number of models are constructed in parallel each using different combinations of 

samples within the training and test sets enabling all available sample data to be used 

both for training and testing predictive models [98], [100]. Prediction results across all 

model repetitions can then be averaged to give a single estimate of model performance. 

In PLSR, the average and standard deviation of the Root Mean Square Error or the 

Validation set (RMSEV) and r2 values are used to evaluate model performance. Cross-

validation is the standard approach for PLSR analysis, and widely used across many 

machine learning and multivariate techniques [100]. Cross-validation is also used to 

determine the optimum number of components to be used by PLS models [103]. This 

is achieved by selecting the minimum number of components beyond which the 
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combined models’ predictive capabilities no longer improve. In particular, the number 

of components which minimise average RMSEV is typically selected [98]. 

 

2.4.2.3. Random Forest 

Random Forest is a supervised machine learning method and is possibly the 

most widely used classification tool in chemometrics [107]. Unlike PCA and PLS, 

Random Forest (RF) does not decompose the data into PCs. Instead, the method relies 

on an ensemble of decision trees [108]. A decision tree is a simple concept that splits 

the data into groups based on a series of ‘yes/no’ questions about features of the data. 

Each decision in the tree is called a node, and the final node at the bottom of the 

decision tree is called a leaf node where a prediction is ultimately made about the 

sample’s classification (Figure 2.18). Ideally, at each node the data splits into subsets 

of data that are as different to each other as possible. As with PLS, models are 

constructed using a training set, and how well the decision tree operates is evaluated 

against a test set. If a new sample from the test set is incorrectly classified by the 

decision tree, one reason could be because the model was too good at recognising the 

features of the training data. This is called overfitting because the decision tree has 

been fitted too closely to the training dataset. This is a common problem for classic 

decision trees [109]. 
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Figure 2.18. Simple decision tree model used to classify components of an 

input dataset. 

RF overcomes overfitting issues by generating numerous trees (hence ‘forest’) 

where the features of interest at each node are selected from random feature subsets 

and the data used to train the trees are selected at random from the training set (hence 

‘random’) [108], [109]. Each tree ‘votes’ on what the classification of a sample is and 

the classification with the most votes is assigned to the sample (Figure 2.19). The 

method feeds samples that were not used in the construction of the decision trees into 

each tree to test the robustness of the system. 

 

Figure 2.19. RF creates numerous decision trees that vote on an input sample’s 

classification to determine what is most likely to be the correct classification. 

Decision trees determine how to split the features at each node using the Gini 

index [110]. The Gini index measures the impurity of features with respect to class in 

terms of the quality of data splits at the parent node [111]. Gini impurity is a measure 

of the probability that a node has incorrectly classified a feature and can be calculated 
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rather simply using the fraction of samples split into each class at each parent node 

(Equation 2.21) [109], [111], [112]. Some features will incur lower Gini impurity than 

others and is consequently deemed more important for classifying data correctly. Each 

time a feature is used to make a split at a node the two children nodes will have a Gini 

impurity value lower than the parent node [109]. The extent to which a specific feature 

decreases Gini impurity across the depth of a decision tree can be calculated as the 

sum of Gini index reduction at every node where the feature was used to form a split 

[113]. Thus, the relative importance of a features with respect to their ability correctly 

classify samples can be estimated. Relative importance of features (e.g., 

wavenumbers) can then be presented graphically to give a deeper insight into the 

attributes responsible for classification (Figure 2.20). 

𝐼𝐺(𝑛)  =  ∑ 𝑃𝑖(1 −  𝑃𝑖)

𝑗

𝑖=1

 

Equation 2.21. Gini impurity equation. 

Variable assignment: IG = Gini impurity, n = node number, Pi = relative 

frequency of class, i, in node, n, j = number of classes. 

 
Figure 2.20. Gini importance plot indicating which wavenumbers of the IR 

spectrum were most important for classifying data in a RF classifier. 
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2.4.2.4.  Class Balancing 

In situations where there is an unequal amount of classes within a study sample 

set, the dataset is said to be imbalanced. This can cause problems when using 

classification algorithms because the algorithm will mainly focus on learning patterns 

associated with the majority class and will tend to underperform when trying to 

recognise the minority class [114]. Thus, classes need to be balanced to optimise 

classifier model performance.  One approach is to under-sample the majority class by 

subtracting majority class samples from the training dataset, but this is an unfortunate 

waste of valuable data [115]. Conversely, one could over-sample the minority class by 

duplicating samples within the training dataset, but this could lead to overfitting of the 

classification model to specific minority class sample inputs [116]. Synthetic Minority 

Oversampling Technique (SMOTe) is a common pre-processing technique designed 

to reduce the class imbalance in a dataset by creating new synthetic minority class 

samples from the original sample set [117]. SMOTe selects a minority class sample 

and locates a predefined amount, usually 5, of the samples randomly chosen k-nearest 

minority neighbours in feature space and connects line segments to each feature vector 

(i.e., sample). The difference between a chosen feature vector and a number 

(depending on how much over-sampling is needed) of randomly selected nearest 

neighbours is found and multiplied by a random number between 0 and 1. This is then 

added to the chosen feature vector creating a new point randomly positioned along the 

line segments adjoining features. Hence, a new synthetic sample is randomly 

interpolated from a combination of nearest minority neighbours in feature space [115], 
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[118]. Figure 2.21 shows an illustration of samples in feature space and where 

synthetic samples may be generated using SMOTe. 

 

Figure 2.21. Illustration of SMOTe. (a) raw sample set in feature space. (b) 

lines drawn between nearest neighbours of minority class in feature space 

where new synthetic samples are created. (c) Balanced dataset. Image credit: 

[119] 

 

2.5. Fabrication and Prototyping Techniques 

 

Effective design often necessitates rigorous preliminary testing using bespoke 

parts and prototypes before finalising a working product. The viability of scaled 

production should always be at the forefront of decisions. The later in the product 

design and development cycle a problem is identified, the more expensive it can 

become to address the issue [120]. If possible, the processes and designs used in 

development should closely resemble the designs and fabrication processes of the final 

product(s). However, there are industries where this may not be possible (e.g., 

microelectronics, high-performance optics, heavy machinery) and design verification 

may need to be carried out in alternative ways [121], [122]. A combination of 

manufacturing processes is usually required to produce multicomponent devices. The 

(a) (b) (c) 
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tooling costs to set-up large scale manufacturing processes can be prohibitive and are 

unwise to invest in if designs have not been validated through prototyping. Techniques 

employed within this project for the fabrication of prototype models and finalised 

designs are described here.  

 

2.5.1. 3D Printing 

3D printing is an excellent low-cost method to rapidly produce designs for 

testing before moving to scaled manufacturing techniques such as injection moulding 

[123]. There are numerous 3D printing methods available each with relative 

advantages and disadvantages [124]. A common method is Fused Filament Fabrication 

(FFF) [125], [126]. Thermoplastic filament, usually Polylactic Acid (PLA) or 

Acrylonitrile Butadiene Styrene (ABS), is extruded through a heated circular die. The 

plastic enters the extruder cold, is liquefied using heat, and rapidly cools upon exiting 

the die with the help of fans. As the plastic is cooling, the nozzle moves across a build 

following a predefined pattern in a 2D plane. The patterns are created using Computer 

Aided Design (CAD) files. The filament is continually pushed through during printing 

to give a constant flow until the 2D pattern is complete. The build plate then moves 

down (z-direction relative to the print head) by the width of the extruded plastic. 

Another 2D layer is then printed on top and the heat of the plastic exiting the extruder 

fuses the layers together. The printer repeatedly adds 2D layers on top of each other in 

this manner until the 3D CAD model is complete. 3D printing techniques are referred 

to as additive manufacturing because of how material is successively added in layers 

to build a complete shape. Figure 2.22 shows a schematic of FFF in practice: 
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Figure 2.22. Schematic of an FFF 3D printer. Filament is extruded through a 

heated nozzle while a X-Y translational printer head dispenses filament in a 

pre-defined pattern. Image credit: [127] 

Selective Laser Sintering (SLS) is another 3D printing method that holds some 

similarities to FFF, but the raw material is provided as a powder instead of a filament 

meaning a more diverse range of materials, such as metals or ceramics, may be used 

for fabrication [128]. A laser is directed at a bed of powder following the successive 

2D planes of the 3D model (Figure 2.23). The laser is only powerful enough to sinter 

the powder without inducing melting. Once each 2D pattern is completed, the powder 

bed moves down and fresh powder is laid on top of the build. FFF and SLS are two of 

the technique used within this project, but there are many other additive manufacturing 

techniques, such as Stereolithography (SLA), Laminated Object Manufacturing 

(LOM), or Laser Engineered Net Shaping (LENS), that maybe more suitable rapid 

prototyping approaches depending on the requirements [129]. 
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Figure 2.23. Schematic of an DMLS 3D printer. A laser is directed at raw 

material in a pre-defined pattern. Raw material is repeatedly applied on top of 

the structure until the print is complete. (1) powder metal, (2) powder bed build 

plate, (3) powder roller, (4) laser source. Image credit: [130] 

 

2.5.2.  Injection Moulding 

Injection moulding is a simple yet effective high capacity production method 

capable of forming complex shapes from a diverse range of materials [131], [132]. 

Thermoplastics are the most common material used, but metals and glasses may be 

processed through injection moulding too [133]. Raw material in the form of pellets is 

fed through a hopper into a heated chamber and melted. The molten material is then 

injected at high pressure into a mould the shape of the final product (Figure 2.24). 

Depending on the feature geometry and process it may be difficult to fabricate small 

features (e.g., <1mm in size) due to the likelihood of trapping small air pockets which 

will weaken the part [134]. This may require refinement of the injection moulding 
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process, or more  sophisticated machinery capable of producing micron or submicron 

scale features [135]. 

 

Figure 2.24. Schematic of an injection moulding machine. Raw material is 

melted in a screw barrel and injected into the mould cavity at high pressure. 

Image credit: [136] 

The process incurs a low overhead cost, but high initial set-up cost [137]. The 

tools required to injection mould components are bespoke and expensive, but once this 

has been accounted for the operational costs and raw materials are comparatively low 

due to the high manufacturing output and low cost of materials. 

 

2.5.3. Silicon Microfabrication 

Microfabrication encapsulates a suite of techniques aimed at fabricating 

structures on the micron scale. Silicon is often central to the processes due to the 

unique crystallographic properties and abundance of the material. Silicon etching 

specifically is of huge importance to the semiconductor and microelectronics industry. 
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Conceptually, silicon etching is quite straight forward; silicon planes are selectively 

removed using etchant chemicals to create well defined geometries. The underlying 

mechanisms are complex, but well characterised in the literature [138]–[142]. Silicon 

has a crystal lattice structure and each crystal plane has different relative properties. A 

system known as Miller indices are used to denote planes within a crystal structure 

(Figure 2.25). It is important to know that silicon planes with different miller indices 

possess different characteristics. Miller indices of crystal planes are denoted with plain 

and curly brackets (i.e., ‘( )’, ‘{ }’) and the vector directions perpendicular to these 

planes are denoted with square or pointed brackets (i.e., ‘[ ]’, ‘< >’) . The former is 

always given when selecting a Si wafer because it indicates the crystal plane of the 

major exposed faces of the wafer. 

 

Figure 2.25. Illustration of Miller indices. (a) the three most commonly used 

Miller indices, (111), (110), and (100), and what they look like in 3D space. 

(b) a diagram of a Silicon wafer and the how Miller indices correctly annotated 

for a (100) orientated Silicon wafer. Image credit: [143], [144] 

Different crystal planes intercept the Si crystal lattice in different ways which 

impacts the surface energy of the exposed faces [145]. For instance, Si(100) has a 

higher surface energy than Si(111), thus Si(100) is more vulnerable to chemical attack 

(a) 
(b) 
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than Si(111). This anisotropic property allows material to be selectively removed from 

a Si wafer. Various techniques have been developed to do this, the most common of 

which is chemical wet etching by potassium hydroxide (KOH). The KOH rapidly 

erodes specific planes of the Si crystalline structure, most notably the (100) and (110) 

directions, while having almost zero effect on the (111) crystal plane direction (etch 

rate ratio approximately E{100}:E{110}:E{111} = 400:600:1 [146]). 

In the present studies, an anisotropic KOH etch was used to make v-shaped 

groove patterns on a silicon substrate. Figure 2.26 presents a flow diagram detailing 

each step of this process. First, an Oxide layer was thermally grown on the surface of 

the silicon wafers using the wet oxidation approach. A silicon nitride layer was applied 

using Low Pressure Chemical Vapour Deposition (LPCVD) until a layer of 

approximately 2000Å was formed. Wafers were then placed in a plasma asher to 

dehydrate the surface. It is essential that during the subsequent steps there is good 

adhesion between the photoresist layer and the wafer. To help this, 

Hexamethyldisilazane (HMDS) is applied via the vapour prime process. The HMDS 

coating promotes photoresist wettability by bonding surface silanol groups and thereby 

increasing the hydrophobicity of the silicon’s surface and removing polar molecules 

(e.g. water) which would otherwise occupy space the photoresist could adhere [147]. 

Photoresist was applied through the spin coating technique which provides a more 

uniform spread of photoresist across the wafer in comparison to spray coating. 

Improved uniformity helps avoid random errors from occurring during subsequent 

processes. The wafer was then aligned under a custom-built Chromium photomask 

(Compugraphics, England) taking care to align perfectly with the flat of the silicon 

wafer as miniscule deviations can result in large defects arising during the KOH etch 
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stage. The first patterning stages began when photoresist was exposed to UV light 

directed through the photomask. UV exposure weakens crosslinks in the photoresist 

which can then be selectively cleaned away using developer solution to reveal the 

underlying silicon nitride hard mask. The expose silicon nitride was then etched using 

a plasma etch method to expose the underlying silicon oxide. The remaining 

photoresist was then exposed by once again using a plasma asher. The exposed silicon 

dioxide was etched away using hydrofluoric acid, the wafer was rinsed, and the silicon 

was finally ready for the anisotropic KOH etch. The wafers are submerged in 33% 

KOH solution for 80°C for 150 minutes. Minor alterations to any of these three 

parameters can have large implications for the final product. To finish the process, the 

remaining nitride mask and oxide layers are stripped away in the same manner as 

before, the wafers are thoroughly rinsed and a final photoresist layer is applied before 

the wafers are diced into the individual 33x6mm chips using a diamond tipped saw. 

This final photoresist layer prevents debris from the dicing process and dust from 

shipping getting in the grooves before the slides can be used. SIREs are stored within 

protective packaging for as long as possible at this point as this is the most reliable 

way to ensure no contamination occurs upon leaving the cleanroom. When it is time 

to use the SIREs the protective photoresist layer must be removed by placing the slides 

into acetone and leaving in an ultrasonic bath for five minutes. Slides are then rapidly 

transferred to Isopropyl Alcohol (IPA), then rinsed with deionized water before drying 

with Nitrogen gas. 
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Figure 2.26. Flowchart diagram of the anisotropic wet etching process used 

to fabricate the optically active areas of the SIREs (modified from Smith et. al. 

[148]). 

Etch quality was assessed using a Scanning Electron Microscope (SEM) 

(TESCAN VEGA3, TESCAN) and reflectance spectrometer (Nanospec 3000, 

Nanometrics Inc.). All silicon microfabrication, metrology, and imaging were carried 

out using the cleanroom facilities at the Edinburgh University Scottish 

Microelectronics Centre (SMC). 

The parameters of all microfabrication procedures, such as etchant 

concentration, temperature and etch duration, of microfabrication process are tightly 

controlled and slight adjustments can have a big impact on the final product. 

Furthermore, these procedures are conducted in highly controlled environments called 

‘cleanrooms’ which require specialised personnel. Miniscule particles can have 
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devastating effects on the fabrication process. For instance, a human hair could destroy 

micron scale features across the entire length of the hair. The already high cost of the 

specialised equipment, reagents, and materials required for microfabrication is 

therefore compounded by high quality control and design costs. Consequently, 

microfabrication techniques are often not suitable for early stage development. 

Fortunately, microfabrication is a highly scalable technique where costs are minimised 

upon high volume production. This is owed to the development of high capacity 

equipment and widespread establishment of large microfabrication foundries used to 

produce microelectronics and semiconductors. 
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3.1. Introduction 

 

ATR-FTIR has irrefutable potential as a powerful IVD device yet still eludes 

the clinical laboratory [1]–[3]. One of the main stumbling blocks for the translation of 

ATR-FTIR spectroscopy to the clinic is thought to be a single point of analysis which 

prohibits high-throughput clinical workflow [4], [5]. ATR-FTIR does not require 

expensive reagents or skilled operators, but samples must be individually dried upon 

the IRE, analysed, then removed before another sample may be processed. This is a 

time-limiting factor, compounded by the customary requirement to perform technical 

and sample replicates for accuracy, inherently prohibiting the instalment of a batched 

processing system for high-throughput sample analysis. The IRE is the crux of the 

issue, as current mainstream designs have highly expensive fixed components. There 

are two features which must be developed to achieve high-throughput clinical ATR-

FTIR spectroscopy: 

1. Low-cost and readily interchangeable IREs capable of interrogating 

biological samples. 

2. An accessory module for interfacing these interchangeable IREs to an 

FTIR spectrometer platform. 

For clinical applications, a specific spectrometer model should be used as it 

will be difficult to validate diagnostic tests if different spectrometers that acquire 

spectra with varying degrees of spectral quality are used. Regulatory approval would 

therefore be easier to obtain on a dedicated spectrometer make and model. However, 

for non-clinical applications users may benefit from the flexibility offered by a 
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universal accessory module capable of interfacing any spectrometer platform. The IRE 

is the salient component of an ATR-FTIR spectrometer, differentiating it from 

alternative FTIR modes and is the site at which a sample is interrogated by the IR 

beam. It is made from a material with high refractive index and excellent transmissivity 

of the IR spectrum. Di and Ge among several other materials adequately fit this profile, 

but usually these materials cannot be manufactured at the low costs conducive to a 

high-throughput ATR workflow. Si is widely avoided due to its high absorptivity of 

IR light in the spectral ‘fingerprint’ region critical for biological sample analysis [6]. 

Silicon substrates used in transflection and transmission FTIR modes bypass this 

limitation by having small pathlengths through the silicon crystal. Emulating a short 

IR pathlength through a low-cost silicon IRE therefore presents a promising option to 

resolve issues currently inhibiting high-throughput ATR. Micromachined single-

bounce silicon IREs that reduce signal loss via Si lattice absorption have previously 

been demonstrated [7]. However, the question remains what the optimal silicon crystal 

thickness and geometry would be for biological sample analysis. Cheaper fabrication 

and greater material availability of silicon permits more elaborate IRE design, enabling 

multiple optically active surfaces to be etched into a single unit for sample replicates. 

Presented are the design decisions, development pathway, and experimentation of a 

low-cost disposable SIRE sample slide. The development of a custom ATR accessory 

module for semi-automated indexing of sample slides across the IR aperture of FTIR 

spectrometers is also described. Feasibility of scaled production of sample slides and 

potential fabrication issues is discussed. 
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3.2. Materials and Methods 

 

3.2.1. Silicon Internal Reflection Element Design Experimentation 

The SIRE sample slide is designed to host four optically active regions: three 

for sample triplicates and one for a background scan. Background scans serve to 

automatically remove IR signal of the environment from sample scans. Sample and 

background sites are positioned at 9mm intervals to match the pitch of multi-channel 

pipettes aiding future integration into high-throughput workflows. Optically active 

areas comprise a 5x5mm arrays of v-shaped grooves aligned parallel to the incident 

beam allowing the beam to enter through numerous points then exit after internal 

reflection and avoid multiple internal reflections. The reader is referred to chapter 2 

section 2.5.3 for particulars on how v-grooves were etched into the silicon. 

To investigate the effects of silicon thickness on signal extinction, three 

different thicknesses of silicon wafers with the following specifications were acquired 

in duplicate: 150mm diameter, P-type, Double-Side Polished (DSP) Czochralski 

grown (Cz) crystals (Semefab, Glenrothes). Ideally, undoped Si wafers would be used, 

but because dopants are desirable in the majority of Si wafer applications it is difficult 

to obtain low quantities of undoped Si wafers at reasonable cost and in reliable supply. 

However, even at typical dopant concentrations between approximately 1013 and 1016 

atoms per centimetre cubed, Si wafer purity is still greater than 99.9999% [8]. Thus, 

absorbances due to dopants are sometimes considered negligible [9]. For practical 

reasons, P-type Si was selected for all Si wafers. 
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36 different SIRE designs were fabricated with eight replicates of each design. 

Three design parameters were investigated: wafer thickness, v-groove width, and v-

groove pitch (Figure 3.1). Table 3.1 presents the dimensions each parameter was tested 

at. Cz refers to the method of silicon crystal growth technique. The Czochralski (Cz) 

technique is by far the more common, and cheaper, of the two predominant silicon 

fabrication techniques. The other approach is known as the Float-Zone (FZ) method 

which produces extremely high purity silicon wafers, but is limited in both its 

production capacity and maximum six-inch wafer size [10]. The ramifications of these 

limitations faced by FZ wafers is a far higher cost per unit SIRE in comparison to Cz 

wafers and far lower availability. For this reason, a compromise has been made and 

Cz grown wafers have been used in all SIRE devices. 

  

 

 

 

Figure 3.4. Cross-sectional schematic of a SIRE optically active area with 

design parameters under investigation notated. These are: SIRE thickness, T, 

groove width, W, groove pitch, P. 

Table 3.1. Dimension levels the investigated design parameters were tested at. 

SIRE slides feature four optically active areas, three of which are available for 

the analysis of a sample. 3µl of Human Pooled Serum (HPS) (Sigma-Aldrich, USA) 

was pipetted into the three sample areas of each SIRE design (Table 3.1) and air dried 

for 1 hour. Slides were analysed manually on a Spectrum2 IR spectrometer 

Design parameter Dimension (µm) 

SIRE thickness  380 525 675 

Groove pitch  25 50 100 

Groove width 100 150 200 250 
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(PerkinElmer, USA) and a Quest ATR accessory (Specac, UK) attachment with 

specular reflectance puck. Background scans were acquired from the fourth empty area 

of the SIRE slide. Spectra were acquired from the 4000-450cm-1 range using 16 co-

added scans and a resolution set to 4cm-1 with 1cm-1 data spacing. Quest ATR internal 

mirror angles were calibrated to optimise transmitted energy throughput before each 

experiment (see section 3.2.3 for details). A Matlab (MathWorks, USA) based General 

User Interface (GUI) developed in-house was used to process spectra. 

Each sample area was scanned across all 288 SIREs (36 designs, 8 replicates). 

A total of 864 spectra were collected over the course of the experiment. Spectra 

collected from each individual design were averaged to reduce experimental biases. 

All spectra were then baseline corrected, outlier spectra removed, and vector 

normalised. An outlier removal step took out any spectra that had more than 5% of 

data points out with two standard deviations from the mean of all 864 spectra (Figure 

3.2). 117 spectra were removed by this method and were removed before vector 

normalisation as outliers can influence the vector normalisation step. It is believed this 

high number of outliers is due to the lack of an established sample preparation protocol 

and automated slide indexing unit to precisely position slides at the time of 

experimentation resulting in signs of scattering artefacts present in some spectra. 

Signal-to-Noise Ratio (SNR), Amide I absorbance, and Amide II absorbance was used 

to measure and compare SIRE designs. Averaged and Relative Standard Deviation 

(RSD%) values were used in each case. SNR was calculated using in the standard way 

(chapter 2, section 2.4.1). The noise component was taken as the standard deviation 

between baseline wavenumbers (1800-1850cm-1) and the signal component was taken 

as the average amide I band (1625-1675cm-1) [11], [12]. 
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Figure 3.2. (a) All spectra acquired across every SIRE Design. Spectra have 

been rubber band baseline corrected. Several spectra seem to be impacted by 

scattering artefacts likely due to the lack of established sample preparation 

protocol. (b) Average of all spectra collected across every SIRE design (red) 

with the two standard deviations from the mean indicated by the shaded region 

(grey). (c) Remaining SIRE design study spectra after outliers have been 

removed. These spectra have been vector normalised and are in the format 

subsequent analysis was carried out on. 

To explore the mechanism by which increasing silicon thickness diminished 

serum spectra, spectra of the silicon lattice itself were obtained. To do this a Gold 

mirror was placed at the specular reflectance puck aperture so that a background scan 

of the environment could be acquired and then the SIREs themselves were scanned in 
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the same way a sample would be scanned. Average spectra of the three available 

thicknesses (375µm, 525µm, and 675µm) were scanned for comparison. 

 

3.2.2. SIRE Sample Slide Components and Assembly 

The sample slide assembly comprises the SIRE, a Polylactic Acid (PLA) 

receptacle, and an adhesive label with graphics. Cleaned SIREs are placed in the 

receptacle and fixed in place with the adhesive label using RH07 adhesive (UPM 

Raflatac UK, Scarborough). SIREs are inset in a PLA receptacle for the following 

reasons: 

i. Contribute structural integrity to the slide. 

ii. Ease of handling for integration into the clinical laboratory (same size 

as standard microscope slide). 

iii. Avoid any direct contact with the SIRE thereby reducing risk of sample 

contamination. 

iv. Partition adjacent samples and prevent leakage of samples from one 

compartment to the next. 

v. Provide an option for future traceability mechanisms (e.g., barcode, 

radio frequency tag, etc). 

A rough schematic of the fully assembled SIRE sample slide is presented in 

Figure 3.3. PLA receptacles were fabricated using a Fused Filament Fabrication (FFF) 

3D printer (Ultimaker, Netherlands). The receptacle dimensions conform to standard 

microscope slides (75x25x1mm) with an off-centre lipped inner cavity to host the 

SIRE. The optically active areas of SIREs are positioned groove side down into the 
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cavity. Consequently, SIREs are raised by approximately 0.6mm from the IR beam 

aperture when placed flat on it. The impact of this clearance above the aperture was 

tested by comparing the beam energy throughput with and without the receptacle and 

also to a diamond IRE. The label fixes the SIRE in place and indicates to the user the 

background scan area (position ‘0’) and three sampling areas (positions ‘1’, ‘2’, and 

‘3’). Numerous other sample slide designs were conceptualised and prototyped before 

arriving at the design described above. A collection of alternative and previous designs 

has been presented in Appendix I (chapter 8). Fabrication tolerances were calculated 

from the dimensions of ten SIREs and ten PLA receptacles. Measurements were taken 

using a pair of digital callipers (RS components, UK). Simulations were carried out to 

determine if injection moulding could be used for reliable scaled production of the 

plastic receptacle component (simulations constructed using MoldFlow by Autodesk). 

Two thermoplastics were selected for simulations, Polypropylene (PP) and 

Acrylonitrile Butadiene Styrene (ABS), because they are widely available, 

inexpensive, and commonly used for injection moulding. Material and process 

parameters were selected from generic material pre-sets available within MoldFlow. 

For ABS, mould temperature was set to 60°C, melt temperature 230°C, and maximum 

injection pressure to 180MPa. For PP, mould temperature was set to 50°C, melt 

temperature 220°C, and maximum injection pressure to 180MPa. Injection time was 

set automatically by MoldFlow. Clamp opening time was set to 5 seconds for both 

materials. A variety of injector pin configurations were attempted to determine which 

provided the greatest chance of manufacturing a high-quality part. 
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Figure 3.3. (a) Top and bottom image of the fully assembled SIRE sample slide. 

Slides are inserted onto the accessory unit from position zero first where a 

background scan is acquired then the slide is indexed and scanned sequentially 

across sample containing positions 1, 2, and 3. (b) Annotated cross-sectional 

schematic of one optically active area of the SIRE sample slide. 

 

3.2.3. Custom ATR Accessory Unit Design 

The salient function of the accessory module was to facilitate the use of SIREs 

on an IR spectrometer. It is desirable that the accessory module is compatible with a 

range, ideally all, IR spectrometer platforms. An ATR accessory (Figure 3.4) contains 

a system of highly engineered optics that deliver the beam to the IRE which is 

embedded into a top-plate under normal circumstances. Several accessory module 

prototypes were constructed throughout the design process. Many conditions that had 

to be met were only revealed through these prototypes ultimately crafting a very 

different solution to the design that was initially envisioned. Previous models have 

been presented in Appendix II (chapter 8). 

(a) (b) 
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Figure 3.4. Image of a Spectrum2; (a) with accessory module attached, and 

(b) with accessory module detached. The metallic oval on top is known as the 

top-plate. 

A notable feature of the Spectrum2 is the off-centre focal point (Figure 3.5). 

Normally focal points are centred within the sample presenting the difficult 

engineering problem that optics must be adjustable to enable optimisation of beam 

throughput when interchanging from the Spectrum2 to other spectrometer platforms. 

Early investigations determined optimal Angle of Incidence (AOI) of beam to the 

SIRE to be ~30° for the analysis of serum. However, this was determined using a Cary 

660 Agilent Technologies spectrometer so may not be applicable to the atypical 

Spectrum2 beam configuration and AOIs less than 30° could not be tested (for more 

details see Appendix II, chapter 8). 

(a) (b) 
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Figure 3.5. Schematic of the beam trajectory (solid black) through the sample 

compartment of the Spectrum2. PerkinElmer spectrometers feature a focal 

point which is offset left from centre of the sample compartment. 

A universal ATR accessory device called the Quest ATR by Specac was 

introduced to circumvent the complication of constructing a system of optics capable 

of coping with the different focal points set by manufacturers. The Quest ATR unit 

features four adjustable gold mirrors and can be used on any spectrometer platform 

(Figure 3.6.(a)). An interchangeable top-plate puck system allows the user to quickly 

swap IRE substrates and gives the option to install a specular reflectance puck. The 

specular reflectance puck is simply a metal puck with a 3.8mm hole in the centre to 

enable an IR beam to be delivered to external (e.g., a gold mirror) or internal (i.e., an 

IRE) reflectance substrates. The hole acts as an aperture fixing the beam spot size to 

3.8mm and ensuring the amount of light reaching the SIRE is consistent. For all 

analysis in this chapter, a SIRE sample slide guide was 3D printed and slides were 

indexed manually across the specular reflectance puck because more sophisticated 

automated slide indexers were not yet available (Figure 3.6.(b)). An image of the 

specular reflectance puck has been presented in Figure 3.6.(c), the SIRE is positioned 
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on top on the aperture at the centre of the specular reflectance puck. An IR absorbing 

black putty is situated on the beam-facing side of the puck around the aperture to 

prevent stray beams reflecting into the system and causing variations in light 

throughput. The precise Angle of Incidence (AOI) of the Quest ATR is not known, but 

the nominal AOI of the IR beam to the sample surface is specified as 45° [13]. 

However, the energy throughput of the Quest ATR can be optimised by removing the 

front cover plate then adjusting the internal Quest ATR unit mirrors using a 2.5mm 

ball driver while simultaneously monitoring the spectrometer’s beam energy 

throughput until the highest energy throughput is achieved (Figure 3.6.(d)). 

Presumably, the AOI tends towards 30° when beam throughput has been optimised in 

accordance with preliminary investigations (Appendix II, chapter 8). Since the beam 

originates from a globar light source and is not collimated, the light will arrive at the 

SIRE outside the chief beam AOI (approximately ±10°). 
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Figure 3.6. (a) The Specac Quest ATR accessory module installed within the 

Spectrum2. The circular silver disk on top of the Quest is an interchangeable 

IRE crystal puck. (b) a SIRE slide guide for manual indexing along with a SIRE 

slide have been placed on top of the specular reflectance puck. (c) A close up 

image of the specular reflectance puck. The SIRE is placed on the aperture for 

analysis. (d) Open view of the internal mirror arrangement of the Quest ATR. 

S and D represent source and detector, respectively. Mirrors M1, M2, M3, and 

M6 are all adjustable, flat, highly reflective gold mirrors and M4 and M5 are 

fixed aspheric gold-coated focussing mirrors. Taken from: [13] 

A custom built automated slide indexer was built specifically to interface the 

Quest ATR unit. The IR beam was delivered to the SIRE sample slide through the 

aperture of the specular reflectance puck. The slide indexer moved the SIRE sample 

slide sequentially through all four optically active areas for analysis. PLA prototypes 

revealed that plastic components were too flexible and vibrations during operation 

(a) (b) 

(c) 

(b) 

(d) 
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would negatively affect performance (Appendix II, chapter 8). The final design was 

constructed with improved support mechanisms and sturdier materials to minimise 

vibrations and rotational movements of the slide. In brief, the final design utilises a 

stepper motor and lead screw to drive a carriage in which the SIRE sample slide 

resides. A microcontroller and motor driver circuit, programmed to actuate the stepper 

motor upon user input via push button, can precisely position the slide based on lead 

screw turn count. Positions are predefined in the microcontroller program such that 

slides will be positioned above the specular reflectance puck aperture from slide 

position ‘0’, ‘1’, ‘2’, and ‘3’ before returning to ‘0’ again, the home position. Red 

LEDs indicate to the user which position the slide is in. Two slide shafts eliminate 

rotational movement of the carriage around the drive shaft. The carriage itself 

surrounds the sample slide at the sides and on top minimising vibrational movement. 

Openings have been made at the top of the carriage to allow easy removal of sample 

slides and to not disturb serum samples deposited in the sample areas. A more detailed 

description of the indexer unit construction is given below.  

 A linear translation mechanism was mounted upon a metal baseplate (Figure 

3.7). The baseplate is a 142mm x 144mm x 3.8mm plate with a 62mm off-centre 

diameter hole to cover the area around and sit flush with the Quest ATR specular 

reflectance puck. A 40mm x 40mm square was also cut out of the rear-facing baseplate 

edge to accommodate the Quest ATRs clamping arm. The baseplate was fastened 

using screws fitted into two M3x0.5mm holes tapped through the baseplate and into 

the surface of the Quest ATR at the source (left) and detector (right) facing sides. The 

linear translator comprised a slide carriage (35mm x 80mm x 25mm), flat 1.85V RS 

Pro hybrid stepper motor (RS components, UK), 116mm M4x0.7mm lead screw (Igus 
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UK, Northampton), flanged lead screw nut (13mm M4x0.7mm thread), 18mm 

cylindrical drive coupling (3.5mm inner diam. (ID), 7mm outer diam. (OD)), ball 

bearing (4mm ID, 8mm OD, RS components, UK), and two 120mm x 4mm cylindrical 

slide shafts (The Metals Warehouse, Nottingham) all supported by two mounting 

blocks fitted at the left and right side of the baseplate using four M3x0.5mm studs. The 

baseplate, slide carriage, and mounting blocks (left: 20mm x 25mm x 7mm, right: 

32mm x 40mm 24mm) are all custom components milled from 6063-T6 anodised 

aluminium as well as the lead screw nut and drive coupling which was machined from 

CZ121 brass (Bar Knight Precision Engineers, Glasgow). The slide shafts were 

inserted through two 4.2mm through holes drilled at the top and bottom of the slide 

carriage. The lead screw meshes with the lead screw nut which is fixed within a central 

6mm through hole of the slide carriage via two M2x0.4mm screws. Both left and right 

mounting blocks featured a central through hole (4.2mm and 8.5mm diameter 

respectively) to host the bearing, stepper motor shaft, drive coupling, and lead screw. 

The lead screw was connected using two M4 nuts to the ball bearing that was push fit 

within an 8mm blind hole concentric to the 4.2mm through hole of the left mounting 

block. Two M3 bolts were used to mount the stepper motor onto the right-side 

mounting block and the motor shaft was coupled to the lead screw via two M3x0.5mm 

grub screws through the drive coupling. A flat stepper motor was selected to fit within 

the limited space of the sample compartment. M4x0.5 thread was cut to 3mm depth 

either slide of the slide shafts which were then fixed to corresponding holes tapped 

into the mounting blocks above and below the lead screw. The stepper motor is 

controlled using an Arduino Pro Mini 328 microcontroller (Arduino, Italy) and a 

DRV8825 motor driver (Pololu, USA) which users can operate using a EOZ push 
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button (RS components, UK). Users can see which position the SIRE slide is in, but to 

reduce risk of confusion Kingbright red LEDs (RS components, UK) indicate to the 

user which SIRE slide position is located above the Quest ATR aperture. For full 

electronic schematics, see Appendix III (chapter 8). 

 

 

Figure 3.7. The custom built slide indexing unit intended to be complementary 

to the Quest ATR universal accessory module (a) as a CAD model showing an 

assembly of a selection of core components: baseplate (purple), specular 

reflectance puck (light brown), slide carriage (dark brown), slide shafts 

(green), mounting blocks, lead screw, and stepper motor (grey). (b) slide 

indexing unit mounted within the Spectrum2 on top of the Quest ATR unit with 

a SIRE sample slide inserted into the slide carriage. A 3D printed PLA cover 

has been added which provides secure housing for the red LEDs and push 

button. 

 

3.3. Results 

 

3.3.1. Silicon Internal Reflection Element Design Optimisation 

There are many potential sources for error in the data such as instrumental 

error, sample preparation error, and sample error that should be considered when 

(a) (b) 
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evaluating SIRE design reliability [14]. Instrumental error of the sample slides is very 

low (RSD<4%) may arise from either the SIREs or the spectrometer itself and has 

been estimated by calculating the average RSD% of the raw silicon spectra acquired 

from the three optically active regions upon individual sample slides. The RSD% of 

the Amide I/II ratio across individual sample slides was calculated to examine the error 

contribution by the sample itself since this is not a metric that could be affected by 

instrumentation, but instead should be an inherent property of the sample (i.e., Amide 

I/II ratio is purely influenced by the sample, not by SIRE design provided sample 

thickness remains constant [15], [16]). The average RSD for Amide I/II, and by 

extension the sample error, is less than 3%. It is difficult to categorize the sample 

preparation error contribution, but an observation made during the course of the 

experiment was that small differences in the uniformity of serum droplet spreading 

would have a major impact on spectral quality by introducing noise and distorting the 

baseline of spectra. Sample preparation error will be further explored in chapter 4 

section 4.3.2.1 to investigate optimal sample preparation techniques for use with the 

SIRE sample slides. 

The average and RSD% values for signal to noise ratio (SNR) of every SIRE 

design has been presented in Table 3.2. To fully clarify which SIRE design produces 

the highest quality of signal and least inter-slide variability in the context of serum 

analysis; average signal intensity and RSD% values of the Amide I and Amide II bands 

has been presented as high, reliable absorption at these bands is indicative of good 

information capture (Table 3.3, and Table 3.4). 
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Table 3.2. (top) Average signal to noise ratios achieved from every SIRE 

design. Greener values indicate a higher signal to noise ratio while redder 

values indicate a lower signal to noise ratio. (bottom) Relative Standard 

Deviation of every SIRE design. Greener values indicate lower RSD values, 

while redder values indicate higher RSD values. 

 

 

 

 

Thickness (µm) Pitch (µm) 100 150 200 250

25 152.9 271.8 164.8 136.7

50 186.0 233.3 185.2 178.7

100 174.7 181.6 166.8 225.5

25 214.3 148.4 117.4 152.8

50 160.6 137.7 191.9 146.3

100 220.9 159.7 146.2 202.4

25 131.5 140.9 139.3 158.5

50 165.7 177.5 151.3 151.5

100 133.9 124.3 86.1 88.6

Thickness (µm) Pitch (µm) 100 150 200 250

25 21.0 24.3 25.7 13.0

50 30.4 18.9 22.5 30.4

100 60.1 48.5 20.3 41.9

25 49.7 34.2 20.1 39.5

50 43.7 27.3 73.0 29.2

100 38.8 46.3 28.8 45.5

25 50.2 46.5 31.5 38.3

50 34.0 50.6 48.0 46.6

100 57.7 40.6 37.8 44.7

Width (µm)

380

525

675

380

525

675

Width (µm)

Average Signal to Noise Ratio

Relative Standard Deviation (%) of Signal to Noise Ratio
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Table 3.3. (top) Average amide I absorbance achieved from every SIRE design. 

Greener values indicate a higher amide I absorbance while redder values 

indicate a lower amide I absorbance. (bottom) Relative Standard Deviation of 

amide I absorbance achieved from every SIRE design. Greener values indicate 

lower RSD values, while redder values indicate higher RSD values. 

 

 

 

 

 

Thickness (µm) Pitch (µm) 100 150 200 250

25 0.084 0.085 0.083 0.082

50 0.083 0.089 0.087 0.086

100 0.076 0.079 0.082 0.085

25 0.086 0.080 0.081 0.074

50 0.081 0.083 0.079 0.084

100 0.077 0.077 0.081 0.087

25 0.078 0.079 0.076 0.079

50 0.080 0.079 0.080 0.080

100 0.065 0.071 0.068 0.072

Thickness (µm) Pitch (µm) 100 150 200 250

25 4.2 3.2 5.0 2.1

50 5.9 3.1 5.5 4.1

100 6.6 4.8 4.7 4.0

25 6.0 9.0 6.3 5.6

50 4.5 4.9 11.6 4.5

100 12.0 4.1 2.8 3.7

25 6.9 7.9 5.0 6.8

50 8.7 8.8 6.4 4.4

100 8.8 10.4 7.4 7.2

Width (µm)

380

525

675

Average Amide I Absorbance

Width (µm)

380

525

675

Relative Standard Deviation (%) of Amide I Absorbance
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Table 3.4. (top) Average amide II absorbance achieved from every SIRE 

design. Greener values indicate a higher amide II absorbance while redder 

values indicate a lower amide II absorbance. (bottom) Relative Standard 

Deviation of amide II absorbance achieved from every SIRE design. Greener 

values indicate lower RSD values, while redder values indicate higher RSD 

values. 

 

It is hard to decipher a clear advantage for spectral quality of one design 

strategy over another in terms of average SNR. The data indicates thinner SIREs have 

an improved SNR over thicker SIRE designs. However, average SNR did not seem to 

be greatly affected by changes in the width of the beam coupling grooves, W, or groove 

Thickness (µm) Pitch (µm) 100 150 200 250

25 0.066 0.067 0.066 0.065

50 0.067 0.070 0.067 0.067

100 0.062 0.064 0.065 0.067

25 0.067 0.063 0.064 0.060

50 0.065 0.066 0.063 0.066

100 0.064 0.062 0.065 0.068

25 0.063 0.064 0.062 0.064

50 0.064 0.064 0.064 0.065

100 0.057 0.059 0.057 0.059

Thickness (µm) Pitch (µm) 100 150 200 250

25 3.5 2.7 4.2 1.5

50 4.1 2.7 3.2 3.4

100 5.8 3.8 3.3 3.3

25 4.7 6.5 5.0 6.1

50 4.2 3.0 8.5 3.4

100 8.8 4.0 3.5 3.1

25 6.1 6.5 3.9 4.7

50 7.7 8.0 6.1 3.6

100 7.1 7.4 6.1 6.3

Width (µm)

380

525

675

Average Amide II Absorbance

Width (µm)

380

525

675

Relative Standard Deviation (%) of Amide II Absorbance
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pitch, P. RSD% of SNR is considerably improved in thinner SIREs with smaller pitch. 

In general, a groove width of 200µm appears to give better SNR RSD% values, but 

the best recorded RSD% design SIRE parameters are 380µm thickness, 250µm width, 

and 25µm pitch. Both Amide 1 and Amide II band average and RSD% of signal 

intensity is improved in thinner SIREs. Wider groove sizes and smaller pitch also 

appear to improve both average signal intensity and RSD%. Overall, RSD% is 

maximised in 380µm thick SIREs with groove widths of 250µm, and 25µm pitch. 

Amide I and amide II average signal intensity is also good with these design 

parameters. 

The absorption of light by a sample is directly proportional to the beam’s 

pathlength through the sample as stated by Beer-Lamberts law [17]. This same rule 

applies to the IRE itself and can be observed very clearly by the difference in baselines 

of the raw spectra of different silicon thicknesses presented in Figure 3.8.(a). Similar 

to how interference from water signal can be limited by shortening sample pathlength, 

the peaks from 500-1500cm-1 wavenumbers are also diminished as the thickness 

decreases due to decreased interaction with the silicon lattice (819cm-1, 896cm-1, and 

962cm-1), or impurities such as interstitial oxygen (1107cm-1) or substitutional carbon 

(605cm-1). This is more easily observed after the spectra have been rubber band 

baseline corrected (Figure 3.8.(b)). A change in coupling angle as SIRE thickness 

varies could also be responsible for the observed change in baseline. However, the 

groove etch angle is fixed at 54.7° across all SIRE designs meaning that the angle of 

the coupling surface relative to the beam should remain fixed. It is perhaps more likely, 

then, that attenuation of the beam due to Si thickness is responsible for baseline 

differences in accordance with the Beer-Lambert law [9], [18]. Nevertheless, it is 
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evident that less beam energy is transmitted to the detector as SIRE thickness 

increases. Artefacts observed in the form of a ripple in the baseline of the spectra is 

exacerbated as thickness increases. This is most noticeable in the rippled baseline of 

the 675µm thick SIRE spectra. The source of the ripple artefact could be interference 

fringes arising from unintentional multiple internal reflections occurring as a result of 

the greater IRE thickness, although further experimentation would be required to 

confirm this [19], [20]. The theoretical upper and lower limits for IR attenuation by 

SIRE thickness could not be investigated within this experiment due to practical 

limitations. 380µm thick silicon wafers are about as thin as readily available six-inch 

silicon wafers can be, and 675µm thick wafers are the maximum thickness of silicon 

wafers that can fit in standard industrial six-inch silicon wafer carriers. It is expected 

that beyond a thickness of 675µm, silicon IREs will completely extinguish any signal 

passing through [9]. In contrast, using SIREs that are thinner than 380µm may improve 

SNR, but would likely be very difficult to handle and too brittle to analyse samples 

that require pressure application. 
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Figure 3.8. Spectra of silicon SIREs at every thickness tested. Notable peaks 

are assigned as follows: interstitial oxygen – 1107cm-1, substitutional carbon 

– 607cm-1, silicon lattice phonons - 819cm-1, 896cm-1, and 962cm-1. (a) Raw 

spectra of the silicon reveal a greater level of attenuation of the IR beam when 

thickness increases as indicated by the rising baseline. (b) Rubber band 

corrected spectra clearly displays the exacerbated effects of absorbance bands 

as SIRE thickness increases. Also noteworthy is the noisy 'rippled' baseline 

artefact present in the baseline of 675µm thick SIRE samples. 

Clinically significant information is located at wavenumbers above 900cm-1 of 

serum spectra [6], [21]. Clearly by analysing Figure 3.8 it can be observed that there 

are several absorption peaks that may prove problematic. It may be the case that SIREs 
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are not suitable for diagnostic tests where univariate analysis of carbohydrates [6], and 

perhaps to some extent nucleic acids, are crucial biomolecular indicators, such as 

diabetes [22]. Fortunately, multivariate and machine learning approaches are well 

suited to deal with this limitation by not relying heavily on information of one specific 

point of the spectrum. Fabricating SIREs from Floatzone (FZ) wafers is an obvious 

solution to mitigating interference from impurities since they lack the interstitial 

oxygen absorption peaks at 1107cm-1 [9], but their high costs (£29.50 per Cz compared 

to ca. ~£100 per FZ wafer) and lack of availability are unfortunately prohibitive within 

the scope of this prototyping stage. However, this may not prohibit FZ wafers from 

future implementation as costs could still lie within financial constraints defined by 

the brain tumour project introduced in chapter 1 section 1.4.1, which dictates a test 

cost of no more than £40, or any other serum diagnostic applications not yet evaluated 

through health economic analysis [23]. The unit cost of Cz based SIRE sample slides 

is roughly £5.90, and unit cost FZ based SIRE sample slides is estimated to be £8.30. 

A brief breakdown of the sample slide finances is presented in Table 3.5. A batch is 

equivalent to 25 wafers which equates to 1500 SIRE slides. A manufacturing yield of 

85% was assumed per batch (i.e., a batch of 1500 slides will yield 1275 useable 

devices). Not included is the cost of a one-off £906 purchase of a photomask which 

can be reused indefinitely. Quoted values are based on expenditures for the present 

study and all would decrease upon scaled production therefore from a manufacturing 

perspective it is feasible tests can be delivered at a cost of less than £40. However, it 

should be noted that there are many other factors that will increase overall costs such 

as packaging, accessory unit manufacturing, distribution, commercialisation, quality 

assurance, training, regulatory clearance, market surveillance, maintenance, and more 
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[24]–[26]. Although the costs of these additional factors have not been fully evaluated 

in this early stage of development it is likely they would be significant. The 

consequence of this is the diagnostic performance must be of higher quality to 

compensate for higher cost. For instance, health economic assessment has shown if the 

SIRE brain cancer test cost rises from £40 to £100 it will likely still be cost effective 

in the primary care setting so long as clinical specificity is greater than 90% [23]. 

Table 3.5. Breakdown of expenses for a single and for a batch SIRE sample 

slides. 

 Unit Cost (£)  Batch Cost (£) 

Cz Wafer 29.50 737.5 

FZ wafer 100 2,500 

Microfabrication N/A 6,602 

PLA receptacle 0.5 637.5 

Label 

 

  0.5 637.5 

Sample Slide (Cz) 6.90 8,589.5 

Sample Slide (FZ) 8.30 10,352 

 

Figure 3.9 highlights the difference between spectra of serum collected using 

SIREs and diamond IREs. The spectra of silicon have been overlaid to illustrate that 

the absorption bands observed are missing from SIRE based serum spectra when 

compared to diamond IRE based serum spectra. The fundamental differences between 

these two IREs for serum analysis will be explored further in chapter 4 section 4.3.3. 
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Figure 3.9. Serum spectra collected using both a SIRE and a Diamond IRE. 

Spectra of silicon has been overlaid to show clearly that there is a dip in signal 

at 1107cm-1 in the serum spectra collected using a SIRE due to attenuation of 

the IR beam by the SIRE. 

 

3.3.2. Silicon Internal Reflection Element Fabrication Complications 

Silicon microfabrication encompasses a huge variety of highly precise 

techniques, so small operator errors can translate into gross device defects. The nature 

of these defects range anywhere from small isolated imperfections to flaws spanning 

an entire silicon wafer. 

3.3.2.1. Hard Mask Undercutting 

Silicon etching proceeds by chemically attacking the silicon lattice in a 

directionally dependent matter as outlined in chapter 2, section 2.5.3. No crystal plane 

in silicon is impervious to KOH, but the degree of resistance to chemical attack differs 

greatly. For silicon planes <100>, <110> and <111> in 33% KOH at 80°C the etch 
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rate ratio is roughly 400:600:1 [27]. However, etch ratios differ widely in the literature 

therefore etch times should be established in house, using the literature as a guideline 

[28], [29]. This is in part because etch ratio is dependent on KOH concentration, 

temperature, etching geometries, and solvent flow (e.g., stirring) [30]. The effect of 

unintentional etching of the <111> direction is grooves are about 4-6µm bigger in both 

length and breadth than intended (Figure 3.10). This results in silicon material etched 

away from underneath the silicon nitride hardmask, also referred to as undercutting. 

 

Figure 3.10. Microscope image of SIRE grooves after KOH etch. Blacked out 

areas are deep grooves and everything else is a Nitride hard mask. Due to thin 

film reflection effects, light scattered from Nitride lying atop silicon appears 

green, and Nitride suspended in air appears brown [31]. Measuring the 

overhanging Nitrile indicates the grooves are ca. 6µm wider and longer than 

intended. Images acquired using a reflectance spectrometer. 

In this application 2-3µm is a tolerable degree of undercutting at each etch face. 

However, extensive undercutting may cause structural failure of the groove walls and 
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result in debris lodged within the grooves (Figure 3.11). Silicon-on-silicon debris is 

very difficult to remove by means of mechanical cleaning due to static charge [32] 

pinning the debris in place and chemical cleaning regimes are not an option because 

any attempt to remove the silicon particles will in turn damage the underlying silicon 

surface. Defects of this type can ruin an entire batch of silicon wafers which amounts 

to thousands of pounds worth of damages and huge time delays. 

 

Figure 3.11. SEM image of SIRE grooves. The peaks of the grooves have been 

underetched to the point of collapse, lodging silicon debris in the troughs. 

Mask undercutting is also an issue when manifesting as a result of photomask 

misalignment with etches being much wider and deeper than the designer intended 

(Figure 3.12). Undercutting is highly sensitive to small errors in photomask alignment 

and defects typically uniformly affect all devices printed upon a wafer [33]. Highly 

skilled operators ensure the effect of photomask misalignment are kept to minimum, 

but perfect alignment with the crystal plane is near impossible. In this application, 

coarse sidewalls were also a concern as this could scatter IR light (Figure 3.13). This 
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was either a consequence of incorrect orientation of the etching planes forming etch 

steps along the <111> plane [34], [35], or by using low KOH concentrations (<30%) 

and not stirring the solution during the etching process [36], [37]. In the latter scenario 

the mechanism for sidewall damage is the entrapment of hydrogen bubbles upon the 

silicon surface that randomly and inadvertently mask small areas lowering the 

uniformity of the etch pattern. 

 

Figure 3.12. Illustration of the mask undercutting that will occur following 

photomask misalignment. Image credit: ref  [38]. 
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Figure 3.13. SEM image of SIRE V-grooves. The steps on the silicon wall are 

crystal planes which have been mistakenly etched due to misalignment of the 

mask layer to the crystal planes, or by neglecting to stir the KOH solution 

enough during etching. 

 

3.3.2.2. Photoresist Defects and Scratch Defects 

Any break in the photoresist layer, or hard mask layer, will result in massive 

areas etched out of the silicon located beneath the photoresist discontinuity (Figure 

3.14.(a)). This is typically caused by particles that could not be removed through 

cleaning procedures before a photomask layer was applied. The manufacturing yield 

is about 85% for SIRE devices and the bulk of the 15% loses are attributed to 

photoresist defects. These imperfections are inevitable but can be mitigated through 

strict cleaning and handling protocols within the cleanroom. Scratch defects are quite 

self-explanatory arising from poor handling at any time during the product lifecycle 

(Figure 3.14.(b)). Silicon is very hard, but brittle so it is prone to severe fracture 

propagation and complete device failure is likely if the crystal is handled directly. For 
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this reason, the SIRE is nestled within a protective PLA receptacle as mentioned 

earlier. This has drastically improved device viability following the manufacturing 

process. 

 

Figure 3.14.(a) Microscope image of a defective SIRE. Large areas have been 

etched out due to a lack of protective hard mask. This is a consequence of 

debris that could not be cleaned off the wafer therefore preventing the 

photoresist layer from covering the underlying silicon. (b) Microscope image 

of a scratch spanning several grooves of a SIRE as a result of poor handling 

using tweezers. 

 

3.3.2. SIRE Sample Slide Assessment 

Automated SIRE handling would be difficult to implement without the 

receptacle component due to the brittleness of silicon and sample contamination 

concerns. The PLA receptacle conforms to the same dimensions as standard 

microscope slides (75x25x1mm) (Figure 3.15.(a)) and has an off-centre rectangular 

cavity (33.4x6.2x0.4mm) with a ledge upon which the SIRE sits (Figure 3.15.(b)). 

(b) (a) 
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Figure 3.15. PLA receptacle and cross-sectional views of fully assembled 

multi-compartmental SIRE. (a) PLA receptacle that supports SIRE. (b) SIRE 

set within a 1mm thick PLA receptacle. It is suspended off the ground by a 

ledge within the receptacle inner cavity. (c) SIRE set within a 0.4mm thick PLA 

receptacle. The SIRE can be made flush with beam apertures to maximise beam 

throughput while still benefitting from the protection of the PLA receptacle. 

Early receptacle designs suspended the SIRE above the specular reflectance 

aperture by about 0.6mm to prevent the SIRE contacting the puck which could scratch 

or contaminate the SIRE. However, this was found to affect the beam throughput. 

Table 3.6 shows the beam throughputs achieved from a SIRE with and without a PLA 

receptacle shown in Figure 3.15.(a), and from a diamond IRE. This prompted the move 

from thick PLA receptacles (Figure 3.15.(b)) to thin 0.4mm PLA receptacles (Figure 

3.15.(c)) which removes the ‘ledge’ to keep the silicon flush with the beam aperture 

while still protecting the SIRE from damage. The beam throughput achieved with the 

thin PLA receptacles is identical to the throughput achieved by the SIRE on its own 

(i.e., 85.5). 

Table 3.6. Energy throughput measured using diamond IREs and silicon 

with/without a 1mm thick PLA receptacle. 

 Average throughput 

(absorbance) 

SIRE 85.5 

SIRE w/1mm 

thick receptacle 

37 

Diamond IRE 83 

 

(a) (b)

) 

(c)

) 
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The dimensions of the inner cavity need to be precise otherwise SIREs either 

fit too loosely within the receptacle or protrude above which can lead to low quality 

spectra or seepage of liquid samples out of the sample compartment. The 3D printing 

FFF technique is adequate in the context of proof-of-concept and prototyping work, 

but variations in PLA receptacles can impact beam throughput and by extension 

sample slide reproducibility and the low fabrication rate is not suitable for scaled 

production. Table 3.7 shows the tolerances of SIREs and the inner cavity of 3D printed 

PLA receptacles demonstrating dimension mismatching is bound to occur, the effects 

of which would magnify upon scaled production. 

Table 3.7. SIRE dimensions and tolerances and PLA receptacle dimensions 

and tolerances using the Fused Filament Fabrication method. 

  Width (mm) Length (mm) 

SIRE Average 6.07 33.10 

Tolerance (±) 

 

0.02 0.09 

PLA Receptacle 

Inner Cavity 

Average 6.66 33.40 

Tolerance (±) 0.29 0.5 

 

Injection moulding is an ideal candidate for scaled receptacle production, 

delivering precisely fabricated components quickly, although high tooling costs are 

prohibitive in early design and testing stages. Simulations performed to determine if a 

sample slide receptacle could be fabricated using standard injection moulding 

techniques have been presented in Figure 3.16. The simulations display the injection 

pin locations that produced the best outcomes in terms of confidence of fill and 

predicted part quality for each material. Both PP and ABS simulations returned a 100% 

confidence of fill across the entire component. The PP part took 0.68 seconds to fill 

while the ABS part took 0.33 seconds. PP showed a better chance of producing high 
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quality parts than ABS. However, the ABS part utilised two injection pins compared 

to a single injection pin needed for the PP part. It was determined that all features could 

be manufactured to a reasonable level of quality with about 68.5% of the receptacle 

produced with medium quality and 31.5% of high quality. MoldFlow indicated the 

reason the simulation predicted the ABS part may produce areas of medium quality is 

because the ABS may experience sheer stresses too high during injection. To reduce 

sheer stress the melt viscosity can be lowered by increasing the melt and mould 

temperature [39]. Increasing the melt temperature to 240°C and mould temperature to 

80°C improved the predicted part quality to 55.7% of the part being high quality and 

44.3% being of medium quality (Figure 3.16 (c)). For an ABS receptacle, the areas of 

concern are the right and left flanks which need to be the focus of future design 

improvements of this component. These findings indicate that either ABS or PP may 

be suitable for scaled production of the sample slide receptacle, albeit with different 

injection gate configurations required for each material. 
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Figure 3.16. Results from a simulation of the injection moulding the receptacle 

in PP (a) and ABS (b) using recommended MoldFlow parameters and 

improved ABS parameters (c). It is predicted that 100% of the component will 

be of high quality when made form PP and 31.5% will be of high quality when 

made from ABS with the remaining 68.5% of medium quality. Simulations 

indicate that by increasing the mould and melt temperature for the ABS part 

the probability of higher part quality improved to 55.7% high and 44.3% 

medium quality. The small cones on the parts indicate the injection pin 

location. 

 

3.4. Discussion 

 

Lowering pitch and increasing groove width aimed to reduce the chance of 

multiple internal reflections occurring in order to limit the presence of silicon lattice 

vibration artefacts in the spectra whilst also removing the need for beam collimation 

by increasing the beam coupling surface area. Spectral artefacts may occur when 

spatial features match in size to the wavelength of light used to interrogate the sample 

[40]. The 25µm lower limit selected for pitch, P, matches the wavelength of mid-

infrared light to see if this resulted in any interference in the form of scattering 

(a) (b) (c) 
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artefacts. No evidence of this type of scattering was observed, likely because the 25µm 

features lie at the extreme upper end of the mid-infrared wavelength range (2.5-25µm). 

Smaller distances separating each consecutive groove allows for more grooves to be 

etched within a defined area providing more opportunities for IR light to properly 

couple into the SIRE and follow the intended beam path. It therefore benefits the SIRE 

design to reduce this value by as far as possible, especially since no scattering could 

be observed when P = 25µm. The depth of etched grooves is directly proportional to 

their width. Deeper grooves give more area for the IR beam to couple into the crystal, 

but also weaken the SIRE by intensifying stress concentrations located at the trough 

of the grooves. The upper limit (W = 250µm) was selected so that the groove etched 

was roughly halfway through the SIREs. At the lower limit (W = 100µm) there is a 

40% reduction in area of beam coupling surface exposed to the IR beam in comparison 

to the 250µm wide grooves. This lower limit was selected arbitrarily to determine if a 

reduction in beam coupling area would have an impact on spectral intensity. It could 

not be conclusively determined if changing the size of pitch of the grooves had any 

impact on average SNR, but wider grooves with smaller pitch did improve SNR 

RSD%, and average signal intensity and signal intensity RSD% of amide I and amide 

II bands (Table 3.2 (bottom), Table 3.3 and Table 3.4). There is also a general trend 

that suggests thinner SIREs improve SNR of resultant spectra (Table 3.2). The SNR 

RSD% of thinner SIREs also indicates better reproducibility of thinner SIRE designs. 

250µm groove width, 25µm pitch, 380µm crystal thickness has been selected as the 

optimal SIRE design parameters for future analysis because it produced the most 

reliable spectra (2.1 amide I RSD%, 1.5 amide II RSD%) with good signal quality 

(136.7 SNR). 
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It is essential that DSP wafers are used in this application because both sides 

of the wafer will be in active use. The upper surface (or the sample side) needs to be 

extremely flat to avoid light scattering at the interface between the sample and the 

beam. The lower surface (the optical side) also needs to be highly polished as this face 

is to be etched. When carrying out chemical wet etching processes it is easier to mark 

patterns to be etched upon polished surfaces thereby helping to ensure more reliable 

results [41]. All wafers used within this project have been made P-type by lightly 

doping the silicon with Boron. Un-doped silicon is a difficult specification to fulfil 

when sourcing wafers due to the added difficulty in producing higher purity silicon. 

Fortunately, the vibrational bands for boron dopants in silicon are located at 

wavenumbers 668.8cm-1 and 319cm-1 which is outside the biological fingerprint region 

of interest [6], [9]. Pure FZ SIREs are a sensible upgrade for future directions, but the 

Cz SIREs are of high enough quality that the higher costs of FZ wafers cannot be 

justified in prototyping and proof-of-concept stages. 

It is feasible that all components of the SIRE sample slide are suitable for 

economical scaled production. Silicon microfabrication techniques are well 

established and widely used the world over in silicon microfabrication foundries for 

the production of microchips [42]. The receptacle can be fabricated using standard 

injection moulding techniques, but some design alterations may be required in the 

future to improve manufacturing yield of ABS receptacles as generic injection 

moulding techniques may incur shear stresses too high to reliably fabricate high quality 

receptacles [43]. However, simulations have shown that PP receptacles could be 

reliably fabricated at high quality with no design modifications. Labels are easily 

printed in bulk. Together the SIRE, label, and plastic receptacle could easily be 
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assembled using pick and place automated assembly line techniques giving a clear and 

achievable pathway to scaled production of sample slides. The custom accessory 

module is not a consumable item, so does not necessarily require high-throughput 

scaled production, but since no advanced fabrication techniques are required in its 

construction it could be manufactured and assembled quickly and at relatively low 

cost. However, consideration must be given to other costs associated with the transition 

from development to clinical market such as implementation of a quality management 

system, maintenance, and distribution. The implications of increased costs for the 

application of SIREs as a brain cancer test platform has already been investigated 

through a health economic analysis [23], but a separate economic analysis would need 

to be carried out to elucidate the consequence of increased costs of SIREs when used 

as a sepsis testing platform. 

 

3.5. Conclusion 

 

The design process of a disposable Silicon Internal Reflection Element sample 

slide and an automated slide indexing unit for a Quest ATR universal accessory has 

been described. Sample slide design rationale was informed by resultant spectral 

quality and reproducibility and on the basis of compliance to strict financial 

constraints. Good signal quality (SNR) was achieved, and device reproducibility was 

optimised through modulating both SIRE design parameters and receptacle design 

parameters. It has been demonstrated that the SIRE sample slide is capable of 

delivering a high-throughput ATR-FTIR workflow for serum diagnostics with the 
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construction of a custom ATR accessory unit. Consideration has been given to how 

sample slide design fits into economic models as a brain cancer diagnostics platform 

by considering production costings and feasibility of scaled manufacture. Some of the 

potential difficulties with regards to serum sample analysis and fabrication of the SIRE 

sample slides have also been discussed. SIRE performance characterisation in the 

context of serum analysis will be established in subsequent chapters. 
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4.1. Introduction 

 

After producing a functioning and effective high-throughput ATR-FTIR 

system it was necessary to characterise the SIRE devices and formulate a standard 

operating procedure. Doing so will help to maximise the reproducibility of spectra 

acquired from SIREs. As noted in chapter 3 section 3.3.1, the spectra acquired using 

SIREs were highly sensitive to faults in serum pipetting technique, but reproducibility 

issues may arise within other aspects of the sample preparation protocol and also in 

the assembly of SIRE slides. Sources of error must be elucidated in order to properly 

manage them. These sources of error have been broadly categorized as either intrinsic 

(e.g., silicon lattice discrepancies), or extrinsic (e.g., pipetting method, sample drying 

method, SIRE cleaning protocols, sample collection protocols). The silicon itself may 

give rise to variations in the spectra from SIRE to SIRE as impurities, added either 

intentionally to bestow electrical or mechanical properties or unintentionally through 

imperfections during the silicon crystal growth process, are not evenly distributed 

throughout the lattice [1]. The impurities present in silicon wafers is a thoroughly 

researched area and is highly dependent on the method and conditions under which the 

silicon crystals are grown [2]. The two most common methods are the Czochraslki 

(Cz) and Float Zone (FZ) methods [3], [4]. The former generally produces wafers with 

a markedly higher impurity content but is the best and most widely used method for 

mass production of semi-conductor grade silicon wafers. Generally, impurities form 

swirl or concentric ring patterns across the diameter of silicon wafers which may give 

rise to heterogeneity of optical properties of SIREs fabricated from different parts on 

a wafer [5], [6]. 
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A core argument for the high-throughput ATR approach is the ability to carry 

out batched sample processing. It then follows that variance introduced through 

batched sample preparation process could undermine the entire workflow. Sample 

preparation of serum involves drying the sample upon the IRE to reduce the water 

signal that would otherwise obscure pertinent spectral information [7]. Biomolecular 

constituents are more homogeneously distributed within liquid sera samples than in 

dried sera films due to the phenomena known as the ‘coffee ring effect’ which causes 

inhomogeneity in molecule distribution following droplet evaporation since molecules 

of certain molecular weights precipitate in concentric rings around the droplet 

deposition site [8]–[10]. This introduces the potential for biomolecular information to 

be misrepresented in the spectra [11]. Thus, automated pipetting and drying methods 

are desirable. Another extrinsic source of error may be from particles accumulating 

during storage or handling prior to sample deposition. Prior to dicing, the Si wafer is 

coated in a protective layer of photoresist and can remain coated in this protective layer 

before assembly into the sample slide as any particles captured in the photoresist can 

be easily removed [12]. However, conventional cleaning agents such as ethanol or 

acetone may not be sufficient since these solvents may alter surface properties or leave 

evaporation residues which are visible in the spectra [13]. A standardised cleaning 

regime that eliminates such effects would benefit the optical reproducibility of SIREs. 

Following assembly, hermetically sealed packaging will likely be a necessary first line 

defence to prevent contaminant ingress, although to reduce costs non-hermetic 

packaging needs to be explored [14]. One facet of the sample slide is the ability store 

samples post-analysis. In the case of biological samples, such as serum, this is only 

useful if the sample is not compromised during storage. 
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This chapter details the findings of multiple investigations aimed at 

characterising the various potential error sources of the high-throughput ATR system 

and remark on how these error sources may be mitigated. Sources of variance have 

been investigated from the construction of the SIREs and the preparation and treatment 

of serum samples. Ideally, sample collection method would also be optimised for SIRE 

analysis, but accessibility to participants would be challenging and has not been carried 

out within the scope of this project. Controlled drying techniques were investigated 

using fans, heating pads and an incubator to reduce drying times by as much as possible 

with the least impact on spectral quality. Cleaning procedures were also considered to 

harmonise the surface properties between SIRE chips. The severity of intrinsic silicon 

variance has been investigated by comparing spectra of the silicon lattice of SIREs 

either selected randomly or selected from known locations across a silicon wafer. 

Lastly, investigations were carried out to assess how the analytical capabilities of a 

SIRE weighed up against other IRE options. By characterising these factors, it is 

envisaged that the SIRE approach will be more reproducible for clinical applications 

where accuracy is paramount to successful regulatory and clinical approval. 

 

4.2. Materials and Methods 

 

4.2.1. Spectral Acquisition 

All analysis was carried out on a Spectrum2 infrared spectrometer 

(PerkinElmer, USA) with a custom automated slide indexing unit (see chapter 3, 

section 3.2.3) and Quest ATR accessory unit (Specac, UK). Silicon Carbide (SiC) IRE 
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puck, Diamond (Di) IRE puck and specular reflectance pucks were used throughout 

various experiments. Spectra were acquired from the 4000-450cm-1 range using 16 co-

added scans and a resolution set to 4cm-1 with 1cm-1 data spacing. Positions ‘1’, ‘2’, 

and ‘3’ were sampling positions of the SIRE and background scans were acquired 

using either position ‘0’ of the SIRE sample slide, or a gold mirror depending on the 

aspect under investigation. 

 

4.2.2. Data Processing 

Spectra have been presented both raw and processed throughout. When 

processed, spectra were rubber band baseline corrected then vector normalised. 

Remarks have been made at each point of the spectral processing for each study, as in 

many instances different information is elucidated throughout spectral processing. 

Spectra were not cut prior to processing unless otherwise stated. 

To analyse the impact of extrinsic and intrinsic factors on variance, spectra 

standard deviations were plotted and PCA was conducted. A cut-off value of 90% 

explained variance was taken when selecting the number of components to investigate. 

Statistical analysis was conducted in Minitab (Pennsylvania, USA) with a value of p 

< 0.05 considered significant. Where necessary, absorbance and SNR values were 

calculated for comparison. SNR was calculated by dividing the absorbance intensity 

of the amide I band (1625-1675cm-1) by the standard deviation of wavenumber range 

representative of baseline noise (1800-1850cm-1). A Matlab (MathWorks, USA) based 

General User Interface (GUI) developed in-house was generally used for pre-

processing and exploratory analysis. 
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4.2.3. Intrinsic Variance Investigations 

The most prominent impurities in silicon wafers are oxygen, carbon, and boron 

[4]. Nitrogen may also be present in circumstances where the crystals are grown within 

a silicon nitride crucible [15], [16]. Impurities are usually a desired feature in the field 

of semiconductors adding structural integrity, bestowing electrical properties, 

permitting free-charge carrier movement, and altering optical properties  [17], [18]. 

These impurities can form bonding environments that are clearly visible in the SIRE 

spectrum together with vibrations from the silicon lattice itself. Figure 4.1 shows a 

baseline corrected SIRE spectrum with annotations of notable peaks. These were the 

two different silicon phonon bands (610cm-1 and 819cm-1), the Si-B band (668.8cm-1), 

and the Si-O band (1107cm-1) and can be used to estimate the variability of impurities 

across the SIREs. The most prominent of these is by far the silicon phonon at 610cm-

1 which is overlapped by the Si-C band at 605cm-1 rendering the analysis of 

substitutional carbon content difficult. Variances in the silicon lattice itself are instead 

estimated using the 819cm-1 silicon phonon 2 band as this is the most faithful indicator 

of pure silicon interference [2]. The interstitial Si-O peak will distort from 1107cm-1 

to a centre position at 1040cm-1 in the presence of various oxygen precipitate forms so 

is a good indicator of impurity homogeneity across the silicon wafer [19]. 
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Figure 4.1. Typical baseline corrected spectrum of silicon the SIREs are 

fabricated from. Significant peaks have been annotated. 

 

4.2.3.1. Silicon Variance 

SIRE slides were selected at random (n=14). A gold mirror was placed on the 

specular reflectance puck and scanned for a background spectrum of the environment 

because gold is an excellent reflector of IR light and will not interfere with the 

reference signal. Positions ‘1’, ‘2’, and ‘3’ of each SIRE slide were then scanned on 

the specular reflectance puck (see chapter 3, section 3.2.2 for schematic of SIRE 

sample slide). A new background scan was acquired prior to analysing each slide. 126 

spectra were collected. 3µl of HPS was then pipetted into positions ‘1’, ‘2’, and ‘3’, 

dried, then scanned again to see if general observations of variance in the silicon lattice 

spectra could be observed in the spectra of serum samples collected using the same 
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SIREs. Samples were scanned in the same way, but this time scanning position ‘0’ of 

the slide to acquire a background scan. A further 126 spectra were collected. 

 

4.2.3.2. Silicon Intra-Wafer Variance 

An experiment was set up to examine if the location on a silicon wafer from 

which a SIRE originated impacted the variance between SIREs given the non-

homogeneous distribution of impurities. For the purposes of this study, a wafer was 

diced into individual SIRE chips as opposed to the finalised SIRE slide design 

described in the previous chapter. Individually cut SIREs were removed from 66 

positions across the wafer (positions 1-66, Figure 4.2) and analysed using a gold mirror 

to acquire a background scan. Nine spectra were acquired from each of the locations 

for a total of 585 spectra. The spectra from each location were averaged then the entire 

dataset was baseline corrected and vector normalised. No meaningful spectra could be 

retrieved from position 66 as the wafer was heavily damaged in this area and so this 

data has been removed from the study. An Anderson-Darling normality test was 

performed on both the Si2 and the SiO peaks to determine if the dataset was normally 

distributed [20], [21]. This was then followed by a one-sample student t-test to 

determine if the peaks were significantly different from a hypothetical mean of 0.0276 

for the Si2 peak and 0.062 for SiO. 
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Figure 4.2. Each location individual SIRE chips were taken from across the 

silicon wafer. 

 

4.2.4. Extrinsic Variance Investigations 

4.2.4.1. Optimum Drying Conditions 

A series of simple experiments were arranged to determine optimal drying 

conditions.  In the first instance, a fan and heating pads, either alone or in combination, 

were used to force dry 3µl of serum samples pipetted onto the Di top-plate accessory 

module of the Spectrum2. A negative feedback heating system was set-up using an 

Arduino Mega 2560 (Arduino, Italy) microcontroller, two RS Pro 12V 2W circular 

adhesive silicone heating pads (RS components, UK), two RS Pro 10kΩ (at 25°C) 

2.4mm diameter thermistors (RS components, UK), two TE Connectivity 10kΩ metal 

film fixed resistors (RS components, UK), two ON semi TIP120G NPN Darlington 

Pair 8A 60V transistors (RS components, UK), TMP102 digital temperature sensor 

breakout board (Cool Components, UK) and a small 5V DC Sunon® DC axial fan (RS 

components, UK). The heating pads were positioned on either side of the Di IRE and 
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the fan was mounted on 3D printed legs directly above the IRE. The set-up could 

accurately maintain temperatures of 25°C, 30°C, and 35°C and air flows of 5CFM and 

9CFM. As an extra precaution, temperature was monitored visually with a mercury 

thermometer taped directly to a heating pad. Full details of the experimental set-up are 

presented in Appendix IV (chapter 8). To prevent any denaturation of proteins in the 

serum, the samples were kept strictly below 37°C. A total of six different drying 

regimes were tested: two with only fans (set to either 5CFM and 9CFM), two with 

only heating pads (set to either 30°C or 35°C), a combination of both fan and heating 

pads (set to 9CFM and 35°C respectively), and a control (ambient conditions, 25°C) 

(Table 4.1). In total, three sensing mechanisms were employed to monitor temperature: 

the thermistors (±0.9% tolerance = approx. ±0.315°C at 35°C), the temperature sensor 

breakout board (±0.5°C), and the mercury thermometer (±0.1°C). Thermistor and 

breakout board tolerances have been extracted from manufacturer datasheets and 

mercury thermometer tolerances have been approximated from a published clinical 

reliability study [22]. The 5V fan tolerances have been estimated based on the 

manufacturer’s specification of ±15% fan speed tolerance at 7200RPM. The most 

conservative tolerance estimates have been presented in each case. Serum was allowed 

to dry for 0, 2, 4, 6, 8, 16, and 32 minute intervals taking three spectra after each 

interval. 

Table 4.1. Experimental airspeed and temperature settings with estimated 

tolerances. 

Drying Regime Air flow (CFM) Temperature (°C) 

Fan 1 5 ±0.75 25 ±0.5°C 

Fan 2 9 ±1.35 25 ±0.5°C 

Heater 1 0 ±0.00 30 ±0.5°C 

Heater 2 0 ±0.00 35 ±0.5°C 

Combined 9 ±1.35 35 ±0.5°C 

Control 0 ±0.00 25 ±0.5°C 
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Following this, a similar experiment was set up using SIREs. This particular 

experiment was conducted on early prototypes where only two identical SIREs were 

available. 3µl of serum samples were pipetted onto the SIREs which were cleaned after 

each spectral acquisition using a Virkon soaked cotton bud before preparing the SIRE 

with more serum. The exact same heating control system was used with the exception 

of the 5V fan being replaced with a 12V DC ARX CeraDyna series axial fan (RS 

components, UK). Each SIRE was also placed on top of a single 12V heating pad and 

under the fan. Temperatures could be kept stable at 25, 30, and 35°C (all ±0.5°C as 

previously) and fan air flows could be set to 9 ±0.9CFM, 60 ±6.0CFM and 70 

±7.0CFM. Again, temperature was monitored visually with a mercury thermometer as 

an extra precaution. 12V fan tolerances have been estimated from the manufacturer’s 

specification of a 10% fan speed tolerance at 3600RPM. Serum samples were allowed 

to dry for 0, 2, 4, and 6 minute intervals with spectra acquired at each interval. This 

was repeated at least five times per fan and heater setting combinations and the spectra 

averaged and baseline corrected. 

Later, a variable temperature incubator was acquired that could simultaneously 

dry 36 SIRE slides at once. To verify the incubator maintained similar, or better, 

performance benefits of the previous drying methods, 3µl serum droplets were pipetted 

onto individual SIREs and placed under a fan set to 60CFM within the incubator set at 

30°C and allowed to dry for 0, 2, 4, 6, 8, 16, and 32 minute intervals taking a spectrum 

after each interval. Three Spectra were collected per interval which were averaged and 

baseline collected for analysis. A total of 456 spectra were collected for this study. 
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4.2.4.2. Serum Variance Investigations 

A series of small experiments were set up to identify if and how experimental 

error can be introduced when analysing serum samples. 3µl samples of dried HPS was 

analysed on a group of 14 randomly selected SIREs (group 1). Three biological and 

three instrument repeats were performed per SIRE (n = 126 spectra). PCA was 

performed to determine if spectra could be separated by the SIREs they originated 

from. A one-sample student t-test was performed on the scores of the PC1 direction to 

determine if the mean PC1 score differed significantly from a hypothetical mean of 

zero. Since PC1 is the direction of greatest variance, reproducible spectra should not 

differ significantly from the centre point of the PC. 

Group 1 SIREs were stored in a desiccator overnight with the dried HPS still 

intact. The group was then reanalysed the next day in the same manner. PCA was 

performed again to determine if separation could be observed between PC scores of 

spectra obtained on ‘day 1’ and ‘day 2’. A paired student t-test was performed on the 

PC1 scores of the spectra acquired on each day to determine if dried sera films were 

stable overnight. 

A second group of 14 randomly selected SIREs (group 2) was used to analyse 

3µl dried sera samples again with three biological repeats and three instrument repeats 

per SIRE (n = 126 spectra). PCA was performed to determine if separation could be 

observed between PC scores of spectra obtained from two different groups of SIREs. 

An unpaired student t-test was performed on the PC1 scores of the spectra acquired 

from each group to determine if serum analysed on different days on different SIREs 

were reproducible. 
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 Lastly, two SIRE slides were used to analyse 3µl of HPS. On one slide the 

serum was spread to fit the entire confinements of the sample area, while on the other 

slide the serum was spot in the centre of the sample area and left alone. This was to 

demonstrate how a difference in pipetting method can impact spectral quality. 

 

4.2.4.3. SIRE Surface Treatments 

Cleaning protocols using three different cleaning agents were investigated. 

Acetone (≥99.9%, Sigma-Aldrich, UK), Piranha and a Virkon (Fisher Scientific, UK) 

control group were selected for investigation. Acetone is a ubiquitous laboratory 

solvent, Piranha is a colloquial term for a powerful corrosive widely used to eliminate 

organic matter from laboratory glassware, and Virkon is a trademark name for a multi-

purpose alkaline disinfectant. Formulations for Piranha vary, but here 50ml batches 

have been made in house from three parts (30ml) sulfuric acid (96% solution in water, 

Thermo Fisher Scientific, UK) to one part hydrogen peroxide (30% in water, Thermo 

Fisher Scientific, UK). For the Virkon solution, 0.5g of Virkon powder was measured 

out using an analytical balance then added to 50ml warm water to give a 1% Virkon 

solution. Virkon was selected for the control group because decontamination of 

biological samples using Virkon is a procedural requirement enforced by Strathclyde 

University safety standards meaning all SIRE groups needed to be cleaned with Virkon 

anyway. All formulations were made fresh each day of experimentation. 

Five SIREs were used per protocol over a course of five days. On each day 3µl 

of serum was pipetted into wells ‘1’, ‘2’, and ‘3’ of each SIRE and dried before 

analysis. All bulk sample was then removed with a cotton swab soaked in Virkon as 
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per procedural requirements enforced by Strathclyde University safety standards. 

SIREs were then immersed in either acetone, Virkon, or Piranha for 30 minutes. The 

acetone group was then immediately transferred to 2-propanol (≥99.5%, Sigma-

Aldrich, UK) to stop the formation of evaporation stains and salt residues. All SIREs 

were then rinsed in deionised (DI) water and dried using a nitrogen gun. SIREs were 

then left in a desiccator overnight and the process was repeated for each group the next 

day. Three spectra were collected from each SIRE per day for a total of 135 spectra. 

 

4.2.5.  SIRE Analytical Characteristics 

4.2.5.1. SIRE comparison to other IRE options 

SIREs were compared to four commercial and non-commercial IRE options. 

These were: A Diamond IRE (Di IRE), a Silicon Carbide (SiC) IRE, a blank piece of 

Double Side Polished (DSP) silicon, a blank piece of Single Side Polished (SSP) 

silicon. The intention is to firstly compare SIREs to commercially available systems 

(Di IRE and SiC IRE) and to highlight the importance of the optically engineered 

aspects of the SIREs by comparing them to blank, un-etched SSP and DSP silicon 

pieces. Ethanol (Absolute ≥ 99.5%, Sigma-Aldrich, UK) was selected for this purpose 

as it is a readily available substance and interacts strongly with IR light. A stock 

solution of 50% v/v ethanol in water was made for this study by diluting 1ml ethanol 

with 1ml water using a pipette. Each IRE type was used to analyse 3µl of the stock 

ethanol solution. A background scan to water was taken and subtracted from the 

spectra. The data was first inspected raw, then it was cut between 900-1350cm-1 

(silicon phonon region) then baseline corrected. 
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4.2.5.2. Ethanol Concentration Study 

In this part of the investigations only the Di IRE was compared to the SIRE. 

The ethanol stock solution was diluted into 2ml Eppendorf tubes to concentrations of 

50, 25, 12.5, 6.25, 3.125, 2, 1, 0.5, 0.25, and 0% v/v ethanol in DI water. Dilutions 

were made by a serial dilutions method whereby concentrations down to 3.125% v/v 

were diluted by a factor of two and concentrations from 2 to 0.25% v/v were also 

diluted by a factor of two. The 2% v/v dilution was made by pipetting 20µl 50% v/v 

into 480µl DI water. The reason for staggering the serial dilutions in this way was to 

capture more datapoints at the low concentration range. All dilutions were thoroughly 

mixed through multiple inversions. An approximate error band of ±0.5% applies to 

each factor level based on a ≥99.5% (i.e., 0.5% uncertainty) purity of original solution. 

3µl of each concentration was analysed three times with instrument triplicates on both 

the Di IRE and SIRE. A background scan of water was taken and subtracted from the 

spectra. Analysis was carried out immediately after solutions were made to prevent 

ethanol concentration loss by evaporation. A total of 180 spectra were collected. The 

data was first visually compared raw, then cut between 1020-1060cm-1 to only 

encapsulate the C-O peak of ethanol and then baseline corrected. The area under the 

C-O peak was then used plot calibration curves and to ascertain R2 values, RMSE, 

LOD, and LOQ. Proper characterisation of LOD and LOQ along with the 

reproducibility of SIREs and high-throughput ATR will highlight any weaknesses and 

allows for effective quality control procedures to be formulated and may allude to 

specific applications SIREs are better suited to. 
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4.3. Results and Discussion 

 

4.3.1. Intrinsic Variance Characterisation and Mitigation 

4.3.1.1. Silicon Variance 

Spectra of 14 SIRE slides are presented alongside spectra of serum acquired 

on the same slides in Figure 4.3. In Figures 4.3.(c) and (d) the average spectra have 

been indicated by a red line along with the standard deviation as represented by the 

shaded area. By visual inspection of Figures 4.3.(a) and (b) the baseline offsets do not 

seem to differ significantly from raw spectra of SIREs with or without serum on it 

indicating that this effect predominantly arises from differences in the crystal lattice 

itself. The spectra of SIREs curve up at the low wavenumber region starting from about 

1700cm-1. This is an artefact caused by free charge carrier absorption and can be 

eliminated by selecting silicon with a free carrier concentration of less than 

15x1015atoms cm-3 [2], [23]. Pre-processing the spectra using a rubber band baseline 

correction effectively rectifies both baseline offset and free-carrier absorption 

artefacts, significantly reducing the standard deviation in both SIRE and serum spectra 

(Figures 4.3.(c) and (d)). To identify the specific spectral regions where variance is the 

highest, the standard deviation across the entire spectra has also been plotted. Standard 

deviation across the entire spectrum is in both cases very low roughly reaching a 

maximum of only 5x10-3, but slightly higher in the serum analysis. Figure 4.3.(f) 

shows many expected prominent peaks that are attributed to spectral variations of the 

biomolecular constituents of the serum samples with the exception of 1107cm-1 which 

is most likely due to variations in the Si-O band of the SIREs with which the serum 

was interrogated. Most surprising is the curve between 2000-2500cm-1 of the standard 
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deviation of serum (Figure 4.3.(f)), which is not visible in any other interpretation of 

the serum spectra. This curved spectral feature can be indicative of dispersion artefacts, 

and somewhat resembles resonant Mie scattering [11], [24]–[26]. It is possible that the 

close match between the size of the smallest features on the SIRE (25µm) and the mid-

IR wavelength range (2.5-25µm) could give rise dispersion effects, but if this were the 

case then similar artefacts should be present in the corresponding SIRE spectra (Figure 

4.3.(e)). Instead, It is more likely that micro-fissures in the dried serum films are of the 

same magnitude as the mid-IR wavelength range and therefore result in dispersion 

artefacts caused by scattering at the air to sample interface [11], [25]. In either case, 

the spectral contribution appears minimal and can be accounted for computationally 

[24]. Another notable feature present in the SIRE spectra (Figures 4.3.(a), (c), and (e)) 

is the prominent baseline noise located between 1500-1800cm-1 and 3500-4000cm-1. 

This is strikingly similar to water vapour interference, a well-documented FTIR 

spectral artefact [27], and can be removed computationally and doing so would have 

little impact on the outcome of this particular analysis.  
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Figure 4.3. Spectra of the silicon lattice of a group of 14 SIREs adjacent to 

spectra of serum taken using the same SIRE spectra highlights how problems 

with inconsistencies of the silicon lattice spectra translates into issues in the 

analysis of serum samples. (a) and (b) raw spectra demonstrates large baseline 

offsets between SIREs. (c) and (d) average spectra (red) with standard 

deviation of the spectra shown (shaded) following baseline correction. 

Standard deviation does not seem to increase a large amount when analysing 

serum. Complete attenuation of signal can be observed in the serum spectra at 

610cm-1 which coincides with the Si1 phonon on the silicon lattice. (e) and (f) 

standard deviation of each case has been plotted which highlights low standard 

deviation across the entire silicon lattice spectrum. 
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4.3.1.2.  Silicon Intra-Wafer Variability 

Impurities are distributed non-homogenously across silicon wafers in helical 

swirl, or ring-like patterns varying in character depending on the crystal growth 

conditions such as crystal rotation speed, pull rate, annealing process, dopants, and 

crucible material [1], [6], [28]–[30]. Ring distributions have been observed to range 

from microns to millimetres in width [5], [31]. However, impurity densities vary 

continuously across the wafer radius and generalizing the shape and size of these 

distributions is therefore difficult. SIREs cannot be fabricated such that they avoid 

such impurity distributions since the SIRE pattern must be aligned to the 110 crystal 

plane to produce v-shaped grooves as described in chapter 2 section 2.5.3. It is likely 

that SIREs may cross from regions of high impurity concentrations to low which will 

result in inhomogeneity across the SIRE crystal and thus produce variance across the 

three sample areas. If this variance can be quantified and understood, it may be 

possible to arrange spectral pre-processing protocols that negate it or apply boundaries 

that can identify high variance SIREs for quality control purposes. Spectra were 

acquired from 65 individual SIRE chips taken across the entire diameter of a wafer 

and scanned with reference to a Gold mirror. Technically this means the wafer was 

sampled at 6mm intervals and the exact position of each chip was recorded. Figure 4.4 

shows the location on the silicon wafer each SIRE was sampled from along with a heat 

map displaying the average absorbance of the Si phonon 2 (Si2) at each corresponding 

point. No swirl pattern or concentric rings could be discerned from any spectral 

interpretation of the data gathered. While it is clear that there is some inhomogeneity 

of impurities across the wafer it does not appear to be in the form of the concentric 

ring pattern of oxygen precipitates described in the literature [19]. However, it may be 
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that a greater spatial resolution would be required to delineate such structures, or that 

the spectral contributions of the peaks of modulating impurity concentration (Si-O, Si-

C, or Si-B) are not significant enough to be adequately spatially characterized using 

this mode of IR spectroscopy [32]. If this is the case it would suggest that impurity 

homogeneity has little impact on device reproducibility. 

 

Figure 4.4. Illustration of a silicon wafer with the points at which the silicon 

was sampled. Each box indicates a SIRE slide and boxes with numbers 

indicates a SIRE chip that was selected for spectroscopic analysis. Colours 

represent a heat map of the absorbance intensity of the silicon phonon 2 with 

green being lowest intensity and red the highest. No pattern could be 

distinguished that would indicate any kind of predictable spectral profile based 

on SIRE location from the source silicon wafer. 

The average spectra from all 65 SIREs of this study have been presented in 

Figure 4.5. In contrast to spectra previously displayed in Figure 4.3, spectra are highly 
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reproducible with a smaller standard deviation across the spectra as a whole and lack 

the water vapour artefacts located at 1500-1800cm-1 and 3500-4000cm-1. The 

improvement in spectral standard deviation and lack of water vapour signal compared 

to the previous experiment is likely primarily due to factors relating to the 

experimental set-up, not the SIREs themselves. For instance, SIRE chips were placed 

directly on the spectrometer aperture for analysis whereas SIRE slides were placed 

within an old variant of the PLA receptacle that raised the SIRE ~0.6mm from the 

beam aperture, reducing beam throughput and lowering spectral quality (see chapter 

1, section 3.3.2, for more details). This may also have increased the likelihood of water 

vapour interference by exposing the beam to the environment. The improvement of 

standard deviation will also be in part due to the increased number of repeat scans per 

optical area (i.e., 3x spectra per SIRE slide position in Si variance study, 9x spectra 

per SIRE chip in Si intra-wafer variance study). Small peaks visible just under 3000cm-

1 is an abnormality attributed to CO2 interference arising from an increase of 

atmospheric CO2 possibly due to exhaled air from the operator obstructing the beam 

path between background and sample scans [33]. Standard deviations across the entire 

unprocessed spectra is quite low, but, of course, higher than that of the processed 

spectra and at 610cm-1 the most variance is observed whether or not the spectra have 

been processed. 
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Figure 4.5. (a)  Raw spectra of all SIREs collected from known locations 

across a single silicon wafer. (b) Average raw spectra with standard deviation 

across the spectra indicated. (c) all spectra baseline corrected. The 

interference of atmospheric CO2 at around 3000cm-1 is more noticeable in this 

interpretation of the spectra. (d) average baseline corrected spectra with 

standard deviation indicated. The shaded region indicating standard deviation 

is barely discernible following this simple spectral pre-processing step. (e) and 

(f) the standard deviation across the entire raw and processed spectra. 

Standard deviation is vastly reduced after baseline correction, but in each case 

there are significant variance contributions at wavenumbers 610cm-1 and 

1107cm-1. 
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The baseline offset of silicon spectra presented here in Figure 4.5 and 

previously in Figure 4.3 may well only be a result of unavoidable atmospheric 

dynamics between measurements, but to offer an alternative explanation it is worth 

noting that the attenuation of light across the entire mid-IR range through the silicon 

lattice is in some part governed by the concentration of impurities within the lattice as 

described by the equation below [2]: 

 

Equation 4.1. Constituent parts of the absorbance coefficient. 

Where α = the total absorption coefficient, α𝑖𝑚 = absorption from impurities, 

α𝑝ℎ = phonon absorption, α𝑓𝑒 = free carrier absorption, α𝑠𝑐 = light scattering due to 

IRE surface roughness. 

In the present, study the equation can be reduced to omit the α𝑓𝑒  and α𝑠𝑐 

components because the dopant concentrations used here will lead to negligible values 

of free carrier absorption coefficient (α𝑓𝑒), and the use of DSP wafers will provide 

such low levels of surface roughness that the internal IRE scattering term will also be 

considered negligible (α𝑠𝑐) although scattering from the sample may still occur [2]. 

 

Equation 4.2. Reduced absorbance coefficient equation. 

The significance of this is that non-homogeneity of impurities across a silicon 

wafer will not only result in variability at the impurity peaks, Si-O, Si-C and Si-B, but 

also in the degree to which each individual SIRE transmits light across the mid-IR 

spectrum as a whole resulting in the disparity in baseline offsets observed in Figures 

α= α𝑖𝑚+ α𝑝ℎ + α𝑓𝑒 +  α𝑠𝑐 

α= α𝑖𝑚+ α𝑝ℎ 
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4.3.(a) and 4.5.(a). Future alterations to the specifications of the silicon material used 

for the fabrication of SIREs should be mindful of this since changes to the wafers 

surface roughness, dopant concentrations, or dopant type, for example, could 

exacerbate SIRE inconsistencies. In the present findings, however, it appears that the 

impact of this is marginal and can be accounted for easily through simple pre-

processing and quality control mechanisms. Figure 4.6 shows histograms of the Si2 

and SiO absorbances from all 65 SIRE chips. Anderson-Darling normality tests found 

that the Si2 absorbances were normally distributed across the wafer (p = 0.8137). In 

contrast, SiO absorbances were not normally distributed due to four outliers with a 

peak absorbance of 0.065 or 0.068 (p < 0.0001). The 0.065 outliers correspond to wafer 

positions 22 and 65 and the 0.068 outliers correspond to wafer positions 1 and 65. A 

one-sample student t-test determined that no significant difference existed between the 

mean Si2 absorbance and a hypothetical mean of 0.0276 (t(64) = 1.044, p = 0.3004). 

A separate one-sample student t-test also found that no significant difference existed 

between the mean SiO absorbance and a hypothetical mean of 0.062 (t(64) = 0.6365, 

p = 0.5267). This indicates that both the impurity component and Si lattice component 

of IR absorbance is reproducible across the Si wafer. However, the locations of the 

four outliers detected indicates that high oxygen impurity exists at the periphery of the 

Si wafers. Si interstitials and other defects (e.g., photoresist adhesion failure) are 

common at the periphery of the wafer and device yield can be low at the wafer edge 

[34]–[38]. Hence, SIREs fabricated on the periphery of the wafer may be unreliable. 

The true number of SIRE slides that may be reliably fabricated from a single wafer is 

therefore estimated to be 52 of a total of 60 giving an estimated manufacturing yield 

of 86.67%. In practice, a quality control procedure whereby SIREs that possess an 
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average SiO peak absorbance of <0.065 should be applied to ensure reproducible SIRE 

slides are manufactured. 
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Figure 4.6. Frequency distribution histograms of Si2 peak absorbances (top) 

and SiO peak absorbances (bottom). 
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4.3.2. Extrinsic Variance Sources and Mitigation 

4.3.2.1. Optimised Serum Drying 

When interrogating serum using ATR-FTIR samples must be dried onto the 

IRE before any analysis can be carried out. With respect to sample preparation, this is 

an extremely simple practice relative to many other bioanalytical techniques that 

require many careful steps and expensive reagents. The reason serum should be dry is 

because water is a strong absorber of IR light and to optimise the sample to crystal 

contact profile (for more information see chapter 2, section 2.2.2) [7]. Water has three 

vibrational modes, all of which tend to obfuscate concurrent vibrational modes of 

analyte molecules. Furthermore, in ATR mode water gives rise to anomalous 

dispersion effects which distort the O-H band and skew quantitative analysis [39]. 

Serum spectra is no exception to this and there is obviously a huge water content in 

serum. Figure 4.7 shows the drastic spectral transformation between wet and dry serum 

after drying in ambient conditions for 6 minutes. Blue spectra indicate wet samples 

while red spectra indicate dry samples. The information rich ‘fingerprint region’ is 

clearly observed in dry serum spectra. In aqueous spectra the O-H stretch vibration 

will be most prominent, but once dried the amide I and II peaks within the fingerprint 

region will have the greatest intensity on the spectrum unless special treatments have 

been applied [40]. These peaks are attributed to molecular vibrations arising from 

proteins, carbohydrates, nucleic acids, and lipids that together display a unique 

biochemical pattern that can be used for diagnostic applications [41]. Specific 

important spectral regions that are obscured by water are between 3000-3500cm-1 

where the NH and CH bonds of proteins and lipids respectively may have significant 

spectral contributions, and the absorption bands of the fingerprint region at 800-
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1800cm-1 which are indicative of a wide variety of molecular bonding environments 

representative of proteins, nucleic acids, lipids and carbohydrates [41], [42]. With the 

water removed, it is imperative that a good contact profile of the sample can be made 

with the IRE crystal as to permit as much interaction with the evanescent wave and the 

sample contents as possible [43]. An effective drying protocol should be capable of 

reproducibly producing both physically and chemically homogenous sample films. 

 
Figure 4.7. The spectral transformation of HPS as it dries at two-minute 

intervals over a six-minute period. Blue indicates wet samples, red indicates 

dry. The O-H stretch curve, Amide I peak, Amide II peak and the fingerprint 

region have been denoted. Spectra have been acquired on a Di IRE. 

It has previously been shown that serum samples will be completely dry under 

ambient conditions after 8 minutes [44]. In order to meet clinical standards for sample 

throughput this drying speed needs to be reduced by as much as possible. To optimise 

a sample preparation regime, forced drying was executed in two ways: through gentle 

heating and through blow drying both separately and together. It was believed that 

moderate application of both strategies would provide the optimal drying conditions. 

Figures 4.8.(a) – (f) display the spectra acquired at discrete time intervals for 

each of the six drying methods. Table 4.2 outlines all the different drying conditions 

tested on the Di IRE and specifies the time intervals each colour corresponds to.  A 
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legend has been provided to specify at what time interval a spectra was acquired. Blue 

spectra indicate wet samples, and red spectra indicate dry samples. Spectra shown in 

Figure 4.8 have been cut and baseline corrected. The difference between wet and dry 

serum is immediately apparent through visual inspection of the spectra alone (Figure 

4.7). The most prominent transformation occurs at 3000-3500cm-1 wavenumbers 

which indicates the O-H stretch vibration diminishing to reveal the NH and CH3 

vibrations of protein and lipid molecules respectively [42]. Overall, it is abundantly 

clear that any type of forced drying protocol tested here dries specimens quicker than 

if left to dry in ambient conditions as evidenced by the more rapid reduction in O-H 

stretch region of all drying methods compared to the control in Figure 4.8. There does 

not seem to be any substantial difference in drying rate from 5CFM blow dried serum 

to 9CFM blow dried serum. It is apparent, though, that fan drying alone leads to poor 

spectral quality evidenced by the large amount of baseline noise visible between 

approximately 1800cm-1-2500 cm-1. Heating alone does not appear to incur spectral 

noise and exhibits the largest increase in drying speed particularly at 35°C. There is 

not enough evidence to suggest that this drying speed is further improved upon by 

using the heating mats in combination with blow drying at this point. 

Table 4.2. Parameters of all drying methods tested on a Di IRE. The colours 

which have been used to specify which time interval the spectra in Figure 4.8 

represent have also been presented here. 

 

Drying Regime Air flow (CFM) Temperature (°C) 

Fan 1 5 ±0.75 25 ±0.5°C 

Fan 2 9 ±1.35 25 ±0.5°C 

Heater 1 0 ±0.00 30 ±0.5°C 

Heater 2 0 ±0.00 35 ±0.5°C 

Combined 9 ±1.35 35 ±0.5°C 

Control 0 ±0.00 25 ±0.5°C 
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Figure 4.8. (a)-(f) Transformation of HPS spectra as it dries on a Di IRE over 

a 32 minute period under different drying conditions. The parameters of each 

drying condition and the time intervals spectra were collected at have been 

presented in table 4.2. 
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Individual sample preparation with conventional ATR-FTIR upon a fixed IRE 

crystal is a severely time limiting factor. Batched forced drying is therefore a highly 

promising solution. It needed to be determined if the drying methods described here 

could be applied to SIREs and if the drying speed may even be further improved upon. 

A more powerful fan was utilised for subsequent trials since the previous fan speeds 

yielded disappointing results. The average area under the O-H curve was calculated at 

four time intervals of each of the 12 drying regimes tested. These results have been 

presented in Table 4.3 as the reduction in O-H is a direct indicator of how dry a sample 

is and is a better visualisation of the differences in drying speeds between drying 

regimes than copious spectra in this case. Larger O-H curve areas indicate a higher 

presence of water in the sample. Again, blue values indicate wet samples, while red 

indicates dry samples. Temperature alone appears to have a much larger impact on 

drying rate than fan usage, although used in combination the effectiveness of each 

technique is greatly amplified. Samples can be dried in as little as 2 minutes with the 

more powerful airflow rate. While there appears to be significant improvements in 

drying time when increasing fan rates from 9CFM to 60CFM, there does not seem to 

be substantial benefit in increasing the fan speed to 70CFM. The greatest improvement 

in drying speed is still due to gentle heating, but contrary to earlier findings the only 

way to ensure complete drying in two minutes is to use a combination of fans and 

heating as observed by the miniscule changes in area under the O-H curve following 

the two-minute mark for droplets subjected to both heating above 30°C and forced air 

drying above 60CFM. Table 4.4 shows the RSD% of the area under the O-H stretch 

for each drying regime tested to help establish which method is most reproducible, or 

to reveal any methods that might inadvertently be introducing variance into the sample. 
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Here, red has been used to indicate a high RSD% while green has been used to indicate 

a low, and hence more reproducible, RSD%. A less discernible pattern has emerged 

making the distinction of the most repeatable method less clear cut. In general, wet 

samples have poorer reproducibility perhaps due to higher scattering, less control over 

sample biomolecular distribution and sample thickness, and dispersion effects [45]. 

RSD% values for tests carried out at 25°C and 9CFM appear unreliable as they are 

both very low at time zero (0.42) and very high at four minutes (17.66). Other values 

on Table 4.4 indicate that the use of a fan generally improves sample reproducibility 

with some of the lowest RSD% values obtained at 70CFM across all heater settings. It 

is not clear whether heating alone improves reproducibility of the dried films, but 

heating in combination with fans does seem to improve RSD% values. The droplet 

displacement caused by airflow from the fan may be responsible for improvements in 

reproducibility as this would result in greater as well as more consistent sample 

coverage within the well, forcing samples into uniform thicknesses and disrupting the 

normal mechanisms by which the ‘coffee-ring’ phenomena takes place [9]. 
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Table 4.3. Area under the O-H stretch curve at every time interval for every 

combination of drying conditions tested. Blue indicates wet samples, red 

indicates dry. 

 

Table 4.4. RSD% of area under the O-H stretch curve at every time interval 

for every combination of drying conditions tested. Red indicates high RSD%, 

green indicates low RSD%. 

 

Figure 4.9 shows the drying rate of spectra under a fan outputting 60CFM. This 

is to demonstrate the exceptional increase in drying speed this airflow has produced in 

comparison to that previously demonstrated in Figure 4.8 at 9CFM. More importantly, 

Temp (°C) Time (Min) 0 9 60 70

0 28.73 30.65 27.91 29.27

2 28.29 29.22 16.36 18.51

4 22.79 19.71 15.98 15.81

6 19.84 15.16 15.93 15.68

0 28.71 26.79 21.88 22.55

2 16.94 13.95 13.00 12.86

4 12.88 12.50 12.61 12.44

6 12.43 12.28 12.65 12.37

0 27.86 21.70 19.71 18.11

2 14.11 11.86 11.87 11.88

4 12.33 11.16 11.81 11.81

6 11.14 10.87 11.99 11.89

25

30

35

Air Flow (Cubic Feet per Minute)

Area under O-H stretch at different time intervals

Temp (°C) Time (Min) 0 9 60 70

0 17.93 0.42 8.49 3.76

2 12.34 3.18 8.80 23.61

4 32.16 17.66 5.94 4.17

6 32.56 3.30 5.40 4.40

0 16.51 10.71 20.80 5.54

2 32.23 21.79 5.62 7.31

4 10.25 6.88 5.47 8.36

6 7.32 6.60 6.01 8.97

0 6.93 21.01 10.55 11.93

2 26.01 4.47 9.69 5.89

4 11.19 5.38 9.65 5.76

6 4.76 6.62 9.26 5.97

Air Flow (Cubic Feet per Minute)

25

30

35

RSD% of O-H stretch at different time intervals
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it shows that spectral quality was not visibly compromised through this approach. This 

is most likely due to greater stability of the experimental setup and more direct 

application of the airflow onto the specimens hence enhanced sample spreading 

profile. The spectra reach a steady state by the first two minutes as demonstrated by 

the overlapping spectra (2, 4, & 6 minute interval spectra are overlapping) in Figure 

4.9 suggesting there is no more water to remove from the sample after this time. This 

is substantially faster than any of the drying methods previously tested. The spectra 

shown represent typical spectral transformation following serum dehydration [11], 

[40], [44]. 

 

Figure 4.9. HPS dried on a SIRE using a powerful 60CFM fan output. Spectra 

reaches a steady state after two minutes indicating the sample has been 

completely dried within this time. Note: spectra at 2, 4, and 6 minute time 

intervals are overlapping and are therefore not clearly visible. 

An incubator was later used as an environment that could uniformly heat 

numerous SIREs simultaneously. The effectiveness of this new approach was tested 

A
b

so
rb

an
ce

 



193 

 

by placing SIREs into the incubator set to 30°C and under a fan outputting 60CFM 

airflow for 0, 2, 4, 6, 8, 16, and 32 minutes. Figure 4.10 shows the spectral drying 

profile of 3µl of serum upon a SIRE under these conditions. As before, samples can 

be dried rapidly in at least two minutes. However, it will be challenging to ensure air 

flow is uniform across several SIREs drying simultaneously and so this approach may 

not be appropriate for batched drying. Table 4.5 shows the area under the O-H curve 

and the RSD% of the O-H curve at each time interval. Area under the O-H curve 

decreases rapidly after two minutes and remains relatively stable after this period. 

RSD% also improves dramatically after 2 minutes and remains low up until 32 minutes 

have elapsed.  

Table 4.5. Area under O-H stretch curve and RSD of O-H stretch curve of HPS 

spectra drying on a SIRE at various time intervals over a 32 minute period. 

Serum was dried within an incubator and under a fan outputting 60CFM 

airflow and at 30°. 

 

Figure 4.10. Spectral drying profile of HPS in an incubator set to 30°C and 

under a fan outputting 60CFM airflow at various time intervals over a 32 

minute period. 

Time (Min) 0 2 4 6 7 16 32

Area under O-H stretch 12.93 7.39 7.22 7.06 7.10 6.90 6.96

RSD% 39.33 2.65 1.80 3.68 1.81 3.58 1.32
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Most drying strategies described here can rapidly remove water content from 

serum samples deposited upon SIRE sample sites with good reproducibility. In 

particular, moderate heating (30°C or 35°C) is capable of reducing drying wait times 

to at least 2 minutes, and fan assisted drying (60CFM or 70CFM airflow) is effective 

in maintaining and perhaps improving spectral quality of dried serum films. It is likely 

that these drying strategies can adequately prepare serum samples upon SIREs in less 

than two minutes, but to determine if greater drying speeds can be achieved tests must 

be performed at shorter time intervals. While still possessing good RSD% values, 

incubator dried serum samples exhibit a marked increase in baseline noise in 

comparison to previously trialled drying methods. The difference in relative humidity 

between the inside of the incubator (ca. 10%) and the ambient environment (ca. 30%) 

is likely the cause of this. Bou Zeid describes the differences in morphology of blood 

films which have dried under various relative humidity conditions [46]. Fracture 

patterns more prevalent in films dried in lower humidity may increase scattering 

prevalence in FTIR analysis thus increasing spectral noise. Thus, humidity is an 

important parameter that must be kept stable across batches of drying serum samples. 

A study has shown that Constant Temperature Humidity Chambers (CTHC) set to 50% 

humidity and 75°C can be used to homogeneously distribute droplet precipitates with 

rapid evaporation times, although optimal humidity conditions for serum would have 

to be independently investigated [47]. Numerous studies describe the impact drying 

patterns can have on the resultant spectra of samples studied using FTIR [8], [9], [48]. 

Non-uniformity in either sample thickness or biomolecular distribution are primary 

causes of poor spectral quality. Sustained shear forces from air flow generated by the 

fans will help smooth surface irregularities and maintain a uniform sample thickness. 



195 

 

Heating of droplets is also known to promote uniform precipitation of molecular 

constituents following evaporation [47]. The benefits both heat and air flow drying 

mechanisms have on spectral quality is evident in the findings presented here 

signifying that a combination of both fans and heaters can vastly reduce sample 

preparation time of serum for spectral analysis, but also reduce extraneous sample 

variance. Ultimately, this demonstrates the viability of batched sample preparation 

using SIREs for high-throughput ATR FTIR. 

There are a multitude of alternative methods and techniques that may further 

improve drying rate and reduce sample variance. Serum dilutions with physiological 

water prior to sample drying may help reduce crack formation, and consequently light 

scattering, as shown by Lovergne et al. although an unfortunate repercussion of this is 

potentially exacerbating the coffee-ring effect [8]. Automated piezo-jetting is able to 

circumvent the coffee-ring effect by depositing several hundred sub-nanolitre droplets 

immediately adjacent to each other allowing droplet peripheries to merge and combine 

precipitate rings [45], [49]. A combination of serum dilution and piezo-jetting may 

present an attractive option for further improving spectral reproducibility of serum 

films for vibrational spectroscopy. Freeze-drying (Lyophilisation) removes water via 

sublimation in a reduced pressure environment to produce glassy films of serum [50]. 

The primary advantage of this is that the evaporated product can be stored in ambient 

conditions over much longer periods of time in comparison to conventionally dried 

serum [51]. This would greatly complement the SIRE slide as specific patient samples 

could be stored for reanalysis at a later date. 
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4.3.2.2. Serum Variance 

To further explore how capable SIREs are in the analysis of complex media, a 

series of analysis were performed to examine how reliably HPS could be interrogated. 

3µl of HPS taken from the same source was pipetted into 14 randomly selected SIREs 

(Group 1), dried, then scanned. Figure 4.11 shows a PCA plot of first two PCs of the 

data. No clear separation can be seen in these PCs, but some clustering of SIREs is 

visible. The first 13 PCs explain over 90% of the total variance in the dataset. Each PC 

displays scores distributed in a similar way to PC1 and PC2 showing no clear 

separation. There is an exception in PC 3 which indicates HPS spectra acquired from 

SIRE number 13 is distinct from the rest of the dataset (red circle Figure 4.11.(b)). PC3 

loadings indicates variance in this PC is dominated by the 1900-2300cm-1 wavenumber 

region (Figure 4.11.(c)). This is confirmed through inspection of the HPS spectra 

acquired from each sampling position of SIRE number 13 which shows discrepancies 

in this wavenumber region (red circle, Figure 4.11.(d)). This is unusual because the 

1900-2400cm-1 wavenumber region is normally a low signal baseline region of the 

HPS spectrum and is not useful for serum analysis. This signal is indicative of light 

scattering on sampling position 1 of SIRE number 13 likely due to sample preparation 

error rather than originating from the SIRE itself. A non-homogenous or broken 

sample film could lead to scattering artefacts resulting from a difference in optical 

density across the IRE at the sample to air interface like the artefact observed earlier 

in section 4.3.1.1 [11], [25]. This highlights the need for controlled sample preparation 

protocols. In future work, it may be possible to use this spectral region to construct a 

quality control algorithm and automate the removal of SIRE wells exhibiting scattering 

at the sample to air interface. A one-sample t-test determined that there was no 
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significant difference between the mean PC1 scores and a hypothetical mean of zero 

(t(13) = 0.9962, p = 0.3373). This together with the clustering of samples in the PCA 

scatterplot indicates that identical HPS samples can be analysed reliably using SIREs 

as the variation between slides is low provided sample preparation is performed 

correctly. Moreover, the low percentages of the loading directions suggest there is a 

low level of variability in the dataset. 

 

Figure 4.11. (a) PC1 and PC2 scores plot of HPS spectra acquired from 14 

randomly selected SIREs. Clustering of datapoints and low loading 

percentages indicates a high level of agreement between the samples. (b) PC3 

and PC4 scores plot from same PCA revealing one outlier SIRE (number 13) 

as indicated by the red circle. (c) PC3 loading plot showing baseline 

wavenumbers (1900-2300cm-1) to be the biggest contributors to separation in 

PC3. (d) Evidence of scattering in the baseline of SIRE 13 HPS spectra (1900-

2300cm-1) likely due to sample preparation error.  

(a) 

(d) (c) 

(b) 
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Figure 4.12 shows the average spectrum with standard deviation of all serum 

spectra taken using SIREs on two consecutive days as well as the corresponding PCA 

plot of the first two PCs. There is no obvious difference in groups and percent 

explained variance is low. Spectra have been offset for comparison. Mean standard 

deviation is slightly higher in the day two group than the day 1 group (0.0014 and 

0.0015 respectively). The first 14 PCs explained over 90% of the variance in the 

dataset with each PC displaying PC scores distributed in a similar way to PC1 and PC2 

showing no clear separation or clustering of groups. PCA plots show a great deal of 

agreement between spectra acquired on each day indicating the serum has remained 

stable overnight and spectra are not significantly altered by differences in ambient 

conditions from one day to the next. However, a paired samples t-test confirmed a 

significant difference (t(13) = 4.831, p < 0.05) existed between the mean PC1 direction 

scores of day 1 (M = -0.002028, SD = 0.005084), and day 2 (M = 0.00208, SD = 

0.07396).  Standard deviation of group scores in PC1 are shown to be overlapping but 

means are not equivalent. These findings indicate that SIREs may not be suitable as a 

means to preserve dried serum samples for reanalysis at a later date. However, longer 

study periods would be needed to confirm this. 
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Figure 4.12. Analysis of dry HPS using SIREs on two consecutive days. (a) 

dried HPS spectra acquired using the same samples on the same SIREs on Day 

1 (red) and Day 2 (blue). The standard deviations have been indicated by the 

shaded region. (b) PCA plot of the spectra acquired on each day shows very 

little separation.  

The next day a second group of randomly selected SIREs (Group 2) were then 

used to analyse serum in exactly the same way and compared against Group 1. Again, 

spectra have been offset for comparison (Figure 4.13.(a)). A PCA scores plot of the 

first two PCs show differences, but no clear separation of the groups. The first 16 PCs 

explain over 90% of the variance in the data, each PC showing no clear separation of 

PC scores or clustering of groups. Again, the low PC loading percentages indicates a 

low amount of variance present in the dataset. Both groups are reproducible with mean 

standard deviation of Group 1 and Group 2 at 0.0014 and 0.0018 respectively. An 

unpaired two-sample t-test shows a significant difference (t(26) = -3.016, p = 0.0057) 

existed between the mean PC scores of Group 1 (M = -0.00387, SD = 0.007722), and 

Group 2 (M = 0.00387, SD = 0.005707). The standard deviation of the group scores in 

PC1 indicate groups are overlapping but means are not equivalent.  This result suggests 

measurements taken on separate days may impact reproducibility although again 

longer study periods need to be undertaken to clarify this.  
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Figure 4.13. Analysis of dried HPS on two different groups of 14 SIREs. (a) dried HPS 

spectra acquired using SIREs from Group 1 (red) and Group 2 (blue). Spectra have 

been baseline corrected and averaged. And the standard deviations have been 

indicated by the shaded region. (b) PCA plot showing no clear separation in data 

between Groups 1 and 2. 

To demonstrate how important pipetting consistency is in introducing variance, 

spectra were acquired of serum deposited into SIRE sample compartments in two 

different ways. 3µl Serum was either pipetted into the centre of the sample 

compartment and spread to cover the entire compartment area or pipetted into the 

centre of the sample compartments and left as a spot were the droplet was deposited 

(Figure 4.14). Only marginal differences in variance were observed with mean 

standard deviations of 0.0014 for spot serum and 0.0016 for spread serum. Figure 4.14 

shows there is a significant increase in absorbance intensity across the entire spectrum 

when samples have been spread over the entire compartment. Spreading ensures the 

entire beam spot above the specular reflectance puck aperture is interacting with 

sample instead of open air and thus maximising the IR beam throughput that is being 

utilised to interrogate the sample. Spreading is also a far more reliable method to 

ensure consistent drying profiles across SIREs as it reduces the chance of random 

droplet shape and size due to subtle differences in surface chemistries between SIREs 

which in turn affects droplet formation and contact angles [52]. To further improve 
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this aspect of using SIREs automated pipetting systems would need to be used as this 

variance is largely owed to operator error. 

 

Figure 4.14. Differences in the analysis of spot and spread HPS spectra. (a) 

3µl of serum have been pipetted onto a SIRE and either spread around to fit 

the confinements of the sample area (left) or spotted into the centre of the 

sample area (right). (b) the resultant spectra of the two different pipetting 

methods show a substantial decrease in spectral intensity when serum has not 

been spread around the sample compartment. 

 

4.3.2.3. SIRE Surface Treatments  

Methods to clean SIREs that had been used for serum analysis were 

investigated. SIREs were treated with either Piranha, acetone, or Virkon (control) 

solution over a course of five days and the signal quality of the devices monitored. The 
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SNR of all SIREs on each day was calculated to see if changes in spectral quality could 

be observed. All results for each treatment have been presented as a bar chart in Figure 

4.15. 

 

Figure 4.15. Bar chart of spectral quality of SIREs over five days following 

different cleaning regimes. 

SIREs treated with acetone were observed to have the most reproducible SNR 

over the five days. The major difficulty in using acetone for the cleaning of SIREs is 

the accidental deposition of residue upon the silicon which follows the rapid 

evaporation of acetone [13]. Acetone coated SIREs must be rapidly transferred to 2-

propanol then DI water to prevent contaminant residues which would otherwise be 

visible during reanalysis. Closer inspection of the spectra revealed that the control 

group suffered from artefacts as a result of residual sample present on the SIREs 

between cleaning. Virkon tends to create clumps of serum debris which could easily 

lodge into the v-grooves of SIREs undetected creating spectral artefacts such as the 

baseline deviation seen in Figure 4.16. 
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Figure 4.16. HPS spectra acquired from a SIRE that has been improperly 

cleaned using Virkon. HPS from a previous analysis has not been successfully 

removed from this SIRE and has skewed the baseline of the spectra as a result. 

Days 2 and 3 following piranha treatment saw a marked improvement in SNR 

after which time SIREs began to break down due to the aggressiveness of the chemical 

and SNRs were difficult to maintain. Piranha is effective in removing organic 

contaminants which would otherwise occupy the silanol (Si-OH) groups on inorganic 

silicon surfaces. The amount of silanol groups and extent of water adsorption on the 

silicon surface is instrumental in determining the wettability characteristics of silicon. 

More silanol group availability and surface water adsorption leads to an increase in 

hydrophilicity of the surface [53]–[55]. Silicon oxide surfaces tend to have numerous 

hydroxyl terminated groups and therefore are more hydrophilic than pure silicon 

surfaces which tend to have hydrogen terminated groups. Over time silicon will grow 

native oxide layers in ambient conditions, but, as silanol groups are quite reactive, will 

also adsorb contaminants which may reduce hydrophilicity [53]. Treatments that either 

contaminate the native silicon oxide layer, such as acetone [56], or remove it entirely, 

such as hydrofluoric acid [55], should be avoided. Both acetone and hydrofluoric acid 
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are used in the later stages of the SIRE fabrication process which implies SIREs do 

not possess optimised surface chemistries immediately following fabrication. Adding 

a final stage in the fabrication process that mimics well established treatments that are 

used to prepare soda lime glass for silanization (e.g., Piranha etching) [57] is a good 

option as this will minimise organic contaminants and maximise surface silanol group 

homogeneity hence improving sample spreading uniformity and SIRE quality. 

However, the surface chemistry may not be stable which may present issues after long 

storage periods. Plasma activation should therefore be explored as a more reliable 

alternative to bestow a long-term hydrophilic surface chemistry [58], [59]. 

 

4.3.3. SIRE Analytical Characteristics 

4.3.3.1. SIRE Versus IRE Alternatives 

To help gauge the efficacy of SIREs as FTIR optical components, SIREs have 

been compared to a Di IRE as well as other commercially available silicon FTIR 

utensils such as a fixed SiC IRE, a blank Single-Side Polished (SSP) un-etched piece 

of silicon, and blank Double-Side Polished (DSP) un-etched piece of silicon. For the 

sake of brevity all of these will collectively be referred to as IREs although strictly 

speaking the last two listed here are not IREs. Ethanol/water mixtures were used in 

each instance as this is a simple sample type and presents the best option for a fair 

comparison. A stock solution of 50% v/v ethanol in water was prepared and analysed 

on all IRE types. In each case, a background scan of water was subtracted from the 

acquired spectra. Figure 4.17 shows spectra taken using each of the different IRE 

types. Baselines have been offset for visibility in Figure 4.17 (a). In this case, 

subtracting a water background results in negative O-H peaks so to avoid errors the 
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data has been cut between 900-1350cm-1 before baseline correction (Figure 4.17 (b)). 

SNRs were calculated using the maximum absorbance at the C-O peak (1045cm-1) to 

represent the signal portion of the SNR equation and the standard deviation between 

1150-1200cm-1 was selected to represent noise. SNR and C-O peak absorbance have 

been reported in Table 4.6. 

 

 

Figure 4.17. Spectra of 50% v/v ethanol taken on a variety of IREs. (a) raw spectra 

with offset baselines for visibility. (b) processed spectra that has been cut then 

baseline corrected. 

Table 4.6. C-O peak intensity and SNR values achieved using each IRE. 

As expected, the DSP silicon and the SSP silicon have very poor signal 

intensities and SNR, but never-the-less can communicate signal. This demonstrates 

two things: the importance of optical coupling grooves for SIRE functionality, and the 

impact of surface roughness on the attenuation of the IR beam. The near complete 

extinction of signal from SSP blank silicon chips is exemplary of the effects of the 

scattering component in Equation 4.1 in section 4.3.1.2 mentioned previously in this 

chapter. Clearly, the greatest signal intensity is achieved when using a Di IRE with 

almost three-fold the absorbance value of C-O peak compared to the SiC IRE, the next 

IRE Type Diamond Si C SIRE DSP SSP

C-O Peak Absorbance 0.212 0.078 0.071 0.027 0.005

SNR 141.018 129.860 163.318 110.391 36.359
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highest absorbance from the IREs tested. It was shown previously (chapter 3, section 

3.3.2) that beam throughput of SIREs and the Di IRE is approximately equivalent so 

it is not expected that differences in critical angle will contribute to lower C-O 

absorbance peaks in Si IREs. It is also not likely that differences in material 

transmittance of IR light is responsible as absorbance peaks appear to be greater across 

the Di spectrum and not just localised to 1000-1100cm-1. Thus, the larger penetration 

depth of Di compared to Si is likely responsible for greater absorbance signal owed to 

Di’s lower refractive index [60]. SIREs and Di both show good signal quality with 

high SNR values, while the SiC IRE has a notably lower SNR. Figure 4.18 shows the 

lattice spectra of Di, SiC, and SIRE. The Si1/Si2 ratio at 610cm-1 and 1108cm-1 for 

SiC and SIRE spectra are 2.14 and 1.6 respectively. This observation indicates the 

higher carbon impurity concentration in SiC compared to silicon since Si-C bond 

vibration (605cm-1) overlaps the Si1 phonon band (610cm-1) [2]. Stronger vibrations 

at the Si2 phonon band in SiC compared to SIRE is due to a longer beam pathlength. 

In general, analysis of vibrational modes below 1500cm-1 will be more difficult on SiC 

IREs compared to SIREs as evidenced by the lower SNR of SiC in Table 4.6. The 

spectrum of Di lattice is entirely different to silicon based IREs (Figure 4.18) 

indicating SIREs may hold some analytical advantage in high wavenumber regions, 

while being at a slight disadvantage in some low wavenumber (fingerprint) regions for 

the analysis of biological materials. In particular, SIREs may be more sensitive to lipid 

vibrational bands present between 3000-2700cm-1 while being less sensitive to 

carbohydrate vibrations at about 1100cm-1 [41]. 
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Figure 4.18. Spectra of the crystal lattice of Di IRE, SiC IRE and SIRE. 

These spectra in addition to environmental signal from the air is the 

waveform that is subtracted from the sample scan by the background 

scan under normal analysis using these IREs. All spectra have been 

baseline corrected. 

 

4.3.3.2. Ethanol Concentration Study 

 50% v/v ethanol/water stock solution was then diluted to concentrations of 25, 

12.5, 6.25, 3.125, 2, 1, 0.5, 0.25, and 0% v/v ethanol in water. 3µl of each concentration 

was analysed on SIREs and on a Di IRE. Nine spectra were acquired of each instance 

(three sample triplicates and three instrument triplicates) for a total of 180 spectra. The 

most notable difference in the raw data is the extent of baseline offset of samples 

analysed on SIREs compared to samples analysed on a Di IRE (Figure 4.19.(a) and 

(b)). The reason for this, as noted previously, is due to the different silicon used for 

background scans than for sample scans. Also notable from visual inspection of the 

raw data is the larger signal intensity and higher quality baseline of spectra from the 

Di IRE. For quantitative analysis, the C-O peak at 1045cm-1 was isolated and the 

spectra baseline corrected (Figure 4.19.(c) and (d)). The area under the curve at each 
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concentration was then calculated and plotted against the known concentration (Figure 

4.19.(e) and (f)). A linear regression model was fitted to the data and statistical outputs 

have been reported in Table 4.7. R2 values are comparable, but high (0.9981 and 

0.9970 for SIRE and Di respectively) in both cases while the RMSE value is much 

more favourable for the linear regression model fitted to the SIRE data (0.0115 and 

0.0542 %v/v ethanol for SIRE and Di respectively). This suggests both have a strong 

correlation of C-O peak area to ethanol concentration, but that a more accurate 

prediction of ethanol concentration may be made from C-O peaks calculated from 

SIREs. LOD and LOQ were estimated from the linear regression model and have also 

been reported in Table 4.7: 
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Figure 4.19. Analysis of a range of ethanol concentrations on SIREs and on a 

Di IRE. (a) and (b) Raw spectra of ethanol concentrations. Baselines are very 

consistent on the Di IRE, but quite erratic on SIREs. (c) and (d) Processed 

spectra of ethanol concentrations on SIREs and on a Di IRE. Spectra have been 

cut around the C-O peak and baseline corrected. Maximum absorbance is 

almost 4-fold higher on the Di IRE than on SIREs, but there is no difference in 

the concentration at which peak the C-O peak is no longer discernible from 

baseline which occurs at about 3.125% ethanol. (e) and (f) Linear calibration 

curve where area under the C-O peak has been plotted against ethanol 

concentrations. Error bars indicate one standard deviation of results. 

Statistical outputs have been reported in Table 4.7.  
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Table 4.7. Statistical outputs calculated from the linear regression model fitted 

to the calibration curves presented in Figure 4.19. 

 

The LOD is defined as the lowest analyte concentration that can be reliably 

distinguished from background noise whereas LOQ is defined as the lowest analyte 

concentration that can be both reliably detected and quantified [61]. Both the LOD and 

LOQ were lower in ethanol concentration studies carried out on SIREs than on Di 

IREs. This finding is consistent with the higher SNR value achieved by SIREs 

presented earlier in Table 4.6. These findings support the claim that SIREs are 

operating at an analytically competitive level to industry gold standard Di IREs for the 

analysis of simple mixtures. As for the analysis of more complex media (i.e., blood 

serum) there are some interesting differences that emerge and may illuminate key 

analytical advantages and disadvantages of SIREs over Di IREs. 

Figure 4.20.(a) shows typical HPS spectra acquired from both a Di IRE and 

SIRE. Clearly, Di has a superior spectral intensity compared to SIREs due to its lower 

refractive index which allows a larger penetration depth of the evanescent wave into 

the sample [62]. However, the refractive index of the sample may be dispersed or vary 

slightly across a sample set and wavelength obviously varies across the IR spectrum. 

This may give rise to band distortions due to anomalous dispersion where spectral 

bands measured in transmission mode will deviate from spectral bands measured in 

ATR to varying degrees depending on both the sample and IRE refractive indices and 

angle of incidence used [63]. The closer the refractive index of IRE is to the refractive 

index of the sample, the more the spectral bands will be distorted [60]. Since Di has a 

 R2 RMSE (%Ethanol) LOD (% Ethanol) LOQ (% Ethanol) 

Diamond 0.9970 0.0542 3.3503 11.1677 

SIRE 0.9981 0.0115 2.6791 8.9305 
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refractive index (nDi = ~2.4) closer to serum (nserum = ~1.34)  than Si (nSi = ~3.4), it 

can be expected that Di serum ATR-FTIR spectra will be more distorted than 

corresponding Si spectra [60], [64]. Vector normalising the data allows for closer 

inspection of the subtler differences the different reflection element types have on HPS 

spectra (Figures 4.20.(b), (c) and (d)). There is a great disparity in the ratio between 

the Amide I and Amide II peaks (indicated by AI:AII in Figure 4.20.(b)) of the two 

reflection elements. AI:AII ratios have been calculated as 0.7676 and 0.9362 for HPS 

analysed on SIRE and Di IREs, respectively. Figure 4.20.(c) shows an enlarged view 

of the Amide II peak to illustrate a band shift, Δ𝑤𝑛, (~8cm-1 difference) observed 

between HPS spectra acquired on a Di IRE and on a SIRE. Both discrepancies are a 

result of anomalous dispersion of the refractive index and may lead to errors during 

analysis. For example, if attempting to analyse the protein orientation or secondary 

structures peak position and AI:AII ratio is important [65]–[67]. However, in 

transmission mode the amide I peak occurs at 1656cm-1 [66], but it is shifted to 

1648cm-1 when interrogated in ATR mode using a SIRE and again to 1640cm-1 when 

using a Di IRE and AI:AII ratio is also altered as noted earlier (Figure 4.20.(b)). It is 

easy to see, then, how protein analysis may become complicated as bands are further 

distorted from their true position and morphology. As shown from the crystal lattice 

spectra earlier (Figure 4.18), Di absorbs light at wavenumbers above 1600cm-1 where 

the Si lattice does not absorb which will in part contribute to the difference in AI:AII 

or the IREs. Furthermore, the lower refractive index of Di will cause greater frequency 

shifts and band distortions due to anomalous dispersion of the refractive index near 

absorption maxima in comparison to SIRE spectra [65], [66], [68], [69]. Penetration 

depth, and by extension absorption intensity, is dependent on the ratio of sample and 
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IRE refractive indices (Equation 2.13, chapter 2). Thus, there is greater distortion of 

the amide I and II peak using a Di IRE than when using a SIRE as evidenced by the 

difference in AI:AII ratio [66]. 

 

Figure 4.20. Comparisons of HPS spectra acquired from a Di IRE (blue) and 

a SIRE (red). (a) baseline corrected spectra shows a significantly higher 

spectral intensity is achieved using a Di IRE. (b) Spectra has been cut around 

the fingerprint region and vector normalised to illuminate subtle differences in 

how HPS spectra presents using the two IREs. Blue and red highlights the 

higher sensitivity of SIREs to the lipid and amide 1 region of HPS, green 

indicates the sharp dip in the spectra taken on SIREs around 1107cm-1. AI:AII 

highlights the disparity between the Amide I to Amide II ratio of the two 

spectra. (c) an enlarged view of the Amide II peak reveals the wavenumber 

shift, Δwn, between spectra. (d) A vector normalisation around the O-H/N-H 

peak reveals a slightly raised shoulder of spectra acquired using a SIRE as 

highlighted by the yellow region. 

Figures 4.20.(b) highlights spectral ranges of the fingerprint region associated 

with lipids (blue), proteins (red), and carbohydrates (green) [70]. The blue and red 
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regions are some of the few areas that SIREs display a greater signal intensity of HPS 

over Di indicating greater sensitivity to the Amide I vibrations of proteins and C=O 

bonds of lipids [50], [66], [71], [72]. In the green region HPS spectra acquired from a 

SIRE dips while spectra from the Di IRE rises. This is a direct result from the silicon 

2 phonon of intrinsic silicon vibrations that attenuate light in this specific region. This 

coincides with wavenumbers that have been attributed to the CO-O-C bonding 

environment [41]. This is spectroscopically significant in the detection and 

quantification of carbohydrates which may put SIREs at a disadvantage compared to 

Di IREs for carbohydrate centric applications [48], [73]. The yellow region of Figure 

4.20.(d) denotes a part of the peak associated with the N-H bond of protein or O-H 

stretch of water which also seems to be slightly more sensitive on SIREs than on Di 

IREs [74]. 

The diagnostic implications of the spectral differences between SIREs and Di 

IREs for the analysis of serum are that Di IREs may be better suited to diagnostic 

applications where the detection or quantification of carbohydrate species (e.g., 

glucose levels in diabetics, lactate levels in multiple sclerosis) is needed, but SIREs 

may be better suited to clinical applications where lipid or protein determination is 

pertinent (e.g., triglyceride levels in cardiovascular disease, albumin levels in renal 

disease) [75]–[78]. SIREs may therefore be better equipped to detect sepsis in patients 

as sepsis is a condition characterised by release of a wide array of cytokine/chemokine 

proteins [79]. However, sepsis is also a highly metabolic condition where glucose and 

lactate levels play a key role in diagnosis and/or prognosis which may be more reliably 

detected using a Di IRE [80]. The theory that SIREs and Di IREs have advantages or 
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disadvantages for the analysis of carbohydrate, lipid, or protein macromolecule classes 

is explored further in chapter 5. 

 

4.4. Conclusion 

 

Characterizing the SIRE devices with respect to their spectroscopic response 

is important to determine specific biospectroscopic applications they may be suited 

toward. This has been done by first examining the spectral profile of the SIREs 

themselves and observing how the spectrum might change from SIRE to SIRE. It was 

found that SIREs will offset sample spectra baselines to unpredictable extents due to 

variations in impurity and free carrier concentrations in the silicon. Baseline correction 

largely corrects for this, but particularly large variability is still observed at 610cm-1 

and 1107cm-1 which coincides with the most prominent silicon phonon band and with 

the Si-O band vibration, respectively. It may be more effective to remove any Si 

interference in serum spectra computationally by using EMSC with an Si reference 

spectrum [81]. The SIRE manufacturing yield has been estimated at 86.67% based on 

the reduced device quality seen in devices fabricated near the circumference of the 

silicon wafer. It is suggested that an acceptance criterion of <0.065 SiO peak 

absorbance is implemented as a SIRE quality control mechanism. From the remaining 

SIREs an 86.7% yield of viable devices was estimated. This figure may be improved 

with the use of low dopant concentrations and high purity Cz or FZ wafers. 

In several instances the subject sample has been serum because it is important 

to see how the intrinsic variance of the silicon manifests in the analysis of a clinically 
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relevant sample medium. It was also necessary to establish how different approaches 

to handling this sample type might reduce procedural variance. A standardised serum 

preparation protocol was designed that utilised moderate forced air drying (60CFM) 

and moderate heating (30°C) that could completely dry serum upon SIREs in two 

minutes or less. This protocol was successfully implemented in an incubator to achieve 

batched drying of serum upon numerous SIREs, although it is recommended that 

efforts are made to maintain a relative humidity of approximately 30% in order to 

maintain spectral quality. It is also recommended that liquid samples are pipetted in 

sufficient volume (~3µl) and spread to cover the confinements of the sample area. 

Unfortunately, there is evidence to suggest that storage of dry serum samples on SIREs 

for reanalysis beyond a single day may not be possible as statistically significant 

differences in spectra over a 24-hour period was observed. This may be due to 

degradation of the serum in ambient conditions which may hopefully be remedied by 

refrigeration or freezing. Perhaps it is the method of drying, such as freeze drying [82], 

[83], that is key to establishing sample longevity and permit a sample reanalysis 

option. HPS spectra acquired from numerous randomly selected SIRE slides (n=14) 

showed a high level of reproducibility. However, sample preparation errors were 

observed to negatively impact spectral signature of a single SIRE slide further 

highlighting the need for controlled sample preparation protocols. Longer study 

periods are required to elucidate how reproducible SIREs are when used to analyse 

samples on different days. Surface treatment with Piranha was found to greatly 

improve sample area wettability and hence establish uniform sample coverage. Going 

forward, it may be advantageous to bestow a hydrophilic surface chemistry to all 
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SIREs using Piranha solution. However, hydrophilization by plasma activation may 

present a more stable alternative. 

SIRE analytical abilities were demonstrated in a series of studies comparing 

the performance of SIREs to other IRE devices in the analysis of ethanol. Ethanol was 

selected at this stage to demonstrate SIREs as a competitive platform for FTIR analysis 

on a simple molecule. Although peak intensity was mediocre in SIREs compared to 

other IRE options, SIREs maintained a very high SNR. Furthermore, an ethanol 

concentration study found that SIREs had comparable R2, RMSE, LOD and LOQ 

values to a Di IRE. Attention was given to the prominent differences between spectra 

of serum analysed on a SIRE and on a ‘gold standard’ Di IRE. These differences are 

primarily owed to anomalous dispersion artefacts that distort the spectrum acquired 

using a Di IRE to a greater degree. For example, a wavenumber shift of 8cm-1 and a 

change in amide I to amide II ratio is observed. It is speculated that these differences 

will give SIREs an advantage for the analysis of certain biological material or target 

biomolecules based on the observation that spectral regions associated lipid vibrational 

modes (e.g., C=O symmetric stretching vibration of lipids). Conversely, analysis of 

carbohydrates will likely be more difficult due to the attenuation of signal by the Si-O 

band at 1107cm-1 which coincides with CO-O-C symmetric stretching vibration 

common to some carbohydrates [41]. The aim of this chapter was to help accredit the 

practical advantages SIREs hold over conventional ATR methods by demonstrating 

that spectral quality and analytical capabilities can be maintained all while reaping the 

benefits of the high sample throughput capabilities of SIREs. To further accredit SIREs 

as a serum diagnostics platform, serum will be investigated more thoroughly as a 

complex and clinically relevant media in the next chapter. In particular, the ability to 
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discern key biomolecules within serum that are used in routine clinical diagnostics and 

decision making and that also broadly represent molecular features typical to 

carbohydrates, lipids and proteins is investigated. 
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5.1. Introduction 

 

All Internal Reflection Elements (IREs) possess strengths and weaknesses that 

dictate the real-world applications they are suitable for. It has previously been 

mentioned that implementation of ATR-FTIR within the clinic is limited (chapter 1), 

but clinical non-implementation doesn’t mean there hasn’t been huge amounts of 

research surrounding the spectroscopic analysis of clinically relevant biological 

samples [1]–[3]. This research has provided a wealth of information detailing the band 

assignments for bonding environments indicative of specific biomolecules, 

particularly of the four major biomolecular classes: carbohydrates, lipids, proteins and 

nucleic acids [4]. These four classes, by definition, have characteristic bonding 

environments which are useful for distinguishing them from each other using IR 

spectroscopy. Given previous findings that SIREs and Di IREs differ quite 

significantly in their spectroscopic response (chapter 4, section 4.3.3.2), it stands to 

reason certain biomolecular classes will be more easily interrogated using one IRE 

substrate than the other. This in turn has implications concerning which applications 

within the clinical laboratory each IRE substrate is suitable for, putting aside the 

practical advantages of high-throughput FTIR SIREs. Capturing fingerprint region 

information from 600-1500cm-1 using a Silicon substrate has been demonstrated, but 

with the condition that at isolated and narrow wavenumbers the IR beam was strongly 

attenuated. In particular, the spectrum at 1107cm-1 was found to be affected in such a 

way that a univariate analysis on an analyte at this wavenumber is likely not possible. 

Conversely, it was observed that serum spectra acquired on Di IREs are more distorted 

than equivalent spectra acquired using SIREs due to Di’s lower refractive index. This, 
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together with the crystal lattice absorptions of Di above 1500cm-1, may make SIREs 

better suited to the analysis of carbonyl peaks adjacent to the Amide I band. These 

differences need to be understood to fully appreciate and characterise analytical 

capabilities of the SIRE with reference to Diamond as a ‘gold standard’ technique. To 

do this, archetypal biomolecules of the major classes have been selected for 

comparative analysis on both IRE substrates. Each biomolecule has major clinical 

utility and have been subject to previous investigation by infrared spectroscopy so that 

analytical capabilities cited in the literature may also be used as a reference point. The 

aim of this chapter is to demonstrate that limits of detection and reliability comparable 

to conventional ATR-FTIR methods can be achieved using SIREs. 

Four biomolecules were spiked into Human Pooled Serum (HPS) at 

concentrations that reflect physiological ranges in disease. The biomolecules selected 

were glucose, triglyceride, lactate, and albumin. Nucleic acids have been neglected 

from this study since they are only present in serum in the ng/ml range, which is well 

below detection limits for ordinary benchtop ATR-FTIR [5]. 

Glucose is ubiquitous and abundant in almost all physiological environments 

and is essential to metabolic processes as the primary energy currency in most 

organisms [6]. Within this respect it is a vital diagnostic and prognostic marker in a 

wide variety of pathological states. Glucose monitoring is crucial in control of 

diabetes, and monitoring of patients in critical care including premature babies and 

patients with severe sepsis and septic shock [7], [8]. The most prominent example is 

the measurement of blood glucose for monitoring treatment in diabetes mellitus, 

although tests for this application are well established and future developments seek 

to develop non-invasive alternatives [9]. It has also been suggested that frequent 
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monitoring of blood glucose will improve mortality rates in sepsis patients [10]. The 

standard mode of measurement is by enzymatic or electrochemical means using a 

glucose oxidase, hexokinase, or glucose dehydrogenase which necessitates many more 

preparation steps than FTIR approaches and are selective only to glucose [11]. 

Typically, the physiological range of glucose is between 0.8 and 1.2 mg/ml [12], but 

this can be expected to be anywhere around 0.3 to 3.0 mg/ml in pathological conditions 

[10]. In sepsis, for instance, hyperglycaemia can elevate blood glucose levels to 3.43 

mg/ml [13]. 

Lactate is a prominent metabolite and is therefore another key marker in altered 

metabolic states such as extreme exercise, multiple sclerosis, and sepsis [14], [15]. In 

fact, lactate determination is the most requested test in the monitoring and diagnosis 

of sepsis [16] and is more generally associated with higher mortality at elevated levels 

[17]. It is a small, polar, organic molecule that is present in increased concentrations 

under anaerobic conditions and as such is used to indicate tissue hypoxia. Lactate is 

also measured enzymatically using lactate oxidase which has been translated into 

central laboratory, point-of-care, and handheld devices [18]. The metabolite exists in 

blood at a concentration less than 0.25 mg/ml in healthy individuals, and can be 

observed at over 1 mg/ml in abnormal conditions and in extreme conditions over 1.5 

mg/ml, although this can be subject to sample collection site as tissue hypoxia may be 

localized [19]–[21]. 

Triglycerides are the basic unit of lipids and comprise three fatty acid chains 

of variable length adjoined via a glyceride backbone. They are useful markers in 

cardiovascular disease, sepsis, and pancreatitis [22], [23]. Ordinarily triglycerides are 

found in serum at concentrations lower than 1.5mg/ml, but in hypertriglyceridemia can 
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elevate in excess of 5mg/ml [24][25]. In clinical determinations triglyceride is 

hydrolysed to produce glycerol which is subsequently measured through enzymatic 

means [26]. 

Albumin is the most prevalent biomolecule in blood serum, accounting for 

approximately 50% of the total protein content and at a concentration anywhere 

between 35 to 50mg/ml in healthy individuals [27]. Hypoalbuminemia is typically 

defined as serum albumin concentrations below 35mg/ml which progresses to severe 

hypalbuminaemia below 25mg/ml [28]. Depreciating serum albumin levels is broadly 

associated with increased mortality rates having clinical indications for sepsis, 

malnutrition, and renal disease among numerous other pathologies [29]–[31]. There 

are a wide variety of methods available to determine albumin levels which each hold 

certain advantages and disadvantages, but in general determination is performed via 

reagent method using Bromocresol Purple [32]. 

The chemical structures of each of the biomolecules under investigation is 

discussed and related to the spectroscopic response of each substance in its pure form. 

This information was used to elucidate spectral features that are specific to each 

biomolecule and identify peaks that can be used to discern the biomolecules presence 

within complex biological media, in this case: serum. The Area Under the Curve 

(AUC) of these features was calculated and used to fit linear regression models to the 

spiked HPS concentration models. Many highly specific spectral peaks present within 

the fingerprint region can generally be used to pinpoint exact features typical to the 

analyte of interest so long as the user knows what they are looking for. In complex 

media such as serum, it can be expected that many fingerprint regions overlap therefore 

the datasets lend themselves to interpretation by way of multivariate analysis [33]. 
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Partial Least Squares (PLS) models were thus constructed to see if differences could 

be reconciled by way of multivariate analysis. Comments are made where calibration 

curves may be improved by altering sample preparation protocols or instrumentation 

drawing from pertinent examples in the literature. Both the univariate (AUC) and 

multivariate approaches are used to compare and contrast Di IRE and SIRE 

performance both at localized wavenumbers and across large wavenumber regions. 

 

5.2. Materials and Method 

 

A full list of the biomolecules under investigation along with details of the 

physical form they were received in is presented in Table 5.1. All biomolecules were 

acquired from Sigma Aldrich.  

Table 5.1. List of biomolecules under investigation. 

Biomolecule Description 

Albumin 1mg, lyophilized powder, >96% 

Glucose 100g, D-(+)-glucose (powder), >99.5% 

Lactate 10g, L-(+)-lactic acid (powder), >98% 

Triglycerides 100mg, triglyceride mix (liquid), C2-C10 

 

 Biomolecules were spiked into three different media: distilled water, phosphate 

buffered saline (PBS), and human pooled serum (HPS). In most cases acquiring spectra 

of spiked distilled water or PBS was either difficult or impossible because the media 

would simply evaporate when dried leaving insufficient amounts of residue on the IRE 

to be reliably scanned. Spiked HPS concentrations need to account for a concentration 

offset of native biomolecular species. A full list of the known biomolecule 
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concentrations for the HPS used in these experiments can be found in Table 5.2. 

Information regarding native lactate concentration was not available so has not been 

included. Albumin typically constitutes 50% of the total protein content and so 

baseline albumin content has been calculated at 25.5mg/ml [34], [35]. 

    Table 5.2. List of known native biomolecule concentrations. 

Human serum type AB (male) from male AB 

(All values in mg/ml unless otherwise stated) 

Source Male plasma from donors within the USA 

Iron 0.00099 

Cholesterol 1.49 

Triglycerides 1.05 

Glucose 0.92 

Sodium (Na) 140mmol/l 

Total protein 51 

pH 7.6 

Endotoxin level 1EU/ml 

Hemoglobin 0.7 

 

All experiments have been carried out using both SIREs and a Di IRE. Each 

biomolecule has been investigated within a clinically relevant concentration range 

taking slightly above and below maximum and minimum values found in the literature 

and incrementing between these values. These ranges have been presented in Table 

5.3. In some cases, the extremities of the concentration range represent extreme 

physiological circumstances (e.g., in severe sepsis, lactate levels can rise to excess of 

1mg/ml [19]). All concentration ranges tested and the revised concentrations with 

offset values have been presented in Tables 5.3.(a) and 5.3.(b) respectively. All 

analysis was carried out on the concentration ranges presented in Table 5.3.(b). 
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The same Di IRE was used across all experiments and was cleaned by 

transferring the Specac Quest ATR interchangeable puck from the accessory unit to a 

sink and using an ethanol-soaked cotton swab to ensure all sample was removed from 

the crystal. The sample side of the puck was then rinsed using a squeeze bottle of DI 

water, then an ethanol (Absolute ≥99.5%, Sigma-Aldrich, UK) squeeze bottle, then DI 

water again before drying thoroughly with a paper towel. In contrast, different SIREs 

were used for every concentration under investigation thereby removing the need to 

wash SIREs between analysis. SIREs were pre-treated with Piranha before assembly. 

Piranha was prepared fresh as described in chapter 4 section 4.2.4.3 for every use. 

For SIREs, 3µl of HPS was pipetted into positions ‘1’, ‘2’, and ‘3’ of the SIRE 

slide by first depositing the droplet onto the centre then, without removing the pipette 

tip, using the pipette tip to spread the droplet to the corners and edges until all empty 

areas of the sample well has been covered in a thin film. For the Di IRE, 1.5µl of 

sample was pipetted onto the IRE. The reason a smaller sample volume was used on 

the Di IRE was because the Di IRE has a much smaller sampling area than the SIRE. 

Samples would spill over the edge of the Di IRE crystal when using 3µl serum and 

form molecular weight-dependant drying patterns due to the coffee ring effect. Thus, 

sample constituents interrogated by the Di IRE were not representative of the whole 

sample. Therefore, sample volume was reduced to 1.5µl, but remained 3µl for SIREs 

so that enough sample could cover the SIREs sampling area. All samples were dried 

in an incubator at 35°C. The incubator was employed to take advantage of the batched 

processing method of SIREs described previously (chapter 4, section 4.3.2.1). Serum 

was dried on SIREs for one hour, but only dried on the Di IRE for ten minutes because 

one sample at a time on the Di IRE was too time consuming. It was previously 
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demonstrated (chapter 4, section 4.3.2.1) that samples would be completely dry well 

within these time frames as indicated by the O-H stretch band reaching steady-state 

intensity in agreement with other researchers’ findings under ambient air drying 

conditions [1], [36]. 

All analysis was carried out on a Spectrum2 infrared spectrometer 

(PerkinElmer, USA) with a custom automated slide indexing unit (see chapter 3, 

section 3.2.3). Spectra were acquired from the 4000-450cm-1 range using 16 co-added 

scans and a resolution set to 4cm-1 with 1cm-1 data spacing. All sample droplets were 

scanned in triplicate (three instrument repeats) and all trials were carried out twice to 

provide at least two biological repeats. In its intended use, one sample is analysed per 

SIRE. This means that 18 spectra were collected using SIREs (6 spectra per well), and 

6 were collected using the Di IRE for each concentration level. In all cases, a blank 

sample of HPS was used to serve as a control. A Matlab (MathWorks, USA) based 

General User Interface (GUI) developed in-house was used for pre-processing and 

exploratory analysis. PLSR models were constructed using Matlab code developed by 

the Bonnier group at Université de Tours [37]. 

 

5.2.1. Quantitative Analysis 

Analysis for all four biomolecules have been carried out following a general 

convention. All spectra were pre-processed by rubber band baseline correction and 

then vector normalisation. Spectra from the extremes of the concentration ranges 

investigated were subtracted from one another (i.e., a blank spectrum was subtracted 

from the spectrum of the highest analyte concentration) to elucidate where the greatest 
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spectral change occurs. This region was isolated for univariate analysis to establish if 

a linear relationship could be made between area under the curve and analyte 

concentration. A linear regression model was fitted to the data and r2, RMSE, Limit of 

Detection (LOD), and Limit of Quantification (LOQ) calculated. Multivariate analysis 

was then carried out on the same datasets using the PLS method. 50% of the data was 

randomly selected to comprise the calibration set and construct predictive models and 

the other 50% was used in the validation set to carry out quantitative predictions on. 

This process was repeated over 100 iterations of a cross validation loop to assess how 

robust the models were. The average RMSE of the Validation set (RMSEV) and r2 

values are calculated at each iteration to inform how precise the model is and how well 

the known concentrations fit to the predicted concentrations. The standard deviation 

of both RMSEV and r2 at each iteration is also calculated to inform how repeatable the 

models are. The PLS loadings of the first two dimensions have been displayed to show 

were the most and second most variance in the spectra exists. In each case it is expected 

that this will correspond to the regions selected in the area under the curve analysis. 

How the RMSEV value evolves over 20 PLS dimensions has also been shown with 

error bars indicating the standard deviation of RMSEV to show how repeatable the 

models are at each dimension. This is to inform the user how many dimensions are 

required to best describe the data. Once the RMSEV has reached the lowest value the 

optimal number of dimensions has been reached. The RMSEV and r2 values of PLS 

models using this number of dimensions was taken for subsequent discussion. Finally, 

the average predicted concentrations were plotted against the known concentrations 

and a regression line fit to the data. The error bars represent one standard deviation of 
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the predicted concentration values. From this, the LOD and LOQ were again 

calculated. 

 

5.3. Results and Discussion 

 

5.3.1. Pure Compound Spectra and Band Assignments 

Each biomolecule in the raw form they were received in was analysed on both 

the SIREs and the Di IRE. Resultant spectra have been presented in Figures 5.1.(a) – 

(d). Spectra have been baseline corrected then offset for clarity. 

 

Figure 5.5. Spectra of pure biomolecules as measured on a Di IRE (blue) and 

a SIRE (red). Spectra have been offset for clarity. 
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In terms of overall form, spectra of samples scanned on a SIRE or a Di IRE do 

not differ considerably barring a fourfold increase in spectral intensity achieved on the 

Di IRE and a ca. ~8cm-1 wavenumber shift consistent with findings reported in chapter 

4 section 4.3.3. Spectra of pure albumin bears a striking resemblance to spectra of 

dried HPS. Albumin dominates the HPS spectra as it is the most abundant protein 

found in serum accounting for roughly 50% of total protein content [38], [39]. Feature 

selection should therefore be straightforward as the entirety of the fingerprint region 

from roughly 1700-900cm-1 could be said to represent changes in albumin 

concentration. Indeed, fingerprint regions in all cases displayed in Figure 5.1 are 

clearly highly specific suggesting multivariate analysis techniques are likely an 

effective tool for quantitative models. Inspecting each biomolecule spectrum 

individually it is clear there are individual peaks useful for specific qualitative and 

quantitative identification of each. To highlight this, spectra have been overlaid in 

Figure 5.2.(a), then overlapping regions have been omitted in Figure 5.2.(b) leaving 

only biomolecule-specific peaks. Tentative peak assignments, arrived at through 

extensive assessment of the literature, have been tabulated in Table 5.4. Figure 5.3.(a) 

– (d) shows the chemical structures of glucose, lactate, triglyceride, and an amide bond 

for reference. The full structure of albumin is too large to present here, so this amide 

bond which is prominent in the IR spectrum of albumin has been presented in its place. 

Salient band assignments have been highlighted in colours corresponding to analyte 

spectra of Figure 5.2. The wavenumbers for each feature have been listed two times; 

once for Di IREs and once for SIREs to account for disparities in peak position arising 

from anomalous dispersion (chapter 4 section 4.3.3.2). This information will be used 

to pinpoint the most useful regions for quantitation in the analysis of spiked serum 
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models. Peaks in the 3500-3000cm-1 region do not appear to possess sufficiently 

specific information for detailed analysis due to confounding signal from O-H 

vibrations of water or carbohydrates, and N-H vibrations from proteins [40]. However, 

an adjacent triplet of C-H stretch related peaks (acyl chains) in the 3000-2800cm-1 

present strongly in the spectrum of triglyceride, and have been found useful in 

quantitative analysis of lipids elsewhere [41]. Consistent with the visual observations 

made previously, the fingerprint region is revealed to contain several analyte specific 

peaks (Figure 5.2.(b)). Vibrations of the carbonyl (C=O) group are highly specific for 

the identification of albumin, lactate, and triglycerides. In the case of albumin, amide 

I is primarily influenced by the C=O stretch and only weakly influenced by C-N and 

N-H bending vibrations [4]. Carbonyl groups are strong IR absorbers owing to the 

highly polar (large dipole moment) bonding environment. The reason the same 

chemical bond presents in three distinct wavenumber regions is because the carbonyl 

group’s polarity is influenced by its neighbouring bonding environment [42], which in 

turn alters the dipole moment. For instance, the carbonyl band of esters (triglycerides) 

will be located at a higher wavenumber than carbonyl groups of carboxylic acids 

(lactate), and again of amines (albumin) because in each case the conjugates have 

weakened the C=O bond thereby altering vibrational response [33]. The C-O bonds 

attaching numerous hydroxyl (O-H) groups to the lactate and glucose structure as well 

as the C-H bands of triglycerides and albumin have many overlapping bands in the 

fingerprint region, too numerous to list in Table 5.4. It is likely that these wavenumbers 

will not be useful in univariate analysis, except in circumstances where these shared 

wavenumbers are overwhelmingly indicative of analyte presence (e.g., 1110cm-1 of C-

O bonds in glucose). 
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Figure 5.2. Spectra of each biomolecule in their pure form (a) overlaid and (b) 

with overlapping bands removed to highlight unique peaks. 

 

Table 5.4. List of band assignments for each biomolecule. Band assignments 

have been highlighted if they are unique to glucose (green), lactate (pink), 

triglyceride (yellow), and albumin (blue). v = stretching, δ = in-plane bending, 

γ = out-plane bending. References: [4], [43]–[60]. 

 

Di IRE SIRE Albumin Glucose Lactate Triglycerides

3393 3393 v OH v OH

3285 3290 Amide A (v NH) v OH v OH

3250 3250 v s  OH + v as  OH 

3058 3065 Amide B

2957 2956 v as CH3 v s CH v as CH3

2990 2990 v s CH3

2943 2943 v s CH v as CH3

2932 2935 v as CH3

2891 2890 v s CH v s CH

2872 2871 v s CH3 v s CH3

1738 1741 v s C=O

1717 1722 v  C=O

1645 1650 Amide I (v C=O + δ CN + δ NH)

1527 1543 Amide II (v  CN + δ NH + δ CHN)

1458 1458 δ CH2 + δ OCH + δ CCH δas CH2

1455 1463 δs CH2 δas CH3

1419 1420 δ CO + δ OH δs CH2

1380 1380 δ CH2 + δ OCH + δ CCH δs CH3 + δ OH

1270 1270 Amide III (v  CN + δ NH )

1219 1220 v s CO

1159 1163 v s CO

1119 1123 v  CO + γCH3

1109 1110 v  CO

1014 1020 v  CO +  δ CO

993 995 v  CO + v  CC

775 775 v  CCO + v  CCH

AssignmentsWavenumber (cm
-1
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Figure 5.3. Chemical structures of all four biomolecules analysed in the 

present study. 

 

5.3.2. PBS Concentration Studies 

In all instances the concentration ranges were used to ascertain calibration 

curves and subsequently determine statistically relevant information (e.g., r2, RMSE, 

Limit of Detection (LOD), and Limit of Quantification (LOQ)). Where possible the 

target biomolecule was analysed in its pure form, then spiked into either water or PBS 

at varying concentrations. This was to assess the ability to discern all levels of 

biomolecule concentration in a simple media before attempting analysis in more 

complex media (i.e., serum). It was hoped that information regarding prominent band 

assignments could be applied in aid of the analysis of spiked sera models. 

Unfortunately, several unforeseen complications were encountered, particularly for 

(a)  Glucose (b)  Lactate 

(c)  Triglyceride (d)  Amide bond 
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the smaller molecular weight molecules: glucose and lactate. There is little or no 

detectable residue left on the IRE surface following evaporation of water or PBS 

solutions spiked with glucose or lactate even at high analyte concentrations. This is 

particularly troublesome in SIRE analysis due to the comparatively large sampling 

area which requires more analyte residue for discernible signal to be acquired. In the 

case of PBS, phosphate salts would crystallise on the IRE in seemingly random fashion 

which would interfere with spectra to an unpredictable degree due to the 

nonhomogeneous distribution of sample film (Figure 5.4.(a) and (b)). This made 

analysis difficult and as such has not been included in detailed analysis. In albumin 

spiked models these issues are not as prominent because the relatively higher 

concentration and large polar molecules decrease the contact angle and improve 

hydrophilicity hence promoting good sample coverage leading to better signal quality 

(Figure 5.5) [61]. 
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Figure 5.4. Spectra of Glucose and lactate both in their pure form and in 

solution of PBS along with spectra of pure PBS. Spectra have been offset for 

clarity. 

 

Figure 5.5. Spectra of (a) lactate and (b) albumin spiked into PBS at a range 

of concentrations. It was difficult to get good quality spectra from the lactate 

samples because the low analyte concentrations and molecular weight caused 

samples to mostly evaporate upon drying. The concentration dependent 

spectral response is therefore clearer in the albumin group than the lactate 

group. 

(a) 

(c) (d) 
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5.3.3. Glucose Detection and Quantification 

Figure 5.6 shows a step-by-step feature selection and linear regression model 

of glucose concentrations in spiked serum models both on SIREs and on a Di IRE. A 

0.92mg/ml offset has been applied to account for the native glucose concentration 

present in the human pooled serum prior to spiking. There is agreement in SIRE and 

Di IRE analysed samples that a substantial spectral change is observed between the 

2.1mg/ml (3.02mg/ml adjusted concentration) HPS spectrum and a blank (0.92 mg/ml 

adjusted concentration) HPS spectrum was in the 1000-1100cm-1 region. This arises 

from an increase in C-O present in the sample with a particularly pronounced signal at 

1020cm-1 as noted previously in Table 5.4. This region was selected for area under the 

curve analysis and a linear regression model was constructed. Statistical findings have 

been reported in Table 5.5. Differences between the SIRE and Di IRE analysis are 

abundantly clear, with improved linearity and precision (higher r2 and lower RMSE) 

observed in glucose concentration ranges analysed on the latter substrate. The 

regression profile shows that both IREs can reliably quantify high concentrations of 

glucose in HPS, but not mid-range or low concentrations as error increases toward 

lower range. This trend is exacerbated in the SIRE analysis potentially because of Si 

lattice absorption at 1107cm-1 leading to lower sample signal. The Di IRE is able to 

reliably detect, but not quantify clinically relevant ranges of glucose in serum. This is 

possibly due to the presence of large molecular weight proteins (e.g., albumin) that 

dominate the collected signature at low analyte concentrations [62]. Furthermore, this 

analysis shows that SIREs are not able to reliably detect nor quantify clinically relevant 

glucose concentrations using a simple univariate analysis technique. This is an entirely 

anticipated outcome, as it has already been made clear that SIREs have an analytical 
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weakness in this wavenumber range which explains the high level of variance across 

the SIRE concentration dataset as indicated by the wide error bars in Figure 5.6.(g). It 

is hoped that multivariate analysis may circumvent this shortcoming and can bolster 

the quantitative abilities of SIREs with regards to glucose analysis. 
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Figure 5.6. Step-by-step quantification of glucose in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right). (a) and (b) full pre-

processed spectra averaged at each concentration level. (c) and (d) spectrum 

showing the where the greatest difference in absorption lies (1000-1100cm-1) 

between the most heavily spiked samples and a control. (e) and (f) close up of 

the curve area where most spectral variance lies. (g) and (h) linear regression 

of the area under the curve against concentration of the spiked serum models. 

Error bars indicate a highly variable SIRE dataset and moderately variable Si 

IRE dataset. 
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Table 5.5. Statistical outputs of area under the curve versus glucose spiked 

HPS concentration linear regression model. Minimum and maximum clinical 

ranges of blood serum glucose concentrations have been added for reference. 

IRE Type R2 RMSE 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 0.9904 0.0158 0.7116 2.3720 
0.3-3.0 

SIRE 0.8929 0.0300 2.5034 8.3447 

 

FTIR techniques can be quite sensitive to changes in glucose composition via 

multivariate approaches, even being able to determine glucose concentrations in whole 

blood [7], oral mucosa [63], and other interstitial fluids [64]. In each case, it is 

expressed that the use of single wavenumbers is not sufficient for appropriately 

sensitive infrared quantification of glucose in biological media. 

A PLS model was constructed using the fingerprint region of the spectrum from 

900-1500cm-1 so as to avoid the large signal of the Amide I and Amide II peaks 

interfering with the model by dominating the spectrum. Figure 5.7 shows outputs from 

the PLS model generation and Table 5.6 presents the corresponding statistical outputs. 

Plots on the left are from measurements taken using SIREs and plots on the right are 

from the Di IRE. In each case, the loadings show most variation to arise from C-O 

band vibrations in the 1000-1100cm-1 region consistent with earlier findings. Linearity 

of the regression model is marginally improved for Di IRE analysed samples, but 

greatly improved on the SIRE dataset as evidenced by an increase of r2 value from 

0.8929 to 0.9904. For both IRE types the RMSE value has increased indicating a 

decrease in model precision. Despite this, the RMSEV and standard deviation of the 

RMSEV is still lower than the smallest analyte concentration investigated meaning the 

model is suitably precise at the lower end of a clinically significant range. Both 

methods achieved a low LOD enabling reliable detection of glucose concentrations of 
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at least 0.3mg/ml. However, the LOQ achieved was 0.5342 and 0.8863mg/ml for the 

Di IRE and SIREs respectively, meaning concentrations can be reliably quantified 

within a clinically significant range, but not below these values. The datasets for SIRE 

and Di concentrations are less variable when using PLS in comparison to a univariate 

approach as indicated by the narrow error bars on the regression models (Figure 5.7.(g) 

and (h)). This error is consistent at all concentration levels for both IREs. Glucose has 

a low molecular weight and concentrations under investigation are also low so 

absorbance at discrete wavenumbers is likely low. Hence, by building models that are 

influenced by a broadband of wavenumbers the low signal can be detected even at very 

low concentrations. 
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Figure 5.7. Step-by-step quantification of glucose in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right) by PLS method. (a) and (b) 

cut pre-processed spectra averaged at each concentration level. (c) and (d) 

vector of PLS loadings 1 and 2 indicating where the most variance in the 

spectra lies (1000-1100cm-1). (e) and (f) evolution of the RMSEV with 

increasing number of dimensions in the PLS models. (g) and (h) PLS 

regression of the concentrations as predicted by the optimum PLS models and 

the known concentrations of the spiked serum models. 
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Table 5.6. Statistical outputs of PLS regression models for the prediction of 

glucose spiked serum models. Minimum and maximum clinical ranges of blood 

serum glucose concentrations have been added for reference. 

IRE 

Type 

Dimensions 

No. 

R2 R2 Std. 

Dev. 

RMSEV 

(mg/ml) 

RMSEV 

Std. Dev. 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 11 0.9925 0.0070 0.0626 0.0290 0.1603 0.5342 
0.3-3.0 

SIRE 8 0.9702 0.0060 0.1219 0.0120 0.2659 0.8863 

 

Numerous studies have demonstrated the ability of FTIR spectroscopy to 

determine clinically accurate glucose concentrations [7], [9], [13], [39], [63]. It is 

difficult to directly compare the present findings to these studies as many predict 

concentrations of patient samples to model a closer likeness to a real clinical scenario. 

Furthermore, many of the studies employ additional techniques to enhance prediction 

capabilities such as improved sample preparation or instrumentation. It stands to 

reason that these techniques could be applied to SIREs to further improve prediction 

capabilities for glucose determination. The use of a Savitzky-Golay smoothing filter 

may be used to eliminate random fluctuations from baseline noise, enhancing analyte 

signal [7]. Bonnier et al. describe a method for eliminating the spectral signature of 

high-molecular weight molecules in serum by centrifuging samples in a 10kDa filter 

before analysis reporting a 5-fold improvement in RMSEV for glucose determination 

in patients [39]. Quantum Cascade Laser (QCL) mid-IR sources have also been used 

in the determination of glucose concentrations in patient samples with clinically 

accurate predictions down to 0.4mg/ml [9]. The added advantage of QCL is the ability 

to isolate specific wavenumber regions and the potential to adapt the technology for 

point-of-care diagnostics [64], [65]. Even without these advancements, it has been 

shown that SIREs, despite a hindered sensitivity to signal at 1107cm-1 where 
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carbohydrates are distinctly IR active, have comparable analytical capabilities to a Di 

IRE for the detection and quantification of glucose concentrations in serum. 

 

5.3.4. Triglyceride Detection and Quantification 

Triglycerides comprise three fatty acids adjoined via ester bonds to a glycerol 

backbone. Fatty acids themselves are hydrocarbon chains terminated by a carboxylic 

acid group and may vary in length from roughly 2-30 carbons. These features present 

three distinct bond interactions where analysis by vibrational spectroscopy is most 

likely. These are: C-O bonds (1150-1230cm-1) binding fatty acids to glycerol within 

the O-C-O ester group formation, the C=O (1720-1770cm-1) bond characteristic to 

ester groups, and the numerous C-H bonds (1420-1460cm-1 and 2700-3000cm-1) lining 

the entirety of and terminating the fatty acid hydrocarbon chains. In addition to this, 

fatty acids might be present in saturated and unsaturated forms, a distinction which is 

detectable via IR spectroscopy through observation of =CH and C=C vibrations at 

3008cm-1 and 1654cm-1 respectively [66][45]. In the present study, equal quantities of 

five short chain triglycerides were used with carbon chains measuring 2, 4, 6, 8, and 

10 carbons (Triacetin, Tributyrin, Tricaproin, Tricaprylin, and Tricaprin). These are 

saturated as indicated by the lack signal contribution from the aforementioned double 

carbon bond peaks. Furthermore, due to the lower number of CH2 bonds, the short 

chain hydrocarbons generate fairly weak signal within the 1420-1460cm-1 range [67]. 

This means that useful triglyceride predictors, while potent in the case of the carbonyl 

(C=O) stretch, are confined to limited spectral regions. Figures 5.8.(a) – (h) details 

feature selection and displays a linear regression model for an area under the curve 

analysis of triglyceride spiked serum models. A 1.05mg/ml offset has been applied to 
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account for native HPS triglyceride content. As before, the spectrum of the maximum 

additive concentration was subtracted from a blank to identify regions of greatest 

change (Figure 5.8.(c) and (d)). Unsurprisingly, the C=O band proved the most useful 

in ascertaining a linear relationship between concentration and spectral intensity. 

Reasonable r2 values are obtained in both cases and RMSE values are low and within 

an acceptable range. LOD and LOQ, however, indicate neither method is suitable to 

detect or quantify clinical ranges of serum triglycerides. The regression profiles show 

the SIRE dataset to be more accurate, but less precise than the Di IRE dataset due to a 

high amount of error. Triglycerides are viscous and nonpolar and are therefore 

insoluble [68]. Consequently, consistent spreading of the spiked HPS samples across 

the SIRE sampling area is more difficult that on the smaller Di IRE crystal leading to 

greater variance. Nonpolar molecules are generally difficult to detect using IR 

spectroscopy. Nevertheless, a change in dipole moment should be possible and thus a 

signal can be obtained. Large overlapping error bars in both regression models suggest 

incorrect predictions could be made and unfortunately simple univariate feature 

analysis is not adequate in the analysis of triglycerides in this case.  
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Figure 5.8. Step-by-step quantification of triglyceride in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right). (a) and (b) full pre-

processed spectra averaged at each concentration level. (c) and (d) spectrum 

showing the where the greatest difference in absorption lies (1710-1770cm-1) 

between the most heavily spiked samples and a control. (e) and (f) close up of 

the curve area where most spectral variance lies. (g) and (h) linear regression 

of the area under the curve against concentration of the spiked serum models. 

Error bars show the data to be highly variable across all concentrations using 

both SIREs and the Di IRE. 
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Table 5.7. Statistical outputs of area under the curve versus triglyceride spiked 

HPS concentration linear regression model. Minimum and maximum clinical 

ranges of blood serum triglyceride concentrations have been added for 

reference. 

IRE Type R2 RMSE 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 0.9078 0.0167 3.8750 12.9167 
1.5-5.0 

SIRE 0.8455 0.0209 5.1968 17.3226 

 

Multivariate analysis was carried out following the described method (Figure 

5.9. and Table 5.8). PLS models were constructed using the 900-1770cm-1 

wavenumber region so as to include the C=O band as there is clearly valuable 

information to be gleaned despite poor outcomes in the previous univariate analysis. 

This is confirmed by the slight peaks observed in both loadings one and two of SIRE 

and Di IRE PLS models at the C=O band (1740cm-1) (Figure 5.9.(c) and (d)). There 

also seems to be variance arising from the Amide I and II peaks as well as the region 

encapsulating the C-O bands at 1150-1230cm-1. R2 values show good linearity, but 

standard deviation of r2 indicates the PLS simulation is more repeatable over the 100 

iterations for samples analysed on Di. The model is fitted well to the data as indicated 

by low RMSEV values and RMSEV standard deviations comparable to those found in 

the literature [69]. Narrow error bars of Di IRE measurements are indicative of good 

model precision. Conversely, some overlapping error bars indicate lower precision in 

the SIRE PLS model. This difference in error between the two IREs can be attributed 

to the need to collect data across multiple SIREs instead of just one Di IRE. For both 

substrates LOD is within a suitable range to detect the lower end of clinically relevant 

quantities, however LOQ is within the intermediate clinical range so potentially still 

useful for the screening of at-risk patients where triglyceride content will preside in 

the higher end of the clinical range.  



253 

 

 

Figure 5.9. Step-by-step quantification of triglyceride in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right) by PLS method. (a) and (b) 

cut pre-processed spectra averaged at each concentration level. (c) and (d) 

vector of PLS loadings 1 and 2 indicating where the most variance in the 

spectra lies (1710-1770cm-1). (e) and (f) evolution of the RMSEV with 

increasing number of dimensions in the PLS models. (g) and (h) PLS 

regression of the concentrations as predicted by the optimum PLS models and 

the known concentrations of the spiked serum models. Error bars indicated 

both datasets are reproducible, but more so in the case of Di IRE 

concentrations. 
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Table 5.8. Statistical outputs of PLS regression models for the prediction of 

triglyceride spiked serum models. Minimum and maximum clinical ranges of 

blood serum triglyceride concentrations have been added for reference. 

IRE 

Type 

Dimensions 

No. 

R2 R2 Std. 

Dev. 

RMSEV 

(mg/ml) 

RMSEV 

Std. Dev. 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 8 0.9876 0.0083 0.2278 0.0928 0.7011 2.3371 
1.5-5.0 

SIRE 14 0.9251 0.0244 0.5308 0.0898 0.7611 2.5371 

 

Detection of clinically relevant concentrations of triglycerides in human pooled 

serum was achieved through multivariate analysis. Precision of PLS models need to 

be improved to realise clinically acceptable prediction capabilities. There is clearly 

room for this improvement given the patently observable spectral changes emanating 

from strong IR absorption of the ester carbonyl group. As with other low molecular 

weight fraction components of serum, triglycerides may also be more accurately 

determined through ultracentrifugation of the bulk serum sample [70]. The gold 

standard for lipid determination is a time-intensive multi-step ultracentrifugation 

method, presenting the opportunity for a simpler IR spectroscopy based method to 

exploit existing workflows while surpassing analysis times [71]. In the present study, 

the reason for poor predictive capabilities is probably due to mistakenly repeating 

freeze thaw cycles of the triglyceride fraction as this has been shown to severely impact 

lipid content [72], [73] as well as serum integrity as a whole for FTIR analysis [74]. 

This highlights another reason why sample reanalysis of SIREs would hold such a 

significant benefit over conventional IREs as samples can be revisited if a patient stock 

serum has been refrozen, although suitable storage methods still need to be considered 

to prevent degradation of the dry serum films. 
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5.3.5. Lactate Detection and Quantification 

From a spectroscopic perspective, lactate exhibits both lipid and carbohydrate 

associated traits and is therefore of great interest to test the dissimilarities between 

SIREs and Di IREs. Having numerous hydroxyl groups bound to carbon (C-O) as well 

as various C-H bonds gives rise to fingerprint region activity with a likeness to that of 

glucose [75], while the carbonyl group produces a band characteristic of lipids. As 

mentioned previously (section 5.3.1), the peak shift of carbonyl groups due to the 

altering of bond energy of different conjugate forms is the hallmark of discrimination 

between carbonyl containing compounds [33]. Unfortunately, the carbonyl peak of 

lactate is closely aligned with that of the Amide I peak meaning it is difficult to resolve 

in serum samples. Observing a combination of peaks is obviously the wisest strategy, 

but for arguments sake both regions were analysed using the area under the curve. Of 

the two regions, 1110-1140cm-1 showed greatest differences between the highest HPS 

lactate concentration and a HPS blank (Figure 5.10.(b) and (d)) and provided a much 

better regression model than the alternative 1710-1770cm-1 region. Full step-by-step 

analysis process for the former is shown in Figure 5.10. No linear relationship between 

lactate concentration and area under the curve could be found using either SIREs or 

Di IREs from this wavenumber range. Table 5.9 displays the statistical findings for 

area under the curve regression analysis of the 1110-1140cm-1 region. In this case, the 

native lactate content of the serum was not known, so no offset has been applied. The 

spectra of SIRE samples can be seen to dip as silicon oxide attenuation begins to take 

over the absorbance profile at 1107cm-1 (Figures 5.10.(e) and (f)). Model fit and 

linearity is better on Di IREs compared to SIREs, and Di IREs are able to detect 

clinically significant concentrations of Lactate. Neither approach is suitable to quantify 
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clinically significant concentrations at this stage. However, it is elevated lactate levels 

that are of clinical interest, not low in which case only the Di IRE exhibits good 

predictive qualities. Both show a lot of error at low concentration ranges. Like glucose, 

lactate is low molecular weight and at low concentrations discrete absorbance bands 

will be weak. Multivariate analysis of a broadband IR spectral region will again be 

required.  
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Figure 5.10. Step-by-step quantification of lactate in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right). (a) and (b) full pre-

processed spectra averaged at each concentration level. (c) and (d) spectrum 

showing the where the greatest difference in absorption lies (1110-1140cm-1) 

between the most heavily spiked samples and a control. (e) and (f) close up of 

the curve area where most spectral variance lies. (g) and (h) linear regression 

of the area under the curve against concentration of the spiked serum models. 

Error bars indicate highly variable SIRE data and moderately variable Di IRE 

data. 
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Table 5.9. Statistical outputs of area under the curve versus lactate spiked HPS 

concentration linear regression model. Minimum and maximum clinical 

ranges of blood serum lactate concentrations have been added for reference. 

IRE Type R2 RMSE 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 0.9293 0.0085 0.6481 2.1602 
0.25-1.5 

SIRE 0.5681 0.0146 2.0492 6.8305 
 

PLS regression found a vast improvement in model linearity and fit to the data 

(Figure 5.11, Table 5.10). The 900-1500cm-1 region was selected to exclude influence 

from the Amide bands. The carbonyl band is too coincident with the Amide I band to 

be properly distinguished. Both SIRE and Di IRE PLS loadings reveal the greatest 

variation is located at 1040cm-1 and 1120cm-1 corresponding to the C-C and C-H + C-

O bands respectively (Figure 5.11.(c) and (d)) [58]. In contrast to area under the curve 

regression, the linearity achieved from both IRE substrates is excellent with good r2 

values and standard deviation of the r2 value. RMSEV is low and reproducible over 

the PLS iterations indicated by a low standard deviation of RMSEV. The regression 

profile is consistent at all concentration levels for both IREs with low error as indicated 

by narrow error bars. The LOD and LOQ is within clinically significant ranges which 

is further expressed by the narrow error bars of the regression model although the 

model becomes unreliable below roughly 0.2mg/ml. This would be acceptable as 

pathology is always indicated by elevated lactate levels. 0.2mg/ml (0.22mmol/L) 

would typically be a very low serum lactate concentration [17]. This is a very 

optimistic finding as this low detection and quantification capability has been 

demonstrated on a low molecular weight target in whole serum. Furthermore, it alludes 

to a sensitivity of ATR-FTIR spectroscopy as a powerful tool in the detection of 

pathologies where fluctuating lactate levels are a key predictor such as in sepsis 

diagnosis [76]. 
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Figure 5.11. Step-by-step quantification of lactate in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right) by PLS method. (a) and (b) 

cut pre-processed spectra averaged at each concentration level. (c) and (d) 

vector of PLS loadings 1 and 2 indicating where the most variance in the 

spectra lies (1110-1140cm-1). (e) and (f) evolution of the RMSEV with 

increasing number of dimensions in the PLS models. (g) and (h) PLS 

regression of the concentrations as predicted by the optimum PLS models and 

the known concentrations of the spiked serum models. Error bars indicated low 

error for both SIREs and Di IREs. 
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Table 5.10. Statistical outputs of PLS regression models for the prediction of 

lactate spiked serum models. Minimum and maximum clinical ranges of blood 

serum lactate concentrations have been added for reference. 

IRE 

Type 

Dimensions 

No. 

R2 R2 Std. 

Dev. 

RMSEV 

(mg/ml) 

RMSEV 

Std. Dev. 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 11 0.9959 0.0040 0.0395 0.0198 0.0527 0.1757 
0.25-1.5 

SIRE 9 0.9817 0.0037 0.0742 0.0050 0.0637 0.2122 

 

Lactate is the smallest analyte under investigation in the present study 

(89.07Da) [77]. Despite this, determination of lactate in serum at clinically relevant 

concentration levels is achievable through a rapid, simple, and easy to operate high-

throughput FTIR method. Fractionating the serum specimens would likely improve 

regression model characteristics, but this may not be a desirable method in practice as 

classification of disease states may benefit from the presence of high molecular weight 

serum components. For example, this would eliminate C-reactive protein (120kDa) 

from the sample which is an important indicator of sepsis and would likely play a key 

role in influencing machine learning algorithms for the development of classification 

regimes [78]–[80]. Simultaneous determination of relative concentrations of lactate 

and other chemical species in serum and also in histological studies using second 

derivative spectra has been demonstrated elsewhere [81]. This method could improve 

diagnosis and monitoring of highly metabolic physiological states through concurrent 

measurements of lactate and other serum components, such as CRP or glucose in sepsis 

monitoring which relate to the different phases of sepsis progression [16]. The r2 values 

and RMSEV values achieved here are comparable to those found in the literature for 

commercially available hospital lactate sensors and alternative FTIR approaches, 

suggesting SIREs are capable of delivering clinically acceptable accuracies for the 

determination of lactate [82]–[84]. 
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5.3.6. Albumin Detection and Quantification 

Univariate analysis of albumin proved difficult (Figure 5.12.(a) – (h)). Spectral 

profile of pure albumin is complex, visually appearing identical to a pure HPS 

spectrum. The largest difference between spiked and blank HPS samples seems to 

occur at the Amide I peak (Figure 5.12.(c) and (d)), which is expected as it is a peak 

frequently selected for detailed protein analysis [85]–[88]. The Amide I peak was 

selected at different wavenumbers to account for differences in peak position due to 

anomalous dispersion effects and the area under the curve calculated (Figure 5.12(e) 

and (f)). A linear regression model was fitted to the data (Figure 5.12.(g) and (h)). The 

r2 value for SIREs is low but reveal some kind of relationship between the Amide I 

peak and Albumin concentration. A linear relationship could not be found using the 

Di IRE, however. In both cases the LOD and LOQ are negligible as the data is too 

uncorrelated to make these estimations as indicated by the large spread of error bars at 

each data point. The solubility limit of Albumin in water is 60mg/ml. The maximum 

level included in the analysis slightly exceeded this value at 65.5mg/ml, although it is 

not known what the exact albumin offset is for these experiments. If only a little 

albumin was properly dissolved into the HPS stock solution, then this could be the 

reason for the poor linearity observed in this experiment. Furthermore, the 

hydrophilicity of SIREs due to Piranha pre-treatment may vastly improve albumin 

surface adsorption in comparison to the Di IRE hence enhancing IR absorption 

characteristics [89]. 



262 

 

 

Figure 5.12. Step-by-step quantification of albumin in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right). (a) and (b) full pre-

processed spectra averaged at each concentration level. (c) and (d) spectrum 

showing where the greatest difference in absorption lies (1630-1670cm-1) 

between the most heavily spiked samples and a control. (e) and (f) close up of 

the curve area where most spectral variance lies. (g) and (h) linear regression 

of the area under the curve against concentration of the spiked serum models. 

Error bars indicate a high error across both datasets. 
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Table 5.11. Statistical outputs of area under the curve versus albumin spiked 

HPS concentration linear regression model. Minimum and maximum clinical 

ranges of blood serum albumin concentrations have been added for reference. 

IRE 

Type 

R2 RMSE 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 0.0747 0.0452 -479.7348 -1599.1158 
25.0-50.0 

SIRE 0.6021 0.0292 110.7798 369.2660 

 

PLS regression was more successful, achieving r2 values of 0.9394 and 0.9823 

for Di and SIRE analysed samples respectively. Table 5.12 and Figure 5.13 show 

regression models and accompanying statistics for albumin spiked serum models. As 

expected, the loadings for each case reveal the Amide I and II peaks to contribute the 

most variance across the datasets (Figure 5.13.(c) and (d)). Since albumin 

concentration is the only physiological parameter changed between samples, it is 

assumed that variations in amide I and II bands is due to changes in albumin content, 

not other proteins. Model linearity and RMSEV of spiked sample sets measured on 

SIREs is comparable to values found in the literature [90], [91]. R2 standard deviation 

is lower in the SIRE group than in the Di IRE group by just under a factor of 10. 

RMSEV and RMSEV standard deviation are also considerably lower indicating it is 

more likely for concentrations to be determined unambiguously using SIREs. This is 

reflected by the narrow error bars observed in the SIRE dataset (Figure 5.13.(g) and 

(h)). LOD and LOQ are within clinically acceptable ranges for both IRE substrates, 

but significantly better for analysis performed on SIREs. Both elevated and lowered 

albumin levels indicate pathology, so precision across the entire range is desirable. 

Albumin concentrations lower than 10mg/ml is rare, with one article claiming only 

0.1% of their patient cohort fell below this value, and values below 25mg/ml would 

also be considered very low [92]. It is hopeful then that high-throughput SIRE ATR-
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FTIR could predict serum albumin concentrations at both extremes of the clinical 

range given an LOQ of ~22mg/ml. 

 
Figure 5.13. Step-by-step quantification of albumin in spiked serum models 

measured on a SIRE (left) and on a Di IRE (right) by PLS method. (a) and (b) 

cut pre-processed spectra averaged at each concentration level. (c) and (d) 

vector of PLS loadings 1 and 2 indicating where the most variance in the 

spectra lies (1630-1670cm-1). (e) and (f) evolution of the RMSEV with 

increasing number of dimensions in the PLS models. (g) and (h) PLS 

regression of the concentrations as predicted by the optimum PLS models and 

the known concentrations of the spiked serum models. Error bars indicated a 

low level of error in the SIRE dataset and a moderate level of error in the Di 

IRE dataset. 
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Table 5.12. Statistical outputs of PLS regression models for the prediction of 

albumin spiked serum models. Minimum and maximum clinical ranges of blood 

serum albumin concentrations have been added for reference. 

IRE 

Type 

Dimensions 

No. 

R2 R2 Std. 

Dev. 

RMSEV 

(mg/ml) 

RMSEV 

Std. Dev. 

(mg/ml) 

LOD 

(mg/ml) 

LOQ 

(mg/ml) 

Clinical 

Range 

(mg/ml) 

Di 19 0.9394 0.0713 3.4377 1.8014 11.0659 36.8862 
25.0-50.0 

SIRE 15 0.9823 0.0080 1.8256 0.3503 6.6147 22.0491 

 

Albumin determination is routinely carried out and there are several methods 

utilised in clinical laboratories to quantify albumin such as Bromocresol Green (BCG), 

Bromocresol Purple (BCP), and immunological assays [32]. All of these use reagents 

and are comparatively slow and expensive with respect to ATR-FTIR which requires 

no reagents and minimal sample preparation. BCG in particular is a popular method 

that suffers from decreased specificity if other serum proteins are present in large 

quantities [93]. FTIR determination of serum proteins has a similar limitation in that 

the overwhelming concentration of high molecular weight proteins can saturate the IR 

absorbance. There are thousands of protein species contained within a serum sample, 

yet albumin and globulin account for 57-71% and 8-26% of the total mass respectively 

[90]. Measurement linearity has been shown to be compromised at very high analyte 

concentrations (>25mg/ml) due to saturation of the ATR-FTIR spectra, although this 

effect is compensated by vector normalisation [62], [94]. Vector normalisation 

equalizes the spectral contributions of serum constituents and is suitable for enhancing 

systematic spectral changes incurred by varying analyte concentration [94]. Thus, peak 

normalisation approaches (e.g., min-max normalisation) may be better suited to this 

type of study where a single physiological parameter is being modulated since spectral 

peaks not associated with the analyte can effectively serve as an internal standard [39], 

[95]. However, peak normalisation may not translate from spike studies to patient 
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studies well where the general form of the spectra cannot be assumed to be consistent 

across patients [39].  

For serum investigations of protein species it would undoubtedly be beneficial 

to dilute samples before analysis to avoid saturation of IR absorbance, particularly to 

investigate spectral features coincident with the Amide bands where saturation due to 

high albumin content is likely [90]. In regards to protein quantification specifically, it 

has been found that serum samples may be diluted down to 10% serum in deionised 

water to improve predictive capabilities of different protein species [90]. To further 

improve specificity and sensitivity, SIRE surfaces could be functionalised with target 

specific receptors similar to antibody immobilisation widely used in immunoassays 

[96]. This has already been demonstrated with promising detection limits (10-12 M of 

biotin) on hydrophobic silicon and germanium ATR crystals by grafting a thin protein-

repelling organic layer (e.g., covalently immobilized DNA probes) that can selectively 

bind target molecules and repel unwanted proteins [97]–[99]. Excess sample is then 

washed away before analysis. This comes with the caveat that the surface 

modifications are only stable for a matter of hours and the evanescent wave must 

penetrate the organic layer before interrogating the bound molecules. Background 

scans would account for any interference, but spectral intensity could be marginally 

impacted. Translating this development to SIREs presents the opportunity for low-cost 

and highly selective ATR slides. 
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5.4. Conclusion 

 

It was demonstrated that all analytes under consideration could be quantified 

at clinically relevant concentrations in complex media (serum) using SIREs except 

glucose which could not be quantified at the lower end of the clinical range using either 

SIREs or a Di IRE. Triglycerides can be quantified in clinically relevant concentrations 

as disease is indicated by high triglyceride concentrations. However, physiologically 

normal concentrations of triglycerides could not be reliably quantified using either 

approach. For each analyte, SIREs performed with comparable or better precision and 

accuracy as a gold standard Di IRE provided the right analytical approaches are used. 

There is the added caveat that a different SIRE was used for every concentration 

measured in contrast to the same Di IRE used for all experiments. This should be 

considered for a balanced view of how these IRE substrates perform relative to each 

other. Regardless, SIREs have proved to have predictive capabilities competitive with 

a gold standard Di IRE provided the right analytical approaches are used whilst also 

enabling rapid sample analysis. SIREs fill the unresolved limitations of conventional 

ATR-FTIR spectroscopy that inhibit translation into the clinical laboratory by 

permitting implementation of low-cost, automated, and high-throughput ATR clinical 

workflows. Trials carried out on SIREs consumed a third of the time and allowed all 

samples to be prepared and scanned under the same conditions since samples are dried 

simultaneously and relative humidity fluctuates from day to day. Compared to the Di 

IRE, SIREs exhibited an appreciable improvement in performance using both 

univariate and multivariate approaches to quantify albumin in HPS possibly due to 

enhanced surface properties of SIREs that enable surface adsorption. Univariate 
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analysis of glucose and lactate concentrations using spectral features coincident with 

the intrinsic absorption in SIREs by SiO at 1107cm-1 revealed SIREs to have impaired 

performance. In both cases, this shortcoming was overcome by using multivariate 

analysis using subtle spectral perturbations across wide wavenumber ranges to 

quantify the biomolecules. Multivariate methods are more likely to be implemented in 

real time clinical spectroscopy approaches as pathologies alter serum biochemistry 

with greater complexity than can be fully described by a stand-alone biomarker. 

All analytes are associated to some degree with the diagnosis and prognosis of 

sepsis, severe sepsis, and septic shock. Since all these biomolecules are typically 

determined through use of target specific reagents or enzymes, FTIR holds the benefit 

that it is possible to detect and quantify biomolecules in serum simultaneously, but 

further investigations are required to determine if this is possible using SIREs [100]. 

Having shown each can be well resolved at clinically relevant concentrations within 

spiked serum models it is evident that sepsis could be diagnosed and classified using 

SIREs. However, spiked serum models are not adequate to represent the huge variation 

in physiological conditions found across real patient samples. This has motivated a 

148 patient study to investigate if SIREs can discriminate between healthy patients, 

patients with sepsis, and patients with Systematic Inflammatory Response Syndrome 

(SIRS). The findings of this study shall be discussed in the next chapter. 
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6.1. Introduction 

 

It is a common view that there is a dire unmet clinical need for a rapid and 

reliable clinical test for sepsis diagnosis [1]–[3]. Its prevalence paired with quick onset 

and low detectability render it undeniably challenging and lethal, not to mention the 

staggering economic impact sepsis has on healthcare institutions [4], [5]. Sepsis is 

almost identical in presentation to Systemic Inflammatory Response Syndrome 

(SIRS). The singular, and major, defining factor is that sepsis is a syndromic response 

in the presence of infection, while SIRS may manifest as a consequence of a wide 

variety of non-infectious insults (e.g., trauma, pancreatitis, or high risk surgery) [6], 

[7]. This crucial detail in turn dictates the ensuing healthcare pathway which may 

include administration of vasopressors, antibiotics, resuscitation, admission to ICU 

and other clinical actions as appropriate [8]. 

Currently, both sepsis and SIRS diagnoses are normally made when two or 

more of the four SIRS criteria are met and a variety of clinical observations and tests, 

such as heart rate, blood pressure, C-reactive Protein (CRP), PCT, glucose, or lactate 

levels, are abnormal as well as the identification of an infection in the case of sepsis. 

The four SIRS criteria are [9]: 

1. Temperature >38°C or <36°C; 

2. Heart rate >90 beats per minute; 

3. Respiratory rate >20 breaths per minute or PaCO2 <32mmHg; 

4. White blood cells count >12,000/cu mm, <4,000/cu mm, or >10% 

immature (band) forms. 
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Individually these conditions are non-specific as any may be present for a 

variety of reasons unrelated to SIRS or sepsis. For example, a combination of abnormal 

lactate levels, temperature and hyperventilation may be present in liver dysfunction, 

diabetic ketoacidosis, or bronchiolitis each of which may, incidentally, exacerbate 

sepsis outcomes [10]–[12]. Conversely, these markers may even be absent in people 

who have sepsis/SIRS as is the case with ‘SIRS-negative sepsis’ diagnoses (i.e., sepsis 

with less than two SIRS criteria) [13]. Furthermore, only 60% of sepsis patients 

produce a positive blood culture test [14] and blood cultures determine causative 

microbes in merely 20-40% of patients with severe sepsis [3]. It can therefore be said 

the multitude of vital signs and test results are merely guidelines by which the clinician 

must make a subjective diagnosis and a single biomarker is clearly inadequate to make 

a reliable diagnosis. Moreover, minor variations between centre definitions of SIRS 

and measurement methods result in large variations in sepsis incidence suggesting 

either poor clinical acceptance of the consensus definitions, or the consensus 

definitions do not adequately describe the enormously complex pathological 

conditions of SIRS and sepsis [15], [16]. It follows that multivariate and machine 

learning techniques are well poised to provide reliable and objective tools for sepsis 

diagnostics [17], [18]. Each of the varied conditions and SIRS criteria mentioned 

above will result in changes to the infrared biochemical profile of serum from SIRS 

and sepsis patients, changes that can be rapidly detected using SIREs and trained 

machine learning algorithms. This has been attempted before by using standard clinical 

observations, laboratory test results, and demographics as input parameters to train and 

test predictive models, but only low sensitivities could be achieved [19]. In this 

chapter, three-way classifier models are built using Partial Least Squares Discriminant 
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Analysis (PLS-DA) and Random Forest (RF) to discriminate between control, SIRS 

and sepsis patient serum samples using spectral data acquired on SIREs. PCA and 

binary classification models are generated to investigate the specific spectral regions 

that contribute most variation in the dataset. Finally, an investigation is carried out to 

determine if the specific pathogen present in the sepsis patients can be determined 

using FTIR. 

 

6.2. Materials and Methods 

 

6.2.1. Serum Samples 

Serum samples (n = 148) were acquired from the Defence Science & 

Technology Laboratory (Dstl), Porton Down, United Kingdom. Samples were 

collected from patients requiring elective high risk surgery (liver and renal surgery, 

lung resection, large bowel resection, gastrectomy, Whipple’s procedure). Patients 

who were under 18 or over 80 years old, pregnant, and requiring immunosuppressors 

were excluded. Consent forms were signed by all patients involved at the medical 

centres they were admitted to (Liverpool Royal and University Hospital; University 

College Hospital, London; Bristol Royal Infirmary; Guy’s & St Thomas’ Hospital, 

London; Birmingham Queen Elizabeth Hospital; and University Hospital, Frankfurt). 

The project has been approved by Southampton & South West Hampshire Research 

Ethics Committee (A), 1st Floor, Regents Park Surgery, Shirley, Southampton, Hants, 

SO16 4RJ (Reference number: 06/Q1702/152). Blood samples were collected the day 

after surgery and if no complications developed were used in the control group (n = 
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46), otherwise, blood samples were collected again on the day of sepsis (n = 43) or 

SIRS (n = 59) diagnosis. Clotted blood samples (4ml) were centrifuged and serum was 

extracted then stored at -80°C until experiments were carried out. Patients were 

recruited from before 2016, so sepsis and SIRS diagnoses have been made according 

to former definitions [9], [20]: 

1. Two or more of the four SIRS criteria. 

2. Presence of an infection (sepsis only). 

Sepsis, SIRS, and control patient’s diagnoses made in the different medical 

centres involved were reviewed and confirmed by a clinical advisory panel. Patients 

undergoing high-risk surgery serve as a suitable control group as this provides patients 

experiencing sterile inflammation which is one of the reasons other biomarkers give 

low specificity [5]. Partially complete datasheets detailing a large variety of patient 

specific information have also been provided including ethnicity, gender, age, 

admission diagnosis, White Cell Count (WCC), CRP concentration, SOFA score, 

Antibiotics administrated, Glasgow coma score, and more. 

 

6.2.2. Experimental Procedure 

One SIRE was used per patient. 3µl of serum was pipetted into each of the 

three sample compartments of the SIRE. Samples were then allowed to dry for one 

hour in an incubator at 35°C. SIREs were then placed in a Spectrum2 (PerkinElmer, 

USA) with a custom automated slide indexing unit (see chapter 3, section 3.2.3) and 

Quest ATR accessory unit (Specac, UK) for analysis. Spectra were collected between 

4000-450cm-1 range and averaged over 16 co-added scans at a resolution of 4cm-1 with 
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1cm-1 data spacing. A background scan was acquired from the ‘zero’ position of the 

SIRE slide and automatically removed from sample spectra. SIRE sample 

compartments were analysed in triplicate equalling nine spectra per patient. In total, 

1332 spectra were collected. 

 

6.2.3. Analytical Procedure 

A Matlab (MathWorks, USA) based General User Interface (GUI) developed 

in-house was generally used for exploratory analysis. An in-house R-studio based 

computer programme called PRFFECT was used to build all machine learned 

classification models [21]. Numerous multivariate and machine learning approaches 

were used as exploratory and classification techniques to analyse the serum samples. 

These were Principal Component Analysis (PCA), Partial Least Squares Discriminant 

Analysis (PLS-DA) and Random Forest (RF). PCA was intended to be a qualitative 

exploratory technique to visualise where the greatest variance in the dataset resided, 

so pre-processing techniques which already established were used to quickly explore 

the data. A cut-off value of 90% explained variance was taken when selecting the 

number of components to investigate. PLS-DA and RF were used to develop 

classification models to predict disease classes. Initially, investigations were carried 

out using PLS-DA and RF to develop three-way classification models (i.e., control vs 

sepsis vs SIRS) to deliver as close a resemblance to the real-world clinical scenario as 

possible. Later, a binary classification model (sepsis vs SIRS) was developed using 

RF only to elucidate the specific biochemical differences that could separate the two 

clinical conditions. Each technique used here necessitated slightly different spectral 

pre-processing methods. These methods have been represented as a flow diagram in 
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Figure 6.1. For the development of all classification models 70% of patient samples 

were used to train models, and 30% of the patient samples were used to test them. 

Statistical characteristics presented are the average and standard deviation of accuracy, 

sensitivity, specificity, negative predictive value (NPV), and positive predictive values 

(PPV) across 51 classification models. The reason for doing this is to ensure that test 

and training set patients are changed at each iteration reducing bias in the test set and 

providing results more representative of the wider patient population [22]. Thus, to 

demonstrate how robust the predictive models are, the mean and standard deviation of 

the outputs across many models are presented. Confusion matrices have also been 

presented to help illustrate performance of each classification regime. However, unlike 

the predictive value outputs, confusion matrix predictions cannot be averaged over all 

iterations as patient within the training and test set are effectively altered each time. 

Instead, a confusion matrix from only the first iteration has been presented.  
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Figure 6.1. Flowchart presenting consecutive pre-processing techniques used 

before initiating each analysis method. 

During the study numerous combinations of pre-processing techniques were 

attempted, but the methods presented here have been selected based on those that 

elicited the highest and most reliable sensitivity, specificity, NPV and PPV, and 

accuracy of predictive models. The most noteworthy difference is the use of a data 

binning step utilised in PLS-DA models to smooth spectra and reduce computation 

time for constructing predictive models. Extended Multiplicative Signal Correction 

(EMSC) served as an alternative baseline correction technique that produced superior 

predictive models [23].  
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6.3. Results and Discussion 

 

6.3.1. Qualitative Observations 

Average pre-processed spectra of all patients across the three disease classes 

have been presented in Figure 6.2. Upon visual observation it is apparent that 

noticeable changes in the Amide I and II peaks and the 1000-1100cm-1 region as well 

as subtler variations of the Amide III and 1100-1200cm-1 region between each group. 

The SIRS and sepsis waveforms are notably similar suggesting discriminant analysis 

between these groups may be difficult whereas discrimination of the control group can 

be expected to be fairly reliable. Spectral variations are likely due to an overall trend 

toward hyperglycaemia (abundance of glucose; 1000-1100cm-1) and 

hypoalbuminemia (depletion of albumin; Amide I and II) in the sepsis and SIRS 

groups relative to the control group. 

 

Figure 6.2. Average finger-print region of pre-processed spectra of the serum 

from sepsis, SIRS, and control groups. SIRS and sepsis groups are remarkably 

similar indicating discriminate analysis between these classes may be difficult. 

The differences between the control group and SIRS/sepsis is more pronounced 

specifically at the Amide I, Amide II and 1000-1100cm-1. 

A
b
so

rb
an

ce
 



287 

 

Figure 6.3 shows the results of a PCA of all spectra in a 3D plot of PC 1, 2, and 

3. The first five PCs explained 90.8% of the variance with PC4 and PC5 accounting 

for 3.5% and 3.2% of the total variance, respectively. PC4 and PC5 scores plot did not 

display any separation between groups. It was found that three SIRS and one sepsis 

patients (circled regions of Figure 6.3.(a)) were potential outliers. These patients have 

been removed in a second PCA so that separation for groups is more clearly visualised 

(Figure 6.3.(e)). Observing the difference in PC 1 loading vector before and after 

removing patient spectra indicates PC 1 variance is more dominated by glucose content 

with the inclusion of these patients (C-O related vibrations 1000-1100cm-1, Figure 

6.3.(b)), whereas evidence of variance due to lactate as well as glucose content can be 

observed in the PC 1 when these patients have been excluded (carbonyl related 

vibrations at 1650-1750cm-1, Figure 6.3.(d)) [24]. Checking the average spectra of 

each patient confirms a significant contribution of spectral features at 1000-1100cm-1 

(Chapter 8, Appendix VI). It should be noted that these patients have not been removed 

from subsequent analysis as they still represent valid variance within the dataset, but 

only removed here so that separation of the three classes can be more clearly illustrated 

by visual analysis of the 3D PCA plots. Loadings vectors of PC 2, and 3 have also 

been displayed (Figures 6.3.(e)-(h)). There is minimal difference observed in these 

loading directions whether the four patient outliers have been removed or not. Sharp 

peaks at C-O regions of loading 1, carbonyl regions and dips at the amide I and II 

regions in loading 2, and the dips at amide III regions of loading 3 suggest that for 

classes tending toward the positive scale of the PC1, PC2 and PC3 (i.e., sepsis and 

SIRS classes) have an increased C-O and carbonyl group presence and decreased 

amide I, II and III presence compared to classes tending toward negative PC1, PC2 
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and PC3 values (i.e., control samples). These qualitative observations are important 

because it is evidence that biochemical changes known to occur in the serum of sepsis 

and SIRS patients have corresponding patterns in the vibrational spectra of the serum. 

This lends credence to the validity of spectroscopy-based machine learning approaches 

in SIRS, sepsis, and control group classification by providing a link to spectral features 

and the physiological differences between groups. 
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Figure 6.3. (a-d) PCA plot with loading directions 1, 2, and 3 with all data 

collected in the experiment. Outliers in the SIRS group were identified as 

indicated by a red circle in (a). Loadings suggest variance in the dataset is 

owed to a combination of increased carbohydrate (1000-1200cm-1, Loading 1) 

and decreased protein (Amide II and Amide II, Loading 2 and Amide III, 

Loading 3) related molecular species between groups. (e-h) PCA plot and 

loading diretions 1, 2, and 3 with four patient outliers removed. The removal 

of outliers has little impact on the loading plots with the exception of a greater 

degree of variance observed in the carbonyl related wavenumbers (1650-

1750cm-1) of loading 1. 
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6.3.2. Discriminant Analysis 

6.3.2.1. Partial Least Squares Three-Way Classifier 

3D scatter plots of the PLS-DA scores of the first three PLS components 

(Figure 6.4.(a)) seems to exhibit better separation of the three classes than the previous 

PCA (Figure 6.3.(a)). Three SIRS patients and one sepsis patient were found to be 

particularly prominent in the component 1 and 2 directions (circled region in Figure 

6.4.(a)). These same patients were also observed as outliers in the PCA (section 6.3.1). 

The first 10 components were selected for analysis as this was the minimum number 

of components required to minimise RMSE of predictive models (see chapter 2, 

section 2.4.2.2). Scores and loadings plots of PCs 1, 2, and 3 have been presented 

below (Figure 6.4). Loadings are complex, suggesting a wide variety of molecular 

species contribute to discrimination of classes as can be expected (Figure 6.4.(b), (c), 

(d)) although this could be due to aliasing of the data: a foreseeable ramification of 

data binning. Nevertheless, it can be tentatively prescribed that the major sources of 

variance by which classes can be discriminated is by concurrent hyperlactatemia 

(1650cm-1) and hypoalbuminia (1625cm-1 and 1575cm-1) according to features of 

component one loadings (Figure 6.4.(b)) and in agreement with previous qualitative 

observations. Loadings of components 2 and 3 are less salient and so vibrational modes 

or biochemical species cannot be as reliably assigned. Similarly, PC 4 through PC 10 

score plots did not display any separation between groups and their respective loading 

plots are non-specific and do not highlight any particular spectral bands as discriminant 

factors. Statistical characteristics of the PLS-DA classifier model have been presented 

in Table 6.1 showing the accuracy, optimal number of PLS components, sensitivity, 
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specificity, NPV, and PPV of the test set of each class. The predictive capabilities of 

the model in correctly identifying control group samples are, while still good, lagging 

the SIRS and sepsis groups. This is reflected in the 3D PLS-DA score plot where the 

SIRS and sepsis groups are well discriminated and the control group is dispersed 

between. Specificity and NPV for each class is high and reliable although sensitivity 

and PPV is perhaps too low and too variable to be accepted by the clinical community 

[25], [26]. 

 

Figure 6.4.(a) 3D plot of PLS-DA scores of SIRS, sepsis and control patients. 

Good separation is visually obvious between SIRS and sepsis groups. A red 

circle indiates two SIRS patient outliers in the dataset. (b-d) Loading vectors 

of components 1, 2, and 3 of the PLS-DA. It is difficult to associate biochemical 

IR fingerprints to the loadings, but sharp dips at 1575 and 1625cm-1 are akin 

to inverted amide peaks immediately adjacent to a carbonyl peak suggestive of 

protein and lactate related variance in the dataset. 

(a) (b) 

(c) (d) 
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Table 6.1. Statistical characteristics of the three-way classifier model 

constructed using the PLS-DA method. Quoted are the average and standard 

deviations of 51 models. 

PLS-DA Classifier Characteristics 

  Control SIRS Sepsis 

Sensitivity 0.6018 ±0.1312 0.7647 ±0.1046 0.8252 ±0.1182 

Specificity 0.8668 ±0.0676 0.8667 ±0.0700 0.8641 ±0.0592 

Neg. Pred. Val. 0.8312 ±0.0491 0.8480 ±0.0606 0.9278 ±0.0455 

Pos. Pred. Val. 0.6799 ±0.1240 0.8029 ±0.0925 0.7181 ±0.0910 

Accuracy 0.7316 ±0.0625   

PLS Components 10 

 

Table 6.2. Confusion matrix of the first iteration of three-way classifier model 

constructed using the PLS-DA method displaying observed and predicted 

diseased or non-diseased states of the test set patient samples. 

    Observed 

    Control SIRS Sepsis 

P
re

d
ic

ti
o
n

 

Control 8 1 0 

SIRS 2 14 1 

Sepsis 3 2 11 

 

6.3.2.2. Random Forest Three-Way Classifier 

Random Forest machine learning approaches yielded better prediction 

capabilities than PLS-DA as shown by the improved sensitivities, specificities, NPVs, 

PPVs, and accuracy presented in Table 6.3. Sensitivity and positive predictive value 

are good and specificity and NPVs are excellent across all classes. A strong ability to 

detect true negatives is an essential requirement for clinical acceptance due to the 

importance of correctly ruling out sepsis [27]. An importance plot can be acquired 

from RF that indicates which spectral regions are of greater importance for 

discrimination between classes (Figure 6.5). As expected, protein associated regions 

of the Amide bands are highly important for the prediction of classes. To be more 

precise, the shoulders of the Amide I band show significant contribution perhaps since 
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the data has been normalised to Amide I thereby eliminating variance at the centre of 

the amide I peak. Furthermore, only patients with significant drop in serum proteins 

will have detectable decrease of amide I band due to the saturation of the IR detector 

at the amide I band [28]. Another study have found that the Amide I band has little 

impact in the detection of cancer, but this may not be directly relevant to 

SIRS/sepsis/control classification using random forest [29]. The Amide II band has the 

greatest influence on classification as it may be sensitive to variations of pro- and anti-

inflammatory protein species or changes in secondary protein structures. However, 

interpretation is difficult due to the multitude of biomolecule species known to 

fluctuate during SIRS and sepsis such as C-reactive protein, interleukin-6, 

procalcitonin and many more [30]. Wavenumbers between 900-1000cm-1 also play a 

significant part in the discrimination of classes possibly due to P-O and C-O stretching 

vibrations from nucleic acid and carbohydrate species such as deoxyribose, DNA, 

glucose or lactate. Upon closer inspection, the prominent peaks at roughly 927cm-1 

and 960cm-1 likely correspond to vibrational modes of DNA and the C-O bond of 

deoxyribose respectively suggesting DNA fragments are in some way contributing to 

class discrimination in the RF model [24]. Circulation of exogenous DNA fragments 

from pathogenic species and endogenous cell-free DNA (cfDNA), which are both 

known to rise in sepsis, presents a plausible source for this variation [18], [31]–[33].  
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Figure 6.5. Importance plot highlighting spectral regions that were 

instrumental in the construction of the three-way RF classification model. 

Amide I and II peaks contribute significantly likely due to fluctuations in pro- 

and anti-inflammatory cytokines. The 900-1000cm-1 wavenumber region 

indicates DNA related molecular species are also important in discriminating 

between SIRS, sepsis, and control classes. 

Table 6.3. Statistical characteristics of the three-way RF classifier model 

constructed using the RF method. Quoted are the average and standard 

deviations of 51 models. 

Three-Way Random Forest Classifier Characteristics  
Control SIRS Sepsis 

Sensitivity 0.7753 ±0.1007 0.8385 ±0.0814 0.8415 ±0.1083 

Specificity 0.9101 ±0.0543 0.9341 ±0.0465 0.8895 ±0.0501 

Neg. Pred. Val. 0.9020 ±0.0401 0.8975 ±0.0464 0.9355 ±0.0409 

Pos. Pred. Val. 0.8056 ±0.1002 0.9019 ±0.0655 0.7608 ±0.0812 

Accuracy 0.8198 ±0.0467 
  

 

Table 6.4. Confusion matrix of the first iteration of three-way classifier model 

constructed using the RF method displaying observed and predicted diseased 

or non-diseased states of the test set patient samples. 

    Observed 

    Control SIRS Sepsis 

P
re

d
ic

ti
o
n

 

Control 11 1 1 

SIRS 0 16 1 

Sepsis 2 0 10 

 

 

Three-Way Random Forest Classifier Importance Plot 
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6.3.2.3. Random Forest Binary Classifier 

The eminent clinical need is in rapid discriminative capabilities between sepsis 

and non-infectious SIRS due to the subtle distinction between the two syndromes, 

highly inconsistent presentation, and frequently contested clinical definitions. To 

examine the utility of SIRS with respect to this more specific clinical question and to 

elucidate the specific biochemical differences between serum of SIRS and sepsis 

groups the previous discriminatory techniques have been employed again to build 

binary RF classification models this time designating the SIRS patients as the control 

group and removing the elective high-risk surgery patients.  Figure 6.6 and Table 6.5 

display the importance plot and statistical characteristics of the random forest classifier 

model of the two disease state groups. Accuracy, positive predictive value, specificity, 

and sensitivity are all improved upon compared to three-way classifier investigations 

in the previous section as can be expected due to the decrease in complexity required 

to describe the datasets. NPV has remained roughly the same. In contrast to the three-

way classifier model importance plot, variations in spectra between SIRS and sepsis 

groups lies decisively within the Amide II band and DNA (900-1000cm-1) associated 

peaks of the fingerprint region while influences of wavenumbers with proximity to the 

Amide I band is further diminished. Again, it is difficult to associate specific 

biomolecular species to the differences in IR absorbance, but the emphasis on two 

distinct spectral peaks at ca. 945cm-1 and ca. 1585cm-1) is a key indicator that profound 

differences in protein and DNA related biochemistry exists between the SIRS and 

sepsis groups [24]. Differences in protein concentrations could manifest due to host 

immunological response cytokines specific to infection such as procalcitonin (PCT), 
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interleukin-6 (IL-6), IL-8, IL-10, IL-18, and tumour necrosis factor-alpha (TNF-alpha) 

[34]. 

 

Figure 6.6. Importance plot highlighting spectral regions that were 

instrumental in the construction of the binary RF classification model. Amide 

II peaks contribute significantly likely due to fluctuations in pro- and anti-

inflammatory cytokines. The 900-1000cm-1 wavenumber region indicates DNA 

related molecular species are also important in discriminating between SIRS 

and sepsis classes. 

Table 6.5. Statistical characteristics of the binary RF classifier model 

constructed using the RF method. Quoted are the average and standard 

deviations of 51 models. 

 

 

 

 

Table 6.6. Confusion matrix of the first iteration of binary classifier model 

constructed using the RF method displaying observed and predicted diseased 

or non-diseased states of the test set patient samples. 

 

Binary Random Forest Classifier Characteristics 

Sensitivity 0.8676 ±0.1056 

Specificity 0.9043 ±0.0715 

Neg. Pred. Val. 0.9112 ±0.0837 

Pos. Pred. Val. 0.8734 ±0.0644 

Accuracy 0.8891 ±0.0553 

    Reference 

    SIRS Sepsis 

Prediction 
SIRS 16 3 

Sepsis 1 9 

Binary Random Forest Classifier Importance Plot 
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6.3.2.4. Evaluation of Predictive Capabilities 

An excellent NPV (>98%) and test sensitivity (>98%) is widely specified as 

an essential characteristic of a sepsis test which the SIRE is capable of delivering on 

[18], [25]–[27]. This is because a false negative result may incur the inappropriate 

cessation of antibiotics and may pose great risk to patient welfare [18]. A false positive, 

on the other hand, is likely to lead to inappropriate administration of antibiotics which 

may introduce anti-microbial resistant pathogens but is not immediately threatening to 

the patient’s life. Poor NPV may be one of the reasons there is no clinically accepted 

biomarker for the diagnoses of sepsis [3], although many have been proposed as 

potential candidates and some are widely used to guide clinical decisions with the 

caveat of low specificity such as lactate, CRP, and PCT [5], [35], [36]. The predictive 

capabilities presented here outperform predictive capabilities of all blood biomarkers 

commonly used in the clinic by virtue of the fact that this test does not require a 

concentration cut-off value to be selected which generally forces a trade-off between 

good sensitivity or good specificity [37]. Furthermore, the SIRE based test requires 

very low volumes of samples which is a crucial characteristic for the screening of 

sepsis in neonates where the disease is equally prevalent, but carries with it the added 

risk of causing life-long disorders [38]. It is estimated that as many as 60% of blood 

cultures are falsely negative if blood samples used are 0.5ml or less [39]. 

The specificity, sensitivity, negative predictive value, positive predictive value, 

and accuracy of common clinical indicators used to differentiate sepsis from sterile 

SIRS were compared to corresponding predictive characteristics of classifiers 

constructed from patient serum analysed using SIREs (Tables 6.3 and 6.5). Predictive 

values of lactate, C-reactive protein (CRP), procalcitonin (PCT), Interleuking-6 (IL-
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6), presepsin, neutrophil CD64, lipopolysaccharide binding protein (LBP), and soluble 

triggering receptor expressed on myeloid cells-1 (sTREM-1) were derived from a 

multitude of studies and have been tabulated in Table 6.7 for comparison against 

predictive values for sepsis detection achieved by the three-way and binary classifiers 

developed using serum spectra acquired from SIREs. In studies where conflicting 

results were found (e.g., studies stating different diagnostic accuracies for patients in 

the Intensive Care Unit or Emergency Department patient groups) the results that most 

generously reflect on each respective biomarker has been selected for comparisons 

sake. Results published in systematic reviews and meta-analysis have been indicated 

by ‘meta’. In one instance, positive predictive value, negative predictive value, and 

accuracy were not explicitly stated in the source material, but were instead calculated 

using true positive, false positive, true negative, and false negative values stated in the 

study [30]. These calculated values are indicated with an underline in Table 6.7. 
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Table 6.7. Statistical characteristics of commonly used biomarkers for sepsis and the 

results achieved by the high throughput SIRE (bold). The best results found in the 

literature have been selected for comparison to the present study. ‘–’ not available. 

‘meta’ pooled results drawn from meta-analysis studies. Underlined values have been 

calculated using data extracted from the respective study. 

Biomarker Spec. Sens. PPV NPV Acc. Reference 

Lactate 28.18 

82.00 

74.30 

83.36 

34.00 

56.70 

- 

89.00 

20.80 

- 

23.00 

93.50 

- 

- 

- 

[40] 

[41] 

[42] 

 

CRP 65.60 

79.00 

67.00 

71.00 

46.15 

75.00 

61.10 

77.00 

75.00 

83.00 

84.30 

98.50 

32.00 

- 

76.62 

- 

84.00 

- 

85.90 

- 

60.68 

- 

42.80 

- 

- 

- 

69.35 

- 

- 

- 

[35] 

[43] meta 

[30] meta 

[44] meta 

[45] 

[46] 

 

PCT 69.50 

79.00 

79.00 

78.00 

75.00 

76.56 

84.90 

72.60 

78.00 

76.00 

79.00 

80.00 

63.64 

83.10 

39.00 

- 

- 

78.93 

- 

- 

85.30 

90.40 

- 

- 

68.41 

- 

- 

82.70 

- 

- 

- 

74.15 

- 

- 

- 

[35] 

[43] meta 

[44] meta 

[30] meta 

[47] meta 

[40] 

[48] 

 

IL-6 62.00 

73.00 

68.00 

72.00 

32.50 

77.35 

87.80 

62.60 

- 

70.20 

[35] 

[30] meta 

 

Presepsin 75.00 

77.00 

73.00 

84.00 

84.00 

84.00 

- 

83.37 

- 

- 

70.93 

- 

- 

78.61 

- 

[43] meta 

[30] meta 

[47] meta 

 

CD64 89.00 

75.00 

77.00 

79.00 

93.00 

95.20 

87.00 

85.00 

75.00 

91.00 

87.00 

84.40 

- 

96.00 

- 

- 

95.85 

94.90 

- 

38.00 

- 

- 

68.98 

85.30 

- 

82.08 

- 

- 

84.05 

- 

[44] meta 

[49] 

[36] 

[50] meta 

[30] meta 

[48] 

 

LBP 70.00 62.00 59.45 69.34 64.88 [30] meta 

 

sTREM-1 86.30 

78.00 

53.20 

78.00 

80.40 

83.20 

63.60 

63.27 

- 

74.97 

[48] 

[30] meta 

 

SIRE (3-way) 

SIRE (binary) 

90.43 

90.04 

84.15 

86.76 

76.08 

87.34 

93.55 

91.12 

81.98 

88.91 
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A number of studies cited in Table 6.7 assess predictive capabilities in binary 

sepsis vs non-infectious SIRS [40], [45], [46], [49] which is most comparable in design 

to  binary SIRS/sepsis investigations in the present study. It is indeterminable from the 

literature that the tests listed above would be capable of discriminating between 

SIRS/sepsis and unrelated sterile inflammation. PCT, for instance, is known to poorly 

discriminate between sepsis and sterile inflammation and is therefore not used on 

patients who have undergone surgery, and CRP is frequently elevated in a variety of 

autoimmune disorders [5]. The SIRE based serum test demonstrated superior 

predictive capabilities compared to other biomarkers arguably with the exception of 

CD64 which consistently displays superior sensitivity and positive predictive value, 

but poorer specificity and negative predictive value. However, this comes with the 

caveat that two of the meta-analysis papers explicitly state that numerous CD64 studies 

suffered from low methodological quality and bias [30], [50]. Sepsis and SIRS are 

highly dynamic conditions that advances through hyper-inflammatory and 

immunosuppressive phases meaning that the selection of concentration cut-off values 

is inherently flawed since any given marker is both expressed and supressed to varying 

degrees along the progression of the syndrome [36]. Machine learning is not as 

affected by this provided patient samples across every stage of sepsis development are 

used to construct predictive models. 

Binary classification has demonstrated that it is possible to achieve the desired 

PPV and specificity of above 85% for sepsis detection as specified in the literature 

[18], [26]. However, sensitivity and NPV achieved, while still high, may need to be 

improved upon to gain clinical acceptance. The precise pre-analytical steps taken, such 

as sample collection method, are not known for the present study, but it is possible that 
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mitigating these sources of error and optimising and standardising preanalytical factors 

SIRE test sensitivity and NPV can improve. For instance, levels of pathogen cfDNA 

in blood and urine are known to be influenced by preanalytical factors such as sample 

collection tube, processing delays, processing method, and sample volume [51]. Since 

pathogen cfDNA is believed to be an important factor in SIRE test discrimination, it 

is therefore likely that control of these factors would lead to more accurate sepsis 

detection (section 6.3.2.2). Lastly, the SIRE test presented here performs better than 

any other comparable laboratory biomarker test identified in Table 6.7 in terms of 

predictive capabilities, particularly NPV, and practical use due to simplicity of 

operation. This suggests that with further refinement this technique could be a top 

competitor in rapid sepsis testing. 

 

6.3.3. Infectious Pathogen Determination 

In order to prescribe effectual antibiotics and combat the rise of antimicrobial 

resistance through over usage of broad spectrum antibiotics it is desirable to know the 

specific pathogen(s) present during sepsis [52]. While section 6.3.2. determined that 

the presence of infection could be detected spectroscopically, possibly in part due to 

DNA fragments, the task of distinguishing the culprit is far more complex. Causative 

bacteria vary widely across all sepsis cases the world over [53]. The patient data 

supplied with the patient sample set identifies 11 different known pathogen strains and 

a further 8 unknown strains within the 43 sepsis samples used in the present study 

alone. In 9 cases patients were suffering from multiple concurrent infections. The 

different pathogen strains encountered in this study are presented in Table 6.8 along 

with the number of occurrences within the sample set. A PCA was carried out on the 
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four most prevalent bacteria species using spectra of patients who had been infected 

by only a single known pathogen (Figure 6.7). No clear separation between groups 

could be observed. The first most obvious reason for this is the small number of 

samples available to conduct this particular analysis. The second is that the pathogens 

themselves are not present in the serum as these will have been lost during 

centrifugation. Thus, analysis must depend on the detection of molecular species shed 

by the pathogen. It is likely these molecular species exist in low concentrations in 

serum. Moreover, the biochemicals shed would need to be specific to the causative 

pathogen and not just generic microbial by-products. Perhaps a more realistic and 

almost equally constructive goal would be the classification of causative microbial 

agents into their broad pathogen categories such as bacteria, fungi, or viruses [3], [18]. 

This added function would be of great benefit in narrowing down causative pathogen 

species and particularly for viral related sepsis incidences which currently rely on 

diagnosis by exclusion [2], [26]. 

Table 6.8. List of all the pathogen species encountered and the frequency of 

occurrence. 

Pathogen Frequency 

Escherichia Coli (E. Coli) 7 

Haemophilus Influenzae (H. Inf) 3 

Candida species (Cand.) 3 

Pseudomonas Aeruginosa (P. 

Aeruginosa) 

3 

Enterococcus Faecalis (E. faecalis) 2 

Streptococcus species (Strep.) 2 

Staphylococcus species (Staph.) 2 

Clostridium species (Clost.) 1 

Faeces CDT 1 

Klebsiella species (Kleb.) 1 

Bacteriodes Fragilis (B. Fragilis) 1 

Unknown 8 
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Figure 6.7. PCA plot of spectra from the four most prevalent pathogen species 

encountered in the study. Separation between classes was not apparent. 

The silicon IREs may benefit from surface functionalisation as a means to 

either detect or rule out some of the more prominent sepsis culprits [54]. For instance, 

Mura et al. demonstrate the use of Single Side Polished silicon wafers coated in 

functionalised mesoporous titania films for the detection of E. Coli in water and food 

samples [55]. However, sepsis/SIRS/healthy disease state classification when carried 

out in conjunction with microbe detection may be impaired due to the underlying risk 

of Mie scattering caused by cells unless some corrective action is taken (e.g., Extended 

Multiplicative Signal Correction) [56]. 

 

6.3.4. Study Limitations 

It is important to recognise some of the caveats which concern the validity of 

the present study to fully appreciate the potential of the SIRE as a sepsis diagnostic 

test. Firstly, samples analysed in this study were acquired on the day of sepsis 

diagnosis. To conclusively determine if the SIRE serum test can outperform the current 

status-quo the test must be able to accurately predict sepsis from serum samples 
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acquired in the days leading up to the time point a sepsis diagnosis can be made using 

current methods. Secondly, predictive models are built on the assumption that all the 

diagnoses made on the source patient samples are sound clinical assessments, although 

all diagnoses were reviewed and confirmed by a clinical advisory panel adding 

credence to the validity of the sample set. However, it has been observed that minor 

subjective differences in definitions heavily impacts apparent incidence of sepsis [15]. 

Lastly, investigations aimed at determining causative pathogens (Section 6.3.3) 

suffered from low sample size. Increased sample size would determine if specific 

pathogens could be delineated from blood serum alone, or at least if broad pathogen 

categories could be determined (e.g., viral, fungal, bacterial, etc.). 

 

6.4. Conclusion 

 

The crucial aspects in an effective sepsis diagnosis are speed and assurance in 

the result. A low-cost high-throughput ATR-FTIR based test could certainly provide 

rapid diagnosis of approximately two hours when factoring in the most time limiting 

factors in the process: sample collection and centrifugation. Although the test was not 

able to achieve NPV or sensitivity of >98% as specified in the literature [18], [26], the 

test is reliable and does possess good predictive capabilities (specificity and PPV 

>85%) comparable, or better, than existing blood biomarkers which have gained 

mainstream use in the clinic. This suggests the test could be commercially competitive 

and it is believed that with further refinement to minimise error sources, such as by 

utilising high purity FZ Si, hydrophilic surface treatments, and optimisation of pre-
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analytical factors, test sensitivity and NPV can be improved. There is no cut-off value 

to choose from for the SIRE serum test which inherently gives an advantage over 

single biomarker tests as a cut-off value fails to capture the dynamic nature of sepsis. 

The SIRE serum test also requires very low sample volumes (minimum 9µl) which is 

of particular importance in the screening of neonates. This is a significant 

improvement from the notoriously slow (2-5 days) [18], [57] gold standard blood 

cultures that require large sample volumes to obtain reasonable sensitivity and 

specificity [58]. To realise the full potential of a SIRE serum test; future studies need 

to recruit larger patient cohorts to investigate specific or broad-based pathogen 

determination capabilities and explore the possibility of silicon surface 

functionalisation techniques to target specific pathogens. 
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7.1. Conclusion 

 

ATR-FTIR spectroscopy is a clinically useful technique with well recognised 

diagnostic utility. Technical limitations have prevented the translation of ATR-FTIR 

spectroscopy to the clinical landscape. These limitations have been addressed in the 

present studies through the creation of a novel high-throughput ATR-FTIR serum 

diagnostics platform. This advancement in the technology has led to a prospective 

clinical validation study for the detection and rapid triage of brain cancers. This, 

together with the promising sepsis detection study results presented here, indicate the 

high-throughput SIREs can be a valuable clinical tool. High-throughput IR 

spectroscopy has been enabled through development of a simple, low cost, disposable 

microscope-sized silicon IRE slide called a SIRE was developed along with an 

accessory unit to interface the SIRE with IR spectrometers. Design specifics and 

rationale has been presented in chapter three. Reduction of IR beam pathlength through 

the SIRE successfully mitigated the optical limitations of silicon. V-grooves etched 

into the beam facing surface permitted a single internal reflection and use of thin 

(375µm) double-side polished Czochralski silicon reduced pathlength. V-groove 

width (250µm) and pitch (25µm) was optimised for spectral signal to noise ratio (136.7 

SNR) and reproducibility (2.1 amide I RSD%, 1.5 amide II RSD%). It was confirmed 

that none of the design aspects, such as micron scale features that may scatter IR light, 

interfered with spectral quality. A design for manufacturability approach was 

employed in the design of SIREs whereby consideration has been given to the 

availability of raw materials, feasibility of scaled productions, ease of assembly, and 

unit cost of production. This entailed use of low cost, ubiquitous, and processable 
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materials including a silicon IRE substrate, PLA or ABS receptacle to protect the IRE 

crystal, and a laminated label with RH07 adhesive to restrain the components. Scalable 

microfabrication, injection moulding, label printing, and pick and place systems can 

be employed for the rapid low-cost mass production of SIRE slides. Similarly, an 

accessory unit was designed to be cheap and easy to manufacture and assemble but is 

not a consumable item like the SIRE so does not require the same degree of automated 

assembly. 

SIRE spectrum reproducibility was optimised in chapter four by characterising 

intrinsic and extrinsic sources of variance and by defining pre-analytical sample 

preparation procedures. Batched procedures were established specifically to enable a 

high-throughput workflow. An incubator set to a stable temperature of 30°C with fan 

set to 60CFM was able to simultaneously prepare 48 samples for analysis in two 

minutes or less. The resultant workflow regime was capable of analysing 24 (or 72 if 

no instrument repeats are taken) samples within an 8-hour period compared to a rate 

of 8 samples within the same timeframe using a standard Di IRE. This equates to a 

300% increase in sample processing rate. In a clinical setting, background scans could 

be acquired in advance while patient samples are being centrifuged to further improve 

time efficiency. Moreover, acquisition times could be shortened by reducing spectral 

resolution window and/or number of coadded scans. It was found that negligible 

variance existed between spectra of SIREs despite nonhomogeneous distribution of 

impurities across silicon wafers except for SIREs fabricated at wafer peripheries which 

exhibit elevated interstitial oxygen concentrations and impaired spectral quality. 

Consequently, a manufacturing yield of 86.67% per wafer has been estimated. Inter 

IRE variance is low across both the pure silicon spectra and serum sample spectra. 
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However, spectral reproducibility of samples may not be stable over the course of 

multiple days. Going forward, serum drying by lyophilisation may be the best 

approach to mitigating this problem. Lack of consistency in serum droplet spreading 

has clear detrimental impacts on sample spectrum reproducibility and quality, but 

standardised pipetting techniques can negate this. Furthermore, surface treatment 

using Piranha solution will salinize SIRE surface resulting in a highly wettable 

sampling area and consequently uniform sample coverage. It may be beneficial to 

explore how more stable surface treatments, such as plasma activation, might impact 

SIRE performance. 

SIRE performance was characterised and compared to spectral quality and 

analytical capabilities of other IRE substrates. Chiefly among these was diamond as 

diamond is widely respected as a high-quality IRE substrate. Chapter five found SIREs 

detection and quantification limits comparable to a Di IRE, and in some instances 

better, depending on the target molecule even though spectra were collected from 

various SIREs in comparison to a single Di IRE. Moreover, SIRE spectra are less 

distorted by anomalous dispersion artefacts than Di IRE spectra. The intrinsic 

absorption profiles of SIREs and the Di IRE differ greatly alluding to a difference in 

sensitivity across the mid-IR spectrum and by extension to specific bonding 

environments. This was confirmed through clinically relevant serum concentration 

studies of three of the four biomolecular classes (proteins, carbohydrates, lipids) with 

which sections of the IR spectrum can be apportioned into. Glucose, triglycerides, and 

albumin were selected as they are archetypal serum carbohydrate, lipids, and protein, 

respectively. Lactate was also selected since it possesses both characteristic 

carbohydrate and lipid bonding environments. All analytes also have clinical 
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indications for sepsis. Silicon is a strong attenuator of light at 610cm-1 and 1107cm-1 

which impairs detection and quantification of glucose in comparison to a Di IRE. 

Conversely, Di IRE attenuates IR light at 1640cm-1 and 3300cm-1 which impairs 

detection and quantification of albumin in comparison to SIREs. Di IRE and SIREs 

are comparable in the detection and quantification of triglycerides, but the Di IRE was 

better at detecting and quantifying lactate concentrations. Multivariate analysis 

(PLSR) was able to overcome the lack of SIRE sensitivity at localised wavenumbers 

producing excellent predictive capabilities at clinically relevant concentration ranges 

for all analytes under investigation including glucose. The evidence provided here 

suggests SIREs are capable of rapid point of care monitoring of the complex and 

dynamic biochemical shifts underpinning sepsis progression without need for reagents 

or complicated procedures. 

A 148 patient study presented in chapter six confirmed that SIREs are clinically 

useful for their ability to rapidly discriminate between sepsis and closely related health 

conditions using only serum. The SIRE test possessed Negative predictive value 

(93.55%), positive predictive value (76.08%), sensitivity (84.15%), specificity 

(90.43%), and accuracy (81.98%) for the detection of sepsis demonstrating that the 

high-throughput ATR-FTIR serum spectroscopy platform developed herein can 

discriminate between sepsis from SIRS and control patients (healthy patients post-high 

risk surgery) returning rapid and reliable results. These predictive values perform well 

compared to common laboratory biomarker tests for sepsis, but do not quite satisfy the 

desirable predictive values as cited in the literature (NPV and sensitivity >98%, PPV 

and specificity >85%). In contrast to the gold standard blood culture method for 

diagnosing sepsis, this approach is rapid (<2 hour compared to 3-5 days to result) and 
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potentially less expensive. However, it is not possible to directly compare SIRE and 

blood culture costs at this early development stage as the true cost of a SIRE test may 

be influenced by a multitude of factors (e.g., cost of packaging, distribution, quality 

assurance, regulatory clearance, etc.) before reaching the clinical market. 

Nevertheless, these findings indicate there is potential for SIREs to fulfil an unmet 

clinical need whereby clinicians require an effective sepsis/SIRS triage tool. While it 

is envisaged that a SIRE sepsis test would ideally be performed in the emergency 

department to conserve time, there seems no reason the approach could not be used in 

other clinical settings, such as the hospital laboratory or the intensive care unit, for 

other clinical applications. Aspects of the workflow can be improved upon to reduce 

time to result. Specifically, it is feasible result turnaround could approach 1 hour with 

employment of rapid serum separation and sample dehydration techniques. Use of 

machine learning algorithms enable this method to address the notorious 

heterogeneous nature of sepsis by evolving predictive models as more data is fed into 

the system. The low sample volumes required (9µl) are especially attractive for the 

diagnosis of neonatal sepsis where issues with the blood volume required for blood 

cultures are well known. Identification of causative pathogens could not be 

demonstrated, but sample sizes were low as distinct pathogen species were too 

numerous within the sepsis patient sample set. In addition to meeting unmet clinical 

needs regarding timely sepsis diagnosis, the technology presented here has seen 

demonstrable potential to meet unmet clinical needs in the timely diagnosis of brain 

cancer through parallel studies. Promising results in two distinct diagnostic 

applications demonstrate the clinical utility of high-throughput ATR-FTIR 

spectroscopy as a general serum diagnostics platform. 
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In conclusion, the project undertaken aspired to create a clinically useful, low 

cost, rapid, high-throughput ATR-FTIR spectroscopic serum diagnostics platform. 

The developed technology presented herein meet this criteria and subsequent 

investigations substantiate the clinical utility through demonstration of analytical 

reliability, analyte quantification, and disease state classification. In particular, this 

technology has the potential to deliver a rapid and low-cost sepsis test thereby fulfilling 

an unmet clinical need. The work presented here represents a significant step toward 

the translation of IR spectroscopy to the clinical setting. 

 

7.2. Future Directions 

 

The results of these investigations demonstrate the reliability and advantages 

of a high-throughput ATR-FTIR serum spectroscopy platform and presents clear 

pathways for the translation of IR spectroscopy to the clinic. Imminent clinical trials 

by ClinSpec dx will establish the diagnostic capabilities of SIREs with respect to both 

predictive capabilities and suitability to clinical workflows. The claims made herein 

will be tested in the real-world. This will comprise multi-centre validation of pre- and 

post-analytical processes as well as test efficacy under intended use as evidence toward 

regulatory clearance for UK and EU markets. Clinical investigations will be registered 

with the Medicine and Healthcare products Regulatory Authority (MHRA) and the 

IVD must demonstrate compliance with the In Vitro Diagnostics Regulation (IVDR). 

This implies an ISO 13485 certified quality management system is in place and the 

device has been appropriately classified. As classification is dependant on associated 
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risk and intended use, SIRE serum tests may need to be classified and regulated 

differently depending on the clinical application they are to be used for. Classification 

definitions indicate that a brain cancer screening test would likely fall into class C as 

it is intended as a cancer screening tool. There is a chance a sepsis test may fall into 

class C or even the higher risk class D since failing to detect any transmissible agents 

could be life-threatening. However, the classification criterion is broad and may not 

be applicable as infectious agents are not yet being directly identified within the scope 

or the SIRE sepsis test. 

Integration of user controls into a single General User Interface (GUI) whereby 

SIRE slide indexing and spectral acquisition are controlled from a monitor would be 

advantageous to help streamline the analysis procedure, but this would require 

coordination with every spectrometer manufacturer which would be challenging for a 

truly universal interface. However, universal spectrometer accessibility is not 

necessarily desirable for clinical applications as tests would be difficult to validate 

across multiple platforms. A GUI which returns the test results to the user in an 

accessible manner would also be necessary and more easily achievable. Determining 

what the clinician expects to see aside from a ‘positive/negative’ test result needs to 

be the first step here. 

To enable storage of samples the longevity of the sample stability needs to be 

addressed. Samples may need to be dried in a different way, stored in a different way, 

or preserved in some other manner. Vacuum packing may be an option, albeit less 

practical. Alternatively, dehydration by lyophilisation may be an effective solution and 

could quite easily comply with a batched workflow process. Different silicon materials 

or surface treatments should be explored as this may further improve spectral 
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reproducibility. Hydrophilization by plasma activation may help enhance serum film 

homogeneity by establishing uniform surface conditions on the silicon and improving 

wettability. The use of dopant free FZ wafers could improve manufacturing yield by 

establishing crystal homogeneity. Preliminary cost estimates have deemed it feasible 

that this improvement would not violate the financial restrictions imposed on the SIRE 

slide device.  Although a health economic assessment has helped clarify the financial 

constraints and cost effectiveness of SIRE testing with respect to brain cancer 

diagnostics, a separate health economic assessment needs to be carried out for the use 

of SIREs as a sepsis testing platform. 

Sepsis is a dynamic condition that requires continuous monitoring of vital 

signs. Biomarker concentrations should also be continuously monitored, but this 

requires multiple tests, so the clinician is often limited to univariate non-specific 

biomolecule monitoring. Simultaneous determination of analyte concentration within 

serum by high-throughput ATR-FTIR needs to be demonstrated. This offers a clear 

advantage in sepsis monitoring as a clinician will be able to quickly determine a 

patient’s status without need for ordering multiple tests. The three most commonly 

requested clinical tests to diagnose and manage sepsis patients are lactate, c-reactive 

protein, and procalcitonin. Ability to quantify the latter two within serum samples at 

clinically relevant concentration ranges using SIREs needs to be demonstrated before 

development of a simultaneous biomarker determination test. A simultaneous sepsis 

biomarker test should aim to at least quantify these three biomarkers. However, 

procalcitonin and c-reactive protein are present in low concentrations in serum so 

conventional analysis may not be sensitive enough for quantification. Surface 

functionalisation of the silicon sampling area to immobilise CRP and/or PCT may be 
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necessary to enhance sensitivity. Better yet, silicon surface functionalisation aimed at 

detection of causative sepsis pathogens would enable rapid administration of effectual 

antibiotics and undoubtedly improve patient mortality rates. This has the added benefit 

of working as a system whereby clinicians may rule out common pathogen culprits. 

IR spectroscopy has clinical ability and is ready for translation into the clinical 

setting. It clearly has a multitude of applications within the clinic and is applicable to 

all clinical sample types (e.g., biofluids, tissue, and cells) and can aid in clinical 

decision making. Unmet clinical needs can be addressed effectively and inexpensively 

through IR spectroscopic methods. In particular, this thesis has illuminated brain 

cancer patients and sepsis patients as two key beneficiaries of SIRE serum testing in 

terms of the potential improvement to mortality rates and reduced economic burdens 

imposed on healthcare institutions. Theoretically, any proof-of-concept biofluid FTIR 

spectroscopy diagnostic could be performed on the SIREs presenting the possibility to 

address further unmet clinical needs in Alzheimer’s disease, detection of other cancers 

(e.g., ovarian, breast, or bile duct), colitis, atherosclerosis, malaria, and more. The 

high-throughput ATR-FTIR spectroscopy method developed here presents a clear 

method to implement the diagnostic abilities of ATR-FTIR spectroscopy in the clinical 

workplace. 
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8.1. Appendix I – SIRE Design Iterations 

Numerous SIRE design concepts were generated prior to the prototyping stage. 

These where overlooked either because they were not so easy to practically implement, 

or because they would be better suited to different applications. 

8.1.1. Radial SIRE 

Figures 8.1.(a) and (b) show a design where the SIRE sample compartments 

revolve around a spindle mounted upon the accessory module top plate, using radial 

movement instead of linear movement to position sample compartments above the IR 

aperture. The need to drill a hole through the SIRE itself would be challenging due to 

the brittleness of Si. However, this process may be possible to implement in a 

production environment. 

 

Figure 8.1. Concept of a radial movement multi-compartmental SIRE. (a) Top 

view, the blue structure in the middle is a handle the user can grasp to move 

the device. (b) Bottom view, the device is placed onto a shaft through a hole 

drilled through the centre of the SIRE. 

(a) (b) 
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8.1.2. Scaled SIRE production 

Design concepts as shown in Figures 8.2 and 8.3 were a product of upscaling 

considerations. Figure 8.2 shows a device with individually diced SIREs. More 

devices may be manufactured (ca. ~45 more fully assembled multi-compartmental 

SIREs) by maximising the number of SIREs that may be fabricated from a single Si 

wafer. This has the obvious downside of having more discrete components, increasing 

the risk of defects and improper assembly and may require more complex fixation 

methods and eventually more complex automated assembly mechanisms when 

considering production scale up. 

 

Figure 8.2. Multi-compartmental slide concept with discretely diced SIREs. 

96-well microtiter plates are commonplace in clinical laboratories and are good 

for maximising sample throughput. A similar concept applied to SIRE slide design 

could understandably improve throughput capabilities whilst being compatible with 

clinical workflows (Figure 8.3). Adjacent wells need to be spaced 9mm from centre to 

centre to match the pitch on standard multichannel pipettes. This constraint determines 

the size of the SIRE component (Figure 8.3.(b)) which would result in large amounts 
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of waste material from the Silicon wafer. A simple solution to this is to construct 96-

well plates with discrete SIRE components similar to those shown in Figure 8.2, 

though this would exacerbate assembly concerns raised using a discrete SIRE 

approach. In addition, more complicated translational XY movement is required to 

interface 96-well SIREs with an IR spectrometer. 

 

Figure 8.3. Concept of a 96-compartment SIRE slide. (a) Top view. (b) Bottom 

view. 

 

8.1.3. Sample Tube SIRE Cap 

ATR-FTIR is used in a variety of applications that require samples to be 

collected on site and preserved until they can be analysed in the laboratory such as in 

crime scene forensics or environmental monitoring studies. In some of these 

circumstances it is imperative that the sample has not been tampered with en route to 

analysis. A method to ensure this is to integrate a SIRE into the cap of an Eppendorf 

tube (Figures 8.4.(a) and (b)) so that the tube may then be sealed within the tube and 

analysed without ever having to reopen. This concept digresses from the focus of the 

present research and has not been developed further as it is not entirely suitable for 

(a) (b) 
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clinical applications where samples are generally collected in controlled procedures 

and environments, but it is none the less an interesting direction. 

 

Figure 8.4. Concept of a sample tube cap (blue) with a SIRE fixed within (grey) 

that allows samples to be stored within an analysed without ever opening the 

tube. (a) Eppendorf tube with cap open (a) top view of SIRE in Eppendorf tube 

cap. (b) bottom view.  

 

8.2. Appendix II – Accessory Module Design Iterations 

 

An ATR accessory contains a system of highly engineered optics that deliver 

the beam to the IRE. Early designs aimed to replace only the metal IRE top-plate to 

take advantage of the existing optics within the PerkinElmer Spectrum2 

spectrometer’s accessory housing. This design was a basic manual linear translator 

orientated at 45° from to align with the internal optics of the Spectrum2 ATR accessory 

unit (Figures 8.5.(a) and (b)). The click-in-place system created a lot of mechanical 

(a) (b) (c) 
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vibration which would throw the SIRE out of place making spectrum acquisition 

difficult. 

 

Figure 8.5. Two early concepts for a Slide Indexing Unit to move the multi-

compartmental SIRE above the IR beam aperture. (a) a rack and pinion is used 

to move the slide. (b) a click-in-place system is used to secure the slide in each 

position. 

Subsequent designs aimed to allow access to a wide variety of spectrometer 

instruments. Initially, efforts were directed at development of inhouse optics to deliver 

the optimum beam angle to SIREs. There was also a focus on automation, utilising 

motorised linear actuator mechanisms which permitted a higher level of control and 

reduced SIRE vibrations. Prior to this, the optimal incident beam angle was determined 

on a Cary 660 FTIR Agilent Technologies spectrometer with PIKE technologies 

VEEMAX variable angle specular reflection accessory. Dried HPS spectra was 

scanned on a SIRE and the angle of incidence adjusted from 30°-80° in 2° intervals 

(Figure 8.6). The highest signal intensity was achieved with an incident angle of 30°. 

(a) 

(b) 
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Figure 8.6. HPS spectra acquired from a SIRE at angles of incidence varying 

from 30°-80°. 

The first automated accessory unit working prototype used an Arduino Nano 

(Arduino, Italy) and a motor driver were used to actuate a Maxon A-max stepper 

motor. This spun a lead screw that in turn moved a plastic carriage the SIRE rested 

within (Figures 8.7.(a) and (b)). The user inputs commands via push button which 

directs the linear actuator to index each successive SIRE compartment, positioning 

them above the IR beam aperture. The accessory housing was 3D printed in 

Aluminium using the Direct Metal Laser Sintering (DMLS) technique. Contained 

within were six flat gold mirrors directing the beam to the SIRE at an angle of 30°. 
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Figure 8.7. Images of the first automated slide indexing unit. (a) attached 

within a PerkinElmer Spectrum2 spectrometer. (b) CAD model of the fully 

assembled design. 

The Specac Quest ATR unit features adjustable optics which resolved issues 

whereby different spectrometer manufacturers engineer different IR beam focal points 

into their products. The decision was thus made to develop a slide indexing unit that 

could exploited the optics of the Quest ATR (Figure 8.8). The initial slide indexer 

design used a rack and pinion to move the slide within a carriage. The unit was 

constructed entirely from PLA plastic which flexed while actuating resulting in 

considerable unwanted movement and vibration of the SIRE. Furthermore, the open-

ended design of the carriage resulting in frequent dislodging of the SIRE. These 

downfalls were rectified in the final slide indexing unit design which utilised stiff 

anodised aluminium components, a closed top carriage, and slide guides to stabilise 

the drive shaft. 

(a) (b) 
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Figure 8.8. Former slide indexing unit design intended to compliment the 

Quest ATR universal accessory module. (a) CAD drawing of second slide 

indexing unit prototype with rack and pinion mechanism revealed. (b) Slide 

indexing unit mounted on a Quest ATR in a Spectrum2 spectrometer. 

 

8.3. Appendix III – Schematics of Accessory Module 

Electronics 

Figure 8.9 presents a schematic diagram of the electronic circuitry used to 

control the slide indexing unit of the accessory unit developed in this project. 

(a) (b) 
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Figure 8.9. Schematic of the electrical circuit used to control the accessory 

unit slide indexer. 

8.4. Appendix IV – Serum Drying Study Experimental Set-

up 

An Arduino Mega 2560 microcontroller (Arduino, Italy) was used to facilitate 

the control systems necessary to heat the SIREs at stable temperatures. To prevent any 

denaturation of proteins in the serum, the samples were kept strictly below 37°C. Two 

12V adhesive heating elements (RS components, UK) were bound to either side of the 

ATR crystal along with a 10kΩ (at 25°C) thermistor (RS components, UK) for each 

heating element. The thermistors were arranged as a voltage divider by connecting one 

end of the thermistor to a ground pin of the Arduino Mega, the 10kΩ resistor connected 
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to the 5V supply voltage pin, and the remaining thermistor and 10k resistor connectors 

connected to the A1 pin via a third wire and a breadboard.  The result is an output 

voltage interfacing with the analogue to digital converter of the Arduino Mega. This 

digitised value was used to calculate the resistance of the thermistor (Equation 8.1) 

and hence the temperature of the thermistors (Equation 8.2).  

                              𝑅𝑇 =  
10,000

1,023
(𝐴𝐷𝐶𝑉𝑎𝑙𝑢𝑒 − 1)⁄

 

Equation 8.1. Digitised voltage divider equation. 

            
1

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(°𝐾)
= 𝑎 + 𝑏 (𝑙𝑛 (

𝑅𝑇

𝑅25
)) + 𝑐 (𝑙𝑛 (

𝑅𝑇

𝑅25
))

2

+ 𝑑 (𝑙𝑛 (
𝑅𝑇

𝑅25
))

3

 

Equation 8.2. Thermistor temperature equation. 

Where a, b, c, and d = constants only valid between a temperature range of 

0°C to 50°C. 

A negative feedback control system was programmed into the Arduino Mega to 

maintain plate temperatures of either 30°C or 35°C. This was achieved using Pulse 

Width Modulation (PWM) to control the states of two TIP120 transistors to permit the 

flow of current to the heating elements. The use of two transistors allowed independent 

heater activation and hence finer temperature control. Both a mercury thermometer 

and a TMP102 temperature sensor breakout board (Cool Components, England) were 

used to verify the control system was working properly. A small 5-volt DC Sunon® 

fan was mounted above the ATR crystal using 4 3D printed PLA legs. The fans speed 

was controlled by changing the input voltage from the Arduino Mega to 3.3V and 5V 

to produce slow (~5CFM) and fast (~9CFM) flow rates respectively. 
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8.5. Appendix V – SIRS Patient Glucose Interference 

Figure 8.10 shows spectra of four potential outliers identified during PCA of 

sepsis, SIRS, and control groups. A spectrum of human pooled serum (HPS) has been 

added as a visual reference. The patient spectra show elevated absorbance in the 1000-

1100cm-1 spectral region which is indicative of increased carbohydrate content, for 

instance from lactate or glucose. All except patient G1259 presented elevated blood 

lactate levels (Table 8.1). 

 

Figure 8.10. Spectra of four potential outliers and an HPS spectrum as a visual 

reference. The outlier spectra exhibit high absorbance in the 1000-1100 region 

compared to the HPS spectrum. 

Table 8.2. Lactate levels of four potential outliers and the normal range of 

blood lactate concentration in a healthy individual. 

Patient Identifier Blood Lactate (mmol/L) 

B1032 9.1 

G1246 1.9 

G1001 14.0 

G1259 1.1 

Normal range 0.5-1.3 

 


