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Abstract

The huge benefits of internet connectivity and the impact of communication on human

existence make connectivity extremely important in today’s world. Digitization has

impacted education, health, commerce, and governance and recently ignited the fourth

industrial revolution. Increased demand for wireless communication services has driven

the need for cheaper wireless telecommunication infrastructures and affordable connec-

tivity, which are some of the benefits of dynamic spectrum access (DSA) technologies.

DSA technologies’ spectral maximization uses the spectrum-sharing paradigm that

allows a timed or space shared use of spectrum. This permits a central spectrum coordi-

nation of vertical (unequal priority) access fixed nodes and a device-based (distributed)

coexistence management of equal priority (horizontal) sharers. A detailed study of

distributed coexistence management techniques/protocols revealed that flexible spec-

trum access is achieved when devices use similar techniques/protocols (homogeneous

networks) and when this is not the case (heterogeneous networks) there is a huge con-

tention for limited spectrum. Furthermore, homogeneous and heterogeneous networks

suffer contention when the number of available resources is fewer than the number of

requesting radios.

This thesis investigates the coexistence management of unequal priority of typical

DSA systems in two countries and highlights spectral availability in the two nations.

It quantifies the impact of government policy on spectral availability. It also bolstered

the huge information overload necessary for existing central coordination systems and

the challenge of coexistence management of dynamically located radios.

This work further addresses the high contention among dynamically located ra-
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Abstract

dios (nodes/base stations/access points), operating as equal priority users, for limited

available spectrum and the huge information overload in central coordination by fram-

ing a central artificial intelligence (AI) algorithm for optimal resource assignment to

dynamically located nodes. Its Artificial Intelligence models (trained Reinforcement

learning algorithms) are designed to optimize the reuse of spectrum at different trans-

mitter power levels among such nodes while simultaneously limiting interference among

them. These minimize inter-device interference and maximize their signal-to-noise plus

interference ratio (SINR), enabling spectral overlay, underlay, and reducing informa-

tion overhead. Thus permitting more equal access devices to share resources without

harmful interference.

Two AI models, a two-stage optimization RL algorithm (TSA) and a joint optimiza-

tion RL algorithm (JOA), are designed to solve the optimization problem and learn to

assign spectrum and power resources to devices. The TSA used two reward functions,

while the JOA used a single reward function to arrive at optimal solutions. These were

compared with DSA’s random and recursive resource assignment. Two indices assessed

the number of nodes with good SINR experience (assignment performance) when two

to four available channels were assigned to 3 to 8 radios or nodes. The TSA and ran-

dom assignment were inconsistent in providing nodes with good quality of service (fair

assignment) and a reasonable request performance (assigning resources to requesting

nodes). The JOA model resulted in a close to exclusive (ideal) resource assignment in

its assignment performance and was at par with device requests with the two staged

and random assignments in most scenarios examined. JOA, therefore, resulted in an

average of 20% increase in request assignments as against exclusive assignments and an

above 20% in assignment performance compared with other techniques in all network

scenarios examined.

These performance outcomes are helpful in shared spectrum technologies that adopt

a random or recursive approach in resource assignment. An AI algorithm can improve

the quality of service and number of nodes using limited available resources at the

request instance. It is also valuable for regulators, as intelligent resource sharing can

increase the number of nodes that share resources. In these scenarios, the node’s

iii



Abstract

properties provided individualistic resource assignment, while the predictive algorithm

provided an instantaneous search for optimal resource sharing. Thus taking advantage

of nodes’ ability to accommodate a level of interference. Future works include improving

the state space RL optimization formulation and training episodes. Also, advancements

in deep Q-learning may solve increased state space dimensions, reducing the effect of

state space approximation.
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Chapter 1

Introduction

According to the United Nations (UN), over one-third of the world’s population is un-

connected to the internet. Global connectivity remains a priority in its Vision 2030,

accelerating digital inclusive connectivity that facilitates nations to profit from the eco-

nomic, social, industrial, and medical benefits of digitization [1]. At the heart of the

action plan of the UN is the need for affordable connectivity, and wireless technologies

will play a key role in achieving this. Continued improvement in wireless technolo-

gies makes connectivity of rural and hard-to-reach areas cost-effective, especially when

high-performing technologies are extended to lower bands [2]. Automating spectrum

coordination in such bands promotes affordable wireless communication by excluding

the high cost of physical wires and managing timely access to frequency [3].

This thesis designs an automated spectrum coordination system for such bands

using artificial intelligence algorithms and quantifies the resulting improvement. This

is done to improve resource sharing in Dynamic Spectrum Access (DSA) technologies

that have been used for rural connectivity and provide new licensing and spectrum

coordination opportunities for future shared spectrum systems. DSA systems have been

recommended [4] and used at lower bands to provide affordable connectivity to hard-to-

reach areas [5]. It has also been used in the 1G to 7GHz band to provide instantaneous

access to the internet for broadcast and other low-latency IoT applications. [6]

Automated spectrum coordination has become imminent with increased use cases

for shared spectrum by IoT devices in the 4th industrial revolution [7] and 5G stand-
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alone or private networks (pop-up networks). The growing demand is evident in using

5G pop-up networks for event broadcasting since 2021 when the first successful trial

was conducted at MotoGP (Silverstone, UK) for a bike race. It was subsequently

tried in 2022, at the Premiership Rugby matches (at the StoneX stadium, UK), Fleadh

Cheoil Traditional Music Festival in Mullingar, and National Ploughing Championships

in Ratheniska, Ireland, the Pitlochry Highland Games, Perthshire, and the Queen’s

departure in Scotland, and at the Danish General Elections, Copenhagen, Denmark [6].

This was further explored at the King’s Coronation in London, UK in 2023 [8] and the

first full-scale deployment of 21 cells at 5 sites at the 2024 Olympics in France [9].

These use cases established the potential for shared spectrum to support broadcasting

at large events, supplementing public wireless networks and connecting hard-to-reach

locations. These use cases are anticipated to continue to grow, with an increased need

for spectrum management (licensing) of shared spectrum.

1.1 Research Background

Advancements in wireless communication have facilitated the efficient use of radio spec-

trum for various services. Spectral resources are coordinated among services in different

nations internationally by the International Telecommunication Union (ITU) to pre-

vent inter-service and inter-nation interference. Services such as air traffic communi-

cation, radio and television broadcasting, naval navigation, etc, are allocated different

operating frequencies in nations. This is generally known as fixed or exclusive re-

source/spectrum sharing [10].

Growth in these services resulted in a high demand for spectrum/Channels/Frequencies.

Therefore, Spectrum became a commodity sold by government regulatory bodies to ser-

vice providers as spectrum licenses for spectrum use in specific areas and periods. These

spectral resources are underutilized in countries where ITU’s allotted services for pre-

defined spectra are non-existent or are scarcely used. Similarly, this fixed allocation of

spectrum for long periods stifles the use of better spectrum-efficient technologies and

dynamic reuse of spectrum [11]. Finally, licensed service providers in predefined areas
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sometimes never deploy these services, rendering their licensed spectrum spatially un-

used [10]. A solution that enables flexible or shared use of spectral resources is proffered

by the Dynamic Spectrum Access (DSA) framework in low and high bands [12–17].

The DSA framework enables licensed owners or Primary Users (PUs) of spectrum

for specific services to share this resource with other Secondary Users (SUs). This

spectrum-sharing attribute permits multiple services to share spectrum at the same

space and time, allowing the opportunistic use and reuse of spectrum, thus maximizing

spectral resources [18]. This non-exclusive access to spectrum/channel by SUs results in

a loss of spectral certainty, which most service providers require for continuous services

supply [19,20]. However, it can be argued that other services, such as pop-up private 5G

networks (used for live broadcasts at public events), unmanned aerial vehicles (UAVs),

and IoT networks, can use spectrum temporarily for their services. Thus, permitting

the use of fixed spectrum and shared spectrum to serve a wide range of services. This

was adopted by the United Kingdom’s Shared Access License (SAL), which permits the

shared use of spectrum with licensed operators in locations where licensed users are

not deployed [17,21]. This enabled the support of more service vendors and maximized

spectral usage [22].

Spectrum licensing strategies have, therefore, evolved to suit technological and ser-

vice evolution. This evolution has triggered a need for a change in SUs licensing struc-

ture. As the long-timed auctioning and delayed licensing scheme for fixed-located PUs

service providers will not suit temporarily located SUs. These long licensing periods

and processes suit PUs who need exclusive access and are a bottleneck for some SUs in

need of instantaneous spectral access [19]. Satisfying these varied SUs’ diverse spectral

demands by regulators is increasingly challenging, as old techniques adopted for static

PUs are ineffective for dynamic SUs. Coexistence management strategies adopted in

shared spectrum technologies can, therefore, be extended to regulatory policies and

vice versa.

The shared spectrum paradigm has been adopted in technologies such as Television

White Space (TVWS), Citizen Broadband Radio Service (CBRS) in the United States

of America, and WiFi 6e and by regulators (in the UK) for spectrum coordination and
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licensing. Although TVWS and CBRS use shared spectrum concepts, they operate

at different frequencies and possess similar architecture shown in Fig. 1.1. A com-

mon feature is their spectrum management system, adopted as a Geolocation database

in TVWS, extended in CBRS as a Spectrum Access System (SAS), and Automatic

Frequency Coordination (AFC) in WiFi 6e. The spectrum management system is re-

sponsible for spectrum coordination among coexisting PUs and SUs. It uses a central

database approach for PU-to-SU interference mitigation and a central and distributed

approach for SU-to-SU interference management. Thus, PUs maintain their exclu-

sive access to channels and share unused licensed spectrum with SUs safely [23]. The

temporary use of spectrum by SUs is not protected from interference by other devices.

The lack of SU protection is worsened by the explosive demand for wireless con-

nectivity in the fourth industrial revolution and the increased need to connect devices

and machines to the internet. This leads to a more significant contention among SUs

for limited available shared spectrum, thus accentuating the need to better manage

scarce spectrum among SUs [24]. There have been various suggestions on minimizing

interference effects while maximizing resources, especially among SUs in share spec-

trum networks. These include increasing the distance between such devices, coding

the signals from each device (hardware dependent), reducing the transmission power,

fixed/exclusive frequency sharing, or timed frequency sharing approach [10]. Irrespec-

tive of the approach adopted, the need to optimize spectral resource reuse while man-

aging other constraints is pertinent in the coexistence management of many unique

SUs.

Also, deploying heterogeneous and homogeneous networks is necessary to support

a wide range of applications. Future networks deploy different sizes of networks and

utilize different devices with dissimilar protocols (heterogeneous networks) [25]. These

futuristic heterogeneous networks consist of many wireless radios having exclusive and

non-exclusive spectral needs that change over time and, as such, require unique coordi-

nation for sharing limited available spectrum. The dynamic nature of shared spectrum

networks, in terms of evolving spectral resources and dynamic SUs’ specifications and

locations, means that conventional resource management techniques may fail in such

4



Chapter 1. Introduction

networks.

Conventional spectrum-sharing management schemes require strict avoidance of

harmful interference to PUs, as stipulated by most regulations [13]. However, coexis-

tence management entities leave SUs to coordinate their coexistence among themselves

while reporting their actions to a central database. Therefore, there is a pressing need

to protect SUs who share spectrum with PUs by providing a close to exclusive re-

source availability, as this increases their performance and temporal spectral certainty.

The existing TVWS architectures do not proffer exclusive protection or frameworks for

SUs’ protection [13, 26, 27]. The CBRS architecture provides a three-tiered protection

comprising Incumbent (PUs), Priority Access Licensed (PAL) SUs, and General Au-

thorized Access (GAA) SUs as shown in Fig. 1.1 [28]. Incumbent users, like PUs in

TVWS, are protected by the database system, giving them exclusive spectral access.

PAL, paying SUs, are given a priority level with a higher degree of spectral certainty

and protection by SAS from GAAs. In contrast, GAAs, with the least priority, are not

protected [29–31]. Therefore, CBRS’ GAA and TVWS SUs suffer from high spectral

uncertainty and interference in both CBRS and TVWS systems.

Internal interference management techniques or protocols accomplish coexistence

management among SUs in TVWS and GAA users in CBRS [14, 31]. In these pro-

tocols, devices or radios are configured to listen to other users in a channel before

accessing it. These protocols include beacon frames adopted in Wireless Regional Area

Network devices, Wireless Local Area Networks, and Wireless Personal Area Networks.

Beacons use carrier sensing and multiple access (CSMA) mechanisms similar to the

listen-before-talk mechanism. These mechanisms prevent the collision of SUs when

sharing a channel simultaneously. These protocols are hardware-dependent, and adap-

tive radios can be designed with different interference-limiting protocols [32]. When

radios/nodes/base stations use different protocols (heterogeneous networks), internal

spectrum coordination becomes challenging.

A method to improve shared spectrum coordination is a database and real-time

monitoring/sensing for PUs protection [33, 34]. Some suggestions for heterogeneous

shared spectrum management systems have been studied in [35–37]. A coexistence man-
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agement entity was proposed for shared spectrum networks (DSA systems), and guide-

lines for designing communication protocols and spectrum management algorithms were

proposed for CBRS and TVWS networks in IEEE 802.19 documentation [38]. The

CBRS architecture incorporates a coexistence manager entity within the SAS frame-

work [31], providing a detailed role of managing spectral resources to SAS registered

and non-registered CBRS devices (CBSDs).

However, the IEEE 802.19 documentation’s guidelines were algorithms not imple-

mented, and similar to other suggested works, are restricted to timed spectrum sharing

amongst radios (known as spectrum overlay). This guideline should have considered

scenarios with many SUs demanding few available spectrum. Also, it does not account

for the unique demand of SU’s nodes/radios or their ability to coexist with other SUs,

accommodating a level of interference (called spectrum underlay). Such unique use

cases of SUs requiring temporary or non-exclusive spectrum and interference resilience

are not catered to. Their suggestions, however, lay the foundation for improving the ca-

pabilities of the coexistence manager entity to intelligently optimize spectral resources

for all SUs. This is especially important as shared spectrum technologies become an

alternative to connecting the projected high number of wireless devices.

Spectrum allocation techniques can be improved to make real-time spectrum and

power allocation, allowing multiple radios to use the same spectrum, in different loca-

tions at the same time. Thus, SUs reuse available PU spectral gaps in real time using

overlay and underlay spectrum techniques. The effectiveness of spectrum management

becomes critical as several SUs with different quality of service requirements try to

access the limited spectrum from diverse locations. Learned algorithms, therefore, pro-

vide close to real-time adjustments, making them a plausible coordination option [39].

Machine learning algorithms have been explored in improving shared spectrum coexis-

tence manager’s responsiveness to real-time demands of its DSA network [40–42], and

learn from datasets to make decisions on future data. They are generally categorized

into supervised, unsupervised, and reinforcement learning algorithms. Each category

has been explored in improving dynamic spectrum access systems [43–45]. However,

decision-making reinforcement learning algorithms are better suited for DSA intelligent
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(a) TVWS architecture [13]

(b) CBRS architecture

Figure 1.1: High-level architecture of CBRS systems and TVWS
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coexistence management tasks.

Reinforcement Learning (RL) algorithms can learn from a network’s changing states

and decide on specific actions. Distributed spectrum coordination studies on maximiz-

ing spectrum allocation using reinforcement learning have shown that models can be

built to adapt to real-time changes in a network [39,46–48]. These studies evaluated the

optimization algorithms based on their ability to arrive at convergence and improved

throughput. It is evident that when deployed, there lies a high probability that, irre-

spective of the changing size of the network, a learnable resource allocation algorithm

capable of optimal assignment is possible.

Adaptable algorithms capable of learning have been developed to optimize spec-

trum allocation in cellular systems [47,49–51], cognitive networks [52,53], DSA cellular

systems [25,54,55] and DSA networks [56]. These algorithms focused on protecting PUs

from SUs and improving the distributed allocation of resources by SUs. Other spectrum

allocation and power optimization RL algorithms were investigated in controlled envi-

ronments where limited or fixed power limits, few SUs, and fixed available spectrum

were assumed. Others explored cell, channel, and modulation selection, and limited

studies explored spectrum reuse [57] or joint optimization of spectrum and power for

optimal spectral reuse.

RL algorithms have been explored mainly in cellular systems that operate at high

frequencies. However, the deployment at lower bands where terrain parameters alter

the overall interference status of networks has yet to be explored. Current research in

spectrum management in DSA has focused on distributed/decentralized or autonomous

coexistence management among static or mobile SUs. It assumed that RL algorithm

agents were in these UEs, influence parameters used in designing the RL algorithms

environment. These parameters were not available to the central RL coordinating

resources for shared spectrum networks. Also, previous central studies examined only

equal-priority homogeneous networks. This thesis provides an in-depth understanding

of the structure of decisions made in these existing research and identifies that the

location of an RL agent redefines its possible Markov Decision Problem (MDP). To

address spectrum and power allocation to equal priority users (SUs) at lower bands;
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Assign resources to SUs/nodes that are not mobile or static but need access to spectrum

instantaneously and intelligently; and contribute to intelligent central coordination;

this thesis designs an intelligent resource management system that optimally shares

resources among continuously location-changing heterogeneous nodes.

The unique contribution of this thesis is the development of a central RL-trained

model that is implemented in a representative DSA system. To the best of the au-

thor’s knowledge, learning algorithms that mitigate SU-to-SU interference in a dense

heterogeneous DSA network have not been modeled or implemented at lower bands.

It established the quantitative impact of adopting intelligent spectrum management

techniques in increasing the number of SUs while reducing their contention for limited

spectral resources. This thesis seeks to establish the protection of PUs from SUs using

a designed database system and develops a central intelligent coexistence manager for

SUs in a DSA heterogeneous network, a principle that can be extended to higher bands.

1.2 Research Aims and Objectives

This thesis aims to expand the coexistence manager’s capabilities in intelligently opti-

mizing spectrum and transmission power allocation and reuse among competing equal-

priority heterogeneous radios. Thus creating adaptive spectrum management in a dense

DSA network and increasing the number of supported devices or radios. The existing

DSA management schemes, such as TVWS’s first come first serve (random) and CBRS

recursive approaches, do not support intelligent optimal channel re-use, but instead

support rationing of the spectrum [31, 38, 58]. Similarly, SU nodes do not have fixed

locations as PUs, hence existing algorithms for static PU management are not suitable

for SU coexistence management.

This thesis, therefore, proposes two novel RL coexistence management reward func-

tions that are adaptable to changes in a DSA network. It presents a novel model that

learns from a DSA network’s SUs locations to optimize spectrum and power resource

assignment. Thereby maximizing the number of operating SUs’ nodes while minimizing

their interference. The specific objectives of the project are:
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1. To design and evaluate the end-to-end implementation of a Dynamic Spectrum

Access (DSA), assessing its performance in spectrum utilization and optimiza-

tion. The purpose of this was to understand the database and other resource

coexistence management techniques and to assess and identify areas in which its

performance can be improved.

2. To build a simulated Dynamic Spectrum Access (DSA) network that serves as a

neutral test bed for comparing the performance of existing iterative random and

recursive coexistence management techniques with intelligent models.

3. To develop an intelligent model capable of real-time learning of a wireless com-

munication network’s architecture and adapting its weights to optimize spectrum

utilization amid constraints of interference and transmitter power limits in a dense

heterogeneous DSA network.

4. To justify the need for intelligent networks by quantifying and comparing the

performance of the designed intelligent model with existing models in assigning

resources to SUs of a heterogeneous DSA network.

5. To establish use cases for adopting intelligent spectrum management.

1.3 Original Contributions

1. A detailed review of the literature on coexistence management approaches in

DSA networks is presented in Chapter 2. This review differs from previous liter-

ature reviews, as it identifies industries’ perceptions of the challenges of adopting

DSA/share spectrum frameworks. An up-to-date RL and non-RL approaches

to resolving these issues are also addressed, showing the limited central RL ap-

proaches in Chapter 3. Thus identifying gaps in the implementation of intelligent

coexistence coordination approaches. This contributes to understanding other

coexistence management methods in specific objective 1 of section 1.2.

2. In Chapter 4, an end-to-end DSA system is designed for two locations to ascer-

tain its spectrum utilization and optimization in a developed and a developing
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country. An examination of the level of protection given to PUs in the devel-

oped country’s design was published in [59] (section 1.3.1 research output). The

details of the design for a location in a developing country highlight the method-

ology adopted and the impact of the country’s policy on spectrum utilization;

this was published in [60] (section 1.3.1 research output). These peer-reviewed

publications contribute to achieving specific objective 1 in section 1.2.

3. In Chapter 5, an illustrative heterogeneous DSA network comprising IEEE 802.11

and IEEE 802.22 base stations and access points (nodes) is designed and simu-

lated. The nodes had different specifications and were assumed to use different

protocols for interference control. This served as a testbed for random, recur-

sive, and novel models’ resource allocation, contributing to specific objective 2 in

section 1.2.

4. Also, in Chapter 5, a novel two-staged Q-learning optimization allocation algo-

rithm and deep Q-learning algorithm are designed for power and spectrum alloca-

tion. The intelligent model is designed to optimize two cost functions: maximize

the spectrum reuse and minimize interference between SUs. The outcome and

performance of the first novel Q-learning algorithm are published in [61], and a

comparison of designed coexistence methods’ (random and recursive algorithms)

performance was presented in [62]. These contribute to specific objective 3 in

section 1.2.

5. In chapter 6, a summary of the designed intelligent algorithms’ performance is

presented and assessed based on the number of devices allocated resources and

SUs’ quality of service. The assignment algorithms are all compared based on

their convergence, quality of service, consistency, and scalability. Four metrics

assessed the scalability of the intelligent and other resource allocation algorithms,

quantifying the impact of adopting intelligent coexistence management techniques

in DSA systems. Thus, it contributes to specific objective 4 in section 1.2.

6. The final application and use cases of the model in DSA and shared spectrum

networks are discussed in Chapter 7, contributing to specific objective 5 in section
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1.2.

1.3.1 Research Outputs

The research was disseminated in the following publications and conferences:

Peer-Reviewed Publications

1. E. Atimati, D. Crawford and R. Stewart ”Intelligent Joint Resource Management

of Shared Spectrum HetNets”, IEEE Future Networks World Forum, Dubai, Oct.

2024. Presented.

2. E. Atimati, D. Crawford, R. Stewart, I. Achumba, L. Ezema, and U. Diala,

“An Interference Management System for a Shared Spectrum Access Network,”

Proceedings of 2022 IEEE Niger 4th Int Conf Disruptive Technol Sustain Dev

NIGERCON 2022, doi: 10.1109/NIGERCON54645.2022.9803165.

3. Louise H. Crockett (Editor), David Northcote (Editor), Robert Stewart (Ed-

itor), Douglas Allan, Ehinomen Atimati, Kenny W. Barlee, Lewis J. Brown,

James Craig, Graeme Fitzpatrick, Joshua Goldsmith, Andrew Maclellan, Lewis

D. McLaughlin, Blair McTaggart, Tawachi Nyasulu, Marius Šiaučiulis, David

Crawford, ”Software Defined Radio with Zynq Ultrascale+ RFSoC”. (Book),

Strathclyde Academic Media, January 2023,https://www.rfsocbook.com/.

4. E. Atimati, David Crawford and Robert Stewart, ”Intelligent Shared Spectrum

Coordination in Heterogeneous Networks”, IEEE Virtual Conference on Commu-

nication, Nov 2023, doi:10.1109/VCC60689.2023.10474686.

Poster Presentation

1. E. Atimati, D. Crawford, and R. Stewart, “Shared Spectrum Coordination in a

heterogeneous IoT network,” in IEEE Communication Theory Workshop, 2022.

Abstract Submission

1. E. Atimati, D. Crawford, and R. Stewart, “Towards an Automated Spectrum Ac-

cess Management Scheme for Improved Rural Connectivity.,” in Doctorial School

Multidisciplinary Symposium (DSMS) 2020 Proceedings, June 2020.
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1.4 Thesis Organization

A summary of the organization of this thesis is provided in the Fig. Chapter 2 discusses,

in detail, the concept of Dynamic Spectrum Access, its architecture, and the framework

for the coexistence management of SUs under different lower band standards. It also

reviews existing resource management challenges and the proposed solutions from the

research community. This sets the scene for the design of an end-to-end DSA system

in Chapter 4 as described in Fig. 1.2. It also highlights the unique device-dependent

protocol for SU-to-SU coordination and its limitation in managing heterogeneous net-

works.

Chapter 3 introduces different arms of machine learning (ML), its applications, and

challenges in DSA systems. It launches a detailed review of reinforcement learning

algorithms’ (RL) approaches to resolving the DSA issues. It classifies RL spectrum

management automation suggestions based on their suitability in solving industry con-

cerns of adopting DSA frameworks. It thus establishes the research gap in implementing

central RL-based coordination in DSA systems. This informs the designs of the DSA

optimization problem in Chapter 5 as shown in Fig. 1.2.

Chapter 4 explores the process for designing and simulating a representative DSA

system to study spectrum coordination and interference prevention among PUs and

SUs. It measures spectrum availability and quantifies the impact of policy on spectral

utilization in developed and developing countries. Understanding PU-to-SU coexistence

management reveals the unique challenge of heterogeneous SUs’ coordination. Thus, it

establishes the importance of coexistence managers’ assignments when implementing

overlay and underlay spectrum sharing.

Chapter 5 describes the design and simulation of an illustrative heterogeneous DSA

network that examines the performance of different resource allocation schemes. It

also details the design of coexistence management algorithms adopted in existing DSA

systems and two novel reinforcement learning algorithms. The central coexistence

management approach of SU-to-SU coexistence management in existing DSA systems

is mimicked in a typical heterogeneous DSA network, and its flaws are quantified. So,
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Chapter 1. Introduction

Figure 1.2: Thesis Organization

it is essential to know how important it is to use existing database information for

improved DSA coexistence management.

Chapter 6 evaluates the novel resource assigning models’ convergence and consis-

tency in adapting to changing networks while maintaining good SUs’ quality of service.

Two metrics, assignment performance and requests performance, assess all designed

algorithms’ scalability in resource assignment as the network size and available re-

sources change. Based on the thesis objective, they measured each resource allocation

algorithm’s assignment of safe reuse of resources to satisfy many requesting nodes.

Chapter 7. A conclusion on intelligent coexistence management’s contribution to

maximizing spectrum reuse and improving DSA capacity is discussed. This showcases

the measured impact of adopting artificial intelligence in DSA central coexistence man-

agement and its implications for future shared spectrum policies and deployments.
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Chapter 2

Dynamic Spectrum Access

Systems’ Architecture

2.1 Introduction

This chapter discusses Dynamic Spectrum Access systems and their architecture in

detail. The DSA architecture and structure permit multiple secondary users (SUs)

radios within a network to exist in the same space and time as primary users (PUs).

The Two DSA technologies discussed assign the role of spectrum management to a

central database or spectrum management system. However, interference avoidance

or control among SUs is achieved through the use of SU radios (distributed spectrum

management).

A study of the radios’ Media Access Control (MAC) protocols provides an under-

standing of the limitations of this coexisting management strategy. The coexistence

strategies of MAC protocols in different standards investigated varied, showing its in-

ability to coordinate Interference avoidance in heterogeneous networks.

This chapter reviews existing DSA studies on shared spectrum and takes a deep

dive into challenges faced by the industry in deploying such networks. It, therefore,

identifies gaps in the literature that address industry-related challenges of DSA systems.
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2.2 Dynamic Spectrum Access (DSA) System Concepts

and Terminologies

IEEE defines DSA as ”the real-time adjustment of spectral resources to changing

circumstances or objectives, such as changes in energy conservation, radio’s state,

interference-avoidance, environment, policies, quality of service, and operating con-

ditions” [18]. This definition suggests a tailored allocation of resources to a network of

nodes satisfying their required quality of service. The network’s nodes can change in lo-

cation, quality of service requirement, and operational conditions and be provided with

spectral resources through interference avoidance techniques. This can be achieved by

a resource coordination system that is responsive to real-time wireless network scenar-

ios, which improves the reuse of spectrum among nodes improving spectral utilization

while maintaining nodes’ quality of service.

DSA is also defined as the re-use of a spectral band at a specific time and region when

it is unused by another in [63]. Dynamic spectrum access can, therefore, be seen as the

flexible use of spectrum by radios. It differs from the fixed spectrum access philosophy,

where frequency bands are exclusively allocated for specific services in certain locations

(regions). DSA was born out of advanced radio designs and the programmability of

chips. This influenced the development of Software Defined Radios (SDRs)/cognitive

radios [18], which were capable of changing their operating frequencies.

A fundamental property of DSA systems is their ability to adapt. This is use-

ful in maximizing scarce spectral resources, minimizing cost, and enabling affordable

connectivity. The definition in [63] provides an insight into the pragmatic resource

sharing adopted by management systems in deployed DSA technologies. In these tech-

nologies, resources are shared and reused within a specific place and time between

licensed/Primary Users (PUs) and secondary users (SUs). The PUs had fixed spec-

trum access (licensed users) in these systems, while the SUs were opportunistic users,

sharers, or unlicensed users. The shared use of resources in these systems required a

coordinating management system. The need for dynamic access to spectrum facilitated

the shared use of spectrum and initiated the concept of shared infrastructures in the
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Figure 2.1: TVWS Two Tiered Resource Sharing.

telecommunication systems [10].

Deployed DSA systems can have two or three tiers. The TVWS architecture had

two tiers, the licensed PUs and the unlicensed SUs, as shown in Fig. 2.1. A two-tier

system shares the spectrum between licensed users and other opportunistic or secondary

users (SUs), such as TVWS devices. All secondary users usually have equal access to

available channels; this is termed horizontal access. They, however, have a lower priority

than PUs in the use of channels; this unequal priority access to spectrum is termed

vertical access [10]. In vertical access, lower-priority devices vacate the spectrum when

a higher-priority device needs it.

In the CBRS architecture, there are three tiers: Incumbent (licensed users), Priority

Access Licensed (PAL) users, and General Authorized Access Users (unlicensed users).

Unlike the two-tier structure that had only one priority user, the three-tier structure has

two priority users: the incumbent and PAL. The incumbent has the highest priority,

similar to the PU in TVWS. The CBRS three-tiered structure extends the TVWS

second tier of equal priority, as shown in Fig. 2.1, to include licensed SUs (PAL) with

greater priority than other SUs (GAAs). It, therefore, combines vertical and horizontal

access SUs, as illustrated in Fig. 2.2 [10].
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Figure 2.2: Three Tiered Resource Sharing.

2.2.1 Shared Spectrum Paradigm

The shared spectrum paradigm encompasses DSA systems and other shared spectrum

concepts. Other shared spectrum concepts include the use of licensed and license-

exempt spectrum. The Licensed Shared Access (LSA) of Long Term Evolution-Unlimited

(LTE-U) and Wifi in the 2.4 and 5Ghz band [3] use license-exempt spectrum for commu-

nication. Each of these technologies, with equal priority, shares license-exempt bands

with other technologies (horizontal access). They operate as secondary users attempt-

ing to share the license-exempt spectrum at a specific time. It can be argued that these

are not typical DSA systems, as they do not necessarily need cognitive or software-

defined radios and share a fixed license-exempt spectrum band. However, they are

technologies that support shared spectra and have coexistence management schemes

relevant to this study. This work, therefore, considers both DSA and shared spectrum

techniques in studying coexistence management.
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Figure 2.3: Independent Heterogeneous Networks

2.2.2 Heterogeneous and Homogeneous networks

Heterogeneous networks (HetNets) can be defined as a composition of different network

standards such as cellular, satellite, and Vehicle-to-vehicle communication networks.

These may use different or similar spectral bands and coexist in the same location for

improved system capacity. Various Technologies can create wireless access to a com-

munication network or specific radio technology [18]. Examples include Wireless Local

Area Networks (WLAN), Long-Term Evolution (LTE), Universal Mobile Telecommu-

nications Systems (UMTS) Terrestrial Radio Access (UTRA).

These network standards can operate independently, as in the exclusive or fixed

spectrum for specific services or regions, shown in figure 2.3. They can also rely on

each other for different sections of their communication links; for example, an IoT

network can depend on a cellular network for back-end connection to the internet (fig-

ure 2.4). To support these diverse future communication links, spectrum coordination

becomes significantly crucial in HetNets, thus needing innovative and progressive spec-

trum coordination solutions [25].

Homogeneous nodes that make up a homogeneous network, have media access con-
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Figure 2.4: Dependent Heterogeneous Networks

trol protocols that are similar; spectrum management can, therefore, be left to devices

to manage resources guided by available resources (like in TVWS). However, in het-

erogeneous networks with different MAC protocols, this communication is absent; as

such, resource coordination needs a form of communication among these devices.

2.2.3 Fixed or Static Spectrum Allocation

Fixed or Static spectrum allocation means a fixed channel is assigned exclusively to

a network’s node. It also refers to the exclusive or traditional allocation of spectrum

licenses to services or service providers to cover extensive areas such as states and

nations for a fixed period. The issue with this method of spectrum allocation is the

under-utilization of these resources in some places where the services are not used

(usage exclusivity), licensed operators owning spectrum in regions they do not operate

(geographical exclusivity), and obsolete licensed allocation [10]. This, however, means

that licensed PUs or incumbents have exclusive access and use of the spectrum and

have uninterrupted, secure, and consistent spectrum assurance for their services [64].

A typical example is in the UK, where the 87.5 to 108 MHz are assigned exclusively

20



Chapter 2. Dynamic Spectrum Access Systems’ Architecture

to broadcast (multimedia) service providers. However, the bands 470MHz to 694 MHz

are shared between Broadcast, Programme Making, and Special Events (fixed site)

and internet service providers [65]. This is a first step towards the Dynamic Spectrum

Allocation concept, which is when licensed spectrum are allocated based on the real-

time needs of service providers in a location rather than a predefined band allocation.

2.2.4 Dynamic allocation

In dynamic allocation, channel assignment/allocation varies with need, location, and

network situations [20]. There is no exclusive spectrum assignment to nodes; this level

of flexibility permits more SUs to utilize scarce spectral resources. Thus, making it

suitable for spontaneous network scenarios. However, it trades off the resource certainty

for improved spectral utilization. A hybrid form of fixed and dynamic assignment

is adopted in CBRS multi-tiered architecture where PALs have exclusive access to

specific available resources when an incumbent is absent [16]. Dynamically accessing

the available spectrum while exclusively using it maintains a level of spectral certainty

and assurance for PAL users.

2.2.5 Spectrum Sharing

Spectrum sharing is the application of technical methods or operational procedures to

permit many users to coexist in a spectral space [18]. It has also been described as

the cooperative use of fixed radio frequency resources by several independent entities

within a specific geographical area [64]. In this work, shared spectrum pertains to

technical, operational, and structural methods that support multiple smart radios’

spectrum use. It encapsulates DSA technologies that leverage shared spectral space

and provide coexistence techniques for similar or dissimilar priority users [63].

2.2.6 Spectrum/Resource Manager

The ability for PUs and SUs or just SUs to share spectral resources in the same space

can be termed ”coexistence”. It has been defined as “the state of two or more radio

devices or networks existing at the same time and place in a shared spectrum space” [66].
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Coexistence is made possible by coexistence managers or spectrum/resource managers

in DSA systems.

A spectrum or resource manager is a system administrator that specifies the coexis-

tence policy within a wireless network; this can be a regulator or regulatory policy [18].

The spectrum/resource manager represents the role of a regulator in the network and

has been adopted in TVWS as the database or SAS in CBRS systems. In other shared

spectrum systems, it is performed by coexistence protocols. They can perform their

spectrum coordinating role centrally, distributed, or autonomously [16,38].

Coexistence management techniques were categorized into two broad areas, chan-

nel/spectrum coordination and MAC-dependent protocols coordination, in [67] based

on coexistence approaches. However, this work categorizes coordination based on the

coordinator’s location in a network.

Central Spectrum Coordination

In central spectrum coordination, the decision maker is a central entity or node with

access to a global information pool, with which it makes strategic channel assignment

actions. An example is an intra-coexistence manager in a CBRS architecture. This

can be a server, base station, access point, database, or spectrum management system,

disseminating its instructions to various nodes or links on a network [16,68].

Its access to global information achieves an optimal channel assignment, resulting

in maximal network rates, fair allocations, and priority access [69]. An advantage

of central optimization coordination systems is the ease of implementation in center-

based networks and the fact that the PHY/MAC of users does not require enormous

modifications for deployment [70].

Its drawback is the reliability of the central coordinating entity, as a failure will lead

to a complete network failure. Other disadvantages include the size of information flow

overhead, database access congestion from multiple requests, information pool storage,

request-response speed, the accuracy of propagation models used in computation, and

their complexity [69, 70]. However, the central computations can be improved with

real-time measurements and identification [71]. The coordination structure can have
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multiple central coordinators, reducing the risk of a central failure.

The central coordination, therefore, has a higher propensity to achieve efficient

resource management because of its access to global information and decisions made

by all or most neighboring SUs. However, it has more overheads as it shares this large

information pool with all nodes/APs.

Decentralize/distributed Spectrum Coordination

In decentralized/distributed spectrum coordination, the decision-makers can be master

or slave SU that decides on channel assignment/usage based on local information.

Local information use results in the sub-optimal channel utilization [68]. In a CBRS

system, this is defined as an entity that decides on resources and cooperates with other

decision-makers in its resource scheduling [16,38]. This has been implemented by nodes

deciding on resources while having limited knowledge of other nodes’ decisions through

CSMA/CS protocols. In other implementations, coexistence information among nodes

has a separate information link among nodes [71].

Distributed/decentralized optimization structures require limited information ex-

change (local information pool) from nodes in a network, reducing signal exchanges and

resulting in lower overhead. It uses this limited information and MAC protocols to make

optimal resource-sharing decisions [69, 72]. It, therefore, supports simultaneous spec-

trum access, faster discovery of available channels, and can be easily implemented [72].

However, the limited information pool in distributed optimization structures results in

local optimal solutions; they also have fairness challenges as their decisions are slightly

independent [69]. SUs in distributed systems’ decisions can be influenced by global

information; this is termed a hybrid system in this thesis.

Autonomous Spectrum Coordination

In autonomous coordination, the decision maker is an entity or node with no informa-

tion or prior knowledge of other existing requesting nodes. It has been implemented as

SUs taking autonomous decisions on available channels without knowing the choices of

other SUs [16,38,73].
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Hybrid Network Coordination

In a layered network, a hybrid assignment approach can be adopted. A central node,

aware of all its links to other nodes, makes channel assignment decisions based on this

knowledge and disseminates resources to its master devices. Slave devices can then

choose resources using distributed or autonomous coordination and, as such, manage

less resource contention. This is the structure adopted by SAS in CBRS and Database

systems, as these use different coordination methods for resource sharing among priority

users.

2.2.7 Spectrum Overlay and Underlay

Spectrum overlay is the timely and opportunistic use of spectrum when not used by

other licensed/unlicensed users. It is defined as when DSA secondary users exploit

spectral opportunities that do not cause interference with PU/other users [18]. It is

sometimes called interweave, the time-based sharing of a channel by multiple users

supported by their MAC protocols [19]. In this work, spectrum overlay is defined as

when no interference exists between PUs and SUs or between SUs, such that they

exclusively use an available spectrum as shown in figure 5.1.

Spectrum underlay allows for the reuse of spectrum by multiple users simultane-

ously, as they all operate at power levels that do not result in harmful interference. As

defined in [18], spectrum underlay occurs when interference experienced by an incum-

bent/PU from an SU results in unharmful/non-disruptive interference.

2.2.8 Vertical and Horizontal Spectrum Sharing

Vertical spectrum sharing/access is spectrum sharing between users with unequal pri-

ority [18]. This is usually when there are multiple tiers of nodes or users with different

levels of priority to spectrum. Typically, between PUs and SUs, PUs have higher pri-

ority, and SUs have less priority. Resource coordination in these systems differs from

horizontal spectrum access.

Horizontal spectrum access is spectrum sharing among equal priority users. The
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spectral access among SUs in TVWS, is equal; that is, every SU has equal priority and

access to spectrum; this is termed horizontal spectrum access. Typically, devices on

the same level of priority have horizontal access, while those with unequal priority have

vertical access.

2.3 DSA Architectures

The general framework for a DSA system is shared access to a spectrum by equal or

unequal priority users. In DSA systems with unequal priority users, the framework

usually has priority users’ (PUs) transmission parameters stored in a database. This

information is used to conduct real-time environment analysis around the lower priority

users (SUs), enabling the shared use of PU’s resources without interference. Figure 1.1

shows the framework for a TVWS and CBRS, which are specific examples of a DSA

system. Although these two technologies have different tiers, as discussed in section 2.2,

their coexistence management architecture is similar, and these are studied in this

section.

The coexistence management strategies of these technologies are centrally managed

among unequal priority users (PUs and SUs) and a distributed mechanism is adopted

for equal priority users. The coexistence/spectrum managers (TVWS database) pro-

tect the static TV transmitters from SUs’ interference Fig. 1.1a while CBRS’ Spectrum

Access System (SAS) protects Fixed Satellite Services and other incumbents from SUs

interference Fig. 1.1b. The DSA framework ensures licensed PU protection and na-

tional policies expect SUs to protect themselves from PU and SU-to-SU interference [3].

Although this approach allows for the discoveries of new coexistence methods, it limits

resource assurance among SUs, and becomes more challenging in heterogeneous shared

spectrum networks.

In unequal priority (vertical access) central coexistence management, the TVWS

and CBRS spectrum managers use the PUs parameters in computing and predicting

interference levels that PUs encounter. These prediction methodologies differ based on

the country’s policy on such technologies. Still, they can be categorized into two strate-
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gies: calculating the distance covered by PU signals or the minimum signal strength

needed at PU’s receivers. There may be an argument on the efficacy of these method-

ologies and a dilemma of the choice of methods in shielding PUs from interference

(interference discovery approaches). A general opening for further research is the ab-

sence of central spectrum coordination among SUs. However, CBRS provides a more

detailed protection plan for priority SUs in their three-tiered system than TVWS’s

two-tiered system.

Distributed/autonomous coexistence mechanisms among equal priority users (Hor-

izontal access) are MAC protocols and standards for sharing resources in TVWS,

Licensed Assisted Access (LAA), and CBRS systems. These MAC protocols adopt

CDMA/CA or listen-before-talk (LBT) protocols, allowing radios to wait for their

turn to access bandwidth. Thus, it enables multiple nodes to reuse the same chan-

nel and permits timed access to the band. Other mechanisms, spatial separation and

timed spectral reuse adopted in CBRS systems, are termed spectral overlay. When

this is combined with transmit power consideration to improve spectral utilization, it

is termed spectral overlay and underlay.

2.3.1 Television White Space Technology

The TVWS communication paradigm allows the opportunistic use of spectrum unused

by licensed Television stations. These spectrum gaps exist due to the non-operation

of the stations in a specific location/time or protection gaps that prevent interference

between TV stations. Deployment of this technology in various countries has proved

that the technology can support a reasonable data rate at affordable rates [3]. Different

regulatory bodies have provided the standard architecture for the system’s deployment

in [14,26,74,75].

TVWS architecture

The TVWS operates at the 400 to 700 MHz lower bands in most countries. The TVWS

architecture comprises a master white space device (WSD), a Geolocation Database

(GLD), and optional slave WSDs as shown in Fig. 1.1a. The master WSD requests
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Figure 2.5: TVWS architecture.

transmission information from GLD on the available spectrum, and the database takes

a log of the location of the device and informs it of operation parameters (spectrum and

power limits) Fig. 2.5 [75]. The master device acknowledges receipt of this information

and chooses available channels or shares them with its slave devices. It then updates

the database with the channels it or its slave devices use. The master devices use

these operating parameters to gain access to the internet through an existing TVWS

network or by creating the network. A TVWS base station, for example, becomes the

base station through which other master or slave White space devices can connect to it

as shown in Fig. 1.1a. The database entity is an external system coordinator, serving

as an information entity to guide telecommunication activities [76].

Coexistence Management in TVWS

The database is populated by PU and SU information obtained from registration in-

formation that regulators stipulate. A specialized protocol for this communication is

known as the Protocol for Access to White Space (PAWS) [77]. This central entity then

supports the coordination of spectrum and power at which the devices can safely oper-

ate without interference. A geolocation database is used to identify the free spectrum

and then allocate it to SUs, thus preventing PU-to-SU interference. The role of the

database, as stipulated in [14,26], is to provide SU devices with available channels and

safe power limits to coexist with PUs. It also maintains a log of requests and spectrum

27



Chapter 2. Dynamic Spectrum Access Systems’ Architecture

used by SUs [3]. It, therefore, serves as the administrator for the two-tiered system

with licensed PUs and license-exempt sharers (SUs).

The TVWS system databases assume that PUs’ available channels can be safely

shared by SUs [26]. This assumption is correct when SUs in a specific location use a

particular standard (Homogeneous networks). However, when the number of requesting

homogeneous SU devices is high, there is a higher level of contention for available

resources. This inhibits the MAC protocol’s coordination and leads to many devices

waiting to access the available spectrum.

The infusion of spectrum sharing into the IEEE 802.11, 802.15, and 802.22 stan-

dards (radio access technologies (RAT)) at TV frequency complicates resource coordi-

nation. Each RAT adopts different coordination MAC protocols for the coexistence of

their devices in TV bands. Thus, a heterogeneous network is created when multiple

radios compliant with different RATs are deployed in a network. To minimize con-

tention among similar or dissimilar RATs for available resources, a central coexistence

framework is necessary to share available channels safely.

2.3.2 Citizens Broadcast Radio Service (CBRS)

The CBRS is operational in the United States of America and provides 5G cellular

connectivity. The UK government coordinates a similar operating frequency [17,19] to

enable the shared use of the band for private (pop-up) 5G cellular networks used in

broadcasting [6]. This section focuses on understanding the CBRS architecture and its

coexistence management structure.

CBRS Architecture

The CBRS system operates at a 3.55 – 3.7GHz band in the United States. It enables the

sharing of spectral resources with the incumbent (PU) grandfathered wireless broad-

band licensee, operating at 3.650 – 3.7GHz, federal radio location service operating at

3.5 – 3.7 GHz, and Fixed Satellite Service (FSS) operating at 3.600 – 3.7GHz [78]. These

incumbents are protected and allowed to share spectrum with Long Term Evolution

4 or 5G cellular CBRS devices (CBSDs). CBRS supports private 5G cellular or LTE
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networks for standalone business connectivity. It’s popularly known as the OnGo ini-

tiative. The private network provides exclusive applications for hospitals, IoT-enabled

facilities, and remote locations where access may be limited. The CBRS system, unlike

the TVWS, is a three-tiered system consisting of a licensed incumbent or PU operating

at 3.55 to 3.7GHz, Priority Access Licensee (PAL) operating at 3.55 – 3.650 GHz, and

General Authority Access users (GAAs) operating at 3.55 – 3.7GHz [78].

Coexistence Management in CBRS

An external entity or database, like the GLD called Spectrum Access System (SAS),

coordinates spectrum access in CBRS systems. It ensures that the incumbents suffer no

interference from SUs (PAL or GAA) by using an interference discovery methodology

(path-loss algorithms) together with its Environmental Sensing System (ESS). The

PALs, however, are protected from GAAs, and GAAs are allowed to endure a degree of

interference from PALs and GAAs. In the United States, a 150MHz band is available

for sharing within a location. Each CBSD operating as a PAL or GAA can have a

maximum of 10MHz each, and in any area, only 15 CBSDs can be supported. However,

the maximum number of PALs in such a location is limited to 7 to restrict PALs from

usurping all available resources.

The incumbent has the highest priority; available resources are only used when

the incumbent is not using a band or is absent in the region. This means that when

resources are available, the PAL users have higher spectrum access to a stipulated

portion of the available bands, and these resources are only available to GAA users when

PALs are not using the portion of bands. Should a PAL user appear in a band being

used by a GAA user, the GAA user vacates the band; similarly, should an incumbent

user appear on a band in use by a PAL user, the PAL vacates the band. GAAs can

opportunistically utilize available PAL bands in locations with few PAL users.

SAS, through its higher tier protection function in Fig. 2.6a, ensures incumbent

and PAL interference are within baseline standard [31]. Its repository function keeps a

log of incumbent, PAL, and GAA information, which is used to update spectrum avail-

ability regularly. Inter-block communication uses SAS-SAS and SAS-CBSD protocols

29



Chapter 2. Dynamic Spectrum Access Systems’ Architecture

or other non-standard means. An easier protocol for SAS-to-CBSD communication,

was suggested in an end-to-end design of a CBRS system in [79].

SAS inter and intra coexistence groups (CxG) coordination function manages co-

existence among GAAs. It can function solely as an inter-CxG manager or as both

inter and intra-CxG manager, as illustrated in Fig. 2.6a and Fig. 2.6b. In the for-

mer, it collaborates with the CBSDs intra-CxG coordinator to perform its tasks. SAS

decision-making topology can be independent of other SAS (autonomous). It can ne-

gotiate with other SAS in resource sharing (Distributed), or it can make unilateral

decisions, as a master SAS, on resource sharing among other slave SAS (central) [31].

The responsibilities of SAS intra and inter-coordination include:

1. identification of potential interference between CBSDs (interference discovery).

2. mitigating this potential interference.

3. creating channel information to be relayed to others.

4. resolving interference when it occurs.

Unlike SUs in TVWS, SAS provides GAAs with a level of coordination. SAS’s

inter or intra-coexistence management scheme adopts a recursive approach in limiting

interference among GAA groups [31]. However, the GAA users within a group are

expected to perform a form of internal spectrum coordination. This assumes that a

coordinating system among the GAAs prevents interference, which may not be the case

in a heterogeneous network.

2.4 Coexistence Techniques in Standards

DSA systems rely on interference mitigation schemes of WSDs’ Media Access Control

(MAC) protocols. Radios achieve coexistence through coordinated time use of spec-

trum, geographical separation, frequency separation, and orthogonal modulation [67].

However, improved ways of coexistence use multiple methods in real-time, thus improv-

ing coexistence, especially in heterogeneous networks (HetNet) [18]. A typical HetNet
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(a) SAS inter and intra-coordination

(b) SAS coordinator (Intra CxG coordinator)[15]

Figure 2.6: SAS architecture
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example is a network consisting of portable devices (IEEE 802.15 standard), Wire-

less Fidelity (WiFi) devices (IEEE 802.11af), and consumer premise equipment (IEEE

802.22). These standards or RAT discussed in this section, use opportunistic spectrum

sharing but differ in structure and coexistence management protocols, thus limiting

optimal coordination.

2.4.1 Personal Area Networks/Portable Low Power Devices (IoT)

The IEEE 802.15 documentation [80] details the physical (PHY) and MAC specifi-

cations for the interoperability of low-power portable devices operating at low data

rates among fixed, portable, and moving devices. These devices range from Internet

of Things (IoT) devices to very low-power radios for device-to-device communication

or Internet access. Unlike mobile devices, these portable devices only transmit data at

different fixed locations, while mobile devices transmit in motion [80].

Personal Area Networks (PAN) can be deployed as wireless sensors for industrial

control and monitoring (wireless sensor networks) or for intelligent agricultural monitor-

ing. They have two main topologies: star and mesh or peer-to-peer network, shown in

figure 2.7. Its TVWS multichannel cluster tree PAN (TMCTP) consists of Full Function

Devices (FFDs) and Reduced Function Devices (RFDs). Its Super PAN coordinator

(SPC) manages and synchronizes services (master device) to other PAN coordinators

as shown in the cluster Figure 2.7 [80]. The RFDs may have some or none of the

coexistence protocols, hence the need for the SPC. Therefore, TMCTP and PANs can

support central or distributed spectrum coordination as shown in figure 2.8.

To facilitate coexistence amongst themselves while preventing interference, they

use beacon frames, ALOHA, and carrier sense multiple access, collision avoidance

(CSMA/CA) protocols. However, adopted protocols can be based on regulators’ re-

quirements as devices may choose to adopt all, any, or none of these protocols [80].

These can operate on 25, 50, and 100 KHz bandwidths [81] at Ultra High Frequency

(UHF), 433-780MHz bands or below 1GHz, and 2.4GHz.
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Figure 2.7: star and peer- to- peer

2.4.2 Local Area Networks (LAN)

IEEE 802.11af standard on Local Area Networks (LAN) allows for local interconnec-

tion of access points (APs) that cover a small region. They are usually used to provide

internet to devices within their coverage area. A wide range of devices use this stan-

dard, which provides a single MAC for multiple physical layers specification, to support

wireless connectivity of fixed, portable, and mobile stations (STAs) within a local area.

The significant difference between these devices and the IEEE 802.15 standard is the

low coverage area provided by the latter. Wireless Fidelity (WiFi) access points and

user equipment are popular devices that use this standard.

The typical architecture is that a WiFi access point or station (which may be fixed

– e.g., a fixed WiFi router in a shop, or portable or mobile – a mobile phone’s hotspot)

has dependent stations or users that get connected through the access point [82]. Figure

2.9 shows a sketch of the LAN architecture that enables stations (STA) or devices or

WSDs’ UEs to depend on a basic service set (BSS), a form of master device or Access

Point (WSD). Based on its operating channel, the BSS establishes a distributed com-

munication system (DS) for device-to-device communication and possible connection

to the Internet.

The standard’s wide operating frequency range enables the interoperability of de-
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Figure 2.8: TVWS multichannel cluster tree PAN

vices in different countries. They can operate in TV, 2.4GHz, 6GHz and 7GHz bands.

Their contention-resolving mechanisms are CSMA-CA and beacons. The MAC layer

inputs beacons into frames to announce the presence of a device within a channel [82].

2.4.3 Regional Area Network

The IEEE 802.22 [32] provides guidelines for the air interface, Media Access Control

(MAC), and physical layers of point-to-multiple-point and backhaul communication

links of Wireless Regional Area Networks (WRAN). Operating in bands that support

the opportunistic use of spectrum. It generally consists of a fixed-based station that

makes a back-haul connection to the internet and a front-haul connection to fixed or

portable access points called Customer Premise Equipment (CPEs) [32]. A typical

base-station’s wider coverage and many dependent CPEs are shown in Figure 2.10.

Coexistence in regional area networks is more challenging due to their wide coverage

areas that easily intersect and cause interference. In managing this, a Coexistence
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Figure 2.9: Topologies of 802.11 standard devices

Beacon Protocol (CBP) is adopted. CBP appends packet frame structure and can

coordinate spectral resources centrally, distributively, or both, figure 2.6 [32].

The coexistence management technique in this standard can determine the occu-

pancy of a channel based on information from:

1. A geolocation database (an external entity)

2. Sensing the presence of PUs (MAC sensing abilities of CPEs)

3. Beacon signals for SUs collision prevention.

This allows base stations or central CPEs to use a channel exclusively or coexist with

other radios (BS or CPEs) in the same location. This standard utilizes a Time Division

Duplex (TDD), as each frame consists of the uplink and downlink data information.

A self-coexistence Window (SCW) is established in its uplink frame for beacon signals

from the reference BS and other dependent CPEs.

2.4.4 IEEE 802.19 Coexistence Management

The IEEE 802.19 unifies SAS and databases’ function in the coexistence management

of Base Stations (BS), access points (APs), or nodes, thus providing the foundation

for framing a coexistence problem for DSA systems [38]. A Coexistence Manager’s
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Figure 2.10: Regional Area Network deployment Setup

(CMs) role is to determine how radio resources are shared among interfering nodes,

radios, or devices called white space/geolocation-capable objects (WSOs/GCO). [38].

In the CBRS architecture, the CM is the Intra CxG coordination function coordinating

resource management among WSO/GCOs. It enables the reuse of spectrum, spectrum

overlay, and underlay, increasing network capacity. Its overall objective [38] similar to

SAS is to:

1. Ensure no overlapping WSO/GCO allocation of operating channels

2. If 1 is impossible, group similar WSO/GCO together in the frequency domain.

3. If 2 is impossible, split operating channels for WSOs/GCOs in time, code, or

frequency domain.

CMs’ Decision-making topology, similar to the CBRS structure, can be autonomous,

distributed, or centralized. The decision topology assumed in this thesis is the central-

ized topology, where the CM makes decisions for WSOs/GCOs. A central CM can be

an intra-SAS in CBRS systems and communicate with the inter-SAS or a database in

TVWS [83]. The WSOs/GCOs choose their channels and inform CM through their

coexistence enabler, as shown in Figure 2.11 [38].
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Figure 2.11: DSA coexistence management system
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2.5 Medium Access Control (MAC) Coexistence Manage-

ment Techniques

2.5.1 Beacon

Beacons are used by all standards discussed; however, their frame structure, purpose,

and mode of operation vary with the deployed standard. In the standard for per-

sonal/portable area network (PAN), IEEE 802.15, beacons are used to synchronize at-

tached devices (FFD & RFD), identify PANs, and describe the structure of superframes.

The period between two beacons is called the contention access period (CAP). Thus,

devices compete to access the channel during CAP using the CSMA-CS or ALOHA

mechanism randomly [80,81].

In the TMCTP (an extended PAN), the beacon frame structure contains alloca-

tion time slots and interference management information, such as a Contention Access

Period (CAP) that communicates commands/data, a contention-free period (CFP) con-

taining guaranteed time slots (GTS), and Beacon Only Period (BOP). In LANs, the

directional multi-gigabit (DMG) beacon frame within its distributed coordination func-

tion (DCF) has an additional feature called the beacon report. The beacon report keeps

track of other device’s beacon activities. RAN’s beacon frame consists of a synchro-

nized self-co-existence window (SCW) that allows multiple base stations to compete for

access. It also permits various CPEs to share a spectrum in time. The internal com-

ponent of the beacon frame of each of these standards is unique, as shown in figures

2.12, 2.13, 2.14. However, the CSMA-CA mechanism is deployed in all RATs studied

and used to access channels during contention access periods (CAPs) [32,80–82,84].

Despite using the exact coordinating mechanism (CSMA-CA) by the three stan-

dards discussed, the beacon size, purpose, and frame structure differ. Thus, syn-

chronization among homogeneous networks and redesigning heterogeneous networks

is sometimes required. A similar conclusion was arrived at by Chen et al.’s analysis of

other radio access technologies’ MAC protocols operating at higher bands [85].
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Figure 2.12: TMCTP PAN superframe extension

Figure 2.13: Directional Multi-gigabit frame format

Figure 2.14: WRAN beacon superframe structure
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2.5.2 Carrier Sensing Multiple Access with Collision Avoidance

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) is an interference

prevention mechanism that allows overlapping coverage areas to coexist. It is deployed

in 802.11 distributed coordination function (DCF) and beacon functions in IEEE 802.15

and IEEE 802.22 standards. By effectively communicating, the protocol enables mul-

tiple devices to schedule access to a channel. Thus reducing the probability of collision

of transmitted data from multiple radios sharing a channel/medium at points when a

collision is most likely to occur (Contention Window -CW). It uses a random backoff

CW size procedure at the CW point, thus minimizing contention [82].

The mechanism requires that all requesting devices sense the medium for other

transmitting devices. The sensing mechanism uses physical signal measurement of the

medium/channel and predicted future traffic of a medium (Virtual Carrier Sensor) con-

taining CSMA transmission information. A perceived vacant medium is accessed by

a request to send (RTS) frame. The receipt of a clear-to-send (CTS) frame permits a

device to transmit its data on a medium/channel; a successful transmission is preceded

by a CTS (containing acknowledgment information) frame [82]. If a device does not

receive a CTS, it waits for an appropriate transmission time (back off CW size) to

resend an RTS frame. The random backoff time is a random multiple of the CW size

that counts down before another attempt, as shown in figure 2.15. RTS/CTS frames

are used for large data frames due to their high overhead. In virtual carrier sensing(V-

SC), shared reservation information, such as request to send (RTS) and Clear to Send

(CTS) frames, before transmission informs medium/channel status. Deploying differ-

ent CSMA/CA mechanisms versions in similar devices may impact MAC-dependent

coexistence management.

Challenges of CSMA/CA coexistence mechanism.

1. Delayed access to spectrum, resulting in poor quality of service when many devices

request access.

2. Hidden devices with obstructed beacons may never gain access to shared medium.

3. Failed transmission is only detected after an entire contention period and trans-
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Figure 2.15: CSMA/CA flow chart
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mission period have elapsed.

4. The protocol highly depends on the standard and MAC protocols adopted.

5. Beacon control header overhead

2.5.3 Listen Before Talk

Listen Before Talk (LBT) is a mechanism similar to CDMA/CS, where transmitters

sense the channel/medium before attempting to transmit by performing a clear chan-

nel assessment (CCA) [86]. It is the coexistence coordination protocol adopted in Li-

cense Assisted Access (LAA). As stipulated by the 3rd Generation Partnership Project

(3GPP), it enables the equal priority coexistence of cellular and WiFi networks in li-

censed and unlicensed 2.4 and 3.5 GHz bands. A significant benefit of LAA in LTE

Release 13 by 3GPP is the ability for cellular networks to use fixed bands and share

other bands (top-up) when necessary [86,87].

LBT uses a fixed CW which is about 20 mico-seconds and is termed a CCA period.

In its CCA period, a requesting LAA/WiFi device uses energy detection to sense the

presence of other devices in the medium/channel (physical sensing). Below a required

threshold, the requesting device assumes the medium is empty and transmits, during its

Maximum Channel Occupancy Time (COT). Otherwise, the medium is occupied and

an extended CCA check is conducted. Extended CCA involves sensing the presence of

other users in a channel, for a random N multiple of CCA observation time (back off

time). This counts down to zero, at an idle CCA slot before a requesting device can

transmit, as shown in figure 2.16 [86].

2.6 Practical Coexistence Issues

LBT and CSMA/CS mechanisms have similar structures and, as such, experience sim-

ilar challenges. Therefore, most practical challenges and solutions raised in subsec-

tion 2.6.2 can be extended to self-coordination at lower bands.
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Figure 2.16: LBT procedure by 3GPP
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2.6.1 WRAN and WLAN

Irrespective of the band examined (TV, 3.5, or 5GHz bands), the coexistence of devices

of different standards in the same frequency space needs a form of coordination. The

MAC-dependent protocols are primarily effective in managing homogeneous devices,

although issues highlighted in subsection 2.5.2 must be checked. In heterogeneous net-

works, additional problems, such as devices with different MAC protocols and beacon

frame structures, synchronization of radios/base stations, and varied coverage sizes and

end-user sensitivity, must be overcome [83]. Thus, available resource allocation to dis-

similar standards in a network will result in interference that individual device MAC

coexistence mechanisms may not resolve [88].

2.6.2 LTE and WiFi

Long Term Evolution-Unlicensed was introduced to increase bandwidth allotted to

Mobile Network Operators (MNO) to match the increased demand for their cellular

services [89]. Sagari et al. discovered that the WiFi devices were prone to more signif-

icant interference than the LTE device in their single Cellular base station and WiFi

device coexistence on a 5GHz band investigation. A further investigation into more de-

vices revealed a similar outcome, establishing the need for better coexistence mitigation

techniques [90]. This was attributed to the different versions of MAC protocols adopted

by the LAA framework. A WiFi device constantly sensed the presence of LAA devices,

preventing it from having sufficient contention window spaces to transmit in [91]. The

impact of this interference was significantly reduced when cellular nodes adopted an

LBT protocol in 3GPPs LAA architecture [91].

A wide range of studies have suggested improvement in MAC protocols. A redesign

of the MAC protocol-based LBT mechanism to improve throughput was suggested

in [92] by including CSMA’s CW and DCF components to LTE unlicensed (LTE-

U) devices to aid coexistence. To improve the fairness of LBT methods adopted in

LTE/LAA devices, an improved algorithm that included the WLAN network’s fairness

index and statistical profile was proposed. It improved WLAN network throughput

in [93,94]. A similar improvement satisfied the devices’ quality of service requirements
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of small cell users by creating an adjustable COT and idle time or back-off scheme

identical to the CSMA/CS system [95, 96]. An adaptable duty cycle coexistence LBT

mechanism’s performance was evaluated in an LAA/WiFi 5GHz band in [67]. A joint

optimization of licensed and unlicensed bands for LTE scheduling and allocation al-

gorithm was developed in [97] to achieve fairness in spectrum sharing between LTE

and WLAN networks. Better performance was achieved than conventional fixed and

sequential allocation schemes in femto and WiFi networks.

Most of these solutions did not address co-existence management in heterogeneous

networks (HetNets), as LAA-compliant nodes use similar MAC protocols at 2.4 GHz.

MAC protocols (at higher bands) were sometimes redesigned to create a coexistence

mechanism for heterogeneous networks. MAC-dependent coordination does not explore

optimal resource sharing among nodes. This thesis proposes an intelligent central

coexistence manager to reduce the contention managed by MAC protocols in Hetnets.

Intelligent systems learn from past experiences and are achieved with machine learning

algorithms.

2.7 Shared Spectrum Reviews and DSA Coexistence Man-

agement Challenges

A comprehensive study of existing reviews on resource management highlights the

focus of previous reviews and identifies gaps in their approach. The authors justify the

need for central coordination of SUs in heterogeneous DSA networks, as this supports

existing regulatory frameworks.

Contributing to the wealth of research on resource allocation reviews, Table 2.1

summarizes these studies. This review differs from previous works as it provides an up-

to-date review of existing literature and focuses on pragmatic shared spectrum issues

and DSA resource allocation challenges.
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2.7.1 Shared Spectrum Reviews

A review of algorithms and mathematical optimization of Shared resource allocation

in future cellular networks is presented in [98]. Han et al. examined shared spectrum

challenges based on their network type and size and adopted DSA architectures in [72].

Others have explored coexistence issues based on the network structures and problem

formulations. It was observed that some assumptions made in these formulations to

ease computation were most times impractical, resulting in theoretical concepts that

do not address real DSA challenges [99]. Pragmatic DSA challenges by stakeholders on

DSA deployment in [29] buttress Tragos et al.’s view of the impracticability of some

DSA resource allocation solutions.

Pertinent issues with DSA networks identified and reviewed in [64] were network

selection, sensing, channel allocation, power optimization, and security challenges. Ad-

dressing one of these problems, channel allocation or assignment, Tanab et al. identified

some theories, such as colored graph theory, game theory, and heuristic solutions, that

have addressed it [100]. A review of fair joint resource allocation schemes for unequal

priority SUs in tiered CBRS architecture and solutions to their security challenges are

presented in [101]. These reviews’ investigation of coexistence issues validates the need

for optimal resource allocation among secondary users in DSA networks.

Resource allocation and assignment solutions in literature were categorized based on

the central or distributed location of coordinating agents. Maloku in [102], highlights

drawbacks to centralized coordination, such as the amount of overhead and complexity

of central coexistence managers structure. Arguably, if a network already has an ex-

isting central coordinating system, the global information can be leveraged for optimal

coexistence management. In agreement with this, an overreaching universal framework

for international central spectrum coordination was proposed in [103].

Fujii et al. proposed a four-staged architectural control system comprising inno-

vative measurements, spectrum modeling, intelligent databases, and smart spectrum

management that extract intelligence from a central pool of information. Their de-

sign merged AP sensing and communication capabilities. Sensed data built a pool of

information from which coordination information was mined to determine PUs’ usage

46



Chapter 2. Dynamic Spectrum Access Systems’ Architecture

and SUs demand patterns for a tailored spectral experience [103]. However, their idea

of intelligent sensing and spectrum management systems can be adopted locally to

minimize such risks.

Table 2.1: Literature reviews on Resource Allocation in Dynamic Spectrum Access
systems.

Publication Review summary/focus

[98]

Address resource allocation techniques and algorithms

that address heterogeneous cellular and non-cellular

networks.

[102]

A review of inter and intra coexistence issues in het-

erogeneous networks and a comparative analysis of co-

existence management mechanisms in TVWS systems

[99]

An overview of issues with spectrum assignment in

cognitive radio networks, and analysis of techniques

used to solve spectrum assignment problems and

pending open issues.

[68]

A thematic review of spectrum assignment algorithms’

strengths, weaknesses, similarities, differences, and

pending issues.

[64]

An exhaustive survey of spectrum sensing, network

selection, channel allocation, power optimization and

security challenges in shared spectrum future genera-

tion networks.

[100]
A survey of some resource allocation methods in un-

derlay cognitive radio networks.

2.7.2 Dynamic Spectrum Management Challenges

A recurring challenge in DSA systems, addressed by various methods, is resource man-

agement among dynamic network components (fixed or mobile PUs and SUs). This
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problem is exacerbated in all types of heterogeneous networks and reiterated by Tri-

pathi’s choice of a machine learning algorithm in resource optimization, as typical opti-

mization equations were insufficient in capturing heterogeneous networks and channel

options dependencies [55].

Another challenge in DSA resource management is spectrum reuse, which in fixed

allocation systems is implemented in cell reuse (cellular systems). However, in the

DSA system, with no predefined cells or varying cell sites, real-time spectrum reuse

becomes necessary, especially among equal-priority heterogeneous networks. It, there-

fore, becomes the responsibility of the DSA resource coordinator to know the needs of

individual nodes and their interference limits and re-use or reallocate the used spec-

trum. This improves the overall spectral efficiency and enables the support of more

nodes within a specific location.

A typical dynamic spectrummanagement system includes interference discovery and

resource management features. Previously analyzed issues identified in the literature

and pragmatic industry-based DSA challenges to designing these features are studied.

SUs protection and spectrum assurance

As in any typical DSA system, the CBRS spectrum manager consists of Dynamic

Frequency Assignment (DFA) and Interference Management (IM) features. The DFA

(resource manager) manages available PUs’ channels, which vary with time, providing

SUs with unassured access to spectrum. Thus, questioning the viability of such a

tiered system in supporting cellular services that require assured/exclusive spectrum

access [29]. The concern on spectrum assurance and protection to SU cellular operators

was also highlighted in GSMA’s view of future shared spectrum prospects in cellular

systems [20].

A possible suggested solution is adopting shared spectrum, as an added resource

(top-up) to assigned fixed/exclusive cellular bands, similar to the Licensed Assisted

Access structure [19]. However, SU protection or spectral assurance issues for SUs

have yet to be addressed extensively in the literature.
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Spectrum Allocation/Assignment Structure

Resource sharing among dissimilar Physical and MAC properties (HetNets) needs an

efficient coordination scheme [72], and especially among SUs [99]. This is due to the

distributive resource sharing assumed in existing DSA technologies where SUs choose

resources and coordinate their coexistence based on individual MAC protocols. How-

ever, these choices are vetoed by a central management system.

Flexible spectrum and power allocation that suits specific scenarios and licensees’

distribution were proposed by stakeholders in [29], as CBRS’ spectrum management

structure was highly central. The central stringent rules on power and out-of-bound

emission restrictions in the CBRS system stifle prospects of SUs meeting the required

QoS of individual CBSDs. However, this shift to SUs (distributed access) is sustained

when interference among diverse coexisting SUs can be effectively managed. It Reiter-

ates the need for radio-specific spectrum and power allocation.

Interference detection and coordination

Interference is a significant challenge in maximizing channel assignment performance,

as it increases the noise floor experienced by receivers, thereby reducing their signal-to-

noise plus interference ratio. This increases the frame loss ratio, decreases the trans-

mission rate of links, and lowers the receiver’s throughput [68]. Interference around

PUs or SUs transmitters has been computed based on their distance or contour cov-

erage areas. This interference detection mechanism, adopted in CBRS, was contested

based on its relatively fixed contours assignment and smaller cells’ non-inclusiveness.

Stakeholders recommended real-world or real-time interference measurements, as these

were adaptable to the transmitter’s actual interference experience [29].

However, real-time interference measurements lead to questions on how interference

levels are measured, collated, decided, and disseminated. Dissemination of control

information among heterogeneous networks can be distributed or centralized. Acquiring

and disseminating real-time interference measurement of PUs or SUs (spectrum sensing)

becomes fundamental for shared spectrum management [69]. Resource coordination

and reuse of resources based on informed decisions improves spectral efficiency, as
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more access points are supported [99]. ‘ Despite these benefits, real-time interference

detection and coordination have significantly focused on PUs. However, studies on

interference threshold and coordination of SUs are required, as these differ from PUs

since SUs can be fluid in characteristics and have non-fixed locations. Thus, regulators

and stakeholders should know spectrum assurance risks and permissible trade-offs when

maximizing spectrum reuse in SUs’ coexistence coordination.

Spectrum Sensing/Measurement

Several sensing techniques, such as energy-based sensing, cyclo-stationary feature-based

sensing, compressed sensing, matched filtering-based sensing, pilot sensing, pattern

recognition-based sensing, waveform-based sensing, and radio identification-based sens-

ing [64,70] provide a real-time measure of signals. However, these techniques have varied

accuracy, computational complexity, cost, and measurement specifications [103].

Some issues still being investigated are the processing speed and hardware require-

ment for accurate spectrum measurement. Also, intelligent sensing that distinguishes

PU and SU signals and categorizes their priority levels [72] enables informed sharing

of spectral resources and helps identify neighbouring nodes. Thus, sensing and node

identification can improve equal (horizontal access) and unequal (vertical access) coex-

istence in DSA networks.

Spectrum Handover and Resource uncertainty

The evacuation of a channel when an incumbent or higher-priority user needs it re-

mains a challenge [69]. Existing solutions to this have been regular check-ins with

the spectrum manager (SM) to ascertain updated available channels in TVWS and

the transmission of stop transmission signals to the SUs in CBRS systems. In both

systems, the SUs are re-assigned to another available channel where feasible. This

reassignment can result in more APs struggling for depleted resources or reshuffling

resources to suit real-time available channels. CBRS systems still lack an established

way of achieving CBSD mobility or how these can be interfaced with existing mobile

cellular systems [104].
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Some other issues with DSA that industry stakeholders did not mention include

fairness and priority access. Fairness among equal-priority SUs needs to be clearly

defined in the literature. Tanab and Basnet integrate fairness into their coexistence

problem formulation and establish fairness indices such as min-max fairness, propor-

tional fairness, and Jain’s index [100,105].

Similarly, coexistence problem formulation, which captures and identifies the wide

range of a coexistence system’s properties and objective functions, is challenging. A

formulated problem may tackle time, frequency, space, or code domain issues [72].

Shared spectrum management scenarios formulated in studies make assumptions to

achieve solutions. Therefore, there is a great need to investigate further coexistence

management solutions suitable for real-life DSA systems.

2.8 Chapter Summary

This chapter presented an overview of DSA’s implementation of shared spectrum, archi-

tecture, and resource management coexistence strategies. The Central database/SAS

systems for unequal priority users coordination and MAC distributed for equal priority

users coordination are two coexistence strategies studied. A review of MAC protocols’

architecture and structure revealed their drawbacks in resource coordination of hetero-

geneous devices in DSA networks. The complexity of the resource coordinator of equal

priority users is worsened as heterogeneous networks do not have a standard means of

communicating among themselves. This has necessitated a central approach to manag-

ing the spectrum among such networks, such that heterogeneous network communicates

with a central spectrum manager, who coordinates spectrum allocation and reuse.

Industry perspectives on DSA issues were highlighted, and approaches to solving

such problems in the literature were enumerated. Thus, pragmatic research gaps in

coexistence management were identified. A primary challenge in DSA deployment,

as identified by the industry, is the nonexclusive access to bandwidth (measured by

throughput, latency, data rates, spectrum certainty/assurance, spectral efficiency, and

duty cycle) and an appropriate coordination mechanism (measured by interference ex-

51



Chapter 2. Dynamic Spectrum Access Systems’ Architecture

perience, time of dynamic frequency selection, transmit power allocation, quality of

service, resource allocation efficiency, spectrum reuse, and probability of faulty assign-

ment) [18]. These are of great importance to industry experts as such an investigation

into the coordination mechanism of unequal priority users is done in chapter 4. Ma-

chine learning algorithms are also investigated in the next chapter to study how these

have addressed resource assurance, coordination, and other DSA challenges.
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Reinforcement Learning in

Shared Spectrum Management

In a shared spectrum network, unlike an exclusive spectrum network with fixed power

and spectrum available to access points, the spectrum, power, and devices are dy-

namic. A brief introduction to artificial intelligence and machine learning algorithms is

presented. This chapter provides an up-to-date review of an arm of machine learning,

reinforcement learning’s (RL) resource management approaches. It reviews suggestions

on intelligently augmenting central or decentralized resource coordination. It also ex-

amines various optimization approaches (Non-RL based and RL based) to challenges

highlighted in Chapter Two.

Different machine-learning algorithms have improved DSA networks’ spectrum de-

tection, access, and allocation. In resource coordination, these algorithms either use

central mechanisms (Fig. 3.4), where the RL agent is centrally located, or decentralized

autonomous mechanisms (Fig. 3.5), where RL agents are located in individual SUs, to

coordinate other devices.

Emphasis is on RL’s contribution to lasting solutions to such challenges. This

chapter, therefore, presents an overview of reinforcement learning approaches to shared

spectrum management in DSA systems and establishes a gap in its pragmatic imple-

mentation.
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3.1 Introduction to Machine Learning

Artificial learning is made possible by machine learning algorithms. Machine learn-

ing uses algorithms to make sense of or extract knowledge from data. It provides

great predictions of future events based on learned patterns. According to Samuel,

machine learning ‘is the field of study that allows computers to learn without explicit

programming’ [106]. Thus, a machine or device with a learning algorithm can learn

from structured data to carry out some task without being explicitly programmed to

do so. It extracts sequences, trends, and patterns from data and makes informed deci-

sions on similar data patterns in the future. Unlike iterative or prescriptive algorithms,

which are explicitly programmed to act a certain way and, as such, need to capture all

possible scenarios. Learning algorithms are flexible [107].

Learning algorithms are, therefore, beneficial for optimization problems with ample

search space, as prescriptive solutions spend long search times to arrive at optimal

solutions (convergence), which is sometimes missed. Traditional and heuristic solutions

to optimization resource allocation problems sometimes do not arrive at global solutions

because of assumptions made to simplify their computation [108]. They also do not

consider real-time changes in networks and, as such, may need to recompute network

parameters each time there is a change in the network structure or components.

This complicates shared spectrum licensing, resource assignment, and node fluidity

in a network. On the other hand, Learned networks are adaptable to real-time network

changes, as their trained models can be regularly updated to capture such changes. The

machine learning approach to optimization problems uses dynamic programming and

trial and error search for solutions, thus reducing search times and increasing chances

of arriving at optimal solutions [107].

Machine learning has been extensively explored in facial recognition, text comple-

tion, image classification, gaming, and robotics. Each of these broad applications uses

different kinds of learning algorithms to achieve its purpose. Generally, machine learn-

ing algorithms are categorized into three broad sections: Supervised, Unsupervised,

and Reinforcement Learning.
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3.1.1 Supervised Learning algorithms

Supervised learning algorithms are trained from large data sets with expected outcomes;

their observed features have known expected outcomes. The trained models contain

weights that can be used to predict the outcomes of new observed features. This is

termed ‘supervised,’ as the input data’s patterns with their labeled expected results

guide the model (model’s weights) in making future predictions.

A multiple-layered artificial neural network was trained to recognize two LTE SU’s

spectrum usage patterns. They observed that a simple single node ANN showed the

best predictions of SUs success rate in accessing available spectrum at specific periods,

as PUs randomly reappear in a channel [41]. A typical supervised learning pipeline

in figure 3.1 shows images of specific modulation signals labeled as respective modu-

lation schemes. It comprises of a dataset of an equal number of spectrograms of four

modulation schemes (QPSK, BPSK, 16QAM, and 64QAM).

These were split into 80:20 of training and test datasets. The training dataset is

cleaned, and features are extracted. These features define some of the artificial neural

network’s (ANN) weights. The trained ANN is then validated with the test dataset,

so its ability to predict the modulation scheme of images (spectrograms) in the test

dataset is measured. For example, as shown in the figure, a single test spectrogram is

predicted to be most likely QPSK modulated signal, with a 70% degree of certainty.

This can be applied in a DSA network where PU’s spectrograms are correctly clas-

sified and used to train an algorithm; the trained model successfully predicts the mod-

ulation scheme of a new spectrogram. A similar supervised learning pipeline has been

used for PU signal identification in [71,109].

The algorithm extracts signal features automatically (with deep learning) or manu-

ally (using mathematical tools) from the training data subsets. It uses this to generate

an error function to tune its weights until its output is like the training data subset’s

results. The trained model’s prediction performance is evaluated with a subset of the

training dataset called the testing subset (containing ground truth). Overall, the per-

formance of a model is judged by its ability to generalize effectively (i.e the algorithm is

adaptable to predicting new and unseen data). Supervised Learning Algorithms include
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Figure 3.1: Supervised Learning Pipeline for PU modulation detection
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Machine learning algorithms (k-Nearest Neighbour, Linear Regression, Logistic Regres-

sion, Support Vector Machines (SVM), Decision Trees, and Random Forests,) and deep

learning algorithms (Neural Networks (Artificial, Convolution, and Recurrent).

3.1.2 Unsupervised Learning

Unsupervised learning has no prior knowledge of its outcomes. There are no results

or ground truths for the dataset, as in the case of supervised learning. Unsupervised

learning creates its outcome based on the perceived structure in the dataset. An un-

supervised learning algorithm extracts data patterns without prior knowledge of the

expected result. It, therefore, searches for similarities in the features of the input data

and categorizes them into clusters.

Clustering involves grouping unarranged data into sets (clusters) based on some

similarity indices with dissimilar features from other clusters [110]. Clustering has

been used in DSA systems to group network nodes based on specific criteria such as

distance from a transmitter [109]. In analyzing measured spectrum data for mapping, a

Lloyd’s K-means algorithm was used to cluster measured spectra’s mean and covariance

features. These assisted in defining a pattern between spectrum usage and human

activities within a locality for one year [111]. It was also used for dimension reduction

of state space in reinforcement learning algorithms.

These learning algorithms are necessary for reducing large datasets or grouping

datasets that were not labeled, thus labeling unlabelled training data sets. However,

evaluating the correctness of these classifications becomes an issue because of the ab-

sence of ground truth in the unstructured dataset. Techniques that measure the close-

ness of cluster elements have been developed to assess the performance of such algo-

rithms. Examples of unsupervised learning algorithms are Clustering: k Means, Hier-

archical Cluster Analysis, Expectation Maximisation, Dimension reduction algorithms:

Principal Component Analysis (PCA), and Kernel PCA. Locally Linear Embedding

(LLE), t-distributed Stochastic Neighbour Embedding (t SNE).
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Figure 3.2: Alternating sequence of RL state action pairs.

3.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a type of learning that seeks to find a set of optimal

decision policies. Labeled or unlabelled data train supervised and unsupervised learning

algorithms for classification, pattern recognition, and data reduction. RL, on the other

hand, is trained for decision-making actions. An RL algorithm decides on a timed

sequence of data sets, which makes it suitable for a Dynamic Spectrum Access network.

The RL algorithm is structured to have an agent that learns to make decisions in an

RL environment based on a trained policy to obtain the best cumulative reward by

maximizing the expected returns.

An RL environment can be defined by a sequence of states (st, st+1, st+2....sT ), on

which an agent can take a sequence of actions (at, at+1, at+2...) and receives a sequence

of rewards (rt+1, rt+2, rt+3, ..). These form a transition of state action pairs within a

time step of an environment and agent interactions, st, at, rt+1, st+1, at+1, rt+2, st+2, ...

as shown in Fig. 3.2 [107]. The RL environment is framed as a Markov Decision

Problem (MDP), which an agent guided by an appropriate policy, solves by finding the

best sequence of actions that results in the best cumulative reward or maximizes the

expected rewards in equation (3.1).

This cumulative reward is the sum of the sequence of the agent’s rewards from

interacting with its environment at each time step (t). It is defined as:

Gt
.
= rt+1 + rt+2 + ...+ rT . (3.1)

where T is the final time step in a single episode of an assumed episodic RL en-

vironment. A reward function, therefore, measures an agent’s actions’ effect on the

environment, generates reward feedback to the agent, and triggers a change in the

environment’s state (observation), as shown in figure 3.3.
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Figure 3.3: Reinforcement learning algorithm flow chart

In training an RL algorithm a Bellman’s equation is a mathematical MDP opti-

mization solution for quick convergence. It quantifies the value (V(s)) an agent obtains

by being at a specific state (s). The value of an agent starting a state and taking action

is defined by an action-value function called Q-value. A tabular representation of these

Q-values and state action pairs is termed a Q-table. An ideal set of Q-values (Qπ) forms

the policy that guides an agent in a state to continuously take actions to arrive at the

best expected future rewards (Gt) in equation 3.1. There are different approaches to

guide a random set of Q-values in a Q-table to arrive at an optimal policy (Qπ); these

include Temporary Difference (TD) and State-Action-Reward-State-Action (SARSA)

methods, Monte Carlo, Dynamic Programming (DP), [107].

The temporary difference theorem uses Bellman’s equation to arrive at convergence

without full information on state transition in an environment (off policy).To arrive at

the optimal policy (Qπ) from a random set of Q(s,a) values in a Q-table, each Q(s,a)

value is updated in every time step, using the quick convergence bellman equation.

Thus, at each time step the Q-table values are updated as:

Q(s, a) value estimate = old Q(s, a) estimate+ step size(target−old Q(s, a) estimate).

(3.2)

The target in temporary difference (equation 3.1.3) is a function of the reward rt+1

from the environment when at a state, st, and an agent takes an action, at, and the
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maximum predicted future reward on all actions (maxaQ(st+1,a)) after transiting to a

next state, st+1. Its old Q(s, a) estimate is the previous Q-value (Q(st,at)) prior to

the update. The objective, therefore, is to minimize the error estimate between the

Q-value estimate and the target to arrive at the optimal policy which correctly defines

the correct sequence of actions each time an agent is in an environment’s state.

The temporary difference equation for updating Q-values is:

Q(st,at)︸ ︷︷ ︸
Q-Value update

← Q(st,at) +α∣∣∣
learning rate

[ rt+1︸︷︷︸
Reward

+ γ∣∣∣∣∣
Discount rate

max predicted reward,
in next state and all actions︷ ︸︸ ︷

max
a

Q(st+1,a) − Q(st,a) ]

Consequently, the RL training occurs in two phases: the trial-and-error phase, or

exploration, and the optimization phase, or exploitation [107]. In the RL algorithms’

trial-and-error phase, different actions are tried/explored in the environment, which

is usually formulated as a Markov Decision Problem (MDP). Trials are assessed by a

reward system that measures how good or bad the trial was. These are used to frame

the optimal policy exploited. An RL agent’s action can explore its environment or

exploit its policy.

In exploration, different actions are tested on the entire environment to keep track

of all possible reactions or rewards from the entire environment for various actions. At

the same time, if the agent constantly explores, it would never take advantage of the

best-optimized sequence of actions it has discovered. On the other hand, if it performs

more exploitation and is fixed on its discovered locally optimized solution. It eludes

the possibility of searching for a better optimal solution and possibly never achieves a

globally optimal solution or a better-accumulated reward. The RL algorithm’s agent,

therefore, learns to balance exploring for new solutions and exploiting found solutions

to achieve global optimal solutions [107,110].

The environment’s state and reward are Markov Decision Problems that can vary
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from a simple control system to complex systems. In different levels of the DSA sys-

tem, several problems can be framed and solved using RL algorithms, as discussed in

subsequent sections. Decision-making applications in wireless networks have employed

RL algorithms such as Q-learning, Deep Q-learning, and Double Duel Deep Q-learning

algorithms.

3.1.4 Machine Learning in DSA and Shared Spectrum Access

Machine learning techniques (supervised and unsupervised) have previously been ex-

plored in smart signal sensing and the detection of PUs and SUs in DSA or cognitive

networks [40] and IoT-based networks [45]. These models conducted feature extraction

from available spectrum spectrograms ( or sensors), estimated and predicted the future

availability of channels [40], and identified PUs for security [112]. A similar approach

has been explored for network resource allocation in narrow-band IoT systems [45] and

in cellular networks [41].

A summary of future directions for AI in wireless communication networks in spec-

trum sharing, interference estimation, wireless coexistence, network association, and

other wireless communication challenges was discussed in Wang et al.’s [44,113] review

of ML’s thirty years evolution.

ML techniques have also addressed duty cycle, resource allocation, and interference

management in cellular IoT, low power IoT, and NOMA networks in [108]. It proffers

solutions to personalize resource allocation to unique SUs’ needs. Despite the chal-

lenges discussed on machine learning challenges, supervised and unsupervised learning

algorithms were adopted in maximizing DSA, cognitive radio networks, IoT, NOMA,

and cellular networks. Thus, addressing their spectrum sensing, allocation, coexistence

management and spectrum/network selection challenges.

Another core branch of AI algorithms that explored resource allocation is Reinforce-

ment Learning (RL) algorithms in wireless and IoT networks [55,114,115]. Luong et al.

reviewed RL formulation of dynamic network access, data rate control, wireless caching,

and other wireless communication issues as an MDP to improve connectivity and re-

source maximization of wireless networks. In their study, few works were observed to
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centrally coordinate spectrum, power, and interference monitoring of SUs [114]. Simi-

larly, Song et al. addressed IoT’s sporadic and unique random spectrum access, sharing,

and sensing requirement using AI frameworks [115].

Key shared spectrum issues AI algorithms address include spectrum sensing/detection,

allocation, resource, interference management, and network access/selection in several

networks as summarized in Table 3.1. Some benefits of adopting AI algorithms in

distributed/decentralized resource allocations were identified as achieving:

1. non-global optimal solutions in non-convex resource allocation problems.

2. Realtime solutions from real-time resource allocation problems.

3. Individualistic or tailored resource assignment to SUs.

4. Optimal transmission schedules amid incomplete network information [114].

3.2 Challenges of Machine Learning in Network Manage-

ment

Identified challenges that affect ML deployment in network management, which inter-

sect with general ML issues, include:

3.2.1 Data collection and cleaning

Predicting PU patterns requires large datasets, usually pictures with many picture

elements (pixels), to train a supervised learning algorithm. The storage space for such

data or any other data type poses a considerable challenge in training neural networks.

Labeling such massive data sets and incomplete data poses another challenge to learning

algorithms. Solutions such as compressed images, reduced dimensionality, autolabelled

cluster learning, and dataset modification techniques have been proposed. These all

impact the accuracy and performance of the trained model [91].
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3.2.2 Computational Power and Time

Machine learning algorithms, mainly neural networks (NN), have high computational

needs for computing changing weight values as the system learns from its data set. The

backward propagation, for example, updates the weights of each of the many neurons in

the hidden layers of a deep neural network, thus requiring long training time to arrive

at good predictions. Cloud and edge computing solutions may not be feasible for all

wireless networks. Specialized NN computing systems such as Graphical Process Units

(GPUs) and tensor processing units (TPUs) have been suggested, but these trade-offs

have less computing time for more computing power.

3.2.3 Convergence Issues

Convergence issues emanate when reinforcement learning is applied to a problem with

a large set of actions or observations (states). Careful formulation of the RL environ-

ment becomes critical when the optimization search space continuously increases. This

typically occurs where the state is defined by a growing quantity, for example, if the

state of an environment is determined or influenced by the number of Access Points in

the network. There is a tendency for the algorithm to struggle with achieving optimiza-

tion or convergence when there are many APs. Deep RL offers a possible solution but

requires high computational power (a typical issue with Neural networks) and trades

off accuracy in its state’s approximations.

3.2.4 Realtime updates

Machine learning algorithms generally use trained models to make predictions. Models

are trained with datasets; if the dataset is relatively static, such models can be used

without updates. However, that is not the case for constantly changing DSA networks;

therefore, machine learning models solving various DSA challenges need to be updated

for continued correct prediction [116]. The frequency of model update schedules, online

or offline updates, are critical decisions to be made before adopting an ML solution [71].
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Table 3.1: Literature reviews on Machine Learning (ML) and Reinforcement Learning
(RL) approaches.

Categories Publication Review summary/focus

ML

approaches

[40]

An overview on how feature extraction and clustering tech-

niques (supervised and unsupervised machine learning) im-

prove spectrums sensing in cognitive radio networks.

[45]
Machine learning tools for optimal performance in Narrow-

band IoT networks.

[44]

Machine learning algorithms (supervised, unsupervised, re-

inforcement, and deep learning) in various wireless hetero-

geneous communication networks.

[108]

A survey of machine learning tools that address resource

allocation tasks in wireless HetNets, cellular, V2V, and

NOMA networks.

[113]
Machine learning parameters and approaches in solving

spectrum sensing, allocation and selection in CRNs.

[101]

Presents a detailed review on dynamic spectrum access prof-

fers a framework for a smart spectrum management system

combined with a smart database

RL

approaches

[72]

An Investigation of Spectrum Sharing in varied radio fre-

quency coexistence scenarios of similar and dissimilar stan-

dard communication networks.

[114]

The application of deep reinforcement learning in addressing

dynamic network challenges and resource sharing issues in

large-scale networks.

[115]
Artificial intelligent frameworks to resolve IoT random ac-

cess and spectrum sharing challenges.

[69]

Advanced resource allocation techniques,CR network design

architectures, resource allocation problem formulations ad-

dressing spectrum aggregation, and frequency mobility.
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3.3 Non-RL Based Coexistence Management

Non-reinforcement learning algorithms have approached optimal resource sharing. A

review of mathematical and non-RL solutions (heuristic and game theory) provides a

holistic view of problem formulation. Non-RL-based coexistence management systems

in DSA can be prescriptive; this requires the complete capture of all resource alloca-

tion scenarios, which can be hard to define and are usually non-optimal. Nonlearning

optimization approaches like game theory and heuristic methods search for global op-

timal resource allocation solutions, as such take a longer time, hence the choice of RL

algorithms for approximate optimal solutions, which is sufficient for the purpose.

It also addresses the equal priority (horizontal) and unequal priority (vertical) re-

source management approaches. This highlights various DSA challenges and the limited

use of central optimization solutions.

3.3.1 PU to SU interference mitigation

A Bayesian algorithm for rapid convergence and adaptable threshold learning of PU’s

presence, limited false alarms, and missed detection of PU’s available channels. Mobile

SU’s learned to change their interference threshold for detecting spectral availability at

low and high bands [117]. It showed that the SNR threshold can be adaptive to different

scenarios. Fair assignment of channels by SAS was addressed in [118] for unequal

priority SUs. They propose vertical and horizontal spectrum sharing as SUs access

is split in time or frequency for vertical spectrum sharing and equally for horizontal

spectrum sharing. Thus permitting the fair coexistence of heterogeneous networks in

DSA systems.

A system was developed to learn to identify PU signal patterns in channels us-

ing supervised learning, deciphering the availability of PU channels for SUs’ oppor-

tunistic use [71]. Their designed system deployed a decision tree algorithm to learn

the database’s SAS incumbent occupancy; it accurately predicted spectral availability.

Predicted available channels were communicated to SUs, who automatically adjusted

their physical layer (channel and power) to coexist with PUs safely. Similarly, a central
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kernel-based non-linear regression model, trained from simulated statistical character-

istics of PUs in varied scenarios, learned to predict interference levels experienced by

PUs in [119]. They Protected PUs with and without the use of a central database

system.

3.3.2 SUs Interference Detection and Coordination

A list colouring approach was adopted for fair assignment of channels to SUs, using

heuristic search and node grading for greedy assignment [120, 121]. Their algorithm

improved network throughput when spectrum underlay/channel reuse was adopted.

This minimized SU’s contention window [121] when compared with a single-channel

assignment. In demonstrating the practical implementation of SU-to-SU coexistence

in [122], interference was mitigated at the edge of a femto cell’s horizontal network using

a fractional frequency reuse (FFR) method. Lee et al. proved that it’s possible to use

an algorithmic process to create fair spectral reuse among SUs with similar priority in

Femtocell networks.

A database channel detection system used gaming theory’s Nash equilibrium for-

mulated solution for a decentralized channel assignment while minimizing interference

among APs [123, 124]. A Data Analytics-based Spectrum Allocation (ADASA) algo-

rithm adapted spectrum allocation to network environmental status in heterogeneous

wireless networks. An optimal solution to the game theory problem is solved using a

heuristic algorithm [125]. PAL users achieved optimal spectrum usage when on-demand

spectrum access and blocking probability model was adopted in [126]. An interweave-

based shared use strategy model (ISSU) was developed for the safe coexistence of MNOs

sharing 28GHz (mmWave) resources. It achieved a 150% spectral efficiency of oppor-

tunistic use of p-MNO’s spectrum when MNOs took advantage of other absent MNO’s

fixed allocated channels [127].

Among unequal priority users (vertical access users), a channel allocation mathe-

matical algorithm based on the CBRS rules on spectrum allocation was built for optimal

PAL and GAA resource allocation [128]. This was further explored in [129], where a ge-

ometrical approach was used to compute the optimal distribution of transmitter power
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limits of GAAs for their safe coexistence with PAL users.

Similarly, a safe node-channel-pair conflict graph approach was adopted in assign-

ing varying available resources among PAL and GAA users at 3.5GHz [130]. Ying

et al. designed a local search-based polynomial time algorithm that guaranteed op-

timal solutions for real-life WiFi datasets. This resulted in a 10.2% increase in the

number of nodes. As such, it handled more demand and minimized interference than

random selection. A joint two-staged spectrum and power allocation framework was

designed to solve opportunistic negotiation of additional spectrum based on exclusive

user schedules, maximized cell capacity, and minimized inter-cell interference [131].

These works allowed for the reuse of spectrum among homogeneous and hetero-

geneous networks with different reference parameters investigated. They, therefore,

required extra PAL protection and limited the level of spectral underlay opportunity

among GAA users. These optimization and non-learning methods were applied to ver-

tical and horizontal access SUs operating at higher bands, as opposed to what was

considered in this thesis.

A Fair Algorithm for Coexistence decision making in TVWS (FACT), modeled

as an energy minimization problem with a Boltzmann machine, arrived at a Pareto

optimal solution. Their central management system enabled the fair coexistence of

dissimilar TVWS networks and outperformed existing 802.19 approaches in fairness

and percentage of nodes served [35]. They, however, focused on spectrum sharing alone

and considered scenarios where the number of available channels exceeded requesting

SUs.

3.3.3 Hybrid Coordination

A coordinated dynamic spectrum-sharing framework was designed for 5G cellular net-

works (CBRS), allowing for the time-sharing of spectrum rather than CBRS spectrum

split. Thus, to maximize the temporary unused spectrum by a base station (BS), the

proposed system required the BSs to be synchronized. A timed distribution and cen-

tral coordination of BSs was explored. A distributed coordinated spectrum-sharing

framework was formulated to reduce access delays and permit flexible spectrum uti-
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Figure 3.4: Network optimization diagram using centralized ML algorithms.

lization [132]. Thus, increasing the overall throughput, latency, and congestion when

compared with existing frequency-splitting CBRS systems and WiFi-distributed sys-

tems.

3.4 Reinforcement Learning Central Coexistence Manage-

ment

Resource allocation in shared spectrum systems can be coordinated distributively, cen-

trally, autonomously, or in a hybrid format, as detailed in [64]. Centrally located RL

agent coordinates other devices, as illustrated in Fig. 3.4. Central coordination includes

geolocation database coordination, SAS coordination, and Master device-to-slave coor-

dination.

The objective of all resource coordination was to optimize resources to all nodes in a

network. This task had high computational costs and increased latency. Irrespective of

the coordination structure, optimization methods such as game theory, stochastic ap-

proaches, graph theory, genetics, and swarm intelligence have achieved optimal resource

distribution among a few SUs.

However, large networks generate more information, over which the multiple con-

strained resource allocation optimization problem must be solved. Therefore, the choice

of method, location of the deciding entity, and size of the information pool dictate the
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coordination structure and influence the solution’s overall performance and feasibility.

The size of the information pool influences the fundamental parameters used in

formulating a DSA problem. The location of the deciding entity eliminates certain

assumptions, such as subchannels. It can sometimes dictate the information pool size

and determine deployment feasibility. This, therefore, means that the parameters and

tools used in framing and solving a distributed resource assigning problem differ from

what can be used in a central resource assignment problem.

An investigation into the coordination structure adopted in arriving at optimal

resource sharing highlights the gap in the literature on addressing DSA industry needs.

3.4.1 Horizontal Access Coordination for Resource Assurance

Horizontal access coordination manages coexistence among equal-priority SUs. Nie

et al. examined the application of Q-learning in sharing spectrum resources when a

49-celled mobile network system varied certain conditions (traffic distributions, time-

varying traffic patterns, and channel failures). Their algorithm’s ability to vary assign-

ment as available resources changed over time was compared with a fixed allocation

of resources and a popular dynamic assignment strategy, ’MaxAvail.’ The Q-learning

algorithm did better than the Fixed Channel Assignment (FCA) and at par with the

’maxavail’, with less computational complexity than the latter [133]. No reuse of spec-

trum was explored in their approach.

A deep Reinforcement Learning algorithm, consisting of Q-learning and Graph Con-

volution Network (GCN), was used to explore channel allocation in WLAN networks

(homogeneous networks). The GCN extracted the network scenario information, and

a deep RL algorithm was trained to allocate channels to access points. Their selective

buffering was used to avoid overfitting, and their design successfully allocated multiple

APs to a few channels [134]. Their methodology differed from this thesis.

Joint power and channel Reinforcement Learning (JPCRL) algorithm assignment

in a dense WLAN for improved throughput was explored in [135]. The channel and

power parameters were sourced from actual measurement, and an optimal resource

allocation strategy that maximized long-term system benefits was calculated. The
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proposed JPCRL algorithm significantly improved by reducing the WLAN network’s

overall interference and throughput, through offline training of a Q-learning policy.

These works investigated homogeneous WLAN networks with a predefined operating

frequency, while this thesis is on heterogeneous networks with dynamic channel status.

Spectrum sharing algorithm was developed for resource sharing in a dynamic IoT

network. The network had unique sensors with unequal resource needs. They con-

sidered the unique demands of each sensor, the message, priority access, and periodic

packet load. Their homogeneous UEs were categorized into two types based on the

saturation of their packet buffers. Their base station’s sub-channel allocation assumed

that there were sufficient resources for sensors’ varied packet sizes. Thus, it did not

require the reuse channels, as is done in this thesis. However, it provided evidence that

an RL sub-channel allocation achieved good network performance despite its ample

action space and information pool [136].

3.4.2 Power Coordination for Interference and Energy Control

A novel centralized deep reinforcement learning (DRL) based downlink power allocation

scheme for a multi-cell system was proposed to maximize the total network throughput

in [137]. They propose a centralized deep reinforcement learning power optimization

scheme for a network with multiple cells to optimize the overall network throughput.

They achieve an optimal power allocation that outperforms fixed maximum power

allocation, random power allocation, and Weighted Minimum Mean Squared Error

(WMMSE) schemes in varied network sizes and hyper-parameters. In their work, only

power was optimized to maximize throughput. However, this thesis improves signal-

to-noise plus interference (SINR) through both power and spectrum optimization.

A central RL algorithm controlled unmanned aerial vehicles (UAV) that harvested

available terrestrial spectrum in exchange for sensing [138]. The central coordinating

entity used RL to schedule different tasks, such as sensing or relaying sensed data

to PUs and SUs. The central control determined the actions of each UAV in terms

of positioning and tasks to be performed to achieve maximum network utility. The

multi-agent problem’s environment modeled UAVs positioned on a grid (states), and
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actions were taken on them to either change positions or retain positions and perform

two different tasks. Although the deciding entity with the RL algorithm was a central

coordinating UAV entity, its actions, problem formulation, and objectives differed from

this thesis.

3.4.3 Cell/Link Selection for Spectrum Assurance and Handover

In coordinating the choice of link, modulation, and coding schemes in a cellular het-

erogeneous network, a Context-Aware Radio rEsource Management scheme (CAREM)

was developed in [55]. It was aimed at improving the network’s latency and reliabil-

ity. A similar work by [139] built RL algorithms in UEs that improved their QoE

as they learned to select affiliate cells in cellular networks. Their deep learning algo-

rithm’s automated, self-learned system created an adaptable coordination of mobile

user equipment in optimal cell selections.

Their UEs with RL formulated CAREM algorithms and routers and used global

information, such as interference with other UEs, to decide on wireless links. They

learned to choose appropriate modulation and coding schemes and cells to meet the

network’s Key Performance Indices (low latency, high reliability, large-scale connectiv-

ity, and data rates). These UEs were the deciding agents and used the central learning

agent’s access to global information for their cell/modulation selections. The software-

defined radio simulation of their two devices’ networks differed from this work, which

focuses on the network layer of resource management operation. Their agent operated

on UEs, improving UE’s data rates and latency; this work operated on a spectrum

manager (database), so UE parameters were unavailable. They modeled a single UE,

while multiple UEs and access points are considered in this work.

Managing cognitive radios with multiple input multiple outputs (MIMO) supports

more users and improves spectrum utilization; Shi et al., [109, 140] evaluated the BS

(agent) to SUs selection. The BS selects SUs by observing the received signal strength

at each SU based on a single MIMO base station. They also managed the coexistence

of PUs and SUs and ensured a maximum number of SUs were supported using their

proposed solution. They focused on the network’s ability to meet a predefined rate
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Figure 3.5: Network optimization diagram using decentralized ML algorithms.

with a specific number of SUs amid PU-to-SU coexistence. This was achieved with

the least amount of information. A different problem of SU-to-SU safe coexistence is

investigated in this thesis as such parameters used for optimization by the RL agents

were different.

Central coordination has been explored in UAV, cellular, WLAN, and shared spec-

trum networks, as these usually have a central access point within their architecture.

However, distributed coexistence management approaches have been explored in other

types of networks.

3.5 RL Decentralized and Autonomous Coexistence Man-

agement

Decentralized or distributed coexistence management occurs when the coordinated de-

vices contain the decision makers, illustrated in figure 3.5. There have been various

ways resource distribution by SU nodes was formulated to achieve optimal performance.

Their objectives are categorized based on their goals, which include unequal priority

(Vertical) and equal priority (horizontal) coordination, power control, and cell/protocol

selection.
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3.5.1 Vertical and Horizontal Contention Prevention using MAC Pro-

tocols

A unique autonomous secondary user search for available spectrum was proposed in

[141]. Their proposed synchronous cognitive MAC protocol allowed the independent

search for spectral space by SUs amid contention from other PUs and SUs. This

was achieved without communication between the entities (autonomous management).

Thus, they achieve an opportunistic spectrum use by controlling the spectrum use at

the MAC layer while gathering information from sensors at the physical layer and traffic

statistics at the application layer (which contained past decisions and observations).

A collision avoidance RL algorithm-based protocol was proposed in [142] for SUs to

learn their spectrum sensing policy. Thus, they learned to minimize collision with other

SUs and PUs while maximizing spectrum usage. Their proposed algorithm improved

the structure of listen-before-talk, making the SU’s RL agent observe its collision and

false alarm probability.- Deep Q-learning and double Deep Q-learning Network (D-

DQN) algorithms have been explored in detecting the type of nodes (SUs or PUs)

occupying a channel in [143]. They correctly identified the type of a fixed node as a

dynamic (hopping) or greedy node. They address the DSA problem of detecting the

presence of other SU and PUs in a channel. They also develop a DQN and double DQN

to implement optimal channel access by learning the PU’s behavioral pattern without

prior network knowledge.

A tabular Q-learning algorithm was built to enable SUs to choose operating channels

and transmitter power, preventing them from interfering with PUs and SUs [144]. Their

designed spectrum media access for PUs’ and SUs’ users depended on sensed available

channels, with the PUs having a changing presence in the network. The users had

the RL agents that learned to receive rewards for good opportunistic use of available

channels. As such, this approach led to many collisions during the learning phase,

before the algorithm learned correct decisions, and was formulated as a listen-before-

talk MAC protocol. The LBT protocol was modified in [57] to suit a CBRS system and

improve its reuse of two channels. They created an SU’s RL agent that learned to vary

its carrier sensing energy detection threshold (EDT). The EDT identified the presence
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of PUs while the agent maximized its user-perceived throughput. The SU was able to

vary its EDT to suit unique PU detection challenges in a small test environment.

A decentralized channel distribution to different SUs was explored as a local al-

truistic and local congestion game to achieve global optimization with the least local

information. Collecting the payoffs of neighboring SUs and minimizing their interfering

neighbors in both games, respectively, it optimally distributed the limited number of

channels to SUs [145]. Extending this, SUs were assumed to have synchronized access

to the channel and learned PU’s available channel pattern using collision detection and

media access/carrier sensitive protocol in [146]. A learned policy influenced SUs oppor-

tunistic use of channels without prior information on future PUs and SUs behaviour.

The mean opinion score (MOS) of a 5G DSA measured the Quality of Experience

(QoE) of SUs from network users. This was used to train an RL algorithm to pre-

vent PU interference in a video and data transmission network. New SUs’ RL agents

learned network traffic patterns from other SU’s RL policies [73]. Adopting the MOS in

evaluating the performance of a fault tuning and power control Q-learning algorithm,

a power control Q-learning algorithm outperformed fixed power control in [49]. Their

algorithm outperformed industry standards’ performance in optimized Voice over LTE

(VoLTE) and its power assignment to SUs’ base stations.

These works improved MAC protocol coordination through improved spectrum de-

tection and sensing, which is not the objective of this thesis.

3.5.2 Channel and MAC Protocol selections

A distributed deep reinforcement learning algorithm was adopted in [46] to improve

requesting SUs’ selection of appropriate MAC protocol (TDMA, q-ALOHA, Fixed win-

dow ALOHA, DRL agent, exponential backoff ALOHA) for enhanced data throughput

efficiency. Their DRL algorithm achieved faster convergence speed in arriving at higher

data throughput as it could dynamically select channel, power, and appropriate MAC

protocol to offload SUs data to the network compared to other MAC protocols.

An autonomous Deep Reinforcement learning algorithm with an LSTM Recursive

Neural Network as the Q-value approximator for dynamic spectrum access was proposed
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in [147]. They attempt to solve the ever-growing state space and partial observable

space of DSA systems without coordination or communication. Their DRL algorithm

was framed as a multichannel random-access game of multiple users selecting limited

channels. Their approach outperformed other Nash equivalent solutions and slotted

Aloha protocol in various users’ fair selection of channels.

These works improved MAC protocol coordination, which is different from the ob-

jective of this thesis.

3.5.3 Cell/Link, Modulation Selection or User Access and Resource

Allocation (UARA)

An RL fast algorithm learned to select a modulation scheme with specific data rate and

power levels to maximize each SUs’ throughput in [148]. They formulated a problem for

a rapidly changing mm-wave channel to enable fast resource sharing and proved that its

logarithmic convergence time exceeded other algorithms. Their formulation was void

of propagation models and could be deployed in mmwave channels. A fixed number

of actions (modulation types and power levels) was assumed to aid scalability. In this

thesis, however, the focus is on terrain-dependent lower bands that need propagation

models. Also, a nonstatic action size was necessary for its problem formulation.

A Duelling Double Deep Q-Network (D3QN) was proposed to improve user access

and resource allocation (UARA) coordination in downlink HetNets of Cellular networks

[47]. UEs were D3QN agents who learned to select the correct base stations to operate

in, such that the highest number of UEs had the best SINR experience. The UEs

learned to schedule themselves to different base stations (heterogeneous networks), such

as pico, femto, and macro cells, and maintain an above-threshold SINR at each UE. A

high computation time was experienced for many UEs, as their problem formulation of

the RL states was dependent on the number of UEs. This work was extended in [139],

as they employed Deep Q-networks for improved QoE of mobile UEs. Although the

parameters used were similar to this thesis, the objectives differed. They aimed to

maximize the number of UEs in a cell, while this thesis focuses on optimizing the

number of nodes/cells by utilizing limited spectral resources.
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3.5.4 Spectrum Re-Use.

A Q-learning schedule algorithm for matching calls to dynamic channels of a cell

did better in preventing interference among cells than fixed spectrum/channel as-

signment [133]. Similarly, a generative network powered deep distributed Q-Network

(DDQN) learned to assign frequency at different time slots to maximize the network’s

utility [149]. Mobile sharing of resources was achieved in [150] where a cognitive radio

learned from channel status, quality, traffic, quality of service, and priority status of

SUs to decide when to occupy a channel. It learned to hand off mobile cognitive ra-

dios from one channel to another. The trained transfer actor-critic learning algorithm

was transferred to new SUs and performed better than a temporary difference (TD)

q-learning algorithm [150].

In [133], interference detection was based on distance, while call traffic was assumed

to be poison-distributed. The cell and cell’s available channels defined its state and

established better spectrum reuse in cellular systems than fixed assignment. Their

state space structure consisted of actions and states (cells and available channels),

which differed from this thesis. Also, only spectrum reuse was considered, as opposed

to spectrum reuse and power optimization, which were addressed in this work.

3.5.5 Power Control for Spectral Assurance and Re-use

A Deep Q-Network RL algorithm was developed to train SUs to learn to transmit at

a safe transmission power from a fixed set of power limits while sharing spectral space

with PUs and SUs. A Zigbee communication channel between sensed PU signals around

SUs provided the necessary feedback on channel occupancy. SUs were trained to avoid

occupied channels using the DQN RL algorithm while adjusting its power levels to

ensure they coexisted with PUs [151]. They controlled only the power resources of SUs

and depended on an external communication link between PUs and SUs. This may not

be practical in some network types.

A Q-learning algorithm in each eNodeB (LTE) and WiFi access point learned to

correctly select a channel in a shared spectrum network without prior knowledge. Each

SU had an agent that observed a channel’s idle state, successful transmission, collision,
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and contention and chose to occupy the channel. This was rewarded with the network’s

cumulative throughput. An optimal policy was achieved using an ϵ-greedy policy that

balanced exploration and exploitation [25].

Inter-cell interference mitigation in [152] was achieved by each cell using the DQN

policy to control its transmission power based on partial channel state information from

other transmitters. Their algorithm was robust to wireless network changes and inde-

pendent of the network size but depended on information (channel gain, interference

plus noise power, received power) exchange between transmitters. Thus, it is suitable

for networks with inter-cell communication mechanisms.

PU to SU interference is prevented in a Wireless Regional Area Network (WRAN)

in [144, 153, 154], as each SU’s RL agent was trained with sensed interference levels,

to select appropriate transmission power [153]. This was done with the knowledge of

measured interference and partially observed Markov decision problem (belief function

on interference levels replaced actual measured interference levels). A transferable Q-

learning and deep Q-learning policy was used to manage a single resource in [154]

among PUs and SUs, replacing the database management system. They also assumed

a homogeneous network scenario, which differed from the thesis’s context. A power

control deep Q-learning network (DQN) algorithm for cognitive shared use (CU) of

orthogonal sub-channels was proposed in [155]. Thus ensuring that all CUs had SINRs

of -0.5 to 2 in their unique coal mining environment. The DQN provided a better-

distributed learning than their Q-learning algorithm.

These approaches had their agent operating at a different network level (UEs and

nodes) with limited information pool as against a central entity as used in this work.

3.5.6 Joint Resource Allocation for Interference Mitigation

A decisive Q-Learning algorithm was proposed in [156] where a joint channel and power

control were established in a Macro and femtocell network configuration. Each cell

learned to choose a channel and transmit power based on other cells’ trained policies.

The formulation outperformed other users’ independent Q-learning algorithm’s opti-

mal cell capacity and quality of service. Their state formulation comprised some global
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information, such as interference experienced by femtocells and the number of interfer-

ing macro and femtocells. They, therefore, assumed a form of communication between

policy and information among cells. The joint resource and power assignment are the

same as this work. However, they do not focus on reusing spectrum (spectral overlay

and underlay) by cells. Thus, their problem formulation and network architecture dif-

fer from this thesis. Three deep reinforcement learning algorithms were proposed for

sub-channel assignment and power allocation. Their joint optimization of an uplink

multiuser Nonorthogonal Multiple Access (NOMA) systems [157] was different in ar-

chitecture (channel scarcity and power restrictions) when compared to a DSA network.

3.5.7 Applied RL in CBRS Network

A modified Listen Before Talk scheme was proposed for a CBRS system to enhance

PAL and GAA spectrum sharing in [57]. The GAA user-perceived throughput (UPT)

increased as it learned to use PAL’s available channels opportunistically by adapting

to varied PAL’s energy detection thresholds. Their Q-learning algorithm maintained

good performance in hidden node scenarios, preventing interference with PAL users

and efficiently utilizing the vacant PAL spectrum.

Similarly, the Licensed Assisted Access (LAA) framework for the coexistence of

WiFi and LTE networks was improved despite their different MAC protocols, sensing

thresholds, occupancy probabilities, and throughput in [25]. Randomly located APs

and LTE (nodes) learned to select available 6 and four channels individually. Perfor-

mance was evaluated based on their nodes’ ability to use only idle channels and achieve

successful transmission free of collision and contention [25].

These limited implementations of RL in shared spectrum networks focused on dis-

tributed access to sub-channels by APs/nodes. Previous works explored the pragmatic

feasibility of improving SUs’ access to sub-channels and their existing MAC protocols.

This thesis, however, attempts to improve the spectrum management system in an ex-

isting DSA architecture. Thus, improving a spectrum manager’s resource assignment

would result in less contention management within the sub-channels, such that nodes

that use or do not use the same MAC protocol can coexist.
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3.6 Limitation and Further Studies

3.6.1 Limitations of RL in DSA systems.

Similar to the challenges of ML, reinforcement learning suffers some drawbacks when

applied in DSA systems despite its many benefits. These include:

1. Problem Formulation: RL problems and solutions are subjective and dependent

on the design problem addressed. Defining the DSA optimization problem to suit

typical DSA systems is usually difficult.

2. Standard Assessment: Standardizing the performance of RL models is difficult, as

each solution is tailored to the specific problem formulations. It becomes difficult

to standardize or define a metric or criteria for determining a good-performing

RL model.

3. Approximate Solutions: The approximate search for solutions leads to non-optimal

solutions; this is like the convergence issue ascribed to ML. This means that some-

times and during RL training non optimal resource allocation would be sufficient

for a DSA system.

4. RL implementation: Implementing RL algorithms in DSA systems usually re-

quires a digital replicate of the DSA system for prior training necessary to limit

approximate solutions; this DSA replicate is usually challenging to achieve.

5. Computational intensity: As with all artificial intelligence algorithms, the com-

putation energy and time in training an RL model is usually high.

6. Regular Updates: The digital replica of the DSA system, used as an RL training

environment, will need to be as dynamic as a typical DSA network. This means

that changes in the DSA network have to be replicated in the RL environment

to train a system that can be deployed in a real-life DSA network.
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3.6.2 Further Studies.

A myriad of studies have explored automating PU-to-SU coexistence, but there are

few studies on SU-to-SU coexistence management. There was also a lot of work on

MAC protocols and LBT protocol modification, using RL algorithms to improve DSA

performance. The adoption of RL in spectrum allocation focused on assigning abun-

dant subchannels. There were limited studies on assignment coordination of limited

resources.

Similarly, scheduling and interference monitoring were limited. Real-life studies of

RL algorithms in resource management are yet to be explored. RL is also yet to be

explored in maximizing the total number of deployed BS, APs, or nodes when assigning

spectrum and power to nodes in a DSA system, as database automation focuses on PU-

to-SU rather than SU-to-SU coordination.

A standard evaluation structure for DSA systems remains an open area for further

research, as this is limited in the literature. Generally, evaluating the performance of

designed coexistence models in a DSA system can be challenging as these networks vary

in architecture. [158–160] designed a series of performance indexes for evaluating their

dynamic spectrum access networks’ models. Their proffered unique performance indices

assessed their GAA-to-GAA coexistence model, framed from WInforumn’s approach 1,

2, and 3 specifications. Their index showed that increased GAA users result in more

significant interference, irrespective of the device configuration or location [158]. Coex-

istence grouping impacted interference limits experienced, which influenced bandwidth,

path loss, device density, and interference trade-offs within coexistence groups [159,160].

3.7 Chapter Summary

This chapter has reviewed various approaches to spectrum management in DSA sys-

tems. A brief study of Machine Learning (ML) Algorithms and how they have been

adopted into DSA systems was studied. An arm of the machine learning algorithm,

reinforcement learning, was found to be predominantly useful for improving the perfor-

mance of DSA systems. Despite the strides of ML in DSA systems, an overview of the
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potential challenges to their deployment in network management was also presented.

A review of Non-learning and machine-learning approaches to checkmate DSA issues,

addressed in chapter 2, were discussed.

Coexistence management issues resolved with RL algorithms are categorized based

on three criteria: the location of the RL agent in a network, control elements and in-

formation pool used for decisions. These were used to classify coexistence managers as

central, decentralized, or distributed and automated. More literature was on unequal

priority access, PU-to-SU, than SU-to-SU (equal priority access) coexistence manage-

ment. However, there have been studies on distributed coordination for both PU-to-SU

and SU-to-SU. There have been limited studies on central and equal-priority coordina-

tion of limited resources in DSA systems.

Only some central RL approaches to coexistence resource management were found

in typical DSA networks, and none were found in lower band coordination. However, a

myriad of studies were conducted in other decentralized or distributed networks. These

studies required SU MAC protocol adjustments to accommodate inter-SU communica-

tion. Therefore, this thesis proposes using an intelligent central coordination mechanism

to eradicate inter-SU communication and enhance spectrum reuse in dynamic networks

in Chapter 5.
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Chapter 4

Design and Implementation of a

Dynamic Spectrum Access

system

4.1 Introduction

Databases in DSA systems are central coexistence management systems for vertical

spectral access. It coordinates spectrum reuse, protecting primary or incumbent users

of the spectrum. Based on the definition of DSA in Chapter 2, the database pro-

vides information on the continuously changing spectral availability (available resource

prediction). The resources available are not shared using any order among compet-

ing secondary users, hence creating a high level of contention, increasing the level of

unpredictability and uncertainty highlighted in Chapter 2 by industry stakeholders.

DSA systems like TVWS and CBRS use a database management system to manage

resource sharing among PUs and SUs. As an early step towards demystifying the con-

tent of such databases, an end-to-end TVWS database management system has been

designed with a unique design methodology. This was achieved by studying previous

works of end-to-end TVWS designs in the literature, understanding methods for in-

terference mitigation, investigating gaps, and finally, implementing a complete TVWS
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database.

This was applied in different locations, revealing spectrum availability in developed

and developing countries. This highlighted the impact of counties’ policies on such

available resources. It also quantifies PU’s interference protection, serving as a tool

for monitoring interference in SU-SU coexistence management. This chapter provides

a deeper understanding of DSA systems, shows the impact of regulatory policies on

spectrum management, and identifies the gap (overhead size) in central coordination.

4.2 Database Designs and Policies

The primary role of a TVWS Database management system is to ensure an effective

coexistence between SUs and PUs. The database has been designed in different studies,

as aware of the PU and SU parameters. Based on this information, permitted power

limits of SUs to coexist with PUs were computed using three methods discussed in

section 4.3. These methods used different propagation models to calculate and design

different databases.

Government policies stipulated the methodology for designing databases, power lim-

its of SUs, and restrictions on spectrum sharing with incumbents while they are active.

They also defined the propagation models to be adopted for computing estimated SU’s

transmit power and the protocol for database communication with nodes or devices.

Several countries have their regulations on spectrum sharing, and these either promote

or stifle spectral efficiency.

4.2.1 Review of Database Designs

The database management system in most reviewed works used established commercial

databases or statistical assumptions to determine spectral availability. These commer-

cial databases were utilized in Murty’s evaluation of the performance of a database

management system in protecting PUs. They evaluated the TV transmitters’ rate of

record change, database response time, and degree of PU overprotective in [33]. They

reiterated the overprotective nature of PUs when distance or coverage contours were
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used as an interference discovery measure and suggested combining it with real-time

measurement.

A comparison between the performance of a designed database and a commercial

database showed that the created database was 70% in correspondence with the com-

mercial database in [34,161]. Their designed database was based on FCC’s propagation

curves and the Longley Rice propagation model in estimating interference. Gurney et

al. simplified database design by creating a model using propagation curves. They

emphasize that databases may be the best-shared spectrum management scheme [162].

However, other researchers who believe real sensing and database predictions (a hy-

brid management scheme) proffer a better solution have disproved this [33, 163, 164].

These methods used distance as the interference discovery mechanism, which has been

discovered to provide static protection over PUs in [33]. This thesis used the received

signal strength (RSS) approach in interference discovery, which was flexible and similar

to real-time sensing.

Real-time sensing at different locations was used to build a virtual TVWS database

in [165]. The database statistically estimated the SU’s white space device’s (WSD)

power, enabling safe coexistence between PUs and SUs. Sato et al. took a simi-

lar approach in creating a database using measured TV signal strength to estimate

propagation loss in a wireless distribution network. Their work revealed that mea-

sured statical path-loss estimations improved the algorithm’s estimated path-loss [166].

Path-loss propagation models identified the type of nodes in rural, semi-urban, and

urban areas using Convolutional Neural Networks (CNN) in [167]. Kryszkiewicz iden-

tified storage and computational complexity issues with adopting Dynamic Spectrum

Alliance’s model when designing an accurate database in Kenya. The same model was

adopted for a small-scale design in this thesis.

Similarly, a designed TVWS system compared path loss performance as the re-

ceivers’ height varied, to improve PU coverage. Similarly, they studied the protection

of SUs from PUs in a simulated environment to solve mathematically hidden node is-

sues [168]. Thus, the database complemented the measured sensors’ inability to discover

some obstructed signals (hidden node problem), which was termed a hybrid manage-
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ment system. A Hybrid of database and real-time sensing was found to perform better

in interference prevention than stand-alone (database or spectrum measurement) sys-

tems [164,169–171].

Designed databases require a means to communicate safe transmission parameters

to WSDs. Hwang et al developed a Protocol for communicating available channels to

SUs independent of the actual communication channel in [172]. The database to master

SU protocol was designed to support slave devices, while a standardized Protocol for

Access to White Space (PAWS) was adopted in this thesis.

4.2.2 DSA Regulations and Use Cases

The framework for TVWS has been well established by several regulatory bodies

[12–14,26,173,174], with the global deployment of the technology. Spectrum has been

regarded as a natural resource managed by respective governments. Respective gov-

ernments exclusively license resources to service providers, referred to as a fixed assign-

ment. A shift from fixed assignment to any other assignment depends on government

regulators. Spectrum management is, therefore, dependent on government regulations,

and although regulators are considering spectrum sharing to expand wireless commu-

nication services, the focus has been on protecting licensed users (PUs).

This is evident in most countries’ TVWS policies’ [26, 175] and CBRS documenta-

tion in the United States where priority PU’s are allowed exclusive use of channels. This

is necessary as the PUs remain custodians of such channels and are entitled to exclusive

channels to provide a high degree of service certainty. However, technological advance-

ment has led to other services, such as IoT services, vehicular wireless communication,

drone communication, and e-health internet access, requiring temporary channels with

less channel certainty. These services can be supported by a reliable shared spectrum

framework, which extends the regulators’ ability to cater to more services [19].

Therefore, there is a gradual shift from exclusive/fixed spectrum allocation to fixed

and shared spectrum allocations in some developed countries. The technological inte-

gration of software-defined radios in new radios (NRs) supports the radical disruption

of fixed spectrum allocation, thus increasing the need for a coordination strategy to
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regulate SUs-to-SUs coexistence, as these differ from the coexistence management of

fixed-located PUs.

4.3 Database Design Methodology

Countries have adopted different methodologies in designing their database, influencing

how WSD’s permitted power is calculated. Luzango categorized these WSD-permitted

transmitter power computing methods into three: Vectorized, Carrier to Noise plus

interference and Degradation location approach [34]. These methods vary in the number

of input parameters, computational complexity, and accuracy.

4.3.1 Vectorized Approach (Minimal Coupling Loss –MCL)

Vectorized Approach/MCL method is adopted by the Federal Communication Com-

mission, USA, to estimate the coverage of every TV transmitter (digital or analog).

Coverage/contour distance is computed with the least number of parameters, such as

PU’s transmitter power and operating frequency. This approach was used to build a

database with simple computational equations and lookup tables in [74,176]. The gen-

erated median field strength values from the lookup tables were used to compute PUs’

coverage and protection distance. The FCC propagation models were used to calculate

WSD transmit power so that the coverage of WSD and PU do not intersect.

It was unsafe for another SU radio to transmit on the same frequency as the PU,

within the PU’s coverage plus protection contour distance, as shown in figure 4.1.

SUs safe transmitter power at the same frequency was computed using terrain-based

propagation models in [34]. Initially, WSDs within a DTT’s contour could only use

adjacent channels; this was adjusted to permit co-channel use at safe power limits that

maintain zero intersection of the coverage areas (spectrum overlay). This method was

used extensively in the literature but not in this thesis. Fixed contour protection of PUs

was considered excessive to extend unto SUs since SUs were assumed to have higher

interference tolerance [33].
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Figure 4.1: TV contour and WSD coverage

4.3.2 Carrier to Noise plus interference ratio (CNIR) threshold Ap-

proach

The CNIR approach uses a terrain-based propagation algorithm to assess the transmit-

ted signal degradation over distance. The Received Signal Strength (RSS) at a possible

TV receiver location (within a pixel) is compared with noise to generate a Carrier

Noise Interference ratio (CNIR). This is compared to a CNIR threshold to assess the

availability of the channel at the pixel. The RSS, Protection Ratios, and link budget

are used to determine the permitted WSD power [34]. This is the method proffered by

the Dynamic Spectrum Alliance model [3], deployed in the design of Kenya’s TVWS

database in [5] and adopted in this thesis. It requires more parameters, is more accurate

than the vector approach, and allows for flexible alteration of thresholds for spectrum

underlay as demonstrated in Fig. 4.2.

It, however, requires an undefined number of receivers; deciding on the number

of receivers can be tricky, as too many receiver points result in more accurate WSD

transmit power estimates at the cost of huge computation and data storage space [5].

4.3.3 Degradation of Location Probability Approach

Degradation in location probabilities (q%) of Digital Terrestrial Television (DTT) sig-

nals is estimated using Monte Carlo simulations. Each pixel’s degradation probability
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Figure 4.2: TV and SU underlay provision using CNIR approach

is measured in a zero interference mode (without a WSD), and another calculation is

done in the presence of the WSD. The difference in the probability is compared to a

threshold value, and a decision is taken on spectrum availability or maximum power of

a WSD. Ofcom adopted this method by splitting the UK map into 100 x 100m pixels.

It used Monte Carlo simulation and Digital Terrestrial Television (DTT) parameters

to estimate the location probability of DTT’s signals at each pixel [3,34]. A simplified

version of this used RSS’s mean and standard deviation in [177]. This improved the

chances of generating the fundamental RSS mean and standard deviation for locations

that lack documented TV RSS statistics.

This method provided the most accurate estimation of RSS of PUs in all pixels of

the country and was the most complicated [3, 34]. However, some attributes, such as

using pixels in estimating coverage rather than distance, were adopted in generating

the Geolocation Database (GDB) framework in this thesis.

This thesis adopts the less complex CNIR approach to estimating received signal

strength and the location probability approach, which uses a precise pixel definition of

coverage.
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4.4 Dynamic Spectrum Access Inter-communication Sys-

tem

There is a need to have an established standard means of communication amongst the

parts of a DSA system. Detailed information handshake protocols between a WSD and

a database are provided in IETF’s documentation [178].

4.4.1 Database to White Space Device Interaction

Communication between databases and WSD is necessary for the framework shown

in figure 4.3. The master device sends a request to the database for access to a TV

frequency for itself and any slave devices [70]. This request incorporates compulsory

registration parameters required from the master WSD for documentation and account-

ability of the spectrum allocated. The expected standard content of the registration is

summarized below [3]:

1. Manufacturer’s unique alphanumeric code;

2. Manufacturer’s serial number of the device;

3. Device’s geographic coordinates as latitude and longitude (WSG84)

4. Device’s antenna height above ground level or above mean sea level (meters,

optional for personal/portable master devices);

5. Name of the individual or business that owns the device;

6. Name of a contact person responsible for the device’s operation;

7. Address for the contact person;

8. An Email address of contact person;

9. A phone number of the contact person.

The above list may differ with countries’ regulation [12, 26, 175, 179]. In response

to a WSD request, the database sends available frequencies, permitted transmitted

89



Chapter 4. Design and Implementation of a Dynamic Spectrum Access system

Figure 4.3: PAWS operation time sequence

power for the WSD and Time validity of parameters received. Slave WSDs send reg-

istration/requests to the Master device, which relays the information to the database.

Allocation to the slave WSDs can be from the database, or the Master device can offer

some of its operational parameters to the slave device. Still, it must report its actions

to the database [3]. The protocol for this unique communication between a database

and a WSD is the Protocol for Access to White Space Databases (PAWS).

4.4.2 IETF’s Protocol for Access to White Space Databases (PAWS)

Mancuso et al. provide use cases and protocol specifications for establishing commu-

nication between WSDs and a database [77]. It was observed that strict government

regulations could be incorporated into the PAW’s rule set. Guidelines on the imple-

mentation of this protocol are provided in IETF’s document [178]. Its time sequence

of requests between a WSD and a database is shown in figure 4.3. These specifications

were adopted in implementing this chapter’s end-to-end DSA system.

4.5 End-to-End TVWS Design Structure

In this work, a database coexistence manager is designed to generate WSD transmitter

power and available channels in a single AP location. This process was split into three
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stages: First, the Longley Rice propagation loss algorithm was studied and implemented

in Matlab. This was used because of its terrain properties, performance compared with

other path-loss models, and the DSA regulator’s preference [3, 33]. Matlab’s version

of the Longley Rice (LR) model lacked some terrain parameters at the time of design.

Hence, the LR propagation model was designed from scratch.

In the second stage, WSD transmitter power is estimated. This uses path-loss

computed in the first stage, database parameters, regulations protection rules, and link

budget to estimate the permitted safe power a WSD transmits. The necessary inputs

or parameters from TV transmitters and WSDs are highlighted in subsection 4.5.2 and

used for this design.

Finally, this information is compiled in a predefined order and saved as schemas

in a MySQL database. The database is hosted on a local MySQL server and queried

for spectral availability via a website or an Application Interface (API) by the WSDs.

However, since spectral availability was pre-computed from the fixed location of TV

transmitters, the spectral pixel map of the WSD location was relatively fixed.

Thus, changing the PU or TV transmitter location will alter the spectral pixel map

and require repeating the entire design process. This becomes the state when SUs

continuously change locations in a DSA system, worsening the challenge of interference

monitoring in such systems.

4.5.1 Longley Rice Pathloss algorithm

Terrain-based propagation models are fundamental in designing TVWS databases be-

cause of their ultra-high frequency and signal coverage. The terrain models quantify the

environment’s impact on diffracting and scattering signals as they propagate in space.

These models are used to implement the end-to-end design of a TVWS database.

Terrain-based propagation models are preferred at lower bands as they consider

diffracted waves, which often occur at lower bands [4]. Longley Rice path loss, together

with ITM’s terrain-based algorithms, are useful for this purpose. However, Longley Rice

was adopted in this thesis as both algorithms make use of detailed terrain parameters.

The path loss models predict the degradation of PU transmitted power over a distance
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Figure 4.4: Longley Rice Main algorithm flow of calculations

Table 4.1: Input and Optional input parameters.

δh h1g (m) h2g (m) Ns fo (MHz) d(km) σ Mode (Al, Ad, As) Pol ϵ

90 208 1.5 370 47.7 9 0.0005 Al v 15

from the PU transmitter. This was useful in computing the permitted power limits

of WSDs reusing a PU’s spectrum or adjacent spectrum. It is, therefore, extremely

important in interference prediction and estimation.

Longley Rice Pathloss Algorithm is known for its complexity, and predicts signal

degradation over a specific distance. Figure 4.4 provides an overview of the necessary

parameters and sequence of computation in arriving at propagation loss [180]. Its

input parameters include Terrain parameters: refractivity (Ns), permittivity (ϵ), terrain

conductivity (σ) Light wave center frequency (fo); TV transmitter parameters: antenna

structural height (h1g), and polarization (Pol); Receiver parameters: antenna height

(h2g) and distance (d) between transmitter and receiver, values are summarized in Table

4.1. These parameters are used to calculate other optional inputs with some preliminary

equations, in equations (4.1) to (4.5) and some illustrated in Fig. 4.5. Figure 4.4

summarizes the different computational aspects of the LR propagation model, in which

random siting of TV receivers is assumed.
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Figure 4.5: Geometry of Trans-horizon Radio Path

The appendix table C.1 details all table titles and parameter symbols’ meanings.

The earth effective curvature (γe) is:

γe = γa(1− 0.04665 expNs/N1) (4.1)

where γe is the earth’s effective curvature, measured in units of reciprocal length

γa = 157 ∗ 10−9 m−1; N1 = 179.3 N-units

γa is the earth’s curvature, defined by the terrain environment. Ns is the minimum

monthly mean surface refractivity, measured in N-units. The wave number (k) is defined

as:

k = 2π/λ = f/47.70 (4.2)

where f is carrier/channel center frequency in MHz. The effective antenna height is:

hej = hgj (4.3)

93



Chapter 4. Design and Implementation of a Dynamic Spectrum Access system

if terminal j is sited randomly. Other input parameters include:

dLsj =
√
2hej/γe (4.4)

dLj = dLsj exp [−0.07
√
∆h/max(hej , H3)] with H3 = 5m. (4.5)

where, k is a wave number measured in units of reciprocal length (equation (4.2). hej is

effective antenna height, j is 1, 2 for transmitter or receiver, (equation (4.3) and dLj is

the distance from each transmitter/receiver terminal to its corresponding radio horizon

(equation (4.5). dLsj is the distance from each transmitter and receiver terminal to its

corresponding smooth earth’s horizon (equation (4.4) as shown in Fig. ??.

Some optional input equations:

A3 = Adiff (d3) (4.6)

Aed = A3 −mdd3. (4.7)

where md is the slope of the curve of diffraction attenuation (Aed) versus distance (d);

were used in computing attenuation reference Aref . Attenuation reference (Aref ) is:

Aref =


max(0, Ael +K1d+K2 ln (d/dLs)), d ≤ dLs.

Aed +mdd, dLs ≤ d ≤ dx

Aes +msd, dx ≤ d

(4.8)

and propagation loss computed as:

Propagation loss(path loss) = 32.45 + 20 log f + 20 log d+Aref (4.9)

where f is center frequency (MHz), d is distance under review in km; these are fed into

the diffraction function whose output is used by line of sight (Alos) or scatter Ascat

functions.
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The chosen function was dependent on the distance under investigation, as shown

in Figure 4.4 and Equation (4.8). The diffraction function (Adiff ()) was the central

function utilized, by the line of sight function (Alos()) and scatter function (Ascat()) in

equations (4.6) to (4.8). These functions are used to compute Attenuation reference

(Aref ), which is the additional terrain-based path-loss experienced by a transmitted

signal and defined in equation (4.9) [180].

The Ascat() function in Equation (4.8) was not used as its shortest distance (dx)

was estimated at more than 200km, which exceeded the maximum distance between a

protected transmitter and WSD.

Diffraction Function (Adiff ())

Optional and input parameters of the model compute attenuation distances d3 and

d4 and these are the inputs to the function, Its output is used to calculate predicted

diffracting attenuation (A3 and A4), estimated diffraction attenuation below free space

(Aed) and its slope (md) in figure 4.6. These values were components of the Attenuation

reference (Aref ) in Equation (4.8) and used to compute (Alos).

Line of Sight Function (Alos())

The flow chart for computing Alos() function is shown in figure 4.7. It computes the

Aref , predicted reference attenuation with inputs Aed and md from Adiff function.

Where the distance between a TV transmitter and a point receiver (d), is less

than the sum of smooth earth’s horizon distance (dLs) in equation 4, the reference

attenuation is gotten through an Alos() function. When this condition is not met, a

diffraction function (Adiff ) or the Scatter function (Ascat) is used. Parameters md and

Aed of the diffraction function are used in Alos() function to compute A0 and A1 Fig.

4.7.

In the path-loss design, the transmitter polarization is observed to influence the

terrain path-loss component (Aref ). The units in [181] adopted in this design were

conflicting. As such, the modified version of the algorithm in [180] was used.
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Figure 4.6: Diffraction Function.

4.5.2 Database Parameters

A summary of the inputs needed for the database computation and expected outputs are

presented in section 4.6.1 and 4.6.2 respectively. Program Making and Special Events

(PMSE) devices and their protection were not considered in the database design, as it

was outside the scope of this work.

Database Inputs

Primary User/Protected Channel information needed by a database are:

1. Location of Transmitter
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Figure 4.7: Alos() function flow of computation
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2. Transmitter Power

3. Height of transmitter (Average Ground Level (AGL))

4. The center frequency of transmission.

5. Transmitter antenna’s polarization (Optional)

Inputs from the White Space Device include:

1. Location of WSD

2. Height of WSD

3. Preferred frequency (optional)

Database Output

Output for WSD:

1. Channel no.

2. Operating Frequencies

3. WSD operating frequency’s maximum transmit power.

4. Check-in time with the database.

4.6 TVWS Design in Glasgow

The DSA database usually extracts PU information from a national transmitter database

(DTT database as illustrated in Figure 4.8). This is represented by information from

38 television transmitters in five locations around a WSD assumed to be located in

the Royal College Building, University of Strathclyde, and detailed in Appendix A.

This record is kept within the designed database and used to compute permitted WSD

power limits for SUs coexistence with PUs in large (country) and small geographical

locations. The GDB design conformed to the capabilities listed in [182].
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Figure 4.8: A detailed end-to-end Dynamic Spectrum Access system

The DSA database usually extracts PU information from a national transmitter

database (DTT database as illustrated in Figure 4.8). This is represented by informa-

tion from 38 television transmitters (detailed in Appendix A tables) in five different

locations around a WSD. The WSD was assumed to be located in the Royal College

Building, University of Strathclyde. This record is kept within the designed database

and used to compute Permitted WSD power limits. The computed WSD power is

limited to a single/small region (WSD coverage area) and can be extended to many

WSDs. This was done in [5] design of Kenya’s Geolocation database. The GDB design

conformed to the capabilities listed in [182].

4.6.1 White Space Device (WSD) Permitted Power Estimation

The WSD was located at latitude 55.86156 and longitude -4.24614, while transmitter

parameters were from five TV stations/locations. Nine randomly selected TV receiver

points around the WSD that could suffer interference were selected as (x : x ∈ X). The

location of these points (X) and their geodesic angle ϕ (between each TV transmitter,

point x, and the WSD’s location) are in Table 4.2.
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Table 4.2: Random locations around a White Space Device.

Lat Long ϕ1 (degrees)

55.85781 -4.23895 120

55.86236 -4.2455 180

55.87328 -4.22833 120

55.86304 -4.24965 87

55.87208 -4.28369 30

55.86134 -4.25031 0

55.85141 -4.27648 40

55.85552 -4.2519 60

55.86113 -4.24419 150

The database design is in line with Dynamic Spectrum Alliance [3] computation

and is implemented in two phases. First, the TV channel received signal strength, and

the status of a TV channel at x locations around the WSD is determined. The second,

WSD power estimate, is a reverse process. The protected TV RSS at point x is used to

determine the WSD transmit power. That is, the WSD estimated power transmitted

degrades to the level of the protected received signal at point x, as illustrated in Figure

4.9.

Figure 4.9: Computation of estimated WSD transmission power.
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4.6.2 Received TV Signal Strength

TV signal received at each possible x location is:

P i
Rx : T@x = P i

T − Li
T→x (4.10)

where P i
Rx : T@x is the estimated received TV signal operating at ith center fre-

quency, at x location. P i
T is TV transmitter power at ith center frequency and (Li

T→x)

is its propagation loss between TV transmitter (T ) and location x. The received TV

signal derived from equation (4.10), uses the LR path-loss model to estimate signal

degradation (Li
T→x). The TV receivers are assumed to have a height of 10m and their

noise as:

P i
noise : T@X = 10 log(10Pthermal/10 +

∑
T ′,j

10P
i←j

T ′@X
/10) (4.11)

where P i←j
T ′@X is the received TV signal at x from other T ′ transmitters operating at the

same or adjacent j channels combined with thermal noise.

The carrier signal-to-noise ratios(CNR) at each of these ′x′ TV receiver locations

are computed based on equation(4.12). The P i
noise : T@X is reduced to 105.2 dBm ther-

mal noise over 8MHz, as TV transmitters are assumed to exist on exclusive and non-

interfering channels. Each ′x′ location’s computed CNR:

CNRi
T@X = P i

Rx : T@x − P i
noise : T@X − LRx : noisefig +GRx : inst −MRx : imp (4.12)

where noise figure LRx : noisefig = 7dB, installation gain of antenna GRx : inst = 9.15

dBi and implementation margin MRx : imp = 1.5dB [3]; contributed to its occupancy

status which in turn determined if the channel was occupied in that location.

A channel was considered “unoccupied” in an ’x’ location if the CNRi
T@X was less

than 27.1, as stated in equation 4.9 in [3]. Occupied channels were protected with

a fixed co-channel protection ratio of 39.5, or an adjacent channel protection ratio,

equations (4.13) and (4.14). The adjacent protection ratio r(.), which was a function

of the received signal and the channel offset between incumbent and adjacent channels

j (4.14) detailed in [3]. Locations x that had ith channel occupied were referred to as
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y locations, y ∈ Y, andY ⊂ X. PRx : nuisance@y is the protected received PU’s signal

at location y when operating at an occupied channel, in location y. The PU receiver’s

protection value is computed as:

P
i|i
Rx : nuisance@y = P i

Rx : T@y − 39.5 (4.13)

P
j|i
Rx : nuisance@y = P i

Rx : T@y − r(P i
Rx : T@Y +GRx : inst,∆f) (4.14)

4.6.3 WSD Transmit Power Estimate

An assumed 1.5m high WSD transmitted a signal that degraded at the nine TV receiver

points. This was calculated as coupling loss (Gi
WSD→Y ) in:

Gi
WSD→Y = −Li

wsd→y +Gant@Y→wsd) +GRx : inst (4.15)

which was a function of path-loss (Lwsd→y) between WSD and y locations, standard

antenna gain (GRx : inst) and geodesic gain receivers at y (Gant@Y→wsd), in equation

(4.15). The geodesic angle determined the value of the geodesic gain. The consideration

was on co-channel sharing. Hence, adjacent channels were ignored, i = j.

Estimated WSD power at each channel was the difference between the coupling loss

Gi
wsd→Y and protected PU’s signal PRx : nuisance@y at each y spot, in equation (4.16).

Each y-point around the WSD had a different estimated WSD power. Permitted WSD

power on each channel i computed as:

P i
T : WSD|TV@Y = P i

Rx : nuisance@y −Gi
WSD→Y (4.16)

was the least estimated power from all y points.

4.6.4 Glasgow Database Outcome

The five PU transmitter locations (Blackhill, Darvel, Roseneath, Craigkelly, and Selkirk)

had multiple TV transmitters. In each TV transmitter, the two phases were carried

out, except in instances where phase one resulted in an unoccupied channel status. In
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such situations, the maximum permitted power of 36 dBm was allotted to the WSD.

The estimated WSD power in ′y′ locations is computed using equations in subsec-

tion 4.6.1 for Blackhill PSB1 transmitters (ith channel). The received signal strength

at the nine random locations, in table 4.2, around the WSD are shown in Table 4.3.

In Table 4.3, the Newdis is the distance between the TV transmitter and its nine x

receivers, Txptloss is Li
T→x, Rxpt is P i

Rx : T@x in equation (4.10). CNR is in equation

(4.12), and Pnuispt is from equation (4.13). WSDdis is the distance between x receiver

(y) and WSD, wsdptloss is Li
wsd→y, and coupleGain is Gi

wsd→Y in equation (4.15). The

estimated WSD power (WSDPow) is described in equation (4.16).

The estimated WSD power for this channel ranged from 42.5 dBm to 5.2 dBm.

However, the lowest value of 5.2 dBm was assigned as the safe WSD power in Table

4.4’s ’PSB1 (BBCA)’ TVtx. As expected, the gain of the receiver and transmitter

antennas significantly impacted the estimated WSD power. Technically, the higher the

receiver’s geodesic gain, the easier it is to detect weak TV signals. A zero geodesic gain

meant weak signals got extra protected, and WSD power had to be reduced to achieve

this protection.
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Table 4.4: Channel status in Blackhill

TVtx Ch Freqc(MHz) Pol txPower (dBm) Status WSDPow (dBm)

’PSB1 (BBCA)’ 46 674 ’H’ 80 ”Occupied” 5.24

’PSB2 (D3+4)’ 43 650 ’H’ 80 ”Occupied” 6.63

’PSB3 (BBCB)’ 40 626 ’H’ 80 ”Occupied” 7.93

’COM4 (SDN)’ 41+ 634.2 ’H’ 80 ”Occupied” 7.50

’COM5 (ArqA)’ 44 658 ’H’ 80 ”Occupied” 6.18

’COM6 (ArqB)’ 47 682 ’H’ 80 ”Occupied” 4.76

’LG’ 51 714 ’H’ 66.99 ”Occupied” -10.29

’COM7’ 55 746 ’H’ 76.32 ”Occupied” -3.16

’COM8’ 56 754 ’H’ 75.93 ”Occupied” -4.12

All transmitters’ channels in Blackhill are occupied in Table 4.4, and the status

of all transmitters in other locations are in Table A. The power limits were generated

based on assumed co-channel sharing of TV frequency. Some allocated channels were

available for co-channel transmission at low estimated WSD powers (4.7 to 7.9 dBm).

It was observed that although all the transmitters in location Selkirk were unoccupied

(table A.5), these were already being reused in some other places.

4.6.5 Model of Designed Relational Database.

TV transmitter parameters and WSD estimated power limits in Glasgow are used to

populate the MySQL database. Out of 38 channels, about ten (10) were not unique

and had varied WSD power estimates. Twenty-eight unavailable unique channels had

different WSD Power estimates, and 12 available channels assigned a default value of

36dBm in Table 4.5. Some estimated powers were too small for significant use, e.g.,

26dBm, while others were as high as 7dBm. Channels above channel 49 were excluded

from the results; they were no longer available for TV transmission in the UK, thus

reducing the available channels to 4.

This table is used to create a MySQL database on a local server, which a WSD at

the Royal College building queries for available WSD power and frequency. The table,

therefore, informs the database’s response to requesting WSDs. Channel numbers were

rounded up to integers for easy manipulation in the database (which differs from the

center frequency of channel 41, 634MHz).
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4.7 Database construction in Owerri Nigeria

The database design process in section 4.6 was adopted with more PU receivers. The

database was designed for a University in eastern Nigeria, with analog television trans-

mitters (ATT) and Digital TV transmitters (DTT). The WSD was sited closest to

the center of the Federal University of Technology Owerri, Eastern Nigeria, with lati-

tude 523’07.0” N and longitude 659’31.8”E. A 5km x 5km square coverage around the

assumed omnidirectional WSD was defined as WSD coverage for investigation. This

coverage square area was then split into several pixels of 1km x 1km to make a total of

‘X’ number of pixels, as shown in Figure 4.10.

Figure 4.10: 100m x 100m pixels grid on the study area.

Seventeen (17) Analogue Terrestrial TV transmitters (ATT) and twenty-six (26)

Digital Terrestrial TV transmitters (DTT) spanning 6 Eastern states were identified

within a 200km radius of the University. Ultra High-Frequency DTT and ATT broad-

cast channels were extracted from the national spectrum allocation table. These chan-

nels permitted spectrum sharing in the Nigerian TVWS policy draft [175]. Twelve (12)

unique ATT channels (470 to 854MHz) and 24 DTT channels (470 to 694MHz) were

considered and analyzed.

TV signal degradation for 50% of the time, at 50% of the location, and 50% cer-

tainty was calculated using the designed LR path loss model between each of these TV

transmitters and a TV receiver on each ′x′ pixel (x ∈ X pixels). The transmitter input

parameters stated in section 4.6.1 for the design are provided in Appendix B.2, and the

TV receiver located at each x pixel was assumed outdoor and 10m high.

The design of the Owerri Database was done after surmounting the following chal-
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lenges:

1. Limited access to the necessary PUs information.

2. High computational requirement for a single WSD. As a detailed 1km x 1km

mapping of the device generated over 3000 receiver points, across which received

signals for all receivers had to be computed.

3. Unique spectrum terrain, as the database had to be designed to consider two

types of static PUs (DTTs and ATTs), this was challenging. Hence the decision

to exclude ATTs to reduce computational tasks.

4.7.1 Received TV signal strength

The transmitter and receiver parameters are used to compute path loss. The received

TV signal strength at each x TV receiver terminal, for all ith TV channels, was com-

puted with equation (4.10). Receiver Thermal noise (PTh−noise) was computed as:

PTh−noise = 10 log(kTB) (4.17)

Where k was Boltzmann constant, Temperature (T) was 290K, Bandwidth B was 5MHz

for ATT and 8MHz for DTT receiver [177]. The cumulative interfering noise (log

addition of out-of-mask emissions and thermal noise) for every channel i was computed

with Equation (4.11).

4.7.2 TV channel Availability Threshold

The received TV signal and the cumulative noise are used to determine a Carrier

to Noise ratio (CNR) at the TV receiver terminals, using equation (4.12). A CNR

threshold is set based on the TV signal receivers’ sensitivity. In ATTs, this is 64

dBu equivalent to a CNR of 38 [183]. DTT receiver’s minimum CNR default value of

19.5dBm is used in equation 4.9 in [3]. This means that DTT receivers could receive

weaker DTT signals than ATT receivers.
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4.7.3 WSD Transmit Power Estimate

As Nigeria completed its digital TV migration, only DTTs were used in the database

design. The pixels or TV receivers that met the CNR threshold were labeled Y. The

following design objective was to protect every received signal on each pixel. All the

pixels had similar channel coverage because of the assumed WSD coverage area size.

Each occupied channel was protected using a protection ratio derived from the WSD

class’ emission mask. However, a higher co-channel protection ratio of 39.9dB was used

as the co-channel reuse of PU’s channels was being investigated. The ratio was added

to all the received signal strength to form a nuisance Power, equation (4.14). This

power is the least power a TV receiver can accommodate from the WSD, as shown in

figure 4.9. Computations were done in MATLAB and Python environments. Despite

the drawbacks of this method highlighted in [5] on PU protection, this method provides

a framework for safe co-channel sharing amongst SUs.

4.7.4 Outcome of Database Design in Nigeria

Spectrum availability and a measure of the degree to which incumbent users are pro-

tected were observed. The box plot in Figure 4.11 represents the received signal strength

of channels investigated at PU receivers around the WSD. The plot reveals the disper-

sion of ATT received signals by all x pixels’ TV receivers. The ATT receivers have about

six (6) channels above the usual -100dB noise floor in Figure 4a, similar to measured

results in [184]. However, most of these channels cannot be detected by conventional

TV receivers, and as such, this was replaced by a threshold CNR of 38, as discussed

previously.

At this threshold of 38 for ATT receivers, there were three (3) unavailable or used

ATT channels, Figure 4.12. Similarly, Three out of 24 DTT local channels’ received

signals were above the DTT CNR threshold of 19.5 in figure 4.13, hence, the channels

were declared occupied in the WSD locations. Despite the 24 DTT transmitters around

the WSD location, only 3 were occupied. The transmitters’ CNIR at the WSD receivers

were between -22 and 18; as such, channel numbers 4 to 24 can be reused with no

significant interference with DTT transmitters.
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Figure 4.11: Box plot of received ATT at x-pixels.

Figure 4.12: CNR distribution for ATT
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Figure 4.13: CNR distribution for DTT

In Nigeria, TVWS technology is permitted to share and coexist with PUs on twenty-

nine (29) TV channels (470 to 694MHz). Although ATT ranged from 470 to 846MHz,

it resulted in 48 ATT channels. Three ATT and three DTT unique channels were

unavailable in the WSD coverage area, leading to a 10.3% or 3/29 channel occupancy

by ATT and DTT, respectively, in Table 4.6. The TVWS policy in Nigeria provides

extra protection for ATT signals by ensuring that two channels before and after a

used channel are not shared. This resulted in 11 and 9 channels being unavailable for

ATT and DTT channels, respectively, out of which the three unavailable channels were

prohibited. This increased the percentage of occupancy of the 29 TV channels from

10.3% to 38% for ATT channels and from 10.3% to 31% for DTT channels. However,

only DTT channels were used for the database design, resulting in 20 available channels

for SU-to-SU sharing despite 31% of all channels being unavailable.

The effect of the protection ratio on co-channel protection (detailed in equations

(4.13) and (4.14)) in all pixels within a WSD’s coverage area is illustrated in Figure

4.14. It shows the permitted WSD transmit power for three DTT unavailable channels.
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Figure 4.14: Cumulative Distribution Function of received DTT signals of channels 1
to 3 in x pixels.

Despite the weak received TV signals in channel 3, compared to channels 1 and 2,

the same maximum power distribution is computed by the adopted methodology for

channels 1, 2, and 3 in the figure. Thus, the permitted transmission power of the three

unavailable channels was in the same range. All weak channels are, therefore, given

adequate protection. This is assured as, despite the -15dBm to -47 dBm computed

maximum power limits, the GDB assigns only the least power in each channel. The

figure 4.15 chart represents a summary of available and unavailable channels as red

bars.

4.8 Comparing GDB design and outcome in Owerri, Nige-

ria and Glasgow, UK.

A similar methodology in estimating WSD transmission power was used in both designs.

However, more receiver points are considered (1km x 1km pixel size points around the

WSD) in Nigeria as against the 9 points considered in Glasgow. Also, Nigeria had active

Analogue Terrestrial TV transmitters (ATTs) and Digital Terrestrial TV transmitters

(DTTs) as against only DTTs in Glasgow. In both designs, a lot of computations were

required for a single WSD coexistence management.

The Glasgow database output subsection 4.6.4 outcome in table 4.5 was compared to
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Figure 4.15: Comparing Glasgow and Owerri Available TV channels.

Owerri, Nigeria’s subsection 4.7.4 outcome in figure 4.15. Since their WSDs were both

in a university environment, only DTT channels were considered. There was a higher

use of DTT channels (29 DTT channels occupancy in table 4.7) in Glasgow (82.8%)

as compared to Owerri (10.3%), as Glasgow was a bigger urban city than Owerri.

This meant that about five (5) channels were available in Glasgow (29 DTT channel

occupancy in table 4.7) for shared SU coexistence as against 26 channels (89.7%) in

Owerri. This was significantly reduced to 20 (69%) because of Nigeria’s TVWS PU

sharing policy reflected in the policy-protected (%) of table 4.7. Similarly, the UK

policy prohibits co-channel coexistence with PUs, depriving six additional channels

(40, 41, 43, 44, 46, and 47) in Figure 4.15 from supporting more SUs through underlay

sharing.

4.9 WSD to Database Interaction

WSD needs spectrum availability information to ensure they do not interfere with

PUs. Most policy documents on database spectrum management insist on regular

communication between WSD and the central spectrum manager, to get updates on

spectrum and power resource availability. The database also needs to be aware of

any changes with respect to location and the WSD spectrum choices. It is, therefore,

important to have a standard way for the database to WSD communication, hence the
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Figure 4.16: Tools and communication time between WSD to DB.

Figure 4.17: Block diagram of connections and parameters needed for WSD to DB
connection.

design of Protocol for Access to White Space (PAWS).

In establishing communication between a WSD and the database, the diagram in

Figure 4.3 was modified to Figure 4.16. Thus, the focus is on the master device to

database/coexistence manager interactions. A virtual master device, assumed to be

in the Royal College building, communicated with the MySQL local server database.

The device’s registration and request time were logged in the database, which responds

with information on available spectral space for WSD.
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4.9.1 Design Of WSD to Database Interface

The database front end consisted of a webpage and an API designed with Django

REST framework, a Python web framework for building web pages, illustrated in Figure

4.17. It is easily integrated with the MySQL database backend, providing a web page

for human interaction and an API frontend for device interaction with the database.

Figure 4.17 provides a detailed view of the communication and parameters needed for

the interface.

The webpage was tested by manually keying in WSD registration details on the

webpage, as shown in Figure 4.18a. Several queries were made to the database on the

assumption that the WSD was located within at least a 100m radius around the Royal

College building. These queries were recorded, retrieved in figure 4.18b, and transited

to a download CSV file webpage. The CSV file contained the available TV channels and

their estimated power similar to the output displayed on the webpage in figure 4.18c.

In establishing communication between the WSD and the database, an API front end

was initially tested through the Django frameworks API portal in Figure 4.19a and the

response in figure 4.19b.

4.9.2 Standardize WSD to Database Communication using PAWS

In section 4.9.1, the communication link design was not standardized, although it

achieved the device-to-database benchmark. The PAWS in [178] was implemented

to standardize the communication link. The protocol stipulates the regulated terms

of all communication components; these include Tables, field names, and the structure

of JSON messages (shown in figure 4.21). These required several tables within the

database to interact (as shown in figure 4.22) to create the necessary output structure.

The WSD’s request was stored in the database’s avial spec req table, as shown in

figure 4.22, and distributed to other tables. The Location table holds location-based

parameters and WSD (fixed or mobile ) information. The deviceDesc contains the

device’s details and the antenna properties of the WSD populate antenna table. These

tables had a one-to-one relationship with the avail spect req table, as every entry in
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(a) WSD registration webpage

(b) WSD registration List

(c) DB response of spectrum and WSD permitted power limits

Figure 4.18: WSD webpage front end request and Database response
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(a) API portal request

(b) Database response to API portal request

Figure 4.19: API portal posting and retrieving JSON data from the database.
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Figure 4.20: Virtual WSD’s GUI output/response from GDB

the table had these details. Time stamps of requests are stored in the eventTime table.

The computed available channel and estimated WSD power in the tvchanstatust

table are connected to the spectra table on a many-to-one relationship. A single spectra

category of 8MHz channel size was assumed as others (like 100kHz) were not captured

in UK policy. The spectra table established a many-to-many relationship with the

spectrum schedule table through an intermediary spectra manager table.

The spectrum manager table matches each spectra table’s row to a specific spectrum

schedule ID. The spectrum schedule table, therefore, contains request times and peri-

ods matched with the spectra table’s link to a collection of channels and power limits.

The spectrum schedule is encapsulated in a many-to-one relationship with the spec-

trum specs table, which enacts the single policy ruleset (ETSI) adopted in this work.

The spectrum specs table is embedded in the result table, extracting information from

the deviceDesc table. The result table is sent to the WSD through the Avail spect resp
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Figure 4.21: Structure of a typical PAWS request message sent to the database.

table to conform with the PAWS JSON structure. The avail spect res table was the

feedback from the database on the request made in the avial spect req.

The designed PAWS was tested with a virtual WSD request to the database. The

response from the database to the device was extracted from the device as a text file

shown in Fig. 4.20. To visualize the designed database PAWs conformity, the PAWS

request sent by the WSD (shown in Fig. 4.21) was replicated via a Postman app.

The response structure shown in Fig. 4.23 is similar to that provided in the PAWS

documentation [178]. The standard protocol in both test cases contained a complete

list of available channels and the estimated transmit power limits at the WSD location.

4.10 Summary of Chapter

This chapter describes the end-to-end design and implementation of a DSA system

consisting of a resource manager (a geolocation database manager) and its Device-to-

database interface. It recreates a TVWS system using a unique Dynamic Spectrum

Alliance methodology for the database design and adopts IETF’s PAWS protocol for

the interface. The methodology is implemented using a designed terrain-based Longley

Rice propagation model, as TV signals travel very far and are greatly influenced by

the environment. The interference discovery method was crucial in increasing sharing

opportunities of the resource-managed design. The impact of the UK and Nigeria’s

shared spectrum policies on available resources is measured and quantified, showing

the need for informed regulatory frameworks.
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Figure 4.22: Inter-table relationship for ‘available spectrum request’
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Figure 4.23: PAWS structured Output from Database to WSD.
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Finally, the WSD to GDB communication interface showed a significant overhead in

transmitting all available resources to a WSD in a region/location. This thesis, there-

fore, proposes a tailored optimal resource allocation algorithm to limit this overhead.

The next chapter designs several resource allocation techniques adopted in real DSA

systems, and Chapter 6 further analyses their performance.
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Table 4.5: Database Table : Operating TV frequencies and estimated WSD power

Channo Freqc(MHz) Status WSDPow (dBm)

21 474.2 Occupied -23.29114203

22 481.8 Occupied -1.023549369

23 490 Unoccupied 36.0000000

24 498 Occupied -23.4138476

25 506 Occupied -1.397609489

26 514 Unoccupied 36.0000000

27 522 Occupied -23.55158422

28 530 Occupied -1.838557659

29 538 Occupied -26.6612241

30 546 Unoccupied 36.0000000

31 554 Occupied -26.76638892

32 562 Occupied -5.542321257

33 570 Occupied -25.38096258

34 578 Occupied -5.933262806

35 586 Occupied -6.139599899

36 594 Occupied -25.58111184

37 602 Unoccupied 36.0000000

38 610.2 Occupied -27.17986923

39 618 Occupied -25.80365952

40 626 Occupied 7.9282465

41 634.2 Occupied 7.495480535

42 642 Occupied -26.04731103

43 650 Occupied 6.630578177

44 658 Occupied 6.177180204

45 666 Occupied -26.31091145

46 674 Occupied 5.239450587

47 682 Occupied 4.755225847

48 689.8 Occupied -26.59099556

49 698 Unoccupied 36.0000000

50 706 Unoccupied 36.0000000

51 714 Occupied -10.29315982

52 722 Unoccupied 36.0000000

53 730 Unoccupied 36.0000000

54 738 Unoccupied 36.0000000

55 746 Occupied -12.96240719

56 754 Occupied -12.92798199

57 762 Unoccupied 36.0000000

58 770 Unoccupied 36.0000000

59 778 Unoccupied 36.0000000

60 786 Unoccupied 36.0000000
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Table 4.6: Nigeria’s Channel Occupancy summary

Type 48 National
TV (%)

29 National
TV (%)

Policy Pro-
tected (%)

Database
(%)

ATT 8.33 (4/48) 10.3 (3/29) 38

DTT 6.25 (3/48) 10.3 (3/29) 31 31

Table 4.7: DTT channel occupancy for Glasgow UK and Owerri Nigeria

City Relative channel
occupancy (%)

29 DTT channels
occupancy (%)

Policy Pro-
tected (%)

Database
occupancy
(%)

Glasgow 67.5 (27/40) 82.76 (24/29) 82.76 83

Owerri 6.25 (3/48) 10.3 (3/29) 31 31

123



Chapter 5

Resource Management

Techniques for SU-to-SU

coexistence

5.1 Introduction

In the previous chapter, the designed database provided WSDs with all available re-

sources (spectrum and power) in a specific location. This chapter reviews how these

resources are shared among requesting WSDs in the TVWS, CBRS, and 802.19 coex-

istence method’s framework. These different approaches are then framed as baseline

algorithms for analyzing the performance of this thesis’ proposed automated approach.

This chapter, therefore, designs a heterogeneous network as a test bed for comparing

coexistence management algorithms (existing and new). The developed methods and

algorithms are all evaluated experimentally in a simulated virtual DSA network (test

bed).

These algorithms have focused on allocating spectrum only, enabling overlay spec-

trum sharing. An added advantage to spectrum utilization is nodes’ use of different

transmission powers to enable more spectrum sharing. The power allocation allows for

more nodes to share while considering their ability to manage a degree of interference

124



Chapter 5. Resource Management Techniques for SU-to-SU coexistence

(underlay). Thus, a system that permits both overlay and underlay harvests the ben-

efits of DSA systems. This can be improved with customized resource allocation to

nodes, allowing spectral resources to be allocated based on real-time needs rather than

fixed allocations. This prevents spectrum wastage and enables it to be used when and

where needed.

5.2 Algorithm Designs

DSA coexistence management approaches are studied based on the different deployed

technologies. The distributed GDB (random) and hybrid SAS approach to sharing

available channels to coexistence groups are reproduced as algorithms. A pivotal aspect

of centralized coexistence management frameworks is defining when interference has or

may occur.

5.2.1 TVWS Random Allocation

The White Space Device (WSD), irrespective of its MAC protocol, selects a resource

(channel and transmit power) from the GDB’s list and informs the GDB of its choice.

The reuse of channels in a typical TVWS system is left to SUs to coordinate (distributed

or decentralized coordination). The database does not have a framework for the reuse

of channels by SUs [12–14,26,174]; as such, an exclusive selection of channels on a first

come, first serve basis is assumed. The IEEE 802.19 provides a modified algorithm

that permits databases to influence SUs coordination and permits the reuse of assigned

spectrum through its coexistence management entity in figure 2.11 [38].

The GDB, through the coexistence manager (CM), maintains the TV spectrum

availability status by communicating with the GDB, CDIS, neighboring CMs, and

real-time measurement from WSDs (figure 2.11). An example is the change in avail-

able channels, as each WSD exclusively or individually chooses a channel. The CM,

therefore, classifies available channels as protected (occupied by PUs), operating (in

use by other WSDs), coexistence (shared with other WSDs), restricted (government-

limited), and unclassified. The classification of available channels assists the CM in its
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responsibility of central assignment of channels to WSDs [38].

In SUs distributed channel selection, SUs can use channels exclusively or share. In

exclusive/individual TV channel use, as discussed in subsection 2.2.3, SUs exclusively

choose channels without these channels being reused, as shown in figure 5.1. An exclu-

sive channel assignment is usually recommended when the number of WSDs exceeds the

available channels. When this is not the situation, a shared channel mode is adopted,

as shown in figure 5.1. In the shared use of channels, there are no set principles on

how SUs can coexist and share resources apart from avoiding interference among SUs.

However, the level of interference each SU can accommodate remains unclear in the

literature.

The channel assignment within TVWS networks in [38], is modified and imple-

mented in the random assignment/allocation algorithm 1. Channels were classified

as available or operating from which requesting WSDs selected their preference on a

first-come, first-serve basis. The WSDs were given a random arrival time, and based

on their arrival time, they continuously selected channels until all available channels

were exhausted. The WSD’s channel choices were reclassified as operating channels,

which are reused by the remaining requesting WSDs when they share similar MAC

protocols. WSDs, with uncommon MAC protocols, randomly selected spectrum from

the operating channel set. The protected channel classification was excluded since re-

sources available to SUs were void of protected channels, as shown in Table 4.5. A

fundamental input to the random algorithm was the network architecture/structure on

which a CM performed its random allocation task.

The random approach does not mitigate interference among SUs; it uses spectrum

on a first-come, first-serve basis and continuously assigns the resource. Although the

spectrum usage is documented in a central system, there is no control over the SU’s

choice of resources. This reflects the spontaneous access to the spectrum, which leads to

a high level of contention endured by SUs when the number of nodes exceeds available

resources.

The random resource assignment was independent of other WSDs’ actions and un-

aware of resulting interference, leading to more SU conflicts and contention for resources
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Algorithm 1: Random Allocation (TVWS)

Input: List of available channels, network structure
Output: WSD resource assignment
for All WSDs in Network do

Create an assumed arrival time for all nodes.
Conduct channel classification.
if Available channel exists then

match WSD to its selected available channel, tag channel as operating
channel

end
else

if Are there operating channels then
WSDs select from operating channels with similar MAC protocols,
tag as coexisting channel

end

end
else

WSD selects any operating channel
end
Update channel classification list.

end

despite the central coordination introduced. It, however, allowed the CM to reassign

operating channels to multiple WSDs that coordinated this reuse with their MAC pro-

tocol. CMs also cooperated with other CMs in negotiating their operating channel

reuse. Similar types of WSDs (with similar MAC protocol) make up a coexistence set,

and such coexistence sets can be assigned the same channels. The latter approach was

adopted in the CBRS system, in their WInnforum’s CBRS approach 2 and 3 definitions

of recursive channel allocation [31,58].
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Figure 5.1: Channel Allocation Methods
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Figure 5.2: TVWS or random channel assignment

5.2.2 CBRS Recursive Allocation

In figure 5.1 [38], the shared channel mode allows for more devices and SUs to be

supported by limited available resources. In CBRS, a different approach to device

channel mapping is adopted. It uses coexistence groups (CxG) or coexistence sets that

may be device or MNO-based. A coexistence group (CxG) was defined as one or more

CBRS devices (CBSDs) capable of coordinating interference among themselves, using

their interference management policy. In scenarios where SAS performs inter and intra-

coordination, the interference management policy can be based on the MAC protocol

adopted by CBSDs. When SAS delegates its intra-CxG coordination, the interference

management policy adopted can be based on operator policies, e.g., Mobile Network
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Operators (MNOs). Based on the available channels provided by the database, SAS

investigates the interference between CBSDs and recommends a specific bandwidth

range for CBSDs [31].

In coexistence management among GAAs [58], with equal priority users as in

TVWS, the bandwidth range for each GAA is determined using a recursive cluster

method. This method aims to identify the size of clusters of nodes in a connected

set and the nodes that make up a connection set. A connection set is a collection of

nodes with edges or interference links with nodes in other coexistence groups when

transmitting at the same or adjacent channels. In interference investigation by SAS,

if connection links only exist among nodes in a coexistence group (CxG1), they are

said to form a cluster size of 1. All nodes with this cluster size can share the same

resource bands and internally prevent interference. When some nodes in CxG1 connect

with another CxG2, nodes in CxG1 and CxG2 are said to have cluster size 2. Nodes

with higher cluster sizes need to share the available resources. Generally, if there are

N CxGs in a network, cluster size (k) can range from 1 . . . N .

Cluster spectrum is:

Spectrum = (100/k)%× Bandwidth (5.1)

which is the spectrum assigned to nodes/devices that belong to specific cluster sizes as

shown in Figure 5.3. However, the more coexistence groups there are, the higher the

number of possible interfering groups that form the cluster size. A considerable cluster

size splits the available spectrum into too small chunks that may not be useful for any

coexistence group, thus limiting this approach.

In this thesis, the recursive approach was recreated to support TV bands. The

spectrum bandwidth was the number of available channels, and the coexisting grouping

was based on the MNOs they belonged to. Cluster groups were identified and sizes

allocated, with the maximum cluster size being 2, as there were two simulated MNOs as

shown in figure 5.3. A node’s cluster size was established based on the number of other

CxGs with which it formed an edge/interfered. Nodes not in connecting sets (single
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(a) Example of Coexistence Groups with Interference Connections

(b) Example of Allocated channels for CBSDs in figure 5.3a

Figure 5.3: Recursive Allocation Method.
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cluster size) but in CxGs selected any available resource. However, channel resources

were split among nodes in connecting sets based on their cluster size, as shown in figure

2. Edges/Pairwise interference between CxG nodes, which determined the connection

set, was established by the interference discovery algorithm in algorithm 3.

Algorithm 2: Recursive Allocation (Adopted into TVWS)

Input: List of available channels, network structure

Output: WSD resource assignment

Obtain some available channels.

Identify coexistence groups (CxG) from Network structure

Populate connection set:

for All WSDs do
pair WSDs,

conduct interference check using algorithm 3,

populate connection set

end

for WSDs ∈ connection set do

if WSD ∈ connection set and ∈ ”n” CxGs then

WSD is tagged to have cluster size (k) = n

end

else

WSD not in any cluster

end

end

Recursively assign channels to WSDs based on tagged cluster size and equation

(5.1)

5.2.3 Interference Discovery

Interference increases the noise floor of a receiver, making it hard to detect useful

information from a signal with low received signal strength. Interference discovery is

critical in SU-to-SU coexistence, as if multiple SU competing for spectral resources

suffer a high level of interference; then no helpful information can be transmitted or

received. This makes interference discovery important in the SU-to-SU coexistence.
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Also, identifying available spectrum/channel is a function of the perceived presence

of other nodes/SUs in that bandwidth or channel. Interference discovery, therefore,

assists a spectrum manager in identifying channels and sharing these resources safely

among coexisting SUs.

Interference discovery is pivotal to channel allocation and safe SU coexistence. Two

methods were identified for interference discovery in [38]:

1. Algorithm based on a statistical prediction of interference.

2. Algorithm based on coverage analysis

Statistical interference prediction was adopted as it permits spectrum underlay instead

of coverage analysis based on fixed signal coverage, which disallows quantifying and

manipulation of interference levels. Its implementation required interference discovery

between WSDs (pairwise interference), as this establishes a connection or edge between

nodes (for example, nodes A and B). A pairwise interference exists when the received

signal experienced by m slave devices (a B AP’s receiver) from an A AP exceeds the

sensitivity of m [38]. The interference level experienced by a node (AP) is statistically

computed by predicting the received signal strength (RSS) around node B from node

A, shown in Fig. 5.4, and defined as:

RSSB←A = PTA +GA +GBx − L(x) (5.2)

where node A’s transmitter power and gain are PTA and GA, node B’s receiver gain is

GBx and the path-loss for x distance between node B’s receiver and node A is L(x).

The L(x) was estimated with the terrain-based Longley Rice propagation model for

distances greater than 1 km and with the free-space model at below 1 km.

The Interference level (IlevelB←A
) experienced by B from A, is the 90th percentile

of A’s RSS around 100 B’s receivers’ cumulative distribution function; as defined in

equation (5.3) and (5.4) and shown in figure 5.5. In context, if the set of received

signal strength at B receivers from A transmitter rssB←A = rss1, rss2, . . . , rss100. The
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Figure 5.4: WSDs pairwise interference.

interference level from A on B receivers is:

IlevelB←A
= rss90% (5.3)

defined as a the 90th percentile of rssB←A cumulative distribution function (CDF)

which is:

rss90% = min(rss) such that F (rss90%) = P [rss ≤ rss90%] ≥ 90% (5.4)

The CDF, F (rss), is the probability that a random variable rss is less than or equal

to a given value rss90%. The rss90% is the value (on the CDF x − axis) where the

cumulative probability reaches 90%. This means that most of the rss points (x in Fig.

5.5) are less than or equal to this rss90% value, (X in Fig. 5.5). The figure shows

the interference level suffered by nodes A and B when they both share a blue and red

channel. The interference level experienced by a node B from another node A using the

same channel 2 (red) in the Fig. 5.5 is -51 dB, which is a high noise level, compared to

-79 dB noise level when they share channel 1 (blue).
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Figure 5.5: 90th percentile of RSS distribution
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Algorithm 3: Interference Discovery

Input: Pair of WSDs, network parameters (WSD sensitivity), operating

frequencies

Output: Individual WSD Interference Level, Interference Status of WSD pairs

Determine the location of the pair of master WSDs (WSDA and WSDB) from

network parameters.

Identify WSD’s receiver’s Interference threshold (Ith) = Imargin + sensitivity.

Generate 100 receiver devices around each WSD.

for each WSDA’s receiver do

Compute received signal strength (RSSA←B) of WSDB at WSDA’s

receivers with LR propagation model in chapter 4 and equation (5.2)

end

for each B’s receiver do

Compute received signal strength (RSSB←A) of WSDA at WSDB’s

receivers

end

Determine WSD’s Interference Level (IlevelA←B
) and (IlevelB←A

) with equation

(5.3).

By plotting the cumulative distribution function of respective RSSA←B and

identify its 0.9 probability point on x-axis (figure 5.5

if (IlevelA←B
) and (IlevelB←A

) ≥Ith then

Tag WSD pair’s Inteference Status (IStatus) = Mutual Interference

end

else

if (IlevelA←B
) ≥Ith and (IlevelB←A

) ≤Ith then

IStatus = WSDA Interference Victim

end

if (IlevelA←B
) ≤Ith and (IlevelB←A

) ≥Ith then

IStatus = WSDA Interference Source

end

end

else

IStatus = No Interference

end 136
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Figure 5.6: Proposed Intelligent Coexistence Manager Architecture

The previously discussed assignment, random and recursive methods, only managed

the reuse of channels/spectrum among SUs, adopting an overlay methodology. It also

had no control over the level of contention suffered by SUs with similar MAC protocols

or within the same coexistence group. It had no optimization in its overlay sharing and

did not permit any underlay sharing of resources. This thesis focused on automating

the channel allocation/assignment scheme, illustrated in figure 5.1, in a network of

similar and dissimilar MAC WSDs. Its central coordinating entity within the SAS or

database learns to decide on optimum WSD resources (spectrum and power) as shown

in figure 5.6. It learned to control the level of interference and best sharing possibilities

among coexisting SUs. To achieve this, an arm of artificial intelligence, introduced in

subsection 3.1.3, is adopted in solving the decision-making problem.
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5.3 Central Coordination Automation

This thesis uses a virtual network environment for experimental study to evaluate the

novel automated and other assignment methods. The central resource assignment prob-

lem is formulated as an optimization problem; this problem is solved with two different

RL approaches, two-staged optimization(see section section 5.4) and joint optimization

(section section 5.5). This provided a baseline for comparing RL algorithms and a

better understanding of the effect of RL problem formulation.

5.3.1 DSA Network Design

A 10 km by 25 km study area with a heterogeneous network consisting of IEEE 802.11

Television Very High Throughput (TVHT) wireless local area network (WLAN) and

IEEE 802.22 wireless regional area network (WRAN) base stations (BS) and access

points (AP), described in Figure 5.2 as colored devices. Their specification is specified

in table 5.1. These sent regular updates to a central coordinating system that provided

them with available resources. It was assumed that the number of nodes requesting

resources at any given time was always greater than the available resources. Thus, it

depicts a constantly contesting environment and necessitates the scheduling of transmit

power and spectrum to such requesting nodes.

The network is assumed to have continuously changing nodes in the study area.

Practically, this can be pop-up networks (as base stations), WiFi router hot spots (as

access points), or any master IoT node. Therefore, These dynamic nodes can appear

and disappear over time and take on any location. The real-time state of the network

environment is captured through nodes’ requests and acknowledged information to the

database/SAS; this, in turn, can inform optimal resource sharing.

In this spectrum-sharing mode and dynamic network, maximum resource sharing

amid continuously changing resources and positions of heterogeneous access points is

challenging. Its resource management has several constraints and a regional solution

with a combinatory action space. Therefore, It is a non-deterministic polynomial-

time (NP) hard complex convex optimization problem as proven in [185]. To solve
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Table 5.1: DSA network

Parameter Value

Number of APs or BSs 3 - 8

Number of UEs 100

Network Area (km2) 10 x 25

Minimum node - UE coverage radius (km) 5

Bandwidth (MHz) 8

Maximum transmit Power (dBm) 36

Minimum transmit Power (dBm) 25

Thermal Receiver Noise (dBm) -205

AP Sensitivity (dBm) -65

BS Sensitivity (dBm) -97

UE receiver sensitivity (dBm) -65

AP height (m) 8 - 11

BS height (m) 25 - 30

UE height (m) 1.5

Pathloss Models Longley Rice & Free Space

Total available channels 4

Channels’ Centre Frequency (MHz) 490, 546, 514, 602

these NP-hard and complex optimization problems, heuristic algorithms search for

optimal solutions from their regional solution. Reinforcement learning algorithms train

policies that learn to conduct these searches and arrive at close to optimal solutions such

that learned solutions guide future predictions of solutions. To apply a reinforcement

learning algorithm to this optimization problem, the problem was formulated into a

Markov Chain Problem.

5.3.2 Formulating shared spectrum automation as a Markov Decision

Problem (MDP)

Decision-making processes, such as optimal WSD channel assignment/allocations, can

be framed as a Markov Decision Process (MDP). An MDP usually includes sensation,

action, and goals that RL algorithms can solve. Critical elements of an RL algorithm

are the agent that takes action and the environment in which an action is taken; others

are policy, reward, value, and model. A policy guides the actions taken by an agent

at every given time step. A reward signal is fed back from the environment, assessing
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if the goal of a decision problem has been achieved at each time step. The agent’s

objective is to accumulate the maximum reward over several interactions with the

environment [107].

The reward signal, therefore, influences the agent’s future choices and shapes the

policy’s trajectory. Accumulated rewards determine a value function; it measures what

states were good in the long run. The value of being in a state is the accrued fu-

ture rewards by an agent for starting at that state. It measures how good it is to

encounter a state over time, while rewards are immediate (every agent to environment

encounter) values that the agent continuously estimates throughout its lifetime. Values

are, therefore, predictive of rewards while rewards influence values [107]. The design of

the reward function thus becomes critical in creating the necessary policy that solves

any MDP.

5.3.3 Intelligent Central Coexistence Manager

The resource managing NP-hard problem is addressed with two-staged and joint re-

source allocation RL algorithms; these lie within the intelligent coexistence manager in

figure 5.6. The algorithms aim to achieve optimal resource allocation while minimizing

SU-to-SU interference to support future shared spectrum networks characterized by

dynamic spectra bands and heterogeneous access points [25].

These algorithms use a minimum amount of information to permit the maximum

number of nodes to share the spectrum while manipulating the node’s power to prevent

interference. The algorithms’ solution must balance preventing interference through

reduced transmission power and ensuring SU’s APs or Base stations (nodes) have ad-

equate user coverage.

The necessary coverage of an SU’s node, its QoS, is determined by its receivers’

Signal-to-Noise-plus-Interference-ratio (sinrim) defined as:

maxP (sinrim) (5.5)
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subject to

Pmin < P < min(Pmax, Pdb) (5.6a)

sinri = {sinri1 , sinri2 , . . . , sinri100} (5.6b)

sinrim =
PiHi,m

σ2 +
∑N

j=1 PjHj,m

i, j = 1, . . . N ; i ̸= j; (5.6c)

where the ith node’s QoS (sinri) in equation (5.6b) is a sequence of its receivers’

SINR (sinrim) defined in 5.6c. This was maximized by increasing the SINR experienced

by each node’s receivers through increased node power in equation 5.6c. Hi,m the

channel characteristics, is a function of a node’s antenna gain (gi, gm) and path loss

between i and m PL(di,m). PL(di,m) is the terrain path loss and cluster loss on signal

between an ith node, over a long distance di,m and urban mth receiver. Additive White

Gaussian Noise (AWGN) represents the noise power at m, (σ2) computed with (4.17).

Pi and Pj are transmitter power of nodes i and j that share a channel, and compliant

with P in equation 5.6a. Hj,m is channel characteristics between jth AP/nodes and the

mth receiver.

Therefore, a central intelligent coexistence manager, maximizes first (sinrim) expe-

rienced by ith node’s receivers (M) in equation (5.5), and secondly, minimizes the total

pairwise interference (Iij) in equations (5.7a). As these two equations have opposite

impacts on m′s QoS, thus its solution balances interference prevention and the node’s

QoS.

The second optimization objective is:

minI

N∑
j=1

N∑
i=1

Iki,j k = 1, . . .K; i ̸= j (5.7a)

subject to:

kimax =
K∑
k=1

βk
i (t) = 0 or 1; i = 1, . . . N ;

N∑
i=1

kimax → N ; (5.7b)
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max(Mk); Mk =
K∑
k=1

N∑
i=1

βk
i (t) ≥ 0; ; (5.7c)

K < N (5.7d)

βk
i (t) =


1, if ith node is allocated kth channel.

0, otherwise.

(5.7e)

Iki,j =


1, if Ileveli←j

≥ sensitivityirx .

0, otherwise.

(5.7f)

The second optimization in equation (5.7a) reduces the number of pairwise inter-

ference between nodes/access points i and j (Iki,j) defined in equation (5.7f). This is

done while maximizing spectral reuse (Mk) in equation (5.7c) and ensuring that the

maximum available channels are utilized (equation (5.7b)). kimax and Mk are functions

of βk
i equation (5.15a). The maximum number of channels assigned to an ith node/AP,

(kimax) is one (equation (5.7b)), however, this channel can be shared by multiple (Mk)

nodes (5.7c). Interference level threshold Ileveli←j
in equation (5.7f) was derived from

equation (5.3) in section interference discovery. The first and second optimizations are

performed at every instance of DSA networks’ (scenario) assignment.

The two methods adopted addressed the same resource management problem us-

ing different Markov decision process descriptions and constraints. This was done to

study the impact of problem formulation in RL design and the efficacy of advanced RL

methods in improving performance.

5.4 Two-Staged Resource Allocation

The thesis’ novel intelligent coexistence manager containing an RL algorithm or agent

in the database/SAS is designed. Network parameters such as the APs’ ID, location,

etc, and available resource information are obtained from the database to create an

RL environment. Its resource management task was split into manageable spectrum

assignment and power optimization problems. A model-free temporary difference RL
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method influenced how the policy π(a|s) stored in a table (Q − table) was computed.

The policy is a probability mapping of states to actions when this value is stored in

a Q − table. A Q − table is usually adopted when the state action size is relatively

small. Hence, a small set of states and actions was designed in each algorithm’s stage

to align with the optimization objective, limiting the RL agent (external or internal)

from access to restricted database/SAS information.

5.4.1 Spectrum Allocation MDP Formulation

The first phase algorithm’s objective was for an agent to achieve the best channel-to-

device/AP distribution to reach a resource management solution to the equation 5.7a.

The Markov Decision Process for this objective was captured in the reward ascribed

to an agent making independent channel/spectrum choices at each access point. A

single network scenario was assumed episodic with many episodes of different starting

states. In each assignment cycle/episode (epi), the agent assigned resources to devices

one at a time randomly at each time step (t), that is, its starting AP and transition to

unassigned APs were random. In the TSA, when all nodes were assigned the episode

was terminated at time step T, which was equal to the number of nodes.

The evironment’s state (st) in an episode was defined as the state at each time step

as explained previously in subsection 3.1.3, and defined as:

st = i ∈ S; S = {1, ...N}; and N = n{S} (5.8)

It is the node’s ID, since this was unique to every device. Similarly within an

episode, the agent’s action( at) in each time step is defined as:

at = ai ∈ {A}; A = {0, k, ...,K}; K channels (5.9)

and allocates (at = k) or does not allocate (at) = 0) a specific channel (k) to devices (N)

in equation (5.9). The assessment of the agent’s action in optimizing equation (5.7a)

is given by the environment at each time step (t+ 1), as explained in subsection 3.1.3
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as ((rt+1)) and defined as a reward function:

rt+1 = (2 + e−n(Mk))

Mk∑
j=1

Mk∑
i=1

Iki,j k = 1, . . .K; i ̸= j; (5.10)

.

The reward function in equation (5.10) captures the total APs sharing a k channel,

(Mk) which is a subset of all APs, (Mk ⊆ S), and all interfering pair edges (i.e. when

Ikij(t) or Ikji(t) = 1). The reward’s pairwise interference was computed when multi-

ple devices shared a channel (k), when channels were not shared, a fixed reward was

apportioned and when no allocation was given a zero reward was awarded.

Thus, at each time step (t) within an episode (epi), the environment starts at a

random state (st) or device (i), on whice the agent allocates a channel at, causing the

environment to transit to a random new state st+1 rewarding rt+1 to the agent. This

is repeated until all devices are allocated (t = 1, 2, . . . , T ), creating a sequence of state

and action pairs: (s1, a1, r2, s2, a2, r3, . . . , sN that terminates at T = N time steps, in

an episode (epi). The agent uses the reward from each time step (t) to update its

tabular Q-values.

The agent is oblivious to the environment and uses the reward/feedback from its

actions on the environment to updates its tabular Q-values using temporary difference

approach. Therefore as the agent tries to arrive at its optimum Q-values (Qπ) for

predicting the best sequence of actions from different states (π∗(s, a)), it also optimizes

the environment’s reward function. As the environment’s reward frames the agent’s

policy, as described in algorithm 4 and explained in subsection 3.1.3.

5.4.2 Power Allocation MDP Formulation

The first phase creates an optimal device-to-channel assignment with nodes operating

at maximum transmission power. This is fed to this phase (shown in figure 5.7) aimed

at optimizing APs/nodes’ transmission power while maintaining good SINR of all nodes

as formulated in equation 5.7a. A good SINR benchmark is assumed to be a node’s

signal-to-noise ratio (snr) when it does not share resources. The second phase arrives
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Algorithm 4: Spectrum Allocation

Input: Initialize Q(s, a) values, learning rate (α), discount factor (γ) and
ϵ-greedy. Initialize RL environment initial state (st) from equation 5.8

Output: π∗(s, a) = Q∗(s, a)
for epi = 1 to #episodes do

for t = 1 to #terminal time step do
from the current state s(t);
An ϵ-greedy rule:;
if a random number > ϵ-greedy then

an action (at)= argmaxA(Q(s, a)) from algorithm’s Q− table is
taken

end
else

A random action (at) from equation 5.9
end
Obtain a reward r(t+1) equation 5.10 and a random next state (s(t+1))

equation 5.8 from RL environment;
To minimize number of edges in equation (5.7a) rt+1 = −rt+1;
From the Q-tables, obtain all possible next state actions’ value
(Q(s′, a′);
Update the Q-values in Q-table using equation (5.14)

end

end
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at this good SINR benchmark by minimizing the difference between a node’s sinr when

sharing its resources and snr in equation (5.13).

The objective function is achieved by the second phase agent in algorithm 5 by

observing the environment’s state in an episode (epi), at each time step (t) as an AP’s

id, and its previous transmission power defined in:

st = {i, Pi(t− 1)} Pi(t− 1) ∈ Pi, in equation (5.6a) (5.11)

. Similar to the first stage, the time step terminates (T) when all the channel matched

devices have been assigned new power limits. The agent takes actions (equation (5.12)):

at = {0, 1, 2} (5.12)

of a single-digit increase, decrease, or no action (when at = 2 or 1 or 0 respectively) on

the observed power and is rewarded based on the reward function:

rt+1 = ∥snr(t)–sinr(t)∥ (5.13)

.
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Figure 5.7: Two-Staged Apporach

5.4.3 Policy search

The algorithms (first and second) search through 2a(t) policies while taking actions from

different starting states to determine the sequence of actions that assures it of the best

reward [107]. The algorithms greedily searched through these options in each time step

(t) and updated a current Q-table’s Q(s, a) values with the equation:

Q(s, a)← Q(s, a) + α[R(s, a) + γ argmaxaQ(s′, a)−Q(s, a)] (5.14)

where Q(s, a) is the current Q-value for the state action pair (st, at) on the Q-table

and Q(s′, a) = are Q-values from all possible action at the next state s(t+1). R(s, a) is
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Algorithm 5: Power Allocation Q-Learning

Input: Initialize Q(s, a) values, learning rate (α), discount factor (γ),ϵ-greedy,
and RL environment initial state (s(t)) from equation 5.11

Output: π∗(s, a) = Q∗(s, a)
for epi = 1 to #episodes do

for t = 1 to T (Terminal time step) do
from the current state st;
Follow an ϵ-greedy rule to generate an action: (at) same as algorithm 4;
Obtain a reward rt+1 from equation 5.13 and a random next state
(st+1) equation 5.11 from RL environment;
Minimize change in sinr in equation by rt+1 = −rt+1;
Obtain maximum of all next state actions’ Q-values from Q-table
maxa(Q(s′, a);
Update the Q-table using equation (5.14)

end

end

the reward rt+1 for the agent’s action at, on the environment at (st, at) and transiting

to (st+1, at+1). Learning rate α and discount factor γ are training hyper-parameters.

An ϵ greedy policy that shuffles between a selection of best policy (exploitation) and

a thorough search (exploration) was done in each time step to prevent the algorithms

from being stuck at the local minimum.

5.5 Joint Power and Spectrum Optimization MDP

Unlike in the two-staged algorithm (TSA), where only one parameter (power or spec-

trum) was optimized individually, in joint optimization, both power and spectrum

(resources) are assigned simultaneously. The joint algorithm learns to maximize its

spectrum and power assignment while maintaining good QoS and minimizing interfer-

ence. A model-free temporary difference method is used to compute the Q − values

that make up the policy as discussed in subsection 3.1.3.

However, deep reinforcement learning (DRL) is used to find a solution to this joint

optimization task. This means that, as against a Q-table in the TSA, the policy is saved

in a Deep Neural Network (DNN). The DNN serves as an approximator and, as such,

uses approximate Q-values from the DNN, rather than the actual values used in TSA’s
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from its Q-table. However, it can store larger Q-tables, thus supporting large state-

action sizes. This becomes important as the number of actions (spectrum and power)

are more significant in this method, increasing the action space while a small state

space is retained. Thus, limited database information is utilized for its optimization

task.

5.5.1 Joint Optimization Problem Modification

A Deep Reinforcement Learning (DRL) algorithm is designed to solve the dual opti-

mization tasks defined in equations 5.5 and 5.7a. The RL algorithm learns to allocate

optimal resources to nodes while maintaining good QoS. It learns to minimize inter-node

interference as nodes continuously change positions. Resources assigned were labeled

as numbers, thus catering to their changes, and approximation of nodes’ location to

the nearest km minimized the state-action space, limiting the search space as nodes

increased.

In this approach, resource management is redefined to achieve the first objective of

the node’s SINR maximization defined in equation 5.5. It describes a good SINR as

when 75% of a node’s receivers have an SINR greater than two, as defined in equation

5.15d. It solves the SINR maximization problem by maximizing the number of nodes

with good SINR experiences (α) in equation 5.15a, as defined in:

max

N∑
i=1

|αi| (5.15a)

subject to equation 5.6a

where

αi =


0, if sinrith ≥ 2.

1, otherwise.

(5.15b)

Ikpermit =


0, if number of AP ≤ 3.

1, otherwise.

(5.15c)
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SINRith = sinr25% = sinrmax subject to:P [sinr < sinrmax] ≥ 25% (5.15d)

sinr ∈ [SINRim ], m = 1 . . . 100 (5.15e)

The second resource management task in equation 5.7a is made a constraint to the

good node maximization in equation 5.15b and (5.15c). The algorithm minimizes the

interference level by ensuring that there is no interference permitted (Ikpermit = 0) when

the number of nodes in the network is few (equation (5.15c)). However, for a large

network, interference between nodes is permitted (Ikpermit = 1) to accommodate more

nodes with good SINR experience. This was done to accommodate a level of interference

between SUs in situations where this was possible. The interference allowance permitted

among SUs is not clearly defined in the literature. The multilayered interference permits

proposed constraints and quickened convergence in large networks.

5.5.2 Joint Optimization Algorithm (JOA) RL Environment

The different formulation of the JOA was necessary for the non terminal time step

approach adopted to solve the changing network scenarios MDP. The JOA learned

to know the best sequence of action (policy) in each new network scenario within

an episode. An episode like in TSA was split into a lot of time step (t), but the

terminal time step (T ) was not defined. The JOA had to learn in each network scenario

(episode) while taking time steps (t) to realize the objective of minimizing interference

and maximizing the number of good nodes.

The RL environment’s state (st) is defined as:

st = {xi, yi, Ii} (5.16)

where (xi, yi) are the coordinates of the node (i) and Ii is defined as Iki,j in equation

(5.5) as the paired interference between node i and any other node sharing an allocated
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channel k with it, at a time step (t). The interference status of a node can be either a 1

when it is a cause or victim of interference or zero otherwise. The coordinates capture

the continuous changing locations of the nodes. On time step (t), the agent on a state

takes an action of allocating a channel and power defined as:

at = {a1, a2} (5.17)

where a1 ∈ 1, ...K, of K available channels and a2 ∈ 0, Pmin, ...Pmax. When the

power is zero, the node is not assigned. An action is taken based on an ϵ−policy where

the agent either selects a random action (exploration) or takes an action based on its

π-policy/Qπ(s, a) (exploitation), balancing exploration with exploitation.

The agent’s reward r(t+ 1) from the environment:

r(t+1) =


0, if

∑
αi = 0.∑

αi/N, otherwise.

(5.18)

where N is the number of AP/nodes, αi in equation Fig. 5.18 is the SINR experi-

enced by the first quartile of an ith node’s 100 receivers; solves the resource management

problem formulated in equation (5.15) by ensuring that all nodes experience good QoS

(r(t+1) = 0in equation (5.18)). When this is not the case, the instantaneous reward is

normalized to limit the explosion of the reward value, which impedes the convergence

of deep neural networks.

The states of the environment transition from one node to another randomly with

no set probability (off policy) while ensuring that all nodes are assigned resources

before starting another round of reassignment. This was to ensure that all nodes

are given an assignment. In each episode (network scenario) the state action pairs:

x1, y1, I1, a1, r2, x3, y3, I3, a2, r3, x2, y2, I2, a3, r4, . . . , xi, yi, Ii, at, rt+1, . . . with i ∈ 1 . . . N

and as such, the transition increases with the number of nodes. The episode terminates

as soon as the JOA’s objective is achieved, and the time step rewards help the initial

random Q-values to gradually arrive at an optimal Q∗(s, a) policy that guides the agent

in making the right decisions. As the Q-values converge at this optimal policy the en-
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Figure 5.8: Deep Neural Network Q-value (DQN)

vironment’s optimization problem is solved as this guides the update in the temporary

different approach.

5.5.3 Joint Optimization Algorithm’s Policy Design

The Joint Optimization Algorithm’s policy as an Artificial Neural Network (ANN) is

adopted as a nonlinear function that approximates the content of a typical Q-table.

Deep Neural Networks are ANNs with more hidden layers, the structure consists of

input (xi, yi, Ii), two hidden layers, and output layers as shown in figure 5.8. Therefore,

they have more neurons with weights to represent better the input features’ contribution

to the neural network’s predictions [107]. This has the drawback of having too many

weights that cause over-fitting of the dataset or limit the backpropagation of NN’s error

when it has too many layers. As such, the JOA had two hidden layers with 24 neurons

each, thus limiting the number of weights and dept of the DNN.

The DNN approximates the policy (π), which guides the algorithm on the suitable

action based on an input state. Therefore, the DNN input layer is the states’ features

in equation (5.16), and its output layer produces a probability of predicted actions in
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equation (5.17). Initially, since the weights of the DNN are random, like in the truth

table, these output probabilities represent the initialized Q-values for each state-action

pair. This probability, q(xs, a; θ), becomes correct (i.e., optimal policy is reached)

when it predicts the correct state-to-action decision most times [107,110]. The optimal

policy’s hypothetical good Q∗(s, a) (an approximate of Q∗(s, a)) )is therefore assumed

to be the DNN ground truth which it strives to arrive at.

The ground truth is a future Q-value estimated in temporary difference as an ac-

cumulated future reward. This is a function of the difference between the present and

next states’ Qvalue in equation (5.14) [107]. The DNN weights are, therefore, fine-tuned

to the calculated Q-value from equation (5.14). The updated weights minimize the loss

between the next and present state qvalues, (q(xs′ , a
′), and q(xs, a)), to arrive at a stable

Q(s, a).

The convergence of the Q-values estimated by the DNN indicates this stability and

represents the successful minimization of the DNN’s objective loss function. Also, ar-

riving at this convergence or good Q-values with the optimal policy Q∗π, means that

the agent has learned the right sequence of actions that makes it get the best rewards

from the environment. This means that the environment’s decision optimization prob-

lem has been solved such that its rewards to the agent are similar over continued time

steps.

TheJOA’s DNN was trained by 30 different networks (a new network in each

episode) generating specific state-action policy πx,a that correctly predicts the spec-

trum and power of a new DSA network with similar x, a size. To prevent over-fitting,

arrive at convergence, and capture the agent’s decisions, the DNN’s policy is trained

in batches from a pool of the agent’s decisions stored in its replay memory (D) in

algorithm 6.

5.6 Chapter Summary

In this chapter, available channels/spectra achieved from Chapter Four were managed

among secondary users (SUs) using TVWS random and CBRS’ recursive strategies.
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Algorithm 6: Deep Q-Learning Algorithm

Input: Initialize replay memory D, Initialize Q-network’s random weights
(q(s, a; θ)), learning rate for DNN, Initialize target Q-network
(q
′
(s, a; θ

′
)). Initialize RL environment initial state (s(t)) from

equation 5.16
Output: π

′
(s, a) = approximate Q∗(s, a) = Q

′
(s, a)

for epi = 1 to #episodes do
for t = 1 to #steps do

from the current state s(t);
An ϵ-greedy rule:;
if a random number > ϵ-greedy then

an action (a(t))= argmaxA(Q(s, a)) from algorithm’s DNN
end
else

A random action (a(t)) from equation 5.17
end
Obtain a reward r(t+ 1) and a random next state s(t+ 1) equations
5.18, 5.16 from RL environment;
Store experience (s(t),a(t),r(t+1),s(t+1)) in replay memory (D)
Randomly select samples from D (sd(t), ad(t),rd(t+ 1), sd(t+ 1))
θ is updated based on the Loss = [rd(t+ 1) +
γmaxad+1

q
′
(sd+1, ad+1; θ

′
)− q(sd, ad; θ)]

2

Predict possible next state actions’ value (q(s(t+ 1), a(t+ 1); θ)
Update q

′
(θ
′
) from q(θ)

end

end
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These non-interference-aware and interference-aware algorithms were designed to oper-

ate on a TVWS network to serve as a baseline for assignment performance evaluations.

A framework for interference awareness was developed based on a unique IEEE 802.19

interference discovery methodology, which quantified the nodes’ interference levels.

A novel two-staged Q-learning reinforcement learning algorithm’s reward function

was designed to solve a central resource coordinating problem discussed in chapter 2

and 3. The algorithm minimized interference among sharing SU and maximized the

number of sharers. To address the same problem, a novel joint optimization deep Q-

learning algorithm’s reward function was developed. These algorithms addressed the

resource assignment to randomly located nodes in a study area using different Markov

Decision Processes. A detailed review of the performance of these different resource

management and allocation techniques is evaluated in the next chapter.
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Intelligent Resource Management

Performance

Intelligent resource management enables the dynamic allocation of spectrum and trans-

mit power to dynamically located access points/base stations/nodes. The designed

resource allocation algorithms discussed in the previous chapter were evaluated based

on convergence, quality of service (QoS), repeatability, and scalability. Their perfor-

mances were compared with existing random and recursive assignment techniques to

establish their impact on spectral efficiency, SU’s maximization, and satisfaction. Un-

like prescriptive optimization algorithms (non -RL algorithms) discussed in chapter 3,

learned algorithms generate predictive responses/allocations to dynamic network de-

mands. This makes them responsive to future spontaneous shared spectrum networks.

To measure this, the SUs interference tolerance as suggested in [19] is defined as the

level of interference permissible is not defined in any literature. This thesis therefore

assumed that a permissible disturbance from another transmitter is permitted to the

degree to which only the first quantile of a node’s receivers are disrupted. Hence an SUs

satisfaction or Quality of Service was defined as good when most of the SU’s receivers

(75%) had SINR greater than a 0dBm threshold.

Four measuring indices, Requests Assigned, Assignment Performance, Request Per-

formance, and Probability of Total failure, were defined and used to assess resource
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management algorithms’ assignment performance. The intelligent algorithms, there-

fore, learned to optimize spectrum and power (resources) assignment to nodes/APs,

coexisting at the same space and time.

6.1 Algorithms Input Parameters

The designed RL algorithm’s states (WSD’s IDs and locations) were instantaneous and

changed over time, and the actions assigned spectrum and power (resources). In the

two algorithms created, the available channels were the same, while the power levels

and hyperparameters differed to accommodate each algorithm’s unique property.

6.1.1 Spectrum Resources.

The Resources in this study are based on the outcome of available channels on the

TV band in Glasgow, UK. The available digital TV bands computed in table 4.5 were

channels 23, 26, 30, and 36, as bands above channel 48 have been reassigned to other

services. The available channels vary from 2 to 4 to create a manageable parameter

size for detailed experimentation and observation of all algorithms.y

6.1.2 Power Resources.

A fixed maximum power of 36 dBm was used for the non-optimization algorithms, as

stated in Ofcom’s documentation [186]. In the two-phase algorithm, a WSD’s trans-

mission power was between a minimum of 30 dBm and 36 dBm, with a 1 dB increment,

to form a set of power limits {30 dBm, 31 dBm, 32 dBm,..., 36 dBm}. This was done

to limit the state space being examined. Similarly, in the Joint optimization algorithm,

a minimum of 25dBm was assumed with a 2 dB increment, P = {25 dBm, 27 dBm, ...,

35 dBm} for the same reason.

6.1.3 Algorithm learning parameters.

The machine learning algorithms require different learning parameters called hyper-

parameters. A summary of the two-staged algorithm (TSA) hyper-parameters is pro-
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Table 6.1: Training Parameters for Two-Staged Q-learning Algorithms

Parameter Value
First Stage Second Stage

Learning Rate (α) 0.1 0.1

discount factor (γ) 0.95 0.95

training episodes 5000 3000

starting ϵ 0.9 0.9

ϵ decay 0.998 0.9998

Table 6.2: Training Parameters for Joint Resource Deep Q-Learning Algorithm

Parameter Value

Learning Rate (α) 0.2

Discount Factor (γ) 0.98

Training Episodes 30

Steps 500

Exploration Rate (start) (ϵ) 1

Exploration Decay 0.99

Batch Size 32

Replay Memory Size (D) 2000

Optimizer Adam Mean Square Error

activation function ReLu

NN structure 3,24,24,2

vided in table 6.1. A slow learning rate, high ϵ, and discount factor created a slow

learning algorithm that explored the state space extensively with greater emphasis on

immediate rewards. Similarly, the training parameters for the two-layered Deep Neural

Network (DNN) in the Joint Optimization Algorithm (JOA) are summarized in table

6.2. JOA’s training episodes used in this method were less, as each episode repre-

sented a new DSA network scenario on which the JOA had to achieve optimal resource

assignment.

6.1.4 Intelligent Algorithms Training and Testing

Two different training approaches were adopted in the two designed intelligent algo-

rithms (TSA and JOA). In TSA, each network scenario was trained with multiple

episodes of different sequences of decisions on resource allocation in the first stage and

power allocation in the second stage. The TSA, therefore, learned how to make the
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right spectrum and power assignment for each network scenario irrespective of its start-

ing node. The TSA algorithm is trained and tested in each network scenario to make

a sequence of spectrum and power allocation decisions.

In the JOA, a single algorithm’s policy, defined by a specific number of radios and

available resources, was trained with 30 dynamic and unique scenarios. The number

of scenarios was determined based on the size of the study area 2500km2, and with

each Wireless Regional Area Network (WRAN) covering about a 100km2, an average

of 25 random locations of this node type was sufficient to capture varied possibilities

within the study area without repetition. Thus, each test scenario was unique for a

constrained experimental environment size, number of nodes, and node/radio types.

The JOA learned to allocate spectrum and power simultaneously in each episode and

the network scenario changed at each new episode. The JOA learned to assign resources

irrespective of the start node and the location of the devices.

Similarly, it was assumed that 10 test scenarios were sufficient to measure the

performance of all allocation algorithms. This was considered statistically sufficient

to compare all allocation algorithms’ ability to allocate resources in the same unique

scenario, ascertaining their consistency in decision-making. The JOA was then tested

together with the TSA in ten unique scenarios in section section 6.4 and with other

allocation algorithms in another ten unique scenarios in section subsection 6.5.2.

6.2 Convergence

The Reinforcement Learning algorithms designed to solve the optimization problem

combined trial and error search for possible solutions (exploration) and maximizing

the found solutions (exploitation) to arrive at a solution. As with most optimization

problems, the solutions converge when changes in the observation time lead to no signif-

icant change in the learning algorithm’s decision/reward. The convergence, therefore,

means that there is a possible solution to the two optimization equations formulated in

equations (5.5) and (5.7a). However, the solution may be a local solution or a global

solution, as observed in the performance of the two algorithms.
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6.2.1 Convergence of Two-Staged Algorithm (TSA)

The convergence of the Two-Staged Algorithm (TSA) when assigning two channels to

3 and 4 nodes in network scenarios (ql32, ql42) is shown in the left of Fig. 6.1. It shows

an upward convergence as first phase’s maximization of its reward moving average

(equation 5.10). Similarly the second phase of transmit power assignment to already

assigned 2 channels to 3, 4, 5, and 6 nodes (qlp32, qlp42, ..., qlp62) is shown the right of

Fig. 6.1. the second phase’s minimization of QoS difference and as such descended to

a converged optimal Q-value at varied convergence speeds, as shown in the right plot

of figure 6.1.

Training time for the two stages differed; convergence in the first stage was achieved

after 5000 episodes and 3000 episodes in the second. The first stage took about 2 to

8 hours for different network sizes, while the second took an average of 1 to 3 hours;

these ran on a cloud-based platform (Google Colab) with 12.7GB RAM. There was a

continued decrease in convergence moving average value as the number of nodes sharing

the two channels increased. This results from the reward function indirectly dependent

on the number of sharers. Thus, the reward decreased as the number of requesting

nodes increased. Convergence in the second phase was fastest when TSA shared two

channels among three nodes, taking longer as the number of requesting nodes increased.
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Figure 6.1: Convergence of TSA’s when assigning two channels to various numbers of
nodes

6.2.2 Convergence of Joint Optimization Algorithm

The Joint Optimization Algorithm (JOA) minimized the Q-value approximator’s loss

function explained in subsection 5.5.3. JOA assignment of 2 channels to network sce-

narios containing three to six nodes is represented in Fig 6.2 as a Q-value convergence

plot for the networks (q32, q42, ..., q62). This showed that the Q-value converged upward

to an ideal Qπ policy, as it maximized the reward function in equation (5.15a) progres-

sively in the right plot of Fig. 6.2. The right plot, therefore, shows how the RL agent

arrives at the solution to the environment’s MDP while the left plot shows how the

agent arrives at its optimum policy Q∗π.

Also, the loss experienced by the Deep Neural Network (DNN), for each network

scenario, with a unique number of nodes, loss3, loss4, ..., loss6, are illustrated in Fig.

6.2 The loss function shows how the weights in the DNN are being trained to achieve the
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optimal target DNN that achieves the correct Q*values approximates or predictions.

A loss plot shows the step-wise training of the DNN weights to minimize the loss

function in algorithm 6, to achieve the optimal policy Q∗π, hence the decreasing plot to

convergence.

The Fig. 6.2 convergence plot differs in steadiness from that achieved in Fig. 6.1.

This is because the training episodes were framed differently. In each episode in Fig.

6.1, the TSA algorithm learned a single network scenario; as such, the nodes were static

all through the training, and as such, a smooth convergence was achieved despite the

fact that their reward functions were not static. In the JOA, each episode had a new

network scenario, and as such, the Q-values struggle to arrive at the Q*value target for

each new network scenario in Fig. 6.2.

JOA’s Q-value approximation for three nodes arrived at convergence quickest after

about 15 episodes, while others arrived after 25 to 28 episodes. It struggled to arrive at

convergence when requesting nodes were greater than double the number of channels,

as optimal solution searches were audacious as the DSA network size increased.
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Figure 6.2: Convergence of JOA training to assign two available channels to several
nodes

6.3 Quality of Service

Each network scenario studied had randomly located APs/nodes of different device

types. Diamond-shaped Wireless Regional Area Networks (WRAN) base stations or

APs had equal priority with circular Wireless Local Area Network (WLAN) access

points or nodes. The two intelligently trained models predicted resource (spectrum

indicated with different colors) assignment in each network scenario, as illustrated in

the scattered plots (Fig. 6.3) in this section and section 6.4. This showcases the novel

model’s resource assignment to nodes changing location in different network scenarios.

Similarly, the quality of service experienced by each node in each of the network

scenarios was assessed based on the signal-to-noise plus interference ratio (SINR/SNIR)

experienced by its 100 receivers as stated in equation 5.6c. This is represented as a box

plot to capture the device/node’s first quantile SINR when assigned a specific channel

163



Chapter 6. Intelligent Resource Management Performance

(color) in Fig. 6.4. Each model’s assignment in a scatter plot DSA network scenario

is complemented with a performance box plot (Fig. 6.3 and Fig. 6.4). These describe

TSA and JOA’s model’s assignment and node performance.

The threshold for good quality of service was defined as when the node/AP’s set of

receivers’ sinr’s first quantile is greater than or equal to zero. That is, when only 25%

of a node’s receivers experience SINRs below zero, the node is termed to have a ’good

QoS.’

6.3.1 Two-Staged Resource Management QoS

The TSA trained its two-staged model for each network scenario considered. It suc-

cessfully assigns resources (2 channels at different Power levels) to four nodes in figure

6.3. Despite the similar distribution of WRAN and LAN nodes in all network scenarios,

only scenario 1 had all nodes with good QoS Fig. 6.4 .

The first stage’s assignment of channels showed the red channel was assigned to

nodes that were well apart in scenarios 1 and 2. However, the reverse was done in

scenarios 3 and 4, causing the nodes to perform poorly in figure 6.4. A similar expe-

rience is observed with the blue channel (shared among dissimilar nodes) in scenario

2, resulting in node 4’s poor performance. The channel assignment’s inconsistency was

attributed to the single state of the first stage, which was to be corrected by the second

stage, appropriate power management. However, the second stage is limited by its 30

dBm minimum power constraint.

The objective of the central coordination was to limit the occurrence of these poor

SINR performances as these affect the level of contention managed by MAC protocols

or other intelligent distributed coordination systems. TSA showed a limited ability to

achieve this, which is further quantified in section 6.4.

6.3.2 Joint Resource Management QoS

The Joint Optimization Algorithm (JOA) assigned resources (red and blue channels)

to a similar DSA network with four nodes in figure 6.5a. However, the yellow-colored

nodes were not assigned because of the possibility of their assignment leading to poor
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Figure 6.3: Two-Stage Algorithm’s (TSA) allocation of 2 channels (colours) to 4 APs
network scenario

performance. Proximity nodes had a higher risk of interference. When it assigned all

available resources to WRAN in scenarios 1 and 4, all other nodes were excluded due

to the node’s broad coverage, arguably impeding resource sharing with other nodes.

Thus, JOA prioritizes QoS experience over several shared devices, as observed in its

problem formulation (equation 5.15).

Thus, in all scenarios, JOA enabled all nodes to have good QoS in figure 6.5b but

limited the maximum number of sharing nodes to three in scenarios 2 and 3, figure 6.5a.

This was in line with the thesis object of providing a maximum number of nodes with

good QoS while managing a level of interference. A similar performance was observed

when the number of channels was increased to 3 and shared among five nodes in figure

6.6a. Scenario 2 had all its nodes assigned with good QoS in figure 6.6b. However, this

was rarely the case in other scenarios with proximity nodes. An elastic JOA model

learned to assign five nodes, four nodes, and three nodes in different DSA network

scenarios, such that nodes experience optimal QoS.
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Figure 6.4: The SINR performance of TSA assignment in Fig. 6.3
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(a) Joint Algorithm’s allocation of 2 channels (colours) to 4 APs in
diverse network scenarios

6.4 Repeatability

The two intelligent algorithms use four defined criteria to assess the frequency of good

resource assignment. This is to ascertain the degree to which each algorithm could

continuously maintain its good performance and the effect of this on other nodes. As

discussed in subsection 3.6.2, these indices extend previous works, providing a general

index to measure the performance of multiple DSA algorithms.

These four metrics provide a uniform measure of the performance of all allocation

techniques compared. They assessed the technique’s ability to achieve the overall thesis

objective to:

1. maximize the number of nodes sharing spectrum and

2. minimize the interference between spectrum-sharing nodes.

These matrices measured satisfied request nodes (requests assigned), assessing how

many requesting nodes were granted access by reusing resources. Good allocation was

based on the quality of service enjoyed by a node’s receivers (assignment performance).

In addition, to assess the repeatability and consistency of the algorithms across differ-
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Figure 6.5: Joint Resource Management Algorithms of 2 channels (colours) assignment
to 4 APs.

ent network scenarios, the assigned requests and the probability of total failure were

introduced.

1. Requests Assigned (%): This is defined as:

Requests Assigned =
Assigned Nodes

Requesting Nodes
(6.1)

in equation (6.1) as the percentage of all requesting nodes assigned channels in a

DSA network scenario. It is a measure of the maximum number of nodes that an

algorithm successfully assigns resources.

2. Assignment Performance (%): This was defined as:
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(a) Joint Algorithms Assignment of 3 channels (colours) to 5 SU’s APs in different
network scenarios

Assignment Performance (%) =
Good Nodes

Assigned Nodes
(6.2)

which is the percentage of all assigned nodes with good QoS in a network scenario

in equation (6.2)). It measures the impact of the assignment on nodes’ QoS.

3. Request Performance (%): this is defined as:

Request Performance (%) =
Good Nodes

Requesting Nodes
(6.3)

which is the ratio of assigned good QoS nodes to the total number of requesting

nodes in percentage. This is the product of Assignment Performance and Requests

Assigned or as stated in equation (6.3).

4. Probability of Total failure: this was the probability of all assigned nodes suffering

poor QoS performance.
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(b) SNIR performance of JOA assignment to nodes in figure 6.6a scenarios

Figure 6.6: Joint Resource Management Algorithms Convergence for several available
channels and access points.
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To further assess all algorithm’s solutions to these problems, the two metrics, as-

signment performance and request performance, balance the trade-off between the two

objectives. This is because increasing the number of nodes sharing a resource increases

interference, which reduces the QoS experienced by nodes. The assignment performance

and request performance together quantify an assignment/allocation algorithm’s per-

formance in balancing these two tasks.

These performance indices are used to assess each algorithm’s performance in ten

unique DSA network scenarios. The algorithms allocated colored available channels to

WRAN (diamond-shaped) nodes and WLAN (circular-shaped) nodes.

6.4.1 Consistency of Two-Staged Algorithms

The TSA consistency in predicting the assignment of two channels (colours) to four

nodes is investigated. TSA models are trained for each of the ten unique networks and

assign resources to each network as shown in figure 6.7. All four nodes were assigned in

all the scenarios, irrespective of the positions of WRAN and LAN nodes, thus achieving

a 100% requests assigned performance.

However, the performance of these assignments could have been better (50 to 100%

nodes experiencing poor QoS) in scenarios 1, 4, 7, and 10, as shown in figure 6.10. The

TSA algorithm assigned resources in very challenging networks, such as scenarios 8

and 9, but failed to achieve such good performance in scenario 10. Scenario 10, a total

assignment failure was experienced, as all assigned nodes experienced poor QoS. This

algorithm, therefore, had a 1% probability of total failure and an unstable performance.

A summary of its performance in each of the network scenarios is provided in table

6.3. On average, the TSA algorithm was seen to have a 68% assignment performance

in table 6.4 and was tagged as unstable. The limited state information (node id) of

the algorithm’s first stage and the limited power range constraint of the second phase

may have contributed to its instability and poor performance. Thus, although TSA

learned to assign spectrum when it started at different nodes, it quickly learned to

assign correctly or poorly, making it unstable.
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Figure 6.7: 10 Scenarios of Two-Staged algorithm’s assignment of 2 channels (colors)
to 4 nodes

6.4.2 Consistency of Joint Optimization Alogirthm

JOA’s consistency was studied in the same ten networks as the previous section, shown

in figure 6.9. The layout shows that some nodes were not assigned (colored yellow), as

JOA prioritized nodes’ good QoS against assigning all nodes.

A JOA is trained to provide a single model that successfully predicts assignments

for 75% of its requesting nodes in 8 scenarios and 50% in 2 scenarios. This meant that

the algorithm denied 25% to 50% of requesting nodes access to channels, resulting in

an average of 69% requests assigned in table 6.4. This was attributed to the limited

power constraint and the number of episodes used to train the algorithm, limiting the
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Figure 6.8: The SINR performance of Two-Staged Algorithms assignment of nodes in
Fig. 6.7

models’ exposure to more complex node distribution.

JOA’s assignment performance was 100% in 9 out of 10 scenarios and 67% in sce-

nario 3, as shown in figure 6.10. The average assignment performance for all scenarios

was 96% (table 6.3), revealing that the algorithm’s assignment consistently resulted

in good QoS nodes. The JOA’s consistent assignment performance achieves the thesis

objective and a reasonably fair performance against TSA in table 6.3 and 6.4.
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Figure 6.9: 10 Scenarios of JOA assignment of 2 channels (colors) to 4 nodes
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Figure 6.10: The SINR performance of Joint Optimization Algorithms’ assignment of
nodes in Fig. 6.9

6.5 Comparing Resource Assignment Algorithms

The comparative performance of random, recursive, TSA, and JOA resource manage-

ment strategies in assigning different numbers of channels to nodes is evaluated. The

methods’ unique assignment performance is analyzed using bar, scatter, and box plots.

The bar chart shows the number of channels each algorithm shares to devices. The

scatter plots show the TSA assignment of channels (colors) to devices in their space

location. The TSA, random, and recursive assignment performance is shown in the box

plot in figure 6.11. The JOA assigns resources to a similar DSA network in figure 6.12,

thus comparing and analyzing all algorithms’ assignments.

The methods’ request and assignment performance were evaluated for ten unique

networks. Their average performance in these scenarios in assigning different numbers

of channels to various numbers of devices is presented in figures 6.24, 6.25 and 6.26,

discussed further in this section. An additional channel usage index is defined as the

ratio of the number of channels assigned to the total number of available channels.
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Table 6.3: Repeatability Performance of TSA and JOA in resource assignment of 2
channels to 4 nodes

Scenarios # TSA Assignment
Performance (%)

JOA Assignment
Performance (%)

1 25 100

2 100 100

3 100 67

4 50 100

5 75 100

6 75 100

7 50 100

8 100 100

9 100 100

10 0 100

Table 6.4: Algorithms Average Repeated Assignment of 2 channels to 4 nodes

Algorithm Assignment Per-
formance (%)

Requests As-
signed (%)

Request Perfor-
mance (%)

TSA 68 100 68

JOA 96 69 67

6.5.1 Resource Assignment Comparison of Joint, Two-Staged, Ran-

dom and Recursive methods

Allocation techniques, random (rand) and recursive(recur), were compared with the

TSA (QSecd), and it behaved like other algorithms in the Figure 6.11 bar chart. On

the same network, JOA performed better by assigning two nodes and ensuring they all

had good QoS, as shown in figure 6.12. As earlier explained, it resulted in low request

assigned performance. In contrast, the high requests assigned performance of random,

recursive, and TSA methods were consistent, as the number of devices increased in

figures 6.13, 6.14 but resulted in a decrease in assignment performance.

However, in assigning two channels, TSA learned to stop assigning resources to

nodes when there was an increased level of contention that resulted in poor QoS in

nodes, as shown in figures 6.14 and 6.16. Thus, TSA assignment resulted in 3 out of its

4 APs enjoying good QoS, in the figure’s box plot, like JOA, in figures 6.15 and 6.17.

In these instances, other methods reallocated these channels, resulting in poor QoS, as
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Figure 6.11: SNIR of our previous Q-learning algorithm when compared with other
techniques
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Figure 6.12: Comparing DQN with other networks.
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Figure 6.13: Comparing allocation techniques N = 4 and K = 2
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Figure 6.14: Comparing allocation techniques N = 5 and K = 2
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Figure 6.15: JOA assignement N = 5 and K = 2

shown in figure 6.16. Thus, TSA and JOA, in their assignment, learned to regulate

their requests performance to increase their good performance.

Similarly, when the number of channels was increased to 3, and APs were few (4),

TSA learned to optimize channels. It reused channels by using only two channels

instead of 3 available channels, as shown in the bar chart of Figure 6.18 while ensuring

good quality of service for all or most APs. Its channel usage was at 67% as against

100% for other methods. This was repeated in Figure 6.20, where it optimally matched

three (3) channels to five (5) APs, maintaining a 75% channel usage, as against others’

100%. Its channel reuse slightly altered its assignment performance, which was at par

with random and better than recursive assignment methods. JOA lacked adaptable

channel usage, as it was designed to prioritize assignment performance over spectral

reuse, as shown in its assignment of 3 and 4 channels in figures 6.19 and 6.21.
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Figure 6.16: Two-Stage Algorithm Assignment and other techniques N = 6 and K = 2

6.5.2 Scalability of the Two Optimization algorithms compared with

other methods

A summary of the scalability of all the methods’ assignment and request performance

was evaluated over increased resources in figures 6.24, 6.25, and 6.26. In figure 6.24,

all algorithms assigned two channels to 3, 4, 5, and 6 nodes. Each assignment case

(e.g., two channels assigned to 4 nodes) was repeated, resulting in ten unique network

scenarios as shown in Fig. 6.7—these scenarios’ average assignment and request per-

formance, ascertained performance consistency with changing heterogeneous network

composition. The assignment performance, therefore, quantifies the maximization of

SINR performance while the requests assigned quantified the reuse of channel and

number of satisfied requesting nodes/SUs.

In analyzing the figures 6.24, 6.25, and 6.26, JOA had the best assignment perfor-

mance in all resources, as it had the closest assignment performance to an exclusive

assignment. The exclusive assignment, described in subsection 5.2.1, assigns an avail-

able resource to a node without resource reuse. The recursive method in all the figures

was least close to the exclusive assignment as they depended on the MAC or MNOs’
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Figure 6.17: JOA assignment for N = 6 and K = 2
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Figure 6.18: Two-Stage Algorithm Assignment and other techniques N = 4 and K = 3
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Figure 6.19: JOA assignment N = 4 and K = 3
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Figure 6.20: Two-Stage Algorithm Assignment and other techniques N = 5 and K = 4
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Figure 6.21: JOA assignment N = 5 and K = 4

coexistence group’s coordination scheme [187], which was a scheme outside this thesis’

scope. It also had no power optimization to improve the QoS experience. However,

random and TSA performed at par, assigning 2 to 4 channels. Despite the absence of

interference knowledge, the random assignment’s first-come first-serve approach made

its coordination inconsistent like TSA.

The request performance of JOA and TSA in figures 6.24, 6.25, and 6.26 showed

that TSA was best in satisfying nodes’ requests when 2 and 4 channels were available.

TSA, therefore, performed best in request performance, and the recursive method was

worst. Their overall request performance was poor despite the good request assigned

performance of the random and recursive methods, as mentioned earlier. This was

because they relied extensively on internal MAC protocol coordination, which managed

high resource-to-device contention. However, adopting an intelligent resource manager

before random and recursive assignments could harness the strengths of both intelligent

and existing internal/MAC coordination schemes.

The best-performing method was based on the thesis objective of optimizing spec-

trum and power allocation to nodes. TSA was at par with JOA in request performance
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as its high requests assignment augmented its poor assignment. However, its unpre-

dictable performance and poor assignment performance made JOA the best-performing

algorithm.

To quantify the impact of the best allocation method on spectrum reuse, the JOA

and the exclusive assignment are compared in allocating two channels to different num-

bers of requesting nodes in Fig. 6.24. The JOA provided nodes with as good a QoS

as the exclusive in its assignment performance. However, the number of requesting

nodes satisfied (requesting performance) increased significantly in the JOA compared

to the exclusive assignment. In each quantity of devices (3, 4, 5, and 6 devices), there

is an almost 20% increase in the number of satisfied nodes by JOA as against exclusive

algorithms assignment of 2 channels. This means that when, for example, there are 4

requesting nodes and only two available resources, JOA reuses these 2 resources such

that all nodes achieve good QoS as against what exclusive assignment permits of only

two satisfied nodes.

However, as the number of nodes and available resources increased (increased search

space for the JOA), the algorithm’s performance dropped. In Fig. 6.26, when 4 available

channels are being shared by five, six, seven, and eight nodes, the average request

performance improvement of JOA, compared with exclusive, drops to 10% as against

20% when 2 channels were assigned. This becomes a major drawback of JOA, as there

is a combinatorial increase in the search space as the number of available channels

increases.

In summary, the Two-Staged algorithm had unique flexibility in resource assign-

ment, as it unassigned resources and minimized spectrum usage while achieving rea-

sonable assignment performance. Training a model for each network scenario enabled

it to repeat this attribute at certain times. However, due to its limited state space,

TSA’s assignment predictions were inconsistent.

Similar to TSA, the Joint Optimization Algorithm was capable of not assigning

resources to achieve excellent assignment performance. It was consistent in its perfor-

mance and rarely suffered inferior performances. A single trained model predicted the

assignment of resources for different network scenarios, making it robust. However,
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unlike TSA, it was not designed to be flexible in minimizing spectrum usage when re-

sources were in excess. Therefore, JOA significantly reduced contention compared to

its counterparts at the expense of satisfying all requesting APs.
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Figure 6.22: Comparing allocation techniques n = 8 and k = 4

6.6 Chapter Summary

This chapter has analyzed the performance of a novel Two-staged Q-learning reinforce-

ment learning Algorithm (TSA). TSA learned to optimally predict the assignment of

scarce spectral resources to diverse located and types of nodes in a DSA network. The

low computational intense algorithm’s performance was at par with existing shared

spectrum techniques, like random, interference-unaware resource assignment of TVWS

and recursive interference-aware resource assignment of CBRS systems. These provided

a high level of resource assignment, as most requesting SUs were assigned resources,

although they suffered a high degree of harmful interference (poor QoS). The TSA

learned to maximize spectral reuse and stop assignment when necessary. However, it

suffered a high level of inconsistency in its predictions because of the algorithm’s design,

despite its convergence.
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Figure 6.23: JOA assignment for N = 8 and K = 4

Figure 6.24: Average Assignment and Request performance of Methods in assigning
two channels.
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Figure 6.25: Average Assignment and Request performance of Methods in assigning
three channels.

Figure 6.26: Average Assignment and Request performance of Methods in assigning
four channels.
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It also evaluates the novel Joint Optimization Deep Q-Learning Algorithm, which

learned to assign scarce resources to dynamically located heterogeneous nodes. Its

assignment performance was very high, as nodes were exclusively assigned available

channels (overlay sharing) or shared resources with other nodes (underlay) while limit-

ing interference. It learned to optimize and re-assign resources within the study area,

irrespective of the nodes’ location. It was consistent in its prediction and improved

the QoS of SUs, increased the number of nodes, and limited SUs’ resource contention.

However, as the number of available channels and requesting devices increased, its reuse

of resources in its assignment to many requesting nodes (spectrum reuse) dropped.
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Conclusion

7.1 Summary

Flexible coexistence management of future heterogeneous networks will require intelli-

gent and dynamic resource-sharing techniques. DSA structures use databases to man-

age the coexistence of PUs and SUs, leaving SUs to self-manage their coexistence,

thereby increasing contention among SUs. These contentions were controlled by SUs’

device-specific Media Access Control (MAC) protocols. SUs with varied standards

in a heterogeneous network struggle to manage this resource contention. The MAC

protocols achieved distributed reuse of channels, but this needed to be improved in

optimization, thus propelling the need for practical real-time coexistence management

among SUs.

Intelligent use of real-time network data can be instrumental in managing resource

contention. Advancements in artificial intelligence (AI) models can use this data for

informed prediction and contention prevention. General challenges of adopting AI in

DSA include acquiring/storing training data, long training times, and the risk of al-

gorithms becoming obsolete (training update schedules). Despite these challenges, AI

can influence the achievement of automated resource sharing in DSA systems. Rein-

forcement Learning is an AI algorithm used extensively in decentralized/distributed

resource coordination to maximize throughput, user selection, and spectral efficiency.

Limited studies have explored RL in the central coordination of resource assignment
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in DSA heterogeneous networks and none at lower bands. Exploring improved coordi-

nation at lower frequencies creates a smarter DSA system that leverages existing DSA

database knowledge for better resource coordination among SUs.

SU-to-SU coordination in the reviewed DSA systems adopted a flexible distributed/

decentralized and central coexistence management structure that performed better in

homogeneous networks and supported mainly overlay spectrum sharing. Future het-

erogeneous DSA networks are predicted to consist of several unique base stations and

access points in need of scarce shared resources; a form of coordination to maximize

limited resources becomes imminent. Improving the CBRS’ overlay shared spectrum re-

cursive approach; the proposed intelligent central resource assignment scheme enables

both overlay and underlay resource sharing among SUs. It increases the number of

supported SUs and reduces SUs’ contention while maintaining their quality of service.

Increasing the capacity of used channels requires harvesting the maximum available

channels. A design of an end-to-end DSA system provided the available spectrum in

two locations and revealed the protection levels of the incumbent/PUs. A comparison

of the two countries’ policies in the design of DSA databases revealed that their policies

impacted the quantity of available spectral resources. The central database provided

guaranteed spectral access to PUs and protection from interference. This level of exclu-

sive use of spectral was considered unnecessary for SUs, who use spectrum sporadically,

with a tolerable interference threshold.

To address the unique SU-to-SU coexistence coordination, a novel two-staged intel-

ligent Q-learning algorithm and a novel Joint optimization deep Q-learning algorithm

were designed to assign resources to SUs optimally. The RL agent was assumed to

be a central coordinating entity within the database/spectrum access system of the

DSA architecture that used consistently updated database information for its training.

The trained RL models were compared with the designed TVWS first-come first-serve

resource assignment scheme (random assignment algorithm) and the CBRS recursive al-

gorithm. These were evaluated in a designed heterogeneous network operating at lower

bands with the total number of requesting base stations and access points perpetually

greater than available channels.
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These novel algorithms arrived at convergence for different resource-sharing scenar-

ios examined. The deep Q-learning Joint Optimization algorithm performed best in

consistently maintaining good QoS to its assigned nodes but poorly accommodating

many SU requests. The two-staged Q-learning algorithm moderately assigns resources

repeatedly and assigned most SU requests; it was, however, inconsistent. The poor re-

quests performance of the DQN was attributed to the limited training dataset and its

quick convergence, and the Q-learning algorithm’s poor assignment performance was

attributed to its limited observation space. The two designed algorithms’ assignment

and request performance were better than the existing random and recursive approaches

examined. Therefore, infusing these novel intelligent central coordination into the de-

signed DSA networks improves resource coordination and SU’s quality of service and

supports more SUs, as it allows both overlay and underlay spectrum sharing.

A fundamental benefit of resource management is the maximization or reuse of

available channels by multiple service providers, increasing the capacity of networks.

TVWS provides affordable connectivity to hard-to-reach regions, and CBRS’s pop-up

private networks (5G cellular networks) provide secure internet connectivity. Improving

these systems’ SU coordination can significantly increase their capacity to support more

networks at high and low bands. Also, the JOA’s interference management automation

allows real-time interference monitoring and resource reassignment, which is useful to

wireless communication network operators when deploying DSA systems such as private

5G networks (Pop-up networks).

Also, It provides regulators with a tool for maximally allocating resources to all and

more services requesting licensed spectrum and promots efficient spectrum sharing,

trading and spectral top-up opportunities. They can give more licensees based on

special separation and transmit power limits to permit more nodes’ coexistence and

resource sharing. The spectrum allocation table in [65] spectrum allocation already

consists of several services sharing scarce spectral resources above the 1GHz band. An

intelligent spectrum manager can provide added value in sharing these bands and power

limits with service providers based on their real-time demands and locations. Allowing

more licenses to be issued simultaneously to several service providers. This will improve
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the prospect of global internet connectivity when adopted by many countries.

7.2 Key Results

The design of an end-to-end DSA network provided a detailed insight into interference

discovery techniques and the gap between database information on available resources

and their utilization. TVWS and CBRS systems’ architecture transfer the resource

management and scheduling role to equal priority SUs. This increases the level of con-

tention among heterogeneous nodes, especially when the number of nodes is more than

the number of available resources. The study also revealed that countries’ regulations

negatively impacted the quantity of available resources. Although there were regula-

tions that permit the reuse of PU’s spectrum by SUs (overlay spectrum sharing), there

are no guidelines on interference level limits to promote underlay sharing among SUs.

Addressing the technical challenge of resource management of scarce resources, a

heterogeneous DSA network (test bed) was designed. The simulation test bed’s nodes’

type, location, and available resources were dynamic. It was a neutral environment in

which to evaluate the performance of the designed TVWS and CBRS resource assign-

ment schemes. To solve the same resource assignment formulated problem, the design

of two intelligent coordinating schemes demonstrates the impact of design formulations

on algorithms’ performance and creates an alternative solution.

The intelligent resource management algorithms leveraged the existing DSA archi-

tecture to provide an improved resource-sharing model for central coexistence man-

agement. A centrally coordinating deep Q-learning algorithm trained with different

network scenarios learned to assign limited resources (spectrum and power) to request

SUs. Its resource assignment maximized resource reuse, resulting in SUs coexisting at

minimal interference, irrespective of their location within the study area. This reduced

the level of contention while maintaining a reasonable interference level among SUs,

improving the number of sharing SUs’ and their overall QoS. The two designed learned

resource management algorithms enabled more SUs to have good QoS than existing

conventional non-optimizing algorithms. However, one of the algorithms was inconsis-
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tent in its performance, and the other’s spectrum reuse performance depreciated as the

number of available channels increased.

7.3 Further Work

Future DSA networks will comprise base stations, access points, and user equipment

with different standards to make up heterogeneous networks. Therefore, the novel

intelligent resource strategies must be improved to accommodate resource management

across other bands. Deep Q-learning network algorithms have been framed to play

multiple games; extending this to coexistence management, DQN algorithms can be

built to assign resources at any band (Low and higher bands) and in any unique DSA

network scenario. Thus, a single model is provided that is deployed in a DSA network

to improve spectral utilization.

The measurable impact of increasing the state space of a DQN algorithm and its

training episodes can be investigated. Using a few observed states and training episodes

in this thesis’ the DQN algorithm resulted in relatively good coordination in small-

sized networks. An investigation into the level of improvement possible by increasing

the number of observed states and training episodes in such small networks can be

explored to inform future model designs.

The Deep Q-learning algorithm (JOA) provided a consistent assignment policy com-

pared to the Q-learning algorithm (TSA). These DQL networks can be improved by

exploring better state approximation techniques that enable convergence in large state

space. This may improve the scalability of RL resource coordination in DSA networks,

as large networks with large state space can achieve optimal resource assignment.

Similarly, the Q-learning algorithm’s (TSA) consistency performance can be im-

proved by evaluating other methods of Q-value computation, problem formulation,

and state approximation. This may also significantly enhance its optimization perfor-

mance, training time, and convergence of Q-learning algorithms. A better-performing

q-learning algorithm with less computational intensity influences its adoption in DSA

networks. Therefore, this low-cost algorithm can prove AI’s impact on spectrum uti-
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lization by quantifying the increased number of served SUs in a DSA network.

Furthermore, evaluating the performance of intelligent coexistence management in

a deployed network will prove the efficacy of embedding intelligence into coexistence

management. This thesis showed an intelligent underlay and overlay use of shared

spectrum that increased the total number of SUs supported in a TVWS network. More

work needs to be done on deploying centrally intelligent learned algorithms and models.

Implementing intelligent central coordination of resources will move the AI impact on

improved spectrum utilization from theory to practice. Influencing how policymakers

regulate spectrum licensing for wireless communication.

Improving spectral utilization through shared access has been extended to various

bands by regulators. The UK and the USA take the lead on spectrum-sharing policies;

there is a massive need to consider this in other countries. The result in Chapter Four

highlights the high level of spectral availability at lower bands. Investigating the level

of availability in different bands over wider regions in developing countries can inform

and influence spectrum-sharing policies. Policies that forestall safe resource sharing

across a wide range of bands and support more wireless services that bridge the digital

divide and enhance quality of life.

7.4 Final Remark

Global connectivity is essential for countries to achieve economic, health, social, indus-

trial, and educational benefits from digitization. With the increased demand for 5G

private networks and the future trend for private 6G networks, DSA wireless networks

provide affordable connectivity in hard-to-reach locations. The existing DSA frame-

work’s resource assignment strategy needs to improve network capacity in dynamic

heterogeneous networks with a high level of contention.

The shared spectrum paradigm adopted in DSA networks assists regulators’ shared

spectrum licensing strategy, supporting them to accommodate a wide range of ser-

vice providers and use cases. The increased Internet demand and use of IoT devices

propels the need to increase the capacity of DSA networks and support homogeneous
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and heterogeneous networks. Dynamic heterogeneous networks have unique nodes in

diverse locations and resources that change over time. The existing exclusive resource

assignment and MAC-dependent resource coordination strategy do not optimize the

spectrum, resulting in delayed spectrum access and high contention.

In this thesis, a novel central Reinforcement learning approach to optimize resources

in dynamic networks is designed, implemented, and tested. The AI algorithm success-

fully assigned resources to a heterogeneous DSA network, enhancing the network’s total

capacity while maintaining nodes’ good quality of service. This proves the impact of AI

coordination in improving the resource management of heterogeneous DSA networks.

Therefore, as the demand for wireless communication continues to grow, AI will un-

doubtedly play an essential role in optimal, efficient, and effective radio frequency usage

in DSA networks.
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Appendix A

Glasgow Digital Terrestrial TV

Transmitter parameters

The tables in this appendix present five Digital TV stations around central Glasgow

as of June 2021. These served as the Primary Users in the Glasgow database design in

section section 4.6.

Table A.1: BlackHill Transmitters located at 55.86111 -3.87417 channel status.

Mux Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Status WSD
Power
(dBm)

PSB1(BBCA) 46 674 576 100 H ”Occupied” 5.24

PSB2
(D3+4)

43 650 576 100 H ”Occupied” 6.63

PSB3
(BBCB)

40 626 576 100 H ”Occupied” 7.93

COM4
(SDN)

41+ 634.2 576 100 H ”Occupied” 7.50

COM5(ArqA) 44 658 576 100 H ”Occupied” 6.18

COM6
(ArqB)

47 682 576 100 H ”Occupied” 4.76

LG 51 714 576 5 H ”Occupied” -10.29

COM7 55 746 576 42.9 H ”Occupied” -3.16

COM8 56 754 576 39.2 H ”Occupied” -4.12
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Table A.2: Darvel Transmitters located at 55.57917 -4.29056 channel status.

Mux Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Status WSD
Power
(dBm)

PSB1
(BBCA)

22 481.8 446 20 H ”Occupied” -1.02

PSB2
(D3+4)

25 506 446 20 H ”Occupied” -1.40

PSB3
(BBCB)

28 530 446 20 H ”Occupied” -1.84

COM4
(SDN)

32 562 446 10 H ”Occupied” -5.54

COM5
(ArqA)

34 578 446 10 H ”Occupied” -5.93

COM6
(ArqB)

35 586 446 10 H ”Occupied” -6.14

COM7 55 746 446 7.5 H ”Occupied” -13.0

COM8 56 754 446 8.19 H ”Occupied” -12.9

Table A.3: Roseneath Transmitters located at 55.99111 -4.79444 channel status.

Mux Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Status WSD
Power
(dBm)

PSB1
(BBCA)

39 618 216 2 V ”Occupied” -25.80

PSB2
(D3+4)

42 642 216 2 V ”Occupied” -26.05

PSB3
(BBCB)

45 666 216 2 V ”Occupied” -26.31

COM4
(SDN)

33 570 216 2 V ”Occupied” -25.38

COM5
(ArqA)

36 594 216 2 V ”Occupied” -25.58

COM6
(ArqB)

48 689.8 216 2 V ”Occupied” -26.59

196



Appendix A. Glasgow Digital Terrestrial TV Transmitter parameters

Table A.4: Craigkelly Transmitters located at 56.07139 -3.23361 channel status.

Mux Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Status WSD
Power
(dBm)

PSB1
(BBCA)

27 522 311 20 H ”Occupied” -23.55

PSB2
(D3+4)

24 498 311 20 H ”Occupied” -23.41

PSB3
(BBCB)

21+ 474.2 311 20 H ”Occupied” -23.29

COM4
(SDN)

29 538 311 10 H ”Occupied” -26.66

COM5
(ArqA)

31 554 311 10 H ”Occupied” -26.77

COM6
(ArqB)

38+ 610.2 311 10 H ”Occupied” -27.18

LEH 30 546 311 5 H ”Unoccupied” 36.00

COM7 55 746 311 10.8 H ”Unoccupied” 36.00

COM8 56 754 311 10.8 H ”Unoccupied” 36.00

Table A.5: Selkirk Transmitters located at 55.55583 -2.79417 channel status.

Mux Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Status WSD
Power
(dBm)

PSB1
(BBCA)

32 562 522 10 H ”Unoccupied” 36.00

PSB2
(D3+4)

34- 577.8 522 10 H ”Unoccupied” 36.00

PSB3
(BBCB)

35 586 522 10 H ”Unoccupied” 36.00

COM4
(SDN)

33 570 522 5 H ”Unoccupied” 36.00

COM5
(ArqA)

36 594 522 5 H ”Unoccupied” 36.00

COM6
(ArqB)

48- 689.8 522 5 H ”Unoccupied” 36.00
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Appendix B

Nigeria (Owerri) Analogue and

Digital Terrestrial TV

transmitter Parameters.

The Analogue and Digital Terrestrial TV stations within a 200km radius of central

Federal University of Technology Owerri, Imo State, Nigeria, as at June, 2022. These

transmitters were located across 8 states in the eastern and southern part of Nigeria

and the Analogue Terrestrial TV (ATT) transmitters were mainly owned by the Federal

and state governments while DTT transmitters were dominantly owned by a private

broadcasting house (Startimes).

These transmitter parameters were used in the design of a local database in section

section 4.7 of this thesis, to highlight the impact of the Nigerian policy on spectrum

availability.
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Appendix B. Nigeria (Owerri) Analogue and Digital Terrestrial TV transmitter
Parameters.

Table B.1: Analogue Terrestrial TV (ATT) Transmitter Parameters

State/Name Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Lat. Long.

Imo/IBC 59 775.25 150 10 v 5.476 7.023

Imo/NTA Owerri 227 30 3.5 v 5.477 7.021

Enugu/ETV 50 703.25 90 20 v 6.430 7.526

Enugu/NTA Enugu 195.25 150 10 v 6.434 7.516

Anambra/NTA onitsha 5 175.25 30 3 v 6.173 6.809

Anambra/ABS 27 519.25 300 20 v 6.156 6.793

Anambra/ABS 24 495.25 300 20 v 6.231 7.080

Delta/DBS 31 551.25 85 5 v 5.543 5.728

Ebonyi/NTA Abakaliki 43 647.25 30 3.5 v 6.322 8.088

Ebonyi/EBBS 24 495.25 85 5 v 6.296 8.090

Cross River/CRBC 27 519.25 30 2 v 4.965 8.329

Cross River/CRBC
Odukpani

27 519.25 300 8 v 4.965 8.329

Cross River/NTA Cal-
abar

203 85 5 v 4.955 8.387

Abia/NTA Aba 185.6 150 10 v 5.114 7.391

Abia/BCA 47 679.45 30 2 v 5.523 7.503

River/AIT 29 535.2 300 10 v 4.870 6.948

River/RSTV 22 479.25 300 30 v 4.830 7.074
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Table B.2: Digital Terrestrial TV (DTT) Transmitter Parameters

State/Name Ch Centre
Freq
(MHz)

Antenna
Height
(m)

Tx
Power
(kW)

Polari-
zation

Lat. Long.

Imo/Startimes 43 642 100 2 v 5.300 7.300

Imo/Startimes 45 658 100 2 v 5.300 7.300

Imo/Startimes 47 674 100 2 v 5.300 7.300

Enugu/Startimes 34 570 110 1.3 v 6.4362 7.5155

Anambra/startimes 33 562 90 1.3 v 5.523 7.504

Anambra 46 666 90 1.3 v 5.523 7.504

Anambra 27 518 90 1.3 v 5.523 7.504

Anambra 73 882 90 1.3 v 5.523 7.504

Delta/startimes 33 562 80 1.3 v 6.219 6.682

Delta 46 666 80 1.3 v 6.219 6.682

Delta 27 518 80 1.3 v 6.219 6.682

Delta 73 882 80 1.3 v 6.219 6.682

Ebonyi/startimes 59 770 80 1.3 v 6.216 8.331

Ebonyi 57 754 80 1.3 v 6.216 8.331

Ebonyi 56 746 80 1.3 v 6.216 8.331

Cross River/startimes 43 642 90 1.3 v 5.035 8.339

Cross River 41 626 90 1.3 v 5.035 8.339

Cross River 39 610 90 1.3 v 5.035 8.339

Abia/startimes 46 666 90 1.3 v 5.523 7.505

Abia 44 650 90 1.3 v 5.523 7.505

Abia 56 746 90 1.3 v 5.523 7.505

River/startimes 28 522 100 2 v 4.863 6.961

River 36 586 100 2 v 4.863 6.961

River 38 602 100 2 v 4.863 6.961

River 46 666 100 2 v 4.863 6.961
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Appendix C

Propagation Model

The Longley Rice pathloss models predicts median transmission loss in irregular terrain.

It uses established propagation theory in arriving at its equations. Equation adopted

in this thesis subsection 4.5.1, were used to determine the signal degradation. These

equations parameters and symbols are explained in the table C.1, and a more detailed

list can be found in the annex 3 of [180].

Pathloss was used extensively through out this thesis, for database design and for

the prediction of SINR of transmitter receivers in subsection 5.2.3. These were useful in

establishing chapter fours conclusion and fundamental to interference discovery between

nodes. It was particularly used for generating training data for the reinforcement

learning algorithms, as it was used for estimating received signal strength.
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Table C.1: Longley Rice Parameters

Parameter
symbol

Meaning

A1, A2 attenuation below free space computed at the distances d1 and d2 respectively

A3, A4 predicted diffraction attenuation computed at distances d3 and d4 respectively

Ad extended diffraction attenuation

Adiff (di) =
Ai

diffraction function

Aed estimated diffraction attenuation below free space in dB extrapolated to zero
distance

Ael attenuation be low free space in dB

Afo an estimate of attenuation due to surface clutter

Ak double knife-edge attenuation

alpha(0,1,2) the first component of the ’ “three radii” method applied to Volger’s formula-
tion’

Ar rounded earth attenuation

Aref Predicted reference attenuation below free space.

At two-ray attenuation

B(K) Parameters used to compute modified distance x0,1,2

d Distance between the two terminals

d1, d2 one of a series of equal distances at which terrain heights h. are read.

d3, d4 distances at which diffraction attenuation is calculated

δh(s) Terrain irregularity parameter

δh interdecile range of terrain elevations

dL(km) The sum of dL1anddL2
dL1ordL2 Distances from each transmitter/receiver terminal to its corresponding radio

horizon.

dLs(km) the sum of a smooth earth’s horizon distance.
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