University of

Strathclyde

Glasgow

Simplicial Centrality Measure Applications:
Protein-Protein Interaction and Wireless Sensor Networks

Grant J Ross

Applied Analysis
Department of Mathematics and Statistics

University of Strathclyde, Glasgow

August 7, 2025



This thesis is the result of the author’s original research. It has been
composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde
Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

Signed: Grant Jamieson Ross

Date: 11 October 2024



Abstract

Using networks to model discrete systems of interactions is very common in the litera-
ture. However, networks are limited to considering only paired interactions. One of the
responses to this limitation is to extend the concept of an edge to contain more than
two nodes. Simplicial complexes are one of the models of discrete interactions which
features this extension and we shall study them here. Centrality measures are one of
the main ways of studying networks and are used to discover which node is most impor-
tant. We shall extend centrality measures to the case of simplicial complexes. We shall
then use these centrality measures on simplicial complexes to analyse protein—protein
interaction networks and detect nodes whose removal would cause a gap in coverage
on wireless sensor networks. We also assess the ways that dynamic systems work on

random geometric graphs which have central sections missing.
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Chapter 1

Introduction

Networks have been employed in the study of a wide variety of scientific disciplines
since their introduction by Leonhard Euler to solve the seven bridges of Konigsberg [53]
(in English [54]). They have been used to study transport links [32], neurons in the
brain [12] and food webs [37] among many others [112]. In Chapter 2 we introduce
network-theoretic concepts as well as the other theorems and results which underpin
the work we have done.

However, networks have limitations. Consider a social network with three individ-
uals where they are connected if the individuals speak to each other on a given day.
If all three nodes are connected then this situation could have come about because
each pair of individuals spoke to each other once throughout the day or due to a single
three way conversation. There is no way to distinguish between these situations in a
network-theoretic environment.

One way of addressing this problem is through the use of simplicial complexes which
have also been studied a lot in the literature [66,71,97,107,108,147,153]. Simplicial
complexes allow connections between three or more nodes but are also closed in the
sense that a connection between three nodes also implies a connection between each
pair of nodes. In Chapter 3 we expand some network-theoretic concepts to the case of
simplicial complexes. Our method is based on an extension of adjacency to isolate the
different dimensional levels and from there we generalise walks and centrality measures

to the simplicial complexes case.



Chapter 1. Introduction

We apply these centrality measures to solve network-theoretic problems. In Chapter
4 we apply them to protein—protein interaction (PPI) networks, which are networks
based on interactions between proteins in the cells of all species of plants, animals,
bacteria and viruses among others [168]. In these networks proteins come together
to produce many of the reactions which allow the cells to live. These interactions
frequently involve multiple different proteins, which makes them a prime candidate to
be looked at through a simplicial complexes lens.

We use a couple of different approaches to analyse protein—protein interaction sim-
plicial complexes. First we look at the degree distributions across a variety of different
PPIs and demonstrate that although the one and two dimensional levels of PPI sim-
plicial complexes have some high degree simplices there are many simplices of medium
degree which contrasts with the situation for PPI networks where a small number
of hub nodes have very high degree and the majority of the rest of the nodes have
much lower degree. Secondly, we identify essential proteins which are proteins which,
when removed, cause the death of the cell. Network-theoretic centrality measures have
previously been used to search for these proteins with fair success under the centrality-
lethality paradigm [73]. We use the centrality measures for triangles and show that
they can identify more essential proteins than their node-based counterparts and that
they also identify different ones, which suggests the two approaches could be combined
to maximise the number of essential proteins found.

In Chapter 5 we move from the triangular centralities to the edge-based ones. We
apply them to wireless sensor networks (WSNs) which are networks of sensors which are
monitoring and /or communicating with each other usually over a remote or inhospitable
area [10,82]. These WSNs are usually modelled as random geometric graphs (RGGs)
[63]. Gaps in the area covered by these networks can be problematic because they could
result in missed data which may lead to problems in predicting whether or not an area
is safe or missing a problem which needs to be addressed. As a result detecting gaps in
the coverage of these networks has been a popular topic of study [34,126]. However, as
Kenniche and Ravelomananana [82] note, there are wireless sensor networks where the

sensors are fitted with batteries which it may not be possible to recharge or replace.
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Sensors may also fail for other reasons and it may not be possible to replace them
quickly, for example a tsunami detection sensor in a remote part of the ocean. For this
reason we should not limit our interest to the detection of holes, we should also seek to
create robustness within these networks which means that we want to be able to detect
nodes whose removal would create a hole. We demonstrate that edges which are longer
in an RGG are expected to have larger edge degrees and use this fact to demonstrate
that nodes which are members of edges which have high edge subgraph centrality are
likely to be isolated from other nodes and so are more likely to cause a hole to appear
in the event of their removal. We finish this chapter by experimentally demonstrating
the effect of this strategy for removal of sensors compared to three other methods.

In Chapter 6 we move away from simplicial complexes to consider another appli-
cation of RGGs, the spread of plant disease through a region. Historically, RGGs
have been studied on square areas but recently other shapes have been considered.
Sheerin and Estrada looked at random rectangular graphs in 2015 [51] and Giles et al.
considered annuli in 2016 [64]. We combine these two situations and look at random
rectangular annular graphs (RRAGs). We derive a formula for the expected mean de-
gree of these constructions. We then demonstrate that elongation of the annular areas
and having many small annular areas rather than one large one is likely to decrease
the mean degree. The epidemic threshold of a disease spreading on a graph is bounded
by the reciprocal of its mean degree [112]. This connection suggests that an RRAG
constructed on a region with many small annular areas where nodes cannot be spread
will have a larger epidemic threshold than an RRAG constructed with one large such

area. We show that there is evidence of this effect through the use of simulations.



Chapter 2

Preliminaries

In this chapter we introduce much of the work that has previously been done that we
rely on in later chapters. We look at: network theory, what a network is and what
processes we can model with them; centrality measures and how we can decide which
parts of a network are most important; Laplacian matrices and how they model flow of
quantities through the system and; simplicial complexes which we use to demonstrate
the value of looking beyond pairwise interactions.

Parts of this chapter formed preliminary sections of [50].

2.1 Network Theory

2.1.1 Nodes, Edges and Adjacency: When Are Two Things Con-

nected?

The first instance of a graph theoretic proof was Leonhard Euler’s tackling of the
problem of the seven bridges of Konigsberg [53,54]. The problem, of endless fascination
to the people of the 18th century Prussian city, was to find a way to navigate around the
city and cross each of its seven bridges precisely once. His leap in terms of proving that
such a walk was impossible was to consider each of the four landmasses which made
up the city as a separate identity, assigned to a letter, and the bridges as connections
between the landmasses.

Network Theory is a branch of Graph Theory which uses graphs to model phenom-
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Figure 2.1: A network with labelled nodes.

ena from other scientific disciplines.

Definition 2.1. A network or graph is a pair G = (V,E) which consists of a set
V ={v1,v9,...v,} of n nodes and another set E of two-element subsets of those nodes

called the edges [46, Defn 2.1].

For example, in the network depicted in Figure 2.1 the set of nodes is given by V =
{1,2,3,4,5,6} and the set of edges is given by F = {{1,2},{1,3},{1,4},{1,5},{1,6},
{2,3},{2,5},{3,5},{4,5},{4,6},{5,6}}.

It should be noted that the definition of a network given here is quite restrictive
in the sense that it does not permit double edges (the same pair of nodes forming
two edges) or loops (an edge which contains the same node twice). It also excludes
directed graphs, which are commonly used where there is a sense of flow in a network.
This choice was a deliberate decision on the part of the author to prioritise simplicity
because none of the applications which have been developed in subsequent chapters
rely on any of these mechanisms.

It is possible to create new networks by considering only a certain part of an existing

6
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network.

Definition 2.2. A graph G, = (Vs, Ey) is a subgraph of a graph G = (V,E) if V¢V
and Fg € Vs x Vsn E [46, Defn 2.2].

We illustrate this concept with some examples in reference to the network in Figure
2.1. If we take the nodes Vi = {1,3,5,6} to be the set of nodes of our subgraph
then we have a valid subgraph if Es = {{1,3},{1,5},{1,6}, {3,5},{5,6}} which is
all of the edges between nodes in V;. Additionally, we also have a valid subgraph if
E; ={{1,3},{5,6}} because it is not necessary for all possible members of Vi x Vs n E
to be members of F;. However, we cannot add new edges that are not present in the
original graph nor can we include edges which contain nodes which are not members
of Vi so {3,6},{4,6} ¢ E.

When one is using networks to model a phenomenon from another scientific dis-
cipline it is best practice that there is a clear and natural understanding of what the
nodes should be and what the edges represent. In Chemistry [24] networks have been
used to analyse the interactions of proteins in cells by taking a node to represent a
single protein and an edge exists between two nodes if their proteins are involved in
the same cellular process. We discuss protein—protein interaction networks further in
Chapter 4. In an airport network [32,68] each node is an airport and there is an edge
between two nodes if a regular direct flight exists between those locations. Further
examples of phenomena which have been modelled using networks include: networks
of neurons in the brain [12] where the nodes are individual or groups of neurons and
the edges represent whether or not the nodes activate at the same time; disease trans-
mission networks [145] where nodes represent individual entities and there exists an
edge between two nodes if it is possible for a disease to transmit from one to the other;
and food webs [37] where the trophic relations (which species eat which other species)
between animals in an ecosystem are studied through network theory, with each species
assigned to its own node and with edges going from predator to prey species (this use
case is an example of a directed network). There are many other areas of science which
have been modelled using networks [112].

Consider the network in Figure 2.1, the 6 nodes are the characters in the sitcom

7
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Friends and there exists an edge between two of the nodes if they ever lived together
during the show. Using the encoding that node 1 represents Chandler, 2 Phoebe, 3

Monica, 4 Joey, 5 Rachel and 6 Ross we can represent this system by that network.

Definition 2.3. Two nodes v;,v; € V are adjacent if there is an edge e = {v;,v;} € E
between them [46, Defns 2.2 and 2.3]. The adjacency matrix of a network is the
matrix defined as follows:
Let v;,v; € V be two nodes in a network. Then, the adjacency matrix A has entries
defined by
1 if v; is adjacent to v;;
0 if v; is not adjacent to v; or i = j;
We now have a mathematical representation of a network which we can perform
calculations on to discover facts about the network. As an example the network from

Figure 2.1 can be represented by the matrix below, where the rows and columns rep-

resenting the nodes are arranged numerically:

011111
101 010
110010
1 00 011
111101
100 110

On certain kinds of networks, the Konigsberg bridges being a prime example, a
natural question is: What does it look like to move around the network? To that end

we have the following definition.

Definition 2.4. A walk on a network is a sequence of (not necessarily distinct) edges
{u1,v1},{ug, v}, ..., {ug, v} for which v; = uj41 (i=1,2,...,k—=1). If vx = uy then the
walk is closed. A trail is a walk in which all the edges are distinct. A path is a walk
where the u; are distinct. A shortest-path between two nodes, n;,n;, is a path such
that u; = n; and v, = n; which minimises number of edges traversed. The shortest-

path distance between two nodes is a function, d, on the nodes of a network, V', such
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that d: V xV - Ru {co}, where the result, d(v;,v;) is given by the number of edges
in the shortest path between v; and v;. If there is no path between v; and v; then

d(v;,vj) = 00. A cycle is a closed path. ( [46, Defn 2.5] and [43, p. 47])

It is well known within network theory that by taking powers of the adjacency
matrix of a network the entries of the resulting matrix give the number of walks of that
length between the two relevant nodes [36, Thm 0.1]. Therefore the number of cycles
of length p starting and ending at node i is given by (A?), ..

For example, in the network shown in Figure 2.1

{6,5},{5,1},{1,4},{4,5},{5,2} (2.1)

is a walk but not a path because the node 5 is repeated, whereas

{6,5}, {5, 1}, {1,4} (2.2)

is a path.

An example of a cycle is

(6,5}, {5,1},{1,4}, {4,6}. (2.3)

There are two shortest paths between node 6 and node 2 which are

{6,5},{5,2} (2.4)

and

{6,1},{1,2}. (2.5)

The edge {6,2} does not exist and so there is no path of length 1. Therefore the
shortest-path distance between node 6 and node 2 is 2.
We can use the concept of the shortest-path distance to define an extended metric

on a network.

Definition 2.5. A extended metric, d, is a function on a set, @), such that d: Q@xQ —
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R uU {oo} which satisfies the following axioms for all a,b,c € @
1. The distance from a point to itself is 0, i.e. d(a,a) = 0.

2. The distance between two separate points is always greater than 0, i.e.

d(a,b)=0 < a=h.
3. The distance from a to b is equal to the distance from b to a, i.e. d(a,b) =d(b,a).
4. The triangle inequality is true, i.e. d(a,c) < d(a,b) +d(b,c).
13, p. 128]

Theorem 2.6. The shortest-path distance is an extended metric on the set V of nodes

of a network [43, p. 47].

The shortest-path distance between two nodes in a network is not always finite. This

situation would happen in the case that the network was disconnected for example.

Definition 2.7. A network is disconnected if there exists at least two nodes v;,v; € V
such that d(v;,vj) = oo, that is there does not exist a path between v; and v;. A
network is considered connected if it is not disconnected. A connected component
of a network is a subset, S of its nodes such that for all v;,v; € S then d(v;,v;) is finite

and for any v; € S and v € V N S then d(v;,vy) = co. [43, p. 18 and p. 47|

Note that the networks in Figures 2.1 and 2.2 are both connected but we can also
have a network which combines these networks together as in Figure 2.3 by relabelling
each of the nodes i € V5 to be i+ 6 € V; UV, where Vj is the set of nodes from Figure
2.1 and V5 is the set of nodes from Figure 2.2. We can represent the adjacency matrix

of this expanded network in the form,

A 0
0 A
where A1, As are the adjacency matrices of the networks with node sets V7, V5 respec-

tively and O signifies a matrix of zeros of the appropriate size. This matrix is said to

be in block-diagonal form.

10



Chapter 2. Preliminaries

Figure 2.2: A network with labelled nodes.

2 13 <16

21

3 15
2

20
9

Figure 2.3: A disconnected network.
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Definition 2.8. A matrix is in block-diagonal form when all non-zero elements are in
square blocks along the diagonal of the matrix and all other elements are 0. [112, Section

6.11)

Any network with k& connected components can have its adjacency matrix repre-
sented in block diagonal form with k blocks by appropriate relabelling in the same

manner as above and would be represented as:

(4, 0 0 0 |

0 A, 0 0

0 0 A 0 (2.6)
(o0 0 o Ay ]

There are some graphs which belong to special families. One such family will be

needed for constructing simplicial complexes in Section 2.5.

Definition 2.9. A complete network of size n is the network with n nodes where
each node is adjacent to every other node [46, p. 15].
A clique in a network, G = (V, E), is a subset of its nodes V5 € V' such that it is

possible for a subgraph G = (Vs, Es) of G to be a complete network [46, p. 25].

In the network depicted in Figure 2.2 the nodes {3,11,12,13,14} form a clique of
size 5 because it is possible that in a subgraph based on these nodes every node would
be adjacent to every other node. Similarly, we can see that {2,5,8} is a clique of size

3 but {2,5,6,8} is not a clique of size 4 because there is no edge {6, 8}.

2.1.2 Linear Algebra

Clearly, given that a network can be represented in matrix form, the study of matrices
and associated vector spaces is an important part of network theory. An undergraduate
level of understanding of fields and vectors is assumed which includes the definitions of

these two concepts as well as an appreciation of linear independence and spanning sets

12
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in vector spaces. We also assume an understanding of how to perform addition, scalar
multiplication and matrix multiplication on matrices, how to calculate the determinant
of a matrix and a knowledge of how to solve systems of linear equations by using
Gaussian elimination to reduce the augmented matrix representation of such a system
into reduced row-echelon form.

Nair and Singh [111] provide a good introduction to any of these concepts.

There are many applications for eigenvalues and eigenvectors of both the adjacency

matrix and the Laplacian matrix which is introduced in Section 2.3.

Definition 2.10. An eigenvector of a matrix, M, is any non-zero vector, p, such that
the only action of the matrix on the vector is to multiply it by a scalar, A [111, Defn

5.1]. That is, p is an eigenvector if

Mp = Ap. (2.7)

The scalar, A, is known as an eigenvalue [111, Defn 5.1].

The characteristic polynomial of a matrix, A, is the result of det (M — \I),
where [ is the identity matrix [111, Defn 5.7]. The roots of this polynomial are also
the eigenvalues of A.

The algebraic multiplicity of an eigenvalue is the number of times it is a root
of the characteristic polynomial. It can also be thought of as the maximum possible
number of linearly independent eigenvectors of a matrix which correspond to that
eigenvalue [111, Defn 5.8].

The geometric multiplicity of an eigenvalue is the number of linearly independent

eigenvectors of a matrix which correspond to that eigenvalue [111, Defn 5.14].

In Section 2.6.3 we will introduce Hodge Laplacian matrices of simplicial complexes.
The algebraic/geometric multiplicity of the O-eigenvalue of these Hodge Laplacians
gives us information about the topology of the simplicial complex. We will use these
multiplicities in Chapter 5 to detect holes in Vietoris-Rips complexes which have been

constructed from Random Geometric Graphs.
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2.2 Centrality Measures: What Makes A Node Impor-

tant?

Consider the worldwide airport transportation network analysed by Guimera et al. [68].
They wished to figure out whether the cities which had the most connections to other
cities were also the cities positioned on the most shortest paths between two other cities.
They found that there were some cities like Paris, New York and Frankfurt which had
many connections to other cities and also sat on many shortest-paths. However, there
were only ten cities which were in the top 25 of both classifications. Cities like Atlanta,
USA were connected to a large number of other cities, at the time the network was
constructed, but were not in the top 25 airports in terms of lying on the most shortest
paths. It was cities like Anchorage, USA and Port Moresby, Papua New Guinea that
replaced Atlanta in the top 25 based on the shortest-path classification.

Guimera et al. reasoned that the reason for this difference between the different
classifications is due to Anchorage being the only city in Alaska which has connections
to cities outside of Alaska. This change is important because although the closure of
the airports in Atlanta would be expected to have a large general disruption to the most
people the closure of the airports in Anchorage would prevent anybody in Alaska from
being able to leave Alaska by air which demonstrates that the answer to the question

which airport is most important depends on the perspective of the person being asked.

Definition 2.11. A centrality measure is a function, f:V — R, from the nodes of a
network to the real numbers. The higher the number a node is assigned by a centrality

measure the more central or important the node is considered to be [140, p. 11].

There are a great number of different ways the notion of importance can be defined;
thus there are also many different centrality measures. They are used by Google to
assess which pages to recommend to people using their search engine [23], have been
combined to investigate the most important patches of habitat to protect in order to
minimise ecosystem damage [44] and topological centrality can be used to discover
communities in research co-authorship networks [174].

Schoch [140] constructs an illustrative table which classifies the various centrality

14
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measures into several groups. His work also points to the abundance of such measures.
Indeed it is important to be very careful when introducing new centrality measures that
one is not just adding to the existing noise. For example, there are eight variants of
betweenness centrality that differ in weighting factors, the kind of path being considered
and the positioning on the path [140]. In this work we shall endeavour, where new
centrality measures are introduced, to demonstrate why they are useful.

Below we present some of the more common centrality measures used within network
theory.

The simplest of all centrality measures is the degree.

Definition 2.12. The degree of a node n is the number of edges of which n is a

member [46, p. 143].

For example, the degree centralities of the nodes from Figure 2.1 are 5 for node 1
and node 5 and 3 for the other four nodes. In the network from Figure 2.2 node 5 has
degree 6 and node 12 has degree 4.

Having established the concept of the degree of a node we can start comparing
them not only within the network but also between networks. The degree distribu-
tion of a network describes what proportion of nodes in a network have high degree,
what proportion have low degree and how those proportions change between the two

extremes.

Definition 2.13. Let p(k) be the probability of finding a node of degree k in a network,
then the degree distribution of the network is the probability distribution of the

degrees of the nodes across the whole of the network [46, p. 95 - 98].

A network with a long tailed degree distribution has a few hubs, high degree nodes,
which are well connected and many low degree nodes which are not. These hubs are
important from the structural and functional point of view in these networks although
lower degree nodes can also be very important in the network such as Anchorage in
the earlier airport network example [68]. In later chapters the concept of a degree
distribution shall be extended to the case of simplicial complexes and applied to protein—

protein interaction networks.
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In the Friends example (see Figure 2.1) we have that p(3) = 0.667 and p(5) = 0.333.
Whereas, in the network from Figure 2.2 p(4) = 1% because nodes (1,11,12,13,14) all
have degree 4.

We can also connect the degree to the largest eigenvalue of the adjacency matrix

through a well known theorem [112, p. 699].

Theorem 2.14. The largest eigenvalue of the adjacency matriz, A1, is always greater

than or equal to the average degree, k. That is
A1 > k. (2.8)

We will use this theorem to obtain a bound on the epidemic threshold (to be in-
troduced in Section 2.4) of a Random Rectangular Annular Graph (RRAG), via our
calculation of the expected average degree of such graphs in Chapter 6. These calcu-
lations will give us a theoretical insight into the requirements for a disease to become

an epidemic on RRAGs.

2.2.1 Closeness Centrality

Closeness centrality is a concept which was first introduced by Bavelas [14] to capture
the idea of how close, in terms of shortest path distance, a node is to all the other
nodes in a network. Later we generalize this concept to simplicial complexes and use it
to study protein—protein interaction networks and the effects of removing nodes from

random geometric simplicial complexes.

Definition 2.15. The farness of a node n is the sum of its shortest path distances to

all other nodes, ¥ ,., d(a,n) [112, p. 181].

Definition 2.16. The closeness is the reciprocal of farness [112, p. 182]. That is:

-
Za#n d(aa n) .

It is also common to normalise the closeness centrality by multiplying the results

C(n) = (2.9)

by (n—1). This normalisation means that in any network a node that is adjacent to all
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the other nodes of a network has a normalised closeness centrality of 1, which allows
for comparisons between networks. Where values for closeness centrality are reported
in this thesis they are normalised values.

Note that if the network is not connected then Y., d(a,n) could be considered
undefined or oo for all nodes in the network. In this case we can calculate harmonic

closeness [130] instead.

Definition 2.17. The harmonic closeness of a node n is defined as follows

H(n)= Y ——

a¥n d(aa n) ’

(2.10)

where we treat = =0 [112, p. 184].

Closeness centrality has been used in applications as diverse as mapping networks
of terrorist cells [89] and the density of commercial activity in cities [122].

For the network in Figure 2.1 nodes 1 and 5 both have a closeness value of 1 because
they are both adjacent to all of the other nodes in the network. In Figure 2.2 the top
six nodes are node 2 at 0.533, node 1 at 0.5161, node 5 at 0.4324, node 3 at 0.4211
and nodes 6 and 8 at 0.4. We see that this centrality measure prioritises the locations
where the fewest steps are required to get to the most locations. If we imagine that
the nodes represent airports and the edges connections between those airports then a
frequent traveller may want to use the closeness centrality to decide where best to live.
In this case node 2 benefits from having the most direct connections compared to node

1 even though it requires 3 trips to get to 4 nodes as opposed to 3 trips for node 1.

2.2.2 Subgraph Centrality

The Closeness Centrality only considers the shortest way of getting between two nodes
which is not a realistic way to look at all phenomena which can be modelled by networks.
Consider a social network where the nodes are people in an office and the edges represent
whether or not they interact on a given day. If we wanted to track which nodes were
most influential in spreading a piece of information or a disease around the network

then it is not enough to think about how many other nodes a node is connected to. For
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example if a node has eight neighbours, of which seven are not connected to any other
nodes except the original then the only way from this node to the rest of the graph is
through its eighth neighbour. This node is very influential in spreading the information
to its eight neighbours but it is not very influential within the rest of the network. The
more nodes there are in the rest of the network the more we can say that this node
is not very important within the network. And yet this node will likely score highly
for degree centrality. Similarly, there is a good chance that the node will have high
closeness centrality as a result of its length 1 shortest path to each of its neighbours.

Similarly, a disease or piece of information does not know which path is the shortest
to get through a network and is unlikely to be targeting a specific person. Therefore,
if there are multiple paths to get from one node to another then we would want to
include all of them although we would want to give more weight to shorter walks than
others. This desire leads us to the branch of centrality measures which rely on taking
powers of the adjacency matrix.

Historically, for networks the first of these centralities was developed by Katz [81].
The Katz centrality index is [Zﬁzo(amAZ")l]i where 1 is a vector of 1s. This calcula-
tion boils down to summing up the number of walks of each length which originate at
a node with longer walks penalised more strongly by ensuring 0 < a < ﬁ where \;
is the largest eigenvalue of A. The eigenvector centrality can be derived from the Katz
centrality. The eigenvector centrality of a node, 7, is the ¢th entry of the eigenvector
associated with the largest eigenvalue of the adjacency matrix. Newman’s “Networks
An Introduction” [112] offers a good explanation of both of these centrality measures.

Subgraph Centrality is the measure based upon the adjacency matrix which we shall
make use of in later chapters. It was introduced by Estrada and Rodriguez-Velazquez
and counts the sum of the walks of each length which start and finish at the same node,
where the weighting factor is the reciprocal of the factorial [48]. The following power
series of the adjacency matrix, A, of a network converges to the corresponding matrix

exponential,
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Nk
|

T (A). (2.11)

~
I
o

Obviously,

00 A2l ) A2l+1

exp (4) = ZZO 20)! +l§0 (2 +1)!

=cosh (A) +sinh (A), (2.12)

where the first term accounts for the weighted sum of even-length walks and the second

one accounts for odd-length walks in the network.
Definition 2.18. The subgraph centrality of a node, i, is given by (exp(A))i.

This definition captures the participation of a node in all subgraphs of the network,
with more weight given to the smaller ones. The key benefit of the subgraph centrality
is that it takes into account all subgraphs that a node participates in regardless of how
tangentially, while still retaining the focus on the local environment. As such it has
been used to study landscape connectivity [44] and transport networks [160].

In the Friends network in Figure 2.1 the subgraph centralities of nodes 1 and 5 are
11.72 while the other nodes give a result of 6.63. The network in Figure 2.2 is a more
interesting case. Here the top 6 nodes are node 3 with a result of 12.92 followed by a four
way tie between 11, 12, 13 and 14 at 11.4514 with node 2 having the 6" highest score
at 10.2731. This result is a very different to the one for the closeness centrality. The
subgraph centrality and other related centralities which essentially count walks, like
Katz centrality, eigenvector centrality and to a lesser extent degree centrality are more
a measure of how well connected a node is within its immediate vicinity and the density
of the connections in that neighbourhood than whether or not it is a convenient place to
be or a choke point. This time imagine that the nodes in Figure 2.2 represent academic
publications or internet web pages and the links between them represent whether or
not a given web page cites another. Generally, a web page or publication is given more
credence if it has been cited by many other pages or publications and beyond that if

it has been cited by web pages that are themselves reputable i.e. have also been cited
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many times. The subgraph centrality accounts for this notion of importance because a
node which is in a dense cluster of other nodes which rely on each other is likely to be
the start and end point of a large number of short walks.

Obviously, as with all network based rankings, a high centrality can be both good
and bad. For instance, four of the five top ranked nodes from Figure 2.2 are only directly
adjacent to one another and to the top node. This situation creates an impression of
authority which could be warranted (NHS or other healthcare websites connecting to
each other) but also may not be (conspiracy theory websites parroting each other).

The example given above is not perfect because in reality both academic citations
and web pages are directed networks. A link from 1 web page to another does not
imply that a reverse link exists and there is definitely no such return link in academic
publications. However, it is still illustrative as an example.

We shall extend some of these centrality measures to the case of simplicial complexes

in Section 3.4.

2.3 Laplacians: What Flows On A Network?

2.3.1 Connected Components and Network Laplacians

The Laplacian, L, of a network can be thought of as a network analogue of the Laplacian
operator V2 and describes flows on a network. In Chapters 6.13 and 6.14 of [112]
Newman offers a very good introduction to the topic of the network Laplacian which
also introduces its applications to random walks, resistor networks and diffusion which

are beyond the scope of what we need them for.

Definition 2.19. The Laplacian matrix of a network is the matrix defined as follows
[31, p. 2J:
Let v;,v; € V be two nodes in a network. Then, the Laplacian matrix has entries
defined by
k; ifi=7;
Lij=4 -1 ifi#j and there is an edge {i,j};

0  otherwise.
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The Laplacian matrix can also be calculated from the adjacency matrix, A, of a
network if we let D be a diagonal matrix whose entries are given by the degrees of the

nodes. That is

ki 0 0
0 ky 0 ...

D= . (2.13)
0 0 ks

Then we can calculate the network Laplacian as

L=D-A. (2.14)

The eigenvalues of a network’s Laplacian matrix have an interesting connection to
the number of connected components of said network. Take any row, ¢, of the Laplacian

matrix and sum the entries

> Lij = Dij =3 Aij = ki —k; = 0. (2.15)
J ; J

This evaluation is done by decomposing the Laplacian into its constituent parts.
There is only one non-zero entry on each row of D so clearly ). ;i Dij = k; and > Aij =k
as before. From here we have L1 = 01 which means that 1 is an eigenvector of L with
eigenvalue 0 for every network as per Definition 2.10, where 1 is the vector of all 1s of
length n and n is the number of nodes in the network. This result can be expanded

upon.

Theorem 2.20. Let G = (V,E) be a network with x connected components. Then the

0-eigenvalue of the Laplacian of that network has multiplicity x [100, 112].
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2.3.2 The Edge Incidence Matrix

There is another way of constructing the Laplacian matrix of a network through some-

thing called the edge incidence matrix [112, p. 155].

Definition 2.21. Let G be a network with n vertices and m edges, for each edge we
arbitrarily define that the node with the lower index is end 1 and the node with the
higher index is end 2. Then the edge incidence matrix, B, is an n x m matrix with

entries given by

-1 if end 1 of edge j is attached to vertex i
Bij =4 1 if end 2 of edge j is attached to vertex i

0 otherwise.

For example the edge incidence matrix of the network from Figure 2.1 is given in

Table 2.1.

{1,2} {1,3} {1,4} {1,5} {1.,6} {2,3} {2,5} {3,5} {4,5} {4,6} {5,6}
1| -1 -1 -1 -1 -1 0 0 0 0 0 0
2 1 0 0 0 0 -1 -1 0 0 0 0
3 0 1 0 0 0 1 0 -1 0 0 0
4 0 0 1 0 0 0 0 0 -1 -1 0
5 0 0 0 1 0 0 1 1 1 0 -1
6 0 0 0 0 1 0 0 0 0 1 1

Table 2.1: We can see here that each column of the matrix has exactly one 1 and one
-1.

Theorem 2.22. The Laplacian matriz, L, of a network can be calculated as L = BBT

[112, p. 155].

In Section 2.6, on Topology, we will use higher dimensional equivalents of the net-
work Laplacian to calculate the topology of simplicial complexes in the same way that
Theorem 2.20 allows us to calculate the number of connected components of a network.
These topological calculations will allow us to investigate gaps in coverage of Wireless

Sensor Networks in Chapter 5.
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2.4 Models of Disease

Quantities of a substance are not the only things which can flow around a network.
Another thing that can flow around a network is disease. Newman’s “Networks: An
Introduction” [112] provides a very good introduction to this topic in Chapter 17.
We assume knowledge of SIS (Susceptible Infected Susceptible) and SIR (Susceptible
Infected Recovered) models of disease spread under the assumption of a fully mixed
population which are covered in [5,11,112]. We introduce the network based models
below. In Chapter 6 we will investigate the effect of the underlying geometry of a
Random Rectangular Annular Network on whether or not a given disease will become

an epidemic.

2.4.1 Susceptible Infected Susceptible

The assumption that a population is fully mixed, that any individual is equally likely to
have contact with any other, simplifies the mathematics in the study of disease spread.
We know this model is not realistic because people are much more likely to pass a
disease on to their friends, family and work colleagues than they are to strangers that
they meet in the street. Similarly, plants are more likely to pass diseases on to other
plants that are close by than ones that are further away. To address this limitation we

can introduce a network-theoretic SIS model.

Definition 2.23. In the SIS model (Susceptible Infected Susceptible) on a
network we let s;(t) be the probability that a node, i, is susceptible at time ¢ and
x;(t) be the probability that said node is infected at time ¢t [112, p. 669]. We also
assume that each node is constantly in contact with its neighbouring nodes. Each
individual can only catch the disease from a neighbour, j, and so the probability of
becoming infected in a given time between t and ¢ + dt is given by the probability that
node ¢ is infected, s;, multiplied by the probability, 5, of a contact resulting in an
infection multiplied by the sum of the probabilities that the neighbouring nodes are
infected, 3; Aijr;, where A is the adjacency matrix of the network. We assume that a

node that was infected returns to the susceptible population at a rate, 7, so the change
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in the probability that node, 7, is susceptible because it has recovered is given by ~yx;.

The following pair of equations governing the system:

dsi

i = —BSZ‘ Z Aij:cj + 7%, (2.16)
J

dl‘z‘

Tl Bsi ZAijiL“j -, (2.17)
J

where s; + x; = 1.

A key question in the study of disease is whether or not a disease will spread beyond
the first few individuals who contract it. That is, whether or not it will become an
epidemic. In a fully mixed model if the average person passes on the disease to more
than one other person before recovering themselves then the disease will spread and if
they pass it on to fewer than one person then the disease will die out.

For a given disease spreading on a network then whether or not it becomes an
epidemic depends not only on the probability of infection and the probability of recovery

but also on the structure of the network.

Theorem 2.24. The epidemic threshold for a network with SIS disease dynamics is

given by 5= )\% where \1 is the largest eigenvalue of the adjacency matriz [112, p. 661

- 670).

This theorem tells us that if we fix a particular disease with a probability of infection
B1 and probability of recovery ~;. Then we take two networks one where the largest
eigenvalue is A1, and another where it is Ayp. If )\1? < % < /\Lw then the disease will
become an epidemic in the first network but not the second.

Gomez et al. [67] extended this result to networks with weighted edges and also
the case where each node has a limited number of contacts they can make with their

neighbours as opposed to the situation where it is assumed that at any given time-

step each node is in contact with all of its neighbours. A criticism of using network
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models to track the spread of disease is that humans are mobile and the contact that
a person makes in one hour or day are likely to be different from the contacts made in
the next. The Gomez et al. paper addresses this criticism to some extent but Sanatkar
et al. [137] showed that this value for the epidemic threshold also holds in dynamic
switching networks which are systems where the set of connections is allowed to swap
randomly between different adjacency matrices. For the applications we analyse the
nodes are static and so we do not require this level of detail, nonetheless it is interesting

to know it exists.

2.4.2 Susceptible Infected Recovered

There are some diseases, for example chickenpox, against which a person or thing
become immune, and therefore unable to be reinfected, once they have had it. The
previously described SIS dynamics are inappropriate to describe such diseases and so

we need to introduce a third “recovered” disease state to the model.

Definition 2.25. In the SIR model (Susceptible Infected Recovered) on a
network we let s;(¢) be the probability that a node, i, is susceptible at time ¢, z;(t) be
the probability that said node is infected at time ¢ and r;(t) be the probability that i is
recovered at time ¢ [112, p. 661 - 662]. We also assume that each node is constantly in
contact with its neighbouring nodes. Each individual can only catch the disease from a
neighbour, j, and so the probability of becoming infected in a given time between ¢ and
t+dt is given by the probability that node 7 is infected, s;, multiplied by the probability,
5, of a contact resulting in an infection multiplied by the sum of the probabilities that
the neighbouring nodes are infected, ¥; A;jx;, where A is the adjacency matrix of the
network. As before we assume that a node that was infected recovers at a rate, 7y, so
the change in the probability that node, i, is able to pass on the disease because it has

recovered is given by ~vx;. The following trio of equations govern the system:

dSZ’
E = —BSZ‘ ZAijl'j, (218)
J
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dl‘@'
dt = ﬁSiZAijxj — YZj, (219)
J
dY’i
o (2.20)

where s; + x; +r; = 1.

It is possible to demonstrate in the same way as for SIS models that the epidemic
threshold is also given by )\—11 where A1 is the largest eigenvalue of the adjacency matrix
[112, Chapter 17.11].

There are other models of disease spread such as the SI model where individuals
can only pass from susceptible to infected and never back again. Clearly in this case an
epidemic is inevitable because the number of healthy or susceptible people can never
decrease. The SIRS model describes a situation where the immunity conferred by
recovering from the disease is not permanent and nodes lose their immune status at a
fixed rate. Although these models are interesting we do not use them in later chapters

and so do not consider them in more detail here.

2.5 Simplicial Complexes

2.5.1 Beyond Networks: What If The Situation Is A Little More

Complicated?

Simplicial complexes have been much studied in the literature [71,147] and definitions
similar to those which appear in this section can be found elsewhere [66,97,107,108,153].

However, we repeat them here to make this thesis self-contained.

Definition 2.26. Let V be a set of nodes or vertices. Then a k-simplex is a set

{vo,v1,...,v;} such that v; € V and v; # v; for all 4 # j.
A face of a k-simplex is a (k — 1)-simplex of the form {vo,...,v;-1,vi41,...,v5} for
0<i<k.
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Figure 2.4: A simplicial complex representation of the Friends network.

A simplicial complex C is a collection of simplices such that if a simplex S is
a member of C then all faces of S are also members of C. Less formally, a simpli-
cial complex is a collection of simplices such that if {vg,v1, ..., v} is a simplex then
all of its faces {vg,...,vi-1,vit1,...,Vx} are also simplices, and all of the faces of its
faces {vo, ..., vi—1,Vit1,...,Vj-1,Vjs1,..., U} are too, and so on down to the O-simplices,

which are formed by the nodes [62, p. 26].

As mentioned previously, networks satisfy the definition of simplicial complexes.
The nodes are the 0-simplices which are specified by the set V, the edges are the 1-
simplices and there are no higher order simplices. It is also possible to create simplicial

complexes from networks.

Definition 2.27. A clique complex is a simplicial complex formed from a network
as follows. The nodes of the network become the nodes of the simplicial complex. Let
X be a clique of k£ nodes in the network. Then, X is a (k — 1)-simplex in the clique

complex [62, p. 30].
As an example in Figure 2.5 we illustrate a simplicial complex which has one
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Figure 2.5: A clique complex with labelled nodes. This figure previously appeared
in [50].

3-simplex {1,2,3,4}, seven 2-simplices {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {3,4,5},
{4,5,6} and {6,7,8}. It also has fourteen 1-simplices represented by the edges and
nine 0-simplices which are usually known as the nodes. We can see that this simplicial
complex is a clique complex because every set of nodes which form a complete subgraph
from the network are simplices in the simplicial complex.

However, the simplicial complex in Figure 2.4 is not a clique complex. We can
see that the nodes 1,5,6 form a triangle which is a clique on three nodes but they
do not form a simplex within the simplicial complex. The lack of a simplex tells us
that Ross lived with Rachel at some point in the series and at a separate point lived
with Joey and at a third point Joey and Rachel lived together. Whereas, Monica,
Chandler and Phoebe form a 2-simplex which tells us that they all lived in the same
flat at the same time at least once during the series. We can see that the simplicial
complex representation gives us more information on the, admittedly simple, system

we are modelling than the equivalent network representation.
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2.5.2 Face Facts: When Are Two Simplices Adjacent?

In network theory it is fairly clear when two nodes are adjacent. However, adjacency
is less easy to define in simplicial complexes. There are multiple ways in which two
simplices in a simplicial complex could be said to be adjacent. The first to be considered
was Q-analysis which was introduced by Atkin [9] in 1972. Two simplices of any size
are g—adjacent if they share a common face of dimension g. This notion of adjacency
was originally introduced in terms of ¢—connectivity where two simplices of any size
are g—connected if there is a series of simplices between them such that each simplex in
the series is g—adjacent to the simplices that follow and precede it. We are focusing on
adjacency between simplices of the same size and present below the concepts of upper
and lower adjacency which were introduced by Goldberg in 2002 [66] although lower

adjacency is a special case of Atkin’s g—adjacency.

Definition 2.28. Let 0; and o0; be two k-simplices. They are lower adjacent if they

share a common face. That is, for two distinct k-simplices o; = {vo,v1,...,v5} and
o; = {wo, w1, ..., w} then o; and o; are lower adjacent if and only if there is a (k- 1)-
simplex 7 = {xg,21,...,25-1} such that 7 c g; and 7 c ;. We denote lower adjacency
by o; -« o;.

For instance, in the simplicial complex in Figure 2.5, the 1-simplices {6,7} and
{6,9} are lower adjacent because the O-simplex {6} is a common face and we can write
{6,7} -« {6,9}. Similarly, {1,3,4} - {3,4,5} because they share the common face {3,4}.
However, {4,5,6} and {6,7,8} are not lower adjacent because although they have the
common 0-simplex {6} they would need to share a common 1-simplex to be lower
adjacent. Note that two O-simplices can never be lower adjacent as we do not allow @&

to be a —1-simplex.

Definition 2.29. Let 0; and o; be two k-simplices. They are upper adjacent if they

are both faces of the same common (k + 1)-simplex. That is, for o; = {vp,v1,..., v}
and o; = {wp,w1,...,w;} then o; and o; are upper adjacent if and only if there is a
(k+1)-simplex 7 = {xg, 21, ..., Tks1} such that o; c 7 and o; c 7. We denote the upper

adjacency by o; ~ 0;.
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(a) (b) (c)

Figure 2.6: Illustration of the simplicial complexes S2 (a), t*(1,2,4) (b) and PZ (c).
See text for definitions and notation. This figure previously appeared in [50].

In the simplicial complex in Figure 2.5, the 1-simplices {5,6} and {4,6} are upper
adjacent because they are both faces of the 2-simplex {4,5,6}. So we can write {5,6} ~
{4,6}. Similarly, {1,3,4} ~ {2,3,4} are upper adjacent as they are both faces of the
3-simplex {1,2,3,4}. However, {4,5,6} is not upper adjacent to any other simplex as
it is not part of any 3-simplices.

Also note that {6} ~ {7} are upper adjacent because they are both faces of {6,7}.
So two 0-simplices are upper adjacent if they are both faces of a 1-simplex which is
identical to saying that two nodes are adjacent if they are connected by an edge in the
network-theoretic sense. Hence upper adjacency of 0-simplices is the same as network-
theoretic adjacency.

Goldberg also related these two concepts.

Theorem 2.30. If two distinct k-simplices o; and o are upper adjacent then they are

also lower adjacent [66].

2.5.3 Families of Simplicial Complexes

We shall now introduce some families of simplicial complexes which have been defined
previously by Horak and Jost [70] which shall be important later. Firstly, we introduce
the family denoted SF. The simplicial complex SF consists of a central (k- 1)-simplex

which is a face of every one of the [ k-simplices. There are no other simplices except
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those necessary by the closure axiom. For instance, Sl2 would consist of an edge {1,2}
and [ triangles of the form {1,2,i} in addition to all subsimplices necessary by the
closure axiom and Sll consists of a central node with [ pendant nodes connected to
it, which corresponds to the star graph in graph theory. The simplicial complex 852 is
shown in Figure 2.6(a) with the central 1-simplex in red.

Next we introduce a family of simplicial complexes labelled t*(zy,zo,..., 1)
which consists of a central k-simplex with x; k-simplices lower adjacent through one
face, o k-simplices lower adjacent through another, and so on. A k-simplex which is
lower adjacent to the central k-simplex can only be lower adjacent to other k-simplices
which are lower adjacent to the central k-simplex through the same face as itself. There
are no other simplices except those necessary by the closure axiom. One member of
this family of simplices, t2(1,2,4) is shown in Figure 2.6(b) with the central 2-simplex
in red.

The final family of simplicial complexes which we shall introduce are denoted Plk ,
consisting of a k-simplex at one end which is only adjacent to one other k-simplex
which is only lower adjacent to the first k-simplex and another k-simplex, and so on
until arriving at another end k-simplex. In addition, there are [ k-simplices in the
simplicial complex and no other simplices except those necessary by the closure axiom.
Note that a simplicial complex Pl1 is the same as a path graph in the traditional network

theory. The simplicial complex P52 is illustrated in Figure 2.6(c).

2.6 Topology

When we consider the simplicial complexes introduced in the previous section it is
natural to think of the 2-simplices as being surfaces and 3-simplices being three di-
mensional objects taking up space. When we form simplicial complexes we could for
instance stick 2-simplices together into the form of a ball with a void, or empty three
dimensional space, in the middle. Similarly, we can arrange 1-simplices into a ring
without 2-simplices in the centre so that if it was an actual object we could pass a
different object through the centre of this ring or hole. Think of moving a ball bearing

through the centre of a doughring or a coffee mug which are the canonical examples
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‘ e a b ¢
ele a b ¢
ala e ¢ b
blb ¢ e a
cle b a e

Table 2.2: The effect of multiplication in the Klein-four group.

of this phenomenon. In this section we present a method for describing the number of
unique holes or voids there are for a given simplicial complex and an extension of the
concept of the network Laplacian to higher levels of a simplicial complex which will

allow us to easily calculate this number.

2.6.1 Group Theory

Before we can describe the topological space formed by a simplicial complex we need a
few background details on Group Theory. We assume undergraduate level knowledge
of Group Theory including the definitions of groups, subgroups, Abelian groups, cosets
of the subgroups of a group and the fact that these cosets partition the group. Norman
Biggs’ book Discrete Mathematics [18] covers these topics.

For more detail on the advanced material which will allow us to define the Chain
Complexes in the next section then Roman’s Fundamentals of Group Theory: An
Advanced Approach [131] could be consulted. Both of these books were a source for
the examples, theorems and definitions detailed below.

Some examples of groups include the integers under addition, Z and the Klein-four
group, K4 = {e,a,b,c} which is defined by the multiplication in Table 2.2 [18].

Subgroups of both of these groups exist. The subset {e,a} is a subgroup of K4
because aa = e = ee € {e,a} so we have the inverses property and ae = ea = a € {e,a}
which gives us the closure property.

Additionally, the integers which are multiples of 3, 3Z = {3p;p € Z} is a subgroup
of Z under addition. Let p,q € Z then 3p +3q = 3(p + q) € 3Z and 3p + 3(-p) =
3(-p) +3p = 0 so 3Z is closed under inverses and addition [18]. However, the odd
numbers, R = {2p+1;p € Z} are not a subgroup because it is not closed under addition.

For p,geZ we have 2p+1+2q+1=2p+2¢q+2=2(p+q+1) ¢ R.
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Definition 2.31. Let H < G be a subgroup of G. Then we denote the set of left cosets
of H in G by G/H [131, p. 61].

The cosets of {e,a} c K4 are {e,a} and {b,c} because be = b, ba = ¢, ce = ¢ and ca = b.
The cosets of 3Z c Z are 3Z itself, (1+3Z) ={1+3p;peZ} and (2+3Z) = {2+3p;p € Z}.

From here we can define a binary operation on the cosets of a subgroup H.

Definition 2.32. Let H < G be a subgroup of G with the binary operation, ®, and let

a1, a2 € G then the coset product of the cosets a1 H and asH is given by

a1 H ®asH = (a1 ® GQ)H. (2.21)

[131, p. 65]

Definition 2.33. Let G be a group and N < G be a subgroup of G. Then N is a

normal subgroup of G if for all a € G we have
aN = Na. (2.22)

[131, p. 65]

Theorem 2.34. Let H < G be a subgroup of G under ®. Then G/H is a group under
the coset product if and only if H is a normal subgroup of G.
In this situation G[H is known as the quotient group [131, p. 66 - 67].

Both K4 and Z are Abelian groups which means that all of their subgroups are
normal by definition which means that K4/{e,a} and Z/3Z are both quotient groups.
It is possible to derive all the rest of the members of a group just through combining

certain elements via the binary operation.

Definition 2.35. Let G be a group and X ¢ G. Then

(X)={a%...a :aq,...,ap € X and i1,...,5 € Z}. (2.23)

That is (X) consists of all of the possible combinations of the elements of X under
the binary operation of G and the use of inverses. If it is the case that (X) = G then

we say that X is a generating set for G [131, p. 34 - 35].
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The rank of a group, G is the size of the smallest possible generating set [79] for

that group

Rank(G) =min (| X | : (X)=G). (2.24)

We can see that {1} is a generating set for Z and so Rank(Z) = 1. For K, a
generating set is given by {a,b} because we can get ¢ = ab however if we were to
just multiply copies of a several times we would alternate between a and e and so we

cannot generate the rest of Ky just from {a}. The same applies to {b} and {c} and so

Rank(Ky) = 2.

2.6.2 Chain Complexes

We now introduce a group based on the simplices of a simplicial complex [4,39,62,107].

Definition 2.36. We can create a k-chain by summing the k-simplices, o;, of a sim-

plicial complex [39, p66] as per the formula

c=Y bio; (2.25)
i=1

where b; € F' are values from a field F' and n is the number of simplices in the simplicial

complex.

For all examples we use the field Z for the sake of simplicity which is all that is
required for the applications explored here but it is possible to use other fields such as
Z]2Z or R [66]. All definitions in this section apply generally regardless of which field

is used.

Definition 2.37. For a simplicial complex, S, the k*" chain group is the collection

of all possible k-chains of §

Ck:{Zbioi:aiES,biEF}. (2.26)

i=1

39, p. 66]

34



Chapter 2. Preliminaries

We can see that the identity of a chain group is Y.i*; 0o; = 0, we inherit associativity
from addition in the field and closure comes from it not being possible to build extra
simplices in the simplicial complex. We also have that (X0, bjo;)™! = - ¥, bjo; and

inherit commutativity from the field which makes the chain group Abelian.

Definition 2.38. Let {vy,...,v;} be a simplex in a simplicial complex. An orienta-
tion of this simplex is any ordering of its vertices [vy,...,v;]. We additionally define
that two orientations of a simplex are the same if they differ by an even number of
swaps of the positions of its elements and they are inverses of each other if they differ

by an odd number of position swaps [62, p. 66].

We can demonstrate this swaps rule with this example

[7107’01,1127’037 e ,Uk] = —[112,1117’0071)3, .- -;Uk]
(2.27)

[U07U17U27U37~-avk] = [Uz,vo,vl,vs,-~-7vk]-

In the first case there has been one swap of vo and vy while in the second case there
were two swaps, with the additional swap being v; and vg. We primarily work with
simplicial complexes where we have numbered nodes and so we define the orientation
on our simplices to be the natural one where the nodes are arranged in ascending order.

We can see that there is a chain group at each level of the simplicial complex. We
can pass from groups at one level to the next through the use of the boundary operators

and the whole set of groups and these functions is known as a chain complex.

Definition 2.39. The boundary operator is a function, 0 : Cy, - Cy_1, which acts

on an oriented k-simplex, ok = [vo, ..., V-1, Vi, Vis1, .- -, V] as
k .
akak = Z(_l)Z[U07 <o Vi1, V441, - - ,Uk]. (228)
i=0

A k-chain which is the result of applying the boundary operator to a (k + 1)-chain
is called a boundary [39, p. 67].

What the boundary operator does is map a simplex to the sum of its faces with

the orientation of each face defined by which node is being removed in relation to the
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position of that node in the orientation of the original simplex. When a node in an odd
position is removed the orientation of the face is negative and when a node in an even
position is removed then it is positive.

This fact gives the boundary operator a nice property which is vital to using these

groups to understand the topology of a simplicial complex.

Theorem 2.40. Let oy, = [vg, ..., v;] be an oriented k-simplex then

Ok-10;0) = 0. (2.29)
[39, p. 67]
The boundary of any (k + 1)-simplex is an example of a k-cycle.

Definition 2.41. A k-cycle is any k-chain which has boundary 0 [39, p. 67].
Let S be a simplicial complex with n k-simplices. Then the set of all k-cycles is

denoted by Zj,

Zk=k€7”((9k) :{ibiaieCkzak(ibmi) =0}. (2.30)

i=1 i=1
We can see that Zj, is closed under inverses and addition within Cj, and so Z; < C}.
Consider the simplicial complex in Figure 2.4, we have that [1,2] - [1,3] + [2,3] +
[1,4] -[1,6] +[4,6] € Z; as demonstrated in Equation (2.31). This 1-cycle is the result
of 92([1,2,3] +[1,4,6]).

81([1a 2] - [173] + [273] + [174] - [136] + [476])
The boundaries of (k + 1)-chains are not the only members of Z;. In Equation

(2.32) we demonstrate that [2,3]-[2,5] +[3,5] € Z; despite not being the boundary of

any 2-chain.
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01([2,3]-[2,5] +[3,5]) = [3] - [2] - [5] + [2] + [5] - [3] = 0 (2.32)

Finally in Equation (2.33) we can see that [1,2] +[1,3]+[2,3] +[1,4] ¢ Z;.

O ([1,2] + [1,3] +[2,3] + [1,4])
=[2] - [1]+ [3] - [1] + [3] - [2] + [4] - [1] (2.33)
=2[3] +[4] - 3[1] £ 0

We can see that 1-cycles consist of sums of 1-simplices which contain each node
an equal number of times with opposing orientations. It is true more generally that
k-cycles consist of sums of k-simplices which contain each (k—1)-face an equal number
of times with opposing orientations.

We can define another subgroup of C} which consists of just the boundaries of the

(k + 1)-chains.

Definition 2.42. The image of Jp,q is the set of all k-cycles that are boundaries of
(k +1)-chains [39, p. 68]. Let o; denote a k-simplex of a simplicial complex, S, and let
7; denote a (k + 1)-simplex of S. We denote this set by

Bk = img(8k+1) = {Z a;0; € Ck : 8k+1 (Z bjTj) = Zaiai where Z bjTj € Ck+1} .
i=1 j=1 i=1 j=1
(2.34)

Due to the fact that all elements in By, are also elements of Z; as demonstrated
by Theorem 2.40 and By, is closed under inverses and addition of simplices then By <
Z. It is also normal due to the binary operation in C} being commutative. By
definition we can generate all of the members of By by adding together the boundaries
of the 2-simplices. Generating all of the members of By for the simplicial complex in
Figure 2.4 shows that any member of Bj is a result of summing [1,2] - [1,3] +[2, 3],
[1,3]-[1,5]+[3,5] and [1,4] -[1,6]+[4,6]. We can use this result to introduce a new

group which will allow us to discuss the topology of the simplicial complexes.
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Definition 2.43. The quotient group Hy, = Z;,/By, is called the k' homology group
of the simplicial complex [39, p. 69].

The identity of the k" homology group is the coset containing the members of By,
as is natural from Theorem 2.34 which means that the result of adding a member of
By, to a representative of any coset in Hy is a representative of the same coset.

Recall that we are trying to find a way to describe the number of holes or voids of a
simplicial complex. In the simplicial complex in Figure 2.4 we can start by considering
that there are five 1-cycles in Z; which consist of three 1-simplices and do not form the
boundary of any 2 simplex. These 1-cycles are [1,2]-[1,5]+[2,5], [2,3]-[2,5]+[3,5],
[1,5] - [1,6] +[5,6], [1,4] - [1,5] + [4,5] and [4,5] - [4,6] + [5,6]. But it would not
be natural to say that there are five holes in this simplicial complex. Firstly, we can
show that [1,2] - [1,5] +[2,5] and [2,3] - [2,5] + [3,5] are part of the same coset and
therefore represent the same hole. We can add elements of By to [1,2] - [1,5] +[2,5]

to transform it into a scalar multiple of [2,3] - [2,5] +[3,5]

([172] - [175] + [2’5]) - ([172] - [173] + [273]) - ([173] - [1’5] + [3’5])
=(-[1,5]+[2,5]+[1,3]-[2,3]) - ([1,3] - [1,5] +[3,5]) (2.35)

=-([2,3] - [2,5] + [3,5]).

The other issue with using the aforementioned definition for the number of holes
is that it would ignore any holes which were bounded by more than three 1-simplices.
Consider for example a new simplicial complex which consists of four 1 simplices, [a, b],
[a,d], [b,c] and [¢,d] and the O-simplices from the closure axiom. There would clearly
be a hole in the simplicial complex but it would not be counted if we only considered
1-cycles in Z7 which consist of three 1-simplices and do not form the boundary of any
2 simplex.

Below we categorise the members of Hy for the simplicial complex in Figure 2.4

where z,y, z € Z.
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By

2([1,5] - [1,6] + [5,6]) + B

([2.3] - [2,5] + [3,5]) + B

2([4,5] - [4,6] + [5,6]) + B,

2([1,5] - [1,6] + [5,6]) + y([2,3] - [2,5] + [3,5]) + Bi (236)
xz([1,5] - [1,6] + [5,6]) +y([4,5] - [4,6] + [5,6]) + By

([2,3] - [2,5] + [3,5]) + y([4.5] - [4,6] + [5,6]) + B

([1,5] - [1,6] + [5,6]) + y([2.3] - [2,5] + [3,5]) + =([4,5] - [4,6] + [5,6]) + By

It would also not be sensible to claim that the number of cosets in H; is the number
of holes in the simplicial complex. Firstly, there are infinitely many cosets in H; and
there are clearly not infinitely many holes in the simplicial complex in Figure 2.4.
Furthermore, B; consists only of boundaries of combinations of 2-simplices and so
clearly cannot contain any holes. Similarly, some cosets consist of multiple holes added
together and so cannot be considered unique holes in their own right. For example, the

1-cycle [1,4]-[1,5]+[4, 5] belongs to ~1([1,5]~[1,6]+[5,6])+1([4, 5]-[4, 6] +[5,6])+ B

[1,4]-[1,5]+[4,5] + B;
=[1,4]-[1,5] +[4,5] +[1,4] - [1,6] +[4,6] + B,
=-[1,5]+[4,5] +[1,6] - [4,6] + By (2.37)
=—[1,5]+[1,6] - [5,6] + [4,5] - [4,6] + [5,6] + By

=—([1,5]-[1,6]+[5,6]) + ([4,5] - [4,6] +[5,6]) + B1.

Note though that none of [1,5] - [1,6] + [5,6] + By, [2,3] - [2,5] + [3,5] + By or
[4,5]-[4,6] +[5,6] + By can be created by combining the other two elements and that
every other element of Hi can be created by combining these elements which means

that
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({[1,5]-[1,6]+[5,6]+B1, [2,3]-[2,5]+[3,5]+ B, [4,5]-[4,6]+[5,6]+B1}) = Hy. (2.38)

Equation (2.38) gives Rank(H;) = 3. When we consider the simplicial complex in
Figure 2.4 we would expect it to have 3 holes. This number is also referred to as the

k" Betti number of the simplicial complex and can be calculated with a formula.

Definition 2.44. The k" Betti number, 3;, of the simplicial complex is the count

of unique (k + 1)-dimensional holes, or

Bk = Rank(H}y) = Rank(Zy) — Rank(By,). (2.39)

39, p. 69]

We have come to this definition by consideration of an example but it is true more
generally because each coset of Hj consists of a summation of the unique holes in the
simplicial complex plus every combination of the elements of By. Then we can generate
all of these cosets by applying the coset product to the cosets containing precisely one
unique hole. For the O-simplices the “holes” are the connected components of the
network the simplicial complex is built upon and for 2-simplices the holes represent
3-dimensional voids in the interior of the simplicial complex.

In order to use Equation (2.39) we need to be able to calculate Rank(Bj) and
Rank(Zy). Unfortunately, calculating Rank(Bj) is more complicated than counting
the number of k-simplices in a simplicial complex. Consider a new simplicial complex

with four 2-simplices, [1,2,3],[1,2,4],[1,3,4] and [2,3,4] we can calculate

82([17273]) - 82([17274]) + 82([17374])
—[2,3] - [1,3] + [1,2] - [2,4] + [1,4] - [1,2] + [3,4] - [1,4] + [1,3]
(2.40)
=[2,3] - [2,4] +[3,4]

=02([2,3,4]).

So in this case Rank(Bs) =3 but there are four 2-simplices.
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[1,2,3] [1,3,5] [1,4,6]
[1,2]] 1 0 0
[1,3]]| -1 1 0
[1,4]] 0 0 1
[1,5]] 0 -1 0
[1,6]| O 0 -1
[2,3]| 1 0 0
[2,5]] 0 0 0
[3,5]| O 1 0
[4,5]] 0 0 0
[4,6]| 0 0 1
[5,6]] 0 0 0

Table 2.3: The matrix representation of ds for the simplicial complex in Figure 2.4.

Fortunately, we can address these issues of how to calculate these ranks by noticing
that Cj is also a vector space where we define multiplication in the vector space to be
distributive across linear combinations of simplices. This definition means we can write

O as an m x n matrix where there are m (k — 1)-simplices and n k-simplices.

Definition 2.45. Let S be a simplicial complex with n k-simplices and m (k - 1)-
simplices, we can represent the boundary operator, 0, by an m x n matrix where each
column represents a k-simplex and each row a (k—1)-simplex [107]. The entries of each
column are non-zero where the (k — 1)-simplex representing a row is the face of the
simplex in a given column, with -1 where the coefficient of the boundary operator for

that face is negative and 1 the entry where it is positive. The entries of Jj are given by

-1 if the coefficient of o(;_1); is negative for dy (o ;)
(Ok)ij =1 1 if the coefficient of O(k-1),i is positive for Ox(op, ;)

0  otherwise.

For the 1-simplices the boundary operator and the edge incidence matrix from
Definition 2.21 coincide. So we have already seen the matrix representation of 9; for
the simplicial complex in Figure 2.4. The matrix representation of Js is shown in Table
2.3.

We can verify from the matrix forms that 019> = 0. We can also see that because

each column of Oy has the only non-zero entry in at least 1 row we can conclude that
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[1.2] [1,3] [1,4] [1,5] [1,6] [2,3] [25] [3.5] [4.5] [4,6] [5,6]
mf: o o o o -1 -1 0 0 0 0
2l o 1 o o o0 1 0 -1 0 0 0
Bl o o 1 o 0o o0 O O -1 -1 0
4] o o 0o 1 10 1 1 1 1 0
)/l o o o o 1 0o 0 0 0 1 1
6l o o o o o0 0O O O 0O 0 0

Table 2.4: The row reduced form of the matrix representation of 0y for the simplicial
complex in Figure 2.4. The raw form can be seen in Table 2.1.

they are linearly independent and so all three are part of the smallest generating set
for By and Rank(Bp) = 3. To calculate the size of the smallest generating set for Z;
we can apply row operations to d; to work out the form of any vector which would be
sent to 0 under J;. The number of free variables is the minimum size of a generating
set of Z1. The result of doing this evaluation is displayed in Table 2.4.

From here we can derive that any element of Z; has the form

f+yg
h-f
1+
k—-g-h-1i
-(J+k)
f (2.41)

There are six free variables and so Rank(Z;) = 6 which means that Rank(Hy) = 3
as expected. Additionally, setting all other variables to 0 allows us to recover the

boundaries of the three 2-simplices with f =1,h =1 and j = 1 respectively.
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This case was quite straightforward because it was clear that the columns of O
were linearly independent and it was also quite a small example. A more general
way of calculating the rank of the homology group at a particular level is through the

calculation of the Smith normal form of the two matrices [40].

2.6.3 Hodge Laplacians

In the same manner that we can generalise the edge incidence matrix to the boundary
operator at each level of the simplices we can also generalise the Laplacians to higher

orders through the use of the Hodge Laplacians.

Definition 2.46. The Hodge Laplacian for the k-simplices of a simplicial complex can

be calculated as

Ly, = Ops1 0L, + OL Oy.. (2.42)

It has entries defined by

degy(o;)+k+1 ifi=j

1 it i # j,0; # 04, and 0; ~ 0j, where the coefficient
of their common face is the same

(Lk)ij =

-1 it i # j,0; # 0j, and o0; ~ 0, where the coefficient

of their common face is different

0 otherwise.

where deg, (o;) is the number of (k + 1)-simplices of which o; is a face.

There are no —1-simplices to map the nodes to through a boundary operator and
s0 O = 0 which means we recover the graph theoretic Laplacian as Lo = 0107 . Recall
from Thm 2.20 that the multiplicity of the 0-eigenvalue of the graph Laplacian gives
the number of connected components of a graph. Eckmann showed, in 1944, that the
Hodge Laplacian, Ly, could be used to determine (3, of a simplicial complex [38] (Horak

and Jost presented an English language version [70]).
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Theorem 2.47. Let S be a simplicial complex with kith Betti Number, B, = x. Then the
0-eigenvalue of the Hodge Laplacian, Ly, of the k-simplices of that simplicial complex
multiplicity x. If there is no 0-eigenvalue of Ly then the Betti number at that level of

the simplicial complex is 0.

The Betti numbers in Chapter 5 were calculated in this manner. We present below

the edge level and triangle level Laplacians for the simplicial complex in Figure 2.4.

301 110 -1 0 0 0 O
041 01 0 0 0 0 0 O
113 1 0 0 O O -1 0 O
1 o1 3 1 0 1 0 1 0 -1
1 1.0 1 3 0 O O O O 1
Ly=f0 0 0 0 03 1 -1 0 00 (2.43)
-10 0 1 0 1 2 1 1 0 -1
0o 0o o0 o o0-1 1 3 1 0 -1
o 06-11 0 0 1 1 2 1 -1
o 0 0o o0 0 O0O O 0o 1 3 1
o 0 0 -11 0 -1 -1 -1 1 2

3 -1 0
Ly=l-1 3 0 (2.44)
o 0 3

There are three 0-eigenvalues of L1, none for Lo and one for Ly as expected.
Further information on the Hodge Laplacian matrices can be found in [66,97,107,

108, 153).
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2.7 Statistics

In this section we explain and describe some statistical tests which we use in later

sections to demonstrate some results.

2.7.1 AIC and BIC

The Akaike information criterion (AIC) [88,152] and the Bayesian information criterion
(BIC) [88] are two methods by which different models can be compared when they are

trying to predict the same data. They are defined as follows:

AIC =2k-2In(L), (2.45)

BIC =klIn(n)-2In(L), (2.46)

where n is the number of data points, k is the number of parameters to be estimated
and L = D (x|é, M ) is the maximized value of the likelihood function of the model M,
where 6 are the parameter values that maximize the likelihood function and x are the
data points. For a series of models trying to describe the same dataset, the model with
the smallest value AIC or BIC gives the best fit for the data. We can see that these
criteria reward a model for predicting more of the data but penalise it for having more
variables than are needed to predict the dataset. This reduces the risk of developing
an incredibly complex model which predicts the model really well just by having many
variables.

To use AIC or BIC we fit the dataset to each of the models. Then we rank each
model according to their AIC and/or BIC which gives us the model which best fits the
data. However, it may be the case that the difference between the smallest and second
smallest AICs is very small and so random variation within the datasets could give an
advantage to one model over another. We can compare the AIC of the best ranking

model with model 7 as follows:
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where AIC),;, is the AIC for the top model in the ranking.

If AAIC; < 0.01 we consider that the first model in the ranking is significantly
different from model 7. If this assessment is true for all ¢ then we accept that there is
evidence that the top model in the ranking better predicts the data than any of the
other models.

When we compare the BIC results of different models we follow the same process

but instead of applying Equation (2.47) we use the Kass-Raftery criteria [80] as follows:

ABIC; Meaning

0-2 Not significant

2-6 Positive

6-10 Strong

>10 Very strong

If the difference in the BIC values is less than or equal to 2, this criterion is not
able to distinguish between the two models. If, however, it is between 6 and 10 there

is strong evidence to consider the model with the smallest BIC as the most significant.

2.7.2 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient was introduced by Spearman in 1904 [149] based
on the Pearson correlation coefficient which was introduced by Bravais in 1846 [21] and

popularised by Pearson in 1896 [118].

Definition 2.48. Given paired random variables X,Y their Pearson correlation

coefficient is given by

cov(X,Y)

(2.48)

where cov(X,Y) = W is the covariance between X and Y and sdx = Z(ﬁ:f )
represents the standard deviation of X.

Take X and construct a new variable by replacing the value of each entry by its
position in an ascending list of the values of X. Call this new variable od(X). Do the

same for Y. Then the Spearman rank correlation coefficient is given by
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Figure 2.7: A linear relationship between two variables with experimental noise (a),
An exponential relationship between two variables (b) and a relationship between two
variables with large outliers (c).

cov(od(X),Od(Y)).

rs(X,Y) =rp(od(X),0d(Y)) = — d(x)5od(v)

(2.49)

There are advantages and disadvantages to either choice of correlation coefficient.
In the first instance the Pearson correlation simply gives more information about the
relationship between two variables than Spearman’s does as Spearman acknowledges
himself [149]. Take Figure 2.7 for example, there is clearly a linear relationship between
the two variables with some experimental noise in 2.7 (a). The Pearson coefficient of
these two variables is 0.9507 and Spearman’s gives 0.9539. However, in Figure 2.7 (b)
the relationship between the two variables is exponential and Pearson’s coefficient is
0.8544 while Spearman’s version is 1. difference demonstrates that Spearman’s coeffi-
cient is not sensitive to two variables which are related non-linearly whereas Pearson’s
is [149].

Furthermore, Spearman’s rank correlation is more robust to large outliers than
the traditional Pearson’s correlation [149]. If we consider Figure 2.7 (c) we have a
Spearman’s result of 0.9244 and a Pearson’s of 0.6586. We can conclude that where the
magnitude of the differences between two variables is of importance then we would wish
to use the Pearson’s correlation coefficient but if we are just looking to assess whether
or not there is a relationship (not necessarily linear) between two variables then the

Spearman’s correlation is preferable.
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Compost grown plant yield (kg) | Straw grown plant yield (kg)
2.1 2.3
1.9 1.6
4.3 1.2
1.8 2.0
3.0 2.8
1.8 1.9
1.1 1.6
14 1.8
2.5 3.0
2.4 2.1

Table 2.5: The weight in kilos of the potato yield under different growing conditions.

2.7.3 Mann-Whitney U Test

The Mann-Whitney U test is a hypothesis test which is not dependent on the under-
lying distribution of the data, for instance in the way that the t-test requires that the
underlying data is normally distributed [84]. For this reason it is useful to apply in
situations where we have small sample sizes and may not necessarily be sure of the
underlying distribution. It was introduced by Mann and Whitney in 1947 [99].

Imagine a situation where we wished to assess the difference in the yield between
growing potatoes in compost compared to growing them in straw. We would grow
perhaps 10 potato plants in compost and 10 in straw and measure the yield of each
plant at the end of the season. We provide some example results in Table 2.5.

We demonstrate how to use the Mann-Whitney U test to establish whether the
median yield of the two methods are different. We start by ordering the yields from
largest to smallest. Table 2.6 contains the results of this process. Notice that we do
not break ties but instead give each plant in a tie-break situation the average of the
rankings they would occupy. For example the two plants with a yield of 3kg would be
in positions 2 and 3 and so they are both given the ranking 2.5, we then carry on the
ranking with 4 for the plant with a yield of 2.8kg.

The next step is to sum up the rankings for each sample the result of which is
labelled R; for sample 7, we then calculate the U statistic for each sample via the

formula
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Compost grown plant yield ranks | Straw grown plant yield ranks
8.5 7
11.5 16.5

1 19
14 10
2.5 4
14 11.5
20 16.5
18 14
) 2.5
6 8.5

Table 2.6: The ranking of each plant in terms of the potato yield under different growing
conditions.

‘ Compost grown plants Straw grown plants

R 100.5 109.5
n 10 10
U 54.5 45.5

Table 2.7: The calculation of the U statistic for each of the samples.

ni(n;+1)

U, =ning + 5

R;. (2.50)

This process is detailed in Table 2.7. Note that the sums of the ranks for a sample
of size n is @ which is the lowest that R; could be. The value of R; would attain
this minimum in the case that all data-points from one sample are less than all of the
data points from the other sample and result in U; = nino. In this situation, the R;
nj(n;+1)

2

result for the other sample would be given by plus all n; samples being above

. . nj(nj+1)
all n; samples which gives n;n; = ning, R; = g

+ning and U; = 0. In fact it is
the case in general that Uy + Us = ning and so we can conceive of the U statistic as a
measure of how much the distribution of one sample is distinct from the distribution
of the other.

We take U = min{U;,Us} = 45.5 to be the overall U statistic. The U statistic is
normally distributed with mean y = %2 and standard deviation o = |/ %

(Chapter 6, [85]). We can translate our U statistic into a z-score
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Up 45 3402, (2.51)

7 = - -
o 13.2288

This z-score can be turned into a p-value of 0.7337 and we can conclude that there

is no evidence that the medians of the two samples are significantly different.

2.8 Computer Code

Where calculations have been done using simplicial complexes approaches, such as
calculations of Betti numbers, the Javaplex [154] package was used which was developed
by Tausz, Vejdemo-Johansson and Adams.

All code which has been used to make calculations in this work is available at

https://doi.org/10.15129/7d299611-6679-40f4-89e7-9a7c6elb4e7e.
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Chapter 3

Concepts

This chapter has been published as part of [50]. The idea to extend centrality measures
to the case of simplicial complexes was a contribution of Estrada to [50]. All of the
definitions, proof and results in this chapter represent contributions by the author

to [50]. Both Estrada and the author reviewed all aspects of [50].

3.1 Literature Review

The traditional network theory has ways of establishing centralities on higher dimen-
sional entities in a model, for example the topological centrality [174] or the edge
betweenness centrality [76], which can be used to narrow down which pieces of power
grid infrastructure to monitor and mitigate against their failure. Unfortunately neither
of these examples can be extended to cliques of three or more nodes interacting with
other cliques with the same number of nodes.

It is possible to adapt Everett and Borgatti’s [55] group centralities to cliques. They
defined group degree, group closeness and group betweenness for a set of nodes. The
group degree is calculated by taking a set of nodes in the network and calculating the
number of other nodes in the network which are adjacent to at least one node in the
set. For example, in the network in Figure 2.2 the set {1,6} has a group degree of 6
because the node 1 is adjacent to 4 other nodes (2, 3,10, 15) and node 6 is adjacent to
3 other nodes (2,5,7) but node 2 is counted only once despite being adjacent to both.

The group closeness is defined as the reciprocal of the sum of the minimum shortest
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path distance from each node outside the set to a node in the set. Taking the set
{1,6} from the network in Figure 2.2 again we know that the nodes 2,3,5,7,10 and
15 have a minimum shortest path distance of 1 to {1,6}. We can also see that nodes
8,9,11,12,13 and 14 are at distance 2 from node 1 while nodes 4,8,9,16 and 17 are at
distance 2 from node 6 which means that all of the nodes in the network other than
six nodes which are directly adjacent to {1,6} have minimum shortest path distance
to this set of 2. Therefore the group closeness of {1,6} is i. The group betweenness
is derived from Freeman’s graph theoretic betweenness [57] which counts, for a given
node, a, the proportion of shortest paths between two other nodes that pass through
a. The group betweenness extends this definition to the proportion of shortest paths
between two nodes in the network which are not members of the set that pass through
any node in the set. This extension is done in a way analogous to how group degree and
group closeness extend the degree and closeness respectively. If we forced the groups to
be complete subgraphs we would have viable centralities for triangles (a clique of three
nodes) or tetrahedrons (a clique of four nodes). However, if we analyse a phenomenon
as a simplicial complex then this definition would ignore the structure of the simplicial
complex i.e. 2-simplices interacting with other 2-simplices.

There are a small number of centrality measures which are unique to the case of
simplicial complexes which include the concepts of local homology by Robinson et
al. [129] which estimates the effect on the simplicial complex of removal of a node and
its neighbourhood.

Persistent Homology offers another way to define a centrality measure which is spe-
cific to the simplicial complex case through Homological Scaffolds which were used by
Petri et al. [120] to investigate fMRI networks. Edelsbrunner offers a good introduction
to Persistent Homology [39, Chapter 11] but a brief overview is provided here because
it offers an alternative way of viewing the Random Geometric Simplicial Complexes
that we will analyse in Chapter 5. Persistent Homology starts with a filtration of a
simplicial complex. Let .S be a simplicial complex, a filtration of S assigns each simplex
o €S a real number o and constructs a series of simplicial complexes S, where o € S,

if and only if v > . Note that to satisfy the definition of a simplicial complex the
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o ‘ Simplex

0 | {1}, {3},{4},{5},{6},{1,4},{1,6},{4,6},{3,5},{1,4,6}
1 {2},{1,3},{1,5},{2,3},{4,5}

2 {1,2},{5,6},{1,3,5}

3 {2,5},{1,2,3}

Table 3.1: The values of « assigned to each simplex from the simplicial complex in
Figure 2.4 for the purpose of a filtration.

value, «, associated with a simplex, o, must be greater than the value associated with
all of the faces of 0. That is a simplex cannot appear in the filtration until all of its
faces have appeared in the filtration. We construct a filtration based on the simplicial
complex in Figure 2.4 by applying the alpha values specified in Table 3.1.

We can see how the simplicial complex looks at each step of the filtration in Figure
3.1. The Betti numbers change throughout the filtration. For example fy =2 at o =0
but Bp = 1 where a > 1 while fy =0 at a =0, /1 =2 at a =1 and 1 =3 at a > 2.
Note that even though 1 does not change between o = 2 and « = 3 the holes which
contribute to this Betti number are not the same at those levels of the filtration. We
can say that the hole represented by the 1-cycle [1,2] - [1,3] + [2,3] is born at « = 2
and dies at « = 3. The difference between the filtration level of the death of a hole and
the filtration level of the birth of a hole is its persistence, thus the hole represented by
the 1-cycle [1,2] - [1,3] + [2,3] has a persistence of 1.

Petri et al. used the concept of persistence to define a centrality measure on the
edges of a simplicial complex [120]. The total persistence in the persistence homological
scaffold of an edge is the amount of time it spends on the boundary of the various
holes which appear and disappear throughout the filtration. The edge {1,5} in the
filtration in Table 3.1 has a total persistence of 4 because it is on the boundary of
[1,3]-[1,5]+[3,5] from a = 1 to & = 2 and on the boundary of [1,5]-[1,6]-[4,5]+[4,6]
which becomes [1,5]-[1,6]+[5,6] from « = 1 to the end of the filtration. The fact that
it is necessary to pick a representative for each hole [120] means that this measure is
problematic for the use of total persistence as a centrality measure and the necessity of
having a filtration to work with also implies that it is not possible to apply it in many

cases.
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(a) (b) (c) (d)

Figure 3.1: Evolution of simplicial complex under filtration described in Table 3.1 for
a=0(a),a=1(b),a=2(c) and a =3 (d).

Through the use of simplicial complexes it is possible to extend the network-
theoretic centralities to find the most important pair, triangle or tetrahedron, pro-
vided that the right centrality measure for the phenomenon and question under study
are chosen. For instance Jiang and Omer [74] propose concepts of degree centrality,
closeness centrality and betweenness centrality on simplicial complexes. They lever-
age Atkin’s g—adjacency [9] which is that two simplices are g—adjacent if they share
a common g-simplex. This definition means that for the simplicial complex in Fig-
ure 2.4 then {1,4,6} is adjacent to {1,2} because they share the common node {1}.
Jiang and Omer defined a g—degree centrality of a simplex in a simplicial complex to
be the number of other simplexes which share a common g—simplex with the original
simplex. For the simplicial complex in Figure 2.4 we have that the O—degree of {1,4,6}
would be 13 because it shares a common 0O-simplex with {1}, {4}, {6}, {1,2}, {1,3},
{1,4}, {1,5}, {1,6}, {4,5}, {4,6}, {5,6}, {1,2,3}, and {1,3,5}. They similarly define
a g—closeness centrality based on the reciprocal of the sum of the shortest paths based
on the g-adjacency for each simplex to every other simplex in the simplicial complex
and a g—betweenness centrality based on the proportion of these shortest paths which
a simplex is a part of. Jiang and Omer applied their centralities to the use of parks
to enable interconnectedness between neighbourhoods in Tel Aviv. Each neighbour-
hood was represented by a node and each park by a simplex which contained a node
if the border of the neighbourhood represented by that node was less than 500m from

the border of the park. This representation meant that some parks were represented
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by simplices of dimension 6, which is slightly unnatural given that these parks and
neighbourhoods are embedded in a two-dimensional space. There were two parks in
particular, one of which was represented by a 6-simplex and another by a 5-simplex,
which shared multiple neighbourhoods in common but were isolated from the rest of
the parks at the level of the 2-simplices and higher. These two parks had a very high
degree because of the size of the simplices despite not being located in an area where
many neighbourhoods were connected by multiple parks.

The degree centralities introduced by Moore et al. [104] are preferable in this respect
in that they root the degree firmly in the interactions that are happening at the same
dimension. Moore et al. defined the total degree of a k-simplex to be the number of
other k-simplices to which a k-simplex is lower adjacent added to the number of other
k-simplices to which it is upper adjacent. The use of the upper adjacency as part of this
definition still poses problems in terms of the interpretation of this measure though.
We can consider co-authorship networks which Moore et al. [104] studied. Consider
three authors a,b,c who have exactly one publication together which was as part of a
collaboration of a total of 50 authors. Let another author from that collaboration be
denoted by d, we have that {a,b, ¢} is upper adjacent to {a,b,d}, {a,c,d} and {b,c,d}.
By Theorem 2.30 we have that {a,b,c} is also lower adjacent to {a,b,d}, {a,c,d} and
{b, ¢, d} which means that the degree of {a, b, c} by this definition is 6 multiplied by the
47 other co-authors on that publication for a total of 282. Now consider the situation
that the same three co-authors have published together but have also published in
the following collaborations {a,b,d},{a,b,e},{a,b, f},{a,c,g},{a,c,h},{b,c,i}. The
degree of {a,b,c} in this situation would be 6 despite those three authors being involved
in more collaborations than in the first situation which is another example of why we
have to be careful to ensure that the centrality measures we are using are relevant to
the simplicial complex and to the question we wish to understand.

Bianconi and Rahmede proposed a different a generalised degree centrality for sim-
plicial complexes in 2015 [17]. The generalised degree was defined on a special kind of
simplicial complex called a Complex Quantum Network Manifold (CQNM) which, for

a given level d, is constructed by gluing d-simplices together along the (d — 1) faces.
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The generalised degree of a k-simplex, where k < d, is the number of d-simplices that
the k-simplex is a face of. It is easy to see how this definition could be used for simpli-
cial complexes which are not CQNMs by picking a level of the simplicial complex and
defining the generalised degrees in relation to that level [16]. Raj and Bhattacharya
recently built on the generalised degree by defining an adjacency on the d-simplices of
a simplicial complex for each k < d such that two d-simplices are adjacent if they share
a common k-simplex [124] which is essentially a special case of the p-lower adjacency
of [143] which we describe below. Raj and Bhattacharya used this adjacency to de-
fine shortest paths through the simplices which allowed them to create the generalised
closeness and generalised betweenness [124].

Another network centrality measure which has been generalised to simplicial com-
plexes is the PageRank by Schaub et al. [139] using the Hodge Laplacians that we
discussed in Section 2.6. This centrality is the probability that a random walker on the
k-simplices of a simplicial complex is at a given simplex at any given time.

Due to the existence of other notions of adjacency there are also other notions of
walks on graphs which do not line up with the one we use here. For example, Mukherjee
and Steenbergen’s random walks [110] line up with the concept of lower adjacency that
was discussed in Section 2.5.2.

Since the publication of [50] further work has been done in the realm of centralities
on simplicial complexes. In 2020 Herndndez-Serrano, Herndndez-Serrano and Sénchez
Goémez introduced a new simplicial degree [143] which was extended to new definitions
of simplicial eigenvector centrality, simplicial betweenness, simplicial closeness and sim-
plicial clustering coefficient [142]. They defined that a ¢-simplex, o, and a r-simplex, T,
to be p-lower adjacent if they share a common p-face and to be p-upper adjacent if they
are both faces of the same p-simplex. In the simplicial complex depicted in Figure 2.4
we have that {1,2,3} would be 0-lower adjacent to {3,5} through the common node 3
while {1} and {3,5} would be 2-upper adjacent because these simplices are both faces
of {1,3,5}. These three authors then used these notions of adjacency to create several
different types of degree centrality for simplices including the maximal simplicial degree

which counts the number of largest possible simplices that a simplex is a face of and
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adds the number of simplices that it is lower adjacent to provided that these simplices
are not upper adjacent to the original simplex and also that a simplex and its faces
are counted together. Returning to the simplicial complex from Figure 2.4 we have
that {1,3} has a maximal simplicial degree of 3 because it is a face of {1,2,3} and
{1,3,5} and is 1-lower adjacent to {1,4,6}. Note that the 1-lower adjacency of {1,3}
to {1,4} does not count towards the maximal adjacency because it is included as part
of {1,4,6}.

Santos et al. extended the simplicial eigenvector centrality which was introduced by
Herndndez-Serrano and Sénchez Gémez [142] to the case of hypergraphs and applied
it to functional MRI networks [138]. This use of hypergraphs points us to alternative
models which could be used to establish centralities on interactions of more than two
nodes. A hypergraph, like a network or simplicial complex, consists of a set, V', of nodes
and a set, F, of subsets of the nodes [22, Section 1.1]. In a hypergraph the members of
E, known as hyperedges, can be any size [22]. A hypergraph differs from a network in
that hyperedges can contain more than two nodes and differs from a simplicial complex
because the existence of a hyperedge does not imply that all subsets of it are also
hyperedges.

We return to the Friends example from Figure 2.1 and Figure 2.4. In Friends while
Chandler, Monica and Phoebe all lived together at one time at no point during the
show do Chandler and Phoebe live together without Monica therefore the hyperedge
{1,2,3} is a member of E in a hypergraph representation of this system but {1,2}
is not. The set of hyperedges in this example is given by E = {{1,3},{1,4},{1,6},
{2,3},{2,5},{3,5},{4,5},{5,6},{1,2,3},{1,3,5},{1,4,6} }. We can see that we have
added {1,2,3},{1,3,5} and {1,4,6} and dropped {1,2},{1,5} and {4,6} compared to
the networks case. In the simplicial complexes case we would be obliged to include
{1,2},{1,5} and {4,6} because they are faces of larger simplices.

We have three different representations of the same system which gives rise to the
question of which one is correct. Torres et al. [159] explored this question through
publication co-authorship networks. A network is the most appropriate way to repre-

sent co-authorship if we only want to consider whether or not two authors have worked
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together on the same paper. The network theoretic node degree tells us the number of
different co-authors an author has. This number is not returned by either the simpli-
cial complex or hypergraph node degrees applied by Torres et al. which count different
communities of collaborators and different collaborations respectively [159]. A simpli-
cial complex is the preferable representation if we want to ask whether or not a set of
authors have worked together on a paper at some point. Under the maximal simplicial
node degree [143] used by Torres et al. the number of maximal simplices a node is a
member of is counted which means that if a node is involved in one big collaboration
and then involved in several smaller collaborations which only contain members of the
larger collaboration then the smaller collaborations will not contribute to increasing the
node degree. We can infer that the node degree under the simplicial complexes case is
counting the number of different collaboration communities that a node is a part of. A
hypergraph is more accurate if we only want to consider whether a set of authors has
produced a paper together with no other authors involved. Torres et al. constructed a
dummy example where only the node degree on a hypergraph was able to capture that
a node was involved in the most different collaborations because under the network and
simplicial complex representations the other nodes had increased node degrees due to
their involvement in couple of large collaborations [159]. Ultimately, there are many
different factors which should be considered when deciding how to model a problem.
These factors include but are not limited to the quality of the data available, what an
interaction would mean in the model, how an interaction relates to potential subinter-
actions and the question being posed of the model [159]. These considerations mean
that there may not be a correct answer to the question of which model should be used
in every circumstance, however, the choice can affect the insights which can be drawn
about the problem under consideration [159]. As a result in Chapter 4 and Chapter 5
we explore the potential of hypergraph representations to be used instead of simplicial
complexes for the applications we consider.

There are many centrality measures for hypergraphs including versions of eigenvec-
tor centrality which are different from the one used by Santos et al. [8, 15,138, 161],
subhypergraph centrality [49] and betweenness centrality [158].
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We propose a slightly different set of simplicial centralities which, while still derived
from the Laplacian and concepts of upper and lower adjacency, seek to isolate and
study the interactions at particular levels of dimensionality. We apply these centrality
measures to protein—protein interaction networks in Chapter 4 and Random Geometric

Graphs/Wireless Sensor Networks in Chapter 5.

3.2 Adjacency Matrices in Simplicial Complexes

The goal of this section is to combine Goldberg’s concepts of upper and lower adja-
cency [66] that we discussed in Section 2.5.2 into a general adjacency matrix for a
simplicial complex that allows us to define general centrality indices for these mathe-

matical objects.

Definition 3.1. Let C be a simplicial complex and let 0;,0; € C' be two k-simplices.
Then, for k > 1, o; and o; are considered simplex adjacent if they are lower adjacent
and not upper adjacent. For k = 0 two simplices shall be simplex adjacent if they
are upper adjacent. We use o; «~ 0, to denote that two k-simplices, 0;,0; are simplex

adjacent.

The choice to define simplex adjacency as being lower adjacent and not upper adja-
cent avoids the issue of any centrality measures defined using this notion of adjacency
being overpowered by the presence of large simplices in the way the degree centralities
in [104] are. The simplex adjacency from Definition 3.1 does not completely ignore the
effects of upper adjacency and uses it to isolate the interactions that can only happen
between simplices of the same size. By using the upper adjacency in this way it avoids
a large simplex boosting the centralities of its faces which would happen if only the
lower adjacency were considered. Instead the interactions between these simplices are
considered within the interactions of the larger simplex at the appropriate level. This
notion of adjacency lines up nicely with the extensively studied higher order Laplacians
of simplicial complexes [107] which we discussed in Section 2.6. When we compare Def-
inition 3.1 and Definition 2.46 we can see that an off-diagonal entry of the higher order

Laplacian matrix is non-zero if and only if the simplices represented by that row and

59



Chapter 3. Concepts

column are simplex adjacent.

However, an ideal definition of simplex adjacency would also be monotonic with
respect to the addition of simplices. That is, we would expect that adding an addi-
tional simplex to a simplicial complex should increase the connectivity of the simplicial
complex in that more simplices should become simplex adjacent to each other. We
are aware that Definition 3.1 is non-monotonic because the addition of any k-simplex
results in all of its faces becoming upper adjacent to each other and hence not simplex
adjacent. The clearest example of this is the clique complex of any complete graph in
which no two k-simplices for & > 0 are simplex adjacent to each other because every
possible k-simplex is included in the simplicial complex and as a result they are all
upper adjacent to each other. It is clearly not natural that the graph with the high-
est possible density of connections should give rise to the simplicial complex with the
lowest possible density of simplex adjacent simplices.

We believe that the advantages of Definition 3.1, in that it prevents the presence of a
couple of large simplices from drowning out the effects of the rest of the simplicial com-
plex and it respects the Hodge Laplacian, are worth the sacrifice of its non-monotonicity.
Additionally, we were not able to find a definition of simplex adjacency that had these
advantages and was also monotonic.

Given the notion of simplex adjacency and its relation to the Hodge Laplacian it is

natural to define a simplex adjacency matrix for each level of the simplicial complex.

Definition 3.2. Let C be a simplicial complex and let 0;,0; € C' be two k-simplices.
Then, for k > 1 the simplex adjacency matrix Aj at the k-level in the simplicial

complex has entries defined by

1 ifo;-0; and o; + 0j;
(Ak)ij = F L

0 ifi=joro;¥oj;oro;~oy;
for k£ = 0 the simplex adjacency matrix is given by the network theoretic adjacency

matrix.

For example A; and As for the simplicial complex in Figure 2.4 are given by
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0011101000 0}{1,2
0010100000 0]{1,3
1 101000010 0f{L,4)
1010101010 1|{1,5
1 10100000 0 1|{1,6}

Air=10 00000110 0 0[{23} (3.1)
1001010110 1|{25)
0000O0T1T10 10 1[{35}
001100110 1 1[{4,5}
0000O0O0OOO 010 1[{46}
0001101111 0){56}

0 1 0}{1,2,3}
Az=11 0 0]{1,3,5} (3.2)
0 0 0){1,4,6}

Definition 3.3. The underlying network of simplices for the k-simplices of a
simplicial complex is constructed by mapping every k-simplex in the simplicial complex
to a node in the underlying network. Two nodes in the underlying network are adjacent

to each other if and only if the two simplices they represent are simplex adjacent.

The underlying network of simplices for the 1-simplices and 2-simplices of the sim-
plicial complex in Figure 2.4 are shown in Figure 3.2(a) and (b) respectively. The
adjacency matrices of these underlying networks of simplices are identical to A; and
Ay in Equations (3.1) and (3.2) respectively.

Note that this construction is similar to the concept of the conjugate complex
introduced by Atkin [9] except that it is specific to a particular dimension level and a
simplex can be included even if it is a face of a larger simplex.

We can use the underlying network of simplices to demonstrate the non-monotonicity
of simplex adjacency by comparing Figure 3.3 and Figure 3.4 which has an additional

simplex, {a,b,c,d}, and shows the case of the clique complex on a complete graph.
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{1,3,5}

® {1 4.6}

{1,2,3}

(b)

Figure 3.2: The Underlying Network of Simplices for the Friends simplicial complex for
the 1-simplices (a) and the 2-simplices (b).

§ {a,b} *{a,c} {a.b,c} {a,b,d}
.{c,d} {a,d}.
b {b,d}. .{b,C} {b,C,d} {a,c,d}
(a) (b) (c)
Figure 3.3: A simplicial complex consisting of four 2-simplices,

{a,b,c},{a,b,d},{a,c,d},{b,c,d} and all of their faces (a), its underlying net-
work of 1-simplices (b) and underlying network of 1-simplices (c).

{a,b,c}e -{a,b,d}

-{a,b,c,d}

b {b,c,d} ~{a,c,d}
(a) (b) (c)

Figure 3.4: A simplicial complex consisting of a 3-simplex, {a,b,c,d} and all of its faces
(a), its underlying network of 2-simplices (b) and underlying network of 3-simplices (c).
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3.3 Simplicial Shortest Path Distance

In this section we extend the concept of shortest path distance to the different levels of a

simplicial complex. We start by extending the concept of walks to simplicial complexes.

Definition 3.4. Let a simplicial complex, R, be given and let R be the set of k-
simplices of R with k > 1, 0; € Ry and (; € Rp_1. Then, a k-walk is a sequence of
alternating k-simplices and (k- 1)-simplices o1, (1, 02,2, ..., (-1, 0, such that for each
i€{l,...,7 =1} 0; and 0,41 are simplex adjacent and (; is a face of both o; and ;1.

For k =0 a walk on the O-simplices is just a walk in the normal graph-theoretic sense.

On the simplicial complex from Figure 2.5, we have that {1,3,4},{3,4},{3,4,5},
{4,5},{4,5,6},{4,5},{3,4,5},{3,4},{2,3,4} is a 2-walk. Meanwhile, {6,9},{6}, {6,7},{6},
{5,6},{5},{3,5},{3},{2,3} is a 1-walk.

Definition 3.5. Let a simplicial complex, R, be given and let R, be the set of k-
simplices of R with o; € R and (; € Rp_1. A k-shortest path between two k-simplices
0a,0p € Ry, 1s a k-walk, 04,(1,092,(o, ...,0n,(n, 0p, such that n is minimized. The value
n is the k-shortest path length between the two k-simplices o, 0. We denote this

value di(oq,0p) = n. If there is no path between o, and o} then di (o4, 0p) = oo.

Definition 3.6. Let a simplicial complex, R, be given and let R be the set of k-
simplices of R. A simplicial complex is k-connected if and only if there does not
exist a pair of k-simplices o,,0, € Ry such that di(o,,0p) = o0, i.e for every pair of

k-simplices di (0, 0p) is finite.

Note that a simplicial complex being k-connected does not mean that it is (k + 1)-
connected or (k —1)-connected. The simplicial complex in Figure 2.5 is 0-connected
but not 1-connected because {1,2} and {7,8} are not simplex adjacent to any of the
other 1-simplices. Many of the real world networks we shall introduce in later sections
are 1-connected but not 2-connected. In addition, a simplicial complex from the family
SF (See Figure 2.6), is k-connected but it is not (k- 1)-connected. The central (k- 1)-
simplex is upper adjacent to every other (k — 1)-simplex and hence is not simplex

adjacent to any of them.
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Definition 3.7. Let a simplicial complex, R, be given and let R be the set of k-
simplices of R. A set of k-simplices Sy € Ry, is a k-connected component if it is the
case that for any two k-simplices o, 03 € Sy we have di (o4, 0p) < oo and for any o, € Sy

and o4 € Ry \ Si we have that di(o.,04) = co.

Theorem 3.8. Let a simplicial complex, R, be given and let Ry, be the set of k-simplices
of R with o; € Ry, and (; € Rip_1. Let R be k-connected then the simplicial shortest path

length between two k-simplices is an extended metric.

Proof. By definition d(cq,05) > 0 for all 04,04 € Ri. Clearly di(o,,0p) =0 <= 0, = 0.

To prove di(oq4,0p) = di(0p,0,) assume di(oq,04) = n. Then the k-shortest path
from o, to oy is of the form o, (1,02, ..., 0n-1,Cn-1, On, Cn, op which means that there
is a k-walk from oy, to o, of the form oy, (,, 00, Cn-1,0n-1, - - ., 2,02 ,(1,0,. We can then
relabel (1 — (,, 092 = 0y, (2 > (u-1,03 = Op-1,-..,(, = ¢1 and so on to give a k-walk
from oy, to o, of the form oy, (1,09,(2, ..., 0n-1,Cn-1,0n,Cn, 0q thus di(op,04) <n. Let
there be a k-walk shorter than length n from oy to o, then we could relabel it to create
a k-walk shorter than length n from o, to o, which would contradict dy(cq,0p) = n.
Thus di(op,04) =n and di (04, 0p) = di(op, 04).

To prove di(o4,0c) < di(04,0p) + di(op,0c) let di(oq,0p) = n and di(op,0.) = m
then there is a k-walk from o, to o, of the form o4, (1,092,(a, ..., 0n-1,Cn-1,n, Cn, 0p and
k-walk from oy to o, of the form oy, (1,092, ..., 0m-1,Cn-1,0m, Cm, 0c We can combine

these k-walks and relabel the simplices in the second walk by the rules oy — 011, —

Cnti, 05 = Opti to form a k-walk from o, to o. of the form og,(1,09,(2, ...,0n-1,
gnfl, On, (n, On+1, Cn+17 On+2, Cn+2a ce oy Ont+m-1, Cnerfly On+m Cner; 0. which imphes that
di(04,0c) <n+m=dg(og,0p) + di(op, 0c). O

For instance, on the simplicial complex from Figure 2.5, we have that {1,3,4},{3,4},
{3,4,5},{3,4},{2,3,4} is a 2-shortest path from {1, 3,4} to {2,3,4} and we have da({1,
3,4}, {2,3,4}) = 2. Meanwhile, {2,4},{4},{4,6},{6},{6,7} is a 1-shortest path be-
tween {2,4} and {6, 7} and we have d;({2,4},{6,7}) = 2.

Definition 3.9. Let a simplicial complex, R, be given and let Ry be the set of k-

simplices of R with o € Rj. The k-eccentricity e;(o) is the largest k-shortest path
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distance between ¢ and any other k-simplex.

Definition 3.10. Let a simplicial complex, R, be given and let Rj; be the set of
k-simplices of R with o € R;. The k-diameter, D; of a simplicial complex is the

maximum k-eccentricity of any o € Ry. That is Dy, = max,ep, €x(0).

As an example, in the simplicial complex t2(1,2,4), depicted in Figure 2.6, the
central 2-simplex has 2-eccentricity 1 because it is simplex adjacent to all the other 2-
simplices in the complex. However, all the peripheral 2-simplices have a 2-eccentricity
of 2 because the shortest path from a peripheral 2-simplex on one arm to a peripheral
2-simplex on another is through the central 2-simplex for a shortest path of length 2
which means that ¢2(1,2,4) has 2-diameter 2.

Given a notion of shortest path distance we are now equipped to define the average

simplicial shortest path distance.

Definition 3.11. Let a simplicial complex, R, be given and let Rj be the set of k-
simplices of R with 0;,0; € R;. Let R be k-connected then the k-average simplicial
shortest path length, [, is the average k-shortest path distance for all possible pairs
of k-simplices in the network. It is given by

_ 2 Z’i<j di(oi,05)
| Rell (| Rell - 1)

I (3.3)

Note that if the simplicial complex is not k-connected, we can analyse each k-
connected component separately.

We now prove bounds on the k-average path length.
Theorem 3.12. A sharp lower bound on I, is 1.

Proof. For I, to be less than 1 there would need to be two distinct k-simplices, 03,0
such that dj(o;,05) < 1 which would imply di(0;,05) = 0 and hence o; = o; by the
properties of an extended metric.

The lower bound I;, = 1 is achieved by a simplicial complex of the form S¥ which
is easy to check. A simplicial complex of the form S!f consists of a (k — 1)-simplex

{1,2,...,k} and some k-simplices of the form {1,2,... k,i}, where i > k, in addition
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to all subsimplices necessary by the closure axiom. Hence, all k-simplices are lower
adjacent to each other by the (k — 1)-simplex {1,2,...,k} and they are not upper
adjacent to each other because there are no (k + 1)-simplices. Thus, every k-simplex
is simplex adjacent to every other k-simplex and the k-shortest path distance between
any two k-simplices is 1. Hence, the k-average path length is 1 and the lower bound of

{1, is achieved. ]

A general upper bound of [ is impossible to establish due to the dependence on
the number of simplices, || Ry||. However, if we fix both k and |Ry| then we can prove

the following result.

Theorem 3.13. Let a simplicial complex, R, be given and let Ry be the set of k-
simplices of R with o;,0; € Ry,. Let R be k-connected and let |Ry| > 2 be the fized

number of k-simplices in R. Then, an upper bound of l is

| B | +1

3 (3.4)

Proof. If |Ry| = 2 then ¥, ; dp(0i,05) = 1, the simplicial complex is k-connected and

there are only 2 k-simplices hence they must be simplex adjacent. Thus

2 3 d 1507
y = 2 (01,05) (3.5)
| B[ ([ B - 1)

In addition |\R,§\|+1 = 1. Hence the theorem holds for | Ry = 2.

Assume that the theorem holds for |Rg|| < n. Let |Rg| =n+ 1. Then to maximize
I, we need to maximize Y, ;dy(ci,05). Pick a k-simplex o1. First, we maximize
Y ;di(01,05). For di(o1,0;) =y for some o € Ry, it must be the case that dy(o1,0m) =
y — 1 for some o, € R}, such that o,, - 0; which means that the largest possible value
of di(01,0;) for some o; € Ry is |[Ri| -1 = n. We can evaluate max ., diy(01,05) =
(| Rk - 1)+ (| Re|-2)+---+1 = T\ g, |-1 = T5 where T represents the " triangle number
which implies that di(o,,01) =1 for precisely one k-simplex, o, € Rg. If dip(04,01) =1
for precisely one k-simplex, o, € Ry then o is simplex adjacent to precisely one other k-

simplex, namely o,. Because o is simplex adjacent to only one other simplex, o1 can be
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removed without affecting the k-shortest path distances between any other k-simplices.

We now have a simplicial complex such that ||Ry| = n. We know that the upper bound

of the k-average path distance for this smaller simplicial complex is [Rel+l ”T“ by

3
(n-1)n(n+1)
6

assumption where is the contribution given by ¥, ; dx(0i,05). We also

know that the largest number we can add to the sum ¥, ; dx(0;,0;) by the addition of

n+1)

a k-simplex is given by T}, = ™ 5. Thus when |Ry| =n+1 we have

max(Edk(Ui’aj)) _(n- 1)Z(n+ b, n(n2+ 1) _n(n+ 1é(n+2)' 56)

i<J

Equation (3.6) allows us to evaluate the upper bound of I as

Rkl Re [ (| Be [ +1)
([ Rl - 1) R | 3
A simplicial complex of the form Pf achieves this bound. O

3.4 Centralities Based on Simplicial Shortest-Path

We are now in a position to generalize some centrality notions for simplices which are
based on the simplicial shortest path distance. The simplest of all centrality measures

is the degree.

Definition 3.14. Let a simplicial complex, R, be given and let Rj be the set of k-
simplices of R with o € R;. The k-degree, 0; (o) is the number of other k-simplices

to which o is simplex adjacent.

Note that we drop k from the degree where it is clear at which level of the simplicial
complex we are working as we do for the other simplicial centrality measures that are
discussed in this thesis. We will now relate the degrees of the 1- simplices to the degrees

of the 0-simplices.

Theorem 3.15. Let a simplicial complex, R, be given and let Ry be the set of k-
simplices of R with o ={i,j} € R1. The degree of o can be calculated by the formula

61(0) = 0o (i) +d0(j) — (2+2T) (3-8)
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where T is the number of 2-simplices of which o is a face.

Proof. Recall that a pair of 1-simplices are said to be simplex adjacent if they are lower
adjacent and not upper adjacent. That is they share a common 0-simplex and are not
faces of the same 2-simplex. Let’s assume, for now, that there are no 2-simplices in the
simplicial complex so that we can focus on the contribution from the lower adjacencies.
There are two ways in which o can be lower adjacent to other 1-simplices, either through
i being a shared common 0-simplex or through j. The number of 1-simplices which
are lower adjacent to o through i is given by (dg(i) — 1) because i is also adjacent to
j at the level of the O-simplices. Similarly, the number of 1-simplices which are lower
adjacent to o through j is given by (dp(j) — 1) thus in the event that there are no 2
simplices then 01(o) = d0(7) + d0(j) — 2.

Now let ¢ = {i,7,m} be a 2-simplex of which o is a face. The other two faces of
¢, which are {i,m} and {j,m}, are lower adjacent to o but they are now both upper
adjacent to o and therefore not simplex adjacent to it. We have to subtract 2 from
the value of §1(0) to account for the effect of this upper adjacency. The 2-simplex,
¢, was chosen arbitrarily and so for each 2-simplex of which ¢ is a face there are two
1-simplices which are lower adjacent to o are also be upper adjacent to it and therefore

are not simplex adjacent to ¢ which leads us to the stated equation. ]

Definition 3.16. Let a simplicial complex, R, be given. If p(dx) is the probability
of finding a k-simplex of degree d; in R, then the k-degree distribution of the k-
simplices is the probability distribution of the degrees of the k-simplices across the

whole of the simplicial complex.

The degrees of the 1-simplices of the Friends simplicial complex depicted in Figure
2.4 are displayed in Tables 3.2 and 3.3 along with the simplicial closeness and sim-
plicial subgraph centralities at this level which shall be introduced in the rest of this
chapter. We can see that there are 4 1-simplices which have the highest degree which
are {1,5},{2,5},{4,5},{5,6}. Three of these four 1-simplices are not faces of any 2-
simplices which suggests that 1-simplices with high degree are likely to not be faces

of many 2-simplices. In Chapter 5 we will look at wireless sensor networks where this
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{12y {13} {14} {1,5} {16} {23}

01 4 2 4 6 4 2
Simplicial Closeness 0.59 043 059 0.71 0.59 0.43
Simplicial Subgraph Centrality | 10.80 3.24 9.39 21.35 9.39 4.28

Table 3.2: The results of applying various simplicial centrality measures to the 1-
simplices of the Friends simplicial complex depicted in Figure 2.4. This table is contin-
ued in Table 3.3.

[ {2.5} {3,5} {45} {4.6} {5,6}

01 6 4 6 2 6

Simplicial Closeness 0.67 0.59 071 048 0.71
Simplicial Subgraph Centrality | 20.20 11.38 20.14 4.88 20.14

Table 3.3: Continued from Table 3.2: The results of applying various simplicial cen-
trality measures to the 1-simplices of the Friends simplicial complex depicted in Figure
2.4.

property will be useful to detect regions of an area being monitored where the loss of
a sensor will lead to a gap in the coverage.

All four of the 1-simplices with the highest simplicial degree contain node 5 which
demonstrates that 1-simplices with high degree are likely to be found around nodes with
high degree which are not members of many 2-simplices. We could therefore aggregate
the degrees of the 1-simplices to find nodes which are faces of many 1-simplices but
few 2-simplices to find the nodes which have such structures. Table 3.4 displays the
mean degree of the 1-simplices for each node in the Friends simplicial complex. This
table shows that nodes 1 and 5 which had identical results for all of the network based
centrality measures in Section 2.2 are separated by taking the mean of the results for
61. We aggregate the centralities of the 2-simplices in order to find essential proteins
in Chapter 4.

There are other methods to aggregate the centrality measures for the higher order
simplices down to node level metrics such as counting the number of occasions where
a node appears in the top z simplices or the top % of simplices in a ranking. This
method is the one we will use to reduce the centrality measures of the 1-simplices to
figure out which nodes in a wireless sensor network are most likely to induce gaps in

the coverage if they are removed in Chapter 5.
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1 2 3 4 5 6
Average §; 4.00 4.00 267 4.00 5.60 4.00
Average Simplicial Closeness 0.58 056 049 0.59 0.68 0.59

Average Simplicial Subgraph Centrality | 10.84 11.76 6.30 11.47 18.64 11.47

Table 3.4: The average of the simplicial centralities from Table 3.2 and 3.3 of the 1-
simplices of which each node is a member.

3.4.1 Simplicial Closeness

Here we generalize the concept of closeness centrality from Definition 2.16 to simplicial

complexes.

Definition 3.17. Let a simplicial complex, R, be given and let Rj be the set of k-
simplices of R with 0;,0; € Ri. Let R be k-connected then the simplicial farness of
o is the sum of its k-shortest path distances to all other k-simplices, ¥;.; di(oi,05).

The simplicial closeness is the reciprocal of simplicial farness. That is

| Rel -1
Yi+j di(0i,05)

where (|Rg|| — 1) is a normalization factor.

CCk(0i) = (3.9)

If the simplicial complex is not A-connected then ¥, ; di (i, o) would be considered
undefined or oo for all k-simplices in the simplicial complex. In this case we can calculate
simplicial harmonic closeness instead which is a generalization of a network-theoretic

definition that can be found in [130].

Definition 3.18. Let a simplicial complex, R, be given and let Rj be the set of k-
simplices of R with o;,0; € R, then the simplicial harmonic closeness of a k-simplex o;

is defined as follows
1
HCy(o;) =) ———, (3.10)
i;j di(oi,05)

where we treat é =0.

Lemma 3.19. The upper bound of the normalized simplicial closeness centrality is 1

which can be attained by all simplices in a simplicial complex of the form Slk.
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Proof. In a simplicial complex of the form SF we have [ = | Ry| k-simplices which are
all adjacent to each other. Thus if we select a particular k-simplex o; € Ry we have that
d(04,05) =1 for all o € Ry such that o; # o which gives ¥, .o, di(04,05) = | Rg[ - 1.

Hence CCy(0;) = H};ZHj =1 O

The peripheral 2-simplex which is only simplex adjacent to the central 2-simplex in
the complex 2(1,2,4) has simplicial closeness given by % We have ¥, ., di(o,05) =
1+2+2+2+2+2+2=13 where o is the given simplex and o, is a run through of the
other simplices. The 1 is contributed by the shortest path from ¢ to the central simplex
while the 2s are given by the shortest path distances from o to the other peripheral
simplices on the other branches. We also have that |R| -1 =7 for the normalization.

To give an example from the simplicial complex in Figure 2.5 we need to use the
definition of harmonic simplicial closeness. So to calculate the simplicial closeness of
{2,3,4} we have HC%({2,3,4}) = %+ % + % + é + é + é = 2 because it is simplex adjacent
to {3,4,5} and has shortest path distance 2 to both {1,3,4} and {4,5,6}. There is no
k-path from {2,3,4} to any of the other simplices.

Furthermore, the closeness centralities of the 1-simplices from the Friends simplicial
complex from Figure 2.4 are displayed in Tables 3.2 and 3.3 and they are reduced to
the average results for the nodes in Table 3.4. We can see that the edges which contain
node 5 have higher closeness than their counterparts which contain node 1. The reduced
number of 2-simplices which node 5 is a part of compared to node 1 means that node 5’s
edges have more direct access to each other which reduces the length of the 2-shortest
paths between them. This difference is also present when the centralities are aggregated

to the node level. In both cases the simplicial closeness offers greater granularity than

the simplicial degree.

3.4.2 Simplicial Subgraph Centrality

We now move to the concepts of centrality based on taking powers of the adjacency

matrices of simplicial complexes.

Theorem 3.20. Let Ay be the simplex adjacency matriz between k-simplices in a sim-
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plicial complex. Then, (Ak)?; gives the number of k-walks of length m between k-

simplex, o; and k-simplex, o;.

Proof. Every walk on the underlying network of simplices for a given simplex size k,
has a corresponding k-walk over the k-simplices. We have that Ay is also the adjacency
matrix for the nodes in the underlying network of simplices. Thus, powers of the
simplex adjacency matrix can be used to give the numbers of walks of a given length

m

on the underlying network of simplices. In particular, (A )"

= b means that there are b

walks of length m between node 7 and node j in the underlying network of simplices at
the k-simplex level which precisely corresponds to the existence of b k-walks of length

m between simplex o; and simplex o;. ]

We make a generalization of the exponential of the simplex adjacency matrix of
k-simplices which relies on results from [48]. The following power series of the simplex
adjacency matrix of k-simplices A in a simplicial complex converges to the correspond-

ing matrix exponential

) Al
> = exp (). (3.11)
=0 **

Equation (3.11) is a direct generalization made possible by the adjacency matrices

at the different levels of the simplicial complex.

Definition 3.21. Let a simplicial complex, R, be given and let Rj be the set of k-
simplices of R with o; € Ry, the k-simplex which corresponds to the i*"* row of Aj. The

simplicial subgraph centrality of o;, is given by
SC’k = (eXp(Ak))n'. (3.12)

For the simplicial complex in Figure 2.5 we have that the simplicial subgraph cen-
trality of the 1-simplex {1,4} is 2.714. Note that any bounds on subgraph centrality

for networks still hold due to the underlying network of simplices.
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If we consider Tables 3.2 and 3.3 we can see the simplicial subgraph centralities for
the Friends simplicial complex from Figure 2.4. The node average of these centralities
for each node is displayed in Table 3.4. We can see that the highest ranked 1-simplex
is {1,5}. This time both nodes which belong to this edge have high node centralities
and the edge is only involved in one 2-simplex and so there are a lot of small cycles
involving this edge which boosts its simplicial subgraph centrality.

We can compare all three centralities which have been aggregated to the node level
to the node-based centralities. In the case of the node centralities each of them had a
tie for the most central node between nodes 5 and node 1 while the other four nodes
were also all tied. When we look at the case of the 1-simplices those ties are broken
which demonstrates that examining these extra levels of connection can lead to greater
understanding of a system. The next two chapters demonstrate this effect in real-world

situations.
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Analysis of Protein—Protein

Interaction Networks

This chapter has been published as part of [50] with the exception that the interpreta-
tion of the degree distributions has been updated since that work. The idea to apply
simplicial centrality measures to protein—protein interaction networks, to study their
simplicial degree distributions, compare the simplicial centralities at different levels
and search for essential proteins were contributions of Estrada to [50]. All calculations
in this chapter were contributions of the author to [50]. The interpretation of the
difference between the correlations of the centralities at the same level compared to
centralities at different levels was a contribution of the author while Estrada identified
the necessity of using the simplicial centralities to create a node based ranking for the
purposes of identifying essential proteins and the author suggested the method of tak-
ing the mean of the simplices that each node was involved in. The author contributed
the explanation of why an edge between two high degree nodes would be unlikely to
have a high edge degree while Estrada contributed the comparison between an edge
with two medium degree nodes and an edge between a low degree node and a high
degree node. The interpretation of why the triangle centrality measures were good at
picking out essential proteins was a contribution by Estrada. Both Estrada and the

author reviewed all aspects of [50].
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4.1 Literature Review

Proteins are incredibly important because of the number of roles they play in the func-
tioning of cells. Among these roles, proteins can be used as catalysts in biological
systems (i.e. enzymes). Enzymes have a variety of industrial applications includ-
ing stain removal in detergents, aiding the digestibility of animal feed and maturing
alcoholic beverages [86]. Another important biological role of proteins is their use by
muscles where interactions between proteins result in a muscle contraction [151]. These
roles are rarely performed by individual proteins instead they are caused by groups of
proteins acting collaboratively [168]. When groups of proteins operate in this way it is
known as a protein—protein interaction [168]. Within a cell a protein can be involved
in several different interactions with many other proteins in combinations of large or
small numbers [168].

In protein—protein interaction networks the function of the proteins within the cell
define the structure of the network [125]. That is the proteins are the nodes and
an edge exists between two nodes if their proteins take part in performing the same
function for the cell. Three or more proteins can be involved in performing a function
and so it is natural to consider extending the protein—protein interaction networks to
protein—protein interaction simplicial complexes [98,148] or protein—protein interaction
hypergraphs [87,92,95]. Taking the simplicial complexes approach means that every
simplex would signify that its members were part of a set of proteins which performed a
function in the cell. This interpretation allows the possibility that 50 proteins perform
a function together and four proteins which were part of that interaction but no other
interactions would be considered to be a 3-simplex and have the same weight within
the simplicial complex as 4 proteins which performed a function as part of a 4-way
interaction. Therefore, a hypergraphs approach provides a more accurate model of the
functional interactions between the proteins than the simplicial complexes one because
every hyperedge represents the proteins that carried out a function.

However, the simplicial complexes framework gives us access to tools which are not
available to hypergraphs. Song applied a persistent homology approach to protein—

protein interactions on the Human PPI network and used a filtration based on the
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p-value of each set of associated genomes to introduce the nodes of the PPI network
and their interactions into the simplicial complex [148]. Song found 18 1-dimensional
holes which persisted throughout the filtration and some of the proteins which were
situated on the hole that persisted longest were associated with cancer and ageing which
are known to be linked [170].

Consider the case that there are four proteins which are involved together in multiple
interactions with no fifth protein also involved in all of the same interactions and that
these four proteins do not perform a function together on their own. Then these four
proteins would not form a hyperedge in the hypergraph representation and therefore
would not appear to be as important to the functioning of the cell in this case. In the
simplicial complexes case these four nodes would form a 3-simplex which would be at a
cross-roads of many other simplices. Here we will consider protein—protein interactions
from a simplicial complexes perspective and demonstrate that this perspective leads to
insights about which proteins in a cell are essential.

Unfortunately, the methods by which we can detect which proteins are interact-
ing with each other are fairly imprecise [168]. Yeast Two-Hybrid is an approach to
identifying protein—protein interactions where one protein of interest is attached to a
DNA binding domain and the other is attached to an activation domain. They are
then brought closer together to see if they will interact [165]. This approach has a
draw-back from our perspective which is that it can only assess one pair of proteins at
a time; additionally not all proteins are appropriate for treatment in this way since the
protein which is attached to the DNA binding domain must be capable of initiating
transcription [165] and the fact that proteins are attached to a DNA binding domain or
an activation domain in order to carry out this experiment may alter the results [165].
Von Mering et al. [168] found that when they filtered the data the Yeast Two—Hybrid
method had an accuracy of 10%, which was third best of the six methods they studied,
compared to a reference set of interactions in yeast but covered less than 1% of the
possible interactions.

Another method of assessing the existence of interactions between proteins is Mass

Spectroscopy of purified complexes of which there are two varieties which are Tandem
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Affinity Purification (TAP) and High Throughput Mass-Spectrometric Protein Com-
plex Identification (HMS-PCI) [168]. TAP works by selecting a protein of interest and
attaching another molecule to it. This protein is then fished out of the cell along with
the other proteins that it has interacted with. The nature of these proteins and their
interactions is then determined by mass spectrometry [156]. According to Von Mering
et al. [168] TAP has a similar accuracy to the Yeast Two-Hybrid method and covered
more of the reference data set than the other six methods they considered. HMS-PCI
follows more or less the same process but was reported to be less accurate and to cover
fewer interactions than TAP [168].

Synthetic Lethality is a third technique for detecting protein—protein interactions. It
describes a relationship between genes rather than proteins and any proteins which are
encoded by those genes are said to interact if the two genes are synthetically lethal [114].
Two genes, a,b are synthetically lethal if there exists a non-lethal mutation in a and a
non-lethal mutation in b such that the combination of these two mutations causes the
inviability of the cell [114]. It has been suggested that where two genes are synthetically
lethal the two sets of proteins they encode are essentially performing the same functions
independently [114], meaning that there is inherently a redundancy written into the
cell. Of all of the individual methods that Von Mering et al. [168] considered Synthetic
Lethality had the highest accuracy of confirmed interactions versus their reference data
set but had a lower coverage compared to all other methods except Yeast Two—Hybrid.

The penultimate method of protein interaction detection Von Mering et al. [168]
considered are In-Silico detections which are essentially computer simulations to de-
termine whether protein—protein interactions have happened or not. These detections
involve examining the genome of an organism to search for indicators that the pro-
teins interact [168]. There are three such indicators, whether or not the proteins are
encoded by conserved operons, whether they are present or absent together in the
fully sequenced genome and whether they have been found fused into one polypeptide
chain [168]. According to Von Mering et al. [168], In-Silico predictions are only slightly
less accurate than Synthetic lethality, TAP and Yeast Two—Hybrid, they cover around

10% of the interactions with the true value varying based on choice of parameters.
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The final protein interaction detection method we look at here is Correlated mRNA
expression. In this method a cell is exposed to a range of experimental conditions and a
record is kept of which genes have activated under each condition. Genes which activate
under similar conditions are said to be interacting [59]. This method is good because
it covers a larger range of conditions than the others and was second only to TAP in
the percentage of potential pairs considered (at the optimal parameter choices) [168].
However, two or more genes activating at the same time does not necessarily mean
that there has been a physical contact between these proteins. Von Mering et al. found
a relatively poor accuracy when compared to the other methods they described [168]
and the optimal parameter choices for accuracy resulted in the fourth best coverage, of
their reference set of interactions, of the six methods.

As described above no single method has a very high accuracy, however, when an
interaction is confirmed by two separate methods then accuracy is improved and there
is a further improvement when an interaction is confirmed by three separate methods
according to Von Mering et al. [168]. For the analysis of yeast in this thesis we use the
data set compiled by Bu et al. [25] which consisted of the high and medium confidence
interactions identified by Von Mering et al. [168].

Due to the requirement to consider only interactions which were identified by two
or three different methods an analysis using a full simplicial complexes approach is not
viable because TAP, Yeast Two—Hybrid and Synthetic Lethality are pairwise measures.
As a result the only confirmed three or more way interactions that we could include
would need to be determined by all three of HMS-PCI, In-Silico detections and Cor-
related mRNA expression which makes it far less likely that a three way interaction
would be picked up. However, by using a clique complex approach, where any set of
three nodes which are all adjacent to each other in the model is considered a 2-simplex,
we have shown that it is possible to make inferences about nature of the interactions
between the proteins through the simplicial centralities which could not be accom-
plished without considering this higher topological space. This analysis also provides
an example of what could be done in future if more accurate data for the higher order

interactions becomes available.
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The relationship between protein—protein interaction networks and whether or not
a protein was essential was first noticed by Jeong et al. in 2001 [73] who connected
the degree centrality of a node to the essentiality of the protein represented by that
node. They found that higher degree correlated with higher essentiality. This work was
expanded on by Estrada in 2006 who demonstrated that the subgraph and eigenvec-
tor centralities outperform the degree centrality when it came to identifying essential
proteins particularly where the top 1%, 3% or 5% of nodes are considered [42]. We
expand upon Estrada’s work by using the simplicial centralities developed in the previ-
ous chapter. We demonstrate that, on the Yeast network, by considering the triangular
simplicial subgraph centrality it is possible to increase the number of essential proteins
identified in the top 1% of the ranking from 50% to 78% and in the top 3% from 50% to
62% compared to the centralities at the node levels. We also note increases from using
simplicial degree when compared to degree and simplicial closeness when compared to
closeness.

Many other approaches to identifying essential proteins have been employed in
recent history which often focus on using edge-based measures in comparison to the
traditional node-based ones. For example, the sum of the edge clustering coefficients of
a given node was used by Wang et al. [169] to increase the number of identified nodes as a
percentage of the top 5%, 10%, 15% and 20% of nodes in the ranking and they tended to
identify different essential proteins to the ones found by the node-based measures much
like the work in this chapter. The work by Wang et al. also highlighted some difficulties
in the data collection of what we have already described as an area of study prone to
false positives. They ran the same experiment on three different yeast PPI networks
which they had obtained from different sources [169]. Their centrality measure which
was based on the edge clustering coefficient was consistently the best performer across
the different networks but the performance of the other centrality measures they tested
varied across the different networks [169]. For example betweenness centrality was the
second best predictor of essential proteins and the subgraph centrality was the worst on
one network but these positions were reversed for a different network which represented

the protein interactions on the same organism. This lack of a best performing centrality
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measure is important because if the betweenness centrality is the strongest centrality
measure at detecting essential proteins it would suggest that essential proteins are
ones which are perform functions with proteins from many different groups and that
there are very few interactions between the members of those groups. However, if
the subgraph centrality is the strongest centrality measure then it would suggest that
essential proteins are ones which perform functions with many proteins which perform
functions with each other. Thus, the choice of a different network representation of the
PPI network of the same organism could change the inferences which are made about
the proteins in the cell.

Li et al. [93] expanded on the work of Wang et al. by combining a modified edge
clustering coeflicient with a Pearson correlation coefficient of the two proteins being
considered based on the level of expression of their genes which represented a further
improvement but was only tested on the DIP database. Meanwhile, Jiang et al. [75] did
a further expansion using a weighted sum of five different measures which outperformed
the Li et al. method on the datasets they used. These methods draw on more data
than is available in just the interaction networks which have been constructed based on
PPIs. It demonstrates that the science of studying these interactions has gone beyond
the pure network-theoretic approaches used 20 years ago.

The object of the work in this thesis is to demonstrate that it is possible to make
inferences about how the proteins interact to perform functions in a cell by considering
interactions which happen at higher topological levels than the interactions considered
at the network level, which suggests that the same may be true of other phenomena
modelled by networks. In future it may be a good idea to combine the values derived
from the simplicial centralities with other information to detect essential proteins rather
than the combination with the node level centralities which has been done to date.

Since the publication of [50] further work has been done in detecting essential pro-
teins including the work of Klimm, Deane and Reinert in 2021 who took the hyper-
graphs approach and showed that the node degree of a protein—protein interaction
hypergraph could be used to detect essential proteins [87]. In 2024 Lawson, Donovan

and Lefevre [92] leveraged the eigenvector centrality, that Tudisco and Higham had
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introduced [161], to detect both essential proteins and essential complexes, which were
hyperedges which consisted of at least 60% essential proteins. The work of Lawson,
Donovan and Lefevre was motivated by the idea that proteins which were essential may
well be essential because they are involved in essential interactions within the cell [92].
Other recent advances in identification of essential proteins using PPI networks include:
the use, by Rout et al., of betweenness centrality with only shortest paths between pro-
teins which have been associated with forms of cancer considered [132]; the application
of a neural network to combine the network centrality measures with gene expression
data by Chen et al. [29] and; Ye et al. who also combined network centrality mea-
sures with gene expression data but employed an evolutionary community discovery
algorithm to do so [171].

Here we study 10 protein—protein interaction (PPI) networks. In these networks
nodes represent proteins and undirected links represent the interaction between two
proteins determined experimentally via the methods described earlier (mostly Yeast
Two-Hybrid and TAP). The networks studied correspond to the following organisms:
D. melanogaster (fruit fly) [65], Kaposi sarcoma herpes virus (KSHV) [163], P. fal-
ciparum (malaria parasite) [90], varicella zoster virus (VZV) [163], human [133], S.
cereviciae (yeast) [25], A. fulgidus [105], H. pylori [94,123], E. coli [26] and B. sub-
tilus [113]. We study only the largest (main) connected components of each of these
networks, which range from 50 to 3039 proteins. We transform these networks into
their clique simplicial complexes consisting of edges, triangles and tetrahedrons. As
described above, it would be preferable to consider three and four way interactions sep-
arately from trios of pairwise interactions but it is not possible with the data currently
available. The number of simplices and interactions at the nodes, edges and triangle
level are given in Table 4.1. We stop at the triangle level because consideration of the
tetrahedron level would require knowledge of which cliques of 5 nodes exist and which
ones are simplex adjacent to each other which is more computationally intensive than
for cliques of 4 nodes. Notice that the number of simplices at the edge level is the same

as the number of interactions at the node level.
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nodes edges triangles
species simplices interact. interact. simplices interact.
A. fulgidus 32 37 101 1 0
KSHV 50 114 606 34 82
VZV 53 148 1156 104 343
B. subtilus 84 98 463 4 1
P. falciparum 229 604 4599 201 401
E. coli 230 695 7803 478 2425
H. pylory 710 1396 14736 76 79
S. cereviciae 2224 6609 99882 3530 15004
human 2783 6007 85617 1047 2170
D. melanogaster 3039 3687 11369 163 113

Table 4.1: Number of simplices and their interactions at the nodes, edges and triangles
levels for the 10 PPI networks studied. Notice that the number of simplices at the edge
level is the same as the number of interactions at the node level. This table previously
appeared in [50].

4.2 Degree Distributions

We discussed the importance of hub nodes in Section 2.2. In the case of PPI networks
hubs are expected to play a fundamental role in the cell and their knockout is expected
to cause wide spread cellular damage which is the main finding of the centrality-lethality
paradigm established by Jeong et al. [73]. Many PPI networks were characterized as
scale free during a fad of classifying networks as such at the beginning of this century,
however, since then some authors have found that almost none of the PPI networks
previously claimed to have scale-free structures actually do [150]. Blumenthal et al.
report that the previous findings may be have been due to study bias and false positives
in the interaction datasets [19]. The degree distribution has retained its importance
in the study of PPI networks over the years. Khojasteh, Khanteymoori and Olyaee
examined degree distributions of PPI networks of SARS-CoV-2 and HIN1 flu viruses
in 2022 [83] and Ramos, Ferreira and Simao compared the degree distributions of
four different PPI networks for humans in 2024 [128]. The main message of these
experiments is that most PPI networks have heavy-tailed degree distributions, such as
power-law, lognormal, Burr, logGamma, Pareto, etc.

We consider the probability degree functions (PDF), p (dx) vs. 0k, for 10 PPI net-
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species nodes edges triangles
A. fulgidus NA gP(-1.0,11.5,0) NA
KSHV NA gP(-1.1,19.3,1) gP(-1.1,8.4,1)*
VZV gP(0.2,3.8,1)* gP(-1.0,31.8,1)/ NA
['(2.8,5.6)**
B. subtilus  gP(15.9,4x 10715 1) NA NA
P. falciparum NA '(2.7,5.7) gP(-0.5,5.8,0)
E. coli gP(26.9,8 x1071,1) GEV(-0.3,12.2,18.3)* ¢P(-0.7,16.3,0)
H. pylory gP(23.9,6 x 1071, 1) I(1.9,11.3) NA
S. cereviciae  gP(26.2,8x1071%1) GEV(0.1,13.4,19.0)  ¢gP(-0.4,11.7,0)
human gP(25.1,7x107%51) NA NA
D. gP(21.8,6 x1071. 1) GEV(0.3,2.6,3.7) gP(23.7,6 x 10715,0)
melanogaster

Table 4.2: Degree distributions of the nodes, edges and triangles in the simplicial
complexes representing 10 PPI networks studied here (see text for selection criteria).
A Generalised Pareto distribution with shape parameter k, scale parameter o, and
threshold parameter € is represented by gP(k,0,0). A Generalised Extreme Value
distribution with shape parameter k, scale parameter o, and location parameter p is
represented by GEV (k, o, ). A Gamma distribution with shape parameter a, and scale
parameter b is represented by I'(a,b). Not available (NA) distributions are reported
when the data was too scarce for a statistically significant fit of the distributions or the
statistical criteria used were unable to decide between two or more distributions. *BIC
criterion indicates only a strong differentiation with the second best distribution. **BIC
criterion indicates only a positive differentiation with the second best distribution (see
Figure 4.1). A version of this table previously appeared in [50].

works at the three different levels studied in this work, i.e., nodes, edges, and triangles.
For each of the PDFs we fit the data to each of the following distributions: Beta, Bi-
nomial, Birnbaum-Saunders, Burr, Exponential, Extreme Value, Gamma, Generalized
Extreme Value (GEV), Generalized Pareto (gen-Pareto), Half-Normal, Inverse Gaus-
sian, Kernel, Logistic, Loglogistic, Lognormal, Nakagami, Negative Binomial, Normal,
Poisson, Rayleigh, Rician, Stable, ¢ Location-Scale, and Weibull. The best fit was
determined on the basis of the following statistical parameters: Akaike information
criterion (AIC) [88,152] and the Bayesian information criterion (BIC) [88] which were
discussed in Section 2.7.1. The distributions were ranked in increasing order of their
AIC with ties broken using the difference in the BIC for the distributions. In Table 4.2
we show the best distribution fitted for each of the datasets studied.

The most interesting observation from the results shown in Table 4.2 is that while
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Figure 4.1: Examples of the Gamma Distribution (a) (blue solid line is the edge degree
distribution for VZV, orange dashed line is the edge degree distribution of H. pylori),
Generalised Pareto Distribution (b) (blue solid line is the node degree distribution
for B. subtilis, orange dashed line is the edge degree distribution of KSHV, yellow
dotted line is the node degree distribution for VZV) and Generalised Extreme Value
Distribution (c) (blue solid line is the edge degree distribution for E. coli, orange dashed
line is the edge degree distribution of S. cereviciae, yellow dotted line is the edge degree
distribution for D. melanogaster).

the degree distributions obtained for the node level of the PPI simplicial complexes are
heavy-tailed this pattern is not necessarily repeated for the 1-simplices and 2-simplices.
At the node level, the 7 distributions that were statistically significant correspond to a
generalized-Pareto distribution with a positive shape parameter, where the probability
of finding nodes of a given degree decays as a power-law of the corresponding degree
(see the blue solid line and yellow dotted line of Figure 4.1 (b)). For the other three
datasets the statistical criteria used were not able to distinguish between the first few
distributions.

At the 1-simplex level only E. coli, S. cereviciae and D. melanogaster display a
Generalised Extreme Value distribution (see Figure 4.1 (c¢)) which is heavy tailed but
does not feature a high proportion of low degree simplices as was the case for the node
degree distributions. Instead we see a varied range of degrees centred around 19 for
E. coli and S. cereviciae and around 4 for D. melanogaster before the start of the long
tail. This finding suggests that while there are pairs of interacting proteins which have
very high degree and are likely to be very important to the functioning of the cell
there are also a lot of pairs of interacting proteins which have a medium degree and

comparatively few of low degree. The rest of the organisms display a similar style of
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degree distribution for the edges except without the large tail. Neither the Gamma
distribution (see Figure 4.1 (a)) nor the generalized-Pareto distribution with a negative
shape parameter (see orange dashed line of Figure 4.1 (b)) have heavy tails. Both of
these distributions also feature a large number of medium degree simplices. The large
number of medium degree 1-simplices suggests that the loss of the interaction between
these proteins should not be destructive to the functioning of the cell.

At the 2-simplex level all of the PPI simplicial complexes for which it was possible
to determine the best distribution display generalized-Pareto distributions. The shape
parameter of these distributions was negative for all of them with the exception of D.
melanogaster which suggests that there is a slight increase in the number of high degree
2-simplices compared to low degree ones with many medium degree ones in between and
that the loss of the interaction between a trio of nodes should not be very destructive to
the cell. However, it is often the case that many of these high degree interactions have
proteins in common and the loss of the individual proteins which feature in many high
degree interactions can be very destructive for the cell as we demonstrate in Section

4.4.

4.3 Comparison of Centralities at Different Levels

Simplicial centrality measures are all designed to identify the “most important” sim-
plices in a simplicial complex, at different levels, according to certain topological fea-
tures of the complex, such as nearest-neighbour connectivity (degrees), proximity of
other simplices (closeness) and participation of a simplex in small sub-complexes with
other simplices (subgraph centralities). It should be expected that there is some corre-
lation between the centralities inside each level of analysis. That is, we would expect
that node degree is somehow correlated to node closeness or node subgraph centrality
for a given PPI network. We employ Spearman’s rank correlation coefficient which was
introduced in Section 2.7.2 to assess the correlation between the different centrality
measures. We choose to use Spearman’s correlation coefficient because we expect that
there will be differences in the distribution of the results for each of the centrality mea-

sures chosen. For example the subgraph centrality is the result of an exponential matrix
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function while closeness and degree are not. Additionally, with centrality measures it
is, generally, the ranking that is important rather than their magnitude of the result.

In the yeast PPI the node centralities (degree, closeness and subgraph centrality)
have an average rank correlation coefficient (rsy ) ~ 0.828, with the largest rank cor-
relation coefficient rs recorded between the closeness and the subgraph centralities
(rs(SC,CC) ~0.924). At the edge level this average rank correlation is (rse ) ~ 0.827
and at the triangle level it rises up to (rs:) » 0.970.

We need to check that the simplicial centralities are actually providing new infor-
mation because it could be the case that the highest ranked edges and triangles consist
of the highest ranked nodes which would mean that no new insights can be gained by
considering the centralities at the higher levels. We take each node and calculate the
average centrality of each edge it is involved in. We then rank the nodes based on the
average centrality of the edges which allows us to compare the rankings that the edges
give to the node rankings through the Spearman rank correlation coefficient. We also
perform this aggregation for the triangles so that the simplicial centrality rankings of
the 2-simplices can be compared to the rankings for the 1-simplices and O-simplices.
The average rank correlation coefficient between the node and edge centralities is just
(rspe) ~ 0.609, and between the node and triangle centralities it is (rsp ;) ~ 0.587. Fi-
nally, the average rank correlation between the edge and triangle levels is (rs¢ ¢) ~ 0.228.
The correlation between the inter-level centralities (see Table 4.3) is lower than between
the different centrality measures at the same level which suggests that it is not the case
that the triangle centrality rankings consist simply of 2-simplices made up of the highest
ranked nodes.

It is also important to consider that none of the correlations are negative. This fact
implies that none of the centralities fundamentally disagree with each other. It is not
the case that a centrality at one level is telling us that one set of nodes is not important
and another set of nodes is but a centrality at a different level is telling us the exact
opposite. It is more likely that a centrality at one level is telling us that one set of nodes
is important while a centrality at a different level is telling us the same thing but the

order of importance is shuffled between the two centralities. This hypothesis is backed

86



Chapter 4. Analysis of Protein—Protein Interaction Networks

nodes edges triangles
SC \ CcC DC \ SC \ CC DC \ SC \ CC

Node Degree 0.7602 | 0.7984 | 0.3292 | 0.3856 | 0.3020 | 0.6586 | 0.6951 | 0.6812
Node Subgraph 0.9245 | 0.7376 | 0.6981 | 0.7471 | 0.5562 | 0.5780 | 0.5990
Node Closeness 0.7347 (1 0.7710 | 0.7805 | 0.4795 | 0.5103 | 0.5260
Edge Degree 0.7617 1 0.9025 | 0.2744 | 0.2794 | 0.2928
Edge Subgraph 0.8180 | 0.2042 | 0.2207 | 0.2456
Edge Closeness 0.1558 | 0.1691 | 0.2076
Triangle Degree 0.97250.9772
Triangle Subgraph 0.9589

Table 4.3: Spearman’s rank correlation coefficients between the rankings of three cen-
tralities of the 0,1 and 2-simplices in the yeast PPI simplicial complex. This table
previously appeared in [50].

up when we consider the triangle and node degrees. Of the 100 most central nodes
according to these centralities 24 coincide. When we consider the top 300 there are
111 (37%) proteins in common and looking at the top 500 the two centralities identify
268 (53.6%) common proteins. This change in the percentage of common proteins at
the top of the rankings between the nodes and triangles may explain the difference
between the centralities capabilities in the detection of essential proteins in the next
section when a small percentage of the top proteins are considered compared to the
similarity when a larger percentage is considered.

We can expand this study of the average rank correlation coefficient to all the
PPI simplicial complexes considered in this work. In Table 4.4 we give the average
Spearman rank correlation coefficients for all of the PPI networks studied. We can see
that the intra-dimensional correlations between the centralities considered is relatively
high which follows our expectation that different centralities identify essentially the
same groups of proteins at each corresponding level. The highest correlations are
observed for the triangle level, which is mainly due to the high correlation between the
triangle degree and closeness centralities. This high correlation could be a consequence
of the fact that most of the high degree triangles are clumped with many other triangles
(see next section for the case of yeast). These high-degree triangles are close to each
other, giving a high triangle closeness. Finally, we also observe lower rank correlation

between the different pairs of levels considered for the 10 PPI networks analysed. The
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’ ‘ (Tsnm) ‘ (rse,e> ‘ <T3t,t> ‘ <T8n,e> ‘ <T5n,t) ‘ (Tse,t> ‘
A. fulgidus 0.822 | 0.844 NA 0.399 NA NA
KSHV 0.912 | 0.778 | 0.993 | 0.632 | 0.666 | 0.493
VZV 0.873 | 0.783 | 0.899 | 0.176 | 0.751 | 0.186

B. subtilus 0.749 | 0.865 | 0.792 | 0.407 | 0.294 | -0.030
P. falciparum 0.842 | 0.826 | 0.957 | 0.608 | 0.655 | 0.403

E. coli 0.842 | 0.915 | 0.959 | 0.714 | 0.699 | 0.483
H. pylory 0.847 | 0.740 | 0.932 | 0.608 | 0.458 | 0.254
S. cereviciae 0.828 | 0.827 | 0.970 | 0.609 | 0.587 | 0.228
human 0.732 | 0.818 | 0.929 | 0.641 | 0.505 | 0.235

D. melanogaster | 0.661 | 0.703 | 0.795 | 0.568 | 0.303 | 0.188

Table 4.4: Intra- ((rspn), (rse,e) and (rsq¢)) and inter-level ((rsp.e), (7Sn,t) and (rseq))
average Spearman’s rank correlation coefficients between the rankings of three central-
ities of the 0,1 and 2-simplices in the 10 PPI simplicial complexes studied. See text for
notation and explanations. This table previously appeared in [50].

slightly negative average obtained for (rs.;) in B. subtilus can be considered more as

a lack of correlation than a negative correlation between the simplicial levels.

4.4 Identification of Essential Proteins

4.4.1 Methodology

An essential protein is one that when knocked out results in the death of the cell. The
identification of such proteins has become one of the main paradigms of the study of
centrality measures in PPI networks [29,42,69,73,75,87,92,93,132,141,169,171,173|.
The reasons for this interest are twofold. On the one hand, it is important to have
theoretical tools that allow the identification of proteins that can be drug targets, think
of the identification of essential proteins in a pathogenic microorganism. On the other
hand, it is one of the scarce examples in which centrality measures can be validated
against experimental data. The methodology for essential protein identification that
we consider here is adapted from the one developed by Estrada in 2006, and consists
of the following steps [42]. First, we transform the PPI network into a clique simplicial
complex with cliques of up to 4 nodes turned into simplices which allows us to consider

0-simplex, 1-simplex and 2-simplex centralities. Note that to consider the centralities
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at the 3-simplex level then the cliques of 5 nodes would need to be represented in the
simplicial complex as 4-simplices because to know whether or not two 3-simplices are
simplex adjacency then it is necessary to know if they are both faces of the same 4-
simplex. However, knowledge of the existence of (k + n)-simplices, where n > 2 does
not affect the simplex adjacency of the k-simplices which means the existence of the
3-simplices in the PPI simplicial complex of yeast is enough to calculate the node, edge
and triangle centralities. Secondly, we calculate the corresponding centralities at the
three levels for each of the simplices. We then transform edge and triangle centrality
into a ranking of the nodes by calculating the average centrality of all the edges and
triangles in which a given node is involved, as per the previous section. Using these
centralities we rank all of the proteins in the PPI in decreasing order. Finally, we count
how many essential proteins are in the top 2% of the ranking and report this number
as the percentage of essential proteins identified by the corresponding centrality (see
Figure 4.2). An ideal index for essential protein identification is one which ranks all
essential proteins at the top of the ranking, such that if we want to select 100 essential
proteins we simply pick the top 100 proteins in that ranking. We compare the results
of this process with the random selection of proteins. That is, we rank the proteins

randomly and count the essential ones which are in the top 2% of the ranking.

4.4.2 Application to Yeast PPI

We now apply the methodology previously described to identify essential proteins in the
yeast PPI. There are several datasets of the interactions of proteins in yeast. Here we
use the data compiled by Bu et al. [25]. The original data was obtained by Von Mering
et al. [168] by assessing a total of 80,000 interactions among 5400 proteins reported
previously and assigning each interaction a confidence level. Bu et al. [25] focused on
11,855 interactions between 2617 proteins with high and medium confidence in order to
reduce the interference of false positives, from which they reported a network consisting
on 2361 nodes and 6646 links:
http://vlado.fmf.uni-1j.si/pub/networks/data/bio/Yeast/Yeast.htm.

We transform this interaction map into the clique complex of a network in which
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PPI simplicial
complex
Simplicial
centrality
Ranking Rank Protein Essential?
1 YCRO35C Y
2 YIL062C Y

Figure 4.2: Schematic representation of the process of identification of essential proteins
using simplicial centralities in a PPI. This figure previously appeared in [50].

proteins are represented as nodes and two nodes are linked by an edge if their cor-
responding two proteins interact with high or medium confidence. In this section
we consider the 0-simplex, 1-simplex and 2-simplex degree, closeness, and subgraph
centralities as examples of nearest-neighbour, shortest-path and local neighbourhood
centralities respectively.

The first interesting observation obtained from this analysis is that the centralities
based on the edge level of the simplicial complex perform very badly at identifying
the essential proteins. For instance, for the top 1% of proteins in the ranking, the
node and triangle centralities identify more than 45% of essential protein (see detailed
analysis below), but the edge centralities do not identify more than 27% (edge degree).
In general, none of the edge centralities are able to identify more than 35% of essential
proteins at any percentage of top proteins selected. This result contrasts with the
rankings obtained by using node and triangle centralities. For instance, for the closeness
centrality at both node and triangle level, the number of essential proteins identified is

always larger than 37%. As can be seen in Figure 4.3(b) the triangle closeness centrality
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Figure 4.3: Percentage of essential proteins identified using simplicial degree (a), close-
ness (b), simplicial subgraph centrality (c¢) and random selection (d) based on the
0-simplices and 2-simplices of the simplicial complex for yeast PPI. For the case of
the random selection, as the edge and triangle information is reduced to values for the
nodes, only the selection of essential proteins based on random ranking of the nodes is
required. This figure previously appeared in [50].

outperforms the node version for all of the percentages of proteins considered. In the
top 10% and 15% of proteins ranked by the triangle closeness an extra 10% of the
proteins identified are essential compared to the equivalent criteria for nodes. These
differences represent up to 40 additional essential proteins identified by the triangle
centrality.

The largest percentages of essential proteins identified are obtained by the subgraph
centralities. In particular, for 1% and 3%, the triangle subgraph centrality greatly
outperforms the node one. For the top 1% of proteins identified by the triangle subgraph
centrality an extra 20% of the proteins identified are essential compared to its node
analogue and for the top 3% it outperforms the node centrality by 14%. However, for

top percentages of rankings over 5%, the node and triangle subgraph centrality do not
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show large differences in the identification of essential proteins. Around 50% of the
proteins identified are essential for both rankings.

The fact that the edge centralities do not describe the essentiality of proteins in the
yeast PPI simplicial complex merits explanation. This observation clearly indicates that
increasing the complexity of the representation of a phenomenon does not imply that
the amount of information which can be extracted from that system also increases.
For simplicity, we provide an explanation for why the degree of the edges does not
detect essential proteins but the explanation is also valid for the other centralities
studied here. Let us recall from Theorem 3.15 that the edge degree is given by 01(0) =
00(3) + 00(j) — (2 + 2T"), where i and j are the nodes forming the edge o and T is
the number of triangles that the edge is a face of. Notice that in a graph theoretical
framework the edge degree is simply defined as dg(i) + dp(j) — 2. The important thing
here is that the edge degree in the simplicial complex depends on the degree of the
nodes forming an edge and the number of triangles it participates in. In Figure 4.4
we show the scatter-plots of the edge centrality indices versus their node analogues.
As can be seen in all cases the correlation is positive and for the cases of the degree
and closeness the correlation between the two centralities is relatively good. We now
analyse the causes of the differences between the node and edge centralities and how
they influence the edge centrality’s inability to identify essential proteins in the yeast
PPIL.

Suppose that the number of triangles that an edge is a face of is relatively small,
such that the degree of the edge is mainly dependent on the degree of the nodes forming
that edge. Then, it is possible to have two different edges with exactly the same edge
degree which differ significantly in the degree of the nodes forming the edges. That
is, we can have an edge formed by two nodes of mid-degree (MD), e.g., MD-MD, and
another formed by a high-degree (HD) and a low-degree (LD) node. It is not difficult
to find many of these examples in the yeast PPI. For instance, the edges YMR125C-
YOL139C and YDR386W-YOL139C are formed by nodes of degrees 39-36 and 31-36,
respectively. That is, these two edges are of the MD-MD type. On the other hand,
the edges YPR110C-YLRO86W and YPR110C-YGLO16W are formed both by nodes of
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Figure 4.4: Scatter plots of the edge centralities, degree (a), closeness (b) and subgraph
centrality (c), versus the node analogues of the same centralities. Notice that the
subgraph centrality plot is in log-log scale and that harmonic closeness was used for
the edge closeness centrality due to the Yeast PPI simplicial complex not being 1-
connected. This figure previously appeared in [50].

degrees 64-3, which clearly means that they are of the HD-LD type. It is well-known
that high-degree nodes are more likely to represent essential proteins (see Figure 4.3(a)).
Thus, it is more probable that an HD-HD edge contains an essential protein than an
MD-MD one. Indeed, neither of the proteins in the previous example in MD-MD are
essential, but the protein YPR110C in the HD-LD edges is. The situation is even worse
when the nodes involved in a given edge participate in a large number of triangles. In
this case, twice the number of triangles is subtracted from the degree of the two nodes
the simplicial degree for the 1-simplices. Thus, if an edge is involved in a large number
of triangles, its edge degree will be relatively small due to the fact that it is penalized
for each triangle it is a part of. Thus HD-HD edges are unlikely to have a high edge
centrality because two HD nodes which are adjacent are likely to have many neighbours
in common. The existence of nodes having low degree but displaying either very low
or very high edge degree is easy to understand. In edges of the HD-LD type, there
is always a node with low degree which displays very large edge degree due to the
influence of the HD node. In those edges where an LD node is connected to another
LD node, both the node and the edge degree are low. These factors explain the edge
centralities failure to predict essential proteins in the yeast PPI compared to the node
and triangle centralities.

Now we move to the analysis of the triangle centrality indices. Because the triangle
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Figure 4.5: Scatter plots of the triangle centralities, degree (a), closeness (b) and sub-
graph centrality (c), versus the node analogues of the same centralities. Notice that
the subgraph centrality plot is in log-log scale and that harmonic closeness was used
for the triangle closeness centrality due to the Yeast PPI simplicial complex not being
2—connected. This figure previously appeared in [50].

centralities outperform the node ones in identifying essential proteins, our main goal
here is to identify a structural pattern which contributes to the triangle centralities
and does not contribute to the node ones. In order to perform our analysis we again
consider the degree centralities for the sake of simplicity. We are only interested in the
structural information which is useful for the identification of essential proteins. The
structural pattern that we identify here consists of a node A which is the vertex of a
relatively small number of triangles, such that its node degree is small. Suppose for
instance that A is connected to the nodes B, C, and D forming the triangles ABC
and ACD. Obviously the node degree of A is only 3. Now, let us consider that BC
is an edge of a large number of triangles, and that C'D has a similar property which
means that the triangles ABC and ACD have large triangle degree and consequently
the node A is very central according to this index. A node is highly triangle-central if
the edges of the 2-simplices it is a member of are also members of a large number of
other 2-simplices. We provide two complexes displaying exactly this structural pattern
as examples. The first is formed by the protein YDL148C, which is connected to 4 other
proteins, namely YGR090W, YBR247C, YCL059C and YCRO057C. These proteins form
5 triangles in which YDL148C is a vertex. Then, obviously, the protein YDL148C is

not very central according to this nearest-neighbour structure, i.e., its node degree is
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Figure 4.6: Illustration of the two simplicial complexes in formed by the proteins
YDL148C (a) and YMR112C (b). This figure previously appeared in [50].

only 4 and it participates in only 5 triangles. However, the edges of these 5 triangles
participate in a total of 88 other triangles. That is, the edge YGRO90OW—-YBR247C
takes place in 11 other triangles, YGR0O90W—-YCRO057C in 22, YBR247C-YCL059C in
14, YCL059C-YCRO057C in 25, and YBR247C-YCRO057C in 16. The protein YDL148C
is then very central according to the triangle centrality and it is essential. Another
example is provided by the protein YMR112C, which is also essential and is connected
only to YDL005C, YOL135C, YBR253W and YJRO68W. It forms only 4 triangles, but
the edges of these triangles form 14, 15, 17 and 19 other triangles, respectively. Thus,
the protein YMR112C which is not central according to node centrality is one of the
most central nodes when the 2-simplex centrality indices are reduced to the node level.

It should also be noted that there is structural information contained in the node
centralities which is not accounted for by the triangle ones. As we have seen before
there are proteins with high node centrality and low triangle centrality. However, the
number of structural patterns contributing to this situation is wider and ranges from
the simplest case where a protein interacts with a large number of other proteins which
do not interact with each other, to the case where a central protein forms a wheel-like

structure. In the first case obviously the protein has a high degree but its triangle
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degree is zero. In the second case a central node is connected to every node of a cycle
having n—1 nodes, the central node has degree n—1 but every triangle has degree only
two. The important message of this section is that the triangle centrality includes some
structural information which is relevant for understanding biological processes such as

the essentiality of proteins in the yeast PPI.
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Chapter 5

Random Geometric Simplicial

Complexes

Parts of this chapter have been presented at the University of Strathclyde Applied Anal-
ysis Seminar and at the International Congress on Industrial and Applied Mathematics

(ICIAM) 2019.

5.1 Literature Review

We now consider random geometric graphs (RGGs) which were first introduced, under
the guise of random plane networks, by Gilbert in 1961 [63] as a foil to the Erdds-Rényi
Random Graphs introduced a year earlier [41]. Gilbert was motivated to introduce
them because in an Erdos-Rényi random graph any two nodes are connected with an
equal probability. This property is acceptable in the null model when the graph system
being modelled is not embedded in a topological space but becomes less relevant when
it is. The example Gilbert gives is of short range radio stations which can communicate
only when they are within a certain distance of each other. If the same system were
modelled by the Erdés-Rényi random graph then each radio station would be equally
likely to be able to communicate with any other radio station regardless of location.
Random Geometric Graphs were later extended to more than two dimensions [119].

Another key application of RGGs is in wireless sensor networks (WSNs) [1, 10, 56,
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61,82,106,121,127,155] which are networks of sensors which can detect changes in their
environments. They are usually limited in their detection capacities to a given area,
examples include the underwater wireless sensor networks which are used to detect
tsunamis [10] or the WSNs used on nuclear sites to detect leaks [82]. They also have
applications to monitoring hillsides for landslides [127] and habitats to search for partic-
ular species [121]. Recently WSNs have become an important component of ”Internet
of Things” systems where the environment in a home, hospital [61], piece of industrial
machinery [56] or smart agricultural system [106] is monitored using wireless sensors
and then decisions about changes to the environment are made by a centralised base
station [1] indeed Tamene et al. [155] view the Internet of Things to be the natural
successor to traditional WSNs. The recent proliferation of applications for WSNs has
driven a focus on energy efficiency [164] and the related question of their security in
order to meet requirements to protect data [60]. There are two ways to model WSNs:
in the case that the sensors are able to communicate with each other then if two sen-
sors were positioned closely enough together such that communication was possible
then they could be connected by an edge; similarly if the regions that two sensors
cover overlap that could be another condition where we would connect two nodes in
the random geometric graph.

It is possible for three or more sensors to be in communication with each other and it
is also possible that three or more sensors would cover a common area. As a result RGGs
have been expanded to consider interactions between more than two nodes. A Random
Geometric Hypergraph consists of a set of nodes spread on the unit d-dimensional cube
[0, 1]d and a connection radius  and then x nodes are members of the same hyperedge if
there is a common intersection of the balls of radius r centred at those nodes. However
as Turnbull et al. [162] and Kahle [78] point out under this definition the balls of radius r
centred at any subset of these x nodes would also have common intersection and so any
subset of the hyperedge containing these x nodes would also be a hyperedge and so we
naturally arrive at the simplicial complex structure. However, other notions of random
geometric hypergraphs have been proposed. One example would be De Kergorlay and

Higham’s construction [33] where there are various hypergraph centres and each node
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would join the hypergraph centres to which it was sufficiently close. In their example
they considered that the hypergraph centres were meeting places like shops, gyms or
churches and individual people would go to the ones closest to their homes. It is easy
to see how this model could be extended to larger or more complex internet of things
set ups with multiple base stations. Although this new construction is interesting we
do not consider such complicated cases here.

There are two ways to form simplicial complexes from random geometric graphs.
The first way is known as the Cech complex [62] and the second is the Vietoris—Rips
complex [62,167]. Kahle [77] has studied the properties of these random geometric
complexes when embedded in different dimensional spaces. He calculated the expected
Betti numbers of such a complex under different conditions. Betti numbers are partic-
ularly relevant to the applications which we mention above and we discussed them in
Section 2.6. The Betti numbers of a simplicial complex describe the number of gaps
of that dimension which exist within the complex. The WSNs we discuss here are
embedded in a 2-dimensional space so it only really makes sense to talk about gaps in
two dimensions, usually known as holes. The first Betti number, 31, of a Random Ge-
ometric Simplicial Complex is equal to the number of these two dimensional holes. In
wireless sensor networks these holes would represent gaps or dark zones in the coverage
of an area. In fact, a lot of work has gone on in the literature into detecting these gaps
in coverage using a simplicial complexes approach [34,107,126].

One deficiency of limiting random geometric simplicial complexes to a single connec-
tion radius when studying wireless sensor networks is that while it is possible to know
the number of holes there is no information about their size. For a wireless sensor
network it may not be a problem to have many small gaps in the coverage but a single
large gap could be very problematic if the job of the sensor network is to prevent natural
disasters. One solution to this problem is De Silva and Ghrist’s use of the eigenvectors
associated with the largest eigenvalues of the Hodge Laplacian at the 1-simplex level
which they showed tends to have higher values for edges which were on the boundary
of the largest hole [34]. Another solution to this problem is persistent homology with

larger holes expected to persist for longer. Chintakunta and Krim leveraged persistent
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homology to check for false positives in their coverage hole detection algorithm [30].
Bobrowski, Kahle and Skraba introduced a multiplicative persistence where the death
time of a hole was divided by its birth time to create a ratio which allows persistence
of holes to be compared across different random geometric simplicial complexes [20)].
They also provided some probabilistic proofs about the nature of their multiplicative
persistence. Persistent homology has also been used to detect community structures
on Random Geometric Graphs among many other graphs by Jenkins [72].

This interest in detecting gaps in coverage is primarily so that it is possible to plug
those gaps and maintain communication or coverage across these regions. However, as
Kenniche and Ravelomananana [82] note, there are wireless sensor networks where the
sensors are fitted with batteries which it may not be possible to recharge or replace. For
example, the sensors, in the WSN that Polastre et al. used to monitor the Leach’s Storm
Petrel on Great Duck Island, failed for many different reasons [121]. Sensors may also
fail for other reasons and it may not be possible to replace them quickly, for example
a tsunami detection sensor in a remote part of the ocean, or safely, for example during
heavy rain on a hillside which is known to be prone to landslides. Given the potentially
fatal consequences of sensors failing much research has been done into detecting this
situation [102,109] and tolerating it [27,172]. Many of the recent advances in failure
detection have centred around the use of machine learning algorithms such as the use
of extremely randomised trees by Saeed et al. [135] and the application of an adaptive
shark smell optimisation algorithm in combination with a modified Elman recurrent
neural network by Mahalakshmi et al. [96]. Ghadi et al. provided an overview of the
machine learning algorithms in use in the study of WSNs in 2024 [60].

There are two general types of approaches to building tolerance to failures in a WSN:
creating fault tolerant node distributions when the WSN is introduced and moving
existing nodes or introducing new nodes to the system to act as redundancies in the
situation where a node failure would lead to a gap in coverage [172]. In WSNs with
mobile nodes algorithms have been introduced to decide where and when to move nodes
such as the one developed by Tirandazi et al. which combines a local algorithm and a

global algorithm to allow the sensors to make these decisions [157]. Sadeghi Ghahroudi
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et al. provided a survey of the available algorithms for node movement in WSNs in
2023 [134].

Introduction of new sensors is of particular importance in the case that the sensors
are not mobile and so cannot be programmed to cover gaps in coverage themselves.
One strategy for introducing nodes to eliminate holes in the coverage of a WSN is the
one proposed by Simionato and Cimino [146]. Their strategy is to have collections of
mobile sensors located at points throughout the area being monitored. When a hole is
detected these sensors are sent to the boundary of the hole which shrinks the boundary
of the hole as more sensors show up to sit on the reduced boundary until the hole is
no longer present and any remaining sensors can return to their base [146]. These new
sensors would remain in place until the failed sensor can be repaired or replaced at
which point the mobile sensors used to cover the gap would become available to deal
with new gaps [146].

Dependent on how the sensors were originally placed and the limitations on these
placements then some areas of the region being monitored may be more prone to gaps in
coverage opening up than others. These areas are ones in which there are multiple nodes
whose failure would create a coverage hole which would determine where the optimal
places for Simionato and Cimino’s collections of mobile sensors would be. It is useful
to be able to update this knowledge quickly in the event of failures of other nodes
in the system in order to move these collections or know which sensors to prioritise
fixing. Persistent homology could provide hints towards which nodes are likely to
induce a hole if they were removed. Nodes which were among the last nodes to join
the large connected component or nodes that were on the boundary of holes that died
at radii just below the connection radius would be good candidates. However, nodes
may join smaller connected components before the construction of the large connected
components and the identifiers for these smaller connected components would not be
unique to these hole-critical nodes. Similarly, a node which is positioned centrally to
a set of other nodes which are at a distance of slightly over the connection radius to
each other and three quarters to two thirds of the connection radius to the centrally

located node would not be on the boundary of a recently deceased hole but would
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(@) (b)

Figure 5.1: 1000 nodes scattered on a square of side length 1 (a), The RGG constructed
from these nodes with a connection radius of 0.07 (b).

induce a hole if it was removed and be covering a region on its own if a WSN was being
modelled. This chapter presents a method to identify nodes which are likely to create

a homological hole if they were removed.

5.2 Introduction

We begin by providing an extension of the definition of the Random Geometric Graph

to multiple dimensions from Penrose [119].

Definition 5.1. The random geometric graph (RGGQG) is defined by distributing
n nodes independently and uniformly in the unit d -dimensional cube [0,1]¢. We then
say that two nodes are adjacent if their Euclidean distance is less than r which is a

parameter known as the connection radius.

If we look at Figure 5.1 we can see the process of constructing an RGG in action
with 1000 nodes scattered on the unit square on the left and these nodes connected if
they are within a distance of 0.07 of each other. We are operating in 2—-dimensional
space which is the case for the rest of the thesis.

We now extend random geometric graphs to random geometric simplicial complexes

using Kahle’s definition [77].
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Figure 5.2: An RGSC constructed from the RGG in Figure 5.1 using the Vietoris—Rips
complex method.

Definition 5.2. A random geometric simplicial complex (RGSC) is a simplicial
complex defined using the nodes and edges of an RGG as the 0-simplices and 1-simplices

respectively.

We can see the effect of extending the random geometric graph from Figure 5.1 into
an RGSC in Figure 5.2. We shall demonstrate how to create holes in RGSCs which
correspond to gaps in coverage of a WSN.

There are many different definitions by which we could extend random geometric
graphs to random geometric simplicial complexes. The most useful method would be

to use the Cech complex [62, p. 30].

Definition 5.3. To construct the Cech complex, ¥, of an RGG we consider the ball

r

of radius 5

around each node ¢, Bg (i). Now for every subset of the nodes X € V', then
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X €% if and only if Niex Bz (i) # @.

Let there be three sensors in a WSN and let there be an edge between each pair of
nodes represented which means that if the radius of the coverage area for each sensor
is 5 then the coverage areas of each pair of these sensors must overlap. However, there
is no guarantee that there is an overlap between the coverage areas of all three sensors,
i.e. that the intersection of the coverage areas of all three sensors is non-empty. If
it is non-empty then we would represent this situation as a 2-simplex containing the
three relevant nodes in the Cech complex and if not then we would not include such
a simplex. The absence of such a simplex corresponds to a gap in the coverage in the
WSN and the presence of a simplex means that any point in the area defined by the
convex hull of the location of the three sensors is covered by at least one sensor in the
WSN.

Unfortunately, the Cech Complex is very time consuming to determine because of
the need to check the intersection of every subset of the nodes. A faster method is the

calculation of the Vietoris—Rips complex [62, p. 28].
Definition 5.4. The Vietoris—Rips complex of an RGG is its clique complex.

As before, let there be three sensors in a WSN and let there be an edge between each
pair of nodes represented. However, this time because all three nodes are mutually con-
nected they form a triangle and so a 2-simplex containing these nodes is automatically
included in the Vietoris—Rips complex.

We can see that in terms of providing an accurate representation of the coverage
of a WSN then the Vietoris—Rips complex is not as accurate as its Cech equivalent
because the presence of a simplex in the Vietoris—Rips complex does not guarantee
that every point in the convex hull of the sensors which define the simplex is covered
unlike the Cech case. However, Theorem 2.5 of “Coverage in Sensor Networks Via
Persistent Homology” by De Silva and Ghrist [34] states that it is possible to squeeze
a Cech complex between two Vietoris—Rips complexes of different sizes. We state the

theorem below for completeness.

Theorem 5.5. Let 2 be a set of points in RY, €,.(Z) be the Cech complex of these
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points when we consider balls of radius 5 and ¥, be the Vietoris—Rips complex of the

Random Geometric Graph formed by considering the nodes to be the set & and con-

necting nodes at euclidean distance less than r. Then there is a chain of inclusions

Vi (X)) € €y () € Vi (27) (5.1)
whenever
9 2d
o > i1 (5.2)

Thus for ease of computation we shall be using the Vietoris—Rips complex for the
simulations contained in this chapter. Theorems 5.7 and 5.10 also assume that the
RGSC is constructed using the Vietoris—Rips approach. Although it should be noted

that the intuition behind the results also applies to the Cech complex.

5.3 Creating Holes and Edge Subgraph Centrality

In the previous chapter we saw that edge centralities were not very useful at detecting
nodes whose corresponding proteins were essential. However, we now demonstrate that
in the 2-dimensional RGSCs they are useful at detecting nodes which we call hole-

critical.

Definition 5.6. A node is considered hole-critical if its removal would increase the

first Betti number, (31, of the simplicial complex.

That is a node is hole-critical if its removal would introduce a hole.

Remember that in a simplicial complex two edges are adjacent if they have precisely
one node in common and they do not take part in the same triangle. Therefore, an
edge has high degree if its nodes both have high node degree, and it is not part of
many triangles. The interactions and adjacencies in a RGSC are determined by the
local geometry which allows us to demonstrate a result about which nodes contribute

to the edge degree of a 1-simplex.
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Figure 5.3: The area in which nodes do not contribute to the edge degree is smaller for
the longer edge (a) than for the shorter one (b).

Theorem 5.7. Let S be an RGSC and o = {i,j} € S. The degree of o can be calculated
by counting the nodes within the connection radius of precisely one of its two nodes i

orj.

Proof. Recall from Theorem 3.15 that the degree of ¢ is given by

61(0) = 0o (i) +d0(4) - (2+2T) (5-3)

where 0y, represents the k-degree of a simplex as per Definition 3.14 and 7T is the number
of 2-simplices of which ¢ is a face.

Let’s use the edge from Figure 5.3(a) and let ¢ be the node on the left and j be
the node on the right. Given that the circles represent the connection radius of the
RGSC then §y(i) would be the total number of nodes which fall within the red circle,
00(j) would be the same for the blue circle and T" would be given by the number of
nodes which fall within both circles. We can therefore work out the contribution of the
1-simplices which are simplex adjacent to o through node i to d1(o) by summing all the
nodes in the red circle and then subtracting any which are also in the blue circle. We
can do the opposite for node j and the two summations are equal to simply summing
the number of nodes which are within the connection radius of precisely one of ¢ or

j. O
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Figure 5.4: A graphical depiction of the areas used to derive the equation of a symmetric
lens.

Consider the two edges in Figure 5.3. We would expect that the longer edge would
have a higher edge degree because the area where only one of its nodes would be
adjacent to a node in that area is larger. That is, there is a larger area contained by
the red circle but not the blue circle or by the blue circle but not the red circle for the
longer edge than the shorter one.

Before we can prove this assertion we need to calculate the area of intersection of

two circles of the same radius, which has a well known formula.

Definition 5.8. A symmetric lens is the shape defined by the intersection of two
circles of equal radius [91].

Lemma 5.9. The area of a symmetric lens is r>(6 —sin(0)) where r is the radius of

the circles and 0 is the arc length of the intersection of each circle [116, p. 23].

Theorem 5.10. Let S be an RGSC and o = {i,j} € S with i and j both at least

euclidean distance r, which is the connection radius of S, from the boundary of the area
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on which S is defined. Then the expected degree centrality of o is given by
E(61(0)) = 2(n - 2)r%(7 - (6 —sin(h))) (5.4)

where n is the number of nodes in S and 0 is the arc length of the lens created by the
overlap of two circles of radius v centred at i and j respectively.

It is also the case that E(61(0)) increases as the length of o increases.

Proof. We begin by deriving the formula for E(d;(c)) from the formula for the degree

of a 1-simplex given in Theorem 3.15.

E(d1(0c)) = E(d0(7)) + E(do(5)) - (2 +2E(T))
=1+ (n-2)mr* +1+(n-2)mr* =2 -2(n-2)r*(0 —sin(h)) (5.5)

=2(n—2)r*(m - (6 -sin(h)))

We can assume that the area on which the nodes of the RGSC are scattered is 1. Hence
E(6o(i)) = 1 + (n - 2)7r? because we know that node j is adjacent to node i and there
are (n—2) other nodes in the RGSC. The proportion of the remaining nodes which we
would expect to fall inside the connection radius r is 772 because the total area is one.

Similarly, to calculate E(T") there are (n —2) other nodes and we would expect the
proportion of them which would form triangles with the two nodes to be equivalent to
the area of the lens, 72(# - sin(#)), formed by the intersection of the two of circles of
radius, r, centred at ¢ and j divided by the total area the nodes are scattered which we
assume, without loss of generality, to be 1.

We can simplify to the expression in the last line of the proof above. As the length of
the edge o, increases 6 decreases and (6 —sin(6)) is a monotonically increasing function
of §. Thus, (m - (6 —sin(f))) is a monotonically decreasing function of 6. Hence,

E(d1(0e¢)) increases as the length of o, increases. O

More intuitively 01(o) is the number of nodes which are within the connection
radius of precisely one of the nodes of an edge. Hence the larger this area is the more
likely an edge’s degree centrality is high. This area is larger when the edge is longer as

can be seen from Figure 5.3.
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Figure 5.5: The nodes highlighted are the most edge subgraph central ones for this
RGSC (a) we can see the effect of removing these nodes from the RGSC(b).

The subgraph centrality of a node in a network has been shown to be a measure of
the number of subgraphs of a graph that a node participates in. That is a node has a
high subgraph centrality if it not only has a high degree but many of the nodes that it
is connected to also have high degree and have many connections between each other.
Therefore, in a simplicial complex an edge is likely to have high subgraph centrality if
it is not only of high degree but if it is also adjacent to many edges of high degree. On
random geometric simplicial complexes we have demonstrated that longer edges have
higher degree so an edge is likely to have higher subgraph centrality if it is long and it
has at least one node which is a member of many other long edges. Additionally, the
other end points of these edges would need to be far away from each other to minimise
the chances of forming triangles. If this situation arose then all of the other edges
surrounding the same node would also have high subgraph centrality. So a node which
is involved in many edges which have high subgraph centrality is likely to be at one
end of many long edges and therefore quite far from other nodes in the euclidean space
the nodes were spread on. That is such a node is likely to be hole—critical.

We can connect this idea to the case of wireless sensor networks and the problem of

sensors failing with the result of a gap appearing in the coverage of the WSN. Therefore,
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’ Betti Number Change ‘ 1 node 2 nodes 3 nodes 4 nodes b5 nodes

1 122 209 222 189 186
2 3 36 79 138 155

3 0 3 9 24 45

4 0 0 0 3 13

5 0 0 0 0 1

-1 0 0 0 3 2
Total 125 248 310 357 402
Unchanged 375 252 190 143 98

Table 5.1: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked according to the
subgraph centralities of their edges.

we now consider the 100 most subgraph central edges in an RGSC and whichever node
is contained most often in this list of edges will be considered the most edge subgraph
central node.

We demonstrate experimentally the effectiveness of removing the most edge sub-
graph central node of a network as a way of introducing holes to a network. Figure 5.2
is an RGSC with sidelength 1, connection radius 0.07 and n = 750 nodes. It has a first
Betti number 81 = 45 which is equivalent to saying that the number of gaps in coverage
of a WSN being modelled by this RGSC is 45. In Figure 5.5 (a) we have highlighted
the five most edge subgraph central nodes of this RGSC as determined by the following
process:

1. Calculate edge subgraph centrality for every edge in the simplicial complex.

2. Identify the 100 edges with the largest edge subgraph centralities.

3. Calculate which node features in the largest number of these highly edge subgraph
central edges. If there is a tie then break the tie by picking whichever of the tied nodes
is contained in an edge closest to the top of the list.

4. Remove this node

5. Repeat process on reduced simplicial complex until 5 nodes have been removed.

When these nodes are removed then the resulting simplicial complex is that shown
in Figure 5.5 (b). Note that it has a Betti number of 46 due to the hole which has

opened in the region close to (0.3,0.6). Moreover, the hole at (0.7,0.65) has increased

110



Chapter 5. Random Geometric Simplicial Complexes

Figure 5.6: The nodes highlighted are the most node subgraph central ones for this
RGSC (a) we can see the effect of removing these nodes from the RGSC(b).

in size further disrupting communication between the nodes in this area.

This process was repeated on 500 different RGSCs with connection radius 0.07 and
n = 750 nodes. The average number of edges of these RGSCs was 4071 with a standard
deviation of 74.4, a minimum of 3856 and a maximum of 4310 which means that roughly
the top 2.5% of edges contribute to the selection of which node to delete. Table 5.1
details the changes to the Betti numbers of these RGSCs throughout this process. After
deletion of just five nodes 80.4% of the RGSCs had seen 31 increase by at least one
which corresponds to finding at least one hole critical node and in 42.8% of cases at
least two hole-critical nodes had been found.

To further demonstrate that this result is not just a normal result of deleting nodes
three further node deletion strategies have been tried. These strategies are deleting
edges according to node closeness centrality, node subgraph centrality and random
deletion. We discuss each strategy in turn.

As previously mentioned, nodes have high subgraph centrality when they have high
degree and they are adjacent to many other nodes which also have this property. There-
fore, on an RGSC we would expect that nodes with high subgraph centrality would be
found in dense clusters. These nodes would be unlikely to be hole-critical because there

are likely to be many other nodes nearby which would also need to be deleted to induce
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’ Betti Number Change ‘ 1 node 2 nodes 3 nodes 4 nodes b5 nodes

1 7 21 28 49 60

2 0 0 0 1 2

Total 7 21 28 50 62
Unchanged 493 479 472 450 438

Table 5.2: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked according to their
subgraph centrality.

a hole in that location which was confirmed by experimentation. The same process was
used as the experiment where nodes were deleted according to edge subgraph centrality
but instead the node with the largest node subgraph centrality was iteratively removed.
Table 5.2 details that deletion of 5 nodes resulted in an increased Betti number in only
12.4% of the RGSCs. We can also see this process play out in Figure 5.6 where the
most node subgraph central nodes are highlighted and then removed from the RGSC
from Figure 5.2. This process has no effect on the number of holes in the RGSC.

On a RGSC the nodes with the highest node closeness centralities are found in the
centre of the space on which the nodes have been uniformly distributed. When the
most central nodes are deleted then we have a situation where one large hole forms in
the centre of the RGSC. Table 5.3 shows that a large number of simplicial complexes
change Betti number (many more than the case of node centrality but less than in the
case of edge subgraph centrality) and a larger portion of the changes in Betti number
are by one even after deletion of multiple nodes. However, there are more decreases
of Betti number with closeness than there are for edge subgraph centrality. These
decreases are due to multiple holes in the middle of the RGSC merging together to
form one large hole. This process plays out in the case of the RGSC from Figure 5.2,
which is depicted in Figure 5.7. The five small holes in the centre of the square join to
form three larger ones after removing the nodes with the largest closeness.

Finally, to provide a control to these experiments a series of five nodes were deleted
randomly from 500 RGSCs and the resulting changes in the Betti Number were tracked.
The results are detailed in 5.4.

We have four different node deletion strategies which have four different effects on
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Figure 5.7: The nodes highlighted are the most node closeness central ones for this
RGSC (a) we can see the effect of removing these nodes from the RGSC(b).

‘ Betti Number Change ‘ 1 node 2 nodes 3 nodes

4 nodes 5 nodes ‘

1 92 118 141 149 160

2 1 13 23 34 47

3 0 1 2 3 5

4 0 0 2 3 3

-1 25 45 61 72 86

-2 8 13 22 28 26

-3 0 0 2 4 11

-4 0 0 0 1 2
Total 126 190 253 294 340
Unchanged 374 310 247 206 160

Table 5.3: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked according to highest

closeness centrality.
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’ Betti Number Change ‘ 1 node 2 nodes 3 nodes 4 nodes b5 nodes

1 34 o1 67 87 104
2 1 2 9 16 17
3 0 0 0 1 0
4 0 0 0 0 1
-1 28 93 68 68 74
-2 1 4 7 11 14
-3 0 0 0 1 1
Total 64 110 151 184 211
Unchanged 436 390 349 316 289

Table 5.4: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked randomly.

the number of holes in the RGSC. We have the random behaviour exhibited by the
random deletion, the behaviour of creating lots of small holes exhibited by the edge
subgraph centrality, the behaviour of creating a large central hole exhibited by the
closeness centrality and the behaviour of having little effect on the Betti number of the
node subgraph centrality. The results of these experiments are summarised in 5.5 for
ease of the reader.

We have demonstrated that the edge subgraph centrality can be used to detect
hole-critical nodes in RGSCs which has implications for the study of WSNs because
it means that when nodes fail in a WSN the implications for which other nodes have
become hole-critical can be calculated quickly to allow movement of resources towards
regions where gaps in coverage are more likely to appear. This algorithm could be

combined with other algorithms in the management of WSNs.
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’ Betti Number Change ‘ 1 node 2 nodes 3 nodes 4 nodes b5 nodes

Edge Sub + 125 248 310 354 400
Edge Sub - 0 0 0 3 2
Node Sub + 7 21 28 50 62
Node Sub - 0 0 0 0 0
Closeness + 93 132 168 189 215
Closeness - 33 58 85 105 125
Random + 35 53 76 104 122
Random - 29 57 75 80 89

Table 5.5: This table summarises the previous experiments. The four methods of
node deletion Edge Sub (Largest number of nodes with high edge subgraph centrality),
Node Sub (Largest Node Subgraph Centrality), Closeness (Largest closeness centrality),
Random are accompanied by a sign + or -. The + indicates a positive change in Betti
Number, the - indicates a negative change. The numbers are the number of RGSCs
which displayed a change of this type after deletion of the given number of nodes.
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Chapter 6

Epidemic Spreading on Random

Rectangular Annular Graphs

6.1 Literature Review

When Gilbert introduced his random planar graphs [63] he also mentioned the spread
of infectious diseases which is only really relevant to certain settings, in plants for
example [7,47]. In humans or other mobile animals this strategy is less likely to be
appropriate because the points are unlikely to remain stationary long enough for trans-
mission due to their location to become the main cause of transmission. However, when
we consider a system of plants in a field, each plant could pass on a disease to other
plants close to it but cannot pass on the disease to those plants that are further away.
The appropriateness of modelling the spread of plant disease with random geometric
graphs is, of course, dependent on the mode of disease transmission. Many aspects of
disease transmission on random geometric graphs have been studied including the work
on how far a disease can spread when the connection radius of the RGG is varied by
Saha et al. who calculated both the geographical limit of how far the disease could
spread and the expected number of individuals infected under an SIR model [136]. An-
other example is that Panicker and Sasidevan were able to produce the oscillations in
prevalence that characterised the COVID-19 epidemic using evolving random geometric

graphs where the density of nodes in the graph was varied depending on the prevalence
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of disease which mimicked the introduction and relaxation of social distancing measures
during the early stages of the outbreak [117].

In recent years there has also been an explosion of interest in extending the study of
random geometric graphs to consider shapes other than squares, partly due to an appre-
ciation that not all fields are square and the shape of a field may change the properties
under study. One example is the work by Martinez-Martinez et al. who looked at the
random circular graph with the nodes distributed from the centre based on the normal
distribution [101]. They looked at how properties of the graph changed under differ-
ent values for the standard deviation of the normal distribution [101]. Allen-Perkins
studied the average degree, degree distribution and clustering coefficient among other
properties of random geometric graphs on the surface of a sphere [2]. The random
rectangular graph was introduced by Estrada and Sheerin in 2015 [51] while Estrada
et al. studied epidemic spreading over random rectangular graphs [47], Estrada and
Chen looked at Synchronizability [45] and Estrada and Sheerin investigated consensus
dynamics [52]. Later Alonso et al. added a random weighting component to both
the nodes and edges of the random rectangular graph and then studied the spectral
properties of their construction [3] and Arias et al. expanded on epidemic spreading on
random rectangular graphs adding in long range dispersal through Mellin and Laplace
transforms which adds the wind based dispersal of fungal spores to the model to com-
plement the random rectangular graph’s ability to model short range dispersal of these
spores by insects or mammals [7]. Deshpande used random rectangular graphs as part
of his study of range expansion of species noting that range expansion models typically
feature long and narrow areas [35]. These studies point to the fact that the location of
the boundaries of a random rectangular graph affect the dynamics of processes on it
and clearly not all locations which interest researchers are square.

Additionally, not all locations of interest are whole, for example if one was attempt-
ing to model the spread of plant disease across Central Park in Manhatten the most
appropriate shape would be a rectangle with a large hole in the middle to factor in
the presence of the lake on which many plant species would be unable to survive. If

we were modelling the spread of disease through populations of plants in the Scottish

117



Chapter 6. Epidemic Spreading on Random Rectangular Annular Graphs

Highlands, or a similarly rugged terrain, we would wish to understand what effect the
lack of plants on the tops of mountains or in the middle of lochs would have on the
dynamics. Giles et al. considered annuli in 2016 [64] establishing the connectivity of
Random Geometric Graphs over Annuli. Angel and Spinka considered random geomet-
ric graphs on circles in 2021 [6] and Galhotra et al. investigated connectivity of random
geometric graphs on spheres of different dimensions of which the one dimensional case
is an annulus [58]. The previous chapter explored various methods of deleting nodes
from an RGSC and the effect that has on their homology. This chapter investigates
how the homology of the underlying space affects the epidemic spreading on random
geometric graphs scattered on them which is of relevance when analysing the spread
of a plant disease in a wild or domestic setting with large areas where certain plants
would not grow such as mountains, lakes or uncultivated areas surrounding telegraph
poles. Note that large in this instance is relative to the expected maximum distance

between plants which could result in the transmission of a disease.

6.2 Expected Average Degree

Estrada and Sheerin [51,144] showed that the expected node degree of a node, v;, in

% where a and b are the side

a random rectangular graph is given by E(k;) =
lengths of the rectangular area and A; is the area both within a radius r of v; and
also inside the rectangle. They averaged over every position in the rectangle to get
E(k) = % where fp A, is the summation of A; for all ¢ i.e. for every possible

point in the rectangle. We now generalise their result to rectangular areas with holes.

Definition 6.1. Let there be a rectangular area with side lengths a,b with another
rectangular area in the middle with side lengths R;, R2. Randomly and uniformly
scatter n nodes in the area inside the larger rectangle but outside the smaller one.
Then as usual connect two nodes if they are within distance r of each other. This

construction is a random rectangular annular graph.

Note that it is not required that the edges of the inner rectangle are parallel to the

edges of the outer rectangle. All theorems in this chapter are accurate regardless of the
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Figure 6.1: A graphical look at how the area within the inner rectangle but outwith
the outer rectangle can be calculated.

orientation of the inner rectangle.

As in the case of the random rectangular graphs the expected node degree of a node
v; is given by the number of other nodes (n — 1) multiplied by the fraction of the area
within which nodes can be scattered which is within distance r from v;. The difference
this time is that the circular area within which all nodes share an edge with v; may be
interrupted by the internal boundary as well as the external one (see Figure 6.1).

We can let the area on which nodes can be scattered within radius r of a node v; be
denoted by B;. The total area on which nodes can be scattered is given by (ab— R1R3).
Then we can follow the example of before and say that the expected node degree of a

node v; is given by

E(k;) = .
(ki) ab—- R Ry

(6.1)

From Figure 6.1 we can see that the red area, B;, can also be expressed as the whole
coloured area (which shall be called A;) with the blue area subtracted. The blue area
is the area within radius r of a node v; which is within the smaller rectangle and will

be denoted C;. Then we can express B; as A; — C; and therefore have that
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(n=1)(4i-C)

E(k;) = 6.2
(kq) b Rl (6.2)
We can average over all points in the area on which nodes are spread to get
. (n-1)([,4-C (n-1)(/,A,- [ C
E(kj)= (p P p): (p P Jp p)‘ (6.3)

(ab- R1Ry)? (ab- R1Ry)?

Note that fp A, and fp C) are the sum, across all points in the area of the RRAG,
of the area which is within r of a given point p and also within the outer rectangle
(the coloured area in Figure 6.1) and the sum of the area which is within r of a given
point p and also within the inner rectangle (the blue area in Figure 6.1) respectively.
The summations of these contributions are then averaged across the whole area of the
RRAG by division by (ab— R;Rg) which we can see is a squared term in Equation (6.3)

as opposed to the singular instance of it in Equation (6.2).

Theorem 6.2. For a Random Rectangular Annular Graph where we assume that the
mner area s a distance at least v from the edge of the larger area and that Ry, Rs >,

the expectation of the average node degree of the graph is given by:

) (n=1) (7r?(ab- Ri1Ry) - % (a+0b)r3+ %7“4—47“3(% + 2 )

3
(ab- R1Ry)*

E (k)

Proof. 1. Overview

We consider quarter circles around each point and multiply the results by 4 at the
end. Note that the theorem is stated such that it is not necessary for the sides
of the inner rectangle to be parallel to the sides of the outer rectangle because
we consider the interaction with the inner rectangle separately from the other
contributions. Therefore we could reorient the RRAG between the calculation of
fp Ap and fp C) and retrieve the expected result. Additionally, any point on the
boundary of the inner rectangle being at least r from the boundary of the outer
rectangle means that a quarter circle which interacts with the inner boundary

cannot also overlap with the outer boundary.
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Figure 6.2: The different possible cases in terms of the nodes interacting with the
boundary of either the inner or the outer rectangle.

We can refer to Figure 6.2 which shows us that there are 8 different ways in
which the area within r of a point could interact with either the inner or outer
rectangles. The simplest case is that of p; which does not interact with the edges
at all. We then have that ps and p3 interact with precisely one of the boundaries
of the outer rectangle while py and ps interact with two boundaries of the outer

rectangle. We also have that pg, py and pg interact only with the inner boundary.

This proof is divided into parts, of which this overview is the first, to aid read-

— n— Ar—[ C
ability. The calculation E(k) = ( tig){PRl’;% 2?; 1’)

has been separated into fp Cp
which deals with the interaction with the inner boundary and [p Ap which will
deal with everything else. The second part will deal with the calculation of fp Ap
for points like p1, pg, p7 and pg which do not intersect the outer rectangle and so
can be treated identically for this evaluation. The third part will consider the
calculation of fp A, for points like po and p3 while the fourth will evaluate the
contribution of points like py and ps to fp Ap. The fifth part will put the results
of parts 2, 3 and 4 together to get a final evaluation for [p Ap. The sixth part
moves on to calculate the contribution of points similar to pg to fp C), remember-

ing that for point similar to p1,p2,p3,ps and ps their contribution to fp Cpis 0.
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The seventh part gives us a useful shortcut for the calculation of the contribution
of points similar to pg to /p C)p while the eighth and ninth parts determine the
contribution of points similar to p; and pg to [p Cp. The final part brings the
contributions of the different kinds of points to fp C) together and then delivers
the final formula for E (E) Some of these parts are further divided into sub parts

in order to consider different terms of each integration.

2. Calculation of fp A, for points similar to pi, pe, p7 or ps.

The area of the quarter circle at pi,pg, p7 or pg can be calculated as “TTQ and any

point which is at least r from both the top and right edges of the outer rectangle
has this form. Therefore we can calculate that the contribution to fp A, from

points of the type p1,pg, p7 or ps is

7r2((a—7r)(b-71) - R1Ry)
n :

3. Calculation of fp A, for points similar to py or ps.

We can now turn our attention to points of the form po and p3. A close up of these
two situations is displayed in Figure 6.3. To work out the area contained within
the rectangle for ps we need to subtract the red area above the green dashed line
from the area of the quarter circle, ”T’ﬂ. We can work out the red area as the area
of the coloured circular sector with the area of the blue triangle below the green
dashed line subtracted.

The area of a circular sector is given by 0 with 0 = cos™! (f) and the area of

2
cVr2—c?

5——- We can put all of these formulae together

the blue triangle is given by

to get the following formula for the area inside the rectangle for a point like po

7T—742—ﬁcos_1 (E)+—C TZ_CQ. (6.6)
4 2 T 2

We can use a similar process to define a result for a point similar to p3 as
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Figure 6.3: A node within r of the top of the outer rectangle (a) and a node within r
of the right edge of the outer rectangle (b). In both cases the edge of the rectangle is
depicted by the green dashed line.

(6.7)

We can integrate this equation from 0 to r to get the sum of all the points on a
line descending perpendicularly from the top or right hand side of the rectangle
of length r. We can then multiply this result by (a—1r) + (b-7) to get the

contribution from points similar to ps and p3. To calculate

roon2 02 V2 — |2

Tt os-l(@)+udh (6.8)

o 4 2 r 2
we work out each term separately and then put them together again.
(a) Integral of [ 7T4L2dh term in Equation (6.8).
We start with

ror? ar?h]” wrd

2 dh = =—. 6.9

o 4 [ 4 ]0 4 (6:9)

(b) Integral of [, § cos™ (%) dh term in Equation (6.8).

We have
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Figure 6.4: The different regions and the effect of addition and subtraction of each term
in Equation 6.13 (a) and a depiction of how to calculate the dark red area as explained
by Equation 6.15 (b).

o2 2 3 2 3
%cos_l(ﬁ)dh: %Cos_l(ﬁ)—r— 1—(ﬁ) =% (6.10)

0 r

by substitution of g = % followed by evaluation of [ cos™(g)dg by integration

by parts.
(c) Integral of [ h—”";_thh term in Equation (6.8).

For our final term

[r—hmdh - [_—(rz ‘h2)2] _r (6.11)
0 2 6

by substitution of f =2 - A%
(d) Result of [, A, for points similar to p2 or ps.

We can now put together our results from Equations (6.9), (6.10) and (6.11)

to get the contribution to fp A, by points similar to p> and p3 to be

3 3

(a+b—2r)(%—%). (6.12)

4. Calculation of fp A, for points similar to ps or ps
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(a) Description of approach.

We can now move on to consider points which are within r of a corner in
terms of both the x-axis and the y-axis i.e. points which are similar to py4 or
ps. Notice that in the case of ps we can just add together the contributions
from the parts which are similar to ps and p3 and integrate over ¢ and h

respectively. We can calculate this area as

2 _ .2 2 2 _ K2
ﬂ_r_ws—l(s)+u_r_ Os—l(ﬁ)ﬂ_v?“h. (6.13)
4 2 r 2 r 2

However, this approach gives us a problem when we try to use it to analyse
points similar to ps i.e. a point which is within a euclidean distance less

than 7 from the corner. That is for any point where r < \/c2 + h2.

It is useful to have a graphical understanding of how each separate area is
affected by each term of Equation (6.13) which is provided in Figure 6.4 (a)
where each region has a series of five symbols from {+,—,0}. A + symbol as
the first entry of the series indicates that this region is part of the area that
is added as part of the first term of Equation (6.13) and a — symbol as the
second entry indicates that this region is subtracted as part of the second
term of Equation (6.13) i.e. the —g cos™! (f) term. The effect of the third,
fourth and fifth entries Equation (6.13) are similarly indicated on Figure 6.4
(a).

We wish to calculate the area of the blue rectangle and so we would like
that any point inside the light blue rectangle has one more addition than
subtraction in Equation (6.13) which is the case. However, we would also like
that any point outside of the blue rectangle has an equal number of additions
and subtractions and this requirement is not met because the region which
is depicted in dark red in Figure 6.4 (b) has been subtracted from Equation
(6.13) twice but only added once.

Our approach is to integrate Equation (6.13) from 0 to r with respect to h

and then integrate the result from 0 to r with respect to ¢. Then to work
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out a formula for the area of the dark red region from Figure 6.4 (b) for a
given c,h with r < Ve + k2. Integration of this formula from V2= tor
with respect to h and then integrating the result from 0 to r with respect to
c gives the value which has to be added back to the integration of Equation
(6.13) to compensate for the extra subtraction of the dark red region which
happens for points similar to ps.

Integration of Equation (6.13) in calculation of [ A, for points similar to ps
or ps.

We start with the integration of Equation (6.13) from r to 0 with respect

to h and from r to 0 with respect to c. We can use the results of Equations

(6.9), (6.10) and (6.11) to get

r 2 _ .2 2 _h2
f K_T_COS 1(£)+u_r_cos—1(ﬁ)+udcdh
T

2 2 2 r 2
3 3 3 2 _ K2
= __r_ T——T—cosl(ﬁ)vtrh r hdh
o 4 2 6 2 r 2
_7T7”4_7’4 7’4_7”4+7“4 4
4 2 6 2 6 (6.14)
:r4(1_%)
4 6

Derivation of formula for the area of the dark red region in Figure 6.4 (b).

In Figure 6.4 (b) the area of the whole coloured area can be calculated as
§ cos™t ( ) as before because 65 = cos™! (;‘f) The red circular sector can be
removed to leave just the blue circular sector. The area of this red sector is
given by = ? gin~! (%) as 6 =sin~! (%)

We can then subtract the triangle with the blue outline and the one with
h\/r and cm

the black outline which have areas respectively. The
result is that the only area of the blue sector which remains is that which is
coloured dark red. However this subtraction also results in the area that is
within the rectangle being subtracted as well. Once we add this area in we

are left with the following equation for the dark red area
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2 ey P hy WIS i
— cos (—)—?sm (—)— 5 - 5 +ch. (6.15)
r T

(d) Integration of Equation (6.15) in calculation of fp A, for points similar to py

or ps.
The following equation describes the value that must be added back into

Equation (6.14) to account for the subtraction of the dark red region from

Figure 6.4 (b) in that result

+ch dedh.
(6.16)

/’” Vr2-c2 .2 _1(0) r? .n_l(ﬁ)_h\/ﬂ—lﬂ_m/ﬂ—c?
0o Jo r 2

As with integrals for the other points we will do this calculation term by
term. We begin with the parts which do not depend on h or are linear in

terms of it.

cVri-c

i. Integration of § cos™? (f) i ® 4 ch term in calculation of Equation
(6.15).
The equation below describes the results of the the first stage of the

integration of the first, fourth and fifth terms of Equation (6.15)

r pVr2=cZ p2 2_ 2
/ f T—cos_l(g)—quch dhdec
0o Jo 2 2

r
ViEo
T[hr2 ,1(6) her? - 2 chQ]
:f —cos |- |]-——+— de
o2 r 2 2 1o (6.17)
2 /r2 _ 2
:/ uc05*1 (E)dc
0 2 r
4
:%(79—1).

The step from the third line to the fourth line is done by using two
substitutions, u = cos™! (f) and v = =. We will put this result together

with the results of the other terms later.
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ii. Integration of h—”’;’hQ term in calculation of Equation (6.15).
We can use Equation (6.11) to get

r r2—c2 2 _ K2
[ rer-R?
o Jo 2
Y A2 —c2
[l
b | 6
0

) frr:a 03_ R ) P4
~Jo 6 6 \6 24) 8

iii. Integration of sin™! (%) term in calculation of Equation (6.15).

dc (6.18)

Finally we can analyse the second term from Equation (6.15). We can

evaluate

Vi 2 h
f f ——sm (— dhdc

.
2 _ A2 2 _ L2 2 3
:_/ rVroe (Ve e P (6.19)
0 2 r 2 2
4 4
T 2 T
e — (7 =1)+ —.
g(m-D+7

The first step can be completed by substitution of g = ];l followed by
integration by parts using u = sin"*(¢) and dv = dg. The final step is a
substitution of f =1 - g%

The first term in the second step can be evaluated to be —%(7‘(2 -1)

through the following series of substitutions

r2—c? (6.20)
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The second and third terms can be evaluated to be %.

iv. Final evaluation of Equation (6.15).
We are now in a position to simplify the expression in Equation (6.15) by
combining the results from Equations (6.17), (6.18) and (6.19) together

to get

Vri-c? c r? h
f f —cos 1(—)——sin_1 (—)+
T 2 r

r2—c2 2 2 _ 2
/ f h\/r2 h C\/’f'2 C +ch dhde (621)

T ’1“4 4 4

= —1)————(7r —1)+—:%.

(e) Final Result of fp A, for points similar to ps or ps.

Recall that we had calculated the contribution to [ A, by points similar to
p4 or ps in Equation (6.14) but that for points similar to ps this calculation
required the dark red region from Figure 6.4 (b) to be added back in. The
value of this region for all points such that r < Ve + h? was calculated in
Equation (6.21) which means we can now deduce the contribution to [ 4,

by points that are similar to ps or ps. This equation gives the value

4
T4<E_§)+T_:r4(f_§), (6.22)
FRY!

5. Final Result of [ A,.

We can now work out [ A, by combining the results from Equation (6.5), which

calculated the contribution from points similar to pi,pg,p7 and ps, Equation

(6.12), which calculated the contribution from points similar to py and ps, and

Equation (6.22), which calculated the contribution from points similar to ps and

ps. We can then multiply by 4 to get the final value for [ A,,
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[

=rr?((a-7)(b-r) - R1Ra) +4(a+b-2r)r’ (% - %) +drt (% - 5)

4
=mr?(ab- R1Ry) - (a + b)mr® + mrt + (a + b)mrd - g(a +b)r® — 21t (6.23)

8
+ -t et - 27"4
3 24

4 1
=mr?(ab- R1Ry) - g(a +b)rd + 57“4.

Note that if we set Ry, R2 = 0 we would recover the formula discovered by
Estrada and Sheerin [51, 144] for the case that r < b. The restriction that

Ry, Ry > r means that we are never in any of the other regions defined by them,

(bSTSa,aSrS\/a2+b2).

Now that we have established the result for [ A, we can start to establish
the result for [ C,. Given what we have so far we need to show that [ C), =
473 (% + % - g) Note that we only have the cases of pg, p7 and pg to consider
because the connection radius of the other cases does not intersect with the inner

rectangle.

6. Calculation of fp C), for points similar to ps.

We can start by investigating points similar to pg. These points are such that
the quarter circle crosses into the inner rectangle at a corner. To calculate this
area we can follow the same procedure we used for calculating the red area from
Figure 6.4 (b). Furthermore, if we let ¢ denote the vertical distance a point is
below the corner and h denote the horizontal distance it is to the left then this
situation only occurs when r < V¢ + h2, which is the exact same situation as for
the summation of these areas for ps. So we know that the contribution to [ C,

from the corner segment is given by

<

— (6.24)

from Equation (6.21).
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Figure 6.5: A depiction of the case for pg which can be worked out as the area for pr
minus the red area which is back outside the inner rectangle.

7. Justification for treatment of points similar to pg in the same way as pr.

To assess the contribution to fp C), for points similar to p; we can consult Figure
6.3 (a) again. However, this time we are looking to assess the red area rather than
the whole coloured area. The difference between a point similar to p; and a point
similar to pg can be seen by looking at Figure 6.5. Essentially a point similar
to pg can be calculated in the same way as a point similar to py except that the
dark red region in Figure 6.5 needs to be subtracted from the result. If we let
c denote the vertical distance of a point from the bottom of the inner rectangle
and h denote the horizontal distance it is to the left of its rightmost edge then
points are similar to pg when r < V/c2 + h2. This situation is once again the same
as the one for the summation of the dark red region that we looked at when we
considered the contribution to fp A, for points similar to ps. That means that we
already have the summation of such areas for all points similar to pg which was

calculated in Equation (6.21) to be

<

—. (6.25)
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As a result we can treat points similar to pg the same as points similar to p7 and
work out the contribution across all such points and then subtract the result of

Equation (6.25) at the end.

8. Calculation of fp C), for points similar to p7 and pg which are below the inner

rectangle.

To work out the contribution to fp C), for points similar to p; we need to calculate
the area of the red region in Figure 6.3 (a). We then integrate this result from 0
to r to get the sum of these results along a vertical line below the inner rectangle.
Multiplying this result by R; will give the contribution for all points similar to p7
and pg which are below the inner rectangle. The area of the red region in Figure
6.3 (a) is the area of the coloured segment with the area of the blue triangle

subtracted which can be calculated by
2 2_ 2
T cos™! (E) ST (6.26)
2 r 2

We can integrate this area along the vertical line of length r perpendicular to the

bottom of the rectangle using Equations (6.10) and (6.11)

2 (6.27)

Multiplying this result by R; and subtracting the extra contribution for points
similar to pg that we calculated in Equation (6.25) gives
Ry ot

g (6.28)

9. Calculation of fp C) for points similar to p; and pg which are to the left of the

inner rectangle.

Note that there are also some points which are to the left of the inner rectangle
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and within 7 of it. We can work out the contribution of these points to fp Cp
analogously to the way we worked it out for the points below the inner rectangle.
The only difference would be that we need to multiply the p7 type points result
by Rs rather than R; which gives a contribution of such points as

Ror® 4

g (6.29)

10. Final result of fp Cp.

We can now calculate [ Cj, by combining Equations (6.24), (6.28) and (6.29) and

multiplying the result by 4

3 4 3 4 4
f0p=4 Bar® 7 Ber” 1
3 8 3 8 8

(6.30)
= 47«3 (& + & — E)
3 3 8/
We are now in a position to put everything together and calculate
— n-1)(mr?(ab- R Ry) — 2(a+b)r® + Lpt — a3 (B B2 _ 1
E(k) = ( )( ( 1R) 3( ) 2 ( 3 3 8) (6.31)
(ab- R1Ry)?
O

6.3 Effects of Number and Shape of Holes

We can generalise this situation to multiple holes provided that the holes are all at

least the connection radius away from each other

Theorem 6.3. Let there be a random rectangular annular graph with m holes all sep-

arated by a distance at least v and with Ry j,Raj > v for 1 < j < m, where r is the

connection radius. Then the expected average node degree of the graph is given by
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(n-1) (777"2 (ab - E;”zl (Rl,jngj)) - % (a+Db) 3+ %r‘l)
= 2
(ab — Z;-nzl (Rl’jRQJ‘))
(-1 (2 (51 (552 + 52) - %))

(ab - Egn:l (Rl’jRQ,j))Q

E ()

(6.32)

Proof. Given that the boundary of each hole is at least r from the boundary of any
other hole then each extra hole does not alter the boundary effects of any hole which
was already present and we can safely sum the boundary effects of each individual hole

to derive the total effect. ]

We are now in a position where we can prove some results regarding the expected
average node degree and the number size and shape of areas in which nodes cannot be

scattered on random rectangular annular graphs.

Theorem 6.4. Let a,b be fixed side lengths of the outer boundary of a random rect-

angular annular graph, G, with one annular area with side lengths Ry = Re, Ry = &

where ¢ > 1. Then if d > c then E(k)q, > E(k)g,-

Proof. We can deduce that E(k)g, > E(k)g, if and only if d - ¢ > (dc_dc) using the

following series of equivalences

E(k)c. > E(k)c,

(r(ad= 58y -4 (B« £ 1)) (a4 - a0 (B4 - )

3c 8 3

(ab— B (ab— 242)°
— —4r3(&+5—t)>—4r3(@+£—z)
3 3¢ 8 3 3d 8

Ri R _Re R

— +—> + —
3 3d 3 3¢
1 1
<~ d+=>c+ -
d c
— d—c> M
cd
(6.33)
By definition ¢,d > 1 and the inequality holds. O
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It makes sense that a more elongated zone would cause a greater decrease in the
expected average node centrality than one which had a shape closer to a square. A
more elongated shape requires a larger perimeter to cover the same area and the larger
the perimeter of the zone in which nodes cannot be spread the larger the area within
the connection radius r of said zone. So more nodes would be expected to fall into an
area where the circle with radius r centred at their location would intersect with the
zone where nodes cannot be spread and such nodes are expected to have lower node
degrees.

The same is true if we were to split an area into two pieces.

Theorem 6.5. Let Gy be a random rectangular annular graph with a hole with side
lengths R1, Ro. Let Go be a second Random Rectangular Annular Graph with two holes
which have side lengths cRy, Ry and dRy, Ry respectively where c+d=1. Let a,b be the
side lengths of the outer boundary for both G1 and Gy. Then E(k)g, > E(k)q,.

Proof. We need to show that E(k)q, > E(k)g,. We start by noting that

R1R2 = (C + d)R1R2 = CR1R2 + deRQ. (6.34)

Ry

< using the following

We can demonstrate that the theorem is true if and only if ¢ <

series of inequalities.

3 ( Ry Ry r ) 3 ( cRi Ry dRy Ry 2r )
= 4’| —=—+—=-—-|>d|—+—+—+ = - —
3 3 8 3 3 3 3 8
Ry Ry r 3 R1 2Ry 2r
(8] (822 -
=4\ A S S (6.35)
Rl RQ r R1 2R2 2r
— — = =< — 4+ — - —
3 3 8 3 3 8
r R2
— - < —
8 3
We have that Ry > r by definition and the inequality holds. O

Again this theorem makes sense because of the greater perimeter of the annular
zones of Go than G, there being four sides of length Ro compared to two. Therefore,

a larger portion of nodes are expected to be within r of an annular zone.
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For the same reason, it is also true that two smaller rectangular annular zones cause
a greater decrease in E(k) than one large one covering the same total area, provided

that the proportions of the sides are the same for all three rectangles.

Theorem 6.6. Let Gy be a random rectangular annular graph with a hole with side
lengths R1, Ro. Let Go be a second Random Rectangular Annular Graph with two holes
which have side lengths cR1,cRy and dRy,dRy respectively where ¢?+d? = 1. Let a,b be
the side lengths of the outer boundary for Gy and Gy. Then we have E(k)q, > E(k)q, .

Proof. Without loss of generality we can set ¢ > d and R; > Ry. It should also be noted

that by the definition of a random rectangular annular graph r < Rod. We note that

(*R1Roy + d*R1Ry) = (¢* + d*)R1 Ry = Ry Ry. (6.36)

We show that if d (416 —425d) > 0 then E(k)g, > E(k)g,. It is the case that
d(416 — 425d) > 0 because d < ¢ which means that d < % hence d < %g and clearly
d > 0. We start by deriving a reduced inequality for E(k)g, > E(k)q,.

E(k)g, > E(k)q,

— —4r3(&+@—f) 2—4r3(CR1 + ¢k + diy + a, —%)
3 3 8 3 3 3 3 8 (6.37)
(C+d)R1+(C+d)R2_fzi+& '
3 3 8 3 3
— (c+d-1)R, . (c+d-1)Ry 5T
3 3 8

We have from Equation (6.37) that E(k)g, > E(k)g, if and only if % +
w > ¢. We also have that Ry > Ry and r < Rod which means that if w >
%l then (C+d;)1)Rl + (c+dél)R2 > £. We show that w > %i if and only if

8
d(416 — 425d) > 0.
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2(C+ d- 1)R2 S Rgd

3 8
«~— 16(V1-d?*+d-1)R2 > 3Rad

— Ry(16V1-d?+13d-16) >0
— 16V1-d2 >16 - 13d (6.38)
256(1 — d?) > 256 — 416d + 169d>

416d — 425d° > 0

[

d(416 - 425d) > 0

O]

It should be noted that it is not always the case that two holes will cause a greater
decrease in the expected average degree centrality of a random rectangular annular
graph than one hole. For instance a single zone covering an area of 1 by 8 will cause a

1

decrease of 473 (5 + % - %) which is larger than the decrease caused by two square zones

of side length 2, 4r3 (% + % + % + % - %’") Again we can see the length of the perimeter
coming into effect here. The total length of the perimeter of the 8 by 1 area is 18
whereas the combined perimeter of the two side length 2 squares is 16.

However, the general pattern is clear. Multiple small areas, on which nodes cannot
be spread, within the rectangle will tend to cause a larger decrease in the expected
average degree centrality of the resulting network than a few larger areas where the
total area covered in the two cases is the same. Where the proportions of the side

lengths of these areas is fixed or the larger areas could be formed by amalgamating

smaller ones then we have shown that this difference occurs.

6.4 SIS/SIR Models on RRAGS

In Section 2.4 we discussed models of disease spread on networks. These models could
be used to model the systems of plant disease which we discussed earlier in this chapter
and which has already been done by Estrada et al. [47] and Arias et al. [7]. In Section
2.4 we also presented an approximate proof of Theorem 2.24 which was proved without

the assumptions used here by Van Miegham et al. [166]. This theorem connected
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the epidemic threshold of a network to its spectral radius through the relationship

T:é:L

ST We also have from Theorem 2.14 that A\; > k£ which means that we have a

bound on the epidemic threshold of a network
1 1

—<
Mk

: (6.39)

In the previous section we demonstrated that increasing the number of holes resulted
in a decrease in the expected average degree, E(E), in a random rectangular annular
graph, provided that the same area is covered and that the holes are of the same shape.
Then it is not unreasonable to suspect that, subject to the same constraints, increasing

the number of holes will also result in an increase in the epidemic threshold on a random

rectangular annular graph.

6.5 Simulations

To investigate the effect of the number of holes on random rectangular annular graphs
we have focused on 6 cases and also included a control on a regular RGG. In all 6
cases the simulations were done on RRAGs which had 1000 nodes, and a connection
radius of r = 0.07. The outer square has side length 1 in all cases and the total area
on which nodes cannot be scattered is 0.25, representing zll of the total area. The 7"
case is a control which does not have a hole. It has the same connection radius as the
6 cases under study but has 1333 nodes to maintain the same node density as them.
All simulations are based on 20 realisations with the largest eigenvalue and the mean
degree calculated for each case.

In the first four cases, which are shown in Figure 6.6, we look into RRAGs with
different numbers and sizes of holes. The cases chosen are a single central square hole
of side length %, 4 square holes of side length }l, 9 square holes of side length % and 16
holes of side length %. These choices will allow us to determine the effect that having
a single large hole may have on the epidemic threshold versus many small holes. We
would expect from the calculations of the expected average degree that many small

holes would cause an increase to the epidemic threshold.
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Figure 6.6: Example of an RGG with a single central square hole of side length % (a), 4
square holes of side length }1 (b), 9 square holes of side length % (c) and 16 square holes
of side length % (d). In each case the centre points of the holes are equidistant from
each other and from the boundary of the outer square. All RGGs were done using 1000
nodes, with a connection radius of r = 0.07 with the outer square having side length 1
and a total missing area of 0.25.
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Figure 6.7: The results for the individual simulations with the reciprocal of the mean
degree on the x-axis and the epidemic threshold on the y-axis. The identity line is also
shown to demonstrate the relationship between change in the epidemic threshold and
the change in the reciprocal of the mean degree.

The 5" and 6" cases investigate whether moving the location of the hole within
the RRAG affects the dynamics. In the 5" case the large central hole of the RRAG
in Figure 6.6 (a) is moved to (0.32,0.5) so that its centre point is closer to the edge of
the zone and in the 6" scenario it is as close as possible to the corner (0.32,0.32). A
comparison between these cases will allow us to assess whether the location of the hole
has an effect on the epidemic threshold. We expect that there would not be a difference
between the two cases given that the expected mean degree was not dependent on the
location of the hole.

The results of these simulations are shown in Figure 6.7 with mean results across
the 20 cases displayed in Table 6.1.

From Table 6.1 and Figure 6.7 we can see that there does seem to be an effect in
terms of an increased epidemic threshold when the obstacles which are in the way of
transmission are many and small as opposed to single large obstacles. To assess the
statistical significance of this trend we applied the Mann-Whitney U test, which we
introduced in Section 2.7.3, to each pairing of cases to detect whether the difference

between the distribution of the epidemic thresholds in each pair is significant at the 5%
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Case | Median(r)| 7 | (&) | E®) | @) |
Central Hole 0.0404 0.0400 | 18.1053 | 18.1105 | 0.0552
4 holes 0.0420 0.0421 | 17.2216 | 17.3623 | 0.0581
9 holes 0.0443 0.0439 | 16.5583 | 16.6566 | 0.0604
16 holes 0.0447 | 0.0447 | 15.9401 | 15.9937 | 0.0628
Side Hole 0.0401 0.0398 | 18.1837 | 18.1105 | 0.0550
Corner Hole | 0.0416 | 0.0408 | 17.9924 | 18.1105 | 0.0556
Control 0.0391 0.0390 | 19.3284 | 19.3022 | 0.0517

Table 6.1: This table details the mean epidemic threshold and the mean of the mean
degree across the 20 runs of each case. The expected mean degree of each case is also
displayed to verify the validity of the formula derived in Section 6.2.

] Case ‘ 4 holes 9 holes 16 holes Edge  Corner Control ‘
Central Hole | 0.0004 <0.0001 <0.0001 0.7533 0.1732  0.0642
4 holes 0.0052  <0.0001 <0.0001 0.0694 <0.0001
9 holes 0.4423 <0.0001 0.0003 <0.0001
16 holes <0.0001 <0.0001 <0.0001
Side Hole 0.1522  0.0361
Corner Hole 0.0080

Table 6.2: This table displays the p-value resulting from a Mann-Whitney U test
between the distributions of the 20 epidemic thresholds for each pair of cases tested.

level. Given that there are 21 pairings there is an increased chance that at least one of
the conclusions drawn is erroneous compared to if we were only doing one comparison.
The p-value generated by each pairing is displayed in Table 6.2.

The Mann-Whitney U test results largely also support the conclusions that we have
drawn regarding there being evidence of a change in the epidemic threshold when there
are several small holes in comparison to one large one. The general trend is also that
there is no evidence to suggest that hole positioning influences the epidemic threshold.
There are, however, exceptions. The lack of evidence of a difference between the 9 hole
case and the 16 hole case suggests that there is perhaps a law of diminishing returns in
terms of splitting the area into more small areas. The other two results which disagree
with what we had put forward are the lack of evidence of a difference between the
control and the RRAG with one large hole in the middle and similarly between the 4
holes case and the 1 hole in the corner case despite the evidence of a difference between

the 4 holes case and the other two 1 hole cases.
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Conclusion

7.1 Results

We have generalised several concepts from network theory into the realm of simplicial
complexes, principally concepts of degree distribution and centrality measures. We have
then applied these concepts to protein—protein interaction networks to demonstrate
that, at least for the interactomes studied, the degree distributions at the level of
the 1 and 2-simplices feature many simplices of medium degree which differs from the
situation for nodes where there are a lot of nodes of low degree and only a small
number of medium and high degree ones. The other key application in terms of the
PPI networks was the use of simplicial centrality measures to increase the number of
essential proteins it was possible to find in the yeast cell compared to their node-based
equivalents.

We also discussed another use case for the simplicial centralities in terms of wireless
sensor networks where we demonstrated that the edge centralities for simplicial com-
plexes were likely to identify edges and nodes which were relatively isolated but close
to dense areas. This finding means that it is possible to open up gaps in coverage near
quite well covered areas by selecting just a few key nodes to remove which is useful
to both those actors who would like to disrupt communication in systems which can
be modelled by random geometric graphs and those actors who wish to identify areas

which are vulnerable to such attacks or random failures and make their systems more
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robust.

The main takeaway from both of these sets of results should be that the use of
simplicial complexes opens up information which would not be available if our analyses
were restricted to only the previously available network-theoretic measures. It is likely
that there are many other areas of investigation which would benefit from being looked
at under a simplicial complexes framework. Although care should clearly be taken to
ensure that any such application is justified from a physical or sociological perspective
before it is undertaken.

The final key takeaway from this work is the derivation of an equation for the
expected mean degree of a random rectangular annular graph where there are obstacles
on which it is not possible to distribute nodes. We demonstrated several cases by which
it was possible to decrease this average degree including elongation of these areas,
splitting these areas up and constructing many smaller such areas of the same shape.
We then connected this result to the phenomenon of epidemic spreading and produced
evidence that the epidemic threshold is expected to increase more in the presence of
many small holes rather than a few larger ones. We also showed that neither the mean

degree or the epidemic threshold were affected by the positioning of these holes.

7.2 Suggestions for Future Work

One key improvement of the work undertaken here would be to use more reliable
protein—protein interaction data to fully leverage the power of simplicial complexes
in detecting essential proteins if it becomes possible to separate the case of multiple
pairwise interactions from that of one interaction with multiple actors.

Another interesting concept which the author did not get to would be to study
consensus dynamics on networks with holes. This problem is difficult because hole
positioning matters when it comes to the consensus dynamics which makes investigating
the effects of multiple holes a lot more difficult that it was for the epidemic spreading
case. However, it should be interesting nonetheless.

We also think it would be interesting to see how theoretical and simulated results of

epidemic spreading on random geometric graphs compare to a real situation. The case
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of the spread of invasive plants comes to mind as a potential application. Rhododendron
ponticum propagates itself using the wind which can carry it for up to 100m. It also
needs particular conditions in which to grow. It is particularly invasive on the west
coast of Scotland, a region marked by mountainous areas and lochs which would be
barriers to its spread.

The final suggestion does not relate directly to the work undertaken in this thesis.
There is work being done on the flapper skate populations off Scotland’s west coast
which is attempting to identify individual fish to get a better estimate of the popula-
tion. These fish have spot patterns on their backs. It may be possible to leverage the
multiplicative persistence of holes introduced by Bobrowski et al. [20] to compare these
spot patterns as each individual fish grows and create a unique and scalable barcode for
each fish. Variations of this multiplicative persistence would also need to be introduced
in order to handle photographs being taken from different angles. Access to these tools
would allow researchers to semi-automate the identification of individual fish which is
currently done by judging photographs by eye. The use of spot pattern analysis to
identify individuals within a species is a common technique [103,115] which has been
the subject of automation [28] and if the technique outlined above proves effective it

could be generalised to other species.
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List of Symbols

A1 Largest eigenvalue of a matrix
BT Transpose of a matrix B

B! Inverse of a matrix B

I, Identity matrix of size n

0ij Kronecker delta

O degree of a k-simplex

I(m,c)  The line with gradient m and intercept ¢
Rotg(v) Rotation of vector v by 6 with respect to the origin
Tap(v)  Translation of a vector v by a in the x-coordinate and b in the y-coordinate

Ref,(v) Reflection of a vector v through the y-axis

k, Degree of a node p in a network

k Average degree across a network

T = % The epidemic threshold of a network

Ly, Hodge Laplacian for the k-simplices

Ag Simplex Adjacency Matrix for the k-simplices
O Boundary operator on the k-chains

k- Signifies a network-theoretic concept on the k-simplices
Cy The group of k-chains

Zy, The kernel of 0

By, The image of Ok,1

H;, The k" Homology group of a simplicial complex
B The k™ Betti number of a simplicial complex
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rp The Pearson Correlation coefficient
rs The Spearman Correlation coefficient
Iy The average k-simplicial shortest path distance for the k-simplices

CCp Closeness centrality on the k-simplices

HCj Harmonic Closeness centrality on the k-simplices
SCY  Subgraph centrality on the k-simplices

dy, Shortest-path distance on the k-simplices

r Connection radius
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