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Abstract

Using networks to model discrete systems of interactions is very common in the litera-

ture. However, networks are limited to considering only paired interactions. One of the

responses to this limitation is to extend the concept of an edge to contain more than

two nodes. Simplicial complexes are one of the models of discrete interactions which

features this extension and we shall study them here. Centrality measures are one of

the main ways of studying networks and are used to discover which node is most impor-

tant. We shall extend centrality measures to the case of simplicial complexes. We shall

then use these centrality measures on simplicial complexes to analyse protein–protein

interaction networks and detect nodes whose removal would cause a gap in coverage

on wireless sensor networks. We also assess the ways that dynamic systems work on

random geometric graphs which have central sections missing.
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Chapter 1

Introduction

Networks have been employed in the study of a wide variety of scientific disciplines

since their introduction by Leonhard Euler to solve the seven bridges of Königsberg [53]

(in English [54]). They have been used to study transport links [32], neurons in the

brain [12] and food webs [37] among many others [112]. In Chapter 2 we introduce

network-theoretic concepts as well as the other theorems and results which underpin

the work we have done.

However, networks have limitations. Consider a social network with three individ-

uals where they are connected if the individuals speak to each other on a given day.

If all three nodes are connected then this situation could have come about because

each pair of individuals spoke to each other once throughout the day or due to a single

three way conversation. There is no way to distinguish between these situations in a

network-theoretic environment.

One way of addressing this problem is through the use of simplicial complexes which

have also been studied a lot in the literature [66, 71, 97, 107, 108, 147, 153]. Simplicial

complexes allow connections between three or more nodes but are also closed in the

sense that a connection between three nodes also implies a connection between each

pair of nodes. In Chapter 3 we expand some network-theoretic concepts to the case of

simplicial complexes. Our method is based on an extension of adjacency to isolate the

different dimensional levels and from there we generalise walks and centrality measures

to the simplicial complexes case.
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Chapter 1. Introduction

We apply these centrality measures to solve network-theoretic problems. In Chapter

4 we apply them to protein–protein interaction (PPI) networks, which are networks

based on interactions between proteins in the cells of all species of plants, animals,

bacteria and viruses among others [168]. In these networks proteins come together

to produce many of the reactions which allow the cells to live. These interactions

frequently involve multiple different proteins, which makes them a prime candidate to

be looked at through a simplicial complexes lens.

We use a couple of different approaches to analyse protein–protein interaction sim-

plicial complexes. First we look at the degree distributions across a variety of different

PPIs and demonstrate that although the one and two dimensional levels of PPI sim-

plicial complexes have some high degree simplices there are many simplices of medium

degree which contrasts with the situation for PPI networks where a small number

of hub nodes have very high degree and the majority of the rest of the nodes have

much lower degree. Secondly, we identify essential proteins which are proteins which,

when removed, cause the death of the cell. Network-theoretic centrality measures have

previously been used to search for these proteins with fair success under the centrality-

lethality paradigm [73]. We use the centrality measures for triangles and show that

they can identify more essential proteins than their node-based counterparts and that

they also identify different ones, which suggests the two approaches could be combined

to maximise the number of essential proteins found.

In Chapter 5 we move from the triangular centralities to the edge-based ones. We

apply them to wireless sensor networks (WSNs) which are networks of sensors which are

monitoring and/or communicating with each other usually over a remote or inhospitable

area [10, 82]. These WSNs are usually modelled as random geometric graphs (RGGs)

[63]. Gaps in the area covered by these networks can be problematic because they could

result in missed data which may lead to problems in predicting whether or not an area

is safe or missing a problem which needs to be addressed. As a result detecting gaps in

the coverage of these networks has been a popular topic of study [34,126]. However, as

Kenniche and Ravelomananana [82] note, there are wireless sensor networks where the

sensors are fitted with batteries which it may not be possible to recharge or replace.

3



Chapter 1. Introduction

Sensors may also fail for other reasons and it may not be possible to replace them

quickly, for example a tsunami detection sensor in a remote part of the ocean. For this

reason we should not limit our interest to the detection of holes, we should also seek to

create robustness within these networks which means that we want to be able to detect

nodes whose removal would create a hole. We demonstrate that edges which are longer

in an RGG are expected to have larger edge degrees and use this fact to demonstrate

that nodes which are members of edges which have high edge subgraph centrality are

likely to be isolated from other nodes and so are more likely to cause a hole to appear

in the event of their removal. We finish this chapter by experimentally demonstrating

the effect of this strategy for removal of sensors compared to three other methods.

In Chapter 6 we move away from simplicial complexes to consider another appli-

cation of RGGs, the spread of plant disease through a region. Historically, RGGs

have been studied on square areas but recently other shapes have been considered.

Sheerin and Estrada looked at random rectangular graphs in 2015 [51] and Giles et al.

considered annuli in 2016 [64]. We combine these two situations and look at random

rectangular annular graphs (RRAGs). We derive a formula for the expected mean de-

gree of these constructions. We then demonstrate that elongation of the annular areas

and having many small annular areas rather than one large one is likely to decrease

the mean degree. The epidemic threshold of a disease spreading on a graph is bounded

by the reciprocal of its mean degree [112]. This connection suggests that an RRAG

constructed on a region with many small annular areas where nodes cannot be spread

will have a larger epidemic threshold than an RRAG constructed with one large such

area. We show that there is evidence of this effect through the use of simulations.
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Chapter 2

Preliminaries

In this chapter we introduce much of the work that has previously been done that we

rely on in later chapters. We look at: network theory, what a network is and what

processes we can model with them; centrality measures and how we can decide which

parts of a network are most important; Laplacian matrices and how they model flow of

quantities through the system and; simplicial complexes which we use to demonstrate

the value of looking beyond pairwise interactions.

Parts of this chapter formed preliminary sections of [50].

2.1 Network Theory

2.1.1 Nodes, Edges and Adjacency: When Are Two Things Con-

nected?

The first instance of a graph theoretic proof was Leonhard Euler’s tackling of the

problem of the seven bridges of Königsberg [53,54]. The problem, of endless fascination

to the people of the 18th century Prussian city, was to find a way to navigate around the

city and cross each of its seven bridges precisely once. His leap in terms of proving that

such a walk was impossible was to consider each of the four landmasses which made

up the city as a separate identity, assigned to a letter, and the bridges as connections

between the landmasses.

Network Theory is a branch of Graph Theory which uses graphs to model phenom-
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1
2

3

4
5

6

Figure 2.1: A network with labelled nodes.

ena from other scientific disciplines.

Definition 2.1. A network or graph is a pair G = (V,E) which consists of a set

V = {v1, v2, ...vn} of n nodes and another set E of two-element subsets of those nodes

called the edges [46, Defn 2.1].

For example, in the network depicted in Figure 2.1 the set of nodes is given by V =

{1,2,3,4,5,6} and the set of edges is given by E = {{1,2} ,{1,3} ,{1,4} ,{1,5} ,{1,6} ,

{2,3} ,{2,5} ,{3,5} ,{4,5} ,{4,6} ,{5,6}}.

It should be noted that the definition of a network given here is quite restrictive

in the sense that it does not permit double edges (the same pair of nodes forming

two edges) or loops (an edge which contains the same node twice). It also excludes

directed graphs, which are commonly used where there is a sense of flow in a network.

This choice was a deliberate decision on the part of the author to prioritise simplicity

because none of the applications which have been developed in subsequent chapters

rely on any of these mechanisms.

It is possible to create new networks by considering only a certain part of an existing

6
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network.

Definition 2.2. A graph Gs = (Vs,Es) is a subgraph of a graph G = (V,E) if Vs ⊆ V

and Es ⊆ Vs × Vs ∩E [46, Defn 2.2].

We illustrate this concept with some examples in reference to the network in Figure

2.1. If we take the nodes Vs = {1,3,5,6} to be the set of nodes of our subgraph

then we have a valid subgraph if Es = {{1,3} ,{1,5} ,{1,6} , {3,5} ,{5,6}} which is

all of the edges between nodes in Vs. Additionally, we also have a valid subgraph if

Es = {{1,3} ,{5,6}} because it is not necessary for all possible members of Vs × Vs ∩E

to be members of Es. However, we cannot add new edges that are not present in the

original graph nor can we include edges which contain nodes which are not members

of Vs so {3,6} ,{4,6} ∉ Es.

When one is using networks to model a phenomenon from another scientific dis-

cipline it is best practice that there is a clear and natural understanding of what the

nodes should be and what the edges represent. In Chemistry [24] networks have been

used to analyse the interactions of proteins in cells by taking a node to represent a

single protein and an edge exists between two nodes if their proteins are involved in

the same cellular process. We discuss protein–protein interaction networks further in

Chapter 4. In an airport network [32, 68] each node is an airport and there is an edge

between two nodes if a regular direct flight exists between those locations. Further

examples of phenomena which have been modelled using networks include: networks

of neurons in the brain [12] where the nodes are individual or groups of neurons and

the edges represent whether or not the nodes activate at the same time; disease trans-

mission networks [145] where nodes represent individual entities and there exists an

edge between two nodes if it is possible for a disease to transmit from one to the other;

and food webs [37] where the trophic relations (which species eat which other species)

between animals in an ecosystem are studied through network theory, with each species

assigned to its own node and with edges going from predator to prey species (this use

case is an example of a directed network). There are many other areas of science which

have been modelled using networks [112].

Consider the network in Figure 2.1, the 6 nodes are the characters in the sitcom

7
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Friends and there exists an edge between two of the nodes if they ever lived together

during the show. Using the encoding that node 1 represents Chandler, 2 Phoebe, 3

Monica, 4 Joey, 5 Rachel and 6 Ross we can represent this system by that network.

Definition 2.3. Two nodes vi, vj ∈ V are adjacent if there is an edge e = {vi, vj} ∈ E

between them [46, Defns 2.2 and 2.3]. The adjacency matrix of a network is the

matrix defined as follows:

Let vi, vj ∈ V be two nodes in a network. Then, the adjacency matrix A has entries

defined by

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if vi is adjacent to vj ;

0 if vi is not adjacent to vj or i = j;

We now have a mathematical representation of a network which we can perform

calculations on to discover facts about the network. As an example the network from

Figure 2.1 can be represented by the matrix below, where the rows and columns rep-

resenting the nodes are arranged numerically:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 1 1

1 0 1 0 1 0

1 1 0 0 1 0

1 0 0 0 1 1

1 1 1 1 0 1

1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

On certain kinds of networks, the Königsberg bridges being a prime example, a

natural question is: What does it look like to move around the network? To that end

we have the following definition.

Definition 2.4. A walk on a network is a sequence of (not necessarily distinct) edges

{u1, v1},{u2, v2}, ...,{uk, vk} for which vi = ui+1 (i = 1,2, ..., k − 1). If vk = u1 then the

walk is closed. A trail is a walk in which all the edges are distinct. A path is a walk

where the ui are distinct. A shortest-path between two nodes, ni, nj , is a path such

that u1 = ni and vk = nj which minimises number of edges traversed. The shortest-

path distance between two nodes is a function, d, on the nodes of a network, V , such

8
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that d ∶ V × V → R ∪ {∞}, where the result, d(vi, vj) is given by the number of edges

in the shortest path between vi and vj . If there is no path between vi and vj then

d(vi, vj) = ∞. A cycle is a closed path. ( [46, Defn 2.5] and [43, p. 47])

It is well known within network theory that by taking powers of the adjacency

matrix of a network the entries of the resulting matrix give the number of walks of that

length between the two relevant nodes [36, Thm 0.1]. Therefore the number of cycles

of length p starting and ending at node i is given by (Ap)i,i.

For example, in the network shown in Figure 2.1

{6,5},{5,1},{1,4},{4,5},{5,2} (2.1)

is a walk but not a path because the node 5 is repeated, whereas

{6,5},{5,1},{1,4} (2.2)

is a path.

An example of a cycle is

{6,5},{5,1},{1,4},{4,6}. (2.3)

There are two shortest paths between node 6 and node 2 which are

{6,5},{5,2} (2.4)

and

{6,1},{1,2}. (2.5)

The edge {6,2} does not exist and so there is no path of length 1. Therefore the

shortest-path distance between node 6 and node 2 is 2.

We can use the concept of the shortest-path distance to define an extended metric

on a network.

Definition 2.5. A extended metric, d, is a function on a set, Q, such that d ∶ Q×Q→

9
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R ∪ {∞} which satisfies the following axioms for all a, b, c ∈ Q

1. The distance from a point to itself is 0, i.e. d(a, a) = 0.

2. The distance between two separate points is always greater than 0, i.e.

d(a, b) = 0 ⇐⇒ a = b.

3. The distance from a to b is equal to the distance from b to a, i.e. d(a, b) = d(b, a).

4. The triangle inequality is true, i.e. d(a, c) ≤ d(a, b) + d(b, c).

[13, p. 128]

Theorem 2.6. The shortest-path distance is an extended metric on the set V of nodes

of a network [43, p. 47].

The shortest-path distance between two nodes in a network is not always finite. This

situation would happen in the case that the network was disconnected for example.

Definition 2.7. A network is disconnected if there exists at least two nodes vi, vj ∈ V

such that d(vi, vj) = ∞, that is there does not exist a path between vi and vj . A

network is considered connected if it is not disconnected. A connected component

of a network is a subset, S of its nodes such that for all vi, vj ∈ S then d(vi, vj) is finite

and for any vi ∈ S and vk ∈ V ∖ S then d(vi, vk) = ∞. [43, p. 18 and p. 47]

Note that the networks in Figures 2.1 and 2.2 are both connected but we can also

have a network which combines these networks together as in Figure 2.3 by relabelling

each of the nodes i ∈ V2 to be i + 6 ∈ V1 ∪ V2 where V1 is the set of nodes from Figure

2.1 and V2 is the set of nodes from Figure 2.2. We can represent the adjacency matrix

of this expanded network in the form,

⎛
⎜
⎝

A1 0

0 A2

⎞
⎟
⎠

where A1,A2 are the adjacency matrices of the networks with node sets V1, V2 respec-

tively and 0 signifies a matrix of zeros of the appropriate size. This matrix is said to

be in block-diagonal form.
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Figure 2.2: A network with labelled nodes.
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Figure 2.3: A disconnected network.
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Definition 2.8. Amatrix is in block-diagonal form when all non-zero elements are in

square blocks along the diagonal of the matrix and all other elements are 0. [112, Section

6.11]

Any network with k connected components can have its adjacency matrix repre-

sented in block diagonal form with k blocks by appropriate relabelling in the same

manner as above and would be represented as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 . . . 0

0 A2 0 . . . 0

0 0 A3 ⋱ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 . . . Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)

There are some graphs which belong to special families. One such family will be

needed for constructing simplicial complexes in Section 2.5.

Definition 2.9. A complete network of size n is the network with n nodes where

each node is adjacent to every other node [46, p. 15].

A clique in a network, G = (V,E), is a subset of its nodes Vs ⊆ V such that it is

possible for a subgraph Gs = (Vs,Es) of G to be a complete network [46, p. 25].

In the network depicted in Figure 2.2 the nodes {3,11,12,13,14} form a clique of

size 5 because it is possible that in a subgraph based on these nodes every node would

be adjacent to every other node. Similarly, we can see that {2,5,8} is a clique of size

3 but {2,5,6,8} is not a clique of size 4 because there is no edge {6,8}.

2.1.2 Linear Algebra

Clearly, given that a network can be represented in matrix form, the study of matrices

and associated vector spaces is an important part of network theory. An undergraduate

level of understanding of fields and vectors is assumed which includes the definitions of

these two concepts as well as an appreciation of linear independence and spanning sets
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in vector spaces. We also assume an understanding of how to perform addition, scalar

multiplication and matrix multiplication on matrices, how to calculate the determinant

of a matrix and a knowledge of how to solve systems of linear equations by using

Gaussian elimination to reduce the augmented matrix representation of such a system

into reduced row-echelon form.

Nair and Singh [111] provide a good introduction to any of these concepts.

There are many applications for eigenvalues and eigenvectors of both the adjacency

matrix and the Laplacian matrix which is introduced in Section 2.3.

Definition 2.10. An eigenvector of a matrix, M , is any non-zero vector, p, such that

the only action of the matrix on the vector is to multiply it by a scalar, λ [111, Defn

5.1]. That is, p is an eigenvector if

Mp = λp. (2.7)

The scalar, λ, is known as an eigenvalue [111, Defn 5.1].

The characteristic polynomial of a matrix, A, is the result of det (M − λI),

where I is the identity matrix [111, Defn 5.7]. The roots of this polynomial are also

the eigenvalues of A.

The algebraic multiplicity of an eigenvalue is the number of times it is a root

of the characteristic polynomial. It can also be thought of as the maximum possible

number of linearly independent eigenvectors of a matrix which correspond to that

eigenvalue [111, Defn 5.8].

The geometric multiplicity of an eigenvalue is the number of linearly independent

eigenvectors of a matrix which correspond to that eigenvalue [111, Defn 5.14].

In Section 2.6.3 we will introduce Hodge Laplacian matrices of simplicial complexes.

The algebraic/geometric multiplicity of the 0-eigenvalue of these Hodge Laplacians

gives us information about the topology of the simplicial complex. We will use these

multiplicities in Chapter 5 to detect holes in Vietoris-Rips complexes which have been

constructed from Random Geometric Graphs.
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2.2 Centrality Measures: What Makes A Node Impor-

tant?

Consider the worldwide airport transportation network analysed by Guimerà et al. [68].

They wished to figure out whether the cities which had the most connections to other

cities were also the cities positioned on the most shortest paths between two other cities.

They found that there were some cities like Paris, New York and Frankfurt which had

many connections to other cities and also sat on many shortest-paths. However, there

were only ten cities which were in the top 25 of both classifications. Cities like Atlanta,

USA were connected to a large number of other cities, at the time the network was

constructed, but were not in the top 25 airports in terms of lying on the most shortest

paths. It was cities like Anchorage, USA and Port Moresby, Papua New Guinea that

replaced Atlanta in the top 25 based on the shortest-path classification.

Guimerà et al. reasoned that the reason for this difference between the different

classifications is due to Anchorage being the only city in Alaska which has connections

to cities outside of Alaska. This change is important because although the closure of

the airports in Atlanta would be expected to have a large general disruption to the most

people the closure of the airports in Anchorage would prevent anybody in Alaska from

being able to leave Alaska by air which demonstrates that the answer to the question

which airport is most important depends on the perspective of the person being asked.

Definition 2.11. A centrality measure is a function, f ∶ V → R, from the nodes of a

network to the real numbers. The higher the number a node is assigned by a centrality

measure the more central or important the node is considered to be [140, p. 11].

There are a great number of different ways the notion of importance can be defined;

thus there are also many different centrality measures. They are used by Google to

assess which pages to recommend to people using their search engine [23], have been

combined to investigate the most important patches of habitat to protect in order to

minimise ecosystem damage [44] and topological centrality can be used to discover

communities in research co-authorship networks [174].

Schoch [140] constructs an illustrative table which classifies the various centrality
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measures into several groups. His work also points to the abundance of such measures.

Indeed it is important to be very careful when introducing new centrality measures that

one is not just adding to the existing noise. For example, there are eight variants of

betweenness centrality that differ in weighting factors, the kind of path being considered

and the positioning on the path [140]. In this work we shall endeavour, where new

centrality measures are introduced, to demonstrate why they are useful.

Below we present some of the more common centrality measures used within network

theory.

The simplest of all centrality measures is the degree.

Definition 2.12. The degree of a node n is the number of edges of which n is a

member [46, p. 143].

For example, the degree centralities of the nodes from Figure 2.1 are 5 for node 1

and node 5 and 3 for the other four nodes. In the network from Figure 2.2 node 5 has

degree 6 and node 12 has degree 4.

Having established the concept of the degree of a node we can start comparing

them not only within the network but also between networks. The degree distribu-

tion of a network describes what proportion of nodes in a network have high degree,

what proportion have low degree and how those proportions change between the two

extremes.

Definition 2.13. Let p(k) be the probability of finding a node of degree k in a network,

then the degree distribution of the network is the probability distribution of the

degrees of the nodes across the whole of the network [46, p. 95 - 98].

A network with a long tailed degree distribution has a few hubs, high degree nodes,

which are well connected and many low degree nodes which are not. These hubs are

important from the structural and functional point of view in these networks although

lower degree nodes can also be very important in the network such as Anchorage in

the earlier airport network example [68]. In later chapters the concept of a degree

distribution shall be extended to the case of simplicial complexes and applied to protein–

protein interaction networks.
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In the Friends example (see Figure 2.1) we have that p(3) = 0.667 and p(5) = 0.333.

Whereas, in the network from Figure 2.2 p(4) = 5
17 because nodes (1,11,12,13,14) all

have degree 4.

We can also connect the degree to the largest eigenvalue of the adjacency matrix

through a well known theorem [112, p. 699].

Theorem 2.14. The largest eigenvalue of the adjacency matrix, λ1, is always greater

than or equal to the average degree, k. That is

λ1 ≥ k. (2.8)

We will use this theorem to obtain a bound on the epidemic threshold (to be in-

troduced in Section 2.4) of a Random Rectangular Annular Graph (RRAG), via our

calculation of the expected average degree of such graphs in Chapter 6. These calcu-

lations will give us a theoretical insight into the requirements for a disease to become

an epidemic on RRAGs.

2.2.1 Closeness Centrality

Closeness centrality is a concept which was first introduced by Bavelas [14] to capture

the idea of how close, in terms of shortest path distance, a node is to all the other

nodes in a network. Later we generalize this concept to simplicial complexes and use it

to study protein–protein interaction networks and the effects of removing nodes from

random geometric simplicial complexes.

Definition 2.15. The farness of a node n is the sum of its shortest path distances to

all other nodes, ∑a≠n d(a,n) [112, p. 181].

Definition 2.16. The closeness is the reciprocal of farness [112, p. 182]. That is:

C(n) = 1

∑a≠n d(a,n)
. (2.9)

It is also common to normalise the closeness centrality by multiplying the results

by (n−1). This normalisation means that in any network a node that is adjacent to all
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the other nodes of a network has a normalised closeness centrality of 1, which allows

for comparisons between networks. Where values for closeness centrality are reported

in this thesis they are normalised values.

Note that if the network is not connected then ∑a≠n d(a,n) could be considered

undefined or ∞ for all nodes in the network. In this case we can calculate harmonic

closeness [130] instead.

Definition 2.17. The harmonic closeness of a node n is defined as follows

H(n) = ∑
a≠n

1

d(a,n) , (2.10)

where we treat 1
∞ = 0 [112, p. 184].

Closeness centrality has been used in applications as diverse as mapping networks

of terrorist cells [89] and the density of commercial activity in cities [122].

For the network in Figure 2.1 nodes 1 and 5 both have a closeness value of 1 because

they are both adjacent to all of the other nodes in the network. In Figure 2.2 the top

six nodes are node 2 at 0.533, node 1 at 0.5161, node 5 at 0.4324, node 3 at 0.4211

and nodes 6 and 8 at 0.4. We see that this centrality measure prioritises the locations

where the fewest steps are required to get to the most locations. If we imagine that

the nodes represent airports and the edges connections between those airports then a

frequent traveller may want to use the closeness centrality to decide where best to live.

In this case node 2 benefits from having the most direct connections compared to node

1 even though it requires 3 trips to get to 4 nodes as opposed to 3 trips for node 1.

2.2.2 Subgraph Centrality

The Closeness Centrality only considers the shortest way of getting between two nodes

which is not a realistic way to look at all phenomena which can be modelled by networks.

Consider a social network where the nodes are people in an office and the edges represent

whether or not they interact on a given day. If we wanted to track which nodes were

most influential in spreading a piece of information or a disease around the network

then it is not enough to think about how many other nodes a node is connected to. For
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example if a node has eight neighbours, of which seven are not connected to any other

nodes except the original then the only way from this node to the rest of the graph is

through its eighth neighbour. This node is very influential in spreading the information

to its eight neighbours but it is not very influential within the rest of the network. The

more nodes there are in the rest of the network the more we can say that this node

is not very important within the network. And yet this node will likely score highly

for degree centrality. Similarly, there is a good chance that the node will have high

closeness centrality as a result of its length 1 shortest path to each of its neighbours.

Similarly, a disease or piece of information does not know which path is the shortest

to get through a network and is unlikely to be targeting a specific person. Therefore,

if there are multiple paths to get from one node to another then we would want to

include all of them although we would want to give more weight to shorter walks than

others. This desire leads us to the branch of centrality measures which rely on taking

powers of the adjacency matrix.

Historically, for networks the first of these centralities was developed by Katz [81].

The Katz centrality index is [∑∞m=0(αmAm
k )1]i where 1 is a vector of 1s. This calcula-

tion boils down to summing up the number of walks of each length which originate at

a node with longer walks penalised more strongly by ensuring 0 ≤ α < 1
λ1(A) where λ1

is the largest eigenvalue of A. The eigenvector centrality can be derived from the Katz

centrality. The eigenvector centrality of a node, i, is the ith entry of the eigenvector

associated with the largest eigenvalue of the adjacency matrix. Newman’s “Networks

An Introduction” [112] offers a good explanation of both of these centrality measures.

Subgraph Centrality is the measure based upon the adjacency matrix which we shall

make use of in later chapters. It was introduced by Estrada and Rodriguez-Velazquez

and counts the sum of the walks of each length which start and finish at the same node,

where the weighting factor is the reciprocal of the factorial [48]. The following power

series of the adjacency matrix, A, of a network converges to the corresponding matrix

exponential,
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∞
∑
l=0

Al

l!
= exp (A) . (2.11)

Obviously,

exp (A) =
∞
∑
l=0

A2l

(2l)! +
∞
∑
l=0

A2l+1

(2l + 1)! = cosh (A) + sinh (A) , (2.12)

where the first term accounts for the weighted sum of even-length walks and the second

one accounts for odd-length walks in the network.

Definition 2.18. The subgraph centrality of a node, i, is given by (exp(A))ii.

This definition captures the participation of a node in all subgraphs of the network,

with more weight given to the smaller ones. The key benefit of the subgraph centrality

is that it takes into account all subgraphs that a node participates in regardless of how

tangentially, while still retaining the focus on the local environment. As such it has

been used to study landscape connectivity [44] and transport networks [160].

In the Friends network in Figure 2.1 the subgraph centralities of nodes 1 and 5 are

11.72 while the other nodes give a result of 6.63. The network in Figure 2.2 is a more

interesting case. Here the top 6 nodes are node 3 with a result of 12.92 followed by a four

way tie between 11, 12, 13 and 14 at 11.4514 with node 2 having the 6th highest score

at 10.2731. This result is a very different to the one for the closeness centrality. The

subgraph centrality and other related centralities which essentially count walks, like

Katz centrality, eigenvector centrality and to a lesser extent degree centrality are more

a measure of how well connected a node is within its immediate vicinity and the density

of the connections in that neighbourhood than whether or not it is a convenient place to

be or a choke point. This time imagine that the nodes in Figure 2.2 represent academic

publications or internet web pages and the links between them represent whether or

not a given web page cites another. Generally, a web page or publication is given more

credence if it has been cited by many other pages or publications and beyond that if

it has been cited by web pages that are themselves reputable i.e. have also been cited
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many times. The subgraph centrality accounts for this notion of importance because a

node which is in a dense cluster of other nodes which rely on each other is likely to be

the start and end point of a large number of short walks.

Obviously, as with all network based rankings, a high centrality can be both good

and bad. For instance, four of the five top ranked nodes from Figure 2.2 are only directly

adjacent to one another and to the top node. This situation creates an impression of

authority which could be warranted (NHS or other healthcare websites connecting to

each other) but also may not be (conspiracy theory websites parroting each other).

The example given above is not perfect because in reality both academic citations

and web pages are directed networks. A link from 1 web page to another does not

imply that a reverse link exists and there is definitely no such return link in academic

publications. However, it is still illustrative as an example.

We shall extend some of these centrality measures to the case of simplicial complexes

in Section 3.4.

2.3 Laplacians: What Flows On A Network?

2.3.1 Connected Components and Network Laplacians

The Laplacian, L, of a network can be thought of as a network analogue of the Laplacian

operator ∇2 and describes flows on a network. In Chapters 6.13 and 6.14 of [112]

Newman offers a very good introduction to the topic of the network Laplacian which

also introduces its applications to random walks, resistor networks and diffusion which

are beyond the scope of what we need them for.

Definition 2.19. The Laplacian matrix of a network is the matrix defined as follows

[31, p. 2]:

Let vi, vj ∈ V be two nodes in a network. Then, the Laplacian matrix has entries

defined by

Lij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ki if i = j;

−1 if i ≠ j and there is an edge {i, j};

0 otherwise.
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The Laplacian matrix can also be calculated from the adjacency matrix, A, of a

network if we let D be a diagonal matrix whose entries are given by the degrees of the

nodes. That is

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

k1 0 0 . . .

0 k2 0 . . .

0 0 k3 . . .

⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.13)

Then we can calculate the network Laplacian as

L =D −A. (2.14)

The eigenvalues of a network’s Laplacian matrix have an interesting connection to

the number of connected components of said network. Take any row, i, of the Laplacian

matrix and sum the entries

∑
j

Lij = ∑
j

Dij −∑
j

Aij = ki − ki = 0. (2.15)

This evaluation is done by decomposing the Laplacian into its constituent parts.

There is only one non-zero entry on each row of D so clearly ∑j Dij = ki and ∑j Aij = ki
as before. From here we have L1 = 01 which means that 1 is an eigenvector of L with

eigenvalue 0 for every network as per Definition 2.10, where 1 is the vector of all 1s of

length n and n is the number of nodes in the network. This result can be expanded

upon.

Theorem 2.20. Let G = (V,E) be a network with x connected components. Then the

0-eigenvalue of the Laplacian of that network has multiplicity x [100,112].
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2.3.2 The Edge Incidence Matrix

There is another way of constructing the Laplacian matrix of a network through some-

thing called the edge incidence matrix [112, p. 155].

Definition 2.21. Let G be a network with n vertices and m edges, for each edge we

arbitrarily define that the node with the lower index is end 1 and the node with the

higher index is end 2. Then the edge incidence matrix, B, is an n ×m matrix with

entries given by

Bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1 if end 1 of edge j is attached to vertex i

1 if end 2 of edge j is attached to vertex i

0 otherwise.

For example the edge incidence matrix of the network from Figure 2.1 is given in

Table 2.1.

{1,2} {1,3} {1,4} {1,5} {1,6} {2,3} {2,5} {3,5} {4,5} {4,6} {5,6}
1 -1 -1 -1 -1 -1 0 0 0 0 0 0
2 1 0 0 0 0 -1 -1 0 0 0 0
3 0 1 0 0 0 1 0 -1 0 0 0
4 0 0 1 0 0 0 0 0 -1 -1 0
5 0 0 0 1 0 0 1 1 1 0 -1
6 0 0 0 0 1 0 0 0 0 1 1

Table 2.1: We can see here that each column of the matrix has exactly one 1 and one
−1.

Theorem 2.22. The Laplacian matrix, L, of a network can be calculated as L = BBT

[112, p. 155].

In Section 2.6, on Topology, we will use higher dimensional equivalents of the net-

work Laplacian to calculate the topology of simplicial complexes in the same way that

Theorem 2.20 allows us to calculate the number of connected components of a network.

These topological calculations will allow us to investigate gaps in coverage of Wireless

Sensor Networks in Chapter 5.
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2.4 Models of Disease

Quantities of a substance are not the only things which can flow around a network.

Another thing that can flow around a network is disease. Newman’s “Networks: An

Introduction” [112] provides a very good introduction to this topic in Chapter 17.

We assume knowledge of SIS (Susceptible Infected Susceptible) and SIR (Susceptible

Infected Recovered) models of disease spread under the assumption of a fully mixed

population which are covered in [5, 11, 112]. We introduce the network based models

below. In Chapter 6 we will investigate the effect of the underlying geometry of a

Random Rectangular Annular Network on whether or not a given disease will become

an epidemic.

2.4.1 Susceptible Infected Susceptible

The assumption that a population is fully mixed, that any individual is equally likely to

have contact with any other, simplifies the mathematics in the study of disease spread.

We know this model is not realistic because people are much more likely to pass a

disease on to their friends, family and work colleagues than they are to strangers that

they meet in the street. Similarly, plants are more likely to pass diseases on to other

plants that are close by than ones that are further away. To address this limitation we

can introduce a network-theoretic SIS model.

Definition 2.23. In the SIS model (Susceptible Infected Susceptible) on a

network we let si(t) be the probability that a node, i, is susceptible at time t and

xi(t) be the probability that said node is infected at time t [112, p. 669]. We also

assume that each node is constantly in contact with its neighbouring nodes. Each

individual can only catch the disease from a neighbour, j, and so the probability of

becoming infected in a given time between t and t + dt is given by the probability that

node i is infected, si, multiplied by the probability, β, of a contact resulting in an

infection multiplied by the sum of the probabilities that the neighbouring nodes are

infected, ∑j Aijxj , where A is the adjacency matrix of the network. We assume that a

node that was infected returns to the susceptible population at a rate, γ, so the change
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in the probability that node, i, is susceptible because it has recovered is given by γxi.

The following pair of equations governing the system:

dsi
dt
= −βsi∑

j

Aijxj + γxi, (2.16)

dxi
dt
= βsi∑

j

Aijxj − γxi, (2.17)

where si + xi = 1.

A key question in the study of disease is whether or not a disease will spread beyond

the first few individuals who contract it. That is, whether or not it will become an

epidemic. In a fully mixed model if the average person passes on the disease to more

than one other person before recovering themselves then the disease will spread and if

they pass it on to fewer than one person then the disease will die out.

For a given disease spreading on a network then whether or not it becomes an

epidemic depends not only on the probability of infection and the probability of recovery

but also on the structure of the network.

Theorem 2.24. The epidemic threshold for a network with SIS disease dynamics is

given by β
γ =

1
λ1

where λ1 is the largest eigenvalue of the adjacency matrix [112, p. 661

- 670].

This theorem tells us that if we fix a particular disease with a probability of infection

β1 and probability of recovery γ1. Then we take two networks one where the largest

eigenvalue is λ1a and another where it is λ1b. If 1
λ1a
< β1

γ1
< 1

λ1b
then the disease will

become an epidemic in the first network but not the second.

Gómez et al. [67] extended this result to networks with weighted edges and also

the case where each node has a limited number of contacts they can make with their

neighbours as opposed to the situation where it is assumed that at any given time-

step each node is in contact with all of its neighbours. A criticism of using network
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models to track the spread of disease is that humans are mobile and the contact that

a person makes in one hour or day are likely to be different from the contacts made in

the next. The Gomez et al. paper addresses this criticism to some extent but Sanatkar

et al. [137] showed that this value for the epidemic threshold also holds in dynamic

switching networks which are systems where the set of connections is allowed to swap

randomly between different adjacency matrices. For the applications we analyse the

nodes are static and so we do not require this level of detail, nonetheless it is interesting

to know it exists.

2.4.2 Susceptible Infected Recovered

There are some diseases, for example chickenpox, against which a person or thing

become immune, and therefore unable to be reinfected, once they have had it. The

previously described SIS dynamics are inappropriate to describe such diseases and so

we need to introduce a third “recovered” disease state to the model.

Definition 2.25. In the SIR model (Susceptible Infected Recovered) on a

network we let si(t) be the probability that a node, i, is susceptible at time t, xi(t) be

the probability that said node is infected at time t and ri(t) be the probability that i is

recovered at time t [112, p. 661 - 662]. We also assume that each node is constantly in

contact with its neighbouring nodes. Each individual can only catch the disease from a

neighbour, j, and so the probability of becoming infected in a given time between t and

t+dt is given by the probability that node i is infected, si, multiplied by the probability,

β, of a contact resulting in an infection multiplied by the sum of the probabilities that

the neighbouring nodes are infected, ∑j Aijxj , where A is the adjacency matrix of the

network. As before we assume that a node that was infected recovers at a rate, γ, so

the change in the probability that node, i, is able to pass on the disease because it has

recovered is given by γxi. The following trio of equations govern the system:

dsi
dt
= −βsi∑

j

Aijxj , (2.18)
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dxi
dt
= βsi∑

j

Aijxj − γxi, (2.19)

dri
dt
= γxi, (2.20)

where si + xi + ri = 1.

It is possible to demonstrate in the same way as for SIS models that the epidemic

threshold is also given by 1
λ1

where λ1 is the largest eigenvalue of the adjacency matrix

[112, Chapter 17.11].

There are other models of disease spread such as the SI model where individuals

can only pass from susceptible to infected and never back again. Clearly in this case an

epidemic is inevitable because the number of healthy or susceptible people can never

decrease. The SIRS model describes a situation where the immunity conferred by

recovering from the disease is not permanent and nodes lose their immune status at a

fixed rate. Although these models are interesting we do not use them in later chapters

and so do not consider them in more detail here.

2.5 Simplicial Complexes

2.5.1 Beyond Networks: What If The Situation Is A Little More

Complicated?

Simplicial complexes have been much studied in the literature [71,147] and definitions

similar to those which appear in this section can be found elsewhere [66,97,107,108,153].

However, we repeat them here to make this thesis self-contained.

Definition 2.26. Let V be a set of nodes or vertices. Then a k-simplex is a set

{v0, v1, . . . , vk} such that vi ∈ V and vi ≠ vj for all i ≠ j.

A face of a k-simplex is a (k − 1)-simplex of the form {v0, . . . , vi−1, vi+1, . . . , vk} for

0 ≤ i ≤ k.

26



Chapter 2. Preliminaries

1
2

3

4
5

6

Figure 2.4: A simplicial complex representation of the Friends network.

A simplicial complex C is a collection of simplices such that if a simplex S is

a member of C then all faces of S are also members of C. Less formally, a simpli-

cial complex is a collection of simplices such that if {v0, v1, . . . , vk} is a simplex then

all of its faces {v0, . . . , vi−1, vi+1, . . . , vk} are also simplices, and all of the faces of its

faces {v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk} are too, and so on down to the 0-simplices,

which are formed by the nodes [62, p. 26].

As mentioned previously, networks satisfy the definition of simplicial complexes.

The nodes are the 0-simplices which are specified by the set V , the edges are the 1-

simplices and there are no higher order simplices. It is also possible to create simplicial

complexes from networks.

Definition 2.27. A clique complex is a simplicial complex formed from a network

as follows. The nodes of the network become the nodes of the simplicial complex. Let

X be a clique of k nodes in the network. Then, X is a (k − 1)-simplex in the clique

complex [62, p. 30].

As an example in Figure 2.5 we illustrate a simplicial complex which has one
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Figure 2.5: A clique complex with labelled nodes. This figure previously appeared
in [50].

3-simplex {1,2,3,4}, seven 2-simplices {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {3,4,5},

{4,5,6} and {6,7,8}. It also has fourteen 1-simplices represented by the edges and

nine 0-simplices which are usually known as the nodes. We can see that this simplicial

complex is a clique complex because every set of nodes which form a complete subgraph

from the network are simplices in the simplicial complex.

However, the simplicial complex in Figure 2.4 is not a clique complex. We can

see that the nodes 1,5,6 form a triangle which is a clique on three nodes but they

do not form a simplex within the simplicial complex. The lack of a simplex tells us

that Ross lived with Rachel at some point in the series and at a separate point lived

with Joey and at a third point Joey and Rachel lived together. Whereas, Monica,

Chandler and Phoebe form a 2-simplex which tells us that they all lived in the same

flat at the same time at least once during the series. We can see that the simplicial

complex representation gives us more information on the, admittedly simple, system

we are modelling than the equivalent network representation.
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2.5.2 Face Facts: When Are Two Simplices Adjacent?

In network theory it is fairly clear when two nodes are adjacent. However, adjacency

is less easy to define in simplicial complexes. There are multiple ways in which two

simplices in a simplicial complex could be said to be adjacent. The first to be considered

was Q–analysis which was introduced by Atkin [9] in 1972. Two simplices of any size

are q–adjacent if they share a common face of dimension q. This notion of adjacency

was originally introduced in terms of q–connectivity where two simplices of any size

are q–connected if there is a series of simplices between them such that each simplex in

the series is q–adjacent to the simplices that follow and precede it. We are focusing on

adjacency between simplices of the same size and present below the concepts of upper

and lower adjacency which were introduced by Goldberg in 2002 [66] although lower

adjacency is a special case of Atkin’s q–adjacency.

Definition 2.28. Let σj and σi be two k-simplices. They are lower adjacent if they

share a common face. That is, for two distinct k-simplices σj = {v0, v1, . . . , vk} and

σi = {w0,w1, . . . ,wk} then σj and σi are lower adjacent if and only if there is a (k − 1)-

simplex τ = {x0, x1, . . . , xk−1} such that τ ⊂ σj and τ ⊂ σi. We denote lower adjacency

by σj ⌣ σi.

For instance, in the simplicial complex in Figure 2.5, the 1-simplices {6,7} and

{6,9} are lower adjacent because the 0-simplex {6} is a common face and we can write

{6,7} ⌣ {6,9}. Similarly, {1,3,4} ⌣ {3,4,5} because they share the common face {3,4}.

However, {4,5,6} and {6,7,8} are not lower adjacent because although they have the

common 0-simplex {6} they would need to share a common 1-simplex to be lower

adjacent. Note that two 0-simplices can never be lower adjacent as we do not allow ∅

to be a −1-simplex.

Definition 2.29. Let σj and σi be two k-simplices. They are upper adjacent if they

are both faces of the same common (k + 1)-simplex. That is, for σj = {v0, v1, . . . , vk}

and σi = {w0,w1, . . . ,wk} then σj and σi are upper adjacent if and only if there is a

(k + 1)-simplex τ = {x0, x1, . . . , xk+1} such that σj ⊂ τ and σi ⊂ τ . We denote the upper

adjacency by σj ⌢ σi.
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(a) (b) (c)

Figure 2.6: Illustration of the simplicial complexes S2
5 (a), t2(1,2,4) (b) and P 2

5 (c).
See text for definitions and notation. This figure previously appeared in [50].

In the simplicial complex in Figure 2.5, the 1-simplices {5,6} and {4,6} are upper

adjacent because they are both faces of the 2-simplex {4,5,6}. So we can write {5,6} ⌢

{4,6}. Similarly, {1,3,4} ⌢ {2,3,4} are upper adjacent as they are both faces of the

3-simplex {1,2,3,4}. However, {4,5,6} is not upper adjacent to any other simplex as

it is not part of any 3-simplices.

Also note that {6} ⌢ {7} are upper adjacent because they are both faces of {6,7}.

So two 0-simplices are upper adjacent if they are both faces of a 1-simplex which is

identical to saying that two nodes are adjacent if they are connected by an edge in the

network-theoretic sense. Hence upper adjacency of 0-simplices is the same as network-

theoretic adjacency.

Goldberg also related these two concepts.

Theorem 2.30. If two distinct k-simplices σi and σj are upper adjacent then they are

also lower adjacent [66].

2.5.3 Families of Simplicial Complexes

We shall now introduce some families of simplicial complexes which have been defined

previously by Horak and Jost [70] which shall be important later. Firstly, we introduce

the family denoted Sk
l . The simplicial complex Sk

l consists of a central (k − 1)-simplex

which is a face of every one of the l k-simplices. There are no other simplices except
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those necessary by the closure axiom. For instance, S2
l would consist of an edge {1,2}

and l triangles of the form {1,2, i} in addition to all subsimplices necessary by the

closure axiom and S1
l consists of a central node with l pendant nodes connected to

it, which corresponds to the star graph in graph theory. The simplicial complex S2
5 is

shown in Figure 2.6(a) with the central 1-simplex in red.

Next we introduce a family of simplicial complexes labelled tk(x1, x2, . . . , xk+1)

which consists of a central k-simplex with x1 k-simplices lower adjacent through one

face, x2 k-simplices lower adjacent through another, and so on. A k-simplex which is

lower adjacent to the central k-simplex can only be lower adjacent to other k-simplices

which are lower adjacent to the central k-simplex through the same face as itself. There

are no other simplices except those necessary by the closure axiom. One member of

this family of simplices, t2(1,2,4) is shown in Figure 2.6(b) with the central 2-simplex

in red.

The final family of simplicial complexes which we shall introduce are denoted P k
l ,

consisting of a k-simplex at one end which is only adjacent to one other k-simplex

which is only lower adjacent to the first k-simplex and another k-simplex, and so on

until arriving at another end k-simplex. In addition, there are l k-simplices in the

simplicial complex and no other simplices except those necessary by the closure axiom.

Note that a simplicial complex P 1
l is the same as a path graph in the traditional network

theory. The simplicial complex P 2
5 is illustrated in Figure 2.6(c).

2.6 Topology

When we consider the simplicial complexes introduced in the previous section it is

natural to think of the 2-simplices as being surfaces and 3-simplices being three di-

mensional objects taking up space. When we form simplicial complexes we could for

instance stick 2-simplices together into the form of a ball with a void, or empty three

dimensional space, in the middle. Similarly, we can arrange 1-simplices into a ring

without 2-simplices in the centre so that if it was an actual object we could pass a

different object through the centre of this ring or hole. Think of moving a ball bearing

through the centre of a doughring or a coffee mug which are the canonical examples
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e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Table 2.2: The effect of multiplication in the Klein-four group.

of this phenomenon. In this section we present a method for describing the number of

unique holes or voids there are for a given simplicial complex and an extension of the

concept of the network Laplacian to higher levels of a simplicial complex which will

allow us to easily calculate this number.

2.6.1 Group Theory

Before we can describe the topological space formed by a simplicial complex we need a

few background details on Group Theory. We assume undergraduate level knowledge

of Group Theory including the definitions of groups, subgroups, Abelian groups, cosets

of the subgroups of a group and the fact that these cosets partition the group. Norman

Biggs’ book Discrete Mathematics [18] covers these topics.

For more detail on the advanced material which will allow us to define the Chain

Complexes in the next section then Roman’s Fundamentals of Group Theory: An

Advanced Approach [131] could be consulted. Both of these books were a source for

the examples, theorems and definitions detailed below.

Some examples of groups include the integers under addition, Z and the Klein-four

group, K4 = {e, a, b, c} which is defined by the multiplication in Table 2.2 [18].

Subgroups of both of these groups exist. The subset {e, a} is a subgroup of K4

because aa = e = ee ∈ {e, a} so we have the inverses property and ae = ea = a ∈ {e, a}

which gives us the closure property.

Additionally, the integers which are multiples of 3, 3Z = {3p;p ∈ Z} is a subgroup

of Z under addition. Let p, q ∈ Z then 3p + 3q = 3(p + q) ∈ 3Z and 3p + 3(−p) =

3(−p) + 3p = 0 so 3Z is closed under inverses and addition [18]. However, the odd

numbers, R = {2p+1;p ∈ Z} are not a subgroup because it is not closed under addition.

For p, q ∈ Z we have 2p + 1 + 2q + 1 = 2p + 2q + 2 = 2(p + q + 1) ∉ R.
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Definition 2.31. Let H ≤ G be a subgroup of G. Then we denote the set of left cosets

of H in G by G/H [131, p. 61].

The cosets of {e, a} ⊂K4 are {e, a} and {b, c} because be = b, ba = c, ce = c and ca = b.

The cosets of 3Z ⊂ Z are 3Z itself, (1+3Z) = {1+3p;p ∈ Z} and (2+3Z) = {2+3p;p ∈ Z}.

From here we can define a binary operation on the cosets of a subgroup H.

Definition 2.32. Let H ≤ G be a subgroup of G with the binary operation, ⊛, and let

a1, a2 ∈ G then the coset product of the cosets a1H and a2H is given by

a1H ⊛ a2H = (a1 ⊛ a2)H. (2.21)

[131, p. 65]

Definition 2.33. Let G be a group and N ≤ G be a subgroup of G. Then N is a

normal subgroup of G if for all a ∈ G we have

aN = Na. (2.22)

[131, p. 65]

Theorem 2.34. Let H ≤ G be a subgroup of G under ⊛. Then G/H is a group under

the coset product if and only if H is a normal subgroup of G.

In this situation G/H is known as the quotient group [131, p. 66 - 67].

Both K4 and Z are Abelian groups which means that all of their subgroups are

normal by definition which means that K4/{e, a} and Z/3Z are both quotient groups.

It is possible to derive all the rest of the members of a group just through combining

certain elements via the binary operation.

Definition 2.35. Let G be a group and X ⊆ G. Then

⟨X⟩ = {ai11 . . . aibb ∶ a1, . . . , ab ∈X and i1, . . . , ib ∈ Z}. (2.23)

That is ⟨X⟩ consists of all of the possible combinations of the elements of X under

the binary operation of G and the use of inverses. If it is the case that ⟨X⟩ = G then

we say that X is a generating set for G [131, p. 34 - 35].
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The rank of a group, G is the size of the smallest possible generating set [79] for

that group

Rank(G) =min (∥X∥ ∶ ⟨X⟩ = G) . (2.24)

We can see that {1} is a generating set for Z and so Rank(Z) = 1. For K4 a

generating set is given by {a, b} because we can get c = ab however if we were to

just multiply copies of a several times we would alternate between a and e and so we

cannot generate the rest of K4 just from {a}. The same applies to {b} and {c} and so

Rank(K4) = 2.

2.6.2 Chain Complexes

We now introduce a group based on the simplices of a simplicial complex [4,39,62,107].

Definition 2.36. We can create a k-chain by summing the k-simplices, σi, of a sim-

plicial complex [39, p66] as per the formula

c =
n

∑
i=1

biσi (2.25)

where bi ∈ F are values from a field F and n is the number of simplices in the simplicial

complex.

For all examples we use the field Z for the sake of simplicity which is all that is

required for the applications explored here but it is possible to use other fields such as

Z/2Z or R [66]. All definitions in this section apply generally regardless of which field

is used.

Definition 2.37. For a simplicial complex, S, the kth chain group is the collection

of all possible k-chains of S

Ck = {
n

∑
i=1

biσi ∶ σi ∈ S, bi ∈ F} . (2.26)

[39, p. 66]
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We can see that the identity of a chain group is ∑n
i=1 0σi = 0, we inherit associativity

from addition in the field and closure comes from it not being possible to build extra

simplices in the simplicial complex. We also have that (∑n
i=1 biσi)−1 = −∑n

i=1 biσi and

inherit commutativity from the field which makes the chain group Abelian.

Definition 2.38. Let {v0, . . . , vk} be a simplex in a simplicial complex. An orienta-

tion of this simplex is any ordering of its vertices [v0, . . . , vk]. We additionally define

that two orientations of a simplex are the same if they differ by an even number of

swaps of the positions of its elements and they are inverses of each other if they differ

by an odd number of position swaps [62, p. 66].

We can demonstrate this swaps rule with this example

[v0, v1, v2, v3, . . . , vk] = −[v2, v1, v0, v3, . . . , vk]

[v0, v1, v2, v3, . . . , vk] = [v2, v0, v1, v3, . . . , vk].
(2.27)

In the first case there has been one swap of v2 and v0 while in the second case there

were two swaps, with the additional swap being v1 and v0. We primarily work with

simplicial complexes where we have numbered nodes and so we define the orientation

on our simplices to be the natural one where the nodes are arranged in ascending order.

We can see that there is a chain group at each level of the simplicial complex. We

can pass from groups at one level to the next through the use of the boundary operators

and the whole set of groups and these functions is known as a chain complex.

Definition 2.39. The boundary operator is a function, ∂ ∶ Ck → Ck−1, which acts

on an oriented k-simplex, σk = [v0, . . . , vi−1, vi, vi+1, . . . , vk] as

∂kσk =
k

∑
i=0
(−1)i[v0, . . . , vi−1, vi+1, . . . , vk]. (2.28)

A k-chain which is the result of applying the boundary operator to a (k + 1)-chain

is called a boundary [39, p. 67].

What the boundary operator does is map a simplex to the sum of its faces with

the orientation of each face defined by which node is being removed in relation to the
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position of that node in the orientation of the original simplex. When a node in an odd

position is removed the orientation of the face is negative and when a node in an even

position is removed then it is positive.

This fact gives the boundary operator a nice property which is vital to using these

groups to understand the topology of a simplicial complex.

Theorem 2.40. Let σk = [v0, . . . , vk] be an oriented k-simplex then

∂k−1∂kσk = 0. (2.29)

[39, p. 67]

The boundary of any (k + 1)-simplex is an example of a k-cycle.

Definition 2.41. A k-cycle is any k-chain which has boundary 0 [39, p. 67].

Let S be a simplicial complex with n k-simplices. Then the set of all k-cycles is

denoted by Zk,

Zk = ker(∂k) = {
n

∑
i=1

biσi ∈ Ck ∶ ∂k (
n

∑
i=1

biσi) = 0} . (2.30)

We can see that Zk is closed under inverses and addition within Ck and so Zk ≤ Ck.

Consider the simplicial complex in Figure 2.4, we have that [1,2] − [1,3] + [2,3] +

[1,4] − [1,6] + [4,6] ∈ Z1 as demonstrated in Equation (2.31). This 1-cycle is the result

of ∂2([1,2,3] + [1,4,6]).

∂1([1,2] − [1,3] + [2,3] + [1,4] − [1,6] + [4,6])

=[2] − [1] − [3] + [1] + [3] − [2] + [4] − [1] − [6] + [1] + [6] − [4]

=0

(2.31)

The boundaries of (k + 1)-chains are not the only members of Zk. In Equation

(2.32) we demonstrate that [2,3] − [2,5] + [3,5] ∈ Z1 despite not being the boundary of

any 2-chain.
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∂1([2,3] − [2,5] + [3,5]) = [3] − [2] − [5] + [2] + [5] − [3] = 0 (2.32)

Finally in Equation (2.33) we can see that [1,2] + [1,3] + [2,3] + [1,4] ∉ Z1.

∂1([1,2] + [1,3] + [2,3] + [1,4])

=[2] − [1] + [3] − [1] + [3] − [2] + [4] − [1]

=2[3] + [4] − 3[1] ≠ 0

(2.33)

We can see that 1-cycles consist of sums of 1-simplices which contain each node

an equal number of times with opposing orientations. It is true more generally that

k-cycles consist of sums of k-simplices which contain each (k−1)-face an equal number

of times with opposing orientations.

We can define another subgroup of Ck which consists of just the boundaries of the

(k + 1)-chains.

Definition 2.42. The image of ∂k+1 is the set of all k-cycles that are boundaries of

(k + 1)-chains [39, p. 68]. Let σi denote a k-simplex of a simplicial complex, S, and let

τj denote a (k + 1)-simplex of S. We denote this set by

Bk = img(∂k+1) =
⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

aiσi ∈ Ck ∶ ∂k+1
⎛
⎝

m

∑
j=1

bjτj
⎞
⎠
=

n

∑
i=1

aiσi where
m

∑
j=1

bjτj ∈ Ck+1

⎫⎪⎪⎬⎪⎪⎭
.

(2.34)

Due to the fact that all elements in Bk are also elements of Zk as demonstrated

by Theorem 2.40 and Bk is closed under inverses and addition of simplices then Bk ≤

Zk. It is also normal due to the binary operation in Ck being commutative. By

definition we can generate all of the members of B1 by adding together the boundaries

of the 2-simplices. Generating all of the members of B1 for the simplicial complex in

Figure 2.4 shows that any member of B1 is a result of summing [1,2] − [1,3] + [2,3],

[1,3]− [1,5]+ [3,5] and [1,4]− [1,6]+ [4,6]. We can use this result to introduce a new

group which will allow us to discuss the topology of the simplicial complexes.
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Definition 2.43. The quotient group Hk = Zk/Bk is called the kth homology group

of the simplicial complex [39, p. 69].

The identity of the kth homology group is the coset containing the members of Bk

as is natural from Theorem 2.34 which means that the result of adding a member of

Bk to a representative of any coset in Hk is a representative of the same coset.

Recall that we are trying to find a way to describe the number of holes or voids of a

simplicial complex. In the simplicial complex in Figure 2.4 we can start by considering

that there are five 1-cycles in Z1 which consist of three 1-simplices and do not form the

boundary of any 2 simplex. These 1-cycles are [1,2]−[1,5]+[2,5], [2,3]−[2,5]+[3,5],

[1,5] − [1,6] + [5,6], [1,4] − [1,5] + [4,5] and [4,5] − [4,6] + [5,6]. But it would not

be natural to say that there are five holes in this simplicial complex. Firstly, we can

show that [1,2] − [1,5] + [2,5] and [2,3] − [2,5] + [3,5] are part of the same coset and

therefore represent the same hole. We can add elements of Bk to [1,2] − [1,5] + [2,5]

to transform it into a scalar multiple of [2,3] − [2,5] + [3,5]

([1,2] − [1,5] + [2,5]) − ([1,2] − [1,3] + [2,3]) − ([1,3] − [1,5] + [3,5])

=(−[1,5] + [2,5] + [1,3] − [2,3]) − ([1,3] − [1,5] + [3,5])

= − ([2,3] − [2,5] + [3,5]).

(2.35)

The other issue with using the aforementioned definition for the number of holes

is that it would ignore any holes which were bounded by more than three 1-simplices.

Consider for example a new simplicial complex which consists of four 1 simplices, [a, b],

[a, d], [b, c] and [c, d] and the 0-simplices from the closure axiom. There would clearly

be a hole in the simplicial complex but it would not be counted if we only considered

1-cycles in Z1 which consist of three 1-simplices and do not form the boundary of any

2 simplex.

Below we categorise the members of H1 for the simplicial complex in Figure 2.4

where x, y, z ∈ Z.

38



Chapter 2. Preliminaries

B1

x([1,5] − [1,6] + [5,6]) +B1

x([2,3] − [2,5] + [3,5]) +B1

x([4,5] − [4,6] + [5,6]) +B1

x([1,5] − [1,6] + [5,6]) + y([2,3] − [2,5] + [3,5]) +B1

x([1,5] − [1,6] + [5,6]) + y([4,5] − [4,6] + [5,6]) +B1

x([2,3] − [2,5] + [3,5]) + y([4,5] − [4,6] + [5,6]) +B1

x([1,5] − [1,6] + [5,6]) + y([2,3] − [2,5] + [3,5]) + z([4,5] − [4,6] + [5,6]) +B1

(2.36)

It would also not be sensible to claim that the number of cosets in H1 is the number

of holes in the simplicial complex. Firstly, there are infinitely many cosets in H1 and

there are clearly not infinitely many holes in the simplicial complex in Figure 2.4.

Furthermore, B1 consists only of boundaries of combinations of 2-simplices and so

clearly cannot contain any holes. Similarly, some cosets consist of multiple holes added

together and so cannot be considered unique holes in their own right. For example, the

1-cycle [1,4]−[1,5]+[4,5] belongs to −1([1,5]−[1,6]+[5,6])+1([4,5]−[4,6]+[5,6])+B1

[1,4] − [1,5] + [4,5] +B1

=[1,4] − [1,5] + [4,5] + [1,4] − [1,6] + [4,6] +B1

= − [1,5] + [4,5] + [1,6] − [4,6] +B1

= − [1,5] + [1,6] − [5,6] + [4,5] − [4,6] + [5,6] +B1

= − ([1,5] − [1,6] + [5,6]) + ([4,5] − [4,6] + [5,6]) +B1.

(2.37)

Note though that none of [1,5] − [1,6] + [5,6] + B1, [2,3] − [2,5] + [3,5] + B1 or

[4,5] − [4,6] + [5,6] +B1 can be created by combining the other two elements and that

every other element of H1 can be created by combining these elements which means

that
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⟨{[1,5]−[1,6]+[5,6]+B1, [2,3]−[2,5]+[3,5]+B1, [4,5]−[4,6]+[5,6]+B1}⟩ =H1. (2.38)

Equation (2.38) gives Rank(H1) = 3. When we consider the simplicial complex in

Figure 2.4 we would expect it to have 3 holes. This number is also referred to as the

kth Betti number of the simplicial complex and can be calculated with a formula.

Definition 2.44. The kth Betti number, βk, of the simplicial complex is the count

of unique (k + 1)-dimensional holes, or

βk = Rank(Hk) = Rank(Zk) −Rank(Bk). (2.39)

[39, p. 69]

We have come to this definition by consideration of an example but it is true more

generally because each coset of Hk consists of a summation of the unique holes in the

simplicial complex plus every combination of the elements of Bk. Then we can generate

all of these cosets by applying the coset product to the cosets containing precisely one

unique hole. For the 0-simplices the “holes” are the connected components of the

network the simplicial complex is built upon and for 2-simplices the holes represent

3-dimensional voids in the interior of the simplicial complex.

In order to use Equation (2.39) we need to be able to calculate Rank(Bk) and

Rank(Zk). Unfortunately, calculating Rank(Bk) is more complicated than counting

the number of k-simplices in a simplicial complex. Consider a new simplicial complex

with four 2-simplices, [1,2,3], [1,2,4], [1,3,4] and [2,3,4] we can calculate

∂2([1,2,3]) − ∂2([1,2,4]) + ∂2([1,3,4])

=[2,3] − [1,3] + [1,2] − [2,4] + [1,4] − [1,2] + [3,4] − [1,4] + [1,3]

=[2,3] − [2,4] + [3,4]

=∂2([2,3,4]).

(2.40)

So in this case Rank(B2) = 3 but there are four 2-simplices.
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[1,2,3] [1,3,5] [1,4,6]
[1,2] 1 0 0
[1,3] -1 1 0
[1,4] 0 0 1
[1,5] 0 -1 0
[1,6] 0 0 -1
[2,3] 1 0 0
[2,5] 0 0 0
[3,5] 0 1 0
[4,5] 0 0 0
[4,6] 0 0 1
[5,6] 0 0 0

Table 2.3: The matrix representation of ∂2 for the simplicial complex in Figure 2.4.

Fortunately, we can address these issues of how to calculate these ranks by noticing

that Ck is also a vector space where we define multiplication in the vector space to be

distributive across linear combinations of simplices. This definition means we can write

∂k as an m × n matrix where there are m (k − 1)-simplices and n k-simplices.

Definition 2.45. Let S be a simplicial complex with n k-simplices and m (k − 1)-

simplices, we can represent the boundary operator, ∂k, by an m×n matrix where each

column represents a k-simplex and each row a (k−1)-simplex [107]. The entries of each

column are non-zero where the (k − 1)-simplex representing a row is the face of the

simplex in a given column, with -1 where the coefficient of the boundary operator for

that face is negative and 1 the entry where it is positive. The entries of ∂k are given by

(∂k)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1 if the coefficient of σ(k−1),i is negative for ∂k(σk,j)

1 if the coefficient of σ(k−1),i is positive for ∂k(σk,j)

0 otherwise.

For the 1-simplices the boundary operator and the edge incidence matrix from

Definition 2.21 coincide. So we have already seen the matrix representation of ∂1 for

the simplicial complex in Figure 2.4. The matrix representation of ∂2 is shown in Table

2.3.

We can verify from the matrix forms that ∂1∂2 = 0. We can also see that because

each column of ∂2 has the only non-zero entry in at least 1 row we can conclude that
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[1,2] [1,3] [1,4] [1,5] [1,6] [2,3] [2,5] [3,5] [4,5] [4,6] [5,6]
[1] 1 0 0 0 0 -1 -1 0 0 0 0
[2] 0 1 0 0 0 1 0 -1 0 0 0
[3] 0 0 1 0 0 0 0 0 -1 -1 0
[4] 0 0 0 1 1 0 1 1 1 1 0
[5] 0 0 0 0 1 0 0 0 0 1 1
[6] 0 0 0 0 0 0 0 0 0 0 0

Table 2.4: The row reduced form of the matrix representation of ∂1 for the simplicial
complex in Figure 2.4. The raw form can be seen in Table 2.1.

they are linearly independent and so all three are part of the smallest generating set

for B1 and Rank(B1) = 3. To calculate the size of the smallest generating set for Z1

we can apply row operations to ∂1 to work out the form of any vector which would be

sent to 0 under ∂1. The number of free variables is the minimum size of a generating

set of Z1. The result of doing this evaluation is displayed in Table 2.4.

From here we can derive that any element of Z1 has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f + g

h − f

i + j

k − g − h − i

−(j + k)

f

g

h

i

j

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.41)

There are six free variables and so Rank(Z1) = 6 which means that Rank(H1) = 3

as expected. Additionally, setting all other variables to 0 allows us to recover the

boundaries of the three 2-simplices with f = 1, h = 1 and j = 1 respectively.
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This case was quite straightforward because it was clear that the columns of ∂2

were linearly independent and it was also quite a small example. A more general

way of calculating the rank of the homology group at a particular level is through the

calculation of the Smith normal form of the two matrices [40].

2.6.3 Hodge Laplacians

In the same manner that we can generalise the edge incidence matrix to the boundary

operator at each level of the simplices we can also generalise the Laplacians to higher

orders through the use of the Hodge Laplacians.

Definition 2.46. The Hodge Laplacian for the k-simplices of a simplicial complex can

be calculated as

Lk = ∂k+1∂T
k+1 + ∂T

k ∂k. (2.42)

It has entries defined by

(Lk)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

degu(σi) + k + 1 if i = j

1 if i ≠ j, σi ⌢̸ σj , and σi ⌣ σj , where the coefficient

of their common face is the same

−1 if i ≠ j, σi ⌢̸ σj , and σi ⌣ σj , where the coefficient

of their common face is different

0 otherwise.

where degu(σi) is the number of (k + 1)-simplices of which σi is a face.

There are no −1-simplices to map the nodes to through a boundary operator and

so ∂k = 0 which means we recover the graph theoretic Laplacian as L0 = ∂1∂T
1 . Recall

from Thm 2.20 that the multiplicity of the 0-eigenvalue of the graph Laplacian gives

the number of connected components of a graph. Eckmann showed, in 1944, that the

Hodge Laplacian, Lk, could be used to determine βk of a simplicial complex [38] (Horak

and Jost presented an English language version [70]).
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Theorem 2.47. Let S be a simplicial complex with kth Betti Number, βk = x. Then the

0-eigenvalue of the Hodge Laplacian, Lk, of the k-simplices of that simplicial complex

multiplicity x. If there is no 0-eigenvalue of Lk then the Betti number at that level of

the simplicial complex is 0.

The Betti numbers in Chapter 5 were calculated in this manner. We present below

the edge level and triangle level Laplacians for the simplicial complex in Figure 2.4.

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 0 1 1 1 0 −1 0 0 0 0

0 4 1 0 1 0 0 0 0 0 0

1 1 3 1 0 0 0 0 −1 0 0

1 0 1 3 1 0 1 0 1 0 −1

1 1 0 1 3 0 0 0 0 0 1

0 0 0 0 0 3 1 −1 0 0 0

−1 0 0 1 0 1 2 1 1 0 −1

0 0 0 0 0 −1 1 3 1 0 −1

0 0 −1 1 0 0 1 1 2 1 −1

0 0 0 0 0 0 0 0 1 3 1

0 0 0 −1 1 0 −1 −1 −1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.43)

L2 =

⎛
⎜⎜⎜⎜⎜
⎝

3 −1 0

−1 3 0

0 0 3

⎞
⎟⎟⎟⎟⎟
⎠

(2.44)

There are three 0-eigenvalues of L1, none for L2 and one for L0 as expected.

Further information on the Hodge Laplacian matrices can be found in [66, 97, 107,

108,153].
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2.7 Statistics

In this section we explain and describe some statistical tests which we use in later

sections to demonstrate some results.

2.7.1 AIC and BIC

The Akaike information criterion (AIC) [88,152] and the Bayesian information criterion

(BIC) [88] are two methods by which different models can be compared when they are

trying to predict the same data. They are defined as follows:

AIC = 2k − 2 ln (L̂) , (2.45)

BIC = k ln (n) − 2 ln (L̂) , (2.46)

where n is the number of data points, k is the number of parameters to be estimated

and L̂ = p (x∣θ̂,M) is the maximized value of the likelihood function of the model M ,

where θ̂ are the parameter values that maximize the likelihood function and x are the

data points. For a series of models trying to describe the same dataset, the model with

the smallest value AIC or BIC gives the best fit for the data. We can see that these

criteria reward a model for predicting more of the data but penalise it for having more

variables than are needed to predict the dataset. This reduces the risk of developing

an incredibly complex model which predicts the model really well just by having many

variables.

To use AIC or BIC we fit the dataset to each of the models. Then we rank each

model according to their AIC and/or BIC which gives us the model which best fits the

data. However, it may be the case that the difference between the smallest and second

smallest AICs is very small and so random variation within the datasets could give an

advantage to one model over another. We can compare the AIC of the best ranking

model with model i as follows:

∆AICi = exp ((AICmin −AICi) /2) (2.47)
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where AICmin is the AIC for the top model in the ranking.

If ∆AICi < 0.01 we consider that the first model in the ranking is significantly

different from model i. If this assessment is true for all i then we accept that there is

evidence that the top model in the ranking better predicts the data than any of the

other models.

When we compare the BIC results of different models we follow the same process

but instead of applying Equation (2.47) we use the Kass-Raftery criteria [80] as follows:

∆BICi Meaning

0-2 Not significant

2-6 Positive

6-10 Strong

>10 Very strong

If the difference in the BIC values is less than or equal to 2, this criterion is not

able to distinguish between the two models. If, however, it is between 6 and 10 there

is strong evidence to consider the model with the smallest BIC as the most significant.

2.7.2 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient was introduced by Spearman in 1904 [149] based

on the Pearson correlation coefficient which was introduced by Bravais in 1846 [21] and

popularised by Pearson in 1896 [118].

Definition 2.48. Given paired random variables X,Y their Pearson correlation

coefficient is given by

rp(X,Y ) = cov(X,Y )
sdXsdY

(2.48)

where cov(X,Y ) = ∑(xi−x̄)(yi−ȳ)
N−1 is the covariance betweenX and Y and sdX =

√
∑(xi−x̄)2

N−1

represents the standard deviation of X.

Take X and construct a new variable by replacing the value of each entry by its

position in an ascending list of the values of X. Call this new variable od(X). Do the

same for Y . Then the Spearman rank correlation coefficient is given by
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Figure 2.7: A linear relationship between two variables with experimental noise (a),
An exponential relationship between two variables (b) and a relationship between two
variables with large outliers (c).

rs(X,Y ) = rp(od(X), od(Y )) = cov(od(X), od(Y ))
sdod(X)sdod(Y )

. (2.49)

There are advantages and disadvantages to either choice of correlation coefficient.

In the first instance the Pearson correlation simply gives more information about the

relationship between two variables than Spearman’s does as Spearman acknowledges

himself [149]. Take Figure 2.7 for example, there is clearly a linear relationship between

the two variables with some experimental noise in 2.7 (a). The Pearson coefficient of

these two variables is 0.9507 and Spearman’s gives 0.9539. However, in Figure 2.7 (b)

the relationship between the two variables is exponential and Pearson’s coefficient is

0.8544 while Spearman’s version is 1. difference demonstrates that Spearman’s coeffi-

cient is not sensitive to two variables which are related non-linearly whereas Pearson’s

is [149].

Furthermore, Spearman’s rank correlation is more robust to large outliers than

the traditional Pearson’s correlation [149]. If we consider Figure 2.7 (c) we have a

Spearman’s result of 0.9244 and a Pearson’s of 0.6586. We can conclude that where the

magnitude of the differences between two variables is of importance then we would wish

to use the Pearson’s correlation coefficient but if we are just looking to assess whether

or not there is a relationship (not necessarily linear) between two variables then the

Spearman’s correlation is preferable.
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Compost grown plant yield (kg) Straw grown plant yield (kg)

2.1 2.3
1.9 1.6
4.3 1.2
1.8 2.0
3.0 2.8
1.8 1.9
1.1 1.6
1.4 1.8
2.5 3.0
2.4 2.1

Table 2.5: The weight in kilos of the potato yield under different growing conditions.

2.7.3 Mann-Whitney U Test

The Mann-Whitney U test is a hypothesis test which is not dependent on the under-

lying distribution of the data, for instance in the way that the t-test requires that the

underlying data is normally distributed [84]. For this reason it is useful to apply in

situations where we have small sample sizes and may not necessarily be sure of the

underlying distribution. It was introduced by Mann and Whitney in 1947 [99].

Imagine a situation where we wished to assess the difference in the yield between

growing potatoes in compost compared to growing them in straw. We would grow

perhaps 10 potato plants in compost and 10 in straw and measure the yield of each

plant at the end of the season. We provide some example results in Table 2.5.

We demonstrate how to use the Mann-Whitney U test to establish whether the

median yield of the two methods are different. We start by ordering the yields from

largest to smallest. Table 2.6 contains the results of this process. Notice that we do

not break ties but instead give each plant in a tie-break situation the average of the

rankings they would occupy. For example the two plants with a yield of 3kg would be

in positions 2 and 3 and so they are both given the ranking 2.5, we then carry on the

ranking with 4 for the plant with a yield of 2.8kg.

The next step is to sum up the rankings for each sample the result of which is

labelled Ri for sample i, we then calculate the U statistic for each sample via the

formula

48



Chapter 2. Preliminaries

Compost grown plant yield ranks Straw grown plant yield ranks

8.5 7
11.5 16.5
1 19
14 10
2.5 4
14 11.5
20 16.5
18 14
5 2.5
6 8.5

Table 2.6: The ranking of each plant in terms of the potato yield under different growing
conditions.

Compost grown plants Straw grown plants

R 100.5 109.5
n 10 10
U 54.5 45.5

Table 2.7: The calculation of the U statistic for each of the samples.

Ui = n1n2 +
ni(ni + 1)

2
−Ri. (2.50)

This process is detailed in Table 2.7. Note that the sums of the ranks for a sample

of size n is
n(n+1)

2 which is the lowest that Ri could be. The value of Ri would attain

this minimum in the case that all data-points from one sample are less than all of the

data points from the other sample and result in Ui = n1n2. In this situation, the Rj

result for the other sample would be given by
nj(nj+1)

2 plus all nj samples being above

all ni samples which gives ninj = n1n2, Rj = nj(nj+1)
2 + n1n2 and Uj = 0. In fact it is

the case in general that U1 + U2 = n1n2 and so we can conceive of the U statistic as a

measure of how much the distribution of one sample is distinct from the distribution

of the other.

We take U = min{U1, U2} = 45.5 to be the overall U statistic. The U statistic is

normally distributed with mean µ = n1n2

2 and standard deviation σ =
√

n1n2(n1+n2+1)
12

(Chapter 6, [85]). We can translate our U statistic into a z-score
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Z = U − µ
σ
= − 4.5

13.2288
= −0.3402. (2.51)

This z-score can be turned into a p-value of 0.7337 and we can conclude that there

is no evidence that the medians of the two samples are significantly different.

2.8 Computer Code

Where calculations have been done using simplicial complexes approaches, such as

calculations of Betti numbers, the Javaplex [154] package was used which was developed

by Tausz, Vejdemo-Johansson and Adams.

All code which has been used to make calculations in this work is available at

https://doi.org/10.15129/7d299611-6679-40f4-89e7-9a7c6e154e7e.
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Chapter 3

Concepts

This chapter has been published as part of [50]. The idea to extend centrality measures

to the case of simplicial complexes was a contribution of Estrada to [50]. All of the

definitions, proof and results in this chapter represent contributions by the author

to [50]. Both Estrada and the author reviewed all aspects of [50].

3.1 Literature Review

The traditional network theory has ways of establishing centralities on higher dimen-

sional entities in a model, for example the topological centrality [174] or the edge

betweenness centrality [76], which can be used to narrow down which pieces of power

grid infrastructure to monitor and mitigate against their failure. Unfortunately neither

of these examples can be extended to cliques of three or more nodes interacting with

other cliques with the same number of nodes.

It is possible to adapt Everett and Borgatti’s [55] group centralities to cliques. They

defined group degree, group closeness and group betweenness for a set of nodes. The

group degree is calculated by taking a set of nodes in the network and calculating the

number of other nodes in the network which are adjacent to at least one node in the

set. For example, in the network in Figure 2.2 the set {1,6} has a group degree of 6

because the node 1 is adjacent to 4 other nodes (2,3,10,15) and node 6 is adjacent to

3 other nodes (2,5,7) but node 2 is counted only once despite being adjacent to both.

The group closeness is defined as the reciprocal of the sum of the minimum shortest
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path distance from each node outside the set to a node in the set. Taking the set

{1,6} from the network in Figure 2.2 again we know that the nodes 2,3,5,7,10 and

15 have a minimum shortest path distance of 1 to {1,6}. We can also see that nodes

8,9,11,12,13 and 14 are at distance 2 from node 1 while nodes 4,8,9,16 and 17 are at

distance 2 from node 6 which means that all of the nodes in the network other than

six nodes which are directly adjacent to {1,6} have minimum shortest path distance

to this set of 2. Therefore the group closeness of {1,6} is 1
24 . The group betweenness

is derived from Freeman’s graph theoretic betweenness [57] which counts, for a given

node, a, the proportion of shortest paths between two other nodes that pass through

a. The group betweenness extends this definition to the proportion of shortest paths

between two nodes in the network which are not members of the set that pass through

any node in the set. This extension is done in a way analogous to how group degree and

group closeness extend the degree and closeness respectively. If we forced the groups to

be complete subgraphs we would have viable centralities for triangles (a clique of three

nodes) or tetrahedrons (a clique of four nodes). However, if we analyse a phenomenon

as a simplicial complex then this definition would ignore the structure of the simplicial

complex i.e. 2-simplices interacting with other 2-simplices.

There are a small number of centrality measures which are unique to the case of

simplicial complexes which include the concepts of local homology by Robinson et

al. [129] which estimates the effect on the simplicial complex of removal of a node and

its neighbourhood.

Persistent Homology offers another way to define a centrality measure which is spe-

cific to the simplicial complex case through Homological Scaffolds which were used by

Petri et al. [120] to investigate fMRI networks. Edelsbrunner offers a good introduction

to Persistent Homology [39, Chapter 11] but a brief overview is provided here because

it offers an alternative way of viewing the Random Geometric Simplicial Complexes

that we will analyse in Chapter 5. Persistent Homology starts with a filtration of a

simplicial complex. Let S be a simplicial complex, a filtration of S assigns each simplex

σ ∈ S a real number α and constructs a series of simplicial complexes Sγ where σ ∈ Sγ

if and only if γ ≥ α. Note that to satisfy the definition of a simplicial complex the
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α Simplex

0 {1},{3},{4},{5},{6},{1,4},{1,6},{4,6},{3,5},{1,4,6}
1 {2},{1,3},{1,5},{2,3},{4,5}
2 {1,2},{5,6},{1,3,5}
3 {2,5},{1,2,3}

Table 3.1: The values of α assigned to each simplex from the simplicial complex in
Figure 2.4 for the purpose of a filtration.

value, α, associated with a simplex, σ, must be greater than the value associated with

all of the faces of σ. That is a simplex cannot appear in the filtration until all of its

faces have appeared in the filtration. We construct a filtration based on the simplicial

complex in Figure 2.4 by applying the alpha values specified in Table 3.1.

We can see how the simplicial complex looks at each step of the filtration in Figure

3.1. The Betti numbers change throughout the filtration. For example β0 = 2 at α = 0

but β0 = 1 where α ≥ 1 while β1 = 0 at α = 0, β1 = 2 at α = 1 and β1 = 3 at α ≥ 2.

Note that even though β1 does not change between α = 2 and α = 3 the holes which

contribute to this Betti number are not the same at those levels of the filtration. We

can say that the hole represented by the 1-cycle [1,2] − [1,3] + [2,3] is born at α = 2

and dies at α = 3. The difference between the filtration level of the death of a hole and

the filtration level of the birth of a hole is its persistence, thus the hole represented by

the 1-cycle [1,2] − [1,3] + [2,3] has a persistence of 1.

Petri et al. used the concept of persistence to define a centrality measure on the

edges of a simplicial complex [120]. The total persistence in the persistence homological

scaffold of an edge is the amount of time it spends on the boundary of the various

holes which appear and disappear throughout the filtration. The edge {1,5} in the

filtration in Table 3.1 has a total persistence of 4 because it is on the boundary of

[1,3]−[1,5]+[3,5] from α = 1 to α = 2 and on the boundary of [1,5]−[1,6]−[4,5]+[4,6]

which becomes [1,5]−[1,6]+[5,6] from α = 1 to the end of the filtration. The fact that

it is necessary to pick a representative for each hole [120] means that this measure is

problematic for the use of total persistence as a centrality measure and the necessity of

having a filtration to work with also implies that it is not possible to apply it in many

cases.
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(a) (b) (c) (d)

Figure 3.1: Evolution of simplicial complex under filtration described in Table 3.1 for
α = 0 (a), α = 1 (b), α = 2 (c) and α = 3 (d).

Through the use of simplicial complexes it is possible to extend the network-

theoretic centralities to find the most important pair, triangle or tetrahedron, pro-

vided that the right centrality measure for the phenomenon and question under study

are chosen. For instance Jiang and Omer [74] propose concepts of degree centrality,

closeness centrality and betweenness centrality on simplicial complexes. They lever-

age Atkin’s q–adjacency [9] which is that two simplices are q–adjacent if they share

a common q–simplex. This definition means that for the simplicial complex in Fig-

ure 2.4 then {1,4,6} is adjacent to {1,2} because they share the common node {1}.

Jiang and Omer defined a q–degree centrality of a simplex in a simplicial complex to

be the number of other simplexes which share a common q–simplex with the original

simplex. For the simplicial complex in Figure 2.4 we have that the 0–degree of {1,4,6}

would be 13 because it shares a common 0-simplex with {1}, {4}, {6}, {1,2}, {1,3},

{1,4}, {1,5}, {1,6}, {4,5}, {4,6}, {5,6}, {1,2,3}, and {1,3,5}. They similarly define

a q–closeness centrality based on the reciprocal of the sum of the shortest paths based

on the q-adjacency for each simplex to every other simplex in the simplicial complex

and a q–betweenness centrality based on the proportion of these shortest paths which

a simplex is a part of. Jiang and Omer applied their centralities to the use of parks

to enable interconnectedness between neighbourhoods in Tel Aviv. Each neighbour-

hood was represented by a node and each park by a simplex which contained a node

if the border of the neighbourhood represented by that node was less than 500m from

the border of the park. This representation meant that some parks were represented
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by simplices of dimension 6, which is slightly unnatural given that these parks and

neighbourhoods are embedded in a two-dimensional space. There were two parks in

particular, one of which was represented by a 6-simplex and another by a 5-simplex,

which shared multiple neighbourhoods in common but were isolated from the rest of

the parks at the level of the 2-simplices and higher. These two parks had a very high

degree because of the size of the simplices despite not being located in an area where

many neighbourhoods were connected by multiple parks.

The degree centralities introduced by Moore et al. [104] are preferable in this respect

in that they root the degree firmly in the interactions that are happening at the same

dimension. Moore et al. defined the total degree of a k-simplex to be the number of

other k-simplices to which a k-simplex is lower adjacent added to the number of other

k-simplices to which it is upper adjacent. The use of the upper adjacency as part of this

definition still poses problems in terms of the interpretation of this measure though.

We can consider co-authorship networks which Moore et al. [104] studied. Consider

three authors a, b, c who have exactly one publication together which was as part of a

collaboration of a total of 50 authors. Let another author from that collaboration be

denoted by d, we have that {a, b, c} is upper adjacent to {a, b, d}, {a, c, d} and {b, c, d}.

By Theorem 2.30 we have that {a, b, c} is also lower adjacent to {a, b, d}, {a, c, d} and

{b, c, d} which means that the degree of {a, b, c} by this definition is 6 multiplied by the

47 other co-authors on that publication for a total of 282. Now consider the situation

that the same three co-authors have published together but have also published in

the following collaborations {a, b, d},{a, b, e},{a, b, f},{a, c, g},{a, c, h},{b, c, i}. The

degree of {a, b, c} in this situation would be 6 despite those three authors being involved

in more collaborations than in the first situation which is another example of why we

have to be careful to ensure that the centrality measures we are using are relevant to

the simplicial complex and to the question we wish to understand.

Bianconi and Rahmede proposed a different a generalised degree centrality for sim-

plicial complexes in 2015 [17]. The generalised degree was defined on a special kind of

simplicial complex called a Complex Quantum Network Manifold (CQNM) which, for

a given level d, is constructed by gluing d-simplices together along the (d − 1) faces.
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The generalised degree of a k-simplex, where k < d, is the number of d-simplices that

the k-simplex is a face of. It is easy to see how this definition could be used for simpli-

cial complexes which are not CQNMs by picking a level of the simplicial complex and

defining the generalised degrees in relation to that level [16]. Raj and Bhattacharya

recently built on the generalised degree by defining an adjacency on the d-simplices of

a simplicial complex for each k < d such that two d-simplices are adjacent if they share

a common k-simplex [124] which is essentially a special case of the p-lower adjacency

of [143] which we describe below. Raj and Bhattacharya used this adjacency to de-

fine shortest paths through the simplices which allowed them to create the generalised

closeness and generalised betweenness [124].

Another network centrality measure which has been generalised to simplicial com-

plexes is the PageRank by Schaub et al. [139] using the Hodge Laplacians that we

discussed in Section 2.6. This centrality is the probability that a random walker on the

k-simplices of a simplicial complex is at a given simplex at any given time.

Due to the existence of other notions of adjacency there are also other notions of

walks on graphs which do not line up with the one we use here. For example, Mukherjee

and Steenbergen’s random walks [110] line up with the concept of lower adjacency that

was discussed in Section 2.5.2.

Since the publication of [50] further work has been done in the realm of centralities

on simplicial complexes. In 2020 Hernández-Serrano, Hernández-Serrano and Sánchez

Gómez introduced a new simplicial degree [143] which was extended to new definitions

of simplicial eigenvector centrality, simplicial betweenness, simplicial closeness and sim-

plicial clustering coefficient [142]. They defined that a q-simplex, σ, and a r-simplex, τ ,

to be p-lower adjacent if they share a common p-face and to be p-upper adjacent if they

are both faces of the same p-simplex. In the simplicial complex depicted in Figure 2.4

we have that {1,2,3} would be 0-lower adjacent to {3,5} through the common node 3

while {1} and {3,5} would be 2-upper adjacent because these simplices are both faces

of {1,3,5}. These three authors then used these notions of adjacency to create several

different types of degree centrality for simplices including the maximal simplicial degree

which counts the number of largest possible simplices that a simplex is a face of and
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adds the number of simplices that it is lower adjacent to provided that these simplices

are not upper adjacent to the original simplex and also that a simplex and its faces

are counted together. Returning to the simplicial complex from Figure 2.4 we have

that {1,3} has a maximal simplicial degree of 3 because it is a face of {1,2,3} and

{1,3,5} and is 1-lower adjacent to {1,4,6}. Note that the 1-lower adjacency of {1,3}

to {1,4} does not count towards the maximal adjacency because it is included as part

of {1,4,6}.

Santos et al. extended the simplicial eigenvector centrality which was introduced by

Hernández-Serrano and Sánchez Gómez [142] to the case of hypergraphs and applied

it to functional MRI networks [138]. This use of hypergraphs points us to alternative

models which could be used to establish centralities on interactions of more than two

nodes. A hypergraph, like a network or simplicial complex, consists of a set, V , of nodes

and a set, E, of subsets of the nodes [22, Section 1.1]. In a hypergraph the members of

E, known as hyperedges, can be any size [22]. A hypergraph differs from a network in

that hyperedges can contain more than two nodes and differs from a simplicial complex

because the existence of a hyperedge does not imply that all subsets of it are also

hyperedges.

We return to the Friends example from Figure 2.1 and Figure 2.4. In Friends while

Chandler, Monica and Phoebe all lived together at one time at no point during the

show do Chandler and Phoebe live together without Monica therefore the hyperedge

{1,2,3} is a member of E in a hypergraph representation of this system but {1,2}

is not. The set of hyperedges in this example is given by E = {{1,3} ,{1,4} ,{1,6} ,

{2,3} ,{2,5} ,{3,5} ,{4,5} ,{5,6} ,{1,2,3} ,{1,3,5} ,{1,4,6}}. We can see that we have

added {1,2,3} ,{1,3,5} and {1,4,6} and dropped {1,2} ,{1,5} and {4,6} compared to

the networks case. In the simplicial complexes case we would be obliged to include

{1,2} ,{1,5} and {4,6} because they are faces of larger simplices.

We have three different representations of the same system which gives rise to the

question of which one is correct. Torres et al. [159] explored this question through

publication co-authorship networks. A network is the most appropriate way to repre-

sent co-authorship if we only want to consider whether or not two authors have worked
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together on the same paper. The network theoretic node degree tells us the number of

different co-authors an author has. This number is not returned by either the simpli-

cial complex or hypergraph node degrees applied by Torres et al. which count different

communities of collaborators and different collaborations respectively [159]. A simpli-

cial complex is the preferable representation if we want to ask whether or not a set of

authors have worked together on a paper at some point. Under the maximal simplicial

node degree [143] used by Torres et al. the number of maximal simplices a node is a

member of is counted which means that if a node is involved in one big collaboration

and then involved in several smaller collaborations which only contain members of the

larger collaboration then the smaller collaborations will not contribute to increasing the

node degree. We can infer that the node degree under the simplicial complexes case is

counting the number of different collaboration communities that a node is a part of. A

hypergraph is more accurate if we only want to consider whether a set of authors has

produced a paper together with no other authors involved. Torres et al. constructed a

dummy example where only the node degree on a hypergraph was able to capture that

a node was involved in the most different collaborations because under the network and

simplicial complex representations the other nodes had increased node degrees due to

their involvement in couple of large collaborations [159]. Ultimately, there are many

different factors which should be considered when deciding how to model a problem.

These factors include but are not limited to the quality of the data available, what an

interaction would mean in the model, how an interaction relates to potential subinter-

actions and the question being posed of the model [159]. These considerations mean

that there may not be a correct answer to the question of which model should be used

in every circumstance, however, the choice can affect the insights which can be drawn

about the problem under consideration [159]. As a result in Chapter 4 and Chapter 5

we explore the potential of hypergraph representations to be used instead of simplicial

complexes for the applications we consider.

There are many centrality measures for hypergraphs including versions of eigenvec-

tor centrality which are different from the one used by Santos et al. [8, 15, 138, 161],

subhypergraph centrality [49] and betweenness centrality [158].
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We propose a slightly different set of simplicial centralities which, while still derived

from the Laplacian and concepts of upper and lower adjacency, seek to isolate and

study the interactions at particular levels of dimensionality. We apply these centrality

measures to protein–protein interaction networks in Chapter 4 and Random Geometric

Graphs/Wireless Sensor Networks in Chapter 5.

3.2 Adjacency Matrices in Simplicial Complexes

The goal of this section is to combine Goldberg’s concepts of upper and lower adja-

cency [66] that we discussed in Section 2.5.2 into a general adjacency matrix for a

simplicial complex that allows us to define general centrality indices for these mathe-

matical objects.

Definition 3.1. Let C be a simplicial complex and let σi, σj ∈ C be two k-simplices.

Then, for k ≥ 1, σi and σj are considered simplex adjacent if they are lower adjacent

and not upper adjacent. For k = 0 two simplices shall be simplex adjacent if they

are upper adjacent. We use σi ∽ σj to denote that two k-simplices, σi, σj are simplex

adjacent.

The choice to define simplex adjacency as being lower adjacent and not upper adja-

cent avoids the issue of any centrality measures defined using this notion of adjacency

being overpowered by the presence of large simplices in the way the degree centralities

in [104] are. The simplex adjacency from Definition 3.1 does not completely ignore the

effects of upper adjacency and uses it to isolate the interactions that can only happen

between simplices of the same size. By using the upper adjacency in this way it avoids

a large simplex boosting the centralities of its faces which would happen if only the

lower adjacency were considered. Instead the interactions between these simplices are

considered within the interactions of the larger simplex at the appropriate level. This

notion of adjacency lines up nicely with the extensively studied higher order Laplacians

of simplicial complexes [107] which we discussed in Section 2.6. When we compare Def-

inition 3.1 and Definition 2.46 we can see that an off-diagonal entry of the higher order

Laplacian matrix is non-zero if and only if the simplices represented by that row and
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column are simplex adjacent.

However, an ideal definition of simplex adjacency would also be monotonic with

respect to the addition of simplices. That is, we would expect that adding an addi-

tional simplex to a simplicial complex should increase the connectivity of the simplicial

complex in that more simplices should become simplex adjacent to each other. We

are aware that Definition 3.1 is non-monotonic because the addition of any k-simplex

results in all of its faces becoming upper adjacent to each other and hence not simplex

adjacent. The clearest example of this is the clique complex of any complete graph in

which no two k-simplices for k > 0 are simplex adjacent to each other because every

possible k-simplex is included in the simplicial complex and as a result they are all

upper adjacent to each other. It is clearly not natural that the graph with the high-

est possible density of connections should give rise to the simplicial complex with the

lowest possible density of simplex adjacent simplices.

We believe that the advantages of Definition 3.1, in that it prevents the presence of a

couple of large simplices from drowning out the effects of the rest of the simplicial com-

plex and it respects the Hodge Laplacian, are worth the sacrifice of its non-monotonicity.

Additionally, we were not able to find a definition of simplex adjacency that had these

advantages and was also monotonic.

Given the notion of simplex adjacency and its relation to the Hodge Laplacian it is

natural to define a simplex adjacency matrix for each level of the simplicial complex.

Definition 3.2. Let C be a simplicial complex and let σi, σj ∈ C be two k-simplices.

Then, for k ≥ 1 the simplex adjacency matrix Ak at the k-level in the simplicial

complex has entries defined by

(Ak)ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if σi ⌣ σj and σi ⌢̸ σj ;

0 if i = j or σi ⌣̸ σj or σi ⌢ σj ;

for k = 0 the simplex adjacency matrix is given by the network theoretic adjacency

matrix.

For example A1 and A2 for the simplicial complex in Figure 2.4 are given by
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A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 1 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 1 0 0

1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0

1 0 0 1 0 1 0 1 1 0 1

0 0 0 0 0 1 1 0 1 0 1

0 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 1

0 0 0 1 1 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{1,2}

{1,3}

{1,4}

{1,5}

{1,6}

{2,3}

{2,5}

{3,5}

{4,5}

{4,6}

{5,6}

(3.1)

A2 =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

{1,2,3}

{1,3,5}

{1,4,6}

(3.2)

Definition 3.3. The underlying network of simplices for the k-simplices of a

simplicial complex is constructed by mapping every k-simplex in the simplicial complex

to a node in the underlying network. Two nodes in the underlying network are adjacent

to each other if and only if the two simplices they represent are simplex adjacent.

The underlying network of simplices for the 1-simplices and 2-simplices of the sim-

plicial complex in Figure 2.4 are shown in Figure 3.2(a) and (b) respectively. The

adjacency matrices of these underlying networks of simplices are identical to A1 and

A2 in Equations (3.1) and (3.2) respectively.

Note that this construction is similar to the concept of the conjugate complex

introduced by Atkin [9] except that it is specific to a particular dimension level and a

simplex can be included even if it is a face of a larger simplex.

We can use the underlying network of simplices to demonstrate the non-monotonicity

of simplex adjacency by comparing Figure 3.3 and Figure 3.4 which has an additional

simplex, {a, b, c, d}, and shows the case of the clique complex on a complete graph.
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(a) (b)

Figure 3.2: The Underlying Network of Simplices for the Friends simplicial complex for
the 1-simplices (a) and the 2-simplices (b).

a

b

c

d

(a)

{a,b} {a,c}

{a,d}

{b,c}{b,d}

{c,d}

(b)

{a,b,c} {a,b,d}

{a,c,d}{b,c,d}

(c)

Figure 3.3: A simplicial complex consisting of four 2-simplices,
{a, b, c},{a, b, d},{a, c, d},{b, c, d} and all of their faces (a), its underlying net-
work of 1-simplices (b) and underlying network of 1-simplices (c).

a

b

c

d

(a)

{a,b,c} {a,b,d}

{a,c,d}{b,c,d}

(b)

{a,b,c,d}

(c)

Figure 3.4: A simplicial complex consisting of a 3-simplex, {a, b, c, d} and all of its faces
(a), its underlying network of 2-simplices (b) and underlying network of 3-simplices (c).
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3.3 Simplicial Shortest Path Distance

In this section we extend the concept of shortest path distance to the different levels of a

simplicial complex. We start by extending the concept of walks to simplicial complexes.

Definition 3.4. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with k ≥ 1, σi ∈ Rk and ζi ∈ Rk−1. Then, a k-walk is a sequence of

alternating k-simplices and (k−1)-simplices σ1, ζ1, σ2, ζ2, . . . , ζr−1, σr such that for each

i ∈ {1, . . . , r − 1} σi and σi+1 are simplex adjacent and ζi is a face of both σi and σi+1.

For k = 0 a walk on the 0-simplices is just a walk in the normal graph-theoretic sense.

On the simplicial complex from Figure 2.5, we have that {1,3,4},{3,4},{3,4,5},

{4,5}, {4,5,6},{4,5},{3,4,5},{3,4},{2,3,4} is a 2-walk. Meanwhile, {6,9},{6}, {6,7},{6},

{5,6},{5},{3,5},{3},{2,3} is a 1-walk.

Definition 3.5. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σi ∈ Rk and ζi ∈ Rk−1. A k-shortest path between two k-simplices

σa, σb ∈ Rk is a k-walk, σa, ζ1, σ2, ζ2, . . . , σn, ζn, σb, such that n is minimized. The value

n is the k-shortest path length between the two k-simplices σa, σb. We denote this

value dk(σa, σb) = n. If there is no path between σa and σb then dk(σa, σb) = ∞.

Definition 3.6. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R. A simplicial complex is k-connected if and only if there does not

exist a pair of k-simplices σa, σb ∈ Rk such that dk(σa, σb) = ∞, i.e for every pair of

k-simplices dk(σa, σb) is finite.

Note that a simplicial complex being k-connected does not mean that it is (k + 1)-

connected or (k − 1)-connected. The simplicial complex in Figure 2.5 is 0-connected

but not 1-connected because {1,2} and {7,8} are not simplex adjacent to any of the

other 1-simplices. Many of the real world networks we shall introduce in later sections

are 1-connected but not 2-connected. In addition, a simplicial complex from the family

Sk
l (See Figure 2.6), is k-connected but it is not (k−1)-connected. The central (k−1)-

simplex is upper adjacent to every other (k − 1)-simplex and hence is not simplex

adjacent to any of them.
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Definition 3.7. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R. A set of k-simplices Sk ⊆ Rk is a k-connected component if it is the

case that for any two k-simplices σa, σb ∈ Sk we have dk(σa, σb) < ∞ and for any σc ∈ Sk

and σd ∈ Rk ∖ Sk we have that dk(σc, σd) = ∞.

Theorem 3.8. Let a simplicial complex, R, be given and let Rk be the set of k-simplices

of R with σi ∈ Rk and ζi ∈ Rk−1. Let R be k-connected then the simplicial shortest path

length between two k-simplices is an extended metric.

Proof. By definition dk(σa, σb) ≥ 0 for all σa, σb ∈ Rk. Clearly dk(σa, σb) = 0⇐⇒ σa = σb.

To prove dk(σa, σb) = dk(σb, σa) assume dk(σa, σb) = n. Then the k-shortest path

from σa to σb is of the form σa, ζ1, σ2, ζ2, . . . , σn−1, ζn−1, σn, ζn, σb which means that there

is a k-walk from σb to σa of the form σb, ζn, σn, ζn−1, σn−1, . . . , ζ2, σ2 , ζ1, σa. We can then

relabel ζ1 → ζn, σ2 → σn, ζ2 → ζn−1, σ3 → σn−1, . . . , ζn → ζ1 and so on to give a k-walk

from σb to σa of the form σb, ζ1, σ2, ζ2, . . . , σn−1, ζn−1, σn, ζn, σa thus dk(σb, σa) ≤ n. Let

there be a k-walk shorter than length n from σb to σa then we could relabel it to create

a k-walk shorter than length n from σa to σb which would contradict dk(σa, σb) = n.

Thus dk(σb, σa) = n and dk(σa, σb) = dk(σb, σa).

To prove dk(σa, σc) ≤ dk(σa, σb) + dk(σb, σc) let dk(σa, σb) = n and dk(σb, σc) = m

then there is a k-walk from σa to σb of the form σa, ζ1, σ2, ζ2, . . . , σn−1, ζn−1, σn, ζn, σb and

k-walk from σb to σc of the form σb, ζ1, σ2, ζ2, . . . , σm−1, ζm−1, σm, ζm, σc we can combine

these k-walks and relabel the simplices in the second walk by the rules σb → σn+1, ζi →

ζn+i, σi → σn+i to form a k-walk from σa to σc of the form σa, ζ1, σ2, ζ2, . . . , σn−1,

ζn−1, σn, ζn, σn+1, ζn+1, σn+2, ζn+2, . . . , σn+m−1, ζn+m−1, σn+m, ζn+m, σc which implies that

dk(σa, σc) ≤ n +m = dk(σa, σb) + dk(σb, σc).

For instance, on the simplicial complex from Figure 2.5, we have that {1,3,4},{3,4},

{3,4,5},{3,4},{2,3,4} is a 2-shortest path from {1,3,4} to {2,3,4} and we have d2({1,

3,4}, {2,3,4}) = 2. Meanwhile, {2,4},{4},{4,6},{6},{6,7} is a 1-shortest path be-

tween {2,4} and {6,7} and we have d1({2,4},{6,7}) = 2.

Definition 3.9. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σ ∈ Rk. The k-eccentricity ϵk(σ) is the largest k-shortest path
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distance between σ and any other k-simplex.

Definition 3.10. Let a simplicial complex, R, be given and let Rk be the set of

k-simplices of R with σ ∈ Rk. The k-diameter, Dk of a simplicial complex is the

maximum k-eccentricity of any σ ∈ Rk. That is Dk =maxσ∈Rk
ϵk(σ).

As an example, in the simplicial complex t2(1,2,4), depicted in Figure 2.6, the

central 2-simplex has 2-eccentricity 1 because it is simplex adjacent to all the other 2-

simplices in the complex. However, all the peripheral 2-simplices have a 2-eccentricity

of 2 because the shortest path from a peripheral 2-simplex on one arm to a peripheral

2-simplex on another is through the central 2-simplex for a shortest path of length 2

which means that t2(1,2,4) has 2-diameter 2.

Given a notion of shortest path distance we are now equipped to define the average

simplicial shortest path distance.

Definition 3.11. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σi, σj ∈ Rk. Let R be k-connected then the k-average simplicial

shortest path length, lk, is the average k-shortest path distance for all possible pairs

of k-simplices in the network. It is given by

lk =
2∑i<j dk(σi, σj)
∥Rk∥(∥Rk∥ − 1)

. (3.3)

Note that if the simplicial complex is not k-connected, we can analyse each k-

connected component separately.

We now prove bounds on the k-average path length.

Theorem 3.12. A sharp lower bound on lk is 1.

Proof. For lk to be less than 1 there would need to be two distinct k-simplices, σi, σj

such that dk(σi, σj) < 1 which would imply dk(σi, σj) = 0 and hence σi = σj by the

properties of an extended metric.

The lower bound lk = 1 is achieved by a simplicial complex of the form Sk
r which

is easy to check. A simplicial complex of the form Sk
r consists of a (k − 1)-simplex

{1,2, . . . , k} and some k-simplices of the form {1,2, . . . , k, i}, where i > k, in addition
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to all subsimplices necessary by the closure axiom. Hence, all k-simplices are lower

adjacent to each other by the (k − 1)-simplex {1,2, . . . , k} and they are not upper

adjacent to each other because there are no (k + 1)-simplices. Thus, every k-simplex

is simplex adjacent to every other k-simplex and the k-shortest path distance between

any two k-simplices is 1. Hence, the k-average path length is 1 and the lower bound of

lk is achieved.

A general upper bound of lk is impossible to establish due to the dependence on

the number of simplices, ∥Rk∥. However, if we fix both k and ∥Rk∥ then we can prove

the following result.

Theorem 3.13. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σi, σj ∈ Rk. Let R be k-connected and let ∥Rk∥ ≥ 2 be the fixed

number of k-simplices in R. Then, an upper bound of lk is

∥Rk∥ + 1
3

. (3.4)

Proof. If ∥Rk∥ = 2 then ∑i<j dk(σi, σj) = 1, the simplicial complex is k-connected and

there are only 2 k-simplices hence they must be simplex adjacent. Thus

lk =
2∑i<j dk(σi, σj)
∥Rk∥(∥Rk∥ − 1)

= 1. (3.5)

In addition
∥Rk∥+1

3 = 1. Hence the theorem holds for ∥Rk∥ = 2.

Assume that the theorem holds for ∥Rk∥ ≤ n. Let ∥Rk∥ = n + 1. Then to maximize

lk we need to maximize ∑i<j dk(σi, σj). Pick a k-simplex σ1. First, we maximize

∑j dk(σ1, σj). For dk(σ1, σj) = y for some σj ∈ Rk, it must be the case that dk(σ1, σm) =

y − 1 for some σm ∈ Rk such that σm ∽ σj which means that the largest possible value

of dk(σ1, σj) for some σj ∈ Rk is ∥Rk∥ − 1 = n. We can evaluate max∑j dk(σ1, σj) =

(∥Rk∥−1)+(∥Rk∥−2)+⋅ ⋅ ⋅+1 = T∥Rk∥−1 = Tn where Tz represents the z
th triangle number

which implies that dk(σa, σ1) = 1 for precisely one k-simplex, σa ∈ Rk. If dk(σa, σ1) = 1

for precisely one k-simplex, σa ∈ Rk then σ1 is simplex adjacent to precisely one other k-

simplex, namely σa. Because σ1 is simplex adjacent to only one other simplex, σ1 can be
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removed without affecting the k-shortest path distances between any other k-simplices.

We now have a simplicial complex such that ∥Rk∥ = n. We know that the upper bound

of the k-average path distance for this smaller simplicial complex is
∥Rk∥+1

3 = n+1
3 by

assumption where
(n−1)n(n+1)

6 is the contribution given by ∑i<j dk(σi, σj). We also

know that the largest number we can add to the sum ∑i<j dk(σi, σj) by the addition of

a k-simplex is given by Tn = n(n+1)
2 . Thus when ∥Rk∥ = n + 1 we have

max
⎛
⎝∑i<j

dk(σi, σj)
⎞
⎠
= (n − 1)n(n + 1)

6
+ n(n + 1)

2
= n(n + 1)(n + 2)

6
. (3.6)

Equation (3.6) allows us to evaluate the upper bound of lk as

(∥Rk∥−1)∥Rk∥(∥Rk∥+1)
3

(∥Rk∥ − 1)∥Rk∥
= ∥Rk∥ + 1

3
. (3.7)

A simplicial complex of the form P k
r achieves this bound.

3.4 Centralities Based on Simplicial Shortest-Path

We are now in a position to generalize some centrality notions for simplices which are

based on the simplicial shortest path distance. The simplest of all centrality measures

is the degree.

Definition 3.14. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σ ∈ Rk. The k-degree, δk (σ) is the number of other k-simplices

to which σ is simplex adjacent.

Note that we drop k from the degree where it is clear at which level of the simplicial

complex we are working as we do for the other simplicial centrality measures that are

discussed in this thesis. We will now relate the degrees of the 1- simplices to the degrees

of the 0-simplices.

Theorem 3.15. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σ = {i, j} ∈ R1. The degree of σ can be calculated by the formula

δ1(σ) = δ0(i) + δ0(j) − (2 + 2T ) (3.8)
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where T is the number of 2-simplices of which σ is a face.

Proof. Recall that a pair of 1-simplices are said to be simplex adjacent if they are lower

adjacent and not upper adjacent. That is they share a common 0-simplex and are not

faces of the same 2-simplex. Let’s assume, for now, that there are no 2-simplices in the

simplicial complex so that we can focus on the contribution from the lower adjacencies.

There are two ways in which σ can be lower adjacent to other 1-simplices, either through

i being a shared common 0-simplex or through j. The number of 1-simplices which

are lower adjacent to σ through i is given by (δ0(i) − 1) because i is also adjacent to

j at the level of the 0-simplices. Similarly, the number of 1-simplices which are lower

adjacent to σ through j is given by (δ0(j) − 1) thus in the event that there are no 2

simplices then δ1(σ) = δ0(i) + δ0(j) − 2.

Now let ζ = {i, j,m} be a 2-simplex of which σ is a face. The other two faces of

ζ, which are {i,m} and {j,m}, are lower adjacent to σ but they are now both upper

adjacent to σ and therefore not simplex adjacent to it. We have to subtract 2 from

the value of δ1(σ) to account for the effect of this upper adjacency. The 2-simplex,

ζ, was chosen arbitrarily and so for each 2-simplex of which σ is a face there are two

1-simplices which are lower adjacent to σ are also be upper adjacent to it and therefore

are not simplex adjacent to σ which leads us to the stated equation.

Definition 3.16. Let a simplicial complex, R, be given. If p (δk) is the probability

of finding a k-simplex of degree δk in R, then the k-degree distribution of the k-

simplices is the probability distribution of the degrees of the k-simplices across the

whole of the simplicial complex.

The degrees of the 1-simplices of the Friends simplicial complex depicted in Figure

2.4 are displayed in Tables 3.2 and 3.3 along with the simplicial closeness and sim-

plicial subgraph centralities at this level which shall be introduced in the rest of this

chapter. We can see that there are 4 1-simplices which have the highest degree which

are {1,5},{2,5},{4,5},{5,6}. Three of these four 1-simplices are not faces of any 2-

simplices which suggests that 1-simplices with high degree are likely to not be faces

of many 2-simplices. In Chapter 5 we will look at wireless sensor networks where this
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{1,2} {1,3} {1,4} {1,5} {1,6} {2,3}
δ1 4 2 4 6 4 2

Simplicial Closeness 0.59 0.43 0.59 0.71 0.59 0.43
Simplicial Subgraph Centrality 10.80 3.24 9.39 21.35 9.39 4.28

Table 3.2: The results of applying various simplicial centrality measures to the 1-
simplices of the Friends simplicial complex depicted in Figure 2.4. This table is contin-
ued in Table 3.3.

{2,5} {3,5} {4,5} {4,6} {5,6}
δ1 6 4 6 2 6

Simplicial Closeness 0.67 0.59 0.71 0.48 0.71
Simplicial Subgraph Centrality 20.20 11.38 20.14 4.88 20.14

Table 3.3: Continued from Table 3.2: The results of applying various simplicial cen-
trality measures to the 1-simplices of the Friends simplicial complex depicted in Figure
2.4.

property will be useful to detect regions of an area being monitored where the loss of

a sensor will lead to a gap in the coverage.

All four of the 1-simplices with the highest simplicial degree contain node 5 which

demonstrates that 1-simplices with high degree are likely to be found around nodes with

high degree which are not members of many 2-simplices. We could therefore aggregate

the degrees of the 1-simplices to find nodes which are faces of many 1-simplices but

few 2-simplices to find the nodes which have such structures. Table 3.4 displays the

mean degree of the 1-simplices for each node in the Friends simplicial complex. This

table shows that nodes 1 and 5 which had identical results for all of the network based

centrality measures in Section 2.2 are separated by taking the mean of the results for

δ1. We aggregate the centralities of the 2-simplices in order to find essential proteins

in Chapter 4.

There are other methods to aggregate the centrality measures for the higher order

simplices down to node level metrics such as counting the number of occasions where

a node appears in the top x simplices or the top x% of simplices in a ranking. This

method is the one we will use to reduce the centrality measures of the 1-simplices to

figure out which nodes in a wireless sensor network are most likely to induce gaps in

the coverage if they are removed in Chapter 5.
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1 2 3 4 5 6

Average δ1 4.00 4.00 2.67 4.00 5.60 4.00
Average Simplicial Closeness 0.58 0.56 0.49 0.59 0.68 0.59

Average Simplicial Subgraph Centrality 10.84 11.76 6.30 11.47 18.64 11.47

Table 3.4: The average of the simplicial centralities from Table 3.2 and 3.3 of the 1-
simplices of which each node is a member.

3.4.1 Simplicial Closeness

Here we generalize the concept of closeness centrality from Definition 2.16 to simplicial

complexes.

Definition 3.17. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σi, σj ∈ Rk. Let R be k-connected then the simplicial farness of

σi is the sum of its k-shortest path distances to all other k-simplices, ∑i≠j dk(σi, σj).

The simplicial closeness is the reciprocal of simplicial farness. That is

CCk(σi) =
∥Rk∥ − 1

∑i≠j dk(σi, σj)
(3.9)

where (∥Rk∥ − 1) is a normalization factor.

If the simplicial complex is not k-connected then ∑i≠j dk(σi, σj) would be considered

undefined or∞ for all k-simplices in the simplicial complex. In this case we can calculate

simplicial harmonic closeness instead which is a generalization of a network-theoretic

definition that can be found in [130].

Definition 3.18. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σi, σj ∈ Rk then the simplicial harmonic closeness of a k-simplex σi

is defined as follows

HCk(σi) = ∑
i≠j

1

dk(σi, σj)
, (3.10)

where we treat 1
∞ = 0.

Lemma 3.19. The upper bound of the normalized simplicial closeness centrality is 1

which can be attained by all simplices in a simplicial complex of the form Sk
l .
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Proof. In a simplicial complex of the form Sk
l we have l = ∥Rk∥ k-simplices which are

all adjacent to each other. Thus if we select a particular k-simplex σi ∈ Rk we have that

dk(σi, σj) = 1 for all σj ∈ Rk such that σi ≠ σj which gives ∑σi≠σj
dk(σi, σj) = ∥Rk∥ − 1.

Hence CCk(σi) = ∥Rk∥−1
∥Rk∥−1 = 1.

The peripheral 2-simplex which is only simplex adjacent to the central 2-simplex in

the complex t2(1,2,4) has simplicial closeness given by 7
13 . We have ∑σ≠σj

dk(σ,σj) =

1 + 2 + 2 + 2 + 2 + 2 + 2 = 13 where σ is the given simplex and σj is a run through of the

other simplices. The 1 is contributed by the shortest path from σ to the central simplex

while the 2s are given by the shortest path distances from σ to the other peripheral

simplices on the other branches. We also have that ∥R∥ − 1 = 7 for the normalization.

To give an example from the simplicial complex in Figure 2.5 we need to use the

definition of harmonic simplicial closeness. So to calculate the simplicial closeness of

{2,3,4} we have HCk({2,3,4}) = 1
1 +

1
2 +

1
2 +

1
∞ +

1
∞ +

1
∞ = 2 because it is simplex adjacent

to {3,4,5} and has shortest path distance 2 to both {1,3,4} and {4,5,6}. There is no

k-path from {2,3,4} to any of the other simplices.

Furthermore, the closeness centralities of the 1-simplices from the Friends simplicial

complex from Figure 2.4 are displayed in Tables 3.2 and 3.3 and they are reduced to

the average results for the nodes in Table 3.4. We can see that the edges which contain

node 5 have higher closeness than their counterparts which contain node 1. The reduced

number of 2-simplices which node 5 is a part of compared to node 1 means that node 5’s

edges have more direct access to each other which reduces the length of the 2-shortest

paths between them. This difference is also present when the centralities are aggregated

to the node level. In both cases the simplicial closeness offers greater granularity than

the simplicial degree.

3.4.2 Simplicial Subgraph Centrality

We now move to the concepts of centrality based on taking powers of the adjacency

matrices of simplicial complexes.

Theorem 3.20. Let Ak be the simplex adjacency matrix between k-simplices in a sim-

71



Chapter 3. Concepts

plicial complex. Then, (Ak)mij gives the number of k-walks of length m between k-

simplex, σi and k-simplex, σj.

Proof. Every walk on the underlying network of simplices for a given simplex size k,

has a corresponding k-walk over the k-simplices. We have that Ak is also the adjacency

matrix for the nodes in the underlying network of simplices. Thus, powers of the

simplex adjacency matrix can be used to give the numbers of walks of a given length

on the underlying network of simplices. In particular, (Ak)mij = b means that there are b

walks of length m between node i and node j in the underlying network of simplices at

the k-simplex level which precisely corresponds to the existence of b k-walks of length

m between simplex σi and simplex σj .

We make a generalization of the exponential of the simplex adjacency matrix of

k-simplices which relies on results from [48]. The following power series of the simplex

adjacency matrix of k-simplices Ak in a simplicial complex converges to the correspond-

ing matrix exponential

∞
∑
l=0

Al
k

l!
= exp (Ak) . (3.11)

Equation (3.11) is a direct generalization made possible by the adjacency matrices

at the different levels of the simplicial complex.

Definition 3.21. Let a simplicial complex, R, be given and let Rk be the set of k-

simplices of R with σi ∈ Rk the k-simplex which corresponds to the ith row of Ak. The

simplicial subgraph centrality of σi, is given by

SCk = (exp(Ak))ii. (3.12)

For the simplicial complex in Figure 2.5 we have that the simplicial subgraph cen-

trality of the 1-simplex {1,4} is 2.714. Note that any bounds on subgraph centrality

for networks still hold due to the underlying network of simplices.
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If we consider Tables 3.2 and 3.3 we can see the simplicial subgraph centralities for

the Friends simplicial complex from Figure 2.4. The node average of these centralities

for each node is displayed in Table 3.4. We can see that the highest ranked 1-simplex

is {1,5}. This time both nodes which belong to this edge have high node centralities

and the edge is only involved in one 2-simplex and so there are a lot of small cycles

involving this edge which boosts its simplicial subgraph centrality.

We can compare all three centralities which have been aggregated to the node level

to the node-based centralities. In the case of the node centralities each of them had a

tie for the most central node between nodes 5 and node 1 while the other four nodes

were also all tied. When we look at the case of the 1-simplices those ties are broken

which demonstrates that examining these extra levels of connection can lead to greater

understanding of a system. The next two chapters demonstrate this effect in real-world

situations.
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Chapter 4

Analysis of Protein–Protein

Interaction Networks

This chapter has been published as part of [50] with the exception that the interpreta-

tion of the degree distributions has been updated since that work. The idea to apply

simplicial centrality measures to protein–protein interaction networks, to study their

simplicial degree distributions, compare the simplicial centralities at different levels

and search for essential proteins were contributions of Estrada to [50]. All calculations

in this chapter were contributions of the author to [50]. The interpretation of the

difference between the correlations of the centralities at the same level compared to

centralities at different levels was a contribution of the author while Estrada identified

the necessity of using the simplicial centralities to create a node based ranking for the

purposes of identifying essential proteins and the author suggested the method of tak-

ing the mean of the simplices that each node was involved in. The author contributed

the explanation of why an edge between two high degree nodes would be unlikely to

have a high edge degree while Estrada contributed the comparison between an edge

with two medium degree nodes and an edge between a low degree node and a high

degree node. The interpretation of why the triangle centrality measures were good at

picking out essential proteins was a contribution by Estrada. Both Estrada and the

author reviewed all aspects of [50].
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4.1 Literature Review

Proteins are incredibly important because of the number of roles they play in the func-

tioning of cells. Among these roles, proteins can be used as catalysts in biological

systems (i.e. enzymes). Enzymes have a variety of industrial applications includ-

ing stain removal in detergents, aiding the digestibility of animal feed and maturing

alcoholic beverages [86]. Another important biological role of proteins is their use by

muscles where interactions between proteins result in a muscle contraction [151]. These

roles are rarely performed by individual proteins instead they are caused by groups of

proteins acting collaboratively [168]. When groups of proteins operate in this way it is

known as a protein–protein interaction [168]. Within a cell a protein can be involved

in several different interactions with many other proteins in combinations of large or

small numbers [168].

In protein–protein interaction networks the function of the proteins within the cell

define the structure of the network [125]. That is the proteins are the nodes and

an edge exists between two nodes if their proteins take part in performing the same

function for the cell. Three or more proteins can be involved in performing a function

and so it is natural to consider extending the protein–protein interaction networks to

protein–protein interaction simplicial complexes [98,148] or protein–protein interaction

hypergraphs [87, 92, 95]. Taking the simplicial complexes approach means that every

simplex would signify that its members were part of a set of proteins which performed a

function in the cell. This interpretation allows the possibility that 50 proteins perform

a function together and four proteins which were part of that interaction but no other

interactions would be considered to be a 3-simplex and have the same weight within

the simplicial complex as 4 proteins which performed a function as part of a 4-way

interaction. Therefore, a hypergraphs approach provides a more accurate model of the

functional interactions between the proteins than the simplicial complexes one because

every hyperedge represents the proteins that carried out a function.

However, the simplicial complexes framework gives us access to tools which are not

available to hypergraphs. Song applied a persistent homology approach to protein–

protein interactions on the Human PPI network and used a filtration based on the
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p-value of each set of associated genomes to introduce the nodes of the PPI network

and their interactions into the simplicial complex [148]. Song found 18 1-dimensional

holes which persisted throughout the filtration and some of the proteins which were

situated on the hole that persisted longest were associated with cancer and ageing which

are known to be linked [170].

Consider the case that there are four proteins which are involved together in multiple

interactions with no fifth protein also involved in all of the same interactions and that

these four proteins do not perform a function together on their own. Then these four

proteins would not form a hyperedge in the hypergraph representation and therefore

would not appear to be as important to the functioning of the cell in this case. In the

simplicial complexes case these four nodes would form a 3-simplex which would be at a

cross-roads of many other simplices. Here we will consider protein–protein interactions

from a simplicial complexes perspective and demonstrate that this perspective leads to

insights about which proteins in a cell are essential.

Unfortunately, the methods by which we can detect which proteins are interact-

ing with each other are fairly imprecise [168]. Yeast Two–Hybrid is an approach to

identifying protein–protein interactions where one protein of interest is attached to a

DNA binding domain and the other is attached to an activation domain. They are

then brought closer together to see if they will interact [165]. This approach has a

draw-back from our perspective which is that it can only assess one pair of proteins at

a time; additionally not all proteins are appropriate for treatment in this way since the

protein which is attached to the DNA binding domain must be capable of initiating

transcription [165] and the fact that proteins are attached to a DNA binding domain or

an activation domain in order to carry out this experiment may alter the results [165].

Von Mering et al. [168] found that when they filtered the data the Yeast Two–Hybrid

method had an accuracy of 10%, which was third best of the six methods they studied,

compared to a reference set of interactions in yeast but covered less than 1% of the

possible interactions.

Another method of assessing the existence of interactions between proteins is Mass

Spectroscopy of purified complexes of which there are two varieties which are Tandem
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Affinity Purification (TAP) and High Throughput Mass-Spectrometric Protein Com-

plex Identification (HMS-PCI) [168]. TAP works by selecting a protein of interest and

attaching another molecule to it. This protein is then fished out of the cell along with

the other proteins that it has interacted with. The nature of these proteins and their

interactions is then determined by mass spectrometry [156]. According to Von Mering

et al. [168] TAP has a similar accuracy to the Yeast Two–Hybrid method and covered

more of the reference data set than the other six methods they considered. HMS-PCI

follows more or less the same process but was reported to be less accurate and to cover

fewer interactions than TAP [168].

Synthetic Lethality is a third technique for detecting protein–protein interactions. It

describes a relationship between genes rather than proteins and any proteins which are

encoded by those genes are said to interact if the two genes are synthetically lethal [114].

Two genes, a, b are synthetically lethal if there exists a non-lethal mutation in a and a

non-lethal mutation in b such that the combination of these two mutations causes the

inviability of the cell [114]. It has been suggested that where two genes are synthetically

lethal the two sets of proteins they encode are essentially performing the same functions

independently [114], meaning that there is inherently a redundancy written into the

cell. Of all of the individual methods that Von Mering et al. [168] considered Synthetic

Lethality had the highest accuracy of confirmed interactions versus their reference data

set but had a lower coverage compared to all other methods except Yeast Two–Hybrid.

The penultimate method of protein interaction detection Von Mering et al. [168]

considered are In-Silico detections which are essentially computer simulations to de-

termine whether protein–protein interactions have happened or not. These detections

involve examining the genome of an organism to search for indicators that the pro-

teins interact [168]. There are three such indicators, whether or not the proteins are

encoded by conserved operons, whether they are present or absent together in the

fully sequenced genome and whether they have been found fused into one polypeptide

chain [168]. According to Von Mering et al. [168], In-Silico predictions are only slightly

less accurate than Synthetic lethality, TAP and Yeast Two–Hybrid, they cover around

10% of the interactions with the true value varying based on choice of parameters.
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The final protein interaction detection method we look at here is Correlated mRNA

expression. In this method a cell is exposed to a range of experimental conditions and a

record is kept of which genes have activated under each condition. Genes which activate

under similar conditions are said to be interacting [59]. This method is good because

it covers a larger range of conditions than the others and was second only to TAP in

the percentage of potential pairs considered (at the optimal parameter choices) [168].

However, two or more genes activating at the same time does not necessarily mean

that there has been a physical contact between these proteins. Von Mering et al. found

a relatively poor accuracy when compared to the other methods they described [168]

and the optimal parameter choices for accuracy resulted in the fourth best coverage, of

their reference set of interactions, of the six methods.

As described above no single method has a very high accuracy, however, when an

interaction is confirmed by two separate methods then accuracy is improved and there

is a further improvement when an interaction is confirmed by three separate methods

according to Von Mering et al. [168]. For the analysis of yeast in this thesis we use the

data set compiled by Bu et al. [25] which consisted of the high and medium confidence

interactions identified by Von Mering et al. [168].

Due to the requirement to consider only interactions which were identified by two

or three different methods an analysis using a full simplicial complexes approach is not

viable because TAP, Yeast Two–Hybrid and Synthetic Lethality are pairwise measures.

As a result the only confirmed three or more way interactions that we could include

would need to be determined by all three of HMS-PCI, In-Silico detections and Cor-

related mRNA expression which makes it far less likely that a three way interaction

would be picked up. However, by using a clique complex approach, where any set of

three nodes which are all adjacent to each other in the model is considered a 2-simplex,

we have shown that it is possible to make inferences about nature of the interactions

between the proteins through the simplicial centralities which could not be accom-

plished without considering this higher topological space. This analysis also provides

an example of what could be done in future if more accurate data for the higher order

interactions becomes available.
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The relationship between protein–protein interaction networks and whether or not

a protein was essential was first noticed by Jeong et al. in 2001 [73] who connected

the degree centrality of a node to the essentiality of the protein represented by that

node. They found that higher degree correlated with higher essentiality. This work was

expanded on by Estrada in 2006 who demonstrated that the subgraph and eigenvec-

tor centralities outperform the degree centrality when it came to identifying essential

proteins particularly where the top 1%, 3% or 5% of nodes are considered [42]. We

expand upon Estrada’s work by using the simplicial centralities developed in the previ-

ous chapter. We demonstrate that, on the Yeast network, by considering the triangular

simplicial subgraph centrality it is possible to increase the number of essential proteins

identified in the top 1% of the ranking from 50% to 78% and in the top 3% from 50% to

62% compared to the centralities at the node levels. We also note increases from using

simplicial degree when compared to degree and simplicial closeness when compared to

closeness.

Many other approaches to identifying essential proteins have been employed in

recent history which often focus on using edge-based measures in comparison to the

traditional node-based ones. For example, the sum of the edge clustering coefficients of

a given node was used byWang et al. [169] to increase the number of identified nodes as a

percentage of the top 5%, 10%, 15% and 20% of nodes in the ranking and they tended to

identify different essential proteins to the ones found by the node-based measures much

like the work in this chapter. The work by Wang et al. also highlighted some difficulties

in the data collection of what we have already described as an area of study prone to

false positives. They ran the same experiment on three different yeast PPI networks

which they had obtained from different sources [169]. Their centrality measure which

was based on the edge clustering coefficient was consistently the best performer across

the different networks but the performance of the other centrality measures they tested

varied across the different networks [169]. For example betweenness centrality was the

second best predictor of essential proteins and the subgraph centrality was the worst on

one network but these positions were reversed for a different network which represented

the protein interactions on the same organism. This lack of a best performing centrality
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measure is important because if the betweenness centrality is the strongest centrality

measure at detecting essential proteins it would suggest that essential proteins are

ones which are perform functions with proteins from many different groups and that

there are very few interactions between the members of those groups. However, if

the subgraph centrality is the strongest centrality measure then it would suggest that

essential proteins are ones which perform functions with many proteins which perform

functions with each other. Thus, the choice of a different network representation of the

PPI network of the same organism could change the inferences which are made about

the proteins in the cell.

Li et al. [93] expanded on the work of Wang et al. by combining a modified edge

clustering coefficient with a Pearson correlation coefficient of the two proteins being

considered based on the level of expression of their genes which represented a further

improvement but was only tested on the DIP database. Meanwhile, Jiang et al. [75] did

a further expansion using a weighted sum of five different measures which outperformed

the Li et al. method on the datasets they used. These methods draw on more data

than is available in just the interaction networks which have been constructed based on

PPIs. It demonstrates that the science of studying these interactions has gone beyond

the pure network-theoretic approaches used 20 years ago.

The object of the work in this thesis is to demonstrate that it is possible to make

inferences about how the proteins interact to perform functions in a cell by considering

interactions which happen at higher topological levels than the interactions considered

at the network level, which suggests that the same may be true of other phenomena

modelled by networks. In future it may be a good idea to combine the values derived

from the simplicial centralities with other information to detect essential proteins rather

than the combination with the node level centralities which has been done to date.

Since the publication of [50] further work has been done in detecting essential pro-

teins including the work of Klimm, Deane and Reinert in 2021 who took the hyper-

graphs approach and showed that the node degree of a protein–protein interaction

hypergraph could be used to detect essential proteins [87]. In 2024 Lawson, Donovan

and Lefevre [92] leveraged the eigenvector centrality, that Tudisco and Higham had
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introduced [161], to detect both essential proteins and essential complexes, which were

hyperedges which consisted of at least 60% essential proteins. The work of Lawson,

Donovan and Lefevre was motivated by the idea that proteins which were essential may

well be essential because they are involved in essential interactions within the cell [92].

Other recent advances in identification of essential proteins using PPI networks include:

the use, by Rout et al., of betweenness centrality with only shortest paths between pro-

teins which have been associated with forms of cancer considered [132]; the application

of a neural network to combine the network centrality measures with gene expression

data by Chen et al. [29] and; Ye et al. who also combined network centrality mea-

sures with gene expression data but employed an evolutionary community discovery

algorithm to do so [171].

Here we study 10 protein–protein interaction (PPI) networks. In these networks

nodes represent proteins and undirected links represent the interaction between two

proteins determined experimentally via the methods described earlier (mostly Yeast

Two–Hybrid and TAP). The networks studied correspond to the following organisms:

D. melanogaster (fruit fly) [65], Kaposi sarcoma herpes virus (KSHV) [163], P. fal-

ciparum (malaria parasite) [90], varicella zoster virus (VZV) [163], human [133], S.

cereviciae (yeast) [25], A. fulgidus [105], H. pylori [94, 123], E. coli [26] and B. sub-

tilus [113]. We study only the largest (main) connected components of each of these

networks, which range from 50 to 3039 proteins. We transform these networks into

their clique simplicial complexes consisting of edges, triangles and tetrahedrons. As

described above, it would be preferable to consider three and four way interactions sep-

arately from trios of pairwise interactions but it is not possible with the data currently

available. The number of simplices and interactions at the nodes, edges and triangle

level are given in Table 4.1. We stop at the triangle level because consideration of the

tetrahedron level would require knowledge of which cliques of 5 nodes exist and which

ones are simplex adjacent to each other which is more computationally intensive than

for cliques of 4 nodes. Notice that the number of simplices at the edge level is the same

as the number of interactions at the node level.
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nodes edges triangles

species simplices interact. interact. simplices interact.

A. fulgidus 32 37 101 1 0

KSHV 50 114 606 34 82

VZV 53 148 1156 104 343

B. subtilus 84 98 463 4 1

P. falciparum 229 604 4599 201 401

E. coli 230 695 7803 478 2425

H. pylory 710 1396 14736 76 79

S. cereviciae 2224 6609 99882 3530 15004

human 2783 6007 85617 1047 2170

D. melanogaster 3039 3687 11369 163 113

Table 4.1: Number of simplices and their interactions at the nodes, edges and triangles
levels for the 10 PPI networks studied. Notice that the number of simplices at the edge
level is the same as the number of interactions at the node level. This table previously
appeared in [50].

4.2 Degree Distributions

We discussed the importance of hub nodes in Section 2.2. In the case of PPI networks

hubs are expected to play a fundamental role in the cell and their knockout is expected

to cause wide spread cellular damage which is the main finding of the centrality-lethality

paradigm established by Jeong et al. [73]. Many PPI networks were characterized as

scale free during a fad of classifying networks as such at the beginning of this century,

however, since then some authors have found that almost none of the PPI networks

previously claimed to have scale-free structures actually do [150]. Blumenthal et al.

report that the previous findings may be have been due to study bias and false positives

in the interaction datasets [19]. The degree distribution has retained its importance

in the study of PPI networks over the years. Khojasteh, Khanteymoori and Olyaee

examined degree distributions of PPI networks of SARS-CoV-2 and H1N1 flu viruses

in 2022 [83] and Ramos, Ferreira and Simao compared the degree distributions of

four different PPI networks for humans in 2024 [128]. The main message of these

experiments is that most PPI networks have heavy-tailed degree distributions, such as

power-law, lognormal, Burr, logGamma, Pareto, etc.

We consider the probability degree functions (PDF), p (δk) vs. δk, for 10 PPI net-
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species nodes edges triangles

A. fulgidus NA gP (−1.0,11.5,0) NA
KSHV NA gP (−1.1,19.3,1) gP (−1.1,8.4,1)*
VZV gP (0.2,3.8,1)* gP (−1.0,31.8,1)/

Γ(2.8,5.6)**
NA

B. subtilus gP (15.9,4 × 10−15,1) NA NA
P. falciparum NA Γ(2.7,5.7) gP (−0.5,5.8,0)

E. coli gP (26.9,8 × 10−15,1) GEV (−0.3,12.2,18.3)* gP (−0.7,16.3,0)
H. pylory gP (23.9,6 × 10−15,1) Γ(1.9,11.3) NA

S. cereviciae gP (26.2,8 × 10−15,1) GEV (0.1,13.4,19.0) gP (−0.4,11.7,0)
human gP (25.1,7 × 10−15,1) NA NA
D.

melanogaster
gP (21.8,6 × 10−15,1) GEV (0.3,2.6,3.7) gP (23.7,6 × 10−15,0)

Table 4.2: Degree distributions of the nodes, edges and triangles in the simplicial
complexes representing 10 PPI networks studied here (see text for selection criteria).
A Generalised Pareto distribution with shape parameter k, scale parameter σ, and
threshold parameter θ is represented by gP (k, σ, θ). A Generalised Extreme Value
distribution with shape parameter k, scale parameter σ, and location parameter µ is
represented by GEV (k, σ, µ). A Gamma distribution with shape parameter a, and scale
parameter b is represented by Γ(a, b). Not available (NA) distributions are reported
when the data was too scarce for a statistically significant fit of the distributions or the
statistical criteria used were unable to decide between two or more distributions. *BIC
criterion indicates only a strong differentiation with the second best distribution. **BIC
criterion indicates only a positive differentiation with the second best distribution (see
Figure 4.1). A version of this table previously appeared in [50].

works at the three different levels studied in this work, i.e., nodes, edges, and triangles.

For each of the PDFs we fit the data to each of the following distributions: Beta, Bi-

nomial, Birnbaum-Saunders, Burr, Exponential, Extreme Value, Gamma, Generalized

Extreme Value (GEV), Generalized Pareto (gen-Pareto), Half-Normal, Inverse Gaus-

sian, Kernel, Logistic, Loglogistic, Lognormal, Nakagami, Negative Binomial, Normal,

Poisson, Rayleigh, Rician, Stable, t Location-Scale, and Weibull. The best fit was

determined on the basis of the following statistical parameters: Akaike information

criterion (AIC) [88,152] and the Bayesian information criterion (BIC) [88] which were

discussed in Section 2.7.1. The distributions were ranked in increasing order of their

AIC with ties broken using the difference in the BIC for the distributions. In Table 4.2

we show the best distribution fitted for each of the datasets studied.

The most interesting observation from the results shown in Table 4.2 is that while
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Figure 4.1: Examples of the Gamma Distribution (a) (blue solid line is the edge degree
distribution for VZV, orange dashed line is the edge degree distribution of H. pylori),
Generalised Pareto Distribution (b) (blue solid line is the node degree distribution
for B. subtilis, orange dashed line is the edge degree distribution of KSHV, yellow
dotted line is the node degree distribution for VZV) and Generalised Extreme Value
Distribution (c) (blue solid line is the edge degree distribution for E. coli, orange dashed
line is the edge degree distribution of S. cereviciae, yellow dotted line is the edge degree
distribution for D. melanogaster).

the degree distributions obtained for the node level of the PPI simplicial complexes are

heavy-tailed this pattern is not necessarily repeated for the 1-simplices and 2-simplices.

At the node level, the 7 distributions that were statistically significant correspond to a

generalized-Pareto distribution with a positive shape parameter, where the probability

of finding nodes of a given degree decays as a power-law of the corresponding degree

(see the blue solid line and yellow dotted line of Figure 4.1 (b)). For the other three

datasets the statistical criteria used were not able to distinguish between the first few

distributions.

At the 1-simplex level only E. coli, S. cereviciae and D. melanogaster display a

Generalised Extreme Value distribution (see Figure 4.1 (c)) which is heavy tailed but

does not feature a high proportion of low degree simplices as was the case for the node

degree distributions. Instead we see a varied range of degrees centred around 19 for

E. coli and S. cereviciae and around 4 for D. melanogaster before the start of the long

tail. This finding suggests that while there are pairs of interacting proteins which have

very high degree and are likely to be very important to the functioning of the cell

there are also a lot of pairs of interacting proteins which have a medium degree and

comparatively few of low degree. The rest of the organisms display a similar style of
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degree distribution for the edges except without the large tail. Neither the Gamma

distribution (see Figure 4.1 (a)) nor the generalized-Pareto distribution with a negative

shape parameter (see orange dashed line of Figure 4.1 (b)) have heavy tails. Both of

these distributions also feature a large number of medium degree simplices. The large

number of medium degree 1-simplices suggests that the loss of the interaction between

these proteins should not be destructive to the functioning of the cell.

At the 2-simplex level all of the PPI simplicial complexes for which it was possible

to determine the best distribution display generalized-Pareto distributions. The shape

parameter of these distributions was negative for all of them with the exception of D.

melanogaster which suggests that there is a slight increase in the number of high degree

2-simplices compared to low degree ones with many medium degree ones in between and

that the loss of the interaction between a trio of nodes should not be very destructive to

the cell. However, it is often the case that many of these high degree interactions have

proteins in common and the loss of the individual proteins which feature in many high

degree interactions can be very destructive for the cell as we demonstrate in Section

4.4.

4.3 Comparison of Centralities at Different Levels

Simplicial centrality measures are all designed to identify the “most important” sim-

plices in a simplicial complex, at different levels, according to certain topological fea-

tures of the complex, such as nearest-neighbour connectivity (degrees), proximity of

other simplices (closeness) and participation of a simplex in small sub-complexes with

other simplices (subgraph centralities). It should be expected that there is some corre-

lation between the centralities inside each level of analysis. That is, we would expect

that node degree is somehow correlated to node closeness or node subgraph centrality

for a given PPI network. We employ Spearman’s rank correlation coefficient which was

introduced in Section 2.7.2 to assess the correlation between the different centrality

measures. We choose to use Spearman’s correlation coefficient because we expect that

there will be differences in the distribution of the results for each of the centrality mea-

sures chosen. For example the subgraph centrality is the result of an exponential matrix
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function while closeness and degree are not. Additionally, with centrality measures it

is, generally, the ranking that is important rather than their magnitude of the result.

In the yeast PPI the node centralities (degree, closeness and subgraph centrality)

have an average rank correlation coefficient ⟨rsn,n⟩ ≈ 0.828, with the largest rank cor-

relation coefficient rs recorded between the closeness and the subgraph centralities

(rs(SC,CC) ≈ 0.924). At the edge level this average rank correlation is ⟨rse,e⟩ ≈ 0.827

and at the triangle level it rises up to ⟨rst,t⟩ ≈ 0.970.

We need to check that the simplicial centralities are actually providing new infor-

mation because it could be the case that the highest ranked edges and triangles consist

of the highest ranked nodes which would mean that no new insights can be gained by

considering the centralities at the higher levels. We take each node and calculate the

average centrality of each edge it is involved in. We then rank the nodes based on the

average centrality of the edges which allows us to compare the rankings that the edges

give to the node rankings through the Spearman rank correlation coefficient. We also

perform this aggregation for the triangles so that the simplicial centrality rankings of

the 2-simplices can be compared to the rankings for the 1-simplices and 0-simplices.

The average rank correlation coefficient between the node and edge centralities is just

⟨rsn,e⟩ ≈ 0.609, and between the node and triangle centralities it is ⟨rsn,t⟩ ≈ 0.587. Fi-

nally, the average rank correlation between the edge and triangle levels is ⟨rse,t⟩ ≈ 0.228.

The correlation between the inter-level centralities (see Table 4.3) is lower than between

the different centrality measures at the same level which suggests that it is not the case

that the triangle centrality rankings consist simply of 2-simplices made up of the highest

ranked nodes.

It is also important to consider that none of the correlations are negative. This fact

implies that none of the centralities fundamentally disagree with each other. It is not

the case that a centrality at one level is telling us that one set of nodes is not important

and another set of nodes is but a centrality at a different level is telling us the exact

opposite. It is more likely that a centrality at one level is telling us that one set of nodes

is important while a centrality at a different level is telling us the same thing but the

order of importance is shuffled between the two centralities. This hypothesis is backed
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nodes edges triangles

SC CC DC SC CC DC SC CC

Node Degree 0.7602 0.7984 0.3292 0.3856 0.3020 0.6586 0.6951 0.6812

Node Subgraph 0.9245 0.7376 0.6981 0.7471 0.5562 0.5780 0.5990

Node Closeness 0.7347 0.7710 0.7805 0.4795 0.5103 0.5260

Edge Degree 0.7617 0.9025 0.2744 0.2794 0.2928

Edge Subgraph 0.8180 0.2042 0.2207 0.2456

Edge Closeness 0.1558 0.1691 0.2076

Triangle Degree 0.9725 0.9772

Triangle Subgraph 0.9589

Table 4.3: Spearman’s rank correlation coefficients between the rankings of three cen-
tralities of the 0,1 and 2-simplices in the yeast PPI simplicial complex. This table
previously appeared in [50].

up when we consider the triangle and node degrees. Of the 100 most central nodes

according to these centralities 24 coincide. When we consider the top 300 there are

111 (37%) proteins in common and looking at the top 500 the two centralities identify

268 (53.6%) common proteins. This change in the percentage of common proteins at

the top of the rankings between the nodes and triangles may explain the difference

between the centralities capabilities in the detection of essential proteins in the next

section when a small percentage of the top proteins are considered compared to the

similarity when a larger percentage is considered.

We can expand this study of the average rank correlation coefficient to all the

PPI simplicial complexes considered in this work. In Table 4.4 we give the average

Spearman rank correlation coefficients for all of the PPI networks studied. We can see

that the intra-dimensional correlations between the centralities considered is relatively

high which follows our expectation that different centralities identify essentially the

same groups of proteins at each corresponding level. The highest correlations are

observed for the triangle level, which is mainly due to the high correlation between the

triangle degree and closeness centralities. This high correlation could be a consequence

of the fact that most of the high degree triangles are clumped with many other triangles

(see next section for the case of yeast). These high-degree triangles are close to each

other, giving a high triangle closeness. Finally, we also observe lower rank correlation

between the different pairs of levels considered for the 10 PPI networks analysed. The
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⟨rsn,n⟩ ⟨rse,e⟩ ⟨rst,t⟩ ⟨rsn,e⟩ ⟨rsn,t⟩ ⟨rse,t⟩
A. fulgidus 0.822 0.844 NA 0.399 NA NA

KSHV 0.912 0.778 0.993 0.632 0.666 0.493

VZV 0.873 0.783 0.899 0.176 0.751 0.186

B. subtilus 0.749 0.865 0.792 0.407 0.294 -0.030

P. falciparum 0.842 0.826 0.957 0.608 0.655 0.403

E. coli 0.842 0.915 0.959 0.714 0.699 0.483

H. pylory 0.847 0.740 0.932 0.608 0.458 0.254

S. cereviciae 0.828 0.827 0.970 0.609 0.587 0.228

human 0.732 0.818 0.929 0.641 0.505 0.235

D. melanogaster 0.661 0.703 0.795 0.568 0.303 0.188

Table 4.4: Intra- (⟨rsn,n⟩, ⟨rse,e⟩ and ⟨rst,t⟩) and inter-level (⟨rsn,e⟩, ⟨rsn,t⟩ and ⟨rse,t⟩)
average Spearman’s rank correlation coefficients between the rankings of three central-
ities of the 0,1 and 2-simplices in the 10 PPI simplicial complexes studied. See text for
notation and explanations. This table previously appeared in [50].

slightly negative average obtained for ⟨rse,t⟩ in B. subtilus can be considered more as

a lack of correlation than a negative correlation between the simplicial levels.

4.4 Identification of Essential Proteins

4.4.1 Methodology

An essential protein is one that when knocked out results in the death of the cell. The

identification of such proteins has become one of the main paradigms of the study of

centrality measures in PPI networks [29, 42, 69, 73, 75, 87, 92, 93, 132, 141, 169, 171, 173].

The reasons for this interest are twofold. On the one hand, it is important to have

theoretical tools that allow the identification of proteins that can be drug targets, think

of the identification of essential proteins in a pathogenic microorganism. On the other

hand, it is one of the scarce examples in which centrality measures can be validated

against experimental data. The methodology for essential protein identification that

we consider here is adapted from the one developed by Estrada in 2006, and consists

of the following steps [42]. First, we transform the PPI network into a clique simplicial

complex with cliques of up to 4 nodes turned into simplices which allows us to consider

0-simplex, 1-simplex and 2-simplex centralities. Note that to consider the centralities
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at the 3-simplex level then the cliques of 5 nodes would need to be represented in the

simplicial complex as 4-simplices because to know whether or not two 3-simplices are

simplex adjacency then it is necessary to know if they are both faces of the same 4-

simplex. However, knowledge of the existence of (k + n)-simplices, where n ≥ 2 does

not affect the simplex adjacency of the k-simplices which means the existence of the

3-simplices in the PPI simplicial complex of yeast is enough to calculate the node, edge

and triangle centralities. Secondly, we calculate the corresponding centralities at the

three levels for each of the simplices. We then transform edge and triangle centrality

into a ranking of the nodes by calculating the average centrality of all the edges and

triangles in which a given node is involved, as per the previous section. Using these

centralities we rank all of the proteins in the PPI in decreasing order. Finally, we count

how many essential proteins are in the top x% of the ranking and report this number

as the percentage of essential proteins identified by the corresponding centrality (see

Figure 4.2). An ideal index for essential protein identification is one which ranks all

essential proteins at the top of the ranking, such that if we want to select 100 essential

proteins we simply pick the top 100 proteins in that ranking. We compare the results

of this process with the random selection of proteins. That is, we rank the proteins

randomly and count the essential ones which are in the top x% of the ranking.

4.4.2 Application to Yeast PPI

We now apply the methodology previously described to identify essential proteins in the

yeast PPI. There are several datasets of the interactions of proteins in yeast. Here we

use the data compiled by Bu et al. [25]. The original data was obtained by Von Mering

et al. [168] by assessing a total of 80,000 interactions among 5400 proteins reported

previously and assigning each interaction a confidence level. Bu et al. [25] focused on

11,855 interactions between 2617 proteins with high and medium confidence in order to

reduce the interference of false positives, from which they reported a network consisting

on 2361 nodes and 6646 links:

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm.

We transform this interaction map into the clique complex of a network in which
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Figure 4.2: Schematic representation of the process of identification of essential proteins
using simplicial centralities in a PPI. This figure previously appeared in [50].

proteins are represented as nodes and two nodes are linked by an edge if their cor-

responding two proteins interact with high or medium confidence. In this section

we consider the 0-simplex, 1-simplex and 2-simplex degree, closeness, and subgraph

centralities as examples of nearest-neighbour, shortest-path and local neighbourhood

centralities respectively.

The first interesting observation obtained from this analysis is that the centralities

based on the edge level of the simplicial complex perform very badly at identifying

the essential proteins. For instance, for the top 1% of proteins in the ranking, the

node and triangle centralities identify more than 45% of essential protein (see detailed

analysis below), but the edge centralities do not identify more than 27% (edge degree).

In general, none of the edge centralities are able to identify more than 35% of essential

proteins at any percentage of top proteins selected. This result contrasts with the

rankings obtained by using node and triangle centralities. For instance, for the closeness

centrality at both node and triangle level, the number of essential proteins identified is

always larger than 37%. As can be seen in Figure 4.3(b) the triangle closeness centrality
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Figure 4.3: Percentage of essential proteins identified using simplicial degree (a), close-
ness (b), simplicial subgraph centrality (c) and random selection (d) based on the
0-simplices and 2-simplices of the simplicial complex for yeast PPI. For the case of
the random selection, as the edge and triangle information is reduced to values for the
nodes, only the selection of essential proteins based on random ranking of the nodes is
required. This figure previously appeared in [50].

outperforms the node version for all of the percentages of proteins considered. In the

top 10% and 15% of proteins ranked by the triangle closeness an extra 10% of the

proteins identified are essential compared to the equivalent criteria for nodes. These

differences represent up to 40 additional essential proteins identified by the triangle

centrality.

The largest percentages of essential proteins identified are obtained by the subgraph

centralities. In particular, for 1% and 3%, the triangle subgraph centrality greatly

outperforms the node one. For the top 1% of proteins identified by the triangle subgraph

centrality an extra 20% of the proteins identified are essential compared to its node

analogue and for the top 3% it outperforms the node centrality by 14%. However, for

top percentages of rankings over 5%, the node and triangle subgraph centrality do not
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show large differences in the identification of essential proteins. Around 50% of the

proteins identified are essential for both rankings.

The fact that the edge centralities do not describe the essentiality of proteins in the

yeast PPI simplicial complex merits explanation. This observation clearly indicates that

increasing the complexity of the representation of a phenomenon does not imply that

the amount of information which can be extracted from that system also increases.

For simplicity, we provide an explanation for why the degree of the edges does not

detect essential proteins but the explanation is also valid for the other centralities

studied here. Let us recall from Theorem 3.15 that the edge degree is given by δ1(σ) =

δ0(i) + δ0(j) − (2 + 2T ), where i and j are the nodes forming the edge σ and T is

the number of triangles that the edge is a face of. Notice that in a graph theoretical

framework the edge degree is simply defined as δ0(i) + δ0(j) − 2. The important thing

here is that the edge degree in the simplicial complex depends on the degree of the

nodes forming an edge and the number of triangles it participates in. In Figure 4.4

we show the scatter-plots of the edge centrality indices versus their node analogues.

As can be seen in all cases the correlation is positive and for the cases of the degree

and closeness the correlation between the two centralities is relatively good. We now

analyse the causes of the differences between the node and edge centralities and how

they influence the edge centrality’s inability to identify essential proteins in the yeast

PPI.

Suppose that the number of triangles that an edge is a face of is relatively small,

such that the degree of the edge is mainly dependent on the degree of the nodes forming

that edge. Then, it is possible to have two different edges with exactly the same edge

degree which differ significantly in the degree of the nodes forming the edges. That

is, we can have an edge formed by two nodes of mid-degree (MD), e.g., MD-MD, and

another formed by a high-degree (HD) and a low-degree (LD) node. It is not difficult

to find many of these examples in the yeast PPI. For instance, the edges YMR125C-

YOL139C and YDR386W-YOL139C are formed by nodes of degrees 39-36 and 31-36,

respectively. That is, these two edges are of the MD-MD type. On the other hand,

the edges YPR110C-YLR086W and YPR110C-YGL016W are formed both by nodes of
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Figure 4.4: Scatter plots of the edge centralities, degree (a), closeness (b) and subgraph
centrality (c), versus the node analogues of the same centralities. Notice that the
subgraph centrality plot is in log-log scale and that harmonic closeness was used for
the edge closeness centrality due to the Yeast PPI simplicial complex not being 1-
connected. This figure previously appeared in [50].

degrees 64-3, which clearly means that they are of the HD-LD type. It is well-known

that high-degree nodes are more likely to represent essential proteins (see Figure 4.3(a)).

Thus, it is more probable that an HD-HD edge contains an essential protein than an

MD-MD one. Indeed, neither of the proteins in the previous example in MD-MD are

essential, but the protein YPR110C in the HD-LD edges is. The situation is even worse

when the nodes involved in a given edge participate in a large number of triangles. In

this case, twice the number of triangles is subtracted from the degree of the two nodes

the simplicial degree for the 1-simplices. Thus, if an edge is involved in a large number

of triangles, its edge degree will be relatively small due to the fact that it is penalized

for each triangle it is a part of. Thus HD-HD edges are unlikely to have a high edge

centrality because two HD nodes which are adjacent are likely to have many neighbours

in common. The existence of nodes having low degree but displaying either very low

or very high edge degree is easy to understand. In edges of the HD-LD type, there

is always a node with low degree which displays very large edge degree due to the

influence of the HD node. In those edges where an LD node is connected to another

LD node, both the node and the edge degree are low. These factors explain the edge

centralities failure to predict essential proteins in the yeast PPI compared to the node

and triangle centralities.

Now we move to the analysis of the triangle centrality indices. Because the triangle
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Figure 4.5: Scatter plots of the triangle centralities, degree (a), closeness (b) and sub-
graph centrality (c), versus the node analogues of the same centralities. Notice that
the subgraph centrality plot is in log-log scale and that harmonic closeness was used
for the triangle closeness centrality due to the Yeast PPI simplicial complex not being
2–connected. This figure previously appeared in [50].

centralities outperform the node ones in identifying essential proteins, our main goal

here is to identify a structural pattern which contributes to the triangle centralities

and does not contribute to the node ones. In order to perform our analysis we again

consider the degree centralities for the sake of simplicity. We are only interested in the

structural information which is useful for the identification of essential proteins. The

structural pattern that we identify here consists of a node A which is the vertex of a

relatively small number of triangles, such that its node degree is small. Suppose for

instance that A is connected to the nodes B, C, and D forming the triangles ABC

and ACD. Obviously the node degree of A is only 3. Now, let us consider that BC

is an edge of a large number of triangles, and that CD has a similar property which

means that the triangles ABC and ACD have large triangle degree and consequently

the node A is very central according to this index. A node is highly triangle-central if

the edges of the 2-simplices it is a member of are also members of a large number of

other 2-simplices. We provide two complexes displaying exactly this structural pattern

as examples. The first is formed by the protein YDL148C, which is connected to 4 other

proteins, namely YGR090W, YBR247C, YCL059C and YCR057C. These proteins form

5 triangles in which YDL148C is a vertex. Then, obviously, the protein YDL148C is

not very central according to this nearest-neighbour structure, i.e., its node degree is
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(a) (b)

Figure 4.6: Illustration of the two simplicial complexes in formed by the proteins
YDL148C (a) and YMR112C (b). This figure previously appeared in [50].

only 4 and it participates in only 5 triangles. However, the edges of these 5 triangles

participate in a total of 88 other triangles. That is, the edge YGR090W–YBR247C

takes place in 11 other triangles, YGR090W–YCR057C in 22, YBR247C–YCL059C in

14, YCL059C–YCR057C in 25, and YBR247C–YCR057C in 16. The protein YDL148C

is then very central according to the triangle centrality and it is essential. Another

example is provided by the protein YMR112C, which is also essential and is connected

only to YDL005C, YOL135C, YBR253W and YJR068W. It forms only 4 triangles, but

the edges of these triangles form 14, 15, 17 and 19 other triangles, respectively. Thus,

the protein YMR112C which is not central according to node centrality is one of the

most central nodes when the 2-simplex centrality indices are reduced to the node level.

It should also be noted that there is structural information contained in the node

centralities which is not accounted for by the triangle ones. As we have seen before

there are proteins with high node centrality and low triangle centrality. However, the

number of structural patterns contributing to this situation is wider and ranges from

the simplest case where a protein interacts with a large number of other proteins which

do not interact with each other, to the case where a central protein forms a wheel-like

structure. In the first case obviously the protein has a high degree but its triangle
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degree is zero. In the second case a central node is connected to every node of a cycle

having n−1 nodes, the central node has degree n−1 but every triangle has degree only

two. The important message of this section is that the triangle centrality includes some

structural information which is relevant for understanding biological processes such as

the essentiality of proteins in the yeast PPI.
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Chapter 5

Random Geometric Simplicial

Complexes

Parts of this chapter have been presented at the University of Strathclyde Applied Anal-

ysis Seminar and at the International Congress on Industrial and Applied Mathematics

(ICIAM) 2019.

5.1 Literature Review

We now consider random geometric graphs (RGGs) which were first introduced, under

the guise of random plane networks, by Gilbert in 1961 [63] as a foil to the Erdős-Rényi

Random Graphs introduced a year earlier [41]. Gilbert was motivated to introduce

them because in an Erdős-Rényi random graph any two nodes are connected with an

equal probability. This property is acceptable in the null model when the graph system

being modelled is not embedded in a topological space but becomes less relevant when

it is. The example Gilbert gives is of short range radio stations which can communicate

only when they are within a certain distance of each other. If the same system were

modelled by the Erdős-Rényi random graph then each radio station would be equally

likely to be able to communicate with any other radio station regardless of location.

Random Geometric Graphs were later extended to more than two dimensions [119].

Another key application of RGGs is in wireless sensor networks (WSNs) [1, 10, 56,
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61,82,106,121,127,155] which are networks of sensors which can detect changes in their

environments. They are usually limited in their detection capacities to a given area,

examples include the underwater wireless sensor networks which are used to detect

tsunamis [10] or the WSNs used on nuclear sites to detect leaks [82]. They also have

applications to monitoring hillsides for landslides [127] and habitats to search for partic-

ular species [121]. Recently WSNs have become an important component of ”Internet

of Things” systems where the environment in a home, hospital [61], piece of industrial

machinery [56] or smart agricultural system [106] is monitored using wireless sensors

and then decisions about changes to the environment are made by a centralised base

station [1] indeed Tamene et al. [155] view the Internet of Things to be the natural

successor to traditional WSNs. The recent proliferation of applications for WSNs has

driven a focus on energy efficiency [164] and the related question of their security in

order to meet requirements to protect data [60]. There are two ways to model WSNs:

in the case that the sensors are able to communicate with each other then if two sen-

sors were positioned closely enough together such that communication was possible

then they could be connected by an edge; similarly if the regions that two sensors

cover overlap that could be another condition where we would connect two nodes in

the random geometric graph.

It is possible for three or more sensors to be in communication with each other and it

is also possible that three or more sensors would cover a common area. As a result RGGs

have been expanded to consider interactions between more than two nodes. A Random

Geometric Hypergraph consists of a set of nodes spread on the unit d-dimensional cube

[0,1]d and a connection radius r and then x nodes are members of the same hyperedge if

there is a common intersection of the balls of radius r centred at those nodes. However

as Turnbull et al. [162] and Kahle [78] point out under this definition the balls of radius r

centred at any subset of these x nodes would also have common intersection and so any

subset of the hyperedge containing these x nodes would also be a hyperedge and so we

naturally arrive at the simplicial complex structure. However, other notions of random

geometric hypergraphs have been proposed. One example would be De Kergorlay and

Higham’s construction [33] where there are various hypergraph centres and each node
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would join the hypergraph centres to which it was sufficiently close. In their example

they considered that the hypergraph centres were meeting places like shops, gyms or

churches and individual people would go to the ones closest to their homes. It is easy

to see how this model could be extended to larger or more complex internet of things

set ups with multiple base stations. Although this new construction is interesting we

do not consider such complicated cases here.

There are two ways to form simplicial complexes from random geometric graphs.

The first way is known as the C̆ech complex [62] and the second is the Vietoris–Rips

complex [62, 167]. Kahle [77] has studied the properties of these random geometric

complexes when embedded in different dimensional spaces. He calculated the expected

Betti numbers of such a complex under different conditions. Betti numbers are partic-

ularly relevant to the applications which we mention above and we discussed them in

Section 2.6. The Betti numbers of a simplicial complex describe the number of gaps

of that dimension which exist within the complex. The WSNs we discuss here are

embedded in a 2-dimensional space so it only really makes sense to talk about gaps in

two dimensions, usually known as holes. The first Betti number, β1, of a Random Ge-

ometric Simplicial Complex is equal to the number of these two dimensional holes. In

wireless sensor networks these holes would represent gaps or dark zones in the coverage

of an area. In fact, a lot of work has gone on in the literature into detecting these gaps

in coverage using a simplicial complexes approach [34,107,126].

One deficiency of limiting random geometric simplicial complexes to a single connec-

tion radius when studying wireless sensor networks is that while it is possible to know

the number of holes there is no information about their size. For a wireless sensor

network it may not be a problem to have many small gaps in the coverage but a single

large gap could be very problematic if the job of the sensor network is to prevent natural

disasters. One solution to this problem is De Silva and Ghrist’s use of the eigenvectors

associated with the largest eigenvalues of the Hodge Laplacian at the 1-simplex level

which they showed tends to have higher values for edges which were on the boundary

of the largest hole [34]. Another solution to this problem is persistent homology with

larger holes expected to persist for longer. Chintakunta and Krim leveraged persistent
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homology to check for false positives in their coverage hole detection algorithm [30].

Bobrowski, Kahle and Skraba introduced a multiplicative persistence where the death

time of a hole was divided by its birth time to create a ratio which allows persistence

of holes to be compared across different random geometric simplicial complexes [20].

They also provided some probabilistic proofs about the nature of their multiplicative

persistence. Persistent homology has also been used to detect community structures

on Random Geometric Graphs among many other graphs by Jenkins [72].

This interest in detecting gaps in coverage is primarily so that it is possible to plug

those gaps and maintain communication or coverage across these regions. However, as

Kenniche and Ravelomananana [82] note, there are wireless sensor networks where the

sensors are fitted with batteries which it may not be possible to recharge or replace. For

example, the sensors, in the WSN that Polastre et al. used to monitor the Leach’s Storm

Petrel on Great Duck Island, failed for many different reasons [121]. Sensors may also

fail for other reasons and it may not be possible to replace them quickly, for example

a tsunami detection sensor in a remote part of the ocean, or safely, for example during

heavy rain on a hillside which is known to be prone to landslides. Given the potentially

fatal consequences of sensors failing much research has been done into detecting this

situation [102, 109] and tolerating it [27, 172]. Many of the recent advances in failure

detection have centred around the use of machine learning algorithms such as the use

of extremely randomised trees by Saeed et al. [135] and the application of an adaptive

shark smell optimisation algorithm in combination with a modified Elman recurrent

neural network by Mahalakshmi et al. [96]. Ghadi et al. provided an overview of the

machine learning algorithms in use in the study of WSNs in 2024 [60].

There are two general types of approaches to building tolerance to failures in a WSN:

creating fault tolerant node distributions when the WSN is introduced and moving

existing nodes or introducing new nodes to the system to act as redundancies in the

situation where a node failure would lead to a gap in coverage [172]. In WSNs with

mobile nodes algorithms have been introduced to decide where and when to move nodes

such as the one developed by Tirandazi et al. which combines a local algorithm and a

global algorithm to allow the sensors to make these decisions [157]. Sadeghi Ghahroudi
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et al. provided a survey of the available algorithms for node movement in WSNs in

2023 [134].

Introduction of new sensors is of particular importance in the case that the sensors

are not mobile and so cannot be programmed to cover gaps in coverage themselves.

One strategy for introducing nodes to eliminate holes in the coverage of a WSN is the

one proposed by Simionato and Cimino [146]. Their strategy is to have collections of

mobile sensors located at points throughout the area being monitored. When a hole is

detected these sensors are sent to the boundary of the hole which shrinks the boundary

of the hole as more sensors show up to sit on the reduced boundary until the hole is

no longer present and any remaining sensors can return to their base [146]. These new

sensors would remain in place until the failed sensor can be repaired or replaced at

which point the mobile sensors used to cover the gap would become available to deal

with new gaps [146].

Dependent on how the sensors were originally placed and the limitations on these

placements then some areas of the region being monitored may be more prone to gaps in

coverage opening up than others. These areas are ones in which there are multiple nodes

whose failure would create a coverage hole which would determine where the optimal

places for Simionato and Cimino’s collections of mobile sensors would be. It is useful

to be able to update this knowledge quickly in the event of failures of other nodes

in the system in order to move these collections or know which sensors to prioritise

fixing. Persistent homology could provide hints towards which nodes are likely to

induce a hole if they were removed. Nodes which were among the last nodes to join

the large connected component or nodes that were on the boundary of holes that died

at radii just below the connection radius would be good candidates. However, nodes

may join smaller connected components before the construction of the large connected

components and the identifiers for these smaller connected components would not be

unique to these hole-critical nodes. Similarly, a node which is positioned centrally to

a set of other nodes which are at a distance of slightly over the connection radius to

each other and three quarters to two thirds of the connection radius to the centrally

located node would not be on the boundary of a recently deceased hole but would
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(a) (b)

Figure 5.1: 1000 nodes scattered on a square of side length 1 (a), The RGG constructed
from these nodes with a connection radius of 0.07 (b).

induce a hole if it was removed and be covering a region on its own if a WSN was being

modelled. This chapter presents a method to identify nodes which are likely to create

a homological hole if they were removed.

5.2 Introduction

We begin by providing an extension of the definition of the Random Geometric Graph

to multiple dimensions from Penrose [119].

Definition 5.1. The random geometric graph (RGG) is defined by distributing

n nodes independently and uniformly in the unit d -dimensional cube [0,1]d. We then

say that two nodes are adjacent if their Euclidean distance is less than r which is a

parameter known as the connection radius.

If we look at Figure 5.1 we can see the process of constructing an RGG in action

with 1000 nodes scattered on the unit square on the left and these nodes connected if

they are within a distance of 0.07 of each other. We are operating in 2–dimensional

space which is the case for the rest of the thesis.

We now extend random geometric graphs to random geometric simplicial complexes

using Kahle’s definition [77].
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Figure 5.2: An RGSC constructed from the RGG in Figure 5.1 using the Vietoris–Rips
complex method.

Definition 5.2. A random geometric simplicial complex (RGSC) is a simplicial

complex defined using the nodes and edges of an RGG as the 0-simplices and 1-simplices

respectively.

We can see the effect of extending the random geometric graph from Figure 5.1 into

an RGSC in Figure 5.2. We shall demonstrate how to create holes in RGSCs which

correspond to gaps in coverage of a WSN.

There are many different definitions by which we could extend random geometric

graphs to random geometric simplicial complexes. The most useful method would be

to use the C̆ech complex [62, p. 30].

Definition 5.3. To construct the C̆ech complex, C , of an RGG we consider the ball

of radius r
2 around each node i, B r

2
(i). Now for every subset of the nodes X ∈ V , then
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X ∈ C if and only if ⋂i∈X B r
2
(i) ≠ ∅.

Let there be three sensors in a WSN and let there be an edge between each pair of

nodes represented which means that if the radius of the coverage area for each sensor

is r
2 then the coverage areas of each pair of these sensors must overlap. However, there

is no guarantee that there is an overlap between the coverage areas of all three sensors,

i.e. that the intersection of the coverage areas of all three sensors is non-empty. If

it is non-empty then we would represent this situation as a 2-simplex containing the

three relevant nodes in the C̆ech complex and if not then we would not include such

a simplex. The absence of such a simplex corresponds to a gap in the coverage in the

WSN and the presence of a simplex means that any point in the area defined by the

convex hull of the location of the three sensors is covered by at least one sensor in the

WSN.

Unfortunately, the C̆ech Complex is very time consuming to determine because of

the need to check the intersection of every subset of the nodes. A faster method is the

calculation of the Vietoris–Rips complex [62, p. 28].

Definition 5.4. The Vietoris–Rips complex of an RGG is its clique complex.

As before, let there be three sensors in a WSN and let there be an edge between each

pair of nodes represented. However, this time because all three nodes are mutually con-

nected they form a triangle and so a 2-simplex containing these nodes is automatically

included in the Vietoris–Rips complex.

We can see that in terms of providing an accurate representation of the coverage

of a WSN then the Vietoris–Rips complex is not as accurate as its C̆ech equivalent

because the presence of a simplex in the Vietoris–Rips complex does not guarantee

that every point in the convex hull of the sensors which define the simplex is covered

unlike the C̆ech case. However, Theorem 2.5 of “Coverage in Sensor Networks Via

Persistent Homology” by De Silva and Ghrist [34] states that it is possible to squeeze

a C̆ech complex between two Vietoris–Rips complexes of different sizes. We state the

theorem below for completeness.

Theorem 5.5. Let X be a set of points in Rd, Cr(X ) be the C̆ech complex of these
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points when we consider balls of radius r
2 and Vr be the Vietoris–Rips complex of the

Random Geometric Graph formed by considering the nodes to be the set X and con-

necting nodes at euclidean distance less than r. Then there is a chain of inclusions

Vr1(X ) ⊂ Cr2(X ) ⊂ Vr2(X ) (5.1)

whenever

r2
r1
≥
√

2d

d + 1 . (5.2)

Thus for ease of computation we shall be using the Vietoris–Rips complex for the

simulations contained in this chapter. Theorems 5.7 and 5.10 also assume that the

RGSC is constructed using the Vietoris–Rips approach. Although it should be noted

that the intuition behind the results also applies to the C̆ech complex.

5.3 Creating Holes and Edge Subgraph Centrality

In the previous chapter we saw that edge centralities were not very useful at detecting

nodes whose corresponding proteins were essential. However, we now demonstrate that

in the 2-dimensional RGSCs they are useful at detecting nodes which we call hole-

critical.

Definition 5.6. A node is considered hole-critical if its removal would increase the

first Betti number, β1, of the simplicial complex.

That is a node is hole-critical if its removal would introduce a hole.

Remember that in a simplicial complex two edges are adjacent if they have precisely

one node in common and they do not take part in the same triangle. Therefore, an

edge has high degree if its nodes both have high node degree, and it is not part of

many triangles. The interactions and adjacencies in a RGSC are determined by the

local geometry which allows us to demonstrate a result about which nodes contribute

to the edge degree of a 1-simplex.

105



Chapter 5. Random Geometric Simplicial Complexes

(a) (b)

Figure 5.3: The area in which nodes do not contribute to the edge degree is smaller for
the longer edge (a) than for the shorter one (b).

Theorem 5.7. Let S be an RGSC and σ = {i, j} ∈ S. The degree of σ can be calculated

by counting the nodes within the connection radius of precisely one of its two nodes i

or j.

Proof. Recall from Theorem 3.15 that the degree of σ is given by

δ1(σ) = δ0(i) + δ0(j) − (2 + 2T ) (5.3)

where δk represents the k-degree of a simplex as per Definition 3.14 and T is the number

of 2-simplices of which σ is a face.

Let’s use the edge from Figure 5.3(a) and let i be the node on the left and j be

the node on the right. Given that the circles represent the connection radius of the

RGSC then δ0(i) would be the total number of nodes which fall within the red circle,

δ0(j) would be the same for the blue circle and T would be given by the number of

nodes which fall within both circles. We can therefore work out the contribution of the

1-simplices which are simplex adjacent to σ through node i to δ1(σ) by summing all the

nodes in the red circle and then subtracting any which are also in the blue circle. We

can do the opposite for node j and the two summations are equal to simply summing

the number of nodes which are within the connection radius of precisely one of i or

j.
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Figure 5.4: A graphical depiction of the areas used to derive the equation of a symmetric
lens.

Consider the two edges in Figure 5.3. We would expect that the longer edge would

have a higher edge degree because the area where only one of its nodes would be

adjacent to a node in that area is larger. That is, there is a larger area contained by

the red circle but not the blue circle or by the blue circle but not the red circle for the

longer edge than the shorter one.

Before we can prove this assertion we need to calculate the area of intersection of

two circles of the same radius, which has a well known formula.

Definition 5.8. A symmetric lens is the shape defined by the intersection of two

circles of equal radius [91].

Lemma 5.9. The area of a symmetric lens is r2(θ − sin(θ)) where r is the radius of

the circles and θ is the arc length of the intersection of each circle [116, p. 23].

Theorem 5.10. Let S be an RGSC and σ = {i, j} ∈ S with i and j both at least

euclidean distance r, which is the connection radius of S, from the boundary of the area
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on which S is defined. Then the expected degree centrality of σ is given by

E(δ1(σ)) = 2(n − 2)r2(π − (θ − sin(θ))) (5.4)

where n is the number of nodes in S and θ is the arc length of the lens created by the

overlap of two circles of radius r centred at i and j respectively.

It is also the case that E(δ1(σ)) increases as the length of σ increases.

Proof. We begin by deriving the formula for E(δ1(σ)) from the formula for the degree

of a 1-simplex given in Theorem 3.15.

E(δ1(σe)) = E(δ0(i)) +E(δ0(j)) − (2 + 2E(T ))

= 1 + (n − 2)πr2 + 1 + (n − 2)πr2 − 2 − 2(n − 2)r2(θ − sin(θ))

= 2(n − 2)r2(π − (θ − sin(θ)))

(5.5)

We can assume that the area on which the nodes of the RGSC are scattered is 1. Hence

E(δ0(i)) = 1 + (n − 2)πr2 because we know that node j is adjacent to node i and there

are (n− 2) other nodes in the RGSC. The proportion of the remaining nodes which we

would expect to fall inside the connection radius r is πr2 because the total area is one.

Similarly, to calculate E(T ) there are (n− 2) other nodes and we would expect the

proportion of them which would form triangles with the two nodes to be equivalent to

the area of the lens, r2(θ − sin(θ)), formed by the intersection of the two of circles of

radius, r, centred at i and j divided by the total area the nodes are scattered which we

assume, without loss of generality, to be 1.

We can simplify to the expression in the last line of the proof above. As the length of

the edge σe increases θ decreases and (θ−sin(θ)) is a monotonically increasing function

of θ. Thus, (π − (θ − sin(θ))) is a monotonically decreasing function of θ. Hence,

E(δ1(σe)) increases as the length of σe increases.

More intuitively δ1(σ) is the number of nodes which are within the connection

radius of precisely one of the nodes of an edge. Hence the larger this area is the more

likely an edge’s degree centrality is high. This area is larger when the edge is longer as

can be seen from Figure 5.3.
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(a) (b)

Figure 5.5: The nodes highlighted are the most edge subgraph central ones for this
RGSC (a) we can see the effect of removing these nodes from the RGSC(b).

The subgraph centrality of a node in a network has been shown to be a measure of

the number of subgraphs of a graph that a node participates in. That is a node has a

high subgraph centrality if it not only has a high degree but many of the nodes that it

is connected to also have high degree and have many connections between each other.

Therefore, in a simplicial complex an edge is likely to have high subgraph centrality if

it is not only of high degree but if it is also adjacent to many edges of high degree. On

random geometric simplicial complexes we have demonstrated that longer edges have

higher degree so an edge is likely to have higher subgraph centrality if it is long and it

has at least one node which is a member of many other long edges. Additionally, the

other end points of these edges would need to be far away from each other to minimise

the chances of forming triangles. If this situation arose then all of the other edges

surrounding the same node would also have high subgraph centrality. So a node which

is involved in many edges which have high subgraph centrality is likely to be at one

end of many long edges and therefore quite far from other nodes in the euclidean space

the nodes were spread on. That is such a node is likely to be hole–critical.

We can connect this idea to the case of wireless sensor networks and the problem of

sensors failing with the result of a gap appearing in the coverage of the WSN. Therefore,
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Betti Number Change 1 node 2 nodes 3 nodes 4 nodes 5 nodes

1 122 209 222 189 186
2 3 36 79 138 155
3 0 3 9 24 45
4 0 0 0 3 13
5 0 0 0 0 1
-1 0 0 0 3 2

Total 125 248 310 357 402
Unchanged 375 252 190 143 98

Table 5.1: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked according to the
subgraph centralities of their edges.

we now consider the 100 most subgraph central edges in an RGSC and whichever node

is contained most often in this list of edges will be considered the most edge subgraph

central node.

We demonstrate experimentally the effectiveness of removing the most edge sub-

graph central node of a network as a way of introducing holes to a network. Figure 5.2

is an RGSC with sidelength 1, connection radius 0.07 and n = 750 nodes. It has a first

Betti number β1 = 45 which is equivalent to saying that the number of gaps in coverage

of a WSN being modelled by this RGSC is 45. In Figure 5.5 (a) we have highlighted

the five most edge subgraph central nodes of this RGSC as determined by the following

process:

1. Calculate edge subgraph centrality for every edge in the simplicial complex.

2. Identify the 100 edges with the largest edge subgraph centralities.

3. Calculate which node features in the largest number of these highly edge subgraph

central edges. If there is a tie then break the tie by picking whichever of the tied nodes

is contained in an edge closest to the top of the list.

4. Remove this node

5. Repeat process on reduced simplicial complex until 5 nodes have been removed.

When these nodes are removed then the resulting simplicial complex is that shown

in Figure 5.5 (b). Note that it has a Betti number of 46 due to the hole which has

opened in the region close to (0.3,0.6). Moreover, the hole at (0.7,0.65) has increased
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(a) (b)

Figure 5.6: The nodes highlighted are the most node subgraph central ones for this
RGSC (a) we can see the effect of removing these nodes from the RGSC(b).

in size further disrupting communication between the nodes in this area.

This process was repeated on 500 different RGSCs with connection radius 0.07 and

n = 750 nodes. The average number of edges of these RGSCs was 4071 with a standard

deviation of 74.4, a minimum of 3856 and a maximum of 4310 which means that roughly

the top 2.5% of edges contribute to the selection of which node to delete. Table 5.1

details the changes to the Betti numbers of these RGSCs throughout this process. After

deletion of just five nodes 80.4% of the RGSCs had seen β1 increase by at least one

which corresponds to finding at least one hole critical node and in 42.8% of cases at

least two hole-critical nodes had been found.

To further demonstrate that this result is not just a normal result of deleting nodes

three further node deletion strategies have been tried. These strategies are deleting

edges according to node closeness centrality, node subgraph centrality and random

deletion. We discuss each strategy in turn.

As previously mentioned, nodes have high subgraph centrality when they have high

degree and they are adjacent to many other nodes which also have this property. There-

fore, on an RGSC we would expect that nodes with high subgraph centrality would be

found in dense clusters. These nodes would be unlikely to be hole-critical because there

are likely to be many other nodes nearby which would also need to be deleted to induce
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Betti Number Change 1 node 2 nodes 3 nodes 4 nodes 5 nodes

1 7 21 28 49 60
2 0 0 0 1 2

Total 7 21 28 50 62
Unchanged 493 479 472 450 438

Table 5.2: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked according to their
subgraph centrality.

a hole in that location which was confirmed by experimentation. The same process was

used as the experiment where nodes were deleted according to edge subgraph centrality

but instead the node with the largest node subgraph centrality was iteratively removed.

Table 5.2 details that deletion of 5 nodes resulted in an increased Betti number in only

12.4% of the RGSCs. We can also see this process play out in Figure 5.6 where the

most node subgraph central nodes are highlighted and then removed from the RGSC

from Figure 5.2. This process has no effect on the number of holes in the RGSC.

On a RGSC the nodes with the highest node closeness centralities are found in the

centre of the space on which the nodes have been uniformly distributed. When the

most central nodes are deleted then we have a situation where one large hole forms in

the centre of the RGSC. Table 5.3 shows that a large number of simplicial complexes

change Betti number (many more than the case of node centrality but less than in the

case of edge subgraph centrality) and a larger portion of the changes in Betti number

are by one even after deletion of multiple nodes. However, there are more decreases

of Betti number with closeness than there are for edge subgraph centrality. These

decreases are due to multiple holes in the middle of the RGSC merging together to

form one large hole. This process plays out in the case of the RGSC from Figure 5.2,

which is depicted in Figure 5.7. The five small holes in the centre of the square join to

form three larger ones after removing the nodes with the largest closeness.

Finally, to provide a control to these experiments a series of five nodes were deleted

randomly from 500 RGSCs and the resulting changes in the Betti Number were tracked.

The results are detailed in 5.4.

We have four different node deletion strategies which have four different effects on
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(a) (b)

Figure 5.7: The nodes highlighted are the most node closeness central ones for this
RGSC (a) we can see the effect of removing these nodes from the RGSC(b).

Betti Number Change 1 node 2 nodes 3 nodes 4 nodes 5 nodes

1 92 118 141 149 160
2 1 13 23 34 47
3 0 1 2 3 5
4 0 0 2 3 3
-1 25 45 61 72 86
-2 8 13 22 28 26
-3 0 0 2 4 11
-4 0 0 0 1 2

Total 126 190 253 294 340
Unchanged 374 310 247 206 160

Table 5.3: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked according to highest
closeness centrality.
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Betti Number Change 1 node 2 nodes 3 nodes 4 nodes 5 nodes

1 34 51 67 87 104
2 1 2 9 16 17
3 0 0 0 1 0
4 0 0 0 0 1
-1 28 53 68 68 74
-2 1 4 7 11 14
-3 0 0 0 1 1

Total 64 110 151 184 211
Unchanged 436 390 349 316 289

Table 5.4: 500 RGSCs were generated with connection radius 0.07 and 750 nodes.
The number of these RGSCs which have changed Betti number by a given value after
deleting a certain number of nodes. Node to be deleted is picked randomly.

the number of holes in the RGSC. We have the random behaviour exhibited by the

random deletion, the behaviour of creating lots of small holes exhibited by the edge

subgraph centrality, the behaviour of creating a large central hole exhibited by the

closeness centrality and the behaviour of having little effect on the Betti number of the

node subgraph centrality. The results of these experiments are summarised in 5.5 for

ease of the reader.

We have demonstrated that the edge subgraph centrality can be used to detect

hole-critical nodes in RGSCs which has implications for the study of WSNs because

it means that when nodes fail in a WSN the implications for which other nodes have

become hole-critical can be calculated quickly to allow movement of resources towards

regions where gaps in coverage are more likely to appear. This algorithm could be

combined with other algorithms in the management of WSNs.
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Betti Number Change 1 node 2 nodes 3 nodes 4 nodes 5 nodes

Edge Sub + 125 248 310 354 400
Edge Sub - 0 0 0 3 2
Node Sub + 7 21 28 50 62
Node Sub - 0 0 0 0 0
Closeness + 93 132 168 189 215
Closeness - 33 58 85 105 125
Random + 35 53 76 104 122
Random - 29 57 75 80 89

Table 5.5: This table summarises the previous experiments. The four methods of
node deletion Edge Sub (Largest number of nodes with high edge subgraph centrality),
Node Sub (Largest Node Subgraph Centrality), Closeness (Largest closeness centrality),
Random are accompanied by a sign + or -. The + indicates a positive change in Betti
Number, the - indicates a negative change. The numbers are the number of RGSCs
which displayed a change of this type after deletion of the given number of nodes.
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Chapter 6

Epidemic Spreading on Random

Rectangular Annular Graphs

6.1 Literature Review

When Gilbert introduced his random planar graphs [63] he also mentioned the spread

of infectious diseases which is only really relevant to certain settings, in plants for

example [7, 47]. In humans or other mobile animals this strategy is less likely to be

appropriate because the points are unlikely to remain stationary long enough for trans-

mission due to their location to become the main cause of transmission. However, when

we consider a system of plants in a field, each plant could pass on a disease to other

plants close to it but cannot pass on the disease to those plants that are further away.

The appropriateness of modelling the spread of plant disease with random geometric

graphs is, of course, dependent on the mode of disease transmission. Many aspects of

disease transmission on random geometric graphs have been studied including the work

on how far a disease can spread when the connection radius of the RGG is varied by

Saha et al. who calculated both the geographical limit of how far the disease could

spread and the expected number of individuals infected under an SIR model [136]. An-

other example is that Panicker and Sasidevan were able to produce the oscillations in

prevalence that characterised the COVID-19 epidemic using evolving random geometric

graphs where the density of nodes in the graph was varied depending on the prevalence
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of disease which mimicked the introduction and relaxation of social distancing measures

during the early stages of the outbreak [117].

In recent years there has also been an explosion of interest in extending the study of

random geometric graphs to consider shapes other than squares, partly due to an appre-

ciation that not all fields are square and the shape of a field may change the properties

under study. One example is the work by Mart́ınez-Mart́ınez et al. who looked at the

random circular graph with the nodes distributed from the centre based on the normal

distribution [101]. They looked at how properties of the graph changed under differ-

ent values for the standard deviation of the normal distribution [101]. Allen-Perkins

studied the average degree, degree distribution and clustering coefficient among other

properties of random geometric graphs on the surface of a sphere [2]. The random

rectangular graph was introduced by Estrada and Sheerin in 2015 [51] while Estrada

et al. studied epidemic spreading over random rectangular graphs [47], Estrada and

Chen looked at Synchronizability [45] and Estrada and Sheerin investigated consensus

dynamics [52]. Later Alonso et al. added a random weighting component to both

the nodes and edges of the random rectangular graph and then studied the spectral

properties of their construction [3] and Arias et al. expanded on epidemic spreading on

random rectangular graphs adding in long range dispersal through Mellin and Laplace

transforms which adds the wind based dispersal of fungal spores to the model to com-

plement the random rectangular graph’s ability to model short range dispersal of these

spores by insects or mammals [7]. Deshpande used random rectangular graphs as part

of his study of range expansion of species noting that range expansion models typically

feature long and narrow areas [35]. These studies point to the fact that the location of

the boundaries of a random rectangular graph affect the dynamics of processes on it

and clearly not all locations which interest researchers are square.

Additionally, not all locations of interest are whole, for example if one was attempt-

ing to model the spread of plant disease across Central Park in Manhatten the most

appropriate shape would be a rectangle with a large hole in the middle to factor in

the presence of the lake on which many plant species would be unable to survive. If

we were modelling the spread of disease through populations of plants in the Scottish
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Highlands, or a similarly rugged terrain, we would wish to understand what effect the

lack of plants on the tops of mountains or in the middle of lochs would have on the

dynamics. Giles et al. considered annuli in 2016 [64] establishing the connectivity of

Random Geometric Graphs over Annuli. Angel and Spinka considered random geomet-

ric graphs on circles in 2021 [6] and Galhotra et al. investigated connectivity of random

geometric graphs on spheres of different dimensions of which the one dimensional case

is an annulus [58]. The previous chapter explored various methods of deleting nodes

from an RGSC and the effect that has on their homology. This chapter investigates

how the homology of the underlying space affects the epidemic spreading on random

geometric graphs scattered on them which is of relevance when analysing the spread

of a plant disease in a wild or domestic setting with large areas where certain plants

would not grow such as mountains, lakes or uncultivated areas surrounding telegraph

poles. Note that large in this instance is relative to the expected maximum distance

between plants which could result in the transmission of a disease.

6.2 Expected Average Degree

Estrada and Sheerin [51, 144] showed that the expected node degree of a node, vi, in

a random rectangular graph is given by E(ki) = (n−1)Ai

ab where a and b are the side

lengths of the rectangular area and Ai is the area both within a radius r of vi and

also inside the rectangle. They averaged over every position in the rectangle to get

E(k) = (n−1) ∫p Ap

(ab)2 where ∫pAp is the summation of Ai for all i i.e. for every possible

point in the rectangle. We now generalise their result to rectangular areas with holes.

Definition 6.1. Let there be a rectangular area with side lengths a, b with another

rectangular area in the middle with side lengths R1,R2. Randomly and uniformly

scatter n nodes in the area inside the larger rectangle but outside the smaller one.

Then as usual connect two nodes if they are within distance r of each other. This

construction is a random rectangular annular graph.

Note that it is not required that the edges of the inner rectangle are parallel to the

edges of the outer rectangle. All theorems in this chapter are accurate regardless of the
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a

b

R1

R2

vi

Figure 6.1: A graphical look at how the area within the inner rectangle but outwith
the outer rectangle can be calculated.

orientation of the inner rectangle.

As in the case of the random rectangular graphs the expected node degree of a node

vi is given by the number of other nodes (n − 1) multiplied by the fraction of the area

within which nodes can be scattered which is within distance r from vi. The difference

this time is that the circular area within which all nodes share an edge with vi may be

interrupted by the internal boundary as well as the external one (see Figure 6.1).

We can let the area on which nodes can be scattered within radius r of a node vi be

denoted by Bi. The total area on which nodes can be scattered is given by (ab−R1R2).

Then we can follow the example of before and say that the expected node degree of a

node vi is given by

E(ki) =
(n − 1)Bi

ab −R1R2
. (6.1)

From Figure 6.1 we can see that the red area, Bi, can also be expressed as the whole

coloured area (which shall be called Ai) with the blue area subtracted. The blue area

is the area within radius r of a node vi which is within the smaller rectangle and will

be denoted Ci. Then we can express Bi as Ai −Ci and therefore have that
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E(ki) =
(n − 1)(Ai −Ci)

ab −R1R2
. (6.2)

We can average over all points in the area on which nodes are spread to get

E (k) =
(n − 1) (∫pAp −Cp)

(ab −R1R2)2
=
(n − 1) (∫pAp − ∫pCp)

(ab −R1R2)2
. (6.3)

Note that ∫pAp and ∫pCp are the sum, across all points in the area of the RRAG,

of the area which is within r of a given point p and also within the outer rectangle

(the coloured area in Figure 6.1) and the sum of the area which is within r of a given

point p and also within the inner rectangle (the blue area in Figure 6.1) respectively.

The summations of these contributions are then averaged across the whole area of the

RRAG by division by (ab −R1R2) which we can see is a squared term in Equation (6.3)

as opposed to the singular instance of it in Equation (6.2).

Theorem 6.2. For a Random Rectangular Annular Graph where we assume that the

inner area is a distance at least r from the edge of the larger area and that R1,R2 > r,

the expectation of the average node degree of the graph is given by:

E (k) =
(n − 1) (πr2 (ab −R1R2) − 4

3 (a + b) r
3 + 1

2r
4 − 4r3 (R1

3 +
R2

3 −
r
8
))

(ab −R1R2)2
. (6.4)

Proof. 1. Overview

We consider quarter circles around each point and multiply the results by 4 at the

end. Note that the theorem is stated such that it is not necessary for the sides

of the inner rectangle to be parallel to the sides of the outer rectangle because

we consider the interaction with the inner rectangle separately from the other

contributions. Therefore we could reorient the RRAG between the calculation of

∫pAp and ∫pCp and retrieve the expected result. Additionally, any point on the

boundary of the inner rectangle being at least r from the boundary of the outer

rectangle means that a quarter circle which interacts with the inner boundary

cannot also overlap with the outer boundary.
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Figure 6.2: The different possible cases in terms of the nodes interacting with the
boundary of either the inner or the outer rectangle.

We can refer to Figure 6.2 which shows us that there are 8 different ways in

which the area within r of a point could interact with either the inner or outer

rectangles. The simplest case is that of p1 which does not interact with the edges

at all. We then have that p2 and p3 interact with precisely one of the boundaries

of the outer rectangle while p4 and p5 interact with two boundaries of the outer

rectangle. We also have that p6, p7 and p8 interact only with the inner boundary.

This proof is divided into parts, of which this overview is the first, to aid read-

ability. The calculation E(k) =
(n−1)(∫p Ap−∫p Cp)
(ab−R1R2)2 has been separated into ∫pCp

which deals with the interaction with the inner boundary and ∫pAp which will

deal with everything else. The second part will deal with the calculation of ∫pAp

for points like p1, p6, p7 and p8 which do not intersect the outer rectangle and so

can be treated identically for this evaluation. The third part will consider the

calculation of ∫pAp for points like p2 and p3 while the fourth will evaluate the

contribution of points like p4 and p5 to ∫pAp. The fifth part will put the results

of parts 2, 3 and 4 together to get a final evaluation for ∫pAp. The sixth part

moves on to calculate the contribution of points similar to p6 to ∫pCp remember-

ing that for point similar to p1, p2, p3, p4 and p5 their contribution to ∫pCp is 0.
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The seventh part gives us a useful shortcut for the calculation of the contribution

of points similar to p8 to ∫pCp while the eighth and ninth parts determine the

contribution of points similar to p7 and p8 to ∫pCp. The final part brings the

contributions of the different kinds of points to ∫pCp together and then delivers

the final formula for E (k). Some of these parts are further divided into sub parts

in order to consider different terms of each integration.

2. Calculation of ∫pAp for points similar to p1, p6, p7 or p8.

The area of the quarter circle at p1, p6, p7 or p8 can be calculated as πr2

4 and any

point which is at least r from both the top and right edges of the outer rectangle

has this form. Therefore we can calculate that the contribution to ∫pAp from

points of the type p1, p6, p7 or p8 is

πr2((a − r)(b − r) −R1R2)
4

. (6.5)

3. Calculation of ∫pAp for points similar to p2 or p3.

We can now turn our attention to points of the form p2 and p3. A close up of these

two situations is displayed in Figure 6.3. To work out the area contained within

the rectangle for p2 we need to subtract the red area above the green dashed line

from the area of the quarter circle, πr2

4 . We can work out the red area as the area

of the coloured circular sector with the area of the blue triangle below the green

dashed line subtracted.

The area of a circular sector is given by r2θ
2 with θ = cos−1 ( cr) and the area of

the blue triangle is given by c
√
r2−c2
2 . We can put all of these formulae together

to get the following formula for the area inside the rectangle for a point like p2

πr2

4
− r2

2
cos−1 ( c

r
) + c

√
r2 − c2
2

. (6.6)

We can use a similar process to define a result for a point similar to p3 as
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rc

(a)

r

h

(b)

Figure 6.3: A node within r of the top of the outer rectangle (a) and a node within r
of the right edge of the outer rectangle (b). In both cases the edge of the rectangle is
depicted by the green dashed line.

πr2

4
− r2

2
cos−1 (h

r
) + h

√
r2 − h2
2

. (6.7)

We can integrate this equation from 0 to r to get the sum of all the points on a

line descending perpendicularly from the top or right hand side of the rectangle

of length r. We can then multiply this result by (a − r) + (b − r) to get the

contribution from points similar to p2 and p3. To calculate

∫
r

0

πr2

4
− r2

2
cos−1 (h

r
) + h

√
r2 − h2
2

dh (6.8)

we work out each term separately and then put them together again.

(a) Integral of ∫ r
0

πr2

4 dh term in Equation (6.8).

We start with

∫
r

0

πr2

4
dh = [πr

2h

4
]
r

0

= πr3

4
. (6.9)

(b) Integral of ∫ r
0

r2

2 cos−1 (hr )dh term in Equation (6.8).

We have
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r

r

1
2

h

c
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(a)

r

r

2

1

h

c

(b)

Figure 6.4: The different regions and the effect of addition and subtraction of each term
in Equation 6.13 (a) and a depiction of how to calculate the dark red area as explained
by Equation 6.15 (b).

∫
r

0

r2

2
cos−1 (h

r
)dh =

⎡⎢⎢⎢⎢⎢⎣

r2h

2
cos−1 (h

r
) − r3

2

¿
ÁÁÀ1 − (h

r
)
2
⎤⎥⎥⎥⎥⎥⎦

r

0

= r3

2
(6.10)

by substitution of g = h
r followed by evaluation of ∫ cos−1(g)dg by integration

by parts.

(c) Integral of ∫ r
0

h
√
r2−h2

2 dh term in Equation (6.8).

For our final term

∫
r

0

h
√
r2 − h2
2

dh =
⎡⎢⎢⎢⎢⎣
−(r

2 − h2) 32
6

⎤⎥⎥⎥⎥⎦

r

0

= r3

6
(6.11)

by substitution of f = r2 − h2.

(d) Result of ∫pAp for points similar to p2 or p3.

We can now put together our results from Equations (6.9), (6.10) and (6.11)

to get the contribution to ∫pAp by points similar to p2 and p3 to be

(a + b − 2r)(πr
3

4
− r3

3
) . (6.12)

4. Calculation of ∫pAp for points similar to p4 or p5
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(a) Description of approach.

We can now move on to consider points which are within r of a corner in

terms of both the x-axis and the y-axis i.e. points which are similar to p4 or

p5. Notice that in the case of p4 we can just add together the contributions

from the parts which are similar to p2 and p3 and integrate over c and h

respectively. We can calculate this area as

πr2

4
− r2

2
cos−1 ( c

r
) + c

√
r2 − c2
2

− r2

2
cos−1 (h

r
) + h

√
r2 − h2
2

. (6.13)

However, this approach gives us a problem when we try to use it to analyse

points similar to p5 i.e. a point which is within a euclidean distance less

than r from the corner. That is for any point where r <
√
c2 + h2.

It is useful to have a graphical understanding of how each separate area is

affected by each term of Equation (6.13) which is provided in Figure 6.4 (a)

where each region has a series of five symbols from {+,−,0}. A + symbol as

the first entry of the series indicates that this region is part of the area that

is added as part of the first term of Equation (6.13) and a − symbol as the

second entry indicates that this region is subtracted as part of the second

term of Equation (6.13) i.e. the − r2

2 cos−1 ( cr) term. The effect of the third,

fourth and fifth entries Equation (6.13) are similarly indicated on Figure 6.4

(a).

We wish to calculate the area of the blue rectangle and so we would like

that any point inside the light blue rectangle has one more addition than

subtraction in Equation (6.13) which is the case. However, we would also like

that any point outside of the blue rectangle has an equal number of additions

and subtractions and this requirement is not met because the region which

is depicted in dark red in Figure 6.4 (b) has been subtracted from Equation

(6.13) twice but only added once.

Our approach is to integrate Equation (6.13) from 0 to r with respect to h

and then integrate the result from 0 to r with respect to c. Then to work
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out a formula for the area of the dark red region from Figure 6.4 (b) for a

given c, h with r <
√
c2 + h2. Integration of this formula from

√
r2 − c2 to r

with respect to h and then integrating the result from 0 to r with respect to

c gives the value which has to be added back to the integration of Equation

(6.13) to compensate for the extra subtraction of the dark red region which

happens for points similar to p5.

(b) Integration of Equation (6.13) in calculation of ∫pAp for points similar to p4

or p5.

We start with the integration of Equation (6.13) from r to 0 with respect

to h and from r to 0 with respect to c. We can use the results of Equations

(6.9), (6.10) and (6.11) to get

∫
r

0
∫

r

0

πr2

4
− r2

2
cos−1 ( c

r
) + c

√
r2 − c2
2

− r2

2
cos−1 (h

r
) + h

√
r2 − h2
2

dcdh

=∫
r

0

πr3

4
− r3

2
+ r3

6
− r3

2
cos−1 (h

r
) + rh

√
r2 − h2
2

dh

=πr
4

4
− r4

2
+ r4

6
− r4

2
+ r4

6

=r4 (π
4
− 4

6
) .

(6.14)

(c) Derivation of formula for the area of the dark red region in Figure 6.4 (b).

In Figure 6.4 (b) the area of the whole coloured area can be calculated as

r2

2 cos−1 ( cr) as before because θ2 = cos−1 ( cr). The red circular sector can be

removed to leave just the blue circular sector. The area of this red sector is

given by r2

2 sin−1 (hr ) as θ1 = sin
−1 (h

r
).

We can then subtract the triangle with the blue outline and the one with

the black outline which have areas h
√
r2−h2

2 and c
√
r2−c2
2 respectively. The

result is that the only area of the blue sector which remains is that which is

coloured dark red. However this subtraction also results in the area that is

within the rectangle being subtracted as well. Once we add this area in we

are left with the following equation for the dark red area
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r2

2
cos−1 ( c

r
) − r2

2
sin−1 (h

r
) − h

√
r2 − h2
2

− c
√
r2 − c2
2

+ ch. (6.15)

(d) Integration of Equation (6.15) in calculation of ∫pAp for points similar to p4

or p5.

The following equation describes the value that must be added back into

Equation (6.14) to account for the subtraction of the dark red region from

Figure 6.4 (b) in that result

∫
r

0
∫
√
r2−c2

0

r2

2
cos−1 ( c

r
) − r2

2
sin−1 (h

r
) − h

√
r2 − h2
2

− c
√
r2 − c2
2

+ ch dcdh.

(6.16)

As with integrals for the other points we will do this calculation term by

term. We begin with the parts which do not depend on h or are linear in

terms of it.

i. Integration of r2

2 cos−1 ( cr)−
c
√
r2−c2
2 + ch term in calculation of Equation

(6.15).

The equation below describes the results of the the first stage of the

integration of the first, fourth and fifth terms of Equation (6.15)

∫
r

0
∫
√
r2−c2

0

r2

2
cos−1 ( c

r
) − c

√
r2 − c2
2

+ ch dhdc

=∫
r

0
[hr

2

2
cos−1 ( c

r
) − hc

√
r2 − c2
2

+ ch2

2
]

√
r2−c2

0

dc

=∫
r

0

r2
√
r2 − c2
2

cos−1 ( c
r
)dc

=r
4

8
(π2 − 1).

(6.17)

The step from the third line to the fourth line is done by using two

substitutions, u = cos−1 ( cr) and v = c
r . We will put this result together

with the results of the other terms later.
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ii. Integration of h
√
r2−h2

2 term in calculation of Equation (6.15).

We can use Equation (6.11) to get

∫
r

0
∫
√
r2−c2

0
−h
√
r2 − h2
2

dhdc

= −∫
r

0

⎡⎢⎢⎢⎢⎣
−(r

2 − h2) 32
6

⎤⎥⎥⎥⎥⎦

√
r2−c2

0

dc

= −∫
r

0

r3

6
− c3

6
= −(r

4

6
− r4

24
) = −r

4

8
.

(6.18)

iii. Integration of sin−1 (hr ) term in calculation of Equation (6.15).

Finally we can analyse the second term from Equation (6.15). We can

evaluate

∫
r

0
∫
√
r2−c2

0
−r

2

2
sin−1 (h

r
)dhdc

= − ∫
r

0

r2
√
r2 − c2
2

sin−1 (
√
r2 − c2
r

) + r2c

2
− r3

2
dc

= − r4

8
(π2 − 1) + r4

4
.

(6.19)

The first step can be completed by substitution of g = h
r followed by

integration by parts using u = sin−1(g) and dv = dg. The final step is a

substitution of f = 1 − g2.

The first term in the second step can be evaluated to be − r4

8 (π
2 − 1)

through the following series of substitutions

u = sin−1 (
√
r2 − c2
r

)

v =
√
r2 − c2
r

s = r2 − c2.

(6.20)
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The second and third terms can be evaluated to be r4

4 .

iv. Final evaluation of Equation (6.15).

We are now in a position to simplify the expression in Equation (6.15) by

combining the results from Equations (6.17), (6.18) and (6.19) together

to get

∫
r

0
∫
√
r2−c2

0

r2

2
cos−1 ( c

r
) − r2

2
sin−1 (h

r
)+

∫
r

0
∫
√
r2−c2

0
−h
√
r2 − h2
2

− c
√
r2 − c2
2

+ ch dhdc

=r
4

8
(π2 − 1) − r4

8
− r4

8
(π2 − 1) + r4

4
= r4

8
.

(6.21)

(e) Final Result of ∫pAp for points similar to p4 or p5.

Recall that we had calculated the contribution to ∫ Ap by points similar to

p4 or p5 in Equation (6.14) but that for points similar to p5 this calculation

required the dark red region from Figure 6.4 (b) to be added back in. The

value of this region for all points such that r <
√
c2 + h2 was calculated in

Equation (6.21) which means we can now deduce the contribution to ∫ Ap

by points that are similar to p4 or p5. This equation gives the value

r4 (π
4
− 4

6
) + r4

8
= r4 (π

4
− 13

24
) . (6.22)

5. Final Result of ∫ Ap.

We can now work out ∫ Ap by combining the results from Equation (6.5), which

calculated the contribution from points similar to p1, p6, p7 and p8, Equation

(6.12), which calculated the contribution from points similar to p2 and p3, and

Equation (6.22), which calculated the contribution from points similar to p4 and

p5. We can then multiply by 4 to get the final value for ∫ Ap,
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∫ Ap

=πr2((a − r)(b − r) −R1R2) + 4(a + b − 2r)r3 (
π

4
− 1

3
) + 4r4 (π

4
− 13

24
)

=πr2(ab −R1R2) − (a + b)πr3 + πr4 + (a + b)πr3 −
4

3
(a + b)r3 − 2πr4

+ 8

3
r4 + πr4 − 52

24
r4

=πr2(ab −R1R2) −
4

3
(a + b)r3 + 1

2
r4.

(6.23)

Note that if we set R1,R2 = 0 we would recover the formula discovered by

Estrada and Sheerin [51, 144] for the case that r ≤ b. The restriction that

R1,R2 > r means that we are never in any of the other regions defined by them,

(b ≤ r ≤ a, a ≤ r ≤
√
a2 + b2).

Now that we have established the result for ∫ Ap we can start to establish

the result for ∫ Cp. Given what we have so far we need to show that ∫ Cp =

4r3 (R1

3 +
R2

3 −
r
8
). Note that we only have the cases of p6, p7 and p8 to consider

because the connection radius of the other cases does not intersect with the inner

rectangle.

6. Calculation of ∫pCp for points similar to p6.

We can start by investigating points similar to p6. These points are such that

the quarter circle crosses into the inner rectangle at a corner. To calculate this

area we can follow the same procedure we used for calculating the red area from

Figure 6.4 (b). Furthermore, if we let c denote the vertical distance a point is

below the corner and h denote the horizontal distance it is to the left then this

situation only occurs when r <
√
c2 + h2, which is the exact same situation as for

the summation of these areas for p5. So we know that the contribution to ∫ Cp

from the corner segment is given by

r4

8
(6.24)

from Equation (6.21).
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Figure 6.5: A depiction of the case for p8 which can be worked out as the area for p7
minus the red area which is back outside the inner rectangle.

7. Justification for treatment of points similar to p8 in the same way as p7.

To assess the contribution to ∫pCp for points similar to p7 we can consult Figure

6.3 (a) again. However, this time we are looking to assess the red area rather than

the whole coloured area. The difference between a point similar to p7 and a point

similar to p8 can be seen by looking at Figure 6.5. Essentially a point similar

to p8 can be calculated in the same way as a point similar to p7 except that the

dark red region in Figure 6.5 needs to be subtracted from the result. If we let

c denote the vertical distance of a point from the bottom of the inner rectangle

and h denote the horizontal distance it is to the left of its rightmost edge then

points are similar to p8 when r <
√
c2 + h2. This situation is once again the same

as the one for the summation of the dark red region that we looked at when we

considered the contribution to ∫pAp for points similar to p5. That means that we

already have the summation of such areas for all points similar to p8 which was

calculated in Equation (6.21) to be

r4

8
. (6.25)
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As a result we can treat points similar to p8 the same as points similar to p7 and

work out the contribution across all such points and then subtract the result of

Equation (6.25) at the end.

8. Calculation of ∫pCp for points similar to p7 and p8 which are below the inner

rectangle.

To work out the contribution to ∫pCp for points similar to p7 we need to calculate

the area of the red region in Figure 6.3 (a). We then integrate this result from 0

to r to get the sum of these results along a vertical line below the inner rectangle.

Multiplying this result by R1 will give the contribution for all points similar to p7

and p8 which are below the inner rectangle. The area of the red region in Figure

6.3 (a) is the area of the coloured segment with the area of the blue triangle

subtracted which can be calculated by

r2

2
cos−1 ( c

r
) − c

√
r2 − c2
2

. (6.26)

We can integrate this area along the vertical line of length r perpendicular to the

bottom of the rectangle using Equations (6.10) and (6.11)

∫
r

0

r2

2
cos−1 ( c

r
) − c

√
r2 − c2
2

dc

= r3

2
− r3

6
= r3

3
.

(6.27)

Multiplying this result by R1 and subtracting the extra contribution for points

similar to p8 that we calculated in Equation (6.25) gives

R1r
3

3
− r4

8
. (6.28)

9. Calculation of ∫pCp for points similar to p7 and p8 which are to the left of the

inner rectangle.

Note that there are also some points which are to the left of the inner rectangle
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and within r of it. We can work out the contribution of these points to ∫pCp

analogously to the way we worked it out for the points below the inner rectangle.

The only difference would be that we need to multiply the p7 type points result

by R2 rather than R1 which gives a contribution of such points as

R2r
3

3
− r4

8
. (6.29)

10. Final result of ∫pCp.

We can now calculate ∫ Cp by combining Equations (6.24), (6.28) and (6.29) and

multiplying the result by 4

∫ Cp = 4(
R1r

3

3
− r4

8
+ R2r

3

3
− r4

8
+ r4

8
)

= 4r3 (R1

3
+ R2

3
− r

8
) .

(6.30)

We are now in a position to put everything together and calculate

E(k) =
(n − 1)(πr2(ab −R1R2) − 4

3(a + b)r
3 + 1

2r
4 − 4r3 (R1

3 +
R2

3 −
r
8
)

(ab −R1R2)2
. (6.31)

6.3 Effects of Number and Shape of Holes

We can generalise this situation to multiple holes provided that the holes are all at

least the connection radius away from each other

Theorem 6.3. Let there be a random rectangular annular graph with m holes all sep-

arated by a distance at least r and with R1,j ,R2,j > r for 1 ≤ j ≤ m, where r is the

connection radius. Then the expected average node degree of the graph is given by
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E (k) =
(n − 1) (πr2 (ab −Σm

j=1 (R1,jR2,j)) − 4
3 (a + b) r

3 + 1
2r

4)

(ab −Σm
j=1 (R1,jR2,j))

2

−
(n − 1) (4r3 (Σm

j=1 (
R1,j

3 +
R2,j

3 ) −
mr
8 ))

(ab −Σm
j=1 (R1,jR2,j))

2
.

(6.32)

Proof. Given that the boundary of each hole is at least r from the boundary of any

other hole then each extra hole does not alter the boundary effects of any hole which

was already present and we can safely sum the boundary effects of each individual hole

to derive the total effect.

We are now in a position where we can prove some results regarding the expected

average node degree and the number size and shape of areas in which nodes cannot be

scattered on random rectangular annular graphs.

Theorem 6.4. Let a, b be fixed side lengths of the outer boundary of a random rect-

angular annular graph, Gc, with one annular area with side lengths R1 = Rc,R2 = R
c

where c > 1. Then if d > c then E(k)Gc > E(k)Gd
.

Proof. We can deduce that E(k)Gc > E(k)Gd
if and only if d − c > (d−c)cd using the

following series of equivalences

E(k)Gc > E(k)Gd

⇐⇒
(πr2(ab − RcR

c ) − 4r
3 (Rc

3 +
R
3c −

r
8
))

(ab − RcR
c
)2

>
(πr2(ab − RdR

d ) − 4r
3 (Rd

3 +
R
3d −

r
8
))

(ab − RdR
d
)2

⇐⇒ −4r3 (Rc

3
+ R

3c
− r

8
) > −4r3 (Rd

3
+ R

3d
− r

8
)

⇐⇒ Rd

3
+ R

3d
> Rc

3
+ R

3c

⇐⇒ d + 1

d
> c + 1

c

⇐⇒ d − c > (d − c)
cd

.

(6.33)

By definition c, d > 1 and the inequality holds.
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It makes sense that a more elongated zone would cause a greater decrease in the

expected average node centrality than one which had a shape closer to a square. A

more elongated shape requires a larger perimeter to cover the same area and the larger

the perimeter of the zone in which nodes cannot be spread the larger the area within

the connection radius r of said zone. So more nodes would be expected to fall into an

area where the circle with radius r centred at their location would intersect with the

zone where nodes cannot be spread and such nodes are expected to have lower node

degrees.

The same is true if we were to split an area into two pieces.

Theorem 6.5. Let G1 be a random rectangular annular graph with a hole with side

lengths R1,R2. Let G2 be a second Random Rectangular Annular Graph with two holes

which have side lengths cR1,R2 and dR1,R2 respectively where c+d = 1. Let a, b be the

side lengths of the outer boundary for both G1 and G2. Then E(k)G1 > E(k)G2.

Proof. We need to show that E(k)G1 > E(k)G2 . We start by noting that

R1R2 = (c + d)R1R2 = cR1R2 + dR1R2. (6.34)

We can demonstrate that the theorem is true if and only if r
8 <

R2

3 using the following

series of inequalities.

E(k)G1 > E(k)G2

⇐⇒ −4r3 (R1

3
+ R2

3
− r

8
) > −4r3 (cR1

3
+ R2

3
+ dR1

3
+ R2

3
− 2r

8
)

⇐⇒ −4r3 (R1

3
+ R2

3
− r

8
) > −4r3 (R1

3
+ 2R2

3
− 2r

8
)

⇐⇒ R1

3
+ R2

3
− r

8
< R1

3
+ 2R2

3
− 2r

8

⇐⇒ r

8
< R2

3

(6.35)

We have that R2 > r by definition and the inequality holds.

Again this theorem makes sense because of the greater perimeter of the annular

zones of G2 than G1, there being four sides of length R2 compared to two. Therefore,

a larger portion of nodes are expected to be within r of an annular zone.
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For the same reason, it is also true that two smaller rectangular annular zones cause

a greater decrease in E(k) than one large one covering the same total area, provided

that the proportions of the sides are the same for all three rectangles.

Theorem 6.6. Let G1 be a random rectangular annular graph with a hole with side

lengths R1,R2. Let G2 be a second Random Rectangular Annular Graph with two holes

which have side lengths cR1, cR2 and dR1, dR2 respectively where c2+d2 = 1. Let a, b be

the side lengths of the outer boundary for G1 and G2. Then we have E(k)G1 ≥ E(k)G2.

Proof. Without loss of generality we can set c ≥ d and R1 ≥ R2. It should also be noted

that by the definition of a random rectangular annular graph r < R2d. We note that

(c2R1R2 + d2R1R2) = (c2 + d2)R1R2 = R1R2. (6.36)

We show that if d (416 − 425d) ≥ 0 then E(k)G1 ≥ E(k)G2 . It is the case that

d(416 − 425d) ≥ 0 because d ≤ c which means that d ≤ 1√
2
hence d ≤ 416

425 and clearly

d ≥ 0. We start by deriving a reduced inequality for E(k)G1 ≥ E(k)G2 .

E(k)G1 ≥ E(k)G2

⇐⇒ −4r3 (R1

3
+ R2

3
− r

8
) ≥ −4r3 (cR1

3
+ cR2

3
+ dR1

3
+ dR2

3
− 2r

8
)

⇐⇒ (c + d)R1

3
+ (c + d)R2

3
− r

8
≥ R1

3
+ R2

3

⇐⇒ (c + d − 1)R1

3
+ (c + d − 1)R2

3
≥ r

8

(6.37)

We have from Equation (6.37) that E(k)G1 ≥ E(k)G2 if and only if
(c+d−1)R1

3 +
(c+d−1)R2

3 ≥ r
8 . We also have that R1 ≥ R2 and r ≤ R2d which means that if

2(c+d−1)R2

3 ≥
R2d
8 then

(c+d−1)R1

3 + (c+d−1)R2

3 ≥ r
8 . We show that

2(c+d−1)R2

3 ≥ R2d
8 if and only if

d(416 − 425d) ≥ 0.
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2(c + d − 1)R2

3
≥ R2d

8

⇐⇒ 16(
√
1 − d2 + d − 1)R2 ≥ 3R2d

⇐⇒ R2(16
√
1 − d2 + 13d − 16) ≥ 0

⇐⇒ 16
√
1 − d2 ≥ 16 − 13d

⇐⇒ 256(1 − d2) ≥ 256 − 416d + 169d2

⇐⇒ 416d − 425d2 ≥ 0

⇐⇒ d(416 − 425d) ≥ 0

(6.38)

It should be noted that it is not always the case that two holes will cause a greater

decrease in the expected average degree centrality of a random rectangular annular

graph than one hole. For instance a single zone covering an area of 1 by 8 will cause a

decrease of 4r3 (13 +
8
3 −

r
3
) which is larger than the decrease caused by two square zones

of side length 2, 4r3 (23 +
2
3 +

2
3 +

2
3 −

2r
3
). Again we can see the length of the perimeter

coming into effect here. The total length of the perimeter of the 8 by 1 area is 18

whereas the combined perimeter of the two side length 2 squares is 16.

However, the general pattern is clear. Multiple small areas, on which nodes cannot

be spread, within the rectangle will tend to cause a larger decrease in the expected

average degree centrality of the resulting network than a few larger areas where the

total area covered in the two cases is the same. Where the proportions of the side

lengths of these areas is fixed or the larger areas could be formed by amalgamating

smaller ones then we have shown that this difference occurs.

6.4 SIS/SIR Models on RRAGs

In Section 2.4 we discussed models of disease spread on networks. These models could

be used to model the systems of plant disease which we discussed earlier in this chapter

and which has already been done by Estrada et al. [47] and Arias et al. [7]. In Section

2.4 we also presented an approximate proof of Theorem 2.24 which was proved without

the assumptions used here by Van Miegham et al. [166]. This theorem connected
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the epidemic threshold of a network to its spectral radius through the relationship

τ = β
γ =

1
λ1
. We also have from Theorem 2.14 that λ1 ≥ k which means that we have a

bound on the epidemic threshold of a network

1

λ1
≤ 1

k
. (6.39)

In the previous section we demonstrated that increasing the number of holes resulted

in a decrease in the expected average degree, E(k), in a random rectangular annular

graph, provided that the same area is covered and that the holes are of the same shape.

Then it is not unreasonable to suspect that, subject to the same constraints, increasing

the number of holes will also result in an increase in the epidemic threshold on a random

rectangular annular graph.

6.5 Simulations

To investigate the effect of the number of holes on random rectangular annular graphs

we have focused on 6 cases and also included a control on a regular RGG. In all 6

cases the simulations were done on RRAGs which had 1000 nodes, and a connection

radius of r = 0.07. The outer square has side length 1 in all cases and the total area

on which nodes cannot be scattered is 0.25, representing 1
4 of the total area. The 7th

case is a control which does not have a hole. It has the same connection radius as the

6 cases under study but has 1333 nodes to maintain the same node density as them.

All simulations are based on 20 realisations with the largest eigenvalue and the mean

degree calculated for each case.

In the first four cases, which are shown in Figure 6.6, we look into RRAGs with

different numbers and sizes of holes. The cases chosen are a single central square hole

of side length 1
2 , 4 square holes of side length 1

4 , 9 square holes of side length 1
6 and 16

holes of side length 1
8 . These choices will allow us to determine the effect that having

a single large hole may have on the epidemic threshold versus many small holes. We

would expect from the calculations of the expected average degree that many small

holes would cause an increase to the epidemic threshold.
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(a) (b)

(c) (d)

Figure 6.6: Example of an RGG with a single central square hole of side length 1
2 (a), 4

square holes of side length 1
4 (b), 9 square holes of side length 1

6 (c) and 16 square holes
of side length 1

8 (d). In each case the centre points of the holes are equidistant from
each other and from the boundary of the outer square. All RGGs were done using 1000
nodes, with a connection radius of r = 0.07 with the outer square having side length 1
and a total missing area of 0.25.
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Figure 6.7: The results for the individual simulations with the reciprocal of the mean
degree on the x-axis and the epidemic threshold on the y-axis. The identity line is also
shown to demonstrate the relationship between change in the epidemic threshold and
the change in the reciprocal of the mean degree.

The 5th and 6th cases investigate whether moving the location of the hole within

the RRAG affects the dynamics. In the 5th case the large central hole of the RRAG

in Figure 6.6 (a) is moved to (0.32,0.5) so that its centre point is closer to the edge of

the zone and in the 6th scenario it is as close as possible to the corner (0.32,0.32). A

comparison between these cases will allow us to assess whether the location of the hole

has an effect on the epidemic threshold. We expect that there would not be a difference

between the two cases given that the expected mean degree was not dependent on the

location of the hole.

The results of these simulations are shown in Figure 6.7 with mean results across

the 20 cases displayed in Table 6.1.

From Table 6.1 and Figure 6.7 we can see that there does seem to be an effect in

terms of an increased epidemic threshold when the obstacles which are in the way of

transmission are many and small as opposed to single large obstacles. To assess the

statistical significance of this trend we applied the Mann-Whitney U test, which we

introduced in Section 2.7.3, to each pairing of cases to detect whether the difference

between the distribution of the epidemic thresholds in each pair is significant at the 5%

140



Chapter 6. Epidemic Spreading on Random Rectangular Annular Graphs

Case Median(τ) τ (k) E(k) ( 1k)
Central Hole 0.0404 0.0400 18.1053 18.1105 0.0552

4 holes 0.0420 0.0421 17.2216 17.3623 0.0581
9 holes 0.0443 0.0439 16.5583 16.6566 0.0604
16 holes 0.0447 0.0447 15.9401 15.9937 0.0628
Side Hole 0.0401 0.0398 18.1837 18.1105 0.0550

Corner Hole 0.0416 0.0408 17.9924 18.1105 0.0556
Control 0.0391 0.0390 19.3284 19.3022 0.0517

Table 6.1: This table details the mean epidemic threshold and the mean of the mean
degree across the 20 runs of each case. The expected mean degree of each case is also
displayed to verify the validity of the formula derived in Section 6.2.

Case 4 holes 9 holes 16 holes Edge Corner Control

Central Hole 0.0004 <0.0001 <0.0001 0.7533 0.1732 0.0642
4 holes 0.0052 <0.0001 <0.0001 0.0694 <0.0001
9 holes 0.4423 <0.0001 0.0003 <0.0001
16 holes <0.0001 <0.0001 <0.0001
Side Hole 0.1522 0.0361

Corner Hole 0.0080

Table 6.2: This table displays the p-value resulting from a Mann-Whitney U test
between the distributions of the 20 epidemic thresholds for each pair of cases tested.

level. Given that there are 21 pairings there is an increased chance that at least one of

the conclusions drawn is erroneous compared to if we were only doing one comparison.

The p-value generated by each pairing is displayed in Table 6.2.

The Mann-Whitney U test results largely also support the conclusions that we have

drawn regarding there being evidence of a change in the epidemic threshold when there

are several small holes in comparison to one large one. The general trend is also that

there is no evidence to suggest that hole positioning influences the epidemic threshold.

There are, however, exceptions. The lack of evidence of a difference between the 9 hole

case and the 16 hole case suggests that there is perhaps a law of diminishing returns in

terms of splitting the area into more small areas. The other two results which disagree

with what we had put forward are the lack of evidence of a difference between the

control and the RRAG with one large hole in the middle and similarly between the 4

holes case and the 1 hole in the corner case despite the evidence of a difference between

the 4 holes case and the other two 1 hole cases.
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Conclusion

7.1 Results

We have generalised several concepts from network theory into the realm of simplicial

complexes, principally concepts of degree distribution and centrality measures. We have

then applied these concepts to protein–protein interaction networks to demonstrate

that, at least for the interactomes studied, the degree distributions at the level of

the 1 and 2-simplices feature many simplices of medium degree which differs from the

situation for nodes where there are a lot of nodes of low degree and only a small

number of medium and high degree ones. The other key application in terms of the

PPI networks was the use of simplicial centrality measures to increase the number of

essential proteins it was possible to find in the yeast cell compared to their node-based

equivalents.

We also discussed another use case for the simplicial centralities in terms of wireless

sensor networks where we demonstrated that the edge centralities for simplicial com-

plexes were likely to identify edges and nodes which were relatively isolated but close

to dense areas. This finding means that it is possible to open up gaps in coverage near

quite well covered areas by selecting just a few key nodes to remove which is useful

to both those actors who would like to disrupt communication in systems which can

be modelled by random geometric graphs and those actors who wish to identify areas

which are vulnerable to such attacks or random failures and make their systems more
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robust.

The main takeaway from both of these sets of results should be that the use of

simplicial complexes opens up information which would not be available if our analyses

were restricted to only the previously available network-theoretic measures. It is likely

that there are many other areas of investigation which would benefit from being looked

at under a simplicial complexes framework. Although care should clearly be taken to

ensure that any such application is justified from a physical or sociological perspective

before it is undertaken.

The final key takeaway from this work is the derivation of an equation for the

expected mean degree of a random rectangular annular graph where there are obstacles

on which it is not possible to distribute nodes. We demonstrated several cases by which

it was possible to decrease this average degree including elongation of these areas,

splitting these areas up and constructing many smaller such areas of the same shape.

We then connected this result to the phenomenon of epidemic spreading and produced

evidence that the epidemic threshold is expected to increase more in the presence of

many small holes rather than a few larger ones. We also showed that neither the mean

degree or the epidemic threshold were affected by the positioning of these holes.

7.2 Suggestions for Future Work

One key improvement of the work undertaken here would be to use more reliable

protein–protein interaction data to fully leverage the power of simplicial complexes

in detecting essential proteins if it becomes possible to separate the case of multiple

pairwise interactions from that of one interaction with multiple actors.

Another interesting concept which the author did not get to would be to study

consensus dynamics on networks with holes. This problem is difficult because hole

positioning matters when it comes to the consensus dynamics which makes investigating

the effects of multiple holes a lot more difficult that it was for the epidemic spreading

case. However, it should be interesting nonetheless.

We also think it would be interesting to see how theoretical and simulated results of

epidemic spreading on random geometric graphs compare to a real situation. The case
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of the spread of invasive plants comes to mind as a potential application. Rhododendron

ponticum propagates itself using the wind which can carry it for up to 100m. It also

needs particular conditions in which to grow. It is particularly invasive on the west

coast of Scotland, a region marked by mountainous areas and lochs which would be

barriers to its spread.

The final suggestion does not relate directly to the work undertaken in this thesis.

There is work being done on the flapper skate populations off Scotland’s west coast

which is attempting to identify individual fish to get a better estimate of the popula-

tion. These fish have spot patterns on their backs. It may be possible to leverage the

multiplicative persistence of holes introduced by Bobrowski et al. [20] to compare these

spot patterns as each individual fish grows and create a unique and scalable barcode for

each fish. Variations of this multiplicative persistence would also need to be introduced

in order to handle photographs being taken from different angles. Access to these tools

would allow researchers to semi-automate the identification of individual fish which is

currently done by judging photographs by eye. The use of spot pattern analysis to

identify individuals within a species is a common technique [103, 115] which has been

the subject of automation [28] and if the technique outlined above proves effective it

could be generalised to other species.
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List of Symbols

λ1 Largest eigenvalue of a matrix

BT Transpose of a matrix B

B−1 Inverse of a matrix B

In Identity matrix of size n

δij Kronecker delta

δk degree of a k-simplex

l(m,c) The line with gradient m and intercept c

Rotθ(v) Rotation of vector v by θ with respect to the origin

Ta,b(v) Translation of a vector v by a in the x-coordinate and b in the y-coordinate

Refy(v) Reflection of a vector v through the y-axis

kp Degree of a node p in a network

k Average degree across a network

τ = 1
λ The epidemic threshold of a network

Lk Hodge Laplacian for the k-simplices

Ak Simplex Adjacency Matrix for the k-simplices

∂k Boundary operator on the k-chains

k- Signifies a network-theoretic concept on the k-simplices

Ck The group of k-chains

Zk The kernel of ∂k

Bk The image of ∂k+1

Hk The kth Homology group of a simplicial complex

βk The kth Betti number of a simplicial complex
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rp The Pearson Correlation coefficient

rs The Spearman Correlation coefficient

lk The average k-simplicial shortest path distance for the k-simplices

CCk Closeness centrality on the k-simplices

HCk Harmonic Closeness centrality on the k-simplices

SCk Subgraph centrality on the k-simplices

dk Shortest-path distance on the k-simplices

r Connection radius
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[3] L. Alonso, J. A. Méndez-Bermúdez, A. Gonzalez-Melendrez, and Y. Moreno.

Weighted Random-Geometric and Random-Rectangular Graphs: Spectral and

Eigenfunction Properties of the Adjacency Matrix. Journal of Complex Networks,

6(5):753–766, 2018.

[4] D. V. Anand and M. K. Chung. Hodge Laplacian of Brain Networks. IEEE

Transactions on Medical Imaging, 42(5):1563–1573, 2023.

[5] R. M. Anderson and R. M. May. Infectious Diseases of Humans: Dynamics and

Control. Oxford University Press, 1992.

[6] O. Angel and Y. Spinka. Geometric Random Graphs on Circles. In Advances in

Probability and Mathematical Statistics: CLAPEM 2019, Mérida, Mexico, pages

23–41. Springer, 2021.
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