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Abstract

This thesis presents novel Artificial Neural Network (ANN) based architectures and 
algorithms for solving two important signal processing applications.

Firstly, in the context of non-linear dynamical system modeling applications, a new 
two-layer linear-in-the-parameters, feedforward ANN structure is developed, which is 
termed the Feedforward Functionally Expanded Neural Network (FFENN), in order 
to efficiently model chaotic and equation-error type non-linear dynamical processes. A 
general design strategy is presented for specifying the type and number of non-linear 
basis functions within the FFENN’s single hidden layer, for an arbitrary number of 
network inputs. The FFENN structure employing the proposed basis functions in 
its hidden layer is essentially a hybrid neural network incorporating to a variable ex­
tent, the combined modeling capabilities of the conventional Multi-Layered Perceptron 
(MLP), Radial Basis Function (RBF) and Volterra Neural Networks (VNN). Its output 
mean squared error surface is shown to be uni-modal allowing high speed single-run 
least squares based learning. A new pruning strategy based on an iterative pruning- 
retraining scheme coupled with statistical model validation tests, is also devised in order 
to optimise the size of FFENN structures for non-linear dynamical system modeling 
applications. Numerous case studies are performed using simulated chaotic, equation­
error and a variety of real-world noisy, non-stationary time series processes which show 
that the new FFENN based predictor models consistently outperform other recently 
reported, feedforward and recurrent ANN structures, both in terms of non-linear pre­
diction ability and relative computational complexity requirements. To enable efficient 
modeling of a more general class of non-linear dynamical systems, a new computation­
ally efficient Recurrent Neural Network (RNN) structure is also developed, which is 
termed the Recurrent Functionally Expanded Neural Network (RFENN). Its learning 
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algorithm is derived and a pruning strategy proposed. The development of the RFENN 
is shown to result in a new class of computationally efficient RNNs incorporating all 
linear-in-the-parameters feedforward ANNs (such as the RBF and VNN) adapted to 
employ local output feedback. Various case studies are performed using simulated 
chaotic, output-error and real-world noisy times series processes, which show that the 
RFENN based predictor models can significantly outperform the corresponding feed­
forward FENN and other ANN predictors in the modeling of certain types of non-linear 
dynamical processes. The FFENN and RFENN are also successfully applied to the task 
of real-time adaptive non-linear prediction of real non-station ary signals. A new hybrid 
RFENN-FIR adaptive structure comprising the non-linear RFENN subsection feeding 
into a linear Finite Impulse Response (FIR) subsection is also developed and shown to 
outperform the stand-alone FFENN and RFENN based adaptive predictors.

Secondly, in the context of digital communications applications, two new adap­
tive non-linear Decision Feedback Equalizer (DFE) structures are developed, which are 
termed: the Decision Feedback Functional-Link Equalizer (DFFLE) with Expanded 
Feedback Terms (DFFLE-EFT); and the DFFLE with Unexpanded Feedback Terms 
(DFFLE-UFT). The DFFLE-UFT employs the recently reported non-linear-in-the- 
parameters Feedforward Functional-Link Equalizer (FFLE) as its feedforward filter 
and a linear feedback filter. In contrast, the novel DFFLE-EFT structure non-linearly 
combines both the equalizer input and decision feedback samples. Learning algorithms 
and general design strategies are presented for both the structures. Pruning techniques 
for optimizing the sizes of the FFLE and DFFLE structures are also proposed. In the 
first digital communications application considered in the thesis, the new structures are 
employed for the equalization of linear and non-linear communication channels in the 
presence of ISI and additive (uncorrelated and correlated) noise. In the second digital 
communications application considered in the thesis, the FFLE and DFFLE structures 
are proposed as a novel solution to the problem of overcoming co-channel interference 
in digital communications systems. Various simulation case studies are performed for 
both applications, which show that the new DFFLE-EFT is a viable alternative to 
the optimal symbol Bayesian Transversal Equalizer (TE) and all other ANN based TE 
structures (which have been reported to date for approximating the Bayesian TE).
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Chapter 1

Introduction

1.1 Introduction

In the past decade and a half, there has been a strong resurgence in the field 

of Artificial Neural Networks (ANNs) involving researchers from many diverse 

disciplines. This renewed interest is primarily because of new network topologies, 
improved learning algorithms, improved theoretical foundations, greatly enhanced 

computer systems for simulation, and emerging analogue VLSI implementation 

techniques [1] [19] [30] [24] [45] [56, 57]. ANNs are useful in that they learn 
knowledge without the need of a priori specification of a representation scheme. 
This is most useful for problems in which either the objective cannot be expressed 

precisely in terms of measurable parameters, or the set of parameters is poorly 

defined.

ANNs have been found to be useful in many applications ranging from non­

linear controllers, CAM, optimization, constraint satisfaction, speech processing, 

robotics, automatic-target recognition, linear and non-linear adaptive filtering, 

character recognition, dimensionality reductions and pattern classification [56]. 
However, many outstanding problems need to be solved before the ANNs can be 

applied widely in practice. Primarily, the general use of ANNs is hampered by 

1
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their inabilities to generalise to new problems and to scale to larger problems; 
and in particular, their high learning computational requirements [28]. Hence, the 
need for development of new computationally efficient neural network structures 
that can be used for solving complex real world applications. In this thesis, we 
develop new ANN based architectures and algorithms for solving two important 

signal processing applications:

• Identification of non-linear dynamical systems: Modeling of both simulated 
and real world non-linear dynamical processes has been investigated using 
the new ANN models.

• Equalization of digital communications systems: The use of new ANN based 

structures in equalization of linear and non-linear dispersive channels in the 

presence of noise and co-channel interference is investigated.

1.2 Motivation of the Thesis

The motivation for investigating Artificial Neural Network Architectures 

and Algorithms for Non-linear Dynamical System Modeling and Digi­

tal Communications Applications is two-fold:

The first is to develop new Feedforward and Recurrent Artificial Neural Net­
work structures which can provide a viable alternative to the conventional com­

putationally expensive, multi-layered neural networks that have been employed to 
date for the modeling of non-linear dynamical systems. The conventional ANNs 

employed for non-linear dynamical system modeling applications are generally 
highly non-linear in the parameters, complex models that require computationally 
expensive, non-linear learning algorithms in order to approximate the dynamic 
system’s input-output behaviour [34] [181] [182] [191] [36]. Hence, development of 
new parsimonious, computationally efficient ANN based models that could addi­

tionally, also reveal useful insights into the physical mechanism of the non-linear 



Introduction 3

system, would be highly desirable.

Secondly, to exploit the use of new ANN structures as non-linear adaptive fil­

ters in the telecommunications industry. With the present great demand for data 

communication services, bit rates and symbol rates are being pushed towards 
their theoretical limits. Consequently, communication channel impairments that 
previously went unnoticed can now be particularly problematic [165]. For exam­
ple, when transmitting data over the PSTN (Public Switched Telephone Network) 
at moderate bit rates, the channel can be considered to be linear; however, at 

high bit rates, the non-linearities introduced by the network elements such as 
the coupling transformers, codecs and amplifiers cannot be ignored, and must be 

compensated for by the use of appropriate non-linear signal processing techniques 

[184] [165]. Conventional neural network based adaptive non-linear equalizers 
have excessive computational requirements and require relatively large training 
periods in order to realise the optimal equalization performance [172] [183] [184] 

[166]. Hence, new faster and computationally efficient neural network equalizers 
need to be developed which can better compensate for not only the linear and 
non-linear communication channel distortion, but additionally also be able to 
suppress other significant interference factors such as co-channel interference ef­

fects, encountered in many digital communications systems (for example, digital 

cellular radio) [190].

1.3 Contribution of Thesis

The five main contributions of this thesis are now identified:

1. A new linear in the parameters, two-layer feedforward ANN architecture 

has been developed which is termed the Feedforward Functionally Ex­
panded Neural Network (FFENN), for efficient modeling of chaotic and 
equation-error type non-linear dynamical systems [175]. The new structure 

alleviates the non-linear learning difficulties associated with conventional 
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multi-layered ANNs by employing least squares based learning algorithms 

in its output layer. New non-linear basis functions are proposed for the 
single hidden-layer of the FFENN that emulate other universal approxima­
tors namely, the squashing type sigmoidal activation functions employed by 
the conventional feedforward Multi-Layered Perceptron (MLP), the Gaus­
sian and multi-quadratic type activation functions employed by the conven­
tional feedforward RBF networks, and polynomial-subset activation func­

tions employed by the conventional Volterra Neural Network (VNN). The 

new FFENN structure employing the proposed basis functions in its hid­

den layer is essentially a hybrid neural network incorporating to a variable 

extent, the rich modeling capabilities of the conventional MLP, RBF and 

VNN structures.

A general design strategy for specifying the type and number of basis func­
tions within the FFENN’s hidden layer for an arbitrary number of network 
inputs is also presented. A new pruning strategy based on an iterative 
pruning-retraining scheme coupled with correlation and chi-squared statis­

tic based model validity tests [109] is also devised in order to optimise the 
size of FFENN structures for non-linear dynamical system modeling ap­

plications. Numerous case studies are carried out using simulated chaotic, 
equation-error type and a variety of real-world noisy, non-linear time se­
ries processes to compare the modeling and prediction performance of the 
FFENN with various other recently reported feedforward and recurrent neu­
ral network based predictor models. The new FFENN based predictor mod­

els are shown to consistently outperform the other techniques both in terms 

of non-linear prediction ability and relative computational complexity re­

quirements. The respective contributions of the various proposed non-linear 

basis functions responsible for the superior FFENN performance are also 

illustrated in the various case studies.
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2. A new Recurrent ANN architecture termed the Recurrent Functionally Ex­
panded Neural Network (RFENN) is developed to enable efficient modeling 
of a more general class of non-linear dynamical systems [176] [175]. The 
RFENN is based on the linear-in-the-parameters FFENN employing local 

output feedback. Its associated learning algorithm is derived and key struc­
tural and learning computational complexity comparisons are made between 
the new RFENN architecture and the conventional Recurrent Neural Net­

work (RNN) structure, which show a significantly simpler computational 

requirement of the RFENN. The reduction in learning computational com­
plexity requirements of the RFENN is in fact, due to the employment of 
non-linear basis functions at its input single hidden layer only, whereas, in 
conventional multi-layered RNN structures non-linear basis functions are 
employed at both the hidden and output layers. The development of the 
RFENN is thus shown to result in a new class of computationally effi­

cient RNNs incorporating all linear-in-the-parameters feedforward neural 

networks (such as the RBF and VNN) adapted to employ local output 

feedback. Various case studies using simulated chaotic, output-error and 

real-world noisy, non-linear time series processes have been used to show 
that the RFENN can outperform the FFENN and other recently reported 

neural network based predictor models in the modeling of certain types of 
non-linear dynamical processes [52].

3. The application of the new RFENN and FFENN structures to real-time 

(on-line) adaptive non-linear prediction of non-stationary time series pro­

cesses has also been proposed and investigated [175]. Both are shown to 

significantly outperform the conventional linear filtering approaches in the 

adaptive modeling of real world, highly non-stationary signals including 
real Nlaser and actual speech data. A new hybrid RFENN-FIR adap­
tive structure comprising the non-linear RFENN subsection feeding into a 
linear Finite Impulse Response (FIR) subsection has also been developed 
[175] and shown to outperform both the stand-alone FFENN and RFENN
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based predictor models.

4. Two novel adaptive non-linear Decision Feedback Equalizer (DFE) struc­

tures have been developed [177] [178] [179] termed, the Decision Feedback 
Functional-Link Equalizer (DFFLE) with Unexpanded Feedback Terms (DFFLE- 

UFT), and DFFLE with Expanded Feedback Terms (DFFLE-EFT). The 

DFFLE-UFT employs the conventional, recently developed non-linear-in- 

the-parameters Feedforward Functional-Link Equalizer (FFLE) [163] [164] 
as its feedforward filter and a linear feedback filter. In contrast, the novel 
DFFLE-EFT structure non-linearly combines both the equalizer input and 
decision feedback samples.

Learning algorithms are presented for both the structures along with their 
design strategies. Key structural and computational complexity compar­

isons are made between the new DFFLEs and the conventional FFLE, 

which show significantly simpler computational requirements of the DF­

FLEs. The Extended Kalman Filter (EKF) algorithm [171] has also been 
applied to both the FFLE and the DFFLE structures in order to enhance 
their speed of error convergence characteristics. A new general design strat­

egy has also been presented for the conventional FFLE and shown to give 

new insights into its computational requirements with increasing input di­
mensions for 2—ary PAM based systems. Pruning techniques for optimizing 

the sizes of the FFLE and DFFLE structures are also proposed. Various 

simulation case studies have been carried out on the application of DFFLE 

structures to equalization of linear and non-linear communications channels 

in the presence of Inter-Symbol Interference (ISI), and both, additive white 

and coloured noises. The new DFFLE-EFT employing a novel functional­

link model non-linearly combining both the equalizer input and decision 
feedback samples, is shown to consistently outperform the optimal symbol 
Bayesian Transversal Equalizer (TE) and various other recently reported 
ANN based non-linear TE and DFEs, both in terms of the Bit-Error Rate
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performance characteristics and relative computational requirements; yield­

ing a much closer approximation to the optimal sequence Maximum Like­
lihood Viterbi Algorithm (MLVA) based equalizer. An error-propagation 
analysis has also been performed for the DFFLEs using simulations, which 

show a very small resulting performance degradation.

5. A novel solution to the problem of co-channel interference supression in 

digital communications systems has been proposed based on the new DF- 

FLE and FFLE structures [179]. A realistic co-channel system is used as an 
example to show that, relative to other recently reported non-linear ANN 

based equalizers (namely the FFLE and RBF equalizers), the DFFLE-EFT 

structure is significantly more effective in dealing with the co-channel inter­

ference effects and also has the minimal relative computational complexity 

requirements. Simulations are also used to show that error propagation in 

the DFFLE results only in a very small performance degradation.

1.4 Thesis Overview

This thesis is organized into six main chapters as follows:

Chapter 1 gives the motivation and contribution of this thesis.

Chapter 2 reviews the main ANN paradigms namely the feedforward and 
recurrent neural network structures. It also describes a general framework in­
corporating models based on the feedforward and recurrent ANNs, for efficient 
modeling of non-linear dynamical systems. Feedforward ANNs are described in 

detail in Appendix A.

Chapter 3 discusses two important problems encountered in digital commu­

nications systems; firstly, the equalization of finite linear and non-linear commu­

nication channels in the presence of Inter-Symbol Interference (ISI) and additive 

noise; and secondly, the suppression of co-channel interference. It investigates the 
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structures, learning algorithms and the relative advantages and disadvantages of 

various linear and ANN based adaptive non-linear equalizer structures that have 

been proposed to date to solving these problems.

Chapter 4 describes a new feedforward ANN architecture for efficient mod­
eling of equation-error type non-linear dynamical systems, namely the Feedfor­
ward Functionally Expanded Neural Network (FFENN). Its learning algorithm 
is derived and a formal design strategy presented, together with a discussion on 

the choice of the proposed hidden layer’s functional expansion model. A prun­
ing strategy has also been proposed for optimising the size of the FFENN for 
non-linear dynamical system modeling applications. Several case studies using a 
variety of simulated equation-error, chaotic, and real-world non-linear time series 
processes are carried out in order to compare the modeling performance of the 

new FFENN structure with other recently reported ANN based predictor models.

Chapter 5 describes a new recurrent ANN structure termed the Recurrent 

Functionally Expanded Neural Network (RFENN) for efficient modeling of the 

more general output-error type non-linear dynamical systems. Its learning al­

gorithm is derived and a pruning strategy presented. Several case studies are 

carried out using simulated output-error, chaotic and real-world noisy time se­
ries processes, in order to compare the modeling capability of the RFENN with 
the FFENN and other recently reported feedforward and recurrent ANN predic­
tor models. Chapter 5 finally, also presents an investigation into the use of the 
FFENN and RFENN structures for adaptive (on-line) non-linear prediction of 

real world, highly non-stationary time series processes. Real world NHs laser 

time series and an actual speech signal are used as two studies. A new hybrid 

adaptive RFENN-FIR predictor is also devised and its performance compared 
with the stand-alone FFENN, RFENN and the conventional linear predictors.

Chapter 6 describes two new Decision Feedback Equalizer (DFE) structures 
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namely, the DFFLE-EFT and the DFFLE-UFT structures. Their learning al­
gorithms are presented along with formal design strategies assuming 2 — ary 
PAM signalling schemes. Key structural and computational complexity com­
parisons are made between the new structures and the conventional recently re­
ported Feedforward Functional-Link Equalizer (FFLE). A formal design strategy 
is also presented for the FFLE. An Extended Kalman Filter (EKF) algorithm is 
also applied to the FFLE and DFFLEs for updating their output layer weights. 
Pruning strategies are also proposed for optimising the sizes of the FFLE and 
DFFLE structures. The new DFFLE based structures are applied to solving two 
important problems encountered in digital communications: namely, co-channel 
interference supression and the equalization of linear and non-linear digital com­
munications channels in the presence of Inter-Symbol Interference (ISI) and both, 
additive uncorrelated and correlated Gaussian noise signals. For both applica­
tions, the performance of the new structures has been evaluated against other 
ANN based equalizers that have been proposed to-date to approximate the un­
derlying optimal symbol Bayesian and optimal sequence Maximum Likelihood 
Viterbi Algorithm (MLVA) based equalizers. Error propagation effects in the 
DFFLEs have also been investigated for both applications.

Chapter 7 finally concludes this thesis with a critical overview of the various 
ANN issues, characteristics and limitations that have been tackled in this thesis 
and discusses relevant future work proposals.

Appendix A reviews various multi-layered and single-hidden layered feedfor­
ward AN Ns. It also discusses the general issues and limitations that relate to 
feedforward ANNs.

Appendix B gives a listing of the Real Time Recurrent Learning (RTRL) 
algorithm employed for updating conventional Recurrent Neural Network (RNN) 
structures.

Appendix C gives a listing of the author’s publications.



Chapter 2

Artificial Neural Networks 
(ANNs) For Non-Linear 

Dynamical System Modeling

2.1 Introduction

The human brain is the most complex computing device known to man and its 
powerful thinking, remembering and problem-solving capabilities have inspired 

scientists to attempt computer modelling of its operation. Artificial Neural Net­
works (ANNs) are human attempts to emulate the functionality of the human 

brain in order to solve difficult scientific problems.
The origin of ANN can be traced back to the early twentieth century when 

psychologists attempted to identify the neural basis of intelligence [61]. Today 
ANN have matured into an attractive alternative for solving problems involving 
learning, due to sustained efforts of many researchers in the last thirty years.

An ANN typically consists of many simple computational elements or neurons 
arranged in layers and operating in parallel [19]. The weights which define the 

strength of connection between the neurons (also called nodes) are adapted during 
operation to improve performance. The power and complexity of learning in 

10
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an ANN are highly dependent on the operations performed by its nodes, its 

topology, the learning algorithm used, and most importantly, the nature of the 

application. The type of functions computable by an ANN are strongly affected 
by the various properties of the nodal activation function (that is, whether it is 
linear or nonlinear, thresholded or smooth, deterministic or stochastic etc.). The 
interconnection pattern of the ANN (whether feedforward or feedback) dictates 

its dynamic behaviour on whether the activation can sustain, and whether or not 
its output evolves over time. To summarize, ANNs are therefore specified by the 

network architecture, node characteristics and learning algorithms.
While much of the recent research in ANNs has been directed towards the 

development of new architectures for pattern classification problems [21] [25] [24] 

[31], there has been some considerable work in developing and applying ANN 
structures to the identification, prediction and control of non-linear dynamical 
systems [33] [34] [27].

This chapter firstly reviews the two main categories of ANNs namely, static 

feedforward and dynamic recurrent ANNs in sections 2.2 and 2.3 respectively. 
Finally in section 2.4, models based on Feedforward and Recurrent ANNs for the 

identification of non-linear dynamical systems are investigated.

2.2 Feedforward ANNs

In general, the neurons in an ANN are arranged in one of three layers:

• input layer

• one or more intermediate (or hidden) layers

• output layer

A class of neural networks, where the inputs feed through the network layers to 

the output, is referred to as the Feedforward ANN (FANN). FANNs are basically 
static networks which implement non-linear transformations of the form

y = G(x) 
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where, typically, the network inputs x belong to 7?" and the network outputs y 
belong to Rm-, where n and m are integers that represent the dimensions of x and 
y respectively. These static FANNs, which are characterized by node equations 
that are memoryless, that is, their output is a function only of the current input, 
not of past or future inputs or outputs; are useful in a variety of applications 
such as approximation of logic functions, pattern recognition and functional ap­

proximation [24]. It is important to realize that all FANNs can also be easily 

adapted to act as dynamic networks, where the node equations are described by 

differential or difference equations [24]. This issue will be addressed in section 
2.4, in which the problem of non-linear dynamical system modelling using ANNs 
is investigated.

FANNs can be classified into two types namely, single-(hidden)-layered FANNs 
and multi-(hidden)-layered FANNs. Single-hidden layered FANNs have also been 
called two-layered FANNs in literature by counting the output layer as an addi­
tional layer [24].
A detailed review of various FANNs is given in Appendix A. The multi-layered 
FANNs that are discussed in Appendix A include the conventional and most 
popular Multi-Layered Perceptron (MLP) and its extensions. The single-layered 
FANNs that are discussed in Appendix A include the linear-in-the-parameters 
Radial Basis Function (RBF) and Volterra Neural Networks (VNN) and the con­
ventional non-linear-in-the-parameters Functional Link Neural Network (FLNN). 
Finally, Appendix A discusses the general issues and limitations that relate to 
FANNs.

In the next section, the other paradigm of ANNs namely, the Recurrent ANNs 
are discussed.
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2.3 Recurrent ANNs

Recurrent ANNs (RANNs) belong to the class of dynamic networks. The node 
equations are described by differential or difference equations. Dynamic RNNs 
can be classified into two types: RNNs with output feedback, and RNNs with 
state feedback.

2.3.1 RNNs: Networks with Output Feedback

This architecture which is illustrated in Figure 2.1, was introduced by Narendra 
et al [34] [35] who used it primarily for non-linear identification and control 
problems.

However, this structure is very general in that the MLP can be replaced by 
any of the FANNs discussed in Appendix A. In chapter 5, a new Recurrent Neural 

Network structure termed the Recurrent Functionally Expanded Neural Network 
(RFENN) is developed by incorporating local output feedback in a newly devel­
oped Feedforward Functionally Expanded Neural Network (FFENN) reported in 
chapter 4.

2.3.2 RNNs: Networks with State Feedback: The Hop- 

field Network, Boltzmann Machine, Real Time Re­

current Networks and Locally Recurrent Globally 

Feedforward Networks (LRGFN)

In this class of Recurrent Neural Networks (RNNs), state feedback is em­
ployed. These networks are typically single layered networks with feedback con­
nections between nodes. In the most general case depicted in Figure 2.2, all nodes 
are fully interconnected, that is, every node is connected to every other network 
node including itself [118]. Each node contributes one component to the state 
vector. The output of the RNN can be viewed to be the output of any or all of the 
network nodes. Additionally, external inputs may be applied to any or all these
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output y(k)

Figure 2.1: Recurrent Networks with output feedback
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ONE OR MORE OUTPUTS

ONE OR MORE INPUTS

Figure 2.2: Recurrent Networks with state feedback
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nodes as well. This class of RNNs is the most general and encompasses all other 

Recurrent ANNs. The FANN structures discussed in Appendix A can also be 

viewed as simplifications of this class of RNNs. Some of the important Recurrent 
ANN structures are now reviewed, namely the Hopfield Model Neural Network, 

the Boltzmann Machine, the Real Time Recurrent Networks and the recently 
reported class of Locally Recurrent Globally Feedforward Networks (LRGFN).

The Hopfield Network

The Hopfield Model (HM) network is probably the best known dynamic recur­

rent neural network model and comprises a single layer of fully connected and 

symmetrically weighted McCulloch-Pitts neurons [61]. Hopfield [76] defined two 
types of neurons:

• the two state or digital neurons which constitute the Digital HM.

• the graded response or analogue neurons which constitute the Analogue 
HM.

Hopfield has shown that an energy function exists for the network, and that the 

HM implements a gradient descent algorithm. The operation of the HM can be 
summarised as follows:

After the network is initialized , the unknown input pattern is presented and 
the network then iterates to convergence. The presentation of a corrupt input 
pattern results in the reproduction of the perfect pattern as the output -the 
network therefore acts as a content-addressable or an associative memory [76].

The HM in fact modifies another recurrent ANN termed the Brain-State in a 

Box (BSB) network that was developed earlier by Anderson [2] which is a positive 

feedback system with amplitude limitation, and comprises a set of highly inter­

connected neurons that self feed back. The problem with the HM network (and 

the BSB network) is that for optimisation problems involving multi-minima cost 
functions, it is liable to find the local minima instead of the global minimum 

solution [102]. As a content addressable memory, the HM is capable of storing 
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no more than 0.1381V random patterns, where N is the number of neurons in the 
network. Various methods have been proposed for enhancing the storage capacity 
of the HM to approach the theoretical upper limit of 2N random patterns [56]. 

The main limitation of the HM however, is that, it lacks hidden neurons; which are 
known to learn internal representations of training patterns, thereby enhancing 
the performance of the neural network. The Hopfield Network has however, been 

found to be useful in solving a number of applications, in particular the bearing 

estimation problem reported by Jha [102] and Hussain [174].

The Boltzmann Machine is a generalisation of the HM, which uses both hid­

den and visible neurons that are in the form of stochastic, binary state units, and 
is discussed next.

The Boltzmann Machine

Ackney, Hinton and Sejnowski [4] developed the Boltzmann Machine. It is a 

generalization of the Hopfield network, and modifies it in two significant ways:

• A stochastic update rule is used during recall (which allows the system to 

escape from local minima in the energy surface).

• For both, the learning and recall phases, the BM uses simulated annealing 
(in analogy to the metallurgical term annealing in which low energy states 

of a metal are achieved by first raising the metal to a very high tempera­

ture and then gradually cooling it). This assists convergence to the global 
minimum solution.

A BM operating at high temperatures behaves much like a random model and at 
low temperatures, much like a deterministic model. At intermediate temperatures 

it has a stochastic component whose magnitude depends upon the temperature 
parameter. The BM has a probabilistic component in that the individual neu­

rons or nodes, are stochastic rather than deterministic. A delta energy level is 

computed for the two possible states of a node and then the node is active with 



Review of ANNs for Non-linear System Modeling 18

a probability given by the Boltzmann distribution, hence the name Boltzmann 
Machine. The probability of a node being on is given by:

p = 1/(1 + E~ae/t)

where E is the energy of the node, N.E is the delta energy level, and T is the 

temperature.

Because of this stochastic component, a node can sometimes assume a new 
state value that increases instead of decreasing the overall energy of the system. 
This mimics physical annealing and assists in escaping local local minima and 
moving towards a global minimum [102],

All states of the system are possible at thermal equilibrium (although some 
are more likely than others) and their distribution can be computed from the 

Boltzmann distribution. If the probabilities of the system states are close to the 

environment states, then the BM accurately models the environment.

The learning rule in BM is based on comparing the results of a free running 

system to a system whose inputs and outputs (or either) are forced to remain at 
an appropriate value i.e. clamped. The probabilities of the states are compared 

for the two runs and weights locally adjusted so as to improve the accuracy with 
which the BM models the environment.

The learning algorithm in BM was the first model to propose solutions using 

hidden units in a neural network, introducing the notion of internal representation 

of features of the problem. However, the computing power necessary to implement 

a BM is very large; a single step in the learning process necessitates the estimation 
of a probability distribution. Traditionally, the BM are viewed as a class of 
binary stochastic recurrent networks. Recently however, a polytomous (multi­

category) BM has been developed by Anderson et al [3] which employs neurons 
with polytomous responses rather than simple binary responses. The BM can 

solve constraint satisfaction problems, but has so far been little used in real 
applications.
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Real-Time Recurrent Networks

The Real-Time Recurrent Neural Network (RTRNN) [118] (or more generally, the 
fully Recurrent Neural Network (RNN) [67]) differs from the Hopfield network in 

two ways [56]:

• The network contains hidden nodes;

• The network has arbitrary dynamics.

The structure of a general (m,n)RTRNN with m external inputs and n fully in­

terconnected nodes, comprises two layers namely, a concatenated input-out layer 

(comprising the m term external input vector and the one-step delayed n term 

output vector); and a processing layer comprising the n hidden nodes. The acti­

vation of all or some of the hidden nodes can be considered as the output of the 
network and all the nodes can be trained to produce desired outputs [56]. The 
network is fully inter-connected in that there are a total of mn forward connec­

tions and n2 feedback connections (of which n are self-feedback connections).
The dynamics of the RTRNN can be described by the following set of equations: 

n m
Si^k + 1) = 52 wi,Ak)yAk) + 52 WiJ+n(k)Xj(k) (2.1)

1=1 1=1

yi(k + 1) = f(si(k + 1)) for i = (2.2)

where Wij(k) represents the weight of the connection from the jth to the ith node 
at time k, and the activation function /(.) can be any real function differentiable 
with respect to its argument (typically chosen to be the tanh^.} function).

Several algorithms have been proposed for training of RNN structures repre­
sented by the above dynamics. Two of the more well known include the Back- 

Propagation Through Time and the Real Time Recurrent Learning algorithms 
which are summarized below:

• Back-Propagation Through Time (BPTT) Learning:

In this approach, the idea is to convert the network from a feedback system 

into a purely feedforward system by unfolding the network over time. This 
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is derived from the fact, that if the system processes a signal that is n 

time steps long, then n copies of the network can be created. The feedback 

connections are modified and become feedforward connections from one 
network to the subsequent network. The resulting system can then be 

trained by the standard BP by treating it as one large feedforward network 
with the copied weights being treated as shared weights [69]. This approach 
is known as the BPTT learning. A variant of this approach known as the 

Truncated Back Propagation Through Time has also been proposed [119] 

which tries to approximate the true gradient by unfolding the network over 
the last p time steps (less than n). In this case, only p copies of the weights 
are made and normal BP with weight sharing is used as before. Obviously, 
if critical information for a problem occurs more than p time steps into 
the past then performance degradation will result. The main problem with 

these approaches is the large memory cost required to maintain several 

copies of the network. This can be overcome by using the other approach 

discussed below:

• Real Time Recurrent Learning (RTRL):

In this popular approach [118], the gradient is calculated recursively, and its 

use in fact gives the RNN its name of Real-Time Recurrent Neural Network 
(RTRNN) [56]. Although,this approach is more memory efficient than the 
Back-Propagation Through Time, the recursive process nevertheless incurs 
a significant computational requirement - the order of O(n4) where n is 
the number of network nodes. The complete RTRL algorithm is derived in 

Appendix B.

Recently, Srinivasan et al [38] have presented formal convergence proofs for 

both the Back-Propagation Through Time, and the Real Time Recurrent 
Learning algorithms. They have also shown that Truncated Back Propaga­
tion Through Time is sufficient for convergence.
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Locally Recurrent Globally Feedforward Networks (LRGFN)

Very recently, a number of researchers have experimented with a class of archi­

tectures that fall in between feedforward only MLP type architectures, and fully 

recurrent network architectures (e.g., the Real Time Recurrent Network described 

above). This class of architectures has been called Locally Recurrent Globally 

Feedforward Networks (LRGFN) by Tsoi and Back [82], who after a careful re­

view identified the following three major LRGFN architectures that have been 
reported to date:

1. LRGF Networks with Local Synapse Feedback:

These architectures are exactly the same as the the Feedforward ANNs, 

except that the synapses can be expressed as a linear transfer function 
(to give them dynamics) instead of just constants. Included in this class 

of architectures, are the purely feedforward MLP structure employing the 

McCulloch-Pitts based neurons reported by Lapedes-Farber [33] for non­

linear time series prediction; the Back-Tsoi Infinite-Impulse-Response (IIR) 
synapse MLP architecture [7] in which each synapse incorporates feedback 
in the form of an IIR filter; and the De Vries-Principe architecture [112] in 
which they have generalized the time-delay synapses into a type of an IIR 
structure by the introduction of a Gamma Operator in place of the usual 

z~x operator. This class of structures includes a special case of the LRGF 

networks with local activation feedback, which are described next.

2. LRGF Networks with Local Activation Feedback:

In this case, the feedback is taken before the activation signal (which is the 

linear sum of the weighted inputs) enters the non-linear activation function. 

The transfer function of the feedback path may in general, comprise both 
zeros and poles.

3. LRGF Networks with Local Output Feedback:
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In these networks, as the name suggests, the feedback path is taken around 

the non-linear activation function, that is, after the signal has passed through 

the non-linearity. This feedback can take the form of a simple all pole 

transfer function, or a more general linear transfer function. Included in 

this category are the Frasconi-Gori-Soda architecture [49], and the Poddar- 
Unnikrishnan architecture also known as Memory Neural Networks (MNNs) 
[37], which are essentially feedforward networks with each neuron having 
a feedback transfer function comprising of one pole. The MNNs can be 
considered to be a special case of the generalized Frasconi-Gori-Soda archi­

tecture whose feedback transfer function can have both poles and zeros, and 

have recently been successfully employed in the identification and control 

of noiseless non-linear dynamical systems [37].

Note that in these architectures, feedback is only allowed from the output 

of the neuron itself hence resulting in the name local output feedback, and 
not from other neurons, in which case a globally recurrent network results, 
such as the RTRNN discussed above. The synapses of the LRGF networks 

with local output feedback are simply constants.

Note that another important category of ANNs namely Unsupervised ANNs 

(such as Kohonen’s Self-Organizing Map (SOM) [72] and its variants [56]) have 

not been addressed in this thesis. A good review of their structures and learning 

algorithms can be found in [56]. In the next section, the use of the Feedforward 

and Recurrent ANNs as models of non-linear dynamical processes is investigated.

2.4 ANN based models for Identification of Non­

linear Dynamical Systems

Much success has been achieved in the use of feedforward neural networks for 

modelling static non-linear maps [24]. It is now known that such networks are 

in fact capable of approximating not only any continuous map arbitrarily closely
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[26], but also the derivatives of such maps [13]. There is a growing interest in 

extending this performance to the dynamic case - modelling non-linear dynamical 

systems using feedforward and recurrent ANNs.

2.4.1 The Problem

Assume that a set of measurements can be carried out on a non-linear dynamical 
process. From this data, a predictor model must be derived whose dynamical 

behaviour is as close as possible to that of the process. The identification of the 

non-linear process is synonymous with the estimation of the parameters of the 

predictor model, based on the available data. If the predictor model is imple­
mented as an ANN, then identification corresponds to successful training of the 
neural network [86].

In the following sections 2.4.2 to 2.4.4, we use non-linear generalizations of 

three popular non-linear dynamical system models namely, the output-error, the 

NARMAX and the NARX (equation-error) models; corresponding to three dif­

ferent assumptions on the noise [79]. Single Input Single Output Systems (SISO) 

have been considered to clarify the concepts. The predictor associated to each 

model is described. In each case, we show which class of neural networks (that 

is, feedforward or recurrent) is most appropriate when used to implement the 
non-linear predictor.

Finally in sections 2.4.5 and 2.4.6, two other important classes of non-linear 
dynamical systems namely the NAR and chaotic time series processes are de­

scribed along with their corresponding ANN based predictors.

2.4.2 The Output-Error Model and Recurrent ANNs

In the output-error model, it is assumed that the process (measured) output yp(k) 

obeys the following equations:

xp(k) = ^[xp(fc - l),u(fc - 1)]

yPW = xp(k) + e(fc)
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where
u(k — 1) = u(k — 1),, u(k — m) 

are the lagged external inputs of the process, and

xp(fc — 1) = xp(k — 1),..., xp(k — n)

are the lagged internal states of the process, e(k) is a white noise sequence and </>(.) 

is some continuous non-linear function. Hence, an output-error model describes 

a process with additive output noise.

The output of the associated predictor (or modeller) y(k) illustrated in Figure 
2.3, such that yp(k) — y(k) = e(k) is given by:

= </>[y(k — l),u(fc - 1)] (2.3)

where y(k — 1) — y(k — 1),..., y(k — n).

Therefore, as can be seen from the above equation 2.3, the associated pre­
dictor of the output-error process is recurrent of order n and has to possess 
non-linear modelling capabilities in order to approximate the non-linear function 

</>(.). Hence, to implement the above predictor as a neural network, a feedforward 

neural network will obviously not be appropriate as it lacks the auto-regressive 
component that is required by the above output-error model predictor. Conse­
quently, a dynamic Recurrent Neural Network type structure (such as the Real 

Time Recurrent Neural Network (RTRNN) described in section 2.3.2), trained 

by an appropriate algorithm (such as the RTRL) will have to be employed for ef­

fective approximation of the above non-linear continuous function. A major 

problem with the conventional RNN structures however, as discussed in section 

2.3.2, is the high computational complexity associated with their learning algo­
rithms.
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Figure 2.3: Associated Neural Predictor of the output-error process
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Figure 2.4: Associated Neural Predictor of the NARMAX process

2.4.3 NARMAX model and Recurrent ANNs

A wide class of discrete time non-linear dynamic systems can be represented by 
the Non-linear Auto-Regressive Moving Average with eXogenous inputs (NAR­

MAX) model [180]. The NARMAX model describes a description of the system 
of some non-linear functional expansion of lagged inputs, outputs and prediction 
errors as follows:

xp(k) = </>[xp(fc - 1), u(k - 1), e(k - 1)] + e(k) 

yP(k) — Xp{ji)

where e(k — 1) = e(k — 1),..., e(k — I) and xp(fc — 1) = xp(k — 1),..., xp(k — n).

The associated neural predictor illustrated in Figure 2.4 for the NARMAX 
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model has an output y(k) defined by [52]:

yW = </>[yP(fc - 1), u(k - 1), n(k - 1)] (2.4)

where yp(fc - 1) = yp(k - 1),..., y^k - n) and

n(^ ~ 1) — n(^ — 1),..., n(k — I) where n{k) = yp(k) — y(k).
Thus, the predictor of the NARMAX model is also recurrent of order I, and 

as before any dynamic RNN based predictor can be used to approximate the 
non-linear function </>(.).

2.4.4 NARX (Equation-Error) Model and Feedforward ANNs

A special case of the NARMAX model is referred to as the Non-linear Auto- 
Regressive with eXogenous input (NARX) model (or the equation error model) 
and is assumed to obey the following equations [180]:

xp(k) = <^[xp(A; - 1), u(k - 1)] + e(k) 

yp(k) = xp(k\,

As can be seen, the above equation-error system (which describes a process with 

additive state noise) is a simplified form of the NARMAX system, as the white 
noise source is now assumed to enter the system additively. In general however, 
the noise source may be correlated and can enter the system in a more compli­
cated manner such as in the manner accommodated by the NARMAX system 
representation.

The associated predictor of the NARX process illustrated in Figure 2.5, has 

an output y(k) given by:

y(k) = (/>[yP(k- l),u(fc - 1)] (2.5)

where yp(k — 1) = yp(k — 1),..., yp(k — n) are the measured process outputs.

As can be seen from equation 2.5 above, the predictor of the equation-error 
process is non-recursive and feedforward of order (n+m) with inputs comprising 
yP(k — 1), and u(k — 1) (the external inputs of the process). Therefore, the



Review of ANNs for Non-linear System Modeling 28

Figure 2.5: Associated Neural Predictor of the equation-error (NARX) process
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NARX predictor can be implemented by a feedforward ANN. It is important to 

understand how the above dynamic system whose output is a non-linear function 

of the past inputs and outputs, can be modelled by feedforward ANNs which 

are versatile static maps. Since the output of a feedforward ANN is a non-linear 

function of its current inputs only, it should presumably model only memoryless 

transformations as discussed earlier. However, the use of a tapped delay line 

can provide a means for all the necessary past inputs and outputs of the system 
being modelled, to be fed as explicit inputs to the network. Hence, the non-linear 

transformation </>(.) that captures the dependence of the output of the NARX 
system on the specified m past inputs and n past outputs can be captured by any 

of the feedforward ANNs discussed in Appendix A, such as has been demonstrated 

for the RBF networks [187] [192] [20] [18] [22], and the MLP [182] [34] [110] [36], 

and its variant termed the Time-Delay Neural Network (TDNN) (also known 

as the FIR-MLP) [113], in which each MLP synapse is represented by a Finite- 
Impulse Response (FIR) filter to give it dynamics.

However, in the highly non-linear in the parameters multi-layer feedforward 
MLP type structures, that have been employed to-date for approximating </>(.) 
[182] [34] [36], nonlinear transformations are performed on the data at both in­
put and output layers thus requiring the use of complex non-linear learning al­

gorithms. As discussed in Appendix A.6, this leads to problems such as slow 

convergence and multi-minimum error surfaces. Furthermore, a theoretical anal­

ysis of such multi-layered networks is also difficult. Optimisation techniques such 

as genetic algorithm, learning automata and simulated annealing, although ca­

pable of achieving the global minimum also require extensive computation [66]. 

Another major problem associated with multilayer structures as discussed in Ap­
pendix A.6 is the determination of the optimum network size (number of hidden 

layers, nodes etc) [24].

The recently proposed single-hidden layered (or two-layered) linear-in-the- 
parameters, feedforward ANNs namely, the Radial Basis Function (RBF) [12] and 

the Volterra Neural Networks [40] [63] (discussed in Appendix A.4 and Appendix 
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A.5.1) can also approximate </>(.), and alleviate the need of non-linear learning 

algorithms in the output layer by employing linear weight updating rules. In the 

case of the RBF however, it has been shown in a study on modeling of non-linear 

dynamical systems by Weigend and Rumelhart et al [115], that a prohibitively 

large number of basis functions may be needed to cover high dimensional input 
spaces along with expensive computations required by the additional learning 
algorithms needed for updating the position and spread of basis functions in the 

input hidden layer. In a recent analysis by Narendra [68], the advantages of the 

RBF networks over MLP structures are firstly noted namely, rapid training and 

ease of analysis. However, the main downside of the RBF networks has also been 

demonstrated: namely, an exponential growth in complexity with the number of 

network inputs. On the other hand, the Volterra Neural Network (VNN) based 

structures suffer from slow convergence [164] and exponentially increasing hidden 

layer size with increasing network input dimensions [138].
In chapter 4 of this thesis, a new linear-in-the-parameters Feedforward Func­

tionally Expanded Neural Network (FFENN) has been proposed as an alternative 
two-layer feedforward ANN for modelling the <$(.) function in the equation-error 
model above. It has also been employed to model two other important classes of 

non-linear dynamical systems namely, the Non-linear AR (NAR) [33] and chaotic 

time series processes [15], which are described next.

2.4.5 NAR model and Feedforward ANNs

The Non-linear Auto-Regressive (NAR) model is an extension of the linear Auto- 
Regressive (AR) model used for time series modelling [52] and can be expressed 
as:

y(^) = </>(y(^ - 1)) + e(^) (2-6)

where y(k — 1) = y(k — 1),... ,y(k — n) and e(fc) is uncorrelated white noise of 

zero mean and assumed to have a finite variance cr2. The associated optimal 
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predictor has an output y(k) given by [52]:

y(k) = </>(y(k - 1)) (2.7)

This predictor can be seen to be similar to the predictor for the NARX model, 
that is non-recursive feedforward, but of order n rather than (n + rn). Hence, for 

this predictor, Feedforward ANNs (FANNs) would be the appropriate choice as 

has been demonstrated by Lapedes et al [33], who were the first to propose use of 

FANNs as a NAR model for time series prediction. A feedforward ANN provides 

a non-linear approximation to </>(.) given by

= ^(y(^-1)) (2.8)

where y(A: — 1) = y(k — 1),..., y(k — n) are the inputs to the feedforward ANN 
predictor.

2.4.6 Chaotic Processes and Feedforward ANNs

Chaos is the very complex behavior of a dynamical system that is both non-linear 

and deterministic [103] [104]. It represents a powerful notion permitting the use 

of a deterministic system to explain highly irregular fluctuations exhibited by 

many physical phenomena encountered in nature [57]. In practice, a discrete­

time, deterministic, non-linear dynamical system is said to be chaotic if it has 
the property of sensitive dependence on initial conditions and has a relatively 
small number of degrees of freedom [19]. Increasingly though, the term chaotic is 
also used for stochastic systems exhibiting a sensitive dependence for all possible 
initial conditions [19]. Alternatively said, deterministic chaos is characterized 

by an exponential divergence of nearby trajectories. For the problem of time 

series prediction, which is synonymous with modelling of the underlying physical 
mechanism responsible for its generation; there are two related consequences: 
Firstly, since the uncertainty of the prediction increases exponentially with time, 
chaos precludes any long-term predictability. Secondly, on the other hand, it 
allows for short term predictability, that is, a random looking time series might 
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have been produced by a deterministic system and actually be predictable in 
the short run. A prediction algorithm for chaotic systems thus has to capture 

the short term structure of the time series. The short-range structure of chaotic 
behaviour can be captured by expressing the present value of the chaotic time 

series sample y(k) as a function of the previous d values of the time series:

y(k) = f>(y(k- 1)) (2.9)

where the vector (y(k — 1) = y(k — 1),... ,y(k — d)) lies in the d-dimensional 

state space.
An efficient method of fitting the non-linear function </>(.) is to use a feed­

forward neural network predictor with a single output [15] [22] [19]; the inputs to 
the network being the observations (y(k — 1), y(k — 2),..., y(k — d)). The output 
of the feedforward ANN predictor is given by (as per the NAR predictor):

y(k) = ¿(y(fc- 1)) (2.10)

In real-world chaotic processes, intrinsic noise e(k) will be present and the 
task of the neural network predictor will be to reconstruct /(.) without modelling 
the noise, as in the case of the NAR predictor.

The goal of identification of noisy non-linear dynamical systems such as the 

output-error system (with additive output noise) and the equation error system 

(with additive state noise), as well as NAR and noisy chaotic time series, is to find 

a neural network predictor that implements a function as close as possible to d>(.) 
in a bounded domain of state space. Therefore, the prediction error (y(k) — y(k\) 

should be as close as possible to the noise e(k) once the training is completed.

2.5 Conclusions

The two main ANN paradigms namely, the Feedforward and Recurrent ANNs 
have been discussed. Traditionally used structures belonging to each category, 

have been described with particular emphasis on the relative advantages and dis­
advantages of their structural and computational requirements. Their application 
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to modelling of various classes of discrete-time non-linear dynamical systems has 
also been illustrated. It has been shown that the choice of the correct ANN model 

(that is, whether feedforward or recurrent) is crucial to effective modelling of a 
particular class of the non-linear dynamical system.

In the next chapter, the application of conventionally used linear and ANN 
based non-linear adaptive equalizers to two important digital communications 
applications is investigated.



Chapter 3

ANNs for Digital

Communications Applications

3.1 Introduction

In recent years, non-linear adaptive filters based on Artificial Neural Network 
models have been used successfully for system identification and noise-cancellation 

in a wide class of applications [56]. This chapter reviews the application of ANNs 

to two important problems encountered in digital communications namely,

1. Digital Communications Channel Equalization: This problem is generally 

concerned with the task of reconstructing digital signals that have been 
passed through communication channels in the presence of both linear and 
non-linear distortion and further corrupted by additive noise.

2. Overcoming Co-channel interference in Digital Communications Systems: 

The performance of many digital communications systems employing fre­

quency reuse such as cellular radio, is also significantly impaired by the 

problem of co-channel interference. Efficient equalization schemes are re­
quired in these communications systems in order to achieve an acceptable 
error-rate performance.

34



Review of ANNs for Digital Communications Applications 35

Sections 3.2 and 3.3 investigate the various linear and non-linear approaches 
proposed to date for solving the above problems.

3.2 Digital Communications Channel Equaliza­
tion

The demand for very high speed efficient data transmission over physical com­

munication channels has been substantially increased over the last decade and a 

half [55]. Telephone channels, radio channels, and even fibre optic channels often 
have non-flat frequency responses and non-linear phase responses in the signal 
passband [71]. Sending digital data at high speeds through these channels often 
results in a linear distortion phenomenon called Inter-Symbol Interference (ISI), 
caused by signal pulse smearing in the dispersive medium. As a result of ISI, 

the transmitted symbols are spread and overlapped over successive time intervals 

[149]. In addition to linear distortion, the transmitted symbols are also subject 

to other impairments such as thermal noise, impulse noise and non — linear dis­
tortion arising from the modulation-demodulation process, crosstalk interference, 
the use of amplifiers and converters, and the nature of the channel itself [55]. The 
above factors limit the maximum attainable data-rate in digital communications 

systems. All the signal processing techniques employed at the receiver’s end to 

combat the introduced channel (linear and non-linear) distortion and recover the 

transmitted symbols are referred to as equalization schemes. Adaptive equaliza­

tion is in general, characterized by the structure of the equalizer, its adaptation 

algorithm and the use or not of training sequences [153].

Two basic categories of adaptive equalizers exist, namely the sequence esti­

mation and symbol-decision equalizers [194]. The optimal sequence estimation 

equalizer is the adaptive Maximum Likelihood Sequence Estimator (MLSE) [123] 
which is known to provide the best attainable performance in combating channel 
ISI in the presence of additive white Gaussian noise. The adaptive MLSE is im­
plemented in the form of a channel estimator and a Viterbi algorithm. However,
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Figure 3.1: Schematic of Data-Transmission System

the high computational complexity and deferring decisions associated with the 
MLSE are often unacceptable in many practical communications systems [188]. 
Most of the equalization applications today therefore employ equalizers that op­
erate symbol-by-symbol [172]. Symbol decision equalizers can be classified into 

two categories namely, the direct-modeling equalizers in which the channel model 

is identified explicitly, and the indirect-modeling equalizers which recover the 

transmitted symbols by directly filtering the channel observations, usually using 
an adaptive linear filter (the Linear Transversal Equalizer (LTE) [149]), without 
estimating a channel model explicitly. The indirect-modeling approach is by far 
most widely used and it is considered in this thesis. A discussion of the indirect- 
modeling linear and non-linear neural network based equalizer structures for the 
equalization of linear and non-linear communications channels in the presence of 

ISI and AWGN is reported later in this chapter.

3.2.1 Problem Statement

A general discrete-time model of the digital communications system is depicted 
in Figure 3.1, where the channel includes the effects of the transmitter filter, the 
transmission medium, the receiver matched filter and other components [154].

A widely used model for a linear dispersive channel is the FIR model [149],
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which can be expressed as:

i

y(k) = ais^ - 0 + n(k)
i=Q

(3.1)

where I + 1 is the length of the channel impulse response and ai are the channel 
taps. In general, both s(k) and ai can be complex valued. In this thesis, chan­

nels and symbols are restricted to be real valued which corresponds to the use 

of multi-level Pulse Amplitude Modulation (M-ary PAM) [148], with a symbol 

constellation defined by

Si = 2i - M - 1, 1 < i < M (3.2)

The real case has been used so that the basic principles and concepts can be high­
lighted. In particular, the case of binary signals (M = 2) provides a very useful 

geometric visualization of the equalization process. All the results presented in 
this thesis for PAM can be extended to the general case of complex valued chan­

nels with Quadrature Amplitude Modulation (QAM) scheme [153]. The symbols 

s(k) are further assumed to be equi-probable and independent with the following 
properties:

E(s(kf) = 0

E[s(ki)s(k2)] = a2sS(ki - k2)

where E[.] denotes the expectation operator, crj is the symbol variance, and 8(k) 

is the Dirac delta function [154]. The channel output y(k) is further assumed to 
be corrupted by Additive White Gaussian Noise (AWGN) n(k) specified by:

E(n(kf) = 0

E^k^n^)] = ^S(ki - k2)

where cC is the noise variance. Also, s(k) and n(k) are assumed to be uncorre­
lated. The above channel model has been used extensively to model a variety of 
communications systems, such as the HF communications channel [152] [153].
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If non-linear distortion is taken into account, which is now a significant factor 

hindering further increase in the maximum attainable data rate [184], the general 

channel model will be non-linear [161]. Although sources of channel non-linearity 

such as non-linearity in data converters may be regarded as memoryless, these 

non-linear components are connected to or embedded in a linear dynamic network 

and, consequently the overall channel response is a non-linear dynamic mapping. 
That is, the received signal at each sample instant is a non-linear function of 
the past values of the transmitted symbols [184], The general non-linear channel 
model can be represented as:

y(k) = f(s(k), ...,s(k- I)- A) + n(k)

where f is some non-linear function, A is the channel parameter vector and n(k) 

is the additive noise which can be non-Gaussian and correlated.

The task of any indirect-modeling equalizer is: given the overall channel ob­

servation y(k), estimate the transmitted data s(k). The symbol decision equalizer 

at any sample instant k processes the m most recent channel observations, and 
makes a decision s(k — r) regarding the symbol transmitted at k — r, where the 
integers m and r are referred to as the equalizer order and delay respectively. 

How the m channel observations are processed determines the performance and 

complexity of the equalizer. Depending on whether the equalizer knows the orig­

inally transmitted symbols or not, it is characterized as trained adaptation or 

blind equalizer respectively. In blind equalization, the equalizer has no exact 

knowledge of the transmitted sequence. The adaptation of the equalizer is at­
tempted in a way to match the statistics of the output of the equalizer to those 
of the transmitted sequence. A good review of blind equalization techniques can 
be found in [162]. Recently, a new class of blind equalizers based on Higher Or­

der Statistics (HOS) have been reported by Hatzinakos et al. [6] and Alkulaibi 
and Soraghan et al [5]. In this thesis we shall restrict our discussion to trained 

adaptation equalization schemes.

During the training period of most adaptive equalization systems (including 
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cellular mobile radio), the reference desired signal s(k — r) which is to be re­

constructed, is available. After the training period, the equalizer can use its 

own decision s(k — r) for continuous fine-tuning of the weights. This type of 

weight update is referred to as Decision Directed Mode (DDM) [142]. In normal 

operation, the equalizer’s decisions after sufficient training are correct with a high 
probability thus enabling the adaptive equalizer to maintain precise equalization 

[148]. Moreover, a decision-directed adaptive equalizer can track slow variations 

in the channel characteristics or linear perturbations in the receiver front end, 
such as slow jitter in the sampler phase [149].

3.2.2 Adaptive Equalizers

This section introduces the two main categories of adaptive equalizers namely, 
the symbol decision and sequence estimation equalizers. Two well known symbol 
decision structures are the Transversal Equalizer (TE) (also called Feedforward 
Equalizer) and the Decision Feedback Equalizer (DFE). The task of a TE is 
essentially to use the information in the observed channel output vector

y(M = Mb) ...y(k-m + 1)]T

to produce an estimate s(k — r) of the actual transmitted symbol s(k — r), where 

m and r are as defined above. The conventional TE is the Linear TE (LTE) 

which is discussed in the next section. It has been shown in [172] [173] [188] that 
channel equalization is inherently a non-linear problem and non-linear equalizer 
structures are therefore required to achieve fully or near optimal equalization 
performance. Recently, non-linear adaptive TE filters based on fuzzy logic and 

trained by LMS and RLS algorithms have been proposed by Wang et al [114] to 
provide near-optimal performance for the case of second order fuzzy equalizers. 

However, in a new study by Ralph and Soraghan [81], it has been shown that 

the performance of the fuzzy adaptive filters deteriorates significantly from the 
optimal equalization solution if their order is increased beyond two. A review of 

the various non-linear neural network based structures reported to date is given 
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in section 3.2.5 of this chapter.

A powerful technique to improve the equalization performance is to employ 
decision feedback [149]. The advantage of the DFE (which is a simple non-linear 
structure) [9] [128] is that ISI is eliminated without enhancement of noise by 

using past decisions, and a disadvantage is the possible error propagation caused 
by decision errors. The operation of the conventional DFE is based on the m 

most recent channel observations and p past decisions. The conventional DFE 

consists of two linear finite filters known as feedforward and feedback filters; and 

produces an output given by:

m p
o(k) = f(y(k),s(k-ry) = bTy(k)+cTs(k-r) ^^biy^k-i+l^+^as^k-i-r) 

i=l t=l

where bi and Ci are the coefficients of the feedforward and feedback filters re­
spectively; with the integers m and p being referred to as the feedforward and 
feedback filter orders respectively. The conventional DFE uses linear algorithms 

such as the LMS or RLS for its weight updates. It is important to note that 
the feedforward filter within the conventional DFE is a linear TE (LTE) whose 

performance is limited by hyperplanes. The linearity of these decision regions in 

the input signal space has been shown to limit the performance of the conven­
tional DFE [185]. Siu et al [185] proposed a new approach for the DFE using 
the Multi-Layered Perceptron (MLP) as the feedforward filter, and demonstrated 
its superior performance over the conventional DFE both in terms of equalizer 

convergence times and tolerance to noise. Chen et al [193] and more recently 
Theodoridis et al [160] also applied the Radial Basis Function (RBF) neural net­
work to the DFE to enhance equalizer performance and reduce computational 

complexity.

In chapter 6 of this thesis we propose a new approach for the DFE based 

on the conventional Functional-Link Neural Network (FLNN) and compare its 

performance with other recently reported Feedforward (TE) and DFE structures.
The following sections focus on the three main classes of equalizers proposed 

to date for solving the Digital Communications Channel Equalization problem 
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stated in section 3.2.1; namely:

1. Optimal Sequence Equalizers (section 3.2.3)

2. Linear Symbol-Decision Equalizers (section 3.2.4)

3. Nonlinear Symbol-Decision Equalizers (section 3.2.5)

3.2.3 Optimal Sequence Equalizers: The MLSE

The optimal solution to the equalization of a FIR channel model in the presence 
of ISI and additive white Gaussian noise can be derived by using the principle of 
Maximum Likelihood detection of the entire transmitted sequence. The result­

ing structure is known as the Maximum likelihood Sequence Estimator which is 
discussed below.

The optimal Maximum Likelihood Sequence Estimator (MLSE)

The objective of the MLSE is to determine the one transmitted sequence out of all 

possible transmitted sequences that is closest (according to a specific probability 
measure) to the actual received sequence. The optimal solution for this class 
of equalizers is the Maximum Likelihood Viterbi Algorithm [143] [154], which 

determines the estimated symbol sequence (s(l),..., s(k),...) by minimizing the 
cost 

inf I
J = YSvW - E a^(k - 0)2 

fc=l i—0
The MLVA provides the lowest error-rate attainable for any FIR channel in the 
presence of additive white noise, provided the channel is known. When the chan­

nel response is unknown, a channel estimator can be employed to provide a chan­
nel estimate [123] and this gives rise to an adaptive MLVA [194], Deferring 
decisions are essential in such an architecture, and in practice a final decision 

is made after some fixed delay which must be chosen large enough so that the 
performance degradation due to pre-mature decisions is negligible. Such a long
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delay is not welcome in many practical applications. As the operation is based 
on a large segment of the received data sequence, the computation and mem­

ory requirements of the adaptive MLVA are far more than those of the simple 

architectures based on symbol by symbol decisions. The Viterbi Algorithm is 

also sensitive to the assumption of AWGN. The assumption of AWGN in digital 
communications channels is only an approximation because, although the chan­

nel noise itself is generally Gaussian and white, the matched filter at the receiver 
will colour the noise [154]. Consequently, for coloured noise, performance loss will 

occur. Additionally, the adaptive MLVA is sensitive to the channel estimate, that 
is, if the channel estimator does not provide a reasonably good estimate of the 
true channel model, then significant performance degradation is expected. For 

stationary channels, a fairly accurate estimate of the channel model can be made 

and consequently the MLVA performance degradation is not significant. How­

ever, it has been recently shown in a new study by Chen, McLaughlin and Grant 
[198] that performance degradation of the adaptive MLVA becomes serious for 

highly non-stationary channels, and this degradation is inherent in the structure 
of the MLVA.

3.2.4 Linear Symbol-Decision Equalizers

The indirect modeling equalization approach is sometimes referred to as inverse 

modeling, because traditionally, the equalization problem is viewed as an inverse 

filtering problem in which the equalizer forms an approximation to the inverse 

of the distorting communications channel [149]. From this viewpoint, the filter 
within the general TE architecture becomes linear and, the

resulting equalizer is called a Linear Transversal Equalizer (LTE) [148]. An LTE 
of feedforward order m produces an output at time k given by:

m

o(k} = /(y(fc)) = bTy(A:) = £ biy(k ~ * + 1) 
¿=1

where b = [Zq ... bm]T are the coefficients or weights of the m-th order feedfor­
ward LTE. A decision slicer then quantizes the LTE’s output o(k) to produce an 
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estimate s(k — r) of the actual transmitted symbol s(k — r).

Considerable research has been performed on the criterion for adapting the 

LTE filter’s weights [153]. Two criteria that have found widespread use in opti­

mizing the linear equalizer weights are the Peak Distortion criterion [142] [154] 

and the Mean-Square-Error (MSE) criterion [154]. Minimization of the Peak 
Distortion (defined as the worst case ISI at the equalizer output) results in the 

Zero-Forcing (ZF) algorithm for adapting the LTE weights. However the ZF al­
gorithm does not take account of the channel noise and is only guaranteed to 

minimize the worst case ISI if the peak distortion before equalization is less than 

100%; a condition which is often not met at high speeds on channels with high 

eigen value ratios [149]. These limitations do not exist if the MSE criterion is 

used in the adjustment of the equalizer coefficients. Today, most of the adap­

tive algorithms for equalizers are based on the criterion of minimizing the MSE 
between the desired equalizer output and its actual output, that is, the learning 
algorithms adjust the filter parameters to achieve a minimum of the criterion 
(where E is the statistical operator) :

EMk -t)- /(y(fc)))2]

For the LTE, the optimum weight vector which will yield the minimum MSE 
is readily given by the Weiner solution [153]:

b„pl = (E[y(i:)yTW])-1E[y(i:)S(4 - r)]

However, the solution for bopt involves inverting the co-variance matrix of the 

equalizer input vector y(k) which is computationally expensive. Alternatively, 

an iterative procedure such as the LMS algorithm can be used, which is based on 

the method of steepest descent and is robust and computationally efficient. As 

such the LTE employing the LMS updating algorithm is quite widely used today 

in most high speed modems [71]. The LMS updating algorithm for the LTE can 
be written as:

b(k + 1) = b(Ar) + pe(k + l)b(fc + 1) 
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where p is the convergence factor and is the error signal given by e(k) = 
(s(k — r) — o(k)) where s(k — t) is the training signal. Alternatively, the RLS 
algorithm [56] can also be used to achieve faster weight updates but at the ex­
pense of additional computations. After the initial training period, the adaptive 

LTE weights should have converged to bopt. During data transmission, the LTE 

weights can be continued to be adapted (fine-tuned) in a Decision Directed man­
ner, with the error signal now given by e(k) = (s(k — t) — s(k — t)). Several 

variations to the LTE have been proposed including the Fractionally Spaced TE 

[144], new adaptive lattice equalizers reported by Grant [146] [147], and frequency 
domain equalizers [145]. Kalman Filter based equalizers have also been reported 
in [127], and shown to approximate the Infinite Impulse Response (HR) Weiner 
filter solution.

The adaptive LTE inspite of its computational simplicity and robustness has 

certain shortcomings [194]. Primarily, from the inverse filtering viewpoint, in­

creasing the order of the LTE should lead to a more accurate approximation and 

better equalization performance. This however is not true due to the noise en­

hancement phenomenon [184]. It has been shown in [172] [184] [190] that the 

LTE does not achieve the full performance potential of the symbol decision TE 
structure, and better performance can be achieved from the same information 

contained in the equalizer inputs, if more complex (non-linear) filtering meth­
ods are employed [184]. Furthermore, for the case of equalization of non-linear 

communication channels, the LTE will only be able to compensate for the linear 
distortion [55].

3.2.5 Non-linear Symbol-Decision Equalizers: The Opti­

mal Bayesian and ANN based Equalizers

This section derives the optimal Bayesian or Maximum A posteriori Probabil­
ity (MAP) symbol decision equalizer structure for the Digital Communications 
Equalization problem stated in section 3.2.1. This is followed by a review of
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’he various ANN based adaptive non-linear equalizer structures that have been 

reported to date to approximate the optimal MAP symbol decision equalizer 

namely, the MLP, Radial Basis Function (RBF), Volterra Neural Network (VNN) 

and Functional-Link Neural Network (FLNN) based equalizers.

I he Optimal Maximum Aposteriori Probability (MAP) or Bayesian 

Symbol Equalizer

1 he optimal solution for the symbol-decision Transversal Equalizer (TE) struc­
ture is known as the MAP symbol-decision equalizer [139] [140] [141] and is de­
rived using Bayes decision theory. This Bayesian TE is summarised below for the 
digital communications system depicted in Figure 3.1, assuming 2 — ary PAM 

signalling, which implies that s(k) is now an independent identically distributed 

(i.i.d) sequence taking values from +1, —1 with an equal probablity of 0.5. The 

<i hove equalization process can be viewed as a classification problem, which seeks 

to classify the received symbol into one of the two possible classes, y(k) = +1 
or y(k) = —1 (or, one of the symbol points Si, 1 < i < M for M — ary PAM). 

I he general symbol-decision equalizer structure is characterized by the equalizer 
order m and delay r. For the general channel of / + 1 taps given in equation 3.1, 

there are rs = 2,+m combinations of the channel input sequence:

s(k) = [s(fc)... s(k — m + 1 — l)]T

This gives rise to rs points or values of the noise-free channel output vector:

y(^) = [y(^) ...y(k-m + 1)]T

These points which will be referred to as the desired channel states, can be par- 
t itioned into M = 2 classes denoted by Y+t and Y~r depending on the value of 
the desired transmitted signal s(k — r) (which is to be reconstructed):

Ym,r = y(k)|s(k-r) = +1,

Ym,r =y(k)|s(k-T) = -1
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Each desired state yd £2 Y+t or y~ E has a priori probability of appearance 

Pi. Since all the desired channel states are assumed to be equi-probable, all the pi 
are equal to p — \/rs. The number of states in Y+t and Y~ are denoted as rf and 
r~ respectively with the values of both being equal to rf = r~ = rs/2. Because 

of the additive Gaussian noise, the observation vector y(k) = [y(k)... y(k — 
m + 1)]T is a stochastic process having conditional Gaussian density functions 

centered at each of the desired channel states. It is thus apparent that the channel 
observations form clusters and the means of these data clusters are the desired 

states. Determination of the value of s(k — r) based on the observation vector 
y(k) is a decision problem. Bayes decision theory [139] [141] provides the optimal 

solution to the general decision problem and is applicable here. Computing the 

2 Bayesian decision variables for 2 — ary PAM [188]

rt
V+Ak) = ^Pipn(y(k) - yd) 

2=1

and

p-iW = ^pip^y^ - yr) 
2=1

where (&) and ?/_i(A:) are the conditional probability density functions (pdf)s 

of y(k) given that s(k — r) = 1 and s(k — r) = —1 respectively for 2 — ary 

PAM, and pn(-) is the pdf of the noise vector n(A:) = n(k)... n(k — n + 1). The 
minimum error probability decision is defined by:

s(k -r) = sgn(f(y(k)) = sgn(rj+i(k) - r^kf)

where sgn is the signum function and /(.) is called the optimal Bayesian decision 

function. For the case of a Gaussian noise distribution, the following explicit 
expression results:

s(k — t) = sgn o,e(-l|y(D-yit’ll2/2irn) _ "V Qe(-lly(fc)-yj ll2/2^nh
VX. Z LXU J

where a is pi(2ira^) multiplied by an arbitrary positive constant, and 

the first sum is over yd £] Y+t, the second sum is over y“ Y~T\ is the noise 



Review of ANNs for Digital Communications Applications 47

variance and ||.]| denotes the Euclidian norm. The optimal equalizer solution can 

be seen to clearly depend on the noise distribution as well as the desired channel 

states. Under the previous assumptions on the digital data symbols s(k), all 
the coefficients a are equal, and multiplying ffy(kf) by a positive constant does 
not alter the optimality and all the a can therefore be set to 1. Note however, 
that if the assumption of equiprobable symbols is violated, each desired state 

yt or yf can have different a priori probability of appearance pi, 
which specifies the corresponding a.

The set of points y that satisfy:

fM = o

is referred to as the optimal decision boundary, which partitions the m-dimensional 

observation space into two decision regions corresponding to the equalizer deci­
sions s(k — r) = 1 and s(k — r) = —1. In general, for M — ary PAM baseband sys­

tems, the Bayesian decision procedure partitions the m-dimensional observation 

space into M decision regions. Because the optimal Bayesian decision function 

/(.) defined above is non-linear, the optimal decision boundary is a hypersurface 

in the observation space and can be highly non-linear [188]. The boundary of any 

linear equalizer such as the LTE is only a hyperplane in the observation space, 
and hence it can be concluded that linear equalizer structures are inherently sub- 
optimal and a considerable performance gap will always exist between them and 
the optimal equalizer. However, it should be noted that although the MAP, also 
known as the Bayesian TE [194], offers significant performance improvement over 

the LTE it does so at the expense of a considerable increase in the computa­

tional complexity [172] [194] [164]. The dominant factor is that rs, the number of 

combinations of the channel input sequence, can be quite large for practical chan­

nels. This fact has motivated the investigation of reduced complexity non-linear 
equalizer structures capable of realizing highly non-linear decision boundaries. 
Recently a Bayesian solution has been derived for the DFE structure [195] and 
shown to offer improved equalization performance compared to the Bayesian-TE 
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with a reduced computational requirement. The adaptive Bayesian DFE pro­
vides the optimal solution for the symbol decision DFE structure. However, both 

the adaptive Bayesian TE and Bayesian DFE structures assume perfect a priori 

knowledge of the communications channels, since the realization of the Bayesian 

equalization performance depends on knowing the channel states, and hence a 

performance degradation will result if an accurate channel estimate is not avail­

able. Two adaptive schemes are currently available to obtain the vector states 

[193] [195] which will further add to the required computational load. The first 

method estimates the channel model explicitly based on, for example the LMS 

algorithm and uses the channel estimate to calculate the channel states. The 
second approach estimates the channel states directly based on a clustering al­

gorithm. The first method requires a shorter training period whilst the second 
scheme offers greater immunity to non-linear channel distortion. Note that in 

general, both the Bayesian TE and Bayesian DFE cannot achieve the theoretical 

best performance bound set by the adaptive MLVA since they are only symbol­

decision equalizers. However, in a new study Chen, McLaughlin and Grant [198] 
have shown that for highly non-stationary channels such as multi-path mobile 
radio fading channels, the adaptive Bayesian DFE is actually superior to the 
adaptive MLVA.

Several other reduced complexity indirect modeling non-linear TE and DFE 

structures have been proposed to approximate the optimal Bayesian decision 

function /(.), a good overview of which can be found in [185],[164] and [129].

Note that the optimal Bayesian TE solution was derived above for the linear 

channel equalization case in the presence of AWGN. For the general case of equal­

ization of finite non-linear channels in the presence of coloured additive noise, the 
optimal Bayesian solution was investigated by Chen and Grant et al [184]. They 

showed by the use of simple examples, that non-linearities and coloured noise 
only change the location of the classification (or decision) boundary, and do not 
fundamentally alter the nature of the equalization problem. The attraction of 
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the neural network based equalizers is their ability to adaptively form the gen­

eral Bayesian solution for the symbol-decision structure and therefore to provide 

significant performance gains over the conventional linear filter approach, as will 
be illustrated through simulation results in chapter 6.

Some of the recently proposed more popular neural network based non­
linear equalizers including the MLP [172], the VNN based Adaptive Polynomial- 
Perceptron (APP) [183], the RBF [188] [194] and the FLNN based equalizers 
[163] [164] will now be reviewed.

The Multi-Layered Perceptron (MLP) based Adaptive Non-linear Equal­

izer

A neural network may simply be considered as a non-linear mapping between 

input and output. Gibson et al [172] proposed a non-linear TE structure based 

on the conventional MLP and demonstrated its superior performance over the 
LTE. The equalizer uses a layered feedforward structure with input, output and 
hidden layers. The hidden layers provide the capability by use of the non-linear 
sigmoidal function, to create intricately curved partitioning of the input signal 
space to create highly non-linear decision regions. Theoretically, a MLP equalizer 

of sufficient size (even one hidden layer with sufficient number of nodes) [33] can 

realise the optimal Bayesian decision function /(.). To date, the MLP based 

equalizer has been employed for the equalization of both linear and non-linear 

channel models with a good degree of success [184].

There are however many practical difficulties associated with this structure 
that require further investigation. The selection of the architecture and param­
eter values for the MLP is mainly by trial and error which is an extremely time 
consuming process. The training of the MLP equalizer is based on a gradient 

descent algorithm known as the Back Propagation (BP) algorithm [75] which is 
discussed in Appendix A.3, and learning times are typically very long because 

of the highly non-linear in the parameters MLP structure. Furthermore, conver­

gence to which local minimum of the MSE surface depends upon the initial choice 
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of the equalizer parameters and a theoretical analysis of the training algorithm is 

very difficult. Although the use of recursive Gauss-Newton algorithms proposed 

in [181] [171] can be applied to improve the convergence properties of the MLP 
equalizer, these algorithms require significantly more computations at each re­

cursion, and may have difficulties in meeting the real-time requirements of high 
speed data transmission where adaptive equalization is mainly needed [71].

The Volterra Neural Network (VNN) based Adaptive Non-linear Equal­

izer

An alternative non-linear adaptive TE structure was proposed by Chen, Gibson 

and Cowan [183] based on the classical Volterra Neural Network (VNN), which 
is discussed in Appendix A.5.1. The output of the VNN based equalizer was 
related to its inputs through a Truncated Volterra Series (TVS) expansion as 

follows [164]:

m—1 m—1 m—1

y(k) = w0 + w^Wk - w2(i!,i2)x(k - i^xfk - i2) A ...
¿0 = 1 ¿0 — 1 ¿2—0

m—1m—1 m—1

+ 22 22 • • • 22 - ii)x(k - i2) ...x(k- iq)
¿1=0 ¿2=0 ¿g = 0

The above system can be represented as a (m,g)VNN (or TVS) equalizer, 

where m denotes the feedforward order of the equalizer, and q represents the 
degree of expansion of the Volterra Series expansion.

A modified two-layer polynomial-perceptron structure employing the TVS 

expansion of the inputs at the hidden layer and a non-linear sigmoid activation 
function at the output layer was proposed in [183] and shown to offer superior 

performance to the conventional LTE at the expense of increased computational 

complexity. The complexity of the Adaptive Polynomial-Perceptron (APP) equal­

izer was determined by two structure parameters, namely the equalizer feedfor­

ward order m and the polynomial degree of expansion q of the equalizer input 
symbols as shown in the TVS expansion above. However, the APP equalizer 

structure suffers a drawback of exponentially increasing filter dimensions [194], 
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which makes its use impractical for realistic channels of even moderate orders.

The Radial Basis Function (RBF) based Adaptive Non-linear Equalizer

The two-layer linear-in-the-parameters Radial Basis Function neural network was 

proposed as a non-linear adaptive equalizer by Chen, Gibson and Grant [188]. 

As discussed in Appendix A.4, a key feature of the RBF networks is their abil­

ity to provide non-linear approximation ability and yet possess a linear in the 

parameters structure. In the hidden layer, the Euclidean distance from the cur­

rent equalizer input vector to a number of centres is calculated. The Euclidean 

distances are then passed through a non-linearity which is usually a Gaussian 

function of the form
/(y) = exp(-y2/a2)

where a is real constant. As discussed in Appendix A.4, other choices for the 

non-linearity /(.) can typically include the thin-plate-spline function, the multi­

quadratic and inverse multi-quadratic functions. In the output layer, the outputs 
from the non-linear functions are combined by a weighted linear combiner to form 

the equalizer output.

By appropriate choice of a sufficiently large number of centres, the RBF 
equalizer has been shown to approximate both the adaptive optimal symbol de­

cision Bayesian TE and Bayesian DFE structures [194]. The gradient descent 

LMS algorithm can readily be used to train the RBF equalizer and the training 

will be guaranteed to converge to the single global minimum of the MSE surface 

[188]. However, the ability of the adaptive RBF equalizer to provide the optimal 

equalization performance is crucially dependent upon whether its centers can be 

positioned at the desired channel states [194]. A supervised clustering algorithm 

has been proposed [194] for updating the position of the basis functions in the 
input hidden layer which in turn, increases the number of computations required 
for efficient training of the RBF equalizer in order to realize the optimal perfor­
mance. The computational cost required by the RBF for fully implementing the 
optimal Bayesian TE is also often unacceptably high [16], and the RBF equalizer 
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has to be operated with fewer centres and consequently sub-optimal performance. 
Furthermore, complete specification of the RBF equalizer namely, the number of 

basis functions (centres) and their spread required, for optimal performance re­

quires a priori knowledge of the additive noise variance and the channel order 

(which determines the number of desired channel states), the estimation of 
which will further add to the computational load.

The Functional-Link Neural Network (FLNN) based Adaptive Non­

linear Equalizer

The conventional non-linear-in-the-parameters Functional-Link Neural Network 

(FLNN) discussed in Appendix A.5.2 was proposed as a non-linear adaptive TE 

structure by Gan, Soraghan and Durrani [163] [164] and shown to offer superior 

performance (in terms of equalizer convergence speed and Bit Error Rate charac­

teristics) compared to both the MLP and the APP based equalizers, for equalizing 

communications channels in the presence of ISI and additive white Gaussian noise. 
The structure of the Feedforward Functional-Link Equalizer (FFLE) consists of 

two layers:

• Functional-Link Expander Input Layer: It performs a non-linear trans­

formation which maps the input space onto a new larger dimensional output 
space. Actual choice of functions was discussed in [164]. The purpose of 
these functions is to extract certain useful features of the input data which 

render easier separation of the input classes.

• Output Layer comprising a Linear Combiner and a Sigmoidal 

Thresholder: At this stage the weighted values of the enhanced input 

functions F(k) are linearly combined before being fed into a sigmoidal unit. 

The weights wt(fc) where i = 0,1,..., N are updated using the Delta Rule 
(DR) algorithm.

The FFLE has been shown to be capable of equalizing both linear and non­

linear channel models in the presence of ISI additive noise [164], on account of its 
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ability to form highly non-linear decision regions. However, the Feedforward 

Functional Link Equalizer (FFLE) requires a large number of functional-link 

terms for near-optimal equalization performance, and like the MLP and VNN 

based adaptive equalizers lacks a general design (specification) algorithm.

In chapter 6 of this thesis, a new procedure for the design of FFLE of an 
arbitrary order is presented, which is shown to give highly useful insights into its 

computational requirements. Two novel approaches for the DFE structures based 
on the FFLE are also introduced along with their design strategies, and their 

performance compared to the FFLE and other neural network based adaptive 

feedforward (TE) and DFE structures.
Other ANN based equalizers include the Self-Organizing Map (SOM) based 

equalizer [54], which operates as an efficient blind equalizer capable of cancelling 

both the linear and non-linear channel distortions. However, this approach ex­

hibits poor performance in severely amplitude distorted channels. Another ANN 

based equalizer structure has been recently reported based on the Recurrent Neu­

ral Network (RNN) [55], and shown to consistently outperform the LTE and MLP 

based equalizers in the equalization of both linear and non-linear dispersive chan­

nels. However, its performance was not compared with the optimal Bayesian TE 

or MLVA structures, and employed the computationally expensive Real Time 

Recurrent Learning (RTRL) algorithm for its weight updates.

A classification of various trained adaptation equalizers described in this 

chapter, in terms of types, structures and algorithms is given in Figure 3.2. This 

chart extends that reported by Proakis [155] and Gan [164].

The next section introduces the second digital communications application 

considered in this thesis namely, the problem of co-channel interference suppres­
sion in digital communications systems. Following a formulation of the problem, 

a review of the various equalizer solutions reported to date is given.
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EQUALIZERS

Figure 3.2: Classification of various Equalizer Types, and Algorithms
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3.3 Co-channel Interference Supression in Dig­

ital Communications Systems

Adaptive equalization is known be an important technique for combating distor­
tion and inter-symbol interference in communications channels. However, many 

communications systems are also impaired by what is known as co-channel in­

terference. Many digital communications systems such as cellular radio and dual 

polarised micro-wave radio, for example, employ frequency reusage and often 

exhibit performance limitation due to co-channel interference [167]. Frequency 
reuse is referred to the employment of radio channels on the same same carrier 

frequency to cover different areas or cells situated sufficiently apart from one an­

other, and allows cellular radio systems to handle far more simultaneous calls 

than the total number of allocated channel frequencies. Signals from co-channel 

cells (i.e. cells of the same channel frequency) will however interfere with each 

other. The degradation in quality due to co-channel interference is often more 

severe than that caused by additive noise or ISI [170]. In land mobile radio sys­

tems for instance, geographical frequency reuse is used to provide a system with 
a high traffic carrying capacity, using a limited amount of the radio spectrum. 

The extent to which frequencies can be reused is limited by the tolerance of the 
receiver to co-channel interference. The traffic capacity of the system is directly 

linked to the extent of frequency re-use, and consequently to a receiver’s ability 
to combat co-channel interference. The optimal solution to the problem assumes 
perfect knowledge of the mobile environment [131]. As the mobile environment 
is unknown and can change, adaptive equalizers are therefore required in these 

communications systems in order to achieve an acceptable error-rate performance 

[131] [190]. Other examples of co-channel interference can be found in [167].

3.3.1 Problem Statement

The discrete time model of the data transmission system considered in this thesis 

is shown in Figure 3.3. In this model, H0(z) is the dispersive channel transfer
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function and represent the interfering co-channels. All channels

are modelled by Finite Impulse Response (FIR) filters as:
ii 

= 52 = 04, • • •, 7
J=o

In Figure 3.3, -so(^) represents the transmitted data (which is known during 
the equalizer training mode) and Si(k), i= 1,... ,7 are the unknown interfering 

data sequences. All Si i= 0,..., 7 are assumed to be equiprobable and bipolar 
independent identically distributed (iid) binary sequences (i.e. taking values +1 

or —1). The dispersive channel output y(k) and the output from the co-channels 

c(k) are corrupted by Additive White Gaussian Noise (AWGN) of zero mean 
and variance All Si(k) i= 0,1,..., 7 are assumed to be uncorrelated with n(k). 
The overall channel observation can thus be written as:

y(k) = y(k) + c(k) + n(k)

where
io

= 52 hojso(k - j)
j=o

with l0 being the order of the distorting channel; and

c(^) = 52 52 hijs^k - j)
«=1 j=o

where k, (i = 1,... ,7) is the order of the i — th interfering co-channel.

If E[^2(fc)] = of (where E[.] is the expectation operator) and £[c2(A?)] = o?; 
then the following expressions can be defined:

The Signal to Noise Ratio (SNR) is given by:
2

SNR =

The Signal to Interference Ratio (SIR) is defined as:
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And the Signal to Interference plus Noise Ratio (SINR) is given by:

SINR =

The task of any indirect-modeling co-channel equalizer is: given the over­
all channel observation y(k), estimate the transmitted data s0(k). The symbol 

decision equalizer at any sample instant k processes the m most recent channel 

observations, and makes a decision so(k — r) regarding the symbol transmit­

ted at k — r, where the integers m and t are referred to as the equalizer order 
and delay respectively. During the training period of most adaptive equalization 
systems (including cellular mobile radio), the reference desired signal s0(k — t) 

which is to be re-constructed, is available, whereas the other interfering signals 

Si(k^ i = 1,..., 7 are not known.

Figure 3.3: Data Transmission System involving co-channel interference

3.3.2 Existing Algorithms

For equalization of channels in the presence of ISI, AWGN and co-channel inter­

ference, the following developments have been recently reported. In [29] Wales 
presented a reduced complexity receiver structure for improving the tolerance of 

a receiver to the presence of like modulated co-channel interference. Performance 
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improvements were demonstrated over a conventional receiver for static channels 

using an analytical technique, and for Rayleigh fading channels using Monte Carlo 

simulation techniques. However, for Rayleigh fading channels, the performance of 

the receiver structure was seen to degrade at high signal to interference ratios [29]. 

In [169] an equalizer structure for combating co-channel interference was described 

that relied upon the stronger of the wanted and interfering signals to capture a 

conventional BPSK demodulator. The detected signal was then re-modulated 

and cancelled from the received signal to allow detection of the weaker signal. 

This approach has a low complexity but performance improvements are strictly 
limited to situations where the interfering signal level exceeds that of the wanted 
signal and the technique has yet to be extended to time dispersive channels. In 

[170] Giridhar, Shynk and Gooch presented non-linear co-channel demodulation 

techniques based on the MLSE and the Maximum Aposteriori Probability (MAP) 

symbol detection for joint recovery of both the desired and the interfering signals. 
However the algorithms are computationally expensive and assume perfect a pri­
ori knowledge of both the primary and interfering channels. Also they provide 
optimal performance only for the case of comparable energies of the desired and 
interfering signals. In [190] Chen and Mulgrew employed a non-linear adaptive 

equalizer based on the Radial Basis Function (RBF) neural network to overcome 

co-channel interference. A complex two-stage learning strategy was employed to 

model the effects of the channel ISI and co-channel interference and thus provide 

the optimal Bayesian equalization solution. Performance improvements were re­

ported over the LTE for moderate to high signal to interference ratios. However, 

even for small orders of the primary and interfering channels, computing the op­

timal equalizer performance using the feedforward RBF is extremely costly and 

impractical as a prohibitively large number of centres are needed to represent an 

equal number of the noise-free observation states. Determination of the number 

of noise free observation states (which set the required number of RBF centers 
for optimal performance) also requires apriori knowledge of the orders of both 
the distorting channel and the unknown interfering co-channels.
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In chapter 6 of this thesis, we investigate the use of the conventional FFLE 

and new DFE structures in overcoming co-channel interference in digital commu­

nications systems.

3.4 Conclusions

This chapter has reviewed two important digital communications applications 

namely, the problem of linear and non-linear communications channel equaliza­

tion in the presence of ISI and additive noise; and the task of overcoming co­

channel interference in digital communications systems. Various approaches re­

ported to date to solving the above problems have been discussed with particular 

emphasis on the ANN based adaptive non-linear equalizer solutions. It has been 

shown through the use of the optimal Bayesian TE solution that the equalization 

of communications channels in the presence of ISI and additive noise, is inherently 

a non-linear problem and the optimal equalizer has to possess non-linear decision 
making capabilities. For the additional case of co-channel interference supression, 
the optimal Bayesian solutions derived in [190] [196] have also concluded the need 

of non-linear adaptive equalizer based solutions. These facts have in recent years, 
motivated the design of ANN based equalizers.

In the next chapter, a new Feedforward ANN structure is proposed for efficient 

modeling of non-linear dynamical systems.



Chapter 4

New Feedforward Functionally
Expanded Neural Network For

Non-Linear Dynamical System
Modeling Applications

4.1 Introduction

Feedforward neural networks capable of learning complex input-output mappings 

were discussed in chapter 2. It was shown how, given a set of inputs and desired 
outputs, an adequately chosen neural network can capture the underlying dynam­
ics of the non-linear system (that generated the data set) through an appropriate 

learning mechanism.
In section 4.2 of this chapter, a new two-layer linear-in-the-parameters Feed­

forward Functionally Expanded Neural Network (FFENN) structure [175] is pre­

sented for efficient modeling of chaotic and equation-error type non-linear dy­
namical systems. New non-linear basis functions are proposed for the FFENN’s 
single hidden layer and the rationale behind their choice is also discussed. The 

60
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new FFENN structure employing the proposed terms in its hidden layer is essen­
tially a hybrid neural network incorporating to a variable extent, the combined 

modeling capabilities of the conventional MLP, RBF and VNN structures. A gen­

eral design strategy for specifying the functional expansion model at the hidden 

layer of the FFENN for an arbitrary number of network inputs is also presented. 

The error-surface of the FFENN is shown to be uni-modal allowing high speed 

single-run learning. A least squares based learning algorithm is derived for the 

FFENN thereby alleviating the non-linear learning difficulties associated with 

conventional multi-layered feedforward ANNs. A new pruning technique based 

on an iterative pruning re-training strategy coupled with correlation and chi- 
squared statistic based model validity tests [109] is also devised in order to opti­
mise the size of the FFENN structures for non-linear dynamical system modeling 

applications.
In section 4.3, various case studies using simulated chaotic, NARX, NAR and 

real world noisy, non-linear time series processes are used to compare the mod­

eling and prediction performance of the FFENN with other recently reported 
feedforward and recurrent neural network based predictor models [42]. The re­
spective contributions of the various proposed basis functions within the FFENN 

hidden layer are also illustrated in the various case studies.

4.2 The new Feedforward Functionally Expanded 

Neural Network FFENN structure

The complete two-layer FFENN is illustrated in Figure 4.1. It comprises a func­

tional expander within its single hidden layer and an output layer. The functional 

expander performs a non-linear transformation which maps the input space onto 

a new larger dimensional non-linear hidden space. The choice of basis functions 
employed in the functional expander discussed in the next sections 4.2.1, 4.2.2 

and 4.2.3.
The output layer of the FFENN shown in Figure 4.1 comprises a set of linear
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n INPUTS

Figure 4.1: The Feedforward Functionally Expanded Neural Network

combiners. Thus the overall FFENN structure can be seen to possess non-linear 
approximation ability by virtue of the non-linear functional expander employed at 

its hidden layer and yet, learning of its output layer weights is a linear problem. 
It is this latter characteristic of the FFENN that provides the motivation for 

exploiting its use in complex real world non-linear system modeling applications. 
Also illustrated in Figure 4.1 is a function selection (pruning) process which will 

be discussed in section 4.2.5.

In the next section 4.2.1, a formal scheme is presented which enables the 

design of a functional expander for any number of FFENN inputs. New functional 

terms are proposed for the FFENN hidden layer’s functional expansion model in 
order to enhance its non-linear approximation ability, and the rationale behind 

their choice is discussed in sections 4.2.2 and 4.2.3.
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4.2.1 Design Strategy for the FFENN

For any number n of FFENN inputs all normalized to within the range (+1, —1), 

expand the inputs using the following functional expansion model F(k):

F(k) = sum of the following (linear and non-linear) N basis functions:

1. zero-order (de) term (resulting in 1 term).

2. original input terms (resulting in n terms). These terms will enable model­

ing of linear systems.

3. sine expansion of the n inputs, comprising sin(xJ), sin(2a\) and sin(3ic8) 

terms for i = 1,..., n (resulting in a total of 3n terms).

4. cosine expansion of the n inputs comprising cos(xi), cos(2xt) and cos(3a?i) 

terms for i — 1,..., n) (resulting in a total of 3n terms)

5. product of each input with the sine and cosine activation functions of other 

inputs comprising Xi sin^) and Xi cos(a:j) terms (for i j i,j = 1,..., n) 

resulting in a total of 2n(n — 1) terms.

6. Outer-product expansion of the n inputs resulting in ((P2+P3+,..., +Pn~i } 
1) terms for n greater than two inputs, where Pf = where ! denotes 

factorial. Note that for n = 2 inputs the outer-product expansion will result 

in 1 term, and for n = 1 there will be no outer product terms).

The design strategy for the FFENN described above will now be illustrated 

by examples.
For a single input FFENN(1,2V), the expansion model F(k) will comprise the 

following N = 8 terms (assuming x(k-l) represents the single time series sample 

used as input):

F(k) = x(k — 1), sin(a?(A: — 1)), sin(2z(A; — 1)), sin(3;r(fc — 1)), cos(x(A: — 1)), 

cos(2x(A; — 1)), cos(3z(A; — 1)), 1 (4-1)
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For a 2-input FFENN(2,Æ), the N = 20 term expansion model F(k) is de­

vised as follows (assuming x(k-l) and x(k-2) represent the two time series samples 

used as inputs):

F(k) = 1, x(k — 1), x(k — 2), sin(a?(fc — 1)), sin(2x(A; — 1)), sin(3a:(A: — 1)), 

sin(x(k — 2)), sin(2z(fc — 2)), sin(3æ(À; — 2)), cos(æ(A: — 1)), 

cos(2æ(à; — 1)), cos(3æ(fc — 1)), cos(æ(fc — 2)), cos(2æ(À; — 2)), 

cos(3x(fc — 2)), x(k — 1) sin(x(fc — 2)), x(k — 1) cos(æ(À: — 2)), 

x(k — 2) sin(a;(fc — 1)), x(k — 2) cos(x(A: — 1)), x(k — l)x(k — 2) (4.2)

For a 3-input FFENN(3,Æ), F(k) will now comprise the following N = 38 

terms:

F(k) = l,x(k — l\x(k — 2),x(k — 3),sin(a;(A: — 1)), sin(2z(A: — 1)), 

sin(3x(A; — 1)), sin(a:(À; — 2)), sin(2z(A; — 2)), sin(3z(À; — 2)), 

sin(æ(A; — 3)), sin(2x(A; — 3)), sin(3a;(A: — 3)),cos(z(fc — 1)), 

cos(2x(A; — 1)), cos(3æ(/i: — 1)), cos(x(A: — 2)), cos(2æ(A; — 2)), 

cos(3x(fc — 2)),cos(æ(fc — 3)), cos(2x(k — 3)), cos(3æ(A; — 3)), 

x(k — 1) sin(æ(fc — 2), x(k — 1) sin(fc — 3), x(k — 1) cos(æ(A; — 2), 

x(k — 1) cos(a?(& — 3)), x(k — 2) sin(a;(A: — 1)), x(k — 2) sin(x(Ar — 3)), 

x(k — 2) cos(x(& — 1)), x(k — 2) cos(x(fc — 3))x(k — 3) sin(a;(A; — 1)), 

x(k — 3) sin(x(A: — 2)), x(k — 3) cos(æ(fc — 1)), x(k — 3) cos(x(A; — 2)), 

x(k — l)x(k — 2), x(k — l)x(k — 3),x(k — 2)x(k — 3), 

x(k — l)x(k — 2)x(k — 3) (4-3)

For a 4-input FFENN(4,A^), F(k) comprises N = 64 terms illustrated below:

F(k) = [l,x(k — i), sin(jx(k — z)), cos(Jx(k — z)), i = 1,... ,4 j: = 1,..., 3] 

[x(k — i) sm(x(k — j)), x(k — z) cos(æ(fc — j)) i j i, j = 1,..., 4] 

x(k — l)x(k — 2), x(k — V)x(k — 3), x(k — l)æ(fc — 4), x(k — 2')x{k — 3)
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n 
T
2
3
4
5
6
7
8
9
10 
11
12
n

N
8

20
38
64
102
160
254
416
710
1264
2334
4432

1 + 2n2 + 4n + P?

Table 4.1: General Design Strategy for (n,N)FFENN

x(k — 2)x(k — 4), x(k — 3)x(k — 4), x(k — l)s(A: — 2)a;(A; — 3), 

x(k — l)x(k — 2)x(k — 4), x(k — l)x(k — 3)x(k — 4),

x(k — 2)x(k — 3)x(k — 4), x(k — V)x(k — 2}x(k — tyxik — 4) (4.4)

Note that in the above examples, past delayed values of the same input 

(x(k) = x{k — 1),..., x(k — n)) have been used as explicit inputs to the FFENN. 

The above expansion models also apply to the case of several distinct inputs 

a?i(A:), X2{k\ ..., xn(k) being used as FFENN inputs.
If the above expansion models are scaled to larger input dimensions, then 

Table 4.1 can be constructed relating the number of FFENN inputs n to the 

number of terms N in the functional expansion model F(k). It is interesting to 

note that the RBF network with fixed non-linear hidden layer basis functions or 

centres (and widths) can be regarded as a FFENN. The conventional Functional 

Link Neural Network (FLNN) discussed in the Appendix A.5.2 also resembles 

the above FFENN in respect of employing a functional expansion of the inputs. 
However, the FLNN possesses a non-linear in the parameters structure (as its 

output layer is essentially a perceptron requiring the non-linear Delta Rule (DR) 
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for its weight updates); and most importantly the nature of its functionally ex­

panded (trigonometric) input terms also differ. The functional expansion model 
employed in the feedforward FENN is unique as specified in the design strategy 

above and discussed in the next section. The VNN which employs a purely poly­

nomial expansion of its inputs can also be considered to be a special case of the 
FFENN, in which the number of polynomial expansion terms grow exponentially 

with increasing input dimensions. As can be seen from Table 4.1 however, an in­
crease in the number of the inputs does not lead to an exponentional increase in 

the size of the FFENN hidden layer (expansion model), unlike the VNN and RBF 

structures. However, it can also be seen from Table 4.1 that for inputs greater 
than 10, the computational requirements of the FFENN hidden layer become 

excessive and practically difficult to realize, unless an effective pruning strategy 

is employed. The pruning of the FFENN is discussed in section 4.2.5.

The non-linear approximation ability of the FFENN resulting from use of the 

above expansion models will be illustrated through various simulated and real- 

world non-linear time series modeling applications in section 4.3 of this chapter. 

In the next sections 4.2.2 and 4.2.3, the rationale behind the choice of the proposed 
non-linear basis functions in the design strategy above is discussed in terms of 

the modeling capabilities possessed by their underlying structures.

4.2.2 Discussion on Choice of Non-linear Basis Functions

For the input x normalized to within the range (+1,-1), plots of the cosine 
activation functions cos(x), cos(2x) and cos(3x) are shown (superimposed) in 

Figure 4.2. Plots of the sine activation functions sin(x), sin(2z) and sin(3x) are 
illustrated in Figure 4.3. As can be seen from Figure 4.2, the cosine basis functions 

in fact emulate the Gaussian bell shaped functions similar to those employed in 

the RBF network [187] (see Appendix A.4); whereas the sine basis functions in 

Figure 4.3 simulate the squashing sigmoidal shaped activation functions similar 

to those employed in the MLP network.
The other proposed non-linear basis functions comprising the outer-product 
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expansion of the FFENN inputs can in fact be considered to be a polynomial 

expansion of the inputs without the n — th power of the inputs (see Appendix 

A.5.1).
And finally, the other non-linear basis functions proposed for the FFENN hid­

den layer’s functional expansion model include terms comprising the product of 
each FFENN input with the sine and cosine activation functions of other FFENN 

inputs. Comparative plots of xsin(a?) and scos(a:) are illustrated in Figures 4.4 

and 4.5 respectively. As can be seen from Figure 4.4, the x sin(x) activation 

function emulates a multi-quadratic type non-linearity which is also commonly 
employed in the RBF network (see Appendix A.4); whereas the a?cos(x) basis 
function illustrated in Figure 4.5 approximates a squashing type sigmoidal acti­

vation function commonly employed in the MLP network. These higher order 
cross-terms in the FFENN expansion model can be considered to bridge the ap­

proximation abilities provided by the stand-alone polynomial type outer-product 

terms and the orthonormal sine and cosine basis functions.

Hence the new FFENN structure employing the above proposed non-linear 

basis functions within its single hidden layer can be considered to be a hybrid 
neural network incorporating to a variable extent, the rich modeling capabilities 

of the MLP, RBF and VNN structures.

4.2.3 Approximation Ability of the FFENN

Recalling that polynomials can be used to approximate any non-linear continuous 
function </>(.) : Rn —> Rm to an arbitrary degree of accuracy, it is interesting to 

note that the sigmoidal activation function employed in each node of the conven­
tional MLP (which is known be a universal approximator), can be expressed as 

an inverted polynomial series:
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Figure 4.2: Plots of cos(a;), cos(2a?) and cos(3;r)

Figure 4.3: Plots of sin(x), sin(2a?) and sin(3rr)
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Figure 4.4: Plot of x sin(x)

Figure 4.5: Plot of x cos(x)
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Thus it can be confidently said that if a sufficient number of such higher order 

non-linear mapping functions are employed in the FFENN hidden layer’s func­

tional expansion model set, such as the orthonormal basis functions that can be 
expressed as polynomial series: namely, 

the sine activation functions

sin(aa:,) = (axf) — (axi)3/3! + (aa:,)5/5! —,... for a = 1,2,3 for i = 1,... ,n

which comprise an infinite series of odd power expansion of the n inputs, 

and the cosine activation functions

cos(cta?i) = 1 — (axi)2/21 + (ax,)4/4!—,... for a = 1,2,3 for i = 1,... ,n

which comprise an infinite series of even power expansion of the n inputs; 

and the higher-order odd cross-terms

¡rising) = XiXj — art(x3/3!) + x,(a;y/5!)—,... for i j, i,j = l,...,n

which in fact comprise higher order cross-products between each FFENN input 
with an infinite series of odd power expansion of the other FFENN inputs;
and finally the higher-order even cross-terms

Xi cos(x.f) = Xi — x,(sj/2!) + Xi(x*/4V)—,... for i ± j, i,j = l,...,n

which in fact comprise higher order cross-products between each FFENN input 
with an infinite series of even power expansion of the other FFENN inputs; then 

the FFENN can be confidently said to uniformly approximate <$(.) to within an 

arbitrary accuracy. Thus, employment of the above proposed basis functions in 

conjunction with the polynomial-subset outer-product (joint activation) terms 
can be seen to provide a very rich FFENN input functional expansion model, 
which may additionally (like the Volterra Neural Network) also provide highly 

useful insights into the physical composition of the underlying non-linear system 

dynamics.

It is important to note that the design procedure presented in section 4.2.1 

above provides a useful starting point. Nevertheless, the functional expansion 
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model of the FFENN is extremely flexible in that, virtually any function of the 

input such as tanh(f), exp(.\ etc. could also be employed. In practice some phys­
ical knowledge of the non-linear system to be identified can also be incorporated 

into the functional expander. On the other hand, if no a priori system knowledge 

is available and a more enhanced FFENN approximation to the underlying system 
is required than that provided by use of the above expansion models, then one 

can easily include for instance, additional higher order polynomial terms (from 
the Volterra Series expansion of the inputs) in the FFENN functional expansion 

model; as the Volterra Series model is well known to be able to approximate any 
non-linear continuous function </>(.) to within an arbitrary accuracy [63].

4.2.4 Derivation of the FFENN Learning Algorithm

The output weights for a general Multiple Input Multiple Output (MIMO) 

(n,N;m)FFENN (with n inputs, a N term functionally expanded input model and 
m outputs) are updated as follows:

Defining the hidden layer ( with a [lxA] non-linear expansion model of the 

input) vector at time k as:

F(k) = ... Mk)]T

And the weight vector of the zth output node as:

IVi(fc) = [wi,(fc)... WNi(kf]T for i — 1,..., m outputs

where the superscript T denotes vector (or matrix) transpose.
1. Compute the m FFENN outputs:

yi(k) = FT(k)Wi(k — 1) for ¿ = l,...,m outputs (4-5)

where F(k) are the functionally expanded input terms which transform the in­

put space Rn of n inputs onto a new non-linear hidden (or intermediate) space 

of dimension RN. The overall input-output mapping of the FFENN is thus 
Rn RN Rm.
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2. Compute (prediction) error for each output (where di is the ith desired output): 

e^k) = di(k) - yi(k) (4.6)

The mean squared error (MSE) is therefore:

E^] = E(di(k)2)-2W^k-l)E(<di(k)F(<k>))+W^k-l)E(F(k)FT(k^Wi(k-ly) 

(4-7) 
where E is the statistical expectation operator, E(F(k)FT(k)) is an [N x TV] auto­

correlation matrix of the functionally expanded input vector F(kf, and E(di(k)F(k)) 
is an N element cross-correlation vector between the desired signal dfk) and F(kf 
The minimum MSE is obtained by setting the weight derivative of the MSE cost 

function to zero as follows:
3^1 _ n 

W(A: - 1)
which results in:

-2E(di(k)F(k)) + 2E(F(k)FT(k))Wi{k - 1) = 0

The optimum FFENN weight coefficients Wtopt(k — 1), which minimize the 

MSE are thus the solution to the following set of N extended Wiener-Hopf equa­

tions:

E(F(k)FT(k))Wiopt(k -1) = E^F^) for ? = l,...,m (4.8)

Assuming that E(F(k)FT(k)) is non-singular, then the optimum FFENN weight 

vector will be unique given by:

W.^k - 1) = E(F(k')FT(k)y1E(di(k)F(k')') (4.9)

where the subscript (—1) denotes matrix inversion. The corresponding mini­
mum MSE (MMSE) for the FFENN is thus obtained by directly substituting for 

Wiopt(k — 1) into equation 4.7 above, resulting in:

MMSE = E^^k)) - W^fk - l)E(di(k)F(k)) (4.10)
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which includes the best linear (Wiener) MMSE for the case of F(k) = [xi(fc)... xn(^)], 
that is, without a non-linear functional expansion of the inputs. The advantage 

of this particular FFENN structure is that linear adaptive filter theory can be 
readily applied for on-line adaptation.

Note that for the case of FFENN inputs X{(k\ i = 1,... ,n and desired out­

puts di(k\ i — both being wide-sense stationary ergodic signals, the

correlation matrices, E(F(k)FT(ky and E(di(k)F(ky) are time-invariant, and 

hence Wiopt(k — 1) will also be time-invariant. However, as can be seen from 

equation 4.9, computation of Wtopt(k — 1) requires matrix inversion and is there­
fore computationally expensive, especially if the data are time-varying and a new 
optimum weight vector must be calculated at each iteration. Note also that the 

quadratic form of the mean squared error expression (equation 4.7 above) with 

respect to the FFENN weights, shows that there will be no local minima in the 

error surface. In practice, fast and certain convergence may be obtained by use of 

the following recursive weight update, which overcomes the need for computation 

of matrix inversion:

3. Update FFENN weights for each i = 1,... , m outputs using:
Exponentially Weighted Recursive Least Squares (RLS) Update:

The exponentially weighted Recursive Least squares RLS (Kalman) estimator 
can be derived by minimising the following cost function with respect to the 

weight coefficient vector W^k)

t=i

where the ensemble averages have now been replaced by time averages, and A 

represents a weighting or forgetting factor € (0,1). Thus exponential weighting 
into past data has been introduced in order to allow modeling of time-variant 
systems. The optimum weight vector for each output is now readily given by the 

extended Wiener solution:

(4.11)
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where the auto-correlation matrix R(k) is now defined as:

k
R(k) = '£Xk~tF(t)FT^ (4.12)

t=i

and the cross-correlation vector Oi(k) is:

k
0i(k) = Y/Xk-tdi(t)F(t) (4.13)

tel

Note that R(k) in equation 4.12 above, can also be written recursively as:

R(k) = XR(k - 1) + F(k)FT(k) (4.14)

The inverse of R(k} can now be estimated recursively using the matrix inversion 

lemma [78] as follows (assuming P{k) represents R~l{k)')-.

^“A1 1 A + F(t)P(k - l)F(k) 1 1 }

The cross-correlation vector Oi(k) in equation 4.13 can also be written recursively 

as:

0i(k) = XO^k - 1) + di(k)F(k) (4.16)

Substituting for 6i(k) from equation 4.16 above into equation 4.11, yields:

Wiopt(k) = XP^O^k - 1) + d^P^F^) (4.17)

Substituting for P(k) from equation 4.15 into equation 4.17 above, finally results 

in a recursive update for the FFENN weights R^A:) for each output (noting that 

P^k - l^k - 1) = W^k - 1):

Wi(k) = Wi(k — 1) + P(k)F(k)ei(k) for i = 1,..., m outputs (4.18)

where the prediction error €i(k) is as defined in equation 4.6 above. Therefore, 
to summarize, the complete learning algorithm for the FFENN is summarized by 

equations 4.5, 4.6, 4.15 and 4.18 respectively. Numerically robust versions of RLS 
can be used instead of the above, such as the Givens Least Squares algorithm [192] 
or the Square Root RLS [85]. For fixed functionally expanded input terms F(k) 
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at the FFENN hidden layer, the output mean squared error surface was shown 

to be quadratic (in equation 4.7 above) and the RLS algorithm will therefore 

guarantee convergence to the single global minimum. The simpler Least Mean 

Squares (LMS) algorithm which is a stochastic gradient algorithm can also be 
used for updating the FFENN output layer weights as follows:

W^k) = W^k - 1) + ^k)F(k} (4.19)

where p controls the convergence rate. However, the rate of convergence of the 

LMS algorithm is dependent on the spread of the eigenvalues of the input ex­

pansion model’s autocorrelation matrix, E{F{k}FT(k)\ , with a large eigenvalue 

spread dictating a significantly slower convergence rate [128].

On the other hand, the Least Squares criterion based RLS algorithm will 
converge more rapidly compared to the LMS but at the expense of an increased 
computational complexity, O(N2) compared to O(N). The convergence proper­

ties of the RLS and LMS are well established [56]. Various Fast RLS (FRLS) 
algorithms have also been recently proposed to reduce the complexity of the RLS 

from O(N2) to O(N) [93], as have a new class of algorithms linking the normalized 
LMS and RLS algorithms [159], whose listings can be found in [164] and [159] re­

spectively; and can also be readily employed to train the above FFENN structure.

Thus, once the full expansion model at the hidden layer of the FFENN is 
specified (using the design strategy of section 4.2.1), the exponentionally weighted 

RLS algorithm can then be used to provide an efficient means for real time adap­

tation of the network weights. This will give the FFENN a significant advantage 

over the multi-layered neural network structures such as the MLP in recursive 

identification applications.

4.2.5 Pruning of the Fully Expanded FFENN: Use of Model 

Validation Tests

Problem of Overfitting
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A serious issue in the application of any neural network to a problem domain 

is the size of the network as measured by the number of free parameters of the 
network. As for other methods of functional approximation, such as polynomial, 

too many free parameters will allow the network to fit the training data arbitrarily 

closely, but will not necessarily lead to optimal generalization [115]. As discussed 

in Appendix A.6, although there is no general method to determine the optimal 
size of the network for a particular task, there are statistical arguments which 

suggest that the number of training parameters required to fully determine the 

weights in a network are proportional to the number of weights in the network 
[24]. A rule of thumb often cited is that the number of weights be less than one­
tenth of the number of training patterns [115]. Commonly employed methods for 

dealing with this problem in highly non-linear-in-the-parameters multi-layered 

neural networks such as the MLP, are pruning using computationally expensive 

techniques such as optimal brain damage, optimal brain surgeon, weight sharing, 

weight decay, weight elimination and soft weight sharing strategies [24]. For 

the linear in the parameters FFENN, whose response is a linear function of its 

weights, a computationally efficient pruning strategy is employed, as discussed 
below:

The idea in building a parsimonous FFENN model is to include only those 

functionally expanded input terms fi which have a significant contribution to the 
output in the model. In other words, we want to select the dominant or most sig­
nificant terms from the expanded input model set fi,i — 1,..., N to construct the 
parsimonous model. We employ an iterative pruning-retraining strategy whereby: 
the fully expanded FFENN structure (resulting from the design strategy described 
above) is initially trained on the training data set and the output MSE value on 

the training set computed. The insignificant functions in the expansion model 

set with the smallest weights (relative to the largest most significant function’s 

weight) are then successively pruned one by one starting with the least signifi­
cant one. Basis functions with small weights tend to contribute less to the overall 

computation of the FFENN output, and thus are promising pruning candidates.
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After each insignificant function is pruned, the resulting pruned FFENN struc­

ture is re-trained on the same train set in order to determine the optimal weights 

for the remaining unpruned functions, and the resulting output MSE value com­

puted at each stage. The pruning process is stopped at the stage when a pruned 
FFENN is found to be incapable of reducing the output MSE on the training 

set to the desired level or when the model validation tests are found not to be 

satisfied. The model validation tests are discussed later in this section.

The final weights resulting from the above pruning re-training process are 

then fixed and the FFENN’s generalization ability is tested (by performing adap­
tive or iterated predictions) on the previously unseen test data. Extensive simu­
lation results will demonstrate the effectiveness of the above pruning strategy in 

the modeling of both simulated and real-world non-linear time series processes.
Note that the FFENN pruning scheme described above has an off-line training 

requirement, similar to the traditional method of supervised learning employed 

in conventional neural network structures. If however, the pruning strategy is 

omitted, then the fully expanded FFENN can also be employed to learn in an 

on-line fashion similar to Haykin et al's recently reported architecture [90], that 
is, it can learn continuously (using the exponentionally weighted RLS algorithm 

described above) to adapt to statistical variations of the incoming non-stationary 

time series while performing its filtering role at the same time. This capability 

of the FFENN (and its recurrent counter-part) is investigated in chapter 5, when 
it is applied to the problem of on-line adaptive non-linear prediction of highly 

non-stationary signals.

Model Validity Tests

For modeling of non-linear dynamical systems, we propose that the above pruning 
process for the FFENN be used in conjunction with model validity tests [109] in 

order to detect any sort of inadequacy in the modeling process. The need of 

these tests, which have been shown to be a very powerful aid in neural network 

modeling [110], arises owing to the fact that for some non-linear system modeling 
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applications, a detailed knowledge of the non-linear system may be needed in 

order to decide which of the FFENN’s expanded input functions are significant 

and which can be ignored for the application at hand. Thus if a pruned FFENN’s 

input expansion model set does not include all the significant terms constituting 

the underlying system, then the pruned FFENN could still yield a satisfactory 

MSE performance on the training set, but will perform poorly on the test set, that 

is, the pruned FFENN will not be a good representation of the non-linear system. 

Computationally simple correlation based model validation tests employed at the 

end of each training phase should indicate when such a deficient situation arises, 

that is, whether the pruned FFENN model has indeed successfully modeled the 
underlying non-linear system dynamics in order to perform successfully on the 

test set.

The correlation based model validity tests are devised on the principle that, 

if the pruned FFENN model’s structure (represented by number of selected func­

tionally expanded input terms) and parameter (weighting coefficient) values are 

correct, then the network’s output prediction errors should be unpredictable from 
(that is, uncorrelated with) all linear and non-linear combinations of past inputs 
and outputs. The correlation based model validity tests for MIMO non-linear 

systems (with n inputs and m outputs) are given below:

If the identified (that is, trained) FFENN model of the non-linear MIMO 
dynamical system is adequate, then it can be shown that [109] the prediction 
errors eu(k) = ei(fc),..., em(k) (corresponding to each of the m outputs should 
satisfy the following conditions (for FFENN distinct inputs represented by Xi(k) 

for i = 1,..., n):

Reuev(t) — ct(t) (an impulse) i = 1,... ,m v = 1,... ,m

RXuev^ — 0 for all r u = 1,..., n v = 1,..., m

= 0 forr>0 u = l,...,m v = l,...,m w = l,...,n 

R(xuxv)'eST^ = OforaUru=l,...,nv = l,...,n w = l,...,m

R(xuxvf (ewez^T) = Ofor all r u = l,...,n v = l,...,n w = l,...,m z = l,...,m 
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where Rabir) indicates the cross-correlation function between and b(k) at 
lag r, ev(k)xw(k) = ev(k + l)xw(k + 1), (xu(k)xv(k^' = xu(Jt)xv(k) — xu(k)xv(k) 

where xu(k)xv(k) represents the time average or mean value of xu(k)xv(k). In 
practice, the normalized correlations are computed. Note that if several lagged 

values of the same single network input xu(k) are used, that is if xu(k— 1), xu(k — 

2),... ,xu(k — d) are used as explicit inputs, such as for modeling of dynamical 

systems, then the above tests will reduce to the case for identification of Single 

Input Single Output (SISO) non-linear systems, which are summarized below 

(assuming the input variable is x(k) whose lagged values (x(k — 1),..., x(k — n)) 

are used as inputs):

Ree(r) = <t(t) an impulse

Rxe(r) — 0 for all r

Re^x)^} = 0 for T > 0

^'e^) = 0 fOT a11 T

R^y(e2)(r) = 0 for all r

where e(k)x(k) = e(k+ l)x(k+ 1), (x2)'(k) = x2(k) — x2(k\ and x2(A;) is the time 

averaged or mean value of x2(k). The sampled normalised correlation function 

between two sequences a(k) and b(k) is given by:

R ( x ^*=1 a(k)b(k + T) 

^^k^L^Y'2

Normalization ensures that the correlation functions lie in the range (+1, —1) 
irrespective of the signal strengths. The criteria used for model validation is that: 
if all the above correlation functions fall within the (95%) confidence intervals 

(+1.96/^5,—1.96/-\/S) (where S represents the number of system observations 

or output samples used in the modeling (training) process), then the FFENN 
model is regarded as adequate. In general, one can allow for a few data samples 

to lie slightly outside the confidence bands if the system data being modeled is 

real world and the identification procedure is a recursive one [192].
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As an alternative to the above correlation tests, the Chi-squared statistical 

tests introduced by Bohlin [10] and adapted to the non-linear case by Leontaritis 

and Billings [111] can also be used to validate an identified (trained) model. If 

we define Q(fc) to be the following s-dimensional vector:

= [r(k)r(k — 1)... r(k — s + 1)]T

where r(k) is some chosen non-linear function of the past inputs, outputs and 
prediction errors, then the Chi-squared statistic 77 is computed using the formula:

77 = S^^R^fi (4.20)

where
1 s 

rtr = - 22 fi(k)^T{k) 
k=i

and
1 s 

H ^(k)e(k)/(7e 
k=i

where is the variance of the residuals or prediction error e(k). Under the null 
hypothesis that the input-output data are generated by the model, the statistic 77 
is asymptotically chi-squared distributed with s degrees of freedom. Thus, if the 

values of 77 for several different choices of r(k) are within the acceptance region 

(95%), that is
V < X^a)

the identified model can be regarded as adequate, where X2^) is the critical value 

of the chi-squared distribution with s degrees of freedom for the given significance 

level a(0.05) [192].
The power of the above tests in the selection of an appropriate identified 

FFENN predictor model will be demonstrated through the identification of nu­
merous simulated and real world dynamical non-linear time series processes in 
the next section. Note that to date, the above tests have not been shown to be 

applicable to the validation of models of chaotic processes.
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Next are presented extensive simulation results illustrating the application of 

the new FFENN structure to the modeling of a large class of both simulated and 

real-world non-linear dynamical processes.

4.3 Non-linear Dynamical System Modeling Us­

ing the FFENN: Application Examples and 

Comparative Performance Analysis

The rationale of the FFENN, like the RBF, is that a feedforward neural network 

may be viewed as performing a simple curve-fitting operation in a high dimen­

sional space [187]. According to this viewpoint, whenever a sufficient number of 

data points are available, the data should be divided into a fitting (training) set 

and testing set. The former is used in the FFENN expansion model’s selection 

procedure and the latter is used to validate the selected network. This provides 
an interpretation for the two fundamental concepts in neural networks, namely 

learning and generalization. Learning can be viewed as producing a surface in 
multi-dimensional space that fits the set of data in some sense (in the present 

case, Least Squares sense), and generalization is then equivalent to interpolating 

the test data set on this fitting surface [187]. This approach has been adopted in 

the present study.

Specifically, we consider the problem of re-constructing the generator of the 
data, where the data is a single or multi-dimensional time series obtained from 
either simulated chaotic maps, equation-error, output-error processes (see chapter 
2 for details) or real world noisy dynamical processes. The aim in all cases is to 

use the deterministic Feedforward FENN (and the Recurrent FENN developed 

in chapter 5) to attempt a reconstruction of the generator of the data.

Note that as discussed in chapter 2, time series prediction is synonymous with 

modeling of the underlying physical mechanism responsible for its generation [90]; 

and consequently, for the case of chaotic data, it will only be able to capture the 
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short term structure of the time series.

In the following sections, numerous simulation case studies are performed 

using a variety of both simulated and real-world noisy non-linear time series 
processes. The modeling capability of the FFENN has also been compared with 
various other conventional and recently reported feedforward and recurrent ANN 

based predictor models.

4.3.1 CASE I: Modeling of simulated Chaotic Time Se­

ries: Logistic Map, Henon Map and the Mackey 

Glass Equation

The 1st Order Chaotic Logistic Map modeling

For the first application we have used the iterated quadratic or logistic map

y(k) = 4y(k - 1)(1 - y(k - 1))

on the unit interval to serve as an example of deterministic chaos. A single step 

predictor based on a fully expanded (1,8;1)FFENN structure of the form:
8

y(k) = Y/wj(k-l)fj(k)

was postulated comprising eight functionally expanded terms (N — 8) of the 

single past input y(k — 1) as illustrated in equation 4.1 of section 4.2.1. The 

single output of the FFENN provided an estimate of the next step prediction 
y{kY The fully expanded network was evaluated on 200 logistic map samples 
generated from an initial condition y(0) = 0.2. The RLS updating algorithm 

with an exponential weighting factor selected to equal A = 0.92 (as it gave the 

lowest training Mean Squared Error (MSE) value of 0.0046), was employed which 

resulted in the following expansion model at the end of training:

y^k) — —1.246t/(A; — 1) + 6.963 sin(y(fe — 1)) — 0.897 sin(2y(k — 1))

+0.025 sin(3y(A: — 1)) + 8.83cos(y(fc — 1)) — 0.125 cos (2y(k — 1))

—0.041 cos(3y(A: — 1)) — 8.667 (4.21) 
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It can be seen that after just a single pass through the training set (additional 

passes were not found to yield any significant performance gains), the FFENN 

based predictor has identified the significant functional components (basis func­

tions) representing the underlying logistic map time series, whilst attenuating the 

other insignificant expansion terms. To illustrate the advantage of using a linear- 

in-the-parameters FFENN-RLS structure trained by a fast least squares based 

RLS algorithm, an equivalent non-linear-in-the-output-layer weights (1,8;1)FFENN- 

DR predictor was devised by incorporating a sigmoidal activation function (the 

tanh(f) basis function) at its output layer following the linear combiner. The non­
linear Delta Rule algorithm (described in Appendix A.3) was thus employed for 
its weight updates (with an optimally chosen step-size to achieve the fastest con­

vergence), and the FFENN-DR predictor was evaluated on the same 200 sample 
training set. However, the FFENN-DR failed to model the logmap (the output 

error didnot converge to zero) with the above number of training samples, thus 
illustrating the learning difficulty inherent in the conventional non-linear in the 

parameters neural network based predictor models. The squared error curves of 

the FFENN-RLS and the FFENN-DR structures are illustrated in Figures 4.6 

and 4.7 respectively.
The pruning strategy described in section 4.2.5 was used to prune the above 

fully expanded FFENN-RLS predictor model. An optimal (1,3;1)FFENN struc­

ture resulted after selecting the three most significant terms from the expansion 

model of equation 4.21 above (that is, the third, sixth and last terms on the 
right hand side of equation 4.21), and then re-training the pruned FFENN using 

another single pass through the same training set which resulted in a training 

MSE of 0.0057. The final (1,3;1)FFENN structure resulting from the pruning re­

training process comprised the following terms (which represent a one-step ahead 

FFENN based predictor model for the chaotic time series):

y(k) = 3.914 sin(y(fc — 1)) + 7.167 cos(y(k — 1)) — 7.163 (4.22)

Further pruning resulted in a (1,2;1)FFENN structure which was found to
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Figure 4.6: Output Error Squared of the new linear-in-the-output-layer weights 
FFENN-RLS one-step predictor on 200 Logmap Training Samples

Figure 4.7: Output Error Squared of non-linear-in-the-output-layer weights
FFENN-DR one-step predictor on 200 Logmap Training Samples
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be incapable of reducing the training set error to near zero (giving a significantly 

large training set MSE of 0.1375).
To enable comparison with other recently reported neural network predictors 

[42], the generalisation performance of the above trained, fully expanded and 

pruned FFENN predictor models with fixed weights was evaluated (tested) on a 

further 100 point test sequence generated with same initial condition z(0) = 0.2. 
The comparison measure used was the output test MSE computed according to:

Table 4.2: MSE Performance Comparison of Single Step Predictors on the Logistic 

map for 100 samples.

FFENN McDonnel et al

(1,8;1) (1,3;1) (i,2;i) (l,10;l) MLP (1,15;1) MLP

3.5 x 10"10 4.5 x IO“6 4 x 10“4 1.7 x 10~3 2 x 10~4

The results summarised in Table 4.2 are reported for the fully expanded 

(1,8;1)FFENN and the pruned (1,3;1)FFENN structures. The output test MSE 

values produced by these predictor models are compared with the published MSE 

results of the (1,2;1) predictor model reported by McDonnel et al [42], which 

evolved from a parent recurrent HR perceptron after 5000 generations of an opti­
misation process incorporating a complex multi-agent stochastic search technique. 
Two other Back Propagation based (l,10;l) and (1,15;1) feedforward MLP pre­
dictors comprising sigmoidal hidden units (also reported in [42]) have also been 
included in the Table 4.2 for comparison. As can be seen from Table 4.2, both 

the fully expanded and the pruned FFENN-RLS predictor models give a MSE 

significantly lower than the other recently reported structures. Weigend et al 

[115] report using three Radial Basis Function (RBF) nodes to model the logmap 

without further elaboration. A significant advantage of the FFENN based predic­

tor model over McDonnel et al's [42] evolved (1,2;1) feedforward structure is that 
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the significant functional terms constituting the pruned (1,3;1)FFENN struc­

ture, were directly identified from the fully expanded linear-in-the-parameters 

FFENN’s expansion model which evolved after just just a single pass through 

the 200 sample training set. On the other hand, many thousands of generations 

were required by McDonnel et aFs evolutionary search technique in order to yield 
an adequate transversal filter predictor of the correct model order and weighting 

coefficients. Compared to the MLP based non-linear predictors from [42], it can 

be seen that:

• FFENN predictors offer significantly lower MSEs.

• The pruned FFENN predictor employs less than half the number of hidden 
units.

• The linear-in-the-parameters FFENNs employ least squares based learn­
ing algorithms which guarantee fast convergence to the global minimum 

solution, whereas the highly non-linear-in-the-parameters MLP structure 
employs the computationally expensive non-linear Delta Rule based Back 

Propagation (BP) algorithm which requires long training times and also 
suffers from the problem of converging to local minimum solutions (that is, 

can give unpredictable solutions as discussed in Appendix A).

Figure 4.8 gives the state space plot for the optimal 3 term (1,3;1)FFENN 

predictor model outputs and the actual quadratic mapping function. As can 
be seen, the FFENN predictor model illustrated in equation 4.22 employing a 
weighted squashing sigmoidal like basis function (approximated by the sin(?/(A; — 

1))) and a Gaussian like activation function (approximated by the cos(y(k — 1))), 
has clearly produced an interpolation surface to the logistic map which generated 

the data. Note that it does not interpolate the waveform itself which is a fruitless 
exercise as the waveform is chaotic.
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Modeling of 2nd Order Chaotic Henon Time Series

In this case, the Henon time series represented by the following equation (which 
provides chaotic behaviour):

y^k + 1) = 1 - 1.4j/(fc)2 + 0.3y(A: - 1)

with initial conditions y(—1) = y(0) = 0 was modeled by a 2-input (2,20;l)FFENN 

structure employing the N = 20 term expansion model illustrated in equation 

4.2. The output of the FFENN provided the one-step ahead prediction estimate 

y(k + 1)-
The FFENN was initially trained on the first 100 samples of the Henon time 

series using the RLS algorithm with A set to 0.88 as it gave the lowest training 
set MSE of 0.010. Higher values of A were found to result in higher training set 

MSEs. The resulting FFENN’s expansion model was then optimized by succes­

sively pruning off the insignificant functions as discussed in the pruning strategy 

of section 4.2.5. At each pruning step, the pruned FFENN structure was re-trained 

on the same training set in order to obtain the optimum weight coefficients for 

the selected most significant functions. For comparison, a 2-input Volterra Neural 

Network (VNN) employing a 24 term truncated Volterra series expansion model 

(with up to fourth order outer-product expansion of the inputs) also trained using 

the RLS algorithm on the first 100 Henon time series samples with A set to 0.88. 

The (2,24;1)VNN produced an MSE of 0.014 on the training set and employed 
the following 24 term expansion model:

F(k) = y(F-l),y(k-2),y(k-iy,y(Jt-2)\y(k-l)\y(k-2)3,y(k-r)4 

y(k - 2)4, y(k - l)y(k - 2), y(k - l^k - 2), y(k - l)y(k - 2)2 

y(k ~ Fyy(k - 2\y{k - f)y(k - 2)3,y(k - l)4y(k - 2) 

y(k - IM* ~ 2)4, y(k - l^k - 2)2, y(k - l^k - 2)3 

y(k - l)2y(^ - 2)4, y(k - 1 )3y(k - 2)2, y(k - l)3y(k - 2)3 

y(k - Ify^k - 2)4, y(k - l)4y{k - 2)2, y(k - l)4y(A: - 2)3 

y(k - V)4y(k - 2)4 (4.23)
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Table 4.3: Test MSE Performance Comparison of Single Step Predictors on the

FFENN VNN
(2,20;l) (2,6;1) (2,4;1) (2,24;1)

2.43 x 10~8 3.3 x IO“7 1.5 x 10"4 1.44 x 10-7

Henon map for 500 samples.

The output test MSEs of the fully expanded FFENN, its pruned versions, and 

the VNN on 500 test samples are compared in Table 4.3. As can be seen, the fully 

expanded (2,20;l)FFENN employing the rich expansion model combining (to a 

variable extent) the modeling capabilities of the RBF, MLP and VNN, offers a 
significantly superior output test MSE performance compared to the (2,24;1)VNN 

employing a purely polynomial expansion model. The pruned (2,6;1)FFENN pre­

dictor model (which produced a training set MSE = 0.012) and the (2,4;1)FFENN 

predictor model (which produced a training set MSE= 0.011) are seen to offer 
comparable performance to the (2,24;1)VNN. Note that further pruning of the 

(2,4;1)FFENN resulted in the (2,3;1)FFENN which produced a significantly large 
training set MSE of 0.075. Hence, the trained (2,4;1)FFENN was concluded to 

be the optimally pruned FFENN one-step ahead predictor model for the Henon 
time series, and its structure which evolved at the end of training and generated 

the one-step predictions on the test data, is illustrated below:

y(k) = 0.33 sin(?/(fc — 2)) + 5.36 cos(y(k — 1)) — 0.48 cos(2y(k — 1)) — 4.11

A state-space plot for the actual Henon time series and the (2,4;1)FFENN pre­

dictor’s one-step ahead predictions is shown in Figure 4.9. As can be seen, the 

4—term FFENN predictor model comprising a combination of weighted sigmoidal 

and Gaussian shaped basis functions has successfully produced an interpolation 

surface to the 2nd order Henon map which generated the chaotic time series.
The FFENN and the VNN structures were then employed to perform 2-step 

ahead predictions on the Henon time series. Both structures were first trained on 

the first 100 samples using the RLS algorithm (with optimal values of A = 0.999 
for the FFENN and A = 0.95 for the VNN); and then tested for generalization
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Figure 4.9: State Space plot for Henon map outputs and the (2,4;1)FFENN one- 
step predictions.
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Table 4.4: Test MSE Performance Comparison of 2-Step Predictors on the Henon 
map for 500 samples.

FFENN VNN
(2,20;l) (2,5;1) (2,24;1)
0.0404 0.0463 0.0647

that is, used to perform two-step ahead predictions with fixed weights on the 

next 500 samples of the Henon time series. As can be seen from the output 

MSE test values shown in Table 4.4, both the fully expanded (2,20;l)FFENN 
(which produced a training set MSE of 0.219) and the pruned (2,5;1)FFENN 

(which gave a lower training set MSE of 0.087) based 2-step predictors outperform 

the more complex 24 term (2,24;1)VNN based 2-step predictor by producing 

significantly lower test MSEs. This indicates that the FFENN’s richer non-linear 
expansion model is more effective in modeling the underlying dynamics of the 

2nd order Henon map which generated the chaotic time series. Further pruning 

of the (2,5;1)FFENN resulted in a (2,4;1)FFENN structure which produced a 

significantly large training set MSE of 0.684, on account of its inability to capture 

the underlying system representation. Hence the pruned (2,5;1)FFENN structure 

is concluded to be the optimally pruned FFENN 2-step predictor model.

The structure of the optimally pruned (2,5;1)FFENN-RLS based 2-step ahead 
predictor model for the Henon map which evolved at the end of training and was 

evaluated on the test data, is illustrated below:

y(k + 1) = —0.329y(A; — 1) + 0.852 cos(2y(A; — 1)) — 0.015f/(A:) cos(?/(A; — 1)) 

+0.252y(fc — 1) cos(f/(&)) — 0.461ÿ(fc)j/(À; — 1)
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Modeling of Chaotic Mackey-Glass Time Series

The Mackey-Glass equation has been used to represent a model for white blood 

cell production in leukemia patients [39]. The model is complicated by the addi­

tion of a time delay r in the non-linear differential equation as follows: 

dy(k) ay(k — r) ,
„—4 - by(k) 4.24dt 1 + yc(k — r) v 7

Consistent with McDonnel et al [42] and as discussed in Jones et al [43], the 

free parameters in the above model were selected as a — 0.2, b — 0.1, c = 10 

and t = 30. This time series was recently modeled by McDonnel et al using 

a one step ahead (4-5-2-l)Recurrent predictor model comprising 17 parameters, 

which evolved from a parent Recurrent IIR Perceptron after 5000 generations of 

a training process incorporating a complex evolutionary search technique. The 

one-step ahead predictions of their recurrent model on a 500 sample training set, 

and a test set comprising the subsequent 500 time series samples were evaluated. 
The one-step prediction ability of the evolved model was measured in terms of 

the MSE and the average relative variance (arv), which for a set of data samples 

S is defined as [42]:

arv{s} = = MSE
Y^k=Mk) - mean)2

The use of the Mean (average) of the Squared Error makes the arv measure 
independent of the size of S. Additionally, normalization (division by a2, the 
estimated variance of data set) removes the dependence on the dynamic range 
of the data. This normalization implies that if the estimated mean of the data 

(mean) is used as a predictor, then a arv = 1.0 is obtained. The MSE for the 

training set was obtained from the last 450 points of the training set by McDonnel 
et al to allow for the transient effects.

In this section we investigate a new approach for modeling of the Mackey-

Glass equation using the feedforward FENN. A fully expanded two-input (2,20;l)FFENN 

predictor model comprising a 20 term functional expansion model illustrated in 

equation 4.2 was postulated. Two previous time series samples (y(k — 1), y(k — 2))
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Table 4.5: Training Performance Comparison: arv and training set MSE (in 
parenthesis) measures of FFENN and other published Single Step Non-linear 
Predictors on the Mackey Glass Chaotic Time Series.

FFENN McDonnel et al
20 terms 4 terms 3 terms 17 terms

0.0007(2.2 x 10~5) 0.0023(7.2 x IO"5) 0.0266(8.4 x 10-4) 0.0014(5 x IO“5)

were used as inputs to the FFENN whose output thus provided the one-step 

ahead prediction y of the chaotic time series. The exponentionally weighted RLS 

algorithm with a forgetting factor of A = 0.97 was employed for the recursive 
training. The MSE and arv measures of the fully expanded (2,20;l)FFENN on 

the last 450 samples of the 500 sample training set are listed in Table 4.5. Also 
shown are the performance measures achieved by the recurrent predictor model 

of McDonnel et al on the training set. Three and four input (3,38;1)FFENN 

and (4,64;1)FFENN models were found to give lower training set MSE values 
relative to the (2,20;l)FFENN, but were not employed in an attempt to find the 
non-linear FFENN predictor with the minimal complexity.

As can be seen from Table 4.5, a comparison of the performance measures on 

the training set shows that the 20 parameter FFENN predictor model outperforms 

the corresponding 17 parameter Recurrent predictor model reported by McDonnel 

et al. After iterative pruning-retraining of the (2,20;l)FFENN, an optimal 4 term 

(2,4;1)FFENN structure evolved which is illustrated below:

y(k) = 1.991?/(A; — 1) — 0.877 sin(?/(A: — 2)) + Q.738y(k — 1) sin(y(fe — 2))

— 1.045j/(A; — 2) s'm(y(k — 1)) (4.25)

Further pruning of the (2,4;1)FFENN resulted in a (2,3;1)FFENN which produced 

a significantly larger MSE (and arv measures) on the training set, thus reflecting 
its inability in capturing the underlying dynamics of the chaotic time series. The 
performance measures of the above 4 term FFENN one-step predictor model 

on the training set are also given in Table 4.5. The performance measures of 
the further pruned (2,3;1)FFENN are also shown for comparison. As can be 

seen from Table 4.5, the 4 term FFENN predictor model gives similar prediction
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Table 4.6: Test Performance Comparison: arv and test set MSE (in parenthesis) 
measures of the Single Step Non-linear Predictors on the Mackey Glass Chaotic 
Time Series

(FFENN-RLS McDonnel et al
Parameters 20 4 17

arv (test MSE) 0.00057(1.8 x 10"5) 0.0012(3.9 x IO'5) 0.0025(9 x IO"5)

performance compared to the fully expanded (2,20;l)FFENN and McDonnel et 

aVs recurrent predictor models on the training set, whereas the 3 term FFENN 

model is comparatively incapable of capturing the system representation.

The test MSE and arv performance measures of the optimally pruned and 

trained (2,4;1)FFENN predictor model illustrated in equation 4.25 and its parent 

(2,20;l)FFENN model on the 500 sample test set are compared in Table 4.6, along 
with corresponding measures achieved by the the Recurrent predictor model of 

McDonnel et al. As can be seen, the simple 4 term FFENN one-step predictor 

model comprising the weighted linear and non-linear functional terms (namely a 
combination of weighted, sigmoidal shaped activation function approximated by 
the sin(.) term, and multi-quadratic shaped activation functions approximated 

by y(k — t)sin(y(k — j) functions) illustrated in equation 4.25 above, gives sig­

nificantly superior test performance measures compared to the more complex 17 

term optimal Recurrent Predictor model reported in [42]. A sample of the actual 
Mackey Glass time series and the corresponding one-step predictions generated 

by the 4-term FFENN model illustrated in equation 4.25 above, are shown su­

perimposed in Figure 4.10. State space plots for the actual Mackey Glass time 

series and the (2,4;1)FFENN one-step predictor model are also shown in Fig­

ures 4.11 and 4.12 respectively, both obtained from 900 samples. As can be seen 

by comparing the two Figures 4.11 and 4.12, the simple 4—term FFENN one- 
step predictor has successfully produced an interpolation surface to the complex 
Mackey Glass Equation which generated the chaotic time series.

McDonnel et al also report on a two-step ahead predictor model yielding
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() Actual vs. (_■_ _) FFENN 1-step predictions
1.51-------- •--------------------------■---------------- 1—---- T—
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Figure 4.10: Comparison of evolved (2,4;1)FFENN model’s one step predictions 
with actual Mackey Glass test Data.
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Figure 4.11: State Space plot for the actual Mackey Glass Time Series.

Figure 4.12: State Space plot for the (2,4;1)FFENN one-step predictions.
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Table 4.7: Test Performance Comparison: test set MSE of Two-Step Non-linear 
Predictors on the Mackey Glass Chaotic Time Series.

(FFENN McDonnel et al.
Parameters 7 17
test MSE 0.0016 0.0070

an MSE = 0.0070 on the test set. A corresponding (2,20;l)FFENN two-step 

ahead predictor model was devised and upon pruning, an optimal (2,7;1)FFENN 

model evolved which was found to produce an MSE = 0.0016 on the test set. 

The comparative results are summarised in Table 4.7. The final structure of the 
(2,7;1)FFENN two-step predictor model which evolved at the end of training and 

was evaluated on the test set, is illustrated below:

y(k) = 0.957y(A; - 1) - 0.819 sin(2y(A: - 1)) + 0.5626 sin(2i/(fc - 2)) 

+0.0689 cos(2y(A; — 1)) — 0.948y(fc — 1) cos(?/(A; — 2))

+0.045t/(A; — 2) sin(^(A: — 1)) + 1.418j/(A; — 2) cos(^(A: — 1)) (4.26)

Hence, it can be concluded that the proposed richer functional expansion 
models have enabled the the new FFENN one-step and two-predictors (which are 

both feedforward structures), in better capturing the underlying chaotic system 

representation compared to the corresponding more complex, recurrent predictors 
of McDonnel et al.

In their paper, McDonnel et al have also shown their recurrent predictor to be 

more effective than its feedforward counterpart in modeling of the above Mackey- 

Glass time series. Therefore, it is expected that a recurrent FENN based predictor 

would out-perform the above Feedforward FENN predictor. This assertion is 

investigated in chapter 5.
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4.3.2 Case II: modeling of simulated NARX and NAR 

type non-linear Dynamical Systems (including MIMO 

NAR)

NARX and NAR type dynamical systems were discussed in chapter 2. In this 

section, the application of the FFENN to modeling of simulated Single Input 
Single Output (SISO) NARX, NAR and Multi-Input Multi-Output (MIMO) NAR 

time series processes is investigated.

Modeling of a simulated NARX Process

Consider the following simulated NARX time series model [182]:

y(k} = (0.8 — 0.5exp(—y\k — l)))y(k — 1) — (0.3 + 

0.9exp(—y2(k — l)))y(k — 2) + x(k — 1) 

+0.2z(A: - 2) + 0.1t(A; - l)a:(fc - 2) + e(k) (4.27)

where the additive system noise e(k) is a Gaussian white noise sequence with 

zero mean and variance E[e2(A;)] = 0.04, and the system input x(k) is an inde­

pendent sequence of uniform distribution with zero mean and variance 1.0. A 

(4,64;1)FFENN structure comprising the normalized input vector [z(A; — V)x(k — 

2)y(k — l)y(k — 2)] and employing the 64 term expansion model illustrated in 
equation 4.4 was fitted to 500 data points generated from the NARX system 
equation 4.27 above. The fully expanded (4,64;1)FFENN structure was trained 
by the RLS algorithm with A set to 0.99 (as it gave the lowest training set MSE 

of 0.0238) with the FFENN output providing a one step-ahead prediction y(k) 

of the actual system output y(k). The squared prediction errors are plotted in 
Figure 4.13.

The model validity tests for the (4,64;1)FFENN are illustrated in Figure 4.14, 
which show the same order of magnitude as those reported in [182] and confirm 
that the fully expanded FFENN network is an adequate model for the NARX 

system as all the correlation tests are satisfied.
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Figure 4.13: FFENN Output Prediction Errors (squared) on the 500 sample 
NARX training set.

In an attempt to optimize the size of the (4,64;1)FFENN, the iterative pruning- 
retraining strategy coupled with model validity tests (described in section 4.2.5) 
was employed. An optimal sized (4,15;1)FFENN predictor model evolved which 

produced a training set MSE of 0.0239. Its model validity tests were also found 

to be satisfied which confirmed that the (4,15;1)FFENN network is an adequate 

model of the NARX system. Further pruning resulted in a (4,14;1)FFENN net­

work which produced a significantly larger training set MSE of 0.0740 and its 
model validity tests illustrated in Figure 4.15 show that the system inputs are 
highly correlated with the prediction errors, thus confirming that the 14 term 

(4,14;1)FFENN predictor model is not an adequate representation of the under­
lying NARX system.

Hence the pruned and trained (4,15;1)FFENN can be concluded to be the op­
timal sized FFENN model for the NARX system, and its structure is illustrated 
below (which represents a one-step ahead FFENN predictor model):
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Figure 4.14: Correlation Based Model Validity Tests for the fully expanded 
(4,64;1)FFENN one-step predictor. Top left plot is Rei(r) , Top middle plot: 
^x2'e^ ' T°P right plot: R^ , Bottom left plot: Rxe(r} , Bottom middle 
plot: Re(ex){TY The dashed lines represent the 95% confidence bands, and the 
x-axis of each plot denotes the lag r values.
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Figure 4.15: Correlation Based Model Validity Tests for the pruned 
(4,13;1)FFENN one-step predictor. Top left plot is Re2^ , Top middle plot: 

’ T°P right plot: R^ , Bottom left plot: Rxe(r) , Bottom middle 
plot: Re(ex){T}- The dashed lines represent the 95% confidence bands, and the 
x-axis of each plot denotes the lag r values.
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y[k^ = 0.361rr(& — 1) + 1.057 sin(y(k — 1)) + 0.107 sin(z(A: — 2))

- 0.077sm(2y(k - 1)) - 0.166 sin(2t/(fc - 2)) - 0.09cos(y(k - 1))

- 0.406 cos(i/(fc - 2)) + 0.385 cos(a;(A: - 1)) + 0.229 cos(27/(A: - 2)) 

—0.117 cos(2;r(A: — 1)) + 0.036z(A; — 1) sin(j/(A: — 1))

— 0.398t/(fc — 2) cos(y(k — 1)) + 0.152y(k — l)y(k — 2)

—0.012j/(fc - 2)x(k - 2) + 0.267

After the identification procedure, an extra 500 test data points were gener­

ated from the NARX system equation 4.27 by using a different input sequence 

to that used to produce the training set. The measure of predictive capability 

of the fitted (trained) FFENN model over the test set was now chosen to be 

the FFENN model predicted outputs (with fixed weights), rather than the pre­
viously employed one-step ahead predictions (also computed with fixed FFENN 
weights). The model predicted outputs which are often a better metric of the 

trained model’s predictive accuracy or generalization (for the case of non-chaotic 
systems) are defined by [110]:

y(k) = F(x(k - 1), x(k - 2), y(k - 1), y(k - 2))

where F(f) for the case of the FFENN, denotes the hidden layer functional ex­

pansion model. Note that the model predicted outputs are obtained by replacing 

the FFENN input vector [y(k — l)y(& — 2)x(k — l)x(k — 2)] comprising the actual 

system outputs and inputs, by the input vector [x(k — l)x(k — 2)y(k — l)y(k — 2)] 

consisting of the NARX system inputs and the model’s own past predicted out­
puts.

The model predicted outputs of the above pruned (4,15;1)FFENN model as 
well as the parent fully expanded (4,64;1)FFENN model (with fixed weights and 

the system outputs replaced by the models own past predictions), were evaluated 
on the next 500 sample test set and are illustrated in Figures 4.16 and 4.17 
respectively. In Figure 4.16, a few particularly large errors can be seen around 
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the two hundred and seventieth samples (suggesting amplification of the model 

predictions due its own past outputs) whereas, most of the other prediction errors 

can be seen to arise mainly at the peaks of the data.

As can be seen by comparing Figures 4.16 and 4.17, the optimally pruned 

and trained (2,15;1)FFENN network’s model predicted outputs are significantly 
closer to the actual system outputs over the same test data as compared to the 

fully expanded (4,64;1)FFENN model, with the 15 term FFENN predictor model 

yielding an overall test MSE of 0.0229 (Figure 4.17) compared to 0.0331 (Figure 

4.16) produced by the fully expanded FFENN model. This indicates that the 

generalization ability of the FFENN model has been significantly enhanced for 

this application by the use of the pruning strategy.

Figure 4.18 illustrates a general architecture for modeling of any equation­

error (NARX) type non-linear dynamical system using a FFEN network. Note 

that for the non-linear system, it is assumed that the additive system noise is 

uncorrelated (as in equation 4.27 above). However, for the case of additive corre­

lated noise sources, the prediction errors will also be correlated [110] (which can 
be readily detected by the model validity tests), and the corresponding FFENN 
model will consequently be a biased estimator of the underlying non-linear sys­
tem being modeled. The bias can only be eliminated if the prediction errors 

(residuals) become uncorrelated with past measurements. One way to achieve 

this is to model the noise. For the case of additive coloured noise sources, a 
simple linear noise model can be used during the training period; that is, past 
noise samples can be fed as explicit inputs into the FFENN and their weighted 

values linearly combined at the output layer without undergoing any non-linear 
functional transformation. For more complex noise sources however, a detailed 
analysis needs to be carried out.
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(4,64;1)FFLNN Model Predicted vs. Actual NARX outputs

Number of Test Data Samples

Figure 4.16: Comparison of the Actual NARX test outputs (solid line) with the 
fully expanded (4,64;1)FFENN model predicted outputs (dotted line).
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(4,15;1)FFLNN Model Predicted vs. Actual NARX outputs

Number of Test Data Samples

Figure 4.17: Comparison of the Actual NARX test outputs (solid line) with the 
optimally pruned (4,15;1)FFENN model predicted outputs (dotted line).
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Figure 4.18: General equation-error Dynamical System Modeling using the 
FFENN
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Modeling of a simulated NAR Process

Next, consider the following simulated NAR time series [191] generated by:

y(k) = (0.8 - 0.5exp(-y2(k - l)))y(k - 1) - (0.3 +

0.9exp(—y2(k — l)))y(k — 2) + 0.1 sin(7r?/(A; — 1)) + e(k) (4.28)

where e(k} is a Gaussian white noise sequence with zero mean and variance 0.01. 

A two input FFENN employing the input vector [y(k — l)y(k — 2)] and the 

N = 20 term expansion model illustrated in equation 4.2 was fitted to the first 

800 sample (training) set of a total of 1500 observation samples generated from 

the NAR system equation 4.28 above. The RLS algorithm with A set to 1.0 

produced the lowest training set MSE of 0.0112.

The structure of the trained fully expanded FFENN model which evolved at 

the end of training is illustrated below:

y(k) = 0.732y(A: - 1) + 0.929j/(k - 2) + 0.452 sin(y(fc - 1))

+0.686 sin(?/(A: — 2)) — 0.266 sin(2z/(A: — 1)) + 0.103 sin(2?/(A: — 2)) 

+0.051 sin(3t/(A: — 1)) — 0.086 sin (Sy (k — 2)) + 0.207 cos(y(k — 1)) 

—0.699 cos(y(k — 2)) + 0.041 cos(2y(k — 1)) + 0.413 cos(2y(A; — 2)) 

—0.064 cos(3y(A; — 1)) — 0.131 cos(3?/(A; — 2))

+0.152y(k — 1) sin(?/(A; — 2)) — 0.238?/(A; — 1) cos(y(k — 2))

+0.183j/(A: — 2) sin(?/(A: — 1)) — 2.764?/(A: — 2) cos(y(k — 1))

—0.356^(Ar - l)y(k - 2) + 0.215

Several chi-squared tests for the above (2,20;l)FFENN network were com­

puted and all were found to be within the 95% confidence band. Four typical 

chi-squared tests and the auto-correlations of the prediction error e(k) are shown 
in Figures 4.19 and 4.20. These model validity tests confirm that this FFENN 
network is an adequate model for the NAR system.
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Figure 4.19: Chi-squared Statistic 7/ Tests for the fully expanded (2,20;l)FFENN 
model: (a) r{k} = y(k — 1) (b) r(A?) — e(k — l)y(k — 1) (c) r(k) = e(k— V)y(k — I)2 
(d) r(k) = y(k — I)2. The dotted lines indicate 95% confidence limits and the 
x-axis of each plot denote the lags.
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Figure 4.20: Auto-correlations of residuals Re2(r) for the fully expanded 
(2,20;l)FFENN model.

Application of the pruning strategy of section 4.2.5 to the above fully ex­

panded network model resulted in a pruned 3 term (2,3;1)FFENN model com­
prising the three most significant terms, which produced a training set MSE of 
0.0116. The structure of the identified (2,3;1)FFENN predictor model is illus­
trated below:

y(k) = 0.604z/(fc - 1) + 1.696y(k - 2) - 2.864?/(k - 2) cos(y(A; - 1)) (4.29)

Several chi-squared tests for the above model were computed and all were within 
the 95% confidence bands. The auto-correlations of the prediction error e(k) 
for this model are shown in Figure 4.21, and four typical chi-squared tests are 

illustrated in Figure 4.22. The model validity tests confirm that this FFENN 

structure is an adequate model for the time series.

Further pruning resulted in a (2,2;1)FFENN model comprising just the two 
most significant terms from the fully expanded FFENN’s expansion model. How­

ever, the (2,2;1)FFENN model upon re-training produced a significantly larger
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Figure 4.21: Auto-correlations of residuals Re2(r) for pruned (2,3;1)FFENN 
model.

training set MSE of 0.161. The auto-correlations of its prediction errors are 

illustrated in Figure 4.23, which confirm that this model is not an adequate 
representation of the NAR time series system. Hence, the identified 3 term 

(2,3;1)FFENN illustrated in equation 4.29 above, can be concluded to be the 
optimal sized FFENN model for the NAR time series.

In order to best illustrate how accurately the identified (trained) (2,3;1)FFENN 

represents the NAR system, an examination of the autonomous NAR system re­
sponse and the iterative FFENN model response is now made. The iterative 
(2,3;1)FFEN network response is generated from equation 4.29 above (represent­
ing the trained optimal FFENN model) by replacing the inputs [y(k — l)y(k — 2)] 

by the network’s own past predictions [y(k — l)y(k — 2)], that is, the iterative 

FFENN model response is generated (without any knowledge of the actual time 
series values) from

y(k) = 0.604$(fe - 1) + 1.696y(& - 2) - 2.864£(fc - 2) cos(y(k - 1)) (4.30)
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Figure 4.22: Chi-squared Statistic y Tests for the pruned (2,3;1)FFENN model: 
(a) r(k) = y(k — 1) (b) r(k) = e(k — l)y(k — 1) (c) r(k) = e(k — l)y(k — I)2 (d) 
r(k) = e(k — l)2y(k — 1). The dotted lines indicate 95% confidence limits and 
the x-axis of each plot denote the lags.
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Figure 4.23: Auto-correlations of residuals Re2{r) for (2,2;1)FFENN model.

It can easily be proved that without the noise e(k), the simulated NAR system 

(equation 4.28) generates a stable limit cycle as shown in Figure 4.24, where 

the last 900 of a total of 1500 noise-free NAR system observation samples have 
been plotted. The iterative (2,3;1)FFENN response also produces a very similar 

limit cycle as can be seen from the same Figure 4.24, where 700 iterative model 

responses have been plotted. Both the limit cycles have approximately a period 

of 5, in the sense that every five samples approximately complete a circle (2tt 

phase angle) in the state space [191].
Figure 4.25 shows that even though the (2,3;1)FFENN was identified (trained) 

using the noisy NAR system observations, the iterative FFEN network response 
closely matches the response of the autonomous system (e(k) — 0). This demon­

strates that the identified 3 term FFENN model comprising weighted values of 
its past two predicted outputs (y(k — l),y(k — 2)) and a weighted higher order 

sigmoidal-shaped activation function (y(k — 2) cos(y(k — 1)), has indeed captured 

the underlying dynamics of the simulated non-linear system.

Note that the above NAR system was also modeled by Chen and Billings
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Limit cycle generated by autonomous NAR system response

Limit cycle generated by iterative FFENN model response

Figure 4.24: Response of Autonomous NAR system (900 samples) and Iterative 
3-term FFENN model (700 samples). Projection to two subspaces (Limit Cycles).
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[191 ] using the RBF and a linear-in-the-parameters Functional-Link Neural Net­

works (FLNN). In the case of the RBF, the computationally expensive Orthog­

onal Least Squares (OLS) learning algorithm was used to identify an optimal 

RBF model with 30 centres selected from a total of 1000 system observations. 

The non-linearity was chosen to be the thin plate spline activation function for 

all the centres. In the case of the FLNN, the OLS algorithm identified an op­

timal network comprising 9 terms selected from a 7-th order purely polynomial 

expansion model of the inputs. Both the 9 term FLNN which is in fact, strictly 

a Volterra Neural Network (VNN), and the 30 term RBF models provided al­
most identical performance to that provided by the new FFENN model reported 

above. However, the difference in the relative computational complexities of the 

structures is significant, with the FFENN employing just 3 basis functions com­

pared to 30 and 9 employed by the RBF and FLNN models respectively. Also, 

note that the new FFENN model was identified above using a much simpler 

strategy; namely, by starting off with the newly proposed 20 term expansion 
model, the fully expanded (2,20;l)FFENN was initially trained using the fast 
exponentionally weighted RLS algorithm. From the resulting trained FFENN 

model, the insignificant functional terms were successively pruned, and at each 

stage the pruned FFENN model re-trained on the same training set in order to 

obtain the optimal weighting coefficients for the selected functions. The validity 

of the identified pruned FFENN model was verified using simple correlation and 
Chi-squared statistic based model validity tests.
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Extension to modeling of MIMO NAR System

1500 samples of simulated time series were generated using the multi-dimensional 

non-linear model [189]:

yi(k) = (0.8 - 0.5exp(-yl(k - l)^yi(k - 1) 

(0.3 + 0.9exp(-yl(k - l\))yi(k - 1) 

+0.1 sin(j/2(fc - 1)) + e^k)

y2(k) = 0.6y2(k - 1) + 0.2y2(k - l)y2(k - 2) 

1.2tanh(?/i(A; — 2)) + e2(k)

where ei(fc) and e2(k) are Gaussian random variables of zero mean and co­

variance:

0.01 0

0 0.01

A four-input two-output (4,64;2)FFENN structure comprising the input vector 

[yi(A: — l)yi{k — 2)y2(k — 1 )y2(k — 2)] and the 64 term expansion model illustrated 

in equation 4.4 of the design strategy of section 4.2.1, was trained on the first 

800 sample training set using the RLS algorithm with A = 1. The outputs of the 

FFENN provided the one-step ahead predictions [?/i(A:)j/2(£)] • The pruning strat­
egy of section 4.2.5 identified a 25 term FFENN predictor model from the parent 
fully expanded (4,64,2)FFENN. As before, an examination of the autonomous 

NAR system response and the iterative FFENN model reponse is now made, in 

order to best illustrate how accurately the identified (trained) 25 term FFENN 

represents the actual NAR system.
The autonomous (ei(k) = e2(A:) = 0) NAR system generates stable limit 

cycles as shown in Figure 4.25, where the last 900 of the 1500 noise-free NAR 
system observation samples have been plotted. The iterative FFENN response 

(generated by replacing the inputs [yi(k — lfyi(k — 2)y2(k — l)y2(k — 2)] by 
FFENN’s own past predictions [y^k — l)yi(k — 2)y2(k — l)y2(k — 2)]) also produces 
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almost identical limit cycles as can be seen from the same Figure 4.25, where 700 

iterative model responses have been plotted. Figure 4.25 shows that even though 

the FFENN model was identified using noisy observations, its iterative outputs 

closely match to the outputs from the autonomous system. This confirms that 

the selected FFENN model has indeed captured the underlying dynamics of the 

MIMO NAR system.

Note that the above MIMO NAR system has also been efficiently modeled by 

Chen, Grant and Cowan [189] who proposed use of a two-output RBF network to 

capture the underlying system dynamics. However, their selected RBF network 

(which resulted from use of the Orthogonal Least Squares (OLS) algorithm ) 
comprised a total of 50 Gaussian basis functions, which are exactly twice the 

number of basis functions employed by the above FFENN model. Furthermore, 

the performance of the 50 term RBF network, which was also evaluated in terms 

of its iterative response in [189], is seen to be no better than that attained by 
the 25 term FFENN model above (which comprises a combination of weighted 

sigmoidal shaped, Gaussian and multi-quadratic shaped activation functions).
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Figure 4.25: Response of Autonomous NAR system (900 samples) and Iterative 
3-term FFENN model (700 samples). Projection to two subspaces (Limit Cycles).
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4.3. 3 CASE III: Modeling of Real-World Data: Stock 

Market and Sunspots

The illustrative examples considered so far have been ideal in the sense that we 
had apriori knowledge regarding the system order. However, even if the model 

order was assumed to be unknown, use of the model validation tests have proved 

to be useful in determination of the correct model order for modeling of simulated 
non-linear systems [110].

In real physical situations however, the unknown system noise can have the 
effect of forcing the system’s actual low dimensional behaviour into a high di­

mensional space. This implies that the apparent order of the data is higher than 

it needs to be, which thus complicates the task of fitting an appropriate model 

order capable of capturing the evolution of the system. The major advances in 

dynamical systems practice to-date, have been in devising regularised approaches 

to deal with noise problems to determine how to project the data into subspaces 
in which the variance of the noise is minimsed [11] [22]. Currently, in our knowl­
edge there are no equivalent régularisation schemes to deal with these problems 
using neural networks, and this is a potential area for future research.

In the following sections, we investigate the modeling of real world noisy 

possibly chaotic time series processes using the new feedforward FENN based 

approach.

Modeling of real Stock Market Data

In the first real application, real stock market data from the S & P weekly [120] 

was modeled using the FFENN structure. The available weekly price data com­

prised of a total of 156 samples and was divided into a fitting set comprising the 
first 110 samples, and the remaining 46 samples were selected to constitute the 

test data for evaluating the model’s predictions. As there are not sufficient sam­
ples the model order has to be decided on the basis of the training set alone. This 
and the next application (involving modeling of real sunspots) are deliberately
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Figure 4.26: Auto-correlations of residuals Re2(r} for fully expanded (unpruned) 
(1,8;1)FFENN model.

chosen examples which have a minimum of information upon which a decision 

has to be made. A single input (1,8;1)FFENN employing the 8—term expansion 
model illustrated in section 4.2.1, was initially fitted to the training data using 

the exponentionally weighted RLS algorithm to provide one-step (corresponding 

to one week) ahead predictions y^k) using just the single previous (week’s) value 

y^k — 1). With A = 0.999, an optimal training set MSE value of 0.0095 resulted. 

The prediction error auto-correlation and several chi-squared tests were computed 
for the final (1,8;1)FFENN model and all were found to be within the 95% con­

fidence bands. These model validation tests which are illustrated in Figures 4.26 

and 4.27, show that the fully expanded 8 term FFENN model is an adequate 

representation of the highly non-linear stock market time series data.

Use of two and three input fully expanded (2,20;l)FFENN and (3,38;1)FFENN 

structures whilst satisfying all the model validity tests, didnot give any improve­

ment on the training set MSE value achieved by use of the (1,8;1)FFENN model.
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Figure 4.27: Chi-squared Statistic 77 Tests for the fully expanded (1,8;1)FFENN 
model: (a) r(A:) = y(k — l)e(A: — 1) (b) = e(k — l)2i/(fc — 1) (c) r^k) =
e(k — \)y{k — l)2 (d) r{k} — e(k — l^y^k — l)2. The dotted lines indicate 95% 
confidence limits and the x-axis of each plot denote the lags.
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The structure of the (1,8;1)FFENN which evolved at the end of training is illus­
trated below:

y(k) = 0.525?/(k - 1) + 0.416 sin(i/(fc - 1)) + 0.328 sin(2j/(fc - 1))

—0.127 sin(3y(A; — 1)) — 0.083 cos(t/(A: — 1)) — 0.316 cos(2?/(A; — 1))

+0.264 cos(3y(k — 1)) + 0.118 (4-31)

As can be seen, weighted values of the previous (week’s) stock market sample 

y(k — 1) and two sigmoidal shaped activation functions (approximated by the 

sm(y(k— 1)) and sin(2j/(A;—1)) terms) and a Gaussian shaped term (approximated 
by the cos(2y(A? — 1)) function) are the most significant functions which have 

successfully captured the short term (weekly) generation of all the non-linear 

trends within the stock market data set.

In order to optimize the size of the above fully expanded (1,8;1)FFENN 

model, the insignificant functions were successively pruned to yield an optimal 

(1,2;1)FFENN model comprising just the two most significant terms from the ex­
pansion model of equation 4.31 above. The pruned (1,2;1)FFENN upon training, 

produced a training set MSE of 0.0095 which is equal to that produced by the 

fully expanded (1,8;)FFENN over the same data set, and comprised the following 

weighted terms (which represents a one-step ahead predictor model):

y(k) = 0.71?/(A: — 1) + 0.314 sin(?/(fe — 1)) (4.32)

Prediction error auto-correlation and various chi-squared based model validity 
tests for the above (1,2;1)FFENN model illustrated in Figures 4.28 and 4.29, 
confirm its validity over the training set.

The final 2 term model with fixed weights, was then used to perform one- 

step ahead (weekly) predictions over the 46 sample test set. A comparison of the 

actual and model one-step ahead predictions is illustrated in Figure 4.30, from 
which it can be seen that the predictions are very close to the actual stock prices, 

with an overall test MSE value calculated to equal 0.0028 . For comparison, a 

linear 10—input Moving Average (MA) model which averaged the 10 previous
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Figure 4.28: Auto-correlations of residuals Re2(r} for final (1,2;1)FFENN model, 

prices to predict the next price, is also shown superimposed on the two curves. 

As can be seen from Figure 4.30, the non-linear 2—term FFENN predictor totally 

outclasses the linear predictor.

To compare the performance of the FFENN model against other non-linear 
neural network predictors, a two input Volterra Neural Network (2,24;1)VNN 

model comprising the Volterra series expansion model employed in section 4.3.1, 
was also simulated under identical conditions. The trained (2,24;1)VNN model 

produced a test MSE value of 0.0110. The actual stock market data and VNN one- 

step ahead predictions are illustrated in Figure 4.31, along with the 10—input MA 

model’s predictions. The prediction errors of the (1,2;1)FFENN and (2,24; 1) VNN 

over the training and test sets are plotted in Figure 4.32, which shows that the 

2—term FFENN not only better captures the coarse details of the stock market 

data, but also the fine details, such as, at the point when the stock market prices 

exhibit the greatest fluctuation, the FFENN model predicts the fluctuation with 
a prediction error of —0.28, whereas the 24—term VNN model can only predict 
the fluctuation with an error of —0.37.
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Figure 4.29: Chi-squared statistic 77 Tests for final (1,2;1)FFENN model: (a) 
r(k) = y{k - l)e(fc - 1) (b) r(k) = e(k - - 1) (c) r(k) = e(k - \)y(k - I)2
(d) r(Ar) = e(k — 1)2?/(A: — I)2. The dotted lines indicate 95% confidence limits 
and the x-axis of each plot denote the lags.
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Number of Stock Market Data Samples

Figure 4.30: Comparison of optimally pruned first order (1,2;1)FFENN model

one-step predictions with 10-th order linear MA model one-step predictions.

Number of Stock Market Data Samples

Figure 4.31: Comparison of 2nd order (2,24;1)VNN model one-step predictions 

with 10-th order linear MA model one-step predictions.
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Figure 4.32: Comparison of prediction errors: 2 term FFENN one-step predictor 
versus the 24 term VNN one-step predictor models.

Note that the above stock market data was also modeled by NeuralWare 
[120] using a complex ten input MLP structure comprising two hidden layers 

and trained by the computationally expensive Back Propagation (BP) algorithm. 

Their MLP structure processed the 10 previous weeks prices to predict the next 
week’s stock price. The first hidden layer comprised twenty nodes whereas the 

second hidden layer comprised ten nodes each possessing the sigmoidal activation 

function. After hundreds of presentations of the entire data set, the BP learning 

algorithm finally converged. The trained MLP model with fixed weights was then 

used to produce one-step (week) ahead predictions on the same entire data set. 

The performance of the complex MLP model was no better than that achieved by 

the new 2—term FFENN predictor model illustrated in equation 4.32 above. Note 
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that the use of a first order FFENN predictor model in performing highly efficient 

one-step predictions on the real stock market data comes as no surprise, as many 
researchers have actually shown that most of the reported highly complex non­

linear one-step predictor models of stock market data can be easily outperformed 

by a simple first order linear predictor which simply substitutes the current stock 

market value for the next step’s (week’s, month’s etc) stock market value [22] 

[19]. The above FFENN predictor model which can be seen from equation 4.32 

to employ a linearly weighted value of the current stock market value together 

with a higher order non-linear sigmoidal shaped basis function of it, (the sin^.) 
function which, in fact utilizes an infinite series of the odd-power expansion of the 

current input as discussed in section 4.2.3), in order to more effectively predict 

the next week’s value.

Modeling of real Sunspots

In this application, real sunspot data collected annually over the years 1700-1987 

[137] were modeled using the the FFENN. The sunspots, often larger in diameter 

than the earth, are dark blotches on the sun. They were first observed around 
1610, shortly after the invention of the telescope [48]. Yearly averages have been 

recorded since 1700 and are plotted shown in Figure 4.33. Note that the sunspot 
series exhibits a maxima approximately every 7 to 15 years. The underlying 

mechanism for sunspot appearances is not exactly known, and the sunspot series 
has served as a benchmark, particularly in the statistics literature for time-series 
modeling [115] [59], where the objective is to generate a single-step prediction 
based on past observations [42]. The sunspot series was first studied by Yule [199] 

using a linear Auto-Regressive (AR) model. In a recent evaluation of different 
models, Priestley [137] favoured the Threshold AR (TAR) model of Tong and Lim 

[95]. The maximum order of their TAR model was fixed to 20 (corresponding to 

a total of 43 parameters), but their optimal model used information from the 

previous 12 years.

The sunspots have to-date also been modeled using a variety of non-linear
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Figure 4.33: Annual Sunspot Time Series Data over the years 1700-1987.

complex neural network based predictor models [115] [42]. More recently, McDon- 

nel and Wagen [42] employed a Transversal (feedforward) single hidden layered 

Perceptron network model comprising a total of 14 parameters, which evolved 

from parent recurrent HR perceptron after a highly computationally expensive 

optimisation process incorporating a complex multi-agent stochastic search. Mc- 

Donnel et al also devised other Recurrent network models which gave inferior 
performance relative to their feedforward model. Previously, Weigend, Rumel- 

hart and Huberman [115] employed a fully connected 12—input and 8—sigmoidal 

hidden unit (12,8;1)MLP structure comprising a total of 113 parameters. This 

(12,8;1)MLP model was then pruned using a weight elimination technique to yield 
an optimal (12,3;1)MLP structure comprising a total of 43 parameters. Svaver 
et al [59] employed the Optimal Brain Damage (OBD) method of Le Cun et al 

[107] to generate a pruned network with 5 inputs that were not fully-connected 
to 3 hidden units in a two-layer feedforward neural network [42],

We now investigate a new FFENN based approach for modeling of the sunspot 
time series. Consistent with Tong [95], Weigend et al [115], Svaver et al [59] and
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Table 4.8: Training Performance Comparison: arv and training set MSE (in 
parenthesis) measures of various FFENN based Single Step Predictors on the 
Sunspot series for years 1700-1920.

FFENN-RLS
(2,20;l) (3,38;1) (4,64;1)

0.0026(0.0189) 0.0016(0.0114) 0.0016(0.0117) 0.0018(0.0126)

McDonnel et al [42], we use the sunspot time series from 1700 through 1920 for 

training, and the data from 1921 to 1979 for evaluation of the prediction. The 

measure of performance employed for the evolved FFENN models, is also the 
same as used by the above authors, namely the average relative variance (arv) 
measure which was discussed in an earlier application in section 4.3.1.

The performance attained by fitting each of the fully expanded (1,8;1)FFENN, 

(2,20;l)FFENN, (3,38;1)FFENN and (4,64;1)FFENN models on the training set 

is illustrated in Table 4.8. The results for all the fitted structures were obtained 

by use of the exponentionally weighted RLS algorithm with the forgetting factor A 

selected to give the lowest training set MSE and arvftrain) values for each model. 
As can be seen from the Table 4.8, the fully expanded 2—input (2,20;l)FFENN 

structure gives the lowest training set MSE and arv (train) values. The under­
lying structure of the (2,20;l)FFENN which evolved at the end of training is 

illustrated below:

y(k) = 1.159t/(A; - 1) + 1.552y(fc - 2) + 0.276 sin(t/(fc - 1))

—1.904 sin(2?/(A: — 1)) + 1.515 sin(3j/(fc — 1)) + 1.275 sin(y(k — 2)) 

+1.023 sin(2?/(A? — 2)) — 0.559 sin(3?/(A: — 2)) + 0.081 cos(y(k — 1)) 

— 1.693 cos(2y(k — 1)) + 0.045 cos(3j/(A; — 1)) + 0.817 cos(y(k — 2)) 

—1.255 cos(2?/(fe — 2)) + 0.151 cos(3?/(A; — 2)) 

— 1.151y(A; — 1) sin(?/(A; — 2)) — 0.TMy(k — 1) cos(?/(fc — 2))

—2.854?/(fe — 2) sin(y(A: — 1)) — 4.06y(fc — 2) cos(?/(fc — 1))

+0.139y(fc — l)i/(fc — 2) + 1.922 (4.33)
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Figure 4.34: Auto-correlations of residuals Re2(r) for fully expanded (unpruned) 
(2,20;l)FFENN model.

As can be seen from equation 4.33 above, the FFENN structure which repre­
sents a one-step (year) ahead predictor model for the sunspot time series, reveals 

the significant terms which are responsible for the short term (yearly) generation 

of the sunspots. Several Chi-squared tests were computed for the above identified 

(trained) (2,20;l)FFENN model, all of which were found to be satisfied. Figure 

4.34 illustrates four typical chi-squared tests computed and Figure 4.35 shows 
the auto-correlation plot of the prediction errors. These tests confirm that the 
identified 20 term FFENN predictor model is an adequate representation of the 

sunspot time series.

To further optimise the size of the identified (2,20;l)FFENN model, the prun­
ing strategy discussed in section 4.2.5 was employed. An optimal (2,14;1)FFENN 

model resulted which produced a training set MSE of 0.0116 and arv — 0.0016. 

Its output error auto-correlation and typical chi-squared based tests are illus­

trated in Figures 4.36 and 4.37 respectively, which can be seen to be satisfied, 
significantly large training set MSE of 0.0140 and an arv — 0.0020 and failed to
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Figure 4.35: Chi-squared Statistic rj Tests for the fully expanded (2,20;l)FFENN 
model: (a) r(k) = e(k — 1) (b) r(k) = y(k — 1) (c) r(k) = y(k — I)2 (d) r(k) = 
e(k — l)2y(k — l)2. The dotted lines indicate 95% confidence limits and the x-axis 
denote the lags.
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Figure 4.36: Auto-correlations of residuals Re2(r) for final identified 
(2,14;1)FFENN model.

satisfy all the model validity tests. The structure of the trained optimal 14—term 

(2,14;1)FFENN model is illustrated below:

y(k) = 1.01?/(A; — 1) + 1.155y(k — 2) + 1.231 sin(y(fc — 2))

—2.06sin(2?/(A: — 1)) + 1.984 sm(2y(k — 2)) — 1.139 cos(y(k — 2))

— 1.49 cos(2y(k — 1)) + 1.539 sin(3?/(A; — 1)) — 1.096 sin(3z/(A: — 2))

—0.662y(k — 1) sin(y(fc — 2)) — 0.11 ly(k — 1) cos(y(k — 2))

—2.778y(k — 2) sin(?/(fc — 1)) — 3.809y(A; — 2) cos(y(k — 1))

+2.693 (4.34)

The optimal 14 term FFENN model illustrated in equation 4.34 above, was 
then used to perform one-step ahead predictions on the test set, and the ar v^pr edict} 

measure computed. Table 4.9 compares the average relative variance (arv) mea­

sure of the training set and Table 4.10 compares the arv measure of the test sets 
achieved by the the above 14—term (2,14;1)FFENN predictor model and other
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Figure 4.37: Chi-squared Statistic rj Tests for final identified (2,14;1)FFENN 
model: (a) r(k) = y(k — 1) (b) r(k) = y(k — l)2 (c) r(k) = e(k — l)2y(k — 1) (d) 
r(k) = e(k — l)2j/(A; — l)2. The dotted lines indicate 95% confidence limits and 
the x-axis denote the lags.
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Table 4.9: arv of Training Set : Performance Comparison of various Models on 
the Sunspot series for years 1700-1920

FFENN Tong etal. Weigend etal. Svaver etal. McDonnel etal.
arv(iruzn) arv(train) arv (tram) arv(train) arv^train)

0.170 0.097 0.082 0.090 0.101

Table 4.10: arv of Test Sets: Performance Comparison of various Single Step 
Predictor Models on the Sunspot series for years 1921-1979.

FFENN Tong Weigend Svaver McDonnel
no. of parameters 14 16 43 16 23

No. of Inputs 2 12 12 5 8
arv(predzci)i92i-55 0.108 0.097 0.086 0.082 0.0971
arv(predzci)i956-79 0.18 0.28 0.35 0.35 0.37
arv(predzct)i92i-79 0.1270 0.1733 0.2045 0.2031 0.2183

recently reported predictor models, namely the TAR model reported by Tong 

et al [95], the pruned (12,3;1)MLP model reported by Weigend et al [115], the 
pruned two-layer feedforward model of Svaver et al [59], and the evolved feed­

forward single-layered Perceptron model reported by McDonnel et al [42] which 

were all simulated under similar conditions.

As can be seen from Table 4.10, the 14—term FFENN single-step predictor 

model gives similar performance on the test set from 1921 — 1955 compared to 
other non-linear predictors of a greater computational complexity. However, it 

gives the best performance on the range of test set from 1956 — 1979, which is 

known to be atypical of the entire time-series [115] and the most difficult sunspot 

time-series set to model on account of its highly non-stationary nature. If the 

test arv measures are weighted and averaged across both the ranges of test sets 
1921 — 1955 and 1956 — 79 for all the models, then the FFENN model still 
significantly outperforms all the other more complex models reported to date 

by least a 26% lower test arv measure, as shown in Table 4.10. The actual 

sunspot time series data and the FFENN model’s one-step predictions are shown 
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superimposed in Figure 4.38, along with the prediction errors. Another important 

point to note is that the FFENN model uses only two past observations to make 

its single step predictions, whereas all other models required information from at 

least the last 5 sunspot observations. This shows that non-linear predictor models 

of smaller degrees of freedom can be more effective in the short-term prediction 

of the sunspot data than corresponding non-linear predictors of larger degrees of 

freedom. Note that additionally, an examination of the evolved FFENN predictor 

model illustrated in equation 4.34 above, can also provide highly useful insights 

into the physics of the underlying sunspot time series generating mechanism. 

Recently, the above sunspot data has also been modeled by Chen [197] using an 

RBF network based predictor model, which also gave similar performance to that 

achieved by the new FFENN model reported in this chapter, but at the expense 

of significantly greater computational complexity requirements.

Note that two-year and three year ahead predictor models based on the 

FFENN can also be easily developed, as previously demonstrated for the case 

of modeling of the chaotic Henon and Mackey-Glass time series. This was not 
attempted for this case as there were no comparative results available from other 
researchers for a performance comparison. The actual periodogram of the annual 

sunspot data and the periodogram estimated by the optimal 14 term FFENN 

one-step predictor model are shown superimposed in Figure 4.39, which can be 
seen to be closely matched. Also note that unlike other complex sunspot predic­

tor models reported to date, an examination of the FFENN one-step predictor 
model illustrated in equation 4.34 gives highly useful insights into the physics of 
the underlying annual sunspot generating mechanism.
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(__)Actual Sunspots vs. (...)FFENN 1-Step Predictions

Figure 4.38: Upper Plot: Actual sunspot time series (years 1700-1987) versus 
FFENN model one-step predictions. Lower Plot: Prediction errors squared.
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Figure 4.39: Comparison of the FFENN predictor model estimated Periodogram 
with Actual.

4.4 Conclusions

In this chapter, a new Feedforward Artificial Neural Network (FANN) architec­

ture has been presented termed the FFENN, and its learning algorithm has been 

derived. New basis functions have been proposed for the FFENN hidden layer’s 

functional expansion model which emulate other universal approximators namely, 

the squashing type sigmoidal shaped activation functions employed in the MLP 
network, Gaussain and multi-quadratic shaped activation functions employed in 
the RBF network, and polynomial subset outer-product terms employed in the 

VNN. The new FFENN structure employing the proposed terms in its hidden 

layer is essentially a hybrid neural network incorporating to a variable extent, 

the rich modeling capabilities of the conventional MLP, RBF and VNN struc­
tures. A general design strategy has been proposed for specifying the type and 
number of basis functions within the hidden layer of the FFENN for an arbitrary 
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number of inputs. The non-linear approximation ability of the FFEN result­

ing from use of the non-linear basis functions has also been discussed. A least 
squares based exponentionally weighted recursive algorithm has also been derived 

for adapting the FFENN output layer weights. A general pruning strategy based 

on an iterative pruning-re-training scheme coupled with model validation tests 
has also been proposed for the new structure. It is based on a simple heuristic 

that assesses the relevance of the functional terms in the input hidden layer, ac­

cording to the magnitude of their weights. Functions (or hidden neurons) with 

small weights tend to contribute less to the overall computation of the FFENN 
output, and thus are promising pruning candidates. The pruned network then 

needs to be retrained to achieve the desired performance prior to the next prun­

ing step. The shrinking network size in fact can make the subsequent training 

relatively faster. This simple pruning strategy coupled with model validity tests 

has been shown in this chapter through the use of numerous case studies, to con­

sistently result in parsimonious FFENN predictor models of complex non-linear 

dynamical systems. As illustrated in the various simulation case studies, the 

linear-in-the-parameters FFENN predictor models can also additionally provide 
highly useful insights into the physical composition of the underlying non-linear 
dynamical systems. Note also that for the range of simulated and real-world 

time series processes considered in this chapter, upto a maximum of fourth or­

der FFENN predictor models have been found to be sufficient for capturing the 
underlying non-linear dynamical systems representations; and shown to consis­
tently outperform other more complex non-linear ANN based predictors both in 
terms of relative computational requirements and non-linear modeling capability. 
The relative contributions of the proposed non-linear basis functions responsible 

for the superior FFENN performance, were also illustrated in the various case 

studies. Several other non-linear and chaotic time series processes have also been 

highly efficiently modeled by the FFENN based predictor models, which have not 

been included in the thesis, including the Van-Der-Pol Oscillator [22], the chaotic 

Lorenz Map [41] and real currency exchange rates.
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In the next chapter, a new Recurrent ANN structure termed the Recurrent 

Functionally Expanded Neural Network (RFENN) is developed and applied to 

the above task of modeling both simulated and real-world non-linear time series 

processes. The FFENN and RFENN structures are also applied to the task of 

real-time adaptive non-linear prediction of real-world non-stationary signals.



Chapter 5

New Recurrent Functionally

Expanded Neural Network For 
Non-Linear Dynamical System 

Modeling Applications

5.1 Introduction

It was shown in chapter 2 that for the identification of general non-linear dynamic 

systems such as output error or N ARM AX models, recurrent structures are more 

appropriate than the conventional feedforward neural network based structures 
[38].A major problem with the conventional RNN structures however, as discussed 
in chapter 2, is the high computational complexity associated with their learn­
ing algorithms such as the widely used RTRL. In section 5.2 of this chapter, a 

new Recurrent Functionally Expanded Neural Network (RFENN) structure [176] 

[175] is presented and its associated learning algorithm derived. Key structural 

and learning computational complexity comparisons are made between the new 

RFENN architecture and the conventional RNN structure. A pruning strategy 
for the RFENN is also presented.

139
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In section 5.3, various case studies using a simulated output-error process, 

simulated chaotic time series and real world noisy non-linear time series processes 

are used to compare the performance of the RFENN with the FFENN and other 
recently reported feedforward ANN and RNN predictor models [52],

Finally in section 5.4, the application of the new FFENN and RFENN struc­

tures to on-line non-linear adaptive prediction of non-stationary signals is in­

vestigated. A new hybrid RFENN-FIR adaptive structure [175] comprising the 

non-linear RFENN subsection feeding into a linear FIR subsection is also devel­

oped. Real world laser time series data and an actual speech signal are used 

as two case studies to compare the adaptive modeling performance of the new 
structures with the conventionally employed linear filtering approaches.

5.2 The new Recurrent Functionally Expanded

Neural Network (RFENN) structure

The Multiple Input Multiple Output (MIMO) RFENN structure illustrated in 
Figure 5.1 is basically a two-layer Feedforward FENN employing local output 
feedback. The input single hidden layer comprises a functional expander which 

performs a non-linear transformation that maps the input space onto a new larger 

dimensional non-linear hidden space. The approximation ability of the RFENN 
relies mainly on the type of the functional expansion model employed; for which 
the actual choice of functions and a general design strategy has been presented 
in section 4.2.1 of chapter 4.

The output layer of the RFENN comprises a set of linear combiners corre­

sponding to the number of desired outputs. Each RFENN output is the result 
of summation of the weighted values of the functionally expanded input terms 

and its own past values. Note that each RFENN output layer node has feedback 
from the weighted past values of its own output only, not from the outputs of 
other nodes. In this context, the RFENN employs local output feedback similar 
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to Frasconi et al's architecture [49], as opposed to global output feedback em­

ployed in the fully recurrent structures such as the Real-Time Recurrent Network 

(RTRN) [118] discussed in chapter 2.

5.2.1 Derivation of RFENN’s learning algorithm: The 

Real-Time Recursive Update (RTRU) Algorithm

The weights for a general MIMO RFENN are updated as follows:

The j-th output of the RFENN (for a [IxA] functional expansion of the n 
inputs and feedback of Mj past values of the j-th output) can be written as:

Mj N
yj(k) = 52 anyj(k ~ 0 + 52 for j = 1,..., m outputs 

i=l Z=1

where aij and bij are the feedback and feedforward weights respectively for the 

j-th output, fi(k) I = 1,..., N are the functionally expanded input terms which 

transform the input space Rn of n inputs (x^k),..., xn(fe))onto a new non-linear 
hidden space of increased dimension RN; and yj(k — i), i = 1,..., Mj are the Mj 
past values of the j-th output yj(k). The above RFENN is said to be recurrent 
of order Mj for the j-th output.

Defining at time k:

®Ak) = [a^k)... aMjj(k) blj(k)... bNj(k)]T

and

= [yAk - 1) • • • yj(k - Mj) fi(k)... fN(k)]T

where T denotes transpose, gives:

yj(k) = Qj(k)Xj(k) for j = 1,..., m outputs (5.1)

Qj(k) is now chosen to minimise the Mean Squared Error (MSE) cost function 
J defined as follows:

= (l/2)^(ej(Æ)2)
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Figure 5.1: The Recurrent Functionally Expanded Neural Network (RFENN)
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where E(.) is the expectation operator and e^k) is the J-th output error defined 

by:
e#) = dj(ty-yj(k)

with dj(k) being the y-th desired output (which is available during the RFENN 

training mode).

The optimal value for Qj(k) = for the j-th output is found when 

dJ
3©#) "

Thus,

50#) = 2E G0^)) = E G^WV)) = ° for =
giving

50#) = ~E = ° t = 1^--AMj + N)

The last expression can be decomposed into: (assuming aij(k) and bij(k) are 

independent and change slowly with time)

daij(k)~E 6j^^k ^+^apj^dap-(k-Pp^

dJ 
db^k) = E e^k)

dyj(Js - i) 
dbijfk — i) — 0 for I = 1,..., N

From the above two gradient expressions, a recursive estimator for the J-th output 
gradient with respect to all its feedforward and feedback weight coefficients can
be identified as: 

dyj(k) 
dQ^k)

Mj
= X¿k) ^a^k)

¿=1

- i) 
dQj(k — i) for j = 1,..., m outputs (5.2)

where the recursive gradient estimator for each output is the following column 
vector:

dyÁk) _ F dy^k) dyj(k) dyj(k) dyj(k) 
dQ^k) 15«!#) ’ ’ ' ' ’ daM]j{k) ' db^k) ’ ' ‘ ‘ ’ dbNj{k)
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The gradient expressions derived above are exact and gradient search iterative 

techniques can now be used to approximate Assuming the instantaneous 

gradient estimate:

dJ r( dy^ dy^k>) f • 1
dew = C W for’ = 1’---’mo“tPuts

a Real-Time Recursive Update (RTRU) algorithm for a MIMO

(n, N; m, (Mi,..., Afm))RFENN (with n and m denoting the number of inputs 

and outputs respectively and Mi,..., Mm representing the past Mj values of each 
of the yj(k — i) i = 1,..., Mj j = 1,..., m outputs fed back) can now be written 

as follows:
(1) Compute the RFENN’s m outputs yj(k), for j = l,...,m, using Equation 

5.1 above.

(2) Compute the m output gradients’ estimates using Equation 5.2 above.

(3) Update the RFENN weight vector for each output using a recursive Gauss- 
Newton update (which is known to converge to at least a local minimum of an 
error surface [181] [58]) as follows:

Qj(k + 1) = Qj(k) + Pj(k + 1)A>(A; + 1) for j = 1,... ,m (5.3)

where ^j(k + 1) is chosen to be a smoothed recursive estimator for the output 
gradient [181], and is updated as:

Wk + 1) = 7„A,W + W(k + 1)^+I* (5.4)
J y lb I 1 J

where 7a and 7m are the adaptive gain and momentum (smoothing) parameters 

respectively; and Pj(k + 1) is the inverse of the Hessian matrix Rj(k + 1) = 

(dyj(k + P)/dQj(k + Vf)(dyj(k + P)/dQj(k + 1))T, which it recursively approxi­

mates as [110] (for each of the j = 1,... ,m outputs):

A \
PWM^ + + ÇWWk + V/aWk + lyfpw
X + (dVj(k + lyde^k + iyww(dÿ,(k + WdWk +1)) 

(5.5) 
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where A is the forgetting factor, which for adaptive applications e (0,1) [181], 

Note that for the case of the functionally expanded input terms ffk) / = 1,..., 2V 

comprising just the network inputs X{(k} I = 1,..., n, that is for no non-linear 

transformation of the inputs, the extended vector Xj(k) becomes

Xj(k) = \yAk -x)• -y^ ~ xAk) ■

and the structure of the above RFENN will reduce to that of a conventional 

Infinite Impulse Response (HR) filter; and the RTRU learning algorithm described 

above will become similar to the Recursive Prediction Error (RPE) algorithm used 
for updating the HR weights [58].

Note that in order for the RFENN weight update equation 5.3 above to 

converge, it is important that the hessian matrix Rj(k + 1) always be positive 

definite (so that it is invertible), and that the poles of the RFENN system equation 

5.1 always lie inside the unit circle (so that the RFEN network is stable). The 

poles of RFENN can be obtained by re-writing equation 5.1 as

N
yAk) = 12 aijyAk ~ 0 + 52 b‘jfi(k) for J = 1,..., m outputs 

i=l 1=1

Taking z—transforms on both sides readily gives (for each output)

= outputs
1 Aj(z)

where Yj(z) is the z-transform of the i—th RFENN output; Fi^z} denotes the 
z-transform of the Z—th functionally expanded input term fi(kf, and Aj(z) — 

A simple effective test of stability (for small Mj) would be check 

after each update of the RTRU algorithm that the sum of the RFENN feedback 
coefficients Y^i |«qj is less than 1 [58]. Other approaches to monitoring stability 

of pole-polynomials in conventional HR filters have also been suggested which can 

also be readily employed for the RFENN, but they are either computationally 

expensive or non-robust. The problem is largely still an ongoing area of research 
[58],
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Also note that if the matrix Pj(k) is implemented in its basic form as shown 

in equation 5.5 above it can become fairly large, a phenomenon referred to as co­

variance explosive growth in conventional RPE algorithms. Covariance explosion 

can occur as a result of: the system parametrization not being unique [158], which 

is possible for the RFENN if two values of Qj result in the same input-output 
relationship defined by equation 5.1; Additionally, covariance explosion may also 
occur if the input signal excitation is poor [157]. Many numerical measures have 

been developed to overcome this problem [156]. A simple technique often used 

is the constant trace adjustment [182], in which Pj(k) is adjusted in such a way 

that its trace remains constant, viz

W+r» = I (Aw - 
A \ a + (dy^k + i)/0ex* + i)YPj(k){dy,(k + iga&Ak +i))

Ko 
trace[Pj(k + 1)]^(* + 1) Pj(k 4-1) for j = 1,... , m outputs 

where Ko) is a arbitrary positive constant. The above will thus set an upper 

bound for the eigenvalues of the Pj(k) matrix. A more sophisticated technique 

called exponential resetting and forgetting reported by Salgado and Goodwin et 

al [156] can also be employed.

5.2.2 Computational Considerations and Comparison with 

the conventional RTRL Algorithm

The Hessian matrix is incorporated in order to improve the RTRU algorithm’s 
convergence rate but at the expense of an increase in the computational com­

plexity. Otherwise, setting P(k) — I, the identity matrix yields the stochastic 
gradient LMS type algorithm as follows:

RFENN-stochastic gradient

e(k + i) = e(q + rtk+1)

where is the convergence factor. This algorithm requires only the order of 

(M + N) operations but has a much slower convergence. Conventional RNNs are 
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trained by the RTRL algorithm [56] which is a temporal supervised learning algo­
rithm based on an approximation to the method of steepest descent. The RTRL 

is non-local in the sense that each weight much have access to the complete weight 

matrix and the complete error vector. At any time k it requires consideration 

of a total of (M3 + NM2) values of each dynamic output gradient computed 

with respect to all the feedback and feedforward weights [56]. On the contrary, 

the RFENN’s learning algorithm RTRU is local and requires just (M2 + NM) 

operations for the estimation of each of its output gradient (assuming the same 

number of hidden layer nodes N in both the structures).

Note that the above reduction in the relative complexity of the RFENN’s 
learning algorithms has been achieved by employing non-linear basis functions 

only at the input single hidden layer of the RFENN, whereas in conventional 
multi-layered RNN structures non-linear basis functions are employed at both 

the hidden and output layers. Therefore, the RFENN’s structure is similar to 

the simple HR type filter with a functionally expanded input layer, whereas on 

the contrary the RNNs are highly non-linear in the parameters Multi-Layered 

Perceptron (MLP) based structures with full interconnections (feedforward and 
feedback) between all nodes [56].

Note that the above RTRU algorithm can also be readily employed to train for 

example, RBF and VNN based Recurrent structures in which the RFENN hidden 

layer’s functional expansion model F(k) is replaced by Gaussian and Polynomial 
expansion models respectively.

5.2.3 Variations of the RFENN and Comparison with Other 

Recurrent Architectures

The above RFENN architecture is similar to a single-hidden layered RNN with 

output feedback which is restricted to be local (see chapter 2 section 2.3.1). It can 

also be considered to be similar to the Locally Recurrent Globally Feedforward 

(LRGF) network with local activation feedback (see chapter 2, section 2.3.2), 
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which is a special case of the LRGF with local synapse feedback such as the 

Back-Tsoi HR MLP architecture [7], except that in the case of the RFENN, 

the output after feedback has not been passed through a non-linear activation 

function; and the RFENN is essentially a single IIR-MLP node with a non-linear 

input pre-processor. On the other hand, one may easily incorporate a non-linear 
activation function at the output of the RFENN after the feedback, without 
effecting its learning algorithm, giving the following new output:

z(k) = (5.6)

where /(.) could be taken to be the tanhf.) non-linearity.

Alternatively, by placing the above non-linear activation function prior to 

feeding back of the RFENN output y(k), an architecture similar to the LRGF net­

work with Local Output Feedback (such as the Frasconi-Gori-Soda architecture 

[49]) would be obtained. However, derivation of the corresponding new learning 

algorithm for the RFENN would incur a large computational cost similar to that 
of the RTRL.

Note that the architecture of the RFENN depicted in Figure 5.1 is in fact 

completely general [176] and encompasses Recurrent Neural Networks (RNNs) 
based bn all other linear-in-the-parameters, feedforward neural networks such as 

the RBF and VNN structures, adapted to employ local output feedback thereby 
resulting in RVNN and RRBF structures.

5.2.4 Pruning Strategy for the RFENN

Unlike the feedforward ANNs, the pruning of conventional RNN structures has 

not been studied extensively to date. Recently, Giles et al [51] proposed a compu­
tationally expensive pruning strategy for conventional RNNs based on a pruning- 
retraining method, similar to the one we proposed for the FFENN structure in 

chapter 4, section 4.2.5. In order to obtain an optimally pruned RFENN predic­

tor, we introduce the following pruning strategy:

Although the pruning strategy proposed for the FFENN in chapter 4 is general, 
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and can be readily applied to the RFENN, we propose that for any non-linear 

system modeling application, the FFENN be applied first to find a computa­

tionally efficient solution. If further performance improvement is required (or is 
expected, if the underlying system is known to be output-error type for exam­

ple), then the computationally more expensive RFENN can be employed. This 

approach is in line with that recently proposed by Piche [150] who also suggested 
that feedforward predictors requiring computationally simpler learning algorithms 

should always be first tried to model complex non-linear dynamical systems, be­

fore computationally expensive recurrent predictor models are applied. Following 
this, pruned RFENN models are obtained as follows:

After applying the pruning strategy of section 4.2.5 to the FFENN, the result­

ing optimally pruned expansion model F(k) can readily replace the hidden layer 

expansion model F(k) of the RFENN structure. This approach will therefore 

save the pruning process being carried out a second time or exhaustively for the 

RFENN and will quickly reveal the benefits (if any) that result from the use of 
the recursive predictor model.

In the next section, the RFENN is employed in various simulation case studies 

involving modeling of both simulated and real-world non-linear time series pro­

cesses, and its performance compared with the FFENN and other conventional 

ANN based predictor models.

5.3 Application of the RFENN to Non-linear 

Dynamical System Modeling and Compar­

ative Performance Analysis

As discussed in chapter 2, Recurrent ANNs (RANNs) will be more effective than 

Feedforward ANNs (FANNs) in modeling certain classes of non-linear dynamical 
processes. Specifically, the RANNs will be able to model both the underlying 

poles and zeros of the non-linear systems, whereas the corresponding FANNs 
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whilst being able to readily model the underlying system poles, will need to be 

of a relatively large order for effectively modeling the system zeros. Alternatively 

stated, for the modeling of NARMA output-error type processes, RANN based 
non-linear predictors will be more effective than corresponding FANN based pre­

dictors. On the other hand, RANNs will not give any advantage over FANNs in 

the modeling of NAR type time series processes [52].

In the following sections 5.3.1 to 5.3.3, several case studies are carried out 

using both simulated and real data in order to investigate the modeling capability 

of the new RFENN based predictor model, and compare its performance with the 
FFENN and other neural network models.

5.3.1 CASE I: modeling of simulated NARMA output er­

ror type Non-linear Dynamical Systems

A bilinear NARMA (1,1) process [52] was generated as follows:

y(k) = e(k) + 0.5e(A; — l)y(k — 1)

where e(A;) represents a normally distributed noise sequence of zero mean and 

unity variance A(0,1). A single step predictor based on a (1,8;1,1)RFENN struc­

ture of the form: y(k) = aiy(k — 1) + Ef=i bifi(k) was postulated comprising 
(N = 8) functionally expanded terms fi(k) of the single past NARMA input 

y(k — 1) as illustrated in equation 4.1 of section 4.2.1. The single current output 
(m = 1) of the RFENN (with its single past output (M = 1) fed back) thus 

provided an estimate of the next step prediction on the NARMA time series.

The RFENN with the above expansion model was trained on the first 500 
observations of a time series generated from the above NARMA(1,1) model using 

the RTRU learning algorithm with yg = 1, 7m = 0, A = 0.999 found to give the 

lowest training set MSE. Note that with these values of the RTRU parameters, 

the recursive Gauss-Newton update employed in the RTRU algorithm becomes 

similar to the exponentially weighted RLS update employed for the FFENN in 
chapter 4. To enable comparison with other recently reported neural network
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Table 5.1: MSE (variance MSE) Performance Comparison of Single Step Predic­
tors on the NARMA(1,1) Process for 10,000 samples.

Connor et al
Recurrent Feedforward Feedforward Recurrent Fully
RFENN FFENN (MLP) NAR NARMA Recurrent

RTRU (1,7;1,1) RLS (1,7;1) BP (1,7;1) RTRL (1,5;1,1) RTRL (1,5;1,1)
1.29(0.045) 1.43(0.05) 1.48(0.028) 1.28(0.025) 1.11(0.022)

structures [52], the trained RFENN with fixed weights was tested (that is, used 
to perform adaptive one-step ahead predictions) on another time series of 10,000 
observations. The testing set Mean Squared Error is used as the basis of model 
comparison. The results are summarised in Table 5.1. Note that for a fair compar­

ison, the de bias term in the 8 term functional expansion model of the RFENN has 

not been counted, thus giving a (1,7;1,1)RFENN structure and a (1,7;1)FFENN. 

Standard errors of all the estimated MSEs are given in parenthesis. Note that 

the theoretical optimal NARMA predictor would have an MSE of 1.00 [52],

Table 5.1 shows that the RFENN outperforms all feedforward neural network 

structures including the FFENN(1,7;1) based NAR model trained by the RLS 
algorithm and the MLP(1,7;1) based NAR model (reported in [52]) trained using 

the Back Propagation (BP) algorithm, in modeling the NARMA(1,1) process; and 
also offers close performance to both the Recurrent NARMA(1,5;1,1) and fully 
Recurrent Neural Network (1,5;1,1) based structures (also reported in [52]) and 
trained by variations of the conventional RTRL. Note that the bilinear NARMA 

process has only been used as a case study; in general, the RFENN can be readily 
applied to model any NARMA output error type process.



New Recurrent ANN for Non-linear System Modeling 152

Table 5.2: Test Performance Comparison: arv and training set MSE (in parenthe­
sis) measures of the Single Step Non-linear fully expanded FFENN and RFENN 
based Predictors on the Mackey Glass Chaotic Time Series.

— FFENN-RLS RFENN-RTRU McDonnel et al
No. parameters 20 21 17
arv (train MSE)_ 0.0007(2.2 X IO"5) 0.0009(2.9 X IO'5) 0.0014(5 X IO“5)
arv (test MSE) 0.00057(1.8 X IO'5) 0.00038(1.2 X IO“5) 0.0025(9 X 10-5)

5.3.2 CASE II: modeling of simulated Chaotic Data: The 

Mackey Glass Time Series

As discussed in section 4.3.1, it is expected from the work of [42] that a recurrent 

predictor model would be more effective in modeling of the Mackey-Glass equation 

than a corresponding feedforward predictor. The Feedforward FENN predictor 

was shown to outperform the complex recurrent Perceptron predictor reported 
in [42], In this section, a corresponding (2,20;l,l)RFENN one-step predictor was 
postulated and simulated under identical conditions on the same training set 
(with the RTRU parameters set to — 1, = 0, A = 0.995 as they resulted
in the lowest training set MSE) and test sets. The MSE and arv performance 

measures achieved by the (2,20;l,l)RFENN, the (2,20;l)FFENN and McDonnel 

et aVs Recurrent Perceptron based one-step predictors are illustrated in Table 

5.2, on both the training and test sets.

Table 5.2 shows that, as expected from the work of [42], the RFENN model 

is indeed a more efficient one-step predictor compared to its feedforward version 
(namely the FFENN model) as well as the Recurrent Perceptron model of [42].

In order to obtain an optimally pruned RFENN predictor, the strategy pro­

posed in section 5.2.4 was employed as follows: We devised a pruned (2,4;1,1)RFENN 
predictor comprising the 4 terms which constituted the optimal (2,4;1)FFENN 

predictor (that evolved from the pruning of the fully expanded (2,20;l)FFENN in
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Table 5.3: Test Performance Comparison: arv and test set MSE (in parenthesis) 
measures of the Single Step Non-linear pruned FFENN and RFENN Predictors 
on the Mackey Glass Chaotic Time Series.

(2,4;1)FFENN (2,4;1,1)RFENN McDonnel et al
No. parameters 4 5 17
arv (test MSE) 0.0012(3.9 x IO“5) 0.0006(1.96 x 10~5) 0.0025(9 x 10-5)

section 4.3.1 of chapter4). The (2,4;1,1)RFENN produced lower arv and MSE val­

ues on the same training set compared to the (2,4;1)FFENN (with arv — 0.0014 

and train MSE— 5 x 10-5 for the RFENN compared to arv = 0.0020 and train 

MSE= 6.1 x 10~5 produced by the corresponding FFENN).

The test MSE and arv performance measures of the (2,4;1,1)RFENN and its 

corresponding (2,4;1)FFENN one-step predictors on the test sets are illustrated 
in Table 5.3. As can be seen from Table 5.3, the 5 term RFENN predictor model 

significantly outperforms the equivalent 4 term FFENN based predictor and the 
more complex 17 term Recurrent Perceptron model of McDonnel et al [42], pro­

ducing significantly lower MSE and arv values on the test data sets (exactly half 
of those produced by the FFENN and a quarter of those produced by the Recur­

rent Perceptron model. In order to test the optimality of the (2,4;1,1)RFENN 

predictor (and establish the effectiveness of this proposed pruning technique for 

the RFENN), a (2,3;1,1)RFENN predictor comprising the 3 terms constituting 
the further pruned (2,3;1)FFENN predictor of section 4.3.1, was postulated and 
simulated under identical conditions. As expected, similar to the case of the 
(2,3;1)FFENN, the pruned (2,3;1,1)RFENN predictor gave a significantly large 

MSE(= 0.0354) and arv (= 1.125) on the training set, thus confirming its inabil­

ity to capture the underlying system’s representation. Hence, for the modeling of 

the Mackey-Glass equation, the (2,4;1,1)RFENN model can be concluded to be 

the optimal predictor; whose final structure that evolved at the end of training 
is illustrated below:
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y(k) = 2.349?/(A; - 1) - 0.817 sin(y(A: - 2)) + 0.849?/(k - 1) sin(i/(A; - 2))

—T.115t/(A; - 2) sin(i/(A: - 1)) - 0.431y(A; - 1) (5.7)

Note that comparing the structure of the above (2,4;1,1)RFENN one-step predic­
tor model (illustrated in the above equation 5.7) with the (2,4;1)FFENN one-step 

predictor model of equation 4.25, it can be seen that the final weight coefficients 

of the first four terms are almost equal, with the improvement in test MSE (and 

arv) performance attained by the above (2,4;1,1)RFENN predictor being due to 
the addition of the weighted recurrent term (—0.431y(A; — 1)).

5.3.3 CASE III: modeling of Real World Data: Stock 

Market Data, Sunspots

The same weekly S & P stock market data that was effectively modeled by the 

(1,2;1)FFENN previously previously in chapter 4 (section 4.3.3) was employed 

for this case study. In chapter 4, the 2 term FFENN weekly predictor model 

was shown to outperform more complex tenth order linear and non-linear 24 

term Volterra Neural Network (VNN) predictors. In this section, in order to 

investigate whether the use of recurrent predictors would give any performance 

improvements, a (1,8;1,1)RFENN one-step predictor model comprising the 8 term 
expansion model of the fully expanded (1,8;1,1)FFENN was devised. It was 
trained (by the RTRU algorithm) and tested on the same data sets. The resulting 

MSE measures achieved by the RFENN on the training and test sets are listed 

in Table 5.4, and can be seen to be almost identical to those achieved by use of 
the FFENN one-step predictor.
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Table 5.4: Performance Comparison of FFENN and RFENN Single Step Predic­

tors on weekly S & P Stock Market Data.

(1,2;1)FFENN (1,8;1,1)RFENN

Train Set MSE 0.0095 0.0096

Test Set MSE 0.0028 0.0029

Hence, it can be concluded that for this time series data, no additional benefit 

may be obtained by use of the RFENN predictor over the FFENN. From this 
result, it can therefore be deduced that the underlying weekly generator of this 
particular stock market data set can be best approximated by a NAR model.

The RFENN was also used to model the real sunspot data, that was pre­

viously efficiently modeled by the FFENN predictor model in chapter (section 

4.3.3). However, the (2,20;l,l)RFENN predictor model, when simulated under 

identical conditions, was found to give inferior performance on the training and 

test sets. These findings are again consistent with those of McDonnel et al [42] 
who also found their evolved feedforward predictor model to perform better than 
other evolved recurrent predictor models.

In the next section, the use of the FFENN and RFENN predictors in per­

forming adaptive (on-line) non-linear prediction of highly non-stationary signals 
is investigated.

5.4 FFENN and RFENN Structures for Adap­

tive (On-Line) Non-linear Prediction of Non- 

stationary Time Series

Many physical signals encountered in practice, for example speech signals, are 
generated by non-linear dynamical processes that exhibit two distinct character­
istics namely: non-linearity and non-stationarity. Prediction is known to play a 
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key role in the modeling and coding of speech such as in the Adaptive Differential 

Pulse Code Modulation (ADPCM) of speech signals, where the error signal rather 

than the signal itself is transmitted. The non-stationary nature of speech has con­

ventionally been dealt with by the use of adaptive filtering. However, traditional 
techniques employed to deal with the non-linear nature of speech to-date have 

mostly focused on the use of linear adaptive filtering schemes [62]. Only very 
recently, non-linear adaptive predictors based on the Volterra Neural Network 

(VNN) [85] and a novel Pipelined Recurrent Neural Network (PRNN) [90] have 

been proposed and shown to outperform the traditional linear adaptive schemes 

in the one-step prediction of speech signals. In this section, we investigate the 

use of the FFENN and RFENN structures as adaptive non-linear predictors and 

demonstrate their application to actual speech and laser data. Note that the case 

of laser data and speech signals have merely been chosen as case studies.

The traditional method of supervised learning employed by the conventional 

ANNs including the new FFENN and RFENN structures described above, is 

unsuitable for the adaptive non-linear prediction of non-stationary signals because 
of its off-line requirement. What is needed is a neural network that can learn on­
line, that is, the network continuously learns to adapt to the statistical variations 
of the incoming time series whilst performing its filtering role at the same time. 

The FFENN and RFENN structures described above can be readily adapted to 

perform the above role by simply omitting their off-line pruning strategies and 

making the effective training period of the networks learning algorithms equal to 
infinity, that is, the training period is equated to the length of the incoming time 
series.

5.4.1 CASE IV: Adaptive Non-linear Prediction of Real 

NH^ chaotic Laser Data

For the first case, a second order (2,20;l)FFENN was used to perform adaptive 

one-step predictions on real highly non-stationary, noisy, chaotic NH^ laser data
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Table 5.5: Performance Comparison of non-linear second order FFENN, RFENN 
and linear 20-th order FIR based Single Step Predictors on Laser Data.

FFENN-RLS RFENN-RTRU FIR-RLS
(2,20;l) (2,20;l,2) (20;l)
0.0034 0.0032 0.0327

acquired from the Santa Fe Institute Database [113]. The 1100 sample actual 

time series data and the corresponding FFENN one-step predictions obtained by 

use of the exponentially weighted RLS algorithm with A = 0.99, are illustrated 
in Figure 5.2. The overall MSE was computed to equal 0.0034.

A recurrent (2,20;l,2)RFENN one-step predictor model was also devised and 
used to perform adaptive one-step predictions on the same data set, using the 

RTRU algorithm. Its performance is illustrated in Figure 5.3. The MSE figure 

for the 22 term RFENN was calculated to equal 0.0032, which is slightly better 

than that achieved by the corresponding 20 term FFENN predictor model.

For comparison a linear 20th order FIR one-step predictor model was devised 

and used to perform adaptive one-step predictions on the same data, also using 

the RLS with A = 1. The results for the linear predictor are illustrated in Figure 
5.4, and its overall MSE performance measure was calculated to equal 0.0327, 

which is about 10 times greater than that achieved by the non-linear FFENN 

and RFENN predictors of similar complexity. The MSE performance measures 
of all the single-step predictors are listed in Table 5.5.
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Figure 5.2: Performance of 2nd order (2,20;l)FFENN-RLS based one-step pre­

dictor model on the laser time series data.
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Figure 5.3: Performance of 2nd order (2,20;l,2)RFENN-RTRU based one-step 
predictor model on the laser time series data.
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Figure 5.4: Performance of 20th order (20;l)FIR-RLS based one-step predictor 
model on the laser time series data.



New Recurrent ANN for Non-linear System Modeling 161

5.4.2 CASE V: Adaptive Non-linear Prediction of a Real 

Speech Signal

For a real speech signal, the adaptive one-step predictions performed by a 

(2,20)FFENN, a(2,20;l,l)RFENN and a linear second order FIR-RLS are illus­

trated in Figures 5.5, 5.6 and 5.7 respectively. The overall MSEs computed for 

each predictor are compared in Table 5.6. As can be seen, both the non-linear 

FENN based predictors outperform the linear one (which can only capture the 

underlying linear dynamics of the speech generating process). Of the non-linear 

predictors, the RFENN offers the best performance showing that benefits may be 

obtained in the modeling of speech by the use of recurrent predictor models over 

feedforward non-linear predictors.

Table 5.6: MSE Performance Comparison of Single-Step Predictors on real Speech 
Signal.

FFENN RFENN FIR

0.0264 0.0252 0.0310



New Recurrent ANN for Non-linear System Modeling 162

Figure 5.5: Single-Step Predictions of (2,20;l)FFENN predictor on real Speech 
Signal.
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Figure 5.6: Single-Step Predictions of (2,20;l)RFENN predictor on real Speech 
Signal.
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Figure 5.7: Single-Step Predictions of FIR predictor on real Speech Signal.
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In [90], Haykin et al showed that additional benefits may be obtained in the 

modeling of speech signals, if a Recurrent Neural Network based predictor is used 

in conjunction with a linear FIR filter connected to its output. They argued that 
the prediction ability of the hybrid structure would be enhanced by:

• The RNN structure performing a non-linear mapping from the input space 
to an intermediate space with the aim of linearizing the input signal.

• And secondly, the FIR filter performing a linear mapping from the new 
intermediate space to the output space.

In order to investigate this, a new hybrid RFENN-FIR predictor [175] was devised 

comprising of a (2,20;l,l)RFENN subsection (trained as before using the RTRU), 

with its output feeding into a 16 tap linear FIR subsection, whose weights were 

updated by use of the LMS algorithm with a step size of 0.1. Note that the new 

structure adapted by simultaneous use of the RTRU and LMS algorithms, was 

found to significantly improve on the MSE performance measure attained by the 

stand alone RFENN predictor on the same speech signal, as can be seen in Table 
5.7. The adaptive one-step predictions performed by the hybrid RFENN-FIR 
predictor model are illustrated in Figure 5.8. The optimal FIR tap and LMS 

step-size values were determined as per Haykin et aVs case, by trial and error.

Table 5.7: MSE Performance Comparison of Single-Step Non-linear RFENN 

based Predictors on real Speech Signal.

FFENN RFENN RFENN-FIR FIR

0.0264 0.0252 0.0170 0.0310
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Figure 5.8: Single-Step Predictions of hybrid RFENN-FIR predictor on real 
Speech Signal.
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5.5 Conclusions

A new RFENN structure has been presented based on the FFENN employing 

local output feedback, and its associated learning algorithm has been derived. Its 

structural and learning computational requirements have been shown to be signif­
icantly simpler compared to those of the conventional Recurrent Neural Networks 
(RNNs). The reduction in complexity has been achieved by employing non-linear 

basis functions (functional expansion model) only at its input single hidden layer, 

whereas in conventional multi-layered RNN structures non-linear basis functions 

are employed at both the hidden and output layers. This novel approach is in 

fact completely general and incorporates Recurrent Neural Networks based on 

all other linear-in-the-parameters, feedforward neural networks such as the RBF 

and VNN structures, which are adapted to employ local output feedback. This 

has resulted in a new class of computationally efficient RNNs [176]. A pruning 
strategy was also proposed for the RFENN structure in this chapter and shown to 
result in parsimonious RFENN predictor models of complex non-linear dynamical 

systems. It was shown to outperform the FFENN and other recently reported 
ANN structures in the modeling of certain types of non-linear dynamical systems.

The new FFENN and RFENN structures were also shown to be capable 

of performing adaptive (on-line) non-linear prediction of highly non-stationary 

signals more efficiently than the conventionally used linear adaptive predictors. 
A new hybrid RFENN-FIR adaptive structure was also devised comprising a non­

linear RFENN subsection feeding into a linear FIR subsection. It was shown to 
outperform both the stand-alone FFENN and RFENN predictor models in the 
modeling of a real speech signal. Note that no stability problems were encountered 

with the RTRU learning algorithm of the RFENN in any of the simulation case 

studies carried out in this chapter. We conjecture that this could be the result of 

using a relatively small number of feedback samples Mj.

In the next chapter, new adaptive non-linear equalizers are presented and 

applied to two important digital communications applications.



Chapter 6

New Adaptive Non-linear

Equalizers for Digital

Communications Applications

6.1 Introduction

As discussed in chapter 3, the attraction of the neural network based equaliz­

ers is their ability to adaptively form the general optimal Bayesian solution for 

the symbol-decision structure and therefore to provide considerable performance 
gains over the conventional linear filter approach. A non-linear adaptive TE 
based on the conventional non-linear-in-the-parameters Functional-Link Neural 
Network (FLNN) has been previously shown [164] to offer superior speed of error 

convergence and BER performance characteristics compared to the LTE and the 
MLP and VNN based equalizer structures in the adaptive equalization of disper­

sive communications channels in the presence of additive uncorrelated noise. The 

superior performance of this Feedforward Functional-Link Equalizer (FFLE) is in 

fact due its ability to form highly non-linear decision regions [164] — an essential 
property for realization of the optimal equalization solution, as discussed in chap­

ter 3. However, as with the MLP and VNN based equalizers, the main drawback 

168
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of the FFLE is the lack of a general design (specification) algorithm as discussed 

in chapter 3. Indeed it has been the lack of a formal design strategy that has 

led to the previous conjecture [164] that the size of the FFLE’s hidden layer in 
theory, will grow exponentially with increasing input dimensions for 2 — ary PAM 

signalling. In section 6.2 of this chapter, we first devise a general framework for 

the design of FFLE of an arbitrary order. The new design strategy is shown 

to give highly useful insights into the computational complexity requirements of 

the FFLE with its increasing input orders. The Extended Kalman Filter (EKF) 

algorithm is also applied to the FFLE in an attempt to enhance its speed of error 
convergence characteristics.

In section 6.3 of this chapter, two novel DFE architectures are presented [177] 

[178] [179], termed the Decision Feedback Functional-Link Equalizer with Unex­

panded Feedback Terms (DFFLE-UFT) and a DFFLE with Expanded Feedback 

Terms (DFFLE-EFT). The DFFLE-UFT employs the non-linear FFLE as its 

feedforward filter, whereas the feedback filter is linear. In contrast, the DFFLE- 

EFT structure non-linearly combines both the equalizer input and decision feed­

back samples. Learning algorithms are presented for both the structures along 
with their design strategies. Key structural and computational complexity com­

parisons are made between the new DFFLE structures and the FFLE. The EKF 

algorithm is also applied to both the DFFLE structures to enhance their speed 
of error convergence characteristics. Pruning techniques for optimizing the sizes 
of the FFLE and DFFLE structures are also proposed in section 6.4.

Section 6.5 presents several case studies on a comparative performance eval­

uation of the new DFFLE structures with the FFLE and other recently reported 

non-linear TE and DFE structures. The optimal MLVA and the Bayesian TE 

are used as two benchmarks to assess the performance of the non-linear equalizer 

structures.
In the first application (section 6.5.1), the problem of equalizing linear and 

non-linear communications channels in the presence of ISI and both additive 

uncorrelated and additive correlated noise sequences is considered.
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In the second application (section 6.5.2), a novel solution to the problem of co­

channel interference suppression in digital communications systems is proposed 

based on the FFLE and DFFLE structures [179]. A comparative performance 

analysis is carried out between the FFLE, DFFLEs and other non-linear equalizers 

recently proposed for solving the same problem.

6.2 Analysis of conventional Feedforward Func­

tional Link Equalizer (FFLE) Structure

As discussed in chapter 3, the general FFLE structure illustrated in Figure 
6.1 consists of two layers:

• Functional-Link Expander Input Layer: It performs a non-linear trans­

formation which maps the input space onto a new larger dimensional output 

space. Actual choice of functions was discussed in [31] [164]. The purpose 

of these functional-link terms was shown in [164] to be the extraction of cer­
tain useful features of the input data which render easier separation of the 

transmitted input classes. It was shown that a second order FFLE(2,M) 

expands the two tapped-input data (yk, yk-i) (that is, the noisy channel ob­

servations) into M = 21 functionally expanded terms F(k) = fo, fi,..., fu 

for 2 — ary PAM, as follows (assuming the bias input term fo = 1 is already 
included):

F(k) = yk,yk-i,ykyk-i,sm(n7ryk),

sin(n7ryfc_i), cos(n7ryfc), cosÇmryk^, 

yk sin(7ryfc_1), yk cos(7ryfc_1), 

yk-i sin(7ryfc), yk_i cos(7ryk), 

sgn(yk),sgn(yk-i) for n- 1,2,3 (6-1)

• Output Layer comprising a Linear Combiner and a Sigmoidal

Thresholder: At this stage the weighted values of the enhanced input
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Figure 6.1: The conventional Feedforward Functional-Link Equalizer (FFLE)
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functions F(k) are linearly combined before being fed into a sigmoidal unit. 

The weights Wi(k) where i = 0,1,..., M are updated usually using the 
stochastic gradient Delta Rule (DR) algorithm which takes into account 
the output sigmoidal non-linearity as follows:

Wi(k + 1) = Wi(k) + ^e(M(l ~

Where the error e(k) — s(k — r) — z(k) with s(k — r) being the desired 

response and z(k) = tanh(£^X0 fi{k)wi{ky) is the output from the sigmoidal 

function. Also note that p is the step size.

The significance of the sigmoidal activation function employed in the output 
layer of the non-linear-in-the-parameters FFLE for the problem of channel equal­

ization was not addressed in [164]. We present the following intuitive explanation: 

It has been shown for the case of the VNN based Adaptive Polynomial-Perceptron 

(APP) equalizer structure by Chen et al [183], that although the employment of 

the sigmoid necessitates the use of non-linear learning algorithms in the output 

layer (such as the DR which also forms the basis of the BP algorithm) and conse­
quently complicates the error surface (that is, makes it multi-minima as discussed 

in Appendix A), it nevertheless provides an attractive feature for the problem of 

channel equalization, namely it improves the flexibility (classification ability) of 

the non-linear equalizer that is, enhances its ability to form highly non-linear deci­

sion boundaries — an essential property for realization of the optimal equalization 
solution, as discussed in chapter 3. As the structure of the APP is identical to 
that of the FFLE above, apart from the difference in the input functional-link 

expansion models employed in the two, with the APP employing a purely poly­

nomial (Truncated Volterra Series) expansion of the equalizer inputs; therefore, 

the use of the sigmoid in the FFLE can also be concluded to be beneficial for the 
digital communications channel equalization problem.
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6.2.1 Design Strategy for the FFLE

The trigonometric and joint-activation terms used in F(k) (equation 6.1 above) 

for a second order (2,21)FFLE were shown in [164] through the use of a linear al­

gebraic approach and various simulation case studies to be useful for 2 — ary PAM 

signalling, that is, they assist the equalizer in classifying the input data with low 

output Mean Squared Error (MSE). It was shown that if the above functions, in 

particular the odd symmetry functions (such as the sgnfyk) and sin(7r?/fc))are aug­

mented into the FFFLE structure to enhance the input representation, then the 
equalizer performs very well with near 100% classification and a very small out­
put MSE (near 0) for equalizing both Minimum Phase and Non-Minimum Phase 
channels. This is because these functions were shown to extract certain useful 

features of the input data which render easier separation of the input classes. In 

this section, the useful expansion model illustrated in equation 6.1 is generalized 

for an arbitrary number of FFLE inputs, thereby yielding the following design 

strategy:

A general library of user defined functional-link expansion model F(k) — 

foy-tfM for any (m,Af)FFLE structure of feedforward order m (yk-i i = 
0, ...,m — 1) and M expansion terms comprises the following functional-link 

terms for 2 — ary PAM signalling (assuming the bias input term fo = 1 is already 
included):

1. original FFLE input samples, yk-i for i = 1,..., m (resulting in m terms).

2. trigonometric functional expansion model comprising sum of the following 

components

(a) orthogonal trigonometric functions of the m FFLE input samples, 

namely sm(a7ryk-i) and cos(anyk-i) for a = 1,2,3 (resulting in a total 
of 6m terms).

(b) product of each FFLE input sample with the trigonometric sine and 
cosine functions of other FFLE input samples, that is, yk-i sinfTryk-j) 
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and yk-i cos(nyk_j), for i j, i, j = 0,..., m - 1 (resulting in a total 

of 2m(m — 1) terms).

3. signum function of each FFLE input sample, sgn(yk_t) (resulting in m 

terms)

4. outer-product (joint activation) expansion of the m FFLE inputs (resulting 

in ((P2m + P™+, • • •, +Pm-i) +1) terms for m greater than two inputs, where 
Pm = ? "d where ! denotes factorial.

* (m—

The above design strategy can best be illustrated by examples:

A single input (l,Af)FFLE will comprise the following M = 8 terms for its 

expansion model:

F(k) = yfc,sin(n7ryj,cos(n7ryfc),.syn(yfc) 

for n = 1,2,3 (6.2)

A second order (2,Af)FFLE comprises the expansion model F(k) listed in equa­

tion 1 above.
For a third order (3,M)FFLE, F^k) comprises the following M = 40 terms:

F(k) = yk,yk-i,yk-2,ykyk-i,ykyk-2,yk-iyk-2,ykyk-iyk-2 

sin(n7ryfc), sin(n7ryfc_i), sin(n7ryfc_2), 

cos(n7ryfc), cosinTry^-i), cos(rz7ryfe_2), 

yk sin(7ryfc_i), yk sin(7ryfc_2), yk cos(7ryfc_i), 

yk cos(7ry*_2), yk^ sin(7ryfc), yk_i sin(7ryfc_2), 

yk-i cos(7ryfc), yk-i cos(7ryfc_2), yk-2 sm(nyk), 

yk-2 sin(7ryfc_i), yk_2 cos^y*), yk_2 cos(7ryfc_i), 

syri(yfc),syn(yi;_i),syn(yfc_2) for n- 1,2,3 (6.3)

For a fourth order (4,Af)FFLE, F(k) similarly comprises the following M = 

67 terms:

P(k) = yfc,yfc_1,yfc_2,yfc_3,yÂ:yfc_i,yfcyA:-2,yfcî/fc-2, 
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yk^yk-2, yk-iyk-3, yk-zyks, ykyk-iyk-2yk-3 

ykyk-iyk-2, ykyk-2yk-3, yk-iyk-2yk-3 

sin(mryk),sin(mryk-i), sin^mryk^, 

sm(mryk_3), cos(mryk), cos(n7ryk_1'), 

cos(mryk-2), cos^mryk-s),

yk sin(7T?/fc-i), yk sm^y^, yk sm^yk^, 

yk cos(7vyk-i), yk cos(nyk_2), yk cos(7t>_3) 

yk-i sm(7ryk), yk-\ sm^yk-2\yk-i s\n^yk^\ 

yk-i cos(Tryk^ yk-i cos(7ryfc_2), yk_x cos^y^ 

yk-2 sin(Tryk),yk_2 sin(iryk-i), yk_2 sm^y^ 

yk-2 cos(7Tt/fc), yk-2 cos(nyk-i), yk-2 cos(ttyk^, 

yk-3 sin^^), yk_3 sin(7ryk-i), yk-3 sin(7r?/Jt_2) 

yk-3 cosiny^, yk_3 cos^yk_i\yk_3 cos^Try^, 

sgn(yk),sgn(yk-i),sgn(yk-2),sgn(yk-3) for n = 1,2,3 (6.4)

Hence, a general Table 6.1 can be constructed relating the number of inputs 
n to the number of terms M in the input functional-link expansion model F(k). 

From Table 6.1, it can be deduced that unlike the APP equalizer, an increase in 

the number of the inputs does not lead to an exponentional increase in the size 
of the FFLE expansion model.

Thus, the above proposed general design strategy has given a new insight 

into the computational requirements of the FFLE for an arbitrary number m of 

received noisy channel observations (yk, yk-i,..., yk_m+1). It is however, evident 

from the above Table 6.1 that even for a moderate number of channel observations 

(equalizer inputs), for example m — 4 requires a large number of corresponding 

functional-links (M = 67) for efficient equalization performance. This in turn, 

can degrade the FFLE’s generalization capability, especially in high noise con­
ditions. Hence, the development of alternative reduced complexity FFLE based 

architectures is highly desirable. In section 6.3 a novel approach for the DFE 
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is proposed based on the FFLE which is shown to, in addition to enhancing its 
equalization capability, result in a significant reduction in its relative computa­

tional complexity requirements.

Table 6.1: General Design Strategy for (m,Af)FFLE

m M

1

2

3

4

5
6

7
8

m

8

21

40

67

106

165

260
423

2m2 + 5m + Eti ¿7

In the next section, the Extended Kalman Filter (EKF) algorithm is proposed 
for enhancing the FFLE’s speed of error convergence characteristics, which are 

crucial for tracking time-varying communication channels.

6.2.2 Application of the Extended Kalman Filter (EKF) 

to the FFLE

The non-linear Delta Rule used for updating the FFLE weights, being a stochastic 
gradient algorithm consequently suffers from the drawback of slow convergence. 

In this section, the Extended Kalman Filter [171] algorithm is proposed for en­
hancing the speed of error convergence of the FFLE. Defining

w = [woWj ... wM]r

f = [/o/i.../m]
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Hence, the FFLE output can be written as: 

z(k) = <£(fw)

where </>(.) is the sigmoidal activation function assumed to be the tanh(.) function 

for the present case (which is obviously differentiable). The error signal e(k) is 

defined as before:
e(k) = s(k — r) — z(k)

The above network can be represented as a non-linear dynamical system:

w(k + 1) = w(k) state equation (6-5)

s(k — t) = <^(fw) + e(k) measurement equation (6-6)

The problem is to estimate w(k) —> w(k)

Hence, the Taylor series expansion can be used to expand the measurement 

equation about the current weight estimate w(k) thereby linearizing the activa­

tion function as follows [56]:

<^(fw) = + [<£(fw) - [^y]w=w(Mw(fc)]
0 W OW

(6.7)

The first term on the right hand side of the above equation 6.7 is the linear term, 

and the second term on the right hand side is termed the modeling error term. 

Now needs to be determined. For </>(.) chosen to be the tanh(.) activation 

function, the FFLE output becomes:

Which gives:

z(k) = tanh(fw)
1 + e-fw

_ ¿^(fw) _ f2e~fw 
5w Jw (1 + e-fw)2

(6-8)

(6-9)

Re-arranging equation 6.8 above gives:

1 _ 4
(1 + e-fw)2 ~ (l + z(k)y
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Substituting into equation 6.9 above gives:

¿^(fw) _
Aw 2

Re-arranging equation 6.8 above again for e fw gives: 

fw = \-z(k)
1 + z(k)

Substituting into equation 6.10 above finally gives:

<h/>(fw) f(l — z(k)2)
(6-11)¿w 2

Now at w = w, the FFLE output becomes

z(k) = </>(fw) = z(k)

Thus, giving (for the case of the tanh^.} sigmoidal non-linearity):

rWw)i _f(l-z(&)2)
L ¿w Jw^)- 2

(6.10)

(6.12)

Ignoring the modelling error term on the right hand side of equation 6.7 above, 

and substituting for the </>(fw) term from equation 6.7 into the measurement 

equation 6.6 above, gives a new measurement equation:

s(k -r) = + e(k) (6.13)0 w

with the state equation as before:

w(k + 1) = w(fc) state equation (6-14)

Now the exponentially weighted RLS algorithm can be applied to the above 

system to estimate w^k) as follows:
Letting q(A:) = \ and d(k) — s(k — r) gives the dynamical system:

w(k + 1) = w(k) (6.15)

d(k) = q(A:)w(A:) + e(k) (6.16)
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Defining the least squares cost function:

k
JW =

n=l

where (0 < A < 1) is the exponentional forgetting factor, and e(k) = d(k) — 

q(k)'w(k) from the measurement equation 6.16 above. Hence, minimising J(k) 

with respect to the weights w and equating the gradient to zero gives the following 

expression for the optimal weight vector:

wopt(fc) = Q~1(k)0(k)

where Q-1(A;) is the inverse of the auto-correlation matrix Q(k) given by:

Q(^) = 12 A^’VHqH 
n=l

and 0(E) is the cross-correlation matrix given by:

k
0(E) = £ A*-nd(n)q(n)

n=l

Following the same procedure as outlined for the FFENN learning algorithm 

in section 4.2.4 of chapter 4, the following set of recursive update equations for 

the FFLE can be easily derived: Letting P(E) = Q-1(A;)

r(k) = X~1P(k)qr(k) (6.17)

o(k) = r(A:)[l + q(fc)r(fc)]-1 (6.18)

w(k + 1) = w(k) + o(k)e(k) (6.19)

P(k + 1) = A^P^) - o(k)rT(k) (6.20)

In the next section, two novel approaches for the DFE are presented.
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6.3 The New Decision Feedback Functional-Link

Equalizers (DFFLEs)

As discussed in chapter 3, in the case of the conventional DFE, the feedforward 

filter is a Linear Transversal Equalizer (LTE) whose decision regions are always 

delimited by hyperplanes [172]. The linearity of these decision regions in the 

input signal space actually limits the performance of the conventional DFE [186]. 

The main advantage of a DFE over an LTE is its ability to better compensate 

severe amplitude distortion without increasing the noise level at its output [149].

Siu et al [185] applied the non-linear Multi-Layered Perceptron (MLP) struc­

ture to the DFE and illustrated its superior performance over the conventional 
DFE and the feedforward MLP both in terms of convergence times and tolerance 

to noise. They also show how the use of a correct decision feedback signal can 

totally eliminate the ISI from previously detected symbols with a reduced risk of 

error propagation. Chen et al [193] and more recently Theodoridis et al [160] also 
applied the Radial Basis Function (RBF) neural network to the DFE to enhance 

equalizer performance and reduce computational complexity.
In this section, two new approaches for the DFE are proposed, termed the 

Decision Feedback Functional Link Equalizer (DFFLE) with Unexpanded Feed­
back Terms (DFFLE-UFT) and the DFFLE with Expanded Feedback Terms 

(DFFLE-EFT); which are discussed below.

6.3.1 The DFFLE with Unexpanded Feedback Terms (DFFLE- 

UFT)): Structure and Learning Algorithm

Figure 6.2 shows a DFFLE equalizer with Unexpanded Feedback Terms (UFT) 
[177] [178]. As can be seen, this structure employs the non-linear FFLE as 

its feedforward filter, whereas the feedback filter is linear. The operation of 

the (m,M;p)DFFLE-UFT is based on the m most recent channel observations 
(yk, • • •, yk-m+i) and its p past decisions — r — 1),..., s0(k — r — pf), with 
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m and p being referred to as the equalizer feedforward and feedback orders re­

spectively. The output of the DFFLE-UFT is thus given by:

M P

z(k) = tanh(^2 fi(tywi(k) + Qj^s^k -r - j)) 
i=o j=i

where i = 0,..., M) and (qj j = 1,... ,p) are the feedforward and feedback 
weights respectively. They are updated in a similar way to the weights of the 

FFLE, using the stochastic gradient Delta Rule as follows: Defining a new [1 x 

(M + p + 1)] weight vector u(k) as:

u(A?) = [wo^w^k)... WM^q^k)... qp(k)]T

and a [1 x (M + p + 1)] vector f(&) comprising of:

f(k) = [fo^f^k)... fM(k)s{k - r - 1)... s(k - r - p)]T

results in DFFLE-UFT output:

z(k) = uT(k)f(k)

The DFFLE-UFT weights are updated as:

Ui^k + 1) = Ui(k) + pe(k){l — z(k)2)fi(k) for i = 0,1,..., (Af + p) 

where as before, the error e(k) = s(k — r) — z(k) with s(k — r) being the desired 

response available during the training period, and p is the convergence factor.

6.3.2 Design Strategy for the (DFFLE-UFT)

As the (m,M;p)DFFLE-UFT employs the FFLE as its feedforward filter, its 
design strategy is the same as that for the FFLE described in section 6.2.2, 

except that an additional p decision feedback terms (s(k — r — 1),..., s(k — r — p)) 

are augmented with the input functional-link expansion model F(k\ Table 6.2 

relates the total number of inputs m and decision feedback samples p to the 

total number of coefficients in the weight vector (including the feedforward and 
feedback weights).
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desiredJSo(k-T)

Figure 6.2: The Decision Feedback Functional-Link Equalizer with Unexpanded 
Feedback Terms (DFFLE-UFT)
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Table 6.2: General Design Strategy for (m,M;p)DFFLE-UFT

(m,p) (M + p)
(m +p)

By comparing Table 6.2 with Table 6.1, it can be concluded that for the 

same total number of equalizer taps, the DFFLE-UFT has a dramatically lower 

computational requirement. For example, for a total number of equalizer (feed­

forward plus feedback) taps = 4, a fourth order (4,M)FFLE structure requires 

(M = 67) terms, whereas the equivalent fourth order (2,Af;2)DFFLE-UFT re­
quires only (M = 21 + 2 = 23) terms (which are exactly p = 2 terms more than 

those required by a feedforward second order (2,21)FFLE).
In the following section, a new DFFLE structure with Expanded Feedback 

Terms (EFT) is presented which is also shown to possess a simpler computational 

requirement relative to the FFLE by virtue of a new functional-link expansion 

model.

6.3.3 The DFFLE with Expanded Feedback Terms (DFFLE- 

EFT)

The (m,7V;p)DFFLE-EFT [179] is illustrated in Figure 6.3. This novel struc­
ture employs a new TV-term functional-link expansion model which non-linearly 

combines both the equalizer’s m-input and //-decision feedback symbols. The 
functionally-linked hidden layer therefore transforms the equalizer’s input space 

Rm+p onto a new non-linear hidden space of increased dimension RN. Thus the 
operation of the DFFLE-EFT is based on m most recent channel observations 

(yk, •. •, yk-m+i) and its m past decisions (s(k — r — 1),..., s(k — r — m)), with m 
and p referred to as the equalizer feedforward and feedback orders respectively.

As can be seen from Figure 6.3, the N jointly expanded input and feedback 
terms are weighted and linearly combined before being fed into the sigmoid. The 
new weights (vi for i = 0,1,..., N) are updated using the stochastic gradient
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Delta Rule as follows:

v^k + 1) = Vi(k) + ye{k)(l - z^k^f^k)

where, e(k) and p are defined as before and the new DFFLE-EFT output from 

the sigmoidal function is defined as:

N
z(k) = tanh(22/i(fc)vi(A:))

¿=0

6.3.4 Design Strategy for the (DFFLE-EFT)

A novel design strategy for the DFFLE-EFT is proposed which is shown to result 

in a lower computational requirement relative to the FFLE. The reduction in 

complexity for the DFFLE-EFT is obtained by noting that the decision feedback 

symbols are of a binary nature. This fact can be utilized effectively to result in 

a reduced complexity expansion model F(k) = /0, • • • ,/v for the DFFLE-EFT, 
since the trigonometric and signum functional-link expansions of the decision 

feedback symbols provide no additional or useful information for equalization.

Thus, it is proposed that the general library of user defined functional-link 

expansion model F(k) = fo,..., fN for the DFFLE-EFT(m,Af;p) structure (of 
any feedforward order m and feedback order p) comprise the following terms for 

2 — ary PAM signalling (assuming the bias input term fo = 1 is already included):

1. actual equalizer input and decision feedback terms (resulting in m+p terms)

2. trigonometric functional expansion model comprising sum of the following 

components

(a) trigonometric sine and cosine functions of the m feedforward inputs 
only, sinf any k-f) and cos(a7rp^_8) for a = 1,2,3 (resulting in a total of 
6m terms).

(b) product of each equalizer feedforward input and decision feedback sam­
ple with the trigonometric sine and cosine functions of other equalizer
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desired ,So(k-'f)

Figure 6.3: The Decision Feedback Functional-Link Equalizer with Expanded
Feedback Terms (DFFLE-EFT) 
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feedforward inputs only; that is, not with the sine and cosine func­

tions of other decision feedback samples (this will result in a total of 

2m(m — 1) + 2mp terms).

3. signum function of each equalizer feedforward input only, sgn(yk-i) (result­

ing in m terms)

4. Outer-product expansion of the m inputs and the p decision feedback sam­

ples (= (JP™+p + + !) terms for m + p greater
than two, where Pm+p = where ! denotes factorial. Note that
for m + p = 2 the outer-product expansion will result in 1 term, and for 

m + p = 1 there will be no outer product terms).

The above design strategy can best be illustrated by examples: For a two- 

tapped (1,Æ;1)DFFLE with a feedforward and feedback order of m = p = 1, 

a functional-link expansion model F(k) comprising N — 12 terms is illustrated 

below: (letting s0(k — r — 1) = y^-i):

F(k) = yk^k-i^kyk-i,

sin(n7ryfc),cos(n7ryfc), 

yk-i sin^y*), yk-i cos(iryk) 

sgn(yk) for n = 1,2,3 (6.21)

Note that an equivalent two-tapped (2,Af)FFLE would require a total of 
M = 21 terms for its expansion model as discussed in section 6.2.2. Thus, a 

reduction in complexity of (N — M = 21 — 12 = 9) terms is obtained for the 

(1,N;1)DFFLE-EFT.
For the (2,7V;2)DFFLE with m = p = 2, a functional-link expansion model 

F(k) comprising M = 41 terms is illustrated below: (letting s0(k — r — 1) = yk-i 

and s0(k - r - 2) = y^_2):

F^k) = yk, yk-i,yk-i,yk-2, ykyk-i,yk-iyk-2, ykyk-i,yk-iÿk-i,yk-iÿk-2 
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ykyk-iyk-2, ykyk-2,ykyk-iyk-i, yk-iyk-iyk-2, ykyk-iyk-2, 

ykyk-iyk-iyk-2, sm(mryk),sin(mryk-i\cos(mryk), cos(nnyk-i), 

yk sin(7rj/fc_i), yk cos(7rj/fc-i), yk-i sv^nyk), yk-i cos(nyk), 

yk-i sm(7ryk), yk-i sm(Tryk-i),yk-i cos(7vyk), yk^ cos(7ryk-i), 

yk-2 sm(Tryk), yk-2 sin(7ryk-i), yk-2 cos(tt^), yk-2 cos(7ryfc_i), 

sgn^yk^sgn^yk-i) for n = 1,2,3 (6.22)

Note that the equivalent fourth order (4,M)FFLE would require a expansion 

model comprising M = 67. The reduction in complexity of the DFFLE (of 

N — M = 67 — 41 =26 terms) is due to the binary nature of the decision 

samples fed back, which makes their corresponding trigonometric expansion terms 

redundant.

Hence, Table 6.3 can be constructed. By comparing Table 6.3 with the pre­
vious Tables 6.1 and 6.2, it can be seen that for the same total number of (feed­

forward and feedback) taps, the DFFLE-UFT has the minimal computational 
complexity requirements followed by the DFFLE-EFT and the FFLE. For ex­

ample, a fourth order (4,Af)FFLE requires 67 terms, whilst the equivalent order 

(2,Af;2)DFFLE-EFT requires 41 terms compared to 23 terms required by the 

(2,M;2)DFFLE-UFT. Also an important note on the selection of DFFLE feed­

forward and feedback orders m and p. It has been shown in [193] and [195] for 
the case of the optimal symbol Bayesian DFE (which sets the optimal equaliza­
tion performance limit attainable by any symbol-decision DFE structure), that 
for a channel of impulse response length (/ + 1) (as defined in equation 3.1 of 

chapter 3) with taps (<zo? ...,«/) and an equalization delay t, the performance of 
the Bayesian DFE of feedforward order m = (r + 1) is the same as that with m 

greater than (r + 1). For feedforward TE structures without decision feedback, 
m is generally greater than (r + 1); and it is for this reason that the use of a 

non-linear ANN based DFE structure can be expected to give a significant re­

duction in the relative computational complexity requirements compared to the 

corresponding ANN based TE structure. It has been suggested [193] [195] [129] 
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that if aj is the channel tap of the largest magnitude (with most of the channel 

energy therefore presumed to lie between the taps a0 to a^, then the equalizer 

delay should be chosen as r = j. The feedforward and feedback orders of the 
DFFLEs (like the Bayesian DFE) can then be set to m = (r + 1) and p — I 

respectively.

Table 6.3: General Design Strategy for (m,7V;p)DFFLE-EFT

Total No. of Taps No. of expansion terms

(m + p) (TV)

1 + 1 12

2 + 1 29

2 + 2 41

3 + 1 54

3 + 2 76

3 + 3 114

4 + 1 91

4 + 2 131
4 + 3 203

4 + 4 339

5 + 1 148
5 + 2 222
(m,p) (2m2 + 5m + 2mp + ^+P)

The equalization capability of the DFFLE-EFT and the DFFLE-UFT result­

ing from use of the above proposed design strategies is investigated in section 6.4 

when the two structures are employed in the equalization of both linear and non­
linear communication channels in the presence of ISI and additive (uncorrelated 
and correlated) noise sequences.

In the next section, the EKF algorithm is proposed to enhance the speed of 
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convergence of the DFFLEs’ gradient descent learning algorithms.

6.3.5 Application of the Extended Kalman Filter (EKF) 

to the DFFLEs

Following the same procedure as illustrated for the derivation of the EKF learning 

algorithm for the FFLE in section 6.2.1 of this chapter, the following set of 

equations for each of the DFFLE structures can be written: 
DFFLE-UFT(EKF):
System Equations:

Letting q(&) — and — s^k — T) where the DFFLE-UFT output

is now defined as:

z(k) = f (k)u(k)

where u(fc) = [w0(k)wi(k)... WM(k)qi(k)... qp(k)]T

and f (k) = [fo^f^k)... fM(k)s(k - r - 1)... s(k - r - p)], gives the dy­
namical system:

u(k + 1) = u(k) (6.23)

d(k) = q(A:)u(A;) + e(k) (6.24)

EKF Learning Algorithm:

Letting P(fc) = Q-1(&)

r(k) = A-1P(A;)qT(A:) (6.25)

o(k) = r(fc)[l + q(fc)r(fc)]-1 (6.26)

u(k + 1) = u(k) + o(k)e(k) (6.27)

P(A: + 1) = A-1P(fe) - o(A:)rT(fc) (6.28)

DFFLE-EFT(EKF):
System Equations:
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Letting q(fc) = and d^k} = s(k — t) where the DFFLE-EFT output

is now defined as:

z(k) = f(k)v(k)

where v(k) = [v0(k)vi(k)... vn]T
and f(k) = [fo(k)fi(k)... fN^k)] gives the dynamical system:

v(k + 1) = v(fc) (6.29)

d(k) = ^k^^k) + e(k) (6.30)

EKF Learning Algorithm:

Letting P(k) = Q-1(A:)

r(k) = A^P^q7^) (6.31)

o(k) = r(k) [1 + q(A:)r(A:)]-1 (6.32)

v(k + 1) = v(k) + o(k)e(k) (6.33)

P(k + 1) = X^P^k) - o(fc)rT(fc) (6.34)

In the next section, pruning strategies for optimising the sizes of the Feedforward 

and Decision Feedback Functional-Link Equalizers are proposed.

6.4 Pruning Strategies for the FFLE and DF-

FLEs

The use of the design strategies that have been proposed above for the FFLE and 
DFFLEs will nevertheless result in non-optimal sized equalizer structures, as not 

all the terms within the functional-link expansion models will be equally useful. 
That is, some terms will be more useful or significant in the sense that they will 
assist the equalizer in classifying the transmitted input data with a lower out­

put mean squared error than other lesser useful or insignificant terms. Hence, 

pruning of the insignificant terms will yield an optimal sized equalizer structure 
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of reduced computational complexity. In some applications, particularly where 

larger order equalizer structures are required for effective channel equalization, 

pruning of the insignificant functions may also enhance the equalizer’s general­

ization performance.

The design strategies proposed above for the FFLE and DFFLE structures 

can be considered to provide the first stage of any pruning algorithm. The use 

of the design strategy can be considered to produce a library of useful functions 

for any order FFLE or DFFLE structure. This initial pruning stage is essential 

as the ad hoc inclusion of functional terms within the functional-link expansion 

models of the FFLE and DFFLEs, can increase their complexity to an intolerable 

level.

The next stage of a pruning algorithm for optimizing the size of both the 

FFLE and DFFLE structures, may comprise a number of strategies, such as:

• The well established Orthogonal Least Squares (OLS) algorithm [187] can 
be used to provide an effective mechanism for the the selection of the most 
significant or useful functions from the library of useful functions set up by 

the use of the relevant design strategies. To employ the OLS, all the FL- 

equalizers are first modified to become linear in the parameters structures 

(by removing the non-linear sigmoidal activation function from their output 

layer). After the OLS has identified the parsimonious set of input functional 
terms, the sigmoidal non-linearity can then be re-inserted into the output 
layer of the FL-equalizers to further enhance their classification capability 
(for reasons outlined in section 6.2).

• Carrying out a performance evaluation for each of the terms in the library 

(other than the actual input and decision feedback samples), by: 

augmenting each of the (M — m) or (N — (m +p)) terms in turn, with the 

m input terms of the FFLE or, (m + p) input terms for the DFFLEs, and 
then training the resulting equalizer, to determine those expansion terms 
which reduce the equalizer’s output MSE to just below the noise floor (for 
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any SNR) in the least number of training iterations; or, in the case of a 

failure to converge, result in the lowest MSE after a run of a maximum of 

an arbitrarily set, for example 1000 training iterations.
Thus an ordered list L of the most useful functions can be obtained. The 

next problem would then be the selection of a subset of the best terms 

from the above ordered list that would give similar performance to that 

achieved by use of the fully expanded equalizer comprising all the functional­

link expansion terms (resulting from use of its respective design strategy). 

This could be done for example, by successively augmenting each of the 
terms from the ordered list to the equalizer input (or input plus decision 
feedback terms for the DFFLEs), and then working out the training MSE 

for each equalizer of successive sizes from (m + 1),..., (m + M) for the 

FFLE, and (m + p + 1),..., (m + p + M) for the DFFLE-UFT and (m + 

p + 1),..., (m + p + N) for the DFFLE-EFT. Hence a graph or table of 

training MSE versus equalizer size (number of expansion terms) could be 

constructed, from which an appropriate equalizer size corresponding to the 

minimum or near minimum training MSE could be selected. The selected 

equalizer size would result in a near-optimal sized equalizer, in that inclusion 

of additional terms would not yield a significant performance improvement 

(in terms of bit-error rates during the data transmission mode). Some 

preliminary results based on this pruning strategy have been reported by 
Hussain, Soraghan and Durrani [178] for the FFLE and the DFFLE-UFT.

• Alternatively, the pruning strategy we employed for the new FFENN struc­

ture in chapter 4 for modeling of non-linear dynamical systems could also be 

employed in principle here. Namely, one starts by training a fully expanded 

equalizer structure resulting from use of the proposed design strategies. 
At the end of training, the insignificant terms (represented by the functions 
with the smallest weighting co-efficeints relative to the most significant term 

with the largest weight) are successively pruned one by one starting with the 
least significant term. After the pruning of each term, the resulting pruned 
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equalizer structure (comprising the remaining significant terms) is then re­

trained and the MSE value recorded. The pruning process is stopped at 

the stage, when the training MSE of a pruned equalizer structure increases 

significantly (or is above a specified threshold) compared to that achieved 

without the pruning of that particular term.

Note that in all the above strategies, the criteria for construction of an optimal 

or near optimal sized equalizer has been the training MSE, with the equalizer 

structure giving the lowest training MSE assumed to be indicative of providing the 
best performance (bit-error rate) during data transmission. In theory, however, 

there is no known link or relationship between the bit-error rate criterion and 
the training Mean Squared Error criterion achieved by conventional linear and 

non-linear equalizers [194] (which are generally designed to minimise the Mean 

Squared Error between the equalizer output and the desired actual transmitted 

symbol). That is, the optimal performance criterion for any equalizer, which is the 

bit-error rate, cannot be guaranteed to be achieved by an equalizer yielding the 
lowest training MSE. This is because the theoretical optimal symbol Bayesian TE 
and DFE structures (which use Bayes decision theory for making their decisions) 

are known to provide the best attainable bit-error rate for all symbol decision 

based TE and DFE structures respectively; yet, they will not necessarily produce 

the best Mean Squared Error (MSE) performance on the training symbol set [194]. 

Hence theoretically, an optimal sized FFLE or DFFLE structure could only be 

determined by measuring the bit error rate achieved by each successively pruned 

equalizer. The pruned equalizer giving the best bit error rate performance (closest 
to that of the corresponding optimal symbol Bayesian TE or DFE) would then 

obviously be the optimal sized equalizer for a particular application. However, 
computing the bit-error rates for each successively pruned equalizer would be a 

highly computationally expensive task.
In the next section 6.5, we primarily investigate through the use of simulation 

results, the effectiveness of the functional-link expansion models resulting from 
the use of the proposed design strategies for the FFLE and DFFLE structures, 
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relative to other recently reported non-linear equalizer models. In section 6.5.1 

their application to equalization of linear and non-linear communication channels 

in the presence of ISI and both uncorrelated and correlated noise is investigated.

Finally, in section 6.5.2 the FFLE and DFFLE structures are proposed as 

an alternative solution to the problem of overcoming co-channel interference in 
digital communications systems. Two simulation case studies are employed to 

compare their performance with other recently reported linear and ANN based 

equalizer solutions.

6.5 Application Examples of the FFLE and DF- 

FLEs and Comparative Performance Anal­

ysis

6.5.1 Adaptive Equalization of Linear and Non-linear Com­

munication Channels

We investigate the use of the FFLE, DFFLE-UFT and DFFLE-EFT structures 

in the equalization of the following channel models, with the input assumed to be 

2 — ary PAM for all simulations in order to enable comparison with other recently 

reported simulation results:

Linear Non-Minimum Phase (NMP) Channel Model

H(z) = 0.3482 + 0.87042-1 + 0.3482z"2 (6.35)

Such channels are quite likely to be encountered in a practical communication 

system [183] [55].

Non-linear Channel Model

Non-linear digital communications channels were discussed in chapter 3. The 

non-linear channel used in the simulations has the structure of the model shown 
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in Figure 6.4. The transmitted symbols s(k) are passed through linear channel 

of transfer functions H(z), and the output of the channel is added to non-linear 

harmonics. The value of the gain co-efficients G^Gs, and G^ determine how 

severe the non-linear distortion effects will be. Such non-linear channel models are 

frequently encountered in data transmission over digital satellite links, especially 
when the signal amplifiers operate in their high-gain limits [55].

In order to demonstrate the ability of the FFLE and DFFLE structures to 

cope with non-linear distortion, we used the following linear channel model with 

the additive non-linearity gains set to G^ — 0.2, G3 = G4 — 0.

H(z) = 0.3482 + 0.87042"1 + 0.3482^“2 (6.36)

The additive noise for this case was chosen to be correlated and was given by:

n(fc) = 0.8c(A;) + 0.6c(& — 1)

where c(A;) is a Gaussian white sequence [184].

The following sets of experiments were carried out:

A. Performance Comparison of FFLE and DFFLE structures in Equal­

izing the Linear Channel Model

A fourth order (m = 4) FFLE(4,67) employing the M — 67 expansion model 

of equation 6.4 illustrated in the design strategy of section 6.2.2, was employed 
for the equalization of the linear NMP channel model (equation 6.35 above) with 

the equalization delay (r = 1) and a Signal to Noise Ratio of (SNR — 24dB) 
obtained by corrupting the channel outputs with an Additive White Gaussian 

Noise (AWGN) source of zero mean and variance 0.004. For comparison, we 

simulated similar ordered (m = p = 2) DFFLE-UFT(2,21;2) structure with un­

expanded feedback terms, employing the M = 21 terms (illustrated in equation 

6.1) augmented with its previous two decision feedback samples; and a DFFLE- 
EFT(2,41;2) with expanded feedback terms, employing the N = 41 term expan­
sion model of equation 6.22. The detected bits were used as feedback samples
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Figure 6.4: The model of the non-linear communication channel.
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in both the DFFLEs. Also simulated for comparison was a fourth order LTE(4) 

structure trained using the LMS algorithm.

Speed of Convergence Characteristics

The Mean Squared Error (MSE) convergence curves of all the equalizer struc­
tures are shown in Figure 6.5. The plots were obtained from averaging of 25 
independent trials involving the use of 1500 training symbols. The plots were 

then smoothed by a window of 64 samples. The Delta Rule was employed for 

updating the weights of all the Functional-Link (FL) based equalizer structures 

with a constant step size of p = 0.1. The LTE was trained by the LMS algorithm 

whose step size was also set to 0.1. As can be seen, the new DFFLE-EFT(2,41;2) 

employing a novel 41 term functional-link expansion model non-linearly com­
bining both the equalizer input and decision feedback samples, gives the best 

convergence speed characteristics converging to the noise floor in about 350 iter­

ations and a steady state MSE of —26dB, followed by the DFFLE-UFT(2,21;2) 
which converges to the noise floor in about 600 iterations and a steady error of 

—25dB, and the FFLE(4,67) structure which converges to the noise floor in about 
800 iterations and a steady MSE around the noise floor of —24dB as well. As 

expected, the LTE(4) gives the worst performance compared to the non-linear 

equalizers converging to a steady training MSE of — lOdB, on account of its in­

ability to form non-linear decision regions required for the effective equalization 

of the NMP channel.
To investigate the enhancement of MSE convergence speed provided by use of 

the EKF training algorithm over the DR update, the above DFFLE-EFT(2,41;2) 

structure was trained using the EKF algorithm illustrated in equations 6.31 to 

6.34. As can be seen from Figure 6.5, the new DFFLE structure trained by the 

EKF algorithm offers a faster speed of convergence over the same equalizer trained 

by DR, almost halving the time required to reach the noise floor. However, this 

improvement is achieved at the expense of an increased learning computational
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Figure 6.5: Comparison of Equalizers’ MSE Convergence Characteristics.
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Figure 6.6: Comparison of MSE Convergence Characteristics: DR trained 
DFFLE-EFT and EKF trained DFFLE-EFT.

complexity. Nevertheless, such a structure would be highly desirable in appli­

cations requiring the equalizer training times to be very small, particularly in 

non-stationary environments (for example mobile radio channels).

Bit-Error Ratio (BER) Characteristics

The NMP channel model of equation 6.35, was also used to study the relative 

BER performance of the above equalizers under a variety of SNRs. Since the 
BER, which is defined as the ratio of misclassified to correct symbols at the 
equalizer output, is the ultimate performance criterion for an equalizer, the BERs 
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achieved by the above FFLE and DFFLE structures were assessed against various 

other recently reported non-linear feedforward and decision feedback equalizers. 

The BER plots for the FFLE and DFFLEs were obtained from averaging of 

over ten independent runs of half-a-million random bipolar test samples after the 

equalizers had converged to a steady state training error. The other non-linear 

equalizers that have been employed for the equalization of the above NMP channel 
under similar conditions (namely, for 2 — ary PAM signalling and a decision delay 
of T = 1) are summarized below:

1. A fifth order (5-9-3-1) MLP feedforward equalizer reported by Gibson et 

al [173], comprising of two hidden layers with 9 and 3 sigmoidal nodes 
respectively (the numbers of which were determined by trial and error) 

and trained using the computationally expensive Back Propagation (BP) 

algorithm.

2. A fourth order (4,35) Adaptive Polynomial-Perceptron (APP) feedforward 

equalizer structure reported by Chen etal. [183], employing a polynomial 

expansion of degree 3. The equalizer was trained using the Delta Rule, as 
per the FFLE and DFFLEs

3. A fourth order (4,64) RBF feedforward equalizer reported by Chen et al 

[194], comprising 64 Gaussian centres and employing a combined learning 

of supervised clustering and LMS to train the centers and weights simulta­

neously.

4. A new first order (1,2;1) Recurrent Neural Network (RNN) based equalizer 
reported by Kechriotis et al [55] comprising 2 fully interconnected sigmoidal 
units, and trained by the computationally expensive Real-Time Recurrent 

Learning (RTRL) algorithm.

5. A fifth order (4-9-3-l;l) DFE-MLP equalizer (with m = 4, p = 1 and two 

hidden layers comprising 9 and 3 sigmoidal nodes respectively) reported by 

Siu et al [185] also trained using the BP algorithm.
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6. The optimal symbol Bayesian TE reported in [183] and discussed in chapter 

3.

The optimal sequence estimator namely, the adaptive MLVA, implemented 

as a Viterbi Algorithm with the exact channel model and a fixed decision delay of 

r = 1 [193] has been used as the benchmark for assessing the BER performance 

of all the non-linear equalizers.

In order to determine the best feedforward equalizer, the BERs achieved by 

all the feedforward (or TE) non-linear equalizers were first evaluated and plotted 

in Figure 6.7. As can be seen from the Figure 6.7, which shows the relative 

BERs achieved by the (4,67)FFLE, the (4,64)RBF, the (5-9-3-l)MLP and the 
(4,35)Adaptive Polynomial-Perceptron (APP) equalizers; the RBF equalizer can 
be seen to provide the best performance closely followed by the (4,67)FFLE and 

the (5-9-3-l)MLP equalizers.
The best performance attained by the RBF TE is due to the fact that, as 

shown in [194], it exactly implements the optimal symbol Bayesian TE (or MAP), 

for a completely specified communication channel (including the channel order 

and the additive noise variance). These parameters in practice, therefore require 

a priori estimation.
In Figure 6.8, the the BERs achieved by the new (2,41;2)DFFLE-EFT and 

the (2,21;2)DFFLE-UFT equalizers are plotted against those achieved by the 
(1,2;1)RNN and the (4-9-3-l;l)DFE-MLP structures. The optimal BERs achieved 

by the adaptive MLVA are also illustrated for comparison. As can be seen, the 
new DFFLE-EFT provides the nearest to optimal performance followed by the 

DFE-MLP and the DFFLE-UFT structures. Note that the DFE-MLP is of over­

all order (m + p = 4+ l = 5) employing four feedforward taps and a single 

feedback sample, whereas the DFFLE structures employed in these simulations 

are of a lower order (m + p = 2 + 2 = 4).
In Figure 6.9, the BERs achieved by the DFFLE-EFT, the optimal symbol 

Bayesian TE, and the optimal sequence adaptive MLVA are plotted. As can be 
seen, the simple 41 term DFFLE outperforms the more complex 64 term optimal
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symbol Bayesian TE structure, and hence for this channel, the new DFFLE-EFT 

symbol equalizer can be used as a viable alternative to the optimal Bayesian 

TE in providing a closer approximation to the ultimate optimal sequence MLVA 

equalizer.

The BERs of both the DFFLEs illustrated in all the above figures were ob­

tained with detected symbols s(k — r) fed back. Clearly this is the realistic 

scenario. In practice, the equalizer decisions cannot be guaranteed to be 100% 

correct, and thus when an error is made, error propagation will result in the 

DFFLE structures (or any DFE based structure employing decision feedback).

The effects of error-propagation can be investigated in simulation by compar­
ing the BERs obtained using correct symbols and detected symbols as feedback, 

respectively. This is demonstrated in Figures 6.10 and 6.11 for the DFFLE-EFT 

and the DFFLE-UFT respectively. As can be seen from the dotted curves, the 

error propagation effects only very slightly degrade the BER performances of 

both the structures for this application, with the DFFLE-EFT seen to be more 

tolerant to the error propagation effects.
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Figure 6.7: BER Performance Comparison of various TE based Structures.
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Figure 6.8: BER Performance Comparison of various Non-linear DFE based 
Structures.
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Figure 6.9: BER Performance Comparison of DFFLE-EFT with optimal MLVA 
and Bayesian TE.
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Figure 6.10: Error Propagation Effects in DFFLE-EFT for linear NMP Channel.

Figure 6.11: Error Propagation Effects in DFFLE-UFT for linear NMP Channel.
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B. Performance Comparison of FFLE and DFFLE structures in Equal­

izing the Non-Linear Channel Model

The BER performance curves of the (4,67;1)FFLE, (2,41;2)DFFLE-EFT, the 

(2,21;2)DFFLE-UFT, are compared with those of the (3-9-5-l)MLP based equal­

izer and the optimal symbol Bayesian TE reported in [184]. The BER curves are 

plotted in Figure 6.12, for the non-linear channel model of equation 6.36 above 

(with an equalization delay of r = 1). As can be seen from Figure 6.12, the 

41 term DFFLE-EFT and the 23 term DFFLE-UFT offer almost similar per­

formance, outperforming the more complex Bayesian TE at high SNRs. The 

FFLE can be seen to give a closer approximation to the Bayesian TE compared 
to the MLP based TE, but at the expense of a greater relative computational 
requirement — 67 hidden layer nodes for the FFLE compared to 14 for the MLP. 
However, the learning complexity requirements of the DR trained FFLE and the 

DFFLEs are significantly less compared to those of the BP trained MLP. Fur­

thermore, the FFLE and DFFLE structures are easier to analyse than the MLP 

which also lacks a general design strategy.

The ultimate BER performance however, for the non-linear channel case 

would also be provided by the optimal sequence MLVA as per the linear channel 

case. However, in practice, the use of the adaptive MLVA for equalization of 
non-linear channels would be even lesser attractive, as effective estimation of the 
non-linear channel model would require the use of non-linear modeling techniques, 
which will further add to the computational requirements of the MLVA. This is 

the reason why no significant attempts have been made to date in the develop­
ment of adaptive MLVA structures for the equalization of non-linear channels in 

the presence of ISI and additive noise. To investigate the effects of error prop­

agation in the DFFLEs for the above non-linear channel, the BERs were again 

computed with correct bits fed back. As per the linear channel equalization case, 
only a very small performance degradation was found to occur.

The above application has served to show that the new DFFLE-EFT struc­
ture is a viable alternative to the the optimal symbol Bayesian TE (and all other
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Figure 6.12: BER Performance Comparison of various non-linear equalizers in
equalization of non-linear channel model
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non-linear equalizers that have been reported to-date to approximate the optimal 

Bayesian TE) for the equalization of linear and non-linear channels in the pres­

ence of ISI and additive noise. The attraction of the DFFLE-EFT is not only its 

superior performance, but also its simple integral structure and computationally 

efficient learning algorithm. These characteristics will give the new structure a 

significant advantage over the Bayesian TE in terms of ease of practical imple­
mentation. Furthermore, unlike the Bayesian TE, the DFFLE-EFT is a truly 
indirect-modeling equalizer in that it requires no a priori knowledge or means of 

identification of the communication channel.

Note that for the equalization of non-linear channels however, the DFFLE- 

UFT structure may be able to provide a better complexity-performance trade-off 

relative to the DFFLE-EFT. This needs be investigated using additional non­

linear channel examples.

6.5.2 Overcoming Co-channel Interference in Digital Com­

munications systems

Two sets of experiments are performed using two different co-channel models. In 
the first set of experiments, we propose use of the FFLE for overcoming co-channel 

interference, and compare its performance with the optimal Bayesian equalizer. 

We show using an example that the FFLE is capable of providing a near-optimal 

solution to the problem of overcoming co-channel interference effects in digital 

communications systems.
In the second set of experiments, we use a realistic co-channel system to 

compare the performance of the DFFLE structure with the conventional LTE and 
the non-linear FFLE and recently reported RBF equalizers. Error propagation 

properties of the DFFLE are also investigated. Note that for this application, 

only the DFFLE-EFT structure has been employed.

In the first experiment, a second order (2,21)FFLE structure with (m = 2) 

and (M = 21) term expansion model (illustrated in equation 6.1) was employed 
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to equalize the following co-channel system:

H0(z) = f.0 + 0.5^1

H^z) = /3(1.0 + 0.2z-1)

where the value of /? was dictated by the Signal to Interference (SIR) require­
ment. In order to highlight the basic concepts involved in the equalization of the 

above co-channel system we first present an example. Let SIR = lOdB which 

gives rise to (3 — 0.346. For the above co-channel system, use of 2 — ary PAM 

input signal and an equalizer of order m = 2 with delay r = 0, results in 8 

desired signal states (that is, outputs from the primary distorting channel Ho) 

and 8 interfering signal states (that is, outputs from the interfering co-channel 
Hi). The total number of channel observation states (that is, the overall out­
puts from the co-channel system y(kY) are thus 64 [190] which are plotted in the 

state diagram of Figure 6.13, where the circles o’s represent the desired channel 

states when a s0(k — r) = +1 input symbol is transmitted, and the crosses x’s 

represent the desired channel states for a —1 transmitted input. The dots in Fig­

ure 6.13 represent noise-free channel observation states (that is outputs from the 

co-channel system without the addition of Gaussian noise, n(kf). Note that in 

the presence of additive Gaussian noise, the observations will form clusters with 

the means of these data clusters obviously being the noise-free observations, and 

their variance equal to that of the noise cr^. As can be seen from Figure 6.13, 

the composite effects of the distorting channel and the interfering co-channels 

has led to the noise-free observations forming clusters around the desired signal 
states. It can be easily shown that for a high SIR value, the noise free obser­
vations states will concentrate around the desired signal states, whereas for a 

low SIR the noise-free observations states become more widely spread. In Fig­

ure 6.13, the optimal decision boundary for this co-channel system [190], for the 
case of additive noise power of <7^ — 0.0125 is also shown in a dotted line. The 

optimal decision boundary partitions the observation space (which is also the 
equalizer input space) into two decision regions. When an observation vector
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Figure 6.13: Outputs of Co-channel System for 2 — ary PAM input and trans­
mission delay = zero. The o and x denote desired signal states (+1 and — 1 
respectively), and the dots . indicate the noise-free observation states. The dot­
ted line is the approximate optimal Bayesian decision boundary.



New ANN Equalizers for Digital Communications Applications 212

(y(k), • • •, y(k — m + l)) = (y(k)y(k — 1)) appears in the right hand region of the 

boundary, the underlying optimal Bayesian decision function (which was derived 

for co-channel systems in [190] by Chen and Mulgrew) is positive and a decision 

s0(k — r) = +1 is made corresponding to a transmitted s0(k — r) = +1. If an 
observation vector appears in the left hand region of the optimal boundary then 

a decision So(k — r) = —1 is made (as the optimal Bayesian decision function is 

negative) corresponding to a transmitted s0(k — t) — —1. Similar to the case 

of equalization of dispersive channels in the presence of additive noise (without 

co-channel interference) which was discussed in chapter 3, this way of making 

symbol decisions (based on the values of the optimal Bayesian decision function) 

is optimal because it produces the minimum average error probability or BER 

[129]. A (2,21)FFLE was trained on 1000 observation samples using the DR with 

p — 0.03. The trained FFLE produced the decision boundary shown in Figure 

6.14, where the current FFLE output is plotted against the previous FFLE out­
put. As can be seen, the ability of the FFLE to form highly non-linear decision 

regions has enabled it to effectively separate the two classes of transmitted input 
symbols.

To compare the performance of the FFLE against the optimal Bayesian equal­

izer, a second scenario was simulated. The SIR was fixed at 16dB which gave 

rise to a value for (3 — 0.174. The noise power cr^ was varied to give different 

SINR (Signal to Interference plus Noise Ratio) conditions. Figure 6.15 depicts 

the Bit Error Ratio (BER) curves of the (2,21)FFLE structure and a second or­
der (2,64)RBF equalizer reported in [190] (which was realised using 64 non-linear 

Gaussian functions centered at the 64 noise free observation channel states and 
trained using a complex 2-stage strategy). As can be seen, the 21 term FFFLE 
gives a close performance to that of the 64 term RBF equalizer (which was shown 

in [190] to realise the optimal Bayesian TE for this co-channel system) using a 

significantly fewer number of combined joint-activation and trigonometric terms 
of the equalizer inputs.The BER plot for the FFLE was obtained from averaging
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Figure 6.14: Decision Boundary Produced by (2,21)FFLE.
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Figure 6.15: BER vs. SINR Performance Comparison.

of several independent runs of half-a-million random sequence bipolar test sam­

ples after the equalizer had converged to a steady state training error.

In the second set of experiments, a severe amplitude distorted co-channel 
system involving one interfering co-channel represented by

H0(z) = 0.3482 + 0.8704z’1 + 0.3482z’2

and

^(z) = /?(0.6 + 0.8z’1)

was used to compare the performance of the DFFLE-EFT structure with the 
FFLE, and the LTE and RBF equalizers reported in [190] for the same system. 
For a fair comparison, all the Functional-Link (FL) based equalizers employed 

were chosen to be of order 4 and the equalization delay was set to (t = 1). It 
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was shown in [190] that a LTE of order 4 is optimal for this co-channel system, in 

that increasing the number of taps beyond will not better its performance (pro­

cess referred to as noise-enhancement).

CASE I:
A value of /3 = 0.0631 was chosen to provide a constant SIR= 24dB, and the 

noise power was varied to produce different Signal to Interference plus Noise 

(SINR). The BER curves for the (4,67)FFLE (employing the 67 term functional­

link expansion model illustrated in equation 6.4), the (2,41;2)DFFLE-EFT (em­
ploying the 41—term functional-link expansion model shown in equation 6.22), 
the LTE(4) and the (4,64)RBF are depicted in Figure 6.16.

CASE II:

Next, the noise power was fixed at = 0.00398, giving rise to a constant Signal 

to Noise Ratio SNR = 24dB. The interfering signal power was changed by choos­

ing different values of /3. The performance curves of the corresponding equalizers 
are plotted in Figure 6.17. The BER curves for all the FL based equalizers were 
obtained from averaging of over ten independent runs of half-a-million random 

sequence bipolar test samples after the equalizers had converged to a steady state 

training error (which took about one thousand training iterations for the DFFLEs 

with a step size p = 0.05, which is comparable to the training period required 

by the RBF equalizer [190]). Comparing Figures 6.16 and 6.17, it can be seen 

that the two BER curves of the Weiner (LTE) filter are similar, confirming that 

the LTE does not distinguish the interfering signal from the noise [168]. The 
best the LTE can do is to treat the interfering signals as additional coloured 

noise. The performance curves of all the non-linear equalizers are seen to exhibit 
significant differences with the performance obtained by changing the SIR for a 
fixed SNR being markedly better than that obtained by changing the SNR for 

a fixed SIR (which is consistent with the results of [190]). This confirms that 
the non-linear equalizers treat the noise and interfering signals differently and
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Figure 6.16: CASE I: BER Performance Comparison for SIR fixed at 24dB, and 
Noise Power cr^ varied to produce different SINRs.
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Figure 6.17: CASE II: BER Performance Comparison for SNR fixed at 24dB and 
[3 varied to produce different SINRs.
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are more effective in approximating the optimal equalizer solution on account of 

their inherent non-linear decision making capability [190]. As can be seen, from 

the family of non-linear equalizers the 41—term DFFLE-EFT employing a novel 

functional-link expansion model combining both the equalizer input and Decision 

Feedback (detected) samples gives the best overall BER performance, followed 

by the feedforward structures of (4,64)RBF and the (4,67)FFLE. The LTE(4) 

provides the worst performance as expected. Note also the cross over in the BER 

curves of the FFLE with the RBF in Figure 6.17 (for Case 2). This is conjectured 

to be a result of the FFLE converging to a higher noise floor relative to the other 
non-linear equalizers; as a result of which the BER performance of the FFLE 
fails to improve relatively significantly, even with increasing SINRs (which are 

obtained for this case by reducing the interfering signal power for a fixed additive 
noise power).

To investigate the error propagation properties of the DFFLE-EFT, the BER 

results were again computed for the DFFLE-EFT with correct bits fed back. As 

can be seen from the dotted curves in Figures 6.18 and 6.19, the error propagation 
effects only very slightly degrade the DFFLE performance for both the cases 
considered in this application.

It was shown in [190] that computing the optimal Bayesian equalizer for 

the above co-channel system is extremely costly. The full RBF network able to 

realize the optimal solution would need a total of 2048 centers (corresponding to 

the number of observation states = number of desired states (64) x number of 

interfering states (32)) which makes the calculation of BERs impractical. Hence 

the new non-linear DFFLE-EFT based structure requiring just M = 41 terms, is a 

viable alternative to the (4,64)RBF, the (4,67)FFLE and the (4)LTE for providing 

a closer approximation to the underlying optimal co-channel equalization solution.
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Figure 6.18: Error Propagation Effects in DFFLE-EFT for CASE I.

Figure 6.19: Error Propagation Effects in DFFLE-EFT for CASE II.
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6.6 Conclusions

A new design strategy has been proposed for the FFLE which is shown to give use­

ful insights int o it s computatlonal complexity requirements with increasing input 

orders; in part icular, it was shown that the increase in the size of its functional­

link expansion model is not exponentional with increasing input dimensions.

New DFE structures have been presented namely the DFFLE-UFT and the 

DFFLE-EF 1 structures [177] [178] [179] together with their learning algorithms 

and design strategies. Key structural and computational complexity comparisons 

have been made between the new DFFLE structures and the FFLE, which show 
that the DFFLE-UFT has the minimal computational complexity requirements. 

The EKF algorithm has been applied to the FFLE and both the DFFLE struc­

tures in order to enhance their speed of MSE convergence characteristics. Pruning 

techniques for optimizing the sizes of the FFLE and DFFLE structures have also 

been proposed.

Various simulations have been performed for 2 — ary PAM baseband systems 

to assess the performance of the new equalizers with other recently reported non­

linear equalizer structures. The first application has served to show that the new 

DFFLE-EFT structure is a viable alternative to the the optimal symbol Bayesian 

TE (and all other non-linear equalizers that have been reported to-date to ap­
proximate the optimal Bayesian TE) for the equalization of linear and non-linear 

channels in the presence of ISI and additive noise, providing a better approxima­

tion to the underlying optimal sequence MLVA equalizer. The attraction of the 

DFFLE-EFT is not only its superior performance (in terms of error convergence 

speed and BERs), but also its simple integral structure (implying easier analy­

sis) and a computationally efficient learning algorithm (important for tracking 

rapidly time varying channels). These characteristics will give the new structure 

a significant advantage over the Bayesian TE in terms of ease of practical imple­

mentation. Furthermore, unlike the Bayesian TE, the DFFLE-EFT requires no 
a priori knowledge or means of identification of the communication channel.
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In the second digital communications application considered in this chapter, 

the FFLE and DFFLE structures have been proposed as an effective solution to 

the problem of overcoming co-channel interference. A severe amplitude distorted 

co-channel system has been used as an example to show that, relative to the feed­

forward non-linear FFLE and RBF based equalizers, the DFFLE-EFT structure 

is not only computationally less expensive, but also significantly more effective in 

dealing with the co-channel interference problem, yielding a much closer approxi­

mation to the underlying optimal Bayesian DFE solution (which has been derived 

for co-channel systems in [196] by Chen and Grant et al). Also, unlike the optimal 

RBF based Bayesian TE reported in [190], no a priori knowledge of the orders 

of the distorting channel or the interfering co-channels is required in order to 

choose the size of the DFFLE functional-link expansion model F(k) for superior 

performance. Note also that the relative effectiveness of the DFFLE-UFT (with 

the minimal computational complexity) in overcoming co-channel interference ef­

fects has yet to be investigated. The results in this study have considered single 

co-channel systems, but they can be readily extended to the multi-co-channel 
interference case.

Note that for both the digital communications applications considered in 

this chapter, the error-propagation effects in the DFFLEs were shown (by sim­

ulation) to result in very small performance degradation. Finally note that all 

results in this chapter were obtained by use of fully expanded (unpruned) FFLE 

and DFFLEs (resulting from use of the proposed design strategies), and their 

computational complexities can be further optimized by employing the pruning 

strategies proposed in section 6.4 [178].



Chapter 7

Conclusions and Future Work

This thesis has reported new ANN based structures and algorithms for two impor­

tant signal processing applications namely, non-linear dynamical system modeling 

and digital communications applications.

Specifically, in the context of non-linear dynamical system modeling, a new 

Feedforward Functionally Expanded Neural Network (FFENN) was presented in 

chapter 4, and shown to consistently outperform other recently reported ANN 

based structures in the modeling of a large class of simulated and real-world non­

linear dynamical time series processes. Its superior performance, both in terms 

of relative computational complexity requirements and modeling capability, is 

attributed to:

1. Firstly and most importantly, the nature of the proposed basis functions 
within the hidden layer, which were shown to emulate other universal ap­

proximators employed by the RBF, MLP and VNN structures. The nu­
merous case studies carried out illustrated the respective contributions of 

the various non-linear basis functions responsible for the superior FFENN 

performance.

2. Secondly the linear in the parameters structure of the FFENN, which en­

abled fast least squares based learning in the output layer.

3. And finally the proposed pruning strategy, which was shown to consistently 

222
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result in parsimonious Ft ENN predictor models of complex non-linear dy­
namical processes.

Note that a study of all the optimally pruned FFENN predictor models 

evolved in the various case studies carried out in chapter 4, reveals an almost con­

sistent absence of basis functions comprising the polynomial-subset outer-product 

expansion of the FFENN inputs. This suggests that compared to the other lin­

ear and non-linear basis functions proposed for inclusion in the FFENN’s hidden 

layer, the outer-product terms are less significant in capturing the underlying 

dynamic system representation. The reason for this is attributed to the following 

fact: as discussed in section 4.2.3 the higher order, even and odd cross-terms 
namely, the squashing sigmoidal type xtcos(xj) basis function given by

Xi cos(xj) = Xi — Xi^/^ + aq(;Ej/4!)—,... for i j, —

and the multi-quadratic type Xi sin^) basis function given by

Xi sin(xj) — XiXj — Xi(x^/3l) + Xi(x^/5!)—,... for i j, =

comprise higher order cross-products between each FFENN input with an infinite 

series of even and odd power expansion of the other FFENN inputs respectively. 

These basis functions can in fact account for the polynomial-subset outer-product 

activation functions to some extent (in fact, they account for all second order 
joint activation terms or outer-product expansion of the inputs). Therefore, the 
design strategy proposed for the FFENN in section 4.2.1 can be modified to 

delete the inclusion of the outer-product expansion model within the FFENN 

hidden layer F(k) (that is, include steps 1 to 5 of section 4.2.1 and exclude 

step 6). This new design strategy will in turn, result in a dramatic reduction 

in the relative computational requirements of the FFENN with increasing input 

dimensions n, as reflected in Table 7.1. Table 7.1 compares the number of basis 
functions N employed in the previous FFENN expansion models F(k (described 
in section 4.2.1) and the new expansion models F(k) resulting from the above 

discussion. As can be seen from Table 7.1, a consequence of excluding the outer-
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Table 7.1: Comparison of new Design Strategy for (n, TV)FFENN with previous

n previous N new N
1 8 8
2 20 19
3 38 34
4 64 53
5 102 76
6 160 103
7 254 134
8 416 169
9 710 208

10 1264 251
11 2334 298
12 4432 349
n 1 + 2n2 + 4n + £”=1 P? 1 + 2n2 + 5n

Design Strategy (from Table 4.1) 

product terms from FFENN’s functionally expanded input model F(k) is that 

it can now be more readily employed for modeling non-linear dynamical systems 
of very large input dimensions n (for example a n — 21 input system would 

require a FFENN model comprising fewer than a 1000 basis functions). The 
subsequent pruning times of these FFENN models would also be significantly 

reduced. Therefore for future work, the performance of the computationally 

more efficient FFENN predictor models resulting from the new design strategy 

described above, can be compared with the FFENN predictor models employed in 
chapters 4 and 5, and their application to modeling larger dimensional dynamical 

processes investigated.

Also for future work, extensions to the FFENN learning algorithm can include 

employment of the computationally more efficient Fast RLS type algorithms as 
discussed in chapter 4. The computationally efficient pruning strategy employed 
for the FFENN was based on an iterative pruning-re-training scheme, and em­
ployed a simple heuristic that assessed the relevance of the hidden nodes (basis 
functions) according to the magnitude of their corresponding weights. The hidden 
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nodes with small output weights tend to contribute less to the overall computa­

tion of the FFENN output, and thus are promising pruning candidates. The 

pruned network was then re-trained in order to achieve the desired performance 

on the training set prior to the next pruning step. This pruning scheme coupled 

with correlation and chi-squared statistic based model validity tests (used to val­

idate the pruned FFENN model at each stage), is in fact completely general, and 

can thus be used to prune other ANNs such as the RBF, VNN as well as the 

MLP structures. It would be interesting to compare the results achieved by using 

our method with the other recently reported pruning strategies namely, the OLS 

algorithm [187], the optimal brain-damage (and surgeon) techniques [89] [107], 
and weight decay strategies [24]. Compared to the weight decay technique for in­

stance, our method has the advantage of not requiring any a priori determination 

of a decay rate prior to the network training.

Also for future work, the FFENN’s hidden layer comprising the functionally 

expanded input model can be be employed in hybrid multi-layered feedforward 

ANN structures; and also as a pre-processing input layer in the conventional 
Recurrent ANNs. The actual basis functions employedin the FFENN’s expansion 

model could also be further optimised by, for example as in the RBF network, 

employing a learning algorithm in the input hidden layer in order to update the 

position and spread of the FFENN basis functions, by the inclusion of bias terms 

within each non-linear basis function. Computationally expensive evolutionary 

programming or multi-agent stochastic search techniques employed in [42] for 

evolving Recurrent (HR type) and Transversal Perceptron networks, can also be 
employed for the pruning of FFENN (and RFENN) structures. Also for future 
work, the modeling of NARX (equation-error) type non-linear dynamical systems 

in the presence of correlated Gaussian and non-Gaussian noise sources needs to 

be investigated using the FFENN and other ANN models.

To enable further efficient modeling of a more general class of non-linear 
dynamical systems namely the output-error and N ARM AX type processes, the 

FFENN was adapted to incorporate local output feedback thus resulting in a 
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new Recurrent Functionally Expanded Neural Network (RFENN). Its learning 

algorithm was derived and shown to possess a simpler computational require­

ment relative to the RTRL algorithm used for the training of conventional Re­

current Neural Networks (RNNs). This reduction in the relative complexity of 

the RFENN’s learning algorithm was in fact achieved by employing non-linear 
basis functions only at the input single hidden layer of the RFENN, whereas 

in conventional multi-layered RNN structures non-linear basis functions are em­

ployed at both the hidden and output layers. The effective modeling capability of 

the RFENN was demonstrated through the use of both simulated and real-world 

time series processes. A new pruning strategy was also presented for the RFENN, 

which effectively made use of the optimally pruned expansion models evolved for 

its feedforward FFENN counterpart.

For future work, the RFENN structure can be readily employed in a Locally 

Recurrent Globally Feedforward (LRGF) architecture, as discussed in chapter

5. Structural and learning variations in the RFENN reported in chapter 5 can 

also be readily investigated. In particular, a detailed stability and convergence 

analysis for the RTRU needs to be carried out similar to that for the Recursive 

Prediction Error (RPE) type algorithms [181] using for example, stochastic Ordi­

nary Differential Equation (ODE) methods. The ODE approach which has been 

conventionally employed to study the convergence analysis of adaptive HR filters, 

is a powerful technique that requires relatively weak assumptions [79] [58]. How­

ever, it does not provide any information about the rate of convergence, only that 
an algorithm will asymptotically converge. As such, the convergence analysis of 

even conventional adaptive HR filters is also somewhat limited and the problem 
is still largely unresolved [58]. Also for future work, simplifications to the RTRU 

learning algorithm can be investigated, such as the use of further approximations 

in determination of the RFENN output gradient estimates (similar to, for ex­

ample, those used in the development of Pseudo-Linear Regression (PLR) type 
algorithms [58]). Omission of the Hessian matrix within the RTRU algorithm 
will also lead to the development of computationally efficient stochastic-gradient
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(IIR-LMS) type algorithms [58]. Relative performance analysis can be carried 

out between these various types of RFENN learning algorithms. Also for future 

work, application of the RFENN to efficient modeling of output-error processes 

needs to be further investigated using additional simulated (and real) data, and 
compared with the conventional RNN structures.

Another point to note is that the RFENN structure presented in chapter 

5 employs linear feedback terms, and a possible enhancement in its prediction 

(modeling) ability could be investigated by incorporating a non-linear expansion 

of the output feedback terms similar to that employed for the feedforward FENN 

input terms. The corresponding learning algorithms for this new structure can 
also be investigated. Note that, as mentioned in chapter 5, the architecture of the 

reported RFENN is completely general, in that it encompasses all other linear-in- 
the-parameters feedforward neural networks reported to-date, such as the RBF 

and VNN structures adapted to incorporate local output feedback, by simply 

substituting for their corresponding Gaussian and polynomial expansion models 

within the RFENN hidden layer’s expansion model F(k). Therefore, a relative 

performance evaluation can be carried between these different types of Recurrent 

Networks for various signal processing applications.
Finally in chapter 5, both the FFENN and RFENN structures were shown 

to be capable of performing efficient on-line (adaptive) non-linear prediction of 

highly non-stationary signals including real speech and laser time series data, 

significantly outperforming the conventionally used linear filterng approaches. A 
new hybrid RFENN-FIR adaptive structure was also developed and shown to be 

most effective in the modeling of a real speech signal, compared to both the stand­
alone FFENN and RFENN structures (at the expense of increased computational 

complexity). Hence, further work could be carried out to investigate the role of 

these new structures (particularly the RFENN-FIR) as non-linear adaptive pre­
dictors in the Adaptive Differential Pulse Code Modulation (ADPCM) of speech 
for example, and their performance compared (both in terms of non-linear pre­

diction ability and relative computational requirements) with the newly reported 
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cascaded Pipelined-Recurrent Neural Network [90]. In particular, application of 

the modified design strategy described earlier in this chapter for specifying the ba­

sis functions within the functionally expanded model F(k) (employed in both the 

FFENN and RF ENN and RFENN-FIR models), will result in a dramatic reduc­

tion in the relative computational complexities of the resulting adaptive FFENN, 

RFENN and RFENN-FIR models (as reflected in Table 7.1). This could in turn, 

further enhance their real-time prediction capability and enable them to be more 

effectively employed for adaptive modeling of larger dimensional MIMO time se­

ries processes. Therefore for future work, their relative performances (resulting 

from use of the modified design strategy described above) can be investigated for 

the time series processes modeled in chapters 4 and 5, and also for other simulated 

and real-world non-linear dynamical processes.

Also for future work, the FFENN and RFENN structures can be applied to 

control applications as a viable alternative to the conventionally employed multi­

layered MLP and RNN structures [34]. Use in other signal processing applications 

such as active noise cancellation, and image processing can also be readily inves­
tigated. Unsupervised learning in the FFENN can also be investigated, which 
will further widen the range of application areas to include, for example pattern 

classification.

In the context of digital communications applications, the key structural and 

computational aspects of the conventional FFLE were first highlighted in chapter 

6. A new general design strategy was also presented, which was shown to give 

highly useful insights into the computational requirements of the FFLE with its 
increasing orders. Specifically, it was illustrated that the increase in computa­
tional complexity of the FFLE for 2 — ary PAM signalling is not exponential 

as previously conjectured [163] [164]. Two new DFE structures were presented 

namely the DFFLE-EFT and DFFLE-UFT. The DFFLE-UFT employs the non­
linear FFLE as its feedforward filter, whereas the feedback filter is linear. In 
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contrast, the novel DFFLE-EFT structure non-linearly combines both the equal­

izer input and decision feedback samples. Learning algorithms were presented for 

both the structures along with their design strategies. They were shown to pos­

sess a significantly simpler computational requirement relative to the FFLE. The 

Extended Kalman Filter (EKF) learning algorithm was also proposed and applied 

to the FFLE and DFFLE structures in an attempt to enhance their speed of out­

put error convergence characteristics. In the first application, the new structures 

were applied to the task of equalization of linear and non-linear digital commu­

nications channels in the presence of ISI and both correlated and uncorrelated 

white noise sequences. The new structures were shown (by simulation results) to 

outperform the FFLE both in terms of speed of MSE convergence and BER char­

acteristics. In particular, the DFFLE-EFT structure was shown to offer the best 

performance (closest to the optimal sequence MLVA), outperforming the optimal 

symbol Bayesian (or MAP) equalizer and all other recently reported ANN based 
non-linear equalizers reported to date.

Finally in chapter 6, the FFLE and DFFLE structures were proposed as 
a novel solution to the problem of overcoming co-channel interference in digital 
communications systems in the presence of ISI and AWGN. For a severe amplitude 

distorted co-channel system, the DFFLE-EFT was shown to provide a viable 

alternative to the LTE, FFLE and the recently reported RBF based equalizers in 

approximating the underlying optimal symbol Bayesian solution. Note that the 
performance of the DFFLE-UFT in combating co-channel interference has yet to 

be investigated.
For future work, the performance of the DFFLE-EFT (and DFFLE-UFT) 

needs to be compared with that of the recently reported optimal Bayesian DFE 
in the equalization of linear and non-linear channels. For linear channels, such 

as the one employed in chapter 6, the optimal symbol Bayesian DFE has been 

shown in [195] to provide a performance close to the optimal sequence adaptive 

MLVA for small values of equalization delay t. However, in our knowledge the 

Bayesian DFE has not been applied to the equalization of non-linear dispersive 
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channel models to-date. The performance of the Bayesian DFE (which like the 

Bayesian TE uses Bayes decision theory for making decisions) would obviously 

be expected to be superior to the non-linear DFFLE-EFT or the DFFLE-UFT, 

both of which do not fully exploit the links with Bayes decision theory. However, 

just as computationally efficient non-linear TEs have been used to approximate 

the computationally expensive Bayesian TE, similarly the DFFLEs or other DFE 

based neural network equalizer structures could also be investigated to provide a 

good approximation to the optimal symbol Bayesian DFE, which like the Bayesian 

TE, requires apriori knowledge (and hence estimation) of the channel character­

istics. The optimal Bayesian DFE based solution has also been recently derived 
for the problem of co-channel interference suppression in digital communications 

systems [196], and its performance can be compared with both the DFFLE-EFT 

and DFFLE-UFT structures. A performance comparison of all these structures 
with various recently reported reduced state MLVA based equalizers [170] [29] 

has also yet to be carried out. Also in chapter 6, single co-channel systems have 

been considered and therefore, the multi-co-channel interference scenario can be 

readily simulated next.

Also for future work, the fully expanded FFLE, DFFLE-UFT and DFFLE- 

EFT structures can be pruned using the pruning strategies proposed in chapter

6. In particular the use of OLS selection algorithm can be investigated in forming 

optimal sized equalizers, and compared to the other proposed pruning strategies. 
It is also important to note that all results presented in chapter 6 were for 2 — ary 

baseband PAM systems, and therefore extensions of the reported equalizer struc­
tures to multi-level M—ary PAM and QAM based systems need to be investigated 

and compared with the existing techniques [194], One way to equalize M — ary 

PAM signals would be to employ multi-output FFLE and DFFLE structures (sim­

ilar to the multi-output RBF equalizer reported by Chen and Grant et al [189]) 
with one output node assigned to each class. However, with this approach the 
equalizer complexity will increase in proportion with the number of transmitted 
symbol categories. Alternatively, a single multi-level sigmoidal function (recently 
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employed in an efficient MLP based equalizer for M — ary PAM signalling [166]) 

can be employed at the FFLE and DFFLE output layer (replacing the two-level 

sigmoid tanh(.)). Phis multi-level sigmoidal activation function is given by:

(Ai/2-1) , _ p(-ao*+fcJ)
s0(k-r) = y -—L  (7,n2—< 1 । i—aok+hj} \ /

where Ok is the output from the FFLE/DFFLE linear combiner, and the constants 

a and h are referred to as the slope and drift parameters respectively (which 

have been shown in [166] to give efficient equalization performance with values 

set to (/3 = 1.0) and (/i = 15)). The functions used within the FFLE and 

DFFLE hidden layer input expansion models (described in their respective design 
strategies in chapter 6) also need to be modified to accommodate M — ary PAM 

signalling. This would simply involve scaling all the functional terms employing 

the trigonometric sin(7r.) and cos(tf.) activation functions by a scaling factor A, 

which for M — ary PAM will be A = (M — 1). This scaling factor will enable 

these functional terms to cover the new range (—(M — 1), (Af — 1)), from their 
previous (—1,+1) range employed for 2 — ary PAM signalling. The two-level 

signum function sgn[.} employed in the FFLE and DFFLE hidden layers would 
also need to be replaced by a multi M—level signum threshold function for M — 
ary signalling. The other terms within the FFLE and DFFLE input expansion 

models namely the equalizer input (and decision feedback terms), and the joint­

activation terms would not need any modification. With these proposed design 

changes (which can be readily incorporated into the respective design strategies 

of the FFLE and DFFLEs), simulation case studies can be carried out similar to 

those in [164] in order to assess the relative importance of these various proposed 

functions in the equalization of M — ary PAM and complex QAM based systems. 
The growth in relative complexities of the FFLE and DFFLE structures with 
increasing size of the transmitted signal alphabet can thus be investigated. The 

results can be compared with those recently reported for the optimal symbol 
Bayesian DFE, whose complexity has been shown to increase rapidly with both 
the size of the transmit alphabet M and length I + 1 (see equation 3.1) of the 
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communication channel, of the order Ml+l [198] [129]. In fact, these excessive 

computational requirements of the Bayesian DFE have restricted its application 

to small signal alphabets such as 4-QAM and channels where the ISI extends 

over four or five symbol periods (as in mobile radio environments) [129]. The 

limitations of the FFLE and DFFLEs could also be similarly established.

Also, the use of the computationally expensive EKF algorithm proposed for 

updating the FFLE and DFFLE weights in chapter 6 needs to be further justi­

fied by investigating the trade-off between speed performance improvements and 

corresponding computational complexity requirements of the FFLE and DFFLE 

structures, for other linear, non-linear, and non-stationary channels.

Also for future work, application of the FFLE and DFFLE structures to Code 

Divison Multiple Access (CDMA) Spread Spectrum (SS) communications systems 

[129] can be investigated, and their performance compared with the recently 

reported MLP, RBF and adaptive Bayesian methods which have been successfully 

applied to CDMA systems to-date [129]. The use of the FFLE and DFFLE 

structures in blind adaptive equalization schemes can also be investigated. This 

can also include these equalizers operating in hybrid systems, where for example, 

a computationally expensive Higher Order Statistics (HOS) based blind equalizer 
[5] initially estimates the channel coefficients, and the system then switches to the 

computationally efficient FFLE, DFFLE or other ANN based adaptive non-linear 

equalizers operating in Decision Directed Mode (DDM). Finally, application of the 

FFLE and DFFLE structures to equalization of non-stationary communication 
channels (such as those encountered in fading mobile radio environments) can 
also be readily investigated. This would simply require an additional adaptive 
(on-line) channel estimator; which to-date has conventionally employed the FIR- 

LMS approach [194]. This approach works fine for the linear channel case, but 

would be unable to model the non-linear channel characteristics. We propose 

use of the computationally efficient FFENN and RFENN structures presented 

in chapters 4 and 5, for adaptive identification of both linear and non-linear 

dispersive channels. Note also that, similar to the recently reported RNN based 
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equalizer, the use of the RFENN reported in chapter 6 as an efficient adaptive 

non-linear equalizer structure can be also be investigated, and compared with the 
existing structures.



Appendix A

Review of Feedforward Artificial

Neural Networks

We begin this section with a brief note on the Perceptron which is the basic 
building block of the MLP network, and also perhaps the most well known neural 

network due to its historical significance [19].

A.l The Perceptron

The Perceptron was devised by Rosenblatt in 1958 [65]. As shown in Figure A.l, 
it first forms a weighted sum of the n components of the input vector (similar to 
the McCulloch and Pitts neuronal model [61] which is said to have pioneered the 

modern era of neural networks [56]). A bias value w0 is added to the weighted sum 

and the result is then passed through a non-linearity (activation function). In 

the original Perceptron, Rosenblatt used a hard-limiting non-linearity (quantizer), 

which classifies the output y to be on = 1 or off = 0 depending on whether the 

weighted sum output u is greater than or less a certain threshold, 0 for example. 

The Perceptron learns or trains by adjusting the weights to allocate correctly, 

training-set inputs to the on or off classes. There are various learning algorithms 
for the Perceptron which include the original Perceptron learning algorithm [65], 

234
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the Least Mean Squares (LMS) algorithm devised by Widrow [70] and others [73], 

Perceptions of the Perceptron were dealt a fatal blow by Minsky and Pa- 

pert [44] who showed that Perceptrons (and their variants the Adaline networks 

which were developed later by Widrow in 1959 [70]) could only linearly separate 

their input classes, and so could not solve problems requiring non-linear decision 

boundaries, such as the exclusive-or function and its generalization, the parity 

function. Rosenblatt had considered Perceptrons with more than one layer and 

thought they could overcome the limitations, if only a learning algorithm could 

be found. However, it was not until 1986, when Rumelhart formally introduced 

the Back Propagation algorithm (which was actually originally invented by Wer- 

bos in his PhD thesis in 1974 [74]) for training Multi-Layered Perceptron (MLP) 

networks [75] (which are discussed in the next section), that it became possible 

for neural networks to solve complex large class pattern recognition problems. 

Primarily, Rumelhart’s work and and an earlier paper presented by Hopfield in 

1982, identifying the associative memory properties of neural networks namely 

recalling of a stored pattern from an imperfect input reference [76]; have been the 

most influential publications responsible for the resurgence of interest in ANNs 
in the 1980s.

A.2 Multi-Layered Perceptron (MLP)

The Multi-layered Perceptron (MLP) has one or more hidden layers between the 

input and output layers. In general, the MLP can have both feedforward and 

feedback connectivity between its layers. An MLP with feedforward connectivity 

belongs to the category of Feedforward ANNs. An MLP network with two hidden 

layers is illustrated in Figure A.2.
The individual Perceptrons in the MLP are called neurons (or nodes), and 

differ from Rosenblatt’s Perceptron in that a sigmoidal non-linearity (activa­

tion function) is used in place of the hard-limiter. This is primarily because 
the sigmoid is differentiable (an essential property required for derivation of the
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Figure A.l: The Perceptron
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Figure A.2: Architecture of a typical Multi-Layered Perceptron
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BP algorithm discussed in the next section), whereas the hard-limiter is non- 

differentiable. Furthermore, the logistic sigmoidal function offers other benefits 

namely, continuous valued outputs (between 0 and 1) rather than binary alone, 
and the possibility of output value’s interpretation as a probability estimate [80]. 

However, for many applications such as equalization of digital communication 

channels (discussed in chapter 3), other continuous valued differentiable sigmoidal 

functions such as the tanh^f) function (which is a biased and scaled logistic func­

tion) can provide additional benefits of giving outputs between —1 and +1 rather 

than positive only (between 0 and 1).

A.3 The Back Propagation Training Algorithm

The Back Propagation (BP) algorithm (also known as the Generalized Delta Rule 

(GDR)), is outlined below:

Defining the error signal at the output of neuron j at iteration n (that is, 

presentation of the nth training pattern) as:

Cj(n) = dj^n) — neuron j is an output layer node (A.l)

where dj(n) is the desired response for neuron j, and y^n) is the actual output of 

neuron j. The instantaneous sum of squared errors of the network is thus written 
as:

EW = | £ e?(n) (A.2)
J=1

where the set L includes all neurons in the output layer of the network. The 
output yj(n) of neuron j is given by:

p
yAn) = (A-3)

t=0

yAn) = f(vAn^ (A-4)

where Wji(n) denotes the synaptic weight connecting the output of neuron i to 
the input of neuron j. Neuron i lies in a hidden layer immediately preceding the 
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output layer, and produces an output yfin), with p representing the total number 

of neurons in that layer, f is the non-linear activation function of the jth neuron 

and = Z)i=o wji(n)yi(n) Is termed the net internal activity of neuron j. The 
weight Wj0(n) corresponding to a fixed input (y0 — -1) is the threshold applied 
to neuron j.

The Back Propagation (BP) algorithm applies a correction Nwjfn) to the 

synaptic weight wJZ(nfi which is proportional to the instantaneous gradient 
dE{n)Idwji{n) as follows:

△M™) = (A-5)owjfin)

where 77 is a constant that determines the rate of learning. The use of the negative 

sign in equation A.5 above accounts for gradient descent in weight space.

The correction or change in weight of any neuron in the output layer can be 

readily written as:

Wji(n) = Wji(n - 1) + rjaj(n)yi(n) (A.6)

where the local gradient trfin) for each of the output layer nodes is given by:

<hH = ei(n)/Wn)) (A-7)

where f (.) denotes the derivative of the non-linear neuronal activation function 

with respect to its net input Vj(n). Equations A.6 and A.7 above are collectively 

known as the Delta Rule (DR) updating algorithm.

The change in weight of any neuron i in a hidden layer immediately preceding 

the output layer is given by:

Wihfn) = wih(n - 1) + T]&i(n)yh(n) (A.8)

where ^(n) is the output of neuron h residing in a layer immediately preceding 
the hidden layer containing neuron i. The local error gradient cr^n) for any 
neuron i in the hidden layer can be written as [56]:

L
= f'^n)) 52 ^n)Wji(n) (A.9)

j=i
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The above equation A.9 in fact applies to all the MLP network’s hidden layer 

nodes, and in words, states that the local error gradient for a hidden layer node 

a equals the product of its associated derivative (with respect to its net input) 

and the weighted sum of the error gradients computed for all the neurons in the 

next hidden (or output) layer that are connected to that neuron a. It can also be 

seen from the above equation, that the local error gradient &j(n) for the output 

layer has been propagated back to the lower (immediately preceding) hidden 

layer. This procedure is repeated until the error has been propagated back to the 

network’s first hidden layer and all the corresponding weights updated.

Therefore to summarize, the application of the BP algorithm involves two 

phases. During the first phase, the input pattern is presented to the network 

and all neurons are updated to produce an output. During the second phase, the 

error for the output layer is computed. This error is then propagated backwards 

(hence, the name of the algorithm) to the lower layers and the weights adjusted 

accordingly. The algorithm is balanced as the backward pass has the same com­
putational complexity as the forward pass.

The Functional Capability of the MLP

In general, the functional capability of the MLP can be viewed from three 

different perspectives:

• Firstly, the ability of the MLP to partition the pattern space for classifi­
cation problems. Lippmann [21] has demonstrated that a 2-hidden layer 
MLP can implement arbitrary convex decision boundaries for classification 

problems. Later it was shown that it can form an arbitrarily close approxi­

mation to any non-linear decision boundary [83], by combining hyperplanes 

formed by the hidden layer units

• Secondly, the ability of the MLP to implement Boolean functions also il­

lustrate the MLP’s functional capability. Morgan [84] has shown that a 

2-hidden layer MLP can implement any arbitrary logic function (since only 
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two layers of fundamental operations -ANDs and ORs are needed to im­

plement any logic function).However an extremely large number of hidden 

layer nodes are needed to implement certain logic functions [92]. Sun et al 
[94] has argued that with the addition of feedback connections and a mech­
anism to implement a unit time delay, the MLP can simulate a complete 
digital computer.

• Thirdly, the MLP capability can be viewed from its ability to implement 

non-linear transformations for problems involving functional approxima­

tion. It has been shown that a 2-hidden layer MLP can form an arbitrarily 

close approximation to any continuous non-linear mapping by combining 
rounded step functions formed by the hidden layer nodes [105].

Note that the reported research results which show that a 2-hidden layer MLP 

can implement an arbitrary function do not imply that any more benefit would be 

gained by having more than two layers [24], This is because for many problems, an 

approximation with 2-hidden layers could require an impractically large number 

of hidden units, whereas an adequate solution could be obtained with a tractable 

network size by using more than two hidden layers. Typical problems of such 

nature have been reported in [106].

It has been recently shown in [24] that the MLPs are good at both classifica­
tion and in estimating a posteriori probabilities (or confidence estimates). In some 
applications, this gives them a distinct advantage over other techniques. More 

recently, Haykin [57] has shown in a new case study on image compression and 
segmentation, that properly trained MLP based structures can outperform other 

conventional approaches including the optimal Mean Square Error (MSE)criterion 

based Karhunen-Loeve Transform (KLT).
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A.4 Radial Basis Function (RBF) Neural Net­
work

A RBF network [151] [12] depicted in Figure A.3 is a single hidden layered (or two 

layered) FANN. The RBF is a linear in the parameters (with respect to the output 

layer weights) neural network, whose response is linear function of its weights. 

Specifically, each RBF output layer node forms a weighted linear combination 

of the basis (or kernel) functions computed by the hidden layer nodes. Each 

hidden layer node contains a parameter vector called a center, and calculates the 
Euclidean distance between the center and the input vector. The result is then 

passed through the node’s non-linear basis function. The basis functions produce 
a localized response to input stimuli, that is they produce a significant non-zero 
response when the input falls within a small localized region of the input space 

[124]. Mathematically, an RBF network with n inputs and m outputs, implements 

a mapping f : Rn —> Rm according to:

N
yj = /(x) = w0 + ^w^(||x- Ci||) for j = l,...,m (A.10)

i=l

where x = [jri... xn] is the input vector, <$(.) are the non-linear basis functions 
which transform the input into an intermediate non-linear hidden space of an 

increased dimension N; ||.|| denotes the Euclidean norm, Wi ?' = 0,..., N are the 

tap weights, c,-, i = 1,..., N are the centres of the basis functions, and N is the 

number of RBF centers (equal to the number of hidden nodes). The centers are 

some fixed points in the m—dimensional input space, which they must suitably 

sample [12].
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Figure A.3: Schematic of a Radial Basis Function (RBF) Network
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Common choices for the non-linear basis functions fi(u) employed include 

[187]:

• The thin-plate spline function:

= u2log(u) (A.11)

• The multi-quadratic function

+ a2) (A. 12)

• The inverse multi-quadratic function:

= 4 h (AJ3)
v (u + a )

• And the most widely used Gaussian kernel:

= exp(—u2/cr2) (A.14)

where <7 is a real constant usually termed the width of the basis function. The 

name Radial Basis Function network infact comes from use of the Gaussian basis 

functions, which are radially symmetric, in that each node produces an identical 

output for inputs that lie a fixed radial distance from the center of the kernel. 

An extension of the RBF network includes variation on the basis functions by 
use of the Mahalanobis distance in the Gaussian kernels in order to increase their 
functionality [130] [16].

A.4.1 Learning Algorithms

Numerous approaches have been proposed for the training of RBF networks [24] 
[56]. The linear in the parameters structure of the RBF gives it a distinct advan­

tage over the MLP in learning. Basically, once the hidden layer parameters are 
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fixed using for example, an unsupervised algorithm such as the k—means clus­

tering technique [141], then because the network output is linear in the weights, 

fast least squares based algorithms such as the RLS can be used in the output 

layer to provide a means for real-time adaptation of the weights [192]. In another 

approach [116], once the initial learning in the hidden layer using the A;—means 
clustering algorithms is completed, a supervised learning method can be simul­

taneously applied to both hidden and output layer to fine tune the parameters of 

the network.

Chen et al [187] have also shown that the choice of RBF centers is crucial 

to its performance. They suggested use of the Orthogonal Least Squares (OLS) 
algorithm for selecting the centers of the Gaussian basis functions as a subset 
of the training data, as opposed to the conventional method of random center 
selection. In the OLS approach, the samples are chosen one at a time in such a way 

that each new sample maximizes the amount of incremental gain in explaining the 

variance of the desired output. This technique is attractive as it provides a means 

for automatic determination of the number of hidden layer nodes, and hence the 

size of the RBF required for the application in hand. They have successfully 

applied the OLS method for efficient RBF model selection for non-linear system 

modelling and digital equalization applications. The OLS algorithm can then be 

followed by fast least squares based learning in the output layer.

Other learning algorithms, which incorporate methods for determining the 

number of hidden layer nodes can be found in [130]. However, all these meth­
ods have been devised specifically for application of the RBF network to solving 

pattern recognition problems, and involve use of supervised hierarchical cluster­

ing algorithms in the hidden layer, which either start with one node and create 

additional nodes as needed [108]; or alternatively, start with a large number of 

nodes and merge those of the same class together [130]. Both these techniques, 

also adapt the widths of the basis functions during the learning process in order 
to minimize the overlap between neighbouring nodes of opposite classes.
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A.4.2 RBF Functional Capability

Like the MLP, the RBF can be used for both classification and functional approx­

imation [24]. In theory, the RBF network, like the MLP is capable of forming 

an arbitrarily close approximation to any continuous non-linear mapping [88]. 

The topology of the RBF network is very similar to that of the two-layer Percep­

tron [192]. The primary difference between the two is in the nature of the basis 

functions, with the hidden layer nodes in the MLP employing sigmoidal basis 

functions which are non-zero over an infinitely large region of the input space, 

whereas the basis functions in the RBF network cover only small localized regions. 
Hush et al [24] have recently shown that some problems such as functional ap­
proximation, can be solved more efficiently with sigmoidal basis functions; while 

others such as classification problems are more amenable to localized (e.g. Gaus­

sian) basis functions. One unified approach would be to employ both these types 

of basis functions within a single neural network layer so that the distinct ap­

proximating capabilities of both the MLP and RBF networks can be employed. 
This approach is developed in this thesis to yield a new linear-in-the-parameters 
Feedforward Functionally Expanded Neural Network (FFENN) in chapter 4, and 
the resulting structure is shown to outperform both the MLP and RBF based 

networks in a variety of simulated and real-world non-linear dynamical system 

modeling applications.

A.5 Other Feedforward Neural Networks: The 

Volterra and Functional-Link Neural Net­

works

Thus far, although this section has focused primarily on the MLP and RBF 
networks, various other FANNs have also been reported to date ( see for example
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[24]). However, the MLP and RBF networks are arguably the most popular 

FANNs [24] [56] [19]. Next, we shall briefly describe two of the recently reported 

FANNs, namely the linear-in-the-parameters Volterra Neural Network (VNN) 

and the non-linear-in-the-parameters Functional Link Neural Network (FLNN).

A.5.1 Volterra Neural Network

The single-hidden layered (or two-layered) VNN, based on the non-linear Volterra 

Filter [60], was proposed by Rayner et al [63]. The structure of the linear in the 

parameters VNN is similar to the RBF network illustrated in Figure A.3, with 

the difference being in the nature of the non-linear basis functions employed in 

the hidden layer. The VNN employs polynomial basis functions as opposed to 

Gaussian basis functions. The output of the VNN is related to its inputs via 
the discrete Kolmogorov-Gabor polynomial expansion [77] [60] (which is closely 

related to the Volterra expansion for a non-linear dynamic system [60]):

n n n

y = w0 + 52 wiixii + 52 52 Wi^x^x^ + ...
¿1=1 ¿1=1 ¿2=1

n n n

+ EE-E^^¿2—»* ®«1 Xt2 ' • - Xik (A.15)
¿1=1 ¿2=1 ¿*=1

The above is specified as an (n, k) VNN, that is, n network inputs and upto A:—th 

order product terms. The form of the non-linear polynomial expansion model for 

a (3,2)VNN comprises the following 13 hidden nodes [63]:

(1, Xj, X2, X3, xl, X1X2,X1X3, X^^xj, X2x3, X3X!,X3X2, X^

Hence, like the RBF, each output node of the VNN forms a weighted linear com­
bination of the non-linear (polynomial) basis functions computed by the hidden 

layer nodes as illustrated in equation 2.15 above.

Hence, learning in the VNN output layer can be achieved by the use of 

stochastic gradient based algorithms such as the LMS algorithm used in [63], 

or alternatively the least squares based RLS algorithm. The problem with the
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VNN is that the number of polynomial terms (or hidden nodes) grow exponen­

tially with increasing input dimensions, and hence a very large number of terms 

from the Volterra series expansion may be required in order to achieve the de­

sired approximation ability [64]. Rayner et al [64] proposed a self-structuring 
LMS algorithm for adaptively pruning the redundant terms in the polynomial 
expansion model. However, further work is required in order to determine the 
scaling potential of their algorithm to larger input complex real-world systems.

A.5.2 Functional Link Neural Network (FLNN)

The conventional static FLNN was developed by Pao [31] for functional approx­

imation. It is a two-layered (or single hidden layered) FANN, whose response 

unlike the RBF and VNN, is a non-linear function of its weights, given by:
N

Uj - for j = !,.■■,m outputs
i=i

where (^(x) , i = 1,..., N) constitute the functional-link model which expand 

the n dimensional input x into a non-linear hidden space of increased dimension 

N, /(.) is a differentiable output activation function commonly chosen to be 

the tanh(.) sigmoidal activation function [31] [136], and Wi are the output layer 
weights. The structure of the FLNN is in fact equivalent to a Single Layered 

Perceptron (SLP) with a functionally transformed input [164].
Pao showed that the functional approximation capability of the FLNN is 

enhanced if the input functional-link expansion model is chosen to comprise an 

outer product model of the input data and a subset of the functional (trigono­

metric) components of the input data. The outer product model truly introduces 

higher order terms in the enhanced input representation in the sense that some of 

these terms represent joint activations. In contrast, the trigonometric functional 

expansion model expands the dimension of the representation space without in­

troducing joint activations. In this model each input node is acted upon individ­
ually and the functions may comprise a subset of a complete set of orthonormal 

basis functions spanning a n-dimensional representation space such as sin(?rx), 
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sin(27rx),cos(7rx), cos(2ttx) ... etc. However, in subsequent use of the FLNN for 

noise cancellation and system identification applications [136] [32] [191], a purely 

polynomial expansion model of the inputs has been used to-date, which makes 

the FLNN functional-link expansion model strictly identical to the correspond­

ing model used in the Volterra Neural Network (VNN). In general however, the 

functional-link expansion model of the FLNN is not restricted to a polynomial 

only expansion [31]. Recently Gan et al [163] [164] devised an adaptive non­

linear equalizer based on the above conventional FLNN for efficient equalization 

of both linear and non-linear digital communication channels in the presence of 
Inter-Symbol Interference (ISI) and additive noise. The use of the conventional 
FLNN in digital communications applications is further discussed in chapters 3 

and 6.

Note that the learning algorithm employed by the conventional FLNN is the 

non-linear Delta Rule (DR) [136] [164] which forms the basis of the computation­

ally complex Back Propagation (or Generalized Delta Rule) algorithm described 

earlier. Pao [31] has also showed how unsupervised learning can be accomplished 
in the FLNN. Other unsupervised methods based on the Adaptive Resonance 
Theorem (ART) [14] and the Kohonen’s Self Organizing Map (SOM) methods 

[72] [54] can also be used. In this thesis, we shall focus our attention on super­

vised ANNs.

In chapter 4, a new linear-in-the-parameters Feedforward Functionally Ex­

panded Neural Network (FFENN) structure is devised which differs from the 
above network, firstly in that its response is a linear function of its weights; thus 

enabling fast least squares based learning similar to that used in the RBF; thereby 

guaranteeing convergence to the single global minimum of its uni-modal output 
error surface. Secondly, new non-linear basis functions have been proposed for 
the FFENN’s single hidden layer (functional expander) that are shown to emu­
late other universal approximators namely the MLP’s squashing type sigmoidal 
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activation functions and the RBF’s Gaussian bell shaped and multi-quadratic 

type activation functions. These characteristics of the new FFENN coupled with 

proposed general design and pruning strategies, are shown to give it distinct ad­

vantages over the conventional neural network structures in the modeling of a 

large class of both simulated and real-world non-linear dynamical systems.

A.6 Feedforward ANNs: Issues and Limitations

This section reviews issues and limitations that relate to most Feedforward ANNs 
(FANNs).

Slow Training

The BP algorithm which is mainly used for the training of feedforward multi­

layered structures such as the MLP, implements gradient descent and is intrin­

sically slow to converge in a complex landscape, due to the complexity of the 

energy surface. The network requires presentation of the whole set of training 
input-out pairs (termed an epoch), and usually many times over for the network 

to be able to create internal representations for small problems [56]. However, for 

large problems it is possible to train the network over a statistically valid subset 

of the input space and then make use of the generalization properties to achieve 

correct classification.
The form of input training data presentation plays a significant role in de­

termining the number of iterations required to train the MLP. A common cause 
of problems stems from presenting data to the Back Propagation network as raw 
data. In most cases some preprocessing of the input data is required and this 

often becomes the computational bottle-neck.

The best way to train the network on a large problem is to start the learning 
process with a large value of the learning coefficient rj (near one) and then gradu­

ally reduce it. Also, assigning different qs to each layer, and using a higher value 

of t/ for the first hidden layer than all the succeeding hidden layers and the output 
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layer, has been shown to speed convergence [120]. Vogal et al [97] have also shown 

that the convergence can be accelerated by incorporating a momentum term into 
the weight adaptation rule:

Awji(n) = rja^n^n) + aAwj^n - 1) (A.16)

where a controls the strength of influence of the previous change. This momentum 

term smooths the learning process by helping to avoid oscillations. It also acts 

like a short term memory and discourages rapid weight changes [56].

Convergence rates can also be improved by altering the learning coefficient 

adaptively as training proceeds. Other attempts to speed convergence include 

variations on simple gradient descent [96], line search methods [23], and second 

order methods [99]. Although most of these have been successful, they usu­

ally introduce additional parameters which are difficult to determine, must be 

varied from one problem to the other, and if not chosen properly can actually 

slow convergence rates. Recently, Kariayiannis [100] has developed fast learning 

algorithms for feed-forward neural networks based on the minimisation of an al­
ternative criterion after initial adaptation cycles. The potential application of his 

proposed criterion is an interesting problem for future research.

For linear-in-the-parameters feedforward ANNs with a single hidden layer, 
such as the RBF, the VNN and the new Feedforward Functionally Expanded 

Neural Network (FFENN) developed in chapter 4, since the output is a linear 

function of the weights, fast least squares based algorithms can be used to provide 

a means for real-time weight adaptation.

Choice of correct Network size

As stated earlier, Cybenko [105] has shown that the MLP can form close approx­
imations to arbitrary non-linear mappings provided that the network size grows 
arbitrarily large. Choosing the correct network size is therefore vital in that if 
the network is too small, it will not be capable of forming a good representational 
model of the problem; whereas on the other hand, if the network is too big then 
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the solution learned during any given learning trial will most likely be a poor ap­

proximation to the actual problem [133]. In general, the optimal (finite) network 

size will vary from problem to problem, since each problem will require different 
capabilities from the network.

Whilst there has been a lot of research into the analytical determination of 

both the number of hidden layers and the number of units in each layer required 

to solve a problem, no satisfactory general rule exits. With little or no prior infor­
mation about a problem, the network size has to be determined by trial and error. 

A useful approach is to grow a network i.e. start with a single node and then cre­

ate additional nodes as they are needed during the training process. Approaches 

that include such a technique include the Cascade Correlation [47], Projection 

Pursuit [50], the Algorithm for Synthesis of Polynomial Networks (ASPN) [8] 

and the Group Method of Data Handling (GMDH) [8]. An alternative approach 

is to start with a large network and then apply a pruning technique to destroy 

weights that contribute little or nothing to the solution [107]. However, with this 

approach an idea of how large a network should be for a particular problem is 
required [24].

For a 2-hidden layer MLP which is the most widely multi-layered FANN struc­
ture used, numerous bounds on the number of hidden nodes exist. For example 

it has been shown [92], that the number of hidden nodes should always be much 

less than the number of training samples, otherwise the network would simply 

learn the training data resulting in poor generalization. Bounds on the number 

of hidden nodes expressed as a function of n (the input pattern dimensionality) 

have also been considered. Whilst there are problems requiring number of hidden 
nodes to be an exponential in n, it is generally recommended that MLPs be used 
for problems that require no more than a polynomial number of hidden nodes 

[185].

Recently, Weymaere et al. [134] have proposed a method based on standard 

pattern classification techniques such as clustering and nearest neighbour clas­

sification for properly initializing the parameters (weights) of a two-layer MLP
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(which is a crucial task), and for identifying without the need for any BP training, 

an appropriate network size and topology for solving the classification problem 

under investigation. Once, an appropriate network is selected, it can then be 
trained using the standard BP algorithm.

For the single-hidden layered linear in the parameters RBF network, as dis­
cussed earlier, an Orthogonal Least Squares (OLS) algorithm has been proposed 

for choosing an appropriate number of centres for the application in hand [187]. 

This algorithm can be applied to optimise the size of any single hidden layered 

FANN whose response is a linear function of the network output layer weights, 

such as the VNN and the new FFENN structure developed in chapter 4 (but not 

the conventional FLNN discussed in Appendix A.5.2 as its output is a non-linear 

function of its weights).

Local Minima

All multi-layered FANNs requiring use of non-linear learning algorithms such as 

the BP or DR, have the problem of multi-minima error surfaces. These algo­

rithms implement steepest descent in the error surface, and if the surface is very 

complicated, the algorithm may find a local (false) minimum instead of the opti­

mum global minimum solution. There are a number of strategies which can help 

minimize the risk of finding a local minimum solution.

In practice, if a large number of hidden nodes are used (i.e. greater than 
the lower limit required for that problem), then the network has been shown to 

escape the local minima. Local minima can be considered to occur when two or 
more classes are categorised as being the same. This amounts to poor internal 

representation within the hidden nodes, and so if more nodes are added, hyper­
planes could separate the classes thus reducing the complexity of the optimisation 

process, at the expense of increased network complexity. Thus, in general a large 

network is capable of finding the global minimum at the expense of increased 

computational burden.

Another method is to add random noise to perturb the gradient descent 
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algorithm from the line of steepest descent, and often this noise is enough to 

knock a system out of the local minimum [122]. This approach also has the 

advantage that it takes very little computation time, and so is not noticeably 
slower than the direct gradient descent algorithm.

Statistical training methods can also help avoid the local minima traps, but 

they tend to be very slow. These include use of Simulated Annealing, Boltz­

mann machine, Iterated Descent and Stochastic Diffusion techniques [102]. A 

new Stochastic-Iterated Descent technique has also been proposed by Jha and 

Durrani [101] [102].

The problem of local minima can be avoided by using single-hidden layered, 

linear in the parameters FANNs such as the RBF and VNN structures, as their 

error surfaces are quadratic. The new FFENN developed in chapter 4, is also 

shown to possess an error-surface that is uni-modal and hence free of local minima.

Training Algorithm Termination, Overtraining and Generalization

In stochastic gradient algorithms, a minimum solution is computed by iteratively 

computing the gradient and varying the weights. The process of computing the 

gradient and adjusting the weights is repeated until a minimum is reached. In 

practice, automatic termination of the algorithm may become a problem. How­
ever, there are a number of stopping criteria which can be considered [24]:

• Firstly, the algorithm can be terminated when the gradient magnitude J is 

sufficiently small (implying « zero gradient).

• Second, one could stop the algorithm when a fixed number of learning 

iterations have been performed. However, this does not guarantee that the 

algorithm will terminate at a minimum.

• Thirdly, the algorithm could be terminated when J falls below a certain 
threshold. However, this requires a priori knowledge of the required minimal 
value of J which is not generally available. Even if it is, however, this 
stopping criterion may not yield a solution generalizing well to new data.
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1 he above three criteria are sensitive to the choice of the parameters, which if not 

chosen properly can lead to poor results due to either premature termination or 
ovc i training of the network. During learning, the network performance continues 

to impiove on the training data , but its performance on the test data will only 

improve upto a point, beyond which it starts to degenerate. It is at this point that 

the network begins to overfit the training data (i.e. the network begins to learn 

spurious trends in the training data deviating from the previously learnt general 

statistical trends -termed overtraining) and the algorithm should be terminated. 

A stopping method based on this criteria, termed cross-validation can be used 
to monitor the generalization performance of the network during learning, and 
stop the algorithm when there is no longer an improvement [24]. This method 

therefore also avoids premature termination and actually improves the general­

ization performance of the network. However, if the cross validation method is 
to yield statistically accurate results, it is generally necessary to perform several 

independent splits on the available data set into a training and test set, and then 

average the results to obtain an overall estimate of the generalization performance 
[24]. Hence, although the cross-validation method is widely accepted, it can be 

extremely time consuming if lengthy learning times are required for each of the 
splits. Furthermore, if the number of data samples is limited, cross validation will 

reduce the size of the training set even further. Alternative techniques for predict­
ing the generalization performance of neural networks have also been proposed 

such as the Predicted Squared Error (PSE) and the Generalised Prediction Error 
(GPE) [125] [126] which predict the generalisation performance as function of the 

network’s performance on the training set, the actual or effective number of free 

parameters in the network, and the training set size. However, these measures 

have not been extensively used in practical applications.
Various computationally expensive techniques have also been proposed for 

improving the generalisation performance through pruning of the redundant net­

work weights, such as the Optimal Brain Damage and Optimal Brain Surgeon 

methods [107] [89], in which the neural network weights with the smallest saliency 
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are pruned after the network has been initially trained. After pruning, the net­

work is then re-trained to obtain the final solution. Another method of reducing 

the number of network weights and thereby improving the generalization abil­

ity, is through the use of local connections and weight sharing [98] where the 

individual network nodes process only a local region of the input space.

Alternative methods for improving the generalization performance are based 

on the complexity regularization scheme, in which a term representing a measure 

of the network’s complexity (such as the number of weights) is added to the 

criterion function that discourages the learning algorithm from seeking solutions 

that are too complex. The resulting criterion function is of the form [24]:

Cost = Mapping + Model Complexity (A. 17)

The neural network model that minimises the above cost function will then pro­

vide a minimal description of the data. Cost functions of the above type have 

been used in the methods of weight decay [87], weight elimination [115] [117], 
and soft weight sharing [121]. The latter technique combines the advantages of 
weight sharing and weight decay into a single unified approach.

Recently, Murray et al. [132] have shown that addition of analogue synap­

tic weight noise during the neural network training not only reduces its training 

time, but also enhances its generalisation and fault tolerance capability. Jean 

et al. [135] have also proposed a simple weight smoothing algorithm in which a 

smoothing constraint is incorporated into the objective function of BP to seek 
solutions with smoother connection weights. The technique has been shown to 
improve the generalization capability of feedforward neural networks for pattern 

recognition applications.

Temporal Instability

If the network is learning to recognize characters, it does no good to learn the 
letter C if in doing so it forgets B -referred to as the stability-plasticity dilemma.
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A process is required to teach the network to learn an entire training set without 

disrupting what it has already learned. Rumelhart’s convergence proof [75] does 

accomplish this but requires that the network be shown all training set vectors 
(termed an epoch) before adjusting any weights. The required weight changes 
must be accumulated over the entire set (thereby requiring additional storage). 
After a number of such training iterations, the weights will converge to the 
minimal error. This method may however, not be useful if the network is sub­
jected to a continuously changing learning environment where the same input 

vector may may never appear twice. In this case, the learning process may never 
converge and may instead wander aimlessly or oscillate wildly. In this respec t 

back-propagation fails to mimic biological systems.
Recently, Haykin et al. [90] proposed a new Recurrent Neural Network type 

architecture for successful on-line (adaptive) prediction of non-stationary tiae 

series processes. In chapter 5, the application of the new FFENN and its at urrent 
version termed the Recurrent FENN (RFENN), to on-line modelling of non- 

stationary non-linear dynamical processes is investigated.



Appendix B

The Real Time Recurrent
Learning Algorithm

Recalling from chapter 2 (section 2.3.2), the entire dynamics of a m input n 

output (m; n)RTRN can be represented by the following set of equations:
n m

s^k +1) = + E wm+n(k>#) (B-1)
j=i j=i

yi(k + 1) = f(si(k + 1)) for i = l,...,n (B.2)

Letting di(k) denote the desired (target) response of neuron i at time k, then 

the error at the ¿-th unit is given by:

ei(k + 1) = di(k + 1) — yi(k + 1) for ? = l,...,n (B.3)

It has been assumed without loss of generality that there exist desired values 

for all nodes in the RNN. In general, the number of visible nodes which provide 

externally reachable outputs can be less than n, that is the error index i < n 

; with the remaining neurons being referred to as hidden nodes [56]. The total 

instantaneous error at time k + 1 is then given by:

(B.4)

The objective is to change the weights in the direction that minimizes J(k + 
1). This can be achieved by using an approximation to the method of steepest 

258
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descent, in which an instantaneous estimate of the error gradient with respect to 

the weights is assumed as follows:

e W+l)
owgh — —n--------- tor g = 1,..., n h — 1,..., m + n

Uwg,h

where is the incremental change in a network weight wg^ along the direction 

of the steepest descent, and g is the learning rate parameter.

From equation B.4, we note that

W + l) " de^kA^
n — / < ei\k + f) n ^wg,h i=l dwg>h

Using the RNN output error equation B.3,

dJ(k+V) ” Oy^k+1)
—o  = “ 7 > eAk + 1) a--------  Owg,h--------------------------0Wgt h

Using the chain rule for differentiation:

dyj(k + 1) _ dyj(k + 1) dsj(k + 1) 
dwg>h 5s,(A: + l)‘ dwg^

which readily gives

dyj^k + 1) 
d™g,h

p f ii । i\\ rV^ dyAty , wi,j+n //\i = f (si(k + 1))-IX + X
J=1 OWg^ J=1 OWg,h

where /(.) denotes the derivative of /(.). Noting that the derivative equals 

one only when i — g and j + n = h and zero otherwise, the above equation can 

be re-written as: 

dyj(k + 1) 
dWg^

= f'(si(k +
7 = 1 UWg’h

where agi is the kroneker delta equal to 1 when i = g and zero otherwise.

Letting plgih(k + 1) = , defined as the sensitivity [118], then a recursive

estimator for it can be written as below:

Pg,h(k+iy) = g,i = l,...,nh = l,...,m+n
j=i 

(B.5) 
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with initial conditions p'g^W = 0.

Finally, the weight update equation at time k, which is defined as:

wg,h(k + 1) = wg,h(k) + 8wgih

can be written as: 

n

Wg,h(k + 1) = Wg,h(k) ei(k + ^Pg^ + 1) (B.6)
•=1

The weights can be initialized by choosing them from a set of uniformly dis­

tributed random numbers [56].

Equations B.l, B.2, B.3, B.5 and B.6 are collectively known as the Real Time

Recurrent Learning (RTRL) algorithm.
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