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Abstract

Title: ‘Extending Scottish Exception Reporting Systems Spatially and Tempo-

rally’

Abstract: Exception reporting systems allow medical conditions and micro-organisms

to be automatically monitored for unusually high levels. Typically, sta-

tistical models are used to predict expected levels. Where observed levels

exceed the predicted ones by some pre-determined amount, an ‘exception’

is reported to give warning. We focus on developing suitable models for use

in the predictive component of such systems.

Two particular systems are extended spatially to monitor counts at the re-

gional health board level. The first of these uses call data from the 24-hour

medical helpline NHS24, to monitor particular medical syndromes. The

second uses counts of positive lab identifications of micro-organisms col-

lected by Health Protection Scotland (HPS). Regional incidences tend to

have very small counts, and for these, we use negative binomial General-

ized Linear Models (GLMs). However, GLMs assume that observations are

independent, which is rarely, if ever, the case in the systems we consider.

Two approaches are investigated for dealing with serial correlation and cap-

turing local trend, both of which improve the models. We also investigate

links between the health boards and investigate if these links can be used

to further improve the models.

A new system is produced for monitoring daily all-cause mortality in Scot-

land, using data collated by the General Register Office. Fitting models to

this data is challenging because of the sharp peaks present in the annual

seasonality; to address this, we use Generalized Additive Modelling. There

is also a marked delay in the reporting of deaths, which must be dealt with

if the system is to detect unusually high levels of mortality in a timely fash-

ion. We present a straight forward ‘correction’ to do this. Combining these

elements, a mortality surveillance system is produced, which has been used

by HPS to monitor mortality during the swine flu pandemic (2009).

xxviii



Chapter 1

Introduction

McCabe (2004) notes at the start of his thesis that: ‘In recent years there has

been an increasing expectation that institutional bodies should be adequately

prepared for, and respond rapidly to, events that impinge on public life’ (p.1).

This continues to be increasingly true and has been borne out recently in the

actions of many governments to support their banking systems in response to the

economic downturn. Within the health area, bodies responsible for monitoring

public health face greater demands from governments, who in turn are influenced

by ever greater public expectations. Reasons for the increase in expectations

are myriad. Advances in information technology contribute to increasing the

expectation of what it is possible to do (Lombardo 2007). Threats to public

health, such as bio-terrorism and epidemics, also lead to governments putting

pressure on public health bodies to provide them with information quickly and

efficiently, so that the public can be kept informed in a timely fashion. Systems

used for the surveillance of public health must continue to adapt, evolve and

extend themselves, if they are to remain useful and fit for purpose. In this context,

our research looks at extending surveillance systems used in Scotland.

1.1 Exception Reporting Systems

Among the tools used in the surveillance of disease and medical conditions are

exception reporting systems. These systems allow streams of data to be auto-

matically monitored for unusually high levels of occurrences. So, for example, if

1
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Figure 1.1: The separate elements of an exception reporting system.

monitoring the number of cases of Salmonella, such a system can help indicate

when more than the expected number of cases have been reported – an ‘excep-

tion’ – ideally, taking into account such things as seasonal variation. Sometimes,

an ‘exception’ can be indicative of things like an outbreak of a disease, while at

other times, an exception can just be a high value caused by statistical variation.

This distinction between the different sources of exceptions is the reason that

exceptions are not simply labelled as ‘outbreaks’, or, other suitable equivalent

(McCabe 2004): exceptions must be investigated to distinguish between those

corresponding to genuine biological events or changes, and those caused by sta-

tistical variation. However, the strength of these systems lies in their ability to

help focus the attention of a user on unusually high values, particularly crucial

when monitoring many data-streams. Depending on the implementation, these

systems can also give an indication of how large the exception is compared to

usual values.

Typically, an exception reporting system can be sub-divided into several dis-
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tinct elements. One such division is shown in Figure 1.1. Typically, data about

the quantity being monitored will be passed to the exception surveillance system

at regular intervals (usually, daily or weekly). A prediction is then made for the

quantity. The predicted level is then compared to the observed one using an

alarm method to determine if an exception should be reported. A report is then

made to the users of the system, detailing the results of the alarm method.

1.1.1 Data Sources

Many data sources can be monitored by these systems. The choice of data ob-

viously determines the nature of what can be reported. Some data sources are

collected solely for the purpose of surveillance, while in others it can be a sec-

ondary consideration. The collection of general practitioner consultation rates

(for particular medical conditions) gives an example of the former. In contrast,

the primary purpose of the NHS24 telephone line (introduced in Chapter 2) is to

provide members of the public with triage level medical advice; however, its log of

telephone calls can be used to monitor levels of illness in the population. Often,

data from those systems where surveillance is a tertiary function can give early

warning of exceptions and outbreaks, but with less specificity about the underly-

ing medical cause. For example, the number of calls relating to fever in NHS24

data can be monitored; an exception would potentially indicate an outbreak of

some infectious disease but would not tell us which disease was the cause. Thus,

it is useful to be monitoring a range of data sources, from those that can give

non-specific early warning, to others that can give specific, but more delayed,

information.

For our research we were provided with particular data-sets and did not have

to make decisions on how data should be collected. For a longer discussion on

data sources, see Babin et al. (2007); principles of how data should be stored

are discussed in Wojcik et al. (2007). For examples of different data sources,

see: Magruder (2003), sales from pharmacies; Effler, Ching-Lee, Bogard, Ieong,

Nekomoto, and Jernigan (1999), laboratory test data; Cooper, Smith, Baker,

Chinemana, Verlander, Gerard, Hollyoak, and Griffiths (2004), tele-health call

logs.



CHAPTER 1. INTRODUCTION 4

1.1.2 Prediction Methods

There are many ways of forming predictions for the number of cases expected. Our

research focuses on fitting suitable regression models to past data. These models

are then used to predict expected future levels of the quantity being monitored.

Regression models allow for the inclusion of elements that can address such things

as seasonality and linear trend, which help improve predictions. We generally use

Generalised Linear Models (GLMs) as they allow us to fit count distributions (for

example, Poisson and negative binomial distributions) to data. For a discussion

on the use of regression models for prediction, see Burkom (2007).

Auto-regressive modelling is another approach that can be used for creating

predictions. Developed in Box and Jenkins (1976), it is well suited to modelling

data with changing trends. However, this modelling is generally considered to

require high levels of expertise to use and so is rarely used in this area (Burkom

(2007); Chatfield (1978)). The modelling also assumes that the modelled data

is normally distributed; when the counts are very small, this is not a reasonable

approximation – we consider this point further in Chapter 2.

A simple, but robust, approach is given by exponential smoothing. One ex-

tended form is know as Holt-Winters smoothing, which incorporates elements to

model seasonality and local trend (Holt 2004; Winters 1960). Burkom (2007)

commends this relatively straight forward method for the quality of its predic-

tions, which are aided by it being able to adapt to changes in data. We consider

ways of combining Holt-Winters predictions with GLMs to improve models (see

Chapters 3, 4, 5). A review of exponential smoothing is given in Appendix B.

1.1.3 Alarm Methods

Once we have an observed and expected level, it is necessary to compare the

two values to determine if an exception should be reported. In our research, we

have used a version of exceedance alarms as developed in McCabe (2004) and

Farrington, Andrews, Beale, and Catchpole (1996). Using GLMs for prediction

means that we actually predict a distribution of future values. By comparing

the actual count observed that day with this distribution, we can compute an

associated ‘p-value’, i.e. the probability of obtaining a value as large as that

observed under the predicted distribution. If this p-value is larger than, say, 5%,
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we say an exceedance has occurred and report an exception. Exceedance alarm

methods are best suited to detecting ‘sharp’ or ‘spiky’ changes in data (Burkom

2007). They also have the advantage that they can be presented easily to a non-

statistical audience. For a longer consideration of exceedance alarm methods, see

Burkom (2007), McCabe (2004).

Other alarm methods include control charts. These were initially used by

industry to monitor manufacturing. Typically, they would monitor the mean

of some manufacturing process and check for violations of certain rules (Ryan

1989); should the rules be violated, the process would be considered out of con-

trol and marked for investigation. Usually, the means are displayed on a chart

and the rules are shown graphically to allow for easy interpretation. Control

charts can also be applied to analyse the difference between observed and pre-

dicted expected values (forecast residuals: observed− expected) (Mandel 1969).

For example, Page (1954) gives a CUSUM (cumulative sum) control chart applied

to forecast residuals: an increasing cumulative sum would suggest that the under-

lying quantity being monitored is increasing. Control charts are better suited to

detecting small and distributed changes (Brillman et al. (2005); McCabe (2004)).

There are also a range of other control charts; for details of these and a longer

consideration of control charts see McCabe (2004), Ryan (1989).

1.1.4 Reporting

Having compared the prediction and the observed value, we then need to present

the user of the exception reporting system with these results. There are many

ways in which this can be done, including tables, charts and maps. It is important

that the chosen method is accessible to the user and is reasonably intuitive. Tables

of p-values may be reasonably clear to statistically skilled users, but they will not

be clear to the general user. Charts showing the expected value, the observed

value and exception limits will be more widely accessible. It is important that

the presentation method is chosen wisely, as otherwise it will not matter how

good a system is, since users of the system will simply disregard it because of

impenetrable output. For a longer consideration of these issues, see Hauenstein

et al. (2007), McCabe (2004).
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1.2 Thesis Outline

In this thesis, we deal with three exception reporting systems for use in Scotland.

In Chapter 2, we introduce NHS24, a twenty-four hour medical advice telephone

line. We aim to develop regional exception reporting systems for monitoring

levels of particular medical syndromes using the call log data. We begin by

exploring the call log and fitting ARIMA models to the daily national totals

of calls relating to vomiting. From these, we suggest a potential system for

monitoring the national levels of calls relating to vomiting. However, at the

regional level, the counts of calls are not large enough to approximate as being

normally distributed, violating an underlying assumption of ARIMA modelling.

Thus, we switch to using Generalised Linear Models (GLMs) in Chapter 3. We

begin by fitting a GLM to the national counts and then fit GLMs to the regional

health board counts. We propose a way of dealing with serial correlation in the

counts, through the use of a variable based on exponential smoothing. We then

investigate the use of this variable as a way of linking the separate health board

models together, in the hope that this will improve the models. Since we only

have two years of data from the start of NHS24, it is not possible to easily test

the developed systems.

Next, we consider developing a regional exception reporting system for mon-

itoring lab confirmed samples of micro-organisms, which are collated by Health

Protection Scotland (HPS). HPS suggested six organisms that we could investi-

gate doing this with; we chose Cryptosporidium, a leading cause of water borne

infection. As with the NHS24 data, we begin by fitting a model at the national

level (Chapter 4) and then at the regional level (Chapter 5). We again find there

to be serial correlation in the counts and so try different approaches for dealing

with this. Once we have the regional models, we again look for links between the

health boards, but in a more careful fashion than was done with the NHS24 data.

We find that the relationships between neighbouring boards are generally com-

plex and cannot be modelled easily using separate models for each health board.

In Chapter 6, we develop uniform regional models and combine these with an

alarm method to produce regional exception reporting systems for monitoring

Cryptosporidium. We then compare the results of using these systems with the

current national system applied to the regional counts of Cryptosporidium cases



CHAPTER 1. INTRODUCTION 7

from 2006. We find that our systems do as well as, or better than, the national

system applied to the regional counts.

The last exception reporting system we develop is a national all-cause mor-

tality surveillance system, developed to monitor the mortality of swine flu. In

Chapter 7, we fit models to the daily counts of deaths occurring in Scotland.

The seasonality present in the counts of deaths cannot be captured easily us-

ing trigonometric harmonics, so we use a Generalized Additive Model (GAM)

to more effectively model the seasonality. There is a significant delay associated

with the reporting of deaths, so an approach for dealing with this is presented in

Chapter 8. In the same Chapter, we draw all the necessary elements together for

a complete mortality exception reporting system.

Finally, we summarise the work covered in this thesis in Chapter 9 and suggest

directions for future work.



Chapter 2

NHS24 Preliminary Modelling

2.1 Introduction

NHS24 is a confidential telephone service that provides 24-hour free health advice

every day of the year to the people of Scotland (NHS24 2008). Anyone can call up

with a medical complaint seeking advice. The urgency of the ailment is assessed,

and then the call is triaged appropriately, from the caller being directed to self

care to the emergency services being contacted directly. Calls that are of a non-

critical nature are mostly referred to another health service such as a general

practitioner. Often, the staff at NHS24 will give details of these referral services,

sometimes calling ahead to make appointments for the patient.

Aside from dealing with particular ailments, NHS24 also serves as a source of

information for health related issues (Wilson, Smith, Meyer, Robertson, Baxter,

Cooper, and McMenamin 2007). Health information advisers at NHS24 can pro-

vide information about local services and provide information for various health

queries. In some situations the adviser will even research information for the

caller. This is particularly useful for those that cannot get to a general practi-

tioner’s surgery within normal office hours.

NHS24 is the Scottish equivalent of the longer running NHS Direct service,

which serves the same role for England and Wales. NHS Direct began taking

calls in 1998, while NHS 24 began receiving calls on January 1st 2004 (NHS

Direct 2009). NHS24 is more heavily used than NHS Direct (43 compared to

21 per 100,000 population for 2004 (Health Protection Agency: Primary Care

8
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Surveillance Team 2005)) and tends to receive more calls from the elderly and

triage fewer calls to more serious out-comes (for example, calling the emergency

services) (Health Protection Agency: Primary Care Surveillance Team 2005)).

Each call received by NHS24 is logged, with important details about the call

being recorded. This log of calls forms a very large data-set that may allow the

development of a regional exception reporting system to detect unusually high

reporting levels of particular syndromes. We discuss the choice of monitoring

syndromes in Section 2.2, but note the substantial development of a syndrome

surveillance system for England and Wales by NHS Direct and the Health Pro-

tection Agency (Cooper, Smith, Baker, Chinemana, Verlander, Gerard, Hollyoak,

and Griffiths 2004; Doroshenko, Cooper, Smith, Gerard, Chinemana, Verlander,

and Nicoll 2005; Cooper 2007). The somewhat generic nature of the categories

in a syndromic surveillance system mean that they are better suited to captur-

ing widely dispersed ‘health events’, rather than localised outbreaks of disease

(Henning 2004; Doroshenko, Cooper, Smith, Gerard, Chinemana, Verlander, and

Nicoll 2005; Cooper 2007). However, the users of the NHS Direct syndromic

surveillance system have suggested that their system might be able to detect local

outbreaks if they had a higher rate of callers and some sort of spatial relationships

were included in their models (Smith, Cooper, Loveridge, Chinemana, Gerard,

and Verlander 2006; Cooper, Verlander, Smith, Charlett, Gerard, Willocks, and

O’Brien 2006). With the NHS24 data, we have twice the utilisation of the phone-

line by the population, so the first of these issues may be addressed. To consider

the spatial relationships we can split up the NHS24 call totals between regions

(health boards) in Scotland and see if this added information can improve surveil-

lance models. To begin with, we consider some models that could be used for

prediction at the national level in this chapter and then proceed to developing a

potential system at the regional level.

At the time of this analysis only two years of data were available from when

NHS24 went ‘online’. Thus, the ability to test models and the strength of the

models developed here will be affected by this. However, some interesting direc-

tions were still found.
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2.2 Syndromic Surveillance

The threat of terrorist attack became a greater reality to most people after the

attacks in America during 2001 (The Washington Post 2006). However, even be-

fore this time, the Centers for Disease Control and Prevention (CDC) in America

had set about plans to develop systems for early detection of biological or chem-

ical terrorist attacks (Henning 2004). While there is no precise agreement on a

definition of syndromic surveillance, most sources cite detecting biological attacks

as a motivating (if not the main) reason for developing syndromic surveillance

(Robertson 2006; Henning 2004).

In syndromic surveillance ‘non-specific symptoms or “health events”’ are typ-

ically monitored to detect unusual patterns that might be indicative of a terrorist

attack or other threat that users wish to be warned of (Robertson, Kavanagh,

McKenzie, and Wagner 2008). The data monitored can be very variable, ranging

from over-the-counter prescription sales to school absenteeism (Henning 2004).

Typically, the data used for surveillance is not collected with that purpose in

mind (i.e. school absenteeism is monitored to indicate problems with schools

or domestic situations, rather than as a metric for health surveillance) (Babin,

Magruder, Hakre, Coberly, and Lombardo 2007). This is also true of NHS24: its

primary goal is to help address the medical needs of individuals calling it, rather

than to collect data for surveillance purposes. While such data comes with the

disadvantage of being non-specific, it has the significant advantage of being very

timely; lag times between data-recording and results of analysis are increasingly

being measured in terms of hours (Robertson, Kavanagh, McKenzie, and Wagner

2008). This short lag time is a crucial quality in any system whose purpose is

minimise the damage done by a terrorist attack, but is of course an important

quality in any surveillance system.

NHS24 and NHS Direct are among the only tele-health services in the world

that are national (Cooper 2007). This allows them to carry out much broader syn-

dromic surveillance than most other systems. This allows them to effectively go

beyond merely monitoring for terrorist attacks (Cooper 2007). Their surveillance

data and methods have also been shown to be useful for reassuring the public

that some perceived threat is in fact safe (Smith, Cooper, Loveridge, Chinemana,

Gerard, and Verlander 2006). Further, the daily data will become an increasingly
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rich resource as time goes on, allowing for all manner of different health planning

(Smith, Cooper, Loveridge, Chinemana, Gerard, and Verlander 2006). Syndromic

surveillance began in earnest in Scotland in 2005, as a way of monitoring for ter-

rorist attacks on the G8 summit (Robertson, Kavanagh, McKenzie, and Wagner

2008; Robertson 2006). Since then, syndromic surveillance of NHS24 has become

routine at HPS.

2.3 Operation and the Produced Data-set

Calls to NHS24 are dealt with by nurses. Assuming the reason for a call is an

ailment, as opposed to a request for information, a nurse answering a call can

choose to use the NHS Clinical Assessment System (CAS) to triage the call.

This system contains over two hundred clinical ‘algorithms that form tree-like

structures of questions relating to the symptoms of the person about whom the

call is made’ (Cooper, Smith, Baker, Chinemana, Verlander, Gerard, Hollyoak,

and Griffiths 2004). The algorithm will specify the advice that a nurse should

give to a patient, which can be briefly summarised into one of the following call

outcomes: advice for self care; routine doctor referral; an urgent doctor referral;

emergency department referral; or a paramedic dispatch (the nurse will request an

ambulance to attend the caller). However, it is important to note that the nurses

‘triage rather than diagnose illness in callers’ (Cooper, Smith, Baker, Chinemana,

Verlander, Gerard, Hollyoak, and Griffiths 2004): calls are “classified (‘triaged’)

on the basis of described symptoms to determine priority of need and appropriate

place of treatment” (Cooper and Chinemana 2004). Diagnosis of specific illness

would require the use of doctors and possibly lab confirmation. The possibility

of obtaining biological samples from callers has been explored (Cooper, Smith,

Chinemana, Joseph, Loveridge, Sebastionpillai, Gerard, and Zambon 2008). Calls

that are diagnosed using the CAS system will be referred to as ‘algorithmic calls’.

The nurse can also choose to dispense with the use of an algorithm and deal with

the call from their own personal knowledge and experience. Some research has

been done into how different experiences of nurses can affect the types of advice

they give and whether they use the CAS system (O’Cathain, Nicholl, Simpson,

Walters, McDonnell, and Munro 2004). In either treatment process, a range of

information about each call is collected, including the fields detailed in Figure 2.1.
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• Date and time of call • Postcode location of caller
• Name of caller • The diagnosis of any clinical al-

gorithm used
• Age of caller • Call reason - free text field de-

tailing the presenting complaint

Figure 2.1: A selection of data collected by call-handlers from callers to NHS24.

• Cold & flu

• Coughs

• Diarrhoea

• Difficulty breathing

• Double vision

• Fever

• Eye problems

• Lumps

• Rash

• Vomiting

Figure 2.2: The syndromes that the clinical algorithm can diagnose calls into, which
we will be considering.

All the call details taken together form a call-log that is monitored by HPS.

From the call-log, those calls diagnosed by a clinical algorithm were extracted

to form a data-set to be analysed. For reasons of data protection, that is, to pre-

serve the anonymity of callers, the data-set analysed did not contain the name

of the caller or the complete postcode. The clinical algorithms are grouped into

ten general syndromes given in Figure 2.2. These particular syndromes were

chosen to be monitored as they could be indicative of a rise in common infec-

tions or diseases, or provide early indicators of a biological or chemical terrorist

attack (Cooper 2007; Baker et al. 2003). These syndromes represent the prodro-

mal stages of disease, typically before the disease can be tested for; potentially,

this gives authorities earlier warning of health events than they would gain from

other forms of surveillance (Robertson, Kavanagh, McKenzie, and Wagner 2008;

Cooper, Verlander, Smith, Charlett, Gerard, Willocks, and O’Brien 2006). Dur-

ing 2005 the algorithms were changed, which may affect the data linked with each

syndrome (Advances in Disease Surveillance 2007).

Another way to categorise the call-log into various syndromes would have been
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to group calls using the free-text ‘call reason’ field (see Figure 2.1). However,

there are no checks on data entered into this field and so the quality and range

of data contained therein is very variable. For instance, ‘diarrhoea’ can easily be

mis-spelt. In such a case, if we were interested in the counts of calls pertaining to

this syndrome, some might be easily missed. This would subsequently affect any

models we might form to model the counts of calls relating to diarrhoea. Further,

if a call reason mentions both fever and vomiting, it is not clear which syndrome

group the call should be counted in. Thus, the algorithmic calls were preferred,

as they are likely to be more consistent. Later work has looked at using the ‘call

reason’ field (Williamson 2006) and a syndromic exceedance system is now in

place at HPS using the call reason field (Kavanagh, Robertson, and McMenamim

2007).

When the data were analysed, there were two years of data, starting from 2004

when NHS24 went ‘live’. Using data from the start of the system contributes to

a number of problems in analysing the data. Certainly for 2004 the system had

not reached equilibrium; indeed, there is an increasing trend in the number of

calls taken that year, as shown in Figure 2.3. Another problem is caused by the

different health board regions not going completely ‘live’ from the start of 2004.

For some areas, such as the Borders health board, a number of months passed

before a sizable number of calls were received from this region (see Figure 2.4).

Scotland is presently divided up into fourteen such regions: Highland and Ar-

gyll; Grampian; Tayside; Fife; Lothian; Borders; Forth Valley; Greater Glasgow

and Clyde; Lanarkshire; Ayrshire and Arran; Dumfries and Galloway; Orkney;

Shetland; and the Western Isles. A further complication is given by the propor-

tion of calls diagnosed by algorithm generally decreasing from the inception of

NHS24, as observed in Wilson (2006). Figure 2.5 shows a clear downward trend

for the proportion of calls diagnosed algorithmically for 2005. This downward

trend seems to have continued, motivating Kavanagh et al. (2007) to use the

call reason field. These factors present significant difficulties when trying to fit

models to the data.
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Figure 2.3: The counts of calls to NHS24 for 2004, after a moving average of
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seasonality. Barely any calls were received from the Borders health board until half-
way through April.
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Figure 2.5: The changes in proportions of all recorded calls that are diagnosed
by clinical algorithms over 2004 and 2005. The red line is given by Friedman’s
Supersmoother being applied to the proportions. We find that the proportion of total
calls diagnosed by clinical algorithm decreases over time.

2.4 Data Preparation and Database-usage

Even if we restrict our attention solely to the algorithmic calls, there are still a

very large number of records – over one and a half million calls for 2004 and 2005.

Given the amount of data to be considered, a database presents the only feasible

option for managing the data. Further, by using a database, future data can be

added easily and calls can be categorised into different diseases or geographical

areas with ease. Wojcik, Hauenstein, Sniegoski, and Holtry (2007) give a brief

introduction to databases and extol their virtues for such data management.

However, before the data – see Figure 2.6 for a sample of it – could be in-

corporated into a database, it was necessary to ‘clean’ the data of certain errors

and strange characters that were present in the original text file format. The

biggest inconsistencies in the data occurred in the postcode field. A number of

postcodes had the form ‘XX0X’ which needed to be corrected to ‘XXX’, or had

one too many digits, corrected by the last digit being removed. These corrections

reduced the number of calls with inaccurate postcodes from 15% to around 1%.
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2004-03-21,08:02:01,AB41, 12,Attend PCEC within 12 Hrs,Female,

Cough Child (Age 5-16 years), 2

2004-03-21,08:14:45,G81, 0,Attend PCEC within 1 Hr,Female,Cough

Infant (Age 0-1 year), 2

2004-03-21,08:12:15,KY6, 0,Attend PCEC within 4 Hrs,Male,Unwell

or Crying Infant (Age 0-1 year),11

2004-03-21,08:13:39,G31, 7,Home Visit within 2 Hrs,Female,

Breathing Difficulty Child (Age 5-16 years), 4

Figure 2.6: A sample of the text-file containing the algorithmic calls to NHS24 during
2004 and 2005. This is after it has been cleaned and categorised into the syndromes
we are interested in (Figure 2.2). The fields are in the following order: Date, Time,
Post code, Age, Outcome, Sex, Protocol, Syndrome.

Such changes were carried out over the original text files, using Perl scripts, as

shown in Appendix A.

The simple database we use consists of three tables, as shown in Figure 2.7.

The calls table is the primary one, containing the data from NHS24, with the

additional fields of ‘Syndrome’ and ‘Valid PC’. The former field is an integer value

that corresponds to the syndromes given in Figure 2.2; this correspondence is

encoded in the syndromes table and is primarily for convenience. The ‘Valid PC’

field is a boolean value indicating if the post code contained for any given row in

the calls table is valid. The hb pc table is a look-up table, allowing one to take

each valid post code in calls, and find which health board the call originated

from. This feature will be essential when we look at modelling counts of the

syndromes at the regional level of health boards. However, since we only have

the post code district due to data protection (see Section 2.3), mapping from the

post code to health board region is only approximate.

The 14 health board divisions of Scotland can be seen in Figure 2.8. Initially

at the start of 2004, the beginning of the data-set, there were 15 health boards in

Scotland (left in Figure 2.8). However, during the period under study, the Argyll

and Clyde health board became bankrupt (BBC News 2005). The region that it

previously covered was divided up between the Highlands and Greater Glasgow

health boards, creating the map in the right of Figure 2.8 (Scottish Parliament

2006). This change was easy to effect in the database, as only those rows in hb pc

that corresponded to Argyll and Clyde needed to be changed. The ease of using
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calls table:
Date Time PC Age Outcome Sex Protocol Synd. Valid PC

hb pc table:
Health board Post Code

syndromes table:
Id Description

Figure 2.7: The three tables, with their various fields, that constitute the database
containing the records of algorithmic calls to NHS24 during 2004 and 2005.

a database was also evident when new data was received from NHS24; new data

was easily added to the database and queries simply re-executed to get updated

counts of the syndromes.

2.5 National Counts of Syndromes

The daily counts of NHS24 data have not received much analysis. Thus, before

considering a regional exception reporting system, we begin by looking at mod-

elling the national counts and consider options for a national exception system.

2.5.1 Data Used

Within the data-set, not all of the calls had a valid postcode for each caller’s

location. The status of the postcode is recorded in the log file when certain of

the Perl scripts are executed (see Section 2.4). Thus there are a number of calls

that cannot be attached to any particular geographical area. Obviously, this

does not present a problem when looking at the calls at the national level, as

we do not need to know where a call originates from. However, this presents a

concern when we start considering the calls at a regional level. Fortunately, only

16, 652 of the 1, 576, 282 calls, just over 1%, either had no postcode or an invalid

entry. Therefore, when we look at the regional counts, those calls with no valid

postcode are simply ignored. Generally, this approach is suitable, but might have

ramifications for those syndromes with very low counts (such as double vision), or

areas with very low call rates (for instance the Scottish islands). For consistency,
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Figure 2.8: The health boards in Scotland. Left: The 15 health boards, before Argyll
and Clyde closed. Right: The 14 remaining health boards after this closure.
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in the national analysis of counts here, we restrict ourselves to those calls with a

valid postcode.

2.5.2 Choice of Syndrome

As there are ten syndromes, it was felt best to focus on one of them in this

exploratory work. We choose between them by looking at the counts of calls

and the proportion of total calls relating to each syndrome over the two years

for which we have data. As will be considered in greater detail in Section 2.6,

working with proportions has a number of advantages.

Double vision is eliminated as a candidate since there are very few calls re-

ceived that relate to it. In fact, for 633 days of the 731 under consideration, no

calls were algorithmically diagnosed as relating to double vision. On the other

days only one or two calls were received. This would mean that any model we fit

would have to deal with large numbers of zeros, and is likely not to be suitable

for application to other syndromes.

Other syndromes such as lumps, eye problems, diarrhoea and cold & flu, are

also discounted because of their size. Their counts are plotted in Figure 2.9. A

moving average of order seven has been applied to the counts, since there is a

marked difference in the numbers of calls received at the weekend, and during

the week, as demonstrated in Figure 2.10. The difference is primarily caused by

doctors’ surgeries being closed at the weekend, leading to more people calling

NHS24 for advice at these times. Of these smaller counts, Diarrhoea has some

of the largest ones and yet still only averages around sixty calls each day. If we

proceeded to consider this at a regional level, each health board would get only

four calls per day, as a rough estimate. This would present further difficulties,

with an already problematic data-set. Thus, we choose from those syndromes

with larger counts. The remaining syndromes are plotted in Figures 2.11 and

2.12.

Another criterion to help choose between the syndromes is consistency. Since

we only have the first two years of data, it is sensible to pick the syndrome which

looks like it has the most consistent annual seasonal pattern. When the remaining

counts are considered, little annual pattern can be found within them. This leads

us to consider each syndrome’s proportion of total algorithmic calls, for each day
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Figure 2.9: The counts of calls relating to lumps, eye problems, diarrhoea and cold
& flu, for each day of 2004 and 2005. A moving average of order seven has been
applied to the data to remove weekly seasonality.
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Figure 2.10: The total number of all calls received by NHS24 that are diagnosed by
clinical algorithms.

over the two years. We hope this will remove any weekly seasonal patterns or

trending effects present in the data, allowing any annual pattern to be seen more

clearly. We return to dealing with proportions in Section 2.6, but briefly consider

them further here to justify our choice in focusing on those calls that relate to

vomiting.

A plot of each of the remaining syndrome’s daily proportion of all algorithmic

calls is shown in Figure 2.13. There appears to be some trend remaining in rash

and difficulty breathing. In coughs, there is local peak around March in 2005

which does not occur in 2004. These factors would present difficulty when trying

to find an annual pattern, particularly as we only have two years of data. We

eliminate these options and focus on the remaining vomit and fever syndromes.

Finally, the choice was between fever and vomiting, as shown in Figure 2.14.

Here, a moving average of order seven is applied to data, since it appears in

Figure 2.13 that there is still weekly seasonality present in the proportions. It

was hoped that by working with the proportions that the weekly seasonality would

be removed – see Section 2.6. It seems that the vomit syndrome gives the most

consistent annual pattern and so presents the best modelling opportunity. Thus,
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Figure 2.11: The counts of calls relating to rash, vomit, fever and difficulty breathing,
for each day of 2004 and 2005. A moving average of order seven has been applied to
the data to remove weekly seasonality.
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Figure 2.12: The counts of calls relating to coughs, for each day of 2004 and 2005.
A moving average of order seven has been applied to the data to remove weekly
seasonality.

we proceed by fitting some exploratory models to the counts of calls relating to

people complaining of vomiting, before turning to the more consistent proportions

associated with this syndrome.

2.5.3 Exploratory Modelling of Counts Relating to Vom-

iting

A plot of the counts of calls pertaining to ‘vomit’ over the two years can be found

in figure 2.15. The most striking feature in the counts is the difference in level

between week-days and weekends; the effect of this is most clearly seen on a log-

scale, as in shown figure 2.16. It can be seen from this graph that the log-level at

the weekend is nearly a constant distance above that of the log-level during the

week. To find this constant difference, we fit the following linear model:

ln(vc) = β0 + daytype + ε,
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Figure 2.13: The proportions of algorithmic calls relating to vomit, rash, fever,
difficulty breathing and coughs, for each day of 2004 and 2005.
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Figure 2.14: The proportion of algorithmic calls relating to vomit and fever, for each
day of 2004 and 2005. A moving average of order seven has been applied to the
proportions.
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Figure 2.15: The counts of those calls that mention vomiting for 2004 and 2005.

where vc is the daily number of calls from people suffering with vomiting, daytype

is a factor with two levels, indicating a week-day or weekend, and ε are the

residuals. Fitting this model, we find the following relation:

ln(vc) = 4.468 + daytype + ε,

with

daytype =

{
0 Week− days,

0.884 Weekends.

It is known that at peak times of demands, such as at weekends when general

practitioners’ surgeries are closed, more staff are on duty at NHS24 allowing

more calls to be taken. This observation about staffing levels becomes appar-

ent on considering the other syndromes in a similar fashion. When this is done,

a comparable difference between week-day and week-end levels is found. Fur-

ther, the factor 2.3 (i.e. exp (0.884)), appears constant over 2004-2005, when

we might expect the number of calls to rise. This may indicate capacity rather

than demand, if, say, there are about 2.3 times as many staff on duty during the

weekend.
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Figure 2.16: The log-counts of those calls that mentioning vomiting for 2004 and
2005.

For both years, there seems to be a local peak around April, perhaps corre-

sponding to an annual outbreak of vomiting. There are also local peaks at the

beginning and end of the two years. One of the problems presented by this data-

set is that while there are a large number of observations, 731 in total, (one for

each day of the two years), they are from a period of only two years. Thus, any

conclusions about annual seasonal effects cannot be made with great confidence.

For instance, we cannot know for sure if the local peaks during April each year

is just an artifact of these two years, or if they are part of an annual seasonal

pattern.

We find that the counts generally increase for 2004, and mostly decrease

for 2005. Stabilisation and trend may also be factors for this data. It is not

obvious how long it will take the system, after the start in January 2004, to

reach an equilibrium state. Further, if NHS24 increases in popularity with the

public, more people will call causing an increase in the long term trend. Also,

as noted in section 2.3, the proportion of calls being algorithmically diagnosed

is decreasing. For these reasons, we consider the proportion of algorithmic calls

related to vomiting instead of the counts. Thus, the effects of a possible long
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Figure 2.17: The proportion of algorithmic calls diagnosed each day as pertaining
to people vomiting.

term (rising) trend as the public become familiar with NHS24 might be removed

or greatly reduced. This may also be true of other effects related to modelling

the counts directly.

2.6 Proportions

A plot of the proportion of algorithmic calls related to vomiting, hereafter referred

to as V P , can be found in Figure 2.17. Surprisingly, perhaps, the day-of-the-week

effect still seems to be present in the data, although the difference appears less

distinct. However, the day-of-the-week effect is reversed: in general, V P is lower

at the weekends than during the week. This reversal is caused by some of the

other syndromes being proportionately more prevalent at the weekend, as shown

in Figure 2.18 and Figure 2.19. Calls at the weekend will generally cover a wider

array of conditions than during the week, since anyone that might want a GP has

little choice but to call NHS24.

Working with proportions complicates modelling as the syndromes are now

coupled. During an outbreak, the proportions will be negatively correlated: as
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Figure 2.18: The graphs show each syndrome’s proportions of all algorithm calls for
2004/2005, for each day of the day of the the week. For example, just under one
percent of all calls received on Mondays during 2004/2005 were related to vomiting.
Double vision has been omitted as the number of calls relating to this syndrome are
very small; see Section 2.5.2. The weekly pattern for the ‘other’ syndrome is shown
in Figure 2.19.
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Figure 2.19: The proportion of algorithm calls diagnosed as ‘other’, of all algorithm
calls for 2004/2005, for each day of the week.

one syndrome increases others will decrease. So, for instance, a fall in V P may

indicate that another syndrome is occurring more often or maybe in outbreak.

However, it was hoped that the stability gained by working with the proportions

would make this added difficulty worthwhile. A correlation matrix between the

different proportions of each syndrome can be found in Figure 2.20. It is worth

noting that fever has the closest positive correlation to vomit. This can be seen

clearly in Figure 2.18, where these two syndromes have a similar weekly pattern,

if at different levels.

2.6.1 Annual Pattern

As with the counts, there appear to be two annual peaks within V P . The first is

a local peak around March-April each year and the second occurs near the end

of the year. By looking at the proportions, it appears that these are part of an

annual cycle. Thus, we try to capture this annual pattern or profile. However, at

the time of analysis there existed only two years of data, meaning that it is quite

plausible that any pattern found within in the data was local.

From Figure 2.17, we can see that at the beginning of the year, V P starts
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Cold & Flu 1
Cough 0.70 1
Diarrhoea 0.03 0.15 1
Diff. Breathing 0.31 0.41 -0.13 1
Double Vision -0.06 -0.02 0.01 -0.04 1
Fever 0.47 0.37 -0.15 0.08 -0.06 1
Eye Problems 0.00 0.15 0.24 0.17 0.13 -0.16 1
Lumps -0.26 -0.31 0.10 -0.32 0.01 -0.27 -0.04 1
Rash -0.09 0.01 0.37 -0.23 0.02 -0.21 0.30 0.13 1
Vomit 0.23 0.14 0.20 -0.12 -0.07 0.42 -0.23 -0.06 -0.02 1
Other -0.70 -0.84 -0.35 -0.40 0.04 -0.54 -0.25 0.24 -0.23 -0.46 1

Figure 2.20: The correlation matrix for the different syndrome proportions.

quite low and rises to a local peak during March-April. The level of V P then

drops more slowly to a low during August and rises from there to another high

towards the end of the year. The low during August is attributable to the ‘other’

syndrome, being proportionately higher during this period. If a call cannot be

diagnosed into one of the syndromes of Figure 2.2, it is then labelled as falling into

the catch-all category of ‘other’. Around 65-75% of algorithmic calls each day fall

into this category. From Figure 2.21, it is easy to see that the highs during August

for ‘other’ occur approximately around the same time as V P is low during. The

‘other’ category may be particularly high during this period as a number of the

other syndromes, (again, see Figure 2.2), are typically associated with winter,

and so are low at this time. Further, a number of other conditions (i.e. allergies,

sun burn) not captured by the syndromes under study are likely to be prevalent

during this time too. Thus, when people call up with such conditions during the

Summer, the number of calls falling into the ‘other’ category will increase. This

demonstrates some of the complexity mentioned previously in working with the

proportion of algorithmic calls corresponding to a particular syndrome instead of

the counts of each syndrome.

The usual methods of finding an annual seasonal pattern are differencing or

seasonal decomposition. Differencing is not practical here, since a year of data

would have been lost, which as there are only two years of data is not tenable.

Seasonal decomposition would only really work with more years of data. With the

data-set considered here, seasonal decomposition would come down to averaging

two numbers for each day, which is unlikely produce an accurate result. Both

approaches also suffer from a calendar problem: while August 12th of one year
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Figure 2.21: The points represent the proportion of all calls that fall into the catch-
all category of ‘other’. The blue line gives the annual seasonal pattern as we went on
to find by running a smoother through V P , scaled to allow comparison with ‘other’.
The scaling was found by finding the ratio between the maximum proportion value
for ‘other’ and the maximum value of the annual seasonal pattern. This was then
used as a scale factor to multiply the annual pattern of V P by, to get it on the same
scale as ‘other’.

will have a strong link with August 12th next year, the level will be affected by

the day of the week (for instance, the difference in being a week-day or weekend),

and any public holidays nearby. Instead of linking only days 365 days apart, we

want to link larger periods together and find the more general level for a number

of days. This can be done using a periodic smoother: any two days 365 days apart

will be linked, but they will also be augmented by days around them. Doing so

returns a more general level. Thus, we proceed by using a smoother to find the

annual profile.

To calculate a profile, a smoother is applied to the data. We use R’s implemen-

tation of Friedman’s ‘super-smoother’, supsmu, as it is robust and allows the data

to be treated as periodic (Friedman 1984). Treating the data as periodic ensures

that the beginning and end of the data match in level, as would be expected in

an annual profile. The resulting profile plotted against the original data is shown

in Figure 2.22.

The annual profile found seems to follow the pattern in the data for the two

years reasonably well. However, the smoother does not get far into the local
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Figure 2.22: The proportion of national calls diagnosed algorithmically each day
that mention ‘vomit’, with the smoother capturing the annual profile in blue.

peaks in March-April, nor at the end of the year. Never the less, we will use this

as the basic annual profile and attempt to model deviations from it. In practice,

of course, this profile would be re-estimated each year.

We define some terms:

Xt = V P on day t, (2.1)

At = Annual profile for day t, (2.2)

Yt = Xt − At. (2.3)

Thus Yt are our residuals, plotted in Figure 2.23, along with their estimated auto-

correlation function, acf. It is clear that Yt is not white noise. There is an evident

pattern repeated every seven lags, strongly suggesting weekly seasonality. The

earlier observation that weekends tend to be lower than week-days agrees with

this. We now consider some time series models that could be fit to Yt and thus

allow predictions to be made, a necessary stage in a exceedance reporting system.
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Figure 2.23: Diagnostic plots of the residuals Yt – that is the difference between the
annual seasonal profile (At) found by Friedman’s Supersmoother and the proportion
of algorithmic calls related to vomiting that day: (a) the residuals, (b) acf of the
residuals. The blue lines on the acf correspond to the 95% confidence intervals for
white noise.
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2.6.2 Modelling V P With Annual Seasonality Removed

To gain an insight into trend and seasonality contained in Yt, we first carry out

a seasonal decomposition on Yt in Section 2.6.3. We then try fitting two types

of ARIMA models: a multiplicative seasonal ARIMA model in Section 2.6.4 and

a non-seasonal ARIMA model with seasonal factors in Section 2.6.5. ARIMA

models are less popular tools for modelling time series in the surveillance context

(Burkom 2007). Part of this reticence may be linked with the perceived need for

substantial amounts of data and more advanced statistical expertise (Chatfield

1978). However, Reis and Mandl (2003) give an example of syndromic surveillance

that utilises ARIMA models. Such models have the advantage of dealing well with

short term trend (Burkom 2007); since it would not be surprising if there were

serial correlation between successive daily calling proportions, ARIMA modelling

seems a reasonable approach to explore. Even if the ARIMA models we develop

here are not entirely satisfactory, they are likely to provide insights into the data

that will be useful when we try to develop a regional syndromic surveillance

system in Chapter 3. Finally, we consider fitting a simple linear regression model

with seasonal factors to Yt in Section 2.6.6 to contrast with the ARIMA models.

2.6.3 Seasonal Decomposition

In seasonal decomposition, a time series, such as Yt, is broken up into a number

of simpler parts. Thus,

Yt = St + Tt + Rt,

where

S = Weekly (day-of-the-week) seasonal pattern,

T = Trend,

R = Residuals.

We calculate an initial estimate of the trend T̂ by running a moving average

of order seven through the data. By subtracting T̂ from Yt, a de-trended series

results. The seasonal factors, (that is a level for each day of the week), are

found by calculating a simple mean for each day in turn i.e. all Mondays, then all

Tuesdays and so on. Finally, the seasonal factors are subtracted from the original
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Figure 2.24: Yt (the residuals after the annual profile has been removed V P ) in
black. The trend, as calculated by seasonal decomposition in Section 2.6.3, is shown
in red.

data, Yt, yielding a de-seasonalised version of the data, from which a smooth

trend was obtained by using Friedman’s super-smoother (Friedman 1984).

A number of results become apparent when we decompose Yt. Firstly, there

does appear to be a trend still remaining within the data – see Figure 2.24. It was

hoped that by dealing with proportions of calls, instead of with the direct counts of

calls, that most trend effects would be removed. The trend is generally increasing

slowly for the two years, with a reasonably small magnitude. The trend starts at

its lowest value at the beginning of 2004, rising relatively quickly for the next four

months, possibly corresponding to the calling levels approaching equilibrium. A

local peak occurs in April 2004 and March 2005, with the interesting artifact that

in 2005 there follows a local minimum in April. The absolute magnitudes of these

turning points are not particularly large, and correspond to the local peaks in

Xt (V P before the annual profile has been removed) where the smoother used

to produce the annual profile does not follow these peaks particularly closely. It

is reasonable to assume from Figure 2.24 that the trend is stochastic: thus, this

model could not be used for prediction.
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Figure 2.25: The weekly seasonal pattern in Yt, calculated by using seasonal decom-
position in Section 2.6.3. Shown here are the deviations from the trend T as shown
in Figure 2.24.

Secondly, this decomposition gives an insight into the seasonal pattern for the

days of the week – from Monday to Thursday, 0.001 to 0.002 above trend, Friday

about on trend, Saturday 0.005 and Sunday 0.002 below trend (see Figure 2.25).

In later models, this suggested that a three level (week-day, Saturday, Sunday)

factor might be used to capture weekly seasonality.

The residuals appear well behaved and the qq-plot suggest that they are very

close to being normally distributed. A quantile-quantile-plot, qq-plot allows the

residuals to be checked for normality. The quantiles in the residuals are plot-

ted against the theoretical quantiles of the normal distribution; if the resulting

points approximately follow a 45 degree straight line, there is good evidence for

considering the residuals to be normally distributed.
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2.6.4 Multiplicative Seasonal ARIMA Model

The general form of the seasonal ARIMA model, as described in Box and Jenkins

(1976), is given by:

φp (B) ΦP

(
BS
)
∇d∇D

S Yt = θq (B) ΘQ

(
BS
)
at, (2.4)

where at is zero-mean white noise, B is the back-shift operator (i.e. BkYt = Yt−k),

S the period of the seasonality (so for a weekly seasonality, S = 7), φ and θ

are polynomials in B of order p and q respectively (satisfying stationarity and

invertability conditions), similarly Φ and Θ are polynomials in BS of order P and

Q (once again, satisfying stationarity and invertability conditions). The difference

operator∇ is defined as 1−B, so here∇d = (1−B)d, and∇D
S = (1−BS)D, where

d and D the orders of differencing and seasonal differencing respectively. This

describes a ‘multiplicative seasonal’ model, denoted ARIMA (p, d, q)×(P, D, Q)S.

Those parts of Equation (2.4) that involve BS are referred to as seasonal parts,

since BS links those observations that are separated by the length of the seasonal

cycle. We proceed to fit a model of this form to the proportion of algorithmic

calls pertaining to vomiting, once the annual profile (At) has been removed.

From the auto-correlation function (acf) of Yt shown in Figure 2.23, we observe

a repeating cycle every seven lags corresponding to weekly seasonality. To remove

this seasonality, we seasonally difference Yt (so ∇7Yt). When we consider the acf

of ∇7Yt, we find there is a significant correlation at lag seven. The corresponding

partial auto-correlation function (pacf) has significant decreasing correlations at

intervals of seven, reflecting the significant correlation on the acf. These suggests

a multiplicative seasonal ARIMA (0, 0, 0)× (0, 1, 1)7 model.

The acf and pacf of the residuals that result from fitting the ARIMA (0, 0, 0)×
(0, 1, 1)7 model are given in Figure 2.26. There appear to be no patterns in

correlations seven lags apart, suggesting that the seasonality has been removed.

However, all the correlations up to lag 28 on the acf have a positive correlation,

while nearly all the lags after 28 have a negative correlation. This suggests

that the (0, 0, 0) × (0, 1, 1)7 model should be modified to include a non-seasonal

differencing term of order one to address the trend. The pacf also suggests that

the non-seasonal part of the model should be adapted to include auto-regressive

terms. We try each of these approaches and then choose between them.
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Figure 2.26: The acf (a) and pacf (b) of the residuals of the ARIMA (0, 0, 0) ×
(0, 1, 1)7 model fitted to Yt.
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Parameter Value Standard Error

θ1 −0.9163 0.0175
Θ1 −0.9795 0.0161
at standard deviation 0.0070

Table 2.1: A multiplicative ARIMA (0, 1, 1) × (0, 1, 1)7 model is fit to Yt in Sec-
tion 2.6.4. It has the following structure: ∇∇7Yt = (1 + θ1B)(1 + Θ1B

7)at.

Adapting ARIMA (0, 0, 0)× (0, 1, 1)7 with non-seasonal differencing

Adapting the (0, 0, 0)×(0, 1, 1)7 model to include non-seasonal differencing changes

the model to an ARIMA (0, 1, 0)×(0, 1, 1)7. The acf of the residuals for this model

have a large negative correlation at lag one of around −0.5. This suggests fur-

ther adapting the model to include a non-seasonal moving average component of

order one: an ARIMA (0, 1, 1) × (0, 1, 1)7. The only significant correlations in

the residuals of the ARIMA (0, 1, 1)× (0, 1, 1)7 are at lag 57 on both the acf and

pacf. This lag is isolated and bears no obvious relationship with the data source,

so we disregard it and believe the residuals free of significant serial correlation.

The qq-plot of the residuals also suggest the model is a reasonable fit. Thus, we

have a reasonable model in this direction, with its parameters given in Table 2.1.

Adapting ARIMA (0, 0, 0)× (0, 1, 1)7 with auto-regressive terms

Instead of adapting the ARIMA (0, 0, 0)× (0, 1, 1)7 model to use differencing, we

can also adapt it to use auto-regressive terms in the non-seasonal component. The

acf in Figure 2.26 suggests that an AR(2) or AR(6) may fit the data well. The

AR(2) is a reasonable option as the correlation at lag 3 is barely significant, and

the AR(6) is explored, as the magnitude of correlations after lag 6 drop almost

to in-significance. To decide between the high or low order model, a likelihood

ratio test, LRT, can be carried out between the AR(2) and the AR(6). If there

is no significant improvement in using the bigger model, (the null hypothesis),

the LRT statistic has a χ2 distribution with k degrees of freedom. In this case,

k = 4, as there is a difference of 4 between the orders of the two models. When

calculated, the LRT has a high significance giving a p-value of 0.001 and so we

accept the alternative hypothesis that the AR(6) is more suitable.
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Parameter Value Standard Error

φ1 0.0928 0.0371
φ2 0.0680 0.0374
φ3 0.0577 0.0373
φ4 0.0666 0.0374
φ5 0.0731 0.0375
φ6 0.0898 0.0374
Θ1 −0.9632 0.0149
at standard deviation 0.0070

Table 2.2: A multiplicative ARIMA (6, 0, 0) × (0, 1, 1)7 model
is fit to Yt in Section 2.6.4. It has the following structure:

(1− φ1B − φ2B
2 − φ3B

3 − φ4B
4 − φ5B

5 − φ6B
6)∇7Yt = (1 + Θ1B

7)at.

The only significant correlations in the residuals of the ARIMA (6, 0, 0) ×
(0, 1, 1) model occur at lag 57 and as above we disregard this correlation since it

bears no obvious relationship to the data-source. Thus, these residuals appear to

be free of serial correlation. A plot of the residuals suggests they are well behaved.

The qq-plot shows some curvature at either ‘end’ of the data, but this is minor,

so the residuals seem reasonably normally distributed. Thus, this seems to be

another viable model. Thus, we have arrived at the ARIMA (6, 0, 0) × (0, 1, 1)7

model as the best multiplicative seasonal ARIMA model using auto-regressive

terms in its non-seasonal component, with parameters given in Table 2.2.

Final model selection for the multiplicative seasonal ARIMA model

We now have two models to choose between: an ARIMA (0, 1, 1) × (0, 1, 1)7 or

an ARIMA (6, 0, 0)× (0, 1, 1)7. The decision depends on whether the residuals of

the ARIMA (0, 0, 0) × (0, 1, 1)7 model suggest that the non-seasonal component

should contain a differencing term. It is possible to test for a series having a unit

root, and so allowing us to test if the series should be differenced. We use the

Phillips-Perron unit root test, which has the null hypothesis that a series has a

unit root against a stationary alternative – see Perron (1988) for details. When

this test is carried out on the residuals of the ARIMA (0, 0, 0) × (0, 1, 1)7, a p-

value of 0.01 is found, leading us to reject the null hypothesis that the series has

a unit root. This leads us to reject the differenced model, and so we choose the
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AR(6) as the most suitable multiplicative seasonal ARIMA.

The acf and pacf of the residuals have already been considered, but we show

them in Figure 2.27 for completeness and to demonstrate how these functions

behave when they are showing white noise. A plot of the residuals can be found

in Figure 2.28. Finally, a qq-plot of the residuals is shown in Figure 2.29.

In Table 2.2, we see that the seasonal parts of the equation are very close to

redundancy since Θ1 = −0.963 ≈ −1. This suggests that the seasonal part of the

model is unstable and might better be estimated by a deterministic component.

This leads to the next model, where seasonality is dealt with by using regressors,

instead of seasonal differencing.

2.6.5 Non-Seasonal ARIMA Model with Seasonal Factors

We now deal with the seasonality deterministically. Thus, the proportions of

algorithmic calls relating to people complaining of vomit after the annual profile

(At) has been removed (Yt) is modelled by:

Yt = β0 + β1Saturdayt + β2Sundayt + xt, (2.5)

where: the β0 is a constant; β1 and β2 are coefficients; Saturdayt and Sundayt

take the value 1 if day t is a Saturday or Sunday respectively and 0 otherwise; xt

is an ARIMA (p,d,q) series:

φp (B)∇xt = θq (B) at, (2.6)

where the terms are defined as in Equation (2.4).

When an ARIMA model with regressors is fitted in R, a linear regression is

fitted with an ARIMA model for the error term. Thus, we begin by fitting a

linear model and then considering its residuals to determine the ARIMA model

that should be fitted to the residuals. The following simple linear model is fit:

Yt = β0 + β1Saturdayt + β2Sundayt + εt, (2.7)

where the terms are as defined above and εt are the residuals. This model means

we are treating the seasonality as having three levels: weekdays, Saturdays and
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Figure 2.27: The acf (a) and pacf (b) of the residuals of the ARIMA (6, 0, 0) ×
(0, 1, 1)7 model fitted to Yt.
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Figure 2.28: The residuals of the ARIMA (6, 0, 0)× (0, 1, 1) model fitted to Yt.
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Figure 2.29: A normal quantile-quantile plot, qq-plot, of the residuals of the ARIMA
(6, 0, 0)× (0, 1, 1)7 model for Yt. The dashed line gives the ideal theoretical fit.
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Sundays. This is a reasonable initial number of levels given the evidence of

Figure 2.25, found when we worked with the seasonal decomposition of Yt in

Section 2.6.3. The pacf and acf of the residuals that result from fitting this

model have no patterns in the correlations seven lags apart; this suggests that

seasonality has been modelled sufficiently well. As with the model fitting in

Section 2.6.4, the residuals of Yt, once its seasonality has been modelled, suggest

two directions of modelling. Firstly, the acf seems to exhibit linear decay, and so

is suggestive of the residuals having trend. This is consistent with Yt having a

noticeable trend component, as was also found in the time series decomposition

carried out in Section 2.6.3. Thus, since the model specified by Equation 2.7

only addresses seasonality, it is not surprising to find trend in its residuals. Thus,

in the first modelling direction, we difference xt before fitting further ARIMA

models. However, the pacf of the residuals εt also suggest that an auto-regressive

model could be fit to xt, so we take that as our second modelling direction.

Differencing the linear model residuals xt

In this first modelling direction, we fit the seasonal factors and then an ARIMA

(0, 1, 0) to the resulting residuals xt. The acf of the residuals for this model have a

significant correlation at lag one, suggesting that the series should have a moving

average of order one fitted (MA(1)). Thus, we apply an ARIMA (0, 0, 1) to xt

On fitting an ARIMA (0, 1, 1) to xt, we find there is little evidence of serial

correlation remaining in the residuals. The only significant correlation on both

the acf and pacf occurs at lag 57. It is only just significant. As before, since this

lag is unimportant in terms of this system, we disregard it. A plot of the residuals

and their qq-plot suggest they behave reasonably well as white noise. Now that

we have a suitable model for xt, we have a suitable model for Yt, which we detail

in Table 2.3.

Linear regression with AR errors

The residuals of the model we initially considered (defined by Equation 2.7) have

significant correlations between lags one and seven inclusive on the pacf. Now, the

correlation at lag 3 is only just significant, suggesting an auto-regressive model of

order 2, AR(2), might be sufficient. However, the significance of the correlations
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Parameter Value Standard Error

β0 (×10−5) 1.4637 4.2633
β1 −0.0065 0.0007
β2 −0.0038 0.0007
θ1 −0.9203 0.0171
at standard deviation 0.0070

Table 2.3: A non-seasonal ARIMA model with seasonal factors is fit to Yt in
Section 2.6.5. In this model, a linear regression is used to deal with seasonality:
Yt = β0 + β1Saturdayt + β2Sundayt + xt, and an ARIMA (0, 1, 1) model is fit to
xt: ∇xt = (1 + θ1B)at.

at lags at 4, 5 and 6 grow consecutively larger, so an AR(6) might be another

reasonable model. Finally, we might consider an AR(7), since this is the last low

order correlation that is significant.

When the AR(2) model is fit, a number of the low order correlations are

significant in both the acf and pacf of the residuals, suggesting that a higher

order AR series might be better. The acf and pacf of the residuals of the AR(6)

and AR(7) both suggest that the residuals are white noise, with little difference

between them. To choose between the low or high order models, a LRT is carried

out between the AR(2) and the AR(7), in the same fashion as in Section 2.6.4.

When calculated, the LRT has a high significance, giving a p-value of 0.0001,

indicating the higher order models are preferable.

It now remains to decide between an AR(6) and an AR(7). To decide, we

consider the coefficient of the seventh auto-regressive term. The coefficient is

0.0802 and has a standard error of 0.0374. Since the coefficient is more than twice

the size of the standard error we can be confident that the seventh auto-regressive

coefficient should not be zero. Thus, we choose the AR(7) model. This choice

is also corroborated by by performing an LRT between the AR(6) and AR(7)

models; this test gives a p-value of 0.0321, confirming that the bigger model is

preferable. The acf and pacf of the residuals suggest that no serial correlation

remains in the residuals. A plot of the residuals and the qq-plot suggest they are

reasonably distributed as white noise. Thus, we have a reasonable model for Yt,

with parameters given in Table 2.4.
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Parameter Value Standard Error

β0 0.0014 0.0006
β1 −0.0050 0.0008
β2 −0.0024 0.0008
φ1 0.0858 0.0370
φ2 0.0683 0.0371
φ3 0.0549 0.0373
φ4 0.0642 0.0373
φ5 0.0735 0.0373
φ6 0.0831 0.0374
φ7 0.0802 0.0374
at standard deviation 0.0069

Table 2.4: A non-seasonal ARIMA model with seasonal factors is fit to Yt in
Section 2.6.5. In this model, a linear regression is used to deal with seasonal-
ity: Yt = β0 + β1Saturdayt + β2Sundayt + xt, and an ARIMA model is fit to xt:

(1− φ1B − φ2B
2 − φ3B

3 − φ4B
4 − φ5B

5 − φ6B
6 − φ7B

7)xt = at.

Choosing between models for the residuals xt of the linear regression

Thus, we have two models to choose between that both deal with seasonality in

a deterministic fashion. To check if the model should have a differencing term,

we use the Phillips-Perron on εt, the residuals after the linear model has been fit

to deal with seasonality. When this test is carried out, a p-value of 0.01 is found,

leading us to reject the null hypothesis that the series has a unit root. Thus the

AR(7) model for xt is chosen.

Number of seasonal levels

As a final consideration, we investigate how many levels the weekly seasonality

should have. It is quite plausible that there is a difference between week-days

and weekends, but it is less obvious why there would be a difference between

Saturdays and Sundays. Thus, we test to check if this extra level is significant

by fitting another model with only two levels for week-days and weekends. We

carry out an LRT against the model with three levels. When this is done, the

LRT is calculated to be 7.18, with a p-value of 0.0074. This indicates that it is

best to have three levels for the seasonality: one each for weekdays, Saturdays

and Sundays.
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Final deterministic seasonality model with ARIMA error term

Thus, the most appropriate model for dealing with seasonality in a deterministic

fashion is specified in Table 2.4. This model has three levels for the seasonality:

a level for weekdays and separate levels for Saturdays and Sundays. Similar to

the model developed in Section 2.6.4, we found the best way to deal with serial

correlation was to use autoregressive terms. However, since we have an AR(7)

term, a term that links days a week apart, it does suggest that the seasonal levels

change as time goes on. We now consider a parallel of this model in a linear

regression form.

2.6.6 Regression Model with Seasonal Factors

This model does not utilise ARIMA methodology, but instead uses linear regres-

sion. We consider a model of the form:

Yt = β0 + Dt +
k∑

i=1

βiYt−i + εt, (2.8)

where Dt is a factor with three levels (weekdays, Saturdays and Sundays) and εt

is an error term. This uses the last k days to calculate a prediction for the level

of the present day t, while Dt captures weekly seasonality.

It is necessary to decide on the value of k, the number of past days to use

within the regression. To determine k, ANOVA is carried out on the regression

model, in such a way that the significance of each additional factor included in

the model is tested – see Figure 2.30. We find that only the first seven days,

k <= 7, contribute significantly to the model. Indeed, the inclusion of Yt−7 is

only significant at the 10% level; however, we keep Yt−7 in the model while we

develop it further.

We now consider the factor Dt. We test using ANOVA the initial model with

three levels (week-day, Saturday, and Sunday) for Dt against one with just two

levels (week-day, weekend). In doing so, it is found that using a three level factor

for Dt is a significant improvement to the model at the 5% level, since a p-value

of 0.01493 is found. Thus, we keep Dt with three levels.

Finally, we take k = 6, since the inclusion of Yt−7 is only significant at the 10

% level. The number of levels of Dt is checked again using ANOVA, and three
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> anova(reg14)

Analysis of Variance Table

Response: Yt

Df Sum Sq Mean Sq F value Pr(>F)

D3 2 0.004236 0.002118 43.8671 < 2.2e-16 ***

p1 1 0.000528 0.000528 10.9325 0.0009936 ***

p2 1 0.000202 0.000202 4.1737 0.0414342 *

p3 1 0.000130 0.000130 2.6914 0.1013428

p4 1 0.000246 0.000246 5.0848 0.0244477 *

p5 1 0.000351 0.000351 7.2670 0.0071938 **

p6 1 0.000420 0.000420 8.6974 0.0032939 **

p7 1 0.000167 0.000167 3.4546 0.0634988 .

p8 1 0.000051 0.000051 1.0527 0.3052341

p9 1 0.000044 0.000044 0.9053 0.3416856

p10 1 0.000017 0.000017 0.3519 0.5532593

p11 1 0.000053 0.000053 1.1013 0.2943374

p12 1 0.000002 0.000002 0.0426 0.8365213

p13 1 0.000090 0.000090 1.8682 0.1721253

p14 1 0.000026 0.000026 0.5441 0.4609829

Residuals 693 0.033462 0.000048

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Figure 2.30: The results of carrying out ANOVA on the regression model, where the
significance of each additional term in relation to including all the previous terms is
tested. Terms such as p12, refer to a term in the model corresponding to twelve days
previous to the current day i.e. Yt−12
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Parameter Value Standard Error

β0 0.0017 0.0003
DSaturday −0.0067 0.0007
DSunday −0.0038 0.0008
β1 0.0858 0.0377
β2 0.0527 0.0364
β3 0.0352 0.0365
β4 0.0612 0.0364
β5 0.0660 0.0365
β6 0.1004 0.0362
σ 0.0069

Table 2.5: A linear regression model is fit to Yt in Section 2.6.6; it has the following
form: Yt = β0 + Dt +

∑k
i=1 βiYt−i + εt.

levels is found significant once more. Thus, we chose the model with k = 6, and

Dt having three levels. We check the acf and the pacf of the residuals, as we

have done previously, and find nothing to suggest that there is serial correlation

present in the residuals. A plot of the residuals and their qq-plot suggest they

are distributed as white noise. Thus, we have another reasonable model for Yt

which is specified in Table 2.5.

2.6.7 Comparison of Models

In this Section we have fit a number of models to Yt, the proportion of algorithmic

calls after the annual profile At has been removed. These models are summarised

in Table 2.6. Most of these models allow predictions to be made of future calling

proportions, an essential step in an exception reporting system. We now consider

which of the models would be most suitable to model Yt.

In Section 2.6.3 we carry out a time series decomposition on Yt. Rarely can

such a system be used for prediction as usually the estimated trend is non-

parametric. However, the decomposition does provide information about Yt.

First, a small increasing trend is still present in the data, with slightly larger

perturbations caused by the annual profile At not getting into the peaks of call

levels near April each year. It has been hoped that by using proportions trending

effects would be reduced; here the trend effect has indeed been reduced but it is
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Table 2.6: The various models that have been fitted to model the proportion of calls
relating to vomit, after the annual profile has been removed.
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still present. The weekly seasonality (day-of-the-week effect) was confirmed as

broadly having three levels: one for week-days and two different levels for Satur-

day and Sunday. Given more time and data it might be interesting to investigate

what causes the difference between Saturdays and Sundays.

Since we then had evidence for Yt having seasonality, we considered ARIMA

models that could address such seasonality. The first such model was a mul-

tiplicative seasonal ARIMA model (Section 2.6.4). The seasonal terms in this

model appeared to be near redundancy, suggesting that the seasonality would be

better dealt with in a deterministic fashion. Mindful of the comments of Chatfield

(1978) that ARIMA models can seem very complex, other models may also have

the benefit of appearing more straight forward than the conceptually advanced

multiplicative seasonal ARIMA model. This can be an important consideration

given that exception reporting systems are often used by non-statisticians.

In the next ARIMA model seasonality was modelled deterministically by the

use of regressors (Section 2.6.5). A linear regression is carried out to fit the

seasonal regressors and an ARIMA model is fit to the resulting residuals. Three

levels were found to capture the seasonality well, as would be expected from the

time series decomposition. However, the ARIMA model contains a seventh order

auto-regressive term, connecting days a week apart. This suggests that while

seasonality is best modelled deterministically, it is still undergoing some changes.

This is not surprising given our data comes from the very start of the system.

The structure of this model is also somewhat more straight forward to explain to

a non-statistician.

The linear model developed in Section 2.6.6 is in some sense a parallel of the

ARIMA model with seasonal regressors in Section 2.6.5. The linear model has

three levels for seasonality and utilises the results of preceding days to form a

level for the present day, just as the ARIMA model does. However, they differ

in the number of past days they use to form their prediction: the linear model

only uses the past six days, where as the ARIMA model uses the past seven

days. This reinforces the above observation that seasonality is best modelled

deterministically, even though it seems to be changing slightly. This model is

arguably the simplest, not relying on knowledge of ARIMA methodology.

If more data were available, we could use part of it as training data to fit the

models. The remaining data would then be used to test the different models and



CHAPTER 2. NHS24 PRELIMINARY MODELLING 53

allow comparison between them. We would consider which models gave the ‘best’

predictions and consider the alarm rates under each model. We could then make

an informed decision as to which model would best suit our purpose. However,

as we only have two years of data this is not feasible. Thus, we can only choose

between the models on the basis of which seems most suited to the data. Since

the seasonality seems to be most suitably modelled by a deterministic model,

either the non-seasonal ARIMA model in Section 2.6.5 or the linear regression

model in Section 2.6.6 seem best. The choice between these two models might

be based on the expertise of the people who will be monitoring the system, with

the linear model likely being the most straight forward.

2.7 A National Exception Reporting System

We now have all the necessary elements needed for a national exception reporting

system to monitor levels of calls to NHS24 relating to people complaining of

vomiting. On day t, we can use the information up and to and including that of

day t to predict the proportion of algorithmic calls related to vomiting, V Ppred,

on day t + 1 and form a confidence interval. Should the observed proportion

of algorithmic calls on day t + 1, V PObs, be larger than the upper limit of the

confidence interval, then an exception would be reported to NHS24. At this

point, it is up to NHS24 to decide how they react to the exception. They might

dismiss the exception if they know of some obvious reason for it, or they can

investigate the log of calls more closely and check for any common traits between

those people complaining of vomiting. For instance, if most of the calls come from

one geographical area, there might be an outbreak of food poisoning with a side

effect of causing people to vomit and thus a localised group of people calling up

NHS24 for advice. NHS24 could then call these people back and try to determine

the common source for their poisoning.

In more technical detail, the calculations for the exception reporting system,

using the linear regression model for Yt+1 on day t + 1, would be as follows:

1. Calculate the prediction Ŷt+1 from the fitted regression formula:

Ŷt+1 = β0 + Dt+1 +
k∑

i=1

βiYt−i
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2. Calculate the upper 100(1− α) confidence limit Uα:

We expect the prediction Ŷt+1 to be distributed normally with mean Ŷt+1

and standard deviation σ (in our model σ = 0.0069). Then, if zα is the

100(1− α)-percentile of the normal distribution

Uα = Ŷt+1 + zασ

3. Then, including the annual profile, At+1, compare this with observed pro-

portion V PObs:

If Uα + At+1 > V PObs report an exception

4. If an exception is raised, it is reported to NHS24 and they can choose how

to respond to it.

We are free to vary the value of α depending on the level of exceptions we wish

to have raised; a larger α will lead to more false alarms.

If instead the system used the non-seasonal ARIMA model for Yt+q, the pro-

cess would be essentially the same but predictions would be found using ARIMA

forecasting procedures. Here we have chosen to use a type of an exceedance

reporting method, as was used in McCabe (2004), where some upper point of

the fitted distribution is compared with an observed value. Other possible alarm

methods exist – such as the CUSUM – but we merely use this method here to

demonstrate how such a national exception reporting system might work.

2.8 Conclusions

In this chapter we have considered using the data from the telephone health ad-

vice line NHS24 to develop a national exception reporting system (NHS24 2008).

People can call up NHS24 for health advice twenty-four hours a day, every day of

the year. This service is available across the whole of Scotland. As key details of

every call are recorded, this call log has the potential to be a very rich data-set

for the development of a daily national exception reporting system (see Section

2.3). NHS Direct performs the same function as NHS24 for England and Wales

but has been running for a longer time (NHS Direct 2009). The developers of the
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NHS Direct exception reporting system have suggested that their system might

be able to go beyond detecting widely dispersed ‘health events’ to detecting local

outbreaks of disease if NHS Direct was utilised more (Henning 2004; Doroshenko,

Cooper, Smith, Gerard, Chinemana, Verlander, and Nicoll 2005; Cooper 2007;

Smith, Cooper, Loveridge, Chinemana, Gerard, and Verlander 2006; Cooper, Ver-

lander, Smith, Charlett, Gerard, Willocks, and O’Brien 2006). Since NHS24 has

twice the calling rate of NHS Direct, this condition may be satisfied. Further, the

ability to detect local outbreaks may be improved by modelling at the regional

level. Our ultimate goal is to explore developing a regional exception reporting

system but we start by exploring a national system to help inform our modelling

choices when we turn to modelling the regional level.

The amount of data from we had from NHS24 was immense: we had key de-

tails of all of the calls from the first two years (2004, 2005) of the system – around

a million and a half phone calls. It was necessary to narrow our focus to partic-

ular subsets of this data. We chose to focus on those calls that were triaged by

the Clinical Assessment System, a set of algorithms that suggest to the nurses at

NHS24 the advice they should give to their callers (Cooper, Smith, Baker, Chine-

mana, Verlander, Gerard, Hollyoak, and Griffiths 2004). Calls diagnosed by the

algorithm system were grouped into ten syndromes (Figure 2.2). The purpose

and advantages of monitoring such syndromes are considered in Section 2.2; but

in summary, they allow for detection of terrorist attacks and earlier detection of

‘health events’ than more traditional methods of monitoring. This more general

monitoring also matches the non-specific diagnosis that the phoneline gives. Some

limited research has been conducted on the efficiency in gaining biological sam-

ples from callers for more specific diagnosis (Cooper, Smith, Chinemana, Joseph,

Loveridge, Sebastionpillai, Gerard, and Zambon 2008). Syndromic surveillance is

carried out on the NHS Direct data (Cooper 2007).

We show in Section 2.3 (particularly Figure 2.5) that the number of calls

being diagnosed through use of the algorithms is decreasing during the years for

which we had data. Later work has shown this trend has continued to the point

where focusing on the calls diagnosed by algorithms will not give representative

monitoring possibilities (Wilson, Smith, Meyer, Robertson, Baxter, Cooper, and

McMenamin 2007). However, grouping the calls in other ways, such as using the

‘call reason’ field, brings other problems (Kavanagh, Robertson, and McMenamim
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2007). At the time of analysis, the algorithmic calls presented the most stable

subset of the data to use. Given the data was from the start of the system and

unlikely to be completely stable, choosing the most stable elements we could

seemed the sensible choice.

At this point, we still had data from ten different syndromes. Again, because

of having data from the start of the system, we chose to focus on one syndrome

which looked the most stable. In Section 2.5.2 we choose the ‘vomiting’ syndrome

because it is both stable and has large enough counts to make regional modelling

feasible. In an exception reporting system, a model of the data is required to

allow for predicting future levels of the quantity being monitored. Thus, we then

turn to modelling the daily number of calls algorithmically triaged as relating to

the syndrome of vomiting.

We first carry out some exploratory modelling on the counts of calls relating

to vomit in Section 2.5.3. From this modelling, a number of qualities become

apparent about the counts. The number of calls received at the weekend compared

to during the week is much higher – about 2.3 times more. The counts generally

increase for 2004 and decrease for 2005. This level of trend in such a data-set this

small is very hard to model. Thus, we turn to using proportions: we consider the

proportion of algorithmic calls that relate to vomiting in Section 2.6. We mention

briefly some of problems of using proportions in this section. Proportions are also

made use of in NHS Direct’s system (Cooper 2007).

On considering the proportions, we find that they are somewhat more stable

than the counts. We find that there are two levels of seasonality in the data:

annual and weekly (day-of-the-week effect) seasonality. In Section 2.6.1, we con-

sider approaches to deal with the annual seasonality. Since we only have two years

of data, standard techniques for extracting the annual pattern are not feasible.

Thus, we turn to using a periodic smoother to extract an annual profile (At).

The annual profile (At) is then subtracted away from the proportion of calls

that relate to vomiting to give Yt. This quantity still has weekly (day-of-the-

week effect) seasonality present, so we consider models for it which can take

account of this. We expect the proportions on one day to be closely linked

with the day before it; that is, we expect there to be significant levels of serial

correlation present in Yt. Given this correlation, we argue that ARIMA models

present a natural choice for modelling Yt, even if such models are not usual in this
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context (for a notable exception, see Reis and Mandl (2003)). We try a number

of ARIMA models for Yt, and determine the most suitable one in Section 2.6.5:

the weekly seasonality is modelled by seasonal regressors (three levels: week-days,

Saturdays and Sundays) and the local trend is captured by a number of auto-

regressive terms. A linear model parallel of this ARIMA model is considered

in Section 2.6.6; this model has the advantage that it does not utilise ARIMA

methodology, so might be preferable if the end user of the exception system has

limited statistical experience. Normally, simulations would be carried out under

the different models to determine the best choice but the limited data prevents

this – see Section 2.6.7 for further discussion of this.

With the annual profile At and the model for Yt, we now have all the modelling

elements required for an exception system to monitor calls to NHS24 relating to

vomiting. Using an exceedance reporting alarm system, similar to that used in

Farrington, Andrews, Beale, and Catchpole (1996), we show how an exception

reporting system can be created in Section 2.7. Other alarm choices could be

used, such as a CUSUM method, but since our focus is on developing a regional

system, we merely wish to present a suggestion for a national system.

The strength of the exception system developed in this Chapter hinges upon

the amount and quality of data we have. We have two years of data from the start

of the system; such data is unlikely to be uniformly consistent or stable. With

only two years of data it is hard to be particularly confident about the annual

profile (At) that was extracted. Also, the work of Kavanagh et al. (2007) has

shown that better results are given by using the call reason field. However, there

are some advantages to the system developed in this chapter. First, Kavanagh

et al. (2007) do not develop an annual profile in their system, rather using a

shifting baseline of data for fitting their models (see McCabe (2004), Burkom

(2007) for discussions of this method). Smith et al. (2006) suggest that one of

the uses for the data recorded by NHS Direct is reassuring the general public

about health issues and emergency planning and exercises. For such activities,

having an explicit annual profile as we do here will be useful. Further, Kavanagh

et al. (2007) do not address serial correlation, which, as we have argued, is very

likely to be present in this data. This may deteriorate their models somewhat.

Future work might consider fitting ARIMA models to the national data but with

calls categorised by the call reason field and comparing this with the system
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developed in Kavanagh et al. (2007).

It is worth noting that the problem of stability that we encountered in this

chapter is true for all exception reporting systems. However, this is particularly

so for syndromic surveillance systems. As Henning (2004) notes, the data used for

syndromic surveillance systems is often not collected primarily for this purpose.

Thus, the data can often be affected by artificial pressures not related to natural

variations. For instance, as a public body, NHS24 is constantly subjected to

review, and their goals updated (NHS24 2006; NHS24 2009). Their function is

to provide the best possible service they can to the public of Scotland when that

public calls them seeking health advice. As the definition of this ‘best service’

changes, levels in the recorded data will change too. The advantage of earlier

detection in syndromic surveillance comes at the cost of needing to monitor the

systems more closely.

Our main purpose in considering a national exception system was to inform

choices for developing a regional system. At the regional levels, we are going

to have smaller counts and thus smaller proportions. ARIMA models rely on

normality, which is reasonable with the size of counts at the national level, but

when these counts are divided up between the fourteen health boards normality is

likely to break down. Thus, we turn to using GLMs to model the data, noting that

in the counts we expect serial correlation and both annual and weekly seasonality.

It is quite usual to use GLMs for this purpose (Burkom 2007; McCabe 2004;

Farrington, Andrews, Beale, and Catchpole 1996).



Chapter 3

NHS24 GLM Modelling

In Chapter 2, we considered some models that could be used to nationally predict

the number of people calling NHS24 complaining of vomiting. As we were dealing

with national levels of calls, and so reasonably large numbers, it was reasonable

to model them with a normal distribution (McKenzie 2003). However, this ap-

proximation is no longer valid when we move to considering regional models; the

numbers we are dealing with become smaller as the national counts of calls are

split up between the fourteen health boards. The models considered in Chapter

2 all assumed a normal distribution for the counts and so we must to turn to

other modelling approaches to deal with with the smaller regional counts. One

standard approach is to use generalised linear models (GLMs) and fit Poisson,

or related, distributions to them. We consider such models in this chapter, first

fitting a GLM to the national counts and then turning to the regional counts.

GLMs rely on observations being independent, which is unlikely to be the case

in consecutive days of call counts to NHS24: if the call rate was high yesterday

it is likely to be high again today. We propose a way of combining GLMs with a

Holt-Winters predictor to address any serial correlation in the counts. Using this

predictor, we go on to consider a way that predictions between the regions might

be linked together. These models can then be brought together to form the basis

of a regionally linked exception reporting system. However, as noted previously,

we do not have enough data to test the developed system.

59
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3.1 National GLM Rate Model

Typically, a Poisson GLM is used to model counts. However, we show in the

following sections how it is possible to use an offset in a Poisson GLM to allow

modelling of rates and proportions. This allows us to essentially model the pro-

portion of calls to NHS24 that are related to vomiting. We fit such models to the

national counts of calls in Section 3.1.2

3.1.1 Offsets: From Counts to Proportions

As we are modelling counts, it is standard to start by fitting a Poisson distribution.

Thus, having specified the response distribution, a link function is required to

connect the predictors, Xt, with the mean, µt, of the number of calls mentioning

‘vomit’ on day t. For simplicity, the usual link function for the Poisson, the

log-link, was chosen giving:

log µt = βXt.

If we introduce log Tt on the right, where Tt is the total number of calls diagnosed

algorithmically on day t, we have:

log µt = βXt + log Tt,

which can be rearranged to give:

log
µt

Tt

= logV Pt = βXt,

which gives a way of modelling the daily rate V Pt, as has been considered in

Chapter 2 while fitting a Poisson GLM to the counts of calls. The introduction

of a term on the right, which is defined to have a coefficient of one, is sometimes

called an ‘offset’ (see Faraway (2006), McCullagh and Nelder (1983)). Within R,

quantities can easily be specified as offsets in GLMs.
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3.1.2 Initial National Rate Models

Utilising the idea of a rate model, the following Poisson model is fitted to the

means µt:

log µt = log Tt + β0 + β1 log At + β2Tit +
35∑
1

βi+2 log(xt−i), (3.1)

where: µt and Tt are as above; At is the annual profile for day t, as found in

Section 2.6.1; Tit is the day number (Ti = 1 on Jan 1st 2004) giving a linear

trend; xs is the observed count on day s; and the βi are coefficients. We fit log Tt

as an offset. The log of the annual profile (At) is used as we expect this to have a

multiplicative effect on the number of calls received. The past values are logged

so that they are on the same scale as the mean µt. Five weeks of past values are

included in the model. We hope to dispense with a factor for weekly seasonality

by including whole weeks. This number of weeks is chosen as any local trend is

likely to be captured within this time.

On fitting this model, the coefficient of the annual profile, β1, is found to be

0.992 with a standard error of 0.043. This suggests that the log At term should

also be treated as an offset, along with log Tt, since the coefficient is very close to

one. This approach is suggested in Faraway (2006).

An indication of the fit given by a particular GLM is given by its residual

deviance. The model considered here has a residual deviance of 969, with 658

degrees of freedom, suggesting a poorly fitting model. Further, since the residual

deviance is much greater than the residual degrees of freedom, it suggests that the

Poisson is not a good choice for the response distribution. A likely cause would be

over-dispersion, where the variance of the counts is different from their mean; this

contrasts with a Poisson fit which assumes the mean and variance are equal. In

such cases a quasi-Poisson model can be fitted to the counts. The quasi-Poisson

is not a proper distribution; it has the same form as the Poisson distribution,

but the variance is defined to differ from the mean by a multiplicative constant

called the ‘dispersion’ parameter. It is a convenient method for obtaining a more

accurate and reliable test of the significance of the model parameters (Faraway

2006; McCullagh and Nelder 1983; Hilbe 2007). Estimates of the coefficients

remain the same but since the variance is modelled differently, significance tests
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of the predictors can be affected. Predictors that were previously significant may

become insignificant under the quasi-Poisson model.

To check if a quasi-Poisson GLM is required, the above model is fitted with

a quasi-Poisson response. When this is done, the dispersion parameter is found

to be 1.47; thus the variance should be 1.47 multiples of the mean. Given this

is quite different from 1, it suggests that the quasi-Poisson is a better choice of

response distribution. Had the dispersion parameter been near one, there would

have been little difference compared to fitting the standard Poisson distribution.

When count data has variance greater than its mean it is said to be ‘over-

dispersed’. Over-dispersion often happens when the assumption of counts being

randomly distributed is violated. For instance, in an epidemiological context,

one would expect clustering. Consider, for example, an infection caused by a

bacterium (or other underlying cause of infection): the infection has a greater

chance of being passed to those that are nearby, potentially creating a cluster

of people suffering from vomiting. For a longer discussion on over-dispersion see

Hilbe (2007).

Finally, we fit a quasi-Poisson model where the log At term is also treated as an

offset. We find there is significant serial correlation in the residuals, even though

we include many past terms in the model. The acf of the deviance residuals has

significant correlations at lags one, five, six and seven. The significant correlation

at lag one would have the largest effect on prediction, necessary in exception

reporting, since we would most frequently be predicting ahead by one day. Having

a significant correlation at lag seven suggests that weekly seasonality is not being

modelled suitably. This is surprising since we have included five complete weeks

of past observations in the model; we would expect this to be amply sufficient

to capture the weekly seasonality. Thus, we alter the national model to include

a seasonal factor. Using a seasonal factor may also allow the model to be more

parsimonious, as fewer past values may be required. Also, there is no requirement

for them to be in whole multiple of weeks since we are no longer using them to

capture weekly seasonality.
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3.1.3 National Quasi-Poisson Rate Model with Seasonal

Factor

To address residual weekly seasonality, we alter the model defined by Equation

(3.1) to the following quasi-Poisson model:

log µt = log Tt + log At + Dt + β0 + β1Ti +
35∑
1

βi+1 log(xt−i), (3.2)

where µt, Tt, At, Tit, xs and the βi, are as in Section 3.1.2. Both log Tt and log At

are offsets. The term Dt is a factor with seven levels, one for each day of the

week.

We first use ANOVA to check how many past values should be included in the

model. F-tests are used in the ANOVA, as suggested in Faraway (2006), since

two parameters are being estimated (the mean and the dispersion parameter).

Few of the past values contribute significantly to the model; the only ones that

do contribute significantly are lags of 6, 7, 21, 28. A number of these are to do

with seasonality given they are multiples of seven. We consider a reduced model

that just has the first seven lags in it. In this reduced model, lags at four and

seven are significant. If we were to keep up to lag four, it would be standard

to keep lags one, two and three which are insignificant. Thus, instead, we just

consider including the seventh lag, which would allow the seasonality to change.

However, in this model, the term at lag seven is not significant, so we include no

past observations in our model.

Next, we consider the number of levels in the weekly seasonal factor Dt. We

test whether the factor Dt should have seven levels (one for each day of the

week), three (week-day, Saturday and Sunday) or two (week-day and weekend).

The tests show no significant improvement is given by having more than three

levels for Dt (week-day, Saturday and Sunday).

Thus, the model defined by Equation 3.2 becomes:

log µt = log Tt + log At + Dt + β0 (3.3)

where Dt has three levels (week-day, Saturday and Sunday). The coefficients for

the reduced model are shown in Table 3.1. Summary statistics of this model can
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Model Eqn. Intercept Ti DSat DSun

3.3 -0.0195 (0.0100) 0.00010 (0.00002) -0.1036 (0.0101) -0.0602 (0.0099)

Table 3.1: Coefficients for the quasi-Poisson model defined by Equation 3.3, fit to
the national counts of calls to NHS24 relating to vomiting. The brackets give the
standard errors.
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3.3 1266 1063 203 16 721 718 3 – 1.48

Table 3.2: Summary statistics from the quasi-Poisson rate model defined in Equation
3.3 fit to the national counts of calls to NHS24 relating to vomiting. No AIC statistic
can be calculated because the quasi-Poisson is not a proper probability distribution
and so no likelihood can be calculated, a required part of the AIC calculation. DoF
= Degrees of Freedom.

be found in Table 3.2.

The factor levels for the weekend are both negative, suggesting that the pro-

portion of calls relating to vomiting are lower at the weekend. The reduction on

Saturday being around twice the size of the reduction on Sunday matches the

pattern that was seen in Section 2.6.3. There is small positive increasing trend

over time.

We now turn to considering the residuals. In plots of the residuals, larger

residuals occur more frequently than would be expected. Further, there appear

to be large residuals at the start and end of each year, along with large residuals

during the March and April period. As before, the latter large values correspond

to those times in the year when the annual profile, At, does not fit well to the

annual cycle. A qq-plot of the residuals is reasonably close to a straight line,

with a little curvature in the lower half of the distribution but nothing that

overly concerns us. The most notable problems are seen when we consider the

acf of the deviance residuals. There are significant correlations at lags one, five,
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six, seven, eight and ten, and other high order correlations. There are a run

of positive correlations, followed by a run of negative correlations, suggesting

that trend remains in the residuals. The significant correlations around lag seven

suggest there is some seasonality remaining in the residuals. Including the lagged

observation xt−7 (at time t, data from a week ago) does little to address this

seasonality. Including xt−1 (at time t, yesterday’s observation) does very little to

improve the significant correlation at lag one. In summary, there is still significant

serial correlation unaddressed in the model.

Given the evidence of poor fit and serial correlation in the residuals, we pro-

ceed by fitting a different model. These problems are likely caused in part by

using unstable data from the start of the system. The next models we fit include

seasonal Holt-Winters components to incorporate a level of local trend. We hope

this will deal with the serial correlation and weekly seasonality. Further, we also

fit the new model with a negative binomial response. The negative binomial

distribution is often used for modelling counts, as it allows for modelling counts

with variation different from their means. The negative binomial is a proper

probability distribution, as opposed to the quasi-Poisson ‘distribution’, and so

allows more straight forward prediction. We cover some background on these

new modelling elements before fitting models that utilise them.

3.2 Modelling Considerations

In this Section we consider the models that are in use at NHS Direct and how

they compare with the models we have developed thus far. We propose a different

modelling direction using a variable based on Holt-Winters smoothing to address

trend. We also consider the negative binomial distribution, which we fit to the

counts instead of using the Poisson.

3.2.1 NHS Direct Syndromic Surveillance

Details of the syndromic surveillance used at NHS Direct is taken from Cooper

(2007) and Cooper, Smith, Baker, Chinemana, Verlander, Gerard, Hollyoak, and

Griffiths (2004). Two systems are used by the Health Protection Agency for

monitoring daily call data from 22 NHS Direct sites.
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The first system works by calculating upper (99.5%) confidence limits of calls

for each syndrome for each site as a proportion of total daily calls for that site.

The proportions have a monthly seasonal adjustment to take account of annual

seasonal changes in the prevalences of each syndrome (since, for example, we will

expect a higher proportion of calls relating to colds and flu during the Winter).

An exceedance was noted if any syndrome had a higher proportion of total daily

calls than its upper confidence limit.

For syndromes with a higher calling rate, such as cold/flu, cough, fever, diffi-

culty breathing and vomiting, control charts were produced for those NHS direct

sites monitoring dense population centres in England (such as London). The

counts of calls were modelled by a Poisson GLM. The GLM included a number

of terms: the total number of calls received as an offset; an annual seasonal term;

linear trend term; public holiday term; day-of-the-week effect if required. As we

have seen with modelling the national counts of calls relating to vomiting, the

counts can be over dispersed, so scaling is used to address this. It was found that

the best way to calculate the upper control limit of the chart was to transform

“to approximate normality with zero mean . . . and then a back-

transformation to the original scale. The resulting expression for the

99.5% upper limit of syndromic calls, used for the control charts, was:(
sinh

zα/2 +
√

N − 0.5 sinh−1√p
√

N − 0.5

)2

(N − 0.75)− 3/8

where N is the expected value divided by one less than the scale pa-

rameter, p is equal to the scale parameter minus 1, and zα is the

100 ∗ (1 − α)th centile of the normal distribution. Ad hoc choices of

z were used to achieve the desired proportion of purely random ex-

ceedances (0.5%).” (Cooper (2007), p.341-342)

When any calls exceed this upper control limit an exceedance is raised.

When exceedances are raised from either of these systems, a statistician will

consult with a medical expert to determine if the exceedance warrants further

investigation.
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3.2.2 Divergences from the NHS Direct Models

The model we develop in Section 3.1 is similar to the model used in the control

chart monitoring methods of the NHS Direct system. The model fit to the NHS

Direct data has a Poisson response, with the total number of calls used as an offset

(Cooper, Smith, Baker, Chinemana, Verlander, Gerard, Hollyoak, and Griffiths

2004). To deal with annual seasonality they appear to use a monthly factor.

This contrasts with our approach of using an annual profile to capture the annual

pattern. As we do, a day of the week effect is fitted, but they use different levels

for Saturdays and Sundays.

The use of a proportional model, via the use of an offset, was utilised to

address ‘the gradual year-on-year increase of calls and sudden and local increases

in call rates due to local publicity’ (Cooper 2007). Thus, their choice is driven

by the same reasoning as ours, in looking for stability in the counts. However,

for the NHS24 data that we have, this does not appear sufficient to stabilise the

counts. We go a step further by investigating the use of past terms to deal with

serial correlation. One would hope that this would deal with local trend but it

appears to be insufficient. We try using a different type of model that includes

a variable that is a prediction from a Holt-Winters model fit to the count data.

Holt-Winters is generally regarded as very robust at capturing local trend and

so will hopefully deal with the early and non-stable data more effectively than

using an offset of total calls. In Section 2.6 we noted the problem of coupling that

occurs when modelling proportions; if a reasonably suitable model can be found

for the absolute counts, it would suffer none of these difficulties. Holt-Winters

modelling is considered further in Section 3.2.3.

In the GLMs we will fit, we will also use a negative binomial response, in con-

trast to using a Poisson response followed by scaling to address over-dispersion.

The negative binomial distribution can directly model over-dispersed counts.

Thus, exceedances can be calculated directly and simply, without the need for

transformations. We consider the negative binomial distribution further in Sec-

tion 3.2.4.
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3.2.3 Holt-Winters Modelling

Holt-Winters models are a generalisation of simple exponential smoothing. Sim-

ple exponential smoothing forms predictions by taking a weighted average of past

observations, where the weights decrease exponentially the further they are into

the past. This seems intuitively sensible – we expect future observations to be

most similar to the recent past and less so to observations separated by greater

periods of time. Holt-Winters is a generalisation of simple exponential smoothing

that allows for local trend and seasonal factors. For more detail on exponential

smoothing, see Appendix B.1. Here we detail the function HoltWinters that

we will use to fit the Holt-Winters models in R and then consider how this can

be combined with a GLM to form predictions for use in an exception reporting

system.

HoltWinters Function

Details here are drawn from R’s help page for HoltWinters. The HoltWinters

function allows for both additive and multiplicative Holt-Winters models to be

fitted to a time series. We will be fitting models to the log-counts, so the sea-

sonality will become additive. Therefore, we only consider the additive version

of the function here. Thus, for a series with additive seasonality of period p, the

h-step prediction function for the Holt-Winters model is given by:

Ŷ [t + h] = a[t] + hb[t] + s[t + 1 + (h− 1) mod p],

where a[t], b[t] and s[t] are given by:

a[t] = α(Y [t]− s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]− a[t]) + (1− γ)s[t− p]

Unless manually specified, HoltWinters calculates α, β and γ by minimising

the squared one-step ahead prediction error. In the modelling of counts of calls

relating to vomiting, p = 7 since we want the Holt-Winters models to capture

weekly seasonality. We leave α, β and γ to be determined by the function.
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Combining Holt-Winters models with GLMs

In fitting a GLM to the NHS24 counts, we are trying to form a relationship be-

tween various covariates and the mean of the counts. Gross and Craig (1974)

explore using different forecasting procedures to predict the Poisson means in

inventory demand modelling. We propose to combine GLMs and an exponential

forecasting procedure to reduce serial correlation and capture local trend when

predicting the mean number of calls expected. While in a different context, Gross

and Craig (1974) advise the use of exponential smoothing for data whose structure

might change, due to exponential smoothing’s robustness. From a Holt-Winters

model, predictions for future observations can be found. These predictions are

then included as a variable in a GLM. This means that both model fitting and

predictions for any exception reporting system would have two stages: find the

appropriate value from the Holt-Winters model and then include this in the GLM.

With modern computing power this extra overhead of calculation is of little con-

cern. Within R, predictions can be made from Holt-Winters models by use of the

predict.holtwinters function. Predicting from this hybrid GLM/Holt-Winters

structure is straight forward, since the Holt-Winters forecasts are known at each

time point and so the GLM includes the Holt-Winters forecasts as a standard

covariate.

3.2.4 Negative Binomial Distribution

In Section 3.1.2 we discuss the phenomenon of over-dispersion which occurs when

dealing with counts that have variance markedly different from their mean. In

such cases the Poisson distribution is not a suitable fit. One approach to address-

ing over-dispersion in these models we have seen: one can use a quasi-Poisson

model for such data to correct estimates of standard error. However, a quasi-

Poisson distribution is not a proper probability distribution. This makes forming

predictions from these models much more cumbersome. Another approach to

dealing with over-dispersion is to directly model the over-dispersion through a

negative binomial distribution. The negative binomial distribution is a proper

probability distribution parameterised by two parameters, and so can fit to count

data where the mean and variance are different.
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Fitting negative binomial models within R can be done easily using the func-

tion glm.nb, available from the MASS library (Venables and Ripley 1997). This

function uses the following parameterisation of the negative binomial:

fY (y|µ, θ) =
Γ(θ + y)

Γ(θ)y

µyθθ

(µ + θ)θ+y
, (3.4)

where µ and θ are parameters of the distribution, such that:

E(Y ) = µ, var(Y ) = µ +
µ2

θ
.

The θ parameter is sometimes known as the ‘shape’ parameter (see Venables and

Ripley (1997)). Estimates for the parameters µ and θ are found by maximum

likelihood methods. An estimate for θ is found by holding µ constant. Then, θ

is held constant, while µ is estimated. The function glm.nb iteratively alternates

between these estimates until convergence.

For further information on the negative binomial distribution, either for fitting

models or more generally, see: Hilbe (2007), Venables and Ripley (1997), Lawless

(1987), Simon (1962).

3.3 National GLM with Holt-Winters Variable

We begin using these new model elements in fitting another model to the national

counts of calls relating to vomiting. We first fit a Holt-Winters model. From this

model we form a variable of predictions which is then used in a national negative

binomial GLM fit to the same counts.

3.3.1 National Holt-Winters Model

We use the HoltWinters function in R to fit a Holt-Winters model to the log of

national calls for 2004 and 2005. Thus, predictions are made on the log-scale.

This is a sensible choice, since the GLM we fit in Section 3.3.2 will model the log

of the mean as a linear function of the covariates.

The coefficients of this model are shown in Table 3.3. The parameters are

found by minimising the one-step ahead prediction error. The value of α, 0.12,
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Model α β γ

National 0.11937 – 0.36654

Table 3.3: Coefficients from the Holt-Winters models fit to the log of counts of calls
received nationally by NHS24 relating to vomiting during 2004-2005.

is in the range of values that are considered to be most common (0.1–0.3, see

Appendix B). This parameter tells us about how the level of the series changes:

the larger α is, the fewer past observations that contribute to the prediction of the

level. Thus, a larger α suggests more variable data. The same observation applies

to γ, in respect of how seasonality changes in the series: a larger γ suggests that

the seasonality changes more. We find that the model fitted has no local trend

(β = 0). Predictions from this model are used to form the predHW variable used

in the GLM we fit in the next Section.

3.3.2 Negative Binomial Model Fitting

Initial model

Using the Holt-Winters model, we form a series of predictions which are then

incorporated into a negative binomial GLM. We fit this GLM to the count of

calls received nationally during 2005. We start with:

log(µ) =
β0 + β1predHW + β2 log(vct−364) + β3Ti + Day + Bank4

+Bank5 + EMon4 + EMon5

, (3.5)

where the βk are coefficients, predhw is a one-step ahead forecast found by Holt-

Winters seasonal exponential smoothing of the logged counts, log(vct−364) cor-

responds to the count of calls 364 days previously (364 = 7 × 52, so gives the

same day of the week), Ti is the day number from the start of 2005 giving a

linear dependence on time, Day is a factor with a different level for each day of

the week, Bank4 and Bank5 are factors having two levels reflecting whether the

day in 2004 or 2005 was a bank holiday respectively, and EMon4 & EMon5 do

similarly for Easter Monday in 2004 and 2005 respectively. We fit this model and

then exclude those terms that do not contribute significantly to its fit.
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Model Intercept predHW log(vct−364) Ti

National 1.3903 (0.2483) 0.5760 (0.0520) 0.1755 (0.0380) -0.0012 (0.0002)

Model DayWE Bank5 EMon5

National 0.2009 (0.0461) 0.5723 (0.0498) 0.7127 (0.1266)

Table 3.4: Coefficients of the negative binomial model, as defined by Equation 3.6,
fit to the national counts of calls received by NHS24 during 2005 relating to vomiting.

Final model

We adapt the initial model (defined by Equation 3.5) to the following:

log(µ) =
β0 + β1predHW + β2 log(vct−364) + β3Ti + DayWE + Bank5

+EMon5

, (3.6)

where most of the terms are as above, but the Day factor has been replaced

by the DayWE factor, which has two levels for week-day and weekends. The

coefficients for this model can be found in Table 3.4 and its summary statistics

can be found in Table 3.5.

We first consider the coefficients of the national model. It is perhaps surprising

that the coefficient of predHW is not closer to one, given it is a prediction on a

log-scale. Further, it is surprising that the DayWE factor is needed, because the

seasonality should be captured by the predHW as this term is based on a seasonal

Holt-Winters model. However, the seasonality may not be captured fully from

the predHW term in the GLM because of its coefficient being less than one. The

factor levels are as we expect: at weekends, bank holidays and on Easter Monday

more calls are received by NHS24 because of doctors’ surgeries being closed (note

the positive values). There is a small downward trend in the number of calls

relating to vomiting received by NHS24 during 2005.

There are a few large residuals corresponding with bank holidays suggesting

that the model might be improved by having separate factor levels for each bank

holiday. The qq-plot has a little curvature at either end of the distribution, but

not so much as to suggest an ill fitting model. A plot of residuals against the

predicted log-means suggest the the variance is dealt with appropriately. The

only diagnostic plot that really gives us cause for concern is the acf. We find
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Table 3.5: Summary statistics of the negative binomial model fit to the national
counts of calls received by NHS24 during 2005 relating to vomiting, as defined by
Equation 3.6. DoF = Degrees of Freedom. SE = Standard Error.

a significant correlation at lag one and a slightly larger correlation at lag three.

There are just significant correlations at lags seven and eight. Some isolated

higher order correlations are also significant and there are runs of positive and

negative correlations. This suggests there is trend remaining in the residuals.

Conclusions

We have found a national negative binomial model for the counts of calls to

NHS24, relating to vomiting, during 2005. Generally the model fit is reasonable

but there are some problems with trend in the residuals. However, this is no

worse than the problems found with the quasi-Poisson model fit in Section 3.1.3.

However, we are modelling counts and thus vomiting is independent of the other

syndromes: recall the comments in Section 2.6 about modelling the proportions

of total counts relating to each syndrome – this couples the syndromes together.

It is also interesting to note that 92% of the deviance is explained with this model

(Table 3.5) compared to 16% with the rate model (Table 3.2). That there is an

improvement is no surprise: the negative binomial has the extra parameter θ

to address over-dispersion (Hilbe 2007). However, the great improvement in the

deviance explained shows how effective modelling with the negative binomial can

be. With the different health boards adopting NHS24 at very different paces, it

will be hard to find a national model that does not exhibit some problem with

trend. We turn to adapting this model to the regional health boards and see if it

fares better at the regional levels.
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3.4 Regional Models

In this Section we adapt the national model to the regional health board counts.

We start by fitting Holt-Winters models to all the regions and comparing them.

We then fit negative binomial GLMs to the counts, again including a variable

in them based on the Holt-Winters models. Then, we compare these different

regional GLMs. The island health boards do not have enough variation in them

to be modelled by the negative binomial distribution so we fit binomial models

in these regions. Finally, we consider a crude ‘network’ created by including

neighbouring Holt-Winter’s predictions in a board’s model.

3.4.1 Fits of the Holt-Winters Smoothing

Ideally, we would fit the Holt-Winters’ models to all the data we have, particularly

since we only have two years of data. However, in a number of the health boards,

the number of calls received does not reach a stable level until late in 2004 – see

Figure 3.1. In some of the health boards there are relatively large step changes.

Due to this, we fit the Holt-Winters models to data from day 300 (October 26th)

onwards. Holt-Winters models would of course adapt to these step changes but

these would be artificial ones brought about by the system starting rather than

natural changes in the level of calls received. Thus, it is not sensible to ‘train’ the

models to these initial step changes. We fit the models using the HoltWinters

function within R on the ‘started log counts’ (log(Count + 1) (Brillman, Burr,

Forslund, Joyce, Picard, and Umland 2005)). This change is required as some

health boards have no calls on certain days.

The resulting models that are fit are shown in Table 3.6. None of the models

utilise local trend but nearly all models utilise exponential smoothing with weekly

seasonality. The only exception is Shetland which has a zero for the value of α;

since it also has no local trend factor, this means that its model has the same level

for the whole series, with a series of seasonal factors that update as time goes

on. To understand why, consider the plot of the counts of calls from Shetland in

Figure 3.2 and the distribution of its counts in Table 3.7. The number of calls

from Shetland is very low, with approximately ninety-five percent of days with

either no calls or only one call. For the level of the series, HoltWinters calculates

0.2263, which is close to the mean of the counts in the fitted period of 0.2157. The
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Figure 3.1: The number of calls relating to vomiting during 2004 from health boards
where NHS24 utilisation seems to have taken off later. A moving average of order
seven has been applied to the data to remove the effect of weekly seasonality. Due
to these systems taking a long time to reach a stable level, we start fitting the Holt-
Winters models to counts from day 300 onwards (shown by the dotted line, October
26th).
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Region α β γ

Ayrshire & Arran 0.06228 – 0.19456
Borders 0.00807 – 0.16104
Dumfries & Galloway 0.01896 – 0.15425
Fife 0.05107 – 0.13255
Forth Valley 0.06020 – 0.18941
Grampian 0.07356 – 0.16407
Greater Glasgow 0.09316 – 0.20466
Highland & Argyll 0.06926 – 0.14596
Lanarkshire 0.09103 – 0.12836
Lothian 0.03522 – 0.26436
Orkney 0.01535 – 0.00164
Shetland – – 0.10312
Tayside 0.08538 – 0.18673
Western Isles 0.01646 – 0.11219

Table 3.6: Coefficients from the Holt-Winters models fit to the started-logs
(log(Count + 1)) of counts of calls received from each health board relating to vom-
iting.

Shetland Counts Count
0 1 2 3 4 Total

Frequency 314 94 19 4 1 432
% 73 22 4 1 0 100

Table 3.7: The distribution of counts for the number of people that call from Shetland
complaining of vomiting, during the period in which the Holt-Winters’ models are
fitted.

closeness of these two figures is not surprising when we consider how this level

is calculated: since α is zero, the initial value for the level determines the level

for the series. Initial values for the HoltWinters function are found by seasonal

decomposition; the initial values for the level are calculated as the mean of the

deseasonalised values – for further details see Section B.2. Figure 3.2 suggests

there is no change in level for the series and so a constant level seems reasonable.

In the other health boards we generally find that those health boards with

the larger populations have larger values of α, the parameter that controls the

smoothing of level. The smallest values are found in the southern health boards
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Figure 3.2: The top plot shows the counts of calls from Shetland that relate to
vomiting. The bottom plot shows the log(Count + 1) of calls, the values that the
Holt-Winters models are fit to in Section 3.4.1. The time period chosen reflects the
values that the HoltWinters function fit the Holt-Winters model to; the red dashed
line is the level fit by the function.

(Borders and Dumfries & Galloway) and the islands (Orkney and Western isles).

Due to the smaller value of α in these places, a greater number of past values

contribute to the prediction made at time t. This means that the Holt-Winters

models in these regions will adapt more slowly to changes in call rates. However,

this is consistent for these regions: the southern and island health boards are

sparsely populated meaning that the call rate is unlikely to change quickly. It

is perhaps surprising that the value of α for Lothian is not larger: as the health

board that contains Edinburgh, the capital of Scotland, it is relatively densely

populated, and so we would expect the number of calls to be tied more closely

to recent calling rates. We might expect it to be nearer to the value we find for

Greater Glasgow, a similarly densely populated health board, with an α of 0.09.

The seasonality smoothing parameter, γ, is generally of a similar magnitude

among all the health boards, varying from 0.10 to 0.26. The parameter γ controls

how much the seasonal factors are updated: the larger it is, the more the factors

are updated – see Section B.1.3 for more detail. We noted above that α was

perhaps smaller than we might expect for Lothian; this might be explained by
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Orkney Counts Count
0 1 2 Total

Frequency 400 31 1 432
% 93 7 0 100

Table 3.8: The distribution of counts for the number of people that call from Orkney
complaining of vomiting, during the period in which the Holt-Winters’ models are
fitted.

Lothian having the largest value of γ. Some of Lothian’s change in level might

be captured by the seasonal part of its model. The very small value for Orkney

is reasonable when we consider the distribution of its counts, shown in Table 3.8.

The counts for Orkney are almost binomial: either there is one call or none; there

is only one day on which there was more than one call. Most of the time the series

is zero, so there is very little seasonality to adapt to, leading to the very small

value for its γ.

Having fitted the Holt-Winters models to each of the health boards, we can

now use them to form one-step ahead predictions for each day of 2005. These

values are then used as a variable in the negative binomial models that we fit to

each health board in the next Section.

3.4.2 Negative Binomial Models

In this Section we fit negative binomial models to the counts of calls from each

health board relating to vomiting. The island health boards – Orkney, Shetland

and Western Isles – are not suitably distributed for a negative binomial distribu-

tion and so we fit a binomial distribution to them in Section 3.4.3.

Fitting Regional Models

For each region we check if the variables that were used in the national model

contribute significantly to a regional model. We modify the log(vct−364) term, the

log of calls received 364 days previously, to log(vct−364 +1) since a number of the

boards experience zero counts. Cities and towns in Scotland can also choose to

have a number of local holidays (Glasgow Chamber of Commerce 2009). As with

national bank holidays, doctors’ surgeries tend to be closed on these days and
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so we expect more calls to NHS24 during them. The dates of these holidays are

determined locally and so vary across Scotland. Thus, we include the LHol factor,

which has one level for all local holidays in that region and is zero otherwise. Local

holidays were determined by searching for confirmation about particularly large

residuals and from general research. For the health boards containing the larger

cities, such as Lothian and Greater Glasgow, it is easier to confirm their local

holidays; however, this was not possible for all boards.

Having fitted the local covariates to a region, we turn to considering if predHW

predictor terms from neighbouring boards can be used to improve the model for

that board. This creates a crude network between the different health boards.

Testing for the significance of these predictor terms can be difficult since there is a

good deal of correlation and duplication of information amongst them. To choose

which, if any, of the neighbours should be included in the model for a board, we

use the step function in R (Venables and Ripley 1997). This function allows for

automating model selection using the Akaike Information Criterion (AIC), which

for a model is defined as:

AIC = −2 maximum log likelihood + 2p,

where p is the number of the model’s parameters. The step function searches

through the different possible models, selecting the one that reduces the AIC the

most (Faraway 2006). We use the scope option of step to specify the models we

want it to consider. We specify as the smallest model as the one found above,

consisting solely of local terms. The largest model considered is one that includes

the basic, local, model as well as all of the predHW terms of its neighbours.

Thus, the simplest model that the step function can return is the basic local

one, the largest one is the basic one with the addition of all of the neighbouring

predHW terms, or a model somewhere between these two. We only consider the

predHW terms of neighbours that include their predHW term within their own

basic models. We use the predHW term as a proxy for the counts of a region

within the model of another region; if the predHW term for a region does not

contribute significantly within its own basic model, it is not likely to represent

that region well.
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Once the step function has returned a model, potentially including the predHW

terms of its neighbours, we consider the significance of its terms. If the inclusion

neighbouring predHW terms makes its own predHW term insignificant, we choose

the basic model as the final model for this region. In such a case we assume that

there is a large duplication of information among the predHW terms and that little

additional information is gained through the inclusion of neighbouring predHW

terms. It would seem logical that a region’s own predHW term, in general, will

be the best representation of the counts there and so go with that.

Fitted models

The coefficients of the resulting fitted models are shown in Tables 3.9 and 3.10.

It is perhaps surprising that the coefficients of predHW term are not closer to one.

Since this variable is a prediction on the log-scale for each health board and so on

the same scale as the mean. The coefficient of predHW in Ayrshire & Arran, 0.50,

is reasonably intuitive when coupled with the values of the other coefficients; the

sum of this coefficient and the coefficients of log(vct−364) and predLN is nearly

one. All of these three terms contain values of counts on the log-scale and so their

coefficients nearly summing to one gives a weighted average of these three terms.

The effects of other terms in the models is likely to explain why the coefficients

of the predHW terms are not closer to one. The predHW term does not contribute

significantly in four health boards: Borders, Dumfries & Galloway and Tayside.

The Borders and Dumfries & Galloway health boards have among the smallest

values of α in the underlying Holt-Winters models (see Table 3.6). This suggests

that their level changes very slowly and that these changes in these boards are

better captured over a longer period from the other variables in these models.

It is not entirely clear why the term is not significant in Tayside, but it may be

because the day-of-the-week effect explains the changes in the mean more.

In those places where the DayWE factor is significant, the levels taken at the

weekend are always positive. This is logical: at the weekend doctors’ surgeries

are closed and so more people will call NHS24. With more people calling NHS24

we will get more calls relating to vomiting. It is perhaps surprising that we need

this term in those health boards with the predHW term, since their underlying

Holt-Winters models have a weekly (day-of-the-week) seasonal factor in them.

However, the need for DayWE factor might be due to the value of the coeffi-
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cient of the predHW term – since the coefficients of the predHW terms are not

one, the seasonality captured by the underlying Holt-Winters models will not be

transferred fully to the GLMs, resulting in the need for this factor. However, we

also noted in Chapter 2 that the weekly seasonality of the calls related to vom-

iting did not appear to be stable. The seasonality captured by this factor might

be thought of as capturing the stable element of the weekly seasonality in the

counts (it will not change), while the Holt-Winters models capture the changing

elements of the seasonality. As we would expect, the largest values of this factor

are found in those boards that have no Holt-Winters predictors in them: Borders

and Dumfries & Galloway. Ayrshire & Arran probably does not require this fac-

tor because the combination of predHW , log(vct−364 + 1) and predLN terms, with

no other terms in the model, are sufficient to capture seasonality.

Other day effects are captured by the: bank holiday factors Bank5 (one level

for all the bank holidays in 2005); the Easter Monday factors EMon5 (1 level for

Easter Monday during 2005); and the local holiday factor LHol (one level for all

the local holidays we have designated in a region). Again, as we would expect, all

these factor levels are positive, since more people call NHS24 on these holidays as

doctors’ surgeries are closed. From calculating the Kendall correlation coefficient

between the factor levels of DayWE and each of these different holiday factors,

we find there is generally a weak positive correlation between them (Kendall

correlation coefficient value of 0.78, 0.50 and 0.81 for Bank5, EMon5 and LHol

respectively): the more seasonality that is captured in the GLM by the DayWE

factor, the larger the holiday factor levels. Generally, the local holidays and

Easter Monday seem to have a larger effect on the number of calls that NHS24

receives.

Few health boards have the log(vct−364 + 1) term in their models. For a lot of

boards this will be because of the the calls not reaching equilibrium till quite late

in 2004 – see Figure 3.1. We might find with more years of stable data that this

term would be significant in more boards. Further, we might expect the Bank4

and EMon4 terms to contribute significantly in more boards. However, since

only Greater Glasgow has one of these factors, we do not consider it further here.

The coefficients of the linear trend Ti are all negative, suggesting that the

number of calls being diagnosed by clinical algorithm that relate to vomiting are

decreasing. This is in agreement with the national model in Section 3.3. This is
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likely to be an artifact of fewer calls being diagnosed by the clinical algorithm and

more calls being diagnosed directly by the nurse-practitioners that staff NHS24.

Calls in the latter category are not included in our counts. The order of magnitude

is similar for most boards but is larger in Dumfries & Galloway because its model

contains no predHW (neither its own or those of its neighbours). However, it

should be noted that there is no local linear trend fit in any of the Holt-Winters

models - see Section 3.4.1. The Ti trend for Borders only becomes insignificant

upon the inclusion of the predLN term in its model.

We have modelled the relationships between health boards by including in

a board’s model the Holt-Winters predictors of its neighbours, where they con-

tribute significantly to the model. However, there are a large number of neighbour

pairs, so we represent these pairings in Figure 3.3. Take two health boards and

label them A and B. If A’s Holt-Winters’ predictor is included in the model for

B, then we put an arrow in Figure 3.3, starting at health board A and ending

at health board B. Thus, the Holt-Winters predictor for Lanarkshire predLN is

included in the model for Lanarkshire. We include the relations included in the

final models (black) and those relations included by the step function but not

included in the final models (grey). Recall from earlier that we do not include

the neighbouring predHW terms if they make the predHW for that region insignif-

icant; see the section on model fitting for a more detailed explanation. Red links

indicate boards that are neighbours but were shown to have no links what so

ever.

Since the predHW terms for Borders, Dumfries & Galloway and Tayside were

not significant in their basic models, they were not tested for inclusion in other

models. However, these boards can still have the predHW terms of their neigh-

bours in their models. For instance, three boards feed into Tayside and one into

Borders. However, there are no links with Dumfries & Galloway. It is worth

noting that since Borders and Dumfries & Galloway are on the border with north

England, they are ‘missing’ some of their neighbours as we do not have the data

from the health boards in the north of England. Most links seem be between

the health boards in the middle of Scotland: Ayrshire & Arran, Borders, Fife,

Forth Valley, Greater Glasgow, Lanarkshire and Lothian. This is not surprising

since the majority of the Scottish population lives in these regions. Further, these

regions also have the the highest densities of individuals and the most commuting
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going on between them. These factors would mean that we would expect infection

to be transferred most readily between them, making the predHW terms of neigh-

bours useful for improving the predictions in a region by being a proxy for this

transfer. It is perhaps surprising that we do not see more regions with reciprocal

links; that is, two neighbouring boards with their predHW terms in each others’

models. Many boards only have a one way relation ships with their neighbours.

The two way relationships may indicate contemporaneous relationships, while the

one-way may indicate a lagged relationship. However, again we are limited by

the quality of the data: we have only fitted these negative binomial models to

one year of data, so we should not over-interpret these relationships.

We now consider the relationships that are included in the final models (black

arrows in Figure 3.3). Generally, the coefficients of the neighbouring predHW

terms are not significant. This is perhaps not surprising since we expect some

correlation between the the neighbouring and local predHW terms, which will

affect tests of significance. Recall that they are chosen through a series of com-

parisons of AICs, and so we we leave them in. The coefficients of the neighbouring

predHW terms are smaller than the coefficients of the local predHW terms. This

seems sensible: we would expect the local predHW to be the best ‘guide’ for the

changes in that region, and so would expect it to have the largest value. How-

ever, it is important to remember the coefficients also serve to scale the predHW

terms: the predHW terms give predictions of the log-counts, and so will be larger

in those regions that normally get more calls. Thus, in the smaller regions, the

predHW terms of neighbours will have smaller coefficients to scale them down to

the appropriate level for that region. As we would expect, barring one term, all

of the predHW terms have positive coefficients. The only exception is the predLN

term in the model for Lothian. It is not entirely clear why this is, but might

indicate a negative correlation between the numbers of calls from Lanarkshire

and Lothian.

Model Diagnostics and Summary Statistics

In this Section we consider the fits of the negative binomial models fit in the

previous Section. Statistics related to the fit of the negative binomial models can

be found in Table 3.11.
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Figure 3.3: This representation of the neighbouring structure of Scotland’s health
boards shows which Holt-Winters’ predictors from other health boards are included in
other health board models. Thus, an arrow from from board A to board B, means that
the Holt-Winters’ predictor from board A is included in the negative binomial model
for board B. Thus, Greater Glasgow’s negative binomial model includes Ayrshire &
Arran’s Holt-Winters’ predictor.
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A
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θ θ
S
E

Ayrshire & Arran 872 373 500 57 364 361 3 2070 15.546 2.819
Borders 642 390 252 39 364 359 5 1286 62.412 100.674
Dumfries & Galloway 874 405 468 54 364 359 5 1445 49.206 44.522
Fife 824 385 439 53 364 359 5 1940 25.049 7.153
Forth Valley 997 380 617 62 364 358 6 1892 44.369 18.468
Grampian 1222 383 839 69 364 360 4 2122 29.042 6.85
Greater Glasgow 2194 370 1824 83 364 356 8 2378 73.073 18.418
Highland & Argyll 1045 398 647 62 364 359 5 2009 23.141 5.77
Lanarkshire 1497 387 1110 74 364 357 7 2194 29.792 6.563
Lothian 1431 371 1060 74 364 355 9 2176 99.606 44.517
Tayside 1054 383 671 64 364 356 8 1971 22.101 5.505

Table 3.11: Summary statistics from the negative binomial GLMs fit in Section 3.4.2
to the counts of calls relating to vomiting received from each health board DoF =
Degrees of Freedom. SE = Standard Error.

Generally, the residuals for each health boards are well behaved with some

large values. There is a suggestion that the residuals are larger at the beginning

and end of the year. There are some larger residuals on days that we have treated

as bank holidays. To address this, future models with more data might consider

fitting more than one factor level uniformly to all bank holidays. The residual

deviances are of similar orders to the residual degrees of freedom, suggesting

reasonable models.

Auto-correlation functions (acfs) of the residuals suggest, in general, that there

is no significant serial correlation remaining in the residuals. There are some

significant high order correlations but these are at lags that appear to have no

links with the underlying system. However, Ayrshire & Arran has a significant

correlation at lag 1, which will have most effect on predicting one day ahead.

Thus, predictions for Ayrshire & Arran might need to be monitored more closely.

Q-Q plots of the residuals suggest few problems with the fits of these models.

For some of the models there is a little curvature at either end of the q-q plots,

but nothing that concerns us. Plots of the fitted log-means against the residuals

suggest that variance is modelled suitably by the negative binomial distribution.
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The value of θ, the shape parameter of the negative binomial, varies quite

a lot between the health boards. However, this is not particularly surprising;

there is quite a difference in the number of calls we expect to get from Borders

(on average, 2.5 calls per day) and Greater Glasgow (30.2 calls per day). If

a standard error for a θ is near or larger than its calculated value, it suggests

that we either know little about θ or have a poor fitting model. Thus, we are

only concerned about Borders and Dumfries & Galloway where this is the case.

Besides the island health boards, these are the regions that the fewest calls are

received from. Thus, these health boards will have more days with no calls (zero

counts) and so might benefit from zero inflated negative binomial models, which

we consider further in Section 5.6.1.

Conclusion of negative binomial fitting

In this Section we have fitted negative binomial models to the counts of calls

relating to vomiting from twelve of the health boards in Scotland, using data from

2005. The Holt-Winter’s variables seems to have captured local trend reasonably

well. Various day effects need to be included to account for higher rates of calling

when doctor surgeries’ were closed. Generally, including calling rates from 364

days previously did not contribute significantly to the models. This is likely

because a number of boards did not really start calling NHS24 till part way

through 2004. From the diagnostics of these models, they generally seem to be

reasonable fits to the data, not suffering the problems that national model had.

3.4.3 Binomial Models

Very few calls are received from the island health boards and so cannot be mod-

elled by a negative binomial model. Instead, we fit a binomial model to them,

turning the number of calls received into a binary response: one, if any calls are

received, and zero otherwise. We then test for the inclusion of variables that were

used in the negative binomial models.

Fitted Regional Binomial Models

The resulting fitted models are shown in Table 3.12. Few variables contribute

significantly to the models. Apart from Shetland, there seems to be a weekend
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Region Intercept DayWE Ti

Orkney -2.8663 (0.2748) 0.9094 (0.4041) –
Shetland -1.0877 (0.1206) – –

Western Isles -2.7913 (1.7908) 0.0167 (0.5947) -0.0042 (0.0020)

Table 3.12: Coefficients of the binomial models fit in Section 3.4.3 to the health
boards where a negative binomial model and Poisson models could not be fit. The
binary response is either no calls received, or at least one call received.

effect which we might expect: while it will be hard to get to a doctors’ surgery

from the island, they will experience even more difficulties during a weekend.

The negative trend in the Western Isles suggests that fewer calls are coming

from there relating to vomiting. This was also true for a number of the negative

models. The Shetland health board simply has an intercept in it, suggesting that

the proportion of calls from there is either constant or undergoing such a small

change that this modelling does not have the power to detect it.

Model Diagnostics and Summary Statistics

Summary statistics for the these binomial models can be found in Table 3.13.

Cross tabulation of days of the week and number calls received suggests that

having the DayWE factor is reasonable. From a plot of the number of calls from

Western Isles, shown in Figure 3.4, a decreasing trend in the days with calls seems

reasonable.

Binomial Modelling Conclusions

In this Section we have fitted three binomial models to the Island health boards

of Orkney, Shetland and the Western Isles. Orkney and the Western Isles had a

significant week-day/weekend effect in whether a call was received from them or

not. The Western Isles showed some evidence for a downward trend over time in

the probability of receiving calls on any day. The model for Shetland suggests, as

its Holt-Winters model did, that the calling rate from Shetland does not change,

since only a constant was fitted to this board.

To fit binomial models to these regions, we have turned the number of calls

received into a binary variable: either some calls are received or none are. Due to
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Orkney 193 188 5 3 364 363 1 192
Shetland 412 412 0 0 364 364 0 414
Western Isles 473 417 56 12 364 361 3 425

Table 3.13: Summary statistics from the binomial GLMs fit in Section 3.4.3 to the
island health boards. DoF = Degrees of Freedom.
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Figure 3.4: The number of calls from the Western Isles during 2005.
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this, the exceedance alarm method could not be used with these models. Future

work might look at developing an alarm method based on a sequential ratio

test (Wald 1945). Such a test could check if the probability of receiving a call

has increased, which could be interpreted as an exception. Alternatively, or in

addition, it may be best just to define an exception in an island board as receiving

more than, say, 2 calls (recall that for these regions it is very unusual to get more

than one call in any day).

3.5 Conclusions & Future work

In this Chapter we have developed a number of models that serve as the basis

for forming predictions for the number of calls relating to vomiting received by

NHS24 both nationally across Scotland and regionally at the health board level.

These predictions can then be combined with an alarm method to form a national

and regional exception reporting system. Given the considerations of timeliness

for detecting exceptions, a version of an exceedance alarm is probably the best

choice. Unfortunately, with only two years of data from the very start of the

system, there is not enough data to validate these models and investigate how

they would work in an exception reporting system. An obvious avenue for future

work is obtaining more data from NHS24 and fitting the models to a longer time

period. With a sufficient amount of data, it might even be possible to split the

data into training and validation/testing periods: we would fit models to the

training period and then apply the resulting exception reporting systems to the

latter period to see how the system fares. The system could also be extended

to other syndromes. With more, hopefully stable, data, utilising past years’

values may even be more consistent. Future work might look at different ways

of capturing the level in previous years (a simple mean, a weighted average etc.).

We might also investigate combining the regional models in some way to monitor

the counts nationally.

An important difference between how this system could potentially work and

how the exception reporting system at NHS Direct works is in how calls are

assigned to a region. At NHS Direct, the data for a region corresponds to all

those calls that are received by the call centre that serves a particular region.

At times of peak demand, if a call from a region can not be answered by that
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region’s call centre, it is transferred to another region. Up to ten percent of calls

can be transferred in this fashion (Cooper, Smith, Baker, Chinemana, Verlander,

Gerard, Hollyoak, and Griffiths 2004). In contrast, the calls to NHS24 have been

allocated to their health boards by post codes and so should give a more accurate

representation of calls from each region.

Another difference is in what we have modelled. At NHS Direct, the propor-

tion of all calls that relate to a particular syndrome have been modelled through

the use of a offset of total calls in their Poisson models. We found that the use

of the offset did not stabilise the models particularly well. Instead we model the

counts directly using a variable based on a Holt-Winters smoother which captures

serial correlation and trend well for most of the regions. Modelling the counts

also means we remove the problem of coupling when dealing with proportions,

which we discussed in Chapter 2. Future work might look at comparing an ex-

ception system based on the models developed here, with the models in place

at NHS Direct and the models now in use at NHS24 (Cooper 2007; Kavanagh,

Robertson, and McMenamim 2007). These comparisons would also allow for the

investigation of the effect in using the negative binomial models as we do here,

compared to transforming the Poisson models to take account of over-dispersion,

as is done in the other systems.

The models developed here also make more explicit the links between neigh-

bouring health boards in respect of the number of call received. This was done

by using some of the Holt-Winters’ predictors of neighbouring health boards in

each health board’s model. Some rudimentary work has shown the inclusion of

the neighbouring boards improves the models in the sense of reducing the root-

mean-square error of predictions (Robertson, Kavanagh, McKenzie, and Wagner

2008). Future work might look at other ways of linking the boards together. Per-

haps using lagged values of the Holt-Winter’s predictions in neighbouring boards

might improve the models further.

Improvements to the models might be gained by more closely investigating

the underlying Holt-Winters models. Currently, the values of the Holt-Winters

parameters are found by minimising the one-step ahead prediction errors. How-

ever, since the Holt-Winters models are used to form a variable that is included

in a GLM, it might be better to find the parameters that minimise the residual

deviance in the resulting GLM. Very early work on this has suggested a com-
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plex optimisation surface, with optimised values being easily affected by starting

points. Given the limited and potentially poor data that we have from the start

of the system, we did not investigate this further.

Further improvements would aim to address the effect of large residuals. One

way to do this would be to fit the GLMs and down-weight those observations that

lead to large residuals. This can be done by fitting a GLM to the data normally.

The residuals from this GLM are then inversed and used as weights in re-fitting

a GLM to the data. For an example of this, see Farrington et al. (1996).



Chapter 4

National Modelling of

Cryptosporidium Data

In this Chapter we consider developing an exception reporting system from data

held by Health Protection Scotland. Their data comes from a much longer period,

approximately twenty years, and is much more stable than the data we had from

NHS24. Due to the longer period, we have sufficient data to test any system

we develop. Again, our overall goal is to develop a regional exception reporting

system. We start this process in this Chapter by considering the background to

the data help by Health Protection Scotland, and then going on to develop a

national model for Cryptosporidium. The models developed here will inform our

choices for modelling at the regional, health board, level in later chapters.

4.1 Health Protection Scotland Background &

Purpose

Health Protection Scotland (HPS) is a governmental organisation that came into

existence on 11th November 2004. HPS was created by the Scottish Executive (the

Scottish parliament) ‘to strengthen and co-ordinate health protection in Scotland’

(Health Protection Scotland (HPS)). Their stated aim is:

94
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‘To work, in partnership with others, to protect the Scottish public

from being exposed to hazards which damage their health, and to

limit any impact on health when such exposures cannot be avoided.’

(Health Protection Scotland (HPS))

HPS is the direct successor to the Scottish Centre for Infection and Environmental

Health (SCIEH).

The primary role of HPS is to carry out all round surveillance on health

related matters in Scotland. This role is far from passive: the surveillance is

used to inform and develop environmental and public health policy. HPS also

functions as a co-ordinating centre allowing a range of public bodies – such as

the Scottish Executive, the emergency services and the NHS health boards – to

work more consistently and efficiently together. This is a key role in the event of

any large-scale public emergencies occurring in Scotland.

4.2 HPS Data

When treating a patient a doctor will often be presented with a myriad of symp-

toms. Often these symptoms will point clearly to a single disease. However, if the

diagnosis is not clear cut, or as part of standard practice with certain conditions,

the treating doctor sends a biological sample from the patient to a diagnostic

microbiology laboratory. When these labs identify certain micro-organisms they

report them to public bodies. In Scotland, the appropriate body is one of the

fourteen regional national health boards – shown in Figure 2.8 – who in turn pass

these reports to HPS, and previously its predecessor SCIEH (McCabe 2004).

While there are now fourteen health boards (see Section 2.4), this change had

not been propagated to the data on which we fit models in this and the following

chapters. Thus, we deal with data from fifteen health boards. Bodies equivalent

to HPS exist in other countries, such as the Health Protection Agency (HPA) in

England and Wales, and the Centers for Disease Control and Prevention (CDC)

in the USA. In general, reporting is voluntary (McCabe 2004), but for certain

micro-organisms – generally the more dangerous or virulent ones – reporting them

is mandatory according to the Public Health (Notification of Infectious Diseases)

(Scotland) Regulations 1988 (Parliament 1988).
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At HPS these reports are collected together to form a central database. Then

from this database weekly counts for the different organisms can be created.

These counts form an important way of monitoring for disease outbreaks and

epidemics in Scotland. However, there are a very large number of reportable

organisms (2,387 in 2004). Monitoring this large number of organisms is not a

simple task and, given the range and types of organisms, can require a substantial

amount of expert knowledge. This task was made much easier by the development

of a national exceedance reporting system in McCabe, Greenhalgh, Gettinby,

Holmes, and Cowden (2003) and McCabe (2004), which built upon a system

suggested by Farrington, Andrews, Beale, and Catchpole (1996).

One of the more practical issues linked with the data is what constitutes a

week. Reports are received by HPS Monday through Friday and so a week is

considered to end on a Friday. Then, whichever week starting on a Saturday

and ending on a Friday contains January 1st is defined as week one for that year.

As McCabe (2004) notes, this has a number of consequences. First, this means

that week 1 can often include reports from the previous calendar year. Secondly,

this means that if December 31st is a Friday, then that year will have 53 weeks.

Since 1988, there have been three such years in the system: 1993, 1999, and 2004,

with the next being 2010. Having differing numbers of weeks in some years would

cause problems for an exceedance reporting system. Thus, for the historical data,

all years are standardised to 52 weeks by taking week 52 and 53, and averaging

them and recording that result for week 52. In those years with 53 weeks, during

week 52, systems works as normal, using the count data for that week; during

week 53, the counts for that week are averaged with those for week 52.

4.2.1 Issues with HPS Data

The HPS data has a number of issues linked with them. McCabe (2004) identifies

four particular weaknesses: we briefly re-cap those here and direct the interested

reader to McCabe (2004) for greater detail.

Reporting Delays

The delays associated with labs passing details of reports to HPS changed dur-

ing 2008 and 2009. Previously, a manual fax system was used for the collection



CHAPTER 4. NATIONAL CRYPTOSPORIDIUM MODELLING 97

of reports. Now, a more automated electronic system has been adopted, which

allows for information to be collected in a timelier fashion. The use of an elec-

tronic system also reduces the effect of batching: previously a lab might not pass

reports on to HPS if a member of staff was away. On the staff member’s return,

these reports would be reported in one ‘batch’. At worst, this could lead to the

suggestion of an organism spontaneously going into outbreak. The data we fit

models to come from before the adoption of this electronic system and so might

contain batching effects (particularly during holiday periods when the labs are

more likely to be closed).

The adoption of an electronic system also changed the date linked with each

report. During the period for which we have data, the date linked with each lab

report was the date of when the report details were received by HPS. Thus, the

counts were likely to be biased and reflect the level of a given organism for a

time that has already passed. To reduce the lag between the level noted in the

system and the level present in the environment, the date linked with a report

has been changed to the date of sample collection from the patient. If this date

is not available, then the first available date from the following is used: the date

the sample was received by the lab; the date the lab reported the results of the

tests back to the doctor; finally, the date on which the report is received by HPS.

Reducing the lag between the system level and the actual environmental level

may allow for outbreaks to be detected sooner.

With the change in date linked with a report, there is potential for a more

obvious delay effect: if details of a report are submitted to HPS a week after

the corresponding sample is collected from a patient (time in which, for example,

tests may be carried on the sample), past data will need to be revised. It will

be important to gauge the magnitude of this effect, to determine if the effect

can be ignored or if it should be dealt with by the monitoring system. One way

of investigating the effect is to consider the distribution of reporting delays (the

time between sample collection and report submission); if most delays are under

one week, we may find that this makes little difference to the monitoring system

as it deals with weekly totals of reports. If the delay is greater than one week,

a mechanism may be required for addressing the delay; an example of such a

mechanism is given in Chapter 8.
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Inputting Errors

To create counts for each organism, searches will be executed on the databases

held by HPS. For instance, when creating the counts for Campylobacter a search

will select all those records that have the keyword Campylobacter; the reports

will then be aggregated to calculate the number of reports received for each

week. Should any reports pertaining to Campylobacter have the organism name

mis-spelt, or a variant used (perhaps C. bacter) then these reports will not be

included in the weekly counts for Campylobacter. This would mean that the

counts of Campylobacter would be under-reported and at worst outbreaks missed.

McCabe (2004) notes this was a particular problem for certain organisms, and

had to be corrected before his system could be used properly. However, given

the system has been in place for some time now, the individuals involved in the

reporting system will be aware of this difficulty and are likely to closely monitor

the data entered into the system for consistency.

When modelling at the health board level, it will obviously be important

to have accurate information on which board a report originates in. To ensure

consistency, a simple check where the totals across all boards are combined and

compared to the national total can be done. Should the two totals not tally,

then we know some reports do not have a board identifier. However, there is no

simple check, or fix, for a report incorrectly recording which board it originated

in. This may only mean the difference of one report, but given some of the boards

have very small populations – for instance the islands in the north of Scotland

– the omission or addition of a report to a board could determine whether an

exceedance occurs.

Duplicates

Reports passed to HPS pertain to individual samples and not cases. A doctor

may send a lab two samples from the same patient to double check a diagno-

sis or to determine if a patient is still infected. In either case, a double count

would occur for what really accounts to a single infection. This would artificially

increase the suggested prevalence of an organism. Some protocols are in place

for removing duplicates at HPS, however these are nearly always retrospective.

Thus, duplicates are a problem that cannot be eliminated from these counts.
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Typing and sub-typing processes

As noted with the issue of data-entry consistency, the recorded organism name

determines which, if any, weekly organism count a report is included in. Should

the name of the organism change, you can end up with separate and unlinked

data-sets. A more subtle problem can occur with sub-typing. Certain organisms

can have variants, such as Salmonella typhimurium and Salmonella enteritidis.

These may be initially recorded under Salmonella and then recorded under the

two sub-types, again leading to unlinked data-sets. However, it is not a simple

matter of linking the data-sets, as the counts of Salmonella typhimurium are

obviously different to those of the broader Salmonella. Further complications

can be caused by different labs having different standards of sub-typing, such

that there will be no standard across the country. For example, a lab could

report a case of Salmonella, while elsewhere it might be sub-typed as Salmonella

enteritidis.

There is no simple solution for dealing with new typing and sub-typing of

organisms. Generally, if possible, we will have to continue using the old classifi-

cations until sufficient data are collected under the new ones to allow the reporting

system to be used on the new classifications. Sometimes it will not be possible

to combine the new typings in such a way as to recreate the old classifications;

in such cases, we will have to wait until enough data are acquired under the

new classifications to be able to apply the reporting system as normal. In either

case, it is important to convey the ramifications of changing types to users of the

system.

The effect of surveillance

Another issue not directly address by McCabe (2004) is the effect that surveillance

will have on the counts of organisms. As noted in Section 4.1, the surveillance

carried out by HPS is not passive. If the counts can be used to suggest pre-

ventative measures, then those measures will be put in place, hopefully reducing

the number of reported cases. One example can be seen with the reported cases

of Salmonella enteritidis infection. A major source of infection was linked with

infected hens laying infected eggs containing Salmonella enteritidis, which were

then consumed by humans. To reduce the risk of infection, a programme of vacci-
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Figure 4.1: The log-counts of Salmonella enteritidis in black, with the trend in red,
as found by time series seasonal decomposition. For details of the method see Section
4.4.1.

nation was carried on laying hens from 1998 (Health Protection Scotland (HPS)

2004b). This can be clearly seen in the trend of the log-counts, shown in Fig-

ure 4.1, found by a time-series seasonal decomposition. From 1998 the trend is

distinctly decreasing.

4.2.2 HPS National Exceedance System

The system developed in McCabe (2004) was initially used by SCIEH and con-

tinues to be used by HPS. At a conceptual level, for any given week, the system

predicts the number of reports it expects for an organism and compares it with the

observed number of reports. Then, if the observed reports exceed the expected

number by a particular margin, the system indicates that this organism should be

further investigated in case of an ‘outbreak’. However, the system only indicates

potential outbreaks (and possibly not all of them); it does not necessarily mean

the organism is in outbreak.

To calculate the expected number of reports a GLM is used. It uses a seven

week window of data from the last five years centred on the week we wish to find

an estimate for; thus, the GLM is fitted to 35 values. By choosing this particular

data, seasonality does not need to be explicitly modelled, but is captured through

the choice of data. Let yt be the count of the organism at time t. Then, depending

on the weekly reporting rate of the organism, one of two different quasi-Poisson
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GLMs, with associated dispersion parameter φ, are fitted to the mean of the

counts µt:

Weekly reporting rate GLM Prediction Model

rate ≤5 log(µt) = α + β ∗ weekt + fact year

rate > 5 log(µt) = α + β ∗ weekt + γ ∗ yeart

where α, β and γ are constants; weekt and yeart are integers indicating which

week and year respectively the count at time t relates to; fact year is a factor

with a different level for each year the counts are from. Once a GLM is fitted, the

model can be used to predict the expected number of counts µ̂0 for the present

week.

Using µ̂0, a 99% prediction interval is formed, adjusted for skewness by using

a 2
3
-power transform. The upper limit of the prediction interval, U is given by:

µ̂0

{
1 +

2

3
zα

(
τ̂

µ̂0

)}3/2

,

where zα is the 100(1 − α)-percentile of the normal distribution, and τ̂ is then

given by:

φ +
var(µ̂0)

µ̂0

.

An exceedance score is then formed by comparing the upper limit of the prediction

interval with the observed value y0 for this week via:

y0 − µ̂0

U − µ̂0

.

Then, if an exceedance score greater than 1 is observed, the system ‘triggers’ an

alarm, informing the user that a higher than expected count has been observed. In

such a case, the user can investigate if the given organism is actually in outbreak,

or just has higher counts than expected by chance.

Initially, at HPS, α = 0.10, while in Farrington et al. (1996), α = 0.01.

This was extended at a later point with a ‘traffic light system’ (an example of

this approach can be found in Allardice, Wright, Peterson, and Miller (2001)):

here, an exceedance when α = 0.10 is ‘amber’ and means the organism should be

monitored more closely; an exceedance when α = 0.01 is ‘red’ means the organism

should be investigated; otherwise the organism is considered ‘green’ and safe.



CHAPTER 4. NATIONAL CRYPTOSPORIDIUM MODELLING 102

4.2.3 Regional Considerations

We have considered the current national reporting system. We now consider some

of the issues relating to developing a regional reporting system.

In reviewing the various methodologies for developing a reporting system,

McCabe (2004) considers starting from a spatial dimension, instead of time, such

as in Leung, Patel, and McGilchrist (1999) and Raubertas (1989). Outbreaks

would then be indicated by detecting clusters of reports. To utilise such a system

would require a good deal of geographical information. Unfortunately, this is

not available for all reports: only some include the address and post code of the

patient that the sample is collected from. Due to this and the administrative

structure of HPS, it is more useful to monitor the counts from each health board.

If a health board is shown to have a potential outbreak, HPS can advise that

health board to monitor the situation more closely.

There are some problems associated with working with the health board level

data. The boundaries for the boards are somewhat arbitrary, more likely to

be determined by governmental requirements and infrastructure than physical

or environmental factors that affect organism spread. For this reason McCabe

(2004) considers it to be more fruitful to work at a national level and focus on

a method that utilises a time dimension, rather than a spatial one. However,

given the national system is in place, the next obvious extension is to consider

the health board level counts. Given the time dimension for the counts is very

rich – around twenty years of data – we start from the time dimension and then

proceed to see how the health boards can be linked together, be this spatially or

otherwise. This could potentially allow the spread of infections to be modelled

and monitored: for instance, a rise of infections in Lothian might be a precursor to

a rise of infections in Glasgow, due to commuters carrying the infection between

the two health boards.

McCabe (2004) notes that the reporting rate for different organisms can differ

greatly, with many organisms having a very low national reporting rate, and

which at a health board level will mean the rates are correspondingly lower.

For the modelling considered here, we will only consider those organisms with a

higher national reporting rate. This is for two reasons. First, models fitted to

the very low counts, possibly with many zero counts, will likely not fit well to
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the larger counts. For instance, we saw that the national system fits one of two

GLMs depending on the rate of reporting of a particular organism (Section 4.2.2).

Secondly, is a reason of practicality. If the rate is very low, then outbreaks are

likely to be detected by the national system. Further, given the small number of

cases, it will not require much work at HPS to find the location of these potential

outbreaks. When the rate is higher, it will be harder to judge potential outbreaks

locally and more work to determine the location of the potential outbreak.

Since most outbreaks, particularly the smaller ones, will be localised to a

particular area, we can expect the health board level counts to display more serial

correlation than at the national level. It should be noted that the national level

system does nothing to address serial correlation; McCabe (2004) notes that he

found little serial correlation among the counts and so disregarded it. However,

serial correlation can have a marked effect on the forecasts made, as standard

errors tend to be under-estimated in its presence. The standard errors are used

to determine which variables are used in the forecast model through significance

tests, so can lead to very different models, and so different forecasts if ignored.

Generally, any model will be better for having addressed serial correlation, and

so we do our best to incorporate it into the models developed here. For instance,

we expect to find many consecutive weeks of zeros: by modelling this, serial

correlation may be reduced.

In summary, modelling at the regional level presents different issues to the

national level. The system developed by McCabe (2004) is a very general purpose

tool, having to deal with around three thousand organisms. As any regional

system developed is likely to be applied to far fewer organisms we can afford

to develop a system in greater detail and try to deal with such things as serial

correlation and potential inter-board relationships.

4.2.4 Exploratory Analysis: Organism Choice

To better understand the structure of the counts at a health board level, it was de-

cided to take one organism and initially apply similar techniques as were utilised

with the NHS24 data, using Generalised Linear Models (GLMs) as the basic mod-

elling tool. HPS suggested six organisms with reasonably large rates as suitable

ones to explore: Methicillin Resistant Staphylococcus Aureus (MRSA), Norovirus,
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Salmonella Enteritidis, Salmonella Typhimurium, Campylobacter, Cryptosporid-

ium. To choose between them we consider the log-counts of these organisms,

from 1990 to the beginning of 2007, as they have two advantages. Medical counts

are, as standard, assumed to be Poisson distributed and so modelled with a Pois-

son GLM, which typically uses a log-link function. By looking at the log-counts

we see a form of the data that covariates will be fitted to in a GLM. The log

function also serves as a variance stabilising function. As the counts are Poisson

distributed, as the counts increase so does their associated mean, and by defi-

nition their variance; by applying the log function the multiplicative structure

becomes additive, which is easier to interpret.

We decided against modelling MRSA and Norovirus, since they experience

a step change in level, as seen in Figure 4.2 The trends in this section were es-

timated by using time-series seasonal decomposition; the method is explained

in Section 4.4.1 As MRSA is primarily a Hospital Acquired Infection (HAI), its

change in level is probably attributable to the growing prevalence that HAIs have

had in the media’s consciousness of recent years. As the public becomes more

concerned about HAIs, authorities will need to monitor them more closely, lead-

ing to an increased reporting rate that does not necessarily indicate a greater

natural prevalence. The change in reported cases of Norovirus is likely to have

some link with a greater natural prevalence but is affected by inconsistent report-

ing standards between public health labs, meaning that ‘accurate interpretations

of changes in reporting rates over time or between NHSB [health boards] is im-

possible’ (Smith-Palmer and Cowden 2003). When it comes to modelling these

organisms, it may be necessary to disregard the data before the change in level;

we could model MRSA from 2001 and Norovirus from 2003. The national system

tries to deal with such changes in level by fitting models to data from only the

last five years. However, for this exploratory analysis, it seems sensible to pick

an organism with no such step change.

Salmonella Typhimurium was rejected, as its counts are becoming increasingly

small. The counts can be seen in Figure 4.3. Towards the end of the data,

particularly for 2005 and 2006, nearly all of the counts are in single digits; this

will mean that at the health board level, many counts will be zero, and so not

that interesting to model.
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Figure 4.2: The log-counts of MRSA and Norovirus in black, with estimated trend
in red as found by time-series decomposition.
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Figure 4.3: The counts of cases reported to HPS of Salmonella Typhimurium.
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Figure 4.4: The log-counts of Salmonella Enteritidis, Campylobacter and Cryp-
tosporidium in black, with estimated trend in red as found by time-series decomposi-
tion.

Of the remaining organisms, the trend in the log-counts of Salmonella En-

teritidis is most variable, as can be seen Figure 4.4. Relatively, the counts of

Campylobacter and Cryptosporidium are quite stable, so we chose between those.

These two organisms do differ in average weekly reporting rates quite markedly:

93 and 14 for Campylobacter and Cryptosporidium respectively. We chose to

try exploring the Cryptosporidium counts, since they are lower, but not too low

as with Salmonella Typhimurium: we expect any models developed from Cryp-

tosporidium will scale up appropriately for those organisms with higher rates.

The decision in this Section between the organisms has been mostly moti-

vated by the trends in their reporting rate. This seems a reasonable step in this

exploratory analysis, but is something we will need to address in any final system

developed. One approach might be to disregard some past data, as is done with

the national system. However, we leave such considerations for later chapters.
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4.2.5 Development Process of Regional Exception Report-

ing System for Cryptosporidium

Having decided to focus our efforts on developing a regional exception reporting

system for Cryptosporidium, we adopt a top down approach. We first consider the

biological background for Cryptosporidium in Section 4.3, to help us make more

informed modelling decisions. We then consider suitable models for the national

counts of Cryptosporidium in Section 4.4. These models will help us develop the

regional models in the next chapter. The regional models can then be used for

the prediction element of the exception reporting system.

4.3 Cryptosporidium : Biological Background

The first reported cases of human infection by Cryptosporidium are recorded in

1976 (Ungar 1990; Nime, Burek, Page, Holsher, and Yardley 1976). Since then,

the prevalence and threat posed by Cryptosporidium has continued to increase

(Guerrant 1997). The threat posed is exacerbated by the ever increasing num-

bers of immuno-compromised humans, particularly in the AIDS stricken African

continent.

Cryptosporidium is a parasite that is smaller than a red blood cell and has

a number of sub-types or genotypes. The primary human pathogens are Cryp-

tosporidium hominus and Cryptosporidium parvum (Pollock, Young, Smith, and

Ramsay 2008; Peng, Xiao, Freeman, Arrowood, Escalante, Weltman, Ong, MacKen-

zie, Lal, and Beard 1997). Both cause Cryptosporidiosis, an infection whose main

symptom is watery diarrhoea, along with dehydration, weight loss, fever, nausea

and vomiting (Centers for Disease Control and Prevention 2007). These symp-

toms normally present around a week after infection and can last from one to two

weeks, with most people recovering fully (Association of Medical Microbiologists

1997). However, for those who are already immuno-compromised, such as those

suffering with AIDS, Cryptosporidium can be much more serious, sometimes fa-

tally so (Caccò, Thompson, McLauchlin, and Smith 2005). Guerrant (1997) is a

good source for a more detailed medical description of the infection.

Like a number of parasites, Cryptosporidium can affect a wide range of ani-

mals; in particular, Cryptosporidium parvum has been shown to transfer to hu-
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mans from other animals (Hunter and Thompson 2005). In each host the parasite

goes through an entire life cycle. It lives in the intestine of an afflicted animal and

passes out ‘oocysts’ in the stools of its host. An ‘oocyst’ is a thick walled structure

that the parasite develops within and serves as a vehicle to carry the parasite to

other animals through infected stools. Infection is thought to be spread through

infected animal waste entering the water cycle (Smith, Robertson, and Ongerth

1995); however the magnitude of this effect is unclear (Robertson 2009).

Between humans, infection is often passed because of poor food hygiene and

under-cooking meat (Laberge and Giffiths 1996). Usually, these infections are

related to Cryptosporidium hominus. Infections can spread quickly, as even after

symptoms have abated, individuals remain infectious for several weeks. In the

UK, the infection is most common among children aged between one and five years

(Health Protection Agency). Generally Cryptosporidium hominus is restricted to

humans but there have been reported cases of infection of animals (Xiao and Fayer

2008; Smith, Nichols, Mallon, MacLeod, Tait, Reilly, Gray, Reid, and Wastling

2005).

Controlling the spread of Cryptosporidium is difficult primarily because of

its strongly durable oocyst form (Association of Medical Microbiologists 1997;

Guerrant 1997). In this form it can survive, but not multiply, for extended pe-

riods (particularly in moist conditions) (Meinhardt, Casemore, and Miller 1996).

For example, Cryptosporidium can survive the chlorination present in swimming

pools for several days, making them common sources of infection (Centers for

Disease Control and Prevention 2007; Fayer, Morgan, and Upton 2000). When

oocysts enter water supplies they are very hard to eradicate (Drinking Water

Inspectorate 2001; Goldstein, Juranek, Ravenholt, Hightower, Martin, Mesnik,

Griffiths, Bryant, Reich, and Herwaldt 1996). The infection rate is also high

because it takes very few oocysts to infect a new host (Chappell, Okhuysen,

Sterling, Wang, Jakubowskui, and DuPont 1999; Okhuysen, Chappell, Crabb,

Sterling, and HL 1999; Association of Medical Microbiologists 1997; DuPont,

Chappell, Sterling, Okhuysen, Rose, and Jakubowskui 1995); however, there is

disagreement over the precise level required for infection (Scottish Parliament In-

formation Centre (SPICe) 2002; Messner, Chappell, and Okhuysen 2001; Fayer,

Morgan, and Upton 2000). In human water supplies, it is often hard using stan-

dard techniques to reduce the levels of oocysts to those that will not cause in-
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fections (Drinking Water Inspectorate 2001). An ‘integrated multiple barrier

approach’ has been shown to be effective (Pollock et al. 2008). Newer water pu-

rification techniques, utilising Cryptosporidium’s ultraviolet light and ozonation

sensitivities, are being investigated (Rochelle et al. 2004; Korich et al. 1990;

Awwa Research Foundation 2008). The resilience of Cryptosporidium has led to

it becoming one of the most common causes of waterborne infections (Centers for

Disease Control and Prevention 2007).

There have been a number of large outbreaks of Cryptosporidium infection

within the UK (Chartered Institute of Enviromental Health 2007). Within Scot-

land, two of the most noticeable outbreaks have been linked with contaminated

water supplies which provide water to Glasgow and Edinburgh (Drinking Water

Quality Regulator 2003; Scottish Parliament Information Centre (SPICe) 2002).

There was also a large outbreak in the water supply to Aberdeen (Mukerjee

2002). The link between water supplies and infections are further explored in

Pollock, Young, Smith, and Ramsay (2008). Water supplies can often become

infected during periods of heavy rainfall, when there can be insufficient capac-

ity in treatment plants to treat all the water, or surface water enters the water

supply unusually (Health Protection Scotland (HPS) 2002d; Scottish Parliament

Information Centre (SPICe) 2002). Thus, when modelling the counts of Cryp-

tosporidium it may be worth considering the effect of rainfall. Smaller, and often

more local outbreaks, tend to be associated with three particular sources: people

visiting the countryside and getting infections from sheep and other cattle, par-

ticularly at wildlife centres (considered in Sayers, Dillion, and Connolly (1996),

Miron and Kenes (1991), with an example outbreak in Health Protection Scot-

land (HPS) (2005)); tourists returning home often carry infections, particularly

if they have returned from parts of the world with poorer sanitary conditions

(considered in Smerdon, Nichols, Chalmers, Heine, and Reacher (2003), with an

example outbreak in Health Protection Scotland (HPS) (2003b)); and swimming

pools (considered in Robertson, Sinclair, Forbes, Veitch, Kirk, Cunliffe, Willis,

and Fairley (2002), Fayer, Morgan, and Upton (2000), with an example outbreak

in Health Protection Scotland (HPS) (2002a)).

We note above that there are two genotypes of Cryptosporidium, with different

infection routes. Due to the different routes, the genotypes have different levels at

different times of the year. Ideally, we would consider the genotypes separately.
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Figure 4.5: The reported cases of Cryptosporidium received by HPS from 1990 to
early in 2007.

However, identifying which genotype a lab sample belongs to is very difficult due

to the structure of the oocysts (Fayer et al. 2000). For this reason there is no sub-

typing of Cryptosporidium by HPS, so their weekly reports of Cryptosporidium

include both types anonymously (Pollock, Ternent, Mellor, Smith, Ramsay, and

Innocent 2009).

4.4 National Modelling

Before fitting any regional models we first consider the Cryptosporidium counts

at the national level to gain a better understanding of the data. For consistency,

we continue to work with data from the same years as were used in Section 4.2.4,

where the counts from 1990 to the twelfth week in 2007 were used. The counts

are shown in Figure 4.5. From a visual inspection, there is a suggestion of a

decrease in reporting level. There are also some relatively very high counts, such

as in 1998, 2003 and 2005, which might be linked to seasonal peaks or outbreaks.

4.4.1 Time-series Decomposition

As a first step in analysing the counts we carry out a time-series decomposition on

them. We do this on the log-counts as we expect the seasonality to be multiplica-

tive. Organism infection is generally multiplicative, as when one host is infected

they can infect several others, and those others can go on to infect several others
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beyond themselves and so on. Thus, the seasonal factors themselves will scale in

a multiplicative way and so by using the log-counts the seasonality becomes ad-

ditive. We first calculate the seasonal factors. A crudely de-seasonalised version

of the log-counts is found by running a moving average of fifty-two over them and

then subtracting it from the original log-counts. Using this de-trended series, we

calculate the mean value for each set of weeks in turn (all the first weeks, the

second weeks and so on), creating a seasonal factor for each week in the year.

The resulting seasonal factors are shown in Figure 4.7.

Cryptosporidium seems to be at its most prolific during moist conditions,

which perhaps explains why it is higher during the end of Spring through to early

Summer, and Autumn through to the beginning of Winter. Further, a number of

outbreaks have been linked with heavy rainfalls (for instance Health Protection

Scotland (HPS) (2002d)). Given these considerations, we go on to investigate

including variables that measure rainfall and temperature in our models – see

Section 4.4.3. The seasonal levels seem to change in a reasonably smooth fashion,

suggesting that seasonality might be modelled acceptably by trigonometric terms.

This would be preferable to using a different factor level for each week in the year

as this would require fifty-two different values. Cryptosporidium is somewhat

unusual in having four turning points in its seasonal pattern but this has been

noted elsewhere (Scottish Centre for Infection and Enviromental Health (SCIEH)

1998). This means it may require more harmonics than some other organisms.

From the work of Pollock, Ternent, Mellor, Smith, Ramsay, and Innocent

(2009), the seasonality of Cryptosporidium seems to be partly explained by its

different genotypes. Consider Figure 4.6 taken from Pollock et al. (2009), with

permission (Pollock 2009), which shows the monthly totals for a two year period

of Cryptosporidium hominis (human only genotype) and Cryptosporidium parvum

(human and animal genotype). The peak in May of C. parvum explains the peak

around week twenty in Figure 4.7. Pollock et al. (2009) attribute the rise of C.

parvum to lambing and calving at this time year, which is supported by others

(McLauchlin, Amar, Pedraza-Diaz, and Nichols 2000). Lambs have a greater

susceptibility to Cryptosporidium, and so as they become infected environmental

levels of Cryptosporidium increase (Sant́ın, Trout, and Fayer 2007). The more

diffuse second peak in Figure 4.7 is driven by C. hominis which is bimodal with

peaks in August and October. These peaks may be explained by holiday periods,
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Figure 4.6: Month of the year and counts of reports by species of Cryptosporidium,
from June 2005 to June 2007: Cryptosporidium hominis is shown in black and Cryp-
tosporidium parvum in purple. Taken with permission from Pollock, Ternent, Mellor,
Smith, Ramsay and Innocent (2009).

when people will engage in more recreational activities and foreign travel (Pollock,

Ternent, Mellor, Smith, Ramsay, and Innocent 2009). Both of these increase the

risk of infection as individuals have a greater risk of being exposed to infected

people.

We then estimate the trend in the log-counts by subtracting the seasonal fac-

tors from the log-counts and using a smoother on the resulting residuals. To

calculate the trend as observed in Figure 4.4, Friedman’s SuperSmoother (the

supsmu function in R) is used (Friedman 1984). The estimated trend suggests a

slow decrease over time in the log-counts. It seems that the trend may be mod-

elled by a linear trend term, which we can test by fitting a straight line term

in models fitted to the log-counts. Between 2000 and the end of 2006 there are

some fluctuations from this ‘straight’ line. There is some evidence that the early

fluctuations may be linked the outbreak of Foot and Mouth Disease (FMD) in

Scotland in the southern health boards Borders and Dumfries & Galloway dur-

ing 2001. Strachan, Ogden, Smith-Palmer, and Jones (2003) compare the rate
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Figure 4.7: The seasonal factors as estimated from the log-counts of Cryptosporid-
ium by time-series decomposition. Of the diseases considered here, it is the only one
to exhibit two ‘peaks’ and two ‘troughs’ in its seasonal pattern.

of Cryptosporidium in these two afflicted boards with the rate in the rest of the

country during the infectious period. They find that the rates of infection in

Borders and Dumfries & Galloway are significantly lower than the rates in the

rest of the country during the period of infection in 2001. This is attributed to

the measures which were taken by the UK government to deal with the FMD out-

break: in the afflicted health boards in Scotland, approximately one million cattle

were slaughtered and strict restrictions placed on the movements of cattle. These

actions seem to have had the result of reducing the levels of Cryptosporidium

parvum in the environment and thus reducing the cases of infections in humans

(Strachan et al. 2003). The results in Strachan et al. (2003) suggest that the

rates recover during 2002. We may find that fitting a factor for the infectious

period and the recovery period may improve our models. For more information

on the FMD outbreak in 2001, see Department for Food, Environment and Rural

Affairs (2008). There was a small outbreak of FMD in 2007, but it did not affect

Scotland (Department for Food, Environment and Rural Affairs 2009).

4.4.2 GLM Modelling

We start by fitting a negative-binomial GLM to the Cryptosporidium national

counts, since, as with the NHS24 data, we find the counts to be over-dispersed.
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We fit the following GLM to the mean µt of the counts at week t:

log(µt) = β0 + β1Tit + trig(10)t, (4.1)

where: β0, β1 are coefficients; Ti is the week number; trig(10)t are the first

10 harmonics of sine and cosine at week t with period 52. Thus trig(2)t would

denote, given β0 and β1 have already been used:

β2 sin

(
2πt

52

)
+ β3 cos

(
2πt

52

)
+ β4 sin

(
4πt

52

)
+ β5 cos

(
4πt

52

)
.

Here, Ti models a linear trend and the trig terms are used to model the seasonal

pattern in the counts. We test the elements of the model for statistical signifi-

cance and find that only the first four harmonics of the trigonometric terms are

necessary. Thus, we fit a new GLM to reflect this:

log(µt) = β0 + β1Tit + trig(4)t, (4.2)

where the terms are as defined previously. The estimated coefficients for this

model can be found in Table 4.1 and θ, the dispersion parameter of the negative bi-

nomial, is 4.87. This is quite a large value for θ, suggesting a great deal more vari-

ation than we would expect from standard Poisson counts. From the constant, β0,

we can see that exp(2.889) ≈ 18 reports are expected each week, when Ti = 0, be-

fore any effects of trend or seasonality are considered. This is slightly higher than

the average count of 14 that was found in Section 4.2.4. As was speculated, there

appears to be a decreasing linear trend in the number of reports received, shown

by the negative sign of β1. Since exp(52 × −0.0005461) = exp(−0.028) = 0.972

(using a greater level of precision for β1), we expect 2.28% fewer reports each year.

Using a deterministic linear trend as we do here must be done carefully. We can-

not extrapolate very far into the future since counts could become unrealistically

small.

The seasonal pattern fit by the GLM is shown in Figure 4.8, superimposed

on the seasonal factors found in Section 4.4.1 by time-series decomposition. Sea-

sonality seems to be modelled relatively well during weeks thirteen to forty, but

the cosinusoids seem to adapt poorly to the rest of the year. As noted previ-

ously, Cryptosporidium is one of the few organisms with a seasonal pattern with
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Model Intercept Tit sin
(

2πt
52

)
Equation 4.2 2.888 (0.040) -0.000546 (0.000078) -0.163 (0.028)

Model cos
(

2πt
52

)
sin
(

4πt
52

)
cos
(

4πt
52

)
sin
(

6πt
52

)
Equation 4.2 -0.268 (0.029) -0.299 (0.028) -0.060 (0.029) 0.179 (0.029)

Model cos
(

6πt
52

)
sin
(

8πt
52

)
cos
(

8πt
52

)
Equation 4.2 0.108 (0.029) -0.132 (0.029) -0.161 (0.029)

Table 4.1: The coefficients, and corresponding standard errors in brackets, calculated
for the GLM defined by Equation 4.2 (trend and first four harmonics for seasonality).
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Figure 4.8: The seasonal factors as estimated from the log-counts of Cryptosporid-
ium by time-series decomposition, shown in black, and in red the seasonal values fitted
in the GLM defined by Equation 4.2 (trend and first four harmonics for seasonality).

four turning points, so we expect other organisms to be modelled better with

fewer cosinusoids. For instance, the seasonal patterns of Salmonella Enteritidis

and Salmonella Typhimurium shown in Figure 4.9 are very smooth and probably

would be modelled very well by one harmonic. However, the cosinusoid terms

give the most parsimonious way of modelling seasonality, so we continue to use

them, particularly as they will be most easily extendable to other organisms. It

is notable that all three of the organisms considered here have large negative sea-

sonal factors for weeks one and fifty-two. This is likely to be caused by delayed

reporting due to the holidays at the beginning and end of the year.

The auto-correlation function (acf) of the deviance residuals is shown in Figure
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Figure 4.9: The seasonal factors found from a seasonal decomposition carried out
on Salmonella Enteritidis and Salmonella Typhimurium. The general smoothness of
their seasonal pattern suggest they will be modelled well by trigonometric terms.

4.10 and indicates there is strong significant residual serial correlation. The low

order correlations exhibit strong slowly decreasing positive correlation, suggesting

the presence of trend that is not modelled appropriately by the GLM. We focus

on removing the low order correlations and hope that this will deal with most of

the residual trend.

One of the ways to address serial correlation in such a model is by including

lagged values of the quantity being modelling (Brandt, Williams, Fordham, and

Pollins 2000). This serves as a proxy to the serial correlation rather than mod-

elling it explicitly. We alter the model defined by Equation 4.2 to the following:

log(µt) =
β0 + β1Tit + trig(4)t + β10 log(xt−1) + β11 log(xt−2)

+β12 log(xt−3) + β13 log(xt−4) + β14 log(xt−5)
,

where xt are the counts of Cryptosporidium for week t. We use the log of the

past values so that they are on the same scale as the mean µt. More lagged values

could be included but we use five as a starting point. When this model is fitted

we find that only the first two lagged counts are statistically significant. Note
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Figure 4.10: The acf of the deviance residuals from the GLM defined by Equation
4.2 (trend and first four harmonics for seasonality) for the first two years of lags.

that xt−1 is the variable that explains the most deviance as we would expect.

Thus, we fit a model with just xt−1 and xt−2:

log(µt) = β0 + β1Tit + trig(4)t + β10 log(xt−1) + β11 log(xt−2). (4.3)

The acf of the deviance residuals for this model can be found in Figure 4.11. The

level of residual correlation is now much less, with the correlation at low order

lags being much lower (cf Figure 4.10). Thus, we have one approach to dealing

with the residual serial correlation.

Another approach is to use a form of the smoothed counts as a variable. We

apply the Holt-Winters’ filter to the log-counts and use the resulting one step-

ahead forecasts as a variable in a GLM, as we did with the NHS24 modelling in

Chapter 3. Again, the log-counts are used, as this means the predictions are then

on the log-scale, matching the scale of the counts through the log-link function.

In essence, the Holt-Winters’ smoother allows for exponential smoothing to be

carried out on a time series, but also includes elements to incorporate seasonality

and a linear trend. A greater explanation of Holt-Winters’ smoothing can be

found in Appendix B. The smoothing parameters for the HWt term can be found

in Table 4.2. The parameter for local level (α) is quite high at 0.37 (normally

expected to be between 0.1 and 0.3 – see Appendix B), which is consistent with

there being quite a lot of serial correlation in the counts. Seasonality is fitted but

without any local linear trend.
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Figure 4.11: The acf of the deviance residuals from the GLM defined by Equation
4.3 (trend, first four harmonics for seasonality and two past observations) for the first
two years of lags.

Parameter Value

Local level – α 0.369
Local trend – β 0
Seasonal – γ 0.214

Table 4.2: The parameters of the Exponential Smoothing (Holt-Winters’ form) that
is used to create the HWt term used in the model defined by Equation 4.4 (trend, first
four harmonics for seasonality and Holt-Winters one-step ahead prediction). These
parameters were left free to vary and found by minimising

∑
e2

t ; see Appendix B.

Thus, the GLM with trend and seasonality defined in Equation 4.2 is then

extended to:

log(µt) = β0 + β1Tit + trig(4)t + β10HWt, (4.4)

where HWt is the one-step ahead Holt-Winters prediction of the log-counts at

time t, and the other terms are as before. In fitting seasonal elements of the Holt-

Winters smoother, the function HoltWinters loses one year of data, so the GLM

is fitted to counts from 1991 onwards, instead of 1990 as was done previously.

When we fit the model defined by Equation 4.4, we find that the HWt term is

statistically significant. The acf of the deviance residuals can be found in Figure

4.12. There appears to be evidence of correlations at lags one and two.
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Figure 4.12: The acf of the deviance residuals from the GLM defined by Equa-
tion 4.4 (trend, first four harmonics for seasonality and Holt-Winters one-step ahead
prediction) for the first two years of lags.

To allow for easier comparison between these two approaches of removing

serial correlation, we fit both GLMs defined by Equations 4.3 and 4.4 to data

from 1991 onwards. The coefficients calculated for these models can be seen in

Table 4.5, with the model fits summarised in Table 4.4. The coefficient of HW is

the largest, barring the constant, by 2 orders of magnitude and so can dominate

the other terms. As the HWt term is a one-step ahead predictor, we might expect

its coefficient to be nearer to 1, as opposed to 0.57; this value may be due to the

seasonal or trend elements of the Holt-Winters’ smoother performing poorly; we

investigate this more closely in Section 5.4. In both models there is downward

trend of similar magnitude.

The latter model (Equation 4.4) seems to be a very slightly better fit than

the other, as it has a smaller residual deviance (830 to 835 respectively – see

Table 4.4). However, since the models are not nested, it is best to use the AIC

statistic to compare them. Recall from the definition we gave in Section 3.4.2,

that a smaller AIC suggests a better fitting model. Thus, the model that includes

past observations (defined by Equation 4.3) is a slightly better fit than the model

that includes the HWt term (defined by Equation 4.4). However, in both these

measures, the models are quite close to each other. Also, we are only comparing

the GLMs with these two measures; they take no account of the extra level of

modelling that is required when the exponential smoother is used. The model

using past values seems to remove serial correlation more effectively than the one
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Model Intercept Tit sin
`

2πt
52

´
cos

`
2πt
52

´
Equation 4.3 1.288 (0.105) -0.000237 (0.000069) -0.045 (0.024) -0.132 (0.024)
Equation 4.4 1.455 (0.118) -0.000270 (0.000073) -0.105 (0.024) -0.169 (0.025)

Model sin
`

4πt
52

´
cos

`
4πt
52

´
sin

`
6πt
52

´
cos

`
6πt
52

´
sin

`
8πt
52

´
Equation 4.3 -0.125 (0.025) -0.082 (0.023) 0.072 (0.024) 0.105 (0.023) -0.013 (0.023)
Equation 4.4 -0.163 (0.026) -0.014 (0.024) 0.099 (0.025) 0.025 (0.024) -0.089 (0.024)

Model cos
`

8πt
52

´
log(xt−1) log(xt−2) HWt

Equation 4.3 -0.148 (0.023) 0.344 (0.034) 0.227 (0.033) –
Equation 4.4 -0.069 (0.025) – – 0.515 (0.040)

Table 4.3: The coefficients fitted to the various terms of models defined by Equa-
tions 4.3 (trend, first four harmonics for seasonality and two past observations) and
4.4 (trend, first four harmonics for seasonality and Holt-Winters one-step ahead pre-
diction) fitted to the counts of Cryptosporidium from 1991.

using the HWt term (cf Figures 4.11 and 4.12). The model utilising Holt-Winters

is somewhat more parsimonious in the GLM (one variable, to the two variables

of past values), although, this should be balanced with the trade-off that a year

of data that is lost to fitting the seasonal elements of Holt-Winters. However,

given there is so much data, the latter point is less of a concern. Further, it is

likely that the Holt-Winters model could be further refined if we analysed the

parameters of the smoother more closely. The Holt-Winter’s model also has the

advantage of allowing straight forward predictions more than one week ahead; in

the case of the model using past observations, a recursive calculation would have

to be made.

Given both modelling approaches seem to be feasible, we will use both of

them in Sections 5.3 and 5.4 and then compare them in Section 5.5. Further

work could be done to refine the national model by looking at the residuals and

perhaps incorporating past outbreaks or the effects of Foot and Mouth Disease.

However, given our focus is on the regional modelling we move directly to that,

after considering the effect of including weather variables.

4.4.3 Weather Considerations

Many organisms multiply at a greater rate in warmer temperatures and so we

might expect higher levels of them during the summer months. This might ex-
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Eqn. 4.3 1867 835 1032 55 843 832 11 5378 7.543 0.559
Eqn. 4.4 1664 830 834 50 843 833 10 5465 6.350 0.440

Table 4.4: The summary statistics from the models defined by Equations 4.3 (trend,
first four harmonics for seasonality and two past observations) and 4.4 (trend, first
four harmonics for seasonality and Holt-Winters one-step ahead prediction) fitted to
the counts of Cryptosporidium from 1991.

plain the structure of the seasonal patterns of Salmonella, shown in Figure 4.7.

Such patterns are often explained well by seasonal factors or trigonometric terms.

However, some organisms may be tied more tightly to the short-term changing

environmental conditions. By including variables that measure things such as

rainfall and temperature, we can model these short term environmental effects

directly. It also provides of a way of modelling weather effects that are one off:

say, an unusually heavy rainfall one year, which would not be modelled well by

seasonal factors or trigonometric terms. The weather indicators might also serve

as a proxy for human activity that might affect reported cases of particular organ-

isms. For instance, if the weather is warm, people are more likely to be engaged

in outside activities which could lead to more infections of certain organisms.

Given the biology of Cryptosporidium, it seems that a measure of rainfall will

be the most likely candidate for affecting the reported cases of it. For instance, a

particularly heavy rainfall may carry more oocysts into the water supply leading

to more infections.

Unfortunately, gaining long term weather information is not a straight forward

task. The obvious place to go for this information in the UK is the MET Office

(2008b). They will provide six months of daily data for free, but this is only

from 2000 (MET Office 2008c). For longer periods there is a significant charge.

Further, when enquires were made about obtaining data at a regional level from
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weather stations, it transpired that the data is not stored in a digital form. For

these reasons, we cannot include general weather variables.

However, the Met Office does provide free access to two particular data-sets.

The first of these is HadUKP series, a data-set that has recorded daily precipita-

tion in the UK in some form since 1776 (Alexander and Jones 2001). From this

data-set it is possible to get daily measurements of rainfall in Scotland but only

at the national level. We form an appropriate variable below and see if it con-

tributes significantly to the national models. Secondly, the Met Office provides

free access to the thirty year averages for rain fall, temperature, etcetera. We see

if these averages can replace the trigonometric terms for modelling the seasonal

pattern.

Including the HadUKP Rainfall Data in the National Models

Having obtained the daily rainfall data from MET Office (2008c) for Scotland,

we calculate weekly totals, where the weeks correspond to those used within the

HPS system. We denote the total rainfall for week t by rt, where the total is

measured in centimetres. We extend the national models by including rt and lags

of it:

log(µt) =
β0 + β1rt + β2rt−1 + β3rt−2 + β4rt−3 + β5rt−4

+β6Tit + trig(4)t + β15 log(xt−1) + β16 log(xt−2)
(4.5)

log(µt) =
β0 + β1rt + β2rt−1 + β3rt−2 + β4rt−3 + β5rt−4

+β6Tit + trig(4)t + β15HWt

. (4.6)

The coefficients of the models are shown in Table 4.5. We find that rt and rt−2 do

not contribute significantly to either national model. Since rt is not significant, it

suggests that it takes over a week for the level of rain at time t to affect the levels

of Cryptosporidium. As rt−2 is not significant, it is reasonable just to extend the

national models by the inclusion of rt−1:

log(µt) = β0 + β1rt−1 + β2Tit + trig(4)t + β11 log(xt−1) + β12 log(xt−2) (4.7)

log(µt) = β0 + β1rt−1 + β2Tit + trig(4)t + β11HWt. (4.8)
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Model rt rt−1 rt−2 rt−3 rt−4

Equation 4.5 -0.016 (0.009) 0.023 (0.010) -0.011 (0.010) 0.026 (0.010) 0.023 (0.009)
Equation 4.6 -0.016 (0.010) 0.020 (0.010) -0.012 (0.010) 0.025 (0.010) 0.029 (0.010)

Model Intercept Tit sin
`

2πt
52

´
cos

`
2πt
52

´
Equation 4.3 1.165 (0.114) -0.000228 (0.000068) -0.055 (0.024) -0.178 (0.028)
Equation 4.4 1.328 (0.126) -0.000259 (0.000073) -0.116 (0.024) -0.216 (0.030)

Model sin
`

4πt
52

´
cos

`
4πt
52

´
sin

`
6πt
52

´
cos

`
6πt
52

´
sin

`
8πt
52

´
Equation 4.3 -0.124 (0.024) -0.086 (0.023) 0.077 (0.023) 0.106 (0.022) -0.016 (0.023)
Equation 4.4 -0.161 (0.026) -0.020 (0.024) 0.105 (0.024) 0.027 (0.024) -0.090 (0.024)

Model cos
`

8πt
52

´
log(xt−1) log(xt−2) HWt

Equation 4.3 -0.147 (0.022) 0.344 (0.034) 0.223 (0.033) –
Equation 4.4 -0.068 (0.025) – – 0.511 (0.039)

Table 4.5: The coefficients fitted to the various terms of models defined by Equations
4.5 (trend, first four harmonics for seasonality, two past observations and rain totals)
and 4.6 (trend, first four harmonics for seasonality, Holt-Winters one-step ahead
prediction and rain totals) fitted to the counts of Cryptosporidium from 1991. The
total amount of precipitation for week t is denoted rt.

The coefficients for these models can be found in Table 4.6. However, in these

models rt−1 is not significant and so should be left out of the models. This would

reduce the models to those that were developed in Section 4.4.2. Since higher

lags of rainfall were significant, there may be some way of including the HadUKP

rainfall data in such a way that it does contribute significantly to the national

models. For instance, future work might look at using a rainfall total from a

period of longer than a week.

Thirty Year Averages

In the national models developed (defined by Equations 4.3 and 4.4) seasonal-

ity is modelled primarily by eight trigonometric terms. If seasonality could be

modelled in fewer terms this would make the models more parsimonious. One

way of doing this may be to use the thirty year averages of weather to form sea-

sonality variables. Unlike most data held by the MET office, this data is freely

available for most weather stations in Scotland and so we would not have a prob-

lem forming regional values (MET Office 2008a). The most recent averages have
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Model Intercept rt−1 Tit sin
`

2πt
52

´
Equation 4.7 1.234 (0.108) 0.017 (0.009) -0.000234 (0.000069) -0.042 (0.024)
Equation 4.8 1.413 (0.121) 0.014 (0.010) -0.000268 (0.000073) -0.103 (0.024)

Model cos
`

2πt
52

´
sin

`
4πt
52

´
cos

`
4πt
52

´
sin

`
6πt
52

´
cos

`
6πt
52

´
Equation 4.7 -0.148 (0.025) -0.123 (0.025) -0.083 (0.023) 0.073 (0.024) 0.106 (0.022)
Equation 4.8 -0.182 (0.026) -0.161 (0.026) -0.015 (0.024) 0.100 (0.025) 0.027 (0.024)

Model sin
`

8πt
52

´
cos

`
8πt
52

´
log(xt−1) log(xt−2) HWt

Equation 4.7 -0.013 (0.023) -0.149 (0.023) 0.348 (0.034) 0.225 (0.033) –
Equation 4.8 -0.089 (0.024) -0.069 (0.025) – – 0.516 (0.040)

Table 4.6: The coefficients fitted to the various terms of models defined by Equations
4.7 (trend, first four harmonics for seasonality, two past observations and rain total
lagged by one week) and 4.8 (trend, first four harmonics for seasonality, Holt-Winters
one-step ahead prediction and rain total lagged by one week) fitted to the counts of
Cryptosporidium from 1991.

been calculated for 1971-2000, and records the monthly: minimum and maximum

temperatures; days of air frost; hours of sunshine; total rainfall; and number of

days with more than 1mm of rainfall.

Taking the monthly averages for Scotland MET Office (2008d), we interpolate

between the months to form weekly averages. To illustrate this process consider

total rainfall. We first divide the total monthly rainfall by the number of days

in each month, as the longer months would be expected to have more rain. This

gives the average daily rainfall for each month. This step is only done with

those measures it makes sense for; for instance we do not average the maximum

temperature, though others have done this. The monthly daily rainfall average,

Rt, is then taken as a response variable, and we fit a linear model to the data:

Rt = βt + β1 sin (ft) + β2 cos (ft) + β3 sin (2ft) + β4 cos (2ft) + β5 sin (3ft)

+ β6 cos (3ft) ,

where f = 2π
364

, the βi are coefficients, and t is the middle day for each month

that Rt is recorded for. In this modelling we have shortened the year to 364 days

by dispensing with a day in January (note the period of 364 in the trigonometric

terms). This means that the number of days in the year is a multiple of fifty-

two. Note that we are fitting a model to twelve pieces of data that has seven
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Figure 4.13: The points in black represent the monthly daily average of rainfall
calculated from the 30 year (1971-2000) monthly averages of total rainfall. The line
in red gives the fit of the linear model defined by Equation 4.9 to these values. The
vertical lines in black represent the interpolations from the model corresponding to
52 weekly values to match with the HPS time periods.

parameters. We disregard those harmonics that are not significant. In the above

case, only the first harmonic is significant, so the model simplifies to the following:

Rt = βt + β1 sin (ft) + β2 cos (ft) . (4.9)

The coefficients of this model are then used to calculate the values for Rt for 52

values, giving the corresponding weekly levels. This process is most clearly seen

in a diagram as in Figure 4.13. We then repeat this for the other measures in the

thirty year monthly averages, and find that the number of harmonics required for

interpolation varies between one and two, as summarised in Table 4.7.

Unfortunately, we know that none of these measures will be able to explain

the seasonality in Cryptosporidium, since we know from the national models that

four harmonics are required to model the seasonal pattern. Further, there is cor-

relation between these different climatic measures: if there are more days of rain,

we would expect more rainfall; less trivially, when it is cold, we tend to expect

more rain. Due to the correlation between the measures, it is hard to statistically

test which is the best measure to be included in the models. This is exacerbated

by having to interpolate between the monthly readings to form weekly estimates.

Thus, the approach of using the thirty year averages to form a seasonal pattern

cannot be used with Cryptosporidium; it may work well with some of the other
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Weather Measure Required harmonics
Maximum Recorded Temperature 2
Minimum Recorded Temperature 2
Days of Air Frost 2
of Sunshine 1
Rainfall 1
Days of Rain 1

Table 4.7: The different measures that are recorded in the 30 year meteorologi-
cal averages, with the number of harmonics that are used in their interpolation, as
explained in Section 4.4.3.

organisms considered in Section 4.2.4. Ideally, the averages would be calculated

regionally from the raw weekly values for the different climatic variables in each

region. Again, the practicalities of obtaining this data from the MET Office might

make this investigation impractical.

Weather Data Conclusions

At present there is not sufficient data from the Met Office to investigate further

using weather measurements within the national model. Further, due to the

bi-modal seasonality, the weather variables are not well suited to modelling the

seasonality of Cryptosporidium. If in the future the cases of Cryptosporidium can

be sub-typed into Cryptosporidium parvum and Cryptosporidium hominis, the

seasonality maybe simpler to model, possibly by using weather variables.

4.5 Conclusions

In this Chapter we have considered the context in which we aim to develop a

regional exception reporting system. We will be using data routinely collected

by Health Protection Scotland (HPS), an organisation tasked with monitoring

the health of the Scottish population (Section 4.1). In Section 4.2, we describe

how their data collects together reports from micro-biology laboratories across

the country. Doctors routinely send samples from their patients to these labs to

confirm diagnoses of infections by particular organisms. For certain organisms,

typically the rarer and/or more dangerous ones, positive tests must be reported
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to HPS. These reports are then aggregated to provide weekly counts of cases of

the different organisms. The current exception reporting system used to monitor

these weekly counts is detailed in Section 4.2.2. This system is a general purpose

one, well suited to modelling a wide range of organisms at the national level.

However, we consider some of the problems of applying this system to the regional

level in Section 4.2.3. Notably, regional systems are likely to have to deal with

large numbers of zero counts and substantial serial correlation. The current

national system was not developed with these factors in mind.

To begin the process of developing a regional exception reporting system, we

decide to focus our attention on one of six organisms suggested by HPS (Section

4.2.4). A great many of the organisms monitored by HPS occur very infrequently;

it would not be very interesting to consider developing an exception reporting sys-

tem for these. We choose to focus our modelling on Cryptosporidium, as its counts

are relatively stable. We consider the biological background of Cryptosporidium

in Section 4.3. A regional exception reporting system for this organism could be

of wide benefit, since it is becoming one of the leading sources of water-borne

infection around the world.

We adopt a top-down strategy in the modelling of Cryptosporidium: we start

by modelling its national counts. We begin with a time series decomposition in

Section 4.4.1. We find that there is some trend in the counts and that the sea-

sonality is bi-modal. From our considerations in Section 4.3, we know that this

bi-modality is likely caused by the counts of Cryptosporidium including cases of

two particular sub-types: Cryptosporidium parvum and Cryptosporidium homi-

nis. The first of these primarily accounts for infections originating with animals

and the latter for infections originating in humans. Due to these different primary

sources of infection, the different sub-types peak at different times in the year.

We then fit a negative binomial GLM to the national counts in Section 4.4.2.

We initially fit a model with a linear trend and trigonometric terms to model the

seasonality. The trigonometric terms do not model the seasonality perfectly but

are much more parsimonious than the alternative of seasonal factors. Besides,

because of the bi-modal seasonality of Cryptosporidium, we expect modelling its

seasonality to be difficult; the trigonometric terms are likely to be well suited to

capturing the seasonality of the other organisms. We find that there is signifi-

cant serial correlation in the national counts, so we try two different approaches
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to address this. We first try including lagged observations within the model (as

done elsewhere: Brandt, Williams, Fordham, and Pollins (2000)). The second

approach utilises including a Holt-Winters predictor as was done with the NHS24

modelling in Chapter 3. Both approaches remove most of the serial correlation

but the first seems to be more effective. Either of these models could be com-

bined with an alarm method to create a national exception reporting system

for Cryptosporidium. This system would be different to the one considered in

Section 4.2.2 by dealing with serial correlation. Since both approaches produce

reasonable national models, we will use the structure of them as the basis for the

regional models we go on to develop in Chapter 4.

We briefly investigate whether weather variables can be used to improve the

national models. Unfortunately, it was not possible to gain access to all the data

that would have been required to do this thoroughly. Nothing definitive was

determined, but there are some suggestions that it might be a fruitful direction

for future work.

Thus, this Chapter has served to lay the ground work for developing models of

regional counts of Cryptosporidium, as we do in the next Chapter. These regional

models will then serve as the basis for a regional exception reporting system.



Chapter 5

Regional Cryptosporidium

Modelling

In this Chapter we fit GLMs to the regional counts of Cryptosporidium. These

models can then be used as the basis for a regional exception reporting system to

regionally monitor Cryptosporidium across Scotland. We begin by investigating

the differences between the regions in Section 5.1 to help inform our modelling.

Since past outbreaks in the data-set can negatively affect the models we fit, we

consider outbreaks that may be present in the data, and how we might deal with

them, in Section 5.2. We then fit two sets of GLMs to the regional counts: in

Section 5.3, GLMs which include past observations in their models; in Section

5.4, GLMs which include a term based on Holt-Winters smoothing. These two

sets of models are then compared in Section 5.5. Finally, we draw together lessons

from the modelling and suggest directions for future work in Section 5.6.

5.1 Regional Considerations

When modelling at the regional level there are more nuances to be aware of than

when modelling at the national level. We have noted previously that outbreaks

tend to happen at a regional level; indeed, this is our main reason for developing

the regional exception reporting system. This means that we are likely to come

across outbreaks which may affect the regional models. In Section 5.2, we detail

the ‘outbreaks’ that will be tested for statistical significance in models that we

129
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will develop. Here, we consider some issues linked with dealing with the smaller

counts at the regional level.

Counts at the regional level are not uniformly smaller. Each health board has

different populations and geographies which will affect the number of reported

cases of Cryptosporidium. To convey some of these differences we find the pop-

ulation and area of each health board from the 2001 Census (General Register

Office for Scotland 2001). The Scottish Neighbourhood Statistics (2009) are also

another good source of such information. The Census contains information on

the number of people and area within each postcode sector. By using a database,

the postcode sectors can easily be aggregated into their corresponding health

boards, leading to the results in Table 5.1. Recall, as was noted early in Chapter

4, that we include Argyll & Clyde in our considerations even though it has now

been closed. The data to which we fit regional models has not been updated to

reflect this closure and so we still have fifteen health board regions to consider

(see Figure 2.8 for further detail).

The population and area values are graphically shown in Figures 5.1 and 5.2

respectively. We note that Glasgow and Lothian have the largest populations,

since they contain the two largest cities in Scotland (Glasgow and, Scotland’s

capital, Edinburgh). The island regions to the north of Scotland – Western Isles,

Shetland and Orkney – have very small populations. As one would expect, those

places with larger populations have higher weekly rates of reporting – see Table

5.1. In terms of area, Highland covers by far the most and Glasgow the least.

Glasgow covers this small area due to the very large population contained within

it and the associated heavy administrative burden.

Using the population and area statistics, the density of population in each

health board can be calculated. The density of the different health boards is

depicted in Figure 5.3, and recorded in Table 5.1: Glasgow has the highest density

since it is the city with the largest population among the cities in Scotland. We

can compare the density of population with the rate of infection (total number

of cases of Cryptosporidium divided by population), again recorded in Table 5.1.

One would expect those places with higher densities to have a higher rate of

infection, since people are on average in closer proximity to each other, allowing

infection to spread more quickly and easily. To investigate potential links between

rate and density, we plot log-density against rate of infection in Figure 5.4. There
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is a weak positive correlation between log-density and rate, with Spearman’s

statistic being 0.25 for the given data. This suggests, to a limited degree, that as

population density increases so does infection rate. However, there is a suggestion

of another contributing factor which might explain why health boards such as

Highland and Grampian have higher rates than we might expect. This other

factor might be linked with the prevalence of cattle in these health boards. Given

the biology of Cryptosporidium (see Section 4.3), having large numbers of cattle

can lead to a greater prevalence of Cryptosporidium in rural areas. Thus, the

amount of farm land as well as density might influence the rate. In densely

populated areas there may be fewer sources of infection, but this infection can

be transmitted more easily (i.e. Glasgow); in rural areas there may be more

sources of infection, but infection is spread less easily between humans (Highland).

Grampian has a mix of large areas of farmland and densely populated areas

(for instance Aberdeen, one of the largest cities in Scotland), and so, perhaps,

explains why it has the largest rate of infection. However, this is speculation; we

would require more detailed data on each health board to confirm this theory.

Some time after this analysis was carried out, the work of Pollock, Ternent,

Mellor, Smith, Ramsay, and Innocent (2009) came to our attention. They help

explain some of the pattern: in rural areas, levels of Cryptosporidium parvum

will be higher with the greater number of cattle present; in urban areas, levels of

Cryptosporidium hominis will be higher among greater concentrations of human

populations. Thus, it is not a surprise that we expect the rate of infection to be

highest in those boards that have both cities and farming areas. Of course, the

different regions will also have different weather patterns which will also affect

the rate. Further consideration of this is outside our primary focus of developing

a reporting system and so we move on.

The weekly rates of reported cases for the period under consideration are

shown in Table 5.2. Excluding the island health boards, Borders has the lowest

average rate of 0.33 reports per week while Lothian has the highest at 2.45. The

time series for these two health board regions are shown in Figure 5.5. With

the smaller counts at the regional level, there are more weeks with no reported

cases. Indeed, most weeks have no cases, as seen in Figure 5.6. The regions with

smaller populations have a greater number of weeks with no reports. Often in the

health boards with lower weekly rates of reporting, there are runs of weeks with
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Argyll & Clyde 426,431 8 796,595 10 0.54 1.15 0.94
Ayrshire & Arran 368,149 7 336,721 4 1.09 0.65 0.46
Borders 105,950 2 445,966 6 0.24 0.76 0.15
Dumfries & Galloway 147,625 3 643,333 8 0.23 1.15 0.33
Fife 346,580 7 131,454 2 2.64 0.46 0.31
Forth Valley 282,900 6 280,014 4 1.01 1.13 0.62
Glasgow 841,847 17 55,263 1 15.23 1.95 0.96
Grampian 540,227 11 881,940 11 0.61 3.04 3.15
Highland 208,340 4 2,530,343 32 0.08 1.92 0.77
Lanarkshire 574,365 11 247,601 3 2.32 1.03 1.13
Lothian 779,223 15 175,305 2 4.44 1.04 1.56
Orkney 19,245 <1 98,881 1 0.19 0.52 0.02
Shetland 21,988 <1 143,836 2 0.15 0.00 0.00
Tayside 372,639 7 732,031 9 0.51 0.75 0.54
Western Isles 26,502 <1 299,886 4 0.09 0.00 0.00

Scotland 5,062,011 7,799,170 0.65 1.12 10.94

Table 5.1: The population and area for each health board as calculated from the
2001 Census: Standard Area Statistics. The density is calculated by dividing the
population by area giving the number of people per hectare. Rate gives the number
of reported cases of Cryptosporidium in 2001 for a given health board, divided by
the board’s population, multiplied by 10,000. Weekly reporting rates gives the total
number of reports received during 2001 divided by fifty-two for each health board.
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Figure 5.1: The population within each health board, according to the 2001 Census:
Standard Area Statistics.
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Figure 5.2: The area within each health board according to the 2001 Census: Stan-
dard Area Statistics.
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Figure 5.3: The density of populations within each health board according to the
2001 Census: Standard Area Statistics.
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Figure 5.4: The rate of Cryptosporidium infection per 10,000 population in 2001
against log-density. Spearman’s statistic for these variables is 0.248.
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Health board Weekly Rate of Reported Cases

Argyll & Clyde 1.39
Ayrshire & Arran 0.56
Borders 0.33
Dumfries & Galloway 0.77
Fife 0.44
Forth Valley 0.53
Glasgow 1.53
Grampian 2.37
Highland 0.71
Lanarkshire 1.92
Lothian 2.45
Orkney 0.04
Shetland 0.04
Tayside 0.99
Western Isles 0.03

Scotland 14.10

Table 5.2: The weekly rate of reported cases of Cryptosporidium from 1988 to the
forty-fifth week in 2007.

no reports; this can be seen quite clearly in a time plot of reported cases from

Borders, shown in Figure 5.5. In case this observation can be used to improve

our regional models, we create a variable that measures the run length of zero

counts – zLen. This will be an integer that counts the number of weeks since a

week with one or more cases. Similarly, it is possible there will be clustering of

non-zero reporting weeks and so we create a pLen variable, a integer variable that

counts the number of past weeks since a zero count. These variables are most

clearly understood from Table 5.3, where values of zLen and pLen are shown

against a short series of counts from Glasgow.

5.2 Regional Outbreaks

When an outbreak happens at a regional level, we expect the counts in that

region to be higher than expected. For instance, consider Tayside in Figure

5.7: in 2005 there is a week with a count of fifty reported cases, in contrast

to the weekly reporting rate of one case per week – this is very likely to be an
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Figure 5.5: The reported cases of Cryptosporidium for Lothian and Borders.
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Figure 5.6: The frequency of different counts per week of reported cases of Cryp-
tosporidium for Borders and Lothian.
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Year Week Reported Cases zLen pLen
2005 28 1 0 5
2005 29 0 0 6
2005 30 0 1 0
2005 31 0 2 0
2005 32 0 3 0
2005 33 0 4 0
2005 34 1 5 0
2005 35 5 0 1
2005 36 4 0 2
2005 37 4 0 3
2005 38 1 0 4
2005 39 0 0 5
2005 40 3 1 0
2005 41 0 0 1

Table 5.3: Example Cryptosporidium counts from Glasgow, with the corresponding
values for zLen and pLen which measure the run lengths of zero and non-zero
reporting periods.

outbreak. While outbreaks are rarely so obvious, ignoring them could lead to the

development of poor models. Thus, a number of outbreaks, both identified by

us and ones identified in HPS literature, will be tested for statistical significance

in our regional models. For those weeks that were considered to be part of an

outbreak, a factor is fitted to them, with a factor level for each week. The details

of the ‘outbreaks’ that will be tested for statistical significance can be found in

Table 5.4. This list is far from exhaustive but with twenty years of counts for

twelve health board areas, it is unfeasible to identify all outbreaks. When the

models are used for prediction and an identified exceedance is validated as a

legitimate outbreak, the appropriate model should be updated with a factor to

reflect this outbreak.

An alternative method for dealing with outbreaks is to fit a GLM as normal;

the resulting residuals can then be used to refit the GLM, weighting observations

by the inverse of the original residuals. This means that observations with larger

residuals will contribute less to the model fit, which should result in fitted models

that are less affected by outbreaks.
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Region Year Weeks Evidence for Outbreak

Fife 2006 18-19 –

Glasgow
2000 16-21 Health Protection Scotland (HPS) (2000b)
2003 33 Health Protection Scotland (HPS) (2003a)
2006 16 Health Protection Scotland (HPS) (2002c)

Grampian
1992 10 –
1995 8 –
2001 3 Mukerjee (2002)

Lanarkshire
1998 18-21 –
2003 33 –

Lothian 2002 46-48 Health Protection Scotland (HPS) (2002a)

Tayside

1994 45-46 Health Protection Scotland (HPS) (1994)
2000 29 Health Protection Scotland (HPS) (2000a)
2002 34-37 Health Protection Scotland (HPS) (2002b)
2005 16-20 Health Protection Scotland (HPS) (2005)

Table 5.4: Potential outbreaks that we test for significance in the regional models.

Reported Cases of Cryptosporidium in Tayside

Year

Rep
orted

 Cas
es

1990 1995 2000 2005

0
10

20
30

40
50

Figure 5.7: The reported cases of Cryptosporidium in Tayside, with a very likely
outbreak cases of Cryptosporidium in 2005.
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Each week, HPS publishes a weekly digest which ‘contains current news and

articles as well as surveillance reports’ (Health Protection Scotland (HPS) 2008a).

Most of the the recent reports can be searched electronically (Health Protection

Scotland (HPS) 2008b; Health Protection Scotland (HPS) 2008a). This allows

us to search for identified outbreaks of Cryptosporidium within the time range of

counts we are considering.

5.3 Regional Modelling with Past Terms

At the regional level, we only consider the health boards on the mainland of

Scotland, to the exclusion of Orkney, Shetland and Western Isle health boards.

As these are islands, they have very small and inconsistent counts as shown in

Figure 5.8. For these health boards, setting an arbitrary number as an exceedance

level would likely be sufficient as a detection system. In this Section, we consider

the development of regional models for the remaining health board regions and

utilise past observations to deal with serial correlation. In the modelling carried

out here, data from 1988 till week 45 in 2007 will be used.

5.3.1 GLM Fitted Models

For each region, we test eight seasonal harmonics, a linear trend, zLen, pLen, and

up to five past observations for statistical significance. We chose to use up to five

past observations since an individual is rarely infectious for more than three weeks

and so we would expect most serial correlation to captured sufficiently within this

window – see Section 4.3. The resulting models can be found in Table 5.5, with

the factor levels fitted to the outbreaks in Table 5.6 and summary statistics for

the model fits in Table 5.7.

Comments on Fitted Models

To compare the seasonality fit to the twelve regions is quite a complex task. To

ease the process, we apply hierarchical cluster analysis between the seasonal pat-

terns that result from the trigonometric harmonics fitted to each region. This

analysis groups those regions together which have similar seasonal patterns. Hi-

erarchical clustering applied to a series of n-objects produces a series of nested
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Table 5.5: The GLMs fitted in Section 5.3.1 to the Cryptosporidium data in the
different regions, utilising past observations to deal with serial correlation. The tables
give the coefficients of the variables and their associated standard errors in brackets.
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Figure 5.8: The counts of reported cases of Cryptosporidium from Orkney, Shetland
and Western Isle health boards – small island health boards to the north and west of
Scotland.
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Fife 2006 18 3.373 (1.090) – – – –

Glasgow 2003 33 1.912 (0.852) – – – –

Grampian 1995 8 3.590 (0.824) – – – –

Lanarkshire 1998 18 1.977 (0.769) – – – –
2003 33 2.506 (0.772) – – – –

Tayside 2000 29 1.883 (0.809) – – – –
2005 16 4.300 (0.726) 2.070 (0.779) – – –

Table 5.6: The factor level values for outbreaks found significant, fitted to regions
when using past observations within the GLMs fitted in Section 5.3.1.
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Argyll & Clyde 1261 980 281 22 980 967 13 2997 1.365 0.140
Ayrshire & Arran 864 762 102 12 980 972 8 1811 0.881 0.143
Borders 773 659 114 15 980 975 5 1419 1.027 0.229
Dumfries & Galloway 1147 894 253 22 980 969 11 2138 1.889 0.350
Fife 831 737 94 11 980 973 7 1683 0.932 0.167
Forth Valley 866 731 135 16 980 968 12 1836 0.750 0.107
Glasgow 1418 1030 388 27 980 967 13 3093 1.727 0.197
Grampian 1500 1079 421 28 980 964 16 3730 1.566 0.143
Highland 1049 877 173 16 980 971 9 2169 1.422 0.225
Lanarkshire 1457 1046 411 28 980 963 17 3417 1.874 0.190
Lothian 1435 1074 361 25 980 967 13 3857 1.583 0.136
Tayside 1340 960 380 28 980 967 13 2448 2.042 0.338

Table 5.7: Summary statistics from the negative binomial GLMs utilising past ob-
servations fit in Section 5.3.1. DoF = Degrees of Freedom. SE = Standard Error.

partitions. At the lowest level of the partitioning, there are n partitions each con-

taining one object. An ‘agglomeration algorithm’ is then used to decide which

two objects are ‘closest’ together; the two closest objects are then grouped into

one partition. We are then left with n − 1 partitions and the agglomeration al-

gorithm combines the next closest two partitions. This process repeats until the

original n partitions are nested within in a single partition that contains all of

the original objects. The user of hierarchical clustering is then left to decide at

which level of the partition merging they will form their clusters from. This can

be most clearly seen from a dendrogram, which is a diagrammatic representation

of the merging of partitions that occurs with each successive application of the

agglomeration algorithm. For an example of a dendrogram see the top of Figure

5.9: at the bottom of the dendrogram we have the n objects which are then com-

bined together until they are contained within a single group at the top of the

dendrogram. The user decides the clusters by making a horizontal cut across the

dendrogram; thus in the dendrogram in Figure 5.9, three clusters will be formed

with the chosen cut. The height on the dendrogram measures how ‘far’ objects

are apart – thus, in the dendrogram, LO and TY are closer together than FV

and HG. For information on cluster analysis, see Everitt and Dunn (2001). The
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choice of agglomeration algorithm can have quite an effect on the clusters found.

We use the ‘complete linkage’ agglomeration algorithm, which takes the distance

between two partitions as the maximum distance between any element of the first

partition and any element of the second partition. Using this measure, the two

partitions that are the closest together are combined into one partition at each

application of the algorithm. Other measures of ‘inter-cluster dissimilarity’ exist,

such as ‘single linkage’. However, complete linkage is reasonably robust, so we

use that method here.

We use the hclust procedure in R with complete linkage to perform our hi-

erarchical clustering. When looking at seasonality one can looked at the scaled

or unscaled seasonal patterns implied by the trigonometric terms. The different

views stress different elements of the seasonality: the former focuses on the pat-

tern through the year, while the latter focuses on the magnitude of the seasonal

effects.

We define the seasonal value SeasHT for health board H for week T (taking

integers between 1 and 52) by:

SeasHT =

kH∑
i=1

βHi sin

(
2πiT

52

)
+

kH∑
j=1

βHj cos

(
2πjT

52

)
, (5.1)

where the βHi and βHj are the coefficients of the ith and jth harmonics of the sine

and cosine terms respectively for healthboard H, contained in Table 5.7. The

term kH gives the number of harmonics used in the model for health board H.We

then define the vector SeasH by:

SeasH = (SeasH,1, SeasH,2, . . . , SeasH,52) . (5.2)

This means that SeasH contains the unscaled seasonal pattern (on the predictor

scale) for a year (52 weeks) fitted by the trigonometric terms in Table 5.7. We

start applying cluster analysis to this set of twelve seasonal vectors (one for each

health board). The corresponding dendrogram is shown in the top of Figure 5.9.

We make a cut at the height of 2.6 which results in the four groups shown at

the bottom of Figure 5.9. The largest groupings seemed to be explained primar-

ily by a split between the East (Fife, Forth Valley, Lothian, and Tayside) and

the West (Ayrshire & Arran, Argyll & Clyde, Glasgow, Grampian and Lanark-
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shire) in Central Scotland. The only inconsistent region in these two groupings

is Grampian, which, while in the East, is included in the West grouping. This

leaves two remaining groupings: Highland and Borders; Dumfries & Galloway.

These groupings have the largest seasonal amplitude which may be linked with

these regions having higher levels of farming activity than other regions. All re-

gions have a peak between weeks 19 and 21; other peaks and troughs in the year

vary widely across the different regions. The groupings seemed linked with how

big the peaks are in the Summer compared to the Spring peak: for those regions

in the East, the Summer peaks are around the same size if not bigger than the

Spring peak (Fife is notable as having a much larger peak in the Summer than

the Spring peak); in the other groups the Summer peaks are smaller than the

Spring peak.

Next, we apply cluster analysis to the scaled patterns. Define the scaled

seasonal pattern SSeasH for health board H by:

SSeasH =
1

max SeasH −min SeasH

(SeasH −min SeasH) , (5.3)

where min and max give the smallest and largest elements of SeasH respectively.

Thus, SSeasH is a vector of the seasonal pattern SeasH standardised to range

between zero and one. We carry out cluster analysis on the set of twelve scaled

seasonal vectors. The resulting dendrogram and groupings are shown in Figure

5.10. We cut the dendrogram at a height of 1.4. Again, four groupings are sug-

gested: Argyll & Clyde, Lanarkshire and Grampian; Aryshire & Arran, Dumfries

& Galloway, and Glasgow; Forth Valley, Highland, Lothian and Tayside; Borders

and Fife. As noted above, the scaled seasonal patterns focus on the similarities

in the patterns of the seasonal cycle; thus, Borders and Fife are likely grouped

together because they are the only two regions with only two harmonics fitted to

them. Similarly, Aryshire & Arran and Glasgow are together, which only have

three harmonics fitted to them. However, it is perhaps inconsistent that Dumfries

& Galloway, a region with four harmonics fitted, is included within in this latter

group. Again, a main distinguishing characteristic appears to be how high the

Summer peak is in comparison to the Spring peak (between weeks 19-22): in the

first two groups the Summer peak is lower than the Spring peak; in the latter

two groups the Summer peak is higher, sometimes exceeding the Spring peak.
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Figure 5.9: Hierarchical clustering applied to the unscaled seasonal patterns fit by
the trigonometric terms, on the predictor scale, from the models fit in Section 5.3.1.
The top plot is a dendrogram corresponding to the clustering. The red dashed line on
the dendrogram represents where we have ‘cut’ it to form our clusters of regions with
similar seasonality. The bottom plot shows the seasonality of each region grouped by
the clustering suggested within the dendrogram.
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Both sets of seasonal groupings are consistent with the reported findings in

Pollock et al. (2009), where they record that there are more cases of Cryp-

tosporidium hominis in the East than the West. We noted in Section 4.4.1 that

C. hominis drives the Summer peak, so it is reasonable that one of the key dif-

ferences between these groups is the Summer peak. They also found a difference

between rates of infection in the North and South, which our groupings reflect to

a degree (Borders and Dumfries & Galloway, in the South, are in different groups

to the one containing the most northerly board, Highland).

We can also look at the seasonal patterns exponentiated, allowing us to see

the seasonal cycles on the scale of the counts. Unfortunately, given the nature of

the exponential function, the cluster analysis focuses on the differences between

the peaks, which become more pronounced when exponentiated and practically

ignores the differences between the seasonal troughs. However, no difference is

suggested in the groupings of the unscaled seasonal patterns.

Six regions have a linear trend fitted within their models: Argyll & Clyde,

Dumfries & Galloway, Glasgow, Grampian, Lanarkshire, and Lothian. In all these

cases the trend is negative and small, but still significant, with the same orders of

magnitude. This suggests that the number of reported cases of Cryptosporidium

is decreasing, as was suggested by the national model in Section 4.4. These six

regions are among the seven boards with the largest reporting levels; thus, the

other regions might also have a decreasing trend that the modelling here does not

have the power to detect.

Only five regions have the zLen term (the term that measures the run length

of zeros): Aryshire & Arran, Dumfries & Galloway, Forth Valley, Highland and

Lothian. In all the regions, except for Lothian, the zLen term is negative; these

regions have the smallest average weekly reporting rates apart from Borders and

Fife. This suggests that in these regions the GLM over predicts during a run of

zeros. This is perhaps to be expected, given the covariates we are using, as zero

will never be predicted by the mean. The positive value for Lothian might be

because it is highly populated region, second only to Glasgow (see Figure 5.1): a

zero for Lothian indicates that the mean is likely to be positive soon, in contrast

to the other regions where a zero is more likely to indicate a subsequent zero.

Two of the twelve regions include the pLen term in their models (the term

that measures the run length of positive counts): Grampian and Lanarkshire. In
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Figure 5.10: Hierarchical clustering applied to the scaled seasonal patterns fit by the
trigonometric terms, on the predictor scale, from the models fit in Section 5.3.1. The
seasonal patterns have been scaled to go between zero and one before the clustering
has been applied. The top plot is a dendrogram corresponding to the clustering. The
red dashed line on the dendrogram represents where we have ‘cut’ it to form our
clusters of regions with similar seasonality. The bottom plot shows the seasonality of
each region grouped by their clustering given by the dendrogram.
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both cases, pLen is negative and small in magnitude. This might indicate that

these models over-predict and this term serves as a corrective to that. These

models also have the maximum number of past values and trend fitted, perhaps

indicating that trend is not dealt with adequately in these regions.

We note in Section 4.4.1 that Borders and Dumfries & Galloway have been

shown to have a significantly lower rate of infection of Cryptosporidium due to

the outbreak of Foot and Mouth Disease (FMD) in 2001. To check if this affects

our models we include a factor (FMDInfect) for those weeks in 2001 when FMD

was considered active in these boards (Strachan, Ogden, Smith-Palmer, and Jones

(2003) state weeks 13-38); thus:

FMDInfect =

{
1 Weeks 13− 38, 2001

0 otherwise
.

This factor was only significant for Dumfries & Galloway. In this health board, the

coefficient was negative (-0.675) indicating that reported cases of Cryptosporidium

were lower during this time as we would expect. Strachan et al. (2003) also

suggest that the infection rate climbs back up during 2002. We included a factor

to reflect this, in case it affected the models, but the factor was found to be

non-significant.

Up to five past values are included in the models for each region. To allow for

easy comparison, their coefficients are plotted in Figure 5.11. Two regions utilise

no past values: Dumfries & Galloway and Highland. This perhaps is sensible

when we consider that these regions have the smallest densities of populations:

it is harder for infection to spread between humans and so there is likely to be

less correlation between successive reports of Cryptosporidium. In seven of the

other regions, the pattern is generally as we would expect in the coefficients of the

past values: there is either only a single past value included in the model or the

coefficients get smaller as the order of the past value increases. This is intuitive

as we expect the reports of cases for this week to correlate most closely with the

week just gone, less so with the week before, and even less with the week before

that and so on. The pattern for Glasgow is a little odd, with the first three

past values’ coefficients decreasing in size as we would expect, the fourth past

value being very small and the fifth being bigger than the third. This might be
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an artifact of the relatively very high population density in Glasgow (see Figure

5.3). It is speculative but it might be possible that once a source of infection has

ended in one place in Glasgow, that ‘stream’ of infection might have gone around

the population to come back to the original source in around five weeks. In

Grampian, the second coefficient is bigger than the first but then the coefficients

decay as we would expect. This might be linked with the combination of rural and

dense city regions contained in Grampian, giving it its central position in Figure

5.4; this is discussed in Section 5.1. No obvious explanation seems apparent for

the increasing size in the coefficients of the past values fitted in the Forth Valley.

Details of the outbreaks fitted are shown in Table 5.6. It seems the effect of

most outbreaks are felt generally for a week, or two at most. This might be to

do with the biology of Cryptosporidium and the time it takes for a sample to be

tested. Of course, the effect on prediction of an outbreak will be decreased by

the use of past values in our models.

Model Diagnostics

We now check the acf of the deviance residuals, to see if the residuals are dis-

tributed like white noise, indicating a good model fit. In most of the regions, this

is the case: the low order correlations are not significant (or only just), and the

higher order correlations that are significant are isolated at ‘meaningless’ lags (i.e.

none of these acfs have a significant correlation at lag 52, which might indicate

some residual seasonality). Tayside has a significant correlation at lag five, which

might be removed by fitting up to five past values in Tayside’s model; however,

the extra past values were not found to be significant, so they were left out of the

model. Glasgow has a correlation at lag 52 which is just significant. Since more

harmonics were not found significant, and since the the correlation at lag 52 is

just significant, we do not worry about it further. In Grampian, nearly all the

correlations in the acf are positive, with a possible suggestion of a linear decay,

suggesting a trend in the residuals These artifacts are likely due to the very low

counts that have occurred in Grampian, during 2006 and 2007, compared to the

previous years. The acf of Lothian’s deviance residuals have small significant

correlations at lags 4, 5, 9 and 10, suggesting some residual serial correlation,

possibly for a similar reason to Grampian. These correlations might be removed

by including xt−4 and xt−5 in the model; however, we do not include those here,
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Figure 5.11: The values of the coefficients of the past observations from the models
fitted in Section 5.3.1.
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since they did not contribute significantly to the region’s model. For Tayside,

there is a significant correlation at lag five, but otherwise the residuals are well

behaved. In Argyll and Clyde, there are significant correlations at lags 6, 10, and

52. The latter correlation suggests that the model for this region does not deal

sufficiently well with seasonality in this health board. This might be improved by

including a higher order of harmonics. However, in most cases, serial correlation

has been dealt with reasonably adequately in these models.

Unfortunately, plotting the deviance residuals suggests problems with the

model fits. Consider the deviance residuals from the model fitted to Highland in

Figure 5.12. There is quite a distinct pattern in the negative residuals, suggest-

ing that there are times when the model systematically over predicts the counts

(since the residual deviance, rD is defined as rD = sign(y − µ̂)
√

di (Faraway

2006)). This also accounts for the ‘kink’ that can be seen in the qq-plot of the

deviance residuals, shown in Figure 5.13. On closer inspection this pattern occurs

when there are long runs of zeros, as shown in Figure 5.14: the zero counts cause

the seasonal pattern to be reflected in the negative residuals. Thus, for those re-

gions with higher average levels of reporting, such as Glasgow, such patterns are

much less distinct, since there are fewer runs of zeros. In general, such a pattern

would suggest quite serious problems with the model fit. For instance, it might

suggest that seasonality had not been dealt with. However, the effect here is just

a product of the particular data we are modelling and not indicative of deficien-

cies in the models: long periods of zero reports are to be expected with the low

reporting rates and there is no easy way to escape the pattern that results, which

is reflected in the negative residuals. We discuss some other models that might

deal with this problem in Section 5.6. These factors suggest that residuals that

are based on the difference between the fitted means and the data are not going

to be useful here, since any problems are going to be obscured in pattern of the

negative residuals. One approach to dealing with this is to consider other types of

residuals; here, we consider ‘modal residuals’ which look at the difference between

the modes of the fitted distributions and the observed count i.e. our predictor is

the mode rather than the mean of the conditional distribution.

We define the modal residual, rM , to be the difference between the reported

count y and the mode m̂ of the distribution fitted by the model i.e. rM = y− m̂.

A general formula for finding the mode of the negative binomial distribution can
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Figure 5.12: The deviance residuals from the model fitted to the Highlands that uses
past observations (fitted in Section 5.3.1). There is clearly a pattern in the negative
residuals.
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Figure 5.13: The qq-plot of the deviance residuals from the model fitted to the
Highlands health board (fitted in Section 5.3.1). Since the deviance residuals are not
normally distributed, we would not expect them to follow the straight line perfectly;
however, the ‘kink’ and the change in residuals around the zero quantile suggests
something odd, reflecting the pattern shown in Figure 5.12.



CHAPTER 5. REGIONAL CRYPTOSPORIDIUM MODELLING 153

C
ry

p
to

sp
o

ri
d

iu
m

 C
o

u
n

t 

0
1

2
3

4
5

6
Reported Cases During 1992
Fitted Model

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●
●

● ● ● ●

●

●

●
●

● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

Time

D
e

vi
a

n
ce

 R
e

si
d

u
a

ls

−
2

−
1

0
1

2

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

● ●

●

●

●

● ● ● ● ● ●

●

●

● ●

● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

Time

M
o

d
a

l R
e

si
d

u
a

ls

0
1

2
3

4
5

6

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

● ● ● ● ● ●

●

●

●
●

● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

Time

S
ta

n
d

a
rd

is
e

d
 M

o
d

a
l R

e
si

d
u

a
ls

0
.0

1
.0

2
.0

3
.0

10 20 30 40 50

Time: Week in 1992

Figure 5.14: From the top: the reported cases of Cryptosporidium in the Highlands
during 1992 and the values fitted by the model developed in Section 5.3.1; the de-
viance residuals; the modal residuals; the standardised modal residuals. When there
is a long run of no reported cases, the deviance residuals have a smooth pattern to
them, primarily corresponding to the seasonality fitted in the model to Highland. This
pattern is removed in both forms of the modal residuals.
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be found by considering the difference between successive terms of the probability

distribution and considering sign changes, as we do in Appendix C. Letting

β = µ

(
1− 1

θ

)
,

we know from the Appendix that then if β < 0, then mode is at zero, otherwise

the mode is at bβc. The modal residuals for Highland’s model during 1992 and

1993 are shown in Figure 5.14. It is not an error that the modal residuals look

similar to the original counts: the counts for Highland are mostly quite small

(often zero) and so the modes of the resulting distributions are nearly always

zero, resulting in the modal residuals looking similar to the pattern of reports

received during this period. However, the main thing to note is that since the

patterned effect has been removed from the residuals, we can more easily see any

real deficiencies in the models. Negative modal residuals are not impossible but

much rarer; they tend to only happen in the regions with larger weekly reporting

rates. In such regions, we can have a week at time t with quite a high count.

Then, due to the the inclusion of past observations within the models here, the

large count at time t will make the mode at t + 1 large. Sometimes, the mode

at t + 1 will then be large enough to make the modal residual at t + 1 negative.

However, generally, the counts are most frequently small and so modes are most

often zero or one, giving non-negative modal residuals. Of course, in those regions

where the dispersion parameter θ is smaller than one, the mode will always be

zero and so we will always get non-negative modal residuals.

It is common practice, and more useful, to have standardised residuals, making

them more comparable amongst themselves. The easiest way to do this is to

bootstrap at each week, where we have a fitted distribution from the GLM. From

the fitted distribution we take a random sample Zi of size n and calculate the

root mean square standard error associated with the mode m̂t at week t:√∑n
i=1(Zi − m̂t)2

n
. (5.4)

The modal residuals are then divided by this error to give the standardised modal

residuals. Letting n = 100, 000 is sufficient to generally reduce the maximum

differences between successive runs of standardised residuals to less than 0.05;
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larger n does make successive runs more consistent, but does not make much

reduction to the maximum difference observed. An example of the standardised

modal residuals can be found in Figure 5.14.

Before commenting on the standardised modal residuals, we note that the

mode could also be used for prediction, as opposed to using the mean to parame-

terise the negative binomial and, for example, finding the 95% quantile. Instead,

we could bootstrap at each week, finding the empirical distribution of differences

between the mode and the values of a bootstrap sample. From this empirical dis-

tribution, we could calculate a 95% quantile that gives a distance such that 95%

of the differences are smaller than this value; this distance could then be added to

the mode to give an exceedance limit. Then, in any week, where the reports that

week exceed this value, then an automatic warning would be produced. However,

for a reasonable bootstrap size, this exceedance limit is going to be about the

same as the value found by using the mean. Thus, to save calculation, we may

as well use the mean.

We can now look at the standardised modal residuals for any patterns that

would indicate a poor model fit, without being distracted by patterns in the

negative deviance residuals. From the standardised modal residuals no evidence

of bad fits is apparent. In Dumfries & Galloway there are perhaps a few non-

contiguous years in the 1990s, with the suggestion of a pattern in a few weeks. If

we were particularly worried about these, then we could fit a model to Dumfries

& Galloway for the last ten years, excluding the period for which the years have

a pattern in their residuals. In general, these models seem an acceptable fit to

the data. The dispersion parameter of the negative binomial, θ, varies from 0.75

to 2.04 (Table 5.7) which seem reasonable.

5.4 Exponential Smoothing Regional Modelling

In this section we model the regional counts of Cryptosporidium using a variable

based on exponential smoothing to try to deal with local trend. This is the same

as was done in the NHS24 regional modelling; within that chapter, we discuss

the motivation in Section 3.2.3 and discuss how to combine the Holt-Winters

variable with the GLM in Section 3.4.1. For more information about exponential

smoothing see Appendix B. We consider which form of exponential smoothing



CHAPTER 5. REGIONAL CRYPTOSPORIDIUM MODELLING 156

is best for the modelling here in Section 5.4.1. Then, GLMs are fitted to the

different regions utilising the created variable in Section 5.4.2.

5.4.1 ES Parameter Selection

We apply the Holt-Winters smoothing to the log of the counts. This makes the

seasonality additive and so we use the additive form of the HoltWinters function

within R. This function gives us the flexibility to choose between different versions

of ES (Simple Exponential Smoothing (SES), ES with trend, ES with no trend &

seasonality, and ES with trend & seasonality). Chatfield and Yar (1988) provide

a number of guidelines on choosing the appropriate form of ES. While these are

sensible, we propose a slightly different approach given our purpose for using ES:

we will use the form of ES that explains the most deviance in the GLMs. Thus,

to each health board, we fit four different negative binomial GLMs:

log(µt) = β0 + β1SESt, (5.5)

log(µt) = β0 + β1ESTt, (5.6)

log(µt) = β0 + β1SESSEASt, (5.7)

log(µt) = β0 + β1HWt, (5.8)

where SESt, ESTt, SESSEAS, HWt are the filtered series given by HoltWinters

for carrying out SES, ES with linear trend, Holt-Winters with seasonality and

no trend, or full Holt-Winters respectively. Values of the smoothing parameters

under each form of exponential smoothing are found by minimising
∑

e2
t – see

Section B.1. The results of fitting these different models are shown in Table 5.8,

where the residual deviance after fitting each type of smoothing is shown. Thus,

for each region, whichever model has the least residual deviance suggests that

that method of ES is best.

From fitting these models a number of results become apparent. It seems

that ES does not benefit from being seasonal in most cases, with only two areas

having lower residual deviance when a seasonal form of ES is used. Similarly, ES

does not seem to benefit from having a linear trend (EST). Some of the more

complex forms of ES reduce to simpler forms of ES when the simpler form is

more optimal. For example, consider the Argyll & Clyde area: when the model
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Null Residual Deviance from model using ‘Best’ ES
Region Deviance SES EST SESSEAS HW technique
Argyll & Clyde 1168 982 SES 992 SESSEAS SES
Aryshire & Arran 794 748 751 752 SESSEAS SES
Borders 688 664 SES 666 SESSEAS SES
Dumfries & Galloway 999 885 SES 888 SESSEAS SES
Fife 739 721 726 725 726 SES
Forth Valley 767 727 731 730 SESSEAS SES
Glasgow 1259 1016 SES 1014 SESSEAS SESSEAS
Grampian 1247 1066 SES 1070 SESSEAS SES
Highlands 911 878 SES 882 SESSEAS SES
Lanarkshire 1248 1038 1041 1049 SESSEAS SES
Lothian 1333 1078 1082 1080 SESSEAS SES
Tayside 993 916 919 907 908 SESSEAS

Table 5.8: The reduction in deviance resulting from fitting GLMs defined by Equa-
tions 5.5, 5.6, 5.7 and 5.8, with each having one variable corresponding to different
types of Exponential Smoothing. Those entries that have the name of another ES
technique in them correspond to those more complex techniques that have reduced to
simpler ones e.g. HW with no trend reduces to SESSEAS. The “best ES technique”
then, in this context, is the one which leaves least residual deviance in the resulting
GLMs.

with SES is compared to the model with EST, there is practically no difference in

residual deviance (the difference starts with the second decimal place). On closer

inspection, for SES α = 0.1994641, while with EST we find that α = 0.1994681

and β = 0. Typically, when such ‘simplification’ occurs, there is agreement in

parameters to three or more decimal places. In ten out of the twelve cases HW

reduces to SESSEAS. EST reduces to SES in half of its uses.

The most surprising result is probably that SES does better than seasonal

forms of ES in most cases; elsewhere, we have seen good evidence for Cryp-

tosporidium being seasonal. To investigate why it is only in certain regions that

a seasonal form of ES does better, we carry out a time series decomposition on

certain regions, using the techniques applied in Section 4.4.1. We choose two

regions (Argyll & Clyde and Lanarkshire) where SES has the largest improve-

ment over other forms of ES, and the two regions (Glasgow and Tayside) where

a seasonal form fares better. In these regions we calculate the seasonal factors

from the log-counts, shown in Figure 5.15. By doing so, we can compare the

differences in seasonality, and perhaps explain why the latter group does better

with seasonal forms of ES. The main difference between the two groups seems to
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be that the seasonal factors change more consistently and smoothly in the regions

where a seasonal form of ES does better. The seasonal factors calculated here

are similar to the seasonal factors in SESSEAS: the factors for any one week are

mostly independent of the other factors for other weeks. This contrasts with the

use of trigonometric harmonics, where the counts for all weeks contribute to the

seasonal level for all other weeks. Since we can often get zero counts when a count

might be expected, this ‘borrowing effect’ – using information from other weeks

to contribute to the seasonal level for a particular week – probably contributes to

a more realistic seasonal pattern. Thus, it is possible that seasonal forms of ES

do not do as well as SES because of using seasonal factors. In the GLMs we go on

to fit, we find that trigonometric harmonics are significant, suggesting that the

data is seasonal but that seasonality is not modelled well with seasonal factors.

For simplicity of interpretation, we will choose one method of ES for all re-

gions. In light of the evidence of Table 5.8, the best form of ES will be SES

– simple exponential smoothing with no trend or seasonality. For those regions

where a seasonal version of ES fares better, their seasonality will be incorporated

in the GLMs through the use of trigonometric harmonics. In some areas, where

EST does not simplify to SES, there is a potential of some trend; as with sea-

sonality, we will try to incorporate this into our GLMs by using a linear trend

term.

5.4.2 Regional GLMs with SES Terms

As we noted previously, with the inclusion of ES in the GLMs, model fitting

becomes a two stage process. We first consider the exponential smoothing, and

then proceed to the GLM fitting.

Exponential Smoothing

We use SES – simple exponential smoothing with no trend and no seasonality –

in all the regions. The parameters found by the Holtwinters function (with β

and γ manually specified as zero) are shown in Table 5.9. The α parameters are

in the range (0.08,0.27), with the median value being 0.19. The range of values

seem quite sensible given the comments we made in Section B.1.

There is a suggestion that α is larger in those areas of larger population:
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Figure 5.15: The seasonal factors (deviation from the trend) from a seasonal decom-
position carried out on log(Counts+1) of (from the top) Argyll & Clyde, Lanarkshire,
Glasgow and Tayside. The method used is detailed in Section 4.4.1. In Section 5.4.1
we see that the ‘best’ type of exponential smoothing for the top two regions is simple
exponential smoothing, while in the bottom two, exponential smoothing with sea-
sonal factors fares better. This may be because changes in the seasonal pattern are
smoother in these regions.
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Region α

Argyll & Clyde 0.1995
Aryshire & Arran 0.1693
Borders 0.1112
Dumfries & Galloway 0.1984
Fife 0.0823
Forth Valley 0.1207
Glasgow 0.2677
Grampian 0.1808
Highlands 0.1373
Lanarkshire 0.2314
Lothian 0.2205
Tayside 0.2497

Table 5.9: The smoothing parameters found by HoltWinters for each region when
SES is used in Section 5.4.2 on the regional counts of Cryptosporidium.

Kendall’s τ statistic is 0.55 between α and regional populations (taken from the

General Register Office for Scotland (2001)). A larger α means that observations

are tied more strongly to preceding weeks. With more people in a region, in-

fections will be able to spread more easily between people, resulting in greater

levels of correlation between reporting levels of successive weeks. In regions with

smaller populations, successive reports are less likely to be linked, and more likely

to be independent cases, leading to less correlation between successive weeks. In

less populated regions, seasonality may also have a greater effect on reporting

levels.

GLMs: Comments on Fitted Models

The negative-binomial GLMs fit to each region can be found in Table 5.10. All

variables were tested for inclusion in the GLMs and rejected if they did not

contribute significantly (at the 5% level) to the model. The summary statistics

for the models can be found in Table 5.12.

We first consider the SES coefficients. Since these are predictions on the log-

scale, we might initially assume that their coefficient would be near one. However,

we saw in the NHS24 modelling that this was often not the case because of the

interaction with the other terms in the model – see Section 3.3.2. In two regions
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Table 5.10: The GLMs fitted in Section 5.4.2 to the Cryptosporidium data in the
different regions, ustilising SES to deal with serial correlation. The tables give the
coefficients of the variables and their associated standard errors in brackets.
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Fife 2006 18 3.264 (1.109) – – – –

Grampian 1992 10 1.819 (0.825) – – – –
1995 8 3.629 (0.820) – – – –

Lanarkshire 1998 18 1.876 (0.776) – – – –
2003 33 2.559 (0.776) – – – –

Tayside 1994 45 1.894 (0.828) – – – –
2000 29 1.690 (0.819) – – – –
2005 16 4.235 (0.735) 2.470 (0.749) – – –

Table 5.11: The factor level values for outbreaks found significant, fitted to regions
when using SES within the GLMs fitted in Section 5.4.2.
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IC

θ θ
S
E

Argyll & Clyde 1261 980 281 22 980 970 10 2991 1.366 0.141
Ayrshire & Arran 872 760 112 13 980 970 10 1806 0.909 0.149

Borders 762 653 109 14 980 975 5 1422 0.971 0.208
Dumfries & Galloway 1161 892 269 23 980 968 12 2128 1.988 0.376

Fife 821 732 89 11 980 974 6 1684 0.895 0.157
Forth Valley 854 728 125 15 980 971 9 1837 0.72 0.101

Glasgow 1398 1025 374 27 980 970 10 3094 1.667 0.185
Grampian 1505 1071 434 29 980 967 13 3713 1.578 0.143
Highland 1052 878 174 17 980 971 9 2169 1.434 0.228

Lanarkshire 1442 1046 396 27 980 967 13 3420 1.828 0.184
Lothian 1427 1071 356 25 980 969 11 3856 1.565 0.133
Tayside 1329 955 374 28 980 967 13 2450 1.987 0.321

Table 5.12: Summary statistics from the negative binomial GLMs with SES fit in
Section 5.4.2. DoF = Degrees of Freedom. SE = Standard Error.
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we find that the coefficient is near one: Lothian and Tayside. However, more

generally, the coefficient is usually quite a bit larger than one, with the exception

of Highlands, where it is smaller than one. We check for correlations between

the SES coefficients and board population, the value of alpha in ES that creates

SESt, the intercept, θ and average regional counts, but only small negative ones

were found, suggesting no interesting relationships.

We use hierarchical clustering once more to suggest groups from the fitted

seasonal patterns, as was done in Section 5.3.1. We apply cluster analysis to

the vectors of unscaled seasonal patterns, as defined in Equation (5.2) but based

on the coefficients contained in Table 5.10. The corresponding dendrogram is

shown at the top of Figure 5.16. We cut the dendrogram at 2.9 resulting in three

groupings: the first group contains mostly coastal regions on the edge of Scotland

– Argyll & Clyde, Ayrshire & Arran, Dumfries & Galloway, Grampian, Glasgow,

Lanarkshire, Lothian, and Tayside; Borders is on its own; North Central areas

(Forth Valley, Highland) and Fife. As before, there is a reasonable agreement on

the largest peak at around week 20. The latter two groupings have the largest

amplitudes, and have the smallest values of α, the ES smoothing parameter –

see Table 5.9: this may indicate that in these regions seasonality plays a more

important role than in the first grouping, with their higher dependence on past

values. In the latter two groupings, the trough following the Spring peak at

around week 20 is shallower than with the first two groupings.

Next, we apply the cluster analysis to the scaled seasonal patterns contained

in the vectors defined by Equation (5.3), but based on the coefficients contained

in Table 5.10. The resulting dendrogram and groupings are shown in Figure

5.17. We cut the dendrogram at the height of 1.6, resulting in three groups: the

West and Grampian – Argyll & Clyde, Ayrshire & Arran, Dumfries & Galloway,

Grampian, Glasgow and Lanarkshire; a corridor from the East to the North –

Forth Valley, Highland, Lothian and Tayside; those regions where two harmonics

were fitted – Borders and Fife. Again, as we would expect, there is agreement

on the spring peak around week 20 being the largest peak. The later peaks and

troughs in the year tend to determine the groupings: in the regions in the West,

the trough following the Spring peak is lower than the equivalent trough in the

East and North group. In the East and North group, the Summer peak is more

comparable to the Spring peak, than with the West and Grampian peak. Borders
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Figure 5.16: Hierarchical clustering applied to the unscaled seasonal patterns fit by
the trigonometric terms, on the predictor scale, from the models fit in Section 5.4.2.
The top plot is a dendrogram corresponding to the clustering. The red dashed line on
the dendrogram represents where we have ‘cut’ it to form our clusters of regions with
similar seasonality. The bottom plot shows the seasonality of each region grouped by
the clustering suggested within the dendrogram.



CHAPTER 5. REGIONAL CRYPTOSPORIDIUM MODELLING 165

and Fife again have a reduced number of harmonics fitted to them, resulting in

them seeming quite different to the other regions. These patterns are again

consistent with the regional variations suggested in Pollock et al. (2009), as we

comment in Section 5.3.1.

Only three regions have a zLen term (that measures the run-lengths of zeros):

Aryshire & Arran, Dumfries & Galloway, and Lothian. In the first two regions

the zLen coefficient is reasonably small and negative, suggesting that the models

over predict during runs of zeros in these regions, allowing this term to serve as

a corrective. The models are likely to over predict during runs of zeros in these

regions, since they have among the smallest average weekly counts. In Lothian,

the coefficient is an (absolute) order of magnitude larger, but positive. This is

likely because of the higher weekly reporting rate there – see the comment in

Section 5.3.1.

Four regions include a pLen term (that measures run-lengths of positive num-

bers): Dumfries & Galloway, Grampian, Glasgow and Lanarkshire. All the co-

efficients are of a similar small order of magnitude and negative. The negative

value suggests that in these regions the models over predict slightly, and these

terms work as a corrective to that.

In these models the 2001 Foot and Mouth disease outbreak was found to have

no significant effect. Thus, no factors were included in the models for Borders

and Dumfries & Galloway to reflect the outbreak.

Five regions have a linear trend term fitted: Argyll & Clyde, Dumfries &

Galloway, Grampian, Lanarkshire, and Lothian. In all of these regions the trend

is very small and negative, but still significant. This suggests that in these regions

the cases of Cryptosporidium are decreasing slowly over time. These regions have

the largest average weekly counts, possibly meaning the other regions have a

decreasing trend that the modelling here does not have the power to detect.

For details of the outbreaks that were included as factors (one factor level for

each week of the perceived outbreak) see Table 5.11. Most outbreaks seemed to

only affect the first week of the outbreak.

The values fitted to θ, the dispersion parameter for the negative binomial,

vary between 0.7 and 2, which seem reasonable values.
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Figure 5.17: Hierarchical clustering applied to the scaled seasonal patterns fit by the
trigonometric terms, on the predictor scale, from the models fit in Section 5.4.2. The
seasonal patterns have been scaled to go between zero and one before the clustering
has been applied. The top plot is a dendrogram corresponding to the clustering. The
red dashed line on the dendrogram represents where we have ‘cut’ it to form our
clusters of regions with similar seasonality. The bottom plot shows the seasonality of
each region grouped by their clustering given by the dendrogram.
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GLMs: Model Diagnostics

We check the acfs of the deviance residuals to check for any residual serial correla-

tion. In eight of the twelve regions, there is nothing to concern us. In Grampian,

there is a just significant correlation at lag 4, but it is isolated, so we do not worry

about it further; otherwise the acf seems reasonable. For Glasgow, there is a sig-

nificant correlation at lag 2, but there is no easy way to address this (we could

include past values, but that will prevent us from comparing the two different

modelling approaches). There is also a significant correlation at lag 52, but it is

only just significant. We also note that the acf for Tayside indicates no problems

with seasonality. Together, these two factors suggests that modelling seasonality

in the GLMs and not the ES term does not seem to particularly harm the models

– see Section 5.4.1 for a discussion on this. Borders has a significant correlation

at lag one. This is perhaps not surprising when we note from Figure 5.11 that

Borders has the largest coefficient for log(xt−1 + 1); it is twenty percent larger

than the equivalent coefficients in the other regions. The implied high level of

correlation between successive weeks is unlikely to be captured well by any ES

technique. Argyll and Clyde has a relatively large significant correlation at lag

ten, but it is isolated and at a lag of no known importance, so we ignore it. Again,

there is a positive correlation at lag 52, suggesting some residual seasonality, as

we found in the modelling using past values in Section 5.3.1. If this becomes an

issue we can fit a model on a restricted set of the data.

We next turn to considering the deviance residuals. As in Section 5.3.1, a

pattern exists in the negative deviance residuals that does not actually indicate

poor fitting models; thus we turn to considering the modal residuals defined in

the same Section 5.3.1. We use the same size of bootstrap sample, n=100,000, to

standardise the modal residuals. From the standardised modal residuals, we find

that nine of the regions have no noteworthy features. However, Borders, Forth

Valley and Grampian have some large residuals. In the case of Borders, the large

residuals seem to be linked with a particularly large seasonal peak. If the large

residuals cause concern, a factor can be included in the appropriate models to

address them, as was done to deal with outbreaks (see Section 5.2). In the Forth

Valley residuals, there are suggestions of patterns in 1996 and 1998: if these are

a concern the model could be fit to a subset of the data.
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5.5 Regional Modelling Comparisons

In this Section we compare the two sets of regional models: the set fit in Section

5.3.1 which uses past observations in the GLMs to deal with serial correlation

and the set fit in Section 5.4 that include a single term based on exponential

smoothing to do this. We will refer to these sets of models as ‘past observation

models’ and ‘SES models’ respectively. We defer to Chapter 6 comparing the

predictions given by these systems, alongside the predictions from the system

developed in McCabe (2004) (see Section 4.2.2).

In both sets of models, seasonality was modelled through the use of trigono-

metric harmonics. In the SES models, the number of significant harmonics is

most consistent at four. However, in both sets of models, Borders and Fife take

the fewest harmonics and have the largest seasonal amplitudes. This may suggest

that seasonality plays a more important role in these two regions compared to

the others; this is supported by the fact that the number of past observations

included in these regions are among the lowest (see Figure 5.11), and the param-

eters of SES fit to these regions are among the smallest (see Table 5.4.2). When

we consider the seasonal patterns (see Figures 5.10 and 5.17), there is a general

split between the East and West (sometimes including the North). In both sets

of models, Grampian is somewhat of an exception, since its seasonal pattern is

more similar to the West grouping and yet it lies on the East coast of Scotland.

This might be linked with its particular mix of farming and urban areas (this was

touched on in Section 5.1). Generally, the seasonal pattern for Borders stands

out on its own because of the low numbers of harmonics fitted to it. In all re-

gions, the largest peak in the seasonal cycle happens around week twenty during

the Spring (see Section 4.3 for a discussion of the possible reasons for this). The

seasonal patterns seem to be separated primarily by differing timings for peaks

and troughs during the Summer and Autumn periods.

Both sets of regional models fit a very small linear downward trend for five

regions: Argyll & Clyde, Dumfries & Galloway, Grampian, Lanarkshire, Lothian.

In the SES models, a linear trend is also fit to Glasgow. These are the regions

with the highest populations and so give the highest weekly counts. As noted

previously, this may suggest there is a downward trend in the other regions that

is too small to detect. In general, reporting levels seem to be decreasing.
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The zLen variable was used in the regional models to record the run-length

of successive zero counts. For both modelling approaches the term is included

in Ayrshire & Arran and Dumfries & Galloway GLMs. In the past observation

models, the term is also included in the Forth Valley and Highland GLMs. Gen-

erally, for both sets of models, the zLen coefficient is small and negative. This

suggests that in these regions the models over predict during counts of zeros and

this term works as a corrective to that. We saw in Section 5.3.1 that some of

this over prediction is caused by the seasonality fit during periods of zero counts.

The greater use of zLen terms in the past observation models may indicate that

the SES models adapt better to low counts. For both sets of models, Lothian

is somewhat of an oddity with respect the zLen term: Lothian is the only re-

gion with a positive coefficient for zLen and is also an order of magnitude larger

than the other zLen coefficients. This may be because the longest run of zeros

in Lothian is eight, while in the other regions there tend to be run lengths in

the low teens. Note also that Lothian has the highest weekly reporting rate (see

Table 5.2). This means that zLen may serve a different purpose in Lothian to

the other regions: in Lothian, when we observe a zero, we expect the counts to

increase soon, while in the other regions, when we observe a zero we expect to

continue seeing more zeros.

The pLen variable measures the run-length of successive non-zero counts.

Both modelling approaches fit a pLen term to Grampian and Lanarkshire. The

SES approach also fits a pLen term to Dumfries & Galloway and Glasgow. In all

cases, the coefficients of the terms are negative with the same orders of magnitude.

This suggests that pLen serves to correct over prediction during non-zero counts.

It may indicate that the SES method is slightly more prone to over predicting

non-zero values.

The dispersion parameters for both sets of models are quite similar. Both

sets vary from about 0.7 to about 2. Three boards with dispersion parameters

less than one have the largest over-dispersion (Ayrshire & Arran, Fife and Forth

Valley). The over-dispersion seen in the other boards is less. In all regions the

standard error of the dispersion parameter is at least three to four times smaller

than its value. This indicates that we do not have problems with the fits of

the models as we saw with some regions in the NHS24 regional modelling (see

Section 3.4.2).
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The two different methods of dealing with serial correlation have different

advantages. By using past observations the model fitting and the subsequent

predicting is a straight forward one step process. However, the models are less

parsimonious, with up to five terms of past observations included in the GLMs

(more past terms might be used in certain of the regions, further exacerbating

the point). The SES GLMs are more parsimonious since one term, SES, is only

ever included in the models to deal with serial correlation. However, model fitting

and prediction is a two stage process. First, the SES prediction must be found

and then fed into the GLM for a prediction as a second stage. However, both of

these stages can still be carried out easily and quickly. We can also contrast the

two different approaches by considering the model summaries shown in Tables

5.7 and 5.12. For nine of the regions, the SES GLMs have the smallest residual

deviance, one region has the least residual deviance using the past observation

and two regions are about equal. This would suggest that the SES GLMs are

better. We can also consider the AIC of the GLMs. There does not seem a lot of

differences between the two approaches: six regions have a lower AIC with past

observations, five regions have a lower AIC with SES and in one region there is

nearly no difference (Highland). The biggest improvement in AIC happens in

favour of SES. The SES models also seem to have slightly fewer artifacts in their

residuals. Before comparing the predictive abilities of the systems more closely in

Chapter 6, we would favour the SES models since: they are more parsimonious;

they reduce the residual deviance the most; and where they are better in terms of

AIC, they tend to make a bigger improvement in AIC, than the past observation

models make when they are better in terms of AIC.

In these models we have omitted any element that might model the regions

interacting with each other; there is no reason that an infection of Cryptosporid-

ium would respect the artificial administrative boundaries that form the health

boards. Thus, we may expect the counts in Lothian to have some relationship

with the counts in its neighbouring health boards Borders, Fife and Lanarkshire.

We investigate these relationships in the following Section and see why they can-

not be modelled well within the GLMs developed here.
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5.5.1 Interactions in Neighbouring Regional Counts

In Sections 5.3.1 and 5.4.2, we fit the best regional models that can be fitted to

the counts of Cryptosporidium with the given variables. Seasonality, local trend,

run-lengths of zero and non-zero counts, and local outbreaks have been incor-

porated into these models. We ruled out the use of climatic measures, such as

rainfall and temperature, because of practicalities (see Section 4.4.3). There are

not many other obvious variables that we can try to include in the fitted regional

models. However, a remaining refinement might be given by including relation-

ships between the counts in the different health boards. One way of determining if

there are any such relationships is by considering the Cross-Correlation Function

(ccf) of the residuals of the fitted models. Since the SES models (Section 5.4.2)

are more parsimonious, we will use the residuals of these models in the present

section.

A ccf function shows the correlations between the observations of two time

series at different lags. In doing so, it allows one to check for potential interdepen-

dencies between the two time series. Thus, we can take all pairs of neighbouring

health board models in turn and analyse the ccf of their residuals to investigate

any potential interdependencies between them. Some examples will help illustrate

this process. The Highland and Grampian health boards are neighbours and their

ccf can be found in Figure 5.18. We denote the deviance residuals of the models

at time t for Highland and Grampian as HGRt and GRRt respectively. Then,

at lag k, the correlation between HGRt+k and GRRt is calculated. Bands that

represent 95% confidence intervals for correlations due to two series of unrelated

white noise can also be calculated and are shown in Figure 5.18. Thus, if corre-

lations fall outside this bounded range there is evidence to suggest that there is

some structure between the series. However, most would likely consider the ccf in

Figure 5.18 to suggest little structure between the two series of residuals. There

are significant correlations at lags −22, 5 and 12. However, these correlations are

isolated and only just statistically significant or at lags of no special significance

in the problem. Further, as 95% confidence intervals are used, it is not unex-

pected to get around two or three correlations that are statistically significant,

even though there are no real relationships.
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It should be noted that the ccf can be affected by structures, such as trend,

in either of the two time series it is calculated from. This may lead to the sugges-

tion of invalid relationships between the two time series. To avoid complications

such as this, Diggle (1989) recommends ‘pre-whitening’ the two time series being

compared by filtering out any trend or other structures. For instance, this could

be done by fitting an ARIMA model. Then, by dealing with residuals of the

ARIMA models, we are dealing with ‘whitened’ data; any structure suggested by

the ccf of the these series relates only to relationships between the two series, and

not any contained within either one. This is essentially what we do here by using

the residuals of the SES models fitted to the regional counts of Cryptosporidium:

we have removed as much structure as possible from within each series, so that

any correlations indicated by the ccf of the residuals are likely to validly suggest

relationships between regions. Thus, whenever we have used a ccf, we have also

considered the acfs of the individual series of residuals to check for any artifacts

that might be carried over to the ccf, which might suggest invalid relationships.

For example, in Figure 5.18, the acfs of residuals for Highland and Grampian

are given. The residuals for Highland have no features which would lead us to

suspect they are not distributed as white noise. Apart from a just statistically

significant and isolated correlation at lag four, the Grampian residuals are also

reasonably close to white noise.

Other patterns in the ccf graphs can occur. An illustrative example can be

found in Figure 5.19, where the ccf of the residuals for the models of Borders and

Lanarkshire are shown. The ccf function has statistically significant correlations

at lags -1 and -6. The lag at -6 is reasonably high order, isolated and only just

statistically significant and thus, we focus on the much larger correlation at lag

-1. This suggests there is a correlation between the counts in week t−1 in Borders

and week t in Lanarkshire. Thus, a way of improving the model for Lanarkshire

may be to include in its model the reported counts of infections in Borders lagged

by one, or some similar measure lagged by one week.

Unfortunately, this improvement cannot be applied everywhere. Next, con-

sider the ccf of the residuals for Lanarkshire and Dumfries & Galloway models,

shown in Figure 5.20. In the ccf for these two series, there is a significant positive

correlation at lag zero. This means in general that as the counts in Lanarkshire

change, the counts in Dumfries & Galloway can be expected to fluctuate con-
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Figure 5.18: Graphs (A) and (B) show the acf of the deviance residuals from
the regional models fitted to Highlands and Grampian health boards respectively in
Section 5.4.2. Graph (C) shows the cross-correlation function of the above residuals.
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Figure 5.19: The cross-correlation function of the deviance residuals from the re-
gional models fit to Borders and Lanarkshire in Section 5.4.2.

temporaneously in a similar way, as the correlation is positive. To model this

contemporaneous relationship well would likely require a very different modelling

paradigm than is adopted in Sections 5.3.1 and 5.4.2. In these Sections we fit

a GLM to each region separately. To model a contemporaneous relationship

would require the models for both boards to be fit simultaneously, possibly with

a bi-variate distribution. Of course, this is just considering the modelling of two

neighbouring boards; to fit a model that can incorporate contemporaneous rela-

tionships between all health boards would likely require all regional models to be

fitted simultaneously. We consider the implications of this in Section 5.6.

A similar complication happens between Argyll & Clyde and Glasgow. The

ccf of their residuals is shown in Figure 5.21. The ccf of the residuals of these

two boards is quite complex: there is a large positive correlation at lag zero,

and other significant correlations at low order lags, both positive and negative.

These suggest that the counts both fluctuate contemporaneously and also interact

with each other over a longer period of time. This greater complexity in the

relationships probably reflects the relatively large population densities in these

two boards and the effects of people commuting between them. Again, this type

of relationship cannot be modelled well via the current approach, and so suggests

a different approach is required if we wish to model regional interactions.

The ccfs for all pairs of neighbouring health boards are summarised in Table

5.14. The ccfs provide an indication of the typical movement of Cryptosporidium

infections through Scotland. For instance, the ccf in Figure 5.19 suggests that
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Figure 5.20: The cross-correlation function of the deviance residuals from the re-
gional models fit to Lanarkshire and Dumfries & Galloway in Section 5.4.2.
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Figure 5.21: The cross-correlation function of the deviance residuals from the re-
gional models fit to Argyll & Clyde and Glasgow in Section 5.4.2.
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the level of infections in Borders move into Lanarkshire in the week following.

In some neighbouring boards, there is no link (Figure 5.18), in others there is a

positive contemporaneous correlation in counts (Figure 5.20) and the remainder

exhibit a more complex neighbouring interaction in the spread of Cryptosporid-

ium, sometimes incorporating a contemporaneous element as well (Figure 5.21).

A pictorial representation of the spread of Cryptosporidium can be found in

Figure 5.22, and the geographical placement of the health boards can be seen on

the right of Figure 2.8. Green lines on the diagram indicate those boards that

have a contemporaneous relationship between them: infection in one board will

affect the neighbouring boards in under a week. It seems that infection spreads

most quickly through the East-West band (Argyll & Clyde, Forth Valley, Fife,

Glasgow, Lanarkshire and Lothian). This is likely linked with these boards hav-

ing the largest populations. Infection seems to spread more slowly in a northerly

direction (Borders, Lanarkshire, Forth Valley, Tayside and Grampian). These

factors may be explained by the higher levels of commuting that happen between

the population centres in the East and West, compared to the lower levels of com-

muting North to South. Some of the geographically larger boards have no links

with other large neigbouring boards (Highlands and Grampian, and Dumfries &

Galloway and Borders). The is probably explained by the low densities of pop-

ulation in these regions, who will carry relatively few infections across regional

borders.



CHAPTER 5. REGIONAL CRYPTOSPORIDIUM MODELLING 177

Neighbouring Relations

H
ea

lt
h

bo
ar

d
1

H
ea

lt
h

bo
ar

d
2

Significant
Correlations

N
on

e

C
on

te
m

po
ra

ne
ou

s

O
ne

w
ay

In
te

ra
ct

io
n

Notes

Highlands Grampian -22, 5, 12 X
Highlands Tayside -9, 0, 8, 13 X
Highlands Argyll &

Clyde
-6, 7, 26 X

Tayside Fife -24, 0, 3 X
Tayside Forth

Valley
-12, 3, 14, 16 TY←FV Slow movement.

Lothian Lanarkshire -15, -2, 0, 14 X X
Borders Lanarkshire -1, 23, 24 BR→LN
Borders Dumfries &

Galloway
-11, -9, -5, 15 X

Glasgow Lanarkshire -24, -16, -4, 0,
1

X X

Glasgow Aryshire &
Arran

-26, -20, 14,
17

X

Aryshire &
Arran

Argyll &
Clyde

-23, -21, -2, 2,
6

X

Grampian Tayside -22, -7 X
Aryshire &
Arran

Lanarkshire X

Aryshire &
Arran

Dumfries &
Galloway

-14 X

Lanarkshire Dumfries &
Galloway

0, 18 X

Tayside Argyll &
Clyde

-18, -17, -8,
13

X

Argyll &
Clyde

Forth
Valley

-9, -8, -2, 0, 2,
4, 12

X X

Argyll &
Clyde

Glasgow -8, -6, 0, 1, 4 X AC←GG

Forth
Valley

Fife -22, -20, -1, 5,
9

X FV→FF

Forth
Valley

Lothian -20, -13, -12,
-1, 0, 1, 5, 23

X X

Forth
Valley

Lanarkshire -1, 4, 19 X

Forth
Valley

Glasgow -7, 0, 1, 3, 14,
16

X FV←GG

Lothian Borders 5 LO←BR Slow movement
Lothian Fife 15, -2, 0, 2, 26 X X

Table 5.14: This table gives the statistically significant correlations from the cross
correlation function applied to the residuals of all neighbouring pairs of SES models
(fit in Section 5.4.2). Particular correlations suggest particular interactions between
the health boards; see Section 5.5.1 for an explanation of them.
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Figure 5.22: A pictorial representation of potential infection spread of Cryptosporid-
ium, as suggested by the ccfs of residuals of neighbouring health boards, summarised
in Table 5.14.
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5.6 Conclusions

In this Chapter we have developed two modelling approaches that could be used

in the regional monitoring of Cryptosporidium. Modelling at the regional level

brings with it particular issues considered in Section 5.1: there we consider the

differences between health boards and their different weekly reporting rates. Then

in Section 5.3.1, we fit regional models with past observations in the GLMs to

deal with serial correlation. The residuals of these GLMs initially suggest that

the models are a poor fit; however, on closer investigation, the patterns in the

residuals turn out to be a by-product of the seasonality and low (often zero)

counts and are not an indication of poor fitting models. To better investigate the

fit of these models, we introduce the idea of ‘modal residuals’ which look at the

difference between the mode of the fitted distributions and the observed counts.

This provides a way of removing the pattern from the residuals, making it easier

to see any true short comings in the models. Alternatively, one could model the

zero counts directly; we consider this further in Section 5.6.1.

We then move on to regional modelling that uses a variable based on Ex-

ponential Smoothing (ES) to address serial correlation (Section 5.4). Somewhat

unusually, we find that simple exponential smoothing seems the best form of ES

to use, even though the counts are seasonal in nature. This is likely because of

the way that the HoltWinters function in R deals with seasonality – see Section

5.4.1. Future work might look at modelling the seasonality using trigonometric

terms fitted by using discounted least squares. A further alternative might be

to fit the models using Generalised Additive Models (GAMs), which are used

in Chapter 7. In such models, smoothing splines are used to model the data,

which allow for more complex patterns to be fitted than are generally possible

with standard GLMs (Zuur, Ieno, Walker, Saveliev, and Smith 2009). For exam-

ple, non-parametric polynomials can be fitted to the data (Wood 2006b). This

would be particularly useful for Cryptosporidium with its bi-modal seasonality.

We make use of GAMs in Chapter 7 to deal with fitting a more complex seasonal

pattern than is possible with straight forward application of trigonometric terms

within a GLM.

The two sets of regional models are compared in Section 5.5. We find that

both sets of regional models give evidence for the counts of Cryptosporidium
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decreasing in the health boards with larger populations. Seasonality is in broad

agreement between the two sets of models: there is a split in seasonality between

the East and West coast. Grampian is somewhat unusual in being on the East

coast but having a seasonal pattern that is closer to that of health boards on

the West coast. The Borders health board seems to have the largest seasonal

amplitude. These results agree with those reported in Pollock et al. (2009).

Both sets of models seem to do comparatively well addressing serial correlation,

but the models utilising ES give more parsimonious GLMs.

One element not considered in the regional models is the relationship be-

tween the counts of the different health boards. We investigate such relationships

in Section 5.5.1 by looking at the cross-correlation function of the residuals of

neighbouring regional models. We find that some relationships are delayed: for

example, the counts in Borders might give an indication of the counts expected

in Lanarkshire in the week following. Other relationships are contemporaneous:

for example, the counts for Lanarkshire and Dumfries & Galloway seem to have

some relation between their counts during the same week. The latter relationship

cannot be modelled by independent GLMs and so suggests a different modelling

paradigm will be required if we wish to model all types of inter-board relation-

ships. One possible approach is presented in Shaddick and Wakefield (2002),

where a Bayesian model is used to simultaneously model air pollution over time

from several locations simultaneously. We consider this further in Section 5.6.2.

Thus, we have two sets of tailored regional models that seem reasonable candi-

dates for forming predictions for the reported cases of Cryptosporidium and thus

calculating exceedance values. If HPS receives more reports than this exceedance

value for a particular region, then a warning would be flagged up and it would

be known that this region may have an outbreak. This would mean that HPS

would have less work to do in locating a potential outbreak and greater power to

detect smaller outbreaks. These two factors should allow for earlier detection of

potential outbreaks. This work formed the basis of a presentation given at the

Royal Statistical Society’s Young Statisticians’ Meeting (Wagner, McKenzie, and

Robertson 2009).

Having tailored systems is reasonable if we wish to merely monitor Cryp-

tosporidium. However, if we wish to apply these monitoring systems to other

organisms, it will be best if we can fit the same basic model to all regions. This
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basic model could then, more or less, be applied to the other organisms. It is

more desirable for general exception reporting systems to use the same underly-

ing model, as it removes the necessity of users becoming familiar with numerous

specific models. This in turn increases the usability of the system. Hence, in the

next Chapter, we develop two generic models for monitoring Cryptosporidium,

one that utilises past observations and another that utilises a variable based on

Holt-Winters smoothing. These models will be developed from the modelling

carried out in this Chapter. We then take these two generic models and combine

them with an exceedance alarm method to form two exception reporting systems.

Finally, we apply these two systems, along with the system developed in McCabe

(2004), to the regional counts of Cryptosporidium from 2006. This will allow us

to compare and contrast the three systems.

5.6.1 ZIPs: Directly Modelling Zero Counts

We found in the regional modelling that many counts are zero with a clustering

effect among them. We dealt with this in various ways, such as the use of the

zLen variable as a proxy for the correlation we expect in runs of zeros. This

is a reasonable approach given we intend to use these models for predictions.

However, the zeros still have an effect, particularly in the residuals, necessitating

the need for the use of modal residuals (Section 5.3.1). Future work might look

at developing models that address the high counts of zeros directly. Here we

consider one potential approach further.

First, it is useful to consider the types of zeros that can occur with the HPS

data. Zuur et al. (2009) divide zeros into two types: ‘true’ zeros and ‘false’ ones.

‘True’ zeros are ones that naturally occur in the process being modelled. Thus, in

the context of Cryptosporidium, a ‘true’ zero would indicate that Cryptosporidium

currently has a low prevalence in the general environment at a particular time.

A ‘false’ zero could be caused by a number of different sources that prevent the

underlying process be observed. Thus, within our context here, false zeros could

be caused by a lab failing to report a positive test result for Cryptosporidium.

However, we have no way to distinguish between these types of zeros and so must

use sophisticated techniques to deal with the different types. The labels used

to distinguish between these types of zeros differs; Ridout, Demétrio, and Hinde
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(1998) label them ‘structural’ (true) and ‘sampling’ (false) zeros. In any case, we

observe more zeros than would be expected with either the Poisson or negative

binomial distributions. To deal with such situations, these distributions have

been extended to produce Zero Inflated Poisson (ZIP) and Zero Inflated Negative

Binomial (ZINB) distributions (Zuur et al. 2009). The over-dispersion within

the Cryptosporidium data is very likely to be caused by the ‘excess’ zeros and

so, if we are able to use a zero inflated distribution, we may find that it is not

necessary to use the more general negative binomial over the Poisson distribution.

Thus, we present the ZIP distribution here, but the general ideas apply straight

forwardly to extending the negative binomial (Zuur et al. 2009).

We use the notation from Ridout et al. (1998) to introduce a ZIP. Inflated

models have often been described as mixture models, since, as presented above,

their zeros come from two different sources (Zuur et al. 2009). Observing a false

zero is a binomial process: we either observe a false zero with probability ω or a

zero from the Poisson process with probability 1− ω. Otherwise, the counts are

distributed as usual from a Poisson distribution with parameter λ. Combining

these results together gives the ZIP distribution:

Pr(Y = y) =

{
ω + (1− ω) exp(−λ), y = 0

(1− ω) exp(−λ)λy/y!, y > 0.

The parameters ω and λ can then be related to sets of covariates X and Z, with

parameters β and γ (Lambert 1992):

log(λ) = Xβ and log

(
ω

1− ω

)
= Zγ.

The EM-algorithm can then be applied to calculate estimates of β and γ (Lambert

1992; Ridout, Demétrio, and Hinde 1998). The two sets of covariates can be

completely separate or have elements in common; if they are the same, the model

can be simplified (Lambert 1992). It is quite possible that the covariates that

govern ω will be different to those that govern λ, or possibly just exhibit different

relationships. For instance, with the Cryptosporidium counts, we might well

expect the seasonality to be different in the two components: in β, the seasonality

would model the seasonal prevalence of Cryptosporidium in the environment; in
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γ, the seasonality would model when false zeros are more likely, such as at the

start and end of the year when labs are more likely to be closed.

Zero inflated distributions have been used for some time, both on ecological

data (for example Agarwal et al. (2002), Welsh et al. (1996), Gupta et al. (1996))

and in other contexts such as manufacturing (for example Xie et al. (2001),

Freund et al. (1999), Ridout et al. (1998), Lambert (1992)). However, there

have been few extended considerations of these distributions (Zuur et al. 2009).

Some mention is given in Cameron and Trivedi (1998), Hardin and Hilbe (2007),

with a strong practical introduction in Zuur et al. (2009) and some further detail

in Hilbe (2007). Software directly supporting these distributions is very limited.

In fact, Zuur et al. (2009) note that it is only recently that the different software

implementations have started giving similar results. One commercial package is

LIMDEP, available at http://www.limdep.com (Ridout et al. 1998); however it is

very expensive. Standard installations of R do not come with native support for

inflated distributions but packages that do provide this include VGAM (Yee 2007)

and pscl (Jackman 2008). A comparison of the different inflated distributions

and examples using pscl are given in Zeileis, Kleiber, and Jackman (2008).

To our knowledge, no exception reporting system has made use of zero inflated

models. These models present a natural choice for use in exception reporting

systems as these systems come to be applied more widely to regional data that

contains many zeros. As the software becomes more standard and reliable, this

should prove a rich and rewarding avenue for future work.

5.6.2 Modelling Inter-board Relationships

In Section 5.5.1, we saw a number of inter-board relationships that were con-

temporaneous. To fit such relationships really requires that the models for all

health boards are fit simultaneously. This is not possible using the modelling

approach adopted in this Chapter. However, a potential approach may be found

by adapting the one used in Shaddick and Wakefield (2002).

Shaddick and Wakefield (2002) present a spatio-temporal approach for mod-

elling the levels of four pollutants from eight monitoring sites, over three years,

simultaneously. They do this by using a hierarchical dynamic linear model. They

let Yspt denote the observed level of pollutant p at spatial location s on day t and

http://www.limdep.com
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assume:

Yspt = Xsptβ + θpt + ms + υspt,

where: υ represents measurement errors which are treated as independently and

identically distributed (iid) N(0, σ2
sp); ms is used to model the spatial effect of

being at site s; θpt is used to give temporal and pollutant dependence; β is a q×1

vector of coefficients; and Xspt is a 1 × q vector of regressors that can change

spatially and temporally, and can be pollutant specific. This gives the model for

the observed data.

Underlying this model there are another two models. The first of these

model the spatial-pollutant relationships. The collection of random effects mp =

(mp1, . . . ,mpS)′, p = 1, . . . , P arise from the multivariate normal distribution

(MVN):

mp ∼MV N(0s, σ
2
pmΣpm), (5.9)

where: 0s is an S×1 vector of zeros; σ2
pm is the between-site variance for pollutant

p; and Σpm is the S ×S correlation matrix. Elements of Σpm give the correlation

between sites. Different functions can be used to calculate appropriate values for

these correlations. Shaddick and Wakefield (2002) calculate the correlation using

a function of the distance between sites. This model is stationary.

Next, the temporal-pollutant model:

θpt = θp,t−1 + wpt, (5.10)

for p = 1, . . . , P , where: wt = (w1t, . . . , wPt)
′ are iid MVN with zero mean

and variance-covariance matrix ΣP . Within this matrix are the variances σ2
wp,

allowing each pollutant to have different amounts of temporal dependence. There

are P (P − 1)/2 covariance terms which can be used to model the relationships

between pollutants. This model structure produces a first order smoothing model,

similar to an AR(1) structure.

Shaddick and Wakefield (2002) then proceed to fit this model by using Monte

Carlo Markov Chain (MCMC) methods within the WinBUGS software (Spiegel-

halter, Thomas, Best, and Lunn 2005). Hyperpriors are required for the initiali-

sation of the MCMC methods – see Shaddick and Wakefield (2002) for details of

these.
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This model contains all the key elements of the models that we have fit in

this Chapter. If we just wish to model Cryptosporidium, then the above model

from Shaddick and Wakefield (2002) can be greatly simplified to modelling just

one ‘pollutant’. Then, Ys1t would denote the count of reported cases from health

board s on week t. The temporal-pollutant element of the model would deal

with some of the serial correlation within the counts. If this was not sufficient to

address all the serial correlation, elements such as past observations or a variable

based on Holt-Winters smoothing could be included in β. Alternatively, Equation

5.10 could be adapted to give an equivalent higher order of AR. Inter-board

board relationships would be modelled within Equation 5.9, through appropriate

covariance values in Σpm.

More generally, one could obviously extend this approach to modelling more

than one organism simultaneously. For instance, we might model all organisms

that relate to respiratory infection together. However, this systems presents one of

the largest deviations from the current system and would likely require significant

development. MCMC methods can be very computationally intensive, even with

contemporary computing power. Due to this, this approach may not be feasible.

However, this system does provide an elegant way of dealing with inter-board

relationships. Investigations would also be required to determine how easily such

models can be interpreted.



Chapter 6

Comparison of Regional

Cryptosporidium Exception

Systems

In Chapter 5 we develop two sets of models for forecasting the levels of Cryp-

tosporidium at the regional health board level. The first set use past-observations

in their models (Section 5.3) and the second set incorporate a Holt-Winters term

(Section 5.4). In Chapter 4 we describe the system developed in McCabe (2004),

that is currently used to monitor the national counts of Cryptosporidium (Section

4.2.2). Currently, the only complete option HPS has ready to monitor regional

counts would be to use this national system on the regional data. To compare

with this system, we develop two sets of uniform models (same variables in all

models) in this Chapter, based on those developed in the previous one. These

models are fit to data from 1988 to the end of 2005 and then used to produce

forecasts for 2006. These forecasts can then be used within an exceedance alerting

method to form exceptions for 2006. We compare the results of these systems,

with those that result from applying the system developed in McCabe (2004) to

the regional counts of Cryptosporidium. We find some evidence suggesting that

the uniform models developed here may be more suited to regional exception

reporting monitoring and consider the changes required for extending these sys-

tems beyond Cryptosporidium. However, it should be remembered throughout

the comparisons made, that we are comparing systems that have been tailored

186
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specifically to Cryptosporidium, against the very general system developed in

McCabe (2004); we expect some of the noted improvements to be due to this

tailoring.

6.1 Uniform modelling

6.1.1 Choice of Data

We fit the uniform models to data from 1988 to the end of 2005. Even though

we have data till the forty-fifth week in 2007, we will produce forecasts for 2006.

This results in forecasting for a whole calender year starting in January, which

seems most natural. For consistency with the modelling in the previous Chapter,

the simple exponential fitting will be applied from 1988 to the end of 2005 and

the GLMs will be fitted to data from 1989 to the end of 2005.

6.1.2 Variable Choice

We now develop two sets of uniform regional models: that is, within in each set,

the same set of variables are used in the model for each health board. One set

will include past observations and the other will include a variable based on sim-

ple exponential smoothing (SES). In the tailored models developed in Chapter

5, a number of different variables were used in each region. In each model we

only included those variables that contributed significantly to the model. When

developing uniform models, we choose variables that benefit the largest num-

ber of boards, and/or the largest proportion of the Scottish populations. The

choice with some variables is straight forward. For seasonality, nearly all regions

have four trigonometric harmonics fitted to them in Chapter 5 and so we include

four harmonics in each regional model. The zLen and pLen variables – those

that measure the run lengths of zeros and positive numbers respectively – are

only significant in a small number of the regional models, so both variables are

excluded. The choice with the linear trend is not so immediately obvious. Coef-

ficients of linear trend in the tailored models are very small – see Tables 5.5 and

5.10. However, the linear trend term takes some of largest values when compared

with the other variables, since it takes integer values that correspond to the week

number as counted from the start of the series in 1988, to its end nearly twenty
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years later; thus it takes integer values between 1 and 1040. This contrasts with

the trigonometric terms which take values between -1 and 1, and the other terms

which typically take small positive values. Thus, even though the linear trend

terms have very small coefficients, they have the potential to have a noticeable

effect on the calculated means since they take such large values at points. Given

the linear trend term is included within the models fitted to regions that contain

the largest populations – see Table 5.1 – we include it in our models here. When

the tailored models were fitted, we noted that there may be a linear trend in the

other regions that the models did not have the power to detect, due to the de-

creasing gradients being very small. Thus, including a linear trend seems unlikely

to degrade these models. However, including such a deterministic linear trend

in the system will necessitate the fit of the models being reviewed periodically.

For simplicity, we do not consider the inclusion of past outbreaks in the uniform

models. This means that the uniform models have no provision for dealing with

past outbreaks, in contrast to the ERS system which does (see Section 5.2).

So far, we have decided on variables that both sets of models will have in

common; both sets of models will include four trigonometric harmonics and a

linear trend term for all regions. One set of models will include the variable

based on SES smoothing. There is nothing remaining to decide for these models.

For the other models that include past observations, it remains to decide how

many past observations should be included in each regional model. The number

included in the tailored past observation models varied between zero and five (the

maximum number considered) – see Figure 5.11. In the tailored modelling, three

boards included five past observations in their models: Glasgow, Grampian, and

Lanarkshire. Since these three boards contain approximately forty percent of the

Scottish population (Table 5.1), so choose to include five past observations in the

uniform past observation models.

6.1.3 Fitted models

Thus, we have decided on the variables that will be included in our uniform

models. The coefficients of the models that utilise past observations, along side

four trigonometric harmonics and a linear trend term, can be found in Table 6.1,

with the summary statistics of these models given in Table 6.2. The parameters
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of the smoothing that forms the SES variables for use in the other set of models

are shown in Table 6.3. Coefficients of the models that include this variable

alongside the four harmonics and linear trend are shown in Table 6.4, with their

summary statistics given in Table 6.5. Given we looked in depth at the similarities

and differences between the regional models in Chapter 5, we do not do so here.

However, it is interesting to note that the SES models have a smaller AIC than the

corresponding past observation models in nine of the twelve regions, suggesting

better fitting models.

6.2 Systems Comparison Methodology

6.2.1 Choice of data

We fit the uniform models to data from 1988 to the end of 2005. By the nature

of the system in McCabe (2004), it will only use data from 2001 – 2005, even

though we provide it with data from 1988.

6.2.2 Producing Forecasts

To produce forecasts for the past observation models is straight forward. We fit

the models to data from 1988 to the end of 2005. These fitted models are then

used to form predictions for the fifty-two weeks of 2006; this is done easily from

within R by using the predict.glm function. This function takes new values

of variables in a GLM and calculates the mean that results from these values

(Faraway 2006). Thus, we calculate the value of the variables used in the past

observations models for each week in 2006 and then pass them to predict.glm

function to find the corresponding forecasts for each week.

As noted previously in Section 5.4, fitting the SES models is a slightly more

complex two-stage process. First, we must find the SES one-step ahead predic-

tions for 2006. To do this, we first fit SES models to data from 1988 to the end

of 2005 by using the HoltWinters function. From these models, estimates of

the smoothing parameters α are found by minimising the squared one-step ahead

prediction errors; we denote these estimates α̂. Recall that in the Holt-Winters

models considered in Section 5.4.1, we found that simple exponential smooth-

ing (with the one parameter α) was the best form of exponential smoothing for
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Table 6.1: The GLMs fitted in Section 6.1 to the Cryptosporidium data in the
different regions, utilising past observations to deal with serial correlation. The tables
give the coefficients of the variables and their associated standard errors in brackets.
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Region N
u
ll

D
ev

ia
n
ce

R
es

id
u
a
l
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ev
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ce

E
x
p
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ed

D
ev
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ce

%
D

ev
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n
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E
x
p
la

in
ed

N
u
ll

D
o
F

R
es

id
u
a
l
D

o
F

U
se

d
D

o
F

A
IC

θ θ
S
E

Argyll & Clyde 1129 904 225 20 883 869 14 2827 1.377 0.145
Ayrshire & Arran 765 668 98 13 883 869 14 1616 0.825 0.138
Borders 717 596 121 17 883 869 14 1294 1.097 0.264
Dumfries & Galloway 1041 820 221 21 883 869 14 2009 1.920 0.357
Fife 752 668 84 11 883 869 14 1529 1.012 0.195
Forth Valley 790 674 116 15 883 869 14 1716 0.754 0.110
Glasgow 1271 928 343 27 883 869 14 2824 1.718 0.201
Grampian 1229 982 247 20 883 869 14 3587 1.556 0.137
Highland 962 805 158 16 883 869 14 2022 1.459 0.239
Lanarkshire 1239 939 300 24 883 869 14 3199 1.603 0.154
Lothian 1284 974 310 24 883 869 14 3579 1.606 0.142
Tayside 1025 811 214 21 883 869 14 2284 1.187 0.141

Table 6.2: Summary statistics from the negative binomial GLMs utilising past ob-
servations fit in Section 6.1. DoF = Degrees of Freedom. SE = Standard Error.

Region α
Argyll & Clyde 0.2001
Ayrshire & Arran 0.1641
Borders 0.0382
Dumfries & Galloway 0.2053
Fife 0.0847
Forth Valley 0.1065
Glasgow 0.2567
Grampian 0.1793
Highland 0.1264
Lanarkshire 0.2358
Lothian 0.2235
Tayside 0.2527

Table 6.3: The smoothing parameters found by the HoltWinters function for each
region when SES is applied in Section 6.1 to the regional counts of Cryptosporidium.
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Table 6.4: Coefficients of the GLMs fitted in Section 6.1 to the Cryptosporidium
data in the different regions, utilising SES to deal with serial correlation. The tables
give the coefficients of the variables and their associated standard errors in brackets.
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Argyll & Clyde 1126 904 223 20 883 873 10 2821 1.371 0.144
Ayrshire & Arran 763 667 96 13 883 873 10 1610 0.816 0.135
Borders 714 598 116 16 883 873 10 1291 1.081 0.258
Dumfries & Galloway 1039 819 220 21 883 873 10 2001 1.911 0.354
Fife 738 662 75 10 883 873 10 1528 0.944 0.174
Forth Valley 774 670 105 14 883 873 10 1716 0.713 0.101
Glasgow 1254 925 329 26 883 873 10 2824 1.661 0.191
Grampian 1206 976 231 19 883 873 10 3590 1.498 0.129
Highland 957 803 154 16 883 873 10 2017 1.431 0.232
Lanarkshire 1226 939 287 23 883 873 10 3200 1.567 0.149
Lothian 1269 971 298 23 883 873 10 3579 1.568 0.136
Tayside 1001 807 194 19 883 873 10 2290 1.115 0.128

Table 6.5: Summary statistics from the negative binomial GLMs with SES fit in
Section 6.1. DoF = Degrees of Freedom. SE = Standard Error.

our purpose. To force the HoltWinters function to carry out simple exponential

smoothing, we manually specify the parameters β and γ as zero. We then fit

a SES models to data from 1988 to the end of 2006, manually specifying the

smoothing parameter α as α̂. From these models we can extract the values of

SES (the variable in the SES models that are the simple exponential smoothing

one-step ahead predictions) that would be calculated had the system been run in

real time during 2006. Normally, the predictions could be found more easily by

using the predict.HoltWinters function. The other variables in the SES GLMs

can be calculated directly for 2006. We then have all the information required to

proceed as with the past observation models: we use predict.glm to calculate

the corresponding weekly forecasts from the appropriate variable values for each

week.

To obtain forecasts from the system developed in McCabe (2004), we were

given a copy of its coded implementation in use at HPS. We shall refer to this

system as the Exceedance Reporting System (ERS). This implementation has

been written in R. We apply the system to the regional counts of Cryptosporidium.

The system is reasonably straight forward to use, requiring a separate text file for

each set of counts that the system is to be applied to; for an example of such a file

see Figure 6.1. We create a suitable text file for each health board (excluding the
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Cryptosporidium Argyll & Clyde 2 1988 1

Cryptosporidium Argyll & Clyde 2 1988 2

Cryptosporidium Argyll & Clyde 2 1988 3

Cryptosporidium Argyll & Clyde 0 1988 4

Cryptosporidium Argyll & Clyde 0 1988 5

Cryptosporidium Argyll & Clyde 0 1988 6

Cryptosporidium Argyll & Clyde 0 1988 7

Cryptosporidium Argyll & Clyde 0 1988 8

Cryptosporidium Argyll & Clyde 0 1988 9

Cryptosporidium Argyll & Clyde 0 1988 10

Figure 6.1: A small section of a suitable data-file that can be used by the Exceedance
Reporting System (ERS), which is described in Section 4.2.2. The first two columns
specify the disease and subtype that the counts pertain to; we use the sub-type to
record which region the counts come from. The third column gives the number
of reported cases of Cryptosporidium reported for that year and week combination,
recorded in the fourth and fifth columns respectively.

island health boards) and then apply the ERS to obtain forecasts and exceptions.

Results are output in further text files, which we re-read back into R to allow

easy comparison between the forecasts of this system and the uniform models.

No substantive changes were made to the system other than to adapt its output

to ease analysis.

6.2.3 Producing Exceptions

Using the uniform models, we apply an exceedance alerting method to the fore-

casts of each system. This creates exceptions for 2006 and allows comparison with

the exceptions given by the ERS. McCabe (2004) found that this method gave the

best results for the national monitoring of organisms. If either set of the uniform

models were adopted by HPS, we would expect them to ‘slot into’ the present

system, replacing the forecast model developed in McCabe (2004) when dealing

with Cryptosporidium. Thus, the exceedance alerting method would be applied

to them and so we compare the three sets of models using this alarm method. In

Section 6.4 we consider further the implications of the type of alerting method

used.
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As was adopted in McCabe (2004), we extend the exceedance reporting method

to have multiple stages, similar to the monitoring system used in Allardice,

Wright, Peterson, and Miller (2001). Recall the general principle of an exceedance

reporting system: we find an expected distribution of counts for the present week;

from this, an upper quantile that corresponds to a particular p-value is found and

if the observed counts exceed this quantile an exception is raised; thus, such ex-

ceptions can also be referred to as exceedances. We use p-values of 0.01 and 0.1,

so that if an observed count is larger than the quantile corresponding to 0.01, a

‘red’ exception is raised; if the observed count is smaller than this quantile, but

larger than the quantile corresponding to a p-value of 0.1, an ‘amber’ exception is

raised; otherwise the organism is considered in the ‘green’ state and no exception

is reported.

With the uniform models developed here, finding the quantiles is straight

forward: these models give the forecasted means for 2006, along with values

of θ (the negative binomial dispersion parameter). These values are then used

as parameters in the negative binomial quantile function qnbinom, to calculate

the values used for comparison to determine if a reported count should raise an

exception. However, a complication arises because we are generally dealing with

very low counts; thus, the fitted distributions have most of their probability in

the very small integers (obviously, since we are dealing with counts, they are

either zero or a positive integer). For instance, consider a negative binomial

distribution X, with mean 0.6 and dispersion parameter 0.25. These values are

chosen for clarity of demonstration but are not atypical for the regional models.

Part of the probability function f(x) (f(x) = P (X = x)) is shown in Figure 6.2.

Here we see that most of the probability is ‘contained’ between zero and eight,

with higher values having very small probabilities. Now, consider the cumulative

distribution function F (x), which is defined by F (x) = P (X ≤ x). When we

use the quantile function qnbinom to find the amber exceedance limit, we seek

the largest x such that F (x) = 0.9 (since we are using a p-value of 0.1 for this

level); this is shown visually in Figure 6.3. With this particular distribution, two

is shown to be the required value. However, the p-value linked with two is 0.134

(P (X ≥ 2) = 1−P (X < 2) = 1−f(1)−f(2) = 1−0.736−0.130 = 0.134). More

generally, this means that by using qnbinom directly we will have more exceptions

than we would expect for our chosen reporting levels: here, for example, we seek
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Figure 6.2: The probability densities for a negative binomial distribution X with
mean 0.6 and dispersion parameter (θ) 0.75. Since we are dealing with very small
counts at the regional levels, much of the probability is contained in the small integers.

a reporting level related to p-value of 0.1, but rather find one related to a p-value

of 0.13. We choose to add one to the values returned by qnbinom, so that we

always have corresponding p-values smaller than those sought. We would expect

this to reduce the false reporting rate. This more conservative regional reporting

rate is likely sensible, since we have increased the number of time series to be

monitored (one national time series, now with an additional twelve regional ones

(excluding the islands)). As McCabe (2004) notes, if an exception rate is too high,

users will start to disregard an exception system. In general, with the potential

of many more regional series to be monitored, and thus more exceptions to be

investigated, reducing the number of exceptions will hopefully reduce user fatigue

towards the system.

The output of the ERS system automatically indicates any exceptions. We

alter the code to return quantiles corresponding to ‘amber’ and ‘red’ reporting

levels. However, the underlying reporting procedures remain unchanged. Also

note that McCabe (2004) includes a heuristic in his system, where any exception

is ignored if there are fewer than five cases in the previous four weeks.
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Figure 6.3: A graph of part of the cumulative distribution function for a negative
binomial distribution X with mean 0.6 and dispersion parameter (θ) 0.75. The yellow
line gives a graphical representation of what happens when we use the quantile func-
tion qnbinom to calculate the quantile for ‘amber’ alerts: with a p-value of 0.1, we
find the suitable quantile is 2 (orange arrow). However, the p-value for 2 (P (X ≥ 2))
is 0.13 (blue arrow).
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6.3 Results from Comparisons of the Systems

Our primary purpose in comparing these systems is to look for differences in

how they function as exception reporting systems. Thus, in Section 6.3.2, we

compare the exceptions raised under each system. However, an essential step of

an exception reporting system is forecasting, so we first focus on the forecasting

abilities of each system in the next Section.

6.3.1 Forecast Errors

Forecast error is generally defined as the difference between a forecast and the

observed value. Thus, for each health board, we calculate forecast errors (one

for each week of 2006) from each of the three systems. To compare these sets of

errors we proceed as in Burkom (2007): for each set of forecast errors, within each

region, we find the median absolute value and the median absolute percentage

error. These values are summarised in Table 6.6. It is important to remember that

we are dealing with very small counts at the health board level; many regions do

not have any weeks with more than four reports and many weeks have no reported

cases. This means that many percentage errors cannot be calculated because the

corresponding observed value is zero and so calculating the percentage would

involve dividing by zero.

The median absolute forecast errors suggest a number of conclusions. The

SES models and past observation models tend to give very similar forecast errors,

suggesting they give similar forecasts. Both the ERS system and the SES models

give the smallest forecast errors in six of the health boards. When the ERS gives

the smallest forecast error in a region, the error tends to be close to that of the

error in the other two systems. In Glasgow and Lothian, the SES and the past

observation error is a third smaller than the ERS. These are the most densely

populated health boards and so we might expect them to have the highest levels

of serial correlation; an infection of Cryptosporidium is more likely to be passed

between members of their densely packed populations and so stay ‘active’ for

a longer time over consecutive weeks, increasing serial correlation. Thus, the

SES and past observation models may give these relatively large improvements

since they have elements to model serial correlation unlike the ERS. Ayrshire and

Arran is the only health board where the ERS does (relatively) much better than
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the other systems; its predictions and observed counts are shown in Figure 6.6.

The observed values for 2006 seem quite ‘spiky’ – they jump up to one or two

and then back to zero quickly. Since the past observation and SES models have

terms in them for serial correlation, they will adapt more slowly to these spikes,

causing larger forecast errors. There is a weak suggestion that the ERS tends to

give the smallest errors in those boards to the South, West and North, while the

SES models do better in the South-East and Glasgow. If we recall Figure 5.22,

we note that there seems to be most interaction in the counts of Cryptosporidium

between those boards in the Southeast and Glasgow, possibly related to higher

levels of commuting between these boards. This may increase serial correlation

and so be better modelled by the SES and past observation models.

There are not many percentage error values to compare in Table 6.6 because of

the problem noted above about dividing by zero. At first glance these percentage

errors can seem very large; however, this is primarily because we are dealing with

such small counts. A forecast error of only one can often give a percentage error

of fifty percent or more. In the four boards that we can compare, we find that

the past observation and SES models give smaller percentage errors. Once more,

our two systems appear to have similar results.

Another measure used to compare errors is the root mean square (rms) error

of the forecasts: √∑52
t=1 (ft − ot)

2

52
,

where ft and ot are the forecast and observed counts respectively for week t.

A graph comparing the different rms errors of the models for each board can be

found in Figure 6.4. Squaring the errors means that larger errors will be penalised

more than smaller errors. Generally, the past observation and SES models always

do better than the ERS by this metric. In some cases the ERS is quite a bit worse

than the other systems – particularly in Tayside. Again, the past observation and

SES models tend to give similar results. Fife is the only board where the ERS

does better than the other models, but the difference is only slight. By the rms

error metric, the past observation and SES models do better in Ayrshire and

Arran.

Combining these comparisons – the median analysis and then the rms error

comparison – suggest that the past observation and SES models are somewhat
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poorer than the ERS at predicting values close to zero. This is sensible when

we consider that the seasonality in the past observation and SES models: they

model seasonality by the use of trigonometric terms and so the resulting means

from these models can never get to zero. The ERS only has a linear trend and a

year factor in its model (see Section 4.2.2) and so can more easily get closer to

zero. Since any small predicted mean will lead to a mode at zero, this does not

present much of a problem. If our primary focus were on forecasting, it may make

more sense to consider modal forecast error. However, the ERS does not allow

for easy calculation of a mode. The rms error graph also suggests that the past

observation and SES models perform better at predicting non-zero values. These

factors combine to suggest that the past observation and SES models give the

best forecasts, with little difference between these two systems. These are similar

to results in Burkom, Murphy, and Shmueli (2007), Burkom (2007). The lack of

much difference is reasonable: both sets of models address the same modelling

elements, if in slightly different ways.

6.3.2 Exception Comparisons: Using the Systems for Ex-

ception Reporting

We now turn to considering the number of exceptions raised under each system

when an exceedance alerting method is used. The systems are taken in pairs

and for each health board we record the number of ‘amber’ and ‘red’ exceptions.

In each comparison pair we also record how many weeks have exceptions under

both systems and how many weeks only have exceptions under either one of them.

These values are recorded in Tables 6.7 (ERS and past observation system), 6.8

(ERS and SES system) and 6.9 (past value and SES system). We also show

the results of the three systems in Figures 6.5 to 6.16: each Figure shows the

three systems applied to the counts for 2006 for a particular healthboard, with

observed, predicted and exceedance values for each system.

We first consider the ERS and past observation system (Table 6.7). The past

observation system generally raises fewer or equal numbers of exceptions in all

but two boards; in these two boards, the past observation system only raises one

further exception. Very few, only three, ‘red’ exceptions are raised by the past

observation system. This contrasts with the ERS where quite a large number of



CHAPTER 6. CRYPTOSPORIDIUM SYSTEMS COMPARISON 202

Root Mean Squared Forecast Error

Tayside

Lothian

Lanarkshire

Highlands

Grampian

Glasgow

Forth
 Valley

Fife

Dumfries &
 Galloway

Borders

Argyll &
 Clyde

Ayrshire &
 Arran

1.0 1.5 2.0

SES Models
Past Observation Models
ERS System

Figure 6.4: The root mean squared forecast error for each of the systems within
each of the health boards for 2006.
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‘red’ exceptions are raised; indeed, in three boards more ‘red’ exceptions are raised

than ‘amber’ exceptions. This latter quality seems odd and is likely to increase

user fatigue towards the system; it seems more intuitive that there should be a

good deal fewer ‘red’ than ‘amber’ exceptions. The ERS system would raise many

more exceptions if it did not use the heuristic of ignoring exceptions when there

have been fewer than five reports in the previous four weeks. This is particularly

true for the first fifteen or so weeks of 2006, as shown in Figures 6.6, 6.9, 6.14,

and 6.16. However, this heuristic fails when it comes to Glasgow because of

Glasgow’s higher average reporting rate: see Figure 6.11. In the first nine weeks

of 2006 there are six ‘red’ exceptions. However, because of the more consistent

seasonal modelling in the past observation system, no exceptions are raised during

this period. Visually inspecting the reported cases for this period suggests that

the treatment of seasonality in the past observation models is more consistent;

the counts are not particularly large for Glasgow. This demonstrates some of

the problems of using set numerical level rules rather than directly modelling

elements. Consecutive exceptions are also less likely with the past observation

system because of the use of past observations in the models to remove serial

correlation: when the count is high one week it is expected to be high the next

week. This is perhaps seen most clearly with Glasgow in Figure 6.11, where the

ERS has five consecutive exceptions towards the end of 2006. Users of the past

observation system would need to be clear on the effect this would have; if an

‘amber’ exception is raised, the system is less likely to escalate to a ‘red’ exception

than with the ERS. Thus, ‘amber’ exceptions from the past observation models

should be investigated more thoroughly; however, this greater level of effort is

offset by their being fewer exceptions under these models. By implication, this

means that ‘red’ exceptions also increase in epidemiological significance.

Next, we turn to comparing the ERS and the SES models (Table 6.8). Many

of the above comments also apply between these two sets of models. The SES

models raise fewer exceptions than the ERS and of the exceptions that it does

raise, a very small number of them are ‘red’. The SES models also deal better with

the beginning of the year due to how seasonality is dealt with in these models.

It remains to compare the past observation and SES models (Table 6.9). The

total number of exceptions raised by both of these systems is nearly equal at

thirty-four with the past observations models and thirty-six with the SES mod-



CHAPTER 6. CRYPTOSPORIDIUM SYSTEMS COMPARISON 204

els. The number of ‘red’ exceptions raised is very small, with three raised by

past observations and two by SES models. Nine boards had equal numbers of

exceptions and the majority of these exceptions occurred during the same weeks.

When we consulted the HPS weekly reports, we found no outbreaks reported

for 2006. However, in Fife during week forty-two, there are twelve reported

cases of Cryptosporidium (see Figure 6.9). This is about twenty-five times larger

than the average weekly count of cases for Fife and so is strongly suggestive

of an outbreak, or at least an exception that should be investigated further.

It is reassuring that all three systems report a ‘red’ exception for this week.

Unfortunately, there are no other particularly obvious high counts which may

raise exceptions and allow for further comparison between the systems.

We noted in Section 6.2.3 that the way we calculate the p-values in the past

observation and SES models makes them more conservative than the ERS, and

thus they produce fewer exceptions. However, a number of the ‘extra’ exceptions

in the ERS are caused by the heuristic rule (ignoring any exception if there have

been fewer than 5 cases reported in the previous four weeks) failing in certain

cases. In the past observation and SES models, this heuristic is not required

because of the more precise modelling of seasonality by trigonometric terms,

which are better suited to capturing the seasonal pattern of Cryptosporidium

throughout the year. This can be clearly seen in Figures 6.5 to 6.16, where the

envelopes formed by the exceedance limits are generally much more smooth and

consistent under our models compares to ERS. Further, the use of modelling

elements to remove serial correlation reduces the likelihood of consecutive runs

of exceptions; thus, when an exception occurs, it is important to consider it

more carefully than under the ERS. As noted previously, this more conservative

approach is justified when monitoring the greater number of regional time series.

There are few differences to inform the choice between the past observation and

SES models. However, the SES models may be preferred due to their more

automatic design (the past observation models require a choice to be made about

the number of past observations to included in their models).
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Table 6.7: Exceedances comparisons for ERS and past observation models.
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Table 6.8: Exceedances comparisons for ERS and SES models.
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Table 6.9: Exceedances comparisons for past observation and SES models.
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6.4 Conclusions & Future Work

Before our concluding comments about the comparisons between the uniform

models and the ERS system, we reiterate an important caveat noted at the be-

ginning of this Chapter: we are comparing systems that have been tailored specif-

ically to Cryptosporidium to the very general ERS system, which was designed

to be applicable for the exceedingly wide range of organisms monitored by HPS.

Thus, it is not surprising that we find the systems we have developed, seem to be

better suited to monitoring Cryptosporidium. Also, note that the ERS system has

procedures for dealing with past outbreaks, while the other systems just ignore

them (see Section 6.1.2). It is better to consider the comparisons as highlighting

possible benefits of adopting elements of the models developed in this thesis in

regional reporting systems.

For Cryptosporidium, the uniform models developed here seem more suited to

forecasting reported cases rather than the ERS. In the ERS, seasonality is dealt

with through the choice of base-line data; to produce a forecast for week t it

will use the weeks corresponding with t − 3 to t + 3 in the previous five years.

By using weeks around week t the fitted regression model is hoped to have a

level that is about right for that time in the year. Unfortunately, at the regional

level there are many zeros in the data which can obscure the seasonal pattern.

By using trigonometric terms, as in the past observation and SES models, it

is easier to capture a more representative seasonal pattern. First, we fit the

seasonal pattern from a much longer period of data – eighteen years. Also, with

the trigonometric modelling, all weeks contribute to fitting the seasonal pattern,

as opposed to a specific subset of weeks from previous years. This mitigates the

effects of having many zero-counts obscuring the underlying seasonal pattern.

However, as demonstrated in Burkom (2007), having a non-adaptive regression

model tends to give among the poorer forecast errors; we resolve this through

the inclusion of terms in the past observation and SES models to address serial

correlation. This results in forecasts that are generally comparable to the ERS,

and often better, reducing the forecast error noticeably, particularly in densely

populated areas (see Section 6.3.1).

The exception comparison using an exceedance alerting method in Section

6.3.2 also suggests that the past observation and SES models are more suited to
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monitoring Cryptosporidium. This comparison may not be entirely fair given the

way we have chosen to find the exceedance limits in the past observation and

SES models; note the comments about them being more conservative in Section

6.2.3. However, we note that this is a reasonable step given the small counts we

have at the regional health board level. We observe, perhaps unsurprisingly, that

more exceptions are raised by the ERS than by the other systems. For a number

of health boards the ERS also gives many more ‘red’ exceptions than ‘amber’

exceptions, which seems counter intuitive. A number of these exceptions are

caused by the ERS model performing poorly at the start of the year when counts

are very low. In the regions with low average counts, this problem is resolved

through the use of the heuristic where exceptions are ignored if there are fewer

than five counts in the preceding four weeks before the forecast. However, this

heuristic fails when applied to boards with larger average counts, such as Glasgow.

This heuristic is not required with the past observation and SES models, as the

seasonality is captured sufficiently well by their trigonometric terms to forecast

suitably low predictions at the start of the year.

A point particularly worthy of note is the transformation that is required by

the ERS to normalise the data for producing its exceedance score – see Section

4.2.2. A two-thirds power transform is applied across all organisms, as McCabe

(2004) found it to be the best general transform for achieving normality. The

application of one transform uniformly across all organisms is dubious, but the

application to small counts is even more so. As counts become smaller, as we

expect at the regional level, they will become increasingly skew and so harder to

normalise. It is much more appropriate to model then with the negative binomial

distribution, as we do with the past observation and SES models. By doing

so, we fit a proper distribution to each times series, rather than fitting a quasi-

Poisson distribution and then having to apply a transform to achieve normality

for probability calculations as in the ERS. Thus, each time series will have its own

specific better fitting distribution. Even if the past observation and SES models

are not applied in their entirety, we would strongly encourage future work to

investigate the adoption of the negative binomial distribution into the ERS. This

point is reinforced when we consider that the majority of organisms monitored

by the ERS having very small counts (McCabe 2004). As we noted in Chapter

5, further improvements may also be found by using ZIPs – see Section 5.6.1.
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These factors lead us to recommend the SES models as the best form for re-

gionally monitoring Cryptosporidium. The ERS is a good general purpose mon-

itoring system but has deficiencies which are not best suited to regional counts.

The past observation models are similar in their quality of forecasts to the SES

models, but the SES models are the most general with the potential for easy

automatic adaption to other organisms. Contemporary computing power is such

that the extra step of model fitting required in the SES models for producing

the exponential smoothing forecasts is of very little concern. The combination of

exponential smoothing and a regression model allow for the combination of the

advantages of both modelling tools. Serial correlation can be dealt with by the

smoother. The regression model allows for a suitable distribution to be fitted

easily and other variables to contribute towards prediction. For instance, holiday

effects could be easily included in the regression model, which cannot be done

easily with a simple exponential smoothing prediction (a noted problem (Burkom

2007)). A more complex model could be developed to address these elements si-

multaneously, but these separate elements are robust and more easily explainable

to non-experts.

A good first direction for future work would be to apply the SES models

to the other organisms that HPS asked us to consider modelling regionally (Sec-

tion 4.2.4). Some of these organisms under go large step changes in reporting level

and so we would need to investigate the effect this would have on the models.

It is possible that the SES term would adapt sufficiently well, allowing for more

years of information to be included in the model to inform the seasonal pattern.

Alternatively, models could be fitted to data after the step-change. It is likely

that fewer trigonometric harmonics would be required for modelling seasonality in

these other organisms; recall that it is only because we are modelling two strains

of Cryptosporidium that its counts exhibit bi-modal seasonality and so requires

four trigonometric harmonics (see Section 4.3). In the case of MRSA, we may

find that it is not very seasonal due to the organism primarily being a hospital

acquired infection. However, including terms to address serial correlation may

well be very fruitful with MRSA, since there are likely to be lots of outbreaks of

related cases causing a good deal of serial correlation. Through modelling these

organisms it will be interesting to see if the best form of exponential smoothing

is always simple exponential smoothing, or if a more complex form is better.
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The extension of the SES models to other organisms would also permit a fairer

comparison with the ERS system to be carried out. An even more equitable

comparison would result if a common form of the SES model was applied to all

the organisms considered. For instance, a good starting form for the general

model might be to include the following variables: an SES term (see Section 5.4.2

for a reminder of this term’s purpose); two trigonometric harmonics to capture

seasonality (most seasonal patterns are likely to be uni-modal, in contrast that of

Cryptosporidium); and a linear trend term. We would hope, as was found with

Cryptosporidium, that such a system would better model regional seasonality and

serial correlation than the ERS system, hopefully leading to better surveillance

qualities. With Cryptosporidium, we found evidence of few outbreaks and those

that were present seemed to have little effect on the models developed. As we

consider other organisms, we are likely to come across more outbreaks. It will be

important to investigate how such outbreaks affect the models. We may find that

it is better to have some automatic approach for dealing with outbreaks, such as

the one adopted by the ERS system (see Section 5.2).

It may be interesting to investigate the choice of alerting method. We have

chosen to apply exceedance alerting in this chapter since it is the the method in

place at HPS and the one that the ERS is programmed to apply. As Burkom

(2007) notes, exceedance alerting is best suited to monitoring data for ‘spiked’

increases. Of the outbreaks we have come across reported in the HPS weekly

bulletins, this seems a reasonable choice. As McCabe (2004) notes, it is also one

of the more timely methods, important for combating point sources of infection.

However, it may be interesting to investigate the use of CUSUM charts. Since

the SES and the past observation models are adaptive, it is quite conceivable that

they would miss slow increases in reporting rates. The use of CUSUM charts,

possibly in addition to an exceedance method, would reduce this risk as they are

better suited for picking up small changes (Burkom 2007). The CUSUM charts

might have to be monitored by more statistically expert individuals, but since

they would be monitoring for smaller and slower changes, they are unlikely to

need to be monitored as closely or as frequently as the exceedance alerts. Be-

yond this, future work could look at addressing the relationships between health

boards. Modelling the different organisms at the health board level would pro-

vide opportunities to investigate if other organisms exhibit strong and/or similar
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correlations between regions. If they do, forecasts may be improved by modelling

these relationships as suggested in Section 5.6.

We may also consider future work which departs further from these consid-

erations. It might be interesting to investigate if modelling a slightly different

quantity gives informative results for surveillance. Instead of looking at just the

identified cases, of say, Cryptosporidium, we might consider this as a proportion

of all lab tests (solely for Cryptosporidium or in general). This may be more

representative of the natural prevalence of the organism, since, if more tests for

an organism are being performed, we expect more reported cases. This assumes

this data can be obtained by HPS; it may present an unreasonable burden on

the microbiology labs to expect them to report all lab tests, including the nega-

tive ones. A further, separate, approach may be to investigate the use of modal

forecasts for surveillance.



Chapter 7

Monitoring Mortality: Modelling

Totals of Recorded Deaths

During 2009 a new strain of influenza emerged which came to be known as swine

influenza A (H1N1), or simply ‘swine flu’ (though naming conventions differ

slightly (World Health Organization 2009b)). This new strain is thought to have

developed from viruses found among swine, resulting in its given name (Smith

et al. 2009). The sub-type of swine flu is not a new one among previous human

flu infections. However, the structure of the new virus is sufficiently different

from previous strains that there were strong concerns that large proportions of

the human population would not be resistant to infection (particularly among

the young) (Centers for Disease Control and Prevention 2009). These fears were

realised when, after the first reported cases in April 2009, swine flu was declared

to be a global pandemic in mid-June 2009 by the World Health Organization

(Centers for Disease Control and Prevention 2009; BBC 2009). Generally, swine

flu causes mild symptoms in most reasonably healthy adults (World Health Or-

ganization 2009a). However, swine flu has concerned the medical community and

the general public at large because of its very contagious nature and the limited

efficacy of vaccines in preventing infection by this new strain (World Health Or-

ganization 2009a; World Health Organization 2009c). With this threat to public

health and general public concern, HPS responded by increasing surveillance of

flu related conditions and other appropriate information streams within Scotland.

This intensifying response by HPS is in line with health agencies around the

world. Systems more usually applied to seasonal flu were monitored more closely.

225
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For example, GP consultation rates for influenza like infections are collected each

day. Exceptions relating to the colds & flu syndrome raised by the NHS24 Ex-

ceedance Reporting System are monitored closely (see Chapters 2 and 3). The

proportion and location of calls to NHS24 are also monitored for other changes

and clustering resulting from the progress of swine flu. Information from these

and other such surveillance systems are then summarised and emailed daily within

HPS. If the surveillance system implies some action should be taken, then it can be

taken in a timely fashion. Each week this surveillance information is summarised

alongside other medical information to produce a public situation report, used to

brief the Scottish public and government about the state of swine flu within Scot-

land (for an example, see Health Protection Scotland (2009b) and for more detail

about the surveillance systems used, see Health Protection Scotland (2009a)).

Human fatalities are among the worst outcomes for any public health threat.

To reassure the public and to allow for the potential detection of swine flu be-

coming more lethal, HPS asked us to develop a statistical system for monitoring

the daily number of deaths occurring in Scotland. We present that work in this

Chapter and the next. Presently this system monitors all causes of death, while

future work may investigate monitoring sub-categories in causes of death (for ex-

ample, all of those deaths attributable to a flu related illness). However, detecting

all deaths relating to influenza is not straight forward: deaths caused by influenza

are often not recorded as influenza-related (Zucs et al. 2005). For this reason,

a number of systems prefer to monitor deaths from all causes, as a metric for

the severity of influenza deaths (this point is discussed further in Reichert et al.

(2004), with examples of such systems in Zucs et al. (2005), Choi and Thacker

(1981a), Serfling (1963)). Various work has been done to further elucidate the

relationship between all cause mortality and the number of deaths caused by in-

fluenza (for instance, see Simonsen et al. (1997) and Choi and Thacker (1981b)).

We consider this point more closely in the next Chapter; there we consider which

alarm method to use with the developed models to detect potentially unusually

high levels of deaths occurring and consider how to address the delay in the

reporting of deaths. This Chapter focuses on the development of the models

used to predict the numbers of deaths. We begin by considering a model for all

deaths that is based on a Serfling model (Serfling 1963) and then use a series of

Generalized Additive Models which more closely capture the Winter seasonality.
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7.1 Death Data: Exploratory Analysis

Our data on deaths comes from the General Register Office for Scotland (GROS)

(General Register Office for Scotland 2009a). Among a number of different func-

tions, they are responsible for recording events such as births, deaths, marriages,

civil partnerships and adoptions that occur in Scotland (General Register Office

for Scotland 2009b). Through HPS, we were provided with access to the details

of deaths that were registered between 1nd October 2006 and 14th May 2009. For

each death reported, we have the age (at time of death), sex, date of registration

and date of death, giving 145,618 records. It is important to note the difference

between the date of death and the date of registration: when a death occurs there

is often a delay in the death being reported. The delay can be caused by a number

of factors, such as the deaths occurring at the weekend, when most registrars are

closed, making it much harder to report deaths at this time. The reporting delay

distribution of deaths and their cumulative frequency are shown in Figure 7.1.

Most deaths (34%) are reported the day after they occur and nearly all deaths

(99%) are reported within fourteen days of their occurrence. We wish to model

the number of deaths that occur each day and so will focus on using the date of

death for aggregations of suitable totals. However, the number of deaths recorded

for the last two weeks within the data-set will be under-represented, as we expect

a substantial number of the deaths occurring between April 30th and May 14th

2009 to be missing. Thus, in the modelling in this Chapter, we only fit models

using records with a date of death between 1st October 2006 and 29th April 2009,

during which 143,514 deaths are recorded as having occurred.

To have a timely monitoring system, it is necessary to find some way of ‘cor-

recting’ for the delayed reporting that primarily occurs within the last two weeks

of death data. If we do not, then we will only be able to have confidence in com-

parisons between the levels of reported deaths and the predicted levels for two

weeks previously. This is not at all desirable when trying to inform the public

about the levels of deaths occurring in a timely fashion. In Chapter 8, we propose

one approach for correcting the under-reporting. In this Chapter, we focus on

developing the models that will be used for prediction within this the mortality

monitoring system.
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Figure 7.1: The delay distribution (left axis, black elements) associated with the
reporting of deaths to GROS and their cumulative frequency (right axis, red elements).
Most deaths (over 99%) are reported within fourteen days of their occurrence.
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Figure 7.2: The total deaths occurring in all of Scotland between 1st October 2006
and 29th April 2009.
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Mon Tues Wednes Thurs Friday Sat Sun
Mean Deaths 152.82 151.73 152.10 153.72 153.19 153.16 149.74

Table 7.1: The mean number of deaths for each day of the week, recorded as taking
place between 1st October 2006 and 29th April 2009.

The total number of deaths for each day of the period under consideration are

shown in Figure 7.2. During this time, there is a mean of 152 deaths per day, with

a minimum of 105 deaths and a maximum of 244 deaths. The daily total of deaths

is highest during Winter, particularly at the end of year/new year period. This

pattern has been noted by others as commonly occurring in developed countries

with temperate climates (Reichert et al. 2004). A number of theories have

been suggested for this peak in mortality during the Winter season, with among

them: mortality having an inverse relationship with temperature (Donaldson and

Keating 2002); hours of sunlight affecting immune strength in humans (Dowell

2001); and that sudden changes in temperatures cause increases in mortality

(Bull and Morton 1978). Reichert et al. (2004) explore at length similarities

in mortality levels from different conditions in the USA over the Winter period

for forty years. They conclude that the peak during the Winter is most likely

driven by a single source across all causes of death, and that this source is most

likely influenza related. Deaths are generally lowest during the Summer months,

particularly during July and August.

The mean of deaths for each day of the week are tabulated in Table 7.1.

They are all of a similar level, indicating little within week seasonality. However,

the mean number of deaths on a Sunday seems somewhat lower than the others.

Irrespective of the reporting delay considered above, there may be a further delay

linked with Sundays, as many public services will be closed on a Sunday. It can

be speculated that as there may be difficulties in reporting deaths on a Sunday

some are instead reported as occurring on the Monday.

In Figure 7.3, we show the proportion of total deaths within each age group

for each gender. On average, men die at a younger age compared to women: the

median age at death for men is 75, while it is 81 for women. The spread of age

at death is greatest for men with an inter-quartile range of 19 years, while it is

lower at 16 years for women. The proportion of men dying at each age group is
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Figure 7.3: For each gender, the proportion of total deaths occurring within that age
range, from individuals recorded as dying between 1st October 2006 and 29th April
2009 in Scotland.

greater than the corresponding proportion for women under the age of 80. As we

might hope and expect, the proportion of deaths under thirty is very small.

HPS generally divides up age into the following ranges: 0-14, 15-44, 45-64,

65-74, 75-84 and 85+. These ranges broadly group together people expected to

have similar lifestyles (0-14 children, 15-44 mobile working adults, etc.). We have

seen that there is some evidence for the genders having different levels of deaths

within the same age group. Thus, when fitting models to the daily numbers

of deaths, we will include an interaction term between age group and gender.

We will aggregate the number of deaths by age group and gender, giving twelve

groups (6 age groups × 2 genders). Four records do not specify a gender, and so

the number of records we now consider reduces slightly from 143,514 to 143,510.

We find that the seasonality also differs between age group and sex. For instance,

consider Figure 7.4, where we show the total daily deaths occurring in the oldest

(85+) and youngest (0-14) age groups, split by gender. The daily counts of deaths

in the 85+ group are clearly seasonal but the seasonality for females has a largest

amplitude. In the youngest group, no seasonality is particularly evident, with
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Figure 7.4: The daily totals of deaths in the oldest (85+) and the youngest (0-14)
age groups, split by gender.

both genders having similar levels. More generally, the seasonality present in

Figure 7.2, is much less evident in the younger age groups, but more so in the

older age groups (particularly in 75-84).

We proceed by modelling the daily totals of deaths in the next Section. We are

modelling counts, and so we start with a Poisson GLM. We have noted different

levels of deaths between age groups and annual seasonality, so we will need to

incorporate these elements within the modelling.
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7.2 Modelling Death Counts with GLMS

7.2.1 Serfling Models

One of the first models that was developed for predicting of levels of deaths from

all causes was presented in Serfling (1963). Serfling predicted the number of

deaths Ŷt for week t using the following formula:

Ŷt = β0 + β1t +
n∑

i=1

β1+i sin

(
2πt

13

)
+

n∑
i=1

β1+n+i cos

(
2πt

13

)
,

where the parameters βk were estimated by least squares regression. The β1t term

serves to model linear trend, while the trigonometric terms are used to capture

seasonality. Serfling found that only one harmonic contributed significantly to

the model. The year was divided up into thirteen 4 week periods. The above

model would predict the number of weekly deaths for the middle of each period.

A cubic spline was then fitted between these points to allow for interpolation of

values for all other weeks in the year. We adapt this basic model to deal with

daily counts of deaths and include factors for age, sex, and their interaction with

seasonality (similar to the model fit in Thompson, Shay, Weintraub, Brammer,

Cox, Anderson, and Fukuda (2003)).

7.2.2 Initial Quasi-Poisson Model

We fit a quasi-Poisson model to the numbers of daily deaths. The daily mean,

µtsa, for each age group a and gender s, is given by:

log(µtas) = β0 + β1trendt + dayt + Sexs + Age.Gpa

+β2 sin(2πpt) + β3 cos(2πpt) + Sexs : Age.Gpa (7.1)

+Sexs : {sin(2πpt) + cos(2πpt)}

+Age.Gpa : {sin(2πpt) + cos(2πpt)} ,

where the βk are coefficients; trendt is the number of day t as numbered from

the first day (trendt = t); day is a seven level factor with a different level for

each day of the week; Sexs is a factor with two levels; Age.Gpa has a level for

each of the age groups specified by HPS (0-14, 15-44, 45-64, 65-74, 75-84, 85+);
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pt gives the within year time, which begins at zero on January 1st and increases

by 1/365 or 1/366 increments, depending on the numbers of days in each year;

A : B denotes the interaction of terms A and B. The coefficients of this model

are given in Table 7.2, with summary statistics for the model given in Table 7.3.

Few of the fitted coefficients are significant. The linear trend term, trendt has

a very small, non-significant coefficient. If there is a trend within the daily levels

of deaths, it is likely too small for us to detect with this model. The day term

shows that there is little difference between levels of deaths on different days of

the week. However, the level for Sunday is an order of magnitude smaller than

the other days of the week and is significant. The Sex, Age.Gp terms and their

interactions are as we would expect from Section 7.1: levels of deaths increase

as age increases, with more males dying in the younger ages and fewer dying

as age increases. The trigonometric terms are not significant, nor are many of

their interactions. The interaction between Sex and the trigonometric terms are

significant. As age increases, the interaction values between Age.Gp and the

trigonometric terms increase too, which is as we expect: from Section 7.1 we

know there is less seasonality in the younger age groups, and increasingly more

as age increases.

The dispersion parameter for this quasi-Poisson model is 1.069, suggesting

that there is negligible over-dispersion within the counts. Given this, we move

on to fit a Poisson GLM in the next Section, adapting the terms included in the

model, since so few of them are significant.

7.2.3 Poisson Models

We adapt the model defined in Equation 7.1 to the following, fitting a Poisson

GLM:

log(µtas) = β0 + β1trendt + Sundayt + Sexs + Age.Gpa

+β2 sin(2πpt) + β3 cos(2πpt) + Sexs : Age.Gpa (7.2)

+Sexs : {sin(2πpt) + cos(2πpt)}

+Y ounga : {sin(2πpt) + cos(2πpt)} ,
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Variable Coefficient SE
β0 (Constant) -0.961244 0.055478
trend 0.000002 0.000010
dayTues -0.007139 0.010199
dayWed -0.004784 0.010193
dayThurs 0.005631 0.010185
dayFri 0.002089 0.010194
daySat 0.001858 0.010194
daySun -0.020330 0.010233
SexM 0.278345 0.072206
Age.Gp15-44 1.737599 0.059485
Age.Gp45-64 3.190646 0.055988
Age.Gp65-74 3.481924 0.055710
Age.Gp75-84 4.162543 0.055301
Age.Gp85+ 4.335582 0.055238
sin1f 0.038912 0.050213
cos1f 0.023126 0.052260
SexM:Age.Gp15-44 0.486544 0.077307
SexM:Age.Gp45-64 0.139978 0.073579
SexM:Age.Gp65-74 -0.004376 0.073291
SexM:Age.Gp75-84 -0.361611 0.072853
SexM:Age.Gp85+ -1.032579 0.073018
SexM:sin1f -0.014547 0.007879
SexM:cos1f -0.027195 0.008262
Age.Gp15-44:sin1f -0.009931 0.053161
Age.Gp15-44:cos1f 0.011555 0.055330
Age.Gp45-64:sin1f -0.000901 0.050948
Age.Gp45-64:cos1f 0.041944 0.053028
Age.Gp65-74:sin1f -0.003664 0.050772
Age.Gp65-74:cos1f 0.075134 0.052848
Age.Gp75-84:sin1f 0.007446 0.050481
Age.Gp75-84:cos1f 0.111135 0.052544
Age.Gp85+:sin1f 0.034480 0.050558
Age.Gp85+:cos1f 0.141464 0.052629

Table 7.2: The coefficients of the quasi-Poisson model defined by Equation 7.1,
which is fit to the counts of deaths recorded as occurring in Scotland between 1st

October 2006 and 29th April 2009.
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er

Eqn. 7.1 Q 105993 12268 93725 88 11303 11271 32 – 1.069
Eqn. 7.2 P 105993 12273 93720 88 11303 11281 22 54047 –
Eqn. 7.3 P 105993 12146 93848 89 11303 11277 26 53927 –
Eqn. 7.4 P 105993 12146 93848 89 11303 11277 26 53927 –

Table 7.3: Summary of quasi-Poisson (Q) and Poisson (P) models fit in Section
7.2 to the daily total of deaths occurring in Scotland between 1st October 2006
and 29th April 2009. The models: 7.1, quasi-Poisson, one harmonic, full range of
interactions with harmonic, Sexs, Age.Gpa; 7.2, Poisson, first use of Y ounga, fits
common seasonality to youngest three age groups (one harmonic); 7.3, Poisson, two
harmonics; 7.4, Poisson model, reformulates 7.3, combining Sexs and Age.Gpa.

where: Sunday has two levels, Sunday and all the other days; Y oung is similar to

Age.Gp, except that the first three age groups (0-14, 15-44 and 45-64) share the

same level; and other terms are as defined previously. The coefficients resulting

from this model are shown in Table 7.4, with summary statistics given in Table

7.3. In this model, all of the main terms and most of the interactions are signifi-

cant. The use of Y oung serves to improve the fit of the model by only allowing

the seasonality to vary with age in the older age groups. Thus, the model is

more parsimonious this way. Now the trigonometric terms and their interactions

with age (via Y oung) are significant. The Sunday coefficient is significant and

negative, suggesting that slightly fewer deaths take place on a Sunday. The other

observations from the quasi-Poisson model continue to apply here too.

The residuals of the model are reasonably well behaved. A plot of the residu-

als, shown in Figure 7.5, show that large positive residuals occur somewhat more

frequently than we would expect in a Poisson model. A number of these large

residuals will be linked with the inability of the model to adapt to the large sea-

sonal Winter peak: as only one harmonic of trigonometric terms is used, there is
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Variable Coefficient SE
β0 (Constant) -0.9650 0.0527
SundaySunday -0.0199 0.0076
SexM 0.2788 0.0698
Age.Gp15-44 1.7387 0.0571
Age.Gp45-64 3.1964 0.0537
Age.Gp65-74 3.4864 0.0535
Age.Gp75-84 4.1670 0.0531
Age.Gp85+ 4.3401 0.0530
sin1f 0.0362 0.0094
cos1f 0.0574 0.0098
SexM:Age.Gp15-44 0.4865 0.0748
SexM:Age.Gp45-64 0.1395 0.0712
SexM:Age.Gp65-74 -0.0048 0.0709
SexM:Age.Gp75-84 -0.3620 0.0705
SexM:Age.Gp85+ -1.0330 0.0706
SexM:sin1f -0.0147 0.0076
SexM:cos1f -0.0275 0.0080
Young65-74:sin1f -0.0008 0.0118
Young65-74:cos1f 0.0410 0.0123
Young75-84:sin1f 0.0103 0.0105
Young75-84:cos1f 0.0770 0.0110
Young85+:sin1f 0.0373 0.0109
Young85+:cos1f 0.1073 0.0114

Table 7.4: The coefficients of the Poisson model (one trigonometric harmonic)
defined by Equation 7.2, which is fit to the counts of deaths recorded as occurring in
Scotland between 1st October 2006 and 29th April 2009.
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Table 7.5: The deviance residuals, grouped by date, of the model defined by Equation
7.2, which is fit to the counts of deaths recorded as occurring in Scotland between
1st October 2006 and 29th April 2009.

no way that the seasonality will able to peak as sharply as the Winter peak (see

Figure 7.2). A plot of the residuals versus fitted values suggests no particular

problems. The qq-plot of the residuals has minor curvature in the negative resid-

uals and stronger curvature in the positive residuals (again, likely linked with the

Winter peak). It is not possible to use a χ2 goodness of fit on this model and

data since there are very low values modelled in the youngest age groups. These

violate the large sample assumptions of the χ2 test, thus invalidating the test’s

applicability here (McCullagh and Nelder 1983). However, since the residuals of

the model are reasonably well behaved, we consider the model a reasonable fit.

This model can be further improved by adding another trigonometric har-

monic, which extends Equation 7.2 to:

log(µtas) = β0 + β1trendt + Sundayt + Sexs + Age.Gpa

+β2 sin(2πpt) + β3 cos(2πpt) + β4 sin(4πpt) + β5 cos(4πpt) (7.3)

+Sexs : Age.Gpa + Sexs : {sin(2πpt) + cos(2πpt)}

+Y ounga : {sin(2πpt) + cos(2πpt)} .
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The coefficients for this model are given in Table 7.6. No interactions were in-

cluded with the second harmonics since they did not make a significant contri-

bution to the model. Both an ANOVA and AIC (Table 7.3) comparison between

the model with one harmonic and this model with two, suggest that the larger

model with an extra harmonic is preferable. The extra harmonic gives the larger

model greater ability to fit more closely to the data; however, the improvement

is slight (Table 7.3).

To allow for more straight forward comparison of GAM we will go on to

develop, we reformulate the model defined by Equation 7.3 to the following:

log(µtas) = β0 + β1trendt + Sundayt + AgeSexas

+β2 sin(2πpt) + β3 cos(2πpt) + β4 sin(4πpt) (7.4)

+β5 cos(4πpt) + Sexs : {sin(2πpt) + cos(2πpt)}

+Y ounga : {sin(2πpt) + cos(2πpt)} ,

where Age.Gp (five degrees of freedom), Sex (one degree of freedom) and their

interactions (five degrees of freedom) have been combined into the twelve level

factor AgeSex, which has a level for each combination of age group and gender

(eleven degrees of freedom). Other terms are the same as defined previously. This

model is essentially the same as that defined by Equation 7.3, as can be confirmed

from Table 7.3, with coefficients given in Table 7.7. This formulation allows us

to directly see the values fit to each combination of age group and sex and their

corresponding standard errors; we show these values exponentiated in Figure 7.5.

The Figure shows the same patterns as we have noted previously: more males

die at younger ages, leading to the biggest difference in levels of deaths between

females and males in the 85+ age group.

While the inclusion of the extra harmonic gives the seasonal pattern greater

ability to adapt to the data, it still does not adapt well to the peak at the end

of the year – see plots of the fitted values in Figures 7.9 to 7.16. Trigonometric

variables are not best suited to modelling a seasonal pattern with such a sharp

peak. Thus, we turn to using Generalized Additive Models, since they allow some

greater flexibility in fitting a seasonal pattern.
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Variable Coefficient SE
β0 (Constant) -0.9633 0.0527
SundaySunday -0.0198 0.0076
SexM 0.2778 0.0698
Age.Gp15-44 1.7387 0.0571
Age.Gp45-64 3.1964 0.0537
Age.Gp65-74 3.4865 0.0535
Age.Gp75-84 4.1673 0.0531
Age.Gp85+ 4.3404 0.0530
sin1f 0.0368 0.0096
cos1f 0.0497 0.0098
sin2f 0.0137 0.0053
cos2f 0.0513 0.0052
SexM:Age.Gp15-44 0.4865 0.0748
SexM:Age.Gp45-64 0.1395 0.0712
SexM:Age.Gp65-74 -0.0048 0.0709
SexM:Age.Gp75-84 -0.3620 0.0705
SexM:Age.Gp85+ -1.0330 0.0706
SexM:sin1f -0.0134 0.0078
SexM:cos1f -0.0224 0.0080
SexM:sin2f -0.0158 0.0077
SexM:cos2f -0.0256 0.0075
Young65-74:sin1f -0.0009 0.0119
Young65-74:cos1f 0.0403 0.0122
Young75-84:sin1f 0.0102 0.0106
Young75-84:cos1f 0.0755 0.0109
Young85+:sin1f 0.0377 0.0110
Young85+:cos1f 0.1050 0.0113

Table 7.6: The coefficients of the Poisson model defined by Equation 7.3, which is
fitted to the daily counts of deaths occurring in Scotland between 1st October 2006
and 29th April 2009. Two harmonics are used to model annual seasonality.
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Variable Coefficient SE
β0 (Constant) -0.9633 0.0527
SundaySunday -0.0198 0.0076
ageSex0-14M 0.2778 0.0698
ageSex15-44F 1.7387 0.0571
ageSex15-44M 2.5029 0.0548
ageSex45-64F 3.1964 0.0537
ageSex45-64M 3.6136 0.0533
ageSex65-74F 3.4865 0.0535
ageSex65-74M 3.7595 0.0533
ageSex75-84F 4.1673 0.0531
ageSex75-84M 4.0830 0.0531
ageSex85+F 4.3404 0.0530
ageSex85+M 3.5853 0.0534
sin1f 0.0368 0.0096
cos1f 0.0497 0.0098
sin2f 0.0137 0.0053
cos2f 0.0513 0.0052
SexM:sin1f -0.0134 0.0078
SexM:cos1f -0.0224 0.0080
SexM:sin2f -0.0158 0.0077
SexM:cos2f -0.0256 0.0075
Young65-74:sin1f -0.0009 0.0119
Young65-74:cos1f 0.0403 0.0122
Young75-84:sin1f 0.0102 0.0106
Young75-84:cos1f 0.0755 0.0109
Young85+:sin1f 0.0377 0.0110
Young85+:cos1f 0.1050 0.0113

Table 7.7: The coefficients of the Poisson model (two trigonometric harmonics)
defined by Equation 7.4, fit to the daily totals of deaths in Scotland recorded as
occurring in Scotland between 1st October 2006 and 29th April 2009.
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Figure 7.5: The values fitted to each combination of age group and sex on the
response scale, calculated in the fitting of the Poisson model defined by Equation 7.4.
Treatment contrasts were used, with the 0-14 females taken as the reference group;
the dotted line gives the level of this group. The arrows give twice the standard
error above and below the fitted value on the linear predictor scale, which is then
exponentiated.

7.3 Modelling Death Counts with GAMs

Choosing Models Fitted Closely to Winter Peaks

The choice of using Generalized Additive Models (GAMs), to more closely model

the sharp peaks in mortality during the Winter, is motivated by the context in

which the mortality monitoring system was developed: we desired to monitor

swine flu in case of it having greater or differently timed mortality compared

to ‘normal’ seasonal flu. In this context, and in contrast with other mortality

monitoring systems, the sharp Winter peaks are not unusual but instead represent

a standard part of the seasonal pattern of mortality. Thus, it makes sense to

choose a modelling paradigm, such as GAMs, that can fit more closely to the

Winter peaks. There is also an argument for the GAM fit being useful beyond

the swine flu epidemic for monitoring all-cause mortality for general increases,

rather than increases primarily attributable to influenza. Outside of the swine

flu epidemic, HPS will be interested in monitoring all-cause mortality for both

influenza related increases and other sources of increases. Thus, the final system
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developed includes both a GLM (as developed in Section 7.2) and a GAM for

predictions of expected mortality.

7.3.1 GAM background

Generalized Additive Models (GAMs) are one of the many extensions of GLMs.

We introduce them as in Wood (2006b). In a GLM, we have the following mod-

elling structure:

g(µi) = Xiβ,

where µi ≡ E(Yi), g(·) is a smooth monotonic link function, Xi is the ith row of

a model matrix X, and β is a vector of unknown parameters. Typically, a GLM

assumes that the Yi have some exponential family distribution. A GAM extends

a GLM by including smooth functions of the covariates:

g(µi) = X∗
i θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . , (7.5)

where X∗
i is a row of the model matrix for any strictly parametric model compo-

nents, θ is the corresponding parameter vector, and the fj are smooth functions

of the covariates, xk and the other terms are as above. Using functions of the

covariates allows for greater flexibility in the fit of models. A number of different

choices for these ‘smooth functions’ are possible, with a number of them being in-

cluded in the mgcv package developed by Wood (2006b). We will use this package

within R to fit GAMs utilising cubic splines.

When a cubic spline is fit to some data, the range of the data is typically

divided up into several sections. The points that form the boundaries of these

sections are known as knot points. Between each pair of knot points, a cubic

polynomial is fit to the data falling within that region. To ensure that the fit

over the whole range of the data is smooth, curves ending at the same knot point

are required to be continuous with each other up to the second derivative. If

this condition were not required, we would very likely have smooth curves in

each section of the data, with discontinuities at the knot points where curves

in neighbouring sections of the data meet. The weekly predictions in Serfling

(1963) are made at four weekly intervals (so, thirteen predictions for the year).

These predictions are joined together using a cubic spline, to allow for estimates
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of the number of deaths occurring in weeks between the predictions. For further

discussion on splines see Zuur et al. (2009) and Wood (2006b).

Having chosen a smooth function, in our case the cubic spline, the function

can then be represented by a set of ‘basis’ functions. These functions define the

space of functions of which the smooth function is an element (Wood 2006b).

Then, the function f can be represented by:

f(x) =

q∑
j=1

bj(x)βj,

where bj(x) is the jth basis function and the βj are unknown parameters. For

example, a set of basis functions for a second order polynomial could be: 1, x

and x2 This form can then be used in Equation 7.5 to turn a GAM into a linear

model which can be solved to find the βj and other parameters by using standard

techniques.

It now remains to choose how much smooth the function f of the covariates

should be. In terms of the cubic regression spline, we can make the spline more

closely follow the data by increasing the number of knots. However, this means

the spline will not be as smooth. Decreasing the number of knots makes the

spline smoother, but means it does not follow the data as closely. Rather than

choosing the number of knots to determine the level of smoothing, Wood proposes

a different approach (Zuur et al. 2009). Representing the GAM in its linear model

form, Wood suggests minimising the following quantity:

‖ y −Xβ ‖2 +λ

∫
f ′′(x)2dx.

The first part of this quantity is the standard sum squared error which we aim to

minimise in most models to improve their fit. The second term ‘penalizes models

that are too “wiggly”’ (Wood (2006b) p. 128), since the second derivative of

‘wiggly’ models will be larger. The λ is called a ‘smoothing parameter’. When

λ = 0, there is no penalty for the the smoothers being too ‘wiggly’ and fitting more

closely to the data. As λ becomes larger, the smoothers tend to a straight line,

as a straight line’s second derivative is zero. If λ is known, then it is reasonably

straight forward to optimise this quantity. However, λ is usually not known.
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When both β and λ are unknown, Wood (2006b) suggests the use of cross

validation to calculate their ‘best’ estimates. Let the ‘optimal’ function for our

model be denoted f(xi) and an estimate of the function f̂(xi). Then, λ could be

chosen so that f(xi) is as close to f̂(xi) as possible, which can be measured by:

M =
1

n

n∑
i=1

(
(f(xi)− f̂(xi)

)2

.

Given f(xi), it would be possible to find a λ such that the value M is as small

as possible. However, since f(xi) is not known, M must be estimated. This

estimate can then minimised as a function of λ, allowing λ to be found and then

the coefficients β to be found. The process used to estimate M is called cross

validation and we do not present it here; extensive details can be found in Wood

(2006b). However, note that since we will be fitting Poisson GAMs, we assume

we know the variation of the data and so can use the Unbiased Risk Estimator

(UBRE) to find M . A smaller UBRE indicates a better fitting the model.

For more information on GAMs see Hastie and Tibshirani (1990), Wood

(2006b).

7.3.2 GAM fitting

In the deaths data, we know that each age group and sex have a different season-

ality. Thus, for each age group and sex, we will need a different seasonal pattern.

To fit a GAM that can accommodate this, requires the use of ‘variable coefficient

models’, initially proposed in Hastie and Tibshirani (1993). In these models, the

smooth functions can be multiplied by known covariates. Thus, Equation 7.5

becomes:

g(µi) = X∗
i θ + f1(x1i)x2i + f2(x3i, x4i)x5i + f3(x6i)xti + . . . . (7.6)

The mgcv package allows us to fit such models through the use of the ‘by’ param-

eter in definitions of the smoothing functions (Wood 2006a).

In the model we will come to fit, we will use a cyclic cubic regression spline

on the period time p to capture the annual seasonality. This cubic spline requires

that the start and end of the curve must be equal (Wood 2006b).
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Figure 7.6: Positions of the knot points within the manually specified knot series for
the GAM models fit to the totals of deaths for each age group and sex combination.

We fit the following Poisson GAM to the daily deaths recorded in Scotland

using the gam function from the package mgcv:

log(µtas) = β0 + Sundayt + AgeSexas + AgeSexas × f(pt), (7.7)

where f(pt) is cyclic cubic regression spline fit on the within period time pt and

the other terms are as before. As AgeSex is a factor, this results in a separate

smooth for each level of the factor and thus a separate seasonal pattern for each

combination of age group and sex. The gam function also allows us to specify

the number and/or position of the knot points of the spline. We try a range

of values for the knot points. If only a number of points is specified, knots are

placed equally throughout the data. We try specifying 12, 26 and 52 knots to

roughly place them at monthly, fortnightly and weekly intervals respectively. We

also try four other definitions of knots, as shown in Figure 7.6. These knot points

are placed most densely around the Winter solstice and then decrease in density

through to the Summer solstice. While it is not clear the exact reason for the

seasonal peak in the Winter (see Section 7.1 for a discussion of this), the amount
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Knots UBREs

A (11) 0.0670927
B (16) 0.0663166
C (18) 0.0663402
D (21) 0.0655781
Monthly (12) 0.0674307
Fortnightly (26) 0.0658283
Weekly (52) 0.0658346

Lowest UBRE D (21)

Table 7.8: The different UBRE results from the fits of the GAM model defined
by Equation 7.7 for each different set of knot points. The location of the manually
specified knot points are shown in Figure 7.6.

of day light can be seen either as a proxy for the effect, or to at least to correlate

in some way with the the effect. This justifies the way we have chosen our knot

points.

To choose between the different sets of knot points, we consider the UBRE of

the GAMs that result from fitting with each set of knot points. These are shown

in Table 7.8. As mentioned briefly in Section 7.3.1, a lower UBRE indicates a

better fitting model. From Table 7.8, we see that there is not much difference in

the UBREs, but that the manually specified set of knot points D results in the

GAM with the lowest UBRE. Thus, we use this GAM for the predictions of daily

numbers of deaths within each age group and sex.

The levels of the AgeSex factor, with corresponding standard errors, are

shown in in Figure 7.7. The differences between the groups are very similar

to those we noted from the fits given by the GLMs (see Figure 7.5). The Sunday

factor has a level of −0.0200, with standard error 0.0075, which, again, is very

similar to the value fit by the Poisson GLMs (see Table 7.7). We consider the

seasonal fit from this model and compare with that fit by the GLMs in the next

Section. As with GLMs, we should check plots of the residuals to check the fit

of the model. The mgcv package comes with the gam.check function, which pro-

duces a number of these plots automatically. We show the output of gam.check

for our chosen GAM in Figure 7.8. These plots suggest that the model has a
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Figure 7.7: The values fitted to each combination of age group and sex on the
response scale, fit in the fit in the Poisson GAM used to model the daily counts of
deaths in Scotland in Section 7.3.2. These values ignore the effect of Sunday and
seasonality. The arrows give twice the standard error above and below the fitted value
on the linear predictor scale, which is then exponentiated.

reasonable fit, with variance being dealt with suitably by the model. The bottom

right plot follows a reasonably straight line as we would hope.

7.4 Comparison of Models

In this Section we consider the fit of the two models and how they differ, primarily

with regard to their seasonal fits. Plots of the values fitted to each age group

(separated by sex and model) are shown in Figures 7.9 to 7.14 and the fits for

each sex are collected in Figure 7.15 (females) and 7.16 (male). The ‘bumpy’

nature of the lines in the plots is caused by the Sunday factor in each model

decreasing the fitted means on Sundays.

The main differences between the models can be seen in the seasonal patterns

that they fit. However, comments about the seasonal fits of the models should be

interpreted with caution: as with the NHS24 data, we have a great deal of data

that only comes from a small number of annual cycles. Thus, comments about

the seasonal fits of the models may only apply to the years under consideration.
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Figure 7.8: Diagnostic plots resulting from using the gam.check function on the
GAM fit in Section 7.3.2, with knots specified by the set of positions denoted D (see
Figure 7.6).

There are two main areas to comment upon: the fit of the models in the youngest

two age groups and then the fit to the seasonal Winter peak.

Fitting models to the youngest age groups, 0-14 and 15-44, is difficult because

of the low counts of deaths in these age groups. This is particularly true in the

0-14 groups, in which there are often less than one death per day. These groups

serve to demonstrate the differences between the models. In the GLM, there is

a common element of seasonality between the groups – note how the seasonality

in this model is similar across the different groups of both sex and age, mostly

just changing in level and amplitude. With the GAM, an essentially separate

seasonal pattern is fit to each age group and sex combination. Thus, there is

a marked difference between the models in the seasonal pattern fitted for 0-14

males: the GAM fits two constant levels – one for Sundays and another for the

other days of the week; the GLM fits a pattern that is similar to the seasonality of

the other groups. The GAM also fits an unusual pattern to the counts of females

in these youngest groups. Within the 0-14 females, the largest peak occurs in

the Summer. In the 15-44 females, the fit is very bumpy, with the Winter peak
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Age Group and Sex Seasonal Peaks in GLM Seasonal Peaks in GAM
0-14F Jan 15 (Mon) Jul 02 (Mon)
0-14M Jan 10 (Wed) –
15-44F Jan 15 (Mon) Dec 21 (Thu)
15-44M Jan 10 (Wed) –
45-64F Jan 15 (Mon) Jan 10 (Wed)
45-64M Jan 10 (Wed) Jan 03 (Wed)
65-74F Jan 13 (Sat) Jan 03 (Wed)
65-74M Jan 08 (Mon) Jan 04 (Thu)
75-84F Jan 13 (Sat) Jan 06 (Sat)
75-84M Jan 09 (Tue) Jan 04 (Thu)
85+F Jan 17 (Wed) Jan 10 (Wed)
85+M Jan 15 (Mon) Jan 10 (Wed)

Table 7.9: The dates of the seasonal peaks in 2006/2007 fit by the GLM and GAM
model. No peak is given for the GAM fit to the 0-14M and 15-44M groups, as there
is no unique maximum fit by the GAM for these groups – see Figures 7.9 and 7.10.
The fitted values for theses groups alternates between a constant mean for Sundays
and another constant mean for all other days.

occurring in 2006, before the end of the year. However, differences in seasonality

in these youngest groups are magnified because of the scale used in Figures 7.9

and 7.10: both models essentially fit a constant level in these age groups, as can

be more clearly seen in Figures 7.15 and 7.16.

The most distinctive difference between the seasonal patterns is seen in their

fit to the Winter peak, particularly among the older age groups. The seasonal

pattern fit by the GAM is much ‘spikier’, fitting closer to the higher counts

around the Winter peak (our motivating reason for using a GAM). The date of

the Winter peak fit by both models for each age group and sex combination,

during late 2006 and 2007, are shown in Table 7.9. The dates of the peaks for

2008 may differ very slightly, since, as this was a leap year, the seasonal cycle is

fit to 366 days. In the GLM model, we find that the Winter peaks occur between

January 8th and 17th, with the peak for males always occurring before the peak

for females. The situation with the GAM is more complex. For the 45-64 age

group and above, we find that the Winter peak occurs between January 3rd and

10th, generally earlier than the peaks fitted by the GLM. In the younger male age

groups, 0-14 and 14-45, there is no unique seasonal peak because of two constant
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Figure 7.9: Comparative fits of the models fit to the male and female deaths in the
0-14 age group.

levels being fitted (see above). The seasonal peaks for females in these groups are

also quite different.

As discussed in Section 7.3, choosing between these models depends on exactly

what it is we wish to monitor. The GLM will be more consistent with previous

mortality models, by considering most of the deaths around the Winter peak to

be ‘excesses’. The ‘peakier’ nature of the GAM means that it will have fewer

excesses around the Winter peak. In terms of monitoring for the effect of Swine

flu, we argue that it is better to use the GAM, as this fits more closely to Winter

peak. In doing so, excesses from the GAM would give some indication of swine flu

having a higher mortality than previous strains of influenza. The GAM may also

be preferred since its residuals are less skewed than the residuals of the GLM. In

the work for HPS, we developed the mortality system to include both models for

prediction, allowing users to choose the model that they feel is most appropriate

for their monitoring context.
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Figure 7.10: Comparative fits of the models fit to the male and female deaths in
the 15-44 age group.
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Figure 7.11: Comparative fits of the models fit to the male and female deaths in
the 45-64 age group.
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Figure 7.12: Comparative fits of the models fit to the male and female deaths in
the 65-74 age group.
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Figure 7.13: Comparative fits of the models fit to the male and female deaths in
the 75-84 age group.
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Figure 7.14: Comparative fits of the models fit to the male and female deaths in
the 85+ age group.
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Figure 7.15: Comparative fits of the models fit to the female deaths occurring in
Scotland.
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Figure 7.16: Comparative fits of the models fit to the male deaths occurring in
Scotland.

7.5 Conclusions & Future Work

In this Chapter, we have fitted models to the daily totals of all those dying in

Scotland. These models can then be used in a system for monitoring the numbers

of deaths occurring each day. We started by using a Poisson GLM to model the

daily counts of deaths, adapting a model initially used by Serfling (1963). We

found that a Serfling model does not fit well to the annual peak in deaths during

the Winter, since the peak is very sharp. To improve the fit of the model we fit a

Poisson GAM to the counts. GAMs allow for smooth functions to be fit to data.

Given these functions can be more general, the seasonal pattern in the GAM

fitted more closely to the the data around the Winter peak. We argue that the

closer fit to the Winter peak is both better for monitoring the effect of swine flu

compared to ‘normal’ seasonal flu and monitoring all-cause mortality for general,

non-influenza related, increases. Thus, the GAM may help extend the utility of

the system beyond the swine flu epidemic. However, the final system includes

both types of models to allow the user to choose the model most suitable for their

monitoring context.
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After the work in this Chapter had been completed, a longer period of death

data was provided by GROS to HPS. Initial exploration of this data suggested

that the models developed in this Chapter fitted well over the longer period.

However, a small linear trend could be detected within the larger data-set, and

so the models were augmented with a linear trend term. A simplified form of the

GAM developed in this Chapter is fit to this larger data-set and forms the basis

of the death monitoring system in use at HPS (it ignores the effect of Sundays).

An obvious direction for future work is to investigate how the Winter peak

should be modelled. One thing we have not considered in the modelling here is

serial correlation; addressing this may help fit models more closely to data during

the Winter peak. In previous Chapters we have utilised a variable based on Holt-

Winters smoothing to address serial correlation and model local trend. It may

be interesting to see if that approach could work with the death data. Another

approach may be to use an ARIMA model (as used in Choi and Thacker (1981a))

with covariates for each age group and sex combination. ARIMA models directly

deal with serial correlation. Modelling serial correlation with either approach

would allow the model to be dynamic and better adapt to the Winter peak,

as the model’s level would increase as the number of deaths heads towards the

Winter peak.

It may be decided that the Winter peak is not something that models should

be fit to. In which case, it would be considered to be an ‘excess’ of deaths and

so an usual value. Some approaches have taken to replacing values during the

Winter peak with values to be more normally expected (Choi and Thacker 1981a).

Given we only had access to two full seasonal cycles, this was not an option. With

the longer period of data now available to HPS, it may now be feasible to explore

such replacements.

Should it become available, it may be fruitful to see if the models developed

here can be augmented with cause of death. We might find that increases in

certain causes of death may be a better barometer than others for predicting

the total numbers of deaths. However, more accurate results may be found by

modelling the different causes of death separately. Although, as we have noted

previously, this has not been the experience elsewhere (Simonsen et al. 1997).

Tangentially, or in addition, we could also model regional levels of deaths.
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Having developed the models for monitoring deaths, we turn to addressing the

reporting delay we touched on in Section 7.1. We then consider alarm methods

that can be combined with the models to form a death surveillance system.



Chapter 8

Mortality Surveillance System

In Chapter 7, we developed models to be used for the prediction of deaths occur-

ring daily within Scotland within different genders and age groups. In this Chap-

ter, we consider the other elements necessary to complete a mortality surveillance

system. We begin by considering a way of correcting for the delay associated with

the reporting of deaths. This delay allows for more timely monitoring of deaths,

but is not without its own difficulties. We then consider alarm methods that

compare predictions from the models developed in the previous Chapter and the

observed deaths, to indicate times of unusually high levels of deaths. All these

elements are then brought together to give a mortality surveillance system, which

we describe the use of.

8.1 Reporting Delay Across All Deaths

We briefly considered the reporting delay of deaths in Section 7.1. We found that

33% of deaths are reported the day after they occur and that nearly all deaths

are reported within fourteen days (> 99%) – see Figure 7.1. We would expect

different days of the week to have different reporting delays associated with them;

for example, deaths on Sundays will almost always have a delay of at least one

day, since registrars offices are closed on Sundays. Thus. we begin by considering

the reporting delays for each day of the week separately. We also separate out the

delays that occur on public holidays (when again, registrars will be closed). These

lead to the patterns shown in Figure 8.1. For Monday to Thursday, we find that

257
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Figure 8.1: The relative proportions of reporting delay of deaths, separated by week
day (including a separate category for public holidays), across all age groups and
genders.

most deaths are reported the day after they occur. A similar pattern can be seen

on the other days when the effects of weekends are ignored. Since the pattern

in delays is broken up by weekends, we instead consider the delays measured

in working days (Monday to Friday). This is perhaps more natural, since it is

generally only during working days (Monday to Friday) that most registrars are

open, allowing the reporting of deaths. However, it is not straight forward to

calculate the working day delays for public holidays, since they occur on different

days of the week. Thus, for the public holidays, we still use their raw delays,

which include weekends. Public holidays are also ignored in the calculation of

working day delays for the day types. This means that a small number of deaths

occurring on the other days may have a longer working day delay than is actually

the case.

The relative proportions of delays measured in working days for each day of

the week (including public holidays) are shown in Figure 8.2. By considering

the delay in measured in working days, it is much easier to see the similarities

between reporting delay patterns. Indeed, when we plot the working week days
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Figure 8.2: The relative proportions of reporting delay of deaths measured in working
days, separated by week day (including a separate category for public holidays), across
all age groups and genders.

together, as in Figure 8.2, it is hard to detect differences between the days. Friday

is perhaps a little different from the other days, particularly at two days. Given

the similarity in delays on the working week days, we consider all of these delays

together, collapsing down the five working days delays to one set of delays. Shown

by the thick red line in Figure 8.2, we see this is a reasonable fit across the working

week days. There are negligible numbers of reports for Saturdays, Sundays and

public holidays recorded on the day themselves, since the registrars’ offices are

closed on these days.

The distribution of reporting delays can be used to approximately correct

the levels of reported deaths near to the present date. Consider the cumulative

proportion of delays for week days, shown in Figure 8.3. Take, say, a Monday.

We know that only approximately 20% of deaths that occur on the Monday will

be reported that same day. The following day, HPS will only receive information

on the 20% of total deaths that were reported. However, knowing about the

reporting delay, and so knowing the proportion of total deaths that they expect

to be reported then, they can adjust the number of recorded deaths for Monday
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Date Day Delay Correction Reported Estimated Occurred
2008-08-14 Thu 0 0.2104 21 100 122
2008-08-13 Wed 1 0.6814 100 147 157
2008-08-12 Tue 2 0.8378 105 125 130
2008-08-11 Mon 3 0.9076 137 151 154
2008-08-10 Sun 3 0.8732 142 163 151
2008-08-09 Sat 3 0.8843 117 132 121
2008-08-08 Fri 4 0.9473 153 162 156
2008-08-07 Thu 5 0.9709 116 119 120
2008-08-06 Wed 6 0.9834 117 119 119
2008-08-05 Tue 7 0.9900 130 131 131
2008-08-04 Mon 8 0.9936 111 112 111
2008-08-03 Sun 8 0.9942 138 139 141
2008-08-02 Sat 8 0.9932 121 122 122
2008-08-01 Fri 9 0.9961 123 123 128
2008-07-31 Thu 10 0.9980 144 144 145
2008-07-30 Wed 11 1.0000 136 136 137

Table 8.1: This table shows the delay ‘correction’ for data that would have been
received by HPS from GROS on the morning of Friday 15th August, 2008. The ‘Delay’
column gives the number of working days from the Thursday 14th. The ‘Correction’
is the cumulative proportion of deaths reported by the time specified in ‘Delay’. We
use the four day-types of working week day, Saturday, Sunday and public holiday
(shown in Figure 8.2 – no public holidays occur in the period under consideration).
The ‘Reported’ deaths are then divided by the ‘Correction’ to give an ‘Estimated’ of
number of deaths that actually occurred on each day (shown in ‘Occurred’ column).
The effect of the correction decreases the further back into the past.
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Figure 8.3: The cumulative proportion of reporting delays for week days (Monday
to Friday) for all ages and genders.

to a more realistic estimate of the actual number of deaths that occurred. So,

in the following day, if they know that ten deaths have been recorded, we can

approximate that fifty deaths actually occurred. Such ‘corrections’ can be applied

to the last two weeks of data, to project from the recorded number of deaths the

actual number that occurred during this period. A longer period of correction

could be used, but as we noted earlier, over 99% of deaths are reported within

two weeks; thus, the effect of correction outside of two weeks would be very small.

We give an example of the correction being applied to national counts of deaths

in Table 8.1.

The models developed in the previous Chapter can be used to give predictions

for the numbers of deaths occurring. The ‘correction’ considered here allows us to

compare the prediction with the reported number of deaths in a more meaningful

and timely fashion. If this, or some other correction, is not used, we would have

to wait for a longer time for all deaths to be reported, before we could tell if there

have been unusually high levels of death. However, the use of this correction does

make any exception raised more speculative. We may find at certain times, deaths

are recorded in a very timely fashion, which, once the correction has been applied,
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Figure 8.4: The relative proportions of reporting delay of deaths measured in working
days, for Monday to Friday, with another value collecting these days together. The
youngest and oldest groups split by gender are shown. Due to the much smaller
number of deaths in the youngest age group, the delays in these groups are much
more variable.

may give the false impression that a large number of deaths have occurred. This

makes the developed mortality system somewhat harder to interpret, a point

which we discuss further in Section 8.5.

We may expect a different reporting delay among the different age groups.

For instance, someone who is in a working age group is more likely to be missed

if they do not turn up for work and so their death may be reported in a more

timely fashion. The models in the previous Chapter also give predictions for each

age group and gender. Thus, we consider the different reporting delays for each

age group and gender in the next Section.

8.2 Reporting Delay by Age Group and Gender

Having consider the reporting delay across all deaths, we now consider the delays

within each combination of age group and gender, giving twelve groups. Within

each of these 12 groups, there are potentially 8 separate days of delays (week

days and public holidays), giving 96 different sets of delays. Giving this large



CHAPTER 8. MORTALITY SURVEILLANCE SYSTEM 263

0.0
0

0.1
0

0.2
0

0.3
0

0:11

We
ek

da
ys

 Pr
op

ort
ion

 Female
Male

0.0
0

0.1
0

0.2
0

0.3
0

0:11

Sa
tur

da
ys

 Pr
op

ort
ion

s

0.0
0

0.1
0

0.2
0

0.3
0

0:11

Su
nd

ay
 Pr

op
ort

ion
s

0 2 4 6 8 10

0.0
0

0.1
0

0.2
0

0.3
0

0:11

Pu
bH

ol 
Pr

op
ort

ion
s

Delay (15−44) (working days)

Figure 8.5: The relative proportions of reporting delay of deaths measured in working
days, for the different days of the week, in the 15-44 age group, separated by gender.

number, we consider if we can group similar delays together, allowing for easier

understanding of the differences between the delays.

The delays associated with the older groups are less variable than in the

younger age groups, because of the larger number of deaths occurring in the

older age groups. This can be seen if we consider the delays associated with

working days (Monday to Friday). The working days delays for the youngest and

oldest groups are shown in Figure 8.4. Generally, particularly in the older age

groups, we find a pattern similar between the working days and so collect all of

the working days together to give one set of delays. However, for the youngest age

groups, there is a lot of variability around this collected set of delays. Given the

smaller variability of the older age groups, we consider them a better indicator

of the underlying pattern among the delays.

We next consider combining the delays by gender. On investigation, within

each age group, the reporting delay between the genders is mostly very similar.

The only age group where there are marked differences between the genders is

in the 15-44 age group, shown in Figure 8.5. The delays among the males in
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this group are the only ones in which there is a peak later than one working

day. This is because many male deaths in this age group are caused by violence

and thus require a police autopsy, increasing the delay in reporting. Given the

genders among the other age groups are so similar, and for uniformity, we com-

bine the delays for both genders within each age group. This leaves us with 24

sets of reporting delays, one for each age group (6 groups) and day type (four

types: working week day, Saturday, Sunday and public holiday) combination. As

described in the previous Section, these delays can be used to correct reported

levels of deaths to allow for more accurate comparisons with the predicted levels

of deaths given by the death count models. We show how these are included in

the mortality surveillance system in Section 8.5. In the next Section, we consider

if a distribution can be fitted to the delay patterns we have found.

8.3 Fitting Distributions to Reporting Delays

To produce the reporting delays considered in Section 8.2, we have just considered

the raw delays in the data. This means storing the 12 different proportions for

each of the 4 day types within each of the 6 different age groups – a total of 288

values. In this section, we consider if probability distributions can be used to

describe the delays. If they can, then we would only need to store the parameters

of these distributions. It would also allow the delays within the different age

groups to be compared more easily.

To fit distributions to the delays, we use the fitdistr function in R, available

from the MASS package. This functions fits uni-variate distributions by maximising

likelihoods (Venables and Ripley 2002). We fit negative binomial distributions to

the delays, since this is the most general discrete waiting time distribution. For

this reason, the negative binomial is sometimes referred to as a ‘binomial waiting

time distribution’ (Freund, Kniesner, and LoSasso 1999). The parameters, with

standard errors, of the resulting negative binomial distributions for each day type

(working week day, Saturdays, Sundays and public holidays) are shown in Table

8.2. Deaths that occur on Saturdays, Sundays and public holidays, cannot be

reported on the day they occur – there will always be a delay associated with

deaths occurring on these days. Thus, the empirical distribution of delays will

always have a probability of zero for a delay of zero on these days. Such a
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Age Group µ µ SE θ θ SE
Week days
0-14 2.607 0.098 2.185 0.209
15-44 4.076 0.054 1.901 0.058
45-64 2.141 0.017 1.810 0.037
65-74 1.444 0.010 3.158 0.093
75-84 1.309 0.008 2.897 0.061
85+ 1.224 0.006 1978.306 55.731
Saturdays
0-14 1.744 0.255 0.517 0.109
15-44 3.726 0.135 0.983 0.060
45-64 1.420 0.040 0.544 0.024
65-74 0.877 0.024 0.500 0.023
75-84 0.666 0.014 0.652 0.030
85+ 0.669 0.013 1.052 0.060
Sundays
0-14 2.428 0.299 0.779 0.151
15-44 4.679 0.187 0.737 0.038
45-64 1.587 0.042 0.654 0.028
65-74 0.981 0.025 0.665 0.032
75-84 0.857 0.017 0.735 0.029
85+ 0.779 0.014 1.252 0.066
Public Holidays
0-14 2.773 0.961 0.438 0.169
15-44 5.142 0.569 0.691 0.101
45-64 2.752 0.182 0.709 0.073
65-74 1.765 0.102 0.902 0.104
75-84 1.567 0.075 0.763 0.066
85+ 1.537 0.069 1.178 0.130

Table 8.2: Parameters of the negative binomial distributions fit to the reporting
delays for the different age groups and day types. The parameters µ and θ are the
mean and dispersion parameters, respectively, of the negative binomial distribution.
Recall that the distributions for Saturdays, Sundays and public holidays are fit to the
delays minus one day (See Section 8.3 for an explanation of the reason for this). SE
= Standard Error.
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Figure 8.6: The relative proportions of reporting delays for working week days,
separated by age groups, with fitted distribution values.

situation does not match with any of the probability distributions we are trying

to fit to the empirical distribution of delays from these days: all of the probability

distributions take the value zero with a non-zero probability. Thus, on Saturdays,

Sundays and public holidays, we only consider the delays of 1 day or greater; as

the probability distributions are defined to take values from zero to infinity, we

use fitdistr to fit the probability distributions to the delays minus one day

(the transformed delays then go from 0). This transform is not required on the

delays associated with the other days of the week, as deaths can be, and often are,

reported on the day they occur on these days. In the plots we produce, we have

added one to the fitted distributions on Saturdays, Sundays and public holidays,

so that the appropriate probability goes with the correct time of delay.

A plot of the fits to the delays on working week days can be seen in Figure

8.6. Generally, these distributions do not fit particularly well to the data. The

main problem occurs with the fits of the distributions for 0 and 1 days of delay:

at 0, the fitted distributions are always higher than the empirical proportion,

while at 1, the fitted distribution is quite a bit lower than the empirical values.

The dispersion parameter for the 85+ group is very large and is three orders
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Age Group Delay/No delay (B) Delay Length (D)
P(No delay) SE µ µ SE θ θ SE

Week days
0-14 0.067 0.010 1.794 0.105 0.730 0.068
15-44 0.068 0.004 3.372 0.057 1.104 0.034
45-64 0.160 0.003 1.549 0.021 0.543 0.011
65-74 0.217 0.003 0.844 0.013 0.444 0.011
75-84 0.234 0.002 0.710 0.009 0.401 0.008
85+ 0.233 0.002 0.595 0.007 0.600 0.015

Table 8.3: Parameters of the marginal distributions that form the joint distribution
Y = B(D − 1), defined in Equation 8.1, that models the distribution of delays for
working week days. The parameters µ and θ are the mean and dispersion parameters,
respectively, of the negative binomial distribution. SE = Standard Error.

of magnitude larger than the dispersion parameters of the other groups. When

the dispersion parameter is very large, the negative binomial tends to a Poisson

distribution (Hilbe 2007). This can be seen in Figure 8.6, where we show the

results of fitting a Poisson distribution to the 85+ age group: there is little

difference between the fit of the two distributions.

Due to the poor fit of the negative binomial distribution to week days, we use

a different approach. We consider the delays, Y , for week days, within each age

group, to have the following form:

Y = B(D − 1), (8.1)

where: B is a Bernoulli variable, taking the value 0 with probability p and the

value 1 with probability 1− p; D − 1 has a negative binomial distribution. This

separates out modelling the delay into two parts: a report can have no delay with

probability p, or the report can be delayed with probability 1 − p. If the report

is delayed, then the time of its delay, minus one day, is modelled by D. This

formulation gives much greater freedom to fit to the proportion of delays at 0

and 1. Conceptually, it is also reasonable: a delay of 0 days is plainly not a delay.

The parameters for the marginal distributions B and D are shown in Table 8.3.

To find B, a logistic regression model was fit to a binary form of the data, which

was 0 if there was no delay and 1 otherwise. For D, the fitdistr function was
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Figure 8.7: The relative proportions of reporting delays for working week days,
separated by age groups, with fitted values from the distribution defined by Equation
8.1.

used as above to fit a negative binomial distribution to a subset of the data that

excluded zeros.

The fit of Y for the delay on week days, for each age, can be seen in Figure

8.7. This is a much better fit than that shown in Figure 8.6. The fits for no-delay

(Y = 0) match the data exactly but this is no surprise given the structure of B.

The fits for 1 day of delay are very close to the empirical data, with the largest

deviation in the 0-14 age group. Fits for longer delays are all generally good but

worst in the 15-44 group. This is caused by there being a two modes in the delays

of this age group, because of the difference between genders previously noted (see

Figure 8.5). Comparing the values in Table 8.3 gives a number of interesting

results. Generally, as age increases, more deaths are reported on the day they

occur (P(No delay) increases). Part of this will be caused by younger deaths

being more frequently investigated with postmortems and autopsies, delaying

reporting. Levels are similar in the oldest three age groups. A similar pattern is

noted in the length of delays: the shortest delays are noted in the in the oldest

three age groups. The longest delay occurs in the 15-44 age group.
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Figure 8.8: The relative proportions of reporting delays for Saturdays, separated by
age groups, with fitted distribution values.
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Figure 8.9: The relative proportions of reporting delays for Sundays, separated by
age groups, with fitted distribution values.
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Figure 8.10: The relative proportions of reporting delays for public holidays, sepa-
rated by age groups, with fitted distribution values.

The fit of the distributions to the data on the other days are also close. The fits

can be seen in Figures 8.8, 8.9 and 8.10 for Saturdays, Sundays and public holidays

respectively. The fits are poorest in the 15-44 age group, once more because of the

underlying differences between the genders. The fits to the public holidays would

be better if weekends were dealt with more precisely in the calculation of the

delays measured in working week days. The same pattern in the distribution of

means as noted with the working week days can be seen, with the delays smallest

in the oldest three age groups, all at a similar level. The delays are greatest in

the youngest age groups, with the maximum in the 15-44 age group. Some of

the dispersion parameters are close to one (for instance, θ = 0.983 for Saturdays

in the 15-44 age group). When the dispersion parameter is one, the negative

binomial becomes the geometric distribution (Freund et al. 1999). We show the

corresponding fits of the geometric distribution in Figures 8.8, 8.9 and 8.10. The

differences between these two distributions are small, but we prefer the negative

binomial fit, since its fits are generally closer to the empirical data on day 1. This

is important, since the biggest correction is applied to the data on day 1, since

this is when the smallest proportion of death that have occurred are reported.
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Figure 8.11: An example of the output from the mortality surveillance system that
is emailed to HPS on a daily basis for the monitoring of mortality and included within
the weekly report. The grey lines correspond to the 99% confidence interval. The
inclusion of the line indicating the period over which the under-reporting correction
is applied helps remind users that exceptions near to the current day are speculative
because of the under-reporting correction.

The distributions seem to fit reasonably well to the delays and so could be used

in the mortality system for producing the correction factors. However, this work

was completed after the implementation of the mortality surveillance system.

Thus, the system currently in use at HPS does not utilise it but rather uses the

empirical values considered in Section 8.2.

8.4 Alarm Method for Detecting Unusually High

Levels of Deaths

From the models developed in Chapter 7, a prediction for the number of deaths

can be found. In Section 8.2, we considered an approach to correcting the number

of reported deaths received in the last two weeks, to a figure closer to the actual

number occurring. It remains to choose a way to compare these two figures, so

that it can be decided when an unusually high number of deaths are occurring.

As with the previous systems we have developed, we use an exceedance re-

porting method to detect unusually high levels of deaths. This increases the
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potential for detecting large results in a more timely fashion. This method has

been used in other mortality surveillance systems, for example Choi and Thacker

(1981a), Serfling (1963). From the distribution fitted by the GLM or GAM, we

find an upper confidence limit. If the number of reported cases (after the delay

correction has been applied), exceeds this limit, then an exception is reported.

Typically, a 99% confidence limit is used and this can be portrayed in a graph as

in Figure 8.11, for easy interpretation.

As Serfling (1963) notes, we expect a number of exceptions from natural

variation. At a 99% level, we expect around 19 exceptions (1%/2, 365 × 0.05 ≈
19). Thus, most attention is paid to consecutive days of exceptions, which should

occur with a lower probability (Serfling 1963).

Another measure used in other systems is the number of ‘excess’ deaths. Si-

monsen, Clarke, Williamson, Stroup, Arden, and Schonberger (1997) defines ex-

cess mortality during an influenza season as the ‘difference between the number

of deaths observed and the expected baseline in the absence of influenza’. In our

context, we could define excess as any positive difference between observed deaths

and the predicted number of deaths. However, this is not a particularly useful

measure, since it gives no idea of context: an excess of twenty deaths when the

expected number is fifty is much more serious than when the expected number

is one hundred. However, for easy comparison with other systems, we include an

output of excess deaths in the system. We cumulatively sum excess deaths until

the observed numbers are less than the expected numbers, at which point the

excess count is reset to zero.

Serfling (1963) notes influenza epidemics often have ‘an initial small rise in ex-

cess mortality which is not distinguishable from random fluctuations in preceding

weeks’ and that ‘rarely does this first rise exceed the epidemic threshold’ (p. 504).

As we have daily data, we may stand a greater chance of detecting this ‘initial

small rise’, but it is more likely to detected through the use of CUSUM charts

(Burkom 2007). However, we leave this to be developed in future work. The

alarm methods might also be augmented by considering more closely the rela-

tion between all-cause death and influenza-death (Simonsen, Clarke, Williamson,

Stroup, Arden, and Schonberger 1997).
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Figure 8.12: The structure of the developed mortality surveillance system.

8.5 Mortality Surveillance System

We now have the necessary elements to construct a mortality surveillance system.

The structure of the system is outlined in Figure 8.12. In Chapter 7 we used a back

log of historical data from GROS to fit a model to allow the daily prediction of

expected deaths within six different age groups for each gender. Each day GROS

provide details of the latest deaths reported to them. Due to the delay in the

reporting of deaths, these reported levels will be lower than the actual numbers

of death occurring. Since we know the distribution of these delays, these reported

levels can be ‘corrected’ to a more representative level, using the work in Section

8.2 (the fitted distributions could be used, but the developed system did not –

Section 8.3). The ‘corrected’ observed values can then be compared with the

predicted values, using an alarm method such as exceedance reporting (Section

8.4). If the reported number of deaths is suitably larger than the predicted

number, an exception is raised. In any case, these results are reported back to

the appropriate parties.

Typically, HPS is interested in monitoring nine quantities: deaths in each age

group (six); deaths in each gender (two); all deaths (one). For each age group
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and gender, we have fitted Poisson distributions giving the expected number of

deaths. To find the prediction for some combination of these groups, we can

simply add the fitted means together, since if two Poisson variables have means µ

and λ, then their sum has a Poisson distribution with parameter (µ + λ). Thus,

for the all deaths category, we simply sum all the means; this calculation lies

behind Figure 8.11. The distribution of summed means is used to calculate the

exceedance limits.

Use of the system has shown that it is not entirely trivial to use, because of the

correction applied for under-reporting. What can appear at first as exceptions

can disappear once more data is collected and the reporting correction is smaller.

To help ease the interpretation of exceptions, a model has been fit to the number

of deaths reported each day. This helps separate out exceptions that are simply

due to prompt reporting and those that are more likely due to unusually high

levels of deaths. However, some judgement is still required, meaning that this

system is best used by those with more statistical experience, particularly when

the system is first introduced.

8.6 Conclusions and Future Work

In this Chapter and the preceding one, we have developed a system that can

be used for the daily monitoring of all-cause mortality within Scotland. As a

well developed and reasonably small nation, it is possible to collate details of

all deaths occurring within the country in a reasonably timely fashion. Less

developed nations, such as China, face greater challenges because of their large

and isolated poor rural populations (Yang, Hu, Rao, Ma, Rao, and Lopez 2005).

For nations as large as the United States of America, it is not possible to collate

all this data sufficiently quickly and therefore a sample of cities must be used

(Choi and Thacker 1981a). Sampling in such a way will bring with it the usual

associated problems. However, there are still some smaller developed nations

where such systems are only now being developed (Zucs, Buchholz, Haas, and

Uphoff 2005). Thus, Scotland is one of the few places where such a system is

feasible.

Developed in response to the swine flu epidemic, this system has been used

to reassure the public about the severity of swine flu in Scotland. Its results
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have been included in the daily reports to HPS and the official public govern-

mental report on the state of the swine flu epidemic (Health Protection Scotland

2009b). Fortunately, at the time of writing, there have been no marked changes

in mortality within Scotland during the time of the epidemic. This system, along-

side others, was described in a presentation at the annual meeting of the Royal

Statistical Society on the Scottish response to monitoring swine flu (Robertson,

Kavanaugh, Wagner, McMenamin, Murdoch, Reynolds, Shakir, and Donaghy

2009). Our system stands out as a daily death monitoring system; most systems

are weekly. We are also not aware of GAMs being used elsewhere for captur-

ing the seasonal pattern in this particular context. While all-cause mortality is

typically used as a barometer for seasonal influenza, there is no reason that the

system cannot be used for monitoring deaths beyond the end of the swine flu

epidemic.

A good area for future work would be to look more closely at the reporting

delay correction. A first step would be to implement the delay corrections using

the distributions considered in Section 8.3. Better results may be gained having

a distribution to each of the genders in the 15-44 age group, due to the combined

age group being bi-modal. Ideally, work would be done on making the delay

correction more robust, so that the system becomes easier to use, requiring less

statistical expertise. With sufficient amounts of data, it may be possible to sub-

divide the public holidays and see if there are consistent differences between them.

Further, with additional data, it would also be interesting to see how, if at all,

the pattern of delays have changed over time. Perhaps there may be a seasonal

element to the delays: when medical staff are busier in the Winter with heavier

workloads, it is conceivable that there will be increased delays associated with

reporting deaths.

To help make the system more easily interpretable, we could also investigate

inflating the confidence limits during the under-reporting correction period. The

largest inflation in the confidence limits would happen on the limits for the day

just before the system is ran and reduce to zero at the end of the correction

period (currently, two weeks previously). The ‘inflation’ would help take account

of the increased variation caused by the use of the correction. We would need to

investigate how this inflation would be calculated and evaluated.
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Different alarm methods could also be considered. We have already suggested

in Section 8.4 that CUSUM charts may be useful for detecting smaller changes at

an earlier points. Different alarm methods may also make it easier to deal with

the Winter peak and its associated problems we have described in Chapter 7.



Chapter 9

Summary and Future Work

9.1 Summary

In this thesis we have considered work on extending and producing three surveil-

lance systems for use in Scotland. The first of these used daily data from the

initial deployment of NHS24, a twenty-four hour medical advice phone line. We

considered systems for surveillance of the syndromes present in the log of calls and

focused our attentions on monitoring calls related to vomiting. As we only had

data from the first two years of NHS24 operations, the system developed could

not be usefully tested and was somewhat speculative. The next system looked at

monitoring weekly totals of positive lab test for various micro-organisms collected

by Health Protection Scotland (HPS). Of the six organisms HPS asked us to con-

sider, we chose to focus on developing a monitoring system for Cryptosporidium,

one of the leading causes of water borne disease. This data was from a much

longer period and of much better quality than the NHS24 data, allowing for the

developed HPS systems to be tested and compared with the one currently used.

In both the NHS24 and HPS systems, we developed regional surveillance sys-

tems for monitoring data at the health board level, which is challenging because

of the small counts involved. To model these counts we used negative binomial

GLMs. To deal with serial correlation and capture local trend, we considered

extending the negative binomial models to utilise either past observations or a

variable based on exponential smoothing of the data. Including either of these

quantities allows the models to be somewhat dynamic, allowing them to adapt
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to changing levels in the data. We also found that the models were improved by

carefully modelling seasonality. In the HPS system, we were able to compare our

regional systems against the present national system applied to regional counts.

We found that the systems were of a similar quality or that our systems did

better. In both the NHS24 and HPS monitoring systems, we considered if there

were links between health board regions and if these could be used to improve

the systems. In the NHS24 system, links were found and an approach suggested

for incorporating these links in the models. A more detailed analysis was used in

the HPS system, showing that the links could not be modelled easily by separate

GLMs. More advanced models would be required for this.

Using data on the daily numbers of deaths from the General Registrars’ Of-

fice of Scotland (GROS), we developed an all-cause mortality surveillance system.

This was done in response to the swine flu pandemic during 2009, to help detect

if swine flu was increasing mortality in Scotland. There were two main challenges

with this system: modelling seasonality and dealing with the delay in the report-

ing of deaths. With limited data – only two and a half annual cycles – we needed

to model a seasonal cycle that peaks sharply during the Winter. We found that

the best way to do this was using a Generalized Additive Models (GAMs). To

make the system timely, we also needed a way to address the delayed reporting of

deaths. It was found that the delays were reasonably consistent, and so could be

dealt with by considering the patterns of delays in past data. These elements were

brought together to produce the mortality system that, at the time of writing, is

being used daily to monitor all-cause mortality in Scotland.

9.2 Future Work

Given the opportunity, we would apply the systems developed in this thesis more

widely. For NHS24, we could consider fitting monitoring systems to the other

syndromes. In the HPS system, we could consider some of the other organisms

suggested for study by HPS. In both systems, we would need to evaluate if the

models developed here would generalise easily. This is particularly important for

the NHS24 system, which was developed on a relatively small set of low quality

data from the start of NHS24 operations. For the mortality surveillance system,

we could investigate developing systems for monitoring deaths at the regional



CHAPTER 9. SUMMARY AND FUTURE WORK 279

health board level. It would also be fruitful to look at changing the confidence

intervals during the under-reporting correction period, as discussed in Section

8.6. This should make the system more intuitive and so more widely usable.

As we have discussed previously, improvements may be gained by modelling

all of the health boards simultaneously (for example, as we suggest in Section

5.6.2). This would allow us to both model links between health boards and

perhaps ‘share’ data between them to improve the models. We might find that

it is also possible to group similar syndromes (or organisms) together to further

improve the models. While there are these advantages to such multi-variate

modelling, there would also be some difficulties. First, multi-variate models would

generally need to have common and simple structures for each health board. We

would need to investigate to determine if such simple structures can capture

all the elements we have dealt with in our models. Secondly, there are issues

of interpretation and presentation: can the results and implications of a multi-

variate system be presented easily to a non-statistical audience? It is easier,

although sometimes more time consuming, to convey the results from each health

board with a separate model.

In a different direction, particularly if individual board models are to be pre-

ferred, the use of zero inflated distributions could be investigated. These should

give better fitting models for those organisms with very low regional counts. The

residuals for these models may also be more easily interpreted (in contrast to

taking steps such as we did in Section 5.3.1 to use things like modal residuals).

We could also investigate in greater detail as to what should constitute an

exception. In this thesis, we have used an exceedance alarm method, where an

exception is raised if the number of observed cases exceeds some upper quantile

of a predicted distribution. This is quite a broad approach; better results may

be gained by defining exceptions in other ways. Some of these approaches might

be linked with the underlying organism that is being monitored. Also, we might

have different thresholds for different organisms, depending on the relative public

health threats.

A larger departure would be to look into developing systems that are more

dynamic. Through the use of either past observations or the variable based on

Holt-Winters smoothing, the NHS24 and HPS systems are somewhat dynamic,

adapting to changes in the data. However, the parameters in the underlying
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models are fixed; so, while the models can adapt to changes in the data, the

models implicitly assume that the structures present (seasonality, local trend and

so on) do not change. For this reason, it would be wise to periodically re-fit the

models developed in this thesis, perhaps annually, to take account of structural

changes. In contrast, there are modelling paradigms where the parameters of

models themselves can be random and change with each new piece of data used

by the model Assuming that such models work well for prediction in this area,

these systems could be more automatic and require less maintenance. However,

challenges may still be faced by dealing with the small counts at the regional

level.



Appendix A

Perl Code Used With NHS24

Data

The code listing in this appendix gives the Perl program that was applied to

the raw data from NHS24. It serves to check if the postcode for a particular call

to NHS24 is valid or not. If it is not valid, two corrections are used to try and

correct the postcode. If neither of these corrections can correct the postcode,

that call is marked as having an invalid postcode.

Other rudimentary checks are carried out on the other fields for each call. If a

call fails one of these checks, its details are recorded in a log file, allowing editing

of the offending call to correct it.

With thanks to Ian Thurlbeck and Alan Campbell for their help on some of

the more advanced regular expressions.

#!/usr/bin/perl
use strict;

# Stores all the valid postcode parts
my %validpcs = (
"AB10"=> 2,
...
# Postcodes omitted for space
...
"PA88"=> 15,

);
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A.1 Modules Used in the Main Code

A.1.1 Sub-module: tester

sub tester {
# Checks if $testValue, from field $field satisfies
# the regexp; if not returns an error string
# specifying the lineNo, $field and the erroneous value

my ($testValue, $regexp, $lineNo, $field);
($testValue, $regexp, $lineNo, $field)=@ ;
#print ”Yay!\n”;
$ = $testValue;
if (/$regexp/){}
else {
print LOG "Line $lineNo has an invalid $field, with value $testValue.\n";
print "Line $lineNo has an invalid $field, with value $testValue.\n";

}
}

A.1.2 Sub-Module: trimWhiteSpace

sub trimWhiteSpace($) {
# Remove whitespace from the start and end of the string

my $string = shift;
$string =∼ s/^\s+//;
$string =∼ s/\s+$//;
return $string;

}

A.1.3 Sub-module: writeout

sub writeout {
# Writes out a line to the outfile for insertion into the database
# Hardwired values for the database
my $database = "calls";
my $outputString = "INSERT INTO $database VALUES (";
my $fields = join ",", @ ;
print DATAOUT "$outputString$fields);\n";

}
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A.1.4 Sub-module: pcfix

sub pcfix {
# Checks the given postcode and if it doesn’t exists, tries to fix it
# Failing that just returns the original postcode
my ($testpc, ) = @ ;
my ($where, $recon);
# Set for the reg exp searching
$ = $testpc;
if (exists $validpcs{$testpc}) {

# Valid postcode - return that
$testpc;

} elsif (!$testpc){
# Empty postcode - return empty
$testpc;

} elsif (/^[A-Z]{1,2}0/) {
# Trap errors such as XX0X-> XXX
# Find the position of the string in $where,
# then reconstitute the string
$where = index($testpc, "0");
$recon = substr($testpc, 0, $where).substr($testpc, $where+1);
if (exists $validpcs{$recon}) {

# Put this forward as the correct postcode
$recon;

} else {
# Can’t fix this postcode
$testpc;

}
} elsif (/^[A-Z]{1,2}[0-9]{1,3}/) {

# Trap errors that occur because of too many digits
# We try to fix by dropping the last digit in the string
$recon = substr($testpc, 0, length($testpc)-1);
if (exists $validpcs{$recon}) {

# Put this forward as the correct postcode
$recon;

} else {
# Can’t fix this postcode
$testpc;

}
} else {

# Postcode errors not caught by any of the fixes above
$testpc;

}
}
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A.2 Main Code of Program

my (@bits, $lineNo, $calldate, $calltime, $postcode, $age, $outcome);
my ($gender, $protocol, $syndrome, $pcEmpty, $pcvalid, );

# Checks an input file for validity
# Outputs a line to insert into a database
if ($#ARGV != 2 and $#ARGV != 3) {
print "Usage: ", $0, " <datafile> <outputfile> <pcerrorfile> /headers/\n";
exit 1;

}

# Set up files
open(DATAIN, $ARGV[0]) ||die "Cannot open data file";
open(DATAOUT, ">".$ARGV[1]) ||die "Cannot create output file";
open(PCERRORS, ">".$ARGV[2]) ||die "Cannot create pcerror file";
open(LOG, ">>".$ARGV[0].".log") ||die "Cannot access logfile";

# Log the repeating of the batch process in the log file
my $now = ‘date‘;
chomp($now);
print LOG "=============================================================\n";
print LOG "Running updated $0 on the $now - now with added fixing power.\n";

# Ignore the first line of the file, if it is a header
$lineNo = 0;
if ($ARGV[3]) {

<DATAIN>;
$lineNo++;

}

while (<DATAIN>) {
$lineNo++;

@bits = split(/,/);
#$bits[0] = $mon;
($calldate,$calltime,$postcode,$age,$outcome,$gender,$protocol, $syndrome)

= @bits;
## NOTE: After each check, each value is put in single speech marks, if apt

# Check the date
&tester($calldate,"\^200[45]-(0[1-9]|[1][0-2])-(0[1-9]|[12][0-9]|3[01])\$",
$lineNo,"Date");

$calldate="’$calldate’";

# Check the time
&tester($calltime,"\^([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9]\$",$lineNo,"Time");
$calltime="’$calltime’";
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# Check the postcode
# Try to fix up the postcode first
$postcode = &pcfix($postcode);
if (exists $validpcs{$postcode}) {
$postcode = "’$postcode’"; $pcvalid = "’Y’"

} elsif (!$postcode) {
$postcode="NULL"; $pcvalid = "’Y’";
} else {

# Send the invalid postcodes into a file
print PCERRORS "Line $lineNo, has an invalid postcode $postcode.\n";
$postcode = "’$postcode’";
$pcvalid = "’N’";

};

# Check the age - assumed 119 as the maximum age
$age=&trimWhiteSpace($age);
if ($age) {
&tester($age,"\^([0-9]|[1-9][0-9]|1[01][0-9])\$",$lineNo,"Age");
$age="’$age’";

} else {
$age="NULL";

}

# Outcome is not tested as there is no structure
if ($outcome) {
$outcome = "’$outcome’";

} else {
$outcome = "NULL";

}

# Gender check
if ($gender) {
&tester($gender,"\^(Male|Female)\$",$lineNo,"Gender");
$gender="’".substr($gender,0,1)."’";

} else {
$gender = "NULL";

}

# Protocol does not need to be tested
if ($protocol) {
$protocol = "’$protocol’";

} else {
$protocol = "NULL";

}

# Syndrome check
$syndrome = &trimWhiteSpace($syndrome);
&tester($syndrome,"\^([0-9]|1[01])\$",$lineNo,"Syndrome");
$syndrome = "’$syndrome’";

&writeout($calldate,$calltime,$postcode,$age,$outcome,
$gender,$protocol,$syndrome,$pcvalid);
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}

# Close the files
close(DATAIN);
close(DATAOUT);
close(PCERRORS);
# Close this log entry
print LOG "=======================================================\n";
close(LOG);

# Processing number of lines is affected by if there is a header on the file
if ($ARGV[3]) {
$lineNo--;
print "In total, $lineNo lines were processed, with a

header taking up another line.\n";
} else {
print "In total, $lineNo lines were processed.\n";

}

exit;



Appendix B

Exponential Smoothing:

Developments & Practical

Considerations

B.1 Exponential Smoothing Forms & Develop-

ments

Exponential Smoothing (ES) techniques are widely used for forecasting, partic-

ularly in commerce and industry (Winklhofer, Diamantopoulos, and Witt 1996;

Dalrymple 1987). Despite the simplicity and intuitiveness of the techniques, they

are shown to give results comparable to ‘(much) more sophisticated’ methods

(Chatfield, Koehler, Ord, and Synder 2001; Makridakis and Hibon 2000; Chen

1997; Winklhofer, Diamantopoulos, and Witt 1996; Makridakis, Andersen, Car-

bone, Fildes, Hobon, Lewandowski, Newton, Parzen, and Winkler 1984; Makri-

dakis, Andersen, Carbone, Fildes, Hobon, Lewandowski, Newton, Parzen, and

Winkler 1982; Makridakis, Hibon, and Moser 1979). ES techniques can also be

automated, which is useful when many time series need to be forecast (such as

in inventory control), or when a subject specialist is not available (Chatfield and

Yar 1988). The original method of ES is known as Simple Exponential Smooth-

ing (SES). It has been extended to deal with trend (e.g. Holt’s linear trend

model) and then seasonality & trend (e.g. Holt-Winters, General Exponential

Smoothing).
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B.1.1 Simple Exponential Smoothing (SES)

The SES methods were developed in Brown (1959), Brown (1963), Winters

(1960), Holt (2004) and others in the 1950’s, but there is no single consensus on

the first developer (Gardner 1985a; Chatfield, Koehler, Ord, and Synder 2001).

SES is probably one of the ‘best known forecasting methods’, likely due to its

conceptual simplicity and intuitiveness (Chatfield 2001). SES is one of the pre-

diction methods considered in McCabe (2004), but rejected in favour of using

GLMs. We now introduce SES in the manner of Chatfield et al. (2001).

We will denote an observed time series by x1, x2, . . ., xn. The forecast of xt+m

made at time t is denoted x̂n(m) where the integer m is called the ‘lead time’

or ‘forecasting horizon’. The observed one-step-ahead predictions errors, et, are

given by et = xt − x̂t−1(1). SES updates an estimate of the local (mean) level by

using a recurrence equation

x̂t(1) = αxt + (1− α)x̂t−1(1), (B.1)

but this is more often given in the error correction form

x̂t(1) = x̂t−1(1) + αet, (B.2)

where α is a smoothing constant or parameter, normally restricted to the range

(0, 1) (Chatfield et al. 2001). It commonly takes values between 0.1 and 0.3

(Gardner 1985b), but this is frequently not the case (Chatfield and Yar 1988).

The parameter can either be manually specified, or, more usually, is chosen to

minimise the squared one-step-ahead prediction errors (
∑

e2
t ) (Chatfield et al.

2001). When this method is considered for prediction in McCabe (2004), values

of α from 0.1 to 0.9 in steps of 0.1 are tested to find which value minimises
∑

e2
t ,

using data from the previous year. The optimal value of α is used to make a

prediction for the week ahead. The HoltWinters function in R can be restricted

to carry out SES, with α being found more precisely by using an optimisation

routine to minimise
∑

e2
t (Meyer 2008). For more details on fitting see Gardner

(1985b).
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By carrying out successive substitutions in Equation B.1, we find:

x̂t(1) = αxt + (1− α)x̂t−1(1)

= αxt + (1− α)[αxt−1 + (1− α)x̂t−2(1)]

= αxt + α(1− α)xt−1 + (1− α)2x̂t−2(1)

= αxt + α(1− α)xt−1 + α(1− α)2xt−2 + α(1− α)3xt−3 + (1− α)4x̂t−4(1)

=
...

=
∞∑

j=0

α(1− α)jxt−j, (B.3)

so that a ‘one step forecast ... is equivalent to computing a geometric sum of

past observations’ (Chatfield 2001). With the weights decaying exponentially, it

is easy to see the reason for the method’s name (Chatfield, Koehler, Ord, and

Synder 2001). This type of decay is intuitively sensible: we expect the forecast

x̂t(1) to be tied most closely to those observations closest to it in time (xt, xt−1,

etc.). As α increases to 1, more weight is placed on recent values and the effect

of values far in the past becomes vanishingly small. When α = 1, the forecast is

the same as the last observation.

Chatfield (2001) notes that SES “is sometimes said to be applicable for series

showing no seasonal variation or long-term trend but with a locally constant mean

which shows some ‘drift’ over time”. More precisely, SES has also been shown to

give the optimal forecasts for certain models where this ‘drift’ can be described

mathematically. For instance, for an ARIMA (0,1,1) model, (1 − B)Xt = Zt −
θZt−1, the Minimum Mean Square Error (MMSE) forecast is given by:

x̂t(1) = xt − θzt

= xt − θ [xt − x̂t−1(1)] (B.4)

= (1− θ)xt + θx̂t−1(1)

= αxt + (1− α)x̂t−1(1)

where α = 1− θ, with the final form being the same as Equation B.1 (Chatfield

2001; Chatfield 1996; Gardner 1985b). SES is also optimal for forecasting random

walk plus noise state-space models, where SES can be seen as a form of Kalman

filter (Chatfield 2001; Chatfield, Koehler, Ord, and Synder 2001).
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SES, and more generally ES methods, were originally justified by being ‘in-

tuitively sensible’, as opposed to having any theoretical justification (Chatfield,

Koehler, Ord, and Synder 2001). Since then, many authors have found many

models for which ES techniques give MMSE predictions, and some have taken

this as a justification for ES methods (Gardner 1985b; Chatfield, Koehler, Ord,

and Synder 2001). There are of course advantages for having a model that de-

scribes the underlying structure of the data for which the ES methods are being

applied, such as forming prediction intervals (Chatfield, Koehler, Ord, and Synder

2001). However, ES methods have been shown to work across a variety of models

which have contrasting structures and assumptions. Further, there are data-sets

for which a model cannot be easily specified, but that ES provides good forecasts

for (Cogger 1985). For instance, McKenzie (1985) contrasts the choice between

using Box-Jenkins ARIMA and ES methods for forecasting: ‘The ARIMA mod-

eller assumes that the stationarity observed in the data will be preserved into the

future. ... The ES modeller, on the other hand, may note the stability of the

level in the fitting period, but he fears the worst for the future. ... The ES mod-

eller’s primary aim in model building has to be robustness.’ Given the prediction

systems we are going to develop will be for use by non-experts, this quality of

robustness is very important. Also, since data consistency is variable, sometimes

subject to artificial changes (for example, see Section 4.2.1), the ability of SES

to adapt to new levels in the data is very attractive. For more detailed discus-

sions on theoretical justifications of ES, see Chatfield, Koehler, Ord, and Synder

(2001), Gardner (1985b), Cogger (1985), McKenzie (1985), Gardner (1985a).

B.1.2 ES with Trend

SES takes no account of a trend being present in the data being forecast (Chat-

field, Koehler, Ord, and Synder 2001). Thus, for forecasting such data SES should

be extended. The first extension to deal with trend was given by Holt, who ex-

tends SES to deal with a linear trend (Holt 2004; Holt, Modigliani, Muth, and

Simon 1960). In such a case, the forecast equation to predict m steps into the

future becomes (using notation consistent with Meyer (2008)):

x̂t(m) = at + mbt, (B.5)
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where:

at = αxt + (1− α)(at−1 + bt−1), (B.6)

bt = β(at − at−1) + (1− β)bt−1, (B.7)

or, in their error correction form

at = at−1 + bt−1 + αet, (B.8)

bt = bt−1 + αβet, (B.9)

such that at is the local level of the series, bt is the trend. The smoothing parame-

ters α and β can be found in the same way as the SES parameter and have similar

constraints on them (Gardner and McKenzie 1985). Holt’s linear trend method

can be carried out in R by use of the HoltWinters function to fit a non-seasonal

model (Meyer 2008).

Brown gives another formulation for ES with a linear trend that utilises only

one smoothing parameter:

x̂t(m) = at +

(
1− α

α

)
bt + mbt (B.10)

at = αxt + (1− α)bt−1, (B.11)

bt = α(at − at−1) + (1− α)bt−1. (B.12)

This form is sometimes known as ‘double exponential smoothing’, since one

smoothing parameter is used to smooth twice (Chatfield 2001). The main advan-

tage to this method is the reduction of smoothing parameters to one. However,

this is perhaps offset by the greater opacity of the method over Holt’s formulation.

Given contemporary computing power, the concern for this saving in efficiency is

rarely a concern, leading to the method being rarely used now (Chatfield 2001).

For further details see Chatfield (2001), Gardner (1985b).

Linear trend formulations have the disadvantage that for large values of m

(forecasting far in to the future) the forecasted value will tend to plus or minus

infinity, which is normally unrealistic. One approach to resolving this problem

is to damp the trend so that for large values of m, the trend does not con-

tribute unreasonably to the forecast. This approach is investigated in Gardner
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and McKenzie (1985), where Equations B.5, B.6 and B.7 are extended by the

addition of an autoregressive-damping (AD) parameter φ:

x̂t(m) = at +
m∑

i=1

φibt, (B.13)

at = αxt + (1− α)(at−1 + φbt−1), (B.14)

bt = β(at − at−1) + (1− β)φibt−1, . (B.15)

We note the implications of the different values of φ from Gardner and McKenzie

(1985). If φ = 0 there is no trend and the model reduces to SES. If 0 < φ < 1

the trend is damped and approaches the asymptote given by the straight line

at + btφ(1−φ). When φ = 1, this new formulation reduces to Holt’s linear model

as given by Equations B.5, B.6 and B.7. For φ > 1, exponential trend will result

which is usually not required. Gardner and McKenzie (1985) provide details of

how to calculate the parameters: again, they are essentially chosen by minimising∑
e2

t , but the authors present refinements, for efficiency, to the manner in which

they are usually calculated. Damped trends have been shown on average to give

very accurate long term forecasts (Gardner 1985b).

Other extensions to the basic SES method exist for dealing with trends that

are non-linear (Gardner 1985b). However, these methods are rarely used; partic-

ularly not in business and commerce where higher order trends often have little

relevance (Gardner 1985b). Since we will primarily be looking at predictions one

time unit ahead (m = 1), using a linear trend is a reasonable assumption (Gard-

ner and McKenzie 1985). Thus, we do not consider these other methods here but

direct the interested reader to Gardner (1985b).

As with SES, a number of the methods considered here are optimal predictors

for a number of models. Holt’s linear trend model is optimal when the data has

the structure of an ARIMA (0,2,2) or linear growth state-space model (Gardner

1985b; Chatfield 2001). The damped linear model is optimal for data that has

an ARIMA (1,1,2) structure: the model has an autoregressive term that Holt’s

method’s underlying model does not and is the reason for φ being called an

‘autoregressive-damping’ parameter (Gardner and McKenzie 1985). For this and

other equivalences see Gardner and McKenzie (1985).
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B.1.3 ES with Trend & Seasonality

Frequently, a forecaster will wish to predict series that exhibit both trend and

seasonality. This is often the case in sales where the level of sales is not just

affected by general trends, but also by the seasonal period. The Holt-Winters

method and general exponential smoothing are two extensions of SES that deal

with both trend and seasonality.

The Holt-Winters method (sometimes called Winter’s seasonal method) is

named in honour of C C Holt and P R Winters, but there does not seem to be

any clear idea of who first developed it (Chatfield and Yar 1988). When dealing

with seasonality there is a fundamental choice between treating it as additive or

multiplicative in nature. We will describe the additive approach, as we deal with

predicting log-counts. The counts themselves appear to have a multiplicative

structure, so by dealing with the log-counts, the seasonality becomes additive.

For the structure of the multiplicative form, see Gardner (1985b). Thus, the

Holt-Winters additive form (as presented in Meyer (2008)) for a year of p seasons

i.e. periodicity p:

x̂t(m) = at + mbt + st+1+(m−1) mod p, (B.16)

at = α(xt − st−p) + (1− α)(at−1 + bt−1), (B.17)

bt = β(at − at−1) + (1− β)bt−1, (B.18)

st = γ(xt − at) + (1− γ)st−p, . (B.19)

with error correction forms:

at = at−1 + bt−1 + αet, (B.20)

bt = bt−1 + αβet, (B.21)

st = st−p + (1− α)γet, (B.22)

where α and β are as previously, γ is the seasonal parameter for updating the

seasonal factors st which have p factors per period.

Many people consider the Holt-Winters method to be ‘robust’ and ‘easy-to-

use’ (Chatfield and Yar 1988). Holt-Winter forecasts have been found to give
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comparable accuracy of forecasts to non-automatic systems which require much

greater expert knowledge (such as Box-Jenkins methodology) (Chatfield 2001;

Chatfield and Yar 1988). As Chatfield and Yar (1988) observes, this resonates

with Schumacher (1974), who notes that sophisticated systems for short term

forecasts ‘rarely produce[s] significantly different results from those of a crude

technique.’ The additive Holt-Winters is an optimal forecaster for a very complex

ARIMA model (Abraham and Ledolter 1986; McKenzie 1976).

General Exponential Smoothing (GES) was first developed by (Brown 1963).

It is a good deal more complex than the Holt-Winter’s method, with its main

difference being that seasonality is dealt with by sinusoids (Gardner 1985b).

B.2 Practical Issues of ES

As we have seen, a number of authors commend ES over other techniques for its

intuitiveness and robust results (Chatfield and Yar 1988). However, in the area

of identification, other methods such as Box and Jenkins ARIMA are stronger

in the sense of being more systematic (Gardner 1985a). While subjective, the

most appropriate ES technique will usually be found by manually selecting the

method. When manually selecting the appropriate ES method, the key decisions

will be whether the data has a trend and whether it is seasonal (Gardner 1985b;

McKenzie 1985). A number of very other useful guidelines are given in Chatfield

and Yar (1988).

We have not considered details of starting values for ES methods. For SES,

little difference has been found between using a global mean or the first observa-

tion as the starting value for the method (Clark, Cremins, and Schnaars 1987).

More generally and applicable to all the methods is the approach of back-casting

(Ledolter and Abraham 1984): this approach reverses the order of the data and

uses the most recent observation to start a run of the ES method. The prediction

given at the end of the reversed data is then used as a starting value for the

ES method on the original data. When additive seasonality is required for Holt-

Winters, a linear regression can be carried out on data with dummy variables to

find levels for the different seasonal periods. For series with few observations, a

number of other approaches exist (Gardner 1985b). For longer series, the effect of

the initial values will be less noticeable. However, this is less true for the seasonal
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factors, as they will only be updated once every year: thus, the weekly factors

for the HPS data would only be updated twenty times (Chatfield and Yar 1988).

The HoltWinters function within R takes quite a naive approach to approach

to initial values (Meyer 2008). When it is used to carry out SES, the first ob-

servation is used to initialise the level (at, in Equation B.17). When forecasting

with level and trend, the first observation and the difference between the first

two observations are used for initialisation respectively (at in Equation B.17 and

bt in Equation B.18). For the full Holt-Winters method with seasonality, a time

series decomposition is carried out on the first three periods of data using the

function decompose. This function separates a times series into seasonal and

trend components using moving averages. The seasonal pattern found is used as

the starting values for the seasonal factors st (Equation B.19). A straight line is

fitted to the trend component using simple linear regression; the coefficients in

the resulting model are used as starting values for the level and trend.



Appendix C

Mode of the Negative Binomial

In this Appendix we derive a general form for the negative binomial distribution’s

mode. We use the specification of the negative binomial fY (y; θ, µ), with mean µ

and dispersion parameter θ, as given in Venables and Ripley (1997):

fY (y; θ, µ) =
Γ(θ + y)

Γ(θ)y!

µyθθ

(µ + θ)θ+y
,

where y is a non-negative integer, µ > 0 and θ > 0.

We consider the difference in probability between y = k + 1 and y = k:

fY (k + 1)− fY (k) =
Γ(θ + k + 1)

Γ(θ)(k + 1)!

µk+1θθ

(µ + θ)θ+k+1
− Γ(θ + k)

Γ(θ)k!

µkθθ

(µ + θ)θ+k

Then, with use of the result that Γ(z + 1) = zΓ(z), where z > 0:

fY (k + 1)− fY (k) =
Γ(θ + k)

Γ(θ)(k + 1)!

µkθθ

(µ + θ)θ+k+1
(µ(θ + k)− (k + 1)(µ + θ))

=
Γ(θ + k)

Γ(θ)(k + 1)!

µkθθ+1

(µ + θ)θ+k+1︸ ︷︷ ︸
>0

(
µ

(
1− 1

θ

)
− 1− k

)

Let β = µ
(
1− 1

θ

)
− 1. Since the braced term above is larger than 0, we get the

following result:

fY (k + 1)− fY (k) ∝ (β − k). (C.1)

296
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k

f Y
((k

))

ββ

In general, when k < β,

fY (k + 1)− fY (k) > 0 and when

β > k, fY (k + 1)− fY (k) < 0, as in

the diagram. Thus from result C.1,

we know that the negative binomial is

uni-modal. When θ ≥ 1, the mode is

the first integer larger than β; if θ < 1,

fY (k + 1)− fY (k) < 0 for all values of

k, and so the mode is at zero.

Thus, in summary:

mode =

{
0 θ < 1,

bµ
(
1− 1

θ

)
c θ ≥ 1.



References

Abraham, B. and J. Ledolter (1986). Forecast functions implied by autore-

gressive integrated moving average models and other related forecast pro-

cedures. International Statistical Review 54, 51–66.

Advances in Disease Surveillance (2007). Utilisation of Data Derived

from a Nurse-led NHS Access and Information Telephone Helpline

(NHS24) in Communicable Disease Management in Scotland, Vol-

ume 2 (126). Advances in Disease Surveillance. Available at:

http://www.isdsjournal.org/article/viewPDFInterstitial/882/763 (last

accessed June 28th 2009).

Agarwal, D., A. Gelfand, and S. Citron-Pousty (2002). Zero-inflated models

with application to spatial count data. Environmental and Ecological Statis-

tics 9, 341–355.

Alexander, L. V. and P. D. Jones (2001). Updated precipitation se-

ries for the uk and discussion of recent extremes. Atmospheric Sci-

ence Letters 1 (2), 142–150. Article and associated data available from

http://hadobs.metoffice.com/hadukp/. Last accessed on July 2nd 2009.

Allardice, G. M., E. M. Wright, M. Peterson, and J. M. Miller (2001). A statis-

tical approach to an outbreak of endophthalmitis following cataract surgery

at a hospitalin the west of scotland. Journal of Hospital Infection 49 (1),

23–29.

Association of Medical Microbiologists (1997). The facts about cryptosporid-

ium. http://www.amm.co.uk/files/factsabout/fa crypto.htm. Last accessed

on April 4th 2008.

Awwa Research Foundation (2008). Featured topic

298

http://www.isdsjournal.org/article/viewPDFInterstitial/882/763
http://hadobs.metoffice.com/hadukp/
http://www.amm.co.uk/files/factsabout/fa_crypto.htm


REFERENCES 299

snapshot: Ultraviolet disinfection and treatment.

http://www.awwarf.org/research/TopicsAndProjects/topicSnapshot.aspx?

topic=uv. Last accessed on April 4th 2008.

Babin, S., S. Magruder, S. Hakre, J. Coberly, and J. S. Lombardo (2007).

Understanding the Data: Health Indicators in Disease Surveillance. In J. S.

Lombardo and D. L. Buckeridge (Eds.), Disease Surveillance: A Public

Health Informatics Approach, Chapter 2, pp. 43–90. Wiley.

Baker, M., G. E. Smith, D. Cooper, N. Q. Verlander, F. Chinemana, S. Cotter-

ill, V. Hollyoak, and R. Griffiths (2003). Early warning and NHS Direct: a

role in community surveillance? Journal of Public Health Medicine 25 (4),

362–368.

BBC (2009, June). WHO declares swine flu pandemic. Available at

http://news.bbc.co.uk/1/hi/8094655.stm (last accessed November 16th

2009).

BBC News (2005). Health board goes under the knife. Website news story:

http://news.bbc.co.uk/1/hi/scotland/4559659.stm. Last accessed June 1st

2009).

Box, G. E. P. and G. M. Jenkins (1976). Time Series Analysis: Forecasting

and Control (Revised ed.). Time Series Analysis and Digital Processing.

Holden-Day.

Brandt, P. T., J. T. Williams, B. O. Fordham, and B. Pollins (2000). Dy-

namic modeling for persistent event-count time series. American Journal of

Political Science 44 (4), 823–843.

Brillman, J., T. Burr, D. Forslund, E. Joyce, R. Picard, and E. Um-

land (2005). Modelling emergency department visit patterns for infec-

tious disease complaints; results and application to disease surveillance.

BMC Medical Informatics and Decision Making 5 (1), 4. Available from:

http://www.biomedcentral.com/1472-6947/5/4 (last accessed on August

21st 2009).

Brown, R. G. (1959). Statistical Forecasting for Inventory Control. New York:

McGraw-Hill.

http://www.awwarf.org/research/TopicsAndProjects/topicSnapshot.aspx?topic=uv
http://www.awwarf.org/research/TopicsAndProjects/topicSnapshot.aspx?topic=uv
http://news.bbc.co.uk/1/hi/8094655.stm
http://news.bbc.co.uk/1/hi/scotland/4559659.stm
http://www.biomedcentral.com/1472-6947/5/4


REFERENCES 300

Brown, R. G. (1963). Smoothing, Forecasting and Prediction. Englewood Cliffs:

Prentice Hall.

Bull, G. M. and J. Morton (1978). Environment, temperature and death rates.

Age and Ageing 7 (4), 210–224.

Burkom, H. (2007). Alerting Algorithms for Biosurveillance. In J. S. Lombardo

and D. L. Buckeridge (Eds.), Disease Surveillance: A Public Health Infor-

matics Approach, Chapter 4, pp. 143–192. Wiley.

Burkom, H. S., S. P. Murphy, and G. Shmueli (2007). Automated Time Se-

ries Forecasting for Biosurveillance. Advances in Disease Surveillance 4.

Available at: http://thci.org/ documents/temp/Automated Time Series

Forecasting for Biosurveillance Abstract 5-3-06.doc (last accessed June 21st

2009).
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