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Abstract

This thesis presents the results of the first FEM based on a 2D - 1D Bragg lasing cavity,

formed by surface corrugations on the inner conductor of an over-sized co-axial drift-

tube. Such over-sized interaction regions allow for the use of high current electron

beams, whilst maintaining current densities at a sufficiently low level as to avoid

instabilities from self-forces within the beam. In this manner the FEM falls within the

High-Gain Compton regime, avoiding the more complex interactions of the Raman

regime. 

Beginning with an overview of FEL and Bragg reflector theory, the following work

presents the theoretical design, numerical modelling and experimental investigation of

a proof of principle 2D - 1D Bragg FEM, including the design of two electron beam

sources, providing currents of ~  ( ) and  ( )

respectively. The spectral content of the output microwave pulses was investigated

using both high-pass cut-off filters and a heterodyne mixing technique, with the results

confirming the excitation and dominance of the fundamental TEM operating mode at

a frequency of ~ , in-line with the central resonant frequency of the Bragg

reflectors. In addition, the existence of parasitic, competing, cavity resonances was

postulated and confirmed experimentally, with suppression achieved through careful

tuning of the undulator magnetic field strength. The first detailed analysis of the

spectral evolution of microwave pulses from such a cavity is presented, showing

preferential coupling to the desired operating mode with proper matching of the

undulator field strength to the electron energies. 

Best performance was observed using the  electron beam source, with a guiding

axial magnetic field of  and an undulator magnetic field of . The mean

electron energy was ~ , resulting in  and a resonant FEM frequency of

~ . The output microwave pulses were ~  in duration at an integrated

output power of , corresponding to a conversion efficiency of . 

1.5kA 350Acm 1– 2 3kA– 700Acm 1–

37.5GHz

1.5kA

0.56T 0.063T

450keV γ 1.8≈

37.5GHz 150ns

60MW 10%±( ) 10%
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Chapter 1: Introduction. 
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1.1  Introduction.

This Chapter presents the original basis for the 2D - 1D Bragg Free Electron Maser

(FEM) experiment, followed by a review of FEM research carried out at the University

of Strathclyde (c.f. Section 1.3). The authors contribution to the experiment, in terms

of the development of apparatus required, is presented in Section 1.4, along with a

summary of the thesis content presenting the main sections of the following chapters.
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1.2  Basis for Research. 

The following work describes the first operation of a Free Electron Maser (FEM) with

a lasing cavity defined by 2D and 1D Bragg reflectors. These were implemented in an

over-sized co-axial drift-tube, allowing for high power (~ ) operation without

the risk of breakdown, due to high electrical stresses, or the generation of spurious

beam instabilities, due to overly high beam current densities. 

The application basis for this work came from the initial design brief for the proposed

Compact Linear Collider (CLIC), under development at the European Organisation for

Nuclear Research (CERN), which required high power microwave sources, operating

in the Ka-Band ( ) to test the power handling capabilities of the

accelerating cavities and ancillary components. While it should be noted that following

commencement of the project the operating frequency of CLIC was revised from

 to , this in no way degrades the impact of the results presented, rather,

given the scalability of the technology advanced a suitably redesigned 2D - 1D Bragg

FEM operating at  could potentially offer -class operation. 

1.3  Historical Review of Research.

Free Electron Maser (FEM) experiments, based around the use of Bragg reflector

defined lasing cavities, began at the University of Strathclyde in the late 1990’s

following the establishment of a collaboration with the Institute of Applied Physics

(IAP), in Nizhny Novgorod, Russia.  By 1998 this resulted in the operation of the first

FEM oscillator in the UK (Cross et al. 1998) which provided ~  of output power

at  with a conversion efficiency of ~ . 

Collaborative work investigating the use of 2D Bragg structures began in 1999

(Ginzburg et al. 1999), with the theoretical basis for a 2D - 2D Bragg reflector based

FEM presented in 2001 (Konoplev 2001). This was later experimentally verified, with

the generation of nominally single frequency pulses at ~  and power level of

~ , corresponding to energy extraction efficiencies of ~  (McGrain 2006,

Konoplev 2007).

60MW

26.4 40GHz–

35GHz 12GHz

12GHz GW

0.5MW

32GHz 5%

37.5GHz
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Figure 1.1: Shows (a) the spectral content of a microwave pulse generated by the  2D

- 2D Bragg FEM experiment, (b) the voltage pulse applied to the gun diode (black

curve) and resultant microwave pulse measured at the FEM output (blue curve). All

units are normalised. 

This experiment was the progenitor of the 2D - 1D Bragg FEM presented in this thesis,

which builds on the success of the purely 2D Bragg based lasing cavity by providing a

similar degree of spectral purity, with an enhanced power output of ~  and

energy conversion efficiency of ~ . Portions of this work have been reported by

Konoplev et al. (2006a, 2008). 

1.4  The 2D - 1D Bragg FEM Experiment. 

The 2D - 1D Bragg FEM experiment utilised many of the components of the previous

2D - 2D Bragg FEM, though much of the experimental infrastructure was redesigned

to offer enhanced performance and stability in operation. The main advancements of

the experiment are summarised as follows: 

The High Voltage Power Supply: 

The 2D - 2D Bragg FEM experiment utilised a 15 stage inverting Marx-bank,

connected to a folded transmission-line pulse former, as the driving supply for the

electron beam source. Whilst functioning adequately for the experiment at hand, the

Marx-bank was prone to electrical breakdown between the bank output and its

(a) (b)

60MW
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grounded insulation tank, despite the use of highly dielectric ( ) oil as

the insulation medium in the tank: 

Figure 1.2: Shows examples of flashover between the output of the Marx-bank and the

grounded insulation tank. 

Such failure of the insulation medium results in the formation of carbon particles in the

oil, exacerbating the issue and risking severe damage to the Marx-bank capacitors. For

the 2D - 1D Bragg experiment the power supply as a whole was stripped, redesigned

and rebuilt  (compare Figures 1.2 and 5.5). This included modifications to the Marx-

bank base assembly and positioning within a newly designed insulation tank along

with improved field suppression structures added to the transmission line and an

improved deionised water system to maintain the dielectric strength of the

transmission line at a higher, more consistent value. 

The redesigned power supply showed a marked increase in stability with no signs of

dielectric failure in the insulation oil noted throughout the course of the 2D - 1D Bragg

FEM experiment. This allowed for proper calibration of the power supply output,

yielding in turn a higher reproducibility in the observed output from the FEM. 

The Explosive Electron Emission Gun.

The FEM experiment utilises a space-charge limited electron source, based around an

annular explosive electron emission (EEE) cathode. The source used in the 2D - 2D

 100kVcm 1–>
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Bragg FEM experiments suffered from high losses due to the formation of a secondary

electron beam from a set of focus electrodes, limiting the beam current to ~  with

a degraded pulse shape. 

For the 2D - 1D Bragg FEM experiment the design of both the cathode stalk and the

bounding anode can were revised, first removing the focus electrodes, then reducing

the anode-can diameter, resulting in the construction and experimental verification of

two separate electron sources, operating at  and  respectively.

Reproducibility between shots with similar operating parameters was observed to

remain high even when comparing measurements taken from different experimental

runs (c.f. Sections 7.3.2 & 7.4.2) allowing for tuning of the electron beam parameters,

in successive shots, to achieve resonance with the undulator field in the interaction

region. 

The 2D - 1D Bragg FEM Cavity and Magneto-optical Systems.

Purely 1D and 2D Bragg reflector based FEM’s have been investigated in a variety of

forms (Bratman et al. 1983, Wang et al. 1986, Chu et al. 1994, Kaminsky et al. 1996,

Ginzburg et al. 1998b, Arzhannikov et al. 1995, Agafonov et al. 1997, Agafonov et al.

1998, Konoplev 2001, McGrain 2006, Konoplev et al. 2007), however the 2D - 1D

Bragg lasing cavity used in the FEM experiment is unique, both in its co-axial over-

sized design and in that its operation has been proven experimentally. The

measurement of  pulses, peaked strongly at their centre frequency of

~ , combined with an observed peak power output   shows that the

combination of the 2D and 1D Bragg reflectors results in a marked improvement in

performance over a purely 2D Bragg based design whilst maintaining the mode

selectivity and phase synchronisation advantages offered by the 2D Bragg reflector.

The magneto-optics employed in the FEM experiment, namely the guide solenoid and

undulator circuits, remained largely untouched from that used in the earlier 2D - 2D

Bragg FEM, though both circuits were fully stripped, checked and reassembled before

commencement of the work presented.

500A
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1.4.1  Thesis Structure.

The main features of the thesis are presented as follows:

Chapter 2:

Presents a brief history of the FEL, with a bias towards FEM’s in-line with the

experiment presented. This is followed by a review of base FEL physics and its relation

to the 2D - 1D Bragg experiment. 

Chapter 3:

Presents theory relevant to the operation of an FEM lasing cavity defined by 2D and

1D Bragg reflectors, beginning with an over-view of waveguide mode theory as a

precursor to discussion of the different Bragg reflectors and the modifications these

induce to the EM dispersion relation. The creation of a lasing cavity defined by such

Bragg reflectors is then considered, with the performance for a given set of

experimental parameters estimated. Full derivations of the 1D and 2D Bragg theory are

included in Appendices A and B respectively.

Chapter 4:

Presents numerical simulations of the gun diode, used as the source of the electron

beam in the FEM experiments, for two different gun geometries, one operating with

beam currents in the region of  and one with beam currents of . The

required guiding field strength in each case was determined to provide the optimum

achievable beam quality for insertion into the drift-tube (interaction) region. All

modelling of the gun diode was carried out using the 2.5D Particle in Cell (PiC) code

KARAT.

Numerical simulations of the 2D - 1D Bragg cavity are also presented in Chapter 3, this

time using the 3D PiC code MAGIC. Simulations are presented for the same cavity

geometry, with beam currents and magnetic field strengths adjusted to correspond to

that simulated for the two gun geometries. The chapter concludes with a comparison

of the performance expected from the lasing cavity for the two beam current densities

1 1.5kA– 3 4kA–
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and a short summary of the expected operating parameters for the physical experiment

based on the simulation results.

Chapter 5:

Presents the construction of the 2D - 1D Bragg experiment, beginning with the high-

voltage pulsed-power supply, covering the operation of a  inverting Marx-

bank and a passively switched folded co-axial pulse forming line controlled by a high-

voltage pressurised spark-gap. 

The construction of both diode geometries is presented  along with discussion of the

physics behind the operation of the plasma-flare cathode. The construction of the co-

axial drift-tube (incorporating the lasing cavity) along with the undulator and guide

solenoid circuits are presented together, as the interaction region of the experiment is

defined properly by all three in conjunction. 

Operational parameters for the guide solenoid and undulator circuits are provided as is

the experimentally determined performance of the co-axial output horn used

throughout the FEM experiments. The chapter concludes with a summary of the

experimental parameters. 

Chapter 6:

Presents the different diagnostic techniques employed in measurement in the FEM

experiment. These include shielded and non-shielded resistive-divider and capacitive-

divider voltage probes, used to measure the developing voltage pulse (ultimately

applied across the diode electrodes). 

The beam current was measured using both a Rogowski coil and a current-shunt, with

Rogowski coils and current shunts also measuring the magnetic fields (indirectly) of

the undulator and guide solenoid respectively. 

The microwave power emitted by the FEM experiment was measured using rectifying

crystal detectors, with the spectral content analysed using high-pass frequency cut-off

1.5MeV
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filters and a Ka-band mixer crystal. In each case relevant theory and design is presented

along with typical performance / calibration curves as appropriate.

Chapter 7:

Presents the results of the physical FEM experiments, beginning with a description of

the triggered timing circuit used to synchronise the discharges from the various power

supplies used in the experiment. This is followed by the results obtained for the 2D -

1D Bragg FEM operating with the ~  diode geometry, covering the

reproducibility of the diode voltage / beam current pulses, the spectral content of the

output microwave pulses and the total output power from the FEM. 

The second stage of the FEM experiment, incorporating the  diode geometry,

is then presented covering the same measurements as in the earlier stage though with

some alterations to the techniques employed. In the latter experimental case, the

availability of a Ka-band mixer crystal allowed for a more in-depth examination of the

spectral content of the microwave pulses generated by the FEM, specifically allowing

the spectral evolution of the pulses with time to be examined. Improved diagnostics

implemented in the power supply also allowed for more complete characterization of

the power supply performance, a summary of these results is included in Appendix C. 

The chapter concludes with a discussion and comparison of results from the two 2D -

1D Bragg FEM experiments, utilising  and  electron beams respectively.

Chapter 8:

Presents a summation of the results obtained in the study of the 2D - 1D Bragg FEM,

followed by a brief look at potential future work. 

1.5kA
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Chapter 2: Historical Review and FEL Physics.
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2.1  Introduction

Free Electron Lasers (FEL’s) trace their roots back to the early 1930’s and have shown

great versatility in terms of power output and spectral range, operating from the

millimetre wavelengths (mildly relativistic) up to that of X-rays (highly relativistic).

When working within the millimetre wave region FEL’s are commonly designated

within the sub-group Free Electron Masers (FEM’s) though the guiding principles of

operation remain the same. 

This chapter begins with a brief historical review of FEL’s focusing on those sources

operating in the millimetre wave region, more precisely known as Free Electron

Masers (FEM’s) (c.f. Section 2.2) in keeping with the type of FEL presented in the

main body of work. A brief review of the three, broadly defined, FEL operational

regimes is presented in Section 2.4, followed by a review of relevant FEL theory in

Section 2.5. 
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2.2 Historical Review.

The theoretical basis for what would become the Free Electron Laser (FEL) lies with

Kapitza and Dirac’s theoretical investigation into stimulated Thomson and Compton

scattering of electrons by standing light waves (Kapitza & Dirac 1933) and Ginzburg’s

work on the Doppler upshift of radiation emitted from relativistic electron oscillators

(Benford & Swegle 1992). A device making use of these observations was in fact

designed in the same year as Ginzburg’s work; Gorn submitted a patent, in the United

States of America, for a device which generated electromagnetic (EM) radiation from

an oscillating electron beam (Gorn 1952). 

Between the submission of Gorn’s patent (in 1947) and its acceptance in 1952, Motz,

along with co-workers at the Stanford Linear Accelerator Centre (SLAC), constructed

and tested a device based on the same principles, passing a relativistic electron beam,

from an RF linac, through a multi-period undulator (Motz 1951, Motz et al. 1953,

Robertson & Sprangle 1988). In 1953 further detail of the electron beam - EM wave

interaction was presented by Birdsall et al. (1953), in their work on a resistive-wall

amplifier, describing the creation of what would become known as the pondermotive

wave in the FEL interaction (c.f. Section 2.3). By 1960 a functioning FEL had been

constructed by Phillips, which he termed the “Undulated Beam Interaction elecTRON”

(Ubitron) tube (Phillips 1960). This produced peak powers of ~  at wavelengths

of  ( ), with improved performance theorised through the use of a tapered

undulator field (O’Shea & Freund 2001).

An alternative to the Ubitron, the “Compton laser” was proposed in a paper by Pantell

et al. theorising the construction of a device which used stimulated Compton scattering

of electrons to generate Infra-Red (IR) radiation (Pantell et al. 1968). The operation of

such a device was reported by Madey in 1971, in a paper detailing the stimulated

emission of Bremsstrahlung radiation from electrons moving through a periodic

magnetic field (Madey 1971). This was followed by demonstration of what he termed

a “Free-Electron Laser”, operating as both an IR amplifier (Elias et al. 1976) and

oscillator (Deacon et al. 1977). 

150kW
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These early devices operated in the low-gain Compton (or simply “Compton”) regime

(c.f. Section 2.4.1), essentially functioning as single particle interactions with the EM

field; Colson’s work in 1974 determined that such FEL’s could be considered as

dynamic models of the pendulum equation (Colson 1974). Compton FEL’s are

characterised by highly relativistic electron energies, coupled with low beam currents,

minimising space-charge effects. Typically these are powered by RF linacs (Deacon et

al. 1977, Edinghoffer et al. 1984), storage rings (Billardon et al. 1985, Poole 2000) or

microtrons (Elias et al. 1986, Shaw et al. 1986). The term “low-gain” is attached to this

regime as the low current density of the beam limits the energy conversion efficiency

to ~ , though this may be increased in the case of multi-pass FEL’s (Robertson &

Sprangle 1988). 

Development of FEL’s showing exponential gain began at roughly the same time as

Madey’s work, sub-dividing into Raman and high-gain Compton regime FEL’s

dependant on the dominance of the pondermotive or space-charge forces in the FEL

interaction respectively (discussion of the differences between these regimes is given

in Section 2.4.2). 

One such FEL was developed at the Naval Research Laboratory (NRL) in the early

1970’s, when Friedman et al. constructed a working millimetre wavelength Ubitron

like device, providing microwave intensity of  above noise level at X-band

( ), with power levels in the region of  in X-band and Ka-

band ( ) respectively. Again the energy conversion efficiency was in the

region of  (Friedman & Herndon 1972a, 1972b).

In 1977, Efthimion & Schlesinger reported the first coupling between a fast wave

structure and an intense relativistic electron beam through what they termed

“stimulated Raman scattering” (Efthimion & Schlesinger 1977). This was followed

quickly by the report of an FEL operating in the Raman regime by McDermott et al. at

Columbia University, in collaboration with NRL. This generated  output

EM power levels, from a   electron beam, at sub-millimetre wavelengths

(McDermott et al. 1978). This was also an early example of super-radiant EM emission

1%
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(operation in the Self-Amplifying Spontaneous Emission (SASE) regime), meaning

the FEL operated as an amplifier without the inclusion of a seed EM signal for

amplification. 

The first mention of the use of Bragg structures as potential  reflectors in FEL’s came

in 1977 (Yariv & Nakamura 1977), forming what they termed  a “distributed feedback

laser”.  It should be noted here that by the close of the 1970’s separation of FEL’s into

the three known regimes was not yet formalised, rather FEL’s were roughly divided

into low-gain and high-gain regime only (Sprangle et al. 1979).

Development of FEL’s in the 1980’s increased greatly from the early work of the

1970’s, both in terms of theory (Sprangle & Smith 1980, Colson 1981, Yin & Bekefi

1983, Luchini & Solimeno 1985, Grover & Pantell 1985, Tang & Sprangle 1985) and

experiment (Kroll et al. 1981, Jackson et al. 1983, Sheffield et al. 1985, Pasour & Gold

1985, Billardon et al. 1985, Shraga et al. 1986, Orzechowski et al. 1986,  Kirkpartrick

et al. 1989, Antonsen Jr. & Levush 1989). Those operating in the high-gain regimes

generally fall into the sub-category of Free-Electron Masers (FEM’s) rather than

FEL’s, due to the relatively low electron energies (sub-MeV) and resultant long

wavelength output radiation. FEM’s, which are theoretically identical to FEL’s, in

some ways can be considered as the more direct descendents of Phillips’ Ubitron,

which also functioned in the millimetre wave region. 

In relation to the FEM presented here, some of the most important work from the

1980’s relates to the development and testing of different forms of magneto-optical

systems, to both confine high current electron beams and extract as much energy from

them as possible. The use of a collimator combined with a guiding axial magnetic field

(Parker et al. 1982, Jackson et al. 1983) allowed for the extraction of a high quality

beam (at the expense of over-all efficiency) from an apertured diode, achieving 

electrical efficiency in a FEM operating at ~  in the Raman regime. Other

routes for efficiency enhancement were pursued via tuning of the guiding magnetic

field and /or the undulator field (Jacobs et al. 1981, Gold et al. 1983, Freund & Gold

1984, Gold et al 1984, Fajans et al 1985, Fajans et al 1986), with the inclusion of the

2.5%
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guiding magnetic field becoming fairly standard in high power FEM’s, though some

exceptions remained, such as SASE amplifiers (Pasour & Gold 1985, Kirkpartrick et

al. 1989) and the helical FEM of Mathew & Pasour (1986) which made use of a

collimator but no axial field.

The first instances of Bragg reflector based FEM’s were reported in 1983 (Bratman et

al. 1983) and 1986 (Wang et al. 1986) detailing the use of 1D Bragg corrugations in

over-sized waveguide structures. The early 1980’s also saw the conceptual emergence

of the Lowbitron (McMullin & Bekefi 1981, McMullin & Bekefi 1982, Shraga et al

1986), which shared many similarities with the FEM and the Cyclotron Auto-

Resonance Maser (CARM), operating as a semi-hybrid of the two. The Lowbitron will

be discussed in Section 2.3.2 due to similarities in the undulator field employed with

that of the 2D-1D Bragg FEM experiment.

The 1990’s saw great advances in the operation of FEM’s incorporating a helical

undulator; the use of a reversed axial guide field (one in which the current flowing in

the guide solenoid opposes that flowing in the undulator) was found to increase energy

extraction efficiency by an order of magnitude (Conde & Bekefi 1991, Kaminsky et al.

1996, Ginzburg et al. 1998a) from a few percent to . The 1990’s also saw the

appearance of theoretical FEM’s based on co-axial undulators, proposed by Freund et

al. (1993) at NRL and McDermott et al. (1995) at the University of California, with the

latter developing the concept throughout the 1990’s  (Balkum et al. 1996, Balkum et

al. 1998) though a working model was never presented. The inclusion of Bragg

structures to form resonant lasing cavities (Chu et al. 1994, Kaminsky et al. 1996,

Ginzburg et al. 1998b) and novel drift-tube regions (Freund et al. 1997) were

developed, with collaborative work between the Institute of Applied Physics (IAP) and

the Budker Institute of Nuclear Physics (BINP), in Russia, resulting in the creation of

a sheet beam FEM, operating with a resonator defined by a 1D Bragg grating

(Arzhannikov et al. 1995, Agafonov et al. 1997, Agafonov et al. 1998) producing

~  microsecond pulses at wavelengths of . 
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The late 1990’s also saw the beginning of a collaboration between the IAP and the

University of Strathclyde, investigating the development of high power masers,

utilising the distributed feedback mechanisms offered by different Bragg structures. By

1998 this resulted in the operation of the first FEM oscillator in the UK (Cross et al.

1998) which provided ~  of output power at  with a conversion

efficiency of ~ . Collaborative work investigating the use of 2D Bragg structures

began in 1999 (Ginzburg et al. 1999).

Development of FEM’s using distributed feedback, by both Strathclyde and the IAP, is

ongoing, particularly into the application of 2D distributed feedback due to its

increased mode selection and synchronism properties in over-sized structures. The first

FEM using a 2D - 2D over-sized co-axial Bragg lasing cavity was experimentally

verified at the University of Strathclyde in 2005, reported in McGrain (2006) and

Konoplev et al. (2007). This showed single frequency operation at ~  at

power levels of ~  and conversion efficiencies of ~ . 

The IAP / BINP sheet beam FEM (located at the BINP in Novosibirsk, Russia)

developed in the 1990’s was upgraded to include 2D, rather than 1D, Bragg reflectors.

This generated ~  pulses for ~  at  (Agarin et al. 2000). The action

of co-axial Bragg structures has also been independently investigated by a group based

at Southwest Jiaotong University, China, looking at the effects of off-axis positioning

of the two conductor surfaces (Ying-Xin & Shi-Chang 2007, Shi-Chang et al 2007,

Ying-Xin & Shi-Chang 2008). The theoretical development of a co-axial Raman

regime FEM, operating at wavelengths of ~  was also carried out at the Bu-Ali

Sina University in Iran (Maraghechi & Sepehri Javan 2001, Farokhi & Maraghechi

2005) though at present only simulation results have been presented.
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2.3 The Free Electron Laser Instability.

The operation of the FEL, or FEM as is more apt in this case, is conceptually quite

simple. Figure 2.1 represents a simple planar FEL, widely used for descriptive

purposes (Pasour 1987, Robertson & Sprangle 1989, Luchini & Motz 1990, Benford

& Swegle 1992, Freund & Antonsen 1996, Bonifacio 1997):

Figure 2.1: Shows a schematic of a planar magnetostatic undulator, noting the axial

bunching of the on-axis electron beam as it moves through a periodic magnetic field.

The insert shows the (x,z) cross-section for clarity.

Here an electron beam propagates in the  direction, on-axis through a linearly

polarised transverse magnetostatic field. This is provided by a series of alternating

polarity magnets (or alternately wound coils), collectively known as either an

“undulator” or a “wiggler”. 

The choice of which term should be used, for a given situation, is an on-going matter

of discussion, with the most common consensus made in reference to the “undulator

parameter”  (c.f equation 2.5) which differentiates dependant on the magnitude of

the “bounce” imparted to the electrons (Luchini & Motz 1990, Benford & Swegle

1992), however such distinctions are not universally applied. As a matter of preference

the term undulator will be used throughout the following text, however this should be

understood to apply equally to devices noted as wigglers in the literature.
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For the case presented above, the static field of the linear undulator ( ) can be

described by the function:

2.1

where  is the peak magnitude of the magnetic field and  is the wave-

number of an undulator with axial period .

The electrons entering the undulator from the left have an initial velocity spread close

to zero, giving the initial electron velocity as . As the electrons pass through

the polarised magnetic field, they are subject to a Lorentz force of , inducing

oscillatory motion on the  axis with velocity:

2.2

where  is the magnitude of the charge on the electron,

 is the Lorentz relativistic mass factor,  is

the electron rest mass.

The resultant  term in the force equation yields a sinusoidal axial force which

the incoming electrons perceive as a counter-propagating “pondermotive” wave

travelling with a phase velocity of:

2.3

where  is the angular frequency,  is the free-space wave-number and .

Through tuning of the electron energy the condition  can be approached, where

 is the electron bulk streaming velocity, producing a resonance between the beam

electrons and the pondermotive potential. This leads to the formation of an axial

bunching mechanism known as the “FEL instability” which, as is discussed in Section

2.3.2, is distinct from the two Gyrotron instabilities (namely the cyclotron and

associated Weibel instabilities). 
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As the FEL instability becomes more established, the beam electrons begin to form

axial bunches, with the electrons of each bunch lying close in phase. This leads to an

increase in the coherence of the radiated output, occurring at a Doppler up-shifted

wavelength of:

2.4

where  and the quantity  is the undulator parameter:

 2.5

which denotes the magnitude of the undulation imparted to the electrons. When used

to differentiate between “undulators” and “wigglers”, typically a “wiggler” has 

and an “undulator” has .

2.3.1  The Azimuthally Symmetric Undulator.

The co-axial nature of the 2D - 1D Bragg FEM experiment precludes the use of a linear

undulator, such as that shown in Figure 2.1, though similar operation may be achieved

through the use of an azimuthally symmetric undulator, shown schematically in Figure

2.2:

.

Figure 2.2: Shows a co-axial drift-tube in cross-section with an azimuthally symmetric

undulator fitted on the outer surface of the outer conductor. The direction of current

flow in the undulator coils and resultant magnetic field lines are shown.
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Here a series of alternately wound coils are placed along the outer-conductor of the co-

axial drift-tube, producing a periodic, magnetostatic field  described by:

2.6

where the axial term arises from the alternating axial magnetic fields induced by the

flow of current in successive coils and the radial term arises from the localised reversal

of the magnetic field, similar to the action of a magnetic cusp (Sinnis & Schmidt 1963,

Rhee & Destler 1974, Gallagher et al. 2000). 

Noting that the electrons, in the co-axial channel, propagate at a radial position

removed from the “on-axis” case of the linear undulator, the electrons should be

considered as having an induced sinusoidal oscillation in the azimuthal direction due

to the action of successive alternately polarised radial cusps, as opposed to the defined

direction of rotation about the azimuth delivered by a single cusp.  is the first

order modified Bessel function of the first kind. The resultant  force on the

electrons, from the azimuthal oscillations, imparts a similarly sinusoidal radial

oscillation on the electron motion, producing a spiralling motion as the electrons

propagate along z (c.f. Section 4.3.2). As will be shown in Section 4.3.2, the difference

in the magnetic field seen by two initially co-propagating electrons, with differing

radial positions, has an effect on both the beam - wave coupling strength and on the

propagation of the electrons through the beam-channel. 

When working in the millimetre-wave range a common addition in FEM’s is the

introduction of a guiding axial magnetic field, used as a means of confining high-

current electron beams (Pasour 1987, Peskov et al. 1998, Cross et al. 1998, Konoplev

et al. 2007), however this introduces some complications to the case described above;

as the axial guide field constrains the transverse motion of the electrons, the

perturbation induced by the undulator field is reduced.

It is worth noting that other forms of co-axial undulator exist, such as the co-axial

periodic-permanent magnet (PPM) systems of Freund (1993), McDermott et al. (1995)

and Balkum et al. (1996, 1998), however such a system was discounted for use in the
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FEM experiment as they require alignment of static magnetic components on both co-

axial conductors, negating the ability to tune the undulator magnetic field strength fully

independently of the guiding magnetic field. 

2.3.2  Inclusion of an Axial Guiding Magnetic Field.

To account for the presence of the guiding magnetic field, the relation between the

applied guide solenoid field and the required undulator field is (Konoplev et al. 2000):

2.7

in the limit where the FEM frequency  where  is the

relativistic cyclotron frequency,  is the magnitude of the axial magnetic field and 

is the mean radius of the electron beam.

The inclusion of a static axial magnetic field does however introduce some important

considerations, most importantly the production of Larmor rotation (cyclotron motion)

in the beam electrons. This arises naturally due to the magnetic moment of the

electrons as they propagate along the field lines of the axial guide field, with the

oscillatory motion corresponding to  and an associated amplitude of:

2.8

where  is the electron velocity (Humphries 2002).

This oscillation has the potential to lead to the creation of two parasitic beam

instabilities, namely the cyclotron and Weibel instabilities, which compete with the

FEL instability and degrade the efficiency of the maser. It is certainly not the case that

such instabilities are uniformly taken to be parasitic; the cyclotron instability in

particular is of interest for devices such as the gyrotron or the Cyclotron Auto-

Resonance Maser (CARM), in which it forms the means of coupling energy from the

beam electrons to the EM wave. However in this case, as they are in direct competition

with the desired FEL instability, it is necessary to reduce the effects of Larmor rotation

in the beam as much as possible.
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Depending on the type of undulator used, there are various means of achieving this

end. The first and most universal means is to ensure the strength of the axial magnetic

field is such that the resultant resonant cyclotron (and by inference Weibel) frequencies

lie far from the FEL operating frequency. A typical example of this is shown in Figure

2.3, with parameters chosen such that the resonant cyclotron, Weibel and FEL

frequencies, with a given waveguide mode (c.f. Section 3.2) are clearly defined.

Figure 2.3: Shows a typical waveguide mode along with beam lines denoting FEL and

cyclotron interactions. The frequencies of the FEL, cyclotron and Weibel instabilities

are indicated.

The initial magnetic field of the undulator may also be tapered to allow a more

adiabatic change in the electron trajectories as they enter the FEL and reduce the risk

of “kicking” the electrons into a rotational trajectory as one would do, for example,

with a gyrotron.

For FELs employing a bifilar helical undulator, where both the FEL and cyclotron

instabilities interact with the  field, reversal of the guide field, relative to the

direction of rotational motion of the electrons, greatly reduces the sensitivity of the

FEL to spread in , dramatically increasing the energy conversion efficiency, from

the beam to the EM wave, from ~1% to ~30% (Conde & Bekefi 1991, Kaminsky et al.

1996, Ginzburg et al. 1998a). The above conditions in regards to the tuning of the axial

magnetic field should, however, still be employed, as the positioning of either parasitic

FEL

Weibel

Cyclotron

Eθ

v⊥
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instability close to the operating frequency of the FEL introduces a degree of

uncertainty in the results. Once produced the EM radiation shows no sign of which

mechanism generated it from the beam, meaning differentiation between radiation

generated by cyclotron motion in the electrons may not be fully discernible from that

generated by the FEL instability (Gold et al. 1983, Bekefi & Fajans 1985, Gold et al.

1985, Aitken et al. 1998). 

With an azimuthally symmetric undulator, contrary to the case of the helical undulator,

no reversal of the guide field can be performed, as the orbits of the individual electrons

in the undulator field do not encircle the axis and so no “reverse” field direction can be

defined. Rather suppression of the cyclotron instabilities can be achieved by following

the initial two conditions of proper selection of the guide field strength and tapering of

the input to the undulator itself. If conditions allow one may in fact set  such that

the  falls below the “cut-off frequency” for the electron beam drift-tube. 

In setting these conditions an additional beam instability, which may be excited by the

azimuthal undulator field, must be considered. The Lowbitron instability, investigated

conceptually in the early 1980’s at the Massachusetts Institute of Technology (MIT)

(McMullin & Bekefi 1981, Jacobs et al. 1981, McMullin & Bekefi 1982, Davidson &

McMullin 1982, McMullin et al. 1983) shares characteristics with both the cyclotron

and FEL instabilities. The Lowbitron frequency is defined as:

2.9

where  and  are the axial and transverse electron velocities

normalised to the speed of light .

Typically this is much higher in frequency than the other beam instabilities and can be

avoided provided the magnitude of  is low compared to . 

It is worth noting that as the case presented uses a co-axial beam-channel, with the

operating mode being the fundamental TEM mode, growth of the  field in itself

B0

ωcyc

ωlow

1 βz+( )γ2

1 γ2β⊥
2+( )

-------------------------- kucβz ωcyc+( )=

βz vz c⁄= β⊥ v⊥ c⁄=

c 3 108ms 1–×≅

v⊥ vz

Eθ
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indicates coupling of energy into modes other than that desired and may be

symptomatic of generation of the cyclotron or Weibel instabilities, as the TEM mode

is described by  and  field components exclusively. The concept of different

modes in waveguide (synonymous with drift-tubes in this instance) is discussed in

Section 3.2.

2.4  Operational Regimes of FEL’s / FEM’s.

FEL’s are typically described in relation to their “operational regime”, that is, the form

that the beam - wave interaction takes within the device. There are three broadly

defined regimes, namely the low-gain Compton, high-gain Compton and Raman

regimes (equations in the following section use cgs  Electro-Static Units (esu)).

2.4.1  The Low-Gain Compton Regime.

The low-gain Compton regime is named for the similarity of the beam - wave

interaction to that of Compton scattering of electrons by an EM wave. In a low-gain

Compton FEL space-charge effects in the beam play a minor role, as beam currents  are

low ( ), allowing single particle scattering physics to be applied (Sprangle &

Smith 1980), though individual electron energies can be highly relativistic. The highly

relativistic electron energies allow low-gain Compton FEL’s to operate into the IR and

X-ray regions of the EM spectrum, though the single-pass efficiency is typically

 (Elias et al. 1976, Deacon et al. 1977). 

Such FEL’s show a maximum gain of (Robertson & Sprangle 1989):

2.10

where  is the axial location of maximum gain,  is

the free-space EM wave-number,  where  is the speed of light,  is the

undulator wave-number,  is the normalised velocity of the oscillation on

the electrons,  ,  ,   is  the

Er Bθ

 1kA<

 1%≤

G zmax( )
βu

2ωb
2

γ0

-------------Fkuzmax
3≅

zmax 2.6vz0( ) vz0 k ku+( ) ω–( )⁄= k

ω kc= c ku

βu vu c⁄=

γ0 γz 1 eBu kumec2[ ]⁄( )2+= γz 1 vz0 c⁄–( ) 1 2/–= e
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electron charge,  is the magnetic field strength of the undulator,  is the undulator

wave-number,  is the beam plasma frequency,  is the ambient

beam density,  is the electron rest mass and  is the filling factor, where

 are the cross-sectional areas of the electron and radiation beams respectively. 

While the FEM presented in this work falls out-with that defined by the low-gain

Compton regime, this regime is often used for describing FEL operation due to the

single particle nature of the interaction (c.f. Section 2.3).

2.4.2  The High-Gain Regimes.

The high-gain operational regimes are both defined by the presence of high beam

currents  and mildly relativistic electron energies (sub ). Both the high-

gain Compton and Raman regimes show exponential growth of the EM field profile,

markedly higher than that shown in the low-gain Compton regime. Differentiation,

between the Raman and high-gain Compton regimes, is determined by the relative

strength of the beam space-charge forces compared to the strength of the pondermotive

wave. 

2.4.2.1 The High-Gain Compton Regime.

When the forces on the beam electrons from the pondermotive wave dominate the

collective space-charge forces, the FEL is considered to operate in the high-gain

Compton regime. 

This holds provided the following condition is met (Robertson & Sprangle 1988):

2.11

where  is the initial electron axial velocity and all other terms share common

meanings with equation 2.10. 

Bu ku

ωb 4πe2n0( ) me⁄= n0

me F σb σr⁄=

σb r,

 1kA> GeV

βu βcrit

2ωbc2

Fvz0
3 γ0

1 2/ γz
3ku
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 increases with  (and so ) and  can be expressed in terms of the undulator

field amplitude ( ) as:

2.12

The maximum spatial growth rate for the high-gain Compton regime is given as:

2.13

with an associated frequency for the emitted EM radiation being:

2.14

2.4.2.2  The Raman Regime.

When the space-charge forces dominate, the FEL is considered to function in the

Raman regime, meaning the beam-wave interaction is treated as an interaction between

all the electrons collectively, as a plasma wave, and the EM wave. In this case the

inverse of equation 2.11 should be met:

2.15

with  and  defined as in equations 2.11 and 2.12 respectively.

The maximum growth rate in this case is:

2.16

βcrit ωb n0 βu

Bu

βu

e Bu
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-----------------=
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3

2
------- F
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2ωb
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where the resonant frequency of the beam-wave interaction is:

2.17

occurring in the region of the intersection between the negative energy beam mode and

the EM mode:

Figure 2.4: Shows a schematic ω - k diagram of the Raman FEL instability forming

between the negative energy beam mode and a standard waveguide EM mode.

(Robertson & Sprangle 1989).

2.4.2.3  Indeterminate High-Gain Regimes.

The cases presented in Sections 2.4.2.1 and 2.4.2.2 are representative of two well

defined operational regimes;  and  respectively. When 

or  the regime is less well defined and the FEL may show aspects of both in

its operation, though more Raman or high-gain Compton “like” operation may be

inferred respectively. When close to  increases or decreases in the beam

density may result in switching between approximate operational regimes, though

small changes in  should not greatly effect operation, i.e. if one considers a spread

in current density resulting in variations in the beam current of a few hundred amps the

operational regime should remain largely unaffected. 

ω vz0 k ku+( )
ωb

γz0 γ0

----------------–=

βu βcrit» βu βcrit« βu βcrit≤

βu βcrit≥

βu βcrit≈

n0
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2.5  Parameters of the 2D - 1D Bragg Free Electron Maser.

An estimation for the operational regime of FEM experiment can be obtained in

reference to equations 2.11 and 2.12. 

Noting that the electron charge in this case is expressed as ,

assume a beam cross-section ~ , with a drift-tube cross-section of ~ , an

estimated beam current density of ~  and an undulator field strength of

~  (these are in-line with the specification for the earlier 2D - 2D Bragg FEM

experiment noted in Konoplev (2001) and McGrain (2006)). For electron energies of

~ , propagating with  through an undulator field with a  periodicity of

 (c.f. Section 5.4.1), equation 2.12 gives  with . This

indicates operation in the High-Gain Compton regime,  which may be assumed

applicable to the 2D - 1D Bragg FEM experiment as the operational paramters were

not much changed from the case of the 2D - 2D Bragg FEM experiment. 

Looking back at equations 2.4, 2.5 and 2.7, if one assumes a guiding magnetic field

strength of ~  and a thin annular electron beam with a nominal radius of ~ ,

for electron energies in the region of ~  an undulator field of 

( ) should provide coupling between the electron beam and the

fundamental TEM mode of the interaction region, with radiated emission at

~  ( ). This is advantageous in terms of construction, for what is in

essence a proof of principle experiment, though it should be noted that both the

magneto-optics and the Bragg structures (discussed in the following chapter) are fully

scalable to higher or lower frequencies. 

e 4.8032 10 10–× esu=

4.4cm2 22cm2

350Acm 1–

650Gauss

450keV vz v⊥»

4cm βu 0.64≈ βcrit 0.0032≈

0.6T 3.5cm

450keV 0.065 0.067T–

650 670Gauss–

37.5GHz 8mm
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Chapter 3: Theory of the 2D - 1D Bragg Free-

Electron Maser.
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3.1 Introduction.

The lasing cavity used in the FEM experiment was defined by novel Bragg reflector

structures, positioned on the inner conductor of an oversized co-axial waveguide. The

following chapter begins with a review of co-axial waveguide theory (c.f. Section 3.2)

as a preface to discussion of the operation of both 1D and 2D Bragg reflectors (c.f.

Section 3.3). The Chapter concludes with a description of a 2D - 1D Bragg lasing

cavity, defined by surface corrugations on the inner conductor of a co-axial waveguide

(c.f. Section 3.4). Further detail regarding the derivation of parameters for the 1D and

2D Bragg reflectors may be found in Appendices A and B respectively.
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3.2 The Propagation of Electromagnetic Waves in Waveguides.

An EM wave propagating in an unbound media is known to follow the dispersive

relation:

3.1

where  is the wave-number,  and  are the permittivity and

permeability of the medium respectively. The subscript  denotes the free space values

 and , while the subscript  denotes

the relative weighting factor of the propagation medium from the free space values.

The phase velocity of the wave is typically expressed as  with 

in free space (i.e. ).

Moving to the case where the propagation medium has a defined geometry, the

boundary of the medium introduces a maximum limit on the wavelength of radiation

that can propagate for a given field profile. This leads to a modification of equation 3.1

to account for the cut-off wave-number ( ):

3.2

where  is the magnitude of the EM wave-vector and we take the wave

as propagating in the  direction with a propagation constant of . 

In the work presented the bounding media were hollow metallic waveguides, with the

cut-off wave-number determined by the transverse cross-section of the guide:

3.3

therefore an EM wave can be considered to be “cut-off” if the transverse component

of its wave-number . The introduction of this boundary condition gives rise to

the existence of different EM “modes”; EM waves differentiated by variations in the

transverse wave amplitude profile. 
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In single conductor waveguides the modes supported take two general forms:

• Transverse Electric (TE) modes, characterized by the lack of an  field

component. 

• Transverse Magnetic (TM) modes, characterized by the lack of an axial  field

component.

with the addition of a purely transverse TEM mode in the case of multi-conductor

waveguides to be discussed later. 

Equation 3.3 defines the limit for the fundamental (lowest order) mode of the

waveguide, with successive higher order modes having larger values of . An

example of a typical waveguide mode, along with the case where  (the free-

space relation), is given in Figure 3.1.

Figure 3.1: Shows the dispersion curve of a typical TE / TM mode in a waveguide,

noting the free-space relation for comparison.

Successive modes are differentiated through the inclusion of a set of indices  after the

modal designation (TEm,n and TMm,n). 

Ez

Hz

kc

kc 0=

ω2 kz
2c2=

ω2 kz
2 kc

2+( )vph
2=

fc

Free-space / TEM mode

TE / TM mode
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The meanings of these indices varies dependant on the waveguide, however for the

most common types they are defined as:

Detailed discussion on the classification of different modes and their structures is given

in Harvey (1963), Thumm (1997) and Pozar (1998).

An alternative notation scheme exists, which should be noted due to its prevalence in

older literature and some facets of contemporary work, which delineate the two mode

types based on the extant axial field component; i.e. a TE mode would be designated a

magnetic (H) mode and a TM mode would be designated an electric (E) mode. While

this notation has been largely supplanted by the TE / TM notation, it does offer a useful

alternative when dealing with so-called “hybrid” waveguide modes, that is modes

which are not clearly defined as TE or TM but show characteristics of both. In these

cases the designations HE and EH can be used to clearly specify which modal type the

hybrid mode is closest to and as such remain in fairly common usage.

The behaviour of modes as they propagate through a waveguide can be understood in

reference to Maxwell’s third and fourth equations, which are respectively:

3.4

where  and  are the strengths of the electric and magnetic fields respectively, 

Table 1: 

m n Fundamental 

mode

Rectangular 

waveguide

Number of half-

wave variations 

along the long 

transverse co-ordi-

nate

Number of half-

wave variations 

along the short 

transverse co-ordi-

nate

TE1,0

Circular and co-

axial waveguide

Number of full-

wave azimuthal 

variations

Number of half-

wave radial varia-

tions

TE1,1 / TEM 

respectively

∇ E∧ µ
H∂

t∂
-------–=

E H
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and:

3.5

where  is sum of the convection and conduction current densities, while 

represents the displacement current density.

For a mode propagating in the  direction (  dependence) in a source-free

waveguide these may be expressed as:

3.6

3.7

with individual field components defined as:

3.8a

3.8b

3.8c

3.8d

3.8e

3.8f

Typically these are solved for  and , giving the transverse field components the

form:

3.9a
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3.9b

3.9c

3.9d

with an exception being the case of the transverse electromagnetic (TEM) mode, which

as its name suggests has purely transverse field components; . Looking

at equations 3.9a - 3.9d, this condition means all the transverse components would also

be zero, unless , which leads to an indeterminate result. If one returns equations

3.8a - 3.8f and solves for , one can recover the relation:

3.10

implying that  is indeed zero for the TEM mode. 

In this case the potential on the surface of a single conductor waveguide would be a

constant, i.e. an equipotential, meaning the TEM mode cannot propagate; an

equipotential on the waveguide surface results in cancellation of the transverse electric

field; . The TEM mode can however exist when using waveguides

constructed from multiple conductors, this is described in the following section. 

3.2.1 Electromagnetic Modes in Smooth Co-axial Waveguide.

For waveguides constructed from multiple conductors, such as co-axial waveguides,

the TEM mode can be supported as a static potential between the conductors, i.e.

although the potential on a given surface is constant, a potential difference exists

between adjacent surfaces, forming an electrostatic field. 
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In this case  can be expressed as the gradient of the scalar potential :

3.11

where  is the transverse component of the gradient operator. 

In this case the divergence and curl of equation 3.11:

 3.12a

and

3.12b

express Maxwell’s first and third equations for electrostatics respectively (Greiner

1998).

Taking the line integral between the two conductor surfaces, the potential difference

can be determined as:

3.13

where  and  are the potentials on conductors  and  respectively, with the

associated surface currents determined as:

3.14

taken across the cross-sectional contour of the relevant conductor surface ( ). 

This electrostatic TEM mode, showing  forms the fundamental mode in multi-

conductor waveguides, which for circular cross-section co-axial waveguide is

described by the field components:

3.15a
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3.15b

where . A schematic  cross-section of a circular co-

axial waveguide is given in Figure 3.2:

Figure 3.2: Shows the (r,θ) schematic cross-section of a circular co-axial waveguide.

Here a is the radius of the inner conductor b is the radius of the outer conductor and s

is the arc-length subtended by the angle θ at a radius of r. 

When looking at the higher order modes in co-axial waveguide the cut-off frequencies

can be determined via the solutions of equations 3.16a and 3.16b for the TM and TE

modes respectively (Marcuvitz 1986):

3.16a

3.16b

where  is the  order Bessel function of the first kind,  is the  order

Neumann function (Bessel function of the second kind),  and  are the respective

first-order spatial differentials and  and  are the  non-vanishing root of the

relevant Bessel-Neumann combinations.  and  correspond to the radii of the inner

and outer conductor surfaces respectively.

Hθ
I

2πr
---------=

Eθ Ez Hr Hz 0= = = = r θ,( )

Jm

b

a
---ζn 
 Ym ζn( ) Ym

b

a
---ζn 
  Jm ζn( )– 0=

J'm
b

a
---ζ'n 
 Y'm ζ'n( ) Y'm

b

a
---ζ'n 
  J'm ζ'n( )– 0=

Jm mth Ym mth

J'm Y'm

ζn ζ'n nth

a b



38

Here the “ ” terminology is synonymous with that presented in Table 1, where, for

equation 3.16a, the  root of the  Bessel-Neumann combination is associated

with the cut-off wave-number of the TMm,n mode, via (Marcuvitz 1986):

3.17

where” ” may take the values , .

The case for the TE modes is a little more complex. For TE modes, with a radial index

of  and , the cut-off frequencies are determined as:

3.18

where  is the first non-vanishing root, of the  order Bessel-Neumann

combination, given by equation 3.16b. The cut-off frequency of the first higher-order

mode, the TE1,1 mode, is therefore given by this equation. It should be noted that in the

limit  this mode approximates better as the TE1,0 mode of a rectangular

waveguide, where the long transverse dimension is defined by half the circumference

of the co-axial line, with a smooth transition to the TE1,1 mode of circular waveguide

as  (Harvey 1963).

In contrast, for TE modes where  and , the cut-off frequencies are

determined using:

3.19

where again,  is the  root of equation 3.16b for a given value of .

For the case where  and , the following applies; the TE0,1 mode

is degenerate with the TM1,1 mode (i.e. they share the same cut-off frequency), the

TE0,2 mode is degenerate with the TM0,1 mode, the TE0,3 with the TM0,2 and so on

(Marcuvitz 1986). 
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Table 2 gives the relevant cut-off frequencies for TE and TM modes in an oversized

co-axial line such as that used in the FEM experiment:

where  and , giving . The values

quoted in table 2 are for the mean values of  and , with maximum deviations in the

cut-off frequencies of  determined across the frequency range of interest

( ).

The constituent field components for the different higher order modes, in co-axial

waveguide, are, for the TE modes (Marcuvitz 1986):

3.20a

3.20b

3.20c

3.20d

3.20e

Table 2: 

TE modes (GHz) TM modes (GHz)

m\n 1 2 3 m\n 1 2 3

0 15.05 14.89 29.99 0 14.98 29.99 45.00

1 1.36 2.15 30.06 1 15.05 30.02 45.02

2 2.73 15.30 30.15 2 15.24 30.12 45.08
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3.20f

and for the TM modes:

3.21a

3.21b

3.21c

3.21d

3.21e

3.21f

where  and  are the (independently varying) -dependant voltage

amplitudes of the TM and TE modes respectively,  and  are the

corresponding -dependant current amplitudes and  and  are the relevant roots

of equations 3.16a - 3.16b.  is the free-space wavelength and ,

. 

The functions  and  are defined as:

3.22a

and

3.22b

where  if , otherwise  and .
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A schematic of the field lines of the first few modes in co-axial waveguide is given in

Figure 3.3 (Harvey 1969):

Figure 3.3: Shows the field lines for the TEM, TE11 and TE01 modes, in co-axial

waveguide, in different cross-sections (Harvey 1969).

which can be compared with those of circular waveguide (see Figure 3.4 (Thumm

1997)). 

When comparing similar modes in co-axial waveguide and cylindrical waveguide a

note on nomenclature is again needed here. In addition to the TE-TM, H-E

nomenclatures for basic waveguide modes, the two extreme limiting cases of 

and  in the ratio  has resulted in the existence of two distinct reference

schemes for the radial mode index. Where the radial indices are determined from the

case  (Waldron 1969) the mode profiles most closely resemble those of

rectangular waveguide, giving the first higher order mode the designation TE1,0. This

leads to the relation . Given that the TEm,0 modes only truly exist in

co-axial waveguide when one operates in the  limiting case (Kirkman & Kline

1946, Harvey 1963), this work follows the more common assumption of  as its

basis, giving the relation  (Kirkman & Kline 1946, Harvey 1963,

a b→

a 0→ b a⁄

a b→

ncirc nco-ax 1+=

a b→

a 0→

ncirc cco-ax=



42

Marcuvitz 1986, Pozar 1998) as the resultant field profiles most closely approximate

those of circular waveguide. As one moves from one of these two limiting cases to the

other, the field profiles are considered to move smoothly from one (say

) reference scheme to the other ( ) (Bracewell 1947,

Harvey 1963).

Figure 3.4: Shows the field lines for some circular waveguide modes, noting the first

few TE and TM modes in different cross-section views (Thumm 1997).

The distinction between the two reference schemes is worthy of note as both are used

with the H-E and TE-TM nomenclature throughout the relevant literature, meaning the

Hm,0, TEm,0, Hm,1 and TEm,1 modes, read across different texts, may in fact all refer

to the same mode (for a given value of m). 

ncirc nco-ax 1+= ncirc nco-ax=
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3.2.2 Propagation of EM Waves in Smooth Co-axial Waveguide.

The propagation of an EM wave through a given medium can be described via the

Helmholtz equation (Grant & Phillips 1990, Jackson 1999, Vanderlinde 2004),

expressed in phasor form for the  field as the curl of equation 3.6:

3.23

with a similar equation derivable for the  field if required. The form shown

corresponds to the case where the EM wave profile is invariant with time, allowing

suppression of the common  factor (Harvey 1969, Pozar 1998).

If we now consider the characteristic impedance ( ) of the co-axial line (which is set

purely by the geometry of the line) as:

3.24

where  and  are the radii of the unperturbed inner and outer conductor surfaces,

respectively.

and assume operation in the fundamental TEM mode, where the wave-impedance ( )

takes the form:

3.25

substitution of equation 3.25 into equation 3.24 yields a relation for the wave-number

as:

3.26

giving the Helmholtz equation the form:

3.27
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If the waveguide incorporates a region where the ratio  shows some periodic

variation, this is reflected in the natural log term of equation 3.27, expressing the

Helmholtz equation accounting for the changing geometry of the waveguide. Sections

3.3.1 and 3.3.2 describe the modifications incurred to equation 3.27 resulting from the

introduction of 1D and 2D periodic structures within co-axial waveguide.

3.3 Bragg Reflectors Formed by Surface Corrugations.

A Bragg reflector, in the simplest sense, is a frequency selective mirror, formed by

introducing some periodicity in propagation path of an EM wave. They operate over a

a finite band-width, for a given interacting mode, out-with which the reflector appears

transparent to the incident EM wave, allowing it to radiate through. The operational

band-width and interacting mode(s), varies dependant on the form of Bragg reflector

used, as discussed in the following section. 

The Bragg structures used in this work were formed by introducing corrugations on the

inner conductor surface of an over-sized co-axial waveguide. Such corrugations allow

the introduction of periodicities in the axial and azimuthal directions, which may or

may not result in the formation of stop-bands (reflection zones) depending on the form

of corrugation presented. Examples of two so-called 1D Bragg corrugations are shown

in Figure 3.5, both of which are described by the sinusoidal function given in equation

3.28 (though it can be readily seen only the  case results in the formation of a

reflector):

3.28

where  is the mean radius of the conductor surface,  is the amplitude of the

corrugation,  is the axial corrugation wave-number and  is the axial

period.  is the total number of periodic variations seen across the azimuth, while 

is the angle (in radians), subtended along the conductor surface ( ) with mean radius

.

b0 a0⁄

M 0=

r θ z,( ) r0 r1 Mθ hzz+( )cos+=

r0 r1

hz 2π dz⁄= dz

M θ

s

r0
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For corrugations where both  and  are non-zero equation 3.28 describes a helical

corrugation of order , which rotates in a clockwise ( ) or anti-clockwise (+ )

direction along z. The introduction of such a corrugation, to the surface of a waveguide,

allows for “scattering” of EM waves as they propagate through the perturbed

waveguide region. 

Figure 3.5: (a) Shows a three-fold helix (M=3)along with its dispersion diagram,

noting coupling between spatial harmonics of a lower (I) and upper (II) waveguide

mode, forming the eigenmode (E). (b) Shows a 1D Bragg reflector (M=0) formed by

a corrugated dielectric insert, noting coupling between successive spatial harmonics of

the same mode (+I & -I), resulting in the creation of a band-gap defined between the

eigenmode (E1 & E2). 

The eigenmodes produced in such structures can be used to aid EM pulse compression

(Danilov et al. 2000, Burt et al. 2004, Samsonov et al. 2004), as the operating modes

in active devices (McDermott et al. 1996, Denisov et al. 1998, Wei et al. 2002) and in

the low-loss operation of antenna feeders (Jecko & Papiernik 1983). Corrugations with

 result in the formation of 1D Bragg reflectors (Denisov & Reznikov 1982,

Bratman et al. 1983, Swegle et al. 1985, Fuks et al. 2004, Ginzburg et al. 2006) while

corrugations with  are used as high-order mode suppressors in high-power,

high frequency gyrotrons (Kononenko & Gandel 2006, Ioannidis et al. 2008). The

 case will be developed further in Section 3.3.1. Examples of a three-fold

( ) helix and a 1D Bragg reflector ( ) are given in Figure 3.5. 

M hz

M M– M

(b)(a)

I

II

E
+I -I

E1

E2

M 0=

hz 0=

M 0=

M 3–= M 0=
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The difference in operation is clearly evident in the accompanying dispersion

diagrams; in the case of the helical Bragg structure the eigenmode  is continuous in

its transition between modes  and , meaning no stop-band (band-gap) is created,

making structures described by equation 3.28, with , unsuitable for use as

reflectors. In the case of the 1D Bragg reflector the eigenmodes  do result in the

formation of a stop-band, in the region of the intersection between the incident ( )

and scattered ( ) waves. A corrugation where  which does generate band-gaps

will be discussed later. 

In all cases, provided the amplitude of the corrugation conforms to the limit:

3.29

where  is the skin depth and  is the resonant EM wavelength, the introduction

of a corrugation can be considered to create a series of “spatial” harmonics of the

waveguide modes, separated regularly in  by integer values of . 

Figure 3.6: Shows the uncoupled spatial harmonics of the TEM mode in co-axial

waveguide, with a corrugation wave-number of hz. Resonant coupling occurs at the

intersections of the spatial harmonics, occurring at kz = nhz/2 where n = +/-1, +/-3,...

Considering the 1D Bragg reflector, coupling between spatial harmonics occurs at the

intersection of successive harmonics of the same mode at , where

. In the limit  the degree of coupling can be considered

E

I II

M 0≠

E1 2,

+I

-I M 0≠

δskin r1 λ 4⁄< <

δskin λ

kz hz

kz nhz 2⁄=

n 1 3 5 …,±,±,±= r1 δskin≅
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negligible, allowing the dispersion curves to be considered to follow that of the

unperturbed case (see Figure 3.6).

As the amplitude of the corrugation increases away from , the coupling between

harmonics increases, forming eigenmodes (see Figure 3.5(b)). The limit  is

chosen to ensure the corrugation amplitude is not comparable to the axial period of the

corrugation itself. As this upper limit is approached the waveguide begins to

approximate better as a series of conjoined cavities and the eigenmode solution would

no-longer apply.

Provided one works within the limits imposed by equation 3.29, perturbation theory

may be used in calculating the wave equations for the resultant eigenmodes (Yariv &

Nakamura 1977, Konoplev 2001, Burt 2004, Burt et al. 2004, Nusinovich 2004,

McGrain 2006, Yariv & Yeh 2006), with effective coupling between successive spatial

harmonics occurring when the Bragg resonance conditions are met. In the case of 1D

Bragg reflectors, where the interaction is simply between a  propagating incident

wave and a  propagating scattered wave, these conditions are expressed as:

3.30a

and

3.30b

where the subscripts denote quantities associated with the forward propagating

(incident) and backward propagating (scattered) partial-waves respectively. Here 

shares its definition with that given in Table 1, corresponding to the azimuthal

periodicities of the interacting waves (i.e. the TE24,1 mode has ). 

At this stage it is useful to consider a slightly different representation of equation 3.28.

Taking that a single azimuthal period has an arc-length of  which,

moving to the quasi-cartesian co-ordinate , gives the azimuthal period a wave-

number . 

δskin

r1 λ 4⁄<

+z

z–

hz k+z k z–+=

M m+ m  ––=

 ±

m

m 24=

ds 2πr0( ) M⁄=

s θr0=

hs M r0⁄=
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Noting the relation between  and  one may then express equation 3.28 as:

3.31

In practical terms either  or  may be used in defining the azimuthal periodicity,

as , however for substitution into the Helmholtz equation there are some

advantages in choosing the  definition as this allows a clearer relation to the

transverse (cut-off) wave-numbers of the interacting modes to be seen. This is

particularly true when dealing with the case of a 2D Bragg reflector, where the cut-off

wave-number of the higher order mode is important for proper operation of the

reflector. 

As stated, corrugations described by equation 3.28, showing  ( ) do not

produce band-gaps in their dispersion profiles. Such a reflector may however be

realised using a Bragg structure described by:

3.32

where the axial and azimuthal wave-numbers of the corrugation should satisfy the

relation , with the ideal case being . 

These so-called 2D Bragg structures (due to the 2D nature of the corrugation) are more

commonly described in the form:

3.33

where all terms share common meanings with those of equation 3.31.

This produces a structure which has Bragg-vectors  and , where the 

subscripts denote propagation in the  direction as before and the subscripts 

denote the polarisation of the vector as either Left or Right-handed respectively. These

are shown schematically in Figure 3.7, expressed on a square-wave 2D Bragg

structure, similar to that used in the FEM experiment (c.f. Section 5.4.2).

s θ

r s z,( ) r0 r1 hss hzz+( )cos+=

Mθ hss

hss Mθ=

hss

hs 0≠ M 0≠

r θ z,( ) r0 r1 hss hzz+( ) hss hzz–( )cos+cos( )+=

hz hs≅ hz hs=

r s z,( ) r0 2r1 hss( ) hzz( )coscos+=
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Figure 3.7: Schematic of the 2D Bragg vectors across one period of a square-wave 2D

Bragg structure. The Bragg wave-numbers hs and hz are shown along with the resultant

Bragg-vectors h+ and h-.

As may be inferred from Figure 3.7, the coupling mechanism for such structures is

markedly more complex than that of 1D Bragg structures, as the Bragg resonance

condition has to be satisfied for both Bragg-vectors for coupling to occur. This is

achieved through the scattering of a  propagating  wave into a close to cut-off

 mode, which in turn scatters into a  propagating  wave (Ginzburg et al. 1996,

Ginzburg et al 1999, Konoplev et al. 2000, Konoplev 2001, Cross et al. 2003, Ginzburg

et al. 2004), noting that all waves here are considered to be linearly polarised. This

forms a 2D “feedback loop”  giving indirect coupling of the  and

 waves, creating a band-gap similar to that of the 1D Bragg reflector.

This feedback loop is intrinsic to the special nature of 2D Bragg reflectors. If one

considers an over-sized co-axial drift-tube, incorporating a 2D corrugation of the form

described by equation 3.33, with a  propagating electron beam, the 

feedback loop allows for synchronisation of radiation emitted across the azimuth. This

greatly improves phase stability and mode control over the azimuthal index when

compared to conventional 1D Bragg reflectors, allowing a move to increasingly over-

sized interaction regions and so increased potential output powers, with little

degradation in the quality of the output.

h– z+hz

h+Rh+L

h– s

+hs

h L–
h R–

 z+ A+

B  ± z– A-

A+ B  ± A  –↔ ↔ A+

A  –

+z A+ B  ± A-↔ ↔
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Efficient coupling between the  and  partial-waves only occurs when the Bragg

resonance conditions are met, which in this case take the form:

3.34a

3.34b

3.34c

3.34d

Noting that the incident ( ) and reflected ( ) partial waves in the 2D Bragg reflector

are of the same mode (namely the TEM mode in the work presented), the relation

between the resonant wave-numbers of the EM waves and the corrugation can be

rewritten in scalar form as  and . 

As in the case of the 1D Bragg reflector, interaction of the EM wave with the

corrugation produces spatial harmonics stepped in  by integer values of the

corrugation wave-vector. Figure 3.8 shows the uncoupled ( ) spatial harmonics

of the TEM mode in a 2D Bragg reflector, stepped in  by integer values of  over

the same range as that shown in Figure 3.6 for the 1D Bragg reflector:

Figure 3.8: Shows the uncoupled spatial harmonics of the TEM mode in co-axial

waveguide, with an axial corrugation wave-number of hz, for the same range in k as

Figure 3.6. Resonant coupling occurs only at kz = nhz where n = +/-1, +/-2, +/-3,...

A  ± B  ±

h+L k– zz kss+=

h+R kz– z kss–=

h L– kzz kss+=

h R– kzz kss–=

A+ A-

k+z k z– hz≈ ≈ k+s k s– hs≈ ≈

kz

δz r1≈

kz hz
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In this case resonant coupling only occurs at intersections satisfying equations 3.34a -

3.34d, i.e.  with . As before, when  the

resonant modes begin to couple, forming stop-bands centred on . As will be

shown in Section 3.3.2.2 these stop-bands show different dependences on the

corrugation parameters than in 1D Bragg reflectors (c.f. Section 3.3.1.2), allowing for

the production of much tighter reflection zones which only form via the interaction of

a highly selective set of mode couplings.

In terms of FEM operation, the initial implication of this, along with the advantages of

increased stability due to increased mode selectivity, is that a lasing cavity defined by

2D Bragg input and output reflectors, would result in a marked improvement in

spectral purity and microwave output power. While the single frequency operation of

such a cavity has been verified, power losses to the transverse fluxes in the input and

output mirrors reduced the available output power to ~  (McGrane 2006,

Konoplev et al. 2006b, Konoplev et al. 2007).

If one instead constructs a lasing cavity defined by a 2D Bragg input mirror and a 1D

Bragg output mirror, the losses to the transverse fluxes can be halved, along with an

overall reduction of the cavity Q-factor. Such a cavity should allow for improvement

to both the output power observed and the profile of the microwave pulse, without any

appreciable degradation in the spectral content. The following sections describe the

relevant theory for both 1D and 2D Bragg reflectors, required to design such a cavity,

with more complete derivations provided in Appendices A and B for the 1D and 2D

Bragg reflectors respectively.

ks z, nhs z,= n 1 2 3 …,±,±,±= δz r1<

kz nhz=

15MW
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3.3.1 Mode Propagation and Coupling in 1D Bragg Reflectors.

For a corrugation, defined as in equation 3.28, presented on either the inner or outer

conductor of a co-axial waveguide, the Helmholtz equation (equation 3.27) can be

shown to reduce to:

3.35

where  and  are the unpertubed radii of the inner and outer conductors

respectively,  is the corrugation amplitude and  or 

depending on the surface showing the corrugation.

Taking , with the magnitude of the  field considered as:

3.36

where  are, respectively, the amplitudes of the incident and scattered partial waves,

substituting equation 3.36 into equation 3.35 and following the steps laid out in

Appendix A yields:

3.37a

3.37b

where  is the coupling co-efficient:

3.38

and  is the detuning from resonance, defined as:

3.39

where  is the detuning from Bragg resonance in a loss less system and  represents

the losses due to the finite conductivity of the waveguide walls.
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Taking the amplitudes of the partial-waves to be functions of the detuning from ,

equations 3.37a and 3.37b become:

3.40a

3.40b

Equations 3.40a and 3.40b represent the wave equations for the incident and scattered

waves as they propagate along .

3.3.1.1  Dispersion Relation of 1D Corrugated Co-axial Waveguide.

Consider the partial-wave amplitudes to be functions of the solutions of the

eigenmodes ( ) within the waveguide:

3.41

where  is unknown and considered to be complex.

Substitution of  into equations 3.40a and 3.40b, leads to the relation:

3.42

where  is related to the perturbed wave-number ( ) of the eigenmodes by

. 

Rearranging for  and combining with equation 3.39 leads to the dispersion relation:

3.43

where  is an integer referring to the order of the spatial harmonic.

Figures 3.9 and 3.10, show the dispersion plots for similar corrugations, placed

independently on the outer and inner conductor surfaces respectively.
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Figure 3.9: Shows the dispersion curves for a0 = 30mm, b0 = 40mm, d = 4mm with a

corrugation amplitude on the outer conductor surface of +/-0.5mm. κkz = 17.06m-1, ∆f

= 815MHz, kz0 ~785m-1.

Figure 3.10: Shows the dispersion curves for a0 = 30mm, b0 = 40mm, d =4mm, with

a corrugation amplitude on the inner conductor surface of +/-0.5mm. κkz = 22.76m-1,

f = 1.09GHz, kz0 ~785m-1.
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This shows that for a given corrugation amplitude the coupling between the incident

and scattered waves is stronger when the corrugation is presented on the inner

conductor surface, indicating a shallower corrugation can be employed on the inner

surface to obtain a given value of , where  corresponds to the spectral width of

the reflection band.

3.3.1.2  Reflection and Transmission Co-efficients of 1D Reflectors

The reflection zones shown in Figures 3.9 and 3.10, correspond to regions where the

solutions of  are real. The magnitude of such zones can be determined in reference

to the reflection( ) and transmission ( ) coefficients, related by:

3.44

where  denotes the total system losses.

For an incident wave entering the reflector at , the amplitudes of the partial-

waves obey the limits  and, , where  is the axial

length of the corrugation. 

If the partial-wave amplitudes are taken as functions of , where  has solutions of

the form given in equation 3.42, one obtains a general form for the reflection co-

efficient as:

3.45

which shows a maximum at .

The performance of the reflector can be varied by altering the amplitude of the

corrugation and / or the number of axial periods. Figure 3.11 shows  for a set

corrugation length of  periods ( ) and corrugation amplitudes in the range

. In contrast Figure 3.12 shows  for a set amplitude of  and

corrugation lengths of  periods. In both cases  and .
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Figure 3.11: Shows the reflection co-efficient for 1D Bragg reflectors, 30cm long,

with periodicities of 4mm and corrugation amplitudes of 0.3mm, 0.2mm and 0.1mm. 

Ω = 0.2.

Figure 3.12: Shows the reflection co-efficient for 1D Bragg reflectors, with a set

amplitude of 0.3mm, for corrugations 20, 40 and 80 periods in length. The periodicity

is again 4mm with Ω = 0.2. 
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Looking at Figure 3.11 it can be seen that, for a given corrugation length, increasing

the amplitude of the corrugation results in a slight broadening of the reflection band

along with a marked increase in the magnitude of the reflection. From Figure 3.12 it

can be seen that, for a given corrugation amplitude, increasing the number of periods

also results in an increase in the magnitude of the reflection, along with a narrowing of

the reflection band, but for a marked change the corrugation length has to be roughly

doubled, i.e. the reflection band-width depends most strongly on the amplitude of the

corrugation.

It should be noted that for over-sized waveguides, multiple propagating modes may

satisfy the Bragg resonance conditions. Provided any overlap between successive

band-gaps is negligible, the reflection co-efficient takes the form ,

where  correspond to the reflection co-efficient due to the  set of eigenmodes,

with the consequence . Figure 3.13 compares the numerically

determined and experimentally measured transmission profiles of such a waveguide

(Konoplev et al. 2005).

Figure 3.13: Shows the experimentally measured and numerically determined

transmission profile for a 30cm long 1D Bragg reflector with a corrugation amplitude

of +/-0.3mm, located on the inner conductor surface of an over-sized Ka-band (26.4 -

40GHz) co-axial waveguide.

R z( ) Ri z( )∑=

Ri z( ) i'th

T z( ) Ti z( )∑=
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The presence of higher order mode coupling is clearly evident in Figure 3.13, however

purely fundamental operation (TEM - TEM) of the reflector is also readily observed.

This indicates TEM - TEM operation may be maintained, with limited loss of energy

to the TEM - TM0,1 interaction, provided the operating frequency of a system using

such a mirror is kept in the region of .

3.3.2  Mode Propagation and Coupling in 2D Bragg Reflectors.

Following a similar process as for the 1D Bragg reflector, to determine the effect the

presence of a 2D Bragg reflector on the Helmholtz equation, one can express the

periodic variation induced by a structure of the form:

3.46

within the natural log term of equation 3.27. 

With this in mind, consider that the radial wave-number of the Bragg structure is

undefined here, i.e. . Therefore:

3.47

where  is the combined transverse co-ordinate of the Bragg structure. 

The Helmholtz equation can therefore be expressed as:

3.48

as outlined in Appendix B, where  is the combined transverse co-ordinate.

Recalling that a helical Bragg structure results in coupling of spatial harmonics of

different waveguide modes and that a 2D Bragg reflector is essentially a super-position

of two such structures, the  field in this case is composed of four, rather than two

partial waves, corresponding to the axial incident and scattered waves found in the 1D

37 38GHz–
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2 hr

2+ hs= =

hτ

∇2E k2E
4k2χ

b0 a0⁄( )ln
------------------------- hττ( )cos hzz( )cos E+ + 0=

τ

E



59

Bragg reflector ( ) and the counter-rotating partial waves of a higher-order mode

which satisfies the Bragg resonance conditions with the incident wave ( ):

3.49

where  &  are the axial wave-numbers of partial-waves  and  respectively

and  &  are the corresponding partial-wave cut-off wave-numbers. 

Equation 3.49 can be further expanded in terms of the degenerate counter-polarised

modes as:

3.50

where the L and R subscripts denote the chirality of the degenerate mode and the 

subscripts denote waves travelling in the  and  -direction respectively.

with the wave propagation equations for the partial waves becoming:

3.51a

3.51b

3.51c

3.51d

A  ±

B  ±

E τ z,( ) A+e ikzAz– A-e
ikzAz+( )e ikcAτ± B+e ikzBz– B-e

ikzBz+( )e ikcBτ±+=

kzA kzB A B

kcA kcB

E τ z,( )
A+Re ikcAτ– A+LeikcAτ+( )e ikzAz– A-Re ikcAτ– A-LeikcAτ+( )eikzAz+

 B+Re ikcB– τ B+LeikcBτ+( )e ikzBz– B-Re ikcBτ– B-LeikcBτ+( )eikzBz+ +
=

 ±

+ve ve– z

kzA i δz iσz–( )A'+R

A'+R∂

z∂
-------------+ 

  kcA

A'∂ +R

τ∂
-------------+

i

2
---

∂2A'+R

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=

kzA i δz iσz–( )A'+L

A'+L∂

z∂
-------------+ 

  kcA

A'∂ +L

τ∂
-------------–

i

2
---

∂2A'+L

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=

kzA i δz iσz–( )A'-L
A'-L∂

z∂
------------– 

  kcA

A'∂ -L

τ∂
------------–

i

2
---

∂2A' L–

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=

kzA i δz iσz–( )A'-R
A'-R∂

z∂
------------– 

  kcA

A'∂ -R

τ∂
------------+

i

2
---

∂2A' R–

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=



60

3.51e

3.51f

3.51g

3.51h

where:

3.52

represents the detuning of the EM wave-number and the relevant Bragg wave-number

and  is the ohmic losses along the  co-ordinate.

3.3.2.1  Dispersion Relation of 2D Corrugated Co-axial Waveguide.

As may be inferred from comparison of equations 3.40a-3.40b & 3.51a-3.51h, the

description of the dispersion relation in a 2D Bragg reflector is markedly more

complex than that of the 1D Bragg reflector. A similar procedure may, however, be

employed in determining the resultant eigenmodes, from the indirect coupling of the

 waves, providing one accounts for the azimuthal structure, as well as the

axial structure. 
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The azimuthal structure may be defined as:

3.53a

3.53b

3.53c

3.53d

where  is the azimuthal variation of the wave envelope and  relates to

the azimuthal field structure of the  eigenmode.

Following the steps outlined in Appendix B the set of equations 3.51a - 3.51h can be

reduced to:

3.54a

3.54b

3.54c

3.54d

where:

3.55

is the coupling co-efficient.
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One may now consider the wave-amplitudes in a similar manner to the 1D Bragg

reflector case as:

3.56a

3.56b

3.56c

3.56d

where  are functions of the corrugation length ( ) only.

This leads to the relation:

3.57

where:

3.58a

3.58b

3.58c

3.58d

and:

,  ,  , ,

, , , .

Equation 3.57 therefore forms a quartic equation, yielding four roots for the solutions

of the eigenmodes. These were solved numerically using the mathematical program

MatLAB. The resultant dispersion profiles for 2D Bragg reflectors, positioned

independently on the inner and outer conductor surfaces of a co-axial waveguide, are
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shown in Figures 3.14 and 3.15 respectively. In both cases the incident mode was taken

to be the TEM mode:

Figure 3.14:Shows the dispersion curves for a 2D Bragg reflector, given a0 = 30mm,

b0 = 40mm, dz =8mm, M = 24, m‘= 0, σz = 0.1, στ = 0.01 with a corrugation amplitude

on the inner conductor surface of +/-0.8mm. ∆f =190MHz, kz0 ~785m-1. 

Figure 3.15:Shows the dispersion curves for a 2D Bragg reflector, given a0 = 30mm,

b0 = 40mm, dz =8mm, M = 28, m‘=0, σz = 0.1, στ = 0.01 with a corrugation amplitude

on the outer conductor surface of +/-0.8mm. ∆f =200MHz, kz0 ~785m-1. 

In this case the choice of conductor surface on which the Bragg reflector is formed can

be seen to be largely arbitrary, with both corrugations on the inner and outer conductor

surface yielding very similar dispersion characteristics for the eigenmodes. It should
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be noted that  for the 2D Bragg reflector positioned on the outer conductor surface

is greater than that for a similar conductor positioned on the inner conductor, as this

maintains the relation . For simplicity a 2D Bragg reflector designed to form

part of the inner conductor will be considered, as the design of such a reflector lends

itself more readily to the experimental environment that one designed to be part of the

outer conductor surface.

3.3.2.2 Reflection and Transmission Co-efficients of 2D Reflectors.

In calculating the reflection co-efficient of a 2D Bragg reflector we may neglect the

diffractive effects considered in Section 3.3.2.1, reducing equations 3.51a-3.51h to:

3.59a

3.59b

3.59c

3.59d

where  and , taking  ( ) and

 ( ).

Following the steps laid out in Appendix B, these reduce to:
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where:

3.61a

3.61b

define the wave-amplitudes in terms of the solutions of the eigenmodes (these may be

compared with equations A.33a-A.33b in Appendix A for the case of the 1D Bragg

reflector).

Noting the boundary conditions:

3.62a

3.62b

where  is the length of the corrugation, equations 3.61a-3.61b take the form:

3.63a

3.63b

where:

3.64a

3.64b

The reflection co-efficient can then be calculated, as in the 1D Bragg reflector case, as:

3.65

For a set corrugation length of  periods ( ), varying the amplitude of the

coupling co-efficient (noting this is directly proportional to the corrugation amplitude)

results in a marked change in performance when compared to the case of the 1D Bragg

reflector (c.f. Figure 3.11).
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Figure 3.16:Shows the reflection band produced by 4.8cm long (6 period) 2D Bragg

reflectors, located on the inner conductor of a co-axial waveguide with mean radius

a0= 3cm, with coupling strengths κk = 0.05/cm, 0.1/cm and 0.15/cm. 

Figure 3.17:Shows the reflection band produced by 2D Bragg reflectors of l2D=2.4cm,

4.8cm and 9.6cm (3, 6 and 12 periods respectively), located on the inner conductor of

a co-axial waveguide with mean radius a0= 3cm. In each case the coupling strength

κk=0.1/cm. 
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Alternatively, varying the length of the corrugation, for a fixed coupling strength of

 results in the curve shown in Figure 3.17 (compare with Figure 3.12). 

From Figures 3.16 & 3.17 it can be seen that increasing the amplitude of the

corrugation (for a given value of ) rapidly broadens the reflection band, with the

centre of maximum reflection remaining constant. This is true when one sets the

amplitude of the corrugation but varies , however in this case the broadening of the

reflection band is less marked and the location of the side-bands begin to shift closer

to the central resonant frequency. This is in contrast to the case of the 1D Bragg

reflector, where longer corrugations result in tighter, better defined reflection bands.

Noting that the desired performance from the 2D corrugation is to provide a highly-

reflective, narrow band-width, reflector, for a given corrugation amplitude best

performance is observed using relatively short structures. The numerically determined

and experimentally measured transmission co-efficients, for two different lengths of

similar 2D Bragg reflector, are shown in Figure 3.18 (Cross et al. 2001):

Figure 3.18:Shows the numerical (bold-line) and experimentally measured (thin-line)

transmission profiles for two 2D Bragg reflectors, with a0=3.02cm, b0=3.95cm,

κk=0.1/cm, στ,z=6x10-4/cm, dz=0.8cm and (a) l2D=4cm, (b) l2D=10.4cm. 

The structures used were similar to those employed in the 2D - 1D Bragg FEM

experiment itself, formed on the inner conductor of an over-sized Ka-band

( ) co-axial waveguide. The expected increase in the reflection

bandwidth for the longer corrugation is noted, with the associated appearance of a

kκ 0.1 cm⁄=

l2D

l2D

26.4 40GHz–
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parasitic side-band evident in the region of  (see Figure 3.18(b)). The

upper side-band is less clearly defined, however this lack of uniformity does not negate

the side-band’s existence. The measured transmission profiles were obtained using a

8757D Scalar Network Analyser (SNA) with a frequency-doubler head positioning the

operational bandwidth across the Ka-band range. As the higher side-band lies close to

the upper limit of efficient performance for the Ka-band detector head, some

degradation in the measured signal amplitude is to be expected, even following

calibration of the SNA. 

The structures discussed, for both 1D and 2D Bragg reflectors, present only one half

of the case required for the design of a lasing cavity, as the effective bandwidth of such

a cavity is defined by the overlap of the reflection-bands of the constituent reflectors

and the resonant modes there in. Such a cavity is discussed in the following section.

3.4 Co-axial Cavities Defined by 2D and 1D Bragg Reflectors.

If one places a Bragg reflector at either end of a length of waveguide this forms a finite

bandwidth cavity, defined by the overlap of the reflectors’ stop-bands:

Figure 3.19:Shows a cross-sectional schematic of a co-axial 2D - 1D Bragg lasing

cavity, defined on the inner-conductor with reflector lengths l2D and l1D respectively,

separated by a distance lz (the effective cavity length). The annular electron beam

propagates in the +z direction. 

35.5 36GHz–

Inner conductor
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lz

l1D
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e-beam
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The cavity itself only becomes resonant at discrete frequencies within this overlap,

resulting in the introduction of a third subscript to the modal designations; “ ” which

is an integer corresponding to the number of half-wave variations along  (Kirkman &

Kline 1946, Harvey 1963, Waldron 1969). This is reflected in the calculation of the

resonance frequencies for the different TE and TM cavity modes, giving equations

3.17 - 3.19 the form:

3.66

for the TMm,n,p modes, where , ,  and

 and  may both be zero together. 

3.67

for the TEm,n,p modes, where ,  and .

and:

3.68

for the TEm,n,p modes, where ,  and .

As in the case of co-axial waveguides the TE0,n,p modes are degenerate with the

TM0,n+1,p modes, with the exception of the TE0,1,p modes which are degenerate with

the TM1,1,p modes. For the TEMp and the TM0,0,p modes, the resonant frequencies can

be found from equation 3.66 by setting .

Taking the separation between the cavity reflectors to be, for example  (as

in the physical cavity) the resonant TEMp cavity mode with the required FEM

frequency of ~  would be the TEM150 mode. From this it may be inferred that

multiple longitudinal resonances may occur for a given beam-wave interaction, as a

relatively small spread in  of the beam electrons is likely to allow for the excitement

of “satellite” resonances, separated in frequency by , where  is the central

resonant frequency of the interaction. 
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In addition, the over-moded nature of cavities, such as that used in the 2D-1D Bragg

FEM experiment, allows for the excitement of separate cavity resonances from

competing beam - wave interactions, which are distinct from the satellite modes

described above (for an example see Figure 4.19). In the work presented these parasitic

resonances must satisfy the Bragg resonance conditions of both the 1D and 2D Bragg

reflectors in order to be confined within the lasing cavity, with their location

determined by the parameters of the two mirrors. 

In the case of the 1D Bragg reflector the closest eigenmode to the desired TEM-TEM

interaction occurs due to TEM-TM0,1 coupling which, as can be seen in Figure 3.13

lies close by, with a central frequency of ~ . 

In the case of the 2D Bragg reflector the fundamental eigenmode ( ) has near-

by parasitic eigenmodes positioned as described by  in equation 3.65:

Figure 3.20:Shows the reflection bands for m’=0,+/-1,+/-2 for a 3 period long 2D

Bragg reflector sharing parameters with that shown in Figure 3.17. 

It should be noted that the amplitudes of the different eigenmode solutions in Figure

3.20 do not represent the physical magnitudes in a multi-mode system, rather it is the

central positioning of the reflection bands which is of interest. Given that each of these

39GHz
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eigenmodes satisfy the resonance conditions of the 1D Bragg reflector, all will be

resonant within the lasing cavity.

If we consider a 2D - 1D Bragg lasing cavity, with mean waveguide dimensions of

 and , the fundamental eigenmode of the 2D reflector

corresponds to coupling between the TEM mode and the close to cut-off TE24,2 mode

at ~ . Back-scattering of the TE24,2 mode into the TEM mode then leads to

the creation of an absolute instability between the reflected TEM waves of the 2D and

1D Bragg mirrors, with the exact frequency determined by . This then forms the

operating mode of the FEM, with proper selection of ,  and  resulting in

efficient beam-wave coupling.

As noted in Section 2.5, the TEM mode should be excitable at ~ , within the

interaction region, using an electron beam of  ( ), a guide

solenoid field strength of ~  and an undulator field strength of ~ . For a

cavity length of ~ , operation at ~  should be obtainable in the TEM150

cavity mode, with some satellite longitudinal harmonics (side-lobes) expected at

integer values of , decreasing in amplitude as one moves further away from

the central resonance. If multi-mode operation was observed, it was expected that

s imi l a r  beha v iour  wo u ld  occ ur  fo r  e ach  so lu t ion  o f  equ a t ion  3 .65

( ). 
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Chapter 4: The Design and Simulation of the

2D-1D Bragg Free-Electron Maser

Experiment.
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4.1  Introduction

Modelling of the 2D - 1D Bragg FEM experiment was carried out using two separate

Finite Difference Time Domain (FDTD) Particle in Cell (PiC) codes; KARAT

(Tarakanov 1997) and MAGIC (ATK Mission Systems 2004). The former was used to

model the generation and transportation of the electron beam, from a plasma-flare

cathode   through to the drift-tube. The latter was used to model the lasing cavity and

the resonant coupling between the magneto-optical systems, of the guide solenoid and

undulator, with a simulated electron beam.

The following chapter describes the simulations carried out over both stages of the

FEM experiment. In Section 4.2 simulations of the plasma-flare gun, carried out using

KARAT, are presented, beginning with a brief over-view of the operation of a plasma-

flare cathode, followed by a description of the two gun geometries used and the

corresponding changes in the expected performance. Both guns modelled had a

cathode stalk with a mean diameter of  with the anode can diameter of the first

gun being  and that of the second gun being . The axial electrode

separation was kept constant at  throughout.

Section 4.3 presents simulations of an idealised 2D - 1D Bragg lasing cavity, operating

with electron beam currents of ~  and ~  (corresponding to those generated

by the two gun geometries). In this case modelling was done using the PiC code

MAGIC, as this allowed for modelling over a single azimuthal period, rather than

modelling of the full 3D cavity as would be required with KARAT. Modelling of an

idealised cavity is presented as opposed to modelling of the experimental cavity, as this

latter case required computer processing power in excess of that available at the time

of writing. In addition, deviation between the results of an idealised cavity and that of

the experimental cavity were assumed to be significant only in terms of conversion

efficiency between the electron beam and the EM wave, with the idealised cavity

providing a higher efficiency and subsequently higher output power. 

7cm

29cm 12cm

10cm

1.5kA 3.5kA
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4.2  The Plasma-Flare Electron gun.

The electron gun used in the 2D - 1D Bragg FEM experiments was based on the use of

a plasma-flare cathode (also known as an explosive electron emission (EEE) cathode).

This was based on an existing gun, designed by Konoplev (2001) and implemented by

McGrain (2006) in a previous FEM experiment using a 2D - 2D Bragg lasing cavity. 

The reasons for the choice of a plasma-flare cathode over, for example, a thermionic

cathode is explained in more detail in Section 5.3.1, however for the discussion that

follows, the most important property of such cathodes is their ability to provide

emission current densities  (Milton 1974, Barker & Schamiloglu 2001),

with the space-charge current limit determining the maximum beam current for a given

applied accelerating potential. In contrast, thermionic and field emission based guns

have emission current densities limited to ~  (Cross 1993), making plasma-

flare guns more attractive for use in high power microwave devices, such as cyclotron

auto-resonance masers (CARMs), FELs and high power Gyrotrons (Gold et al. 1988,

Conde & Bekefi 1991, Bratman et al. 1992, Spark et al. 1994, Bratman et al. 1996,

Glyavin et al. 1999, Konoplev 2001, McGrain 2006). 

In its simplest form a plasma-flare gun takes the form of a parallel plate diode, where

the electrode plates have dimensions far in excess of the electrode separation. The

emitted current density from such a diode follows the Child-Langmuir law:

4.1

where  is the axial anode-cathode gap,  is the electron charge,

 is the rest electron mass,  is the potential difference across the

gap and the current in the beam is determined via , where  is the effective

emission surface of the cathode (Pierce 1954, Gilmour 1986, Barker & Schamiloglu

2001). 

While this is insufficient to accurately model complex gun geometries, the trends

implied by equation 4.1 holds, specifically that one would expect the electron beam
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current to increase with decreasing anode-cathode separation, or to increase with

increases in the applied diode potential. In the latter case a related equation, typically

used to estimate the space-charge limit in hollow metallic waveguide, may be used to

estimate the maximum current which may be transferred through the inter-electrode

region before instabilities are likely to occur (Mesyats 1991, Barker & Shamiloglu

2001):

4.2

where ,  is the radius of the anode can,  is the

outer radius of the electron beam and  is a function dependent on the geometry of the

cathode emitter. The function  tends to  as the inner radius of the beam tends to

 and to zero for a solid (pencil) beam. A general approximation for a thin annular

beam is to take , i.e.:

4.3

In dealing with the electron emission from a cathode, the relations of equations 4.1 and

4.2 can be quantified in terms of the gun’s perveance ( ), which is a function purely

of the gun geometry:

4.4

where  is the beam current and  is the potential difference applied between the

anode and the cathode.

The perveance for a set geometry is generally taken to be a constant (Gilmour 1986),

with a  dependence of  assumed, though some deviation has been noted,

such as Jory & Trivelpiece (1969) and Barker & Schamiloglu (2001), the latter giving

 for the case of an annular plasma-flare cathode. For complex gun

geometries, such as that used in the 2D-1D Bragg FEM experiment, the perveance is

better predicted through numerical simulation than analytic calculation, as this better

accounts for the geometry of the electrodes in calculating the space-charge forces on

the beam and the resultant current limit for a given driving potential.
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4.2.1 The FEM Electron Gun. 

The gun used in the FEM experiment was based on an existing plasma-flare cathode,

used in earlier 2D - 2D Bragg FEM experiments (Konoplev 2001, McGrain 2006).

Alterations to the gun were carried out in two stages resulting in the construction and

testing of two separate gun topologies. For ease of designation the abbreviations EEE1

and EEE2 will be used to specify which of the two guns is under consideration, where

“EEE” relates to the alternate name for plasma-flare cathodes; Explosive Electron

Emission cathodes.

4.2.1.1  Modelling of the EEE1 2D - 1D Bragg FEM Electron Gun.

Working from the physical geometry of the plasma-flare gun, a model was constructed

using the PiC code KARAT, with the cathode-stalk radius adjusted to match the radial

dimensions of the emitter ring. An example of the modelled geometry is given in

Figure 4.1, including an example of the electron beam propagating through the drift

tube region:

Figure 4.1: Shows the geometry of the FEM plasma-flare gun as modelled in KARAT.

The beam shown corresponds to an applied voltage of 450kV with a guide field of

0.64T.

Cathode
Entry to drift-tube region (effective

anode plane)

Bounding anode-can

Electron beam
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It should be noted that KARAT does not model the plasma-flare process directly, i.e.

it does not model the explosive sublimation of the cathode surface and resultant

creation of a zero work-function plasma cloud (c.f. Section 5.3.1). The modelled

emitter surface was therefore increased from its physical value of ~  to ,

giving an effective emitter annulus more analogous with that of the plasma cloud of the

experiment. The distance between the emitter surface and the entry to the drift-tube

region was kept at , in-line with previous experimental work, with the radii of

the inner and outer conductors of the drift tube set at  and  respectively,

corresponding to the physical values in the experiment. Similarly the anode-can radius

was set as .

A peculiarity of KARAT in estimating the beam current, associated with a given diode

potential, is that the code does not estimate this current directly, rather an upper limit

is set for the current which the code attempts to implement (Tarakanov 1997). To

properly model space-charge limited emission from the plasma-flare cathode it was

therefore necessary to perform a series of simulations, for each relevant diode

potential, with the available current varied incrementally between . Space

charge limited emission was taken to occur when increases in the available current

setting resulted in no appreciable change in the simulated beam current: 

Figure 4.2: Shows the trend in the simulated beam current, using KARAT, for

different diode voltages over a range of available current settings.
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The simulations were performed with a radial resolution of  and an axial

resolution of , for applied diode voltages of . The simulated beam

current was measured at a distance of  along z (see Figure 4.1), placing it within

the drift tube region. This was done as an approximation of the position of the

Rogowski coil and current shunt diagnostics used in the experiment. From Figure 4.2,

beginning with the  trace, it can be seen that an increase of ~  is required

in the available current to remain in the saturated region if the diode potential is

increased by , with similar incremental increases required as the diode potential

is raised, in  steps, to . The required current setting for a diode potential

of  would therefore be in the region of . Taking a mean of the

simulated beam currents, in the saturated regions for each diode potential, allows for

an estimation of the EEE1 gun’s performance across the voltage range :

Figure 4.3: Shows the simulated space charge limited beam current for the FEM gun,

operating with an anode can of radius 14.5cm with an axial electrode gap of 10cm.

This shows the expected trend of increasing in limiting current with increasing diode

voltage. Using equation 4.4 one can then estimate the perveance for the EEE1 gun to

be in the region of .

 

For efficient interaction of the electron beam with the undulator field, the axial electron

beam velocity should remain essentially uniform, with little transverse velocity spread

( ), i.e. the beam emittance should be low, with the effective cross-sectional
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area of the propagating beam kept to a minimum. The quality of the electron beam

transported into the drift tube region can be determined in the first instance by looking

at the degree of variation in the axial electron velocities through the system. In

addition, by comparing the axial component of the electron relativistic energy factor

 to the total relativistic energy factor 

(where ), the spread in electron energies resulting from deviations in 

can be readily observed.  Evidence of potential depression may also be observed,

where the axial velocity of the electrons may indeed remain fairly constant but the

electron energy is lower than that expected for the applied diode potential. In the

idealised case the beam electrons should show negligible variation in  and have

. 

Traces of the normalised axial electron velocity ( ) and the total  for an applied

potential of  on the EEE1 gun are given in Figures 4.4 (a) and (b) respectively.

, rather than  is plotted here as deviation between  and  was found to be on the

order of , too small for any meaningful difference to be observed. The electrons

were subject to a  axial guiding magnetic field

Figure 4.4: (a) Shows βz for the electrons travelling through the plasma-flare gun. (b)

Shows the total relativistic electron energy factor γ.

Looking at Figure 4.4(a), it can be seen that once the electrons pass the anode and enter

the drift-tube region (  along z) they maintain a relatively uniform velocity of

~ . The slight ripple in  is reflected in the variation in  shown in

Figure 4.4(b), which corresponds to electron energies of . 
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This implied that for an axial guiding field strength of  and an applied diode

voltage of ~  the EEE1 gun would provide a ~  electron beam, showing

a low emittance ( ) at a beam current of ~ , sufficient for excitement of

the FEL instability. The propagation of such a beam through an idealised 2D - 1D

Bragg cavity was then modelled using the PiC code MAGIC, this is presented in

Section 4.3.1.

4.2.1.2  Modelling of the EEE2 2D - 1D Bragg FEM Electron Gun.

Following the completion of the 2D - 1D Bragg FEM experiments using the EEE1 gun,

the design was altered to further increase the beam current. This was done for two,

related, reasons. Firstly, increasing the beam current was expected to aid in the

establishment of the FEL instability earlier in the beam-pulse duration, leading to a

more efficient extraction of energy from the electrons to the wave and so increase both

the duration and power of the output microwave pulse. This would increase both the

power in the output and the overall energy efficiency. Secondly, the power available

in the beam would increase, meaning more energy would be available for extraction to

the EM wave, again enhancing the potential output power from the FEM. A minimum

of a factor of two increase in beam current was set as a target for performance. 

While the beam current could be increased by decreasing the axial anode-cathode

separation, modelling the gun geometry, with the emitter - anode separation reduced to

, resulted in an increase in beam current to only ~  for an applied diode

voltage of , much lower than the  required. Experimentally, axial

separations less than  had been noted as resulting in  field breakdown, due to

excessive field enhancement between the cathode and the tips of the anode, negating

this method as a means of increasing beam current further. In contrast, it was found that

by decreasing the radial separation between the cathode stalk and the anode-can from

 to , keeping all other parameters consistent with the earlier model, the

beam current increased to ~ , again for a diode potential of . This is in

keeping with the behaviour expected from equation 4.2, where the reduction in the

0.64T
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ratio of  in the natural log term implies an increase in the space-charge

current limit by a factor of ~ .

The resultant model for the EEE2 gun is shown in Figure 4.5:

Figure 4.5: Shows the geometry of the FEM plasma-flare gun with the anode can

radius reduced to 6cm. The anode - cathode gap was 10cm. The beam shown

corresponds to an applied voltage of 450kV with a guide field of 0.64T.

The effective emitter surface was kept at  and the axial electrode separation was

maintained at . In keeping with the model of the EEE1 gun, the simulations were

performed with a radial resolution of  and an axial resolution of , for

applied diode voltages of , with the simulated beam current measured at

a distance of  along z. The applied diode potential was kept at  with the

axial magnetic field set at . As before the space-charge limited current was

determined for each diode voltage by increasing the available beam current

incrementally until the simulated current reached some steady value. This produced

traces similar to those shown in Figure 4.2, resulting in the current to applied voltage

relation shown in Figure 4.6.
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Figure 4.6:  Shows the simulated space charge limited beam current for the FEM gun,

operating with an anode can of radius 6cm with an axial electrode gap of 10cm.

This indicated an increase in the gun perveance to ~  for the revised gun

geometry, in line with the factor of ~  increase in the beam current. Comparing

Figures 4.3 and 4.6 it can be seen that the relationship between the diode voltage and

beam current behaves in a similar manner, with a slight increase in the non-linearity of

the curve in-line with the general trend of equation 4.3 given the reduced anode-can

radius.

As before, the quality of the emitted beam was of primary importance. Figure 4.7

shows  and  for the EEE2 gun:

Figure 4.7: (a) Shows βz for the electrons travelling through the plasma-flare gun. (b)

Shows the total relativistic electron energy factor γ.
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As with the EEE1 gun simulations, deviation between  and  was negligible, in the

region of . Comparing Figure 4.4 (a) and Figure 4.7(a), a modest improvement

in the uniformity of  through the drift-tube region can be observed:

Figure 4.8: Compares βz for the EEE1 and EEE2 electron guns, i.e. for 1.5kA and

3.5kA beam currents respectively.

This is reflected in the more uniform trace of  in Figure 4.7(b). The spread in electron

energies was predicted to be ~  with  as before.

The beam emittance was taken to be on the same order as that of the EEE1 gun due to

the similarity in values for . Modelling of the beam from the EEE2 gun,

propagating through the same 2D - 1D Bragg cavity modelled for the EEE1 gun, is

presented in Section 4.3.3 for comparison.

4.3  The 2D - 1D Bragg FEM Interaction Region.

The interaction region of the FEM experiment consisted of an azimuthally symmetric

undulator, an axial guide magnetic field and a lasing cavity, defined by a 2D Bragg

input mirror and a 1D Bragg output mirror, both located on the inner conductor surface.

A schematic of such a cavity is given in Figure 4.9.
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Figure 4.9: Shows a schematic of the 2D - 1D Bragg lasing cavity with the outer

conductor surface in cross-section.

The experimental cavity had an inter-reflector separation of , formed by a

section of smooth co-axial waveguide, with a  long input mirror and a 

long output mirror. This maintained the over-all drift-tube length at ~ , in line with

the existing experimental infrastructure. Such a cavity was considered acceptable in

terms of the proof of principle work undertaken, as the separation between the

reflectors should ensure the excitement and growth of the FEL instability in the

propagating beam. Modelling of such a cavity, to the degree required for proper

comparison with that used in the experiment, was prohibitive, mostly due to the

computational power required to accurately model the experiment. This did not,

however, preclude modelling of similar cavities and the determination of the likely

operation from the FEM, given similar operating parameters. What follows is a

discussion of an idealised 2D - 1D Bragg lasing cavity, modelled in conjunction with

the magnetic fields presented by the guide and undulator coils. Electron beams

synonymous with those produced by the EEE1 and EEE2 gun geometries are

considered, with the resultant FEM performances presented in Sections 4.3.2 and 4.3.3

respectively. In both cases the PiC code MAGIC was used in preference to KARAT.

4.3.1 Modelling of the 2D - 1D Bragg Lasing Cavities

The geometry of the 2D - 1D Bragg lasing cavity is inherently non-azimuthally

symmetric, due to the azimuthal periodicity of the 2D reflector (see Figure 4.9). This

is in contrast to the case of the plasma-flare gun geometries, where the 2.5D operation
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of KARAT sufficed in modelling the electron beam production. While KARAT has

some functionality in modelling fully 3D geometries, this introduces additional issues,

as the over-sized nature of the drift-tube, combined with the high resolution required

for accurate modelling, puts simulation of the full cavity geometry beyond the

computing capabilities available at the time of this work. 

An alternative to KARAT, for modelling the FEM interaction region, was the PiC code

MAGIC. Both KARAT and MAGIC work on similar principles, however in addition

to 2.5D and fully 3D modelling capabilities, MAGIC offers the additional option of

modelling a single azimuthal period, provided that periodicity is reproducible across

the azimuth (ATK Mission Systems 2005). In many ways this is similar to the 2.5D

operation of KARAT, with a 3D volume, rather than a 2D plane, rotated around the

azimuth. 

Figure 4.10: Shows the modelled geometry of the 2D - 1D Bragg cavity using the PiC

code MAGIC, corresponding to 1/24 of the total geometry. (a) Shows the scaled cross-

section in the r-z plane (b) Shows the cross-section in the θ-r plane.

The geometry of the modelled cavity is shown in Figure 4.10, in longitudinal and

transverse cross-section. By modelling such an azimuthal “slice” the computing

requirements reduce accordingly, as only th of the number of mesh cells were

required, with a similar reduction in the total number of particles. This allowed for the

interaction of the electron beam with the undulator field to be modelled in conjunction

with the EM interaction with the lasing cavity.

(a) (b)
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The cavity model was based on the existing experimental parameters for the drift tube,

with the mean radius of the inner conductor set at  and the radius of the inner

surface of the outer conductor set at . Optimal performance was noted for a

cavity defined by a  period 2D Bragg input reflector and a  period 1D Bragg

output reflector separated by . The 2D reflector had an axial periodicity of 

and had  periodic variations across the azimuth. The 1D reflector had an axial

periodicity of . Both reflectors had corrugation amplitudes of . 

The validity of this technique, of modelling a repeating azimuthal slice, in estimating

performance from the FEM can be seen in Figure 4.11, which compares the simulation

of a 2D reflector over its full geometry, with that of a similar 2D reflector modelled

over a single azimuthal period.

Figure 4.11: Shows the field profile inside a 2D Bragg reflector (a) simulated over a

single azimuthal period of a co-axial waveguide. (b) simulated over the full geometry.

29mm

39mm

17.5 17.5

40cm 8mm

24

4mm 0.4mm±



87

As can be seen, the field profile in Figure 4.11 (a) overlays well with that shown in

Figure 4.11 (b), implying the same field structures are modelled in both cases over the

azimuthal periodicity of the structure. In other words, modelling of a single azimuthal

slice of the 2D - 1D Bragg cavity should still provide accurate modelling of the

transverse field structure across the azimuth. It should be noted that in both cases the

EM field was excited via an oscillating current source at the input port of the structure,

as opposed to the insertion of an electron beam. This greatly reduces the computational

requirements without adversely affecting the validity of the result.

For the modelled 2D - 1D Bragg FEM, a section of an annular electron beam was

injected centred on , which took the form of  beamlets emitted from

adjacent mesh cells. Each individual particle in the simulation corresponded to an

electron macro-particle with a charge to mass ratio of . The FEM was

driven with beam currents of  and  corresponding to ~  and ~  total

beam current respectively (i.e. th of the actual current), to match the expected

output from the two plasma-flare gun designs. In both cases the electron energy was

set at . The undulator field strength was set at th of the guide field

strength, with a spike in the magnetic field strength added at ~  along the z-axis

to dump the electron beam to the inner conductor surface. 

4.3.2  Modelling of the 2D - 1D Bragg cavity with a 1.5kA beam

The 2D - 1D Bragg cavity is shown in cross-section in Figure 4.12, including the

trajectories of two rows of electron beamlets (  beamlets per row) for an electron

energy of  and a beam current of , corresponding to ~  when

integrated over the azimuth. The upper and lower beamlets correspond to the

boundaries of an electron beam with a finite-thickness, much less than that of the EM

wavelength. This allows them to be treated, collectively, as a single electron beam

envelope. In this case the axial guide field ( ) was , setting the undulator field

strength ( ) at .
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Figure 4.12: Shows the r-z cross-sectional geometry of the 2D - 1D Bragg lasing

cavity, including the position of the undulating electron beam, modelled using the 3D

PiC code MAGIC.

It can be seen that the choice of  and , for a beam of

~  at ~  should be sufficient in establishing the FEL instability, whilst

also ensuring the beam is confined enough that the electrons do not impact on either

conductor surface. This balance, between ease of electron oscillation and confinement

of the radial electron excursion, is intrinsic to the efficient operation of the FEM, as an

overly-confined beam would lead to irregularities in the beam oscillations, while an

under-confined beam would lead to degradation in the electron beam quality and loss

of energy to the drift-tube walls through interception of the outer electrons. Behaviour

such as that shown in Figure 4.12 can therefore be seen to be idealised, as the electron

trajectories follow well defined sinusoidal paths, whilst maintaining a noticeable

separation from either conductor surface.
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Figure 4.13: (a) Shows the r-z plane phase-space  plot of the beamlet trajectories using

raw data from MAGIC. (b) Shows the θ-z plane phase-space plot of the same raw data.

(c) Shows the r-z plane phase-space plot of the recovered individual beamlet

trajectories from MatLAB. (d) Shows the θ-z plane phase-space plot of the corrected

azimuthal trajectories of the beamlets.

Examination of individual beamlet evolution along the propagation axis was obtained

by extracting 2D phase-space data from MAGIC, i.e. ( ) and ( ), and

reconstructing a 3D phase-space plot using the numerical package MatLAB. An

example of the recovered trajectory for a single electron beamlet is given in Figure

4.14, while a comparison of the raw data and that recovered after reconstruction of all

beamlet trajectories is given in Figure 4.13.

The radial oscillation seen in Figure 4.13(a) and (c) corresponds to the rotation

imparted to the electron macro-particles by the periodic  field of the

azimuthally symmetric undulator (c.f. Section 2.3.1), as does the azimuthal oscillation

(a) (b)

(c) (d)

r z, θ z,

Bu r z,( )
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seen in the recovered beamlet trajectories of Figure 4.13(d). Looking at Figure 4.14,

the relative magnitude of both the radial and azimuthal oscillation can be seen to be

approximately equal, with the electrons initially describing mildly elliptic orbits as

they propagate along z. These orbits become more eccentric as the axial bunching

mechanism of the FEL instability begins to form:

Figure 4.14: Shows a 3D plot of a single electron beamlet, showing the initial

uniformity in (r,θ) of the electron oscillations, induced by the periodic undulator

magnetic field.

It should be noted that this rotation is not synonymous with Larmor rotation, where

electrons rotate around the magnetic field lines of a uniform guide field at a radius of

, where  is the transverse velocity of the electrons. In the

case of the FEM experiment  (c.f. Section 2.3) indicating the Larmor radius,

defined as:

4.5

would be small as  in the absence of the undulator field.

As will be shown later in this section, no evidence of the cyclotron emission is seen in

the output spectra from the modelled cavity, showing a lack of emission at the

cyclotron frequency, though some emission at the Weibel frequency can be discerned,

rLarmor mv⊥( ) eB0( )⁄= v⊥

v0 vz≈

rLarmor

mev⊥

eB0

------------=

v⊥ 0≈
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indicating some degree of cyclotron motion in the beam albeit to a much lower degree

than that of the FEL motion. 

The drift along the azimuth seen in Figure 4.13 (d) is due to the radial dependence of

the axial magnetic field strength, both in the axial guide field ( ) and the axial

periodicity of the undulator field ( ). This results in a “gradient drift” (Jackson 1999)

of the electron guiding centres related to the local magnetic field strength, i.e. electrons

travelling along a guiding centre radially closer to the undulator coil (where the

perturbation in the local magnetic field is stronger) will experience a stronger “drift”

than those travelling along guiding centres closer to the axis. This dependence on

proximity to the undulator is shown in Figure 4.15, where the trajectories of two

electron beamlets are plotted in :

Figure 4.15: Shows the θ-z plane trajectories of an upper and lower beamlet, emitted

from adjacent radial mesh cells, with the same initial azimuthal position. 

Here the upper and lower beamlets were emitted from radially adjacent mesh-cells,

giving them identical  coordinates. The drift can be seen to be reduced in the

trajectories of the lower beamlets, as expected due to the decreased gradient of the

undulator field closer to the axis. 

The “blurring” of the oscillations of the beamlets, seen towards the right in Figure 4.15

results from the formation of electron bunches in the propagating electron beam. In

B0

Bu

θ z,( )

θ z,
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keeping with the increased local gradient of the undulator field, this blurring can be

seen to be stronger in the upper beamlet than the lower beamlet. The nature of the

bunching mechanism can be observed readily, across all beamlets, by looking at a 3D

cross-section of a small portion of the beam:

Figure 4.16: Shows the axial bunching along z of the electron beamlets. Uniform

bunching across the azimuth was observed.

Examination of Figure 4.16 confirms the formation of axial bunching in the beam;

bunches in successive beamlets can be seen to form at identical positions along z. Such

bunches were distinguishable in the simulation after ~  of run time. 

There were two potential beam instabilities which could lead to such bunching, namely

the Weibel instability and the FEL instability. The former relies on the Larmor rotation

of the electrons, much like the cyclotron instability (which it is associated with), which

as stated is small in the FEM experiment. By its nature the Weibel instability requires

interaction with an  component, which is absent in the fundamental TEM mode of

co-axial waveguide (that which the FEM was designed to operate with). The first mode

which would support strong coupling with a Weibel instability in the beam is the TE0,1

mode, which would give an expected resonant frequency of ~ . 

In contrast, if the bunching seen in Figure 4.16 is the result of the establishment of the

FEL instability the operating mode would be the fundamental TEM mode, with

70ns

Eθ

44GHz
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resonant coupling, defined by the axial period of the undulator, occurring in the region

of , with the exact frequency determined by the over-lap of the resonant

band-gaps of the input and output mirrors used to define the lasing cavity.

As different modes would be involved in the different axial bunching mechanisms,

determination of which bunching mechanism (or indeed mechanisms as may be the

case) are present, may in the first instance be made by analysis of the component field

profiles. Contour maps of these through the modelled cavity are shown in Figures 4.17

and 4.18 for the  and  fields respectively.

Figure 4.17: Shows the magnitudes of the E field components in the r-z plane,

recovered from MAGIC and plotted using MatLAB.

The TEM mode is defined by the  and  field components, which can be clearly

seen to be the dominant field components both within the cavity and at its output. This

indicates that the FEL instability was present and was the dominant bunching

mechanism in the beam-wave interaction. Examination of the field profile shows the

longitudinal mode of the cavity (that defined between the 2D and 1D Bragg reflectors)

to have a longitudinal designation of , in line with the TEM100 mode expected

for a cavity length of . No clear evidence of excitement of the Weibel instability

37.5GHz

E B

Er Bθ

p 100≅

40cm
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can be discerned, as notable excitement would result in a much higher  and  both

inside the cavity and at the output.

Figure 4.18: Shows the magnitudes of the B field components in the r-z plane

recovered from MAGIC and plotted using MatLAB.

The mechanisms which confine the TEM mode within the cavity can also be clearly

seen. Looking at  and  in the region of the 1D reflector ( ) direct

interaction can be observed; the cross-sectional structure of the 1D reflector is clearly

seen (compare with ). In contrast, the coupling mechanism of the 2D mirror

( ) can be seen to be more complex. While  and  both show

decaying field amplitudes across the region of the reflector, they also show no

interaction with the reflector itself. Rather ,  and  show localised increases in

field amplitudes, confined within the region of the 2D Bragg reflector. This indicates

that the TEM mode undergoes some interaction with an intermediate TE mode in the

region of the reflector, confirming the four-wave coupling mechanism described in

Section 3.3.2. In the general case this refers to coupling between the TEM mode and

the TEM,n mode, where  is the number of azimuthal variations of the 2D corrugation

and  is the number of radial variations. For the cavity presented here and

that used in the experiment the resonant coupling was taken as occurring between the

Eθ Bz

Er Bθ 700 770mm–

Eθ

140 280mm– Er Bθ

Eθ Br Bz

M

n 1 2…,=
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TEM mode and the TE24,2 near cut-off mode, evidenced by the two radial variations

observed in the  and  field profiles and the theoretical cut-off frequency of the

TE24,2 mode lying in the correct region of ~  (c.f. Section 3.2.1). The number

of variations along the axis was a function of the length of the 2D corrugation 

In addition, some information regarding the presence of other modes can also be

ascertained. The  component, present in the region of the output 1D Bragg reflector,

indicates the presence of TM mode coupling at the cavity output. This is in-line with

the theoretical predictions of the mirror performance (c.f. Section 3.3.1.2), where a

spurious TEM-TM0,1 reflection band was expected due to the oversized nature of the

cavity. It should be noted however, that the relative magnitude of this interaction,

compared to that seen for the pure TEM-TEM operation, indicates only a small fraction

of the energy in the TEM mode is lost due to mode conversion. 

Figure 4.19: Shows the Fourier transform of the E field at the output of the lasing

cavity.

The spectral content of the output pulse was determined by taking the Fourier

transform of the individual field components at the output of the 1D Bragg reflector.

Figures 4.19 and 4.20 show the spectral content for the  field and  field components

respectively.
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Figure 4.20: Shows the Fourier transforms of the B field at the output from the lasing

cavity.

From this it can be seen that the and  field components dominate, as expected

from Figures 4.17 and 4.18. The spectra can be seen to peak sharply at ~ ,

corresponding to the  eigenmode solution, discussed in Section 3.4, with

harmonics, due to the  separation of the reflectors, spaced by integer values of

~ . This agrees well with the expected performance given by analytical

theory, which estimated a main resonance between  for the

experimental cavity, with side-lobes located at integer values of ~ . The

 eigenmode and its harmonics seem dominated by those of the 

eigenmode, however the more pronounced field structure in   and  around

 and  indicate its existence as an EH-like mode. 

The spike located at ~  in the ,  and  traces corresponds well with the

expected location of radiation generated by the Weibel instability, implying it is

present, but as expected from the contour plots is of a much lower amplitude than the

dominant FEL mechanism. The spike at ~  in ,  and  agrees well with

both the  eigenmode (c.f. Figure 3.20) and the parasitic coupling expected

between the TEM-TM0,1 modes, generated in the region of the 1D reflector; this is

TEM-TE24,1

TEM-TM0,1/

Weibel
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reflected in the slight spikes seen in  and  at the same frequency. The spike at

~  corresponds well with the expected position of the  eigenmode

while the spike at ~  corresponds to spurious coupling of the TEM mode to

the lower TE24,1 mode. The greatly reduced amplitude of this coupling, when

compared to the TEM-TE24,2 mode coupling may be explained due to the relatively

low number of electrons emitting at the required frequency and a reduced coupling

strength due to the miss-match in  to .

The estimated power output from this single segment of the optimised lasing cavity

was ~ , giving an estimated total system power in the region of . This

can be compared with the results from the experimental cavity, using a comparable

electron beam, given in Section 7.3. Some comparison of the measured spectrum and

that presented above is provided in Section 7.3, though it should be noted that the

experimental measurements were performed using cut-off filters, yielding only a rough

guide to the spectral content. 

4.3.3  Modelling of the 2D - 1D Bragg Cavity with a 3kA Beam.

Following the successful construction and testing of a FEM based on the EEE1 gun and

the proof of principle 2D - 1D Bragg cavity, described in Section 4.3, a move to the

implementation of the EEE2 gun (c.f. Section 4.2.1.2) was made, keeping the lasing

cavity unchanged. In keeping with this, the simulation presented in Section 4.3.2 was

repeated with the beam current increased to , corresponding to an increase in

total beam current to ~ . The aim being to examine the suitability of the idealised

cavity for use with the higher current electron beam. As the  simulation yielded

spectral results comparable with the experimental results a similar agreement was

expected between the  simulation and experimental results.

Er Bθ
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From the initial simulation results it was found that keeping the magnetic field at

 was insufficient in confining the electron beam once the undulator induced

oscillations became established, with the outer electrons impacting on the inner

conductor surface. The resultant spectra for the  field components are shown in

Figure 4.21.

Figure 4.21: Shows the Fourier transform of the E field at the output from the lasing

cavity, with the guiding magnetic field maintained at 0.65T and the beam current

increased to 3kA.

As can be seen, simply increasing the beam current, without altering other system

parameters, resulted in severe degradation of the cavity performance. One possible

solution to this problem would be to reduce the separation between the input and output

reflectors, reducing the cavity Q-factor and so reducing the growth rate of the bunching

mechanism on the beam. However, as the performance of the cavity modelled for the

 beam was under investigation, to determine its suitability in use with both the

EEE1 and EEE2 gun topologies, an alternative solution was taken, that of increasing

the magnetic field. This was done to better confine the radial motion of the electrons,

and so reduce the risk of exciting the high level of noise seen in Figure 4.21. 

0.65T

E
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Best performance was obtained with the guide field increased to  with the same

ratio of  as before. The trajectories of the electron beamlets through the cavity,

with the higher beam current and increased magnetic field, are shown in Figure 4.22.

Figure 4.22: Shows the axial bunching of macro-particles in the 120A beam current

simulation of the 2D - 1D Bragg cavity.

Comparing Figure 4.22 with the  beam case (see Figure 4.12) it can be seen that

the spread of the electrons towards the exit of the cavity is much more pronounced,

indicating stronger coupling of the beam to the EM field. However it can also be seen

that the radial oscillations of the electrons have been constrained by the increased guide

field strength, perturbing the electron orbits and leading to the excitement of at least

one additional mode in the beam-wave interaction.

1.2T
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Figure 4.23: Shows the axial bunching along z of the electron beamlets. Uniform

bunching was observed across the azimuth. 

As with Figure 4.16, looking at a 3D cross-section of the electron beam shows the

existence of axial bunching, which occurs uniformly across all bunches, though these

appear less well defined than in the  beam case. The influence of multi-mode

operation is most likely the cause for the degradation in the bunching mechanism, as

this would reduce the coherence of the electron - TEM mode beam-wave interaction.

It is interesting to note, however, that what bunching occurs only does so axially and

uniformly across the azimuth. Likewise, all beamlets show the same loss of coherence

in the bunching mechanism at the same points along z, which at least indicates the FEL

instability is likely to remain the main interaction mechanism. 

Some information of the modal content can again be gained from looking at the  and

 field components. Figures 4.24 and 4.25 show the contour plots of the  and  field

components respectively. These can be compared with Figures 4.17 and 4.18.
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Figure 4.24: Shows the magnitudes of the E field components in the r-z plane,

recovered from MAGIC and plotted using MatLAB.

Figure 4.25: Shows the magnitudes of the B field components in the r-z plane

recovered from MAGIC and plotted using MatLAB.
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As in the  case, the dominant field components are  and , which show field

profiles distinct from the other field components, indicating growth of the TEM mode.

However the presence of another strongly coupled mode can be seen which perturbs

the field profiles, most notably in the increased amplitudes of ,  and . Looking

specifically over the region of the 1D Bragg reflector, the presence of similar field

profiles can be observed in both the  and  cases for these field components:

Figure 4.26: Compares the (a) Eθ, (b) Br and (c) Bz field components for the 1.5kA and

3kA simulations. 

This indicates that not only was the competing mode present in the  simulations,

but that it was as well defined, albeit at reduced field amplitudes. Comparison of the

 field components, in Figures 4.17 and 4.24, shows the growth of the competing

mode also produces an effect here, indicating it is an HE hybrid mode (c.f. Section 3.2).
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Another consequence of increased coupling to the HE mode can be seen in the region

of the 2D Bragg reflector. A comparison of all six components of the  and  fields,

in the region of the 2D Bragg reflector, are given in Figures 4.27 and 4.28 respectively:

Figure 4.27: Compares the E field components for the 1.5kA and 3kA simulations, in

the region of the 2D Bragg reflector.

Comparing  from the  and  simulations it can be seen that the incidence

of the HE mode at the 2D Bragg reflector greatly alters the coupling mechanism, with

the competing mode dominating; this is reflected in the field profiles of the ,  and

 components which all show modifications which follow that of the  component.

This alteration appears to degrade the efficiency of the reflector in containing the TEM

mode within the cavity, with the magnitude of the  and  components remaining

fairly constant from the input of the simulation through to the beginning of the 1D

reflector. 
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Figure 4.28: Compares the B field components, for the 1.5kA and 3kA simulations, in

the region of the 2D Bragg reflector. 

A slight change in the over-all shaping of the  and  components, in the region of

the 2D mirror, may indicate these components are present in the HE mode, though

working purely from Figures 4.27 or 4.28, this cannot be clearly ascertained. 

Before considering the Fourier transform of the field components, some investigation

of the HE mode may be performed by looking at the field contours in the ( ) as well

as the ( ), plane. Noting that the  component in the  simulations, is defined

strongly in the region of the 2D Bragg reflector and shows the expected TEM-TE24,2

mode coupling, comparison of the azimuthal field profile with that of the  case,

over this region, allows for a fair approximation of the HE modal designation. 
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Figure 4.29 compares the ( ) and ( )  field profiles for the two simulations:

Figure 4.29: Compares the Eθ field components for the 1.5kA and 3kA simulations, in

the (r,z) and (θ,z) planes.

The transverse profile of the  component in the  experiment shows a fully

periodic field variation over the single azimuthal period of the corrugation, as expected

for coupling with a TE24,n mode, with the longitudinal (r,z) cross-section implying

, in line with the expected four-wave TEM-TE24,2 coupling mechanism. The

transverse profile of  in the  simulations, however, shows the superposition of

the expected  profile with another showing  across the azimuth of the

single corrugation period modelled. Exact designation of  for this competing mode

would require modelling of an increased number of azimuthal periods, putting it

beyond the computational resources available at the time of study. It may be assumed,

however, that , for the HE mode, should be low, say , which combined

with examination of the longitudinal cross-sections give a tenuous value of , i.e.

an HEm,2 mode where .
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With some description of the operating modes defined, the spectral content generated

by the  beam, was examined by taking the Fourier transform of the  and  field

components at the output of the 1D Bragg reflector:

Figure 4.30: Shows the Fourier transforms of the E field components at the output

from the lasing cavity.

Figure 4.31: Shows the Fourier transforms of the B field components at the output

from the lasing cavity.

3kA E B
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As expected from Figures 4.24 and 4.25, the spectral content for the  case shows

a much higher degree of noise than the  case, though some of the spectral

characteristics can still be discerned. The increase in the noise level may be explained

by consideration of the Lowbitron interaction discussed in Section 2.3.2; the perturbed

electron oscillations seen in Figures 4.22-4.23 leads to an increase in the ratio of

, reducing the frequency range of the Lowbitron instability such that its

operational regime begins to overlap that of the FEM. Clarity of spectral content may

be improved by looking at the Fourier transforms of the total  and  fields, as shown

in Figure 4.32a and b:

Figure 4.32: (a) Shows the combined E field FFT’s and (b) shows the combined B

field FFT’s for the 3kA simulations. 

In this form the expected operating frequency, from the  eigenmode, can be

clearly seen, with a central frequency of ~  and longitudinal harmonics

separated by ~ . The lower  eigenmode can again be seen to be

present and to show an increase in both magnitude and spectral width. An equivalence

between this eigenmode and the HEm,2 mode noted in discussion of the field contour

plots is clear, indicating the HE mode designation should be HE2,2. 

The output power from the segment simulated was ~ , indicating an increase in

the expected total output power to ~  for the cavity, with an associated increase

in signal noise. Work on an optimised cavity design for the higher beam current of
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~  is ongoing at the time of writing this thesis, with the resulting cavity to be

measured experimentally. Results obtained using the existing 2D - 1D Bragg cavity,

with a ~  electron beam, are presented in Section 7.4.3 for comparison. 

4.4  Conclusions.

The plasma-flare gun used in the 2D - 1D Bragg FEM experiment was modelled, using

the 2.5D PiC code KARAT, for two separate geometries; one with a  radius

anode can and one with a reduced anode can radius of . In both cases a magnetic

field in the region of  was found adequate to transport a ~  electron beam

across the accelerating gap of the electrodes and into a co-axial drift tube. The initial

gun design, with the  radius can, was estimated to produce beam currents in the

range ~  for the given electron energy, while the modified gun design, with

the  can radius, was estimated to produce beam currents of ~  due to

the increased gun perveance. 

Simulations of an optimised 2D - 1D Bragg lasing cavity, using injected electron

beams of similar parameters to those determined in KARAT, were carried out using

the 3D PiC code MAGIC. These showed agreement with the expected operation given

by analytical theory, both for the EM interaction with the different reflectors and in the

output spectral content.  An electron beam current of ~  resulted in the excitation

of the expected TEM-TE24,2 coupling mechanism in the 2D Bragg reflector and the

generation of a ~  output pulse at the desired frequency of ~ . The

excitation of the same cavity by an electron beam of ~  again resulted in the

generation of an operating frequency of ~  though a marked increase in a

parasitic eigenmode was noted along with an increase in the background noise level.

This may be due to excitation of a broad-band Lowbitron interaction with the beam,

due to the increased  spread, though further investigation, both numerically and

experimentally, is  required to ascertain if this is the root cause. 

For comparison with the experimental cavity, the expected performance of the 

FEM was for the generation of a ~  microwave pulse, centred at

3kA
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~ , with potentially some parasitic oscillations observable in the region of

~  and ~ . Similar performance was expected using the same

experimental cavity with an increased beam current of , with an expected

increase in the output power closer to , though a higher degree of noise in the

observed spectrum was expected.

37.5GHz
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Chapter 5: Construction of the 2D - 1D Bragg

Free Electron Maser Experiment.
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5.1  Introduction

This chapter presents a discussion of the main components of the 2D - 1D Bragg FEM

experiment. A schematic of the experiment is given in Figure 5.1:

Figure 5.1: Shows a schematic cross-section of the FEM experiment, noting: (a) the

Marx-bank power supply, (b) the folded transmission line, (c) the output spark-gap, (d)

the plasma-flare electron gun, (e) the FEM interaction region.

Section 5.2 presents the FEM power source, composing of the Marx-bank,

transmission line and output spark-gap (Figure 5.1 (a)-(c) respectively). The plasma-

flare electron gun (Figure 5.1 (d)) is presented in Section 5.3, along with description of

the guide solenoid circuit, used to confine the radial motion of the electrons as they are

accelerated into the drift tube region. The FEM interaction region, incorporating the

undulator circuit, the 2D - 1D Bragg lasing cavity and the co-axial launching antenna,

is described in Section 5.4.

(a)
(b)

(c)

(d)

(e)
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5.2  The 2D - 1D Bragg FEM Power Supply

The pulsed power supply for the FEM experiment can be characterised as a CLC

circuit, where the capacitive discharge of the Marx-bank passes through an inductor to

a secondary capacitor in the form of the folded transmission line. In such a circuit, the

secondary capacitance, presented by the transmission line, is chosen to be greater than

that of the Marx-bank to prevent the reflection of energy back through the inductor.

The discharge from this secondary capacitor was controlled by a high-voltage spark-

gap, in effect producing two stages of development in the shaping of the voltage

applied to the electron gun diode. The following section describes the composition and

operation of the main components of this power supply, beginning with the Marx-bank

and its inductor coil (c.f. Section 5.2.1), followed by the folded transmission line and

the high voltage spark-gap forming its output switch (c.f. Section 5.2.2).

5.2.1  The Marx-bank Generator

The Marx-bank pulse generator formed the heart of the FEM power supply:

Figure 5.2: Shows the Marx-bank pulse generator in cross-section, noting the main

components. The resistors marked R1-4 correspond to those shown in Figure 5.3.

Ma r x - b a nk

charging line

Ma r x- b a nk

trigger line

To transmission line

Inductor coil

M a rx - ba nk

capacitor stack

I n t e r l oc k

dump-switch

line

Field-reliever

R1

R2

R3

R4



113

The Marx-bank capacitor stack consisted of fifteen, model 31235, 

General Atomic (formerly Maxwell) castor oil capacitors. Each of these was rated to

 (  in air), , with self-inductances in the region of . This

gave a total charging (parallel) capacitance for the stack of  and an inductance

of  with a maximum potential difference of  achievable, though typically

the Marx was charged to between . The capacitors were charged using a

Glassman PK100R040 power supply unit (PSU), capable of providing a maximum of

 at  DC. Typically the capacitors were charged to  each with

a charging current in the region of , well within the handling capabilities of

both the capacitors and the PSU. The charging circuit for the capacitors is shown in

Figure 5.3:

Figure 5.3: Shows the charging circuit for the Marx-bank, noting the connections

between the marx-bank support legs (large circles) for the trigger circuit.

Resistor  corresponds to a set of seventeen  wire wound Morganite (latterly

Allen-Bradley Electronics) resistors, giving .  correspond to Copper

Sulphate (CuSO4) charging resistors, connected to the positive electrodes of the

capacitor stack, while  refers to a second set of CuSO4 resistors connected across

the negative electrodes of the capacitors. The positive electrodes were placed under

high tension (HT) while the negative electrodes were tied to ground (GND). Here

 and , i.e. . When the spark-gaps (SG) in the circuit

are open, the capacitors are isolated from the load and charge through  and , in

parallel, to the voltage applied by the PSU. The capacitors do not necessarily charge

uniformly, but all will erect to the same final voltage; taken to be when the charging

current has reduced to some nominal level, typically ~  in the experiments. 
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Once fully charged the Marx-bank spark-gaps were closed by triggering a fast

thyratron switch, connected to a mid-plane electrode in the first spark-gap. This is

initially held at a positive potential by the voltage divider circuit , which applies

~  of the charging voltage to the mid-plane. This ensures the first spark-gap does

not self-close during charging by insulating the HT and GND electrodes from each

other.  and  were constructed using a series of  high voltage resistors,

intended to minimise the loss of current from the main charging circuit. 

The RC circuit of  and  provided an AC filter on the trigger circuit to prevent

noise propagating back to the thyratron-switch when the Marx-bank discharge is

triggered.  was constructed using high-voltage wire wound resistors

while  was constructed using a series of high-voltage ceramic disk

capacitors.

When triggered, the circuit for the Marx-bank was significantly altered. Figure 5.4

shows the circuit with the spark-gaps closed, along with a simplified version, removing

components not involved in the discharge:

Figure 5.4: (a) Shows the discharge circuit for the Marx-bank, noting the connections

between the marx-bank support legs (large circles) for the trigger circuit. (b) Shows a

simplified discharge circuit for clarity of operation.

R5:R6

1 4⁄

R5 R6 100MΩ

R7 C2

R7 23.3kΩ=

C2 33.6pF=

(a)

(b)
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The Marx-bank was triggered using a fast thyratron-switch, connected to a mid-plane

electrode, positioned between the first spark-gap electrodes of the capacitor stack.

When triggered, this essentially electrically shifts the GND plane of the first spark-gap

closer to the HT electrode, instigating breakdown, and producing a potential difference

of  across the second spark-gap, which also breaks, producing a potential

difference of  across the next gap and so on, discharging the capacitors in series.

When the Marx-bank is fully erect it can then be considered to function in a similar

manner to a single capacitor of ~ . 

To reduce the electrical stress imposed by the Marx-bank discharge, a large diameter

copper field reliever was placed at the output. In Figures 5.3 and 5.4,  corresponds

to a set of six grounded resistors connected to this field reliever. These were placed in

parallel with the inductor coil ( ), connecting the output from the Marx-bank to the

transmission line, to provide a preferential path for the discharge towards the

transmission line, whilst also providing a resistive route to ground, bi-passing the

capacitor stack, in the event of a reflected high voltage pulse returning to the power

supply. .

The Marx-bank described is an “inverting Marx” meaning the capacitors charge at a

positive voltage, but the discharge from the Marx-bank is a negative voltage. The

Marx-bank erected in ~ , with the maximum voltage applied to the field reliever

being in the region of . 

Noting that air has a dielectric hold-off of ~ , such high voltages at the

output of the Marx-bank meant it was necessary to immerse it in some form of

insulatory medium to ensure safe and proper operation. A common way of addressing

this problem is to use the dielectric gas sulphur hexafluride (SF6), however as this is

now classified as a green-house gas (Meurice et al. 2004, Denissov et al. 2005) and can

produce the highly toxic bi-product disulphur decafluride (S2F10) (McCormick &

Craggs 1954, DPPEA 2000), the more attractive option of high quality insulator oil

was used. Such oil has the advantage of having a dielectric hold-off of ~

(EOS 2006) compared to the ~  offered by un-pressurised pure SF6. If this

2– V0

3– V0

20nF

R4

L1

R4 7.5kΩ≈

250ns

800kV–

30kVcm 1–

120kVcm 1–

89kVcm 1–
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limit is exceeded the oil simply generates inert carbon particles, which degrade the

insulatory properties of the oil but pose no health risk. 

In addition to its use in insulating the Marx-bank, insulator oil was also used to insulate

the high voltage spark-gap located at the output of the transmission line, hence its

placement within a dedicated insulation tank (see Figure 5.1(c)). The rate of particulate

build up was minimised by fitting both tanks with removable lids, preventing un-

necessary ingress of dust and air born debris from the laboratory into the oil. Figure 5.5

shows the fully constructed Marx-bank within its insulation tank, noting the visible

components:

Figure 5.5: Shows the Marx-bank generator in place within its insulation tank, as the

insulator oil is being pumped in. The final oil level was ~15cm above the top of the

inductor coil.

The electrodes for the Marx-bank spark-gaps were contained within a sealed perspex

column, held at a positive pressure using nitrogen gas. This was done both to negate

the ingress of oil into the inter-electrode spacing and to prevent the spark-gaps self

closing due to the insufficient hold-off offered by air at charging voltages in excess of

~ ; by varying the pressure of the nitrogen  accordingly, the charging voltage

could be raised to the desired level of  whilst still allowing for active

triggering of the discharge using the thyratron switch. In the experiment the nitrogen

Connection to the

transmission line

mid-conductor

Nitrogen gas feed

for the Marx-bank

spark-gap column

Inductor coil

Insulator oil

Ma r x - b a nk

generator

Field reliever

30kV

40 60kV–
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column was pressurised to between  (Pounds per Square Inch), though the

chamber was tested for positive pressures of up to .

5.2.1.1  The Inductor Coil.

At the moment the Marx-bank discharge is instigated, the transmission line presents

essentially a short circuit. Working from the relation:

5.1

where  is the current,  is time,  is the peak Marx discharge voltage and  is the

circuit inductance.

Taking the maximum discharge of the Marx-bank to be in the region of , rising

over a time scale of ~ , the self inductance of the discharging capacitor bank of

~  would be insufficient in preventing the capacitors from exceeding their

maximum rated current of . To increase the circuit inductance a  turn coil was

added between the Marx-bank output and its connection to the transmission line. The

coil inductance was calculated using (Lorrain Corsan & Lorrain 1988):

5.2

where  is the permeability of the medium,  is the number of turns,

 is the axial length of the coil and  is the coil mean radius.

Taking  for the insulator oil, the inductance of the coil approximates well with

the free-space performance of ~ , corresponding to a current flow of ~  at

 from the Marx-bank, sufficiently below the maximum current rating of the

capacitors.

5.2.2  The Pulse-Forming Folded Transmission Line.

The discharge from the Marx-bank exhibited a  decay time of ~  with an

associated rise time of ~ . The direct application of such a pulse across the gun
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diode would result in the production of a long electron beam pulse, consisting of highly

non-uniform, low energy electrons, making it unsuitable for lasing within the FEM

interaction region. Following a similar technique to Spark et al. (1994), the discharge

pulse, from the Marx-bank, was “shaped” using the combination of a pulse forming

transmission line and a high-voltage output spark-gap. A circuit schematic of the

transmission line used is given in Figure 5.6(b), while Figure 5.6(a) shows the

schematic of a standard transmission line circuit:

Figure 5.6: (a) Shows the circuit schematic of a standard co-axial transmission line,

noting the position of the HT connection point (V0), the discharge spark-gap (SG) and

the discharge matching resistors (R). (b) Shows the circuit schematic of the folded

transmission line, noting the HT connection (V0), the high voltage spark-gap (SG), the

discharge matching resistors (R1) and the load presented by the gun diode (RL). l is the

physical length of the line. and the numerals I, II, III correspond to the central, mid and

outer conductors respectively.

l
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2R
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Looking initially at the standard transmission line, shown in Figure 5.6(a), this can be

characterised as a simple co-axial capacitor, with a capacitance defined by:

5.3

where  is the length of the line,  and  are the radii of the inner and outer conductor

surfaces, respectively, and  is the relative permittivity of the medium filling the line.

The capacitance of the line can therefore be adjusted by altering the media between the

conductor surfaces, allowing the energy storage capability of the line to be increased

by increasing , as:

5.4

where  is the potential energy storage of the line and  is the applied voltage.

Looking now at the folded transmission line shown in Figure 5.6(b), while this appears,

both schematically and physically, to be quite similar to the Blumlein, it operates in a

manner identical to that of a standard transmission line of length . Equations 5.3 and

5.4 therefore hold, under the slight adjustment:

5.5

where the ratio  is taken between either of the two sets of consecutive conductor

surfaces (II and I, or III and II in Figure 5.6 (b)).

In addition to the advantages of the increased output pulse length offered by such

transmission lines, the fact the structure is co-axial means the line does not suffer from

the parasitic inductances experienced by lumped elements. The folded line used in the

FEM experiment had a physical length of , with an outer conductor radius of

, and a ratio of  between the radii of the three conductor surfaces

( ,  and  for the outer, mid and inner conductors respectively). 
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The discharge pulse from the Marx-bank ( ) was applied to the mid-conductor of the

folded line, with the line discharge-voltage controlled by the pressure of nitrogen gas

in the output spark-gap. This spark-gap was passively switched (i.e. self-closing)

making control of the pressure within the gap intrinsic to the proper operation of the

experiment; further detail on this can be found in Appendix C. 

Assume here that the spark-gap is pressurised such that the full charge from the Marx-

bank is passed to the transmission line before the gap closes. Typically the circuit

impedances are arranged such that , where these terms refer to the

impedances of the source, the transmission line and the load respectively.

Figure 5.7: (a) Shows the discharge of the transmission line at time steps t = 0, 

t = l/vph, t = 2(l/vph) and t = 3(l/vph). (b) Shows the duration and magnitude of the

output pulse from the transmission line.

Assuming the impedance relation given above, the discharge of the folded

transmission line follows the cycle shown in Figure 5.7. When the spark-gap closes the

stored charge on the transmission line begins to flow, both back towards the Marx-

bank and to the load, forming two counter-propagating pulses each with amplitude

. As the impedance presented by the source is typically much higher than that of

either the line or the load, the pulse travelling back towards the Marx-bank is reflected

back towards the load, allowing the transmission line to continue discharging at 

for a total pulse duration of , where “ ” should be noted as being the physical

length of the line and  is the velocity of the pulse in the line. The use of
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a standard transmission line, or Blumlein, of the same physical length would give a

similar amplitude voltage pulse but with a duration . 

In practice the impedance of the load was adjusted such that , which provided

a peak discharge voltage in the region of  of , with the voltage pulse

applied to the gun diode showing a slightly stepped decay rate. Control of the load

impedance was obtained by varying the resistance of a set of matching resistors (R1 in

Figure 5.6 (b)) placed in parallel with the gun diode as . 

Figure 5.8: Shows the folded transmission line, noting the connection to the Marx-

bank insulation tank, the deionised water system and the small cylinder used to

maintain a positive pressure on the line.

The filling medium for the line was deionised water, maintained at a resistivity per unit

length value of  by a Barnstead E-Pure water purification system (see

Figure 5.8) which had a maximum rating of . Maintenance of the water

purity was aided by the use of only stainless steel and polypropylene parts in the

construction of the deionised water system, as these do not degrade.

2 l vph⁄( )
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The relatively high dielectric constant of the deionised water, , gave a

capacitance of  for the folded transmission line, sufficiently larger than the

 of the discharging Marx-bank to prevent reflections of the incident voltage pulse

back to the Marx capacitors. The associated energy capacity was  for the range

of Marx-bank discharge voltages applied. When the high voltage spark-gap at the

output of the line is closed, the line impedance .

5.2.2.1  The High Voltage Spark-Gap.

The discharge from the transmission line was controlled by a passively switched, high

voltage, spark-gap located between the output of the transmission line and the

connection to the cathode stalk of the electron gun. In this case the breaking voltage of

the gap was set by the type of dielectric gas confining it and the pressure that gas was

under. The operation of a passively switched spark-gap can be characterised by

Paschen’s law (also referred to as the Townsend breakdown criterion) (Husain &

Nema 1982):

5.6

where  and  are constants dependant on the dielectric gas used,  is the gas

pressure (in ),  is the inter-electrode spacing and  is the Townsend criterion,

where  and  is the primary ionization co-efficient (

is the electric field stress). A useful standard is to consider an inter-electrode spacing

of , between two perfectly smooth parallel electrode surfaces, with an inter-

electrode media of air at room temperature and pressure. In this case the dielectric

strength of the gap corresponds to ~  (Gilmour 1986). 

In practice, estimation of the break-down voltage of a gap using equation 5.6 has some

limitations, in that the value of  is closely tied to the electrode material, the electrode

surface quality and the purity of the gas used. The trend is, however, well known, with

the resultant plot known as the Paschen curve (see Figure 5.9) (Bloess et al. 1983).
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Figure 5.9: Shows a typical Paschen curve, noting the breaking voltage as a function

of the gas pressure in the spark-gap for a set electrode separation. 

Looking at Figure 5.9, as one moves to lower pressure it can be seen that the sparking

voltage reaches a minimum, then begins to increase as, at low pressures, the probability

that an electron will strike a molecule travelling between the electrodes is low. This

corresponds to the so-called Pseudo-spark discharge region. The vacuum breakdown

region results as the assumption of a Poisson distribution in the particles does not hold

at very low vacuum, meaning Paschen’s law is inapplicable. An example of this region

would be the electron gun, described in Section 5.3.1.1, which operated at

~ . 

The implication of Figure 5.9 is that control of the breakdown voltage can be obtained

on either side of the Paschen minimum. For the high voltage spark-gap the choice was

made to operate in the Raether’s streamer-discharge region, for two reasons; firstly

working at a positive pressure would prevent the ingress of insulator oil into the spark-

gap, ensuring proper operation and secondly the shallower  curve allows for

more precise control of the breaking voltage.

8 10 6–× mBar

V pde( )⁄
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The spark-gap is shown in cross-section in Figure 5.10 (a):

Figure 5.10: (a) Shows a schematic of the output spark-gap, linking the transmission

line to the diode. (b) Shows the physical spark-gap in-situ within its insulation tank.

The electrodes were enclosed by two  thick stainless steel plates, separated by a

thick  long nylon cylinder. The electrodes themselves were  long with a

diameter of  and an inter-electrode separation of . The edges were rounded,

with the curvature minimised to maintain a region of uniform field between the facing

surfaces. The pressure in the gap was controlled by a gas regulator valve, mounted

outside the experimental bay, with a valve positioned in line to allow the gas in the

spark-gap to be vented, helping prevent buildup of O-zone and carbon particulates as

the number of shots in the experiment progressed.

At the output from the spark-gap a set of six damping resistors, formed using an

aqueous solution of copper sulphate, were connected in parallel with the diode (see

Figure 5.10 (b)). These were tied to ground on the body of the diode tank, allowing the

load impedance ( ) to be adjusted by changing the impedance ( ) presented by

these resistors, as . The spark-gap was pressure tested up to , however

operation was confined to at most . The load impedance could be varied by

adjusting both the number of resistors constituting  and by varying the concentration

of the copper sulphate solution within the resistors.
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5.3 The 2D - 1D Bragg FEM Electron Beam Source.

The electron beam source used in the FEM experiment was based around an annular

explosive-electron-emission (EEE), or “plasma-flare” cathode. This was attached to

the end of an adjustable cathode stalk, mounted within an evacuated, grounded, anode-

can. A tight fitting, single layer, solenoid was placed over the gun-diode region to aid

in formation of a uniform electron beam by confining the radial motion of the electrons

as they were accelerated between the cathode and the anode. This solenoid continued

along the length of the drift-tube, maintaining an axial magnetic field throughout the

interaction region of the experiment.

The operation of the plasma-flare cathode is covered in Section 5.3.1, along with

description of the two gun geometries employed in the FEM experiment. The guide

solenoid circuit is described in Section 5.3.2. 

5.3.1  The Plasma-Flare Cathode. 

The mechanisms governing the operation of plasma-flare cathodes have been under

investigation since the late 1940’s, with Rothstein’s remark that neither thermionic,

nor field-emission, processes can account for the high current densities observed

(Rothstein 1948). The explosive vapourisation of the emitter surface was investigated

by Nekrashevich & Bakuto (1959 cited in Mesyats 1985) and led to the identification

of what would be called the “cathode spot”; localised explosive vaporisation events on

the surface of the emitter (Rothstein 1964 cited in Mesyats 1985). 

The known contributory processes to cathode spot generation are covered extensively

by Mesyats (1983, 1985, 1989, 1991, 1995) and in references (Gilmour 1982, Schrade

1989, Ronald 1996, Ronald et al. 1998). In essence the cathode spot is a small,

localised region of plasma, located a short distance from the surface of the cathode

emitter. These “spots” arise due to field enhancement around micro-structures and

imperfections on the surface of the cathode emitter. An example of such structures are

the “whiskers” shown in Figure 5.11 (Gilmour 1982), generated on optically flat
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cathode surfaces through the application of electric field stresses in the region of

 (Gilmour 1982). 

Figure 5.11: Shows whisker micro-structures on stainless steel and aluminium

cathode surfaces after the application of a 200kVcm-1 field.

When an accelerating potential is applied across the electrodes of the diode, the electric

field stresses on the micro-structures are greatly enhanced compared to those seen by

the bulk of the cathode surface, causing rapid localised heating and explosive

sublimation. The ejected material forms a plasma cloud a short distance from the

cathode surface (forming the cathode spot), with a molten region directly below.

Electrons in the molten region are accelerated towards the plasma cloud by a localised

space-charge controlled current of counter-propagating ions. In this way the cathode

spot acts as a zero-work function source of electrons as the electrons in the plasma

cloud are un-bound and can be accelerated freely by the applied potential. 

With the sublimation of the micro structure, the molten region cools, due to the

increased thermal conductivity, terminating the flow of electrons to the cathode spot.

The electrical field stresses then begin to build and the process repeats. These cyclic

explosive emission events are termed “ectons” (Mesyats 1995). Evidence of this cyclic

operation can be seen in Figure 5.12, which shows the craters on the surface of a copper

cathode after explosive emission has occurred.

200kVcm 1–
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Figure 5.12: Shows craters on the surface of a copper cathode following explosive

emission. (a) shows craters after 5ns (b) shows craters after 20ns (Gilmour 1982).

When a sufficiently high potential is applied enough cathode spots are produced to

form a relatively uniform plasma emitter with similar dimensions to that of the cathode

surface. In the case of the annular emitter of the FEM experiment this leads to the

production of an annular plasma “flare” between the diode electrodes, hence the name

“plasma-flare” electron gun. For complete turn-on of a graphite cathode the applied

field should be in excess of , with the time taken for full activation of the

cathode determined both by the applied electric field strength and the cathode material

(Bekefi et al. 1987). The velocity of the ejected electrons is determined by the

explosive force from the cathode surface and is independent of any external field

(Boxman 1983).

Due to the explosive nature of the plasma-flare cathode, the resultant uniformity in the

electron beam is typically much lower than that achievable through the use of

thermionic, or field emission array cathodes, however these cathodes have a much

lower emission current density; in the region of  compared to ~

achievable with plasma-flare cathodes. This factor alone prevents the use of a

thermionic or field emission cathode in the FEM experiment, as the required beam

(a) (b)

400kVcm 1–

50Acm 1– 10kAcm 1–
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currents lie over a range of values from . Assuming the use of a thermionic or

field emission cathode, separate emitter annuli would be required for each beam

current, with cross sectional areas covering the range . To recover the

required beam radius of  and a finite width  the beams generated

would require radial compression, with the degree of compression determined via:

5.7

where  ranges from ~  across the current range stated and  is the cross-

sectional area of the emitter.

In contrast, by choosing a plasma-flare cathode, the emission current is limited by the

space-charge limit, determined by the gun perveance (c.f. Section 4.2). For a set gun

geometry the current available can be varied, to a degree, simply by increasing the

applied potential or by changing the axial anode-cathode separation distance. In this

case the mean radius of the cathode (and so the mean radius of the resultant beam) can

be constructed to match that of the beam drift-tube, simplifying construction. Some

means of recovering higher beam qualities in plasma-flare electron guns can be

instituted, these are discussed in Section 5.3.2. 

5.3.1.1  Construction of the Plasma-Flare Electron Gun.

The plasma-flare gun used in the 2D - 1D Bragg FEM experiments was based on a

design, developed by Konoplev (2001) and implemented by McGrain (2006) for use

with a 2D - 2D Bragg FEM. This achieved mean beam currents of ~  for

accelerating potentials of ~ , with a guiding magnetic field strength of ~ . 

This was modified in two stages; firstly the emitter geometry was optimised to increase

the potential beam current to the ~  range; secondly the radial separation of the

anode-can and cathode stalk was reduced, again to increase the potential beam current,

in this case to ~ . These two stages correspond to the modelled EEE1 and EEE2

guns presented in Sections 4.2.1.1 and 4.2.1.2 respectively.
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A schematic of the EEE2 plasma-flare electron gun is shown in Figure 5.13. The EEE1

gun was identical in its topology, with the exclusion of the anode-reducing insert.

Figure 5.13: Shows the EEE2 gun schematic noting (a) the connecting plate to the

power supply (b) the DC break (c) the grounded plate connected to the anode-can (d)

the vacuum sensing port (e) the anode-can (f) the anode-reducing insert (g) the cathode

emitter (h) the inner-conductor of the drift tube (i) the outer conductor of the drift tube

(j) vacuum pumping port.

The cathode stalk was placed at a negative potential by connecting it to the output of

the high voltage spark-gap of the transmission-line. The anode-can was held at ground

via connection to the grounded body of the insulation tank. Vacuum was afforded by

a two stage system, incorporating an Edwards RV12 model roughing pump and a

Edwards 100 model Diffstak pump. The vacuum quality was sensed using a BOC

Edwards AIGX-8 active ion gauge, monitored using a three channel Edwards active

gauge control unit. Using the vacuum system the gun and drift-tube were evacuated to

a pressure of ~  for the duration of the experiments. The axial separation

of the cathode emitter and the effective anode, formed by the entrance for the drift-tube

region, was kept constant at ~  throughout the duration of the 2D - 1D Bragg

FEM experiments, with the anode-reducing insert (see Figure 5.13) added in the later

stages as a means of increasing the beam current. The cathode emitter in all cases was

an annular, graphite, knife-edge emitter with a mean radius of , matching that

of the mean separation between the surfaces of the inner and outer conductors of the

drift-tube.

(d)

(a) (b)
(c)

(e) (f)
(g)

(h) (i)

(j)

8 10 6– mBar×

10cm

3.5cm



130

5.3.2  The Guide Solenoid.

As stated in Section 5.3.1, the beam quality of plasma-flare cathodes is limited due to

the explosive nature of the beam generation. Two methods of recovering a higher

quality beam may be employed. The use of a collimator to scrape the beam edge is

common, leaving a high quality beam core at the expense of current. This is often

accompanied by the introduction of a guiding axial magnetic field (Gold et al. 1984,

Conde & Bekefi 1991), though both collimators and guiding fields may be

implemented individually (Fajans et al. 1985, Fajans et al. 1986, Cross et al. 1998). For

devices which show an axis-encircling rotation of the electron beam, the reversal of the

guide field, relative to the rotation of the electrons, has been shown to further increase

energy conversion efficiency (Conde et al. 1991, Kaminsky et al. 1996, Cross et al.

1996, Freund et al. 1999) from one percent to tens of percent, though the advantage of

such a field on a beam showing a non-axis-encircling rotation can be considered

negligible (Konoplev 2001). 

Figure 5.14: Shows the guide solenoid in position on the FEM experiment, noting its

proximity to the vacuum port of the anode-can and the co-axial output horn. 

In the case of the FEM experiment a collimator was discounted for use, as it would

place unreasonable constraints on the alignment of the experiment. Rather a relatively

high guiding magnetic field was implemented by the addition of a tight fitting single

layer solenoid, beginning close to the vacuum ports of the anode-can and continuing to

Vacuum sensor
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the up-tapering co-axial output horn (see Figure 5.14). The solenoid consisted of a

 turn  long coil, held rigid by fibre-glass, embedded in epoxy resin.

The addition of a uniform axial magnetic field constrains the radial motion of the

electrons. By immersing the inter-electrode region of the electron gun in such a field,

the trajectories of the electrons accelerating towards the anode are constrained such

that  provided the magnetic field is sufficiently high for the current of the

propagating beam (Humphries 2002):

5.8

where  is the pitch angle of the electron orbits,  is the radius of the beam envelope

and all other parameters have their common meanings. To minimise, or maintain a

constant,  it can be seen from equation 5.8 that the guide magnetic field must be

increased in-line with the beam current. This agrees with the behaviour noted in

modelling of the FEM interaction region at increased beam currents (c.f. Section

4.3.3). 

A DC power supply was provided by a set of ten ,  capacitors, charged

and discharged in parallel. A circuit diagram of the solenoid power supply is given in

Figure 5.15:

Figure 5.15: Shows the circuit diagram of the solenoid power supply. 

In Figure 5.15  corresponds to a set of charging resistors set in series with

the power supply capacitors.  corresponds to a set of matching resistors with a total

1000 2.55m

v⊥ vz«

θf

µ0I

2πrB0

---------------
 
 tan≤

θf r

θf

250µF 20kV

R1 500Ω=

R2
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resistance of ,  is the self resistance of the coil, which has inductance

 and  is the individual capacitance of each capacitor. In

this case SG corresponds to the spark-gap of a mercury ignitron switch while S

corresponds to a switch on the charging line of the power supply; S is closed during

charging. When the required charge is stored in the capacitors  is opened and the bank

is discharged by a triggered discharge across SG. In this way the capacitor bank is

charged and discharged in parallel, allowing for summation of the currents from each

capacitor at the output to the solenoid coil. This produced a typical LRC discharge

curve such as that shown in Figure 5.16:

Figure 5.16: Shows the discharge curve of an LRC circuit operating in the critically

damped regime. 

With the circuit configured such that  (the “critically damped”

regime), the discharge current from the circuit peaks at a value of:

5.9

where  and the corresponding magnetic field is given by:

5.10

where  is the axial coil length and  is the number of turns. 

46Ω R3 1.5Ω=

L1 0.23µH= C1 250µF=

S

L1C1 R2( ) 2L1( )⁄≅

Imax

2

 exp( )
---------------

V0

R2
-------=

 exp 2.72≅

B t( )
µ0nrI t( )

l
--------------------=

l 2.55m= nr 1000=
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The coil current to  relation, for the guide solenoid coil, is presented in Figure 5.17

(a), with the required charging voltage ( ) to generated the required coil currents,

given the circuit parameters, shown in Figure 5.17 (b):

Figure 5.17: (a) Shows the relation between the magnetic field of the guide solenoid

and the peak current flowing through the coil (b) shows the relation between the peak

coil current and the required charging voltage on the solenoid capacitor bank.

Typically the capacitors were charged in the region of  with resultant circuit

currents of  generating magnetic fields of up to ~ . A theoretical

maximum of ~  was achievable with the solenoid circuit configured as described,

however this limit was not approached in the experiment as charging voltages above

~  on the solenoid capacitor bank was found to raise the ground plane of the bay 

sufficiently to induce early triggering of the Marx-bank discharge.

B0

V0

(a)

(b)

10 14kV–

0.9 1.3kA– 0.65T

0.9T

14.5kV
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5.4  The 2D - 1D Bragg FEM Interaction Region

The interaction region for the FEM experiment had three main components; the

magneto-optical system of the azimuthally symmetric undulator and guide solenoid

fields, the 2D - 1D Bragg co-axial lasing cavity and the tapered, co-axial output horn.

A photograph of the experimental components (excluding the guide solenoid) is given

in Figure 5.18, showing the interaction region before its attachment to the plasma-flare

electron gun.

Figure 5.18: Shows the drift-tube of the 2D - 1D FEM experiment, containing the

lasing cavity. The azimuthally symmetric undulator is shown wrapped in insulating

mylar sheeting. Also shown are some sections of corrugated inner conductor, the up-

tapered co-axial output horn and the diagnostics used to monitor the electron beam

current.

As the magneto-optics of the interaction region relies on both the undulator and the

guide solenoid magnetic fields, the azimuthally symmetric undulator will be discussed

first, in Section 5.4.1. The construction of the 2D - 1D Bragg lasing cavity is described

in Section 5.4.2, followed by description of the co-axial output horn in Section 5.4.3. 

Co-axial output horn Section of 2D reflector

Section of 1D reflector

Azimuthally symmetric undulator

Entrance to drift-tube region

Current diagnostics
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5.4.1  The Azimuthally Symmetric Undulator.

The azimuthally symmetric undulator was formed by a series of two-layer, alternately

wound Helmholtz coils. In essence this forms a series of magnetic cusps which induce

small orbit rotations in the electron beamlets (c.f. Section 4.3.2). The coils for the

solenoid were powered using a similar circuit to that of the guide solenoid, though the

number of capacitor stages was reduced. A circuit schematic is given in Figure 5.19:

Figure 5.19: Shows the circuit diagram for the undulator power supply. 

The symbols in Figure 5.19 share common meanings with those in Figure 5.15. In the

case of the undulator power supply C1=300µF giving a total capacitance of 1.2mF,

R1=10kΩ, R2=1Ω, R3=2.3Ω and L1=1.01µH. The circuit operated in an identical

manner to that of the guide solenoid, with the discharges of both circuits and the

discharge of the Marx-bank controlled using an adjustable triggered time delay circuit,

described in Section 7.2. 

The relation between the undulator peak current and the generated  field was

estimated using KARAT, the resultant curve is plotted in Figure 5.20 (a). The relation

between the charging voltage on the capacitors and the resultant peak current, given

the circuit parameters, is plotted in Figure 5.20 (b). The charging voltages on the

undulator capacitors were typically in the range of  giving peak currents of

 and undulator field strengths of . An error of  is

noted in these dependence curves due to the expected error in the simulated magnetic

field values. These may be compared with the experimentally determined values given

in Figure 6.18.

Bu

1.5 3kV–

0.8 1.6kA– 0.035 0.065T– 5%±
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Figure 5.20: (a) Shows the relation between the magnetic field of the undulator and

the peak current flowing through the coils (b) shows the relation between the peak

current and the required charging voltage on the undulator capacitor bank.

Figure 5.21: Shows a schematic of the former for the azimuthally symmetric undulator

noting dimensions in mm.

(a)

(b)
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The Undulator coils themselves were wound on a rigid former to maintain uniform

separation of the successive coils (see Figure 5.21). The main body of the undulator

consisted of twenty six regular, two-layer coils (13 periods), with each coil wound in

alternate directions. Each period consisted of two alternately wound coils, with an axial

period length of  and an outer diameter of ~ . At the beginning of the

undulator a tapered section, consisting of five periods, was used to prevent a sharp

transition in the magnetic field seen by the propagating electrons. The magnetic field

profile of these coils was measured using a , low-impedance, amplifier and a

magnetic-field pick-up probe (Konoplev 2001):

Figure 5.22: Shows the magnetic field profiles of the azimuthally symmetric

undulator, measured using a magnetic-field pick-up probe, reported in (Konoplev

2001).

4cm 9cm

20A
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As expected, from the nature of the magnetic field generated by the coils, the static 

field profile shows the strongest perturbation, though this is closely matched by that

seen in , the latter being the result of the “cusp” action between adjacent coils (c.f.

Section 2.3.1). The relatively weak  component was measured to be an order of

magnitude below the field strengths presented by  or  and so can be considered

to have a negligible effect on the operation of the undulator. 

5.4.2  The 2D - 1D Bragg Lasing Cavity.

The drift-tube of the FEM experiment was formed by a vacuum cored co-axial line,

with a mean inner conductor radius of ~  and a outer conductor radius of

 (a conductor ratio of ~ , c.f. Section 3.2.1). The corrugations, which

formed the Bragg reflectors of the lasing cavity, were located on the inner conductor

surface, with the 2D Bragg input mirror placed in line with the beginning of the

uniform region of the undulator coils. The 2D mirror itself was formed by a series of

 thick half-period cogs (  period), with a total length of  (

periods). The 1D Bragg output mirror was positioned  from the input mirror and

was formed by an axial square-wave corrugation with a periodicity of . The

output mirror was  long, i.e.  periods. Examples of the 2D and 1D Bragg

structures are given in Figure 5.23 (a) and (b) respectively.

Figure 5.23: Shows examples of the square-wave corrugations used to form the (a) 2D

Bragg and (b) 1D Bragg reflectors. (a) Shows the constituent “cogs” used to form 2D

structure. 

Bz

Br

Bθ

Bz Br

29.5mm

39.5mm 1.3

4mm 8mm 10cm 12.5

60cm

4mm

15cm 37.5

(a) (b)
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The cogs of the 2D Bragg reflector alternate by  period along the azimuth between

successive cogs (see Figure 5.23 (a)), producing a 2D periodic structure along both the

axial and azimuthal co-ordinates. The “square-wave” profile of the reflectors

approximates well with the ideal sinusoidal corrugations assumed in the theory, with

the 2D structure in particular proving to be much simpler to manufacture and alter in

“cog” form when compared to the production and alteration of a truly double-

sinusoidal structure:

Figure 5.24: Shows the aluminium former for an ideal double-sinusoidal 2D structure

and resultant copper 2D Bragg corrugation. This structure was designed to form a 2D

reflector on the outer conductor surface of a co-axial waveguide similar to that used on

the 2D - 1D Bragg FEM experiment.

While structures such as that shown in Figure 5.24 are certainly more precise in the

positioning of the spectral stop and pass bands, they can be seen to be less adjustable

than the “cog” like structures used in the experiment, where mirror adjustment can be

carried out simply by adding or subtracting cogs. 

Figure 5.25: Shows inner conductors, incorporating different Bragg structures, for use

in forming a two-mirror lasing cavity in a co-axial drift-tube. (a) Shows a 2D - 2D

Bragg cavity (b) shows a 2D - 1D Bragg cavity.

1 2⁄

(a)

(b)



140

The inner conductors for two different, two-mirror, Bragg lasing cavities are shown in

Figure 5.25. Figure 5.25 (b) approximates well with the experimental cavity, though

the reflector lengths shown differ from those used. The inner conductor stalk was

supported at the entrance to the drift tube region by a set of adjustable support pins,

with support at the end of the drift-tube region provided by a small dielectric stub and

via the connection of the inner conductor to the window of the output horn. 

5.4.3  The Microwave Output Horn

The radiation generated by the FEM was coupled to free-space using an up-tapered

output horn. The horn was designed to ensure the smooth transition of the EM wave,

from the output of the interaction region, to the free-space of the laboratory, essentially

allowing for a smooth transition between the impedance of the co-axial line ( ) and

the impedance of the air in the laboratory ( ). The characteristic impedance of the

line was calculated as (Pozar 1998):

5.11

where  for the line, and  and  are the mean radii of the outer and inner

conductor surfaces respectively. Noting the characteristic impedance of free space is:

5.12

If the impedance of the line was not tapered to match that of free space the sudden

transition may have resulted in reflection of the microwave pulse back towards the

lasing cavity, essentially forming a secondary cavity at the output of the interaction

region and risking auto-modulation of the output signal. 

The horn was designed using the PiC code MAGIC, as reported by McGrain (2006);

the inner conductor radius was kept constant at , as in the main drift-tube

region, while the outer conductor was tapered adiabatically over a distance of 

from an initial radius of  up to . 
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Zfs

Z0

µ0 ε⁄

2π
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This gave  at the output of the horn, which using the relation (Pozar 1998): 

5.13

estimates the refection coefficient of the horn / free-space boundary ( ) as being

~ . While not ideal this is an improvement on the ~  obtained without the use of

the up-tapering of the outer-conductor. A cross-section of the horn is given in Figure

5.26.

Figure 5.26: Shows a schematic of the co-axial output horn noting the dimensions of

the inner conductor and the up-tapered outer conductor. Dimensions are given in mm.

A  thick mylar window was affixed to the output of the horn, allowing the entire

drift-tube and electron gun region to be evacuated. Using the two-stage vacuum

system, described in Section 5.3.1.1, this region could be brought down to a pressure

of ~ . The horn can be seen in-place in Figure 5.14. 

Z0 72Ω≅

Γhorn

Zfs Z0horn–

Zfs Z0horn+
----------------------------=

Γhorn

0.7 0.9

0.5mm

8 10 6– mbar×
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The directionality of the emitted microwaves from the horn was measured at a distance

of  from the output, using a set of Agilent 8474E crystal detectors (c.f. Section

6.4) configured as in Figure 5.27:

Figure 5.27: Shows a schematic of the experimental setup used to measure the

directionality of the EM emitted from the co-axial horn.

The results are plotted in Figure 5.28 against the simulated performance obtained using

MAGIC (McGrain 2006):

Figure 5.28: Shows the relative microwave power, varying with angle at a fixed

distance of 1.2m from the horn, noting the experimentally measured and numerically

simulated performance.

1.2m

Experiment

MAGIC
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Optimum performance can be seen to occur, for both the simulated and experimentally

measured power, in the region of . The rapid decrease seen in the experimentally

measured power for values beyond ~  was the result of the use of a  (max)

power source to test the horn directionality. For angles in excess of ~  the

microwave signal incident on detector 2 was below the sensitivity threshold of the

sensor. While this did not allow for full comparison of radiated output power, it did

confirm the angle subtended by the peak output, determining the optimum location for

the detectors in sampling the high-power output from the FEM experiment as a whole.

5.5 Summary of Experimental Parameters

The following lists the main operational parameters of the FEM experiment.

Parameter Value

Marx-Bank Generator:

Charging Power supply: Glassman, Model PK100R040

Rating , 

Typical charging parameters , 

Marx-Bank Capacitors: 15 x General Atomic Model 31235 

(castor oil)

Capacitance

Self-inductance

Voltage rating  (  in air) per cap

Typical charging voltages

Total charging capacitance

Total discharging capacitance

Discharge current rating (max)

Inductor coil:

Mean radius:

θ 50≈

60 7dBm

7.50

100kV± 40mA

40 60kV– 3 8mA–

0.3µF 10%±( )

0.02µH

100kV  75kV<

600 900kV–

4.5µF

20nF

25kA

7.25cm
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Self-inductance of coil ~

Transmission Line:

Physical length

Outer conductor radius

Mid-conductor radius

Centre conductor radius

Line Impedance

Output Spark-Gap

Pressure Rating Tested up to ~

Typical operating Pressures

Discharge Pulse Duration ~

Plasma-Flare Electron Gun:

Original Anode-Can Radius (EEE1)

Reduced Anode-Can Radius (EEE2)

Cathode stalk radius

Electron Energies

Beam Currents EEE1: , EEE2:  

Interaction Region:

Guide Solenoid Field

Undulator Field

2D Bragg Input Mirror Periodicity

2D Bragg Mirror length  (  periods)

1D Bragg Mirror Periodicity

1D Bragg Mirror length  (  periods)

Mirror Separation

Parameter Value

12µH

2m

35cm

17.5cm

9cm

4.7Ω

18bar

3 14bar–

250ns

14.5cm

6cm

3cm

400 550keV–

1 1.5kA– 3 3.5kA–

0.5 0.65T–

0.05 0.065T–

8mm

10cm 12.5

4mm

15cm 37.5

60cm
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Chapter 6: Experimental Diagnostics
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6.1  Introduction

The parameters of the FEM experiment were monitored at various stages throughout

its operation. The voltage diagnostics are described in Section 6.2. Resistive divider

probes were used to measure the voltage pulses of the Marx-bank and the output spark-

gap (taken to be the voltage applied across the electron gun diode), with the potential

difference on the transmission line measured using a capacitive divider probe. The

current diagnostics are described in Section 6.3. These comprised of current shunts,

used to measure the beam current and the current in the solenoid circuit and Rogowski

coils, used to measure the current in the undulator circuit and again to monitor the

beam current. The microwave pulses generated by the FEM were sampled using

broadband ( ) GaAs rectifying microwave crystal detectors (c.f. Section

6.4). The output power was determined by measuring the power at the crystal detectors

and integrating over the measured mode pattern. The spectral content of the pulses was

determined using cut-off filters (c.f Section 6.5) and a heterodyne technique (c.f.

Section 6.6).

0.01 50GHz–
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6.2 Voltage Diagnostics.

In total four separate voltage probes were employed in monitoring the performance of

the FEM experiment. Of these three were resistive voltage-divider based probes, while

the remaining probe was a capacitive voltage-divider, positioned at the end of the

transmission line just before the output spark-gap. For the resistive voltage-dividers,

theory relevant to all the probes is presented prior to discussion of the individual probes

themselves. In the case of the capacitive voltage-divider, as only one such probe was

used in the experiment, the theory presented is in terms of the probe used.

6.2.1  Resistive Voltage-divider Probes.

Resistive voltage-divider probes in most cases can be considered to function according

to (Horowitz & Hill 1999):

6.1

where typically  and the output voltage is taken across . Successive stages

can be added across  to reduce  further as required.

For cases where the rise-time of the measured pulse approaches the transit time through

the divider elements, the relationship becomes more complex, as each resistor should

be more correctly considered as an individual LRC circuit, i.e. a pure resistance in

series with a self-inductance ( ) and in parallel with a self capacitance ( ):

Figure 6.1: Shows the equivalent circuit for a resistive voltage-divider, noting the self

inductance (Ls) and self capacitance (Cs). Ce corresponds to the stray capacitance

between the resistor and earth.

Vout

R2

R1 R2+
--------------------Vin=

R1 R2» R2

R2 Vout

Ls Cs
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A series capacitance ( ) should also be considered, arising due to the stray

capacitance between the resistor and ground (He 1995). Here the rise-time of the probe

is set by the highest rise-time of the self-inductance, the self-capacitance or the stray

capacitance of the probe. These can be investigated by considering each parameter in

turn, along with the pure resistance and assuming a zero rise-time for the input pulse.

Under these assumptions the self capacitance gives: 

6.2

with a rise-time of:

6.3

Again  corresponds to the resistance of the high voltage arm and  corresponds

the resistance of the low voltage arm.  and  corresponds to the total self-

capacitance of the high and low voltage arms respectively.

Considering the circuit in terms of the self-inductance, the output voltage is given as:

6.4

where  is the number of resistors and the rise-time of the circuit is:

6.5

resulting from the reduction in the instantaneous current due to . The  term arises

from the exponential term of equation 6.4.

The stray capacitance of the probe corresponds to an output voltage of:

6.6

where  is an integer (He 1995, Kuffel et al. 2000). 

Cs

Vout t( )
R2Vin

R1 R2+
-------------------- 1

R1C1 R2C2–

R2 C1 C2+( )
-----------------------------------e t τe⁄–+=

te

R1R2 C1 C2+( )

R1 R2+( )
----------------------------------------=

R1 R2

C1 C2

Vout t( )
R2Vin

R1 R2+
-------------------- 1 e R1 R2+( )t nLs⁄––[ ]=

n

tL

2.2nLs

R1 R2+
--------------------=

Ls 2.2

Vout t( )
VinR2

R1 R2+
-------------------- 1 2 1–( )ne n2π2( ) RCe( )⁄( )t–

k 1=

∞

∑+=

n



149

The rise time in this case is given by:

6.7

The larger of these rise-times are those due to the self and stray capacitances, indicating

these must be minimised in order to obtain the best performance from a resistive

divider probe, should fast response times be required. 

Both of these effects can be minimised by construction of a probe such as that shown

in Figure 6.2. This shows a two stage resistive voltage divider with the initial stage

constructed using copper sulphate (CuSO4) solution. The outer column forms a shield

against EM noise, whilst also aligning the electric force lines in parallel with the inner

CuSO4 column. Such a configuration minimises the stray capacitance between the

inner column and ground, and so reduces the effect on the initial stage of the voltage

divider circuit (Li 1988). 

Figure 6.2: Shows a schematic of a two stage shielded resistive-divider voltage probe.

Here the upper stage resistance and shielding are provided by a solution of copper

sulphate.

In reference to equation 6.3, the effect due to the self-capacitance can be minimised by

ensuring the  time constant of the high and low voltage arms conforms to

 (where n corresponds to the nth stage of a multi-stage

divider). In the initial stage of Figure 6.2 this is achieved by producing both  and

 from the inner CuSO4 column, where the division is created by introducing a

sampling electrode, set at a distance of a few centimetres up from the grounded plate

tCe

R1 R2+( )Ce

3
-------------------------------=

HT connectionCuSO4
1st stage

2nd stage

Output to scope

Grounded base

shield

Sampling electrode

RC

R1C1 R2C2 RnCn= =

R1

R2
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of the probe. Such dividers have a set resistance ratio, determined by the difference in

length of the two sections. Altering the concentration of CuSO4 in the probe will alter

the over-all resistance presented by the probe but will not alter the division ratio for

sampling. In the second stage the choice of resistors should be made to ensure the 

response is the same through-out the probe.

6.2.1.1  The Marx-Bank Resistive Voltage-Divider Probe.

The voltage probe used to monitor the discharge of the Marx-bank was a simple single

stage resistive voltage-divider, characterised by equation 6.1. The relatively high

resistance of  was provided by a weak aqueous solution CuSO4 enclosed by a

length of flexible polyurethane tubing, capped at both ends by copper electrodes.

Polyurethane was chosen for the main body of the probe as it does not perish in

insulator oil (though it loses its elasticity over time). The value of  was variable by

increasing or decreasing the concentration of the CuSO4 solution. In the experiments

. 

Figure 6.3: Shows a schematic of the voltage probe connected to the Marx-bank to

measure the discharge voltage. R1 was connected to the field reliever at the output of

the Marx capacitor bank, with the probe tied to ground through the BNC cable

connection to the rear tank.

The use of CuSO4 to form  has some definite advantages over the use of solid-state

resistors. Besides the relative ease with which the resistance offered by  can be

varied, CuSO4 resistors can be considered self-healing in the event of being over-

volted, i.e. should an excessive voltage pass through the resistor, causing the solution

RC

R1

R1

R1 25.9kΩ=

CuSO4 solution  R1Solid state resistor network R2

BNC connection Ground electrode HT electrode

~1m

R1

R1
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to ionise, the resultant ions recover to their initial state, leaving the resistor undamaged.

Should such an event occur across a standard solid state (for example a carbon

composite) resistor, breakdown may occur across the resistor end-caps, leaving a

“track” of embedded carbon on the resistor surface and so reducing its resistance. In

the worse case the solid state resistor may fail. 

The risk of such failure is also reduced by the use of the flexible polyurethane tubing.

An effect of over-volting a resistor, or exposing a resistor to high voltages at a rate

faster than it can dissipate any heat generated, is a rapid increase in the temperature of

the resistive material. While the CuSO4 solution itself offers enhanced protection from

this effect, due to its higher specific heat capacity, should the solution expand, the

elasticity of the polyurethane allows for some expansion and contraction of the tubing

before failure would occur. 

The sampling resistor  was constructed from a set of ten  resistors, set in

parallel with each other at the base of , giving . The probe was

connected to the field reliever at the Marx-bank output, placing it in parallel with the

discharge resistors and in series with the inductor coil connecting the Marx-bank

output to the transmission line. A BNC terminal end was connected across the plates

of  (see Figure 6.3), with the outer conductor of a standard (  bandwidth)

co-axial cable providing the ground connection between the base of the probe and the

body of the rear tank, whilst the inner conductor carried the reduced voltage single for

measurement on a LeCroy 6200A series  deep memory digital storage

oscilloscope (DSO). Additional attenuation was added to the sampled signal, in the

form of a  low-pass filter circuit, used to remove high frequency noise.

 

6.2.1.2  Shielded, Air-Insulated, Diode Voltage Probe.

The first series of FEM experiments made use of a shielded resistive voltage-divider

probe, previously used in the work by He (1995) and McGrain (2006). Its design

followed the schematic presented in Figure 6.2, with the best performance noted for a

total resistance in the first stage of  and a total resistance in the second stage

R2 220Ω

R1 R2 22Ω=

R2 1.5GHz

2GHz 5GSs 1–⁄

226kV:1V

8.68kΩ
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of . Physically the probe was in the region of  in height, designed to

withstand ~  without suffering electrical breakdown in air, allowing it to be

positioned outside the diode tank. This was accomplished, with connection to the diode

provided by an insulated copper rod and a length of co-axial cable (see Figure 6.4). The

rise-time of the probe was taken as better than , following its use in previous

works (He 1995, McGrain 2006).

Figure 6.4: Shows the positioning of the shielded gun-diode voltage probe, noting the

connection via the insulated copper rod electrode and the separation of the HT

electrode on the probe from grounded surfaces.

The rise-time of the diode voltage was typically in the region of , at least

twice the minimum resolvable with the shielded probe. In order to reduce the effects

of noise coupled on the co-axial line, from the probe, an attenuator (incorporating a

low-pass filter) was included at the connection to a Tektronix TDS640A

 oscilloscope. This gave a total voltage division ratio of 

reading on screen. A typical voltage trace is given in Figure 6.5, for a charging voltage

of  on the Marx-bank capacitors.

1.54kΩ 1.5m

600kV

15ns

Transmission line

Copper electrode in

oil filled column

Shielded probe, positioned

with HT electrode far from

GND

Lead shielding of

interaction region

Line to oscilloscope

30 50ns–

500MHz 2GSs 1–⁄ 293kV:1V

44kV



153

Figure 6.5: Shows the applied diode voltage, for a charging Marx voltage of 44kV,

using the shielded resistive voltage-divider based probe. Recorded using a Tektronix

TDS 640A oscilloscope.

6.2.1.3  Non-Shielded, Oil Insulated, Diode Voltage Probe.

In the second set of 2D - 1D FEM experiments the shielded probe was replaced with a

much more compact non-shielded probe, capable of being placed within the diode

insulating tank. The reasoning behind this change was primarily practical, with the

inclusion of a lead roof over the bay preventing the connection of the existing probe to

the diode. 

The un-shielded probe was designed by Dr. H. Yin and was constructed in a similar

fashion to the shielded probe. The resistive divider was constructed in two stages, with

the initial stage formed using CuSO4 (Lee 1983, Racz & Patocs 1992). The division of

 and  in the CuSO4 solution was done, as before, using an electrode placed

~  from the grounded base plate of the main probe body. This initial sampling

electrode was connected to a solid state resistive voltage-divider circuit, with the

output taken via standard BNC terminated co-axial cable to a LeCroy 6200A DSO.

R1 R2

1cm
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Figure 6.6: (a) Shows the un-shielded probe in cross-section noting main components.

(b) Shows the probe in-place in the diode tank, noting the connections to HT and GND.

The un-shielded probe was calibrated by connecting both the shielded and un-shielded

probes across the diode and comparing the measured behaviour. A comparison of the

different probe responses is given in Figure 6.7 for a charging voltage of :

Figure 6.7: Shows a comparison of the voltage traces obtained using the shielded and

unshielded voltage probes. 
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This established a voltage division ratio of  for the unshielded probe,

including the attenuation provided by an in line attenuator box (incorporating a low-

pass filter) connected between the sensed signal line from the probe and the DSO. 

In addition to the reduced size the un-shielded probe showed an improved response to

changes in the sensed voltage, as can be seen by the sharper rising edge of the pulse

and increased detail in the pulse shape. It should be noted that the pulses shown in

Figure 6.7 were recorded using a Tektronix TDS640A series DSO, which had a lower

temporal resolution ( ) than the LeCroy 6200A DSO (  single shot

bandwidth) used to record the traces shown in Chapter 6. Barring this change in

recording equipment the new voltage diagnostic remained unaltered between the time

of its calibration and the time of the experiment.

6.2.2  The Capacitive Voltage-Divider Probe.

Capacitive dividers have a number of advantages in sampling high voltages. They can

be used to sense DC, frequency modulated CW, long and short pulses and sub-

nanosecond rise-time responses (Thomas 1970), without alteration of the device. In

addition, provided the probe is placed directly at the measurement sensing location, its

input impedance appears to be that of an open circuit, preventing extra loading of the

test circuit (Thomas 1967). The equivalent circuit of a single stage capacitive voltage-

divider is given in Figure 6.8:

Figure 6.8: Shows the equivalent circuit of a capacitive voltage-divider, noting the

secondary resistive voltage-divider circuit.

316kV:1V

500MHz 1.5GHz
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The value of  in order to minimise the rise-time response of the divider (with

a lower stable limit on  given by Thomas as ~  (1970)). Calculation of  and

 for the FEM experiment can be determined from the geometry of the probe (see

Figure 6.9). 

The parallel capacitance ( ) can be considered as similar to that presented by a

parallel plate capacitor, which can be expressed as (Pozar 1998):

6.8

where  is the surface area of the probe and  is the separation between the probe

surface and the centre conductor surface of the transmission line. For the FEM

capacitive probe , ,  and  for the deionised

water of the line. 

The series capacitance ( ), taking that both the transmission line and the probe are

co-axial, can be given as (Pozar 1998):

6.9

where the dimensions ,  and  are noted on Figure 6.9. For the transmission line

probe ,  and , giving .
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Figure 6.9: Shows a cross-section through the capacitive voltage-divider probe on the

FEM transmission line, noting important dimensions and components. 

Additional attenuation was added after the capacitive divider stage via the insertion of

a resistive divider ( ). Here  consisted of three  resistive arms,

connected in parallel ( ) and  consisted of three  resistors, also

connected in parallel ( ) as shown in Figure 6.8. A BNC terminal was

connected across , with a standard co-axial cable run connecting the probe to a

Tektronix TDS640A oscilloscope.

The conversion factor for the probe was calculated as:

6.10

where  is the pulse duration of the transmission line discharge. 
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From the values of  and  it can be seen that the time constant of the divider circuit

, which taken with the relation of  to  allows equation 6.10 to be

approximated as:

6.11

where . A reading of  therefore corresponds

to a voltage on the transmission line output of . A typical measurement

from the capacitive probe is shown in Figure 6.10. This relates to a pressure on the

output spark-gap of ~  for a charging voltage of  on the Marx capacitors.

Figure 6.10: Shows a typical voltage measurement from the capacitive probe, located

at the output of the transmission line. The drop in voltage at ~1.4µs corresponds to the

closing of the output spark-gap and subsequent rising voltage of the discharge pulse to

the diode.

As the potential at the transmission line output was in the range ,

additional attenuation was required to bring the sampled signal down to a safe level for

measurement at the oscilloscope, giving a total conversion ratio of . 
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A comparison between the discharge voltage of the transmission line and that

measured across the diode is given in Figure 6.11. This shows a high level of

agreement in the pulse shaping, with variations in the voltage amplitude clearly visible

in both traces.

Figure 6.11: Shows a comparison between the voltage pulses of the transmission line

and the gun diode, recorded using the capacitive divider and un-shielded resistive

divider probes respectively.

The drop in the transmission line voltage occurs due to the breaking of the output

spark-gap allowing the flow of current to the diode. It can be seen that the plateau in

this discharge coincides with the rising voltage on the diode.

6.3  Current Diagnostics.

The most common means of sensing current flow are through the use of magnetic

probes (Phillip & Turner 1965, Thomas 1970, Thornton 1991, He 1995, McGrain

2006) or through the use of low impedance current shunts (Thomas & Hearst 1965,

Thomas 1970, Thornton 1991, He 1995, McGrain 2006). The FEM experiment made

use of both these methods, in the form of Rogowski coils (c.f.Section 6.3.1) to measure
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the beam current and the magnetic field of the wiggler, and current shunts (c.f. Section

6.3.2) to measure the magnetic field of the solenoid and again to measure the current

in the electron beam. Both Rogowski coils were formed around perspex cores, giving

responses similar to that of vacuum cored coils (as opposed to ferrite cored) and were

operated in self-integrating mode (discussed in Section 6.3.1).

6.3.1  Rogowski Coils.

Rogowski coils, or Rogowski belts as they are sometimes more properly regarded,

represent a very versatile form of magnetic probe. Qualitatively the action of the

Rogowski coil, in which ever form, can be considered by reference to the action of a

simple solenoid coil. In the solenoid an applied electromotive force (emf) induces the

flow of a current through the windings of the coil, which in turn produces a magnetic

field through the centre of the coil. If one considers the Rogowski coil as similar to a

solenoid coil, wound in a toroid (see Figure 6.12), then the passage of a time varying

current ( ) through the centre of the toroid can be seen to induce a magnetic field

within the centre of the coil. This essentially acts in a reversed manner from the

solenoid, with the magnetic field produced in the coil by  induces an emf in the coil

winding. Integration of the measured emf therefore allows for calculation of . 

Figure 6.12: Shows the schematic of a toroidal Rogowski coil, noting the relative

positioning of the coil ends. In cross-section a representation of the magnetic field lines

within the coil are shown, due to the passage of a current through the centre of the coil.
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Typically Rogowski coils have the benefit of being electrically isolated from the

device under test (DUT), allowing their position to be altered without disturbing the

electrical circuit. In terms of physical construction they can take many forms; they may

incorporate a magnetic core (He 1995, Jundong et al. 2006), a dielectric core (McGrain

2006) including vacuum or air, or may be wound around lengths of co-axial cable

(Murgatroyd et al. 1991) forming a fully flexible Rogowski “belt”. In all cases the

initial and final turns of the coil are placed closely together to allow for proper

measurement of the induced coil emf. 

To recover a measurement of  the emf measurement must be integrated over time.

This is achieved either through the use of an external integration circuit (a differential

Rogowski coil) or through configuring the coil as self-integrating. The circuit diagrams

for both forms are given in Figure 6.13a and 6.13b.

Figure 6.13: Shows the circuit diagrams for (a) differential and (b) self-integrating

Rogowski coils.

Considering the case of the differential Rogowski coil, the emf of the circuit ( )

may be regarded as the sum of the induced emf of the coil and the potential difference

across the integrating RC circuit:

6.12

where the first term relates to the induced coil emf and the latter terms related to the

integrator circuit (Benson 1996). 
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The DC resistance of the coil winding ( ) is taken to be negligible compared to the

resistance of the integrator circuit ( ) (Leonard 1965) and so is neglected.  refers to

the integrator capacitance exclusively while  corresponds to the inductance of the

Rogowski coil. The initial term in equation 6.12 may be neglected provided ,

where  is the highest significant frequency component of . In addition, if the pulse

duration ( ) is significantly less than the RC constant of the integrator ( ) the

induced current in the coil can be approximated as:

6.13

The voltage measured across  (see Figure6.13a) is then:

6.14

where  corresponds to the magnetic flux intercepted over an area  ( ).

 may be expressed in terms of the induced current  as (He 1995):

6.15

where  is the cross-sectional area of the coil,  is the number of turns in the coil and

 is the coil length. 

The measured voltage is therefore related to  by:

6.16

In cases where  may vary quickly with time the restriction  limits

diagnostic performance of differential Rogowski coils. An alternative configuration is

that of the self-integrating coil, which dispenses with the RC integrator circuit,

replacing it with a single resistor (see Figure 6.13b). Here the value of the coil

resistance ( ) is no longer negligible, with the combined resistance chosen such that
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In this case equation 6.12 reduces to:

6.17

where .

Noting the coil inductance as:

6.18

the self-integrating Rogowski coil can be seen to operate as a current transformer with

the measured voltage related to  as:

6.19

with the lower frequency limit for operation set by . This lower limit can

usually be taken to have a wavelength on the order of the total length of wire used to

wind the coil (Leonard 1965).

Both Rogowski coils used in the FEM experiment were self-integrating, wound on

dielectric (perspex) cores. This gave performance similar to that of vacuum cored coils

with the advantage of rigidity in the coil structure. 

6.3.1.1  The Electron Beam Rogowski Coil.

The coil used to measure the electron beam current formed an integral part of a DC

break between the anode of the gun-diode and the outer conductor of the drift tube,

with the coil situated within a perspex casing which formed the DC break. The coil

itself consisted of  turns of  diameter varnished copper wire, with a total wire

length of ~ .
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Figure 6.14: Shows a schematic of the electron beam Rogowski coil, noting its

position within the perspex DC break between the anode can of the gun-diode and the

outer conductor of the drift tube.

The resistor  was provided by a  matched load attached at the input to a

Tektronix TDS640A oscilloscope, connected to the probe via standard, BNC

terminated, co-axial cable. A typical pulse recorded using the Rogowski coil is given

in Figure 6.15. The charging voltage on the Marx-bank capacitors for the pulse shown

in Figure 6.15 was , with the output spark-gap pressure set at . It should be

noted that the Rogowski coil was only used in the  2D - 1D Bragg experiment.

In the  experiments an alternative, current shunt diagnostic was employed (c.f.

Section 6.3.2.2).
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Figure 6.15: Shows an electron-beam current pulse recorded using the integrated

Rogowski coil. 

The large ripple noted on the pulse was due to the presence of a large AC noise signal

incident on the probe. The relative magnitude of this signal was estimated by repeating

the experimental run as before, minus the magnetic focusing of the guide solenoid

field, essentially dumping the electron beam to the anode can wall. The trace produced

is given in Figure 6.16 along with the recovered beam current obtained after

subtraction of the background noise signal. 

Figure 6.16: Shows the AC signal generated by the electron beam impacting on the

anode can wall along with the electron-beam current measurement recovered after

removal of the noise signal.
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6.3.1.2  The Undulator Rogowski Coil.

The Rogowski coil, used to measure the current flow in the undulator circuit, was

positioned on the line leading from the undulator power supply (c.f. Section 5.4.1) to

the undulator coil itself. The coil consisted of ~  turns with a total wire length of

~ . Anodised copper wire was used to form the coil, with a mean wire diameter of

~ . As before the resistor  was provided by a  matched load connected at

the oscilloscope, in this case a Tektronix TDS640A. 

Figure 6.17: Shows a schematic of the Rogowski coil placed in the undulator circuit.

The coil was positioned, as indicated in Figure 5.19, on the line leading from the output

from the capacitors to the undulator coils.

Taking values for , calculated from the measured pulse amplitude on the DSO, the

magnetic field generated for a given charging voltage was compared. Plots of the

expected and experimentally determined responses are given in Figure 6.18.
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Figure 6.18: Shows the peak magnetic field, in the regular section of the undulator

coil, for a range of applied charging voltages.   

This shows that the undulator performed as expected, with shot to shot variation of

~ , corresponding to the margin for error in the diagnostic. 

6.3.2 Current Shunt Diagnostics.

Current shuts can reach sub-nanosecond rise-times with a high degree of sensitivity;

they are typically employed for sampling low frequency, high amplitude currents

showing a fast rise-time (Thornton 1975). The idealised current shunt acts as a pure

resistance of low value compared to that of the device under test (DUT)

( ). Shunts are integrated in series with the DUT with the voltage drop

across the shunt giving a direct correlation with the current flowing in the circuit

through Ohm’s law. 

As discussed in Section 6.2.1, no resistor shows a truly “pure” resistance, devoid of

self-capacitance ( ) or self-inductance ( ), with the effects of both becoming more

pronounced as the required response time of the diagnostic approaches the transit time

of the pulse through the shunt. 
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6.3.2.1  Current Shunt Operation

A current shunt can approach a purely resistive response provided  and  obey the

relation (Leonard 1965):

6.21

where  is the highest significant frequency component of the current

and  is the current rise-time (He 1995).

A potential error arises due to an increase in shunt resistance due to the skin effect. This

can be mitigated by ensuring the diameter of the shunt ( ) satisfies:

6.22

where  is the conductivity of the resistive material and  is the permeability. For

shunts consisting of multiple resistive components equation 6.22 relates to each

component individually. 

Under the assumption that all of the energy lost from the circuit to the shunt is absorbed

by the shunt material, in the limit where the current rise-time is much shorter than the

pulse duration ( ), the shunt undergoes a change in temperature corresponding to:

6.23

where  corresponds to the specific heat capacity of the shunt material and 

corresponds to the shunt mass. In order for the change in resistance, due to the change

in temperature, to be considered negligible:

6.24

where  is a co-efficient of the shunt’s resistivity.
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Current shunts should be located as close to the ground plane as possible, preferably

directly connected to ground, to minimise noise coupling on the diagnostic and to

ensure the measurement is not taken across a floating potential (He 1995).

Provided these criteria are met the current determined using Ohm’s law, calculated

using the measured potential difference across the resistive shunt, gives a good

approximation of the circuit current.

6.3.2.2  The Electron Beam Current-Shunt.

In the  2D - 1D FEM experiments, the Rogowski coil diagnostic was replaced with

a current shunt, constructed using twenty-four sets of four parallel  carbon

resistors, giving a total shunt resistance of .

Figure 6.19: Shows the current shunt constructed across the fixing plates of the

Rogowski coil, used to measure the beam current. 

A typical trace of the electron beam current, measured using the current shunt, is given

in Figure 6.20, corresponding to a charging voltage of  on the Marx-bank

capacitors with the output spark-gap pressure set at . The trace was recorded

using a Tektronix TDS6124C DSO.

3kA

10Ω

R 0.1Ω≈

Anode flange Drift-tube flange

BNC

Parallel

resistors

Insulated bolts
Rogowski coil

40kV

9Bar



170

Figure 6.20: Shows the electron beam current measured, using the current shunt

diagnostic, for a charging voltage of 40kV on the Marx-bank capacitors. 

In comparison with Figure 6.16, it should be noted that the increased beam current in

Figure 6.20 was due to the reduced anode radius (c.f. Section 5.3) in the electron gun

diode, which increased the space charge current limit. Another notable change is the

elongated discharge time. This can be attributed primarily to the low energy tail of the

electron beam, though some effects from stray capacitance may be inferred from the

decaying AC behaviour observable towards the end of the pulse. The reversal in the

sign of the current, between Figures 6.16 and 6.20, arises from a change in the polarity

of the co-axial cable connection to the diagnostics, it does not correspond to a change

in the direction of current flow.

6.3.2.3  The Solenoid Current-Shunt.

The current shunt used to monitor the current flow in the solenoid circuit was

constructed from  metal-film high precision  resistors, set in parallel in a

tightly packed toroid. The shunt resistance was checked using a Keithly 2700 multi-

meter, operating as a four-wire voltmeter, giving a reading of . This was

confirmed using a Thurlby-Thandar PL154 ,  supply, set at ~ . This

produced a current reading of  on the Thurlby, with a voltage-drop of 

270 3Ω

R 0.011Ω≈

15V 4A 0.1Vmax

341mA 3.53mV
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across the coil measured using the Keithly 2700 multi-meter, operating as a high

precision voltmeter (i.e. ). 

Figure 6.21: Shows the current shunt connected in-line with the solenoid coil,

positioned close to the ground plane of the circuit.

Taking that the peak  field for a long solenoid can be calculated as:

6.25

where the number of turns ,  and , the magnetic

field generated for a given charging voltage could be determined. A comparison

between the expected performance (given the circuit parameters) and the experimental

observed performance is given in Figure 6.22. Note that the diagnostic was taken to

have an error of ~  over the range shown, given the pulsed nature of the circuit and

the change of resistance with temperature of the shunt (~  for the metal-film

resistors used).
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Figure 6.22: Shows the peak B field generated in the solenoid coil, for charging

voltages on the solenoid capacitors in the range of 12.5 - 14.2kV. 

Looking at Figure 6.22 it can be seen that the expected  field, for a given charging

voltage, falls within the range of that measured using the current shunt. The deviation

in this result was non-critical, as the strength of the guiding field simply had to be

sufficient to constrain the electron beam and maintain the cyclotron frequency far from

the operating frequency of the FEM. 

Recalling that the guide solenoid and undulator systems were independently tunable,

resonance between the electron beam and the magneto-optical systems could be found

by setting a value for the charging voltage of the guide solenoid and tuning the

undulator charging voltage over a series of shots. An example of this is given in

Section 7.4.3.

B
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6.4  Microwave Pulse Power Measurement.

The microwave output from the FEM experiment was sampled using a set of two

broadband Agilent 8474E series ( ) co-axial microwave detectors, serial

numbers 01027 and 01030. The internal circuit of the detectors is shown in Figure 6.23

(Agilent Technologies 2002). 

Figure 6.23: Shows the circuit for the Agilent 8474 series co-axial microwave

detectors, noting the equivalent diode presented by the PDB GaAs detector crystal.

The equivalent diode of the microwave detector was formed by a planar doped barrier

(PDB) Gallium Arsenide (GaAs) semiconductor diode structure. These were quoted as

having superior temperature stability characteristics compared to either point-contact

or Schottky diode based detectors. (Agilent Technologies 2002). The detectors were

rated up to a maximum input of , though the frequency response rating of

 from  was quoted for  ( ).

The detectors crystals were calibrated, in two stages, at  intervals between

. In the first stage the voltage response of each crystal was measured for

input powers ranging from  to . The input signal was provided by a

HP 83752B synthesised sweeper set in CW mode, while the voltage response was

measured on a Keithly 2700 high precision multi-meter. In the second stage the actual

power output from the source was measured by connecting the source output to an

Anritsu CW MA2474D probe, connected to an Anritsu ML2496A high-frequency

( ) pulsed power meter. The calibrated responses for the 01027 crystal are

given in Figure 6.24 with the responses for the 01030 crystal given in Figure 6.25.
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Figure 6.24: Shows the calibration curves, for crystal detector 01027, for the

frequency range 35 - 40GHz. 

Figure 6.25: Shows the calibration curve for Crystal 01030, for the frequency range

35 - 40GHz.
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The output power from the FEM was derived by measuring the power at the receiving

horn of the crystal detector, taking into account any added attenuation used to bring the

sampled signal down to a safe level. This gave a measure of the power over the angle

subtended by the receiver horn, which could then be integrated over the measured

mode pattern to obtain the total output power. 

6.5  Spectral Measurement Using Cut-Off Filters.

The FEM experiment sampled the output microwave pulses using detector horns,

connected to lengths of standard circular and rectangular Ka-band ( )

hollow metallic waveguide, terminated in rectangular to co-axial adaptors, connected

to the microwave detector crystals discussed in Section 6.4. As a preliminary means of

determining spectral content one of waveguide lines incorporated an additional section

allowing the insertion of a length of tapered circular waveguide with a reduced mean

inner radius. The introduction of such a waveguide section acted as a high-pass filter,

attenuating those portions of the sampled microwave spectrum with a wavelength

greater than the cut-off wavelength of the filter. 

Figure 6.26: Shows the waveguide mount for the high-pass filters, along with a

selection of filter inserts. Note the conversion from rectangular to circular waveguide

performed at either side of the filter mount.
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The cut-off frequency of the filter inserts was determined using a HP8757D scalar

network analyser (SNA), with the calibration signal provided by an HP83752B

synthesized sweeper. The measured performance for each filter is given in Figure 6.27.

Figure 6.27: Shows the transmission profiles of the high-pass frequency cut-off filters

used in the FEM experiments.

6.6  Spectral Measurement using a Frequency Mixing Technique.

A more accurate method of determining the spectral content of a microwave pulse is

to measure the spectrum directly. This method is limited by the frequency bandwidth

of the oscilloscope used to record the measurement, determined by the scope’s

maximum temporal resolution. In other words, an oscilloscope can only resolve signals

with frequencies at or below the limit set by its minimum time step, giving:

6.25

For signals suspected of having spectral content in excess of this limit, a useful means

of recovering this information is to use a heterodyne technique. In this case the sampled

signal is “mixed” with a local oscillator (LO) signal, producing signals with

fmax 1 tmin⁄=
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frequencies corresponding to the sum and difference of the sampled and LO signals.

The “difference” signal, termed the intermediate frequency (IF) signal, is then

recorded on the oscilloscope, while the “sum” signal is filtered out by the mixer circuit.

The FEM experiment made use of a BMC-28B Farran-Technology Ka-band frequency

mixer ( ), consisting of a GaAs (Gallium Arsenide) Schottky diode

mixer crystal. The mixer was subject to a DC bias of ~  provided by a standard

,  battery. For calibration, the HP83752B synthesized sweeper, set in CW

mode, was used to provide the LO signal, with an Anritsu E8267D, ,

Vector Signal Generator (VSG) providing  long single frequency pulses

at the RF input, essentially mimicing the operation of the FEM. A circuit schematic is

given in Figure 6.28:

Figure 6.28: Shows the schematic of the test circuit used to determine the performance

of the Ka-band mixer crystal.

A Tektronix TDS6124C DSO was used to record the IF signal, both in the calibration

of the crystal and in the experiment. This was capable of detecting  pulses over

a bandwidth of  from an LO frequency of , however in the experiments

the effective bandwidth of the heterodyne measurement was reduced to 

from the LO frequency, due to aliasing in the Fourier transform algorithm beyond this

range. As the output from the FEM experiment was expected to be in the region of

, the LO frequencies used were typically in the range of .

26.4 40GHz–

9V

12V 7Ah

250kHz 44GHz–

100 300ns–

100ns

7GHz± 35GHz

2.5GHz±

37GHz 36 38GHz–
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6.7  Summary of Diagnostic Parameters

The following lists the main diagnostic parameters of the FEM experiment:

Parameter Value

Voltage Diagnostics:

Marx-Bank Voltage Probe: Single-stage, unshielded Resistive 

Divider

Conversion Factor: 226kV:1V on DSO

Transmission Line Probe: Single-stage Capacitive Divider

Conversion Factor: 100kV:1V

Shielded Diode-Voltage Probe: Two-stage, Shielded Resistive Divider

Conversion Factor: 293kV:1V on DSO

Unshielded Diode-Voltage Probe: Two-stage Unshielded Resistive 

Divider

Conversion Factor: 316kV:1V on DSO

Current Diagnostics:

Beam-Current Rogowski Coil: , perspex cored. 

Conversion Factor:

Beam-Current Current Shunt:

Conversion Factor:

Solenoid Current Current Shunt:

Conversion Factor

Undulator-Current Rogowski Coil: , perspex cored

Conversion Factor:

Microwave Power Diagnostics:

Detector Crystals: Agilent 8474E series ( )

nr 200turns=

Ipeak nr DSO reading× 50Ω( )⁄=

R 0.1Ω≅

I DSO reading R⁄≅

R 0.011Ω≅

I DSO reading R⁄≅

nr 280turns=

Ipeak nr DSO reading× 50Ω( )⁄=

0.01 50GHz–
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Microwave Spectral Content 

diagnostics:

High-Pass Cut-Off Filters: Filters for: , , 

, , , 

, .

Ka-Band Heterodyne Mixer Crystal: Farran-Technologies model BMC-28B

DC Bias: Provided by ,  battery with a 

 resistor in-line (+)

Operating range:  from LO frequency, within 

Ka-band ( )

Effective range in Experiment:  from LO frequency

Parameter Value

31.9GHz 33.4GHz

34.6GHz 35.8GHz 36.9GHz

37.9GHz 39.9GHz

12V 7Ah

5.6kΩ

7GHz±

26.4 40GHz–

2.5GHz±
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Chapter 7: Experimental Results of the 2D - 1D

Bragg Free Electron Maser
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7.1  Introduction.

The results of the 2D - 1D Bragg FEM experiments are presented, beginning with a

discussion of the triggered discharge circuit (c.f. Section 7.2) common to both the

 and  beam current experiments. This is followed by the results obtained

using the  EEE gun, as presented in Section 7.3. The accelerating potential

imposed across the gun electrodes was monitored using a shielded resistive divider

probe (c.f. Section 7.3.1). The resultant beam current was monitored using a Rogowski

coil, integrated with the DC break between the anode can and the drift-tube outer

conductor (c.f. Section 7.3.2). The output microwave spectral content was estimated

using a series of high-pass cut-off filters (c.f. Section 7.3.3), with the microwave power

measured using Agilent 8474E series ( ) co-axial microwave detectors

(c.f. Section 7.3.4).

The results from the 2D - 1D Bragg FEM, incorporating the reduced anode can

geometry EEE gun (c.f. Sections 4.2.1.2 & 5.3) are presented in Section 7.4. The

voltage diagnostics were expanded to include monitoring of the discharge from the

Marx-bank and the transmission line, in addition to the voltage applied across the diode

(c.f. Section 7.4.1). The beam current measurement was obtained using a current shunt

connected across the outer-conductor DC break (c.f. Section 7.4.2). The microwave

power output was determined as before using the Agilent 8474E crystal detectors (c.f.

Section 7.4.3), with the spectral content of the pulses examined more closely using a

heterodyne mixer crystal to measure the wave-form (c.f. Sections 7.4.3 & 7.4.3.1).

1.5kA 3kA

1.5kA

0.01 50GHz–
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7.2  The Triggered Discharge Circuit.

The guide solenoid and undulator were powered by single-shot capacitive discharge

power supplies, as opposed to running CW. This had an important consequence, in

regards to the operation of the FEM, as the electron beam, generated by the EEE gun,

must show a relatively small initial transverse velocity spread and must be capable of

transportation through the drift tube region without incidence on the drift tube walls.

The performance of the undulator and guide solenoid circuits were monitored using a

differentiating Rogowski coil (c.f. Section 6.3.1.2) and a current shunt (c.f. Section

6.3.2.3) respectively. 

The solenoid was triggered using a mercury filled ignitron switch, with the undulator

circuit triggered in a similar manner after a preset time delay. This allowed for

alignment of the undulator discharge with the peak magnetic field of the solenoid. The

Marx-bank discharge was time-correlated with the peaks of the undulator and solenoid

fields using the same delay circuitry, with the discharge itself instigated using a fast

thyratron switch. The evolution of the magnetic fields are shown in Figure 7.1, along

with a line denoting the triggering of the Marx-bank:

Figure 7.1: Shows the timing of the solenoid and undulator magnetic field profiles.

The vertical line denotes the timing of the Marx-bank discharge. Trace amplitudes

have been normalised and adjusted for clarity.

Undulator

Solenoid

Triggering of Marx-bank discharge
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As can be seen in Figure 7.1 the discharge time of the solenoid magnetic field is on the

order of milliseconds, with the undulator discharge on the order on tens of

microseconds. These are both substantially longer than the time scale of the diode

voltage pulse, which was on the order of hundreds of nanoseconds. While the magnetic

field profiles of the undulator and the guide solenoid show defined regions of rising

and decaying field strength, quasi-CW operation can be approached, provided the peak

discharges of the magnetic fields overlap with the Marx-bank discharge time and are

of substantially longer duration than the resultant electron beam. 

Looking more closely at the region of Figure 7.1 associated with the discharge of the

Marx-bank, the uniformity of the undulator and guide solenoid fields are clearly

observed:

Figure 7.2: Shows a close-up, of the region of Figure 7.1, corresponding to the

operational pulse from the FEM. The amplitudes of all traces are in arbitrary units for

ease of display. 

Neither magnetic field shows appreciable change for the duration of the FEM

experimental operation (from the triggered discharge of the Marx-bank through to the

termination of the electron beam current), confirming quasi-CW operation. The time

correlation, of the solenoid and undulator magnetic fields to the electron beam pulse,

was monitored for each experimental run throughout both stages of the experiment.
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7.3  2D - 1D Bragg FEM Experiment Utilising a 1.5kA Beam.

The following section describes the results of the 2D - 1D Bragg FEM experiment,

carried out using the EEE gun, described in Section 4.2.1.1, to generate a ~ ,

 electron beam. This was confined by an axial magnetic field of ~ , with

the undulator strength varied, until resonance was found in the region of

. The lasing cavity was defined by a  long,  period, 2D input

reflector and a  long,  period, 1D output reflector, with a separation of

.

7.3.1  Measurement of the Electron Accelerating Potential.

For the FEM experiment to operate efficiently a mono-energetic electron beam, with

low velocity spread, is required. The energy in the beam is set by the accelerating

potential across the electron gun-diode, provided by the shaped discharge of the

transmission line, with the total electron energy taken to be synonymous with the

applied diode voltage, i.e. an applied voltage of  corresponds to a total electron

energy of . 

In order for an appropriate electron beam to be generated the applied voltage pulse

should display a “flat-top”, with well defined rising and decaying edges. Noting the

KARAT simulations of the EEE gun diode (c.f. Section 4.2.1.1) and the explosive

nature of the EEE cathode, a portion of the electron’s energy lies in transverse, as

opposed to the desired axial, momentum. From the simulations, in conjunction with

equation 2.4, it was estimated that an accelerating voltage of ~  was required

to deliver sufficient axial momentum to properly couple the electrons to the undulator

field at ~  (the expected resonant frequency of the 2D - 1D Bragg cavity). 

The applied diode potential was determined by a combination of factors. The initial

discharge from the Marx-bank under-went pulse shaping via the action of the

transmission line and output spark-gap, with the breaking voltage of the spark-gap and

the value of the matching resistor network determining the discharge profile of the

voltage pulse; experimental investigation of this process is presented in Section 7.4.1.

1.5kA

450keV 0.6T

0.06 0.063T– 10cm 8mm

15cm 4mm

60cm

440kV

440keV

430keV

37.5GHz
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The voltages applied across the gun diode, for the  2D - 1D FEM experiments,

were measured using the shielded resistive divider probe described in Section 6.2.1.2: 

Figure 7.3: Shows a selection of voltage traces, measured across the gun diode, for

charging voltages on the Marx-bank capacitors of 40 - 44kV.

The extended decay exhibited by the voltage traces of Figure 7.3 shows the output

spark-gap matching resistors were configured to be slightly mismatched with the load

seen by the transmission line, leading to a diode voltage of ~  that of the discharge

voltage from the Marx-bank. For a perfectly matched load  of the Marx-bank

output voltage would have been applied across the electron gun, however a move to

such exact matching of the load to line impedance would have necessitated a marked

increase in the charging voltage on the Marx-capacitors to ~  in order to achieve

the required electron energy. This would result in increased electrical stress on the

insulating dielectric oil, whilst also necessitating increases in the pressure of the

Nitrogen gas used in the Marx-bank spark-gap column and the output spark-gap. 

While the mismatched load results in a stepped decay of the diode voltage, leading to

the creation of a lower energy “tail” forming at the end of the electron beam pulse, the

reduced electrical and mechanical stresses on the experimental apparatus were

preferable for proof of principle experiments.

1.5kA

2 3⁄

1 2⁄

60kV
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It can be readily seen that the profile of the voltage pulse remains constant regardless

of the initial charging voltage, with similar rise times noted and similar decay rates. For

a Marx-bank charging voltage of  the resultant voltage traces peak at

~ , corresponding to electron energies of~ , in the region required

for interaction with the undulator magnetic field as predicted by KARAT. The spread

in total electron energy of ~  can be considered acceptable, given the explosive

nature of the electron beam generation process (c.f. Section 5.3).

7.3.2  Measurement of the Electron Beam Current.

For the FEM experiment to generate microwave pulses of any notable magnitude the

current of the electron beam must be sufficiently above the start-up current for the

resonance of interest, this was estimated to be in the region of  for the cavity

configuration used. In reference to the simulations of the EEE gun, giving the

estimated gun perveance as being ~ , the measured diode potential of

~  was expected to generate beam currents in the region of .

Figure 7.4 show the current pulses, corresponding to the applied diode voltages shown

in Figure 7.3.

 

Figure 7.4: Shows the electron beam current traces corresponding to the applied diode

voltage traces shown in Figure 7.3. 

44kV

430kV 5%±( ) 430keV

10%

0.5kA

4.3 0.1±( )µP

430 450keV– 1.5kA
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Experimentally this current was measured using a self-integrating Rogowski coil,

permanently positioned inside a DC break between the anode-can and the outer

conductor of the drift-tube (c.f. Section 6.3.1.1). Again a high degree of reproducibility

can be seen in the pulse shapes between different shots, with varying electron energies

determining the magnitude of the beam current, as expected. From these the gun

perveance can be estimated to be ~ , agreeing well with the value

determined using KARAT given the explosive nature of the beam generation.

Figure 7.5: Shows the dependence of the electron beam current versus the applied

diode voltage. The error bars correspond to 6% of the measured value.

As Rogowski coils operate through magnetic induction of a secondary current,

proportional to the current passing axially through the centre of the coil torus, it can be

inferred that the transverse spread in particle energies of the physical electron beam is

on the order of that simulated using KARAT, indicating a negligible spread in the

initial transverse particle momentum.

4.6 0.3±( )µP
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7.3.3  Measurement of the Output Microwave Spectral Content.

Via the introduction of high-pass cut-off filters in-line with the microwave power

diagnostic (c.f. Section 6.5) it was possible to narrow down the operating frequency of

the FEM as shown in Figure 7.6. For the pulses shown the axial magnetic field strength

was ~ , with the undulator magnetic field being ~ . The accelerating

potential on the gun diode was kept in the range  with associated beam

currents of .

Figure 7.6: Shows normalised traces of the microwave pulses recorded using different

high-pass cut-off filters. 

From Figure 7.6 it can be seen that the majority of the energy in the microwave pulse

was concentrated in the band between , agreeing well with the expected

resonant frequency for the 2D - 1D Bragg cavity of . 

The main concentration of energy in the output spectra was attributed to the dominant

resonance of the 2D Bragg reflector, occurring between the fundamental TEM mode

of the co-axial drift-tube and the higher order TE24,2 mode present in the region of the

2D corrugation. The lower frequency portion of the pulse, shown to be attenuated

between the pulses measured using the  and  filters corresponds

well to the position of the  eigenmode predicted by analytical theory (c.f.

0.6T 0.06T

430 460kV–

1.4 1.7kA–

34.7 40GHz–

37.5GHz

33.3GHz 34.69GHz

m' 2–=
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Section 3.4) and found to correspond to a HE2,2 mode through numerical simulation

(c.f. Sections 4.3.2-4.3.3). 

Subtracting the trace obtained using the  filter from that obtained using the

 filter, it can be readily observed that the parasitic lower-frequency resonance

only shows an appreciable amplitude at the beginning and end of the pulse. In regards

to the growth seen at the beginning of the pulse, this indicates that both resonances are

initially excited within the cavity, with the desired resonance (with the TEM mode)

dominating after approximately :

Figure 7.7: Shows the relative magnitudes of the resonances attributed to the HE2,2

and TE24,2 resonances calculated using the difference between the two similar pulses

recorded using the 34.7GHz and 33.3GHz filters.

The growth of the parasitic resonance toward the end of the pulse may result from the

increased number of electrons decelerated electrons (lower energy) generated by the

interaction with the TEM resonance. In contrast the resonant transfer of energy from

the electron beam to the TEM mode can be seen to remain relatively constant in

magnitude throughout the pulse duration.

While this only serves as a rough guide to the spectral content of the FEM output

microwave pulses it does indicate the presence of a dominant resonance in the region

34.7GHz

33.3GHz

50ns
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of the expected resonant output frequency for the 2D - 1D Bragg lasing cavity. The

reduced efficiency of the spurious resonance may be due to its likely association with

a Lowbitron-like interaction. This may initially compete with the FEL instability

before being dominated by the more stable FEL beam-wave interaction. Towards the

end of the pulse, when the electron bunches are well established and the beam has

gained a significant  component, a Lowbitron-like interaction would see

preferential coupling, resulting in the later peak in the HE resonance.

7.3.4  Determination of the Output Power in the Microwave Pulses.

The function of the output horn of the FEM experiment was to produce a highly

directional, focused radiation pulse. As both the drift-tube and the horn itself are co-

axial this output radiation is confined by a slowly expanding cone:

Figure 7.8: Shows a picture of the output radiation impacting on a neon bulb panel.

The resultant pattern of lit bulbs shows the conical nature of the radiation pulse.

The output microwave cone subtended an angle of ~  with the centre of the horn over

an axial length of . Figure 7.8 shows the impact of this conical radiation pulse on

a neon bulb panel, with the “hole” in the centre of the radiation pattern clearly visible.

The horns used to pick up the output microwaves from the FEM and channel them to

the Agilent detector crystals only sample a portion of the total output microwave

power. In order to get a true representation of the microwave output it was necessary

v⊥

50

60cm
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to take measurements of the output at different polarisations and different angles from

the centre of the horn and integrated the power measured at the detectors over the

measured radiation pattern. The total radiated power ( ) conforms to the equation:

7.1

where  is the separation from the output horn to the detector horn,  is the

detected microwave power,  is the surface area of the horn aperture,

 is the angle of the measurement in radians,  and  is a weighting

factor dependant on the polarisation of the detector horn. This can be simplified as:

7.2

where . The  subscripts correspond to the two

transverse polarisations. The summation term corresponded to ~ .

Using the experimentally determined preferential values of  for the undulator

field and  for the guide solenoid field, the applied diode voltage was adjusted

until a maximum output-pulse amplitude was obtained. The corresponding pulse is

shown in Figure 7.9 plotted in terms of the total microwave output power.

Figure 7.9: Shows the maximum output power from the 2D - 1D FEM experiment,

expressed in terms of the total system power.
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This resulted in the measurement of a ~  long microwave pulse with a mean

power of ~ , giving an energy efficiency of ~ . The spectral content

was estimated as lying between .

7.4  Second Stage of the 2D - 1D Bragg FEM Experiment.

The second stage of the 2D - 1D Bragg FEM experiment involved the use of the EEE

gun, described in Section 4.2.1.2, to generate a ~ ,  electron beam,

confined by an axial magnetic field of ~ . The undulator strength was varied,

until resonance was found, in the region of . The lasing cavity was

altered slightly, with the addition of  period ( ) to the length of the input

mirror and the removal of  period ( ) from the output mirror. The input and

output corrugation amplitudes remained constant at  and 

respectively, with the reflector separation maintained at  as before.

7.4.1  Measurement of the Electron Accelerating Potential.

The inclusion of additional diagnostics, for the secondary experimental run, allowed

for monitoring of the electron accelerating potential at three key stages as it evolved

through the FEM power supply. A simple resistive divider probe monitored the

discharge voltage from the Marx-bank (c.f. Section 6.2.1.1) while the potential of the

transmission line was monitored using a capacitive divider probe located just before

the connection to the output spark-gap (c.f. Section 6.2.2). The shaped voltage pulse,

applied across the diode by the transmission line, was monitored using a purpose built

non-shielded resistive divider probe (c.f. Section 6.2.1.3), replacing the large shielded

probe used in the  FEM experiments. The traces recorded for a typical voltage

pulse, as it evolved through the power supply, are given in Figure 7.10 The charging

voltage on the Marx-bank capacitors was .

200ns

60MW 10%±( ) 10%
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3.4kA 450keV

0.62T

0.05 0.052T–

1 2⁄ 4mm

1 4mm

0.8mm± 0.5mm±

60cm

1.5kA

50kV



193

Figure 7.10: Shows (a) the output voltage from the Marx-bank (b) the voltage

discharge from the transmission line (c) the voltage applied to the gun diode for a

charging voltage of 50kV per capacitor on the Marx-bank.

The distortion seen in Figure 7.10a was most likely due to coupling between the

diagnostic and the noise signal of the closing spark-gaps of the Marx-bank. While this

prevents determination of the exact magnitude and shape of the discharge pulse from

the Marx-bank the diagnostic retains some merit (c.f. Appendix C). The most

important consequence of these additional voltage diagnostics was the ability to fully

monitor the evolution of the voltage pulse through the power supply, allowing for

optimisation of the applied diode pulse for a range of different charging voltages on the

Marx-bank capacitors. This is covered in detail in Appendix C.

(a) (b) (c)
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Figure 7.11: Shows the measured applied diode potentials for a set of four shots, with

50kV charging voltage on the Marx-bank capacitors and 11-11.2bar of pressure on the

output spark-gap.

Figure 7.11 gives a sample of traces for a set of pulses with near identical operating

parameters, the most notable variation being in the pressure of Nitrogen gas in the

output spark-gap of the transmission line. From this a high degree of reproducibility

between shots can be observed, with a slight increase in spark-gap pressure resulting

in higher peak and average pulse voltages.

By monitoring the power supply performance on a pulse by pulse basis and following

the procedures presented in Appendix C, the optimum diode voltage pulse, for a given

Marx charging voltage, could be obtained.
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7.4.2  Measurement of the Beam Current.

The electron beam current was measured using a current shunt, constructed across the

plates of the integrated Rogowski coil on the drift tube outer conductor (c.f. Section

6.3.2.2.). As in the initial experiments a fair degree of reproducibility between shots

was observed:

Figure 7.12: Shows the beam current traces, corresponding to the applied diode

voltage traces shown in Figure 7.11.

Comparing the traces shown in Figures 7.3.2 and 7.4.2, the introduction of the anode

insert, within the EEE gun diode, can be seen to have had the desired result of

increasing the electron beam current, though to a slightly lower value than that

predicted by KARAT (c.f. Section 4.2.1.2). This was attributed in part to an increased

spread in  of the beam electrons, resulting in a lower bulk  streaming velocity and

so in the measured current. In line with this, an increased spread in  could result in

beam scrapping; incidence of the beam electrons on the conductor surface. As will be

explained in Section 7.4.3 this was expected to occur, due to constraints placed on the

maximum achievable , and is likely to be the cause of the sustained high current

observed throughout the duration of the current pulse, as the current measurement

towards the end of the pulse would contain components from both the beam passing

v⊥ vz

v⊥

B0
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through the current shunt diagnostic and from currents on the surface of the conductor

surfaces caused by beam scrapping. It should be noted, that the change in sign of the

measured signal, was the result of a change in the polarity of the terminals of the

diagnostic between the two sets of experiments and does not indicate the presence of

an ion, as opposed to electron, beam. 

7.4.3  Measurement of the Output spectral Content and Pulse Power.

Through experimental investigation it was found that an applied diode voltage in the

range  was required to obtain proper coupling with the undulator field.

This increase from the ~ , of the  experiments, was attributed to a higher

degree of electron transverse velocity spread, due to the increased beam current of

~ .

Under such conditions the action of the guiding magnetic field, in constraining the

oscillating electrons, becomes of paramount importance in achieving efficient energy

conversion between the electrons and the EM wave. The elongation of the high current

region of the pulses shown in Figure 7.12 correspond to applied diode voltages in the

region of , indicated the requirement of a much stronger magnetic field for

operation at the increased voltage of . The maximum achievable guide

magnetic field was found to be ~ , limited by the maximum stable discharge of

the guide solenoid’s power supply (~  per capacitor). 

While sufficient to provide transport of the electron beam into the interaction region,

from the electron gun-diode (c.f. Section 4.2.1.2), this was expected to be insufficient

to confine the radial motion imparted to the beam electrons by the undulator, resulting

in a degree of incidence of the electron beam on the conductor surfaces (c.f. Section

4.3.3). With this in mind, the expected conversion efficiency (and so output power)

from the FEM experiment was expected to show decreased performance when

compared to the lower ( ) beam current experiments. Investigation of the spectral

content of the output microwave pulses was still however of interest, as even with a

marked reduction in conversion efficiency, the FEL instability should still be

500 550– kV

450kV 1.5kA

3kA

480kV

550kV

0.62T
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discernible as should excitement of parasitic modes within the cavity.Working with the

guide solenoid field set close to is maximum value, with the charging voltage on the

Marx-bank capacitors set at  (required for ~  on the diode) and the output

spark-gap pressure set at , the undulator field was varied from ,

with the spectral content of the resultant pulses determined through the use of a

heterodyne mixer crystal as opposed to the cut-off filter’s used in the initial

experiments. 

Determination of the microwave pulse power was done concurrently with the

measurement of the pulse spectrum, using the same Agilent 8474E detector crystals as

in the initial experiments, with the total system power determined as in Section 7.3.4. 

Figures 7.13 - 7.16 show the detected microwave pulses for undulator fields of ,

,  and , respectively, giving the pulses in terms of the total output

power. Figures 7.13 - 7.16 also show the “mixed” frequency signals and the recovered

pulse spectra.

55kV 550kV

13.5 0.1Bar± 0 0.06T–

0T

0.045T 0.05T 0.052T
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Figure 7.13: Shows the microwave pulse, mixer signal and resultant pulse spectrum

for the 2D - 1D FEM operating with a guide magnetic field of ~0.62T and an undulator

field of 0T. The applied diode voltage was ~550kV, with the output spark-gap pressure

set at ~13.5bar. The vertical bars denote the window used in the Fourier analysis of the

mixer signal.

It should be noted that the magnitude of the microwave pulse here lay close to the

lower limit of that measurable by the detector crystal, hence the near flat response seen

in Figure 7.13. The signal observed by the mixer crystal was subject to less attenuation,

allowing for proper mixing of the RF and LO signals. 
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Figure 7.14: Shows the microwave pulse, mixed signal and resultant pulse spectrum

for the 2D - 1D FEM operating with a guide magnetic field of ~0.62T and an undulator

field of ~0.045T. The applied diode voltage was ~550kV, with the output spark-gap

pressure set at ~13.6bar. The vertical bars denote the window used in the Fourier

analysis of the mixer signal.



200

Figure 7.15: Shows the microwave pulse, mixed signal and resultant pulse spectrum

for the 2D - 1D FEM operating with a guide magnetic field of ~0.62T and an undulator

field of ~0.05T. The applied diode voltage was ~550kV, with the output spark-gap

pressure set at ~13.5bar. The vertical bars denote the window used in the Fourier

analysis of the mixer signal.
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Figure 7.16:Shows the microwave pulse, mixed signal and resultant pulse spectrum

for the 2D - 1D FEM operating with a guide magnetic field of ~0.62T and an undulator

field of ~0.052T. The applied diode voltage was ~520kV, with the output spark-gap

pressure set at ~13.4bar. The vertical bars denote the window used in the Fourier

analysis of the mixer signal.
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Looking at Figures 7.13 - 7.16 it can be seen that excitement of the FEL instability

within the lasing cavity began for an undulator field strength of ~  and achieved

resonance at a field strength of ~ . For undulator field strengths in excess of

~  pulses such as those shown in Figure 7.13 were observed, indicating the

undulator had moved out of resonance with the electron beam. 

The maximum output power was measured to be in the region of ~ , as

expected due to the reduced achievable guiding magnetic field strength. However it

can be seen that, even with such a marked decrease in conversion efficiency, sufficient

resonant coupling occurred to generate well defined spikes in the spectral content. At

resonance (see Figures 7.15 & 7.16) the main resonant frequency, in the region of

 coincides well with the expected output frequency of  for the 2D

- 1D Bragg cavity, i.e. it corresponds to the resonant frequency of the 2D reflector for

proper TEM - TE24,2 operation. The spurious resonance at ~  shows some

interesting behaviour and will be discussed below. Due to limitations on the bandwidth

offered by the heterodyne measurement of the spectral content (c.f. Section 6.6), the

excitement of the HE2,2 eigenmode could not ascertained, however it’s existence is

expected and should lie in the region of  as in the  experiments. 

An interesting aspect to the lower resonance, at , is its presence when no

undulator field is applied (see Figure 7.13). Typically this would indicate the

excitement of a CARM interaction in the beam, however for a guide field strength of

~  and electron energies of , the cyclotron frequency is ~ . A

more likely explanation for the presence of this resonance can be seen in relation to the

theory presented in Section 3.3.1.2, where an overall deviation in the 1D periodicity of

just  would be sufficient to place the first lower eigenmode solution at the

frequency shown in Figure 7.13. If one assumes some degree of interaction between

the EM noise generated by the electron beam (due to the increased transverse energy

spread present in the higher current beam) and the lasing cavity, any enhanced region

of the spectrum which lies close to one of the eigenmode solutions should appear

defined above noise in the Fourier transform of the mixer signal. 

0.045T

0.052T

0.052T

5 6kW–

37.4GHz 37.5GHz

36.7GHz

34GHz 1.5kA

36.7GHz

0.62T 550keV 8.3GHz

0.06mm–



203

As this resonance can be seen in each of Figures 7.13 - 7.16, with its magnitude

growing as the undulator field strength is increased, this indicates further, that its

presence is not due to a cyclotron interaction, as such a beam - wave interaction would

not be enhanced by the lasing cavity and so would have a uniform (or degraded)

magnitude as the dominant FEL beam-wave interaction became resonant.

If one now recalls the Fourier transforms of the output from the MAGIC simulations

of the  FEM (see Figures 4.19 - 4.20), resonant frequencies at integer values of

 around the central Bragg resonance were observed, with those at 

showing the greatest magnitude. For the experimental cavity the lower of these

harmonics also falls in the region of the ~  resonance seen in Figures 7.13 -

7.16, which offers some explanation why the lower resonance is less well defined than

the main resonance, as the undulator field is increased; it may be the result of two or

more resonant processes operating at similar frequencies within the lasing cavity, such

as interaction with the parasitic  eigenmode of the 2D Bragg reflector (c.f.

Section 3.4).

7.4.3.1  Spectral Evolution in the Microwave Pulses

In addition to offering precise measurement of the overall spectral content of the EM

pulses, the use of a mixer crystal to resolve the wave-form of the microwave pulses,

also allows for the temporal evolution of the pulse’s spectral content to be analysed.

Focusing on the pulses shown in Figures 7.15 and 7.16, changes in the spectral content

were determined by reducing the analysis window to ~  and stepping through the

duration of the pulse, performing a Fourier analysis of the signal at each stage. 

Detailed analysis of the pulse shown in Figure 7.15 is given in Figure 7.17. Here

competition between the two resonant frequencies of ~  and  can be

seen to favour the lower frequency resonance for the majority of the pulse, with the

upper resonance only gaining dominance towards the end of the pulse, with the over-

all magnitude of both resonances summing to near equal magnitude (see Figure 7.15).

This indicates that, while an undulator field strength of  was sufficient to engage

1.5kA

0.3GHz± 0.6GHz±

36.7GHz

m' 1–=

50ns

36.7GHz 37.4GHz
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lasing in the 2D - 1D Bragg cavity, the intended, upper, cavity resonance was not

preferentially coupled to, with mode competition clearly evident across the pulse. 

Figure 7.17: Shows the temporal evolution of the spectral content in the pulse shown

in Figure 7.15. 
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Figure 7.18: Shows the temporal evolution of the spectral content of the pulse shown

in Figure 7.16.

Detailed analysis of the pulse shown in Figure 7.16 is given in Figure 7.18. Here the

undulator field was increased slightly to , with the resultant microwave pulse

showing a more defined shape of slightly shorter duration. It is clear, in this case, that

the higher frequency resonance dominates throughout the pulse. As in Figure 7.17 both

0.052T
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the upper and lower resonances are present, to some degree, at the beginning of the

pulse, however the upper resonance quickly shows preferential coupling with the

electron beam as its magnitude grows throughout the pulse, while the magnitude of the

lower resonance stays relatively constant. The slight reduction in the resonant

frequencies from  and  to  and  was a

consequence of the slight increase in the undulator field intensity, introducing a slight

decrease in the beam - wave resonant wave-number.

7.5  Discussion of Results

The power supply of the 2D - 1D Bragg FEM experiment was shown to operate in a

highly reproducible manner in both stages of the experiment, in terms of the capability

of generating a known response at the output of the transmission line, for a given

charging voltage on the Marx-bank capacitors. The Marx-bank and transmission-line

diagnostics were used to optimise voltage pulse applied across the electron gun-diode,

achieving an output power of  in the  experiments. Such

optimisation of the power supply, using these diagnostics, had the added advantage of

reducing the risks of reflected pulses from the transmission line damaging the Marx-

bank. 

In the  experiments, the Rogowski coil diagnostic used to measure the electron

beam current resulted in a relatively uniform value for the calculated gun perveance,

indicating both the validity of the diagnostic and the uniformity of the axial electron

energy across the beam (i.e. the measured current agrees well with that of the relatively

mono-energetic electron beam simulated using KARAT). In the  experiments an

insufficiently strong guiding magnetic field may have contributed to a distortion

between the expected beam current performance and that measured in the experiment.

The high current noted in what would correspond to the low energy tail of the

microwave pulse (compare Figures 7.3 & 7.4 with Figures 7.11 and 7.12) may result

from a sizable portion of the electron beam impacting on the outer drift tube wall,

causing an erroneous rise in the measured current. Should this prove to be the case, the

37.4GHz 36.7GHz 37.4GHz 36.6GHz

60MW 10%±( ) 1.5kA

1.5kA

3kA
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reduced beam current propagating through the drift tube may be the cause for the

reduced output power observed in the  experiments.

Experimentally this issue should be resolvable. The maximum magnetic field

obtainable from the guide solenoid was limited to ~  by the requirement to keep

the charging voltage on the capacitive power supply . This constraint was the

result of a “rise” observed in the ground plane when the solenoid circuit was

discharged, which was sufficient to trigger the Marx-bank trigger circuit, discharging

the Marx out-of-synch with the timing circuit and preventing proper operation of the

experiment. With suitable isolation between the two circuits the guide solenoid should

be able to operate up to ~  (Konoplev 2001), which may prove sufficient to

confine the higher current ( ) electron beam. 

Alternatively, the introduction of the anode reducing insert in the EEE gun may have

introduced instabilities in the electron beam, due to the increased risk of self-field

effects in what is essentially an increased density plasma. In this case the removal of

the reducing bull, coupled with the improved optimization techniques used on the

power supply, should result in the recovery of microwave output powers in excess of

. Improvement beyond the  output power of the  experiments

should be readily achievable in either case. 

In regards to the spectral content of the microwave pulses, it is reasonable to regard the

two resonances observed in the  experiments as being associated with the cavity

resonances generated by the TEM - TE24,2 ( ) and parasitic HE2,2 ( )

eigenmodes of the 2D Bragg reflector, for the upper and lower frequency resonance

respectively; the relative separation between the two resonances corresponds well with

the expected separation of  between these two potential resonances. 

Looking at the spectral content of the microwave pulses in the  experiments, the

proximity of the two resonant frequencies indicates that while the upper resonance at

~  is most likely due to the TEM-TE24,2 operation in the 2D reflector

(corresponding well with the estimated ), the lower resonance is most likely

3kA
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the result of emission from the first, lower, eigenmode solution of the 

eigenmode of the 2D Bragg reflector, coupled with some degree of excitation of the

parasitic  eigenmode of the reflector. The roots of this spurious resonance

may prove inconsequential in future work, as it can be seen in Figures 7.16 and 7.18

that the intended resonance at ~  can be preferentially coupled to the electron

beam with proper selection of the guide and undulator field strengths.

m' 0=

m' 1–=

37.5GHz
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Chapter 8: Conclusions and Future Work.
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8.1  Introduction.

The work presented in this thesis described the theoretical basis for, and numerical

modelling of, a high-power co-axial FEM experiment based on a novel 2D - 1D Bragg

lasing cavity. This was followed by the construction and experimental investigation of

such an FEM, utilising two different electron beam sources to drive the FEM

interaction. This chapter brings together the results of the theoretical (c.f. Section

8.1.1), numerical (c.f. Section 8.1.2) and experimental (c.f. Section 8.1.3)

investigations, drawing comparisons and conclusions between all three. The chapter

concludes with a look to future work, both for the 2D - 1D Bragg FEM experiment and

to work utilising the novel aspects offered by 2D Bragg structures in general (c.f.

Section 8.2).
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8.1.1 Model and Basic Equations.

The aim of the preceding work was to design, build and experimentally measure the

performance of a FEM based on a high-current electron beam and a 2D - 1D Bragg

lasing cavity. From previous work on purely 2D Bragg lasing cavities it was expected

that the fundamental resonant frequency of the 2D reflector would set the operating

frequency of the 2D - 1D Bragg lasing cavity, enabling the generation of

monochromatic, high power microwave pulses in the region of ~ .

From previous simulation work it was known that the existing electron gun geometry

could, potentially, produce beam currents in the region of ~  (Konoplev 2001)

with modifications to the cathode geometry, though only  had been achieved

(McGrain 2006). Beam currents of ~  from a modified EEE electron gun were

achieved experimentally for the first time in this thesis. Taking an initial estimate of

the beam density of ~ , in line with Konoplev (2001), and using equations

2.11 and 2.12 the electron source was expected to place the operation of the FEM in

the High-Gain Compton regime, allowing its description to follow similar theory to

that of the Low-Gain Compton regime. An increase in the beam current by roughly a

factor of two (~ ) was expected to result in a corresponding increase in the beam

current density to , assuming a similar degree of radial spread in the

beam ( ). This was considered sufficiently low to maintain the assumption of High-

Gain Compton operation, with any increased spread in  resulting in a decrease in the

density. 

For emission at the desired frequency of ~  ( ), from the

fundamental TEM mode of the co-axial drift-tube, a bulk streaming velocity of

 was estimated, corresponding to electron energies of ~ . This gave the

initial design parameters for the FEM current source; that it should provide a highly

mono-energetic (low spread in ) ~  electron beam with beam currents of

~  and ~  for the different stages of the 2D - 1D Bragg FEM experiment. 

Confinement of such high current electron beams, even with the reduced beam

densities offered by the over-sized nature of the FEM experiment, requires the

37.5GHz
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inclusion of an axial guiding magnetic field, to constrain the radial movement of the

electrons and so prevent incidence of the beam on the conductor surfaces. The

magnitude of this axial field was set such that both the resultant cyclotron and Weibel

frequencies were far removed from the operating FEM frequency, to reduce the

likelihood of competition between the respective beam instabilities. A guide magnetic

field strength of ~  was selected, as this provides sufficient constraints to the radial

electron motions while placing the spectral locations of the cyclotron and Weibel

instabilities as distinctly separate from the FEL instability. With  set at 

equation 2.7 was used to estimate the required undulator field strength to induce the

FEL instability in the region of ~ . This was determined to occur in the region

of , roughly  of the guiding magnetic field strength.

The existence of an additional beam instability, the Lowbitron instability, was

considered due to the similarity between the undulator employed here and that

theorised in the Lowbitron design. Interference from Lowbitron-driven emission in the

electron beam was considered to be unlikely due to the low spread expected in 

placing the Lowbitron frequency at the relatively high frequency range of

, well above the operational range of the FEM. 

In estimating the parameters for the lasing cavity the main points considered were:

• The mean dimensions of the co-axial drift-tube (waveguide)

• The corrugation parameters of the 1D and 2D Bragg reflectors (corrugation

amplitude and axial / azimuthal periodicity).

• The possible excitement of parasitic resonances due to the oversized nature of the

interaction region.

Using equations 3.16a-3.16b - 3.19 it was determined that an oversized co-axial

waveguide with mean radii of  and  (for the inner and outer

conductor surfaces respectively) would result in the positioning of the cut-off

frequency of the TE24,2 mode at ~ , with a variation of  in this value for

. This modal cut-off was important, as the operating frequency of the

FEM depends not only on proper matching of the electron beam-energy to the

0.6T

B0 0.6T

37.5GHz
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undulator field strength, but also to the correct matching of the operating TEM mode

( ) to a higher-order mode satisfying the Bragg resonance conditions within the

2D Bragg reflector. Given that the axial periodicity of the 2D Bragg reflector was to

be  and for proper operation  (where  is the azimuthal wave-

number) the 2D corrugation should have  when positioned on the inner

conductor surface, as would be the case in the physical experiment (if positioned on

the outer conductor surface, to maintain , ). 

For operation with the TEM mode this sets the required higher-order mode as requiring

, which is satisfied by the TE24,2 mode. As this mode coupling occurs at (or

near)  back-scattering would occur from the higher-order mode at ~  to the

incidence angle, allowing for the production of a phase-locked-loop across the azimuth

of the Bragg lattice, producing a phase-stable reflected wave back into the interaction

region. In the ideal case this should allow for enhancement of the phase stability of the

oscillator and so in the resultant microwave pulse. 

Due to the over-sized nature of the interaction region, the possible excitement of

nearby parasitic cavity resonances was also considered, specifically those generated by

the TEM-TM0,1 eigenmode of the 1D-Bragg reflector and the 

eigenmodes of the 2D Bragg reflector. It was considered likely that some degree of

parasitic excitation would occur, given the relatively high-order longitudinal mode of

the desired cavity resonance (~TEM150), however preferential coupling to the

operating mode should be achievable via proper matching of the magneto-optics to the

bulk streaming velocity of the electron beam (i.e. the mean electron energy).

8.1.2  Numerical Modelling of the FEM.

Numerical modelling of the 2D - 1D Bragg FEM experiment was used to design and

estimate the performance of two separate electron-gun geometries and a single 2D - 1D

Bragg lasing cavity. The gun geometries were modelled using the 2.5D PiC code

KARAT, while the interaction of the resultant electron beams with a 2D - 1D Bragg

lasing cavity were modelled using the fully 3D PiC code MAGIC. 
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Working from the analytic estimations, two electron gun geometries were modelled

with the aim of creating current sources of ~  and ~ , both with

, i.e. electron energies of  with a low velocity spread. A ~

beam was achieved by constructing a model of the existing electron gun and optimising

the cathode geometry. An axial magnetic field strength of  was determined to be

sufficient to constrain radial spread in the electron beam to ~  with no incidence

of the beam on either conductor surface of the drift-tube. For an applied diode potential

of  the resultant electron energies were  with  and

a diode perveance of .

Increasing the beam current by decreasing the axial separation of the diode electrodes

was discounted, as previous experimental experience had shown this to provide a

maximum achievable beam current of ~ , below the target value of .

Rather the radial separation between the cathode stalk and the anode-can was varied,

with the required performance observed with the anode-can radius reduced to 

(down from ). An axial guide magnetic field of  was again found to be

sufficient to confine the electron beam at a radial thickness of ~  with 

albeit at a slightly depressed potential of . The gun perveance was

estimated to have increased to ~ .

The 2D - 1D Bragg lasing cavity was then simulated using the FDTD PiC code

MAGIC, using identical cavity geometries for simulations of ~  and ~

driving currents in the FEM. Due to the constraints imposed by the available

computational hardware, at the time of this work, modelling of the full geometry of the

2D - 1D Bragg cavity was not achievable. However, under the assumption of azimuthal

symmetry in the resonant mode profiles, the ability of MAGIC to model a 3D cross-

section of a single azimuthal period’s width of the lasing cavity was exploited in order

to obtain estimates of the full cavity performance. Such quasi-2.5D simulations could

be completed in ~  days.

In the case of the  simulations a guide magnetic field strength of  was found

to be sufficient to prevent radial spread of the undulating electrons causing incidence
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on the conductor surfaces, without causing distortion to the undulations of the beam.

The insertion of an electron beam with energies of ~  through an undulator

field of  of  ( ) was found to result in the generation of a strong

resonance with the TEM100 cavity mode, as expected for the modelled cavity length of

 and an operating resonance of ~ . The output power was estimated to

be ~  with the desired operating mode, dominating the emission spectra. Some

excitation of the Weibel instability and an HE2,2 eigenmode were ascertained, but both

were at sufficiently low amplitudes to be considered as negligible when compared to

the operating mode. 

In the case of the ~  simulations  had to be increased to  to prevent impact

of the undulating electron beam on the conductor surfaces. Maintaining the 

relation of , best performance was observed for an electron beam with

energies of ~ , with an increase in the output power to ~ . There was

however an increase in the noise level, attributed in part to the excitement of a broad-

band Lowbitron-like interaction, resulting from the increased spread in  and to the

perturbed oscillations of the electron-beam due to the increased  field. Investigation

of the emission spectra show increased competition between the fundamental cavity

resonance at ~  and the parasitic HE2,2 mode, with both showing relatively

similar amplitudes.

Through the course of these numerical investigations it was ascertained that quasi-

single mode operation should be achievable at least in the case of the  FEM,

provided proper selection of operating parameters. The higher current FEM was

expected to show mode competition with the lower frequency HE2,2 eigenmode,

generated in the 2D Bragg reflector, however it was expected that some degree of

preferential coupling to the desired TEM operating mode should be achievable with

careful control of . Direct competition between the FEL, lowbitron, Weibel and

cyclotron instabilities was considered unlikely due to the relative spectral position of

each, though the generation of an increased level of noise in the ~  FEM was

expected. The modelled energy extraction efficiencies were ~  and ~  for the

 and  FEM’s respectively. The experimental values were expected to be
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approximately  of that simulated in each case, indicating efficiencies of

~  for the  FEM and ~  for the  FEM.

8.1.3 Experimental Results from the 2D - 1D Bragg FEM.

The 2D - 1D Bragg FEM experiments were carried out in two stages, the first using an

electron beam source which provided ~  and electron energies in the range

. The second current source provided ~  at electron energies of

. In both cases a high degree of reproducibility between shots was

observed, with variation being on the order of a few percent. 

The experimental lasing cavity parameters remained largely unchanged throughout the

course of 2D-1D Bragg experiments. The  lasing cavity was defined by a 

long (  period) 2D Bragg reflector and a  long (  period) 1D Bragg

reflector, separated by a  long section of smooth co-axial waveguide. For the

~  FEM the 1D mirror was shortened by  (1 period) while the 2D mirror

length was increased by  (  period), with the reflector separation (and over-

all system length) left unchanged. In all cases the corrugation amplitudes were

 for the 2D Bragg reflector and  for the 1D Bragg reflector.

For the ~  FEM, best performance was observed for an electron beam with

energies of ~  (and a beam current of ~ ), propagating in a combined

magnetic field of  and a . This generated a ~  long

microwave pulse at  corresponding to a conversion efficiency of

~ , or ~  of energy in the pulse. The spectral content was determined to lie

between  using high-pass cut-off filters. When this experiment was

repeated with a similar value electron beam, but with  and , it

was shown that the HE2,2 mode was excited, along with the fundamental operating

mode, resulting in a degree of mode competition at the beginning and end of the

microwave pulse. The fundamental operating mode was, however, seen to dominate

for the bulk duration of the pulse. 
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In the higher ~  experiments, proper confinement of the electron beam was

unattainable due to restrictions imposed on the operation of the guide-solenoid circuit,

limiting the maximum achievable magnetic field strength to ~ . This resulted in

a marked decrease in the conversion efficiency and so in the output microwave power,

as the majority of the beam was suspected to have impacted on the conductor surfaces. 

A sufficient portion remained, however, to excite the FEL instability within the

interaction region, as evidenced by the results obtained using the heterodyne

measurement technique (described in Section 6.6 and applied in Section 7.4.3). From

these the expected resonance at ~  was clearly observed, along with a

parasitic resonance at ~ , corresponding well with the position of the

 eigenmode of the 2D Bragg reflector and the first, lower pass-band, of the

1D Bragg reflector assuming a slight detuning of ~  (see Figure 3.11). This

would allow for the almost delta-function like spike seen in Figure 7.13 and the

obvious resonant behaviour seen in Figures 7.14-7.16. The fixed relative position of

this spike to the operating mode, as one varies the undulator field strength, lends

weight to the conclusion that the spikes are related and that the lower frequency spike

is not associated with the Weibel instability, as this would tune with  rather than .

Investigation of the influences of the undulator field, on the excitement of these two

modes, show that the fundamental mode can be preferentially coupled, with tight

control of the operating parameters. Best performance in this case was measured for

, ,  and . This produced a ~

microwave pulse at ~ .

While this is notably lower than the  measured for the  FEM

experiments, this should be viewed in context with the reduced magnetic field

confinement from that estimated as required for proper operation of the high-current

experiment. High power outputs of  are expected to be recovered in future

experiments, via increased isolation of the solenoid supply from the Marx-bank circuit,

allowing the full  of the guide field to be employed.
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8.2 Future work.

8.2.1 Future of the 2D - 1D Bragg FEM Experiment.

The future investigation of the 2D - 1D Bragg FEM experiment can be summarised in

the following stages:

Firstly the anode insert, used to boost the electron beam-current, should be removed

from the electron gun, allowing the recovery of high power operation within the limits

imposed by the maximum axial guide-field strength. The spectral content of these

higher power microwave pulses should then be investigated using the heterodyne

technique employed in the  FEM experiments, allowing characterization of the

spectral evolution of pulses with time. This should allow for tighter analysis of the

modal content and determination of the correct operational parameters to achieve

single mode operation and so higher conversion efficiencies, leading to increases in the

output power.

With this achieved the next step would be to modify the 2D - 1D Bragg lasing cavity

to more correctly approximate that modelled for the optimised case presented in

Section 4.3.2. Improved isolation of the guide solenoid and Marx-bank circuits would

be implemented at this stage. The  experiment would then be repeated with the

expectation of further improved conversion efficiencies ( ) and output

powers in excess of .

The anode insert would then be replaced and the  experiment repeated with the

new 2D - 1D Bragg cavity and a more appropriate axial magnetic field strength

( ). This should allow for sufficient beam confinement to generate high power

microwave pulses from the lasing cavity, though the conversion efficiency would be

likely to be on the order of . The 2D - 1D Bragg cavity would then be altered

to reflect that of an optimised cavity, modelled using the PiC code MAGIC. Initial

results from simulation show that a reduction of the reflector separation to 

should allow for the excitation of the FEL instability within the lasing cavity, with the
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spectral content of the output pulse shown to be monochromatic, albeit at a slightly

upshifted frequency of ~  (See Figure 8.1).

Figure 8.1:Shows a cross-section of a 2D - 1D Bragg lasing cavity with the reflector

separation reduced to 20cm. The Fourier transform of the output microwave pulse is

provided. 

The mechanism resulting in this spectral shift is under investigation, though resonance

with the 2D and 1D Bragg reflectors appears self-evident. The expected conversion

efficiency for the case shown is ~ %, with output powers expected in the region of

.

8.2.2 Further Applications for 2D Bragg Resonant Structures

In addition to their application as finite bandwidth reflectors, 2D Bragg structures may

also be used as resonant cavities in their own right, with the boundary conditions of the

cavity ascribed to either end of the corrugation. Such, relatively simple, structures are

easily scalable in size (and so frequency) allowing their application into the so-called

Terahertz-gap (~ ) where few sources of EM generation exist. Due to the

phase stability and mode selectivity, offered by 2D Bragg structures, even when over-

sized, high power ( ) EM sources should be achievable in the range of

, with  estimated at frequencies of ~ . 
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Appendix A: 1D Bragg Derivations 

A.1 Derivation of the Coupled Wave Equations for 1D Reflectors.

Starting from the base version of the Helmholtz equation for the  field in smooth co-

axial waveguide, assuming operation in the fundamental TEM mode:

A.1

where the wave impedance for the TEM mode is defined as:

A.2

where  and  are the unpertubed radii of the inner and outer conductors

respectively,  is the characteristic impedance of the line (  and  are

the voltage and current incident on the line respectively) and all other quantites have

their common meanings.

Equation A.2 becomes:

A.3

The introduction of a periodic corrugation on either the inner or outer conductor

surface in a co-axial waveguide can be represented by a sinusoidal perturbation in the

radius of the relevent conductor surface:

A.4

where  is the mean radius of the corrugation (equal to the radius of the smooth

waveguide) and  corresponds to the corrugation amplitude, with the sign for the

periodic term determining whether the corrugation begins at a maxima or a minima.

The relation between the sign of the periodic term and the resultant extrema will be

discussed later in the derivation.   is the number of variations across the azimuth and
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corresponds to the azimuthal wave-number expressed in radians ( ), while

 denotes the axial wave-number.

In the first instance, assuming a corrugation on the outer conductor surface, with  the

inital extrema of the corrugation chosen to be a maxima, equation A.4 corresponds to

a modification in the natural log term of equation A.3 as:

A.5

where  corresponds to the amplitude of the corrugation.

Equation A.5 expands as:

where .

giving equation A.3 as:

A.6

Noting the relationship given in equation A.2 this reduces to:

A.7

Using the Taylor expansion  where  implies:
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If we now go back to equation A.3 and consider the case of a corrugation presented on

the inner conductor surface, if the same choice of sign for the periodic term is made the

natural log term of equation A.3 would now be expressed as:

A.9

which expands as:

A.10

under the assumptions  and

,

equation A.3 therefore takes the form:

A.11

which through the same Taylor expansion yields:

A.12

Regarding equations A.8 and A.12 it can be seen that moving the corrugation from the

outer to the inner conductor surface introduces a switch in sign of the final term. In

other words the relation between the sign of the periodic term and the initial condition

of the corrugation inverts when moving between corrugations on the inner and outer
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conductor surfaces. For simplicity equations A.8 and A.12 may be expressed in a

generalised form, substituting , where in this case  corresponds to

an initial maxiam and  corresponds to an inital minima, for both conductors:

A.13

Considering the first term in equation A.13, the magnitude of the  field can be

regarded as:

A.14

where in this case the field profile is taken to be time invariant, allowing the common

 term to be suppressed. The  terms correspond to the amplitudes of incident

and scattered partial waves, travelling in the  and  directions respectively. 

corresponds to the range of axial wave-numbers of the incident and scattered waves,

respectively, which (assuming a lossless system) are related to the axial wave-number

of the corrugation by:

A.15

where  are the loss-less deviations of  from  and  corresponds to the

ohmic losses incurred along . Here the axial wave-numbers of the incident and

scattered waves are taken to be sinonymous, giving  and

A.16

where .

This implies:

A.17

where the higher order differential terms are disgarded  .
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Substitution into equation A.13  and dividing through by  yields:

A.18

Noting that for the 1D Bragg reflector , the cosine term reduces to ,

which can be expanded as: 

A.19

giving:

A.20

where  is the coupling coefficient:

A.21

Multiplying equation A.20 by :

A.22

and recalling the relation given in equation A.16, taking the Slow Varying Wave

Approximation (SVWA) of equation A.22 all terms varying faster than 

average to zero, leaving:

A.23a

A similar procedure can be carried out multiplying equation A.20 by , yielding:

A.23b
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Considering the amplitudes of the waves to be functions of the detuning ;

, , equations A.23a and A.23b

become:

A.24a

A.24b

These constitute the wave propagation equations for the incident (equation A.24a) and

scattered (equation A.24b) partial waves as they proagate through the corrugation.

A.2  Calculation of the Dispersion Curve .

The amplitudes of the partial waves can be considered as functions of the eigen-modes

of the perturbed waveguide:

A.25

where  is unknown and considered to be complex.

Substitution of equation A.25 into equations A.24a and A.24b yields:
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A.26b

which can be re-arranged to give:
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and

A.27b

This implies:

A.28

For a propagating wave  is imaginary, i.e.  where  is the perturbed

wave-number of the propagating wave. Substituting into equation A.28 and re-

arranging for :

A.29

Recalling equation A.16:
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This can be further simplifed as:

Taking into account the presence of successive spatial harmonics, this may be

substituted into the dispersion relation ( ) as:

A.32

where  is an integer representing the order of the spatial harmonic. 

A.3  Reflection Co-efficient in 1D Bragg Reflectors.

Considering the wave amplitudes of equations A.24a and A.24b to be functions of the

solutions of  (equation A.28), they take the form:

A.33a

A.33b

where the  and  subscripts denote the first and second roots of  respectively and

the amplitudes  are functions of the corrugation length ( ), independant of .

This implies:
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k'z
2 σz

2 iσzhz+ +[ ]

hz
2 1 κ2–( )

-------------------------------------------+±=

hz

2 1 κ2–( )
-----------------------

hz

2 1 k2–( )
---------------------- κ2

4 k'z
2 σz

2 iσzhz+ +[ ] 1 κ2–( )

hz
2

------------------------------------------------------------------+±

ω2 k2c2=

ω1 2,

hz

2
---- n

1

1 κ2–
-------------- 1 κ2

4 k'z
2 σz

2 iσzhz+ +[ ] 1 κ2–( )

hz
2

------------------------------------------------------------------+±+
 
 
 

c=

n 0 1 2 …, , ,=

Λ

A'+ z( ) a+1eΛz a+2e Λz–+=

A'- z( ) a-1eΛz a-2e Λz–+=

1 2 Λ

a  ± l1D z

dA'  ±

dz
------------ Λa 1± eΛz Λa 2± e Λz––=



250

Substitution into equations A.24a and A.24b gives:

A.35a

A.35b

which has solutions:

A.36a

A.36b

A.36c

A.36d

re-arranging and substituting for  in equation A.34 yields:

A.37a

A.37b

The boundary conditions for the incident  and scattered  waves correspond to

 and , which implies  and so:

A.38a

A.38b

Recalling equation A.28, equation A.38a can be simplified to:

A.39

eΛz a+1 Λ i δz iσz–( )+( ) iκkza-1+( ) e Λz– a+2 Λ i δz iσz–( )–( ) iκkza-2–( )=

eΛz a-1 Λ i δz σz–( )–( ) i– κkza+1( ) e Λz– a-2 Λ i δz iσz–( )+( ) iκkza+2+( )=

a+1 Λ i δz iσz–( )+( ) iκkza-1+ 0=

a+2 Λ i δz iσz–( )–( ) iκkza-2– 0=

a-1 Λ i δz iσz–( )–( ) iκkza+1– 0=

a-2 Λ i δz iσz–( )+( ) iκkza+2+ 0=

a-1,2

A'+
iκkz

Λ i δz iσz–( )+
-----------------------------------– a-1eΛz

iκkz

Λ i δz iσz–( )–
-----------------------------------a-2e Λz–+=

A'- a-1eΛz a-2e Λz–+=

A'+ A'-

A'+ z( )
z 0=

1= A'- z( )
z l1D=

0= a-1 a-2e 2Λl1D––=

A'+ a-2iκkz

eΛ z 2l1D–( )

Λ i δz iσz–( )+
-----------------------------------

e Λ– z

Λ i δz iσz–( )–
-----------------------------------+ 

 =

A'- a– -2 eΛ z 2l1D–( ) e Λz––( )=

A'+ ia-2

Λ i δz iσz–( )–( )eΛ z 2l1D–( ) Λ i δz iσz–( )+( )e Λz–+

κkz

--------------------------------------------------------------------------------------------------------------------------
 
 
 

=
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The reflection co-efficient can now be calculated as: 

A.40

multiplying through by :

which implies:

A.41

Noting  has its maximum value at :

A.42

The magnitude of the transmission co-efficient ( ) can be obtained via:

A.43

where  is the total system losses.

R z( )
A'- z( )

A'+ z( )
--------------- iκkz

eΛ z 2l1D–( ) e Λz––

Λ i δz iσz–( )–( )eΛ z 2l1D–( ) Λ i δz iσz–( )+( )e Λz–+
--------------------------------------------------------------------------------------------------------------------------
 
 
 

= =

eΛl1D eΛl1D⁄

R z( ) iκkz

eΛ z l1D–( ) e Λ– z l1D–( )–

Λ i δz iσz–( )–( )eΛ z l1D–( ) Λ i δz iσz–( )+( )e Λ z l1D–( )–+
-------------------------------------------------------------------------------------------------------------------------------------
 
 
 

iκkz

eΛ z L1D–( ) e Λ– z L1D–( )–

Λ eΛ z l1D–( ) e Λ z l1D–( )–+( ) i δz iσz–( ) eΛ z l1D–( ) e Λ z l1D–( )––( )–
-----------------------------------------------------------------------------------------------------------------------------------------------------
 
 
 

=

=

R z( ) iκkz

Λ z l1D–( )( )sinh

Λ Λ z l1D–( )( )cosh i δz iσz–( ) Λ z l1D–( )( )sinh–
-----------------------------------------------------------------------------------------------------------------------=

R z( ) z 0=

R z( )
z 0=

iκkz

Λ Λl1D( )coth i δz iσz–( )–
----------------------------------------------------------------=

T z( )

T 2 1 R 2– Ω 2–=

Ω
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Appendix B: 2D Bragg Derivations

B.1 Derivation of the Coupled Wave Equations for 2D Reflectors

A 2D Bragg reflector, formed by a corrugation on either surface of a co-axial

waveguide, can be described in the quasi-cartesian co-ordinates ( ) by:

B.1

where  is the mean radius of the conductor suface,  is the corrugation amplitude

and  are the azimuthal and axial wave-numbers of the corrugation respectively.

The azimuthal period is taken along the conductor surface ( ) with a

periodicity , where  is the number of azimuthal variations, giving

.

In terms of resonance between the structure and an incident EM field, it should be

noted that the radial wave-number of the Bragg is undefined here, i.e. , as

. With this in mind one makes the assumption:

B.2

where  is the combined transverse Bragg vector. 

As in the 1D Bragg reflector, the corrugation induces a perturbation in the natural log

term of the Helmholtz equation, giving it the form:

B.3

where  and  are the radii of the unperturbed outer and inner conductor sufaces

respectively.  is the ratio of the deviation in the radius of the conductor

surface to the mean radius, where the sign of  determines the initial extrema of the

corrugation.

r s z, ,

r s z,( ) r0 2r1 hss( )cos hzz( )cos+=

r0 r1

hs z,

s θr0=

ds 2πr0( ) M⁄= M

hs M r0⁄=

hr 0=

dr ∞=

hτ hs
2 hr

2+ hs= =

hτ

∇2E
ω2µ2

4π2Z0
2

---------------
b0

a0

----- 1 2χ hττ( )cos hzz( )cos+( ) 
 Eln2+ 0=

b0 a0

χ r1 r0⁄±=

χ
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The natural log term is expanded as in Section A.1, giving equation B.3 the form:

B.4

where the magnitude of the  field is composed of the parital waves:

B.5

where  denotes the transverse wave-vector, as the cut-off frequency in co-axial

waveguide depends on both  and . The subscripts  denote the right and left

hand polarisations of the partial waves that make up the linearly polarised  and 

modes.

From this we set the wave-vector ( ) in equation B.4 to be:

B.6

The  term in equation B.4 expands as:

B.7

∇2E k2E
4k2χ

b0 a0⁄( )ln
------------------------- hττ( )cos hzz( )cos E+ + 0=

E

E z τ,( ) A+e ikzAz– A-e
ikzAz+( )e ikcAτ± B+e ikzBz– B-e

ikzBz+( )e ikcBτ±+=

 
A+Re ikcAτ– A+LeikcAτ+( )e ikzAz– A-Re ikcAτ– A-LeikcAτ+( )eikzAz+

 B+Re ikcB– τ B+LeikcBτ+( )e ikzBz– B-Re ikcBτ– B-LeikcBτ+( )eikzBz+ +
=

τ

r θ R L,

A  ± B  ±

k

k kz
2 kc

2+ kzA
2 kcA

2+ kzB
2 kcB

2+≅= =

4k2χ

b0 a0⁄( )ln
------------------------- hττ( )cos hzz( )cos E

k2χ

b0 a0⁄( )ln
-------------------------

A+R e i kcA hτ–( )τ– e i kcA hτ+( )τ–+( ) e i kzA hz–( )z– e i kzA hz+( )z–+( )

 A+L ei kcA hτ+( )τ ei kcA hτ–( )τ+( ) e i kzA hz–( )z– e i kzA hz+( )z–+( )+

 A+ -R e i kcA hτ–( )τ– e i kcA hτ+( )τ–+( ) ei kzA hz+( )z ei kzA hz–( )z+( )

 A-L ei kcA hτ+( )τ ei kcA hτ–( )τ+( ) ei kzA hz+( )z ei kzA hz–( )z+( )+

 B+R e i kcB hτ–( )– τ e i kcB hτ+( )τ–+( ) e i kzB hz–( )z– e i kzB hz+( )z–+( )+

 B+L ei kcB hτ+( )τ ei kcB hτ–( )τ+( ) e i kzB hz–( )z– e i kzB hz+( )z–+( )+

 B R– e i kcB hτ–( )– τ e i kcB hτ+( )τ–+( ) ei kzB hz+( )z ei kzB hz–( )z+( )+

 B L– ei kcB hτ+( )τ ei kcB hτ–( )τ+( ) ei kzB hz+( )z ei kzB hz–( )z+( )+
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while the  term expands as:

B.8

∇2E
∂2E

z2∂
---------

∂2E

τ2∂
---------+=

∂2E

z2∂
---------

kzA
2 A+Re ikcAτ– A+LeikcAτ+( )e ikzAz– A R– e ikcAτ– A L– eikcAτ+( )eikzAz+[ ]–

kzB
2 B+Re ikcB– τ B+LeikcBτ+( )e ikzBz– B R– e ikcBτ– B L– eikcBτ+( )eikzBz+[ ]–

2ikzA

A∂ +R

z∂
------------e ikcAτ–

A∂ +L

z∂
------------eikcAτ+ 

  e ikzAz––

 2ikzA

A∂ R–

z∂
------------e ikcAτ–

A∂ L–

z∂
------------eikcAτ+ 

  eikzAz+

2ikzB

B∂ +R

z∂
------------e ikcB– τ

B+L∂

z∂
------------eikcBτ+ 

 – e ikzBz–

 2ikzB

B∂ R–

z∂
------------e ikcBτ–

B∂ L–

z∂
------------eikcBτ+ 

  eikzBz+

 
∂2A+R

z2∂
---------------e ikcAτ–

∂2A+L

z2∂
---------------eikcAτ+ 

  e ikzAz–+

 
∂2A R–

z2∂
---------------e ikcAτ–

∂2A L–

z2∂
--------------eikcAτ+ 

  eikzAz+

 
∂2B+R

z2∂
---------------e ikcBτ–

∂2B+L

z2∂
---------------eikcBτ+ 

 + e ikzBz–

 
∂2B R–

z2∂
---------------e ikcBτ–

∂2B L–

z2∂
--------------eikcBτ+ 

  eikzBz+

=
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and:

B.9

which, taking:

B.10a

with:

B.10b

and

B.10c

∂2E

τ2∂
---------

kcA
2 A+Re ikcAτ– A+LeikcAτ+( )e ikzAz– A-Re ikcAτ– A-LeikcAτ+( )eikzAz+[ ]–

kcB
2 B+Re ikcB– τ B+LeikcBτ+( )e ikzBz– B-Re ikcBτ– B-LeikcBτ+( )eikzBz+[ ]–

2ikcA

A∂ +R

τ∂
------------e ikcAτ–

A∂ +L

τ∂
------------eikcAτ– 

 – e ikzAz–

2ikcA

A∂ -R

τ∂
-----------e ikcAτ–

A∂ -L

τ∂
-----------eikcAτ– 

 – eikzAz

2ikcB

B∂ +R

τ∂
------------e ikcB– τ

B+L∂

τ∂
------------eikcBτ– 

 – e ikzBz–

2ikcB

B∂ -R

τ∂
-----------e ikcBτ–

B∂ -L

τ∂
-----------eikcBτ– 

 – eikzBz

 
∂2A+R

τ2∂
---------------e ikcAτ–

∂2A+L

τ2∂
---------------eikcAτ+ 

  e ikzAz–+

 
∂2A R–

τ2∂
---------------e ikcAτ–

∂2A L–

τ2∂
--------------eikcAτ+ 

  eikzAz+

 
∂2B+R

τ2∂
---------------e ikcBτ–

∂2B+L

τ2∂
---------------eikcBτ+ 

 + e ikzBz–

 
∂2B R–

τ2∂
---------------e ikcBτ–

∂2B L–

τ2∂
--------------eikcBτ+ 

  eikzBz+

=

kzA
2 kcA

2+( ) A+R,Le ikcAτ+− e ikzAz– A R,L– e ikcAτ+− eikzAz+[ ]

 kzB
2 kcB

2+( ) B+R,Le ikcB+− τe ikzBz– B R,L– e ikcBτ+− eikzBz+[ ]+ 
 
 

– k2E–=

2ikzA

A+R,L∂

z∂
----------------e ikzAz–

A R,L–∂

z∂
----------------eikzAz+ 

  ∂2A+R,L

z2∂
-------------------e ikzAz–

∂2A R,L–

z2∂
-------------------eikzAz+ 

 »

2ikcB

B+R,L∂

τ∂
----------------e ikzBz–

B R,L–∂

τ∂
----------------eikzBz– 

  ∂2B+R,L

τ2∂
-------------------e ikzBz–

∂2B R,L–

τ2∂
-------------------eikzBz+ 

 »
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gives  as:

B.11

Here the remaining second order terms account for diffractive effects between the

longitudinaly propagating  and close to cut-off  partial waves. 

∇2E

∇2E

k2E–

2i
A∂ +R

z∂
------------kzA

A∂ +R

τ∂
------------kcA+ 

  e ikcAτ–
A∂ +L

z∂
------------kzA

A∂ +L

τ∂
------------kcA– 

  eikcAτ+ e ikzAz––

 2i
A∂ R–

z∂
------------kzA

A∂ R–

τ∂
------------kcA– 

  e ikcAτ–
A∂ L–

z∂
------------kzA

A∂ L–

τ∂
------------kcA+ 

  eikcAτ+ eikzAz+

2i
B∂ +R

z∂
------------kzB

B∂ +R

τ∂
------------kcB+ 

  e ikcB– τ
B+L∂

z∂
------------kzB

B+L∂

τ∂
------------kcB– 

  eikcBτ+– e ikzBz–

 2i
B∂ R–

z∂
------------kzB

B∂ R–

τ∂
------------kcB– 

  e ikcBτ–
B∂ L–

z∂
------------kzB

B∂ L–

z∂
------------kcB+ 

  eikcBτ+ eikzBz+

 
∂2A+R

τ2∂
---------------e ikcAτ–

∂2A+L

τ2∂
---------------eikcAτ+ 

  e ikzAz–+

 
∂2A R–

τ2∂
---------------e ikcAτ–

∂2A L–

τ2∂
--------------eikcAτ+ 

  eikzAz+

 
∂2B+R

z2∂
---------------e ikcBτ–

∂2B+L

z2∂
---------------eikcBτ+ 

 + e ikzBz–

 
∂2B R–

z2∂
---------------e ikcBτ–

∂2B L–

z2∂
--------------eikcBτ+ 

  eikzBz+

=

A  ± B  ±
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Substituting equations B.11 & B.7 into equation B.4 gives the Helmholtz equation the

form:

B.12

2i
A∂ +R

z∂
------------kzA

A∂ +R

τ∂
------------kcA+ 

  e ikcAτ–
A∂ +L

z∂
------------kzA

A∂ +L

τ∂
------------kcA– 

  eikcAτ+ e ikzAz––

 2i
A∂ R–

z∂
------------kzA

A∂ R–

τ∂
------------kcA– 

  e ikcAτ–
A∂ L–

z∂
------------kzA

A∂ L–

τ∂
------------kcA+ 

  eikcAτ+ eikzAz+

2i
B∂ +R

z∂
------------kzB

B∂ +R

τ∂
------------kcB+ 

  e ikcB– τ
B+L∂

z∂
------------kzB

B+L∂

τ∂
------------kcB– 

  eikcBτ+– e ikzBz–

 2i
B∂ R–

z∂
------------kzB

B∂ R–

τ∂
------------kcB– 

  e ikcBτ–
B∂ L–

z∂
------------kzB

B∂ L–

z∂
------------kcB+ 

  eikcBτ+ eikzBz+

 
∂2A+R

τ2∂
---------------e ikcAτ–

∂2A+L

τ2∂
---------------eikcAτ+ 

  e ikzAz–+

 
∂2A R–

τ2∂
---------------e ikcAτ–

∂2A L–

τ2∂
--------------eikcAτ+ 

  eikzAz+

 
∂2B+R

z2∂
---------------e ikcBτ–

∂2B+L

z2∂
---------------eikcBτ+ 

 + e ikzBz–

 
∂2B R–

z2∂
---------------e ikcBτ–

∂2B L–

z2∂
--------------eikcBτ+ 

  eikzBz+

 
k2χ

b0 a0⁄( )ln
-------------------------

A+R e i kcA hτ–( )τ– e i kcA hτ+( )τ–+( ) e i kzA hz–( )z– e i kzA hz+( )z–+( )

 A+L ei kcA hτ+( )τ ei kcA hτ–( )τ+( ) e i kzA hz–( )z– e i kzA hz+( )z–+( )+

 A+ -R e i kcA hτ–( )τ– e i kcA hτ+( )τ–+( ) ei kzA hz+( )z ei kzA hz–( )z+( )

 A-L ei kcA hτ+( )τ ei kcA hτ–( )τ+( ) ei kzA hz+( )z ei kzA hz–( )z+( )+

 B+R e i kcB hτ–( )– τ e i kcB hτ+( )τ–+( ) e i kzB hz–( )z– e i kzB hz+( )z–+( )+

 B+L ei kcB hτ+( )τ ei kcB hτ–( )τ+( ) e i kzB hz–( )z– e i kzB hz+( )z–+( )+

 B R– e i kcB hτ–( )– τ e i kcB hτ+( )τ–+( ) ei kzB hz+( )z ei kzB hz–( )z+( )+

 B L– ei kcB hτ+( )τ ei kcB hτ–( )τ+( ) ei kzB hz+( )z ei kzB hz–( )z+( )+

+ 0=
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If we now multiply equation B.12 by :

B.13

ei kzAz kcAτ+( )

2i
A∂ +R

z∂
------------kzA

A∂ +R

τ∂
------------kcA+ 

  A∂ +L

z∂
------------kzA

A∂ +L

τ∂
------------kcA– 

  e2ikcAτ+–

 2i
A∂ R–

z∂
------------kzA

A∂ R–

τ∂
------------kcA– 

  A∂ L–

z∂
------------kzA

A∂ L–

τ∂
------------kcA+ 

  e2ikcAτ+ e2ikzAz+

2i

B∂ +R

z∂
------------kzB

B∂ +R

τ∂
------------kcB+ 

  ei kcA kcB–( )τ

 
B+L∂

z∂
------------kzB

B+L∂

τ∂
------------kcB– 

  e
i kcA k+ cB( )τ

+

– ei kzA kzB–( )z

 2i

B∂ R–

z∂
------------kzB

B∂ R–

τ∂
------------kcB– 

  ei kcA kcB–( )τ

 
B∂ L–

z∂
------------kzB

B∂ L–

z∂
------------kcB+ 

  e
i kcA k+ cB( )τ

+

ei kzA kzB+( )z+

 
∂2A+R

τ2∂
---------------

∂2A+L

τ2∂
---------------e2ikcAτ+ 

  ∂2A R–

τ2∂
---------------

∂2A L–

τ2∂
--------------e2ikcAτ+ 

  e2ikzAz+ +

 
∂2B+R

z2∂
---------------ei kcA kcB–( )τ

∂2B+L

z2∂
---------------e

i kcA k+ cB( )τ
+ 

 + ei kzA kzB–( )z

 
∂2B R–

z2∂
---------------ei kcA kcB–( )τ

∂2B L–

z2∂
--------------e

i kcA k+
cB

( )τ
+ 

  ei kzA kzB+( )z+

 
k2χ

b0 a0⁄( )ln
-------------------------  ×+

 

A+R eihττ e ihττ–+( ) eihzz e ihzz–+( )

 A+L ei 2kcA hτ+( )τ ei 2kcA hτ–( )τ+( ) eihzz e ihzz–+( )+

 A+ R– eihττ e ihττ–+( ) ei 2kzA hz+( )z ei 2kzA hz–( )z+( )

 A L– ei 2kcA hτ+( )τ ei 2kcA hτ–( )τ+( ) ei 2kzA hz+( )z ei 2kzA hz–( )z+( )+

 B+R ei kcA kcB– hτ+( )τ ei kcA kcB– hτ–( )τ+( ) ei kzA kzB– hz+( )z ei kzA kzB– hz–( )z+( )+

 B+L e
i kcA k+

cB
hτ+( )τ

e
i kcA k+

cB
hτ–( )τ

+( ) ei kzA kzB– hz+( )z ei kzA kzB– hz–( )z+( )+

 B R– ei kcA kcB– hτ+( )τ ei kcA kcB– hτ–( )τ+( ) e
i kzA k+ zB hz+( )z

e
i kzA k+ zB hz–( )z

+( )+

 B L– e
i kcA k+ cB hτ+( )τ

e
i kcA k+ cB hτ–( )τ

+( ) e
i kzA k+ zB hz+( )z

e
i kzA k+ zB hz–( )z

+( )+

×

 0=
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and consider the deviation between  and  to be: 

B.14

where  is the ohmic losses along the  co-ordinate, and  is the loss-less

detuning, substituting for  and taking the slow varying wave approximation, all

terms in equation B.13 varying faster than  average to zero,

leaving:

B.15a

Here it should be noted  the subscripts mearly

denote how the magnitude of the detunings were arrived at for a given coupling

between partial waves, i.e.  , . The order of A and

B is largely arbitrary but has been chosen to reflect the common assumptions

, .

Following the same procedure, multiplying equation B.12 by, initially, ,

then , , , ,  and

, leads to the following:

B.15b

B.15c

hi ki

kiA B, kiB A,±( ) hi–[ ] iσi– δ i± iσi–=

σi i'th δi

δi iσi–

e i δ z± iσz–( )z± e i δ τ± iστ–( )τ±

2i kzA

A∂ +R

z∂
------------ kcA

A∂ +R

τ∂
------------+–

∂2A+R

τ2∂
---------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

B+Re i– δ τBA– τ B+Leiδ+ττ+( )eiδ-zABz

 B R– e i– δ τBA– τ B L– eiδ+ττ+( )eiδ+zz+
+

0=

δ τBA– δ– τAB–= δ zAB–, δ– zBA–=

δ iAB– kiA kiB–= δ iBA– kiB kiA–=

kcA kcB« kzA kzB»

ei kzAz kcAτ–( )

e i kzAz kcAτ+( )– e i kzAz kcAτ–( )– ei kcBτ kzBz+( ) ei kcBτ kzBz–( ) e i– kcBτ kzBz+( )

e i– kcBτ kzBz–( )

2i kzA

A∂ +L

z∂
------------ kcA

A∂ +L

τ∂
------------––

∂2A+L

τ2∂
---------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

B+Re iδ+τ– τ B+Leiδ τBA– τ+( )eiδ zAB– z

 B R– e iδ+τ– τ B L– eiδ τBA– τ+( )eiδ+zz+
+

0=

2i kzA

A∂ -L

z∂
----------- kcA

A∂ -L

τ∂
-----------+

∂2A L–

τ2∂
--------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

B+Re iδ+τ– τ B+Leiδ τBA– τ+( )e iδ+zz–

 B R– e iδ+τ– τ B L– eiδ τBA– τ+( )e i– δ zAB– z+
+

0=
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B.15d

B.15e

B.15f

B.15g

B.15h

Accounting for the ohmic losses  along a given coordinate  (where  does not

have to equal ) and simplifying , the previous set of

equations can be expressed as:

B.16a

2i kzA

A∂ -R

z∂
----------- kcA

A∂ -R

τ∂
-----------–

∂2A R–

τ2∂
---------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

B+Re i– δ τBA– τ B+Leiδ+ττ+( )e iδ+zz–

 B R– e i– δ τBA– τ B L– eiδ+ττ+( )e iδ zAB– z–+
+

0=

2i kzB

B∂ +R

z∂
------------ kcB

B∂ +R

τ∂
------------+–

∂2B+R

z2∂
---------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

A+Reiδ τBA– τ A+Leiδ+ττ+( )e iδ zAB– z–

 A-Reiδ τBA– τ A-Leiδ+ττ+( )+ eiδ+zz
+

0=

2i kzB

B∂ -R

z∂
----------- kcB

B∂ -R

τ∂
-----------–

∂2B R–

z2∂
---------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

A+Reiδ τBA– τ A+Leiδ+ττ+( )e iδ+zz–

 A-Reiδ τBA– τ A-Leiδ+ττ+( )+ eiδ zAB– z
+

0=

2i kzB

B∂ -L

z∂
----------- kcB

B∂ -L

τ∂
-----------+

∂2B L–

z2∂
--------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

A+Re iδ+ττ– A+Le i– δ τBA– τ+( )e iδ+zz–

A-Re iδ+ττ– A-Le i– δ τBA– τ+( )eiδ zAB– z
+

0=

2i kzB

B+L∂

z∂
------------ kcB

B+L∂

τ∂
------------––

∂2B+L

z2∂
---------------+

 
k2χ

b0 a0⁄( )ln
-------------------------

A+Re iδ+ττ– A+Le i– δ τBA– τ+( )e iδ zAB– z–

 A-Re iδ+ττ– A-Le i– δ τBA– τ+( )+ eiδ+zz
+

0=

σi i στ

σz δ τBA +τ,– δτ δ zAB +z,–, δz= =

kzA

A∂ +R

z∂
------------ kcA

A∂ +R

τ∂
------------+

i

2
---

∂2A+R

τ2∂
---------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B+Re i– δτ iστ–( )τ B+Lei δτ iστ–( )τ+( )ei δz iσz–( )z

 B R– e i– δτ iστ–( )τ B L– ei δτ iστ–( )τ+( )ei δz iσz–( )z+
+

0=
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B.16b

B.16c

B.16d

B.16e

B.16f

B.16g

B.16h

kzA

A∂ +L

z∂
------------ kcA

A∂ +L

τ∂
------------–

i

2
---

∂2A+L

τ2∂
---------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B+Re i δτ iστ–( )– τ B+Lei δτ iστ–( )τ+( )ei δz iσz–( )z

 B R– e i δτ iστ–( )– τ B L– ei δτ iστ–( )τ+( )ei δz iσz–( )z+
+

0=

kzA

A∂ -L

z∂
----------- kcA

A∂ -L

τ∂
-----------+

i

2
---

∂2A L–

τ2∂
--------------–

i–
k2χ

2 b0 a0⁄( )ln
----------------------------

B+Re i δτ iστ–( )– τ B+Lei δτ iστ–( )τ+( )e i δz iσz–( )z–

 B R– e i δτ iστ–( )– τ B L– ei δτ iστ–( )τ+( )e i– δz iσz–( )z+

0=

kzA

A∂ -R

z∂
----------- kcA

A∂ -R

τ∂
-----------–

i

2
---

∂2A R–

τ2∂
---------------–

i
k2χ

2 b0 a0⁄( )ln
----------------------------

B+Re i– δτ iστ–( )τ B+Lei δτ iστ–( )τ+( )e i δz iσz–( )z–

 B R– e i– δτ iστ–( )τ B L– ei δτ iστ–( )τ+( )e i δz iσz–( )z–+
–

0=

kzB

B∂ +R

z∂
------------ kcB

B∂ +R

τ∂
------------+

i

2
---

∂2B+R

z2∂
---------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

A+Rei δτ iστ–( )τ A+Lei δτ iστ–( )τ+( )e i δz iσz–( )z–

 A-Rei δτ iστ–( )τ A-Lei δτ iστ–( )τ+( )+ ei δz iσz–( )z
+

0=

kzB

B∂ -R

z∂
----------- kcB

B∂ -R

τ∂
-----------–

i

2
---

∂2B R–

z2∂
---------------–

i
k2χ

2 b0 a0⁄( )ln
----------------------------

A+Rei δτ iστ–( )τ A+Lei δτ iστ–( )τ+( )e i δz iσz–( )z–

 A-Rei δτ iστ–( )τ A-Lei δτ iστ–( )τ+( )+ ei δz iσz–( )z
–

0=

kzB

B∂ -L

z∂
----------- kcB

B∂ -L

τ∂
-----------+

i

2
---

∂2B L–

z2∂
--------------–

i
k2χ

2 b0 a0⁄( )ln
----------------------------

A+Re i δτ iστ–( )τ– A+Le i– δτ iστ–( )τ+( )e i δz iσz–( )z–

A-Re i δτ iστ–( )τ– A-Le i– δτ iστ–( )τ+( )ei δz iσz–( )z
–

0=

kzB

B+L∂

z∂
------------ kcB

B+L∂

τ∂
------------–

i

2
---

∂2B+L

z2∂
---------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

A+Re i δτ iστ–( )τ– A+Le i– δτ iστ–( )τ+( )e i δz iσz–( )z–

 A-Re i δτ iστ–( )τ– A-Le i– δτ iστ–( )τ+( )+ ei δz iσz–( )z
+

0=
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If we now consider the partial-wave amplitudes as being functions of the total detuning

from Bragg vectors (c.f. Figure 3.7 and equations 3.34a-3.34d) noting that ,

taking , , these take the form:

, , 

, , ,

, 

yielding:

B.17a

B.17b

B.17c

B.17d

which, on substitution into equations B.16a - B.16h gives:

B.18a

B.18b

B.18c

ksi kci=

kzA kzB» kcA kcB«

A+R A'+Rei δz iσz–( )z= A+L A'+Lei δz iσz–( )z= A R– A' R– e i– δz iσz–( )z=

A L– A' L– e i– δz iσz–( )z= B+R B'+Rei δτ iστ–( )τ= B R– B' R– ei δτ iστ–( )τ=

B+L B'+Le i δτ iστ–( )τ–= B L– B' L– e i δτ iστ–( )τ–=

A+R,L∂

z∂
---------------- i δz iσz–( )A'+R,L

A'+R,L∂

z∂
-----------------+ 

  ei δz iσz–( )z=

A R,L–∂

z∂
---------------- i– δz iσz–( )A' R,L–

A' R,L–∂

z∂
-----------------+ 

  e i– δz iσz–( )z=

B R±∂

τ∂
------------ i δτ iστ–( )B' R±

B' R±∂

τ∂
-------------+ 

  ei δτ iστ–( )τ=

B L±∂

τ∂
------------ i δτ iστ–( )B' L±–

B' L±∂

τ∂
-------------+ 

  e i δτ iστ–( )τ–=

kzA i δz iσz–( )A'+R

A'+R∂

z∂
-------------+ 

  kcA

A'∂ +R

τ∂
-------------+

i

2
---

∂2A'+R

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=

kzA i δz iσz–( )A'+L

A'+L∂

z∂
-------------+ 

  kcA

A'∂ +L

τ∂
-------------–

i

2
---

∂2A'+L

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=

kzA i δz iσz–( )A'-L
A'-L∂

z∂
------------– 

  kcA

A'∂ -L

τ∂
------------–

i

2
---

∂2A' L–

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=
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B.18d

B.18e

B.18f

B.18g

B.18h

which represent the wave equations for the partial-waves in the region of the reflector.

B.2  Calculation of the Dispersion Curve.

Accounting for the azimuthal structure of the wave-envelope, the partial wave

amplitudes can be defined as:

B.19a

kzA i δz iσz–( )A'-R
A'-R∂

z∂
------------– 

  kcA

A'∂ -R

τ∂
------------+

i

2
---

∂2A' R–

τ2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

B'+R B'+L+

 B' R– B' L–++
+

 
 
 
 
 
 
 

0=

kzB

B'∂ +R

z∂
------------- kcB i δτ iστ–( )B'+R

B'+R∂

τ∂
-------------+ 

 +
i

2
---

∂2B'+R

z2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

A'+R A'+L+

 A'-R A'-L++
+

 
 
 
 
 
 
 

0=

kzB

B'∂ -R

z∂
------------ kcB i δτ iστ–( )B' R–

B' R–∂

τ∂
-------------+ 

 –
i

2
---

∂2B' R–

z2∂
----------------–

i
k2χ

2 b0 a0⁄( )ln
----------------------------

A'+R A'+L+

 A'-R A'-L++
–

 
 
 
 
 
 
 

0=

kzB

B'∂ -L

z∂
------------ kcB i δτ iστ–( )B' L–

B' L–∂

τ∂
------------– 

 –
i

2
---

∂2B' L–

z2∂
----------------–

i
k2χ

2 b0 a0⁄( )ln
----------------------------

A'+R A'+L+

 A'-R A'-L++
–

 
 
 
 
 
 
 

0=

kzB

B'+L∂

z∂
------------- kcB i δτ iστ–( )B'+L

B'+L∂

τ∂
-------------– 

 +
i

2
---

∂2B'+L

z2∂
----------------+

 i
k2χ

2 b0 a0⁄( )ln
----------------------------

A'+R A'+L+

 A'-R A'-L++
+

 
 
 
 
 
 
 

0=

A' R± τ z,( ) A R±
m' z( )eik'sτ

m' ∞–=

∞

∑=
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B.19b

B.19c

B.19d

where  is the azimuthal variation of the wave envelope and  relates to

the aziuthal field structure of the  eigenmode.

For an arbitrary value of  this implies:

B.20a

B.20b

B.20c

B.20d

where:

B.21

is the coupling co-efficient.

If we now consider the wave amplitudes to be functions of the solutions of the

eigenmodes, in a similar manner to the 1D Bragg reflector case:

B.22a

A' L± τ z,( ) A L±
m' z( )e i– k'sτ

m' ∞–=

∞

∑=

B' R± τ z,( ) B R±
m' z( )eik'sτ

m' ∞–=

∞

∑=

B' L± τ z,( ) B L±
m' z( )e i– k'sτ

m' ∞–=

∞

∑=

m' k's m' r0⁄=

m'

m'

A+R,L
m'∂

z∂
---------------- i δz iσz–( )

kcAk'c

kzA

--------------
k'c

2

2kzA

-----------–+ A+R,L
m'+ i

k2

kzA

-------κ B R±
m' B L±

m'+[ ]–=

A R,L–
m'∂

z∂
---------------- i δz iσz–( )

kcAk'c

kzA

--------------
k'c

2

2kzA

-----------–+ A R,L–
m'– i

k2

kzA

-------κ B R±
m' B L±

m'+[ ]=

kzB

kcB

-------
B+R,L

m'∂

z∂
---------------- i δτ iστ–( ) k'c+[ ]B+R,L

m' i

2kcB

-----------
∂2B+R

m'

z2∂
---------------+ + i

k2

kcB

-------κ A R±
m' A L±

m'+[ ]–=

kzB

kcB

-------
B R,L–

m'∂

z∂
---------------- i δτ iστ–( ) k'c+[ ]B R,L–

m'–
i

2kcB

-----------
∂2B R–

m'

z2∂
---------------– i

k2

kcB

-------κ A R±
m' A L±

m'+[ ]=

κ
χ

4 b0 a0⁄( )ln
----------------------------=

A+R,L
m' z( ) a+1R,1Le ik'zz– a+2R,2Leik'zz+=
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B.22b

B.22c

B.22d

the differential terms become:

B.23a

B.23b

B.23c

B.23d

B.23e

B.23f

Substitution into equations B.20a-B.20d yields:

B.24a

B.24b

A R,L–
m' z( ) a 1R,1L– e ik'zz– a 2R,2L– eik'zz+=

B+R,L
m' z( ) b+1R,1Le ik'zz– b+2R,2Leik'zz+=

B R,L–
m' z( ) b 1R,1L– e ik'zz– b 2R,2L– eik'zz+=

A+R,L
m'∂

z∂
---------------- ik'z– a+1R,1Le ik'zz– a+2R,2Leik'zz–( )=

A R,L–
m'∂

z∂
---------------- ik'z– a 1R,1L– e ik'zz– a 2R,2L– eik'zz–( )=

B+R,L 
m'∂

z∂
----------------- ik'z b+1R,1Le ik'zz– b+2R,2Leik'zz–( )–=

B R,L–
m'∂

z∂
---------------- ik'z b 1R,1L– e ik'zz– b 2R,2L– eik'zz–( )–=

∂2B+R,L
m'

z2∂
------------------- k'z

2 b+1R,1Le ik'zz– b+2R,2Leik'zz+( )–=

∂2B R,L–
m'

z2∂
------------------- k'z

2 b-1R,1Le ik'zz– b-2R,2Leik'zz+( )–=

δz iσz–( )
kcAk'c

kzA

--------------
k'c

2

2kzA

-----------– k'z–+ a+1R,1L

k2

kzA

-------κb 1R,1L±+ 
  e ik'zz–

 δz iσz–( )
kcAk'c

kzA

--------------
k'c

2

2kzA

-----------– k'z+ + a+2R,2L

k2

kzA

-------κb 2R,2L±+ 
  eik'zz+ 

 
 
 
 
 

0=

δz iσz–( )
kcAk'c

kzA

--------------
k'c

2

2kzA

-----------– k'z+ + a 1R,1L–

k2

kzA

-------κb 1R,1L±+ 
  e ik'zz–

 δz iσz–( )
kcAk'c

kzA

--------------
k'c

2

2kzA

-----------– k'z–+ a 2R,2L–

k2

kzA

-------κb 2R,2L±+ 
  eik'zz+

0=
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B.24c

B.24d

Setting

, , , ,

, , , 

and noting that the exponental terms in equations B.24a-B.24d cannot equal zero:

B.25a

B.25b

B.25c

B.25d

B.25e

B.25f

B.25g

B.25h

δτ iστ–( ) k'c
k'z

kcB

------- kzB

k'z

2
-----+ 

 –+ b+1R,1L

k2

kcB

-------κa 1R,1L±+ 
  e ik'zz–

 δτ iστ–( ) k'c

k'zkzB

kcB

------------- kzB

k'z

2
-----– 

 + + b+2R,2L

k2

kcB

-------κa 2R,2L±+ 
  eik'zz+

0=

δτ iστ–( ) k'c
k'z

kcB

------- kzB

k'z

2
-----– 

 + + b 1R,1L–

k2

kcB

-------κa 1R,1L±+ 
  e ik'zz–

 δτ iστ–( ) k'c
k'z

kcB

------- kzB

k'z

2
-----+ 

 –+ b 2R,2L–

k2

kcB

-------κa 2R,2L±+ 
  eik'zz+

0=

a+1 a+1R a+1L+= a 1– a 1L– a 1R–+= a+2 a+2R a+2L+= a 2– a 2L– a 2R–+=

b+1 b+1R b+1L+= b 1– b 1R– b 1L–+= b+2 b+2R b+2L+= b 2– b 2R– b 2L–+=

2kzA δz iσz–( ) k'z–[ ] k'c 2kcA k'c–( )+[ ]a+1 2k2κ b+1 b 1–+( )–=

2kzA δz iσz–( ) k'z+[ ] k'c 2kcA k'c–( )+[ ]a+2 2k2κ b+2 b 2–+( )–=

2kzA δz iσz–( ) k'z+[ ] k'c 2kcA k'c–( )+[ ]a 1– 2k2κ b+1 b 1–+( )–=

2kzA δz iσz–( ) k'z–[ ] k'c 2kcA k'c–( )+[ ]a 2– 2k2κ b+2 b 2–+( )–=

2kcB δτ iστ–( ) k'c+[ ] k'z 2kzB k'z+( )–[ ]b+1 2k2κ a+1 a 1–+( )–=

2kcB δτ iστ–( ) k'c+[ ] k'z 2kzB k'z–( )+[ ]b+2 2k2κ a+2 a 2–+( )–=

2kcB δτ iστ–( ) k'c+[ ] k'z 2kzB k'z–( )+[ ]b 1– 2k2κ a+1 a 1–+( )–=

2kcB δτ iστ–( ) k'c+[ ] k'z 2kzB k'z+( )–[ ]b 2– 2k2κ a+2 a 2–+( )–=



267

Setting:

B.26a

B.26b

B.26c

B.26d

simplifies equations B.25b-B.25h to:

B.27a

B.27b

B.27c

B.27d

B.27e

B.27f

B.27g

B.27h

giving:

, , , 

q1 2kzA δz iσz–( ) k'z–[ ] k'c 2kcA k'c–( )+=

q2 2kzA δz iσz–( ) k'z+[ ] k'c 2kcA k'c–( )+=

q3 2kcB δτ iστ–( ) k'c+[ ] k'z 2kzB k'z+( )–=

q4 2kcB δτ iστ–( ) k'c+[ ] k'z 2kzB k'z–( )+=

a+1

2k2κ

q1

------------ b+1 b 1–+( )–=

a+2

2k2κ

q2

------------ b+2 b 2–+( )–=

a 1–

2k2κ

q2

------------ b+1 b 1–+( )–=

a 2–

2k2κ

q1

------------ b+2 b 2–+( )–=

b+1

2k2κ

q3

------------ a+1 a 1–+( )–=

b+2

2k2κ

q4

------------ a+2 a 2–+( )–=

b 1–

2k2κ

q4

------------ a+1 a 1–+( )–=

b 2–

2k2κ

q3

------------ a+2 a 2–+( )–=

b 1–

q3

q4

-----b+1= b 2–

q4

q3

-----b+2= a 1–

q1

q2

-----a+1= a 2–

q2

q1

-----a+2=
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and so:

B.28a

B.28b

B.28c

B.28d

which leads to the relation:

B.29

If we now consider the difference between  and  as:

B.30

where , , the LHS of equation B.29 gives:

B.31

where:

B.32a

B.32b

B.32c

B.32d

a+1

2k2κ

q1q4

------------ q4 q3+( )b+1–=

a+2

2k2κ

q2q3

------------ q3 q4+( )b+2–=

b+1

2k2κ

q3q2

------------ q2 q1+( )a+1–=

b+2

2k2κ

q4q1

------------ q1 q2+( )a+2–=

q1q2q3q4 4k4κ2 q1 q2+( ) q3 q4+( )=

δz δτ

δτ δz k∆ h∆– i σ∆+ +=

k∆ kc kz–= σ∆ στ σz–=

q1q2q3q4

δz
4 p1p4( ) δz

3 p1p5 p2p4+( ) δz
2 p1p6 p2p5 p3p4+ +( )+ +

 δz p2p6 p3p5+( ) p3p6+ + 
 
 

=

p1 kzA
2=

p2 kzAk'c 2kcA k'c–( ) 2iσzkzA
2–=

p3 2iσzkzAk'c
k'c

2
----- kcA– 
  kcAk'c

2
4kcA k'c 2 k'c+( )–

4
-------------------------------------------
 
 – kzA

2 k'z
2 σz

2+( )–=

p4 kcB
2=
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B.32e

B.32f

and the RHS of equation B.29 gives:

B.33

where:

B.34a

B.34b

B.34c

which gives a quartic equation of the form:

B.35

which yields four roots following numerical solving. Plots of these roots can be seen

in Figures 3.14 - 3.15.

B.3  Reflection Coefficient in 2D Bragg Reflectors.

Regarding diffractive effects as being negligible in calculation of the reflection co-

efficient, equations B.18a-B.18h reduce to:

B.36a

B.36b

p5 kcB
2 k'c iστ– 2 k∆ h∆– i σ∆+( )+[ ] kcBk'z

2–=

p6

kcB kcB k'c
2 στ

2–( ) k'z
2kzB k'z–

2
----------------------
 
 +

 k∆ h∆– i σ∆+[ ] kcB
2 k'c iστ– k∆ h∆– i σ∆+[ ]+( ) kcBk'z

2–[ ]+

=

4k4κ2 q1 q2+( ) q3 q4+( ) 4k4κ2 δz
2p7 δzp8 p9+ +( )=

p7 4kzAkcB=

p8

2kzA 2kcB k∆ h iσz–∆– k'c+[ ] k'z
2–( )

 2kcB k'c 2kcA k'c–( ) 2iσzkzA–[ ]+
=

p9 k'c 2kcA k'c–( ) 2iσzkzA–[ ] 2kcB k∆ h iσz–∆– k'c+[ ] k'z
2–( )=

δz
4 p1p4( ) δz

3 p1p5 p2p4+( )+

 δz
2 p1p6 p2p5 p3p4 4k4κ2p7–+ +( )+

 δz p2p6 p3p5 4k4κ2p8–+( ) p3p6 4k4κ2p9–+ + 
 
 
 
 

0=

A'+∂

z∂
---------- i δz iσz–( )A'+ ikκ B'+ B'  –+( )+ + 0=

A'  –∂

z∂
----------- i δz iσz–( )A'  –– ikκ B'+ B'  –+( )– 0=
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B.36c

B.36d

where  and , taking  ( ) and

 ( ).

One may then consider the wave-amplitudes, as functions of the azimuthal structure of

the eigenmodes, in the simplified form:

B.37a

B.37b

yielding:

B.38a

B.38b

B.38c

B.38d

which reduces to:

B.39a

B'+∂

τ∂
---------- i δτ iστ–( )B'+ ikκ A'+ A+ '

 –
( )+ + 0=

B'  –∂

τ∂
----------- i δτ iστ–( )B'  –– ikκ A'+ A'  –+( )– 0=

B'+ B'+R B+L+= B'  – B' R– B' L–+= kzA hz≈ kzB 0≈

kcB hτ≈ kcA 0≈

A'  ± τ z,( ) A  ±
m' z( )eik'sτ

m' ∞–=

∞

∑=

B'  ± τ z,( ) B  ±
m' z( )eik'sτ

m' ∞–=

∞

∑=

A+
m'∂

z∂
----------- i δz iσz–( )A+

m' ikκ B+
m' B  –

m'+( )+ + 0=

A  –
m'∂

z∂
----------- i δz iσz–( )A  –

m'– ikκ B+
m' B  –

m'+( )– 0=

B+
m'

kκ A+
m' A  –

m'+( )

δτ iστ– k's+( )
-----------------------------------–=

B  –
m'

kκ A+
m' A  –

m'+( )

δτ iστ– k's–( )
-----------------------------------–=

A+
m'∂

z∂
----------- i δz iσz–( )A+

m' 2i
k2κ2

δτ iστ–( )2 k's
2–

-------------------------------------- A+
m' A  –

m'+( )–+ 0=
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B.39b

We may now consider the remaining partial-wave amplitudes as functions of the

solutions of the eigenmodes as:

B.40a

B.40b

giving:

B.41a

B.41b

which, as the exponential terms cannot equal zero, give the relations:

B.42a

B.42b

B.42c

B.42d

and setting:

B.43a

B.43b

A  –
m'∂

z∂
----------- i δz iσz–( )A  –

m'– 2i
k2κ2

δτ iστ–( )2 k's
2–

-------------------------------------- A+
m' A  –

m'+( )+ 0=

A+
m' a+1eΛz a+2e Λz–+=

A  –
m' a 1– eΛz a 2– e Λz–+=

Λ a+1eΛz a+2e Λz––( ) i δz iσz–( ) a+1eΛz a+2e Λz–+( )+

2i
k2κ2

δτ iστ–( )2 k's
2–

-------------------------------------- a+1 a 1–+[ ]eΛz a+2 a 2–+[ ]e Λz–+( )–
0=

Λ a 1– eΛz a 2– e Λz––( ) i δz iσz–( ) a 1– eΛz a 2– e Λz–+( )–

 2i
k2κ2

δτ iστ–( )2 k's
2–

-------------------------------------- a+1 a 1–+[ ]eΛz a+2 a 2–+[ ]e Λz–+( )+
0=

a+1 δτ iστ–[ ]2 k's
2–( ) Λ i δz iσz–[ ]+( ) 2ik2κ2–[ ] 2ik2κ2a 1–=

a+2 δτ iστ–[ ]2 k's
2–( ) i δz iσz–[ ] Λ–( ) 2ik2κ2–[ ] 2ik2κ2a 2–=

a 1– δτ iστ–[ ]2 k's
2–( ) i δz iσz–[ ] Λ–( ) 2ik2κ2–[ ] 2ik2κ2a+1=

a 2– Λ i δz iσz–[ ]+( ) δτ iστ–[ ]2 k's
2–( ) 2ik2κ2–[ ] 2ik2κ2a+2=

q1 δτ iστ–[ ]2 k's
2–( ) Λ i δz iσz–[ ]+( ) 2ik2κ2–[ ]=

q2 δτ iστ–[ ]2 k's
2–( ) i δz iσz–[ ] Λ–( ) 2ik2κ2–[ ]=
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gives ,  and equations B.40a-B.40b the form:

B.44a

B.44b

Noting the boundary conditions , , where  is the

length of the corrugation:

B.45

and so:

B.46a

B.46b

The reflection co-efficient can be determined as:

B.47

Multiplying through by :

B.48

and using the relations :

B.49

a+1

2ik2κ2

q1

----------------a 1–= a+2

2ik2κ2

q2

----------------a 2–=

A+
m' z( )

2ik2κ2

q1

----------------a 1– eΛz 2ik2κ2

q2

----------------a 2– e Λz–+=

A  –
m' z( ) a 1– eΛz a 2– e Λz–+=

A+
m' z( )

z 0=
1= A  –

m' z( )
z l2D=

0= l2D

a 1– a– 2– e 2Λl2D–=

A+
m' z( ) 2i

k2κ2

q1q2

----------- q1e Λz– q2eΛ z 2l2D–( )–( )a 2–=

A  –
m' z( ) a 2– e Λz– eΛ z 2l2D–( )–( )=

R z( )
A  –

m' z( )

A+
m' z( )

--------------- i–
q1q2 eΛ z 2l2D–( ) e Λ– z–( )

2k2κ2 q1eΛ z 2l2D–( ) q2e Λ– z–( )
------------------------------------------------------------------------= =

el2D el2D⁄

R z( ) i–
q1q2 eΛ z l2D–( ) e Λ– z l2D–( )–( )

2k2κ2 q1eΛ z l2D–( ) q2e Λ– z l2D–( )–( )
-----------------------------------------------------------------------------------=

e x± x( ) x( )sinh±cosh=

R z( ) i–
q1q2 Λ z l2D–( )( )sinh

2k2κ2 q1 q2–( ) Λ z l2D–( )[ ]cosh q1 q2+( ) Λ z l2D–( )( )sinh+[ ]
----------------------------------------------------------------------------------------------------------------------------------------------------------=
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Finally, division by  yields:

B.50

with the magnitude of the transmission co-efficient ( ) obtained via:

B.51

where  is the total system losses as before.

Λ z l2D–( )( )sinh

R z( ) i–
q1q2

2k2κ2 q1 q2–( ) Λ z l2D–( )( )coth q1 q2++[ ]
-----------------------------------------------------------------------------------------------------------=

T z( )

T 2 1 R 2– Ω 2–=

Ω
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Appendix C: Calibration of the High-Voltage

Power Supply

Proper calibration of the FEM power supply was important for two reasons. Firstly, for

proper operation of the FEM experiment the power supply must be capable of

delivering reproducible pulses for a given set of starting conditions and secondly,

misuse of such a high-voltage (potentially ) power supply may lead to

permanent damage of the constituent components, many of which cannot be easily

replaced. The inclusion of additional diagnostics, for the  2D-1D FEM

experimental run, allowed for monitoring of the electron accelerating potential at three

key stages as it evolved through the FEM power supply. A simple resistive divider

probe monitored the discharge voltage from the Marx-bank (c.f. Section 6.2.1.1) while

the potential of the transmission line was monitored using a capacitive divider probe

located just before the connection to the output spark-gap (c.f. Section 6.2.2). The

shaped voltage pulse, applied across the diode by the transmission line, was monitored

using a purpose built non-shielded resistive divider probe (c.f. Section 6.2.1.3).

The traces recorded for a typical voltage pulse, as it evolved through the power supply,

are given in Figure C.1 The charging voltage on the Marx-bank capacitors was .

Figure C.1: Shows (a) the output voltage from the Marx-bank (b) the voltage

discharge from the transmission line (c) the voltage applied to the gun diode for a

charging voltage of 50kV per capacitor on the Marx-bank.

1.5MV

3.5kA

50kV

(a) (b) (c)
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Coupling of noise, from the closing spark-gaps of the Marx-bank to the co-axial lead

of the probe, resulted in the distortion seen in Figure C.1a. This prevents determination

of the absolute magnitude of the Marx-bank discharge pulse, but does not render the

diagnostic useless, as the positive swing of the voltage trace can be monitored to

improve calibration of the power supply. 

Comparing Figures C.1a and C.1b, it can be seen that the positive voltage swing on the

Marx-bank diagnostic corresponds to the point where the output spark-gap closes and

transmission line begins to discharge to the diode. This indicates the magnitude of the

reflected pulse incident on the Marx-bank, tied directly to the breaking voltage of the

output spark-gap, i.e. as the pressure in the spark-gap is increased to its optimum level,

for a given potential on the transmission line, the magnitude of the reflected pulse can

be seen to decrease at the Marx-bank. 

The traces shown in Figure C.2 correspond to a set of Marx-bank discharges, all

charged at  per capacitor, with the pressure on the output spark-gap increased by

 each time. Figures C.3 and C.4 show the corresponding pulses recorded using

the transmission line and diode probes respectively:

Figure C.2: Shows a set of traces for the Marx-bank discharge, recorded for different

pressures of Nitrogen gas in the output spark-gap of the transmission line.

50kV

1Bar
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Figure C.3: Shows the voltage traces, recorded using the capacitive probe on the

transmission line, corresponding to the Marx-bank discharge traces of Figure C.2. The

rise time (charging time until the output spark-gap closed) in each case is noted. 

Figure C.4: Shows the applied diode potentials corresponding to the Marx-bank and

transmission line discharges shown in Figures C.2 and C.3 respectively. 

Regarding Figures C.2, C.3 and C.4 as a whole, the influence of the output spark-gap

pressure on the potential imposed across the gun diode can be seen to be quite

significant; as the spark-gap pressure increased the rise-time of the transmission line

(that is; the time over which the transmission line is charged before the output spark-

gap closes) can be seen to increase (compare  in Figure C.3) with a

corresponding decrease in the amplitude of the reflected pulses seen at the Marx-bank.

t1 t2 t3

t1 2 3, ,
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Improvements in the diode pulse can also be observed with increasing spark-gap

pressure, specifically in the absolute magnitude and in over-all pulse shape; the

stepped decay of the pulse reduces. 

If one compares Figures C.2a &b with Figures C.3a & b, it can be seen that the more

readily identifiable trend is offered by measurement of the reflected pulse on the Marx-

bank diagnostic. Monitoring of the diode pulse for calibration purposes was discounted

for much the same reason as monitoring of the transmission line diagnostic. 

In calibrating the power supply, using the Marx-bank diagnostic, the following steps

were followed:

• Before charging of the Mark-bank both the Marx-bank spark-gap column and the

output spark-gap of the transmission line were vented, then pressurised with fresh,

pure, Nitrogen gas. The pressures in both cases were allowed to settle to the

desired value and were controlled to ~ .

• For a given charging voltage on the Marx-bank capacitors the pressure on the

output spark-gap was set  below that expected for optimum operation,

with the pressure increased by  on a shot by shot basis until the

reflected pulse seen on the Marx diagnostic had the desired profile (see Fig. C.2c).

• When the reflected pulse observed in the Marx diagnostic was observed to be

minimized, but still observable, the output spark-gap pressure was recorded and

checked for consistency.

It should be noted that in calibrating the power supply the aim was not to completely

remove the reflected pulse seen at the Marx-bank, only to minimise it. If the pressure

on the output spark-gap had been increased beyond  (for a charging voltage of

), say to , the output spark-gap would fail to close, resulting in the full

discharge voltage from the Marx-bank being reflected back to the source. The Marx-

bank is protected, to a degree, from reflected pulses by a set of dump-resistors (  in

Figure 5.2) which provide a preferential route to ground compared to the Marx

capacitor stack, however the magnitude of the pulse in this case carries with it a risk of

a sizeable mechanical shock wave, risking serious damage to the Marx-bank

10%±

2 3bar–

0.25 0.5bar–

14bar

50kV 16bar

R4
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components. By monitoring the size of the reflected pulse on the Marx-bank

diagnostic, a balance can therefore be found where the reflected pulse is minimised but

maintained. 

In regards to the discharge from the transmission-line (see FigureC.3), when the

pressure of the output spark-gap is set correctly, the peak voltage (denoting the

breaking voltage of the output spark-gap) is a good approximation of the peak

discharge voltage of the Marx-bank, allowing some monitoring of this value despite

the noise seen on the Marx diagnostic itself. 

Figure C.5: Shows schematic pulse decays for (a) Z0 = ZL, (b) Z0<ZL, (c) Z0>ZL,

where V0/2 is the matched peak output voltage, l is the physical line length and v is the

velocity of the pulse through the filling medium of the line. 

In addition to the changes in peak voltage seen in Figure C.4, changes in the definition

of the trailing edge to the pulse can be observed, indicating the impedance presented

by the load was dependent on both the matching resistors and the pressure of output

spark-gap, with the effect due to the resistors dominating as the optimum spark-gap

pressure was approached. A stepped discharge was expected in this diagnostic as the

load ( ) and line ( ) impedances were deliberately miss-matched to provide

 across the diode, reducing the charging voltage required on the Marx-bank

capacitors. The dependence of the transmission line pulse on the relation between 

and  is presented in Figure C.5.
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