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ABSTRACT 

Advances in sensors-actuators technology and signal processing are revolutionizing 

Structural-Health Monitoring and Non-destructive Testing with the integration of sensing-

actuating capabilities into the structure.  

We demonstrate ultrasonic guided-wave detection capabilities of four optic fibre sensors 

(OFS) and experimentally address their damage detection and location potential, based on 

their sensing high directivity. Various signal processing methods that look into perturbations 

caused over guided-waves propagation characteristics are discussed for damage detection 

and location applications. 

We model the modulation that the acoustic wave pressure field induces over the sensing 

property of an integrating OFS. The basic trends predicted, for varying sensor length, distant 

and orientation to the ultrasonic source, are experimentally confirmed. The model 

characterizes the directivity pattern of these sensors with obvious implications in damage 

location. We also prove that a polarimetric sensor exhibits similar integration behaviour than 

an interferometric system. 

The unparallel remote inspection capabilities and broadband (spatial and temporal) 

ultrasonic generation and detection features attainable by combination of laser generation 

and interferometric detection are demonstrated. An all-optical remote inspection tool for 

materials is constructed and experimentally applied to aluminium samples. The processing of 

the detected ultrasonic data by 2D-Fourier transform and reassigned-spectrogram provides 

high quality and high resolution information of the structurally localized and global 

dispersion characteristics. This is utilized to demonstrate sensitivity to temperature changes 

and to illustrate hole-damage detection. 

Finally an inversion technique is applied to the broadband dispersion information allowing 

accurate and repeatable estimation of elastic and geometrical properties of the structure. The 

technique provides values of Young’s modulus (E) 71.0GPa, Poisson’s ratio (ν) 0.352, and 

plate thickness (d) 1.16 mm, experimentally validated within an error of 1% for E, and 2% 

for ν and d. 

Monitoring the deviation of these values with respect to an undamaged signature can be used 

as indicator of structural damage or deterioration. 
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 Chapter 1 
    INTRODUCTION  

An Overview to SHM and NDT 

1.1 THESIS BACKGROUND 

Structural health monitoring (SHM) [2] and damage detection involves the use of in-situ, 

non-destructive sensing and analysis of structural characteristics for the purpose of detecting 

changes that may indicate damage or degradation. Its growing applicability covers from civil 

and structural engineering (bridge dynamic loading, post-earthquake damage evaluation of 

high-rise buildings, ground transportation sectors) to aerospace industry and marine 

engineering. 

One of the main ideas in SHM is to integrate within the inspected structure non-destructive 

testing (NDT) methods and in service monitoring of the mechanical properties, objectives 

that SHM shares with smart structures. However in many important SHM applications, 

where the structure is under extreme temperature and/or stress conditions, difficult to access 

structural areas or for very small (micro or nano) systems, structurally embedded, contact 

sensors are not possible. 

Between the available NDT techniques, the most promising and developed appears to be the 

acousto-ultrasonics, where a stress and/or strain wave inducing probe and a stress and/or 

strain detecting probe are required. Lamb waves, as the most reliable, efficient and suitable 

acoustic waves for plate-like structures, can provide information of the structure’s entire 

thickness through large distances. They are sensitive to the principal material elastic 

properties as well as to structural loading or defects within the material. 

In addition optical fibre technology appears as one of the most promising candidates for 

being integrated as a monitoring sensor system of large area structures in general, and in 

composite structures in particular. Optical fibre sensors can support extreme operation 

conditions, they are immune to electromagnetic interference, their small dimensions, 

lightweight characteristic and geometrical flexibility makes them very suitable for 

nonobtrusive integration in composite, concrete and metallic structures. Optical transmission 



An Overview to SHM and NDT          2                   

lines are low power and lossless in comparison with electrical systems and they are highly 

sensitive to ultrasonic waves in a broad variety of sensing ways. 

In this chapter we provide a detailed overview of the two fields within which this thesis is 

framed; SHM and NDT. We look into the different techniques to them applied and we 

compare them, highlighting the advantage that acousto-ultrasonic and optical fibre sensors 

provide over the other techniques.  

It is through the combination of acousto-ultrasonics and optical fibre sensing, the way in 

which this thesis looks to contribute to SHM and NDT of materials. 

1.2 STRUCTURAL HEALTH MONITORING 

In order to understand what Structural Health Monitoring (SHM) is about, we need first to 

understand what the words Health and Monitoring mean from structural engineering point of 

view:  

Structural Health is related to the ability to function/perform and maintain the structural 

integrity through the entire life-cycle of the structure [1]. It is similar to the health of a life 

organism, where the organism is the structure and its life is the structure’s life-cycle. 

Monitoring is the process of keeping a record in a regular basis with the purpose of assessing 

the current damage state of the structure and to predict its performance and remaining useful 

life (prognosis) under expected future loading conditions. 

In consequence SHM consists in the acquisition of periodically sampled dynamic response 

measurements of structural data from a network of sensors, and its posterior validation and 

analysis in order to assess harmful perturbations in the structural performances by the 

presence of damages or by normal operation, and therefore ensure the structural integrity. Its 

final aim is to optimize the structural lifetime and utility. 

The current feasibility and applicability of Structural Health Monitoring to a broad spectrum 

of engineering disciplines, has made of it an emerging and promising research field as 

probed by the huge number of publications and conferences dedicated solely to this subject 

(e.g. some conference references are [2-4]). Aerospace, civil and mechanical engineering 

infrastructures appear as the most directly beneficiaries of SHM developments. 

1.2.1 Configuration of a Structural Health Monitoring system 

In order to accomplish its numerous and multifaceted tasks, a SHM system is a complex 

structure composed of multidisciplinary components as shown in Figure 1.1  (based in [5,6]). 



1.2 STRUCTURAL HEALTH MONITORING   3                         

The first stage of a SHM system is its architectural design, at this point the usage conditions 

of the monitored structure are considered and it is decided the level of monitoring priority of 

the different structural components, their layout and the way they interact. This information 

is used to define the types of damage to look for, and it affects the decision of the sensors 

and actuators density and position distribution. At this point of design, an important decision 

must be made as if a real-time or discontinuous SHM configuration is selected; where a real-

time configuration monitors the structure continuously during operation meanwhile in the 

discontinuous configuration the monitoring data only can be accessed after operation. 
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Figure 1.1: Components of a SHM system and fields involved. 

In the next level a SHM system deals with one of its main task, which is damage detection 

and evaluation. Because all materials and structures present defects at the 

nano/microstructural level in the form of impurities, imperfections or even voids produced 

during manufacturing. It is important for the SHM system to characterize what is defined as 

damage and when the monitored structure is damaged. In order to accomplish this, it is 

necessary to distinguish three levels of the damage evolution [6]; defect, damage and fault.  

 Defect is any imperfection inherent in the material, being always present in a 

nano/microstructural level. Because any engineering structure is designed taking these 

imperfections into consideration, at this level the structure can operate perfectly. 

 Damage is any change in the structure’s material and geometrical properties which 

cause the system to perform below an ideal condition. However it can still function 

satisfactorily. All damage always begins at the material level and under adequate 

loading conditions it evolves to component and system level, developing into a fault. 
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 Fault is when the structure no longer performs satisfactorily, so a remedial action has 

to be undertaken. 

These stages have an obvious evolution an relationship, as shown in the next Figure: 

 

 

 

Damage Fault Defect 

Figure 1.2: Damage evolution in a structure. 

In order to be able, in practice, to distinguish these stages and particularly to know when a 

structure is no longer operative, an important knowledge of Materials and Structural 

Engineering is required. A SHM system should identify the presence of damage and its 

severity and advice for correction before the appearance of a fault.  

After characterizing the kind of damage that can be presented in the structure a proper 

sensing method and sensor and actuator system must be selected. Here an important decision 

is to determine the sensors placement and to choose between active sensing, where the 

sensing system requires an external perturbation of the structure for its damage presence 

interrogation or passive sensing where no artificial energy is required as it detects the 

perturbation of the ambient conditions caused by the presence of damage. Reference [7] 

shows that because active sensing interacts with the structure it is more reliable than passive 

sensing which just ‘listen’ to the structure. In this stage an adequate knowledge of sensors, 

electronics and data acquisition is of relevant importance. The sensing system will be 

constituted of a considerably amount of units, proportional to the complexity and size of the 

structure under monitoring. As a result a communication system is needed not only for the 

transferring of data between the sensing units but also to transfer the full data collected by 

the sensors to the processing or computation system and to convert this data from analogue 

into a digital format. The computation system may present two different architectures; 

centralized processing unit or a distributed group of more local processing units. In any case 

the computation system is the brain of the SHM system, which deciphers and interprets the 

data collected by the sensor system. In most cases the computation system is built over the 

next four levels:  

 Pre-processing: The data collected by the sensor system is de-noised and filtered and 

in some cases a data dimension reduction and transformation is also applied. 
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  Feature extraction: In this stage the components of the signal data including the 

damage signature are magnified and the components associated to the normal 

operating conditions of the undamaged structure are reduced or filtered. 

 Pattern processing: At this stage different algorithms are applied to the feature data 

previously extracted in order to assess the extent and severity of the damage. It can 

also include the location of the damage within the structure. 

 Decision/Intervention: Based in the information of the previous level, this stage 

decides if any action should be taken and it controls the execution of these actions 

carried out by the actuators system (which could consist in human intervention for the 

simplest SHM system to more complex electroresponsive devices). In some cases it 

can even estimate the operative life of the structure until failure. 

The disciplines of data analysis, signal processing and control engineering are of special 

relevance in the computation system level.  

Advances in any of the multiple disciplines involved in a SHM system favour its 

development. In the last two decades we have seen marvellous improvements in networking 

communication, with special relevance to the wireless technology. Additionally optical fibre 

sensors have shown a great adaptability to the measurement of almost all kind of parameters 

and their ability to be integrated into most materials, with the Fibre Bragg gratings as a clear 

protagonist. On the other hand a lot of new signal processing and data analysis methods are 

continuously emanating from the mathematical and artificial intelligence communities, some 

examples are the wavelets analysis, principal component analysis or genetic algorithms. 

Finally since the development of the first electronic digital computer in the late 1930’s we 

have never seen such processing power increase capabilities as those in the last decade. All 

this modern advances are some of the reasons that are making SHM to emerge strongly 

within the whole Engineering community. 

1.2.2 Contribution of a SHM system to engineering structures 

A SHM system contributes in two different ways to the improvement of engineering 

structures. The first contribution is of a safety improvement, as it provides a permanent 

monitoring of the structure from when it is manufactured until the end of its service life. This 

permanent knowledge of the structural conditions contrasts with the conventional cyclical 

inspection procedures where the inspection of the system it is only carried out during 

beforehand scheduled routines, whether evidence of damage is present or not. Damage could 

initiate between the inspection intervals, and grow until a fatal failure is caused, before even 
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being detected. A SHM not only identify the presence of damage in the structure at any time 

but also can give information of its evolution and verify if the structure is capable of 

performing the functions it was intended for, under the current and future expected usage 

conditions and to predict when this performance could no longer meet customer or user 

requirements. In which case SHM can suggests scheduling of the structural repair, 

replacement of parts or even ascertain the end of the structural utile life. 

The second main SHM contribution comes as structure’s cost improvement. Transportation 

and civil engineering structures require extensive maintenance directed not only to the health 

and usage monitoring but also, to a great extent, to repair and replacement of the damaged 

components. This expensive and extensive maintenance is due to the complexity of the 

systems (in both their design and their use of high performance, new technology materials) 

and to the strict safety and efficiency regulations dominating markets that relates with human 

lives. In order to better understand the cost improvement of SHM we will look into a 

particular case, the aircraft industry. The aircraft industry as one of the most innovative 

industries is continuously introducing new materials and technologies. In this industry as in 

many others, engineers design the structures based on two main design approaches: 

 Safe-life design, it is orientated to the design of ideal structures. This means that the 

structure is designed with the main intention of having the structure damage free 

through all its lifetime. Once the service time for which the structure was originally 

designed has come to an end, the structure must be taken out of service, no matter if 

any kind of evident damage is present or not. This design principle manifestly requires 

providing a huge margin of safety for the structure’s design, so most of the times in 

which the structure has been taken out of service, it could still provide an adequate 

performance during an additional considerable percentage of the original lifetime. 

This makes the safe-life design philosophy economically ineffective. 

 Damage-tolerant design, in contrast to the previous design philosophy allows the 

structure to develop damage as long as it does not affect the overall performance of 

the structure. In order for this to be accomplished the undamaged part of the structure 

must be able to sustain the loads and functions that the damaged part cannot cope with 

any more. In this design principle the structure must be submitted to a cyclic 

inspection and maintenance servicing. 

The oldest safe-life principle has nowadays been dominated by the damage-tolerant one, 

mainly because of the requirement of new lightweight structures. As the damage-tolerant 

design does not require a big margin of safety design it increases the allowable stress 
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conditions, leading to a reduction of structural cross-sections and so to a reduction in 

structural weight. This would benefit in production costs as less material is needed and in the 

operation costs as less weight leads to less consumption and/or increment of the 

transportable weight load. The permanent knowledge of the structure condition provided by 

a SHM system highly benefits a damage-tolerant design. Because not only replaces a regular 

maintenance with an as needed maintenance, but it also indicates whether the presence of a 

damage requires immediate repair in order to avoid its development towards more critical 

and costly proportions or if its repair can be postponed until a more global repair requirement 

is scheduled. Additionally the damage information provided by the SHM system will benefit 

in the downtime cost, as it reduces the time that the structure is taken out of service, and it 

will benefit in the human error costs and structure dismantling costs.  

1.2.3 Future of Structural Health Monitoring towards Smart Structures 

SHM and Smart structures share the same objectives, this is to integrate within the inspected 

structure non-destructive testing methods and in service monitoring of the mechanical 

properties. Moreover, as described in [8] they also share a similar components configuration 

as that shown in Figure 1.1. It is not difficult then to believe that their future is to merge into 

a common discipline. For this to happen, the structure requires of adaptable capabilities and 

the SHM system must instruct this adaptability in response to the monitoring information 

and external circumstances. 

A Smart Structure [9, 10] consist in a structure that can react to the environment in which 

they operate in order to enhance their functionality and survivability. This concept is 

applicable and desirable in all engineering industries, from all kind of transportation and 

civil engineering to domestic appliances, intelligent clothes and toys. Born as a modern field 

of research at the beginning of the 1980s with the development of ‘smart skins’ that 

integrated radar antennas into the skins of military aircrafts. It soon expanded into provide a 

whole aircraft health monitoring capabilities integrated into the aircraft structure, and it was 

called ‘smart structures’ research. Almost immediately other engineering disciplines 

absorbed the concept, with civil, marine and transportation engineering being the most 

relevant examples. 

In their fusion SHM will provide the “smartness” virtue to the structure, in the way of 

instructing the structure to adequately adapt and react to the environment in order to increase 

its performance and operational lifetime. The implementation of smart structures should 

have a very effective and beneficial impact in a high diversity of applications, being the most 

evident for the near future; composite structures, aircraft industry and large civil structures. 
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This impact would be orientated into their design, production or construction and its 

maintenance as explained next. 

Composites are engineering materials made from two or more components. One component 

is often a strong fibre that gives the materials its tensile strength. The other component 

(called matrix) is often a resin, such as polyester or epoxy that binds the fibres together, 

transferring load from broken fibres to unbroken ones and between fibres that are not 

oriented along lines of tension. Composite structures are characterized for having one of the 

highest strength:weight ratios. Their high performance and very demanding fabrication 

specifications, make them very desirables to have an integrated monitoring system since 

fabrication. Furthermore because structure composite technology is still relatively immature, 

the structures based in these very new materials are not yet very commonly used as structural 

elements. In consequence there are not too many engineering data collected regarding their 

long-term performance and failure conditions. As a result the structures based in composites 

must be overdesigned with big safety margins making an insufficiently use of the light 

weight and high strength characteristics of these materials. Again a proper capitalization of 

these material’s properties would be achieved with a real-time monitoring. 

On the other hand, an important percentage of the currently used civil and aerospace 

infrastructures are not only in need of renewal but they are working beyond their design 

lifetime. The reason for this is a major concentration of infrastructures made during a 

concentrated period of time. This is the case of many European countries after the Second 

World War, but also of many developing Asian nations which experienced rapid economical 

growth, as it is the case of Japan. For instance (as extracted from [11]), Japan built most of 

its currently used highway bridges between 1960 and 1985. The consequences of this high 

time concentration of built infrastructures is affecting Japan now, where most bridges 

experience damage and deterioration and are in need of retrofit/repair more or less at the 

same time. This effects can be extended to most civil and aerospace infrastructures of many 

developed countries, including USA, taking the modern society to what [11] calls “mass-

maintenance age”. The enormous investments that the replacement and repair of these 

infrastructures would require in the near future, demands them to be in service for a 

considerable extended period.  Based on this, it is not a surprise to read the conclusions of 

the ‘2005 Report Card for America’s Infrastructure’ [12] issued by ASCE (American Society 

of Civil Engineers), that valuates the U.S. infrastructure as an overall poor condition. A 

relevant summary of this report is given in Table 1.1. Although this analysis is directly 

applied to the USA infrastructures it can be extended to infrastructures state conditions from 

many others developed countries. 
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The consequences of such poor infrastructure conditions are nowadays more evident than 

ever before, just months after the big crisis that hurricane Katrina has caused in New 

Orleans. A full city, in the richest country in the world, appeared submerged under water 

because of the deteriorating levels of the network of dams and levees in the region and by 

extension in all the country [13]. The cost in lives (more than one thousand lives) and 

property hugely surpasses the initially estimated maintenance and improvement costs (0.5 

billion dollars in 10 years). 

Infrastructure Comments 2005 Grade 

Bridges 
In 2003, 27.1 % of USA’s 590750 bridges rated structurally deficient 
or functionally obsolete. Estimated cost of $9.4 billion a year for 20 

years to eliminate all bridge deficiencies. 
C 

Dams 
Since 1998, the number of unsafe dams has risen by 33% to more 

than 3500. Estimated cost of $10.1 billion over the next 12 years to 
address only the critical dams. 

D 

Drinking water 

Very old water transportation and treatment systems require of 
replacement, not only because they are failing but also to comply 

with safe drinking water regulations. It is estimated that $11 billion 
annually are required. 

D- 

Navigable 
Waterways 

Of the 257 locks on the more than 12,000 miles of inland waterways, 
nearly 50% are functionally obsolete. By 2020, number will increase 

to 80%. Estimated cost of $125 billion to replace them. 
D- 

Rails 

The freight railroad industry needs $175-$195 billion over the next 
20 years to maintain existing infrastructure and expand for freight 

growth. Additionally the passenger market requires expansion of the 
railroad network and maintenance estimated in $60 billion over same 

period. This is a total of $12-13 billion per year. 

C- 

Roads 

Poor road conditions cost U.S. motorists $54 billion a year in repairs 
and operating costs. Without mentioning the cost of $63.2 billion a 
year to American economy derived from the 3.5 billion hours a year 

that Americans are stuck in traffic. It is a total of $117 per year. 

D 

Aviation 

It is estimated that more than $10.5 billion a year is invested in civil 
aircraft maintenance. With a considerable portion of this cost 
dedicated to inspection. This cost considerably increases with 

aircraft’s life.  

D+ 

 
Table 1.1: Estimation of America’s Infrastructure conditions in 2005. Evaluation values are: A = 

Excellent, B = Good, C = Mediocre, D = Poor, E = Failing and F = Incomplete 

SHM is one of the technologies that will make possible the elongation of the infrastructures 

lifetime in a safe and cost effective way. The addition of Smart Structures into these civil 

infrastructures and integration into new infrastructures will importantly affect the decrement 

of their maintenance and repair budgets. For instance in civil and military aviation 

infrastructure this improvement could save around 20% of maintenance and repair costs [1].  
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In conclusion, the SHM, in its approach towards a Smart Structure, is evolving on the 

direction of integrating the monitoring capabilities unobtrusively within the structure. The 

integrated sensor system will consist of a distributed system of active sensor units; each one 

completed with a local mechanical excitation source, a processing unit and a communication 

unit [14]. Each unit will have damage detection capabilities and through cross-correlation of 

the whole unit array data, damage location is provided by an external centralized data storage 

and processing unit where monitoring of the full system is carried out. In addition future 

SHM systems will be also completed with an actuator system which will act adequately in 

response to the detected damage, controlled by the centralized processing unit, in order to 

improve and maintain its performance, integrity and remaining useful life. 

Nowadays there are several sensor technologies that make the nonobtrusive integration a 

possibility. The ones with higher potential are Micro-Electromechanical Systems (MEMS), 

optical fibre sensors and modern piezoelectric sensor technologies such as small 

piezoceramics and piezoelectric paints (more of this in Chapter 2).  

This thesis aims to look into this future of SHM, for this reason we have chosen to work with 

optical fibre sensors towards nondestructive testing of materials. In comparison with the 

other two options for constituting integrated sensor systems, optical fibres have the benefits 

of immunity to electromagnetic fields, extremely high sensitivity, broadband signal detection 

spectrum, environmental ruggedness, low power requirements, lightweight, geometric 

flexibility, long lifetime and compatibility with modern telecommunication data transmission 

systems. In addition optical fibres are probably the most suitable for integration in modern 

carbon and glass fibre composites structures, commonly used in aerospace, automotive and 

marine industries and they are beginning to emerge as serious contenders in civil industries. 

An optical fibre is totally compatible with reinforcing fibres. When embedded into the 

composite material, optical fibre sensors will have very little impact upon strengths, breaking 

strains or overall mechanical properties, provided that the fibre is oriented appropriately with 

the reinforcing fibres. And provided that the optical fibre is less than 10% of the composite 

material’s thickness and it is coated with a resin-compatible material [15].  

Optical fibres allow point sensors, integrating sensors, multiplexed sensors and fully 

distributed sensors geometries easily adaptable to the sizes of civil infrastructures (for 

instance as shown in Chapter 2 we have used; FBG as multiplexed point sensor, polarimetric 

system as an integrated sensor and examples of fully distributed systems are those based on 

Raman scattering for temperature measurement or based on Brillouin scattering for strain 

measurement). 
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As pointed in [10] “the development of smart structures in the near future will almost 

certainly involve the use of fiber-optic sensing”. 

Finally, in order to develop a successful SHM system it is vital to allow Nondestructive 

testing (NDT) methods to become and integral part of the structure to be monitored. A SHM 

system applies NDT in order to identify damage and detect possible failure in the structure. 

In the next section we introduce the concept of Nondestructive testing, we describe the 

currently most used methods and concentrate into those few with the aptitude to be 

integrated into a smart structure. 

1.3 NON-DESTRUCTIVE TESTING OF MATERIALS 

The British Institute of Non-Destructive Testing defines Non-Destructive Testing of 

materials (NDT) as the branch of engineering concerned with all methods of detecting and 

evaluating flaws in materials. The flaws may be cracks or inclusions in welds and castings, 

or variations in structural properties which can lead to loss of strength or failure in service 

[19]. An essential feature of NDT is that the test process must not produce any damaging 

effect on the material under test.  

It is important to notice the differences between SHM and NDT. A SHM system uses NDT 

as part of its monitoring functions. Meanwhile NDT is a series of discrete tests that look for 

an image (visual, ultrasonic or any other way) of the structure under inspection, to find flaws 

or defects by changes in several physical properties. SHM interpret the information obtained 

from the NDT method used to estimate in a permanent way the health of the structure, for 

which it looks to changes of properties that could or not be physical. 

Damage detection, characterization and location are relevant to all the engineering 

disciplines not only for safety issues but also because of performance and cost efficiency 

improvements. This vast interest in NDT can be seen in the several international conferences 

dedicated exclusively to this subject, e.g. [16,17].  

The work of such multidisciplinary community aiming to a common objective has developed 

a great number and diversity of Non-destructive damage detection techniques based in 

different physical phenomena and properties. What is more, the continues advances in 

physics, mathematics, electronics, computer power, system modelling, signal processing and 

sensors have not only improved existing techniques but also help in the development of new 

ones, and it will continue to do so in the future.  
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It is not the intention of this thesis to review all the present Non-destructive testing methods. 

However in order to understand the choices taken in this project it would be helpful at least 

to review the most commonly used techniques [1,5,20-23].  

Civil engineering, transportation engineering and mechanical engineering industries are very 

familiar with; visual inspection, liquid penetrant inspection, acoustic emission inspection, 

holographic inspection, shearography inspection, thermography inspection, Eddy current, 

magnetic particle inspection, radiography inspection, vibration and modal analysis inspection 

and ultrasonic inspection. A summary of these techniques is shown in Table 1.2 where their 

possibility as a SHM system in the near future is evaluated. A more detailed description of 

the basic operation principles of these techniques as well as their associated advantages, 

disadvantages and main applications can be found in the literature [24-30]. 

Method Applications Advantages Disadvantages SHM 
Potential 

Visual Inspection Surface defects 

Inexpensive 
No data analysis 
Portable 
All materials 

Limited detection 
sensitivity 
Time consuming 
Operator interpretation 
Accessibility required 

None 

Liquid Penetrant Surface defects 

Inexpensive 
No data analysis 
Portable 
Nonporous materials 
Sensitive to small 
defects 

No detection if defect 
filled. 
Contact method 
Accessibility required 

None 

Acoustic Emission 

Monitoring 
development of 
surface/internal 
discontinuities 

Inexpensive 
Fast scan of large areas 
Portable 
Sensitive to small 
defects 

Passive technique 
(requires load) 
Reduced repeatability 
Complex data analysis 

Lightweight 
No power need 
Large area 
inspection 
Triangulation 
possible 
Structural 
integration 

Holography Surface/sub-
surface defects 

Non-contact and remote 
inspection 
Fast scan of large areas 
High sensitivity 
Easy data analysis 

Relatively expensive 
Vibration isolation 
required 
Requires load 

None 

Shearography Surface/sub-
surface defects 

Non-contact and remote 
inspection 
Fast scan of large areas 
High sensitivity 
Easy data analysis 

Relatively expensive 
Requires load 

None 

Thermography Surface/sub-
surface defects 

Non-contact and remote 
inspection 

Relatively expensive 
High energy required 
Poor penetration 

None 
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Fast scan of large areas 
Easy data analysis 

Eddy Current 
Surface/sub-
surface crack 
detection 

Non-contact 
Sensitive to small cracks 
Lightweight & portable 
Relatively inexpensive 

Very complex data 
analysis 
High energy required 
Conductive materials only 
Requires calibration 
High qualified personnel 
Poor penetration 
Small area monitoring 
(requires scanning) 

None 

Magnetic 
Particle 

Surface/sub-
surface defects 

Easy operation 
No data analysis 
Sensitive to small defect 
Inexpensive 
Non-contact 
Portable 

Ferromagnetic materials 
only 
Accessibility required 
Contact method 

None 

Radiography 
Surface and 
internal 
discontinuities 

Internal inspection 
No data analysis 
Easy operation 

Safety hazard 
Limited detection 
sensitivity 
Relatively expensive 
Time consuming 
Operator interpretation 
Accessibility to both sides 
required  

None 

Vibration/Modal 
Analysis 

Global 
structural 
analysis 

Applicable to complex 
structures 
Inexpensive 
Portable 
Fast scan of large areas 

Complex data analysis 
Very limited detection 
sensitivity 
High sensitive to 
boundary conditions 

Lightweight 
Low power 
required 
Small area 
inspection 
Structural 
integration 

Ultrasonic 
(conventional 

scanning) 

Surface and 
internal defects 

Internal inspection 
Inexpensive 
Portable 
Sensitive to small defect 
Relative fast scan of 
large areas 

Small area monitoring 
(requires scanning) 
Complex data analysis 
Contact method, requires 
couplant 

None 

Ultrasonic 
(guided waves 

method) 

Surface and 
internal defects 

Internal inspection 
Inexpensive 
Portable 
Sensitive to small defect 
Non-contact and remote 
inspection possible 
Fast scan of large areas 

Very complex data 
analysis 
Plate-like structures 

Lightweight 
Medium power 
required 
Strip area 
inspection 
Large area 
coverage 
Triangulation 
possible 
Structural 
integration 

Table 1.2: Summary of the most common NDT techniques. 
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If we evaluate these methods from their potential implementation in a SHM system, only 

three of them can be considered seriously; acoustic emission, modal analysis and ultrasonic 

guided waves. Between these three, modal analysis as a global method has a limited size 

detection sensitivity and it does not provide much information about the damage location and 

characterization. Its sensitivity to changes in the boundary conditions (e.g structure’s 

geometrical dimensions and loads) makes it less attractive than the other two options. 

Acoustic emission and ultrasonic inspection are in fact related in the way that both use 

ultrasounds as the physical scanning property. Both could use very similar detection sensors 

and very similar signal processing tools for data interpretation. However the biggest 

difference is that acoustic emission is a passive inspection method, where the damage is only 

sensed when a primary load level is exceeded. This means that acoustic emission is based in 

the worsening of an already existing damage, making of it a very unrepeatable method. 

Ultrasonic inspection, in contrast, is an active method which requires an external source of 

energy to generate the ultrasonic signal used for the inspection. Ultrasonic inspection with 

guided waves solves the problems of the other two methods and combined with non-contact 

optical generation of ultrasounds provides remote inspection capabilities. It also benefits 

from the applicability of inexpensive and lightweight sensing arrays that can be integrated to 

the structure under test achieving large area inspections. Between the possible sensing arrays 

optical fibre sensors are the highest potential candidates for their incomparable advantages 

against the more conventional electronic and electrical counterparts (as described in Chapter 

2), with particular relevance on composite and concrete structures. 

Ultrasonic NDT provides a sensitive method of inspection in most materials; metallic, non-

metallic, magnetic or nonmagnetic, in opposition to other NDT methods which are particular 

to specific materials.  

Ultrasonic guided waves carry huge information about the damaged structure, being able to 

contribute in all the goals required in damage detection: 

 Determination of the presence of damage in the specimen. 

 Estimation of the severity of the damage. 

 Differentiate various types of damages. 

 Location of the damage. 

 Estimation of the dimensions of the damage. 

All the inspection benefits that ultrasonic guided waves provides has made it eligible as the 

NDT method use within this thesis. 
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Yet the main disadvantage of ultrasonic guided waves is the complexity of the analysis of the 

obtained data for the extraction of all the relevant information. That is why we have had to 

wait to the modern advances in computer power and in Signal Processing techniques in order 

to see the big boom that in the last years has raised ultrasonic guided waves as one of the 

most promising NDT methods. This thesis also contributes in the analysis of this complex 

data in different applications. 

In the next sections we look into the origins of the NDT technique and introduce the 

different methods used to generate and detect ultrasonic waves.  

1.3.1 Non-Destructive Testing with ultrasounds 

Sound testing is probably one of the oldest and most accessible Non-Destructive Testing 

tools used for detection of hidden defects [31]. For instance internal defect in forgings or 

casting can be detected as a change in the ringing note when the specimen is hit with a 

hammer. In a similar way anyone can test their porcelains and glasses for cracks by tapping 

it with their fingernails and listening to the sound, if it is “dull” then it indicates presence of 

cracks. This technique probably was already used by the inventors of ceramics more than 11 

thousands years ago. However the transition from the audible sound to the ultrasound, in 

order to decrease detectable damage dimensions, could not be possible without the modern 

technology that replaces hammer and ear with piezo-electric, transducers, optical fibres and 

lasers. 

The principle of the ultrasonic testing is that solid materials are good conductors of sound 

waves [18]. The sound wave generated by means of a mechanical interaction with the 

structure, propagates as a vibration perturbation from one region of the space to another. Any 

major disturbance of the structure homogeneity will alter this vibration’s properties 

(amplitude, frequency, phase velocity…) and create new vibration fields as reflection and 

transmission waves. The wave perturbation is stronger the smaller the wavelength of the 

wave, provided that the wavelength is the order or smaller than the disturbance dimensions. 

Because acoustic waves in solids have propagating velocities of the order of km/s then in 

order to detect disturbances smaller than centimetre dimensions, the frequency range must be 

over hundreds of kHz. Any sound frequency over the human ear audible region (10 Hz to 20 

kHz) is considered ultrasound. 

Through-transmission and reflection technique  

Non-Destructive material testing with ultrasounds started, from a theoretical point of view, 

more than 60 years ago when the Soviet scientist Sergei Y. Sokolov, proposed in 1928 a 
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through-transmission technique for flaw detection in metals [32, 33]. In this method 

ultrasonic source and receiver are located in opposite sides of the material under test.  The 

variations in ultrasonic energy transmitted across the metal are used to locate and measure 

the flaw, since the presence of the flaw in between the transmitter and receiver will scatter 

part of the input ultrasonic energy decreasing the part arriving to the receiver (fig. 1.3). 

Sokolov also suggested a reflection technique, where source and receiver are located in the 

same side of the material. In this case the incident ultrasonic pulse wave is transmitted from 

one side of the sample and reflected back from the far side to the receiver, this pulse is 

named backwall echo. The time of arrival depends on the dimensions of the material and 

velocity of the ultrasounds in that material. 
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Figure 1.3: Through-transmission technique for flaw detection 

The presence of a flaw in the propagation path is shown as new pulses arriving before the 

backwall echo. These pulses, named flaw echos, are reflections from the flaw. In this way a 

map of the material can be generated to illustrate the location and geometry of the flaws (fig. 

1.4). When the same probe is used to generate the ultrasound and receive the reflected wave, 

the reflection technique is called pulse-echo. If the reflection is received by another 

transducer then it is called pitch-catch. 

Although the theory was suggested by Sokolov in the early 30s, the technology needed to 

generate the short pulses necessary to measure the small propagation time of the reflected 

echoes was not available until the Second World War. 
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Figure 1.4: Reflection technique for flaw detection 
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This is why we have to wait until the early 1940s to see Floyd Firestone in USA and Donald 

Sproule in the UK initiate independently and in the highest of the secrecies the industrial use 

of ultrasonic testing [34-37]. It is at this time when the industrial material testing was born, 

not just for flaw detection but also testing of any material imperfection or material 

characterization. Until then the only methods for internal flaw detection was the hazardous 

radiography (x-ray or radioactive isotopes) methods.  

Scanning inspection 

Looking at the transmitted and reflected waves by means of the previously described 

techniques constitute the most popular and conventional ultrasonic inspection method, the 

scanning inspection. Depending in the region being scanned, three different scanning 

inspections can be distinguished; A-scan inspects the material at a single point, displaying 

the incident pulse and the echoes along a transit time plot as shown in fig. 1.4, B-scan is a 

series of A-scans along a line of the material. It gives information of discontinuities as a 

‘cross sectional view’ of the specimen. The display shows the peak of the pulses obtained by 

each of the A-scans taken and combined according to the probe displacement. The vertical 

coordinate is the pulses’ transit time (fig. 1.5-left). C-scan is a collection of B-scans, 

covering a surface section of the specimen. It gives a three dimensional information of the 

material discontinuities in a ‘flat plan view’. The display is a surface contour plot of the 

intensity sectional information given by the set of performed B-scans (fig. 1.5-right).  
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does not suffer from the safety hazards of the former one and the high cost of the used 

equipment.  

Nonetheless conventional ultrasonic inspection also has important drawbacks; it is limited to 

the test of relatively simple geometries, where accessibility to the structures surface is 

required and it only interrogate the close region around the area where the probe is 

positioned, which consequently imply long time scanning of large areas, and if done 

improperly it can easily miss essential flaws. 

Ultrasonic guided waves inspection 

These limitations of the conventional ultrasonic methods were overcome when Worlton 

[38,39] at the end of the 50s recognized the advantages that guided waves offered over the 

conventionally used bulk waves, for the inspection of thin-plate structures; such as metal 

plates, airframes, large containers, pipes and tubes.  

Although guided ultrasonic waves are properly introduced and discussed in Appendix A, it is 

interesting to point here the main benefits by them provided to the ultrasonic NDT inspection 

method: 

 Full structure’s volume inspection over long distances between the source and the 

receiver, from a single probe position. 

 Greater sensitivity than conventional ultrasonic methods or other NDT methods. 

And sensitivity to different types of flaws. 

 Ability to inspect structures under water, coating, insulation, multi-layer 

structures or concrete with excellent sensitivity. 

 Capability to detect, locate, classify and size defects. 

 Their guiding character enables them to follow curvature and reach hidden and/or 

buried parts. 

The work developed in this thesis use guided waves ultrasonic NDT methods, in particular 

we work with the so-called Lamb waves. 

1.3.2 Methods for generation and detection of ultrasounds 

From a mechanical shock or friction of a body to more complex physical interactions, quite 

numerous are the available methods to generate and detect ultrasounds in solid media. These 

methods are based in many different physical properties. Between all the existing methods it 

is the piezo-electric effect the most widely used for ultrasonic transduction mainly due to the 

fact that the same probe can be used both for generation and for detection at the same time. 
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They are also the ones that produce the best signals and they have a great potential for 

structural integration beneficed by their simultaneous sensor and actuator behaviour. Though 

optical methods have several advantages over the contact piezo-electric transducers that 

make them desirable in certain applications, as listed in Chapter 2. An interesting review of 

the different possible physical effects used until now for the transmission and reception of 

ultrasonic waves can be found in [31,40], however as new physical interactions are 

discovered and new technologies developed, new effects will add to this list in the future: 

 Mechanical effect. 

 Piezo-electric effect 

 Thermal effect 

 Electrostatic methods 

 Electrodynamic methods 

 Magnetostrictive methods 

 Optical methods 

In this thesis we have worked with the piezo-electric effect and thermal effect for contact and 

non-contact ultrasonic guided wave generation in plate like structures, as shown in Chapter 

2. Piezo-electric effect and several optical methods were also used for the ultrasonic 

detection as shown in same chapter. 

1.4 OBJECTIVES 

It is the main objective of this work to contribute into the development of NDT optical 

techniques applied to SHM of structures. In order this to be accomplished we have had to 

complete a numerous of related tasks as pointed next: 

 Introduce and review the current developments in SHM and NDT. 

 Understand and characterize the generation, propagation and detection stages of 

ultrasonic guided waves in plate-like structures. This information will help to better 

understand the interaction of these ultrasonic signals with defects. 

 Development and confirmation of a theoretical model for the modulation that the 

acoustic wave pressure field induces over the sensing property of an integrating OFS. 

Allowing characterization of integration sensors directivity pattern with application in 

damage location. 
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 Review of the state of the art in optical fibre sensors for ultrasound detection, and 

application of various optical fibre sensors for damage detection and location. 

 Development and testing of an all-optical, non-contact technique for the monitoring of 

the elastic and geometrical properties of mechanical materials. 

 Development and implementation of signal processing tools to extract the information 

that characterizes the elastic and geometrical properties of mechanical materials.  

 Validation of these processing tools over the experimentally obtained complex 

ultrasonic data. 

 Apply this technique for the monitoring of the materials temperature changes and 

damage detection potential. 

1.5 OUTLINE OF THE THESIS 

The main objective of the thesis here presented has been to combine the advantages and 

structural integration capabilities of ultrasonic guided waves NDT technique with the 

unrivalled acoustic wave sensing performance and nonintrusive structural integration 

characteristics of modern optical fibre sensor technology. In this way we contribute into the 

future of SHM by integrating NDT monitoring technology into structural materials. 

The order in which the different chapters are presented, follows a thematic division of the 

produced work in two main areas; application of optical fibre sensors for ultrasonic guided 

waves NDT, addressing their damage detection and location potential based on their sensing 

high directivity. And development and construction of a complete non-contact, all-optical 

tool for the remote inspection of mechanical materials. Its experimental application included 

the measurement of physical and geometrical properties of plate-like structures for SHM. 

Each of these main contents is preceded by a series of introductory chapters and 

complemented with multiple appendices at then end of the thesis, to provide the necessary 

background and conceptual information required for a better and complete understanding of 

the work. 

Chapter 2 focuses on the detection and generation techniques of ultrasonic guided waves. 

We start looking into the conventional contact transducers based on the piezoelectric effect 

highlighting their more serious limitations and comparing them with the advantages provided 

by modern optical systems. In order to take full advantage of the non-contact and remote 

inspection characteristics that optical techniques provide for SHM applications we present 

and analyse various optical techniques for both ultrasonic generation and detection. The 

optical ultrasonic sources studied are Q-switched high power laser source and a low power 
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CW alternative. Later we concentrate on the various optical fibre ultrasonic detection 

methods used in this thesis; Fibre Bragg gratings, Mach-Zehnder and modified Mach-

Zehnder optical fibre interferometers and fibre optic polarimetric sensor. Followed by a 

comparison of their performance parameters and sensing aspects. This chapter is strongly 

complemented with Appendix A which introduces the propagation characteristics and theory 

of the elastic waves in solids, with an in-depth investigation in guided acoustic waves (Lamb 

waves in particular) in order to understand their interaction with defects and their 

dependence with the elastic properties of materials. 

The experimental application of the previous optical fibre ultrasonic sensor systems is fully 

described in Chapter 3. There we confirm their suitability for ultrasonic wave detection and 

describe their potential for damage detection and location based in their inherent high 

sensing directivity. 

Chapter 4 describes the analytical and experimental work to develop and validate a computer 

model of the wavefront integration interaction between a finite length optical fibre sensor 

(OFS) and an ultrasonic wave. Until this work the modulation that the acoustic wave 

pressure field induces over the sensing property of an integrating OFS has not been studied 

in depth, with very few reports published about it. In this model we have analysed the 

relation between the length of the sensing fibre, its distance to the ultrasound source and its 

sensitivity to ultrasound detection, for different orientations of the source with respect to the 

sensing fibre. The predicted basic trends were experimentally confirmed. The model also 

characterizes the directivity pattern of these sensors with obvious implications in damage 

location. The unintuitive model prediction of maximum sensitivity for an orientation of the 

fibre axis non perpendicular to the propagation direction of the ultrasound contrasts with the 

sensitivity typical of pressure sensors. This prediction was positively verified 

experimentally. We also prove theoretically that positive and negative changes are produced 

in the fibre birefringence in a similar way to that expected in the fibre refractive index. 

Therefore a polarimetric sensor exhibits similar integration behaviour than an interferometric 

system, as observed experimentally. 

Before introducing the second main body of this thesis we present in Chapter 5 the various 

signal processing tools employed in the analysis of the experimental ultrasonic wave data 

along this thesis. These include time domain and frequency domain analysis for application 

in structural damage detection and location, and characterization. Time-frequency analysis 

and two dimensional Fourier transform (2D-FT) technique to assess the structural condition 

as shown in Chapter 6. The thorough analysis of the 2D-FT presented in this chapter gives a 
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novel interpretation of its results and allows understanding that the aliasing effect in the 2D-

FT is not as damaging as in 1D. In the other hand wavelets analysis was used for pre-

processing of the data as a de-noising instrument. The chapter finishes with the description 

of various optimization algorithms as used in Chapter 7 for extraction of the material elastic 

and geometrical properties. 

In Chapter 6 we present the creation of a successful non-contact laser generation and 

detection of ultrasounds tool for the extraction of the structural properties on mechanical 

materials. The system uses a Q-switch Nd:YAG short pulse high power laser to generate a 

broadband source of Lamb waves. These waves propagate along a sample plate interacting 

with its entire volume. A modified Mach-Zehnder surface displacement optical fibre 

interferometer is used for the remote detection of these waves.  

The 2D-FT and the reassigned spectrogram are applied to the obtained data in order to 

extract the structural information stored in the ultrasonic wave dispersion features. This 

information is presented as phase and group velocity dispersion curves, and with the help of 

an ANSYS model simulation we have identified and developed various enhancements in 

their resolution, contrast and region of definition. For instance in aluminium plate like 

samples we were able to identify symmetric and antisymmetric Lamb modes until order 5 

and in a region within 0 to 4 mm/mm wavenumber:thickness product and from 0 to 14 MHz 

mm frequency:thickness product. We also found that meanwhile the dispersion information 

provided by the 2D-FT can focus the material property analysis to specific areas of the 

sample under test, the time-frequency analysis analyse the full area between source and 

receiver. The Lamb wave dispersion information was later successfully applied to 

temperature change sensitivity with detectable perturbations caused by changes of 100 

degrees. This temperature changes implies modifications of less than 7% in the Young’s 

modulus and Poisson’s ratio. In a similar way the dispersion information was also suitable 

for damage detection applications, clearly showing the increment of a hole-through of 

diameter varying from 0 to 2 cm. 

Chapter 7 shows the last part of the work done, which is the application of inversion 

techniques to the obtained dispersion information in order to extract and monitor changes in 

the materials elastic and geometrical properties, such as Young’s modulus E, Poisson’s ratio 

ν and plate’s thickness d. The presented inversion technique is based in the minimization of 

the differences between the phase velocity values of the experimental dispersion curves and 

theoretical ones obtained for changing values of E, ν and d, defined as error function. 

Followed by an in-depth analysis of the optimization algorithms, the used error function and 
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its weighting factors we were able to identify those regions of the experimental dispersion 

curves more suitable for the inversion technique. The convergence of the inversion 

algorithms was also improved by means of a new technique for simple extraction of an 

accurate initial estimation of the elastic and geometrical properties based in complementary 

frequency:thickness product information. 

The technique provides values of E = 71.0GPa, ν = 0.352, and d = 1.16 mm, being able to 

achieve a worst case scenario error of 1% for E, and 2% for ν and d. 

The final Chapter 8 is a review of the full work here presented, where the most relevant 

conclusions of all the previous chapters are highlighted and discussed, pointing in the 

direction of future recommended work to be carried out. 
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Chapter 2
DETECTION & GENERATION OF 

ULTRASOUNDS 

2.1 INTRODUCTION 

We have already seen that ultrasonic waves are a very important tool for SHM and NDT 

applications. But in order to use them first we need a way to generate and detect them within 

the inspected structural material. Precisely this is the subject of the present chapter.  

Until the discovery of the LASER during the 60s, the only way to generate and detect 

ultrasonic waves was by means of contact transducers. Their requirement of a couplant cause 

serious limitations in their operability; for instance variability in the sensitivity and in the 

bandwidth, limited velocities in the scanning of the sample, etc (we will see more later). 

Most of these drawbacks are solved with the non-contact optical ultrasonic generation and 

detection systems. Even the contact optical ultrasonic detection systems provide various 

important advantages over the conventional contact transducers; for instance a bigger 

temporal and spatial resolutions, lightweight characteristics, immunity to electromagnetic 

radiation, flat spectral response, etc.  

Despite the inherent superiority of optical generation and detection of ultrasound, it is still a 

‘modern’ technique compared with the more classical and consolidated contact transducer 

techniques. This is why its presence in the commercial industry is not yet a reality. It is more 

complex and expensive than contact transducers, which still dominate the vast majority of 

ultrasound applications and will do so in the middle-to-near future. 

We start this chapter introducing the piezoelectric based contact transducers for ultrasonic 

generation and detection applications, and later we highlight the main limitation associated 

with them. The comparison with the advantages that optical techniques provide lead us into 

the main body of this chapter, which deals with the various optical detection and generation 

systems that we have used along this thesis. The optical systems used for ultrasonic detection 

are; fibre Bragg gratings, all fibre interferometric systems based in two different Mach-
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Zehnder configurations and a polarimetric system. We characterize and describe each of 

these systems and subsequently we compare them. 

The optical generation of ultrasound is based on high power, very short pulsed laser sources, 

and low power continuous wave (CW) lasers. The combination of non-contact optical 

techniques for both the ultrasonic generation and detection stages provides a completely 

remote inspection tool that can operate in corrosive, high temperature and radioactive 

environments [1]. That is the subject of chapters 6 and 7. 

2.2 CONVENTIONAL TRANSDUCERS FOR THE GENERATION AND 

DETECTION OF ULTRASOUNDS 

The vast majority of the contact transducers are based in the piezoelectric effect due to its 

dual property of providing both ultrasonic waves detection and generation capabilities with a 

single transducer.  

The piezoelectric effect was discovered by the brothers Curie in 1880 [2], by which 

piezoelectric materials are able to develop an electric polarization when they are submitted to 

an external stress. With tension and compression generating opposite polarity proportional to 

the applied stress. This is how piezoelectric materials can be used for ultrasonic waves 

detection. 

In piezoelectric materials the reverse effect is also present, as a physical deformation of the 

material occurs when it is under an electric potential. The deformation is proportional to the 

applied electric field and it affects as an elongation or shortening of the material in the 

direction of the electric field according to its polarity, phenomenon which is known as 

inverse-piezoelectric effect. This is how piezoelectric materials work as ultrasonic actuators. 

The acoustic coupling for piezoelectric transducers (both for ultrasonic generation and 

detection) require of physical contact with the sample media so that the stress can propagate 

from one to the other, and of an acoustic conductive interface known as couplant. The 

couplant transmit the ultrasound between transducer and sample, and its absence would 

cause great variations in the transducer sensitivity between other things [3]. The couplant 

must consist of a low absorption material, in most cases of fluid or viscous constitution, like 

oil, grease, or honey. Sometimes also a solid couplant can be used, such as a soft metal. 

2.2.1 Conventional ultrasonic generation 

When a contiguous medium opposes the increase or decrease of the piezoelectric material 

dimensions due to the physical deformation induced during the inverse-piezoelectric effect, 
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then a stress field is transmitted to it and an ultrasonic wave is born. The frequency of the 

transmitted stress is the same than the frequency of the applied electric field. 

The first practical application of piezoelectric materials for acoustic wave generation was 

due to Paul Langevin [4], during the World War I, who used piezoelectric crystal quartz 

transducers to generate acoustic waves in water in order to detect German submarines, 

similarly to the way in which the reflection technique (presented in Chapter 1) was used to 

detect flaws in a structure. Soon after the quartz crystal was replaced by Rochelle salt for 

similar underwater sound applications, because of its higher electromechanical coupling 

properties [5]. Rochelle salt was the first crystal discovered with the properties of 

ferroelectric materials, they present spontaneous polarization along one axis of the crystal 

and below their Curie temperature these dipoles line up along this axis. Nowadays over 100 

different ferroelectric materials are known, and because they are the most sensitive and 

provide the higher electromechanical coupling of all piezoelectric materials, they are the 

most commonly used for actuator and sensor applications. Between the different ferroelectric 

materials the most common used ones are the ceramics such as barium titanate and lead 

zirconate titanate (better known as PZT, discovered in the 1950s [6]). PZT ceramics provide 

a high piezoelectric activity and they can be moulded during their preparation into a great 

variety of shapes. For instance the shapes used in this thesis are; disc shape used for 

ultrasonic receiving and generating transducer, and hollow cylinder shape used as a phase 

modulator in the optical fibre interferometric system later described. These PZT ceramic 

shapes are shown in fig. 2.1 together with their vibration modes used in our applications 

(axial and radial mode for the disc shape and radial mode for cylinder shape).    

 

 

 

 

 

 

Figure 2.1: PZT used shapes and vibration modes: (Left) disc in axial mode. (Centre) disc in radial 

mode. (Right) hollow cylinder in radial mode. 

Traditionally contact piezoelectric transducers for ultrasonic generation have been divided 

into two different groups [7,8]; wedge and comb transducers. However modern development 
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in the piezo-based transducers industry has seen the creation of the piezoelectric wafers, 

based on very thin piezoelectric ceramics.  

2.2.1.1 Wedge transducer 

These transducers consist of a piezoelectric material cylinder combined with an angled 

wedge commonly made of Perspex in a configuration similar to that shown in fig. 2.2. The 

cylinder piezoelectric actuator is used in axial mode in order to launch longitudinal waves 

into the structure over which surface the wedge is resting in contact.  
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Figure 2.2: In a wedge transducer the phase velocity of the excited Lamb mode is given by the wedge 

angle and the longitudinal wave velocity in the wedge material. 

The launched longitudinal wave is refracted in the interference between the surface of the 

sample and the wedge, generating also a transversal wave mode. These waves propagate 

within the plate structure by reflection in its upper and lower surface generating new 

transversal and longitudinal waves by mode conversion. At some distance from the 

transducer the interference pattern of these waves no longer allow their individual 

identification and they propagate as a wave packet. For certain cases of wedge angle, plate 

thickness and material properties, constructive interference takes place and a guided wave is 

propagated. In fact depending on the angle of the wedge, different Lamb modes at different 

wavelength can be selectively launched. Because the refraction of plane bulk waves satisfy 

Snell’s law (eqn. 2.1), this law can be used to calculate the resulting phase velocity of the 

generated Lamb wave or to determine the possible combinations of phase velocity and 

frequency of the different Lamb modes that could be generated in the structure. 
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Where θi and θr are the incident and refracted angles of the incident longitudinal mode, 

respectively. ci and cr are the phase velocity of the wave in the wedge and plate respectively. 
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If a single Lamb mode is to be launched then the reflected angle should be 900 (horizontal 

launch of the wave). Applying eqn. 2.1 the phase velocity of the generated Lamb mode (cr in 

that equation) is given by the longitudinal mode phase velocity in the wedge material (ci in 

the equation) and by the wedge angle (θi) or equivalently c = cL / sinθ. Notice that this 

relation imposes a limitation in the wedge material used. This material must be such that its 

longitudinal wave velocity is less than the Lamb wave velocity in the structure. The 

specification of the phase velocity value corresponds to a horizontal line in the material 

Lamb wave phase velocity dispersion curves, that intersects with multiple modes at different 

frequencies. The launched Lamb mode will be given by the frequency at which the 

piezoelectric transducer is excited. For a more detailed discussion see Appendix A and [9]. 

2.2.1.2 Comb transducer 

An array of periodically spaced piezoelectric elements are placed on the structural surface 

with a couplant medium in between to properly transfer the excited longitudinal waves into 

the structure, as shown in fig. 2.3.  

Excited longitudinal waves  

Elements of the comb transducer a 

 

 

 

Figure 2.3: In a periodic array or comb transducer the wavelength of the excited Lamb mode is given 

by the distance between the comb elements. 

The comb pumps energy into the structure by exciting all the elements in phase or out of 

phase, generating bulk waves that propagate in both directions along the structure. The 

spacing between the comb elements a is chosen such that satisfies 2a = λ, with λ being the 

desired wavelength of the generated Lamb wave. The selected wavelength only determine a 

slope in the phase velocity dispersion curves and in theory any intersection of this slope with 

the different Lamb mode curves would allow their excitation as long as the excitation 

frequency of the comb elements is adequately chosen. It is also possible to change the 

excited Lamb wave wavelength (or excited slope in the dispersion curves) by using a 

suitable time delay profiling of the comb elements excitation [8]. Some uses of comb 

transducers for NDT applications are [10], a more detailed analysis is given in [11]. 
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2.2.1.3 Piezoelectric wafers 

Unfortunately the previous conventional ways of generating ultrasounds are relatively too 

heavy, too big and expensive to be considered as an ultrasonic generation technique for 

widespread structural deployment in NDT or SHM applications [7]. In recent years a 

development in the piezo-based transducers has seen a huge improvement on the previous 

limitations by the creation of piezoelectric wafers. Piezoelectric wafers, also called patches, 

are very thin piezoelectric ceramics with lightweight characteristics that can be created in 

small dimensions and moulded in a great variety of shapes, the disc shape being the one 

chosen in this thesis for its omnidirectional radiation characteristics allowing larger 

interrogation zone for NDT applications. Their dimensions are typically of a few millimetres 

in diameter and just a few hundred micrometers in thickness, making them very low cost 

transducers and relatively unobtrusive when bonded or embedded into different structures. 

The most widely exploited piezoelectric ceramic is the PZT type. Their dominant role in the 

piezoelectric wafers market is due to their large radial electromechanical coupling factor kp 

that characterize the ability to generate large radial displacements, and also because they 

have a relatively high Curie temperature (temperature above which the material stops being 

piezoelectric) [12]. This type of ceramic is also chosen for our applications. 

The piezoelectric wafers have several advantageous operational differences with respect to 

the previously described contact transducers: 

 In the wedge and comb transducers the coupling transfer of the ultrasound to the 

structure is weak, with the couplant mainly being water, gel, honey or air. In contrast 

piezoelectric wafers are strongly coupled to the structure by adhesive bonding (in this 

work we used Epoxy bonding) or embedding into the structure, thus following the 

structural dynamics. 

 Wedge and comb transducers excite and sense the structural ultrasonic waves 

indirectly through out-of plane strain by mode conversion of bulk waves interacting 

with the surfaces of the structure. In contrast the piezoelectric wafers excite and sense 

the ultrasound in the structure directly through in-plane strain coupling [7] because 

piezoelectric wafers commonly use their planar mode (also called radial mode for disc 

PZTs as shown in fig. 2.4-right). 

The rest of this section concentrates on the operation of PZT disc transducers for ultrasonic 

generation, as they are the ones used in this thesis. 

Figure 2.4 shows the axial and radial vibration modes of a disc shaped PZT transducer, 

consisting in an elongation or shortening of the material in the direction of the electric field 
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according to its polarity. The physical deformation of the disc is proportional to the applied 

electric field. The medium to which the disc is bonded or embedded causes an opposition to 

this deformation and a stress field is transmitted into the medium. 

Radial mode 
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Figure 2.4: Inverse-piezoelectric effect on a disc shape PZT for its axial and radial modes (left and 

right respectively). (Top) The polarity of the applied electric field generates an expansion of the 

piezoceramic vibration mode. (Bottom) Inverse polarity to previous case generates a contraction of the 

piezoceramic vibration mode. The dashed lines indicate final dimensions. 

Notice that although in fig. 2.4 we show the axial and radial vibration modes of the disc PZT 

transducer independently, in most cases these modes are coupled. 

The equation that describes the response of a piezoelectric material during the inverse 

piezoelectric effect is a tensorial relation between mechanical and electrical variables [13]: 

dETsS E +=  (2.2) 

Where E is the applied electric field, T is the mechanical stress applied to the material, S is 

the strain and sE is the mechanical compliance at a particular value of E. The quantities 

represented in capital letters are vectors and the ones represented in lower case are tensors. 

For a PZT disc bonded to the surface of a material, if an electric field is applied in the 

normal direction to the surface the only significant induced strains are in the axial mode [13].  

The PZT disc in the same way as any elastic plate can oscillate mechanically in a similar 

fashion of a classic mass and spring system. The geometry and mechanical properties of the 

plate define its resonant frequency, such that the largest amplitude of the mechanical 

oscillations is generated when excited at this frequency. In a piezoelectric material the 

excitation is done by applying an alternating voltage to its electrodes. In practice the resonant 

system also include a damping term, which for the case of the oscillating PZT disc is given 
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in the form of internal friction and energy convection as ultrasonic waves are transmitted to 

the adjacent structure. Therefore, the mechanical behaviour of a piezoelectric material near 

resonance can be approximated by an equivalent electrical circuit as shown in fig. 2.5. 
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Figure 2.5: (Left) electrical equivalent circuit for PZT disc operating near resonance. C0 is the 

electrical capacitance, Rm is the mechanical damping and Lm and Cm associated with mechanical 

resonant properties. (Right) Comparison between a toneburst driving electric signal (top) and the 

generated PZT mechanical oscillations (bottom). 

Based in the described mechanical resonant behaviour of the PZT discs, fig. 2.5-right shows 

the PZT response to a toneburst driving electric signal. At the beginning and end of the 

driving toneburst the PZT tends to resist any mechanical change, due to its inertia and elastic 

forces, thus smoothing the oscillation as build-up and decay transients. The effect of these 

transient oscillations is attenuated by increasing the mechanical damping coefficient of the 

PZT, so that the actual oscillation of the disc resembles more closely the driving voltage [3]. 

Alternatively if the driving voltage is windowed then a similar effect can be achieved as 

explained in Appendix E. 

2.2.2 Conventional ultrasonic detection 

The detection of ultrasonic waves by conventional piezoelectric transducers is based in the 

piezoelectric effect. When a stress field is applied over a piezoelectric material, its randomly 

polarized domain structures [3] respond such that a compression perpendicular to the 

direction of polarization or tension parallel to the direction of polarization will generate a 

voltage with polarity opposite to that of the poling voltage. The generated electrical polarity 

is proportional to the magnitude of the applied stress, with tension and compression causing 

opposite polarity as shown in fig. 2.6 for the axial and radial vibration modes of a disc 

shaped piezoelectric material. In this figure the applied stress is represented by red arrows 

and the induced dipole moment is shown as blue arrow. If an electric circuit is connected to 

the electrodes of the piezoelectric material, the induced dipole moment causes an electric 
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transient current to circulate, with compressive and tensile stresses producing currents in 

opposite sense (as shown by the grey arrow in fig. 2.6). It is obvious the great potential of 

piezoelectric effect for the detection of the stress field associated to propagating ultrasonic 

waves.  
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Figure 2.6: Piezoelectric effect on a disc shape PZT for its axial and radial modes (left and right 

respectively). In red the applied external stress and in blue the induced dipole moment (Top) Tensile 

stress and (Bottom) compressive stress produce an opposite sense electric current in an external 

electric circuit. 

2.2.2.1 Piezoceramic sensors 
The equation that describes the response of a piezoelectric material during the piezoelectric 

effect is a tensorial relation between mechanical and electrical variables [13]: 

ETdD Tε+⋅=  (2.3) 

Where D is the induced electrical displacement, E is the generated electric field, T is the 

mechanical stress applied to the piezoelectric material, d is the piezoelectric coupling 

between the electrical and mechanical variables and εT is the dielectric permittivity measured 

at zero mechanical stress (T = 0). 

The dual characteristic of piezoelectric materials (ultrasonic generation and detection) makes 

of piezoelectric sensors adequate for structurally integrated NDT applications and smart 

structures. With the added advantage of modern development that has allowed making them 

smaller, more reliable and cheaper. Therefore they have become the most widely used NDT 

sensors for ultrasonic guided waves applications mainly in their piezoceramic version. 

Piezoceramic sensors have developed into different technologies, with the most important 

being (together with the piezoceramic wafer previously described): 
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SMART Layers (or Stanford Multi-Actuator-Receiver Transduction Layer) 

SMART layers consist in a network of piezoelectric wafer discs embedded in a think 

dielectr res 

T 

particle er matrix [16]. The paint is water based acrylic formulation in 

Centre) a conductive film is sprayed over the piezoelectric paint 

layer to form nd

 used in this thesis, for ultrasonic generation and detection, in those 

ADVANTAGES OF OPTICAL TECHNIQUES 

Most of the limitations related with conventional contact transducers are due to their need of 

couplant [18]: 

ic carrier film [14,15]. This layer can either be surface mounted on existing structu

or integrated into a composite structure during fabrication, allowing the creation of a Smart 

structure by non-destructive assessment of the internal and external states of the structure. 

Piezoceramic paint 

 This piezoceramic sensor is a composite material comprising of finely powdered PZ

s embedded in a polym

which the pigment in conventional paint is substituted by the PZT particles. The passive 

polymer matrix must have high permeability, high modulus and good adhesion to both PZT 

and all common structural materials. In fig. 2.7 we show the simple steps needed to create an 

ultrasonic sensor based in piezoelectric paint (as described in [17]).  

 

 

 

 

    

Piezoelectric 
pain

Conductive 
film electrode

Structure metallic 
surface is the 2nd 

Metallic structure 

t 

electrode

Figure 2.7: Steps for a piezoelectric paint vibration sensor: (Left) Piezoelectric paint is sprayed over 

the surface of a conductive material, (

 an electrode, (Right) attach leads to electrode and structural metal surface (2  electrode). 

When the structure vibrates, the film is stretched with it and an electric charge appears on the 

electrodes. Piezoelectric paint sensors are very suitable for measuring shock and vibration on 

large structures.   

A PZT wafer in a disc shape fig. 2.1 (for its omnidirectional radiation characteristics) is the 

contact transducer

applications that require ultrasonic waves of narrow frequency band. Such as the damage 

detection and location applications described in next chapter, and the experimental work of 

Chapter 4. 

2.3 LIMITATIONS OF CONVENTIONAL TRANSDUCERS AND 
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Variability in the sensitivity and in the bandwidth of the generated ultrasounds; caused 

by an inhomogeneous distribution of the couplant t

 

hrough the contact surface. 

scanning velocities; because it is important to maintain a good and 

homogenous coupling between transducer and structure. 

 propagation of the 

The im nsducers has lead to 

the  free. 

Betwe

[18]. A detailed description of their operation can be found in [3]. Although non-contact, 

EMAT transducers are restricted to structures with a conductive surface layer and they are 

y for single frequency applications at which their resonant 

frequency is tuned. We will see in next chapter examples of such applications 

 

 

 frequently a big 

The m ultrasonic generation and detection applications 

not only offer solutions to most of these limitations: 

 It provides broadband generation and detection of ultrasound (tens of MHz). 

 Flat spectral response (due to the absence of resonant coupling conditions). 

Originating problems of repeatability. 

 Limited 

 Limited temperature application; due to the difficulty to find ultrasonic couplants 

which will work at temperatures in excess of a few hundreds °C. 

 Possible chemical reactions between the couplant and the surface of the sample. 

Contact transducers load the sample’s surface, influencing the 

ultrasonic waves. 

portant restriction of these drawbacks associated with contact tra

 development of other type of non-contact ultrasonic transducers that are couplant

en them, EMAT (Electromagnetic acoustic transducers) are probably the best known 

susceptible to sensitivity variations due to changes in the separation between probe and 

sample surface. Additionally EMAT share other important limitations with piezoelectric 

contact transducers: 

 Narrow bandwidth generated ultrasound; because the piezoelectric element in the 

transducers is a resonant system, generating ultrasonic frequency bandwidths no 

greater than a few hundreds of kHz. For the same reason, piezoelectric transducers 

have great sensitivit

involving damage detection and location. 

Low spatial resolution; no more than a few mm, due to the relatively large size of the 

piezoelectric probes and EMATs. Their size also limits their usability in restricted 

areas or small specimen applications. 

Susceptible to electromagnetic interference (EMI); the electromagnetic radiation 

between the source and detection stages of these transducers is

problem, in addition of pickup of environmental EM radiation [19]. 

odern optical systems developed for 
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 Good electromagnetic environment tolerance; optical fibre is made of a dielectric 

material, thus optical fibre sensors are immune to EMI. This makes optical fibre 

sensors very eligible to be placed close to high EMI sources like power generators, 

 optical fibre sensors providing spatial 

stems are 

  support 
0

ote inspection. 

They 

 

  access, if we use optical fibres 

 

f the light. 

isadvantages in comparison with their 

ele

issues  less sensitivity. 

A 

benefi vide for ultrasonic generation and detection applications are 

sch

 

and to structures inclined to lightening strikes as bridges, tower or aircrafts. 

 Lightweight and high spatial resolution. With

resolutions of tens of µm or even better if non-contact interferometric sy

used, given by the spot size of the focused laser beam. 

 Great geometrical versatility allowing unobtrusive integration for structural 

monitoring and great accessibility to restricted areas by use of mirrors or optical fibre 

to steer the optical beam. 

Adaptability to extreme environment conditions; optical fibre can
0temperatures of around 700 C (with exception of FBGs with no more than 300 C). 

However the use of interferometric non-contact optical techniques allows a completely 

remote inspection (several meters or more) that can operate in corrosive, high 

temperature and radioactive environments [1]. Notice that for EMAT transducers the 

distance from the receiver probe to the sample’s surface should not be bigger than 1 

mm, which cannot be considered a rem

 High speed and repeatable scanning; mainly when a non-contact interferometric 

optical system is used, as the focused measuring laser beam can be changed quickly 

and accurately. 

also provide the following added advantages: 

It launches simultaneously bulk, surface and guided waves. It can therefore be used to 

detect volumetric, surface and subsurface defects. 

The optical beams can reach areas that are difficult to

or mirrors to steer them. 

High degree of absolute accuracy; measurements can in principle be calibrated against 

the wavelength o

Nonetheless optical systems present also some d

ctromechanical counterparts; they are more complex and costly to use, they have safety 

 regarding high power laser radiation and they have

resume of the most important shortcomings of conventional contact transducers and the 

ts that optical systems pro

ematically displayed in fig. 2.8. 
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he conventional contact transducers dominate the vast majority of industrial applications 

for ultrasonic generation and detection [20]. However mber of cases the 
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s requir

with the two applications that this thesis deals with; non-destructive testing (NDT) of 

terials including health monitoring of advanced structural composite materials [18,21] and 

the measurement of material elastic properties [22]. In addition to advantages such as high 

 repeatable scanning and electromagne

complementing a non-contact optical detection technique with a non-contact optical 

generation technique. The broadband as well as flat frequency spectrum response 

characteristic to optical detection techniques is in this way complemented with broadband 

generated frequency spectrum which although not flat, falls slowly and monotonically with 

increasing frequency [23]. The same can be said of the spatial characteristic broad 

bandwidth, as both the optical generation and detection is based in a laser beam which can be 

focused to micrometers dimensions, giving to this technique an advantageous position for 

MEMS technology, cellular biology and acoustic microscopy applications [24]. In the next 

sections we described the non-contact optical generation of ultrasound techniques used in 
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this thesis and also we analyse and compare the four optical fibre systems used for ultrasonic 

detection. 

2.4.1 Optical generation of ultrasounds  

Laser generation of ultrasound has been discussed extensively in the literature [18,21,25,26], 

and the intention of this chapter is to provide only a general overview of the subject.  

Light is not a mechanical entity, though there are various mechanisms whereby light can be 

transformed into mechanical motion. The most basic of these mechanisms is the radiation 

pressure where the momentum of the photons in the light beam is changed as they are 

reflected from or absorbed by a surface. However the principal mechanism involved in laser 

 the light beam induces in the material. We 

ion only takes place within a thin layer in the 

surface named skin depth δ. For wavelengths in the near infrared/visible spectrum δ is given 

2

generation of ultrasound is through the heat that

shall see next how this heat is generated, restricting our analysis to metal materials as this 

group of solids is the one used in this thesis. 

2.4.1.1 Mechanism for optical generation of ultrasound 

When the beam of a laser is directed onto a solid sample, the electromagnetic radiation 

interacts with electrons in the material close to the surface. Some of this incident radiation is 

absorbed by the sample by various mechanisms, whilst the remainder of the energy is 

reflected. The conduction electrons at the surface screen the interior of the material from the 

beam’s radiation, thus the radiation absorpt

by eqn. .4 [18]. 

( ) 2/1
0

−= νµπσµδ r  (2.4) 

Where σ and µr are the electrical conductivity and relative permeability of the material, µ0 the 

permeability of free space and ν the frequency of the radiation. Substituting for aluminium 

with radiation at 1064 nm wavelength, then we get a skin depth of 5 nm (a small fraction of 

the optical wavelength). 

In a metallic material most of the absorbed radiation is transformed into thermal energy 

through resistive loses thereby rface of the sample at a skin depth l

Thermal conductivity distributes this heat through the sample as shown in fig. 2.9 for a 

 heating the su ayer. 

Gaussian time dependence pulsed laser of 20 ns pulse width and 100 mJ energy incident over 

an area of 10 mm2 providing a maximum power density of about 2 MW/cm2. The figure 

shows how at the beginning of time, when the laser pulse is shot, the temperature increases 
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as the pulse energy is being absorbed. Once the laser pulse is stopped, the temperature falls 

as the heat is conduced into the bulk of the material. 

 

 

 

 

 

 

 

Figure 2.9: Temperature distribution in aluminium for a Gaussian time dependence of a laser pulse 

with maximum power density 2 MW/cm2 and duration 20 nsec; (Left) as a function of time for a range 

of depths, (Right) and as a function of the depth at 50 nsec after the pulse is shot. Figure from [18]. 

The induced temperature gradients generate the stress and strain fields by thermal expansion. 

Any temporal variation of these stress fields generate, in turns, elastic waves. In order for 

is stress field variation to take place, the optical beam must be modulated (like in fig. 2.9 

w  

w  

th

here a pulse modulation was assumed) so that the DC component of this modulation causes

a steady rise in the material temperature, and the dynamic component produces the acoustic 

ave. As we can see from the previous figure, the rapid temperature changes occur within a

few microns of the surface, extending the effective source depth from the previous skin 

depth value. The new source depth is given by the thermal diffusion length δω, defined as a 

function of the radiation frequency ω in eqn. 2.5 [18], where σth is the thermal conductivity 

of the material, ρ its density and cs is the specific heat. 

s

th

cωρ
σ

δω
2

=  (2.5) 

The described mechanism of laser generation of ultrasound is exploited in different ways so 

that two ultrasonic source regimes are distinguished; Thermoelastic regime and ablation or 

plasma regime. The next sections provide a brief description of each of them. 

2.4.1.2 Thermoelastic regime 

When the power density of 7 W/cm2 for most metals, then the only 

 

 

 

 

 the radiation is below 10

ultrasonic generation effect that takes place is the one previously described. Thus the 

ultrasonic source can be considered as a centre of expansion in the surface of the material.  
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The sim lest model for this ultrap sonic source is to neglect thermal diffusion effects and 

e 

Fi  a 

centre of expansion with principal stress com ar 

ress components. (Right) Ablation regime. Plasma formation causes a reactive stress predominantly 

normal to the surface. 

In [32

model. It can

the energy of the light source. In o onable ultrasonic wave amplitudes 

approximate it to a surface point heating expansion source, which is equivalent to a set of 

three orthogonal pair of forces (force dipoles) as shown in fig. 2.10-left [27]. The in-plane 

dipoles are equal (D11 = D22), however for a free surface solid body and considering th

heated area to have zero thickness (or the thickness to be much smaller than the laser spot as 

it is in our case), the dipole normal to the surface can be neglected (D33 = 0). The net result is 

an in-plane stress ultrasonic source. A detailed mathematical analysis of this source is given 

in [28]. This model deals with sources of finite dimensions by assuming that they are 

composed of an assembly of point sources over its area. These models predict the major 

features of laser generated ultrasonic waves [29] and they have been positively 

experimentally verified in [30,31] for highly focused and nanosecond duration laser sources.  

 

 

 

 

  

 

 

 

gure 2.10: Optical generation of ultrasounds: (Left) Thermoelastic regime. Ultrasonic source is

ponents parallel to the surface and no perpendicul

st

] the radial displacement values in the far field are obtained based in the previous 

 be demonstrated [18] that for low energy levels (such that vaporization of the 

surface is avoided) a linear relationship exists between the generated sound amplitude and 

rder to generate reas

(around 1 nm) at a distance of 10 cm in the range of frequencies between 100 kHz to 10 MHz 

the most effective method appears to be a short-pulsed laser with peak power of MW and 

nsec pulse width. This is the approach taken in this thesis, where a Nd:YAG Q-switched 

laser source of 5 nsec pulse width, 850 mJ pulse energy and 1064 nm wavelength was chosen 

(for a detailed description of the Q-switching technique see references [33,34]). 

In order to improve even further the signal to noise ratio of the generated ultrasonic signals, 

the laser beam is focused into a line-source rather than a circular spot. In this way more 
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energy can be injected into the surface while keeping the energy density low enough. The 

directionality of a line-source with plane waveforms generated parallel to the line decreases 

t calculates 

 

 

 

 

s predicted by these m ls, the amplitude of the bulk waves generated by laser generation 

 found to be a function of the angle measured from the normal to the surface of a semi-

infi es 

induced b ided that 

the spreading attenuation in comparison with an omnidirectional circular source. 

The equivalent mathematical model for the two-dimensional case of an infinitely long and 

thin line-source excitation has been analysed in [35]. A more accurate model is presented in 

[36] where thermal diffusion and finite length and width of the line-source is taken into 

account. It is also recommended the simplified approach developed in [37], tha

the motion of ultrasonic surface wave pulses generated by the laser irradiation, of arbitrary 

time dependence, at a point and a finite line of a homogeneous isotropic solid. 

The most accurate models [36,37] of thermoelastic excitation that take into account the 

thermal diffusion disagree with the approximated models only in the near field close to the 

radiated region, however in the far field (which is satisfied in our experiments) both models 

are indistinguishable.   
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Figure 2.11: Directivity pattern of longitudinal waves (Left) and transversal waves (Right) for 

thermoelastic regime source in Aluminium. Amplitudes plotted in arbitrary units. 

A ode

is

nite metal body. The directivity patterns of the transversal and longitudinal mod

y both point source and line-source are very similar as shown in [30], prov

the directivity patter of the line-source is determined in a plane perpendicular to the surface 

of the material and the line itself. These directivity patterns are illustrated in fig. 2.11 for 

aluminium. They are characterized by having little radiation either perpendicular or parallel 

to the surface of the metal. Meanwhile the longitudinal mode is predominately radiated at an 

angle of 60o, the transversal mode has an enhanced directivity at an angle of 30o.  
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We must notice that both directivity patters are not in the same scale, however for 

thermoelastic regime both longitudinal and transversal modes are generated with same order 

When the power density of the radiation is increased by any means (for instance decreasing 

e er spot for a given pulse energy or increasing the pulse energy 

lation 

in fact in the a  normal to the 

d as 

of magnitude [3]. 

2.4.1.3 Ablation regime 

the puls  duration or the las

itself) over a specific threshold which depends in the material (~ 107 W/cm2 for most metals), 

then its surface starts boiling (as shown in fig. 2.10-right). Sample to the depth of several 

micrometers is vaporized forming plasma [18]. This ablation of material produces a reactive 

stress predominantly normal to the surface. Thus the ultrasonic source in this regime has its 

principal stress normal to the surface of the solid body, in contrast to the in-plane stress 

component of the thermoelastic regime. The difference between the ultrasonic sources of 

both regimes is evident as well in the far-field directivity pattern of the longitudinal and 

transversal modes generated by them. Like we did for the thermoelastic regime, we have 

represented in fig. 2.12 the directivity pattern of both bulk waves for an aluminium semi-

infinite body. The longitudinal mode is principally radiated in a direction normal to the 

surface, whereas the transversal mode is radiated mainly at an angle of 35o. 

 

 

  

 

 

 

 

 

Figure 2.12: Directivity patter of longitudinal waves (Left) and transversal waves (Right) for ab 
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regime source in Aluminium. Amplitudes plotted in arbitrary units. 

As with the thermoelastic directivity patterns, the ones shown here are not in the same scale, 

blation regime the amplitude of longitudinal waves radiated

surface are of higher order of magnitude than the transversal modes [3], giving support to the 

affirmation that the ablation regime is dominant normal to the surface ultrasonic source. 

The ablation regime causes inevitably surface damage, however in applications where 

surface conditions is not important this ultrasonic generation technique can be considere
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non-destructive. In fact as noted in [38] ablation regime by high power short pulsed lasers 

are inefficient in removing material from target. The reason being that the very high power 

density of the pulse causes only a small mass of the material to absorb the radiated energy, 

which vaporizes almost explosively at a very high temperature. The resulting plasma screens 

the remaining part of the surface from the pulse and the high pressure of the plasma raises 

the boiling point of the material suppressing new metal loss. 

In the ablation regime the generation of compression and surface waves is enhanced by 

increasing power density, but shear waves will reach a maximum near the onset of plasma 

rasounds 

In conclusion, the thermoelastic source with its dominant in-plane motion will naturally 

e this mode has commonly 

The optical generation of ultrasound by a short pulse from a Q switched Nd:YAG laser with 

es high peak temperature increments 

and then decrease as the power density increases [18]. 

2.4.1.4 Conclusions about optical generation of ult

couple more efficiently into symmetric Lamb mode launch becaus

a main in-plane displacement component (see Appendix A). Whereas the plasma regime 

with its normal to the surface reaction component couples more efficiently into 

antisymmetric Lamb modes with a main out-of-plane displacement component associated. 

The compatibility of the plasma regime out-of-plane reaction component, with the out-of-

plane displacement sensitivity of the laser interferometer used in the optical detection stage 

of this thesis (shown later in this chapter), made us choose an ablation ultrasonic source. 

With the additional benefit that this regime provides ultrasonic waves of higher amplitude in 

comparison with the thermoelastic regime as higher power densities are required. 

2.4.1.5 Low power laser generation of ultrasound 

a pulse energy of significant fraction of a joule, provid

which allows good optical to acoustic conversion efficiency. But also an important 

propensity to cause significant surface damage.  An alternative examined involve CW low 

power lasers with modulated output intensity. The low power laser source reduce the 

maximum temperature increment of the surface thus also the conversion efficiency. Then 

higher optical energy should be provided to the material, by means of increasing the average 

laser power (a 1W semiconductor laser source is used). Still the amplitude of the generated 

ultrasound is small and the detected signal will be dominated by thermal noise in the detector 

system, unless very narrowband sensitive lock-in detection schemes are used [39]. 

Alternative that has problems of frequency dependent detector positioning. A better 

approach taken by our group is based on the total random characteristic of the thermal noise, 
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thus the ultrasonic wave can be separated from the noisy signal by applying a pseudorandom 

noise modulation technique, which allowed a broadband Lamb wave generation [40] 

although often not as large as that generated by Q-switched high power pulse lasers. In our 

case, the laser diode source is modulated with a Golay code [41], chosen for its preferential 

autocorrelation characteristics for the unipolar signal representation suitable to optical 

systems intensity modulation. The highly noisy detected signal is cross-correlated with the 

laser diode driving signal. The overall effect of the code consists in generating a series of 

impulses into the sample plate which later are averaged during the correlation process, being 

able in this way to extract the acoustic information from a very noisy signal. 

The SNR of the ultrasonic signals generated by low power laser sources can be enhanced by 

applying elastic constraint at the heated surface as demonstrated in [42] in collaboration with 

All the optical detection systems used in this thesis and presented in the next sections are 

re multiple reasons for doing so; optical fibre 

minates a measurand volume in which the light is 

mo

other members of our research group. In this case a light absorbing material with high 

thermal expansion coefficient (black paint) was chosen to further enhance ultrasonic 

generation. The main effect of the constrain is to introduce a large stress normal to the 

surface by a combination of increased absorption and vaporization of the constrain layer. 

2.4.2 Optical detection of ultrasounds  

based on optical fibre technology. There a

systems allow an easier and more flexible handling of the sensing light beam than bulk 

optical components, and avoid the alignment difficulties of bulk systems. They are portable 

in opposition to most bulk optic systems, and they are safer because the laser beam is always 

confined within the fibre, and reduce the optical energy lost and scattering noise due to the 

laser beam interacting with the surfaces of the bulk optic components. Most importantly 

optical fibre sensors have the potential of being unobtrusively integrated into the structure 

under inspection, which is of great advantage for the SHM and NDT applications that this 

thesis aim to demonstrate. Additionally optical fibre sensors are compatible with modern 

telecommunication data transmission systems and they are intrinsically low-loss, therefore 

providing to the monitoring system of a truly remote operation from the processing centre. 

The sensing principle of an optical fibre sensor is divided into two groups regarding the way 

they sense the environmental effects: 

 Extrinsic sensors (fig. 2.13-left): the optical fibre acts as a guide of the light into a 

transmitting optical system that illu

dulated by different interactions with the environmental signal to be evaluated. Later an 
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optical fibre is again used to guide the modulated light collected by a receiver optical system 

towards the photodetector. The optical fibre is used as information carrier by its guided light. 
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Figure 2.13: Extrinsic and Intrinsic optical fibre sensors. 

 Intrinsic sens e optical fibre that 

gu

work with four different optical fibre sensors that are suitable candidates to 

2.4.2.1 Fibre Bragg gratings 

9 by Meltz and co-workers [44], fibre Bragg gratings have 

ors (fig. 2.13-right): now the light does not leave th

ides it. The physical measurand is encoded as a change in a property of the optical signal 

being carried in the core of the fibre. The wide range of available optical fibre sensors allow 

sensing of virtually any environmental effect of interest; strain, temperature, pressure, 

displacements, vibration, acceleration, speed, rotation, force, humidity, viscosity and surface 

condition [43].  

In this thesis we 

be part of a fibre optic smart structure application. These are; two different Mach-Zehnder 

configuration interferometric sensors, polarimetric sensor and fibre Bragg grating sensor. 

Between them only one of the Mach-Zehnder interferometer configurations (named modified 

Mach-Zehnder) belongs to the extrinsic sensors group and it is also the only one that allows 

remote detection of ultrasonic waves. The operation of these optical fibre sensors and the 

principles of their transduction of the measurands involved in ultrasonic sensing applications 

(strain, displacement and pressure) is the subject of the next sections. 

Since their demonstration in 198

seen an explosion of activity and a growing importance and dominance in the optical fibre 

sensors, smart structures and structural health monitoring communities. This is illustrated by 

the enormous percentage of papers based in these sensors in comparison with other sensor 

devices that a literature survey of the main conferences in the previous subjects show [45-

47]. The major reasons that make FBGs so prominent not only in ultrasonic detection 

applications but also in optical communications, sensors and lasers applications [48] is; their 

very good long term stability and high reliability [49], their multiplexing capabilities and 
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their multifunctionality to measure strain, pressure and temperature with easy calibration and 

providing absolute values of these magnitudes. 

FBG fabrication is based in the fibre photosensitivity discovered by Hill in 1978 [50], 

The grating i perturbation 

consisting in the permanent change in the refractive index of the core of a guided wave 

device when irradiated with ultraviolet light. An FBG is a permanent, periodic perturbation 

of the core’s refractive index of an optical fibre by exposing it to a spatially varying pattern 

of ultraviolet intensity radiation (fig. 2.14). 
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Figure 2.14: Illustration of a uniform fibre Bragg grating, where the fibre core refractive index 

appears modulated and its filtering effect over an incident pulse of light. 

s characterised by its period Λ, amplitude of the refractive index 

and length L (usually between 1 to 20 mm). For a single mode fibre Bragg grating (as those 

used in this thesis), when the incident guided mode interact with the gratings, a certain 

proportion of its light is scattered at each grating plane. Under appropriate conditions, certain 

scattering directions may be found where the wavelets created at each plane are in phase, if 

this directions correspond to the backward direction of the single guided mode, then a 

resonant condition is satisfied and strong scattering occur. As shown in [51] by treating the 

FBG as an optical diffraction grating, we obtain the coupling between forward and backward 

guided mode takes place when the light propagates at the Bragg wavelength λB defined in 

eqn. 2.6. 

Λ= effB n2λ  (2.6) 

Where neff is the fibre core effective refractive index (defined by neff = nfibre_core(λB)/ nair(λB

 

)). 

In order to calculate the spectral grating characteristics, that is the spectrum of the reflected

and transmitted portions of the incidental light, in most cases coupled-mode theory is applied 

[52]. This theory solves the propagation of the superposition of existing modes in the guided 

wave under the boundary conditions of the perturbation caused by the presence of the 

gratings. In the case of a uniform grating this problem has analytical solution as given by the 
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intensity reflection spectrum r on eqn. 2.7. The intensity reflectivity r represents the 

relationship between the reflected intensity Iref to the total incident intensity I0 to the grating.  

The transmission spectrum can be obtained by τ = 1-r.  

( )
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2
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I
r ref

σσ −⋅−
==  

(2.7) 

Where 
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nvk δπ

⋅⋅=  is the AC coupling coefficient, effnδ
λ
πδσ 2ˆ +=  is the DC coupling 

coefficient and ⎟
⎠

⎜
⎝

−=
D

effn
λλ

πδ 2

Λ is the design waveleng

⎟
⎞

⎜
⎛ 11 is the detuning factor with λ being the light wavelength 

and λD = 2neff th for Bragg scattering by an infinitesimally weak 

( )

grating δneff → 0. The rest of the parameters are related with the perturbation to the fibre’s 

effective refractive index by the presence of the uniform grating,  which if considered along 

the z axis (taken as the fibre axis as shown in fig. 2.14) this perturbation is given by: 

( ) ⎥
⎦

⎤⎡ ⎞⎛ π2
⎢
⎣

⎟
⎠

⎜
⎝

⋅
Λ

⋅+⋅= zvznzn effeff δδ cos1  (2.8) 

If the optical fibre has a step-index profile (as in most common cases) then we can relate the 

effective refractive index modulation δneff in eqn. 2.8 with the fibre core refractive index 

modulation δnco by δneff ≈ Γ·δnco where Γ is the confinement factor, which gives the ratio of 

the power guided in the core to the total power of the mode of interest.  

( )kLr 2tanh=  max (2.9) 

By differentiation of eqn. ht wavelength we obtain the expressio 2.8 respect to the lig n for 

maximum reflectivity of the grating (given by eqn. 2.10). The maximum occur when 

0ˆ =σ so that all reflected waves are phase matched. It is easy to prove that in order to 

 this condition, the light wavelength must be equal to: satisfy

Λ=≈⎟
⎟
⎠

⎞⎛ nδ
⎜
⎜
⎝
+==

= effD
eff

eff
D n

n
21

0ˆmax λλλλ
σ

 (2.10) 

Where we have taken into account that in most cases 1 >> effeff nn /δ [53]. Notice that the 

 of the light travelling along the 

fibre line as it reflects the light in a predetermined range of wavelength centred around the 

expression for the wavelength associated to the maximum Bragg grating reflectivity is equal 

to what it was defined as Bragg wavelength λB in eqn. 2.6. 

An FBG is in effect a filter for the electromagnetic wave
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peak value at λB. An example of a typical fibre Bragg grating reflectivity spectra is plotted in 

blue in fig. 2.15. The sidelobes presented at both sides of the centre peak are due to multiple 

reflexions from and towards the opposite borders of the grating region. Hence an ideal 

grating infinitely long would have a delta Dirac reflectivity spectra. The particular 

reflectivity spectra of fig. 2.15 is associated to the FBGs used in the experimental work later 

presented with L = 1mm, Λ =5.25*10-7 – 5.3*10-7 m, neff = 1.45, v =1 and δneff =4.2*10-4. 

 

 

 

 

 

 

 

 

Figure 2.15: (Left) Typical reflectivity spectrum of a uniform FBG as a function of the light 

alized waveleng respect to the Bra elength (λB). Ultrasonic waves cause a horizontal 

Se

The Bragg wavelength as given in eqn. ing parameters neff and Λ, 

 pressure, strain or temperature applied to the fibre [48]. 

mperature induced strain is 

present, then the shift of the Bragg wavelength for a given temperature change ∆T is given 

by [53]: 

norm th gg wav

shift of the spectra. 

nsor characteristics of FBGs 

2.6 is a function of the grat

which are affected by changes of

Therefore the basic principle of operation of optical fibre sensors based in a FBG is to 

monitor the shift in the Bragg wavelength caused by the changes in the measurand. As 

calculated in [54] for a grating of λB = 1.557 nm inscribed in a Ge/B co-doped fibre, the 

normalized temperature sensitivity is given by (1/ λB)·(∂ λB /∂T) = 7.06·10-6 0C-1, the 

normalized pressure sensitivity is (1/ λB)·(∂ λB /∂P) = 2.02·10-6 MPa-1 and the axial strain 

sensitivity is (1/ λB)·(∂ λB /∂ε) = 0.772·10-6 µε-1. These values clearly show that FBGs are not 

as good pressure sensors as they are for temperature and strain measurements. Therefore 

here we just concentrate in the last two parameters sensitivity. 
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Where λB0 is the Bragg wavelength with no strain and at room temperature, α is the thermal 

expansion coefficient of the fibre. The second te of eqn. 2.11 is related with the th

optic effect which is the dominant one. Although α and ∂ neff /∂T depend in the fibre 

e consider that the strain 

wavelen  than the length of the FBG (so that at any time the strain can be 

rm ermo-

composition, in most common fibres we can approximate α as varying between 0.55-1.1·10-6 

and ∂ neff /∂T ≈ 10-5 1/K. Hence for a FBG with λB = 1.53 µm and neff = 1.445, the temperature 

sensitivity is given by ∆λB / ∆T = 11 pm/K at room temeperature. 

Strain sensitivity 

We consider now that the temperature is fixed and a strain field εZ travelling along the axis 

of the grating (axis of the fibre, named axis Z in fig. 2.14). W

gth is much greater

considered constant along all the grating), then the shift of the Bragg wavelength is given by 

eqn. 2.12 [55], where ν is Poisson’s ration and p11 and p12 are the components of the strain 

optic tensor.  
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For a typical silica fibre hus for same conditions as 

before λB0 = 1.53 t room temperature is

by ∆λB / εZ = 1.21 pm/µε. 

sonic detection applications mainly only the strain perturbation 

n be considered fixed or its variations can be 

ν = 0.17, p11 = 0.12 and p12 = 0.27, t

µm and neff = 1.445, then the strain sensitivity a  given 

Ultrasonic wave detection characteristics 

Although in a more general case the FBG will be affected by both effects (temperature and 

strain variations), in ultra

effect is of interest and the temperature ca

compensated by using an extra FBG sensor just for temperature sensing. Therefore in 

ultrasonic sensing we are mainly interested in the Bragg wavelength shift given by eqn. 2.12, 

where for a sinusoidal ultrasonic wave of frequency ωS and wavelength λS, the strain can be 

given by εZ = εm·cos(2πz/λS – ωS ·t). When λS >> L (as it is the case in our experiments) the 

reflectivity spectra response of the grating keeps it shape and the effect of the ultrasonic 

strain field is a shift of all the spectra equal to the Bragg wavelength shift as given by eqn. 

2.12. This is shown in fig. 2.15-left with the reflectivity spectra under no strain given in blue 

and the spectra under strain is given in red. Although the shift of the spectra is towards 
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increasing wavelength values, however for a sinusoidal strain field it will oscillate around 

the Bragg wavelength as the strain oscillates between positive and negative values as shown 

in fig. 2.15-right.   

The FBG sensor interrogation method used in this work (see next chapter) for ultrasonic 

wave detection measures the shift in λB indirectly by detecting the modulation on the 

reflected optical power while the input light wavelength is kept constant in the linear region 

ed in the sample to be scanned to form a 

n of the 

light propagating within the interferometer. The interferometer achieves the phase 

e particular type of interferometer used; two-

 divided at the first directional coupler into the two fibre arms of the 

of the sensor (usually in the region where the reflectivity is between 20 to 80% of the 

maximum, as shown by a green line in 2.15-right). 

FBGs are used to measure mainly in-plane strains along its axis and since they are generally 

so small (few mm) compared to the ultrasonic wavelength, they are considered to be point 

scanning sensors. FBG can be bonded to or embedd

contact detection system. Because FBGs are characterised by very low insertion loss they are 

suitable for multiplexing in series along a fibre and are thus ideal for multiple sensor 

applications, where time and wavelength division multiplexing can be applied [56]. 

2.4.2.2 All-fibre interferometric systems 

In an interferometric system the measurand is encoded as an optical phase modulatio

demodulation in different ways regarding th

beam interferometer, birefringent interferometer, multiple beam interferometer, etc [57]. We 

concentrate this section in the first type as it is the kind of interferometer used in our 

experimental work. 

The two-beam interferometer in an all-fibre Mach-Zehnder configuration is shown 

schematically in fig. 2.16. The light from a highly coherent source is coupled into the system 

input fibre and then

interferometer. One of the optical paths, named sensing arm, is optimized for sensitivity to 

the environmental effect of interest and it is the light that propagates within that suffers the 

phase modulation by interaction with the ultrasonic wave. While the second optical path, 

named reference arm, is as environmentally isolated as possible and it presents various 

optical components in order to maximize the phase change and so the interferometric 

sensitivity (as shown later). Both interferometric arms are combined coherently at the end of 

the system in a second directional coupler, to produce a fluctuating light intensity due to 

constructive and destructive interference as the relative phase of the signal and reference 

beams changes. This optical intensity fluctuation is carried to two photodetectors to convert 

it into a more manageable electronic signal.  
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Figure 2.16: The two-beam all-fibre interferometer in a Mach-Zehnder configuration. 

his approach allows the meas xtremely small phase differences between both 

ombined beams as induced by the measurand. 

Through a am 

 each of them is given by eqn. 2.13, if 

T urement of e

c

 detailed analysis of the propagation of the electric field of the input light be

towards the two output photodetectors, which is commonly found in the literature [57], one 

can obtain that the optical power arriving to

polarization effects are ignored (in practice this is a good approximation, however under 

other detection principles; f.i. the polarimetric sensor (as shown later) the polarization effects 

can be dominant). 
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Where the sign - is for photodetector 1 and sign + for the photodetector 2, which basically 

means that their inputs are in exact antiphase. The rest of the parameters are defined as; I0 

input  jth dire power from the laser, kjc and kjt are the electric field coefficients for the ctional 

coupler (where the subindex c is for the coupling of the beam from one arm to the other, and 

the subindex t is for the transmission of the beam within the same arm) in both cases they are 

real numbers. We have considered that the couplers add π / 2 radians during coupling [57]. γ 

is the degree of coherence of the source. ∆Φ is the difference on the optical phase delay of 

the beams at the end of both arms, which can be rewritten as the integral effect of the 

difference in their optical path length as: 

[ ]∫∫ −=∆ ndlndl
0

2
λ
πφ  (2.14) 

Where λ0 is the wavelength of the laser source in vacuum, n is the fibre refractive index and 

dl is a length element  optical intensity in the

photoreceivers can be further simplified on  50% couplers without losses so that 

of the fibre. The expression for the  

by c sidering

kjc = kjt = 2/1  and by defining the visibility of the interference V as: 
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We can see that the visibility of the inte gree of source coherence,

being a reason for an interferometric sensor to require a very good quality laser source. It can 

rference is equal to the de  

be proved [57] that γ =1 if the coherence time of the laser source is much bigger than the 

differential propagation delay time between reference and sensing arms. The laser source 

used in our experimental interferometers (as described in Chapter 3) is characterised for 

having a very stable frequency with a long coherence length, this allows the length of the 

reference and sensing arms not to require a perfect match. 

The simplified expressions of the light in the photodetectors are given by: 

( )[ ]φ∆±= cos10I
I  

2i (2.16) 

A differential combination of t by both photodetectors would 

produce a photocurrent i

he electric signals given 

 output equal to: 

( )φε ∆= cos0Ii  (2.17) 

Where ε is the responsivity of the photodetector. We can now rewrite the differential phase 

shift between both arms of the mbination of a slow varying phasinterferometer as a co e shift 

Φd (due to environmental perturbations acting in both arms that includes any phase 

difference between due for instance to a length mismatch) and the term due to the interaction 

of the ultrasonic wave with the sensing arm dΦ (therefore ∆Φ = Φ + dΦ). For a sinusoidal 

propagating acoustic wave, we can rewrite dΦ = ΦS sin (ωS t), for ωS being the ultrasonic 

frequency and where the amplitude of the induced phase difference ΦS can be correctly 

assumed to be small. Therefore the varying photocurrent given by the photodetectors for a 

detected ultrasonic signal perturbation would be given by: 

( ) ( )tIdi SSd ωφφε sinsin0 ⋅∝  (2.18) 

Active homodyne demodulation 

The greatest sensitivity of ter occurs when it operates in quad

ference between reference and sensing arm correspond to 

a homodyne interferome rature, 

at which the optical path phase dif

Φd = (2m+1)·π/2 for m being an integer. In this case we have that sin(Φd) =1 and then di 

caused by dΦ is maximum (from eqn. 2.18). Opposite would happen if Φd = m·π as di would 

be zero, causing a vanishing of the detected ultrasonic signal (shown in fig. 2.17 from [43]). 
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However in a practical interferometer, the environmental perturbation will cause the phase of 

the reference arm to slowly change so that Φd changes with time, causing a continuous drift 

 we name ΦPZT the phase shift caused by the PZT cylinder in the reference arm. Then if the 

photode

of the interferometer sensitivity. The more the sensitivity drift the longer the length of the 

reference arm. For instance optical fibres at an optical wavelength of 1 µm, are affected by 

temperature with an optical phase shift sensitivity of 100 rad/m·0C, by pressure as 10 

rad/m·bar, by strain as 10 rad/m·µε and by rotation as 0.05 rad/m2·rad·s [58]. This problem 

is commonly corrected in homodyne interferometers by actively control the phase in the 

reference arm compensating the environmental low frequency perturbations. This is done by 

adding a piezoelectric cylinder that stretch the reference arm fibre around it, thus modulating 

the reference optical path length and so the phase of the light within it [59]. 

 

 

 

 

 

 

 

Figure 2.17: Two-beam homodyne signal amplitude in relation to its operation po
 

i Φ

Φd 

d = m·π Φd = (2m+1)·π/2 

int. 

If

tectors output is low pass filtered, the obtained signal would be given by: 

( )PZTdIi φφε −⋅= cos0  (2.19) 

If the interferometer is held in quadrature, then Φ  - Φ  = (2m+1)·π/2 and the low d PZT

frequency output of the ould cancel. However small low freqinterferometer w uency 

deviations from quadrature (by environmental perturbation) would generate a bipolar low 

frequency interferometric output: 

( )PZTdQuadrature
Ii φφε −⋅−=∆ 0  (2.20) 

The bipolar output signal  experiences a sign change when passing through 

quadrature, becoming a v linder as a fee

- ΦPZT). This active demodulation approach is commonly known as low-gain mode of 

 in eqn. 2.20

ery useful error signal fed into the PZT cy dback 

voltage by an electronic servo loop. The high frequency output signal from the 

interferometer in the small-angle approximation for the ultrasonic signal modulation dΦ, is 

directly proportional to the ultrasound in a similar way as in eqn. 2.20 with dΦ instead of (Φd 
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operation [43] and it is the one chosen in this thesis, because it has the advantage of a high 

frequency response (limited only by the photodetector) and it has the lowest noise floor 

typically achievable with homodyne interferometric sensors [43]. In addition decoupling the 

high and low frequency detection circuits allow a greater gain to be applied to the ultrasound 

signal by the high frequency detector, due to the removal of the higher magnitude DC 

component [60]. 

Maximize phase change by adding optical components in the reference arm 

The previous derivation of the optical intensity arriving to the photodetectors was considered 

for a neglectable attenuation in the arms of the interferometer or at least an identical 

g arm, the 

oop) 

In the other h  in fig. 2.18 presents two different configurations. The one 

nam

bonded

attenuation. If a different attenuation is considered for reference and sensin

visibility of the interference decreases [43], in a similar way if we include the effects of the 

polarization state of the beams propagating in both arms we would notice that the best 

sensitivity would be achieved if the interfering beams have the same polarization state.  

Hence in most cases a more accurate scheme of the two-beam interferometer is the one 

shown in fig. 2.18, where the reference arm includes not only the PZT cylinder phase 

modulator as previously described (together with a description of the feedback control l

but in addition it also contain two other components to maximize the phase change 

elucidated. These components are: 

 Polarization controller: it allows adjusting the polarization of the light in the 

reference arm to be matched to that of the signal arm, maximizing the light 

interference in the output. 

 Variable optical attenuator (V.O.A.): to match the light intensity in the reference arm 

with that in the sensing arm obtaining maximum visibility of the interference fringes. 

and the sensing arm

ed a) is a pure Mach-Zehnder sensing arm configuration, consisting in a single fibre 

 to the surface or embedded within the plate where the ultrasound is propagating. The 

configuration identified as b) is slightly different and it resembles the sensing behaviour of a 

Michelson interferometer because the sensing beam is focussed and reflected from the 

surface under inspection (which acts as a moving mirror). Nevertheless because the sensing 

and reference beam do not return back through the sensing and reference arm to interfere, it 

is not a pure Michelson interferometer. We have named this configuration as modified 

Mach-Zehnder interferometer. Next we look in more detail how the interaction with the 

ultrasonic wave takes place in each configuration. 
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Figure 2.18: Schematic of the fibre interfer ion systems: a) Mach-Zehnder 

configuration, where the  sensing ce or embedded e 

st

the s  

2

In this configuration a finite length of the sensing arm optical fibre is bonded to the surface 

nder inspection. The transduction mechanism is 

 is also an integrating sensor, because the sensor length is much 

ometric ultrasonic detect

arm is bonded on the surfaoptical fibre  into th

ructure. b) Modified Mach-Zehnder configuration, where the light of the sensing arm is focused onto 

urface of the plate and its scattered light collected. The optical components in the reference arm

are needed to optimize the system performance. V.O.A. is a variable optical attenuator. 

.4.2.2.1 Mach-Zehnder configuration 

or embedded into the structural material u

based in the strain-optic effect by which pressure field of the acoustic wave acting on the 

optical fibre produces a modulation of its refractive index n causing a difference in the 

optical phase with respect to the reference arm as defined by eqn. 2.14. A more detailed 

analysis of this interaction can be seen in Chapter 4 where a mathematical model of this 

transduction is presented. 

This is obviously an intrinsic sensor and it is sensitive to both in-plane and out-of-plane 

stress field components. It

bigger than the ultrasonic wavelength therefore it is modulated by a finite size of the 

ultrasonic wavefront rather than by only one point of it. The complexity of this integration 

interaction is described in Chapter 4, however this complexity comes in exchange of its 

advantage that one such detector transducer with one ultrasonic source cover a larger 

scanned area than the single strip from source to sensor provided by point scanning sensors. 
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This sensor configuration is a contact technique because the sensing fibre is fixed in position, 

however it provides good repeatability with minimal variation in the acoustic coupling at the 

re is embedded is between 10 to 20 times more sensitive to Lamb waves than 

ach-Zehnder configuration 

In this extrinsic sensor configuration, the beam propagating in the optical fibre of the sensing 

 a pigtailed optical fibre GRIN lens 

h of the air gap added to the sensing 

bre to interact with the surface 

interface. 

Finally it has been demonstrated experimentally that the interferometer operation when the 

sensing fib

when it is bonded [61]. 

2.4.2.2.2 Modified M

arm is connected through a directional coupler into

assembly (as shown in fig. 2.18b). The GRIN lens focuses the sensing beam perpendicularly 

onto the surface of the plate where the ultrasound is propagating. This adds an air gap into 

the sensing pathway. The scattered light from the sample was again collected back by the 

same GRIN lens into the sensing arm optical fibre and then recombined in the second 

directional coupler to interfere with the reference beam. 

The modulation of the phase of the light in the sensing arm for this interferometric 

configuration is caused by a change in the physical lengt

arm as the sensing light beam reflects from the surface of the sample subjected to ultrasonic 

out-of-plane displacements (as by the configuration in fig. 2.18b). Other orientations of the 

GRIN lens sensing probe (f.i. at 45 degrees) would allow the detection of in-plane surface 

displacement in addition to the out-of-plane one. However this would require additional 

measurement beam collection optics in order to separate both components as shown in [61]. 

The complexity of such systems and because the out-of-plane displacement serves our need 

made us chose the single configuration previously presented. 

In this configuration the V.O.A. in the reference arm is of great importance because due to 

the fact that the sensing light beam has to leave the optical fi

of the plate it suffers a substantial optical loss. This loss has to be compensated by a similar 

loss in the light in the reference arm (via the V.O.A.) to improve the visibility of the 

interference and so the sensitivity of the system. The sensitivity is also proportional to the 

total optical power collected in the interference recombination of sensing and reference beam 

(see eqn. 2.18), because the dominant noise source of this interferometers is usually the shot 

noise of the photodetector used [62], which is improved by increasing the incident optical 

power. Therefore this interferometric configuration requires an effort to achieve effective re-

collection of the scattered light, for that a highly reflective sample surface and short focal 

length GRIN lens is used. The high reflectivity of the sample surface can be achieved by 
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polishing it or, as done in our experiments, by bonding a highly reflective film (3M Optical 

Enhancement Films) layer which provides a reflectance of 95%. Because this layer is very 

thin (63 µm thick) it guaranties no perturbation on the propagating Lamb waves at the 

frequencies of interest. 

The present optical system has much in common with optical coherence tomography (OCL), 

first demonstrated in 1991 [63]. OCL is an interferometric, non-invasive optical tomographic 

g a non 

am. This sensor 

The experimental ultrasonic signals obtained with the Mach-Zehnder interferometric system 

 dependent on the polarisation state of the light in the optical 

imaging technique, widely accepted in ophthalmology and other biomedical applications, 

offering millimetre penetration (approximately 2-3 mm in tissue) with sub-micrometre axial 

and lateral resolution. These resolutions are achieved by applying low-coherence 

interferometry. In contrast to the conventional interferometry with long coherence length (as 

that used in all the interferometric systems here presented), in OCT the interference is 

shortened to a distance of micrometres thanks to the use of broadband light sources. 

A special feature of the modified Mach-Zehnder interferometer optical fibre sensor, 

compared to the other systems here described, is that it is the only one allowin

contact and remote detection of the propagating ultrasonic wave. The advantages of this 

detection system appear enormously increased when combined with an also non-contact 

optical technique for ultrasonic generation. In that case a complete non-contact and remote 

inspection tool is created which has no rival in applications involving hazardous 

environments and extreme conditions like for instance process monitoring and on-line 

quality control during fabrication of high specifications composite materials [18]. The 

development of such a tool and its application for measuring elastic property of materials has 

been one of the main targets of this thesis as presented in chapters 6 and 7. 

Finally the modified Mach-Zehnder configuration is a point-to-point scanning sensor 

because the scanning part of the sensor is a highly focused sensing be

provides a very high spatial resolution (few µm or less), which is fundamental for the elastic 

property measurements applications for which it is intended.  

2.4.2.3 Polarimetric sensor 

were found to be to some degree

fibre sensor. Effectively when an acoustic wave interacts with an optical fibre bonded onto 

its surface (or embedded within it), the fibre is subjected to a pressure field that changes not 

only the effective refractive index of its core but also the birefringence of the fibre. The 

Mach-Zehnder interferometer is designed to mainly monitor the changes that take place in 

the refractive index of the sensing fibre although it is in a smaller degree also affected by the 
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birefringence modulation of the fibre. An optical system was designed to be more suited for 

monitoring the induced birefringence, based in polarimetry.  

The polarimetric system consist simply of a length of standard, single mode, non-

birefringent optical fibre either bonded to the surface or embedded within the sample plate 

ous optical components of the polarimetric 

of the l e sensing fibre, which is converted into an 

the opt  plate. 

under test. The sensing principle is based on the modulation of the polarization state of the 

propagating light within it, due to the birefringence that the ultrasonic wave pressure field 

induces in the fibre. A better understanding of the induced birefringence is gained by 

studying the Lamb wave particle motion around the diameter of the optical fibre sensor as 

shown in Chapter 4. That analysis shows that the compressions and the expansions caused by 

the plate’s particle movements around the fibre, causes compression and expansion pressures 

with two main orthogonal components, which are parallel and perpendicular to the plate 

where the fibre is bonded or embedded. This two main pressure axis constitute the two 

polarization axes of the induced birefringence. 

The changes in the polarization state of the light emerging from the fibre sensor is converted 

into optical intensity modulation by the vari

sensor system, as shown in the set-up of fig. 2.19. Its operation is described next. 

 

 

 

 

 

 

Photo-detector  
GRIN lenPolarization 

controller  

PZT source  

Linear 
Polariser  

Bonded/embedded fibre  

s  

Sample plate  

Collimated light  

Figure 2.19: Polarimetric sensor system for Lamb wave detection. The acoustic wave pressure field 

modulates the polarization states ight within th

optical intensity modulation by the polariser and then transformed into a voltage modulated signal by 

a photodiode. The polarization controller is used for optimizing the system sensitivity. 

A linearly polarised laser source is connected via an optical fibre polarisation controller to 

ical fibre sensor which is bonded to the surface or embedded into the sample

The output of the sensor fibre is terminated into a GRIN lens that collimates the propagating 

light, later directed through a rotable linear polariser that acts as an analyser. The analyzer 

only let pass the component of the incident light with its electric vector projected in the 

orientation of the linear polarizer, filtering out the rest (as explained in Appendix C). The 

modulation of the polarization state of the light in the sensor causes a modulation in the 
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quantity of the light component projected in the orientation of the polariser and so also in the 

optical intensity passing through it. Finally the light filtered through the polarizer is collected 

by a photodiode that converts the optical intensity modulated signal into a more manageable 

electrical voltage modulated signal. 

The operation of a polarimetric system can be compared with that of an interferometric 

system, where the reference and sensing arms of the interferometer are now both birefringent 

on systems. Also because it only uses 

 

axes that characterize the modulation in the polarization state of the light propagating 

through the fibre. It is the relation between the changes that the stress field causes in the 

refractive index of both main polarization axes that gives the ultrasonic wave stress field 

signal in the polarimetric system. Similar occurs in an interferometric system, where it is the 

relative changes between sensing and reference arm what gives the ultrasonic signal. 

Meanwhile in the interferometric system the sensing and reference signals are apart one from 

another thus only the sensing arm is disrupted by the ultrasonic wave. However in the 

polarimetric sensor both sensing and reference signals are disrupted by the ultrasound, 

therefore the difference caused is less accentuated than in the interferometer. In 

consequence, the sensitivity of the polarimetric system would not be as good as in an 

interferometric system as shown in table 2.2 [64].  

The operability of the polarimetric set-up (as seen on fig. 2.19) is very simple in comparison 

with the previous optical fibre ultrasonic detecti

inexpensive components it makes it a very attractive optical option for ultrasound detection. 

The ultrasonic signal amplitude produced by the polarimetric system set-up is found to be 

dependent both on the state of polarisation of the optical fibre sensor input light and the

orientation of the polariser. In Appendix C, we present a theoretical analysis of the 

polarimetric system sensitivity dependency with the polarization state of the light in the fibre 

sensor and the orientation of the linear polarizer. Under the simplifying assumptions of an 

induced linear birefringence, a propagating monochromatic and plane wave light and 

considering that the changes in the light polarization state are only caused by the changes in 

the phase difference between the two electric field components and not in their amplitude. 

We show that the most sensitive operation of the polarimetric system is achieved when the 

polarization state of the light at the output of the fibre sensor is circular. In practice however 

we observed that the maximum fringe amplitude was observed with a slightly elliptical 

polarization. The slight discrepancy is due to the fact that (as mentioned in [65]) the induced 

birefringence is not purely linear but it has a slight circular component. Nevertheless the 

optimization of the detected signal is carried out empirically, by manipulating a polarisation 
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controller before the sensing fibre and adjusting the orientation of the polariser plate until 

maximum amplitude of the ultrasonic signal is achieved.  

More about this system and pictures of its experimental set-up are shown in Chapter 4. 

2.4.2.4 Comparison of the three optical fibre detection systems 
Table 2.1 compares the general sensing aspects of the four optical fibre sensor systems 

described in previous section. 

FBG MZ Interferometer Modified MZ Interf. Polarimetric sensor 

Contact Contact Non-contact Contact 

Absolute rements  measu  Absolute measurements  

In-plan ement Both ents Out-p ent Both ents e displac displacem lane displacem displacem

Strain sensitive Stress sensitive Stress sensitive Strain sensitive 

Point to point scanning Integration scanning Point to point scanning Integration scanning 

2nd b tion Be n est spatial resolu  st spatial resolutio  

  Problems with low 
reflective surface 

 

Table 2.1: Comparison of the main c of ultrasound techniques. 

 FBG and Michelson analyse only one poin ing ultrasonic wavefront. 

sin

ng of the ultrasonic wave 

to 

ents of the ultrasonic 

wa

g techniques.  

 

haracteristics of the 4 optical detection 

t of the propagat

In contrast the integration techniques analyse a finite size. Which means that in NDT, a 

gle integration scanning sensor will cover an area of the structure that would require an 

array of multiple point-to-point sensors. However the detected signal for the integration 

sensor is far more complicate than that for a point-to-point sensor. 

 All the integrating sensors and the FBG are contact systems and suffer from the same 

disadvantages of the conventional contact transducers. The coupli

the fibre sensor will depend highly in the way they are bonded to or embedded in the 

structure. In contrast the modified MZ interferometer allows a completely remote inspection 

when also combined with laser ultrasound generation. 

 The modified MZ interferometer is the most sensitive of the optical fibre detection 

systems described. But it is only sensitive to out-of-plane displacem

ve (in the simple configuration in which we have applied it). In contrast FBG sensors are 

sensitive to in-plane displacement, and in a more complete way the other two integration 

sensors are sensible to both in-plane and out-of-plane displacement. 

 Because the modified MZ interferometer sensing beam can be focused to a very small 

spot, it provides the biggest spatial resolution of all the optical sensin
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O F Sensor Temp. 
range (oC) 

Strain / 
Displacement 

sensitivity 

Broadband 
(MHz) 

Multisensing 
potential 

Multiplex. 
potential 

Embed 
ability 

Modified MZ 
interferometer 

High 
~1000 < 0.01 nm >0 - >25 Moderate High High 

Mach-Zehnder 
i  nterferometer

High 
~1000 < 0.4 nm >0 - >25 Moderate High High 

Polarimetric 
sensor 

Medium 
~700 < 5 µm >0 - ~25 High Low High  

Fibre Bragg 
grating sensor 

Low / 
M Very edium < 

300 
~ 0.01 µε >0 - ~1 High High High 

T  Op s for S ure a (Strai ent sensitivity given 

for dynamic strain range). 

I  e p e par of the bed opt bre s s 

sensing properties of the interfer  FBG systems is very different, 

able 2.2: Fibre tic Sensor mart Struct pplications n/Displacem

n Table 2.2 we compare th erformanc ameters descri ical fi ensor

for strain and temperature measurement applications. The way the temperature affects the 

ometric, polarimetric and

giving a very different temperature range for each sensor. For instance the temperature 

limitation of both interferometric systems is related to the temperature at which the fibre 

core’s dopants start diffusing in considerable amounts towards the cladding decreasing the 

refractive index difference between core and cladding. This causes the optical fibre to loose 

its optical waves guiding properties. This phenomenon happen at around 800-1000 0C, much 

before the silica fibre melting point (around 1600-2000 0C). The polarimetric system 

however will be affected by smaller temperatures, but high enough to cause a stress relief in 

the mechanical state of the optical fibre such that the optical fibre lose its birefringence 

properties, this happen around 700 0C. Finally the FBGs’ temperature limitation is given by 

the temperature at which the refractive index modulation induced in the fibre’s core starts to 

diffuse out, this depends in the type of FBG; for type I, which are the most used in 

telecommunications and sensor applications, and in particular for gratings fabricated in the 

draw tower the temperature limitation is around 200-300 0C [56,67], however this maximum 

will depend considerably on the required minimum reflectivity and in its required stability, 

which will be improved if the FBG is pre-annealed for a certain time at high temperatures 

(higher than the operational temperature). Most of the structural inspection for aircraft, 

automotive or civil industry occurs in the temperature range between -50 to +100 0C, so for 

this applications all the previous optical fibre sensors are adequate. However for more 

temperature restrictive applications, i.e. monitoring of engines or turbines or during the 

fabrication process of composite structures the temperatures could reach several hundred 

degrees or even a thousand, at these temperatures FBG are the only ones not suitable.  
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The strain sensitivity of the four selected optical fibre sensors is given in different 

dimensions; in displacement for the interferometric and polarimetric systems and in strain 

e diameters of 125 µm (common single 

e displacements. It does not 

grating itself. This is not the case in the interferometric and polarimetric systems. In the 

for the FBG as these are the magnitudes that each system measures directly. The strain 

sensitivity of the interferometric systems can vary depending in their configuration and 

electronic equipment, so we present the experimental sensitivity of the interferometers used 

by us. The modified Mach-Zehnder interferometer can provide an in-plane displacement 

sensitivity of around 0.01 nm, and an out-plane displacement sensitivity of around 0.05 nm. 

The Mach-Zehnder however provides an out-plane maximum sensitivity of 25 µrad/nm, 

which for common interferometric level noise of around 10 µrad gives a displacement 

sensitivity of 0.4 nm [61]. For a common singlemode and uniform FBG the strain sensitivity 

is given by the typical values of FBGs dynamic strain response of around 1.2 pm/µε in the 

region of 1550 nm optical wavelength [66,68], and by the smallest detectable Bragg 

wavelength shift. In our experiments the tuneable laser used had a linewidth of 0.8 fm at 

1550 nm. Considering only optical limitations this value gives the minimum detectable 

wavelength shift, which for the previous dynamic strain response for the FBG, corresponds 

to a minimum detectable strain of 0.6 nε. However in practice other noises apart of optical 

ones take place (e.g. electrical noise), so experimentally the reproducible Bragg wavelength 

shift resolution is around 0.01 pm (for 128 times averaged measurements) [53], which gives 

a practical dynamic strain sensitivity of around 8 nε. 

The detectable frequency broadband of the interferometric systems is mainly limited by their 

electronic detection system, however for optical fibr

mode fibre, used in our systems) at frequencies in the few tens of MHz a series of radial 

mechanical resonances occur that affect considerably the system sensitivity. This resonance 

effect starts appearing around 25-35 MHz [19,69] although it depends upon the optical fibre 

composition. In the case of singlemode and uniform FBG the detectable frequency 

broadband will be limited by the grating period Λ, such that strain wavelengths smaller than 

the grating period could hardly be detected (as explained next). 

It is important to realize that an FBG measures directly the strain, in contrast to the 

interferometric and the polarimetric systems which measure pur

matter the length of the grating in the FBGe, as long as the ultrasonic wavelength is bigger 

than the grating, the temperature does not change and the grating period (Λ) is kept constant 

then the change of the Bragg wavelength (λB) is directly proportional to the applied strain (ε) 

as expressed by ∆λB / λB = k·ε, where k is a constant. For a given change in the applied strain 

the Bragg wavelength of the grating shifts a same quantity independently of the length of the 
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interferometric systems it is the difference in the optical length between the sensing and 

reference arm what is measured. Particularly in the modified Mach-Zehnder interferometer is 

a physical length difference what cause the change in the optical length and in the Mach-

Zehnder is a change in the sensing fibre refractive index what causes this optical length 

change. In the interferometric systems as we increase the sensing length of the fibre, even for 

a fixed strain value will have different interference signal. The reason is that the 

interferometric systems integrate the effect of the optical length change along all the sensing 

fibre length. Even more if the strain wavelength is smaller than the sensing fibre length, then 

additive and subtractive optical length effects take place giving very different results for very 

small sensing fibre length changes. Similar integration effect takes place in the polarimetric 

system, where in this case the measured phenomenon is the effect that the strain or stress 

field have over the main birefringent axis of the sensing optical fibre. Again this effect is 

integrated along all the sensing length of the fibre.  

The FBG gives the average strain along the grating length. If the strain wavelength (λS) is >> 

than the grating length then the strain perturbation can be considered static and uniform 

along the grating and the grating behaves ideally as a point strain gauge. In this case the 

y 

can provide over the current industrially applied conventional contact transducers for 

so detection applications. We have presented and analysed the 

strain will cause a shift of the Bragg wavelength proportional to its value without 

perturbation of the reflectivity spectra [70,71]. When the strain wavelength is comparable to 

the grating length, the supposition of the uniform strain along the grating does not hold any 

more as different sections of the sensing grating see a different applied strain. In this case the 

shape of the FBG’s reflectivity spectra is modified. If the strain wavelength decrease under 

the grating length size then the grating behave as an integrating sensor, where the positive 

and negative parts of the strain wavelengths will compensate each other, reducing the overall 

effect over the reflectivity spectra. In fact if λS << grating length (condition that it is satisfied 

when λS is the order of Λ) then the shape and shift of the reflectivity spectra is practically 

unchanged and so high frequencies are hardly detectable [55]. In conclusion the detectable 

frequency broadband of the FBGs is limited to wavelengths in the order of the grating 

length, which for ultrasonic signals means maximum detectable frequencies of a few MHz. 

2.5 CONCLUSIONS 

This chapter has discussed the great advantages that modern optical fibre sensor technolog

ultra nic generation and 

ultrasonic sources due to high power Q-switched laser generation and offer a low power CW 

alternative. We saw that the thermoelastic regime generated ultrasonic waves that couple 
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more efficiently into symmetric Lamb modes, whereas the ablation regime couples better 

into antisymmetric Lamb modes. 

The optical detection of ultrasound, in this thesis, has been based on optical fibre sensor 

technology. Four have been the optical fibre sensors used in this work and in this chapter we 

have described their principles of operation and characteristics. These are; FBG sensor, two 

frequency control, UFFC-33(5), pp. 485-499, 1986. 
Curie P  Development par pression de l'électricité polaire dans les cristaux 

é es, Comptes Rendus, vol. 91, pp. 291-295, 1880. 
[3] Krautkramer J. and Krautkramer H. Ultrasonic Testing of Materials, Springer-Verlag, New York, 

[4] suppl. no. 11-12), 1922. 

an & Hall, 1990. 
alth monitoring, 

[8] ine and vision of ultrasonic guided wave inspection potential, Journal of 

[9] nd Lamb waves – Physical theory and applications, Plenum Press, New 

[10]

[11] f comb transducers for surface acoustic 

[12] ssment in smart composite structures: DAMASCOS, EU Project # BE974213, 2001. 

nt. Symp. on Smart Struct. and Mat., California, 2001. 

different configurations of an all-fibre Mach-Zehnder interferometer and a polarimetric 

sensor. We have compared their performance parameters and their different sensing 

characteristics and seen that although some provide better qualities than the others in 

different aspects, however none of them can be confirmed as the single best option, 

depending more in the specific application. For instance meanwhile the FBGs provide better 

multiplexing capabilities than the polarimetric sensor and higher spatial resolution, the 

polarimetric sensor provide a range of temperature applicability double than that of the FBG 

sensors and a broader frequency response. A single polarimetric sensor can cover a much 

larger area for detecting acoustic waves, but its much more complex signal response respect 

to FBG sensors make the detected data difficult to analyse. Additionally the polarimetric 

sensor inspection technique is cheaper and easier to operate than the FBG sensors based one. 
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Chapter 3
ULTRASONIC DAMAGE DETECTION 

& LOCATION EXPERIMENTS 

3.1 INTRODUCTION 

The suitability of the optical fibre sensors, described in previous chapter, for the detection of 

ultrasonic Lamb waves has already been proved numerous times in the literature, for some 

examples see [1] for FBG sensors, [2] for Mach-Zehnder interferometer, [3] for the modified 

Mach-Zehnder interferometer and [4] for the polarimetric sensor. In this section we start 

with the description of the experimental equipment and realization of each detection 

technique described in Chapter 2. We present the optical fibre surface-bonding technique 

developed in order to achieve reproducible initial bonding conditions. Later we present an 

experimental comparison of the ultrasonic signals obtained by each of these sensors under 

identical ultrasonic launch conditions. We finish this chapter by applying some of the present 

optical detection techniques of ultrasound to various experimental applications involving 

hole-like damage detection in aluminium and Perspex sheets and damage location.   

3.2 EXPERIMENTAL EQUIPMENT & REALIZATION OF THE 

ULTRASONIC DETECTION TECHNIQUES 

This section describes the experimental instrumentation and realization of the optical fibre 

ultrasonic detection systems described in previous chapter as developed not only for the 

experiments in this chapter but also along the rest of this thesis. 

3.2.1 Fibre Bragg Gratings 

As described in previous chapter, the optical interrogation of the gratings is based in the 

modulation of the optical power reflected back from the grating. If the wavelength of the 

laser source is set to a certain part of the grating spectrum (mainly in the linear region of the 

sensor, usually at about 20 to 80 % of the gratings' maximum reflectivity), any shift of the 

spectrum (due to the strain field of the propagating ultrasound) will as a consequence 
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modulate the reflected optical power at the photo-receiver. Figure 3.1 shows a schematic of 

the interrogation configuration, where we consider multiple FBGs inscribed in a single fibre, 

as in the fibre rosette configuration used in the damage location application shown later in 

this chapter. 

 

 

 

 

 

Figure 3.1: Interrogation setup for ultrasonic sensing applications of FBG, operating in WDM mode. 

A Radians Innova INTUM 1500 external cavity laser (ECL)  diode of low noise and 

extremely narrow linewidth (around 100 kHz) characteristics, with wide tuning range of 

about 100 nm in the 1500 nm range, acts as optical source for the FBG interrogation. The 

reflected optical power is detected by a high sensitivity and variable amplification 

photodetector, the variable amplification is useful when multiple FBGs of different 

reflectivity are used (i.e. the FBGs rosette used in the damage location application).  

Our gratings were written in bare fibre that was recoated using a ORMOCER® coating 

(organically modified ceramics, produced via a sol-gel route they have a far higher modulus 

than the more commonly used polymer recoating materials) in order to ensure optimal strain 

transfer from the structure to the fibre [5]. The FBGs have a length of 1 mm and a narrow 

linewidth for their reflectivity spectra (FWHM = 0.5nm), with a reflectivity of about 15%. 

The FBGs were bonded directly onto the surface of the plate using a very thin layer of 

cyanoacrylate glues which as described in [5] are often desirable because of their ease of 

processing and their optimized characteristics for strain sensor applications. It is essential 

that the glue does not surround the whole fibre, else birefringence effects could destroy the 

simple wavelength-strain relation. 

3.2.2 All-fibre interferometric systems 

The interferometric system used in this thesis is an experimental system designed and built 

within our research group for previous projects. The interferometric system was built based 

on two configurations; Mach-Zehnder and modified Mach-Zehnder. These configurations 

only differ in the interferometer sensing arm structure as described later. The common 

interferometer body is described next. Notice that the successful accomplishment of the work 
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in this thesis very much depended in the correct and stable operation of this device, so a 

perfect knowledge of its operation was required, which lead to my contribution into some 

improvements towards its stability. 

The interferometer is fully optical fibre build. The system working principles and the 

function of its different components has been fully treated in Chapter 2. Here we just deal 

with the parameters characterization of the used components.  
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Figure 3.2: Modified Mach-Zehnder interferometer: 1) Polarisation controller, 2) 2x2 couplers, 3) 

High frequency photodetector, 4) variable optical attenuator (VOA), 5) Phase modulator, 6) 

interferometric power supply, 7) Control feedback circuit, 8) Low frequency photodetector. 

The laser light to the interferometer system is a pigtailed diode pumped Nd:YAG (Lightwave 

Electronics, Series 126) with a CW axial mode output at 1319 nm (shown as number 3 in fig. 

3.2). This laser provided a highly stable frequency output with a long coherence length, so 

that a high sensitivity could be achieved without requiring the lengths of the reference and 

sensing arms to be matched. The laser output is coupled into an optical fibre pigtail and 

passed through a variable optical attenuator to reduce its 50 mW power to the required level 

(in our case ~15 mW) before entering the interferometric system shown in fig. 3.2 (too much 

power could saturate the photodetectors used, for instance the high frequency photodetector 

saturates at 1mW input power). In this figure we can see the three main components of the 

reference arm; polarization controller, variable optical attenuator and a cylindrical PZT 

phase modulator. The first two components are used to maximize the phase change 

elucidated as described in Chapter 2. Meanwhile the last component is required to 

compensate the low-frequency drifting due to the long length of the interferometric arms, so 

that the interferometer can be hold in its most sensitive and linear operation point 

(quadrature) by automatic low-frequency feedback control of the phase modulator. 
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The detection system of the interferometer consisted of a low frequency InGaAs Photodiode 

(Hamamatsu) with a preamplifier, for stabilization of the system via feedback controller of 

the phase modulator. This photodetector system has a 16 kHz high frequency cut-off and 30 

dB gain. Also we used a high frequency InGaAs PIN photodiode with a high gain and ultra 

low noise amplifier module (Analog Modules series 710 type 712-8w/ETX75FC-S) to 

monitor broadband ultrasonic signals as those used in Chapter 6. The detector low frequency 

cut-off is 200 Hz with a gain equal to 60 dB. It provides a detection bandwidth of 60 MHz, 

although we limit the output detected by an oscilloscope to a bandwidth of 15 MHz due to 

the increasing noise of the detector at higher frequency values and because of the flat 

bandwidth response of the interferometer in this region [6]. 

We distinguish two different configurations of the present interferometric system based on 

the characteristics of the sensing arm: 

Mach-Zehnder configuration 

This configuration has the simplest of sensing arms possible. It consists on a finite length of 

single mode non-birefringent optical fibre that is bonded to the surface or embedded into the 

structural material. For simplicity, in this thesis the fibre was always bonded onto the 

surface, using an epoxy cast. The bonding technique is described later in this chapter. 

This configuration provides an out-plane maximum sensitivity of 25 µrad/nm, which for 

common interferometric level noise of around 10 µrad gives a displacement sensitivity of 0.4 

nm [3], and it is also sensitive to the in-plane ultrasonic stress field. 

Modified Mach-Zehnder configuration 

In this configuration the laser beam in the interferometric sensing arm is transmitted to the 

sample surface through a fibre pigtailed GRIN lens assembly, delivering typically around 1.5 

mW optical power. The GRIN lens has a focus length of 8.6 mm, a back reflection < 40 dB 

and a focused spot diameter of 40 µm, which in comparison with the smallest experimentally 

detected ultrasonic wavelengths of around 0.5 mm qualifies it as being a point detector. The 

same GRIN lens collects the scattered light from the surface of the plate back to the 

interferometer. The interferometer sensitivity can be improved by effective re-collection of 

the scattered light, hence a small piece of a highly reflective film (3M Optical Enhancement 

Films) was bonded into the surface of the plate where the interferometric beam was focused. 

This layer provided a reflectance of 95% and was only 63 µm thick. Its thickness being 5% 

of the overall plate thickness and 10% of the smallest propagating ultrasonic wavelength, it 

can correctly be assumed that its presence does not unduly perturb the displacement fields 

associated with the propagating Lamb waves. 
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This configuration can provide an out-of-plane displacement sensitivity in the order of 0.05 

nm as described in [3]. And it is the configuration used for measuring the out-of-plane 

surface displacement of the sample for the application shown in Chapter 6, where a remote 

and broadband (spatial and temporal) ultrasonic sensing device is required. 

3.2.3 Polarimetric sensor 

This optical detection system is probably the simplest of all. A sensing single mode fibre is 

again bonded to the surface of the sample using an epoxy cast as described in next section, 

the fibre is terminated in a GRIN lens in order to collimate the propagating light. The rest of 

components of the system (its configuration is shown in fig. 2.19) consist in a common 

polarization controller (adapted for a 1550 nm optical wavelength), and a conventional 

rotable linear polarizer at which the collimated light from the sensing fibre output is directed. 

The filtered light interacts at the end with a high frequency InGaAs photodiode, which 

converts the optically modulated signal into an electrical one. The electric signal is high pass 

filtered to clean environmental low frequency noise and amplified. The final ultrasonic 

signal is recorder in a Tektronix digital oscilloscope where it can be averaged for signal to 

noise ratio enhancement and transferred to a computer for data analysis. 

As described in previous chapter the obtained ultrasonic signal amplitude is found to be 

dependent both on the state of polarisation of the optical fibre sensor input light and the 

orientation of the polariser, such that the most sensitive operation of the polarimetric system 

is achieved when the polarization state of the light at the output of the fibre sensor is circular.  

The polarisation state will inevitably change between the polarisation controller and the 

sensing fibre, which itself will not be entirely non-birefringent due to stresses produced by 

the embedding/bonding processes. 

Nevertheless the optimization of the detected signal is carried out empirically, by 

manipulating the polarisation controller until maximum amplitude of the detected ultrasound 

is achieved and then adjusting the orientation of the polariser plate for a new maximum 

amplitude, this process is repeated until no farther improvement in the ultrasonic amplitude 

is observed (which usually happen after 2 cycles).  

3.3 OPTICAL FIBRE SURFACE-BONDING PROCEDURE 

In previous chapter we mentioned that the Mach-Zehnder interferometer proved to be 10 to 

20 times more sensitive to ultrasonic wave detection when the sensing optical fibre was 

embedded into the structure rather than surface-bonded. The high complexity associated to 

the optical fibre embedding process made us concentrate the work of this thesis into surface-
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bonded applications. However we have encountered experimentally that the ultrasonic 

signals obtained from surface-bonded optical fibre sensors are highly dependant on the 

bonding conditions. We have experimented with different kind of bonding materials (nail 

varnish, several types of sealants, tapes, plasticine…) with a detailed analysis presented in 

[7]. The conclusion of these experiments was that the obtained ultrasonic signals were non-

repeatable due to the irreproducible initial bonding conditions associated. 

In order to improve the reproducibility of the initial bonding conditions we decided to cast 

the optical fibre into a resin mould prior to attachment to the plate under inspection. The 

resin chosen was a two component epoxy known as Epotek 301 made by Epoxy Technology 

[8]. This epoxy adhesive features very low viscosity, good pot life, good handling 

characteristics and excellent optical properties and it was designed primarily for optical 

filters. Epotek 301 also has good adhesion to many different types of substrates including 

glass, metals and most plastics, which makes of it very adequate for our applications of 

optical fibre bonding onto aluminium and Perspex plates. 

The fabrication of the optical fibre casts consist in the next steps: 

 A mould is made with the shape of half cylinder of length given by the length of the 

optical fibre to be bonded. 

 The optical fibre is then fixed onto the mould being very careful of keeping it under 

tension so that the fibre is not bending, and that the fibre is near the plane surface of 

the mould. 

 The liquid Epotek 301 is poured into the mould and let to cure overnight at room 

temperature. 

Once the cast is cured with the optical fibre within, the plane surface of the cast is bonded 

onto the plate by applying a thin layer of the same epoxy adhesive and then laying the cast 

over it with a slight uniform pressure and letting it cure overnight again. 

Figure 3.3 shows one of such optical fibre casts, of 11.3 cm long, after curing and bonded 

onto the surface of a Perspex plate. A diagram of the section view of this cast is shown in fig. 

4.3 of next chapter.  

The ultrasonic signals detected under this bonding condition were found to be reliable and 

repeatable. Thus this bonding technique was used in all experiments concerning the 

polarimetric sensor and the Mach-Zehnder interferometer. 
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Figure 3.3: Optical fibre cast into an epoxy resin mould surface-bonded onto a Perspex plate. 

3.4 INSTRUMENTATION FOR ULTRASONIC GENERATION BASED ON 

PZT DISCS TRANSDUCERS 

In the experiments presented in this chapter and in Chapter 4 the ultrasonic generation is 

based in PZT wafer disc contact transducers. The reason being that the involved applications 

are characterized for requiring ultrasonic waves of narrow frequency band, for which PZT 

contact transducers are very suitable and provide great sensitivity. We have also used non 

contact optical generation techniques for the spatial and temporal broadband applications 

described in Chapters 6 and 7, therefore the equipment description of such generation 

systems is introduced in those chapters. 

The damage detection and location applications for which the ultrasonic generation was 

carried by disc PZT transducers mainly analyze the fastest S0 Lamb mode at low frequencies 

at which the mode is non dispersive. Thus the thickness to diameter radio of the discs was 

chosen in order to uncouple the axial and radial vibration modes. The thickness was chosen 

to be 400 µm fixing the frequency of the first axial mode resonant frequency at 5.5 MHz. 

Meanwhile a diameter of 10 mm is designed to situate the first radial vibration mode at 

around 235 kHz (although the exact value depends on the thickness and material of the plate 

to which the PZTs are bonded) [9]. The chosen design parameters, for the Ferroperm PZ29 

PZT discs used, provide an optimized coupling to in-plane motion at low frequencies, which 

perfectly complements the main in-plane motion component of the S0 mode (particularly at 

low frequency:thickness product values) as seen in Appendix A.  

In order to generate the sinusoidal tone burst driving signals for the PZT discs, a HP 33120A 

signal generator was used, the limited voltage amplitude of this instrument required the use 

of a RF power amplifier so that the PZTs could generate detectable ultrasonic signals. The 

ENI (Electronic Navigation Instruments) 2100L power amplifier was used, which provided a 
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50 dB amplification (maximum output power of 100 W) and a frequency range from 10 KHz 

to 12 MHz. 

3.5 COMPARISON OF ULTRASONIC SIGNALS OBTAINED BY THE 

OPTICAL FIBRE DETECTORS 

Over the surface of an aluminium plate of 1.18 mm thickness we bond a PZT disc wafer 

acting as an ultrasonic source. At a distance that varies between 32 cm and 37 cm we bond; a 

FBG, the reflective layer where the sensing beam of the modified MZ interferometer is 

focused, the optical fibre sensor of a polarimetric sensor (oriented perpendicularly to the 

ultrasonic direction of propagation) and at the far end another PZT disc acting as a receiver. 

The distances between source and sensors guaranty to be in the far field (thus the source can 

be considered a point) and all the components are far enough from the borders of the plate to 

avoid reflections during the time interval of analysis. The source is excited by a 4.5 cycles 

(see Appendix E) sinusoidal toneburst Hanning windowed at two different frequencies (110 

kHz and 270 kHz). These frequencies can only couple into the two basic Lamb modes (S0 

and A0), which greatly simplifies the detected ultrasonic time data for a direct time analysis. 
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Figure 3.4: Layout of the experiment for the comparison of relative S0 and A0 ultrasonic detectors 

sensitivity. 

Because the different sensing techniques measure different modal parameters and the 

symmetric and antisymmetric modes have different characteristics, different sensors will 

show differing relative sensitivities to the S0 and A0 Lamb modes. The multiple signals 

obtained from the sensors under identical launch conditions using the plate layout shown in 
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fig. 3.4 are plotted in fig. 3.5, and their relative amplitudes at the two excited frequencies are 

calculated in table 3.1. 
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Figure 3.5: Ultrasonic signals from different sensors to a 4.5 cycles toneburst at 270 kHz: a) PZT, b) 

FBG, c) Modified MZ interferometer, d) Polarimetric sensor optimised for S0 mode, and e) 

Polarimetric sensor optimised for A0 mode. 
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Generally the S0 portion of the signal is the easiest to identify since it has a group velocity 

that is often double that of the A0. For the 4.5 cycle toneburst excited, the S0 and A0 modes 

will separate over a short distance. How easy the A0 will be to separate out from the 

remainder of the signal is dependent not only on how many higher order modes are 

generated, but also on the arrival times of reflections of the S0 from edges of the sample. 

Whilst it is possible to work on large enough sample plate to avoid confusing reflections, in a 

practical application this may not always be the case. The main reason for being interested in 

A0 detection sensitivity is that the antisymmetric mode is generally the more sensitive to 

delaminations within the plate due to its greater shear strain component [10]. 

If we compare traces taken from different sensors obtained under identical ultrasound launch 

conditions, the relative amplitudes of the modes will be different in each case. Theoretical 

modelling of the S0 and A0 modes shows that the relative amplitudes of the in-plane and out-

of-plane displacement is very different.  

If we compare the trace taken with the interferometer (which detects out-of-plane 

displacement) to that obtained with the Bragg grating (detects in-plane displacement), we see 

that the relative S0 and A0 mode amplitudes are very different (see figs. 3.5c and 3.5b). 

The case of the polarimetric sensor is more complex since the amplitudes of the S0 and A0 

depend in different ways on the polarisation state in the sensing fibre, therefore the relative 

amplitude also changes. This is presumably due to the different pressure fields associated 

with the two modes, but this is more difficult to quantify. 

The general trends of the relative sensitivities of the sensors are as expected, i.e. the relative 

amplitude of the S0 compared to that of the A0 is much greater when the FBG is used than is 

the case with signals from the interferometer, for the reasons discussed above. Precise 

quantification of this requires further work to take into account various scaling factors. The 

polarimetric sensor behaves much more like the Bragg grating than like the interferometer, 

suggesting that it is more sensitive to in-plane displacement, though this may be due to the 

way in which the sensor is mounted (as previously described) as this determines the way in 

which the acoustic pressure wave interacts with it. 

 S0/A0  relative amplitude 

Frequency PZT FBG Interferometer Polarimeter max 
S0

Polarimeter max 
A0

270 kHz 1.51 1.46 0.31 2.00 1.44 

110 kHz 0.69 0.30 0.21 0.77 0.76 
Table 3.1: Comparison of the relative S0 and A0 amplitudes for the different ultrasonic sensors at 

frequencies of 270 kHz and 110 kHz. 
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3.6 DAMAGE DETECTION IN STRUCTURAL MATERIALS USING 

POLARIMETRIC SENSOR 

Once the ultrasonic signal is detected various signal processing analysis can be applied in 

order to test for the existence of damage in the propagation path of the ultrasonic wave. 

When the excited ultrasonic signal is as simple as in the previous case, where only two Lamb 

modes are generated, then a simple time analysis is enough to identify presence of damage in 

the plate. Chapter 5 has been dedicated for a more detailed description of this and other 

processing techniques. Time analysis mainly consists in the comparison of the detected 

acoustic signature of the structure in a damaged state with a previously obtained signature 

for a reference undamaged situation or healthy condition. The signature comparison is based 

on two basic methods; one being to look for changes in the transmitted acoustic signal (e.g. 

amplitude, phase, etc.) and the other to look for additional reflected and/or scattered signals 

from the damaged region, which can be considered as a passive acoustic source. Unless the 

damage is large, the magnitude of the perturbation caused by the damage in comparison to 

the undamaged signature signal will be very small, which demonstrate the importance of 

configuring the interrogation scheme in a way that provides optimum sensitivity due to the 

high directionality characteristic of most optical fibre sensors. 

For the damage detection experiment we have chosen to use the polarimetric detection 

system for its easy operability and great repeatability. However in Chapter 6 we also have 

applied other detection systems for damage detection applications, such as the non-contact 

modified MZ interferometer which we have combined with a broadband and also non-

contact laser generation of ultrasounds technique. We have also been involved in damage 

detection using FBGs, based on a single frequency excitation of the low order Lamb modes 

and applying a time analysis signature comparison technique as here presented for the 

polarimetric sensor, the results were published in [11]. 

In order to ascertain the suitability of the polarimetric sensor for damage detection a Perspex 

plate of 3 mm thickness was used onto which the optical fibre sensor was mounted and three 

PZT disc wafers acting as Lamb wave sources bonded (experimental lay out is shown in fig. 

3.6). A hole, which behaves as a passive acoustic source, was made in the plate to simulate 

damage with a tight fitting plug being produced to enable the damage to be reversed. 

Silicone grease was used to provide the maximum acoustic continuity between the plug and 

the sheet. In this way, the detected ultrasonic signal is the combination of the ultrasound 

following the direct path between source and receiver, with the signal produced by the 

scattered wave emanating from the damage. 
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Figure 3.6: Plate layout for damage detection experiment with the polarimetric sensor. 

The positioning of the transducers allowed for three paths to be investigated showing 

different aspects of the interactions between the Lamb waves, the hole and the sensor. The 

polarimetric sensor for this experimental configuration can best be used in two ways. Firstly, 

to look for defects in the area between the PZT source and the sensor through observing 

changes in the transmitted acoustic wave. In this case the source and transducer are aligned 

such that the incident wave is normal to the fibre (path 1 in our experiment). The second 

method is to look for reflections from a defect, in which case the transducer is situated such 

that the direction of the ultrasound wave is along its axis (path 3 in fig. 3.6). 

The PZT source was excited with a 5 cycle (see Appendix E) sinusoidal toneburst at a 

frequency of 150 kHz providing the optimum acoustic coupling between the source and the 

Perspex plate. For the damage detection analysis we have only concentrated on the 

perturbations occurring to the S0 mode propagation. Because it is the fastest propagating 

mode, the interaction with its scattering from the damage can adequately be isolated from the 

interaction with the reflections of the borders of the plate. In opposition with the A0 mode 

that could be affected not only by the interaction with the reflections of the faster 

propagating S0 mode but also with the last part of the incident pulse of the S0 mode.  

Analysis of the different paths ultrasonic signals 

The detected ultrasonic signals for the three different paths are analysed next. In the figures 

associated to each path, three plots are presented; the one in black represents the plate 

without hole, the blue plot is when the hole plug is open and the red plot is the signal 

difference of the previous two and represents the signal due to the presence of the hole. 

 Path 1: The source and hole are aligned normal to the sensor giving optimum 

sensitivity to the signals from both. The signal for the plate with hole is slightly attenuated 
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with respect to the case without hole (fig. 3.7). This may be thought of as being due to the 

slight phase difference that the ultrasonic signal scattered by the damage has over the direct 

propagating one. Hence the cancelling interference between the two slightly out of phase 

waves causes the amplitude attenuation. The scattered signal due to the presence of hole (in 

red) is 20% of the original signal amplitude. 
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Figure 3.7: Ultrasonic signals for path 1 of fig. 3.6 for damage detection with polarimeter. 

 Path 2: The PZT source is now at 45 degrees to the sensor resulting in a rather messy 

signal due to integration effect of the ultrasonic wavefront along the fibre sensor length. The 

integration effect is the subject of next chapter, where we also calculate the directionality of 

this type of sensors, which agrees with what we see in these experiments where the 

sensitivity of the sensor decreases as the source changes from a perpendicular orientation (as 

for path 1) to a parallel orientation (as for path 3). Hence the smaller amplitude of the signal 

for the case without hole (fig. 3.8 in black) respect to the previous path case. Comparing the 

plot with and without hole in fig. 3.8 we notice big differences after 150 µsec. The difference 

is appreciable in the red plot of the same figure which corresponds to the reflection from the 

hole of the signal excited by the PZT. The signal reflected from the hole is normal to the 

sensor corresponding with the direction of optimum sensitivity for the sensor. That is why 

the amplitude of the reflection is of similar amplitude to that the direct signal from the 

source.  

 

 



ULTRASONIC DAMAGE DETECTION & LOCATION EXPERIMENTS 80                         

 

 

 

 

 

 

 

 

 

 

Hole 

Figure 3.8: Ultrasonic signals for path 2 of fig. 3.6 for damage detection with polarimeter. 

 Path 3: Now the ultrasonic signal from the source to the sensor is along the axis of the 

sensor which corresponds to the minimum sensitivity of the fibre sensor (as shown in next 

chapter). However like in the previous case, the signal reflected from the hole propagates in 

the direction of maximum sensitivity and as seen in fig. 3.9 the difference between the 

signals detected with and without hole are of higher amplitude than the signal directly from 

the PZT source with no hole. That difference which now happens at a later time (175 µm) 

agrees with the position of the hole for a wave propagating at the speed of the S0 Lamb mode 

in aluminium at 150 kHz when the length of propagation corresponds to that of path 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Ultrasonic signals for path 3 of fig. 3.6 for damage detection with polarimeter. 
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As we have seen in these examples, if the damage is in between the direct path source to 

sensor, then the perturbation in the detected time signal will be due to the slight phase 

change that the damage scattered signal has over the direct propagating one. The time signal 

in this case will be very similar to the undamaged situation with certain attenuation due to 

the cancelling interferences of two signals slightly out of phase. However if the damage is 

not in the direct path source to sensor then the damage creates a new path for the propagating 

ultrasound, of a different length to that of the direct path. The time signal in this case will 

show perturbations in the part of the signal which corresponds to the time delay of the 

propagating modes through the new path. Furthermore, the ultrasound following the new 

path approaches the sensor in a different direction than the ultrasound following the direct 

path. This generates damaged signals of different magnitude depending in the position of the 

damage when a highly directional sensor is applied (like in our situation). 

3.7 ULTRASONIC SOURCE LOCATION USING A FIBRE BRAGG 

GRATING ROSETTE 

An important feature of the optical fibre sensors here presented (apart of the modified Mach-

Zehnder interferometer) is their inherent high directionality, which complemented with 

adequate signal processing can be used for damage location applications. 

This example concentrates on FBG sensors for hole-through damage location in an 

aluminium plate. Nevertheless, the presented technique could also be extended to the other 

highly directional optical fibre techniques, but because they are not point sensors like the 

FBG the processing of the detected ultrasonic data is rather more complex due to their 

ultrasonic wavefront integration effect. Chapter 4 contribute to a better understanding of 

such complex interaction. 

A schematic of the basic principle of operation for the interrogation method used in our 

damage location application was shown in fig. 3.1. This interrogation methodology is 

beneficed by the wavelength division multiplex (WDM) characteristics of FBGs, such that a 

distributed ultrasonic sensor can be made from a single optical fibre with multiple FBGs (of 

different Bragg wavelength) inscribed within. A low noise, narrow line-width tunable laser 

diode together with a high sensitivity photodetector are used for interrogating each one of the 

sensing gratings (connected in the way shown in fig. 3.1). 

If the optical wavelength of the tunable laser source is tuned to the point of FWHM (Full 

Width at Half Maximum) of a grating reflectivity response curve, then any shift of the 

spectrum by interaction of the grating with the strain field of the ultrasonic wave will as a 
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result modulate the reflected optical power at the photo-receiver (as already explained in fig. 

2.15). The use of a widely tunable laser source allows tuning (therefore interrogating) to the 

multiple gratings within a single fibre line. 

The well-defined cosine-squared directional characteristic of the FBG sensor [12] enables us 

to configure three or more gratings into a rosette geometry in order to detect the direction 

from which an incoming ultrasonic wave is arriving. The rosette geometry is well-known 

from electrical strain gauges and consists of three strain gauges bonded to the sample surface 

to form an equilateral triangle. In the case of FBGs we use three gratings (whose reflectivity 

spectrum is shown in fig. 3.10-right) written onto a single fibre and bonded, onto the 

structural surface, symmetrically with their axes oriented 120 degrees respect to each other 

(as shown in fig. 3.10-left). 

The cosine-squared sensitivity of the FBGs with respect to the angle between the ultrasound 

propagation direction and the fibre axis, is a maximum when the incident wave is in the 

direction of the fibre axis and a minimum when the direction is normal to the fibre. 
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Figure 3.10: (Left) FBG rosette configuration for damage location. (Right) Reflectivity spectra of the 

FBGs associated to the rosette used in the experiments. 

The direction of an incoming wave may be determined from the relative amplitudes of the 

signals from each of the three gratings of the rosette, using a suitable algorithm (for a more 

detailed description of the algorithm see [5]).  

The problem when analysing the measured data for one rosette is the periodicity of the 

squared-sinusoidal amplitude function, because for each amplitude there are four possible 

corresponding angles giving a total of twelve angles for a rosette consisting of three gratings. 

Only one angle, αR1, however, will satisfy the values for all of the gratings. The task is to 
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find this angle that gives the direction to the acoustic source for the first rosette as shown in 

fig. 3.11. After analysing data from two rosettes one ends up with two directions but four 

angles, as αR1,2 + 180° would also represent the desired direction. The final job is then to find 

the two angles for which the corresponding straight lines intersect. Calculating the x, y 

coordinates of the intersection will give the location of the acoustic source. If a passive 

source damage is considered then the location of the damage is accomplished. 
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Intersection of the directions of two FBG rosettes, associated to the optimized angles αR1 

and αR2, for acoustic source location.   

test the accuracy of this procedure two FBG rosettes were bonded onto the 

n aluminium plate of 1 mm thickness with three PZT sources and two holes-

2 mm diameter located in between the rosettes as shown in fig. 3.12. In order to 

he acoustic signals generated by the holes from those generated by the PZT 

holes are created like before with a plug that fits into the hole such that we can 

rence and damage conditions. Additionally the position of the PZTs in relation 

osettes was carefully chosen such that transducers A and B were placed normal 

g for each rosette and the other PZT (C) was located in the centre of the plate. 

hen the hole is not in the line with the primary acoustic path, the grating will 

he reflected wave which comes from a direction at which the grating is more 

ental results of the location predicted by the FBG rosette configuration are 

red stars in fig. 3.12. The letter associated to each star indicates the PZT source 

 location prediction. In conclusion in order to obtain the most accurate location 

ust avoid using a source aligned along the axis of any of the gratings in the 

ause the ultrasonic signal detected directly from the PZT source is so large that 
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it is difficult to recover the signal generated by the hole. A more detailed description of the 

technique and results can be found in [5]. 
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Figure 3.12: Experimental aluminium plate layout for hole location using FBG rosettes. 
 

3.8 CONCLUSIONS 

In this chapter we have presented the experimental realization and instrumental description 

of the four optical fibre systems (FBG, both configurations of the Mach-Zehnder 

interferometer and the polarimetric sensor) described in previous chapter for the detection of 

ultrasounds.  

We have also described the technique developed for the bonding of the sensing optical fibre 

onto the surface of the sample under test. This technique which mainly consists in casting the 

optical fibre into a resin mould prior to attachment to the plate’s surface, provided 

reproducible initial bonding conditions of the sensing fibre. Therefore repeatable and reliable 

ultrasonic signals under same launching conditions could be detected. 

We have experimentally confirmed the suitability of the various optical fibre sensors for 

ultrasonic wave detection. We compare the ultrasonic traces taken from the different sensors 

obtained under identical ultrasound launch conditions (at two frequencies 110 kHz and 270 

kHz at which only the low order modes S0 and A0 are excited). The relative amplitudes of the 

detected modes were different for each sensor as predicted theoretically. Because the relative 

amplitudes of the in-plane and out-of-plane displacement associated to each mode is very 

different, as well as the sensitivity to the interaction with each of these displacements differs 

for each sensor. 

Finally we applied the optical fibre sensors to damage detection and location. 
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The polarimetric sensor was used for damage detection and it was shown that its damage 

sensitivity was very much dependant in the orientation of the damage respect to the 

ultrasonic source and respect to the sensor’s directivity pattern. Time analysis was applied to 

the processing of the detected ultrasonic data, mainly consisting in the comparison of the 

detected acoustic signature of the structure in a damaged state with a previously obtained 

signature for a reference undamaged situation. And we looked for changes in the transmitted 

acoustic signal (e.g. amplitude, phase, etc.) and for additional reflected and/or scattered 

signals from the damaged region. 

In the damage location application we used FBGs sensors, due to their inherent high 

directivity and the simplicity of analysis associated to their cosine-squared directional 

characteristic and their wavelength division multiplexing characteristics. Three FBGs were 

used in a rosette configuration and two of such rosettes were needed to locate hole-through 

damages in an aluminium plate. It was found that in order to obtain the most accurate 

location results, care should be taken not to align the ultrasonic sources along the axis of any 

of the gratings in the rosettes. 
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Chapter 4
WAVEFRONT INTEGRATION 

TECHNIQUE 

4.1 INTRODUCTION 

The ultrasonic waves can be detected by a variety of methods (PZTs, FBGs, interferometric 

sensors, polarimetric sensors, etc.) described in Chapter 2, most of which produce essentially 

point measurements and therefore necessitate an array of sensors to cover any given area. If 

we bond an optical fibre onto the surface of the material or embed it within it, a sensor may 

be formed that is sensitive to the interaction of the acoustic wave along its length, acting as 

an acoustic wavefront integration sensor. This means that we can potentially interrogate a 

large area with just one sensor. With the added advantages that in this approach the sensor is 

fixed in position, therefore causing a minimal variation in the acoustic coupling at the 

interface with the sample under test. Additionally like any optical fibre sensor it is 

lightweight and immune to electromagnetic radiation. It possesses multiplexing capabilities 

and can produce a very high fidelity reception over a wide bandwidth [1]. Furthermore 

optical fibre sensors can be integrated into composite materials to form smart structures 

without altering their mechanical properties [2]. 

The detection of ultrasonic waves by such sensors can be achieved through either measuring 

the changes in the output phase of the light (Mach-Zehnder interferometric sensor [1]) or by 

monitoring changes in the polarimetric state (polarimetric detection system [3]). Whichever 

method is used the response of the sensor is highly directional as described in Chapter 2, a 

fact that may be used to improve the sensitivity of damage detection and its location [4]. 

If we consider the damage to be a secondary passive acoustic source, the signal obtained by 

the sensor will be a combination of that from the acoustic wave directly from the primary 

source (e.g. a PZT) and that from the damage as shown in fig. 4.1-right. The relative 

magnitudes of these two signals will determine our ability to separate and identify them. 
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By experience, the polarimetric and modified MZ interferometer system require the length of 

the sensing bonded/embedded optical fibre to be greater than an acoustic wavelength so that 

an acceptable signal can be produced. Hence unless the acoustic wavefront is at all times 

parallel to the fibre (as shown in fig. 4.1-left), there may be more than one ultrasonic 

wavefront crossing it at any given moment (fig. 4.1-right). Different parts of the fibre length 

may be subjected to varying positive and negative pressures. The properties of the output 

light of the fibre sensor will thus be an integrated value of all these variations. As we will see 

in this chapter, this integrating effect will lead to some complex periodic sensitivities of this 

sensors with respect to its length, acoustic wavelength, distance between source and sensor 

and the orientation of the acoustic wave propagation direction respect to the sensor. This 

complex response clearly affects their ability to allow the separation and identification of the 

signals associated to the primary and secondary acoustic sources, thus a better understanding 

of wavefront integrating sensors response is needed for their useful application into NDT. 

Until now the integrating characteristic of optical fibre sensors has not been studied in depth, 

with very few reports published about it. Due to their ultrasonic wavefront-integrating 

characteristic the obtained signals are difficult to analyse. In this chapter we present my 

contribution to a better understanding of this kind of sensors by a basic theoretical model of 

the integration effect and the comparison of the results with experimental data. 
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Figure 4.1: (Left) When the optical fibre sensor is parallel to the ultrasonic wavefront, the optical 

phase in the fibre changes equally and its time variation is equal to the wave amplitude. (Right) In any 

other fibre orientation the phase change in the fibre will be an integrated effect along the fibre length 

of the ultrasonic wavefront. The presence of damage can be considered as a secondary passive source. 
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4.2 WAVEFRONT INTEGRATION MATHEMATICAL MODEL 

The mathematical model for the wavefront integration simulation here presented is based in 

the operation of the optical fibre Mach-Zehnder interferometer system presented in previous 

chapters. In this detection system, a finite length L of optical fibre of the interferometer 

sensing arm is bonded to the surface or embedded into the sample material. The pressure 

field associated to the propagating ultrasonic waves induces a modulation of the refractive 

index in the fibre core, causing a difference in the optical phase with respect to the light 

propagating in the reference arm. When both light beams are combined in the output photo-

detector an interference pattern proportional to the phase difference between sensing and 

reference beams is observed in the detected optical intensity power, as given by eqn. 4.1. 

( )[ ]φ∆−⋅= cos1
2
0I

I  (4.1) 

Where I0 is the input optical intensity to the interferometer and ∆Φ is the difference on the 

optical phase delay of the beams at the end of both arms. As mentioned in previous chapters 

∆Φ is the combination of a slow varying phase shift Φd (due to environmental perturbations 

and any phase difference between both arms due for instance to a length mismatch) and the 

term due to the interaction of the ultrasonic wave with the sensing arm δΦ. The amplitude of 

the induced phase difference by the ultrasound can correctly be assumed to be small. 

Additionally because the environmental perturbation is usually a slow varying signal, by 

high pass filtering the optical intensity output of the interferometer, we can assume that its 

modulation is only caused by the ultrasonic wave signal component. Hence we can express 

the interferometer intensity modulation due to ultrasonic wave perturbation as: 

( ) δφφδφφδ
φ

δ ⋅=∆⋅∆=∆⋅
∆∂
∂

=
2

sin
2

00 IIII OP
OP

 (4.2) 

We have considered that the interferometer is locked in the quadrature operation point, thus 

OPφ∆  = (2n +1)·π/2, where n is an integer indicating that the interferometer can be locked 

into any fringe of the interference pattern. Equation 4.2 shows that the intensity modulation 

at the output of the interferometer is linearly proportional to the ultrasonic phase modulation 

in the sensing arm. 

If we neglect any polarization effect over the phase modulation, then as described in [7] the 

cause of this modulation is due to a perturbation in the propagation constant β = 2π neff/λ0 

(with λ0 being the wavelength of the used light in vacuum) and/or a change in the physical 

length of the sensing section of the optical fibre L, as expressed in eqn. 4.3. 
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δβδβφδ ⋅+⋅=∆ LL  (4.3) 

The change in β could be caused by two principles [7]; strain-optic effect which consist 

mainly in a change of the effective refractive index of the fibre neff by the ultrasonic wave 

stress field and the waveguide mode dispersion effect caused by a change in the fibre core 

diameter by the ultrasonic wave strain field. Considering a homogeneous stress through the 

section of the fibre, based on the fact that the ultrasonic wavelengths in our experiments are 

>> the fibre diameter [5]. It can be shown [7] that the waveguide mode dispersion effect is 

several orders of magnitude smaller than the strain-optic effect, hence it can be neglected. 

On the other hand the phase modulation caused by the change in the optical fibre length is 

caused mainly by the strain component in the longitudinal axis. This strain component is 

negligible unless the direction of propagation of the acoustic wave is parallel to the fibre 

longitudinal axis, in which case as the length of the bonded/embedded fibre is several times 

the value of the ultrasonic wavelength, the integration effect of expansions and compressions 

along the fibre length will cancel each other. 

In conclusion we can accurately assume that the phase modulation φδ∆  is caused by a 

modulation of neff in the embedded or bonded fibre of the sensing arm due to the stress field 

of the acoustic wave. In order to express a relationship between the changes in neff and the 

acoustic wave pressure field some simplifying assumptions were considered in our model:  

 Propagating Lamb waves are generated by a point source on a sheet of uniform 

thickness of an isotropic material. 

 Ultrasound pressure field is sinusoidal in time and space and follows a cylindrical 

wavefront in the plate as it propagates from the source as an ultrasonic guided wave 

(Lamb wave). The magnitude of the pressure field is given by: 

( )rkt
r

Aessure ss −= ωsinPr 0  (4.4) 

Where r is the distance to the ultrasonic source, A0 is the amplitude of the wave one 

meter from the source, ωs is the temporal frequency of the acoustic wave and ks is 

the spatial frequency of the acoustic wave. The radial symmetry of the stress field is 

assured by the PZT ultrasonic source used [6]. 

 We consider a linearly proportional change in neff by the stress field, as given by: 
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Where neff0 is the effective refractive index of the optical fibre without any ultrasonic 

perturbation, and ξ is an arbitrary proportional constant. 

 The effects of acoustic attenuation are assumed to be negligible over the difference 

in the distances to the source from the points along the length of the fibre sensor, due 

to the reduced dimensions of the fibre sensors involved. 

The refractive index modulation in eqn. 4.5 affects each section of the sensing fibre of 

infinitesimal length δx. We can then integrate these values to get the change in the effective 

index of the total length of the sensor and then convert it into an optical phase modulation as 

shown in eqn. 4.6. 
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Where x is the axis of the fibre and r is the distance from the source to a section δx on the 

fibre as shown in fig. 4.2. If we rewrite the vector r as the sum of the vectors r’ (distance 

source to centre of fibre) and x (distance from centre of fibre to the section δx) as defined in 

fig. 4.2, and normalize their values by the ultrasonic wavelength λS (such that r’ = nλS, x = 

x’λS) and the length of the fibre as L/2 = mλS. Then we can express the optical phase 

modulation normalized respect to 4πξA0/λ as: 
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Where α = π/2 – θ. The integral in eqn. 4.7 cannot be solved analytically thus a MATLAB 

script was written to solve it numerically. 
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Figure 4.2: Definition of the wavefront integration model variables. 
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4.3 SIMILARITY BETWEEN POLARIMETER & INTERFEROMETER 

WAVEFRONT INTEGRATION 

The previous theoretical model was developed taking into account only the modulation that 

the ultrasonic wavefront pressure causes on the effective refractive index of the core of the 

optical fibre sensor. This model was developed with the idea of applying the Mach-Zehnder 

interferometer system described in Chapter 2, however a sufficiently stable instrument for 

this purpose was not available at the time of these experiments. Based in initial experimental 

analysis we noticed that the polarimetric detection system integrates the signal in much the 

same way as the interferometric system does but in a more stable way. Therefore we decided 

to use the polarimetric detection system (described in Chapter 2) instead. Although the 

interaction principles of both detection systems are quite different in nature, both systems are 

sensitive to the ultrasonic wave stress field; with the interferometric system based in a 

refractive index modulation, and the polarimetric system based in the modulation of the 

polarization state of light due to the birefringence induced by the pressure field into the fibre. 

Initial analysis and the agreement between the previous model and the experiments based in 

polarimetric sensor evidences that positive and negative changes are produced in the fibre 

birefringence of the polarimetric sensor in a similar way to that expected in the fibre 

effective refractive index for the interferometric system. 

In this section we present a more detailed theoretical analysis of the previous affirmations, in 

order to confirm the similar wavefront integration effect of both detection systems. For this, 

we have modelled the Lamb wave pressure field interaction with the optical fibre sensors 

used in the polarimetric detection system. As already described in Chapters 2 and 3, the 

optical fibre sensors consist of a single mode optical fibre (125 µm cladding diameter) cast 

into an epoxy resin mould prior to their attachment to the plate, this allows a more reliable 

and reproducible results than bonding the optical fibre directly to the plate. The plate to 

which the sensors are bonded to is a Perspex plate 3 mm thick, for this model we can 

consider the dimensions to be long enough as to avoid any reflexion from its borders. A 

cross section view of the experimental configuration is shown in fig. 4.3-left.  

The similarity in elastic properties of the Epoxy mould and the Perspex plate, and the small 

diameter of the optical fibre in comparison with the mould dimensions, the plate thickness 

and the ultrasonic wavelength (~1 cm), allows approximating the whole system as having the 

optical fibre embedded into a Perspex plate of 4.5 mm thick (as shown in fig. 4.3-right). 

Additionally because the fibre coating has also similar acoustic impedance than Perspex then 

it is acceptable to consider the coating as part of the Perspex plate and that the birefringence 
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on the optical fibre are induced by the pressure field on the borders of the cladding. This 

pressure can be obtained by applying the Lamb wave propagation displacement equations 

(eqn. A.20) in order to calculate the displacement of the material particles around the surface 

of the fibre cladding. 

The birefringence induced in the fibre by the propagating ultrasonic wave, is proportional to 

the gradient of its pressure field around the section of the fibre and dependent on the 

direction in which this pressure takes place, as it distinguishes between a compressive 

pressure and an expansive one. This pressure is proportional to the acceleration of the 

particles around the cladding, which can be obtained from the second time derivative of the 

displacement equations given in eqn. A.20. 
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Figure 4.3: (Left) Cross section view diagram of the optical fibre sensor used in the polarimetric 

system. All dimensions are in mm. (Right) Approximation of the setup in the left to a optical fibre 

cladding embedded into a 4.5 mm Perspex plate. 

The obtained expression for the particle acceleration components of a plane wave are given 

in eqns. 4.8 and 4.9, where the wavefront of the ultrasound is considered parallel to the fibre. 

Hence the only acceleration components needed are x and z as defined in fig. 4.3-left. 

Because we are only interested in the birefringence distribution induced in the fibre and not 

in the absolute birefringence changes, then we can express the acceleration components 

normalized against the vertical displacement in the surface of the plate as:  
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Where )/(1 Lccq −= , )/(1 Tccs −= , z  and x  are the plate particles’ vertical position and 

horizontal positions respectively, normalized in ultrasonic wavelengths. Notice that as shown 

in fig. 4.3-left and defined in Appendix A for the definition of eqn. A.20, the origin of z is 

situated at the middle depth of the plate considered of thickness 2d, thus the top surface is at 

z = d and the bottom surface at z = -d. 

In practice however the propagating ultrasonic Lamb waves are not plane waves but 

cylindrical ones. Nevertheless, because the optical fibre sensor will always be located in the 

far field of the ultrasonic source, and because its diameter is much smaller than an ultrasonic 

wavelength, then we can assume that the arriving Lamb wavefront to each infinitesimal 

segment of the fibre dl is a plane wave as shown in fig. 4.4. In order to include the effect of 

the length of the fibre as a different distance of each fibre segment to the source ζ, we 

modify the temporal phase value ωt associated to each fibre segment. 
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Figure 4.4: (Left) The cylindrical propagating Lamb waves can be approximated to a plane wave for 

each infinitesimal segment length of the fibre sensor (Right). 

As we can see from the ultrasonic plane wavefront approximation shown in fig. 4.4-right, the 

associated in-plane particle displacement u’ does not have the same direction for all the fibre 

segments. In fact u’ is a function of the angle between the direction source:segment and the 

normal direction to the fibre (defined in the previous figure as σ). It is the projection of this 

displacement normal to the fibre u that mainly dominates the change in the fibre’s refractive 

index and so in its induced birefringence. As a first approximation we will consider only this 
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displacement component. We should also neglect the absorption attenuation because the 

distance of the various fibre segments to the source is not as different as to create a 

considerable change in the arriving ultrasonic amplitude. In any case as we mentioned, we 

are not interested in absolute values of the birefringence changes as we saw from the 

normalization of the particles acceleration distribution along the fibre. 

Regarding the induced birefringence into the fibre (which is proportional to the difference in 

the acceleration vector perpendicular to the fibre in opposite points of the fibre diameter) two 

different situations can be distinguished as shown in fig. 4.5. 

Figure 4.5-left shows the situation in which the acceleration vector at the opposite sides of 

the fibre have opposite direction. 
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Figure 4.5: Different cases of gradient acceleration vectors in the fibre cladding: (Left) Compression 

and expansion. (Right) Displacement. 

From one side the situation of the vertical acceleration vectors (aZ (x,(z+δr),t), aZ (x,(z-

δr),t)), as they point towards the fibre they cause an increment of the pressure over the fibre. 

On the other hand, the horizontal acceleration vectors (aX ((x-δr),z,t), aX ((x+δr),z,t)) cause a 

decrement of the pressure inside the fibre, because they are expanding the fibre diameter. 

The situation shown in fig. 4.5-right has the acceleration vectors at opposite sides of the fibre 

pointing towards the same direction. Thus in one side the acceleration compress the fibre (ax 

((x+δr),z,t)), meanwhile in the opposite side it is expanding it. The resultant effect is that part 

of these accelerations is consumed in a displacement of the fibre and not in a birefringence 

inducing pressure. All this cases are taken into account in our mathematical model. 

Finally the Cartesian acceleration components in eqns. 4.8 and 4.9 are converted into 

cylindrical coordinates for being more adequate in the present analysis, as shown in fig. 4.6-

left for the unitary vectors of the displacement components. The relationship between both 

systems of coordinate for the acceleration components are given in eqn. 4.10 and 4.11.  

( ) rZXr uaaa ˆsincos ⋅⋅+⋅= θθ  (4.10) 
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( ) θθ θθ uaaa XZ ˆsincos ⋅⋅−⋅=  (4.11) 

In the polar coordinates we distinguish between the radial  and tangential  acceleration 

components. Although the tangential component has a twist effect over the fibre that will 

affect its birefringence, we neglect it in the present first approximation. Hence we only take 

into account the effect of the radial acceleration component as the one that will dominate the 

induced birefringence. The gradient radial acceleration is calculated as the difference of the 

radial acceleration components in opposite sides of each fibre section along the length of the 

fibre. After applying the projection of the radial acceleration component into the direction 

normal to the fibre (as described previously in fig. 4.4), we get the next expression for the 

radial acceleration component: 

rû θû

( rZXr uaaa ˆsincoscos ) ⋅⋅+⋅⋅= θσθ  (4.12) 

Notice that the present analysis considers only the case shown in fig. 4.4, where the 

ultrasonic source is normal to the centre position of the fibre (point P in the figure). An 

improvement of the present model would include a new variable that would specify different 

orientations of the source respect to the fibre. The obvious implications of different source 

orientations are the changes it would cause in the periodicity of the pressure distribution 

along the fibre (as shown in fig. 4.8 for the here assumed perpendicular orientation). 
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uû

wû  
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Figure 4.6: (Left) Conversion of the unitary vectors from the Cartesian displacement coordinates 

( , ) to the polar displacement coordinates ( , ). (Right) Normalized radial acceleration 

component for the plate particles around the fibre cladding. 
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In fig. 4.6-right we plot the normalized pressure distribution (or equivalently the radial 

normalized acceleration difference) along the perimeter of an optical fibre length of 32 cm 

and a distance to the source of 21.6 cm perpendicular to the centre of the fibre, with working 

frequency of 100 kHz. The plot shows just half of the fibre length (the other half is 

symmetric). The red areas are associated to the most intense positive radial acceleration 

(expansion pressure), and in blue are the most intense negative radial acceleration values 
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(compression pressure). Noticeable is the fact that the red and blue regions alternate along all 

the fibre length between in-plane and out-of-plane planes. 

To see this more clearly we show in fig. 4.7 only the maximum compressing radial 

acceleration difference in pink (maximum refractive index increment) and the maximum 

expanding radial acceleration difference in green (maximum refractive index decrement). 

The birefringence in the optical fibre is induced by the differential refractive index of these 

two principal acceleration component axes. It is noticeable that the birefringence axes are 

parallel to the in-plane and out-of-plane directions of the plate along all the fibre length. The 

modulated birefringence has a sinusoidal decreasing amplitude distribution in a similar way 

to the pressure analysis of the wavefront integration model developed for an interferometric 

detection system (as applied later in this chapter) and with the results shown in fig. 4.8. 
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Figure 4.7: Birefringence major (pink) and minor (green) axis radial acceleration components in the 

section of the fibre along its length. Plotted is half of the fibre sensor of σmax = 0.636. 

 

A different orientation of the source respect to the fibre sensor would not change the fact that 

the induced birefringence axes appear parallel to the in-plane and out-of-plane axis of the 

plate, and it only would affect the periodicity of the birefringence modulation. 

Figure 4.8 compares the birefringence axis radial accelerations with the total net radial 

acceleration in the centre of the fibre. The first case is the one to take into account for the 

polarimetric detection system as it is the induced birefringence in the fibre core that modifies 

the polarization state of the light within the fibre. Meanwhile the second case is the one that 

affects the interferometric system, as it is the total pressure in the fibre core that modulates 

the effective refractive index of the light propagating within the interferometric sensing arm 

fibre. It is clear from this figure that the total radial acceleration which modulates the fibre’s 

core effective refractive index follows the positive and negative changes of the fibre in-plane 

birefringence modulation and symmetrically also follows the chirp modulation behaviour of 

the out-of-plane birefringence axis. 
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Figure 4.8: Comparison of the normalized birefringence axis radial accelerations (as analysed by 

polarimetric system) and the normalized total net radial acceleration in centre of fibre (as analysed by 

interferometric system). 

4.4 EXPERIMENTAL VERIFICATION OF MODEL SIMULATIONS 

In this section we present the results obtained with the model by simulating the changing 

response of a wavefront integration fibre ultrasound detector of different lengths to varying 

distance and orientation from a point ultrasonic source. This is complemented by a series of 

related experiments developed in order to validate the model results. In the experiments care 

has been taken to satisfy as accurately as possible the assumptions related with the 

mathematical model. Therefore the source driving signals are of low frequency so that only 

the basic Lamb wave modes are excited, and only the signal produced by the fastest and non-

dispersive S0 mode is analysed (in fig. 4.9-left we show in blue a typical detected ultrasonic 

signal where only the low order modes and their reflection from the plate’s boundaries are 

present). The driving signal consists in all cases of a few cycles Hamming windowed 

sinusoidal tone bursts (like the signal in red in fig. 4.9-left for a 4.5 cycles case). The window 

decreases the frequency components of the ultrasound, reducing the dispersion effect in the 

propagating waves, which have yet to be incorporated into the model, making the signal 

closer to a single frequency sinusoidal as simulated in the model. The low frequency of the 

propagating ultrasonic waves (around 100 kHz in Perspex with group velocity for S0 mode of 

~2.44 km/s and around 270 kHz in aluminium with group velocity for S0 mode of ~5.44 

km/s) assures that the ultrasonic wavelength is >> than the fibre core (~10 µm for single 

mode fibre) thus providing a homogeneous stress through the section of the fibre. 
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Figure 4.9: (Left) Typical wavefront integration fibre sensor detected ultrasonic signal (in blue) for a 

4.5 cycles tone burst driving signal (in red) at 100 kHz. The first two arriving bursts correspond to the 

incident S0 and A0 mode, and the rest are their reflections. In this section we compare the model 

optical phase maximum modulation values with the maximum peak to peak variation of the S0 mode 

for the detected ultrasonic signals (defined as Vpp in the figure). (Right) Pressure field distribution 

along the optical fibre sensor as the wave pass through. 

A thin PZT disc of 1 cm diameter ultrasonic source is used in all the experiments (its 

specifications and operation are properly described in Chapter 2). Since the ultrasound 

originates from a number of points along the transducer face, then the ultrasound intensity 

along the propagating beam is affected by constructive and destructive wave interference. 

These are sometimes also referred to as diffraction effects in the NDT world. This wave 

interference leads to extensive fluctuations in the sound intensity near the source, known as 

the near field. The pressure waves combine to form a relatively uniform front at the end of 

the near field, in what is called the far field. In the far field, the beam spreads out in a pattern 

originating from the centre of the transducer. The equation for the far field is given in eqn. 

6.6, where l is in this case the dimension of the source. Because the simple mathematical 

model of the wavefront integration effect considers only point ultrasonic sources, the optical 

fibre sensors are always located at a distance within the far field of the source (for the 

frequencies used in this chapter and the materials, this is less than 2 cm from source). 

The simulation from the mathematical model provides normalized values of maximum 

variation of the optical phase due to the strain-optic effect that the ultrasound causes over the 

fibre sensor. These values can be compared with the maximum optical intensity modulation 

of the output of the polarimetric system as justified in previous sections. However because 

the optical fibre sensors are not entirely non-birefringent before arrival of the ultrasonic 

wave, due to stresses produced by the embedding/bonding process itself. Then the 
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unrepeatable nature of the embedding/bonding process causes that the initial birefringence 

induced in the fibres is not equal for all the sensors. Therefore this may suggest that the 

maximum changes in the intensity of the different sensors may not be comparable. 

Fortunately the repeatability of experimental results for different sensors of same length and 

under same conditions respect to the ultrasonic source, suggest that the comparison between 

different sensors is acceptable. The reason for this lies in our technique used for obtaining 

the ultrasonic data from the polarimetric system. That is, we optimize the polarization 

controller, before the fibre sensor, and the orientation of the polarizer such that maximum 

sensitivity is achieved in all cases. Hence neglecting the different initial polarization of the 

fibre sensors, so that only the polarization of the light at the exit of the fibre sensor and 

before the polarizer matters (as described in Appendix C). 

The maximum optical intensity modulation of the polarimetric system is measured in our 

experiments as the peak to peak voltage value of the S0 mode burst (defined in fig. 4.9-left as 

Vpp) for being the first arriving ultrasonic wave component and so free from interference with 

other modes or reflections. 

4.4.1 Sensor length analysis 

In the first of our model analysis, we study how the wavefront integration affects the 

detected ultrasonic signal by only varying the length of the integrating sensors, meanwhile 

the orientation and distance to the ultrasonic source is fixed.   

The integral of the model (eqn. 4.7) was solved for one period of the ultrasound considered 

pure sinusoidal for simplification purposes (it was also simulated for a 5 cycles non-

windowed sinusoidal toneburst and similar normalized results were obtained). The frequency 

of simulation was chosen to be 100 kHz as it provides best coupling between PZT source and 

the Perspex plate used in our experiments. The fixed distance between source and centre of 

the fibre sensor was chosen to be 9.6 ultrasonic wavelengths (or n = 9.6) in order to be in the 

far field. The source is considered perpendicular to the fibre sensor or rather θ = 0 (as 

defined in fig. 4.2). The range of fibre lengths simulated goes from 0 to 14 ultrasonic 

wavelengths (or equivalently 0 < m ≤ 7). The result of the simulation is a 3D plot as that 

shown in fig. 4.10-right where the plane of definition is given by the two variables m or 

length of fibres and time, and the vertical magnitude represents the normalized variation of 

the fibre optical phase ( φ∆ ). Because we are only interested in the maximum modulation of 

the optical phase (or sensitivity) for each sensor length, we can simplify this plot into a 2D 

one (fig. 4.10-left) as a view of the 3D plot along the plane φ∆ - m. 
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Figure 4.10: Simulation of the numerical integration of eqn. 4.7 for distance sensor–source = n = 

9.6λS, and ultrasonic frequency fS = 100 kHz, for a changing length of the fibre sensor from 0 to 14 

λS. (Left) Maximum variation of the normalized optical phase during a period time of the 

sinusoidal ultrasonic wave. (Right) Same plot showing the 3rd dimension time. 

The sensitivity of the wavefront integration given by our model is characterised by a series 

of oscillations of decreasing amplitude and period (fig. 4.10-left). The first oscillation which 

starts from zero sensitivity for a zero length fibre has the highest peak (and so highest 

sensitivity). The next oscillations have decreasing sensitivity peaks, with the amplitude of 

the oscillations tending to zero as m tends to infinity. The physical explanation of this curve 

is as follows. As we might expect, φ∆  initially increases as the sensor becomes longer and 

a larger portion of the wavefront interacts with it. We might intuitively predict that this 

increment would occur until the sensor length permits a maximum wavefront phase 

difference of π between the ends and the centre of the sensor so that at a particular time all 

the fibre length is under compressing pressure (thus maximum positive value of φ∆ ) and at 

another time all the fibre is under expanding pressure (thus maximum negative value 

of φ∆ ). As the length of the fibre is further increased, at any given time the sensor will be 

affected by a combination of compression and expansion pressure distributions (as shown in 

fig. 4.9-right), causing positive and negative local changes in the effective index of the fibre, 

thus compensating each other towards the integrated optical phase change. This causes the 

characteristic oscillating distribution of the φ∆ curve respect to the sensor length. Therefore 

if we consider a sensor sufficiently long that a wavefront phase difference of 2π can occur, 

the first half wavelength (0-π) will exert positive pressure and the second half (π - 2π) 

negative pressure. If the effects of these two parts were equal they would cancel each other 

out to give a zero φ∆ . This does not occur in fig. 4.10-left because the second part of the 
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pressure distribution is not equal to the first one, for two reasons. Firstly, the length of the 

fibre over which the second half acts is shorter (due to the geometry as shown in 4.9-right). 

Secondly the pressure exerted by the wave will be less as the distance from the source to the 

fibre will be greater, and the pressure field is inversely proportional to the root square of the 

distance. In consequence, the minima in the φ∆ - m curve are never zero and each 

successive maxima is lower than the previous one, as observed.  
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Figure 4.11: (Left) Relation between length of sensor (m) and distance source - sensor (n) that provide 

maximum φ∆ , in blue for our simulation results and in red for the intuitive case in which the sensor 

length permits a maximum wavefront phase difference of π between the ends and the centre of the 

sensor. (Right) Different distributions of the pressure field along the length of the integrating sensor. 

In fig. 4.11-left we plot the relation between the length of the integrating sensor and distance 

to the source that are associated to the first peak of the φ∆ - m curve. In blue as obtained by 

our simulation and in red for the intuitive case in which the sensor length permits a 

maximum wavefront phase difference of π between the ends and the centre of the sensor. We 

notice that these two cases do not agree. In fact by linear regression of the blue curve, we 

calcualte that it corresponds to the case in which the ultrasonic wavefront phase difference 

between the centre and ends of the integrating sensor is 0.74·π (or a = 0.74·π with a defined 

in fig. 4.11-right). Obviously only one of both situations can be right but which one? we 

might expect it to be π, but as the phase of the acoustic wave changes from 0 to π, the 

maximum pressure moves from the centre of the fibre towards the ends. As it does so, its 

effect on the fibre decreases since it acts on a shorter section of the fibre. We can see this in 

left hand part of fig. 4.11-right, where the wavefront from 0 - π/2 affects approximately 2/3 

length of the sensor but the wavefront from π/2 - π only affects approximately 1/3. Consider 

now the case of a sensor having a length such that a maximum of π phase difference could 
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occur along its length and choose the phase of the wave such that at no point on the sensor is 

the pressure negative. We would then have the situation of the wave depicted in the left side 

of fig. 4.11-right, where the wavefront phase is 0 (i.e. null pressure) at the centre of the 

sensor so most of the length of the sensor only is being affected by a small pressure field.  

The maximum of the pressure field is at a phase of π/2 which occurs further towards the end 

of the sensor and thus affects it less. It can be shown that the integrated change in the optical 

phase of the sensor will be bigger if we have a situation such as that shown in the right hand 

side of fig. 4.11-right, where the pressure peak is almost at the centre of the sensor. To avoid 

having a negative pressure field in part of the length of the sensor which would reduce the 

effect of the positive field, the length of the sensor should be restricted such that a maximum 

phase difference of  0.74·π can occur along the sensor.  

The mathematical model created has already been of great use in order to correct our 

intuitive wrong idea of the relation length of sensor and distance to the source that provides 

maximum sensitivity. 

Experimental verification 

A set of experiments was developed to check the results of the sensor length analysis given 

by our model. Seven different length optical fibre sensors were bonded onto the surface of a 

Perspex plate of 3 mm thickness. All the sensors were perpendicularly oriented to a PZT 

source at a distance of 21.6 cm (which corresponds to n = 9.6 at an ultrasonic frequency of 

100 kHz and measured group velocity of 2.25 km/s for the first arriving S0 mode). The 

lengths of the sensors were chosen to agree with the values of m indicated by red dots in fig. 

4.10-left (with an error of 0.2 due to a 0.5 cm length error in the fibre sensors associated to 

the sensors mould in which the fibres are embedded as shown in fig. 4.3-left, and to an error 

in the measured S0 group velocity of 0.1 km/s), their length in cm is indicated in fig. 4.12, 

where a picture of the experimental lay out is also presented. The polarization controller, 

polarizer, laser and high pass filter are associated to the polarimetric detection system, in the 

other hand the signal generator and the 50 dB high voltage amplifier are used to excite the 

two PZTs used as ultrasonic sources (we need 2, in order to have all the fibre sensors 

oriented perpendicularly to at least one of them). For the sensors of length (15.5, 19.5 and 

4.9 cm) the source will be PZT1, whilst for the sensors (14, 17.2 and 8.8 cm) it will be PZT2. 

To normalise the detected ultrasound of all the sensors, since there are 2 different PZT 

sources, we will use the fibre sensor in the middle between both sources as the reference one 

(of length 11.3 cm which corresponds to a value of m = 2.4 associated to the maximum peak 

of φ∆ in fig. 4.10). 
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Figure 4.12: Experimental set-up of the wavefront integration sensor length analysis using the 

polarimetric detection system. The components in the set-up are; 1) Signal generator, 2) 50 dB High 

Voltage amplifier, 3) Oscilloscope, 4) Polarization controller, 5) Linear polarizer and HF InGaAs 

photodiode, 6) Laser source, 7) HP filter and amplifier, and 8) Perspex plate of 3 mm thickness with 

various length fibre sensors and PZT ultrasonic sources as shown in the right. All the lengths are given 

in cm. The distance from centre of sensors to closest PZT source is 21.6 cm. 

The generated ultrasound is a 5 cycles tone burst at 100 kHz Hamming windowed, as it 

would be impossible to analyse a pure sinusoidal Lamb wave (as simulated in our model) 

because the propagating modes will mix with their reflection in the detected signal. 
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Figure 4.13: Comparison between the normalized maximum peak to peak of the experimentally 

detected ultrasonic data (as blue circles) and the simulated results of our model (as red dots), for n = 

9.6 and fs = 100 kHz. 
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The normalized peak to peak value of the S0 mode burst (defined as Vpp in fig. 4.9-left) 

detected by each sensor are plotted as blue circles in fig. 4.13 together with the normalized 

peak to peak values of the simulated φ∆ as red dots (we call it ppφ∆ ). 

Although there is not an exact agreement between the experimental results and the model we 

see that both of them seem to describe a similar shape for the φ∆ - m curve, including a 

peak and a subsequent minimum. Compared to the predicted curve in fig. 4.10-left, the 

experimental results produce a curve which appears slightly compressed to lower values of m 

and for which we do not have an answer yet. The model has been tested for other frequencies 

above and below the one of the previous experiment in order to see if effectively our basic 

integration model can predict the trend of the sensitivity curves.  
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Figure 4.14: (Left) Model simulation for n = 14.4 and fS = 150 kHz changing the length of the sensor 

from 0 to 14·λS. (Right) Comparison between experimental results (circles) and the model (dots). 

Figure 4.14 shows the results when the ultrasonic frequency is 150 kHz. In this case the 

model predicts that for the set of sensor lengths previously chosen (shown as red dots in fig. 

4.14-left) a double oscillation should appear. Effectively that is what we see in the 

experimental results plotted in 4.14-right (as before). However still we can see important 

discrepancies between the normalized values of the experimental points and the model. 

Finally in fig. 4.15 we show the case for an ultrasonic frequency of 60 kHz. Now the model 

predicts a single peak which effectively is confirmed in the experimental results. The 

increased discrepancies in the normalized values of the experimental and model results of the 

present case respect to the previous ones may be due to the fact that the amplitude of the 

detected ultrasound for the optical fibre sensors is at 60 kHz between 3 and 10 times 

(depending in the sensor length) smaller and double noisy than for the other two frequencies. 

The reason for a worse signal to noise ratio is that 100 kHz is the PZT source resonant 
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frequency for the used Perspex plate and the frequency 150 kHz is found to provide the best 

coupling between Perspex plate and the optical fibre sensor. 
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Figure 4.15: (Left) Model simulation for n = 5.76 and fS = 60 kHz changing the length of the sensor 

from 0 to 14·λS. (Right) Comparison between experimental results (circles) and the model (dots). 

The presented experimental results satisfy the theoretically predicted trends well enough to 

demonstrate that the basic premises of our model are correct. The accuracy of the practical 

results may be compromised by the difficulty in producing repeatable sensors, even using 

casting techniques. This is because the interaction of the acoustic wave with the fibre is very 

dependent on the nature of the bond between it and the sample plate. Nevertheless the 

presented analysis shows that our simple model may be used to determine the optimum 

length of the fibre sensor for maximum sensitivity of any of the wavefront integration 

detection systems presented in Chapter 2. 

4.4.2 Sensors-source orientation analysis 

 

 

 

 

 

 

Figure 4.16: Simulated normalized optical phase modulation for varying sensor length from 0 to 14λS 

(longer in the left figure), a distance centre sensor to source of 9.6λS and different source-sensor 

orientations: (Left) θ = 230, (Centre) θ = 600 and (Right) θ = 900. In all cases the simulated ultrasonic 

frequency is 100 kHz. 
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Another interesting analysis of the wavefront integration is what happens when the sources 

are not symmetrically orientated to the centre of the sensor or equivalently when θ ≠ 0 (with 

θ as defined in fig. 4.2). Figure 4.16 shows the simulation results by solving eqn. 4.7 for 

three different orientations such that left corresponds to θ = 230, centre for θ = 600 and right 

for θ = 900. In all cases the simulated ultrasonic frequency is 100 kHz and as before the 

distance from source to centre of the sensors is n = 9.6 and the analysis is solved for a 

varying length of the sensors 0 < m ≤ 7 (longer in the left figure to clearly see the trend). 

From fig. 4.16-left we can see that as occurred with the case θ = 00, the φ∆ - m curve is 

characterized by a series of oscillations, however when the angle of source orientation is not 

perpendicular to the sensor, the peaks of the oscillations increase with the length of the 

sensor till reaching an absolute maximum (f.i. this maximum occur at m = 5 for the case in 

fig. 4.16-left) and then decrease and saturate as with θ = 00. As the angle θ increases the 

number of oscillations also increases although their peak amplitude decreases because the 

number of ultrasonic wavefronts integrated by the sensor also increase. The closer we get to 

θ = 900, which means the ultrasonic direction of propagation is parallel to the axis of the 

fibre sensor, then φ∆ decreases considerably (the sensor becomes less sensitive) because the 

integrating sensors are stress field sensitive. Opposite to what happens with FBG sensors 

which are strain sensitive, hence more sensitive to this orientation. 
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Figure 4.17: Directional sensitivities of the integrating sensors as predicted by our model for a 

ultrasonic frequency of 270 kHz, a fixed length of the sensor of 19.5 cm (or m = 5.024 in aluminium 

plate): (Left) for distance source-sensor of 16 cm (or n = 8.24). (Right) For distance source-sensor of 

31 cm (or n = 16) 

Our model simulation also shows that the absolute maximum of φ∆ occurs with longer 

sensor as the angle θ is increased, and for a fixed sensor length the value of the maximum 

decreases in general with θ as shown in fig. 4.17. These plots represent the peak to peak 
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change of the maximum peak of φ∆ for a varying angle θ between 00 and 900, a fixed length 

of the sensor of 19.5 cm (or m = 5.024 in aluminium plate), simulated ultrasonic frequency of 

270 kHz and distance from source to centre of sensor of 16 cm for the left plot and 31 cm for 

the right plot. The directional sensitivity of the integrating sensors follows a rapid fall off 

towards a plateau at high angles θ. However at low angles the integrating effect causes a 

rather complex orientation sensitivity characteristic which is a function of the acoustic 

wavelength, sensor length and distance source-sensor (as noticed from the big differences 

between the two plots in fig. 4.17). 

Experimental verification 

The experiment described next is designed to validate the directional sensitivity of fig. 4.17-

right. Due to the long distances involved (31 cm), we have decided to use an aluminium 

plate of less attenuation than Perspex. In an aluminium plate of 1 mm thickness we bonded a 

single fibre sensor of length 19.5 cm, and in a circle of radius 31 cm with centre in the 

middle of the fibre we glued eight PZTs used as ultrasonic sources (labelled in red with the 

value of their orientation θ respect to the fibre sensor, in the lay-out of the experiment shown 

in fig. 4.18-left). 
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Figure 4.18: (Left) Aluminium plate experimental layout of the wavefront integration sensor-source 

orientation analysis (for PZTs labelled in red with the value of angle θ associated) and distance 

analysis (for PZTs labelled in blue with distance to centre of fibre sensor in cm). The present layout is 

completed with the same components as in fig. 4.12, associated to the polarimetric detection system. 

(Right) Comparison of directional sensitivity between experiments (blue circles) and model (red dots). 

As in the experiments for the sensor length analysis, we use a 5 cycles Hamming windowed 

tone burst but now at 270 kHz as it is the one which provides optimum coupling in the 

aluminium plate. To normalize and compare the peak to peak ultrasound by the different 
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sources we use a reference PZT (labelled as PZTREF in fig. 4.18-left), situated 1 cm from the 

centre of the fibre sensor. Again we are interested in the peak-to-peak of the S0 mode signal. 

Ideally because all PZT sources are equally far from the PZTREF, its recorded ultrasonic 

signal should be equal for all the PZT sources. In practice this does not happen because the 

coupling between the different PZTs and the plate is different as it is impossible to get a 

perfect exact bonding condition for all of them. It is good approximation to consider the 

coupling coefficient for each of them constant with the time as they are glued to the plate.  

But it will be necessary to normalize the recorded signal by the fibre sensor for all the 

sources in order to compare them. Next we explain how to do this. 

As an example we analyse what happen with an arbitrary PZT. We can express the 

amplitude of the ultrasonic wave detected by PZTREF as: 

PZTref

PZT
PZTPZTrefPZTref r

A
A ⋅⋅= φφ  (4.13) 

 Where APZTref is the amplitude of the ultrasound in the plate near the PZTREF, APZT is the 

amplitude of the oscillations in the PZT source, φ PZTref is the coupling coefficient between 

plate and PZTREF source and φ PZT is the coupling coefficient between PZT source and plate. 

On the other hand the amplitude of the ultrasound detected by the sections of the fibre sensor 

at a distance r from the source (in the far field) is equal to: 

r
A

rrA PZT
PZTfibrefibre ⋅⋅= φφ )()(  (4.14) 

Where Afibre(r) is the amplitude of the ultrasound in those points of the fibre at a distance r 

from PZT source and φ fibre (r) is the coupling coefficient between plate and those points of 

the fibre at a distance r from PZT source. 

Therefore if we want to normalize Afibre(r) so that it can be compared with the amplitude of 

the other PZTs we have to compensate the term that depends in the PZT source (φ PZT). To 

do this we just need to divide eqn. 4.14 by eqn. 4. 13 so that we get: 

r

rr
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In conclusion to normalize the detected signal by the optical fibre sensor for the different 

PZT sources we divide the fibre detected peak to peak ultrasonic signal by the one detected 

with PZTREF, for each of the PZT sources. 
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The measured normalized peak to peak values of the ultrasound by the fibre sensor for the 

different PZT sources orientation are plotted in fig. 4.18-right as blue circles and compared 

with the simulation results as red dots (as taken from the red dots in fig. 4.17-right which 

correspond to the experimental orientation of the sources). The experiments follow very well 

the simulations with the discrepancies being within the experimental error (due to an angle 

error of the PZT sources of 1.50 due to their diameter of 1 cm and the error associated to the 

measured group velocity values of around 0.1 km/s). Notice how the maximum sensitivity 

effectively occurs at the angle of 6.250 as predicted by our model. We have not plotted the 

result associated with the PZTs at angles 700 and 900 because the detected signal was of 

same order as the noise. 

4.4.3 Sensors-source distance analysis 

The last of the wavefront integration analysis is related to the changes in the sensor 

sensitivity due to the variation of the distance from the centre of the sensor to the source. 

Now the length of the integrating sensor is fixed, as well as the orientation which we have 

chosen perpendicular (θ = 00).  

For the experimental realization we have used the same fibre sensor and plate than the 

previous case and we have glued seven PZT sources along the line perpendicular to the axis 

of the fibre at distances varying from 16 cm to 39 cm as shown in fig. 4.18-left (the PZT 

sources in this case are labelled in blue with the value of their distance to the centre of the 

fibre sensor). 

The same ultrasonic frequency as before (270 kHz) and an experimental ultrasonic signal 

consisting on 5 cycles Hamming windowed tone burst were used.  

The model simulation for a pure sinusoidal ultrasound is shown in fig. 4.19-left. We notice 

that for the range of values of n associated with our experimental distances source:sensor (it 

goes from n = 8.25 for closer PZT source at 16 cm to n = 20 for the farthest PZT source at 39 

cm) the trend of the sensor sensitivity follows a single valley.  

The experimental peak to peak values of the detected ultrasonic signals should also be 

normalized in order to compensate for the different coupling coefficient due to a non-

repeatable bonding of the various PZT sources (as explained before). Additionally because 

the sources are at different distances from the sensor, we also need to normalize the 

experimental data to compensate the spreading attenuation associated to the propagating 

cylindrical Lamb waves. The total normalization consists in dividing the peak to peak signal 

values detected by the fibre sensor with the source being PZTj by the term:  
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Where APZT_1 and APZT_j are the peak to peak values of the signal detected by PZTREF when 

the source is PZT1 and PZTj respectively (with PZT1 chosen to be the closest one to the 

sensor). The values rPZT_1 and rPZT_j are the distance of each source to the PZTREF. 

The experimental normalized data is shown as red dots in fig. 4.19-right, and it is compared 

with the results from the simulation in blue circles. Notice that we have plotted two different 

simulation results; the straight line one is associated to the case in which the simulated 

ultrasound is a pure sinusoidal, meanwhile the dashed line is obtained when the simulated 

ultrasound is a 5 cycles non-windowed toneburst. 
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Figure 4.19: (Left) Simulated normalized optical phase modulation for varying distance source-sensor 

with perpendicular orientation and fixed length of the sensor 19.5 cm (or m = 5.024 in aluminium), for 

an ultrasonic frequency of 270 kHz. (Right) Comparison between experimental results (red dots) as the 

normalized peak to peak values of detected signals, and simulation (in blue circles) as  peak to peak 

change in φ∆ , using a 5 cycles tone burst signal (dashed line), and a sinusoidal signal (straight line). 

The experimental results follow again the trend of the simulation where a single valley was 

predicted. However the valley in the experimental results seems to be compressed towards 

decreasing values of n. In addition the experimental curve is in between the ones obtained 

for a simulated pure sinusoidal ultrasound and the one obtained for a simulated 5 cycles non-

windowed toneburst. We remember that the ultrasound excited in the experiments is a 

Hamming windowed 5 cycles toneburst, which can be considered to be in between the two 

simulated cases. The higher discrepancies between experiments and simulation in the present 

analysis respect to the previous ones, may be related to the fact that in the previous two 

analysis the distance source to sensor was fixed meanwhile not in this case. Hence 
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meanwhile the dispersion effect of the propagating ultrasounds was not important in the 

previous analysis, it is relevant in the present one. The dispersion effect is not considered in 

our model. Nonetheless further analysis has not been done and this effect has to be 

quantified yet. Another reason for the discrepancies is associated to the unconsidered 

situation of having important reflexions of the propagating ultrasound from the rest of the 

PZT sources bonded in the path to the sensor. These reflections as they are in the direct path 

source-sensor will arrive within the time interval of the arrival of the S0 mode burst causing a 

perturbation in the measured peak to peak values which has not been simulated. 

In the other hand the general discrepancies between the simulation and the experiments for 

all previous cases could mainly be dominated by the changing phase and amplitude response 

of the PZT as a resonant system which generates a real ultrasonic signal in the sample 

slightly different from the excited one. Also the non-repeatable bonding process of the fibre 

sensors and the PZT sources may have an important effect. Further research has yet to be 

done to fully understand the discrepancies and further improve the model. 

4.5 CONCLUSIONS 

The changing response of an integrated fibre ultrasound detector to varying distance and 

orientation from the source has been analysed theoretically, and simulated in the MATLAB 

environment, for sensors of differing lengths. A periodic response to both changing distance 

and orientation of the source was seen and explained in terms of the ability of an acoustic 

wave to produce both positive and negative changes in the effective index of a fibre. For a 

sensor whose length is crossed by several acoustic waves at any given instant, these positive 

and negative effects may cancel each other out to varying degrees. This integration effect 

gives the sensor its characteristic response. 

The integration model has also corrected the wrong intuitive idea that for an ultrasonic wave 

propagating perpendicular to the fibre axis, the maximum fibre sensor response is achieved 

when its length permits a maximum wavefront phase difference of π between the ends and 

the centre of the sensor. Instead the model predicts that the maximum response should occur 

when the maximum permitted phase difference is of 0.74·π. We have successfully explained 

how this is possible. 

The basic trends, of the modulation that the acoustic wave pressure field induces over the 

sensing property of an OFS, predicted by the model as a change in the sensor length, 

distance to the source and orientation have been experimentally confirmed. The model also 

characterizes the directivity pattern of these integrating optical fibre sensors with obvious 
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implications in damage location. The unintuitive model prediction of maximum sensitivity 

for an orientation of the fibre axis non perpendicular to the propagation direction of the 

ultrasound contrasts with the sensitivity typical of pressure sensors. This prediction was 

positively verified experimentally.  

We have also demonstrated theoretically, as we observed experimentally, that a polarimetric 

sensor exhibits similar integration behaviour to that predicted for an interferometric system. 

Suggesting that positive and negative changes are produced in the fibre birefringence in a 

similar way to that expected in the fibre refractive index. 

The results indicate that optimum ultrasonic detection may be achieved through careful 

positioning and orientation of the optical fibre. These results may be applied, for example in 

NDT, where scattered ultrasound from defects introduces new effective sources that may be 

characterized by arrays of these integrating sensors. 

We have identified areas for improvement in the theoretical analysis; to include a more 

precise modelling of specific propagating ultrasonic waves and the addition of the 

propagating wave dispersion effect. Improved models are currently in development. 
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Chapter 5
SIGNAL PROCESSING 

5.1 INTRODUCTION 

A SHM and NDT system requires a proper analysis of the data collected by the sensor 

system in order to be effective. This analysis should provide information related with the 

structural integrity, and the presence, location and characterization of damage. 

The processing system is the component of the SHM/NDT system in charge of the data 

analysis. It may consist of a centralized processing unit or a distributed group of more local 

processing units. The processing system is the brain of the SHM system, it deciphers and 

interprets the data collected by the sensor system, and in most cases it is build over four 

levels as described in Chapter 1; Pre-processing, Feature extraction, Pattern processing and 

Decision/Intervention.  

In this thesis the pre-processing of the data is done by averaging, digital filtering and 

smoothing, and by the use of wavelet de-noising techniques. The feature extraction is mainly 

manual by previous knowledge of the propagating ultrasonic wave patterns and the 

geometrical boundaries of the structure. Most of the signal processing applied in this work is 

concerned with pattern processing, where time-domain and frequency-domain techniques are 

used for damage detection, characterization and location. Also time-frequency analysis and 

two dimensional Fourier transform techniques are applied to assess structural condition by 

analysis of the changes in the propagation dispersion characteristic of the induced ultrasonic 

guided waves into the sample under test. Finally optimization techniques like Genetic 

Algorithms are used for the extraction of the material elastic and geometrical properties from 

the dispersion propagation information, which can infer the presence of structural loading or 

defects within the material, presenting a very accurate reflection of the integrity of the 

structure. 

Signal processing does not create more information than that presented in the transient 

signal, but it can provide a different perspective on the same information, highlighting 

aspects that otherwise would go unnoticed. 
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In the next sections we present the mathematical tools that constitute the analysis techniques 

applied thoroughly in Chapters 3, 4, 6 and 7. 

5.2 TIME DOMAIN ANALYSIS 

The experimental data directly recorded not only on this thesis but also in most ultrasonic 

based monitoring systems, consist of the temporal variation that the wave’s propagating 

stress and/or strain field causes in the measuring parameter of a detection system. 

Time domain analysis is the most simple of the possible signal processing techniques. It does 

not require any transformation of the original detected data signal and only simple 

conditioning of the temporal signals is necessary; for instance compression, filtering and 

noise reduction. 

We have already seen some examples of time-domain analysis in the conventional ultrasonic 

techniques described in section 1.3.1 of Chapter 1. The through-transmission technique 

looks into the changes of the detected pulse amplitude in order to locate and characterize the 

size of any damage located between the ultrasonic source and receiver. The flaw scatters part 

of the incident ultrasonic signal, more the bigger the size of the flaw, limiting the amount 

arriving to the receiver. In the other hand, the reflection technique is based on the appearance 

of new pulses arriving to the detector after the incident pulse, and before its reflection from 

the far side of the sample. The arrival time of these new pulses can be used to locate the 

damage within the plate and the pulse amplitude to characterize its dimensions. Because 

conventional ultrasonic techniques use bulk waves, characterized for being single mode and 

non dispersive, a time analysis should provide most of the monitoring information. 

When dealing with ultrasonic guided waves a high level of complexity is added to the time 

analysis due to their dispersive and multimode propagating nature. The dispersion causes the 

inspection ultrasonic pulse to spread with propagating distance and time, decreasing the 

amplitude of the received pulse signal and as a result worsening the SNR and sensitivity of 

the system. The increment in the signal duration caused by the dispersion effect also 

decreases the spatial resolution, meaning that the reflections from two flaws in close 

proximity could not be separately identified, or equally from a flaw close to the geometrical 

borders of the structure [1]. In the other hand, the presence of multi modes causes the shape 

of the propagating pulse to change with propagated distance as a consequence of the 

interference of the propagating modes at different speeds, with their reflections from the 

geometrical borders of the sample and from the damages and with new generated modes by 
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mode conversion. When the number of propagating modes is too high, the time signal is so 

complex that other signal processing techniques are required, as shown in the next sections. 

The time analysis is in most cases developed around a sinusoidal Hamming windowed tone 

burst driving signal, due to its localization in time and narrow frequency bandwidth 

characteristics. A detailed explanation and description of this signal is given in Appendix E. 

The frequency of the tone burst is chosen based in the particular source transducer (for 

instance if a PZT is used then a frequency close to its resonance frequency must be chosen) 

and in the acoustic coupling characteristics between source and plate and plate and receiver. 

Nonetheless this frequency is chosen so that only the fundamental Lamb wave modes A0 and 

S0 exist. The S0 mode is characterized by its practically non-dispersion properties at low 

frequency thickness products, as shown in fig. A.8 for aluminium. In the other hand, the A0 

mode is highly dispersive at very low frequencies, but it becomes one of the most non-

dispersive modes at frequency:thickness products over the frequency at which the S0 mode 

starts becoming dispersive, for instance in fig. A.8 this point is around 1 MHz mm. The time 

analysis is in this way highly simplified, such that the non-dispersion and double mode 

propagation allows applying time analysis in a similar way as in conventional ultrasonic 

techniques as previously described. This analysis is based in the recognition and examination 

of the differences observed by direct comparison of sample records at different times with a 

reference signal obtained for a known undamaged condition, usually referred as pattern 

recognition. The presence of any difference can be interpreted as caused by damage, which 

behaves as a secondary source when the incidental ultrasonic waves reflect on it. 

5.2.1 Application to NDT 

Next we list the most common time analysis approaches to the differences observed in the 

recorded signal in order to extract damage information: 

 Amplitude attenuation of the propagating pulses without time delay; this is commonly 

associated to presence of damage in the direct path between source and receiver. The 

ultrasonic signal scattered by the damage has a slight phase change over the direct 

propagating one. The cancelling interference between the two slightly out of phase waves 

causes the amplitude attenuation (see Chapter 3 for some examples). The magnitude of the 

attenuation may be used to characterize the damage dimensions. However as mentioned in 

[2] the use of only amplitude attenuation for a single Lamb wave mode is not always a good 

indicator of damage. Perturbations in the coupling characteristics between transducer and 

structure due to temperature or additional vibration excitation may also be the cause. 
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 Appearance of new pulses or amplitude perturbations in the pulses of the slower 

propagating modes; this may indicate presence of damage outside the direct path source-

sensor. The damage creates a new path for the propagating ultrasound, with a different 

length to that of the direct path. Perturbations appear in the time record at instants 

corresponding to the time delay of the fastest modes propagating through the new path (some 

examples of this are also shown in Chapter 3). Furthermore, the scattered ultrasound 

following the new path approaches the sensor in a different direction than the ultrasound 

following the direct path. If a highly directional sensor is used for the detection stage (i.e. 

wavefront integration optical fibre sensors or FBGs) then damage signals of different 

magnitude will appear regarding the position orientation of the damage. This information can 

be used for damage location as explained in Chapter 3 for the FBG rosette configuration. 

 Time phase delay of the fastest propagating mode; as caused by the presence of  big 

size damage (in comparison with the ultrasonic wavelength). The ultrasonic wave is deviated 

into a different path of noticeable length difference in comparison with the undamaged 

situation. An example of this is shown in fig. 5.1 for a carbon fibre composite plate with 

increasing delaminations damage on path and on axis of plate fibres.  
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Figure 5.1: Signal traces for the undamaged case and for two damaged cases of increasing impact 

energy in between source and receiver and in the direction of the plate fibres. 

e time delay can be used for sizing the on path damage, as it increases with the damage 

e, as shown in [3]. This analysis must be carefully done as the phase information of the 

pagating ultrasound is very sensitive to changes of the environmental temperature that 

uses time phase delays. 
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 Presence of non excited modes or of pulses originated by mode conversion; mode 

conversion occurs when a Lamb mode wave interact with a non symmetric boundary [4]. 

The result is the generation in the damage of new modes at the same frequency as the 

incidental mode wave. In most inspection applications an ultrasonic signal of single mode is 

excited, the presence in the received signal of additional pulses with different group 

velocities of those for the excited mode, indicates obvious mode conversion. In [5] we can 

see an example of this technique. 

 Average energy of the detected signal; the presence of damage scatters part of the 

energy of the incident ultrasound, into different directions within the plate, reducing the 

amount of energy arriving to the detector. The energy is usually given by the RMS of the 

detected discrete time signal x[k] as: 

∑
−

=

=
1

0

2 ][1 N

k
RMS kx

N
x  (5.1) 

Where N is the number of samples and k = 0, 1,…,N -1. 

An analysis of the changes in the received average energy can provide information of the 

size of the damage as shown in [3]. Again careful consideration of the effect of temperature 

must be taken, because the plate attenuation is temperature dependant, as well as the acoustic 

coupling characteristics between source and plate and plate and receiver. 

5.3 FREQUENCY DOMAIN ANALYSIS 

In most situations it is useful to characterize the raw time signal into other signal domains, a 

different point of view to the same information may highlight aspects that otherwise would 

appear unnoticed. Another reason for transformation to other domain is the possible data 

reduction and simplification that could be achieved. 

The frequency representation is a powerful way of looking into signal information because it 

characterizes the presence of periodic events. Meanwhile the time analysis tell us how the 

signal changes in time, the frequency analysis characterizes those changes. 

The transformation of a signal from the time domain into the frequency domain is done by 

the Fourier transform, named after the French scientist J. Fourier who in 1822 published an 

interesting work that allowed representing any continuous periodic signal as an infinite sum 

of periodic complex exponential functions.
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5.3.1 Fourier Transform 

The Fourier transform describes the continuous spectrum of a non-periodic and continuous 

time signal x(t) as given by: 

( )[ ] ( ) ( ) dtetxftxF tfj π2−
∞

∞−
∫=Χ=  (5.2) 

As we can see the Fourier transform is a complex function that expands the signal x(t) into 

an infinite family of sinusoidal waves ( ) completely unlocalized in time. The Fourier 

analysis provides amplitude and phase information of the signal frequency content, but it 

does not tell us when these frequencies appear. 

tfje π2−

The Fourier transform presents a broad set of well known properties that most books about 

signal processing list (see for instance [6]). Nevertheless, we consider interesting to mention 

particularly two: 

 X(f )* = X(-f ), which can be rewritten as |X(f )| = |X(-f )|. The amplitude of the negative 

frequency components is equal to the amplitude of the positive ones, so that the spectrum 

amplitude is reproduced twice and symmetrically with respect to the spectrum origin, as 

shown in fig. 5.2-left. 

 

 

 

 

Figure 5.2: (Left) Spectrum amplitude of a continuous signal x(t). (Right) Time definition of a 

sampling function p(t) with spacing Ts

 Given two continuous functions; x(t) and y(t) then F[x(t)· y(t)] = X(f) Y(f). The 

Fourier transform of the product of two functions is the convolution of their respective 

Fourier transforms. 

⊗

The time signals that we obtain in the experiments are discrete in opposition to the 

previously analysed continuous functions. A discrete signal is defined by a sequence of 

sampled points x[n] obtained from the analogous signal at intervals given by the sampling 

period Ts. The discrete signal can be interpreted as the product of the continuous analogous 

signal and a sampling function p(t) defined as a combination of Dirac deltas delayed in time, 

by Ts from each other (as shown in fig. 5.2-right). The Fourier transform of p(t) is another 

combination of Dirac deltas delayed in frequency by 1/Ts and of amplitude 1/Ts. If we apply 

( )tp

t 
0 

1

Ts 3Ts2Ts

( )fX  

(N-1)Ts 0 fmax

f 
-fmax 

f



5.3 FREQUENCY DOMAIN ANALYSIS   119                         

the convolution property of the Fourier transform, the frequency spectrum of the discrete 

signal is given by the convolution of the Fourier transforms of the individual functions x(t) 

and y(t) as shown in fig. 5.3. Thus the frequency spectrum of the continuous function x(t) is 

reproduced in each frequency multiple of 1/Ts. Only the reproduction of the frequency 

spectrum at zero frequency is relevant, because the other reproductions only provide 

redundant information. 

0 Fs 2Fs-Fs Fs/2

( )fX ' 

 

 

f  

Figure 5.3: The frequency spectrum of a sequence of sampled values from an analogous signal is 

formed by repetition of  the analogous signal spectrum at each multiple of the sampling frequency Fs. 

In fig. 5.3 we notice an overlapping of adjacent spectrums (in red and blue), this happens 

when the maximum frequency component fmax of the analogous signal is bigger than half the 

sampling frequency. This effect is known as aliasing and it has a very negative effect in the 

frequency information of the sampled signal, so that the frequency spectrum provides 

erroneous information in this region.  

The Fourier transform can also be discretized for computational implementation over 

discrete data sequences, being known then as discrete Fourier transform or DFT, given by: 

[ ] [ ]∑
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/2
N

n

NnkjenxkX π  (5.3) 

Where N is the number of samples in the sequence x[n], with n being related to the 

continuous time variable such that t = nTs and k related with the frequency such that f = k/Ts. 

Both n and k are integers defined between 0 and N-1. The computation of the DFT is usually 

done by application of the Fast Fourier Transform (FFT) algorithm, which take advantage of 

the periodicity and symmetry of the complex exponent in eqn. 5.3 so that a more efficient 

calculation can be achieved by reducing the number of operations [7].                                                                

5.3.2 Application to NDT 

The frequency analysis provides information of structural perturbation by comparison of the 

amplitude and phase information of the Fourier transform with the reference state of a 

known undamaged situation. 
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 Frequency spectrum changes; The main effect of the presence of damage is a general 

reduction of the spectral amplitude [2,3], caused by scattering of the ultrasonic energy by the 

damage. This effect appears as a low pass filtering of the ultrasonic waves, as the smaller the 

ultrasonic wavelength the bigger its scattering for a given size damage.  

The spectral amplitude attenuation can also be mode selective due to different interaction 

characteristics of the different modes with different kind of damages. Or in a similar way a 

mode conversion will also affect the frequency spectrum. Because the energy associated to a 

given frequency will now be distributed into different modes that have different 

displacement and stress distributions and so they will interact differently with the receiver. 

Changing the response of that particular frequency. 

Additionally the effect that the different damages cause over the local loss of stiffness and 

other mechanical parameter of the structure is translated into changes of the structure’s 

natural frequency [8]. This may affect the frequency distribution of the propagating wave, 

including the generation of new frequency components [9].  

 Phase diagram changes; as previously mentioned different damages interact 

differently with the different propagating modes, this may cause different phase delays to the 

different propagating modes that will show as perturbations in the phase diagram of the 

detected signal.  

A temperature change is also a very common cause of phase perturbations. An increment in 

the temperature decreases the stiffness of the structure and so the ultrasonic waves propagate 

slower affecting differently to the different frequency components and generating a phase 

delay between them. 

5.4 TIME-FREQUENCY ANALYSIS 

When a time signal is transformed into the frequency domain the time information of its 

events is lost. This is not a problem when dealing with stationary signals (those whose 

spectral content do not change over time). But it is a big drawback for physical signals that 

contain numerous non-stationary or transitory characteristics such as; dispersion, drift, 

trends, abrupt changes, and beginnings and ends of events. For non-stationary signals nor the 

time neither the frequency domain alone is enough to properly describe them, but a 

combination of both domains are needed, this is the time-frequency analysis. 

The number of applications in which a time-frequency analysis is required is so big and so 

diversified that a large number of time-frequency representations have been developed 

within the years. These can be divided in two classes [10]; the first class or atomic 
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decompositions decomposes the signal into elementary components or atoms well localized 

in time and frequency, some examples are; Short time Fourier transform and Wavelet 

transform. The second class or energy distributions distributes the energy of the signal along 

the two variables time and frequency, some examples are; Wigner-Ville distribution, 

Cohen’s class and the reassignment method. A detailed review and applications of the 

different time-frequency distributions can be found in [11]. Remarkable is the fact that time-

frequency analysis can show the appearance of mode conversion effect as a consequence of 

the presence of non-symmetric damage in the sample as shown in [12,13]. 

The study of the broadband ultrasonic signals in Chapter 6, for the extraction of the 

propagation dispersion characteristics of multiple Lamb wave modes, is a clear example of 

time-frequency analysis. For this application the STFT and the reassignment method were 

chosen because of their advantages in comparison with other time-frequency representations, 

as pointed in reference [14], and they are explained next. 

5.4.1 Short Time Fourier Transform (STFT) 

The idea behind the STFT is as old as 1946, due to Dennis Gabor [15] who adapted the 

Fourier transform to analyze only a small section of the signal at a time - a technique called 

windowing the signal. 

Mathematically the continuous STFT of a time signal x(t) is defined as: 

( ) ( ) ( )∫
∞

∞−

−−= τττ τπ dethxtfxSTFT fj
h

2,;  (5.4) 

The window function h(τ-t) breaks the original signal x(τ) in segments around each time 

instant t, and each segment is analyzed by the conventional Fourier transform, to finally 

summing up all the results in the frequency domain. 

The discrete STFT is more intuitive to understand and because the time signals 

experimentally obtained are discretized it makes more sense to concentrate in its description 

as given by eqn. 5.5. 
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In the discrete STFT the time sequence x[n] is divided into segments of equal number of 

points M, which are individually windowed by a window sequence h[n] of similar length 

(notice that h[n] = 0 for n > M) as shown in fig. 5.4. Finally a DFT of length N ≥ M is 

applied to each segment, so that the segment may be extended with zeros if N > M, known as 
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zero padding. The added zeros help to increase fidelity of the estimated spectrum by the 

DFT (as the bins are closer) to the true spectrum of the signal, but a real improvement of 

resolution can only be achieved if a longer time signal intervals are taken. If no zero padding 

is applied then a very coarse visual display of the spectrum can be obtained that may lead to 

misinterpretation of the data. 

The length of the segments characterizes the time and frequency resolutions of the 

transformation, being inversely related to each other. A long segment means low time 

resolution, and because a longer time is Fourier analysed then a higher frequency resolution 

is achieved. Opposite occurs if a shorter segment is taken. Clearly the STFT suffers from 

what is known as Heisenberg uncertainty [11], it is not possible to have simultaneously 

perfect resolution in both time and frequency. The Heisenberg uncertainty is mathematically 

described by the Heisenberg-Gabor inequality where σt
2·σω2 ≥ ¼ must be satisfied, with σt 

being the time deviation and σω being the frequency deviation.  
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Figure 5.4: The STFT divides the time signal into overlapping windowed sections and FFT them. 

The value of the inequality is associated to the spread of the spectrogram, and it is 

determined by the window function applied. For instance a Gaussian window satisfies the 

equality σt
2·σω2 = ¼, becoming the optimal window from a resolution point of view. However 

a Hanning (σt
2·σω2 = 0.2635) or Hamming window is preferable because although they 

provide a slightly worse resolution to that of the Gaussian window, their effect over the time 

signal shape modification is much smaller [16]. The selection of window is a trade-off 

between frequency resolution and side-lobe attenuation. More about applications and 

description of window functions is given in Appendix E.  

The segments in which is divided the time sequence may overlap when H < M (as shown in 

fig. 5.4 for M – H = L), where H represents the time advance of the window and the time 

resolution of the STFT (the higher H then less overlap and worse time resolution). The 

reason to overlap adjacent windows lies in the loss of information due to the fact that the 
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ends of the windows, as smoothly go to zero, hugely attenuate the original time signal. Short 

duration events taking place in these regions would be lost unless overlapping takes place. 

Selecting how big should be the overlapping is application dependant, where if as in our 

case, the main goal is to create a visual representation of the signal, then the overlapping 

should be chosen by simply trading off temporal resolution for computation time and looking 

to how the time-frequency representation looks. If perfect reconstruction of the input signal 

is required then the overlapping should be such that all data is weighted equally or that the 

overlapped window functions sum to a constant over all n, [ ] [ ] cHlnhnA
m

h =⋅−= ∑ . For 

Hamming and Hanning windows this occurs when L = M /2j, for j being an integer [17]. 

The common way to plot the STFT of a time signal is by its spectrogram, defined as the 

squared modulus of the STFT. It represents the energy distribution of the signal in the time-

frequency domain.  

5.4.2 Reassigned Spectrogram 

Looking to the group velocity dispersion curves obtained by the STFT and plotted in Chapter 

6, it is clear that the resolution provided is not more than slightly acceptable. Which is not a 

surprise as the STFT is without any doubts the simplest of the existing time-frequency 

analysis. 

In 1995 Auger and Flandrin presented a technique named reassignment method in an attempt 

to improve the spectrogram [18]. This technique can considerably improve the time-

frequency resolution of the spectrogram, by means of the STFT’s phase information that the 

spectrogram neglects. In this method the energy distribution of the spectrogram is moved 

away from its original location (t, f) to a new location given by the reassigned coordinates 

( ) as defined in eqn. 5.6. Thus improving the sharpness of the localization of the signal 

components by concentrating the energy of the spectrogram at the centre of energy rather 

than at the geometrical centre as the STFT does. 
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This is better understood if we rewrite the continuous STFT equation 5.4 as a 2D 

convolution of the Wigner-Ville distributions of the time signal (given by Wx(t, f)) and of the 
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used window function (given by Wh(t, f)). This is done in eqn. 5.7, and we recommend [18] 

for a more detailed implementation. 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

−−= ξξξ ddsfstWsWtfxSTFT hxh ,,,;  (5.7) 

This equation shows that the value of a time-frequency representation at any point (t, f) is the 

sum of all the terms ( ) ( )ξξ −−⋅ fstWsW hx ,, , which can be interpreted as the 

contributions of the Wigner-Ville distribution values of x(t) at the neighbouring points 

( )ξω −− ,st , weighted by the Wigner-Ville distribution values of the window function. 

A graphical representation of the reassignment method operation is shown in fig. 5.5. The 

spectrogram calculates the average weighted intersection between Wx and Wh, assigning it to 

the geometrical centre of Wh (situated at coordinates (t, f)). Even if the Wigner-Ville 

distribution of the signal W  indicates no energy in this point, the averaging effect of the 

spectrogram assigns a nonzero value to that coordinate as long as there are some nonzero W  

values around, as shown in fig. 5

x

x

.5. The smoothing window function makes energy 

appearing where the original signal does not have it, broadening the signal components. The 

reassignment method avoids this energy broadening by assigning the intersection value to 

the centre of energy ( )ft ˆ,ˆ  of this domain rather than to the geometrical centre (t, f). Some 

examples of the resolution improvement in the group velocity dispersion curves are shown 

on the plots in the associated section of Chapter 6. 

     

 

 

     

 

 

 

Figure 5.5: Principles of the reassignment method from the points of view of a 2D convolution of the 

Wigner-Ville distributions of the time signal Wx and used window function Wh. |X(f)| is the spectrum 

of the time signal x(t). The coordinates (t,f) are the geometrical centre of Wh, and ( )ft ˆ,ˆ  are the 

reassigned coordinates. 
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5.5 TWO-DIMENSIONAL FOURIER TRANSFORM (2D-FT) 

The 2D-FT is an extension of the 1D case previously presented. When applied to a function 

of two independent variables u(x, t) it decomposes the function into a combination of 2D 

complex exponentials function of both variables, as shown in eqn. 5.8. In this section we 

consider the two variables to be time and space as it applies to our particular application in 

Chapter 6.  

( ) ( ) ( ) dtdxetxukfH ftkxi∫ ∫
∞

∞−

∞

∞−

+−⋅= π2,,  (5.8) 

In order the argument of the complex exponentials to be dimensionless, in the 1D-FT the 

time domain was transformed into its inverse, the frequency domain (f = 1/T, with T being 

the time period). In the 2D-FT the space is also converted into its inverse, the wavenumber 

domain (k = 1/λ, with λ being the spatial wavelength). 

The application of the 2D-FT for the analysis of propagating multimode Lamb wave signals 

was first due to Alleyne and Cawley [19] in 1991, based on that Lamb waves are sinusoidal 

in both the frequency and the spatial domain (see eqn. A.20). Then a 2D-FT is a natural 

conversion of the Lamb wave time signals, measured at different distances source-sensor, to 

the frequency-wavenumber domain, which describe the dispersion propagation 

characteristics of the different excited Lamb modes. 

In practice the two dimensional function to which we apply the 2D-FT is a discrete matrix, in 

comparison to the vector or sequence of sampled data in the 1D-FT. This matrix 

[ txu , ]consist of a time sampling of the detected time signals, such that sTtt ⋅= , with 

t integer and Ts being the time sampling period. And of a spatial sampling given by equally 

spaced distance source-sensor ∆x, such that xxx ∆⋅= , with x integer and ∆x the space 

sampling period. The discrete 2D-FT is given in eqn. 5.9. 
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 (5.9) 

The evaluation of the 2D-FT can be implemented by calculating the two successive one 

dimensional transforms as described in fig. 5.6, this allows applying the FFT algorithm for a 

very high efficiency estimation of the 2D-FT. In fig. 5.6 first a time Fourier transform is 

applied and then a space Fourier transform, however notice that the 1D Fourier transform 

could be applied in any order. 
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The 2D-FT rewrite the time and space broadband pulse sources propagation information, as 

a combination of the sinusoidal waves ( )ftkxie +− π2 components of this pulse source, and it tells 

us how this mono-frequency waves propagate. This is why the curves that we obtain in    

|H(f, k)| are the phase velocity dispersion curves, in comparison with the group velocity 

dispersion curves we obtained with the time-frequency analysis.  
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Figure 5.6: Separability of the 2D-FT into two 1D-FT. 

The properties of the continuous 1D-FT case can be extrapolated to the 2D case as; H(f,k)* = 

H(-f,-k) and H(-f,k)* = H(f,-k) or equivalently | H(-f,-k) | = | H(f,k) | and  | H(f,-k) | = | H(-f,k) |, 

shown in fig. 5.7-left, where the domain of definition of the 2D-FT for a continuous set of 

data u(t, x) is shown. Here fmax and kmax are the maximum frequency and wavenumber 

components respectively. Four sections are distinguished in the domain of definition of the 

continuous 2D-FT; the darker sections have the same |H(f, k)| value and the lighter sections 

have also the same |H(f, k)| values but different from the darker sections.  

In a similar way to the 1D case, the discrete data matrix [ ]txu ,  can be expressed as the 

product of the continuous 2D data function u(x,t) and a 2D sampling function p(x,t) defined 

as a combination of 2D Dirac deltas delayed in time by Ts and in space by ∆x from each 

other. Like in the 1D case previously studied, the 2D Fourier transform of p(x,t) is another 

combination of Dirac deltas delayed in frequency by 1/Ts and in wavenumber by 1/∆x. The 

property of convolution is rewritten for the 2D-FT of a product of 2D functions as the 2D 

convolution of their associated 2D-FT. This means that the 2D-FT domain of definition of 

the discrete data [ txu , ]  correspond to the reproduction of the domain of definition of the 

continuous function u(x,t) shown in 5.7-left, in both dimensions for each multiple 

combination of 1/Ts and 1/∆x, as shown in 5.7-right. The two main dark and light sections 

are now reproduced infinitely. These two sections have all the 2D-FT spectra information, 

thus it is enough to concentrate only in one of these section pairs (red squared in 5.7-right). 
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Figure 5.7: Domain of definition of the 2D-FT: (Left) for the continuous set of data u(t, x). (Right) for 

a discrete set of data. 
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Aliasing 

The selected sections in fig. 5.7-right are shown to overlap in the k direction or wavenumber 

domain, which happens when kmax > 1/(2·∆x), this is called aliasing, similar to what we saw 

in the 1D-FT case. However whereas in the 1D-FT once we have aliasing no useful 

information can be extracted from the overlapping area. In the 2D-FT we do can extract 

some information, due to the physical meaning that the second dimension gives to the 

negative frequencies (opposite to the 1D case, where negative frequencies has no physical 

meaning). Let us look at this more carefully. 

The 2D-FT domain of definition associated to low wavenumber values (light grey square) 

corresponds to positive values of k and f of the original domain for the continuous set of data 

(fig. 5.7-left). This section corresponds to the projection of the continuous data u(x,t) to 

complex exponential functions of the type ( )ftkxie +− π2 . In the other hand, the domain of 

definition associated to the high wavenumbers values (dark grey square) corresponds to 

positive f but negative k in the domain of definition for the continuous 2D-FT and so a 

projection to complex exponential functions of the type ( )ftxkie +−− ||2π . Because the practical 

application of the current processing technique deals with ultrasonic wave data, then the 2D-

FT decomposes the propagation characteristics of the ultrasound in sinusoidal waves as 

given by the previous complex exponentials. 

As it will be defined in Chapter 6, the 2D matrix of ultrasound sampled data [ txu , ]  relates 

the magnitude x with the distance source-sensor, increasing x means increasing this distance. 

Thus a sinusoidal wave given by ( )ftkxie +−− π2  means that to keep the phase 2π·(-|k|x+ft) 

constant as the distance source-sensor is increased, the propagation time t must also be 

increased. In the other hand, waves given by the exponential propagate in ( ftkxie +− π2 )
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opposite direction to the previous ones and so if the former were incident waves, then the 

latter type are reflected waves. 

In consequence the overlapping sections in the analysed domain of definition (dashed region 

in fig. 5.7-right) due to spatial aliasing, involves waves propagating in opposite direction for 

each intersecting square. Their associated dispersion curves have opposite slope sign, so in 

the overlapping area they only intersect in theory in 1 point. In practice the experimental 

dispersion curves are not perfect lines, but they have some width, thus intersecting between 

themselves in a finite section as shown in next chapter. Nonetheless the perturbation between 

the overlapping dispersion curves is very reduced and most of the dispersion information can 

be easily extracted at aliasing conditions. This is a great advantage because it allows us to 

work with smaller spatial sampling frequencies (1/∆x), thus increasing the wavenumber 

resolution of the dispersion curves (= 1/(M·∆x), for M being the number of spatial samples). 

The 2D-FT dispersion curves are in the wavenumber – frequency domain, but they can easily 

be transformed to the more common phase velocity – frequency domain by vph = f/k. 

The separation between incident and reflected waves that characterized the 2D-FT can be 

used for determining the presence of damage [20,21]. If the geometrical borders of the 

structure can be excluded from the analysed data, then the presence of reflected waves is due 

to damage. The amplitude of these reflections can help to the damage characterization. 

Additionally the 2D_FT technique can also be applied for damage detection and 

characterization based in the comparison with a reference undamaged 2D-FT dispersion 

curves signature. As mentioned in Chapter 6 the damage has a low pass filter effect if it is in 

the way between source and receiver and this can be detected in the 2D-FT plot. The damage 

can also be detected and characterized by studying the presence of broken ridges of the 

wavenumber-frequency dispersion curves modes for the damaged 2D_FT case in 

comparison with the undamaged signature and a decrement of the magnitude of the modes 

curves amplitude. These effects are more intensive the bigger the damage and they are 

caused by the interference of the propagating Lamb wavefield with the scattered wavefield 

generated in the damage [22].  

5.6 WAVELETS ANALYSIS 

Similarly to the time frequency analysis in section 5.4, the wavelet analysis was created as a 

way of representing the frequency evolution of non-stationary data. However in contrast to 

the uniform resolution given by the STFT, the wavelet analysis is characterised for its 

multiresolution approach, giving good time resolution and poor frequency resolution at high 
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frequencies and good frequency resolution and poor time resolution at low frequencies, as 

shown in fig. 5.8-right. This is a good approach when the analysed signal has high frequency 

components for short durations and low frequency components for long durations, as it is 

usually the case in physical signals. However this attributes are not suitable for resolving 

broadband multimode Lamb waves, which is the application for which we require time-

frequency representations (as shown in Chapter 6). As pointed in [14] the wavelet transform 

does not provide enough frequency resolution at high frequency meanwhile it gives a very 

high time resolution. A reassignment spectrogram is a more suitable time-frequency 

representation for our application. 

The wavelet analysis has other important applications, de-noising of signals is one of them. 

As shown in [9] filtering de-noising (such as low pass, high pass or bandpass and bandstop 

filters) are not as effective as wavelet de-noising. 

Wavelet analysis is a very modern signal processing subject and the number of books, 

journals and conferences dedicated to it is vast. For any interested reader we would suggest 

[23], here I limit myself to only give a basic description to understand how we used it as a 

de-noising tool. 

The wavelet analysis is based in the wavelet transform shown in eqn. 5.10, that decomposes 

a time signal f(t) into a series of waveforms of effectively limited duration called wavelets 

⎟
⎠
⎞

⎜
⎝
⎛ −

s
ut

s
ψ1 . These waveforms are created by dilating (scaling by parameter s) and 

translating in time (by parameter u) a mother wavelet. Because the wavelets are localized in 

time and frequency then it is the dilatation and translation what allows them to provide a 

multiresolution time-frequency analysis.  
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The wavelet transform is not a pure time-frequency analysis but a time-scale. Like in a map, 

high scales are associated to a global view of the analysed signal (low detail) meanwhile low 

scales represent the most detailed part of it. In contrast, in terms of frequency, low 

frequencies correspond to global information of a signal, whereas high frequencies 

correspond to detailed information. 

o Low scale  High frequency 

o High scale  Low frequency 

A more detailed relationship between scale and frequency can be obtained in [24,25]. 
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The expression in eqn. 5.10 transforms a time signal into a continuous time-scale domain, 

thus it is called continuous wavelet transform. This representation is very redundant because 

for each infinitesimal translation in time, the time signal is transformed to all possible scales 

continuum. A more efficient version is the Discrete Wavelet Transform (DWT), where only 

a subset of possible discrete scales and translations are allowed. 
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Figure 5.8: (Left) Time-frequency resolution of the STFT. (Right) Time-scale multiresolution of the 

wavelet transform. The scale has an inverse relationship with frequency. 

The most commonly used discretization is the dyadic one, where the time-scale grid 

components are expressed based on powers of two. Equivalently, this means that the possible 

scale values to be chosen are s = 2m, and the possible time values are u = n·2m, with m and n 

integers. The discrete wavelets are now rewritten in a dyadic way as: 
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Between all the possible wavelets that satisfy eqn. 5.11, those that form an orthogonal basis 

are used as they are concise and decompose time functions without any redundancy. The 

DWT can be expressed as: 

( ) ( )dtttfc nmnm
*

,, ψ⋅= ∫
∞

∞−

 (5.12) 

The reconstruction of the original time signal is given by: 

( ) ( )∑∑ ⋅=
m n

nmnm tctf ,, ψ  (5.13) 

Following this definition of the reconstructed original time signal we will try to show how 

the Discrete Wavelet Transform can be used as a de-noising tool. In order to understand this, 
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first we need to define what it is called the details components of the signal f(t),  

. The details D( ) ( )∑ ⋅=
n

nmnmm tctD ,, ψ m represent the time behaviour of the signal f(t) 

within different frequency bands because they are related by ( ) ( )∑=
m

m tDtf , where m was 

defined as the discrezation of the scale magnitude s, and so it is related with the frequency 

components of the time signal. If we look to a given scale (or frequency) level M then we 

can divide the details into two sorts; fine details being those with m ≤ M, that correspond to 

associated scale values s = 2m ≤ 2M, and coarse details or approximation given by the rest of 

detail component, expressed as ( )∑
>

=
Mm

mM tDA . The fine details are associated to the 

smallest scale values or equivalently highest frequency components. In the other hand the 

approximation is associated to the low frequency components. This relationship between the 

fine details and approximation with the frequency is what give their names. It is important to 

realize that the original time signal f(t) is the sum of its approximation and its fine details at 

any given level M, so that ( ) ( )∑
≤

+=
Mm

mM tDAtf , and that the approximation at a lower 

level M-1 is given by the sum of the approximation and the fine detail at the next level or 

. MMM DAA +=−1
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Figure 5.9: Wavelet decomposition of a time signal f(t) into three levels of approximations AM and 

details DM. The lower the level of the detail, the higher its frequency content of the original time 

signal, meanwhile the higher the level of the approximation, the lower its frequency content of f(t). 
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In conclusion, a signal can be decomposed to any level M as a combination of an 

approximation at that level and as many fine details as the value of the chosen level M. For 

instance, in fig. 5.9 we have decomposed the original time signal at the top in three levels, 

with the level M = 3 at the bottom of that figure 

The original time signal of fig. 5.9 is a real example of an ultrasonic signal of 4.5 cycles 

toneburst detected with an optical fibre sensor bonded onto the surface of an aluminium plate 

as shown on fig. 4.18. If we look to the decomposition of the f(t) in level 2, then f(t) = A2 + 

D1 + D2, but if we look to its decomposition at level three then f(t) = A3 + D1 + D2 + D3. The 

approximations at lower levels appear less and less noisy, but in detriment of losing 

progressively the high frequency information, passed to the details in which the 

approximation at lower levels are decomposed. 

The lower the level associated to a detail, then the higher its frequency content from the 

original time signal. Such that D1 is taking the highest frequency components meanwhile D3 

takes the lowest high frequency components of f(t). 

Wavelet de-noising does not consist in taking off all the details until a certain level, but into 

reducing them according to different thresholding techniques. For instance a soft-

thresholding as used in this thesis, cancels the details with amplitude smaller than a certain 

threshold value, meanwhile those details with amplitude above this threshold are just shrink. 

The advantage of wavelet de-noising respect to filtering de-noising is that the de-noised 

signal still keeps high frequency information of the original signal but its noise is adequately 

filtered out. 

5.7 OPTIMIZATION ALGORITHMS 

This section describes a signal processing approach very different to the ones before. 

Meanwhile in the previous cases, the signal processing methods were applied to the detected 

ultrasonic time signals, in the present cases the technique is applied to already processed 

data. In particular, they are applied to the ultrasonic wave modes dispersion propagation 

information extracted through the 2D-FT and the reassigned spectrogram from the time 

signals. 

These techniques are solely applied in Chapter 7, for the optimization of the error function 

developed in order to extract the elastic properties of the materials as described in the 

inversion process. Although what matters at this point is that the optimization is the process 

of finding the values of the variables x = [x1, x2,…,xn] of a function f(x) that minimize (or 

maximize) it, the function is usually called the objective function. The obtained extremum of 
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the objective function (maximum or minimum) can be either global, effectively being the 

highest or lowest value of the function. Or local, in which case it is the highest or lowest 

value but only in a finite neighbourhood around the initial estimation of the variables. 

Next we briefly describe the three optimization techniques used in this thesis, a more 

detailed explanation can be found in [26,27]. Because the objective function is, in the 

problem that interests us (see Chapter 7), a nonlinear function of the design variables, then 

all the optimization techniques here presented are nonlinear. We start with the most 

commonly used nonlinear optimization technique known as downhill simplex algorithm, 

later we present a more powerful algorithm that uses line search procedures in conjunction 

with a quasi-Newton method and it is optimized for least-squares problems as it is our case. 

These two methods can handle discontinuities but they might only give local minimums. 

That is why we also use a technique well suited for finding global solutions, the Genetic 

algorithm. 

5.7.1 Downhill simplex algorithm 

This method was originally developed by Nelder and Mead [28], and it should not be 

confused (as many times seen in literature) with the simplex method of linear programming 

where the function to be optimized is a linear combination of the independent variables. 

This optimization function is characterized by requiring only function evaluations without 

the need of numerical or analytic derivatives. Although it is not very effective in terms of the 

number of function evaluations that it requires [26], it can be extremely robust and fast, what 

make of it one of the most used optimization techniques. 
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This method makes use of the geometrical concept of a simplex, which in two dimensions (as 

it is our case of two variables) is a triangle (see fig. 5.10). This triangle encloses an area of 

the definition region of the function variables (x1, x2) that is defined by the three points that 

are its vertices. The downhill simplex method starts by creating a simplex from the initial 

estimation point x0 = (x10, x20). 

For each iteration of the search of the values of the variables that optimize the objective 

function, the point of the simplex with largest function value is moved through the opposite 

face of the simplex to a point with a lower value. This step is called reflection and it gives a 

new simplex. Whenever possible the algorithm expands the simplex in one or other direction 

to take larger steps and when it is close to a valley floor then it contracts the simplex in the 

transverse direction and tries to go down the valley. In some cases it may also contract itself 

in all directions towards the best vertex point. These different operations are shown in fig. 

5.10. 

These steps are repeated until the termination criteria is met. Various termination criteria can 

be taken with the most common being; the diameter of the simplex is less than the specified 

tolerance or that the distance moved by the vertex in that step or the decrease in the function 

value is smaller than a given tolerance. 

This method can handle discontinuities but it might only give local solutions. 

5.7.2 Gradient method and line search algorithm for nonlinear least-squares problem 

Search methods that use only function evaluations, as the downhill simplex algorithm, are 

most suitable for problems that are very nonlinear or have a number of discontinuities [27]. 

In fact gradient methods are generally more efficient when the function to be minimized is 

continuous in its first derivative, as it is generally the case in our optimization application in 

Chapter 7. Gradient methods use information about the slope of the function to dictate a 

direction of search where the minimum is thought to lie. Of the methods that use gradient 

information, the most favoured are the quasi-Newton methods and of this family is the one 

used in our algorithm. These methods use the curvature information of the function at each 

iteration to reformulate the optimization problem as a quadratic model problem of the form: 

min bxcxHx TT ++⋅
2
1

 (5.14) 
x 

Where H is the Hessian matrix [29], c is a constant vector and b is a constant. The optimal 

solution for this problem xopt occurs when the partial derivatives of x go to zero: 
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( ) 0=+⋅=∇ cxHxf optopt  (5.15) 

Once the direction of search is known, the algorithm uses a line search procedure to know 

how far to move in that direction towards the minimum. For a more detailed explanation 

consult [27]. 

When the optimization problem is a nonlinear least-squares problem such as in eqn. 5.16 

then the special structure that the gradient and Hessian matrices have can often be exploited 

to improve the iterative efficiency of the solution procedure. 

min ( ) =xf  min ( )∑
i

i xf 2  (5.16) 
x x 

This method is more powerful than the downhill simplex algorithm, because it uses not only 

function evaluation but also gradient information, therefore providing more accurate results. 

Additionally as this function is optimized for least-squares problems, then it is proven to be 

iteratively also more efficient, as shown in our application in Chapter 7. However the 

function to be minimized must be continuous, and as in the previous method it might only 

give local solutions. 

5.7.3 Genetic Algorithm 

Genetic algorithms are a method for solving optimization problems, modelled based on the 

principles of evolutionary biology via natural selection. Genetic algorithms were originated 

by John Holland for his studies of cellular automata [30]. One of the best references in the 

subject is [31] and here we just give a general overview of how it works. 

First the algorithm starts creating a random initial population of solutions, this population 

can cover the entire range of possible solutions of the optimization problem, or it may 

concentrate in areas where optimal solutions are likely to be found. Then in each iteration a 

new improved population (children) of possible solutions is generated based on the vectors 

(genes) of the current population members (parents) that have better fitness values 

(minimum values of the function to be optimized). The reproduction creates four types of 

children for each iteration: 

 Elite children are copies of the parent’s vectors with the best fitness values. 

 Crossover children are created by combining the vectors of a pair of parents. 

 Mutation children are created by introducing random changes (mutations) to the 

vector of a single parent. 

 New blood are new entirely random individuals (new vectors). 
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The reproduced new population also includes a small proportion of members that are less fit 

and with random solutions. This is done to keep the diversity of the population large, 

preventing premature convergence on poor or local solutions. Genetic algorithms derives the 

optimal solution not by producing optimal populations in each iteration, but by continuous 

improvement of each generation creating individuals that are superior to the others (the 

elite). 

The algorithm stops the reproduction of new generations, when one of the terminating 

criteria is satisfied: 

 The fitness value of the best point in the present population is better than a limit.  

 A given number of generations have been produced.  

 Successive generations no longer produce better fitness results. 

The main differences of genetic algorithms with the previously described optimization 

algorithms is that for each iteration a population of points is generated instead of a single 

point, and that the improvement of populations in each iteration is based in computations that 

involve random choices, opposite to the deterministic computation in which are based the 

previous algorithms. 

Genetic algorithms are less susceptible to give a local minima than the previous methods, 

and they highly improve the chances of finding a global solution [32]. But they tend to be 

computationally expensive. It is precisely this better tendency to provide global minima what 

makes of it a choice for the inversion process of Chapter 7 in order to compare with the 

optimized solutions obtained with the computationally faster previous methods. 
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Chapter 6
OPTICAL EXTRACTION OF LAMB 

WAVES DISPERSION FEATURES 

6.1 INTRODUCTION 

This chapter presents a SHM application of ultrasonic guided waves very different to those 

described in Chapter 3 that mainly involved damage detection, location and characterization. 

For those applications, PZT actuators for ultrasonic generation were always used. The 

narrow bandwidth frequency excitation characteristic of this type of contact actuators was 

not only adequate for the time and frequency analysis typical of those applications. But in 

fact it was beneficial when dealing with the dispersive and multimode propagating nature of 

Lamb waves, as it allowed a simplified analysis based on single frequency excitation of the 

low order Lamb wave modes. 

The application presented in this chapter consists in generating the structure’s Lamb waves 

transfer function to be used as an extremely sensitive indicator of the material condition 

and/or structural loading. For this, a short harmonically rich mechanical pulse excitation is 

launched into the structure thus generating a wide spectrum of both spatial and temporal 

ultrasonic frequencies. This impulse response allows obtaining a multiplicity of transfer 

function measurements simultaneously. Which can be represented as the structure’s Lamb 

wave dispersion curves by means of the processing techniques thoroughly described here.  

Appendix A shows that the dispersion curves are sensitive to the structure material 

throughout the thickness of the plate, and also sensitive to the boundary conditions above 

and below the plate itself. Thus monitoring their changes can be used as a sensitive indicator 

of the structural conditions. In particular, in Chapter 7 we are able to assess, from the 

following obtained dispersion curves, the most important mechanical and geometrical 

properties of structural materials –namely Young’s modulus, Poisson’s ratio and thickness. 

The broad temporal and spatial spectrum bandwidth ultrasonic excitation and detection 

requirements of the current application has not a better suited system than that obtained 
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through the combination of the non-contact optical ultrasonic detection system and the non-

contact optical ultrasonic generation system presented in Chapter 2 as shown in fig. 6.1. 

Although a more detailed description of the operation of this tool is presented in section 6.5 

of this chapter, it is basically composed by a Q-switched high power pulse laser source for 

the ultrasonic generation stage and a modified Mach-Zehnder surface displacement 

interferometer for the detection stage. This active interrogation system has the benefit of not 

requiring physical contact with the structure itself to either excite or interrogate the system 

response, as both of these functions are executed remotely. 
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Figure 6.1: Set up of the experimental equipment for the all optical remote inspection tool. The 

ultrasounds are optically generated by a Q-switch (Nd:YAG) laser, and optically detected by a 

modified Mach-Zehnder interferometer. V.O.A. is a variable optical attenuator. 

The chapter is outlined as follows; we start by presenting the equipment description of the 

non-contact all optical material characterization tool which will be later used for the 

experimental extraction of the Lamb wave dispersion curves of different materials. 

Afterwards we present and compare from an experimental point of view and restricted to the 

present application, the two signal processing techniques used to extract the Lamb waves 

dispersion information stored in the generated and detected ultrasonic wave data. These 

techniques being the reassigned spectrogram and the two dimensional Fourier transform, 

were described theoretically in Chapter 5. Here we analyze the radically different properties 

and applications of both approaches. Later we apply the two data interpretation procedures 

and the developed inspection system to two NDT experimental situations; temperature 

change sensitivity and damage detection. 

We end this chapter by commenting the potential extension of the present structural 

characterization technique directed to micrometers dimensions structures. This can be 

achieved by the combination of the very high frequency ultrasonic detection capabilities of a 

fibre Fabry-Perot interferometer with the non-destructive low power ultrasonic generation 

characteristics of a high frequency modulated semiconductor laser source. 
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6.2 ALL-OPTICAL & REMOTE INSPECTION TOOL FOR MATERIAL 

CHARACTERIZATION 

Being an important part of this thesis the monitoring of the elastic properties of solid plate-

like structural material, has required a huge amount of work in the development of 

computational programs to implement the different signal processing techniques required 

and described in the previous chapter. Complementarily, in order to test their validation and 

to orientate this thesis into a practical and commercial approach, we have also designed and 

physically build the all-optical remote inspection tool as it is presented in fig. 6.2. In this 

section we describe its various components, classified into three groups; ultrasonic 

generation optical system, ultrasonic detection optical system and laser source beam pulse 

steering, positioning and confinement element. 
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Figure 6.2: Set up of the experimental equipment for the all optical remote inspection tool. The 

different components are: 1) Signal processing and inspection automation, 2) Source beam steering 

arm, 3) Interferometric laser source (1310nm), 4) Signal generator, 5) Interferometer, 6) Oscilloscope 

(data acquisition), 7) Steering arm motor controller, 8) Aluminium sample plate, 9) Q-switched laser 

source and 10) Interferometric DC power supply. 

6.2.1 Brilliant B (Quantel) Q-switched Nd:YAG high power laser source 

A Q-switched narrow pulse high power laser source has been chosen for the ultrasonic wave 

generation. This source as discussed in Chapter 2 is very adequate for the present 

application. Its extreme narrow pulse (nsec temporal width) is capable of exciting a very 
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wide temporal frequency range varying from DC to hundred of MHz. Additionally the source 

laser beam can be focused to very small spatial spot dimensions, providing a spatial impulse 

source that allows the excitation of a wide variety of spatial modes. 

The high power energy involved in this ultrasonic source is capable of generating ultrasonic 

waves of detectable amplitude at the macroscopic dimensions involved in our experiments. 

The laser was operated within the ablation regime conditions, enhancing the interferometric 

detectability of the propagating waves due to their complementary out-of-plane displacement 

generation and detection characteristics. Furthermore, changing the focussing properties of 

the laser beam could also provide some beam forming that further enhances the amplitude of 

the detected waves. In particular a line focus encourages propagation perpendicular to the 

axis along which the line focus is generated and where the modified Mach-Zehnder 

interferometer sensing beam spot is focused. The directionality of the line-source with plane 

waveforms generated parallel to the line decreases the spreading attenuation in comparison 

with an omnidirectional circular spot source. 

A commercial Brilliant B series high power, solid state Nd:YAG Q-switched laser, 

manufactured by Quantel was used. This compact laser is constituted of three main parts as 

shown in fig. 6.3; the laser head, the cooling, power supply and control unit box and a 

remote control device for remote operation. This laser also allows external full control 

capabilities through RS232 interface, being of great advantage for the automatic operation of 

the monitoring application. 
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Figure 6.3: Brilliant B (Quantel) Q-switch Nd:YAG high power laser components. 

The Brilliant B laser is capable of delivering a maximum pulse energy of 850 mJoules at 

1064 nm wavelength, in a pulse width duration of ~ 5 nsec and pulse repetition rate of 10 Hz. 

This provides a peak power of 160 MWatt and an average power of 8.5 Watt. The unfocused 

beam spot diameter is ~ 7 mm, however a cylindrical lens is used in order to focus the beam 

into a line-source 7 mm long and 1 mm width. 
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The energy per pulse can be controlled by varying the delay between the activation of the 

flash lamp and the Q-switching. We have measured with a Gentec EO power meter the 

average power delivered as a function of this delay and the results are plotted in fig. 6.4.  

Notice that the maximum power is not reached when the delay is zero but for this particular 

laser it occurs at ~ 275 µsec. This is due to the time required after the gain medium is 

pumped with the flash lamp, in order to reach the maximum attainable population inversion 

and to avoid prelasing undesirable effect that would destabilize the laser pulse beam profile. 
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perimentally measured relationship between the Brilliant B Q-switched laser source 

t power and the delay between the activation of the flash-lamp and the Q-switching. 

west provided average power of 0.3 Watt (for a delay of 500 µsec), which 

a pulse energy of 30 mJ, and a peak power of 5.8 MWatt, the power density 

into a line-source is 82.4 MWcm-2 considerably exceeding the ablation 

uminium (10 MWcm-2). Hence all the experimental work has been done in the 

, and in order to minimize surface damage of the sample a delay close to the 

e of 500 µsec was always chosen. 

e displacement modified Mach-Zehnder optical fibre interferometer 

tem used for broadband and remote ultrasonic detection was fully described 

 system working principles and the function of its different components was 

 Chapter 2, meanwhile Chapter 3 offered the parameters characterization of 

nents. 
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6.2.3 Laser source beam pulse steering, positioning and confinement element 

Despite the compact dimensions of the Brilliant B high power laser, its 7 kg and 57.5 cm 

long head make of it difficult to move for an accurately directionality of its output beam 

towards the desired target. A more satisfactory approach is to steer the beam by a mirror 

properly coated for the laser wavelength and peak powers. The hazardous operability of such 

powerful beam also requires the development of an articulated cage that not only confines 

the beam but also allows its free and highly accurate steering for the present application.  
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Figure 6.5: Source beam pulse steering and confinement arm: 1) Aluminium sample plate, 2) GRIN 

lens of the interferometer sensing arm, 3) Stepper motor, 4) motor connection to the programmable 

control board, 5) Q-switched laser head and 6) remote control, 7) laser beam steering mirror 

orientation screws, 8) cylindrical lens focusing screw, 9A and 9B) Laser beam enclosing cage. 

Such device has been designed and created during the present thesis and it is shown in fig. 

6.5. The confinement cage consists of two hollow components; one component, identified as 

9B, is a straight long tube fixed into the table that holds the laser head just touching the side 

from where the beam exits it. The second component, identified as 9A, is an elbow shaped 

tube that is hold from one side of the elbow to a moving platform fixed into the same table 

that holds the laser head. This component has a bigger diameter than the former and as it 

moves towards or from the laser head it allows the straight fixed tube (9B) to slide inside 

decreasing or increasing respectively the length of the beam confining space as the elbow is 

moved. The curved region of the elbow tube has an steering mirror fixed to its inside wall 

and it can be orientated with two degrees of freedom by two steering screws from outside the 

tube (labelled as 7 in fig. 6.5). At the end of the vertical part of the elbow shaped tube a 

cylindrical lens is attached into a vertically moving structure displaced by a wheel outside 

the tube (labelled as 8) in order to focus the line-source into the surface of the sample plate. 
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This configuration allows the delivery of the laser beam to a horizontal plate placed over an 

optical table, for an easier and more stable experimental condition.  

The high accuracy for the laser beam positioning, within a fraction of a millimetre, is 

achieved by having the moving platform, over which is fixed the horizontal part of the elbow 

tube, moved by a digital linear actuator DLA (labelled as 3 in previous figure). The DLA is 

based on a four phase permanent magnet stepper motor and utilises a rotor with an internal 

thread to provide linear motion via a leadscrew. In particular a McLennan L92211 series 

DLA was used, capable of providing a maximum linear force of 21 N and a linear distance 

travelled per step of 0.0254 mm. The length of the used leadscrew allowed a maximum linear 

displacement of 21.5 cm. The motor was connected via a RS232 serial link to a bipolar 

stepper motor drive board controlled by a programmable control board designed to control 

one or two stepper motors, thus allowing a two dimensional positioning of the line-source 

over the sample surface. However in our experiments only one motor was used because a 

linear displacement of the source was enough. The drive and control boards together with the 

adequate power supply were assembled in a box for portability (labelled 7 in fig. 6.2). 

6.2.4 Automatic remote operation potential of the inspection tool 

We want to highlight the remarkable potential of the automatic operation of the developed 

monitoring tool. Starting from the Q-switched laser source that can be fully operated by 

RS232 interface, and continuing with the remotely controlled positioning of the laser beam 

by a similar interface. In addition, the ultrasonic signal detected by the modified Mach-

Zehnder interferometer is acquired by a TDS3014 Tektronix digital oscilloscope remotely 

connected to a computer through an Ethernet link and fully controlled by the WaveStar 

software. The connection of all the components to a single processing unit (labelled 1 in fig. 

6.2) and remote operation was tested and validated during our experiments. However not yet 

a full automation of the ultrasonic generation and data acquisition process has been achieved. 

Mainly because of the high magnitude of unpredictable perturbations that surrounds the 

experimental environment (such as underground circulation near to the lab, or nearby door 

slams). These high magnitude perturbations overrun the range of operation of the 

interferometric control loop so under these circumstances the interferometer becomes 

unstable and the detected data perturbed. A future improvement for the automation 

monitoring tool would consist in developing a program that would look to the interferometer 

low frequency signal, identifying these cases and hold the automatic data acquisition until 

the interferometer stabilizes back again.  
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6.3 ULTRASONIC DATA OBTAINED BY EXPERIMENTAL 

APPLICATION OF THE INSPECTION TOOL 

Most of the experiments here presented were made over aluminium plates of square and 

circular shapes and 1.18 mm thickness. Aluminium is a low cost, isotropic material with low 

attenuation and enough stiffness as to generate good detectable amplitude ultrasonic waves 

at long distances. The small thickness allows studying the small ultrasonic Lamb 

wavelengths that the broadband optical excitation provides (as explained in Appendix A only 

Lamb waves with wavelengths of the order of the plate thickness or bigger may propagate). 

In this section we look into the ultrasonic waveforms experimentally obtained with this 

inspection tool and identify ways of improving them for later processing in order to extract 

the materials dispersion curves. 

In all experiments the aluminium plate sample was rested on an optical table in order to 

minimize the low frequency environmental noise (for instance, people walking around the 

sample). We have always avoided physical contact between the metallic surface of sample 

and table, so that the propagating ultrasound would not be affected by leakage to the optical 

table or even presence of other type of ultrasonic waves, such us surface waves in the optical 

table or interface Stoneley waves (as described in Appendix A). 

The quality of the ultrasonic signals obtained very much depended on the adequate operation 

of the modified Mach-Zehnder interferometric system. Where first a proper bonding of the 

reflective film was required followed by an accurate alignment of the interferometric sensing 

arm’s GRIN lens. Later we feed the interferometric optical phase modulator with a low 

frequency electric signal and optimized the polarization controller and variable optical 

attenuator of its reference arm in order to set up its operation point to deliver maximum 

fringe visibility. Once this was done, the input to the PZT phase modulator was substituted 

by the output of the low frequency feedback controller, which keeps the interferometer 

working in the optimum operation point, compensating the low frequency environmental 

perturbations. The ultrasonic data was then provided by the output of the HF photodetector 

which was fed to a digital oscilloscope and averaged in order to improve the data signal to 

noise ratio. 

Figure 6.6–left shows the first of the experimental ultrasonic data obtained (top) together 

with the low frequency feedback control signal (bottom). The ultrasound was generated with 

a flash lamp:Q-switch delay of 375 µsec, corresponding to an average optical power of 

around 4 W (as shown in fig. 6.4). The power to the sample from the interferometric GRIN 

lens was 1.7 mW. The signals have been averaged 64 times as they provide good enough 
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signal to noise ratios without compromising the time length required to measure the 

ultrasound if a higher averaging would had been chosen. 
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Figure 6.6: Typical detected ultrasonic waveforms in aluminium (top) and interferometric LF 

feedback control signal (bottom): (Left) Optical source of average pulse power 4 W and 

interferometric laser power to sample of 1.7 mW, 1MΩ coupling oscilloscope:HF photodetector. 

(Right) Average pulse power of 1.2 W and interferometric laser power to sample of 1 mW, 50Ω 

coupling oscilloscope:HF photodetector and 15 MHz low pass filter of the signal. 

The first noticeable characteristic of this signal is the presence of saturation, due to the fact 

that the HF photodetector saturates for input optical powers around 1 mW giving a maximum 

optical peak to peak voltage of 8 V (as it is the case in this saturation). The reason for the 

saturation may be double, from one side the optical power source is too high generating high 

amplitude ultrasonic waves and in the other hand the interferometric laser input power is also 

too high. The presence of ultrasonic information before the trigger time reference (0 sec) 

shows that effectively the excited ultrasonic waves are of high amplitude, as they have not 

yet be totally attenuated between consecutive laser pulses (pulse rate 10 Hz). Part of this 

information contains also low frequency oscillation noise of high amplitude as well as high 

frequency noise. Additionally the HF photodetector should be coupled to the oscilloscope at 

50 Ω for impedance matching purposes, but in the previous experiments it was coupled at 1 

M Ω in order to avoid the high pass filtering effect that the oscilloscope add when dealing 

with an AC input signal.  

After careful manipulation of these parameters a much improved ultrasonic signal was 

obtained (fig. 6.6–right). The flash lamp:Q-switch delay was now chosen to be 450 µsec (or 

equivalently an average pulse power of 1.2 W) and the power to the sample from the 

interferometric GRIN lens was almost half (~ 0.1 mW). This seems to fix the saturation 
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problem and allows the ultrasonic waves to attenuate between pulses. Later an RF low pass 

filter at 15 MHz was added to the output of the HF photodetector, which reduced enormously 

the high frequency noise. The 50 Ω coupling of the HF photodetector to the oscilloscope not 

only improved the signal to noise ratio, but additionally the high pass filter (with cut-off 

frequency at 200 kHz) introduced by the oscilloscope improved the contrast of the high order 

modes of higher frequency and small amplitude. Due to the attenuation suffered by the very 

large, low frequency A0 and S0 mode components, typical of the ultrasonic signals generated 

with ultrasonic sources with main component normal to the plate’s surface [2]. 

The improved ultrasonic waveform of fig. 6.6–right clearly shows some signatures; it 

appears dominated by the S0 and A0 modes (circled in red), modulated by high frequency 

components of smaller amplitude, corresponding to high order symmetric and antisymmetric 

modes. It is noticeable the pronounced dispersion of the A0 mode, meanwhile the S0 mode 

propagate non-dispersively. The much higher amplitude of the A0 region is due to its more 

dominant out-of-plane displacement characteristics in comparison with the S0 mode at the 

low frequency:thickness product associated (below 2 MHz). 

Another improvement of the ultrasonic signal was achieved when the source beam pulse was 

focused into a region where previous long period repeated ablation had caused a line hole 

through the aluminium plate. Only in this case was it possible to get an ultrasonic signal as 

that shown in figure 6.7-left, where the S0 mode amplitude is increased, meanwhile the A0 

mode amplitude decreases, allowing a better detection of the modulating high order modes. 

Our interpretation of this improved signal is as follow. When the laser beam is focused to the 

surface of the plate where the hole is present, the beam ablates the hole’s lateral surfaces, as 

shown in fig. 6.7-right, generating reactive forces with a big component parallel to the 

surface of the plate. In fact this force component may be bigger than the reaction component 

normal to the plate’s surface. Because the energy of the beam pulse is same as in previous 

cases, then by conservation of energy, the new ultrasonic source has a higher in-plane 

ultrasonic component coupling efficiency and a worse out-of-plane coupling efficiency than 

before. Since the relationship between out-of-plane and in-plane displacement for each 

modes in a given depth is constant then by improving the in-plane displacement component 

of the S0 mode, also its out-of-plane displacement is considerably increased. In the other 

hand, the A0 mode which has mainly an out-of-plane displacement component will be 

attenuated because the out-of-plane coupling efficiency of the source has decreased. This 

interpretation has been verified in the ANSYS model presented in the next section. Where 

the ultrasonic wave generation and propagation characteristics of a source similar to those 
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described has been simulated in a plate-like structure. We will see that when the simulated 

ultrasonic source has only a normal to the sample’s surface reaction then the ultrasonic wave 

simulated has the same characteristics of that shown in fig. 6.6–right, however when a 

noticeable in-plane displacement component is added to the ultrasonic source, then the 

ultrasonic waveform acquires the characteristics of the one presented in fig. 6.7-left. 
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Figure 6.7: (Left) Improved ultrasonic signal with a high S0 mode component and an attenuated A0 

mode, the modulating high order modes are now more apparent. (Right) Diagram for the interpretation 

of the improved ultrasonic signal in the left. 

The later improved ultrasonic signal can not be used for NDT analysis in the experimental 

conditions in which it was obtained here, because it implies a serious damage of the sample 

under test. Nevertheless, the properties associated to the ultrasonic source capable of 

generating ultrasonic signals with improved S0 mode component and weakened A0 mode 

component, is nothing else than having a considerable in-plane reaction component. We saw 

in Chapter 2 that the thermoelastic regime provides precisely this characteristic. 

Unfortunately at the time at which these experiments were developed we did not have the 

capabilities of exciting such a source with good enough ultrasonic wave amplitude at the 

distances source:sensor involved. 

6.4 FINITE ELEMENT MODELING OF ELASTIC WAVES 

PROPAGATION IN A PLATE 

Before dealing with the experimental complexities of the previously presented monitoring 

tool, and due to the geometrical simplicity of the plate-like structures. We considered it 

advantageous to start by simulating the propagation characteristics of the ultrasonic waves 

under similar generation and detection conditions as those in the experimental tool. This 
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simulation is developed using the ANSYS commercial finite element (FE) software 

following ideas presented in [3]. The results of the simulation will give us an idea of the 

expected experimental data and validity of the processing methods, ruling out the effect of 

experimental perturbations. 
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Figure 6.8: ANSYS model of a 2D aluminium plate with all the dimensions given in mm. (Left) Plate 

lateral view showing the position of the ultrasonic sources and detectors. (Right) Zoom where the 

sources are located. Additionally the mesh of the model is appreciated. 

The plate-like structure was modelled as a 2D rectangle of 1.5 mm thickness and 20 cm long. 

The coordinates were chosen; Y-dimension as out-of-plane coordinate and X-dimension for 

the in-plane coordinate (as shown in fig. 6.8-right). Notice that the plate geometrical model 

does not include the third dimension Z for simplification purposes. The analytical equation 

of motion of Lamb waves, in which it is based the theoretically obtained dispersion curves, is 

obtained in Appendix A under the conditions of plane wave propagating ultrasound. Hence 

we have chosen the particle movement of the plane waves to be restricted to the X-Y plain, so 

that the Z-dimension is not relevant. This situation very much resemble our experiments, 

because the ultrasonic source is a line-source perpendicular to the ultrasonic detection points 

situated within a line perpendicular to the source line and intersecting it in its centre. Notice 

that the accuracy of the Rayleigh-Lamb wave equation of motion very much depends in the 

satisfaction of the infinite plate condition. Thus although our model is finite in dimensions 

we have made it long enough and positioned source and sensors far from the lateral borders 

(see fig. 6.8-left) of the plate to avoid reflections, but always under the limitation that higher 

dimension implies higher computational power for the simulation. 

The structures material properties were those for aluminium; E = 70.7584 GPa, ν = 0.3375, ρ 

= 2.7 gr/cm3. 
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The structure was meshed using a PLANE42 element type as shown in fig. 6.8-right, defined 

by four nodes with two degrees of freedom at each node; translations UX and UY in the 

(nodal) X and Y-directions. The element length is an important parameter to define, it should 

be small enough so that the model is able to accurately represent the short wavelengths of the 

broadband optically generated ultrasounds. With the drawback that a too small length would 

imply a larger number of elements in the mesh of the structure, thus a larger system of 

differential equations to be resolved and processing time and power required. In [4] is 

recommended to use more than 10 nodes per smallest wavelength, however in [3] it is shown 

that this limitation is not so critical. In our model we have taken an element length of 0.1 mm 

as the best compromise for the smallest wavelengths on the order of 1 mm to be expected. 

The ultrasonic driving mechanism is simulated as a vertical pulse displacement applied to a 

few nodes in the source position as shown by the red arrows in fig. 6.8-right. This source 

very much resembles the experimentally applied optical generation in the ablation regime (as 

described in Chapter 2). Figure 6.9 shows the time function profile of the driving pulse 

displacements. The shape of this pulse has no practical purpose, apart of being able of 

exciting ultrasonic waves of broad frequency spectrum components, in this case from DC to 

a few tends of MHz. The temporal resolution or integration time step ∆t of the finite element 

analysis is another critical parameter for the correct simulation of the transitory behaviour. 

Thus the accuracy of the solution is increased by using increasingly smaller time steps, with 

the disadvantage that too small values would increase enormously the processing time of the 

simulation. For the Newmark time integration scheme used in our ANSYS analysis a good 

compromise is achieved if the time step satisfies eqn. 6.1 [5]. 

max20
1
f

t
⋅

<∆  (6.1) 

Satisfying the condition in previous equation for the time step would imply that in order to 

accurately resolve frequencies on the order of 10 MHz we would need a time step smaller 

than 5 nsec. For the model here presented of a rectangle of the 200 x 1.5 mm2 and meshing 

element length of 0.1 mm, the number of elements required is 30000, with 2 degrees of 

freedom each so the differential equation matrix to be solve has 60000 elements. In addition, 

this equation has to be solved for each time step, which for the distances source:sensors 

considered in our model (to be in far field) a simulating time of 40 µsec would require 8000 

solution steps to be calculated. This simulation would require a very high processing time 

and power, which we do not consider to be necessary for the purpose of the basic verification 

here intended. Hence a ∆t = 18 nsec has been assumed to be a good enough compromise. 
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The excited ultrasonic waves are detected by measuring the vertical displacement component 

of point nodes in the surface of the plate far enough from the source as to be in the far field 

being 36 mm in this case (as shown in fig. 6.8-left). This resembles the operation of the 

modified Mach-Zehnder interferometer used in our experiments. 
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Figure 6.9: Time profile of the vertical displacement applied over the source nodes in the direction 

shown by the red arrows in fig. 6.8-right. 

The propagation dispersive characteristic of the generated ultrasound is extracted by the 2D-

FT technique presented in Chapter 5. The spatial scanning required to generate the data used 

by this processing technique can be realised through moving either the source or the detector 

by equally spaced distances ∆x. In the ANSYS model we chose to move the detection 

position. 
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Figure 6.10: (Left) Typical vertical displacement in the surface of the plate for the propagating 

ultrasonic in the ANSYS simulation (for a distance source:sensor of 68 mm). Red circled are the 

dominating S0 and A0 modes at low frequency values. (Right) Wavenumber domain dispersion curves 

obtained by 2D-FT analysis over a set of detection positions equally spaced (0.3 mm) on the ANSYS 

model. Red light colour for the highest spectra values and dark blue for the lowest. The spectral 

amplitude is given in logarithmic scale. Superimposed in dashed lines are the theoretical dispersion 

curves (white for symmetric modes and red for antisymmetric ones). 
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A typical detected ultrasonic signal is presented in fig. 6.10-left. The similarity of this signal 

with the experimentally obtained ones (fig. 6.6–right) in previous section is evident. Again it 

appears dominated by the S0 and A0 modes, with the latter much bigger than the former, 

modulated by high frequency components of smaller amplitude, corresponding to high order 

symmetric and antisymmetric modes.  

Figure 6.10-right shows the wavenumber domain phase velocity dispersion curves obtained 

with the 2D-FT processing of the set of vertical displacement data (similar to that in 6.10-

left) obtained at equally spaced positions in the surface of the plate. It is clearly shown that 

only certain wavenumber:frequency combinations have considerable amplitude values 

(notice that the colour is plotted based in a logarithmic scale of the 2D-FT magnitude values, 

with red representing the highest values and dark blue the lowest). In dashed white and red 

lines we have superimposed the theoretically predicted dispersion curves obtained with the 

MATLAB program by me developed that solves the highly unstable and non-linear 

Rayleigh-Lamb wave equations. In most of the plotted region the agreement between 

theoretical model and ANSYS simulated model is considerable. 

We may notice that at high normalized wavenumber values (over 3 mm/mm) a noticeable 

disagreement is appreciable. This is obviously due to the limitations of the model’s mesh 

elements finite length. In the other hand we notice that for frequency:thickness products 

above 4 MHz mm the agreement is quite bad at low wavenumber values, but not at high 

values. This means that the restriction of the time steps given by eqn. 6.1 is not that critical, 

however what really limits the time step values is that this must be smaller than the time 

taken by the fastest possible wave to propagate between successive nodes in the mesh. The 

dispersion curves region in the bottom right corner of fig. 6.10-right (high frequencies and 

high wavenumbers) is associated to the fastest phase velocity values and so they are not very 

well simulated, hence the bad agreement. In the other hand the top right corner of the curves 

even though it is associated to small wavelengths and high frequencies, above the limitations 

of the elements size and time step chosen for the simulation, it agrees perfectly with the 

theory because they have associated very small phase velocities. 

Finally, we have used the ANSYS model also to validate the previous interpretation of the 

improved experimental ultrasonic data seen in fig. 6.7-left. For this we have added in-plane 

displacement components into the ultrasonic source (shown by blue horizontal arrows 

pointing in both directions in fig. 6.8-right). The time profile of the horizontal displacement 

sources is identical to the vertical ones presented in fig. 6.9. The detected ultrasonic 

waveform’s vertical displacement at the same distance source:sensor to that of fig. 6.10-left 
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is shown in fig. 6.11. We see the similar characteristics of the improved experimental 

ultrasonic waveform of previous section, where the S0 mode component has increased 

amplitude considerably to a similar magnitude of that of the A0 mode component. The high 

order mode signals appear now clearer, modulating both the S0 and A0 mode components. 

This simulation confirms that effectively ultrasonic sources with considerable in-plane 

component reaction, improves the generated ultrasonic data. 
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.11: Improved ultrasonic signal by adding in-plane displacement components in the 

rce for the ANSYS simulation, like in fig. 6.10-left the distance source:sensor is 68 mm. 

ee later, the results of the 2D-FT dispersion curves for the FE model presents 

ilitudes with the experimentally obtained ones. For instance, the presence of 

in the magnitude of various modes dispersion curves, and the vertically 

 of the high magnitude A0 and S0 modes. The fact that these effects are common 

experiments and the simulation, warranties that they are specific of the waves 

characteristics or of the data processing technique and not due to experimental 

 perturbations. We will see more about this in the next section. 

results clearly illustrate the effectiveness of using FE analysis for modelling 

ve propagation characteristics. Although here it has only been applied to very 

like structures however it gives an idea of the potential of this technique to 

e complex structural geometries for which analytical solution of the equation of 

not exist (for instance modified ring structures as studied in [3]) or it may be 

obtain (for instance anisotropic materials). The FE method can potentially 

lution for any given geometry, as long as the geometry and its boundary 

n be modelled [3]. 
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6.5 EXPERIMENTAL EXTRACTION OF THE DISPERSION CURVES 

In this section we apply the two signal processing techniques described in Chapter 5 to the 

set of ultrasonic waveforms rich in spatial and temporal spectrum information obtained with 

the all-optical, non-contact inspection tool developed. This gives us the ultrasonic Lamb 

waves dispersion propagation characteristics for aluminium plate-like samples. Meanwhile 

the 2D-FT provides the dispersion information as phase velocity dispersion curves in a 

wavenumber - frequency:thickness product domain, the time-frequency analysis provides the 

same information as group velocity dispersion curves. However the two approaches have 

radically different properties and applications. We show later that the dispersion curves 

obtained by the time-frequency analysis are sensitive to the properties of the material path 

between source and detector. In contrast, the dispersion curves obtained with the 2D-FT are 

sensitive to the properties of the material between the minimum and maximum separations of 

the source and the detector. 

6.5.1 Two-dimensional Fourier transform (2D-FT): Phase velocity dispersion curves 

The two dimensional discrete Fourier transform operating in both space and time domains 

requires of two dimensional ultrasonic data periodically sampled both in time and space. The 

time domain sampling is done by the A/D conversion of the digital oscilloscope to which the 

output of the interferometer’s HF photodetector is connected. The spatial domain periodic 

sampling is achieved by detecting a multiplicity of surface displacement measurements 

corresponding to source:sensor separations incremented through a constant interval ∆x up to 

a total length L. The value of L determines the minimum spatial frequency (or wavenumber) 

increment which can be resolved in the transformed data whilst the increment ∆x determines 

maximum spatial frequency which can be resolved (or minimum ultrasonic wavelength). 

The increment in the source:sensor separation can be done by moving either the detection 

point for a fixed source location (as we did in the ANSYS model simulation), or by moving 

the ultrasonic source, keeping the position of the detection optics fixed. In the diagram of the 

experimental arrangement shown in fig. 6.1, we see that the later is the realisation approach 

chosen here. Because the line-focused laser source does not require the precise focusing 

stability of the interferometric detection beam. The laser source is periodically shifted by the 

action of a motor, as it moves the beam confinement arm that includes in its farther end the 

beam’s steering mirror and the cylindrical lens (as described in fig. 6.5). 

The two dimensional discrete ultrasonic data obtained experimentally, is represented by a 

matrix U[m,n] of dimensions M x N (as shown in eqn. 6.2), where N is the number of time 
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samples taken for each ultrasonic waveform and M the number of ultrasonic waveforms 

measured (one for each position of the source).  
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The discrete 2D-FT algorithm applied over the data matrix considers the top left corner as 

the origin for both space and time dimensions. Thus the time domain is considered 

increasing from left to right and the space domain from top to bottom. The time domain 

consideration corresponds to the experimental propagation time, with higher time 

corresponding with longer ultrasonic wave propagation duration. In the other hand, the rows 

in the matrix are filled by the data associated to the closest distance source:sensor in the top 

and with the farthest distance in the bottom, which means that the x dimension of the 2D-FT 

corresponds to the magnitude distance source:sensor, such that increasing distance is defined 

as positive x domain direction. 

We saw in Chapter 5 that the 2D-FT converts the 2D continuous ultrasonic data into a 

combination of complex exponential functions ( )ftkxie +− π2  and that the associated spectra is 

divided into four redundant sections as shown in fig. 6.12-left. The dark quadrants providing 

identical spectra information and being associated to exponentials of the type ( )tfxkie ||||2 −− π  

and with the light coloured quadrants providing complimentary spectra information but 

identical information between themselves, being associated to exponentials of the type 

. Therefore, from the four quadrants only two (one dark and one light coloured) 

contain all the necessary spectra information. Opposite to what happens in 1D-FT, where not 

all the domain of definition has physical meaning (this is the case of the spectra associated to 

negative frequency values), in 2D-FT every section of the domain of definition is associated 

to single frequency waves propagating in a particular direction. This physical meaning is 

even more relevant when as in the present case the 2D-FT is applied to propagating 

ultrasonic wave data. Thus based in the previous definition of the experimental coordinates x 

and t, the 2D-FT domain of definition associated to the exponential type 

( tfxkie ||||2 +− π )

( )tfxkie ||||2 −− π  

represents waves that take a longer propagation time for an increasing distance 

source:sensor, this is the case of incident waves propagating directly from source to sensor, 
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and of waves that reflect in the border of the plate at the other side of the sensor, point A in 

fig. 6.1. In the other hand the domain associated to the exponential type ( )tfxkie ||||2 +− π  

represents waves for which the propagation time decreases for increasing distance 

source:sensor. This is the case of waves reflected at the border in the same side of the 

sources, point B in fig. 6.1. 
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Figure 6.12: Conversion of the domain of definition for the continuous (left) 2D-FT to the discrete 

(right) 2D-FT and their associated complex exponential type.  

When the 2D-FT is discretized, the domain of definition of the continuous 2D-FT is 

infinitely reproduced in both dimensions (frequency and wavenumber) with the centre 

situated at each multiple combination of 1/Ts and 1/∆x, as described in Chapter 5. In fig. 6.12 

we show this conversion concentrating only on the positive low frequency and low 

wavenumber values domain of definition of the discrete 2D-FT. Remember that all the 

spectra information of the 2D-FT is stored in the combination of just one dark and one light 

coloured quadrants, thus in order to extract the full propagating waves dispersion 

information on the discrete 2D-FT we only need to look at positive frequency values until 

the maximum excited ultrasonic frequency fmax and at positive wavenumber values until 

1/∆x. The quadrant at low wavenumber values is associated to waves reflected in point B in 

fig. 6.1 (called reflected waves quadrant from now on), meanwhile the quadrant at high 

wavenumber values is associated to incident waves directly from source to sensor or 

reflected in point A in fig. 6.1 (called incident waves quadrant). 

The discrete 2D-FT part of fig. 6.12 also shows a common phenomena in our experimental 

dispersion curves. This is the presence of spatial aliasing shown as dashed intersection of 

dark and light coloured quadrants in the region where k = 1/2∆x. However no temporal 

aliasing occurs because the sampling frequency of 100 MHz is much higher than double the 

maximum detected ultrasonic frequency, given by the 15 MHz low pass filter applied. We 

already explained in Chapter 5 that the spatial aliasing occurring in the 2D-FT does not have 
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such damaging effects as when it happens in 1D-FT, and as we will see in the next sections 

most of the dispersion information of this intersection region can accurately be extracted. 

Example of the simulated operation of the 2D-FT technique 

In order to understand how the 2D-FT applied to a set of ultrasonic data (as previously 

described) can provide the phase velocity information of the propagating ultrasound, we start 

here with a simplified set of ‘ultrasonic’ data. These ‘ultrasonic’ waveforms are considered 

to be non-dispersive and single mode. Let us define the continuous waveform associated to 

the closest distance source:sensor as u(t), and for all the set of data we consider the time 

interval of definition being long enough as to have all the ultrasonic information included, 

even at the farthest distance source:sensor (as shown in fig. 6.13-left for a simulated 

ultrasound given by several cycles toneburst). In this case the time waveforms for the 

different distances source:sensor can be given as a time delay of u(t), so that the waveform at 

n-th source would be given by: un(t) = u(t-tn), where tn = n·∆x/cph is the time delay respect to 

the closest source to the sensor. ∆x is the distance between sources and cph is the phase 

velocity of the propagating non-dispersive ‘ultrasound’. 

If we call U(f) the time Fourier transform of u(t), then by the Fourier transform properties of 

a time delayed signal we get that the time Fourier transform of un(t) is given by: 

phn cxfnifti
nt efUefUttuF /22 )()()]([ ∆−− ⋅=⋅=− ππ  (6.3) 

The absolute value of the temporal Fourier transform for all the set of data is the same |F[u(t-

tn)]| = |U(f)|, thus independent of the position of the sources. The phase velocity information 

as shown in eqn. 6.3 is stored in the phase of the temporal Fourier transform, this is why a 

second 1D Fourier transform, in the displacement domain x, is needed in order to extract it. 

As mentioned in Chapter 5, a 2D-FT can be implemented by calculating the two successive 

one dimensional transforms. Thus the spatial domain Fourier transform is applied over the 

time domain Fourier transform for each frequency component. In eqn. 6.4 the spatial Fourier 

transform is applied over the time Fourier transform at the frequency f0 and a continuous 

source distribution has been considered. 
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Where δ(f0 / cph + k) is a Dirac Delta function, being 0 for all values of k ≠ - f0 / cph  and being 

equal to 1 when the wavenumber k = - f0 / cph. Hence the 2D-FT applied to the non-

dispersive, single mode set of data here described, is only different from zero at the 

frequency:wavenumber combinations that satisfy k = - f / cph, which in the frequency : 
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wavenumber domain corresponds to a line with negative slope equal to -1/cph and defined in 

the quadrant of negative wavenumber values.  

 

 

 

 

 

 

 

 

Figure 6.13: (Left) Set of time data for the simulated 2D-FT application. The ‘ultrasound’ is 

considered a several cycles toneburst non-dispersive and single mode. (Right) Modulus of the time 

Fourier transform of the toneburst signals (top), and 2D-FT spectrum of the set of data (bottom). 
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We already described in Chapter 5 that the region of negative wavenumber and positive 

frequency is associated to waves propagating toward increasing values of the x dimension (or 

distance source:sensor), and this is the condition imposed previously in the current set of 

data when we decided that as the distance source:sensor increases also the time delay 

increases. If the position of the sources is discrete then spatial leakage takes place, so that the 

dispersion curve line appears broadened in the wavenumber domain direction as shown in 

bottom of fig. 6.13-right, due to the discontinuity in the spatial domain data. No temporal 

leakage is shown in previous figure, because the propagating ‘ultrasound’ is a time 

windowed toneburst so no discontinuity appears in the periodic extension associated to the 

time domain DFT (as described in Appendix E). Notice the presence of spatial aliasing in 

this figure for frequencies over 10 MHz, and the negative slope of the line as predicted. The 

wavenumber values (vertical axis) are not negative because this plot is obtained for a 

discrete 2D-FT where the spectrum associated to negative wavenumbers is reproduced at 

positive wavenumber values below the inverse of the spatial sampling period (being 0.5 mm 

in the example of fig. 6.13-right), as explained in Chapter 5. 

Application of the 2D-FT over experimental data 

The first experimental extraction of the phase velocity dispersion curves has been carried out 

over a rectangular aluminium plate of 1.18 mm thickness and dimensions 45x30 cm2, with a 

similar configuration to that in fig. 6.1. The distance from border point A to sensor is 16.2 

cm, closest distance source:sensor is 7.35 cm, total length of source locations is 3.45 cm and 
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the distance from the farthest source to the border point B of the plate is 18 cm. The 

perpendicular direction to the line-sources that pass through the sensor is symmetrically 

centred to the plate, at a distance to the borders of the plate of 15 cm each side. 

For the first presented dispersion curves (fig. 6.14) obtained with a MATLAB algorithm by 

me developed, we used a spatial sampling period of ∆x = 0.254 mm (or 10 motor steps), 

taking 137 ultrasonic waveform samples (one for each source location) in order to cover the 

3.45 cm of length of the source locations. The oscilloscope sampling period is 10 nsec and 

the ultrasonic waveforms are sampled for 100 µsec in order to avoid reflections from the 

borders of the plate. The obtained data matrix U[m,n] is always zero padded in time and 

space to the closest power of 2 to speed the calculation of the 2D fast Fourier transform 

algorithm and increase fidelity of the estimated spectrum to the true spectrum of the signal. 
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Figure 6.14: 2D-FT spectra representing the Lamb waves phase velocity dispersion for an aluminium 

plate in the wavenumber domain. The red light colour represents the highest spectra values and dark 

blue the lowest. The spectral amplitude is given in logarithmic scale. Thickness of the plate 1.18 mm, 

∆x = 0.254 mm and total displacement length of the sources is 3.45 cm. 

Only the spectra of the 2D-FT associated to the incident wave and reflected wave quadrants 

is plotted, because they contain all the available dispersion information. Thus the 

wavenumber is plotted between 0 and 1/∆x (1/m) and the frequency is plotted between 0 and 

15 MHz (or equivalently maximum frequency:thickness product value is 17.7 MHz mm). The 

spectra information given by the 2D_FT is a 3D plot. The complexity of the shapes and 

multiplicity of the dispersion curves configuration makes difficult to interpret anything in a 

3D plot. Hence a 2D plot of the top view of the frequency – wavenumber plane is more 

adequate, with the amplitude of the 2D-FT spectra at each point being colour coded; red light 
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indicating highest values of the ultrasonic spectra components and dark blue lowest. The 

amplitude has been represented in logarithmic scale due to the enormous amplitude 

difference between the excited A0 and S0 modes at low frequencies and the high order modes 

at higher frequencies as shown in the typically detected ultrasonic waveform of fig 6.6–right.  

The first thing to notice in the 2D-FT spectra of fig. 6.14 is that although the ultrasonic laser 

source excites waves of all frequency:wavenumber combinations, only a few well defined 

curves present a significant amplitude (given by light colours in contrast with the dark blue 

background). Hence only waves with those frequency:wavenumber combinations can 

propagate in the structure. The perfect agreement of these curves with the theoretically 

obtained phase velocity dispersion curves for aluminium (as seen in later plots), prove the 

Lamb wave nature of these waves. 

Three sections have been identified in fig. 6.14, of which we have previously discussed 

about; incident waves quadrant (white dashed squared) in the top half of the spectra, 

reflected waves quadrant in the bottom half and the spatial aliasing in the centre. The Lamb 

waves dispersion curves in the incident waves quadrant have much higher amplitude (as 

shown by the more lighter and red colour levels) than those in the reflected waves quadrant, 

as it would be expected because the closest lateral border of the plate is chosen far enough as 

to minimize the reflected waves during the recording interval of time of the ultrasonic 

waveforms (100 µsec). For instance the reflection of the fastest propagating mode (S0 mode 

at low frequencies, with group velocity ~5.44 km/s) generated by the closest source to the 

sensor, would be detected at around 92 µsec from the launched laser pulse. Obviously slower 

propagating modes would not arrive within the detection interval of time, however we still 

see them in the reflected waves dispersion curves. This is the case, for instance, of the A0 and 

S0 mode over 2 MHz mm where their group velocity value is under 3.1 km/s. The reason for 

these reflected waves to appear is because they do not come from reflections of the waves 

generated in the current laser pulse but from waves that were generated in previous pulses 

and that still are not totally attenuated. Remember that the ultrasonic waveforms are 

averaged 64 times and that the repetition rate of the Q-switched laser is quite high (10 Hz). 

In the dispersion curves of the ANSYS model (fig. 6.10-right), where the incident and 

reflected wave quadrant were swapped, we do not see waves in the reflected wave quadrant 

(now top half) because in this case the ultrasonic waveforms are not averaged and a source 

of a single pulse was modelled. 

The reflected waves dispersion curves has been used in the literature for damage detection 

and characterization applications [6,7]. However in the work of this thesis where we are only 
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interested in the incident waves dispersion curves, their effect are only harmful, due to the 

spatial aliasing suffered in our experimental realizations. Causing intersection between the 

reflected wave dispersion curves and the incident wave curves in a few points within the area 

of aliasing. Fortunately, as already addressed in Chapter 5 and previously in this chapter, still 

most of the dispersion curves information can be correctly extracted from the aliasing region 

(as we can see in fig. 6.14).  

Meanwhile the phase velocity associated to any point of the continuous 2D-FT dispersion 

curves is given by f/k, this expression does not apply to the negative slope dispersion curve 

in the incident wave quadrant (high wavenumber values k) of the discrete 2D-FT. Where in 

order to take into account the incident wave quadrant projection (shown in fig. 6.12) due to 

the discretization of the 2D-FT, the correct phase velocity would be given if the wavenumber 

is rewritten as |k’ |= |k – 1/∆x|, or if the incident and reflected wave quadrants of the discrete 

2D-FT spectra are swapped as done in fig. 6.10-right for the ANSYS model. During the rest 

of this chapter we will plot the incident wave quadrant as positive slope in the low 

wavenumber half of the 2D-FT spectra, because this is the quadrant we are interested about. 

Enhancement of the 2D-FT processing algorithm 

The 2D-FT spectra plotted in fig. 6.14 confirms the correct operation of the developed 

inspection tool and the adequacy of the processing technique applied. However it is obvious 

that further optimization are required in order to be able to extract an accurate set of the 

dispersion curves values of the material. The main points requiring improvement are listed 

next with the solution applied: 

1. 1D leakage: This effect is due to the discontinuities at the boundaries of the spatial 

and temporal finite length data. As explained in Appendix E, this causes the existence of 

frequency values that do not correspond with the FFT bin values (both in wavenumber and 

frequency) and their energy is spread over all the frequency and wavenumber range. The 

temporal data discontinuity is obvious in fig. 6.6–right, where the high amplitude of the A0 

mode at low frequencies contrasts hugely with the null amplitude of the beginning of the 

waveform. The effect of this discontinuity can be seen in the intense horizontal leakage at 

low wavenumber values for the reflected wave quadrant and at high wavenumber values for 

the incident wave quadrant in fig. 6.14. 

The spatial data discontinuity can be seen in fig. 6.15–left where we plot the detected 

ultrasonic amplitude as a function of the distance source:sensor at a common time instant of 

33 µsec.  
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Figure 6.15: Correction of the 1D leakage in both frequency and wavenumber: (Left) Space data for 

the ultrasonic detected amplitude as a function of the distance source:sensor at a common time instant 

33 µsec. (Right) 2D-FT spectra after applying spatial and time Kaiser window functions with β=3. 
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The solution to this problem is to apply window functions, both in space and time, to the 

ultrasonic data matrix U[m,n]. The developed algorithm in MATLAB allows choosing 

between different windows by defining the parameter β of a Kaiser window function [8], 

such that; β = 0 represents no window, β = 5 is the Hamming window and β = 6 is the 

Hanning window. The higher the value of β the bigger the attenuation of the temporal and 

spatial data at the boundaries of the window, thus less energy will appear in the 2D-FT 

spectra dispersion curves. Fig. 6.15–right shows the corrected dispersion curves for a β = 3 

and fig. 6.16-left for a β = 6. In contrast to the dispersion curves in fig. 6.14, now we have 

swapped the incident and reflected wave quadrants (as previously mentioned) and decrease 

the maximum frequency:thickness plotted as no observable signal appears over 13 MHz mm. 

The 1D leakage has been corrected. The lower β window dispersion curves not only show 

the high order modes dispersion curves at high frequency values better (these modes arrive at 

the beginning and end of the time data, hence being more attenuated with increasing β 

windows), but also the higher β dispersion curves appear more spread. 

2. DC offset of the ultrasonic waveforms: this causes the appearance of the high energy 

DC frequency component at all wavenumber values, intensified by the 1D spatial leakage of 

the highest amplitude A0 mode at low frequencies. This can be corrected by applying a high 

pass (HP) filter to the time data. We have analysed the effect of various filters (Bessel, 

Chebyshev and Butterworth) and observed that the latter gave better dispersion curves. 

Where an order 1 and cut-off frequency of 350 kHz provided good correction of the DC 
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offset without perturbing too much the dispersion curves of A0 and S0 at low frequency 

values.   

 

 

 

 

 

 

 

 

Figure 6.16: (Left) 2D-FT spectra after applying spatial and time Kaiser window functions β=6. 

(Right) Ultrasonic waveform of fig. 6.6–right after applying 1st order HP Butterworth filter at 350kHz. 

  

The benefits of applying such a HP filters are more than only cancelling the DC offset. 

Figure 6.16-right shows the ultrasonic waveform of fig. 6.6–right after applying the 

Butterworth HP filter. The amplitude of the A0 mode at the middle end of the time signal has 

been highly attenuated as it corresponded to low frequency values. In consequence the 

higher order modes of higher frequency values that modulate A0 mode (unaffected by the 

filter) are now clearer in the time signal. In addition the HP filter decreases the discontinuity 

in the boundaries of the time signal in a similar way to the time window function. However 

in contrast with the window function, the HP filter has the advantage of not decreasing the 

small amplitude high order modes arriving at the beginning and end of the time signal 

(modulating the S0 mode). Figure 6.17–left shows the 2D-FT spectra over the same 

ultrasonic data as before but now we HP filter it with the previous Butterworth filter and 

only space window function with β= 3 is used. The improvement as a much better presence 

of the high order modes (circled region) is obvious. The disadvantages are that the high 

frequency components of the reflected waves, which arrive at the end of the time data are not 

attenuated either (in contrast with the application of the time window that attenuates 

everything at the end and beginning) so a bigger interaction between reflected and incidental 

wave dispersion curves occurs in the spatial aliasing section. Additionally, as the high 

amplitude of the low order modes and the DC offset has been reduced, also the contrast of 

the dispersion curves with the noise has decreased, thus the 2D-FT spectra appear more 

‘dirty’. To correct this problem we need first to understand what exactly this noise is, my 

interpretation is given next. 
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Figure 6.17: (Left) 2D-FT spectra after applying a 1st order HP Butterworth filter at 350 kHz and a 

Kaiser spatial window function β=3. Improvement of the high order modes (white circled) to previous 

cases. (Right) As in the left but duplicating temporal sampling period and with ∆x = 0.3048 mm. 

3. 2D leakage: A careful look of the noise in the 2D-FT spectra of fig. 6.17–left shows 

that it consist in curves of positive slope parallel to the high amplitude (red coloured) part of 

the dispersion curves associated to A0 and S0 modes. In a similar way as happened with the 

2D-FT of the ANSYS model in fig. 6.10-right which points to its data processing origin 

rather than experimental perturbation. 

The only meaningful explanation we can think about for the origin of this vertical repetition 

of the A0 and S0 modes dispersion curves, is that it is the result of a 2D leakage projected in 

the wavenumber domain. In contrast with the 1D leakage previously explained, the 2D 

leakage is caused by the discontinuity within the spatial data (not in its boundaries of 

definition) as it can be seen in the irregular shape of fig. 6.15–left. The fact that the temporal 

data does not present these discontinuities explains why the projection of this 2D leakage 

only take place in the wavenumber direction (vertically).  

Changes in the time sampling period will change the irregularities in the space data, thus this 

leakage is affected by both dimensions, hence its name 2D leakage. 

The only way of decreasing the 2D leakage effects is by increasing both the spatial and 

temporal sampling periods, meanwhile maintaining the number of total samples, as this will 

make the bins of the 2D-FT spectra to be closer, increasing the resolution of the dispersion 

curves. In figure 6.17–right we show the improvement by doubling the time sampling period 

to 20 nsec (still small enough to avoid temporal aliasing) and a spatial sampling period of ∆x 

= 0.3048 mm (12 motor steps). Because we already have spatial aliasing, we cannot increase 
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as much as we want the spatial sampling period as this increases the intersection area 

between incident and reflected wave quadrants and it could worse the spectra rather than 

improve it. We observed that the chosen spatial sampling period of 0.3048 mm was the best 

compromise for our application.  

A great improvement in the dispersion curves can be observed in figure 6.17–right, but the 

2D leakage has only been attenuated very slightly. The higher resolution of the spectra 

makes more evident that it consists in a repetition of the A0 and S0 mode curves. 

A final improvement has been added to the MATLAB algorithm to enhance the contrast of 

the dispersion curves with the 2D leakage noise by directly acting in the 2D-FT spectra 

matrix and decrease the average of the peaks associated to this noise. Figure 6.18-left shows 

the final improved spectra normalized also in the wavenumber axis (by multiplying with the 

thickness of the plate) so that the dispersion curves can be compared with the superimposed 

theoretical Lamb waves dispersion curves for aluminium. A great agreement between theory 

and practice is observed, with slight discrepancies at high order modes. These errors are 

associated to the small differences between the elastic constant values (E, ν and ρ) used for 

estimating the theoretical dispersion curves and the actual ones for the sample. In fact in the 

next chapter we will use these discrepancies in the dispersion curves to evaluate the elastic 

property values of the material. 

It is remarkable that the presented technique can perfectly obtain and display the dispersion 

curves until order modes as high as 5 (for both symmetric and antisymmetric modes). 

Lamb waves negative group velocity

Finally we want to call the attention to the reflected waves quadrant of this figure. The 

amplitude of the reflected wave dispersion curves is very much attenuated apart of the two 

regions circled. The pink circled region is associated with the fastest propagating Lamb 

waves (the S0 mode in the non-dispersive region) as previously explained. These are the only 

waves which after reflecting in the border B of the plate (see fig. 6.1) arrive within the 

sampled 100 µsec for each laser pulse. The other high amplitude region of the dispersion 

curves is circled in green and it corresponds to the S1 mode in the region of 

frequency:wavenumber values at which this modes presents a negative group velocity. As 

explained in Appendix D, the negative group velocity can be understood as the energy of the 

generated pulse wave propagating in opposite direction to the waves phase velocity. Thus the 

incident wave from source to sensor propagates as ( )tfxkie ||||2 +− π  so it appears in the reflected 

wave quadrant, meanwhile the reflected component in the border B of the plate will appear 
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in the incident wave quadrant, that is why only in this case of negative group velocity the 

reflected wave quadrant has bigger amplitude than the incident wave quadrant. 
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Figure 6.18: (Left) Same 2D-FT spectra as fig. 6.17–left after applying the noise reduction algorithm. 

Superimposed in dashed pink lines appear the theoretical dispersion curves for aluminium. Pink 

circled is the fastest propagating S0 mode reflected waves and in green the S1 mode with negative 

group velocities. In red dashed circle a non-theoretical dispersion curve. (Right) Definition of 

variables for line-source radiation directivity. 

4. Extraneous dispersion curve: The last aspect of the experimental dispersion curves 

that require further understanding is the non theoretical dispersion curve shown as dashed 

red circled in figs. 6.17–left and 6.18-left. This curve is not presented in the 2D spectra of the 

ANSYS model, thus its origin is experimental. In fact as we will see next it is related with 

the radiation directivity of a line-source. 

The theoretical expression for the radiation directivity R(α) of a line source of constant 

amplitude along its length l is given in the far field by eqn. 6.5 [9]. Where α is the angle with 

the normal to the line-source as shown in fig. 6.18-right and λ the wavelength of the 

generated wave. 

( ) ( )[ ]
( ) αλπ

αλπα
sin/

sin/sin
l

lR =  (6.5) 

The concept of far field was introduced in Chapter 4. Here we concentrate on its definition 

related to a line source, such as in [9] it is the distance to the point of observation that is large 

compared to the length of the source. The far field is characterized by the pressure level 

decreasing 6dB for every doubling distance with the generated ultrasonic beam spreading out 

in a pattern originating from the centre of the source. The equation for the far field is [9]: 
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Where r is the distance to the observation point from the centre of the line source. The 

second term of eqn. 6.6 can be neglected for l > 2λ, which for the experimental laser source 

length of ~1 cm corresponds to values of wavenumber*th > 0.23 (mm/mm). This is true for 

most of the excited dispersion curves as seen in fig. 6.18-left. Thus the far field in our 

experiments would be given by the smallest excited λ (or highest wavenumber) of 

considerable amplitude, which from previous dispersion curves we can say to be λmin ~ 0.45 

mm, giving a far field value in our experiments of ~7cm. Our closest distance source:sensor 

has always been bigger than this value, hence satisfying the far field condition. 

 

 

 

 

 

 

Figure 6.19: Line-source radiation directionality R(α) with the source considered horizontal, for three 

different values of l/ λ. 
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Figure 6.19 shows in a polar diagram the radiation directivity as given by eqn. 6.5 for three 

values of l/λ, with the source considered horizontal. The line-source is omnidirectional for 

ultrasonic waves of wavelengths of the order o bigger than its length, however it becomes 

very directional when the wavelength is a fraction of the line length. It can be shown [9] that 

when the amplitude of the line source has a Gaussian distribution (as it is the case of a laser 

generated line-source) then it becomes more directional for higher wavelengths and more 

omnidirectional for smaller wavelengths. 

Thus for our experimental line source of 0.8 cm length, we could consider to be 

omnidirectional for the ultrasonic waves associated to points in the dispersion curves with k 

< ~300 (1/m). For all the high order modes and also for the S0 mode the amplitude of the 

waves excited at these wavelengths is very small as it can be seen from the 2D-FT spectra of 

figs. 6.17–left and 6.18-left. However the A0 mode has its maximum amplitude in this region. 

The path difference of the A0 mode omnidirectional waves generated by adjacent line-source 

and reflected in the closest point of the lateral borders perpendicular to the direction 

source:sensors (indicated as A and B in fig 6.29-left) is bigger than the path difference for 
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the direct path source:sensor (given by the spatial sampling period ∆x). Hence they have a 

longer propagation time associated, but the 2D-FT considers that the path difference is ∆x. 

Therefore they appear in the 2D-FT spectra with a smaller phase velocity or bigger k, 

agreeing with the extraneous dispersion curve of fig. 6.17–left and 6.18-left. This reflection, 

similarly to the reflection in point A of fig. 6.1, only appear in the incident wave quadrant 

because as the distance source:sensor increases then also the propagation time does. 
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Figure 6.20: Verification of the interpretation of the extraneous mode in the experimental dispersion 

curves: (Left) Experimental realization on a cylindrical aluminium plate, all dimensions in cm. (Right) 

2D-FT spectra of the circular plate experiments obtained in a similar way as fig. 6.18-left including 

the noise reduction algorithm. 

An experimental confirmation of this origin of the extraneous mode was developed by 

situating the sensor in the centre of an aluminium circular plate of 1.18 mm thickness and 48 

cm diameter. The sources are launched in the centre of one of the plate’s radius as shown in 

fig. 6.20–left. In this realization the only waves reaching the sensor are those directly 

incident or reflected in the borders of the plate in the direction source:sensor (points A and B 

in fig. 6.20–left). Any other reflection cannot reach the centre of the plate were the sensor is 

located. Thus the 2D-FT spectra for this case should not include the described extraneous 

dispersion curves if the previous interpretation is correct. Effectively no presence of this 

extraneous mode can be seen in the experimental dispersion curves plotted in fig. 6.20–right. 

Conversion of the dispersion curves from the wavenumber domain to the phase velocity 

domain 

The experimental dispersion curves by the 2D-FT are directly obtained in the wavenumber – 

frequency domain, however they can easily be converted to the most common phase velocity 

– frequency representation (as seen in Appendix A) by taking into account that cph = f/k. 
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Figure 6.21 shows this transformation for the incident wave quadrant dispersion curves of 

fig. 6.18-left. More about this conversion will be seen in the next chapter. 

  
1.3 5.2 6.5 9.1 7.8 10.4 11.7 13 3.9 2.6 

20 

18 

16 

14 

10 

12 
v p

h 
(k

m
/s

) 

8 

6 

4 

2 

0 

 

 

 

 

 

 

 

 

 

 Frequency thickness (MHz mm) 

Figure 6.21: Conversion of the incident wave quadrant dispersion curves of fig. 6.18-left into the 

phase velocity –frequency:thickness product domain. 

A final addition to the developed algorithm for the 2D-FT processing technique has include a 

semiautomatic function that analyse the obtained 2D-FT spectra matrix in the wavenumber 

domain and localize the specific peaks associated to the incident wave quadrant dispersion 

curves. Hence the experimental dispersion curves are given as a combination of points 

(wavenumber, frequency:thickness) for each mode. In fig. 6.22 we plot the resultant 

dispersion curves lines obtained from the spectra in fig. 6.18-left which will be used in the 

inversion process application of the next chapter. 

 

 

 

 

 

 

 

 

 

Figure 6.22: Expe
 

rimental dispersion curves lines obtained from peaks of the spectra in fig. 6.18-left. 
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6.5.2 Time-frequency analysis: Group velocity dispersion curves 

The second of the signal processing techniques applied to the experimental ultrasonic data is 

able to extract the Lamb wave propagation dispersion information looking just to a single 

shot measurement with one source:detector separation. This technique identifies the temporal 

frequency components within the single pulse as a function of time delay between the launch 

of the pulse and its arrival. In general the signal components of the response shown in fig. 

6.6-right at a particular time delay, correspond to a number of different frequencies with the 

same propagation velocity. The dispersion information provided by this technique is through 

the group velocity dispersion curves rather than the phase velocity dispersion curves given 

by the 2D-FT. However both dispersion information are related by eqn. A.26. Although both 

processing techniques provide equally the propagating Lamb waves dispersion information, 

however as described in next section both techniques has an important difference as how this 

information relates with the monitoring of the sample structural condition. 

Two different ways of obtaining the frequency:delay characteristics of the propagating 

ultrasound have been exploited; the short time Fourier transform and the reassigned 

spectrogram. 

Short time Fourier transform (STFT) 

This is the simplest and most effective way of obtaining the frequency:delay characteristics. 

It consists of dividing the ultrasonic time data in overlapping sections that are windowed and 

to which an FFT is applied in order to obtain their frequency content. A more extensive 

operation of this technique has been presented in Chapter 5, thus here we only deal with its 

practical application to the previously obtained experimental data. 

A Hanning window was considered for this application, as justified in Chapter 5. The length 

of this window is equal to the length of the sections in which the ultrasonic time data is 

divided and it characterizes the time and frequency resolution.  Thus a big window provides 

better frequency resolution but worse time resolution and vice versa. After analysing the 

effect of different window lengths over the obtained spectrograms, it was decided that a 

length of 384 provided a good compromise for multimode ultrasonic signals, agreeing with 

the analysis done in [10]. The time data of each segment was latter zero padded until a length 

of 512 (closest power of 2) in order to speed the FFT algorithm and to increase fidelity of the 

estimated spectrum. 

The effect of window overlapping was also studied. Overlapping adjacent windowed 

sections of the time signal compensate the loss of information caused by the ends of the 

windows, as smoothly go to zero and hugely attenuating the original time signal. 
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Figure 6.23: Spectrogram (as logarithmic scale contour plot with red light colour for highest values 

and dark blue for lowest) of ultrasonic signal obtained at distance source:sensor = 11 cm. STFT 

applied for window size = 384 and each segment zero padded to 512 length. The window overlap is 

increased from top left to bottom right: (Top left) Overlap 0%. (Top right) Overlap 50%. (Bottom left) 

Overlap 75%. (Bottom right) Overlap 85%. Superimposed are the theoretical group velocity 

dispersion curves; red for symmetric modes and blue for antisymmetric. 

Overlapping also improves the time resolution of the spectrogram. In fig. 6.23 we show such 

improvement by comparison of the spectrogram (as a contour representation with red light 

colour for highest spectra values and dark blue for lowest, in a logarithmic scale) obtained 

for the same ultrasonic signal (as shown in fig. 6.6-right), and a window size of 384 sample 

points but the percentage of window overlapped is increased. As the overlapping percentage 

increases, the dispersion curves appear sharper and with more detail (look for instance to the 

improved difference between 50% and 75% overlap), at the expenses of a higher computing 

power requirement. Although no additional dispersion information is obtained when 

increasing from 75% to 85% overlap. 

 In the spectrograms of fig. 6.23 we have also superimposed in red and blue lines the 

theoretical symmetric and antisymmetric modes group velocity dispersion curves for 

aluminium (until order 3). The experimental dispersion curves appear slightly shifted 
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towards smaller time values in comparison with the theoretical ones. This is an effect of the 

specgram function by MATLAB which we used to calculate the STFT. Because this 

algorithm assigns the spectra obtained in each segment to the starting time value of the 

segment.  
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Figure 6.24: (Left) Spectrogram obtained with an overlap=window_length-1. Plotted using the pcolor 

MATLAB function. (Right) Contour plot of the reassigned spectrogram of the same ultrasonic signal 

as that in the left. Superimposed are the theoretical group velocity dispersion curves for aluminium 

(red for symmetric modes and black for antisymmetric ones).  

An alternative approach was to use an algorithm based on eqn. 5.5 provided in [11]. This 

algorithm uses an overlap=window_length-1 but it does not suffer from time shift. A 

spectrogram obtained by this algorithm is plotted in fig. 6.24. This spectrogram is plotted in 

a similar way as the 2D-FT spectra in previous sections and in fact it is easier to distinguish 

the dispersion curves than in the contour plots of fig. 6.23. The improved representation of 

the group velocity dispersion curves is achieved after applying a 1st order high pass 

Butterworth filter at 350 kHz (as we did with the 2D-FT analysis). The spectrogram clearly 

shows how two curves are dominating from an energy point of view, associated to the A0 

and S0 modes as indicated in fig. 6.24. We can clearly see that the earliest arriving mode is 

the S0 (at 25 µsec) and that before the arrival of the high amplitude A0 mode (at 40 µsec) 

there are multiple high order modes that modulate the higher amplitude signal component of 

the S0 mode as previously shown in fig. 6.16-right. Same happen with the high order modes 

arriving during the interval of the dominating A0 mode. 

Reassigned spectrogram 

The main disadvantage of the simple STFT technique is its time-frequency resolution 

limitations, evident in the spread of the dispersion curves of fig. 6.24-left. Although some 

dispersion information can be extracted from this figure, it is not of high precision. The 
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technique named reassignment method developed by Auger and Flandrin can improve 

considerably this resolution by means of the STFT’s phase information that the spectrogram 

does not use. This technique was extensively explained in Chapter 5. Figure 6.24-right 

shows the amazing potential of this technique through the clear improvement of the 

spectrogram in fig. 6.24-left. We have also superimposed the theoretical group velocity 

dispersion curves for aluminium and a perfect agreement is achieved. Notice that we do not 

have the time shift of the experimental dispersion curves towards lower time values as 

previously in fig. 6.23. 

The algorithm used for the reassigned spectrogram is an improved version of that provided 

in [11]. 

6.6 COMPARISON OF THE SIGNAL PROCESSING METHODS 

The two signal processing approaches have radically different properties and applications. 

The time-frequency analysis is experimentally advantageous as it only requires a single 

ultrasonic data set, in contrast to the large series of equally spaced data that the 2D-FT 

requires. In principle the mechanics of the propagating waves dispersion behaviour is 

contained in any measured waveform (as long as the waveform is long enough and sufficient 

frequencies are excited), hence both techniques provide similar dispersion information. Why 

then do we apply the 2D-FT? It can be argued that the reassignment method has problems to 

properly resolve the intersections that commonly occur in the group velocity dispersion 

curves. This problem is not present in the 2D-FT. Nonetheless this effect will only be a real 

problem depending on the actual application. We can also argue that the more measurements 

taken by the 2D-FT would give a more averaged result, thus probably its results are less 

affected by experimental error and also has better resolution. Still they provide same 

information or do they really? A more detailed analysis of both techniques has lead to our 

conclusions (never seen before) that the dispersion information these two signal processing 

techniques provide is in fact quite different. 

The time-frequency analysis takes a single trace and plots the frequency content within that 

trace along the time axis. Since the time axis refers to the delay between the launch of the 

laser generated ultrasound pulse and the arrival of the ultrasound at the optical detector then 

clearly all the material between the source launching point and the detector influences in an 

averaging way the characteristics of its dispersion curves.  

The situation with the two dimensional Fourier transform is very different. In this case the 

propagation characteristics of the multiple waveforms at the detector corresponding to 

equally spaced launch positions are compared, and it is through the differences in the 
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waveform propagation that the 2D-FT extracts the dispersion information. Because the path 

of the sample between the closest source and sensor is common to all the waveforms, it does 

not affect the shape (dispersion information) of the obtained dispersion curves. However this 

common path will filter the waveforms frequency content and so affect the domains of 

definition of the dispersion curves as well as the magnitude of the mode’s curve amplitude. 

This approach is sensitive to the properties of the material between the minimum and 

maximum separations of the source and detector and it is not influenced at all by the 

properties of the material in the common path.  
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Figure 6.25: Dimensions and experimental setup of the cast aluminium plate for the verification of the 

area selectivity characteristic of the 2D-FT processing technique. All dimensions are in cm. 

An experiment has been developed to prove these conclusions based on the fact that the 

dispersion curves are affected strongly by the thickness of the plate where the ultrasounds 

propagate (as mentioned in Appendix A). 

First we have taken a cast aluminium plate of 1.84 mm thickness with dimensions as shown 

in fig. 6.25 (given in cm), and the obtained wavenumber dispersion curves by the 2D-FT 

technique are plotted in fig. 6.26-left. In comparison with the previously presented 

experiments for aluminium plates, in the present case a bigger region of the dispersion 

curves is excited. With a much bigger number of very well defined high order modes 

present. This is due not only to a thicker plate being used (aluminium plates were 1.18 mm 

thick) even though the maximum detected temporal frequency is again low pass filtered at 15 

MHz, but also because the cast aluminium is a stiffer material than just rolled aluminium so 

higher ultrasonic amplitudes can be generated without damaging so much the plate’s surface. 

The excitation of so many high order modes evidences an interesting property of the 

symmetric high order modes mentioned in Appendix A. Their phase velocity flattens toward 
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the value of the longitudinal mode just after their cut-off frequency:thickness values, the 

longer the frequency:thickness product interval the higher the mode’s order. In the 

wavenumber domain this flat region converts into a diagonal line with positive slope, as 

circled in red in fig. 6.26-left. In these regions the symmetric modes behave much as a 

longitudinal mode, thus their out-of-plane displacement is negligible, the more the higher the 

mode order. 

 

 

 

 

 

 

 

 

  
Figure 6.26: Cast aluminium plate dispersion curves by the 2D-FT technique: (Left) 2D-FT spectra in 

logarithmic scale, for homogeneous plate of thickness 1.84 mm. Circled region where high order 

symmetric modes are pure longitudinal. (Right) Superposition of the contour plots for the cases; _ 

(red) Plate without notch (thickness 1.84 mm), _ (green) Sources and sensor in both sides of the notch 

(thickness 1.84 mm), and _ (black) Sources inside the notch with sensor outside (thickness 1.18 mm). 

Because the interferometric detection system is mainly out-of-plane displacement sensitive 

the high order modes experimental dispersion curves disappear in that region, more the 

higher the mode’s order. 

The experimental dispersion curves in fig. 6.26-left have been re-plotted in fig. 6.26-right as 

a red coloured contour plot of normalized vertical and horizontal axis, in order to be able to 

compare them with the dispersion curves obtained for the same plate but under different 

thickness conditions as explained next. 

We have decreased the thickness in the centre of the plate to 1.18 mm, seen as a darker 

region in fig. 6.25. Under this new specification we have taken two sets of measurements. 

We have measured the dispersion curves for a case where the sources and the sensor are at 

both sides of the notch and for a case where the sources are within the notch while the sensor 

is outside the notch.  



OPTICAL EXTRACTION OF LAMB WAVES DISPERSION FEATURES 176                         

In the three analyzed cases the sources area length is 5 cm, meanwhile the distance between 

the closest source to the sensor is 8 cm. The normalized dispersion curves of these three 

cases are superimposed in fig. 6.26-right with different colours as described in the figure’s 

caption. A superposition of the incident waves dispersion curves is achieved (the dispersion 

curves associated to the reflected waves, as described in Chapter 5, do not agree because 

they were obtained for different spatial sampling period) only when the dispersion curves are 

normalized taking the thickness value in the last two cases as the thickness of the area where 

the sources are launched. That is 1.84 mm when sources being in the other side of the notch 

and 1.18 mm when sources are inside the notch. The agreement of the normalized dispersion 

curves means that the thickness of the path between the sensor and the closest source does 

not have any effect in the dispersion curves shape as we predicted. Even with the length of 

the path between the sensor and the closest source being almost twice the length of the 

sources area region. 

The 2D-FT provides the flexibility in isolating microscopic type region of the sample for 

examination that the time-frequency analysis cannot achieve, but at the expenses of requiring 

more processing power and higher experimental complexity. Thus the 2D-FT analysis can 

focus the material property analysis to specific areas of the sample rather than the full area 

between source and receiver. 

6.7 EXPERIMENTAL DETECTION OF STRUCTURAL CHANGES 

We illustrate the operation of the non-contact, all-optical inspection tool to two different 

applications; temperature changes detectability and damage detection. Each application is 

suitable for each of the two signal processing techniques presented. 

6.7.1 Temperature experiments 

These experiments examine the influence of temperature changes on the dispersion curves 

for an aluminium sample plate of 1.18 mm thick and dimensions 40 x 17 cm2. To simplify the 

experimental process we have performed the experiments by suspending the aluminium 

sample sheet over a circular hotplate of 18 cm diameter and adjustable temperature 

controller. The temperature was monitored using a thermocoupler attached to the plate, with 

two different values chosen for comparison; 23°C (laboratory conditions) and 112 ± 2°C.   

Because the temperature changes could only affect a specific region of the plate, this 

application clearly requires the isolation flexibility of the 2D-FT processing technique. Thus 

the area where the ultrasonic sources are launched will be monitored to temperature variation 

by changes in the shape of the wavenumber domain phase velocity dispersion curves.  
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The contour plot of the dispersion curves for both temperature experiments are superimposed 

in fig. 6.27-left (with darker colour for the higher temperature). Unfortunately the dispersion 

curves obtained in these experiments were not very well defined probably because the 

experimental plate could not be firmly held. Nevertheless we still can see clear differences 

between both cases. But before drawing any conclusion let us first analyze what changes we 

would be expecting.  
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Figure 6.27: 2D-FT dispersion curves comparison for 230C (light colour) and 1120C (dark colour): 

(Left) Experimentally obtained. (Right) Theoretically obtained, for an estimated decrement of 7% on E 

and similar increment on ν. Red circled shows a similar perturbation of the S3 and A3 modes. 

Increasing the temperature influences the propagation characteristics predominantly through 

“softening” the plate, that is through reducing the Young’s modulus.  Consequently we 

would expect a lower propagation velocity for a given frequency at the higher temperature, 

with lower propagation velocities comes a shorter wavelength or higher wavenumber. 

The experiment shows effectively this perturbation or shift of the dispersion curves towards 

higher wavenumber values. It is remarkable the sensitivity of the technique to the relatively 

small changes in material properties. We have been unable to obtain concrete values of the 

temperature dependence of the Young’s modulus E or Poisson’s ratio ν, but [12] says that for 

aluminium alloys the value of E changes regularly with temperature from 76-78 GPa at 70°K 

to 60 GPa at 500°K. Considering that E is 71 GPa at room temperature then we could 

estimate that E is around 65 GPa at 112°C. That means a change of only 7% which can 

easily be detected by our technique. On the other hand ν increases with temperature, but we 

don’t have an idea of how much. However as demonstrated in Chapter 7, it is the changes on 

E that dominates the changes on the dispersion curves. Using the algorithm I developed, we 

were able to obtain the theoretical wavenumber domain dispersion curves of high order 
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Lamb modes, given the elastic property values for isotropic materials. We have plotted in 

fig. 6.27-right what we would expect theoretically by a decrement of 7% in E and a 

decrement of 7% in ν (plotted in dark colour) and the theoretical dispersion curves for 

aluminium (in light colour). We see a similar shift of the dispersion curves towards higher 

wavenumber values as the temperature increases. In particular we highlight the intersection 

of the modes S3 and A3 (red circled), as in both cases one of the modes do not change much 

meanwhile the other has a big shift to the left, again experiments and theory are in general 

agreement. 

6.7.2 Damage detection experiments 

As a second demonstration we have examined the impact of damage on the behaviour of the 

transfer characteristic by inserting a hole between the sensor and the sources using the 

geometry shown in fig. 6.29-left. An aluminium plate of 1.18 mm thickness and dimensions 

40 x 17 cm2 is analyzed first under no damage condition so that the plate undamaged 

signature can be obtained. Later a hole-though damage of increasing diameter is introduced 

in the plate between the closest source and the sensor. The Lamb wave propagation 

characteristic are studied to look for any perturbation that would indicate the presence of the 

damage.  

 

 

 

 

 

 

 

 

   

Figure 6.28: 2D-FT dispersion curves analysis for the hole damage experiments: (Left) For plate with 

1 cm diameter hole and spatial sampling distance ∆x = 0.3556 mm. (Right) For undamaged plate and 

spatial sampling distance ∆x = 0.3048 mm. In both cases the theoretical dispersion curves are 

superimposed for comparison purposes. 

First we have studied the Lamb waves propagation characteristics from the 2D-FT technique 

point of view. Hence we have plotted in fig. 6.28 the phase velocity dispersion curves in the 
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normalized wavenumber domain for the undamaged plate (right) and the plate with a 1 cm 

diameter hole (left). In both cases we have superimposed the theoretically obtained 

dispersion curves for aluminium. The comparison between the theoretical and experimental 

dispersion curves for both show no change of their shape due to the hole. This incapacity of 

the 2D-FT technique to identify the damage was expected because the damage is located in 

the common path of the ultrasonic sources. As previously mentioned the effect caused by the 

damage will appear only as a perturbation of the curves intensity distribution. In this way it 

is obvious that the dispersion curves in fig. 6.28-left are highly attenuated for high 

wavenumber values, in comparison with the undamaged plate case of fig. 6.28-right. The 

presence of the hole in the path between sensor and the sources scatters the small wavelength 

ultrasonic waves, causing this wavenumber lowpass filtering effect. 

 

 

 

 

 

 

 

 

Figure 6.29: (Left) Geometry for hole damage demonstration experiments and colour codification of 

the various distance source-sensor plots. (Right) Frequency:slowness curves for the initial calibration 

with no holes in the sample. Reflected signals circled at top left. 
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To emphasise the points made earlier, the reassigned spectrogram approach is necessary in 

this application, since this is sensitive to the source:detector path and changes therein. In this 

case a single ultrasonic signal would be needed for each case; undamaged plate, 1 cm 

diameter hole and 2 cm hole. However for verification and comparison purposes we have 

taken for each case 4 measurements at different positions of the source as shown in fig. 6.29-

left. Later for each hole size we calculate the reassigned spectrogram associated to each of 

the source-sensor distances and we plot them together as contour plots following the colour 

code defined in previous figure. In order to compare the reassigned spectrograms of sources 

situated at different distances to the sensor the time-frequency is not the best representation. 

For this discussion we have found that mapping slowness (the reciprocal of group velocity) 

against frequency gives the most straightforward representation of what is happening. The 
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reason not to choose the group velocity representation is because it is not a linear conversion 

of the time domain representation. 

In fig. 6.29-right we show the first of these slowness representations, associated to the non-

damaged plate. This figure shows an overlap of experimental group velocity dispersion 

curves associated to the different distance source-sensor cases, and an agreement between 

these and the theoretical curves superposed in black and blue lines. 

There is a region (circled in red) in which the experimental dispersion curves do not overlap. 

To understand why we must realize that the geometry of the plate is such that there are two 

principal paths for the ultrasonic waves propagating between the sources and detector; one 

direct (and through the hole when there is one) and one reflected at the plate side (identified 

as point A or B).  If, for the slowness representation, we take as the source detector distance 

the direct path, then any indirect paths through the reflected route will manifest themselves 

as routes with much higher wave number values at a particular frequency.  In other words 

they will appear to progress much more slowly. The red circled non overlapped dispersion 

curves are associated to the reflection of the A0 mode in the lateral of the plate.  

We must notice that these non-overlapping curves are defined in a very narrow frequency 

band because of the high pass filtering applied to the detected ultrasonic signals and because 

at higher frequencies, as previously mentioned, a linear-source becomes highly directional so 

that no ultrasound is directed to the laterals of the plate. 

Note also that the experimental dispersion curve data for the direct route extends to 

frequencies up to 10 MHz and beyond. 

 

 

 

 

 

 

 

 

Figure 6.30: Slowness curves with 1 cm (left) and 2 cm (right) diameter holes in the sample shown in 

figure 6.29. Note the high frequency direct signal attenuation as the hole size increases and the onset 

of much increased multipath scatter with increasing hole size. 
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The effect of the holes on these curves is shown in fig. 6.30, with the left plot associated to 

the smaller hole. Two major factors are evident and become more so as the size of the hole 

increases. The first is that the manifestation of multipath reflections due to miscellaneous 

routes between sources and detector around the hole becomes more evident as the hole size 

increases, in other words the apparent noise at high slowness values has become much more 

obvious. We should not confuse the origin of these non direct path transmission curves, as 

mode conversion, because as proved in [13] in a symmetric boundary (such as this case’s 

hole-through) there is not mode conversion.  

The second evident major factor is that as the frequency increases the through path data 

reduces significantly with greater hole diameters.  For the 1 cm hole we see evidence of 

direct path transmission up to around 5 to 7 MHz.  For the 2 cm hole the evidence of direct 

path transmission stops at around 3 MHz.  

Both described effects have their origin in the scattering of the ultrasonic waves of small 

wavelength (or high frequency) from the direct path source:sensor. These waves only can 

reach the receiver by reflections in the boundaries of the plate and that is why they appear at 

high slowness value curves 

There is very substantial information content in these curves and to date we have only begun 

to learn how to interpret this information in a useful manner.  The most obvious features 

concern the increase in the scatter to high slowness values due to the presence of defects and 

damage.  Our signal processing, for both this example and the previous one discussing 

temperature changes, has been very simply explored upon observed and obvious changes to 

the dispersion curves in whichever representation we wish to use.  With appropriate 

mathematical processing the discrimination between “unperturbed” and “perturbed” 

structures can be considerably improved. 

6.8 HIGH FREQUENCY ULTRASONIC MONITORING TOOL FOR 

CHARACTERIZATION OF MICRO-SAMPLES 

The developed non-contact inspection tool has a promising prospect in the application of 

evaluating micro and even nano scale structures, areas where very few, if any, suitable 

measurement techniques are available. The focusable laser beam associated to both optical 

ultrasonic generation and detection systems of the macro scale inspection tool can easily be 

adapted to a micro scale dimension structure. However, in order to adequately characterize 

microstructures (smaller than 10 µm), ultrasonic waves with frequencies in the range of 

hundred MHz and few GHz are required [14,15]. This requisite is feasible in the generation 
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stage by the Q-switching technique used in the macro scale dimension tool presented, or 

even much higher frequencies can be achieved if a modelocking technique is used for pulse 

width generation in the order of 10-12 or even 10-15 sec. Damage in the micro structures can 

be avoided by the use of low power and high frequency modulated semiconductor laser 

source for ultrasonic generation. 

On the other hand the detection of such high frequencies is not achievable by means of a 

modified Mach-Zehnder interferometer as previously presented. In collaboration with other 

members in the group, leaded by Dr. Hee Su Park, we have developed an interferometric 

detection system that very well adapt to this range of frequencies, based on a Fabry-Perot 

interferometer configuration. This work has been published in [16] and an extensive 

treatment has been done in [17]. 

6.9 CONCLUSIONS 

In this chapter we have presented the experimental realization of the all-optical non-contact 

tool for the extraction of the Lamb wave propagation dispersion characteristics. This system 

uses a Q-switch Nd:YAG short pulse high power laser to generate a broadband source of 

Lamb waves, which propagate along a sample plate interacting with its entire volume. Then 

they are remotely detected by means of a modified Mach-Zehnder surface displacement 

optical fibre interferometer.  

A Finite Element model of the operation of this tool was simulated and its results confirmed 

the various analyses done over the experimental results. 

The two signal processing techniques (reassigned spectrogram and the 2D-FT) presented in 

Chapter 5 were applied to the experimental data in order to extract the structural information 

stored in the ultrasonic wave dispersion features. This information is presented as phase and 

group velocity dispersion curves. A detailed analysis of the different features of their 

solutions and with the help of the ANSYS model simulation of the system we were able to 

identify the main areas for improvement of the extracted dispersion curves resolution, 

contrast and region of definition (1D and 2D leakage, DC offset, radiation directivity of the 

line-source, etc). For instance in aluminium plate like samples we were able to identify 

symmetric and antisymmetric Lamb modes until order 5 and in a region within 0 to 4 

mm/mm wavenumber:thickness product and from 0 to 14 MHz mm frequency:thickness 

product. 

Although both techniques provide the Lamb waves dispersion propagation characteristics, 

this information presents important differences as how it relates with the monitoring of the 
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sample structural condition. Meanwhile the dispersion information provided by the 2D-FT 

can focus the material property analysis to specific areas of the sample, the time-frequency 

analysis analyse the full area between source and receiver. This makes a technique more 

suitable than the other depending in the application. Thus each processing technique has 

been applied to a different application, as we analyzed temperature changes sensitivity by the 

2D-FT technique, with detectable perturbations caused by changes of 100 degrees. This 

temperature changes implies modifications of less than 7% in the Young’s modulus and 

Poisson’s ratio. 

And hole-damage detection by the reassignment spectrogram, clearly showing the increment 

of a hole-through of diameter varying from 0 to 2 cm. The results of these two applications 

have proved this inspection tool adequate. 
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Chapter 7
INVERSION PROCESS:MEASURING 

ELASTIC PROPERTIES 

7.1 INTRODUCTION 

The use of ultrasonic waves for the measurement of elastic properties of materials date as 

long as the late 1960’s [1]. The need for their measurement and monitoring for a vast number 

of applications has caused the development of a great diversity of ultrasonic techniques with 

this sole purpose. These techniques vary from the simplicity of a conventional pulse-echo-

overlap ultrasonic method for the measurement of bulk waves velocity [2], to more advanced 

techniques such as; synthetic aperture scan technique that uses highly focused transducers 

fluid-coupled to the plate in order to extract the transmission coefficients for anisotropic 

materials through inversion procedure over carefully selected data [3]. Non-contact 

techniques are also available, for instance a close proximity technique based in piezoelectric 

air-transducers that measures the transmission coefficients of A0 and S0 mode for direct 

estimation of the elastic properties [4]. More remote non-contact techniques are based on all-

optical generation and detection of the ultrasonic waves, where a wavelet transform is 

applied over the low frequency A0 group velocity dispersion curve, that combined with non-

linear curve fitting is able to estimate the elastic property values [5]. This thesis has taken the 

later approach of a non-contact all-optical laser ultrasound generation and detection, because 

its extremely broad spatial and temporal bandwidth excitation and remote inspection 

characteristics are unmatched by more conventional ultrasonic techniques. These 

characteristics are essential for the elastic properties estimation technique approach that we 

use. Combined with an improved version of the optimization inversion method described in 

[6], the present system provides a highly accurate and reproducible estimation of not only the 

elastic but also geometrical properties of the material. 

In the previous chapter we applied various signal processing techniques based on the 2D-FT 

and in the reassigned spectrogram that provided the dispersion characteristics of a broadband 

multimode ultrasonic Lamb wave propagating pulse. 
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This chapter makes use of those curves to extract the material’s elastic and geometrical 

properties. This is done by minimizing the differences between the experimental dispersion 

curves and the theoretically predicted ones (error function) as we change the elastic property 

values such as Young’s modulus, Poisson’s ratio and the thickness of the plate specimen. 

The monitoring of the changes in the estimated material properties could be a useful 

indicator of the presence of structural condition perturbations or presence of defects, 

providing a very accurate reflection of the integrity of the material.  

7.2 THE INVERSION PROBLEM AND THE ERROR FUNCTION 

The governing equations of motion for Lamb waves are presented in eqn. A.21. However a 

more appropriate version for numerical computation which avoids the instability of the 

tangent function is shown in eqn. 7.1. Where SYM is associated with the symmetric Lamb 

modes and ASYM with the antisymmetric modes. Here f is the temporal frequency of the 

propagating wave, c is the Lamb wave phase velocity, cT and cL are the phase velocity of the 

transversal and longitudinal bulk modes as described in eqns. A.9 and A.10, given as a 

function of the material density ρ and the elastic properties E and ν. d is the thickness of the 

plate, and 22
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(7.1) 

Equation 7.1 shows a clear dependency of the Lamb waves propagation characteristic to the 

principal material elastic properties (Poisson’s ratio ν and Young’s modulus E) and to the 

structural thickness as given by the variable frequency:thickness product. 

As mentioned in Appendix A, the Lamb waves characteristic equation determines the range 

of phase velocity values for which the different Lamb wave modes exist in a material for a 

given interval of frequency:thickness product values. The relationship between the ultrasonic 

phase velocity and the frequency:thickness product values describes the Lamb waves 

dispersive propagation characteristics and it is graphically represented by the phase or group 

velocity dispersion curves. 

The theoretical calculation of the dispersion curves, by numerical solution of the Lamb wave 

equation, once the elastic property values and the plate’s thickness are known, is generally 

known as the forward problem. Solutions to eqn 7.1 are highly unstable so a powerful and 
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complex algorithm was developed in MATLAB for this purpose. The inversion process 

deals with the opposite situation, where the values of the elastic properties and the thickness 

of the specimen are determined through the experimentally obtained dispersion curves. 

Rogers analyzed various inversion procedures in [6], with his main conclusion summarized 

next: 

1. The simplest inversion procedure would consist in obtaining at least two pairs of 

values (c, f) from the experimental dispersion curves and insert them in eqn. 7.1. This pair of 

values would provide a system of two independent equations with two independent 

unknowns (E and ν). The simultaneous solution of these equations would, in principle, 

provide the value of the elastic constants. However due to the highly nonlinear nature of the 

dispersion equations with respect to the variables (E, ν), it makes it very difficult and 

sometimes impossible to find the numerical roots of the equations. Additionally because only 

two experimental data pairs are used, the solutions would be highly sensitive to experimental 

errors. 
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2. A more effective inversion procedure consist on minimizing the sum of the 

evaluations of the dispersion function G as defined in eqn. 7.2, at each of a group of N 

experimental pairs (fi, ci). This procedure is mathematically represented in eqn. 7.3, where G* 

is the complex conjugate of G (notice that G may be imaginary through a and b) and m 

identifies if either the SYM or the ASYM mode equation is applied in the definition of G. 
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(E0, ν0) are the initial estimation of the elastic properties. 

This inversion procedure is less sensitive to experimental error estimation of the dispersion 

curves than the previous one, because it uses more than just two experimental data points. 

Nevertheless this technique still has the same problem that the previous one regarding the 

high nonlinearity of the dispersion function with respect to (E, ν). In consequence, a unique 

minimum of the optimization algorithm may not be found and depending on the chosen data 

region of the experimental dispersion curves, eqn. 7.3 could be very sensitive to small 

experimental errors and to the initial estimation for the optimization algorithm. 

3. The last of the presented inversion procedures is an improved version of the previous 

one. Like the former, the current inversion procedure uses multiple experimental data points 
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(fi, ci), but it exploits the high linearity observed in the dependency of Lamb waves phase 

velocity with respect to the elastic property values (as seen in next sections of this chapter).  

The present inversion procedure is based in the comparison and minimization of the 

differences between the experimentally measured phase velocity data and the data values 

predicted using a theoretical model. To quantify these differences, first an error function has 

to be defined. 

The error function is in this case a nonlinear least square function of those differences at the 

selected experimental frequency:thickness product points, as shown in eqn. 7.4. 
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The theoretical value of the Lamb wave phase velocity c can be obtained as the root of the 

dispersion function G (as defined in eqn. 7.2) as long as an initial estimation of the variables 

(f, c, E, ν) is provided. This is mathematically expressed as: 

( ) ( )[ ]0000 ,,,,,,,,, νρνρ EcfmGrootEcfc iiii =  (7.5) 

A good initial guess for the variables given to the root finding algorithm is to choose the 

experimental phase velocity ci at the experimental frequency fi and the elastic property values 

as E0 = 24·ρ and ν0 = 1/3 (as for most metals). 

This inversion procedure is superior to the others not only because it uses a large number of 

experimental data points thus decreasing the experimental uncertainty in the estimation of 

the parameters, but also because of the linearity that the phase velocity has with respect to E 

and ν in contrast to the high nonlinearity of G. This is the inversion procedure chosen in this 

thesis. Eqn. 7.4 assumes that all of the data points selected for the inversion process are 

equally weighted, but as we will see later not all the experimental points are equally good for 

determining the elastic properties so they should not contribute equally to the error function. 

In the next sections we will analyse different weighting factors, to solve this problem. 

Once the error function is defined with an adequate weighting factor, an optimization 

algorithm must be applied to the data that will provide the optimum set of material property 

values that minimize the given error function.  

7.3 DISPERSION CURVES CONVERSION FROM WAVENUMBER TO 

PHASE VELOCITY DOMAIN 

The experimental data points (ci, fi) selected to be applied in the chosen error function must 

be given in the phase velocity domain as defined in eqn. 7.4. But the experimentally obtained 
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dispersion curves in Chapter 6 are naturally given in the wavenumber domain. The 

conversion from wavenumber to phase velocity is relatively simple and is given by ci = fi/ki, 

with ki = 1/λi. However because of the non-linearity of the conversion, the uniform spatial 

frequency grid of the wavenumber domain plot (given by the distances between consecutive 

wavenumber bins (∆k)) is converted into a non-uniform grid in the phase velocity domain 

(∆c), as shown in fig. 7.1. We define the distance between adjacent bins as irresolvable 

error, because any value between the bins cannot be properly resolved. The conversion from 

wavenumber domain into phase velocity domain changes the constant wavenumber 

irresolvable error into a non-constant phase velocity irresolvable error. 

The experimental dispersion curves are obtained by a discrete 2D-FT, so that the frequency 

values are multiples of the frequency tone f[1] = 1/(N·Ts), where N is the number of points in 

the ultrasonic time signals after zero padding and Ts is the sampling period. The wavenumber 

values are multiples of the wavenumber tone k[1] = 1/(M·∆x), where M is the number of  

spatial points taken after zero padding and ∆x is the sampling distance for the positioning of 

the source. The conversion equation from wavenumber to phase velocity is discretized as: 
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Where f[1] is given in MHz and k[1] in 1/m, the frequency index n goes from 1 to N and the 

wavenumber index m goes from 1 to M. 
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Figure 7.1: Conversion of the sampling frequency bins grid from wavenumber to phase velocity 

dispersion curves domain. 

The phase velocity irresolvable error ∆c is given by the difference between adjacent 

converted wavenumber bins: 
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We see in eqn. 7.7 that for a given frequency (represented by n), the irresolvable phase 

velocity error decreases as the wavenumber increases (represented by m). Opposite occurs 
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for a given wavenumber (m), if we increase the frequency (n) then ∆c increases. Figure 7.2-

left shows the contour levels of the ∆c error given by eqn. 7.7 superimposed to the 

experimental dispersion curves after conversion to the phase velocity domain (obtained in 

previous chapter for the rectangular aluminium plate). In this figure we see that the vertical 

asymptotic regions of the dispersion curves and the non-dispersive region of the S0 mode 

have associated the highest irresolvable errors. This explains the oscillations of the S0 

mode’s experimental dispersion curve at low frequencies. 

More indicative information of the effect that the phase velocity irresolvable error has over 

the quality of the measured phase velocity data is given by the relative irresolvable error ∆c/c 

as shown in eqn. 7.8. Points of high phase velocity values may have big irresolvable errors 

∆c but they may be better defined than smaller values of c with smaller errors ∆c.  
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Figure 7.2: Experimental dispersion curves in phase velocity domain: (Left) Contour plot of the 

absolute irresolvable error ∆c with red colour associated to higher error and blue to lower. (Right) 

relative irresolvable phase velocity error ∆c/c constant lines with values between 0.5% and 10%. The 

dots are the experimental points chosen for applying inversion process in section 7.7.4 

The relative irresolvable error is only dependant on the wavenumber value associated to the 

phase velocity, hence independent of the frequency. Lines that are horizontal in the 

wavenumber domain are converted to the phase velocity domain into lines that cross the 

origin point ((c,f)=(0,0)) with positive slope proportional to the wavelength value. In fig. 7.2-

right we plot a few of these relative irresolvable phase velocity error lines with constant 
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values between 0.5% and 10%, over the experimental phase velocity dispersion curves. 

Clearly we see that the vertical asymptotic regions of the high order modes have also a high 

relative phase velocity error associated, therefore points taken in these regions are not of 

good quality for the inversion process. The inverse of the relative irresolvable error appears 

as a good weighting factor to be included in the error function. We can do this by rewriting 

eqn. 7.8 as a function of ci and fi, as given by eqn. 7.9 where l is the total propagated length 

of the laser source in the 2D-FT experiments. 
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It is worth mentioning that the irresolvable error associated with the discreet definition of the 

spatial and temporal frequency bins, dominates over the experimental errors (as shown in 

Appendix F); where the time errors are related to the oscilloscope inaccuracy for the value of 

the number of samples per second taken, and the space error is related with the inaccuracy of 

the laser beam displacement and the Q-switch laser trigger jitter. 

We could have considered rewriting the error function to be applied over the wavenumber 

domain, so that the additional work of doing the experimental dispersion curves domain 

conversion could be avoided. Nevertheless the benefits of applying the inversion process 

over the phase velocity domain hugely justify the work investment. These benefits are; 

linearity of the phase velocity with respect to the elastic properties in contrast with the high 

non-linearity of the wavenumber, and possibility of selecting those experimental points with 

the smallest phase velocity errors for the inversion process, in contrast with the uniform error 

in the wavenumber domain. 

7.4 ANALYSIS OF THE PHASE VELOCITY SENSITIVITY CURVES TO 

CHANGES IN E AND ν 

The central idea inside the inversion technique is based in the changes that the variations of 

the material elastic property values causes over the dispersion curves shape. Figure 7.3 

shows the variations of the first five symmetric and antisymmetric modes for changes of 5% 

in the Young’s modulus (in the left), and for changes of 5% in the Poisson’s ratio (in the 

right). Looking to these figures various remarkable points that affect the inversion technique 

can be highlighted. First, the changes related to a shift of the phase velocity curves for each 

Lamb mode is reasonably constant to changes in E, in contrast to the high frequency 

dependency of these shifts when ν is changed. In various frequency:thickness product values 
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some Lamb mode dispersion curves present immunity to changes of ν (for instance S1 at 

around 5MHz mm), however this never occurs under changes in E. 
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Figure 7.3: Phase velocity curves changes (from a reference case, in blue, with elastic property values 

ρ = 2.7 gr/cm3, E0 = 24·ρ = 64.8 GPa, ν0 = 0.33) by variation in 5% of the elastic property values; 

(Left) In green for incremental change of E (E = 1.05·E0) and in red for decremented change of E (E = 

0.95·E0). (Right) In black for incremental change of ν (ν = 1.05· ν 0) and in magenta for decremented 

change of ν (ν = 0.95·ν0). 

Second, the changes in the dispersion curve are different for different modes and within a 

given mode these changes are different at different frequency:thickness product values. For 

instance the high order modes are in general more sensitive to changes in any of the elastic 

property values than the low order modes, and for any high order mode the sensitivity is 

higher in the region of vertical asymptotic behaviour (or cut-off region) than in the region of 

horizontal asymptotic behaviour. In consequence not all experimental data points (fi, ci) are 

equally suitable for the extraction of the material elastic properties, as they will not 

contribute equally to the minimization of the error function. This effect should be taken into 

account as a new improved weighting factor Wi2 for the error function. To do this we first 

have to properly define the sensitivity of the Lamb modes phase velocity to small changes of 

the elastic properties as given by eqn. 7.10, where a linear sensitivity approximation was 

considered and where ∆  0 (representing small changes). 
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At each frequency:thickness product value and for each Lamb wave mode, the defined 

sensitivity functions sE and sν are the difference between the phase velocities associated to a 

small increment and to a small decrement of the respective elastic property, normalized with 

respect to the phase velocity value under no perturbation. In reference to fig. 7.3, sE is the 

difference between green and red curves, normalized by the blue one and by analogy sν is the 

difference between the black and magenta curves. 

7.4.1 Comparison of sensitivity curves for various elastic property values 

An inspection and analysis of the curves associated to the sensitivity functions is more 

effective and informative than the previous simple visual inspection of the changes in phase 

velocity dispersion curves. The next analysis shows how the sensitivity curves change for 

four different modifications of the elastic property values based on those for aluminium (ρ = 

2.7 gr/cm3). Fig. 7.4 shows the five first symmetric and antisymmetric modes for each of 

these cases with the top being the sE curves and the bottom the sν curves. In the top left 

corner we have a referential case given by a good initial approximation of elastic properties 

for most metals; E = 24·ρ = 64.8 GPa and ν = 1/3. The other cases involve an increment of 

9% in E as shown in top right, an increment of 9% in ν in the bottom left corner and a 

combined increment of 9% in both elastic properties as shown in the bottom right corner of 

fig. 7.4. 

Probably the most evident conclusion of looking to any of these sensitivity curves is that the 

sensitivity to changes in E is much higher than to changes in ν, therefore estimates of E 

should be expected to be more accurate than estimates of ν. Thus, meanwhile the sE curves 

of all the modes for most of the defined frequency:thickness product region have values 

within [0.1, 0.2], the values of the sν curves lie mostly within [-0.01, -0.05] (sE is around five 

times bigger than sν). Again it is clear that the sensitivity of the Lamb waves dispersion 

curves are different for the different modes and different frequency:thickness product values 

within each mode. 

More conclusions can be deduced from a comparison of the sensitivity curves of the 

different cases studied. First, changes only in E does not cause noticeable shape changes of 

the sensitivity curves, being the only observable effect a displacement of the sensitivity 

curves towards higher frequency:thickness products values as E increases. Second, changes 

only in ν causes important change in the shape of the high order modes sensitivity curves 

(over order 2), being more considerable in the sν curve than it is in the sE curves. However, 

the changes in ν do not cause any big shift of the sensitivity curves in the horizontal axis. 
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When we look to the effects associated to the combined changes in both E and ν, then a 

combination of both previous effects occur; a similar change in shape of the high order 

modes together with a considerable shift in the horizontal direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Comparison of the sensitivity curves of the phase velocity dispersion curves with changes 

in E and ν (differential changes of 0.1%). (Top Left) Reference case with E = 64.8 GPa, ν = 1/3, (Top 

right) Increment of 9% in E with respect to reference case. (Bottom left) Increment of 9 % in ν with 

respect to reference case. (Bottom right) Increment of 9 % in E and ν respect to reference case. 

The horizontal shift of the sensitivity curves can easily be explained looking into the changes 

that the variations of the elastic property values causes over the cut-off frequencies for the 
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modes associated to each sensitivity curve. This analysis is done extensively in Appendix G 

and we highly recommend its reading. 

It is remarkable that the sensitivity curves associated to Lamb modes of order below three 

almost do not change in shape. This is true even between the extreme differences in elastic 

property values of figs. 7.4-top left and bottom right. The fact that the sensitivity values keep 

almost constant confirms the linearity of the change in the phase velocity with E and ν. 

However this is not entirely true for the higher order modes, at least not in certain 

frequency:thickness product regions where the sensitivity curves changes dramatically as the 

elastic property values change. For instance modes S3 and A4 below 12 MHz mm, or mode S4 

at all frequencies, also A3 sensitivity curves changes considerably below 9.5 MHz mm. 

The changes seen in the sensitivity curves as the elastic property values change could have a 

negative effect in the inversion process algorithm. As mentioned before the sensitivity values 

for the selected points are an important weighting factor in the inversion process, but because 

the optimization algorithm of the inversion process changes the value of the elastic 

properties in each iteration, then the sensitivity curves also change. This implies that for each 

iteration we would need to calculate the new sensitivity curves for all the modes, which 

requires a great amount of processing time.  

Fortunately, we notice that the sensitivity curves changes in fig. 7.4 are associated with 

variations of 9% in the elastic property values. The initial estimation technique presented 

later in this chapter provides values of the elastic properties very close to the optimized ones, 

with only a difference of 2.3% in E and 1.2% in ν. Therefore the changes in the sensitivity 

curves caused by these small changes in the elastic property values can be neglected. 

7.4.2 Weighting factor and negativity of sE 

At this point it is sensible to define the weighting factor that characterizes the suitability of 

the chosen experimental points to be applied in the inversion process, regarding their 

associated sensitivities to the changes in the elastic properties. This weighting factor is 

defined in eqn. 7.11 and takes into account that the sensitivity to changes in ν can be both 

positive and negative depending in the frequency:thickness product and the Lamb mode, 

meanwhile the sensitivity curves to changes in E is always positive [6]. 

iEii ssW ν+=2  (7.11) 

Yet care has to be taken in the previous affirmation, because it is erroneous. Figure 7.5-left 

shows the S1 mode phase velocity perturbation by changes in E, zoomed into the region 

where its group velocity becomes negative. The squared area shows that the red phase 
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velocity curve, associated to E being reduced, is over the green phase velocity curve 

associated to E being increased. In consequence sE, as previously defined, is negative. The 

transition between positive and negative values of sE is discontinuous, because sE is never 

zero, this is due to the fact that the phase velocity dispersion curves associated to changes in 

only E never intersect between them. 

The negative values of sE are associated only to those regions and modes with negative group 

velocities. As discussed in Appendix D, only the regions with vertical asymptotic behaviour 

of the high order modes (both symmetric and antisymmetric) can have a negative group 

velocity. We have already seen that these points have the highest irresolvable errors and thus 

they are not of interest in our inversion process. Because of this we can practically consider 

that effectively sE is always positive. 
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Figure 7.5: (Left) S1 mode dispersion curves variations by changes in 5% on E in the region of 

negative group velocity. (Right) Experimental dispersion curves in the phase velocity domain with the 

inflection points as coloured dots. 

7.4.3 Analysis of the sensitivity curves’ inflection points 

An analysis of the inflection points of both curves sE and sν provide an interesting result 

depicted in fig. 7.6 (following the same curves colour criteria as in fig. 7.4). The maxima 

peaks on the sE curves for each mode occur at very similar frequency:thickness products 

values as the minima peaks or inflection points in sν curves for the same mode. The minima 

peaks in the sE curves occur at very similar frequency:thickness product values as the 

maxima peaks or inflection points in the sν curves, for the same mode curves. 

The peaks and inflection points given in fig. 7.6 were obtained by numerical differentiation 

of the sensitivity curves in fig. 7.4-top left. These peaks are given by the frequency:thickness 
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product values at which the first derivative of the sensitivity curves is zero and the second 

derivative is different than zero. Meanwhile the inflection points are those at which the 

second derivative is also equal to zero. 

Furthermore, the peaks in sE (both maxima and minima) are very close in 

frequency:thickness product values to the inflection points of the phase velocity dispersion 

curves for the different modes. Fortunately these inflection points are located in an area of 

high definition in the experimentally obtained phase velocity dispersion curves (see colour 

dots in fig. 7.5-right), therefore these points, which as we will see in the next section are the 

most adequate for the inversion process, have associated very small experimental errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Comparison of the maxima and minima peaks of the sensitivity curves for the elastic 

property values E = 24·ρ = 64.8 GPa and ν = 1/3: the symmetric mode peaks are compared by a 

vertical purple dashed line and the antisymmetric mode peaks by a vertical brown dashed line. 

The inversion process analysis developed so far has been particularized to materials with 

elastic properties of metals similar to aluminium. However it can also be extended to other 

materials. For instance, fig. 7.7 shows the sensitivity curves for Perspex (which is a non 

metallic material) with elastic property values E = 6.3265 GPa, ν = 0.3109 and ρ = 1.18 

gr/cm3. We clearly see that the peaks and inflection point analysis previously developed for 

aluminium is also valid for Perspex. 
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 7.7: Comparison of the maxima and minima peaks of the sensitivity curves for the elastic 

 values E = 6.3265 GPa and ν = 0.3109 (Perspex): the symmetric mode peaks are compared 

tical purple dashed line and the antisymmetric mode peaks by a vertical brown dashed line. 

LECTION OF THE POINTS - ANALYSIS OF THE ERROR 

NCTION 

nsight into choosing the most appropriate experimental points for the inversion 

an be achieved by an analysis of the error function itself (eqn. 7.4). The optimal 

ntal points are those that generate one and only one minimum on the error 

s 3D surface and that create the sharpest possible surface around that minimum in 

mprove the convergence of the optimization algorithm.  

ysis of the error function is subsequently carried out over theoretically obtained 

locity values. For a given set of points defined by their frequency:thickness product 

d associated Lamb mode, we study the sum of the square of the differences 

 their theoretical phase velocities obtained for the known elastic property values (E* 

4 GPa, ν* = 0.3375), and the theoretical phase velocity associated to the elastic 

values in a region around (E*, ν*). This is basically what the optimization algorithm 

version process does but rather than calculate the theoretical phase velocity 

d to the selected points, it includes the experimental phase velocity values. The 

 surface in a 3D plot, with the domain of definition given by the selected domain of 

, ν), and the theoretical error function values being the 3rd dimension of the plot. 

 plots have been represented as contour plots in the next sections and the definition 
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region has been normalized against (E0 = 64.8 GPa, ν0 = 1/3) for being the most common 

first approximation for most metals. The minima of the 3D plot surface represents the 

solution for the optimum values of the elastic properties, which in the mentioned theoretical 

case will obviously correspond to (E*, ν*). Next, we apply the analysis over different Lamb 

modes and for a different number of points. Important conclusions will be deduced. 

7.5.1 S0 mode 

Figure 7.8 shows the contour plot of the error function associated to a single point in the S0 

mode. This point is chosen to be the one that provides maximum sE and minimum sν (fd = 

2.39 MHz mm, c = 4.05 km/s), as shown in fig. 7.4-top right. 

 

 

 

 

 

 

 

 

Figure 7.8: Contour plot of the theoretical error function for 1 point in the S0 mode at (fd = 2.39 MHz 

mm, c = 4.05 km/s): (Left) Represented in 3D. (Right) Represented in 2D. 

  

The minimum of the theoretical error function is in this case not a point, but a line (dashed 

line in the figure) in the elastic property values domain. By definition the contour values at 

fig. 7.8 is the difference between the theoretical phase velocities at the different elastic 

property values of the domain of definition and the phase velocity at (E*, ν*). This difference 

will be zero at (E, ν) = (E*, ν*), highlighted as a black dot in previous figures. As the elastic 

property values changes, the phase velocity also changes because the sensitivity curves sE 

and sν are not always zero. If the change in the phase velocity, caused by a change in one of 

the elastic properties (say E’) can be compensate by the change in the phase velocity caused 

by a change in the other elastic property (say ν’) then the new set of values (E’, ν’) will still 

be a minimum. For instance, in fig. 7.8, the selected point of S0 mode has associated a 

positive value of sE and a negative value of sν (see fig. 7.4-top right). Then as E increases the 

phase velocity also increases, because sE is positive. In order to keep c(E, ν) = c(E*, ν*) we 

need to compensate this increment in the phase velocity by a similar reduction caused by the 
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change in ν. This implies to increase also ν as sν < 0. In consequence the slope of the minima 

valley is positive as we can see in fig. 7.8. In conclusion when only a point of the dispersion 

curves is chosen for the error function, then infinite combinations of (E, ν) are solutions of 

the error function. 

The linearity of the minima line is a consequence of the linearity of c with the elastic 

property values, for changes of the order of a few percent. Its slope in the (E, ν) domain, 

indicates the relative sensitivity of the dispersion curves to both E and ν at the point at which 

the error function is calculated. Mathematically the minima line, and any of the contour 

lines, in fig. 7.8 can be represented as 
cE∂

∂ν . If we apply to the sensitivity equations 7.10 

the mathematical property: 
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We can express the minima line slope as a function of the quotient of the sensitivity values:  
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Because the minima line is defined by the quotient sE/sν, then interesting properties of the 

error function can be learned from the differences in these curves for different elastic 

property values cases, in a similar way as we did in fig. 7.4. However now we only look into 

the two extreme cases; reference case with E = 64.8 GPa, ν = 1/3 and extreme case with a 

9% increment in both elastic properties. Figure 7.9 shows the curves sE/sν associated to the 

first five symmetric and antisymmetric modes with the same colour code as in fig. 7.4. The 

comparison of the curves for both cases shows almost no difference, only being considerable 

in the region of vertical asymptotic discontinuity for the high order modes. These regions are 

associated to the frequency:thickness product values at which sν = 0 for each Lamb mode and 

these points are affected by the horizontal shift previously discussed as the cut-off 

frequencies of the high order modes changes when the elastic property values also change. 

Because the low order modes do not have cut-off frequency, they are not affected by this 

shift and that is why the curves sE/sν for these modes do not change neither in this region. In 

the rest of the frequency:thickness product values the sE/sν curves are very horizontal, with 

mainly four different values being distinguished; two positive and two negative. 
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Figure 7.9: sE/sν curves for first five symmetric and antisymmetric modes as in fig. 7.4, for elastic 

property values: (Left) ρ = 2.7 gr/cm3, E = 64.8 GPa, ν = 1/3. (Right) E = 70.7584 GPa, ν = 0.364. 
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The minima line slope is different for the different selected experimental points, however if 

these points are chosen where sE/sν have a horizontal behaviour, then only four slopes are 

distinguished being very constant during a long interval of the elastic property values. In the 

other hand if the selected point has a frequency:thickness product values near to a case of sν 

= 0, then the slope changes even for small changes of the elastic properties, as we see in fig. 

7.10 for mode S1. In this case the minimum of the error function is not a line but a curve with 

a tangent equal to sE/sν at each pair of values (E, ν). 

 

 

 

 

 

 

 

   
Figure 7.10: (Left) Contour plot of the theoretical error function for one point in the S1 mode at (fd = 

4.53 MHz mm, c = 5.83 km/s). (Right) Sharpness of the minimum against E for different points. 

In order to get a unique solution for the error function, more than one point must be chosen. 

The solution for the elastic property values is given by the intersection of the minima lines 

associated to each of the points. The less parallel is the slope of the minima lines associated 

to the selected points, the more accentuated the convergence of the error function to the 
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unique solution will be, as shown in fig. 7.11. The left part of this figure represents the 

theoretical error function for two points in the S0 mode with a very similar negative value of 

sE/sν (being -4 for the lower frequency point and -5 for the higher one). The minimum has a 

very smooth convergence, and although a unique solution exist, the contour plot shows it as 

a minima line, this being a proof of its poor convergence. The right part of fig. 7.11 shows 

the opposite situation, where the two selected points have opposite sign of sE/sν (being +4 for 

the lower frequency point and -4 for the higher one). Notice the clear appearance of a unique 

minimum evidencing the much better convergence of this case. 

The bigger the value of sE and sν,  the more accentuated the valley of the error function will 

be. Because this causes a faster change in the phase velocity for the same changes of the 

elastic properties. As we mentioned, sE is in general much bigger than sν, hence it is the sE 

that controls the value of the sharpness of the minimum point, and this sharpness will be 

bigger with respect to the variable E than with respect to ν. 

 

 

 

 

 

 

 

 

 

Figure 7.11: Contour plot of the theoretical error function for two points in the S0 mode. (Left) Same 

sign minima line slopes at (fd = 2 MHz mm, c = 4.78 km/s) and (fd = 2.39 MHz mm, c = 4.05 km/s). 

(Right) Opposite sign minima line slopes at (fd = 0 MHz mm, c = 5.44 km/s) and (fd = 2.39 MHz mm, c 

= 4.05 km/s). 

As an example fig. 7.10-right shows the values of the theoretical error function in the 

minimum point respect to the variable E for different selected points in the S0 mode. When 

only one point is selected then it is clear that the higher the value of sE associated with it, the 

sharper the curvature towards the minimum (see curves green, black and blue). However 

when more than one point is used then the sharpness is also affect by other factors such as; 

their respective minima slope relationship and the angle of these minima slopes respect to 
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the E variable axis. However the dominating factor is given by the average of the sE value for 

the different points. 

In conclusion, the convergence of the inversion process is highly improved by selecting 

those points with bigger sensitivity values and combining points with positive and negative 

values of sν. As shown in the previous section, the inversion process is greatly benefited by 

the fact that the maxima peaks on the sE curves for each mode occur at very similar 

frequency:thickness products values as the minima peaks of sν for the same mode, and even 

more important, these peaks are associated to the inflection points in the phase velocity 

dispersion curves, corresponding to point of low experimental error values. 

7.5.2 A0 mode 

The conclusions for the analysis of the S0 mode are general and they can be extrapolated to 

any order mode, both symmetric and antisymmetric. 

The antisymmetric modes in general are less suitable for the measurement of the elastic 

properties than the symmetric modes, mainly because the quotient sE/sν for antisymmetric 

modes does not have horizontal sections of both signs as the symmetric modes do. Then the 

linear slopes associated to the antisymmetric modes points are not only of the same sign, but 

also very parallel, because as we mentioned and as we can see in fig. 7.9 the horizontal 

region does not change significantly. In consequence, points selected only in the horizontal 

region of the curves sE/sν for just antisymmetric modes lead to weak minima of the error 

function. Even though, these antisymmetric points can provide a solution of the inversion 

process, in contradiction to the affirmation by Rogers in [6] that the A1 mode alone failed to 

provide any solution. Our optimization algorithm not only provided a solution for two points 

of just the A1 mode (the points associated to the minimum and maximum of the curve sE/sν at 

frequency:thickness products 2.5 MHz mm and 4.5 MHz mm), but in fact the provided 

solution is more accurate than the one provided by only two points in the S0 mode (the two 

points of fig. 7.11). A better solution is achieved because the selected points in the A1 mode 

have higher sE than the points chosen in the S0 mode. 

The analysis of the error function for points on the A0 mode gives us an idea for the last 

weighting factor to be included in the error function presented in eqn. 7.4. The phase 

velocity difference is bigger, for a same given change in the elastic property values, at those 

points with higher phase velocity values associated. Even if they have same sensitivity to 

changes in E and/or ν. Therefore the error function will be dominated by the vertical 

asymptotic points of the high order modes in the cut-off frequencies, because they are the 

highest phase velocity values in any dispersion curve. These points, as previously mentioned, 
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are the ones with the highest experimental error associated and so the ones to be avoided, 

instead of being favoured. The most obvious correction would be to add a weighting factor 

that normalizes the phase velocity difference in the error function, as given in eqn. 7.14. 
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The beneficial effect of this improvement in the error function can be seen in fig. 7.12 where 

we have compared the old and new error function applied to two points in A0 mode (fd = 

0.0057 MHz mm, c = 0.24 km/s and fd = 2 MHz mm, c = 2.68 km/s), with similar sE (around 

0.1) but one order of magnitude different in the phase velocity. To the left we have applied 

the old error function and it is evident the bad convergence to a unique solution even though 

they are points with opposite sign for the quotient sE/sν. The minimum is dominated by the 

much higher phase velocity of the point at 2 MHz mm so the error function resembles its 

minima line. To the right of fig. 7.12 we apply the new error function to the same points, 

where a clear unique minimum is detected as it should be expected from points with opposite 

sign minima line slope and equal values of sE. 

 

 

 

 

 

 

 

 

 

Figure 7.12: Comparison of the old error functions (Left) and the new error function (Right) for two 

points of the A0 mode with similar sE and sν. Elastic property values E0 = 64.8 GPa, ν0 = 1/3. 

  

If we combine all the previous weighting factors as described in eqn. 7.11 and eqn. 7.9 we 

can finally write the definitive error function (eqn. 7.15), which will be applied in the rest of 

this chapter. 
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The benefits provided by the possibility of choosing a few points of the dispersion curves 

that are highly optimized for the convergence of the error function, are obvious. First, a 

faster execution and less computer power requirements of the inversion process. Second, the 

less the number of points chosen then the less likely to lead to failure of the numerical 

methods used, plus there is less sensitivity to poor initial estimation of the elastic properties. 

However increasing the number of experimental points used in the inversion process will 

decrease the effect of the experimental errors over the estimation of the elastic properties, by 

means of averaging its effect with a bigger number of experimental points. Rogers suggest in 

his paper [6] that adding new points with lower sensitivities could have bad influence in the 

estimation of the elastic properties because the minimization calculation could select the 

wrong mode. The inversion process algorithm we have developed avoids this problem by a 

clever verification technique of the solved mode. Additionally as we saw in fig. 7.9 the 

points in the different Lamb modes have their minima line slope uniformly distributed within 

five different values, combining positive and negative slopes. This obviously helps in a nice 

convergence of the error function. On the other hand the highly accurate initial estimation of 

the elastic properties presented in the next section compensates some of the benefits of using 

less number of points. Adding more points has not caused any appreciable failure of the 

numerical methods. 

We have executed the same numerical analysis done by Rogers in [6] but applied to our 

algorithm. He compares the elastic properties estimated for three different cases, taking 

points only from the S0 mode theoretical dispersion curves with an added random error of 

normal distribution equal to 1%. First case, only the two optimized points of fig. 7.11 are 

chosen. Second case, ten points evenly distributed in the frequency:thickness product region 

between 0 and 14 MHz mm. Third case, one hundred evenly distributed points are taken. 

Next we show the estimated elastic properties in each case: 

 Two optimum points 10 evenly distributed points 100 evenly distributed points 
E (GPa) 71.0559 70.4407 70.6995 

ν 0.3574 0.3325 0.3364 

Table 7.1: Estimated elastic property values by applying inversion process to different number of 

experimental points. 

Taking into account that the generally accepted elastic property values for aluminium are; E 

= 70.7584 GPa and ν = 0.3375, then we can see that the more number of points we take, the 

more accurate the estimated elastic properties are. This is in contrast with the results given in 

[6] where the case of only two optimized points was the most accurate. It is important to 

notice however that the case of 10 points takes four times more processing time than the two 
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points case, and the one hundred points case takes thirty times more processing time than the 

two points case. 

In the section in which we apply the inversion process to the experimental dispersion curves 

a uniform distribution of points for all the modes has been used. Nevertheless the important 

conclusions obtained in this section for selecting the most suitable points can be a great and 

powerful improvement for future inversion process algorithms. 

7.5.3 High order modes 

The high order modes require also an analysis of their effect over the error function. We 

have already mentioned and seen in fig. 7.4 that the points in the dispersion curves with 

highest sensitivity values to the changes in the elastic properties are those in the 

frequency:thickness product region around their cut-off frequencies. However the high 

sensitivity associated with these points is an effect of their vertical asymptotic behaviour. 

Such that the small horizontal displacement that the changes in the elastic properties causes 

over the position of the cut-off frequency values will, by definition of a vertical asymptotic 

point, hugely affect the phase velocity value in this region. The uncertainty in the 

frequency:thickness product associated to the FFT of the experimental data causes, in the 

same way as the small horizontal displacements of the dispersion curves, a big phase 

velocity error. In addition, we also know that the experimental points related to these regions 

have associated the highest irresolvable error, as previously defined in this chapter, due to 

the conversion of the dispersion curves from the wavenumber domain to the phase velocity 

domain. Therefore in contrast with other publications [7,8] we have avoided during the 

inversion process the points associated to the vertical asymptotic regions. Nonetheless, it is 

interesting to look at the effect that these points have over the error function. 

The phase velocity numerical calculation in the frequency:thickness product values near the 

cut-off frequencies of the high order modes, can be highly complicated during the inversion 

process. Small changes on the elastic properties can move the cut-off frequency to higher 

frequency:thickness values so that the frequency:thickness value of the chosen experimental 

point does not have solution. The algorithm we have developed wisely and in an optimized 

way deals with this problem, allowing us to study what happen with the error function in 

these regions. 

Figure 7.13-left shows the theoretical contour plot of a point of the A1 mode near to the cut-

off frequency (fd = 1.61 MHz mm, c = 25.5 km/s). In black we show the minima line slope, 

which once again perfectly agrees with the minima line associated to the slope in eqn. 7.13 

(in red). We must notice that the minima line is very parallel to the border that limits the 
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elastic property values region for which the phase velocity exists. This region is situated to 

the right of the dark red contour values (highest theoretical error values). In this region, the 

values of the elastic properties are such that the cut-off frequency has been shift to 

frequency:thickness products bigger than fd = 1.61 MHz mm so no solution of the dispersion 

curves can be found. In a similar way we show in fig. 7.13-right the contour plot for the S2 

mode at a point near the cut-off frequency (fd = 3.3 MHz mm, c = 49.4 km/s). In this case we 

see how the minima line curves follows the curvature of the border of existence of the phase 

velocity and its slope at (E*, ν*) is as predicted by eqn. 7.13. 

 

 

 

 

 

 

 

 

Figure 7.13: Contour plot for high order modes at a frequency:thickness product close to their cut-off 

frequencies: (Left) For A1 mode at (fd = 1.61 MHz mm, c = 25.5 km/s). (Right) For S2 mode at (fd = 

3.3 MHz mm, c = 49.4 km/s). 

  

The shape of the border of existence of the phase velocity is defined by the bulk wave phase 

velocity associated to the mode’s cut-off frequency value, in a similar way to the horizontal 

shift of the sensitivity curves explained in Appendix G. For instance the high order mode A1 

has a cut-off frequency:thickness product equal to cT / 2. We saw in fig. G.1-left of Appendix 

G how cT changes as the elastic properties (E, ν) change. Its contour values are lines with 

positive slope with the bulk wave phase velocity increasing as E increases and ν decreases. 

The border of existence is defined by the combination of the elastic property values that 

makes the cut-off frequency:thickness product be equal to the frequency:thickness product of 

the point being used in the error function fd_A1. When this is applied to the A1 mode and by 

the relationship between bulk waves phase velocity and elastic properties given in eqn. A.9 

and A.10, it can be easily calculated that the border of existence for the A1 mode is given by: 
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Where E = E/E0, ν = ν/ν0, ρ = 2.7 gr/cm3 and for the case in fig. 7.13-left we have fd_A1 = 

1.61 MHz mm, it exactly corresponds to the border of existence that we see in that figure. 

In a similar way we can interpret the more complicated shape of the border of existence for 

the S2 mode in fig. 7.13-right. In this case the bulk wave phase velocity associated to its cut-

off frequency can be cT or cL / 2 regarding the value of the elastic property ν, thus for: 

 ν < 1/3, the cut-off frequency = cT, then the border of existence is similar to the A1 

mode case as a positive slope line, given by: 
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 ν > 1/3, the cut-off frequency = cL / 2. In this case the cut-off is equal to the other bulk 

wave phase velocity. We have to look to fig. G.1-right of Appendix G in order to see how cL 

changes as the elastic properties (E, ν) change, where now the contour are slightly curved 

lines of negative slope. Very much what we see in the border of existence on fig. 7.13-right.  

The border of existence can be written as: 
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 ν = 1/3 = ν0, then cL / 2 = cT, this corresponds to the intersection of both previous 

borders of existence in fig 7.13-right.  

All cases perfectly match the border of existence that we see in fig. 7.13-right. 

The powerful inversion process algorithm developed also deal effectively with the 

frequency:thickness product region associated to negative group velocities (the concept of 

group velocity is described in Appendix D). One of the main effects of the modes with 

negative group velocity is that they have phase velocity values defined at 

frequency:thickness products below their cut-off frequency as seen in fig. 7.5-left. We have 

already seen that the S1 mode for elastic property values similar to those of aluminium 

present negative group velocity. We show in fig. 7.14-left the theoretical error function 

associated to a point of this mode near to its cut-off frequency (fd = 2.89 MHz mm, c = 8.84 

km/s). The cut-off frequency of the S1 mode varies between cT and cL / 2 regarding the value 

of ν as it happens with the S2 mode. In fact these two modes swap these cut-off frequencies, 

so that the smaller value between cT and cL / 2 is the cut-off frequency of S1 and the bigger is 

associated to S2. As we saw in Appendix D the negative group velocity only appears in 

situations like this one, when two consecutive high order modes of the same type (symmetric 
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or antisymmetric) share cut-off frequencies proportional to different bulk wave phase 

velocities. The negative group velocity is always associated to the lower high order mode 

between them, and only when the value of the elastic properties causes these two cut-off 

frequencies to be close enough. The border of existence for the contour plot of the theoretical 

error function is then complementary to that of fig. 7.13-right, so that the positive slope 

border is now at ν > 1/3 (because at this value of the Poisson’s ratio the cut-off frequency 

associated to S1 mode is cT) and the negative slope border (where the cut-off frequency is cL / 

2) is defined for ν < 1/3. However as we plot the adapted versions of equations 7.17 and 7.18 

into the S1 mode contour plot (green dashed lines) we see that only for high values of the 

Poisson’s ration ν > 1.3 there is an agreement with the border of existence. In the rest of the 

domain of definition the border of existence is less restrictive by having the cut-off 

frequency equal to the frequency:thickness value of the chosen point. The reason for a 

smaller restriction is due to the fact that this mode has associated negative group velocity for 

this region of elastic property values so that phase velocity values are defined below its cut-

off frequency. When ν > 1.3 the difference between the cut-off frequencies associated to S1 

and S2 is big enough as to avoid interaction of their dispersion curves such that no negative 

group velocity exist for the S1 mode. This is why in this region the cut-off frequency limit 

agrees with the border of existence. 

 

 

 

 

 

 

 

 

   

Figure 7.14: (Left) Contour plot for S1 modes at a frequency:thickness product with negative group 

velocity (fd = 2.89 MHz mm, c = 8.84 km/s). (Right) Uniformly selected points of the modes S0, S3, A3 

and A4. 

The analysis of the error function presented in this section has never been published before. 

Most of the interesting conclusion here deducted may be included in a future version of the 

inversion procedure in order to further optimize and automate it.  
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We finish this analysis of the error function by looking into the effect of the phase velocity 

values experimental error. Some qualitative idea of this effect can be achieved by adding a 

normal distributed noise of amplitude 4% in the theoretical phase velocity values for the 

points selected. Figure 7.15 shows this analysis for different experimental points situations. 

The contour error function diagrams in the top of this figure are associated to a set of two 

points selected from the mode S0 (fd = 0 MHz mm, c= 5.44 km/s) and the mode S3 (fd = 11.37 

MHz mm, c= 6.14 km/s). These points have been carefully selected so that an interesting 

phenomena can be displayed. For some combinations of the selected points, the curvature of 

their minima lines allow intersection in more than one point, thus multiple local minima exist 

(see fig. 7.15-top left).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  

Figure 7.15: Effect of a normal distributed error in the phase velocity of amplitude 4%, over the 

contour plot of the theoretical error function: (Top) Two selected points; (fd = 0 MHz mm, c= 5.44 

km/s) in the S0 mode and (fd = 11.37 MHz mm, c= 6.14 km/s) S3 mode. (Bottom) Uniformly selected 

points of the modes S0, S3, A3 and A4. No error and added error at left and right respectively. 

The global minimum corresponds to the correct solution of the elastic property values. 

Usually, as in the depicted case, the multiple local minima are far enough so that a good 

initial estimation of the elastic property values should make the inversion algorithm to 
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converge to the correct solution. However if we add a normal distributed error of 4% in the  

phase velocity value of the selected points then the local minimums could get close to each 

other as shown in fig. 7.15-top right. 

This problem will be addressed in section 7.7 by applying global optimization techniques to 

the inversion process, like for instance a genetic algorithm. Nonetheless the previous 

multiple local minima effect was a worse case scenario, in most situations this is not a 

problem. In fact the multiple solutions effect decreases when a higher number of points from 

different modes are selecting for the inversion process. Because the experimental error tends 

to average out, and because the multiple shapes of the minima lines associated to the 

different points also cancel out the additional local minima, as shown in the figures 7.15-

bottom. These figures include the previous points and some others from four different modes 

(S0, S3, A3 and A4) as shown in fig. 7.14-right. With the left figure showing just the 

theoretical phase velocity values, and the right figure includes a normal distributed error of 

4% amplitude. We see that the multiple local minima have disappeared, and that the 

presence of error in the data clearly flattens the minimum point decreasing in consequence 

the convergence of the optimization algorithm. 

7.6 INITIAL ESTIMATION OF THE ELASTIC PROPERTIES 

This section describes an original technique for the direct estimation of the Young’s 

modulus, Poisson’s ratio and thickness of the sample plate, from the experimentally obtained 

dispersion curves. The technique extracts these values by looking into the frequency: 

thickness product information of the vertical asymptotic behaviour for the high order modes, 

and the horizontal asymptotic behaviour of the low order modes. 

The elastic properties obtained in this way are passed as initial values to an optimization 

inversion procedure applied over the Lamb waves’ phase velocity information, for a more 

accurate estimation of their values. Notice that the initial estimation technique obtains the 

elastic property values based mainly in frequency:thickness product information, meanwhile 

the inversion technique optimizes these values based in complementary phase velocity 

information. 

The current technique, like any technique based in Lamb wave propagation information, 

cannot measure E and ρ independently, only as E/ρ.  However we assume the value of ρ to 

be the standard one for aluminium (2.7 gr/cm3). Any variations of the plate’s density from 

this value will propagate into variations of the estimated value for E. 

The technique is based in three steps: 
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7.6.1 Calculate the bulk waves phase velocities (cT, cL) from the cut-off frequencies of 

the high order modes 

The cut-off frequencies of the high order Lamb modes are the frequency:thickness products 

at which the different high order Lamb modes start to originate. The high order modes 

initiate as standing longitudinal and/or transversal waves across the thickness of the plate. 

This implies that the mode’s group velocity must be null at these points, or equivalently their 

phase velocity must be infinite. These points are associated to a vertical asymptotic 

behaviour of the Lamb mode’s phase velocity dispersion curves and to a null cross in the 

wavenumber dispersion curves.  

Eqn. A.24 shows the relationship of the symmetric modes cut-off frequency:thickness 

product values with the bulk waves phase velocities, and eqn. A.25 shows the same 

relationship for the antisymmetric high order modes. 

In the experimental dispersion curves for a rectangular aluminium plate plotted in fig. 6.18, 

the most accurately defined cut-off frequencies appear to be the modes S1, S2, S5, A1 and A3. 

Their values together with the experimental errors are given in table 7.2, and the associated 

normalized bulk wave phase velocity is also calculated. 

Mode Cut-off frequency:thickness 
value (MHz mm) 

Normalized bulk wave phase 
velocity associated (Hz) 

S1 2.67 ± 0.02 cT / d = 2.67 ± 0.02 
S2 2.76 ± 0.02 cL / d = 5.52 ± 0.04 
S5 8.235 ± 0.02 cL / d = 5.49 ± 0.02 
A1 1.36 ± 0.03 cT / d = 2.72 ± 0.06 
A3 5.498 ± 0.015 cL / d = 5.498 ± 0.015 

Table 7.2: Cut-off frequency thickness values of the most accurate experimental points and their 

associated normalized bulk wave phase velocity value. 

Although all the experimentally measured normalized bulk wave phase velocity values agree 

within their error interval, we take those values of higher accuracy; cL /d = 5.498 ± 0.015 

MHz mm and cT /d = 2.67 ± 0.02 MHz mm. The reason for normalizing the phase velocity 

values with respect to the thickness of the plate d, is due to the assumption that this thickness 

is unknown. We know that the original thickness of the plate was 1.18 mm, however the 

ablation regime for the laser ultrasonic generation has decreased the thickness slightly in the 

generation area. 



INVERSION PROCESS:MEASURING ELASTIC PROPERTIES         212                         

7.6.2 Calculate ν from the values of cT and cL 

As we already show in eqn. A.9 and A.10 the bulk waves phase velocities are related with 

the elastic properties (E, ν and ρ) in a way such that their quotient depends only in ν as 

shown in eqn. 7.19. 
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Substituting the previously obtained values for cT and cL, gives the initial estimation of the 

Poisson’s ratio to be ν = 0.346 ± 0.008. 

7.6.3 Calculate the plate’s thickness from the values of cT, ν and the Rayleigh wave 

phase velocity 

As described in Appendix A, Rayleigh waves are the solution to the elastic wave equation for 

a wave propagating in the free surface of a half-space elastic medium. In opposition with 

Lamb waves, the Rayleigh waves are non-dispersive and their phase velocity is given by 

eqn. A.15. 

Experimentally it can be shown that when the thickness of the plate d is twice or higher a 

Rayleigh wavelength λR, the low order Lamb modes (A0 and S0) have a great similarity with 

Rayleigh waves. They become non-dispersive, and they interfere with one another in such a 

way that the depth distribution of the displacements for the upper and lower halves of the 

plate is similar to that of the Rayleigh waves. This distribution transfers from one to the 

opposite surface of the plate every multiple of a distance L from the source, which is a 

complex function of d / λR [9]. At a distance from the source << L the low order Lamb modes 

become indistinguishable from a Rayleigh wave and their phase velocity satisfies eqn. A.15. 

In the experimental case here studied, for any frequency value f > 5 MHz then the condition 

d > 2·λR is satisfied. Thus taking the point in the experimental dispersion curves at f = 8.7 

MHz, with a phase velocity of the low order modes equal to c = 2.885 ± 0.015 km/s, this 

gives a value for L ≈ 1.5 m. In our experiments, the farthest distance source-sensor is less 

than 15 cm (as depicted in Chapter 6) then the measured phase velocity satisfies correctly 

eqn. A.15. By substitution of the obtained values of cT / d and ν, we get a thickness of the 

plate equal to d = 1.16 ± 0.03 mm. This value is then used together with the obtained cL / d to 

get the initial estimation for Young’s modulus, which corresponds to E = 70 ± 4 GPa. The 

thickness estimated by this technique is more accurate than the technique described in [10] 

(at least for our experimental ultrasonic signals), however their technique does not require of 

previous calculation of any elastic property value and it only needs a single ultrasonic signal. 
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A good initial estimation of the elastic property values is important for the optimization 

routine of the inversion process to be more effective, and the technique here presented 

provide a very good initial estimation as we will see next. 

7.7 APPLICATION TO EXPERIMENTAL DATA 

Once a good initial estimation of the elastic and geometrical properties for the sample under 

test is known, the developed inversion algorithm is applied in order to optimize as much as 

possible these estimated values. The inversion algorithm consists in applying iteratively 

corrective values to the elastic properties in order to minimize the difference between the 

experimental dispersion curves and the modified theoretical ones. This difference is properly 

defined by the error function in eqn. 7.15. Based in that expression of the error function, the 

problem is a mean least-square fit criteria to the set of experimental points (ci, fi) selected for 

the inversion algorithm.  

The experimental points to be used in the inversion process could be carefully selected based 

in the conclusions of section 7.5 in this chapter. In this way few very suitable points are used 

in the optimization, reducing effectively the computer power requirements of the inversion 

process. Other approach consists in increasing the number of selected experimental points in 

the different modes. In this way the effect of the experimental errors over the estimation of 

the elastic properties is decreased, as the experimental error is averaged out with a bigger 

number of experimental points. More number of experimental points in the inversion process 

also helps reducing the effect of local minima in the error function, as already seen. This last 

approach is the one taken here, where the experimental points are selected uniformly through 

the different modes’ dispersion curves, avoiding the vertical asymptotic regions of the high 

order modes.  

The section of the inversion algorithm that minimizes the error function for the selected set 

of experimental data pairs (ci, fi) is the optimization algorithm. Here we use and compare two 

different optimization techniques thoroughly described in Chapter 5, these are: 

 Downhill simplex algorithm (DHS): It is capable of minimizing a function of several 

independent variables only requiring function evaluations, without the need of 

numerical or analytic derivatives. It is not very efficient in the number of function 

evaluations required, so although it could be a bit slow it can also be extremely robust. 

What make of it one of the most used nonlinear optimization techniques. This 

algorithm can handle discontinuities of the function to be minimized, but it might only 

give local solutions. 
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 Gradient method and line search algorithm for nonlinear least-squares problem 

(LSP): This algorithm uses gradient information of the object function by means of a 

quasi-Newton method, to dictate a direction of search where the minimum is thought 

to lie. Once the direction of search is known, the algorithm uses a line search 

procedure to know how far to move in that direction towards the minimum. 

This method uses not only function evaluation but also gradient information then it is 

more powerful than the downhill simplex algorithm, providing more accurate results. 

Gradient methods are also generally more efficient when the function to be minimized 

is continuous in its first derivative as it is our case, and this efficiency is further 

improved by optimizing this technique for least-squares problems as described in 

Chapter 5. However as in the previous method it might only give local solutions. 

The inversion process is now applied over three different regions of the experimental 

dispersion curves obtained in Chapter 6. For each of these regions both optimization 

techniques will be compared. The three areas in which we divide the experimental dispersion 

curves are; the vertical asymptotic region associated to the cut-off frequencies of the high 

order modes, the horizontal asymptotic region at high frequency:thickness product values 

where the dispersion curves have a non-dispersive tendency, and finally the central region of 

the dispersive behaviour of the different modes. 

7.7.1 Vertical asymptotic region 

The experimental points in this region are the less adequate for the inversion process as 

explained in previous sections. As they are the points with higher experimental error 

associated. Figure 7.16 shows the selected points as black dots over the experimentally 

obtained dispersion curves in the phase velocity domain. 

The obtained values for the elastic properties are: 

 DHS algorithm: E = 73.0443 GPa; ν = 0.3418. Error function for optimized elastic 

properties = 4.2108. Processing time = 135 sec. 

 LSP algorithm: E = 73.0443 GPa; ν = 0.3418. Error function for optimized elastic 

properties = 4.2108. Processing time = 155 sec. 

We see how both optimization techniques give the same solution for the elastic properties 

but with the LSP algorithm takes slightly more processing time. Probably due to the fact that 

the error function presents a high discontinuity in the border of existence of the phase 

velocity for points in the cut-off frequency region, as seen previously.  
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The solution for the elastic properties seems too different from the estimated values of 

previous section, and the obtained value of E is too big for an aluminium plate. 

 

 

 

 

 

 

 

   

Figure 7.16: Selected points in the vertical asymptotic area of the high order modes: (Left) Plotted 

over the experimental phase velocity dispersion curves. (Right) Zoom of the left figure. 

7.7.2 Horizontal asymptotic region 

These points are the most accurate ones from the experimental error point of view (as seen in 

fig. 7.2-right). At high frequency:thickness product values the high order modes’ phase 

velocity converge to the transversal bulk wave phase velocity meanwhile the low order 

modes converge to the Rayleigh phase velocity. Figure 7.17-left shows the points chosen in 

this case for the inversion algorithm. 

 

 

 

 

 

 

 

 

   

Figure 7.17: Selected experimental points for the inversion algorithm: (Left) Points taken from the 

horizontal asymptotic region. (Right) Points taken from the dispersive central region. 
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The obtained values for the elastic properties are: 

 DHS algorithm: E = 70.5618 GPa; ν = 0.3528. Error function for optimized elastic 

properties = 0.0394. Processing time = 107 sec. 

 LSP algorithm: E = 70.5618 GPa; ν = 0.3528. Error function for optimized elastic 

properties = 0.0394. Processing time = 20 sec. 

Both optimization algorithms provide the same solutions for the elastic properties however 

now it is clear the much higher efficiency of the LSP algorithm as it requires five times less 

processing time than the DHS algorithm. 

The optimized Young’s modulus is now very similar to the estimated one, but the optimized 

Poisson’s ratio differs slightly more than the previous case. The present value of the 

optimized elastic properties seems more adequate for an aluminium plate. The current better 

solution in comparison with the previous case has its origin in the smaller experimental error 

associated with the selected experimental points. 

7.7.3 Dispersive region 

Finally we look into the central region of the dispersion curves, where the different modes 

present high dispersion. The points chosen in this case are shown in fig. 7.17-right. 

The obtained values for the elastic properties are: 

 DHS algorithm: E = 71.7341 GPa; ν = 0.3488. Error function for optimized elastic 

properties = 0.1884. Processing time = 146 sec. 

 LSP algorithm: E = 71.7341 GPa; ν = 0.3488. Error function for optimized elastic 

properties = 0.1884. Processing time = 36.5 sec. 

Again the solutions given by both optimization algorithms are identical, but once again the 

LSP algorithm is several times faster than the DHS. 

Both optimized elastic properties are now very similar to the estimated ones and within the 

range of accepted values for aluminium. 

It is remarkable how the results of the inversion process in the present and previous cases are 

very consistent with the initial estimated values. Notice that meanwhile the estimated values 

were obtained from the asymptotic behaviour of the dispersion curves (both vertical and 

horizontal), mainly based in frequency:thickness product information. The optimized elastic 

property values from the inversion process are obtained from the non-asymptotic region of 

the experimental dispersion curves and they are based in phase velocity information. Both 
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techniques are applied over complementary information and nevertheless they provide a very 

consistent result. 

7.7.4 Low experimental error region 

The optimized elastic property values obtained in the horizontal asymptotic region and the 

dispersive region are very similar between them and very different from the values obtained 

from the vertical asymptotic region. As we know the later are associated with high 

experimental errors that obviously will affect negatively their effectiveness. In the other hand 

the horizontal and dispersive regions are data of the highest experimental resolution. It is 

also difficult to differentiate these two regions for high order modes and for the 

frequency:thickness product interval at which we work. This is why we have decided to 

finally apply the inversion process to a region which is combination of these two and with a 

relative irresolvable phase velocity error below 4% as shown in fig. 7.2-right. The 

optimization algorithm used will be the LSP because it provides results of equal accuracy 

than the DHS algorithm but with much less processing power requirements. This is 

important when the inversion process is applied to a big number of experimental points as it 

is the current case. 

The obtained values for the elastic properties are: 

 LSP algorithm: E = 71.0548 GPa; ν = 0.3516. Error function for optimized elastic 

properties = 0.274. Processing time = 52 sec. 

This solution is in between the ones given in the previous two cases and so this is the one 

accepted as best solution for this experimental analysis. 

7.7.5 Including the thickness of the plate as an unknown in the optimization 

algorithm 

Until this point the inversion algorithm has not take into account the estimation of the 

thickness of the plate (1.16 mm). We have always considered the thickness to be 1.18 mm, 

which was the nominal thickness of the original plate. The difference between the nominal 

and estimated thickness lies in the erosion that the ablation regime for the optical source 

creates over the plate surface in the region of ultrasonic wave generation. 

An improvement of the inversion algorithm has been done in order to include also the 

thickness as an optimization variable. 

 

 



INVERSION PROCESS:MEASURING ELASTIC PROPERTIES         218                         

Testing the three variables optimization algorithm over theoretical dispersion curves 

We have tested the three variables inversion algorithm applying it over uniformly distributed 

points through the theoretical dispersion curves for aluminium, avoiding the vertical 

asymptotic region as shown in fig. 7.18-left. A normal distributed error of amplitude 1% was 

added to the phase velocity data. We have used worse initial estimation than previously 

obtained (E0 = 71.7 GPa, ν0 = 0.35 and d0 = 1.15 mm). The optimized results for the three 

variables is: E = 70.8093 GPa, ν = 0.337 and d = 1.1803 mm. These values very closely 

agree with the commonly accepted values for aluminium (E = 70.7584 GPa, ν = 0.3375 and 

d = 1.18 mm), therefore validating the three variables optimization algorithm. 

Application of 3 variables optimization algorithm over low experimental error region 

If we use the three variables optimization algorithm over the experimental data of figure 7.2-

right, the optimized results are:  

 LSP algorithm for three variables: E = 69.6213 GPa; ν = 0.3484; d = 1.1575 mm. 

Error function for optimized elastic properties = 0.1836. Processing time = 156 sec. 

 

 

 

 

 

 

 

 

Figure 7.18: (Left) Selected points from theoretical dispersion curves to verify the three variable 

optimization algorithm. (Right) Comparison between experimental dispersion curves and theoretical 

ones (in grey) obtained using the Aluminium properties E= 70.7584 GPa, ν = 0.3375, d = 1.16 mm. 

  

Notice that now the optimized solution is even closer to the first estimated elastic property 

values and that the error function for the optimized values is now smaller than the previous 

case in which the thickness was not optimized. Obviously adding an extra variable for 

minimizing the error function will help in getting a better optimized error function value. 

Figure 7.18-right compares the experimental dispersion curves and the theoretical ones 

obtained with the commonly accepted values of the elastic properties for aluminium.  
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Figure 7.19: Comparison between experimental dispersion curves and theoretical ones associated to 

elastic property values: (Left) Obtained for the 3 variables optimization algorithm (E= 69.6213 GPa, 

ν = 0.3484, d = 1.1575 mm). (Right) Obtained for the 2 variable optimization algorithm E= 71.0548 

GPa, ν = 0.3516, d = 1.16 mm. 

The considerable disagreement on fig. 7.18-right is in contrast with the much better 

matching that takes place in fig. 7.19. The left graph of this figure compares the 

experimental dispersion curves with the theoretical ones for elastic properties obtained with 

the two variable optimization algorithm for points selected in the low experimental error 

region. In the right graph the theoretical dispersion curves are associated to elastic property 

values obtained with the three variables optimization algorithm. In both cases we appreciate 

important differences in the vertically asymptotic region mainly due to the higher 

experimental error associated to these points, the low experimental error region agrees 

considerably well, with in general a slight better agreement for the two variable optimization 

algorithm than for the three variables one 

7.7.6 Global solution by genetic algorithms 

We have already seen that the error function could have multiple local minima solutions. 

This damaging effect can be reduced by adding a big number of experimental data points and 

by providing an accurate first estimation to the optimization algorithm. Nonetheless because 

the previously used optimization algorithms can only provide local minimum solutions, it is 

a good idea to test the obtained optimized elastic and geometrical properties with a global 

optimization method like the genetic algorithm, described in Chapter 5. This algorithm is 

modelled based on the principles of evolutionary biology via natural selection. It is less 

susceptible to give local minima than the previous methods, and it improves the chances of 
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finding a global solution. However it tends to be computationally very expensive, this is why 

it is not implemented as a default optimization algorithm in the inversion process. 

We used the implementation that MATLAB provides of this algorithm, considering only a 

two variables (E, ν) problem. We applied the algorithm taking the default values for most of 

its options; population size of 20 (represent the number of individuals in each generation or 

iteration. An individual is a pair (E, ν)), fitness scaling function used is Rank (it scales the 

raw fitness scores of each individual based on the position of the shorted score of each 

individual rather than in the score itself. This information is used by the selection function), 

the selection function used for choosing the parents of the next generation is Stochastic 

uniform, an Elite count of 2 is used in the Reproduction (it represents the number of 

individuals guaranteed to survive to the next generation) and a Crossover fraction of 0.8. A 

Gaussian mutation function is used with a scale value of 1 and a shrink value of 1. For the 

stopping criteria of the algorithm we have defined a maximum Generation of 100 (that is the 

maximum number of iterations allowed), a Time limit of 40 minutes (so if the algorithm is 

running longer than this time, it stops), a Fitness limit of 0.2 (based in the value of the error 

function for optimized elastic properties = 0.274 that we obtained with the LSP algorithm), a 

Stall generation limit of 15 (so if there is not improvement of the best fitness value in the 

number of iterations specified then the algorithm stops) and Stall time limit of 17 minutes (if 

there is not improvement in the best fitness value during the specified time, the algorithm 

stops). The genetic algorithm stops only if any of these stopping criteria are satisfied. 

In order to make the algorithm more effective we have specified a lower and upper bound for 

the entries of the elastic property values of the initial population (also known as initial 

range), based in the knowledge of the experimental initial estimation previously presented. 

We started with an initial range of Emax = 74 GPa, Emin = 67 GPa, νmax = 0.38 and νmin = 0.3, 

after 27 generations and terminated by running more than the limited 40 minutes the global 

solution given by the Genetic Algorithm was E = 71.67 GPa and ν = 0.349 with an error 

function evaluation for the optimized parameters of 0.374 (far bigger error than the obtained 

with the LSP algorithm). However if we used these values as initial estimation for the LSP 

algorithm (with better convergence capabilities than the Genetic Algorithm) it provided the 

same solution than before with the experimentally obtained initial estimation (E = 71.0548 

GPa; ν = 0.3516), proving that effectively it is a global solution.  

We tried making the initial range even more restrictive; Emax = 73 GPa, Emin = 68.5 GPa, νmax 

= 0.37 and νmin = 0.32. In this case the algorithm stopped because it exceeded the stall time 

limit of 17 minutes, giving after 17 generations a solution of  E = 71.12 GPa and ν = 0.3506 
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with an error function evaluation of 0.286. This solution is closer to the one obtained with 

the LSP algorithm previously, and again if we help to a better convergence of the optimized 

solution by applying the LSP algorithm we get again the solution (E = 71.0548 GPa; ν = 

0.3516), proving once more that it effectively corresponds to a global solution. 

7.8 EXPERIMENTAL VERIFICATION OF THE OBTAINED ELASTIC 

PROPERTY VALUES 

In order to test the validity of the obtained elastic properties values, we look into a region of 

the dispersion curves that we have not used yet, nor for the initial estimation of the elastic 

properties, neither for the optimized values of the inversion process. This new region is the 

highly non-dispersive region of the S0 mode at low frequency:thickness product values. 

From the Lamb wave characteristic equation, it is easy to probe that the phase velocity of the 

S0 mode at low frequency:thickness product values can be approximated to eqn. A.22 [9].  

Because the S0 mode is highly non-dispersive in this region, the group velocity is very 

similar to the value of the phase velocity. For instance, in fig. 7.20-left we compare phase 

velocity (in blue) and group velocity (in red) for the S0 mode in aluminium at low 

frequencies. Notice that the vertical axis plots the phase velocity between 5.4 and 5.44 km/s. 

In the frequency:thickness product region between 0 and 0.25 MHz mm, the phase velocity 

changes less than 0.1%. The group velocity at 0.25 MHz mm is only 0.2% smaller than the 

phase velocity. This region can accurately be considered non-dispersive, and because this 

plot is given for an aluminium plate of 1.17 mm thick then at frequencies below 200 kHz the 

group velocity satisfies eqn. A.22.  

 

 

 

 

 

 

 

 

Figure 7.20: (Left) Comparison of the phase and group velocity for the S0 mode in aluminium in the 

region of not dispersion. (Right) Ultrasonic signal detected in PZTref (in blue) with source at PZT10. In 

red is the excited 4.5 cycles toneburst signal at 180 kHz. 
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In all materials the fastest propagating Lamb wave component is the S0 mode at the previous 

group velocity. Thus, by analysing the time of arrival of the first ultrasonic perturbation of 

the broadband ultrasonic signals that we used in Chapter 6 to estimating the phase velocity 

dispersion curves, for which we know the distance source-sensor, we can experimentally 

measure this value. Later we compare it with the value given by eqn. A.22 by substitution of 

the elastic properties extracted with the inversion process in order to certificate the quality of 

the estimation. 

 

 

 

 

 

 

 

   

1st minimum 

1st minimum 

Figure 7.21: Comparison of the de-noised ultrasonic signal at two different source possitions to 

meassure the group velocity of the S0 mode at low frequency:thickness product values. In blue is the 

detected ultrasonic data.  In red after Daubechie wavelet de-noising till order 6 and full detail fitering 

apart of D6. In green same wavelet de-noising plus 1st order Butterworth high pass filter at 30 kHz. In 

black same high pass filter as before plus 1st order Butterworth low pass filter at 500 kHz. 

Fig. 7.21 shows in blue the received ultrasonic signals zoomed over the S0 mode region, in 

the left for the closest distance source-sensor and in the right for the farthest. Although these 

distances are approximately known, they are not as accurate as the distance between both 

sources, as the position of the focused beam for the modified Mach-Zehnder interferometer 

system can not be accurately known. The distance between both sources is 74.37 ± 0.05 mm. 

In order to measure the difference in the time of arrival of the first perturbations between 

both signals we need to de-noise the signals. We have tried with three different de-noising 

techniques; (red curve) we apply a wavelet de-noising as explained in Chapter 5, for a 

Daubechie wavelet with a decomposition to order 6 and filtering fully all the details apart of 

D6. This corresponds to a very selective low pass filtering, however the low frequency noise 

make difficult to see where begins the ultrasonic perturbation. (Green curve) same wavelet 

de-noising combined with a 1st order Butterworth high pass filter at 30 kHz, this helps with 

the low frequency noise. (Black curve) finally we compare with a situation with same high 



7.8 EXPERIMENTAL VERIFICATION OF THE OBTAINED ELASTIC PROPERTY VALUES  223                         

pass filter as before and instead of wavelet de-noising, we apply a 1st order Butterworth low 

pass filter at 500 kHz, it is obvious the much better quality of the green signal. For instance 

the black curve does not show the first peak arriving at 14 µsec in fig. 7.21-left. 

We look to the first minimum of the green curves in order to measure the TOF, being of 

15.09 ± 0.03 µsec for the closest distance source-sensor and 29.06 ± 0.03 µsec for the 

farthest. The group velocity associated is cg = 5.32 ± 0.02 km/s. 

The group velocity obtained by substitution of the optimized elastic property values in eqn. 

A.22 is cg = 5.48 km/s, very different from the validation value. Does this mean that the 

inversion process is highly inefficient? The answer is not, a careful analysis of the 1st 

minimum oscillation in fig. 7.21 shows that it is associated to a frequency of between 450 to 

500 kHz. This region is clearly dispersive as we can see from fig. 7.20 and so the eqn. A.22 

does not apply. Furthermore, the theoretical group velocity of S0 mode in aluminium at 500 

kHz is effectively 5.31 km/s.  

In conclusion the broadband ultrasonic data is not suitable to validate the estimated elastic 

properties based in eqn. A.22. Therefore an experiment has been developed with the sole 

purpose of achieving this validation. In the same experimental set up as the one used for 

directivity experiments in the wavefront integration analysis of Chapter 4 (see fig. 7.22-left), 

we use the property of the PZTs acting both as ultrasonic source and receiver. 

We have taken two sets of measurements. First, having PZTref as detector we have excited a 

4.5 cycles Hamming windowed sinusoidal toneburst (as shown in fig. 7.20-right) at 166.5 

kHz to the PZTs in the circumference, numbered from (10) to (14) and in the line, numbered 

from (4) to (7). In order to avoid the perturbation of the reflection in adjacent PZTs to the 

PZT source, we define the time of flight (TOF) as the time distance between the first peak in 

the generated and received ultrasonic tonebursts as shown in fig. 7.20-right.  

PZTsource
Distance to PZTref 

(cm) TOF (µsec) 

(4) 28.2 51.18 
(5) 32.1 58.53 
(6) 36.1 66.19 
(7) 40.1 73.61 

(10) 32 58.52 
(11) 31.9 58.55 
(12) 31.7 57.50 
(13) 31.5 57.1479 
(14) 31.1 56.48 

Table 7.3: Experimental measurement of the TOF for the PZT lay out in fig. 7.22 for an excited 

ultrasonic signal of 4.5 cycles toneburst at 166.5 kHz. 
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The detected signals were wavelet de-noised with a Daubechies wavelet and decomposed to 

level 8 with a hard threshold, in order to improve the accuracy of the measurements. The 

resultant values are given in table 7.3. 

Second, having PZT14 as receiver and excited same toneburst signal but at a frequency of 

180 kHz now applied to the PZTs numbered (1), (3), (5) and (7). Because the thickness of the 

plate is 1 mm these frequency values warranty the condition of non-dispersion and the 

validity of eqn. A.22. The resultant values of the experiment are given in table 7.4. 

PZTsource Distance to PZT14 (cm) TOF (µsec) 
(1) 35 63.67 
(3) 38.5 69.82 
(5) 43.7 79.55 
(7) 49.5 90.40 

Table 7.4: Experimental measurement of the TOF for the PZT lay out in fig. 7.22 for an excited 

ultrasonic signal of 4.5 cycles toneburst at 180 kHz. 

The obtained values of TOF versus distance source-sensor for both experiments are plotted 

as blue dots in fig. 7.22-right. The S0 mode group velocity value is given by the slope of the 

line drawn by these points, so a linear curve fitting technique is applied. The obtained 

statistical results are; cg = 5.48 km/s with a 95% confidence bounds of ± 0.02 and a goodness 

of fit SSE (Sum of Squares Due to Error) = 0.313. Value that slightly differs from the group 

velocity associated to the initial estimated elastic properties (cg = 5.43 km/s).  
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Figure 7.22: (Left) Experimental setup of the aluminium plate with bonded PZT ultrasonic sources 

and receivers (in red), for validation of the extracted elastic property values. All dimensions given in 

cm. (Right) Curve fitting of the experimental values of TOF and distance source - sensor, in order to 

calculate the phase velocity of S0 mode at low frequencies. 

The group velocity value associated to the optimization of the three variables (E = 69.6213 

GPa; ν = 0.3484) is cg = 5.42 km/s, but the one associated to the optimization of only E and ν 
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based in the experimental points of fig. 7.2-right perfectly agrees with the current 

experimental value cg = 5.48 km/s. This shows a very positive validation of the presented 

inversion process. 

We can estimate the interval of error in the elastic property values E and ν that would 

provide a group velocity value within the error interval of the experimentally obtained one  

cg = 5.48 ± 0.02 km/s. Or equivalently cg
2 = 30.0 ± 0.2 km2/s2. Applying the principles of 

error propagation in the expression of cg as by eqn. A.22 we have: 

( )
( )222
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=∆

EEcg  (7.20) 

Substituting in eqn. 7.20 the values ∆cg
2 = 0.2, ρ =2.7 gr/cm3 and the previously estimated 

values of E and ν we have that 0.2 = 0.4226·∆E + 24.095·∆ν. This relationship between the 

errors of the estimated values of E and ν that provide a value of cg for the S0 mode within the 

experimental error value ∆cg =0.02 km/s is a line plotted in fig. 7.23. 
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Figure 7.23: Relationship between the errors of the estimated values of E and ν that provide a value of 

cgr for the S0 mode within the experimental error ∆cgr=0.02 km/s. 

This means that for the worst case scenario the estimated elastic properties have an error of 

1% in E and 2% in the estimated ν value. 

7.9 CONCLUSIONS 

We have presented, implemented and analysed an inversion procedure based in the 

minimization of a nonlinear least square function of the difference between the phase 

velocity measured experimentally in previous chapter, of a selected number of points, and 

their theoretical phase velocity for varying values of E, ν and the thickness of the plate. The 

optimization algorithm was found to be very dependant in the frequency:thickness product 

value and modes of the selected experimental points, thus the Lamb waves sensitivity curves 

to changes of the elastic properties was studied. The sensitivity to changes in E is bigger than 
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to changes in ν. We also analysed the experimental error distribution of the dispersion curves 

and rejected the vertical asymptotic regions of the high order modes for application in the 

inversion process. All these effects were taken into account for the analysis and adequate 

definition of the weighting factors associated to the error function of the inversion process. 

The convergence of the inversion process was found to be improved when inflection points 

of the phase velocity dispersion curves were chosen, and when an accurate initial estimation 

of the elastic and geometrical properties was provided. For the later, a novel technique for 

simple extraction of a very accurate initial estimation of the elastic and geometrical 

properties based in frequency:thickness product information was presented.  

We compared the application of two optimization algorithms (Downhill simplex algorithm 

and a gradient method and line search algorithm for least-squares problem) to the inversion 

process and concluded that the later was faster and gave more accurate solutions. Then the 

inversion process was applied over three regions of the phase velocity Lamb wave dispersion 

curves; the vertical asymptotic region or cut-off frequency region of the high order modes, 

the horizontal asymptotic region at high frequency:thickness product values and finally the 

central region of dispersive behaviour. The higher experimental error of the points associated 

to the first region provided a wrong estimation of the elastic property values, meanwhile the 

other two regions gave very similar values. Therefore we decided that the inversion process 

should always avoid the vertical asymptotic region. 

The risk of existence of multiple local minima solutions, for the previous optimization 

algorithms, was avoided by selecting a big number of experimental points uniformly 

distributed along the different modes dispersion curves, and by applying the global solution 

characteristics of a genetic algorithm. 

The technique was applied to the experimental data obtained in previous chapter for an 

aluminium plate, and the estimated material properties were: E = 71.0 GPa; ν = 0.352; d = 

1.16 mm. These values were positively validated by complementary experiments, within a 

worse case scenario error of 1% for E and 2% for ν and d. 

The high accuracy and reproducibility of the estimated mechanical parameters provided by 

the inversion technique presents high potential as a monitoring tool of their deviation, which 

can be used as an indicator of structural damage or deterioration.  

The combined work of Chapters 6 and 7 present a powerful, all-optical remote inspection 

tool for NDT and SHM. Whilst this tool has thus far been only successfully proven and 

presented in a laboratory environment, we are optimistic that it can be used as the basis for a 

mechanical assessment tool for use in both; process validation and structural assessment. 
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The next development step of the current tool is to adapt it for application toward 

microstructural characterization. In Chapter 8 we present some areas of improvement and we 

also conclude this thesis with a review of the main tasks achieved within the present work. 
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Chapter 8
CONCLUSIONS AND FUTURE 

WORK 

8.1 INTRODUCTION 

Within a group of great experience in optical fibre sensors and with an in-depth interest in 

structural monitoring, emerges the goal of linking both areas. The work presented in this 

thesis is born in this union. We look into combining the advantages and structural integration 

capabilities of ultrasonic guided waves NDT technique with the unrivalled acoustic wave 

sensing performance and nonintrusive structural integration characteristics of modern optical 

fibre sensor technology. Therefore this work aims to contribute into the future of SHM 

which consists in integrating NDT monitoring technology into structural materials merging 

into a common discipline together with the field of smart structures. 

We have successfully accomplished this in various ways and it is the purpose of this chapter 

to remember how. For that reason next we recapitulate the most important conclusions of the 

analytical and experimental results obtained in previous chapters, and at the end we discuss 

various paths of complementary and enhancement work to be done in the future. 

8.2 SUMMARY OF FINDINGS 

The starting chapter of this thesis in conjunction with some appendices has provided a state 

of the art review of the modern aspects involving SHM and NDT. We have also described 

and compared the most commonly used NDT techniques and decided that ultrasonic guided 

waves is the technique with greater implementation potential in a SHM system. 

The body of our work presents a clear division of involvement in SHM and NDT.  

8.2.1 NDT applications 

The first part of the thesis (from Chapter 2 to Chapter 4) is concerned with the NDT aspects. 

Therefore we described the conventional ways in which ultrasonic guided waves can be 

generated and detected in plate-like structural materials. Based in their important limitations, 
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we decided to study more advantageous optical techniques for implementation in future on-

board damage detection systems. 

In Chapter 2 we presented the optical techniques for ultrasonic generation and the optical 

fibre ultrasonic detection systems used in this thesis; FBG sensors, two different 

configurations of an all-fibre Mach-Zehnder interferometer and a polarimetric sensor. We 

have compared their performance parameters and their different sensing characteristics, and 

in Chapter 3 we experimentally confirmed their suitability for ultrasonic wave detection. We 

describe their potential for damage detection and location applications due to their inherent 

high directivity. The processing techniques used for this purpose were described in Chapt. 5. 

In Chapter 4 the wavefront integration response of an optical fibre sensor (such as 

polarimetric sensor or modified MZ interferometer) to varying length, distance and 

orientation from the source was modelled. The basic trends predicted were experimentally 

confirmed, demonstrating the huge potential of our model. The results indicate that optimum 

ultrasonic detection may be achieved through careful positioning and orientation of the 

optical fibre. These results may be applied, for example in NDT, where scattered ultrasound 

from defects introduces new effective sources that may be characterized by arrays of these 

integrating sensors. 

We also show that a polarimetric sensor exhibits similar integration behaviour to that 

predicted for an interferometric system because positive and negative changes are produced 

in the fibre birefringence in a similar way to that expected for fibre refractive index.  

8.2.2 SHM applications 

In the second part of the thesis (from Chapter 6 and Chapter 7) a complete remote all-optical 

tool for structural material characterization has been developed and implemented. In order to 

do this we had to fully understand the full cycle of generation, propagation and structural 

ultrasonic interaction and detection of the Lamb waves. The broadband (in frequency and 

space) ultrasonic generation by Q-switch laser and detection by modified MZ interferometer 

provided a huge amount of the Lamb waves dispersion propagation characteristics which 

through 2D-FT and time-frequency analysis techniques could be converted into the material 

phase and group velocity dispersion curves. The full system was experimentally applied to 

various aluminium plate samples. A detailed analysis of the results led to the identification of 

the main areas for improvement (1D and 2D leakage, DC offset, radiation directivity of the 

line-source, etc). The implementation of their corrections allowed a very successful 

enhancement of the experimental dispersion curves. 
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It was found that although 2D-FT and time-frequency analysis provide the Lamb waves 

dispersion propagation characteristics, this information presents important differences as 

how it relates with the monitoring of the sample structural condition. Meanwhile the 

dispersion information provided by the 2D-FT can focus the material property analysis to 

specific areas of the sample, the time-frequency analysis monitors the full area between 

source and receiver. This makes a technique more suitable than the other depending in the 

application. 

The system was later used to analyze temperature change sensitivity (using the 2D-FT 

technique) and for hole-damage detection applications (by the reassignment spectrogram). 

The results of these two applications have proved this inspection tool more than adequate. 

In Chapter 7 we used this experimental dispersion information to extract the material elastic 

and geometric properties by the application of an inversion technique. This technique 

minimizes the differences between the experimentally obtained Lamb wave phase velocity 

information of a selected number of points, and their theoretical phase velocity for varying 

values of E, ν and the thickness of the plate. 

The optimization algorithm was found to be very dependant in the frequency:thickness 

product value and modes of the selected experimental points, thus the Lamb waves 

dispersion curves sensitivity to changes of the elastic properties was studied. The sensitivity 

to changes in E is bigger than to changes in ν. We also analysed the experimental error 

distribution of the dispersion curves and rejected the vertical asymptotic regions of the high 

order modes for application in the inversion process. 

The convergence of the inversion process was found to be improved when an accurate initial 

estimation was provided and when inflection points of the phase velocity dispersion curves 

were chosen. The risk of the existence of multiple local minima solutions was avoided by 

selecting a big number of experimental points uniformly distributed along the different 

modes dispersion curves, and by applying the global solution characteristics of a genetic 

algorithm. A new simple technique to obtain a very accurate initial estimation of the elastic 

properties was also presented. 

The technique was applied to the experimental data obtained in previous chapter for an 

aluminium plate, and the estimated material properties were: E = 71.0 GPa; ν = 0.352; d = 

1.16 mm. These values were positively validated by complementary experiments, within a 

worse case scenario error of 1% for E and 2% for ν and d. 
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8.2.3 Signal processing 

Chapter 5 presented the various signal processing techniques required along this thesis with 

special emphasis of the 2D-FT and the time-frequency analysis. Some important conclusions 

were obtained for the former, such that the main domain of definition of the 2D-FT spectrum 

is divided into a section corresponding to the incident Lamb waves and other section 

associated to the Lamb waves reflected from the border of the plate or any present damage. 

This has obvious damage detection applications, plus it also help to experimentally identify 

the section of negative group velocity of the S1 mode. Additionally it was proven that the 

2D-FT spatial aliasing does not have the same negative effects as in the 1D-FT. So that most 

of the propagating Lamb waves dispersion information can be extracted. This is of great 

advantage because it allows us to work with smaller spatial sampling frequencies (1/∆x), thus 

increasing the spatial resolution of the experimental dispersion curves. 

The most common time-frequency analysis of the STFT was replaced by a less known 

technique, named reassigned spectrogram by which the resolution of the experimental group 

velocity dispersion curves was greatly enhanced. 

8.2.4 Software applications 

A great percentage of the work of this thesis has consisted in programming (mainly in 

MATLAB) the signal processing techniques as well as the full realization of the inversion 

process. The huge number of code lines required for these complex programs has prevented 

me to add them as appendices in this thesis. Nonetheless they are of free access. Some of 

these programs are of general interest, these includes:  

 Implementation of Rouard’s method and coupled mode theory for calculation of uniform 

FBG reflectivity spectra. These programs were used for calculating the parameters of the 

FBGs used in Chapter 3 from the obtained experimental reflectivity spectra. Rouard’s 

implementation has a great potential for further development, as it allows simulating 

complex gratings configurations otherwise difficult to deal with through the coupled 

mode theory. 

 Calculation of the displacement and stress distributions of Rayleigh waves in a half space 

of an isotropic material. 

 Numerical solution of the very unstable Lamb waves characteristic equations. This 

program allows resolving the Lamb wave phase and group velocity dispersion curves for 

high order modes by specifying the elastic property values of an isotropic material. Or the 

inverse, to obtain E, ν and the thickness of the plate through the experimental phase 
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velocity dispersion curves. This program also can calculate the particle displacement, 

velocity and acceleration components along the thickness of an isotropic plate for any 

propagating Lamb mode.  

8.3 FUTURE WORK 

In the area of work in which this thesis is framed, various points for improvement have been 

identified as presented next: 

8.3.1 Heterodyne modified MZ interferometer 

In numerous occasions along the experimental work of this thesis we have suffered the 

limited stabilization characteristics of the homodyne MZ interferometer used. We have 

started the investigations into the development of an all-fibre heterodyne version based on 

the one presented in [1]. Heterodyne interferometers work by shifting the optical frequency 

of the interferometer up by fB usually through an acousto-optic modulator (AOM) in one of 

or both reference and sensing arms. The velocity of the particles in the surface of the sample 

modulates by Doppler effect the carrier light of the interferometer generating two sidebands 

[2]. Because the ultrasonic effect is now detected at high frequency shifted values then this 

detection systems is immune to the low frequency ambient vibration noise components. Thus 

the heterodyne interferometer does not require of a stabilization scheme, in contrast to the 

homodyne interferometer topology used along this thesis. On the other hand a heterodyne 

interferometer offer slightly less sensitivity and worse signal to noise ratios than the 

homodyne configuration [2]. 

8.3.2 Wavefront integration model 

Improve the wavefront integration mathematical model by adding the differential stress of 

the particles displacement movement by the propagating Lamb waves, in the same way as 

we did for the birefringence analysis to prove why the polarimeter works in the same way as 

the MZ interferometer. Also we have identified areas for improvement in the theoretical 

analysis; to include a more precise modelling of specific propagating ultrasonic waves and 

the addition of the propagating wave dispersion effect. Improved models are currently in 

development. 

8.3.3 Software improvement 

 The wavefront integration algorithm needs to be improved to simulate better the 

experimental results. For this, a more precise modelling of specific propagating ultrasonic 
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waves and the addition of the propagating wave dispersion effect is required. Improved 

models are currently in development. 

 Adaptation of the inversion process for the group velocity dispersion curves. 

8.3.4 Estimation of elastic properties of material 

Three different areas of improvement were found in the inversion process: 

 In our work to date we have only concentrated on using the changes in the shape and 

shift of the material dispersion curves to derive the Young’s modulus, Poisson’s ratio and 

transversal dimensions of the structural material. However an enhancement of this technique 

would consist in the monitoring of the changes in these parameters and identify thresholds 

that provide a sensitive indication of structural damage or deterioration. Future work also 

will concentrate in extracting additional information from the perturbation of the dispersion 

curves such as a more advanced analysis of the effect caused by temperature changes (as 

started in Chapter 6) and structural loading. 

 Improve the error estimation of the estimated elastic property values. The highly 

pessimistic estimation calculated in Chapter 7 is based only in the experimental error of the 

verification experiment. More accurate error estimation is needed to have a better idea of the 

method potential. We suggest evaluating the accuracy of the estimated elastic properties not 

as an error in their value but as a statistical analysis of the influence of the experimental error 

on the optimized elastic property values. This can be done as follows. In Chapter 7 we 

decided that the best region of the dispersion curves used for the elastic properties estimation 

was that with relative errors in the phase velocity values of less than 4% as shown in fig. 7.2. 

We multiply the phase velocity value of the chosen experimental points by 0.96 and 1.04 

randomly to take into account the effect of the 4% normal distributed error. And we calculate 

again new estimations of the elastic properties for the new experimental point values. We 

repeat this process a given number of times (let’s say 15 times) and then calculate the mean 

value of the different estimated elastic property values and their standard deviations. The 

value of the standard deviation should give us an idea of the accuracy of the estimated elastic 

property values and how sensitive this estimation is to experimental errors. 

8.3.5 All-optical, remote inspection tool for material characterization 

 In most cases, both for macroscopic or microscopic structural monitoring 

applications, the damage that the ablation regime causes over the sample is unacceptable. 

When a specific region of the structure is inspected by the 2D-FT technique, the ablation 

caused by the sources in the area to be inspected may alter the material’s properties or at 
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least negatively affect the structure. Fortunately, the 2D-FT technique is completely 

reversible. This means that the range of source-detector distances in the regions to be 

inspected, can be adjusted by either moving the source or the detector. In our experimental 

setup in Chapter 6, we chose the former because of experimental convenience. However if 

the monitoring requirement of a totally non-damage, non-invasive technique must be 

satisfied then it is more suitable to fix the position of the ablation source in a region where 

slightly damage is allowed and then adjust position of the detectors in the area of interest.  
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Figure 8.1: Possible setup of a fully automated scanning system based in the non-contact all optical 

monitoring system. The scanning platform can move in a plane parallel to the sample plate by several 

micro displacement motors. The plate can be scanned in multiple localized areas.  

If the detected ultrasonic amplitude permits it, we could decrease the light power of the 

ultrasonic source by using a low power CW laser and an optical amplifier. In this case both 

fibre connectors (one each for the ultrasonic detection and generation stages) could be 

attached to a 2D moving micro stage platform, allowing an automatic movement of source 

and receiver parallel to the surface of the structure to be monitored (see fig. 8.1). 

 We already described the full automation of operation potential of the non-contact 

all optical monitoring tool (see Chapter 6). This needs further development. 

8.4 REFERENCES 

[1] Kil H-G. An automated scanning laser Doppler system for vibration measurements and wave 
vector analysis of vibration of shells, PhD. thesis, Georgia Institute of Technology, 1995. 

[2] Monchalin J-P. Optical detection of ultrasound, IEEE Transactions on ultrasonics, ferroelectrics 
and frequency control, vol. UFFC-33(5), pp. 485-499, 1986. 

 



 

 

 

 

 

 

 

 

 
APPENDICES

   



                    

APPENDIX A: Elastic waves in solids 

The most commonly used methods in NDT are listed in Table 1.2 of Chapter 1. These 

methods can be considered mature, because they have been used in the industry for quite a 

long time and have proved to be very effective in their respective applications. Yet between 

them all, only three can seriously be considered for their potential implementation in a SHM 

system; acoustic emission, modal analysis and ultrasonic guided waves.  

For this thesis, ultrasonic guided waves have been chosen as the method with the highest 

potential. Ultrasonic guided waves are different from the conventional ultrasonic scanning 

method, not only because they use a different kind of ultrasonic wave; being guided waves 

for the former and bulk wave for the later. But also because they travel in different kind of 

media, with guided waves only travelling in bounded media. We will see in this appendix 

that in fact these two kinds of waves are not so different from each other and we will 

understand why guided waves are limited to only bounded media. 

It is surprising that although the theory of propagation of elastic waves in solids is based on 

more than two centuries of work in the areas of wave mechanics and elasticity, it has not 

been until the late 1920’s that ultrasonic waves were conceived as a means for NDT/E. Even 

more surprising is that the benefits of ultrasonic guided waves were not recognized until the 

late 1950’s [1,2]. Since then the numerous advantages of ultrasonic guided waves in 

comparison with conventional methods have increased, with the most important being:  

 Guided waves can inspect longer distances as they propagate with less attenuation 

because they remain contained in a wave guide. 

 They provide better defect detection capabilities as guided waves can propagate in a high 

number of different modes and frequencies, allowing adequate tuning in relation to the 

characteristics of the damage. This also contributes in their capabilities for damage 

location, classification and size valuation. 

 Conventional C-scanning provides a point-by-point through the thickness inspection, 

whereas guided waves can inspect the full strip thickness between the ultrasonic source 

and receiver probes at quite long distances (hundreds or thousands of ultrasonic 

wavelengths). This not only allows an improvement in the inspection speed of large areas 

but also in the inspection simplicity as it only requires a fixed location probe instead of a 

scanning one (see fig. A.1). 
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 Ability to inspect large areas of structures under water, concrete or surrounded by 

coatings and insulating materials, or even multi-layered structures, only needing to access 

them at a few points (see fig. A.1-right). 

 Guided waves’ propagation characteristics are sensitive to the principal material elastic 

properties and they are also dependent on structural loading or defects present within the 

material. 

 The guiding characteristic of guided waves enables them to travel through curved regions 

and reach hidden areas or difficult to access for conventional ultrasonic methods (see fig. 

A.1-left).  
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Figure A.1: (Left) Guided waves can inspect strip between source and receiver, travelling through 

difficult to access curved regions. (Right) Underground pipes can be fully inspected by only accessing 

the structure at a few points. 

Yet ultrasonic guided waves have also some drawbacks; because they are very dispersive 

and they can propagate in multiple modes at the same time, the obtained data is complex and 

it requires a large amount of signal processing in order to extract the information that they 

store. Additionally in the case of plate guided elastic waves (Lamb waves), as shown later, it 

is required that the wavelength of the waves to be of the order of magnitude or larger than 

the thickness of the guiding structure. And because in a far field analysis, only 

discontinuities that are larger than one-half the size of the wave’s wavelength can usually be 

detected, then the detectable flaws size is importantly limited. For most common guiding 

structures with thickness in the order of a millimeter or more, the detectable flaw’s size is a 

fraction of a millimeter. If smaller defects need to be detected, an accurate study of the 

scattering characteristics of small defects in the near field is necessary, with decreasing 

sensitive the smaller the size of the damage. 

Modern advances in computer power and in signal processing techniques have overcome 

some of these drawbacks, making ultrasonic guided waves as one of the most promising 

NDT methods for the near future. 
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This appendix provides the basic theoretical background of elastic waves to understand the 

physical characteristics of ultrasonic guided waves. The concepts of the material’s elastic 

properties are defined through the characterization of the basics acoustic waves presented in 

all solid materials, bulk waves. Later we introduce the different ultrasonic guided waves, and 

justify why we only need to concentrate on Lamb waves for the particular applications of 

this thesis. A more detailed look into the propagation characteristics of Lamb waves helps to 

understand how they can be used to monitor the elastic properties of the inspected material 

and the presence of damage. 

A.1 ELASTIC WAVES TYPES IN SOLIDS 

We start this section with a maybe evident but necessary affirmation to understand what 

follows after; Ultrasonic testing of materials is based in mechanical or elastic waves, which 

are composed of oscillations of discrete particles in the materials. 

It is logical then that in order to understand ultrasonic testing of materials it is necessary first 

to have an idea of the theory of elastic waves in solid media.  

The theory of elastic waves in solid media has been already marvellously covered in a broad 

number of references, being, in my opinion, the most relevant ones [3-6,35]. In this section 

we give a brief introduction to this theory in order to introduce vital concepts that have been 

used along this work. We invite any reader seeking more detailed explanations to take a look 

at the references mentioned above. 

A series of simplifying assumptions have been considered in the development of the next 

theory because these assumptions are satisfied along the work in this thesis. They are as 

follows; the material in which the waves propagate is elastic, so that the perturbation that the 

wave causes in the stationary state of the material particles requires a certain period of time 

to be transmitted along it. The material is homogeneous and isotropic, so that the density of 

the material is uniform. This allows us to accurately model the solid as consisting of 

uniformly separated particles with the same elastic behaviour in all the spatial directions. 

Each of these particles is the equivalent of an infinitesimal cube of mass as shown in fig. 

A.2. The propagating waves are considered planar, such that the magnitude of the 

perturbation is constant on a given plane of the material. The wave plane is named wavefront 

and it is normal to the direction of propagation of the wave. 

Additionally the medium is considered perfectly elastic, which means that the mechanical 

energy of the propagating perturbation is conserved. This assumption can never be true in 

reality, because internal friction converts part of this energy into heat as the wave 
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propagates. Other effects like mechanical relaxation affect the conservation of the 

propagating mechanical energy. These effects constitute the main weakening causes of the 

absorption of materials. Other basic elastic wave weakening is the scattering or dispersion of 

the elastic energy into multiple propagation directions as a result of physical interactions 

with the material discontinuities, borders or structure. The combined effect of scattering and 

absorption is called attenuation. As a consequence the intensity of the elastic waves 

diminishes with the travelled distance.  However the simplification of perfect elastic body is 

considered in order to extract a first solution of the equation of motion in solid media. The 

attenuation effect can be subsequently added to the obtained solutions. 

In order to extract the equations of motion, a very useful model is to consider the solid 

material as being divided into elements or particles of infinitesimal volume as depicted in 

Figure A.2-left. The position of each of these elements is given by the position of its vertex P 

in the referential system X, Y, Z, which we consider to be (x, y, z). In this figure we show the 

different stress components acting over the faces of each element of material, as red and blue 

vectorial systems, parallel to the general system of reference. Because the chosen 

infinitesimal element is a parallelepiped then six different stress components will be acting 

parallel to each referential axis.  

 

 

 

 

 

 

 

 

Figure A.2: (Left) Elements of infinitesimal dimensions in the elastic solid with stress components. 

(Right) Translation and displacement of one plane of an element for strain considerations. 
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The first suffix in the stress components represents the direction of the stress and the second 

suffix is the plane in which it is acting. 

A material in which a perturbation is propagating, is in a non equilibrium condition hence 

Newton’s second law of dynamics must apply. If we neglect body forces such as gravity, we 

can express this law as: 
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Where ρ is the density of the material and u the displacement of the element in the X 

direction. By the same reasoning we obtain for the other referential directions: 
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Where v and w are the displacement of the element in Y and Z directions respectively. 

The detailed steps followed for the development of the equation of motion have been 

relegated to Appendix B. They mainly consisted in the definition of the Lamé’s constants λ 

and µ, and in rewriting the displacement vector in terms of a scalar potential φ  and a vector 

potentialψ
r

, useful to express the equation of motion as two uncoupled equations: 
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Although the equation of motion has been obtained as a function of the Lamé’s constants, 

however other two constants are normally used when describing the elastic properties of 

materials. These constants are Young’s modulus E and the Poisson’s ratio ν, and as the 

Lamé’s constants they also completely define the elastic behaviour of an isotropic solid [35].  

The Young’s modulus is commonly defined as the ratio between the applied stress and the 

fractional extension, when a cylindrical or prismatic specimen is subjected to a uniform 

stress over its plane ends and the lateral surfaces are free. 

The Poisson’s ratio is defined as the ratio between the lateral contraction and the 

longitudinal extension of the specimen with the lateral surface free. 

Ref. [35] shows that the relationship between these constants and the Lamé’s constants is: 
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The next sections look into the possible different solutions that the equation of motion 

provides in relation to the boundary conditions of the material. As we will see for an 

unbounded media only two kind of waves propagates, they are called bulk waves. When 

boundaries are added to the medium different kind of guided waves may appear. We will 

look to surface guided waves (Rayleigh waves), to plate guided waves (Lamb waves) and for 

completeness to other common guided waves, however they are not used in this work. 

A.1.1 Bulk waves 

If we look into the equation of motion eqn. B.6 as written in Appendix B, we notice that it is 

constituted of two very different and complementary parts; the first part is proportional to 

∆=⋅∇ ur
r

 which represents the dilatation or compression of the material, meanwhile the 

second part is proportional to the rotational of the displacement vector ur
r
×∇  which accounts 

for the equivoluminal portion of the solution. Thus if the propagating perturbation involves 

no rotation ( 0=×∇ ur
r

) then the equation of motion eqn. B.6 is equivalent to A.5-left with 

. The solution of this equation, considering plane waves as the propagating 

perturbation, are of the type: 

φ⋅∇=
rru

( ) ( )trkitrki eAeAu ωω +⋅−−⋅− ⋅+⋅=
rrrrr

21  (A.7)

Where rr  is the vector position of a given point in the planar wavefront, ω is the angular 

frequency of the wave and k
r

 is the wavenumber vector in the direction of propagation of 

the wave and it describes the wavelength (λ) and speed (c) of the perturbation as: 

λ = 2π / |k|                      c = ω / |k| (A.8)

The general solution in eqn. A.7 corresponds to two planar waves travelling in opposite 

directions with amplitudes A1 and A2 (arbitrary constants).  

The particular solution to the equation (A.5)-left gives a wave speed equal to: 
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+
= EcL  (A.9)

These waves are called pressure waves (P-wave) or longitudinal waves, because the 

displacement of the particles is along the direction of propagation. 
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Additionally if the propagating perturbation involves no dilatation ( 0=⋅∇ ur
r

) then the 

equation of motion eqn. B.6 is equivalent to eqn. A.5-right with ψ
rrr

×∇=u . This gives an 

identical plane wave solution as in eqn. A.7 but with a different wave speed: 

( )νρρ
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+
==

12
EcT  (A.10)

These waves are called shear waves or transversal waves, because the displacement of the 

particles is transversal to the direction of propagation and parallel to the wavefront. For this 

kind of waves two different modes can coexist; Shear vertical or SV-wave and Shear 

horizontal or SH-wave. If a two dimensional plane of propagation is considered (as we are 

considering planar waves, the third dimension is redundant), then the SV mode is that with 

particle displacement direction within this plane and SH mode the one with the displacement 

being perpendicular to the plane. Shear waves, in opposition to longitudinal waves, require 

an acoustically solid material for effective propagation and so they do not propagate 

effectively in liquid and gas materials. 

Longitudinal and shear waves propagate in an unbounded media without interaction, because 

the equations of motion in A.5 are independent of each other. Any plane wave propagating in 

this media must travel as one or the other mode. These waves are called bulk waves. 

Finally, if we consider the attenuation characteristics of real materials, the amplitudes of the 

propagating waves given in eqn. A.7 should decrease as the waves propagate through the 

material. This amplitude reduction, for plane waves, is usually modelled by an exponential 

reduction with propagated distance: 

r
ii eAA α−⋅= 0  (A.11)

Where Ai0 is the amplitude of the propagating wave at some location, r is the propagated 

distance from that initial location and α is the attenuation coefficient of the wave travelling 

in the material, its dimensions are nepers per meter, so that an attenuation of α nepers per 

meter means that a wave of unit amplitude is reduced to amplitude e-α after travelling one 

meter.  

We must notice here that as we are dealing with ideal planar waves there is not amplitude 

reduction by spreading of the wave as it would be the case for spherical or cylindrical waves. 
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A.1.2 Guided waves 

When a boundary is added to the isotropic media then the bulk waves no longer travel 

independently and coupling of the modes take place during reflections and refractions in the 

boundaries.  

Mathematically the boundaries are added to the equation of motion as physical boundary 

conditions, the problem can not always be solved analytically. Between the few guided wave 

cases with analytical solution, we will study those relevant to the work of this thesis. These 

are in chronological order of discovery; Rayleigh waves, Love waves, Lamb waves and 

Stoneley waves. 

It is interesting to highlight that meanwhile in the case of an infinite body (unbounded 

media) we only have a finite number of propagating modes (P-wave, SV-wave and SH-

wave), in a finite body (bounded media) an infinite number of modes can coexist. 

A.1.2.1 Surface guided waves: Rayleigh waves 

The first analytical solution of a guided wave was carried out by Lord Rayleigh in 1885 [7]. 

He proved that elastic waves could travel in the stress-free surface of a semi-infinite body. 

Their energy and displacement amplitude decaying exponentially with depth, being mainly 

concentrated within a wavelength thickness of the surface. 

These waves are the effect of the superposition of longitudinal and shear waves travelling 

along the surface of the body with a common phase velocity, smaller than their respective 

velocities when propagating in the bulk of the material. This is the velocity of the Rayleigh 

wave, here represented as cR. 

In order to obtain the value of the particle displacement for this type of guided wave, we 

consider the system of reference shown in fig. A.3-left, where the surface is taken as the 

plane XY and the waves are propagating in the X direction. Notice the positive sign of Z (as 

the out-of-plane direction) towards the interior of the body. 

As before, we look for a plane wave solution, that makes the displacements independent of 

the Y axis. Based in the potentials expression of the equation of motion the general 

expression of the solution is given by eqn. A.5. For this problem the scalar and vector 

potentials for waves propagating in the positive X direction can be written as: 

( ) ( ) ( ) ( ) jezDezD tkxi
y

tkxi )r ωω ψψφ −− ⋅==⋅= 21  (A.12)

Where D1 and D2 are the amplitude of the potentials as a function only of the depth (z), as no 

material attenuation is considered for the ideal case of a perfect elastic body. We must notice 
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that for the vector potential ψ

r
 we only consider the component in the Y axis because the 

displacement in Y direction must be null making the other components zero or constant.  

 

 

 

 

 

 

 

Figure A.3: (Left) Convention of the system of reference for Rayleigh wave particle displacements. 

(Right) Snapshot of particles displacements in a Rayleigh wave for a particular time instant. 
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Finally because the boundary condition in this problem is a stress-free surface then σzz = 0 

and σxz = 0 at z = 0, which combined with the equations B.1, B.3, B.5, B.7, A.5 and A.12 give 

the next expressions for the X and Z components of the particles displacement: 
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 (A.13)

Where kR = ω/cR, 22
LRR kkq −= , 22

TRR kks −= , kL = ω/cL , kT = ω/cT and ω is the 

wave’s angular frequency. The arbitrary constant A will depend on the energy of the 

propagating wave.  

Equation A.13 shows that the particle displacement of Rayleigh waves depend on the 

material elastic properties through the bulk waves phase velocity as part of the wavenumbers 

kL and kT. However in order to resolve some values for specific materials we need to know 

kR, which relates with the phase velocity of the Rayleigh waves cR. It is not the intention of 

this section to show in detail how to get to this expression, but in the process of obtaining the 

expression of the displacement in eqn. A.13 a condition for the Rayleigh wave phase 

velocity must be satisfied: 
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From this expression we realize that cR does not depend on the ultrasonic wave’s frequency, 

which means that Rayleigh waves are not dispersive and as a consequence a plane surface 

wave will travel without change in its shape. For values of cL and cT corresponding to real 

media only one solution exist to eqn. A.14 and as shown in [8] it can be approximated to the 

value: 

TR cc
ν

ν
+
+

≈
1

12.187.0
 (A.15)

With ν being the Poisson’s ratio of the material. Because ν is limited, for real materials, 

between 0 and 0.5, then cR is always smaller than cT, which is also smaller than cL. 

In order to understand better the particle displacement characteristics of Rayleigh waves we 

compare, in fig. A.4, the depth dependence of displacement’s amplitudes normalized against 

the amplitude of the perpendicular displacement in the surface w(z=0). We also plot the 

stress amplitudes normalized against the amplitude of σxx in the surface. We must notice that 

this Figure has been obtained for the particular case of aluminium (ν = 0.3375), however it is 

not much different for most metals (with Poisson’s ratio varying between 0.25 and 0.34). 

 air 
within solid

 
 

)0(ˆ/ˆ =zwu
)0(ˆ/ˆ =zww  

)0(ˆ/ˆ =zXXXX

)0(ˆ/ˆ =zXXZZ σσ
σσ

 

 

 

 

 

 

 

 

 

 

Figure A.4: Displacement and stress normalized amplitude values for Rayleigh waves with depth in 

aluminium. 

Several important properties can be extracted from the particles displacement equation and 

from figure A.4: 

• Rayleigh waves amplitude perturbation decrease exponentially with the depth into the 

solid (z), being negligible at a depth of twice the Rayleigh wavelength λR. Thus Rayleigh 

wave penetrates deeper the lower its wave frequency. 
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• The particle trajectory is an ellipse with the major axis perpendicular to the surface of the 

solid (Z direction) and the minor axis in the X direction as it can easily be deduced from 

the fact that displacement components u and w have a difference in phase of π/2 (see eqn. 

A.13). At the surface of the solid and for waves propagating in the X direction, the 

particles rotate counter-clockwise in their elliptical trajectories as shown in fig. A.3-right 

(snapshot of the particles displacement in a particular time instant) by a red dashed ellipse 

with the arrow indicating the rotation direction. As proved by the fact that at the surface 

the particle’s displacement amplitudes have opposite sign, therefore for a given surface 

particle at position x as time increases the wave phase (kRx - ωt) decreases.  

As we go deeper into the solid, the major and minor axis of the particle trajectories 

decrease until u becomes zero at a depth of around 0.2 λR (for most metals), where the 

displacement is totally vertical (red dashed horizontal line in fig. A.3-right). Below this 

depth, the amplitudes of the displacement have the same sign, and then the particles’ 

rotation reverses to clockwise. It is this change in the rotation that characterises the 

difference in Rayleigh waves from waves in water, where the rotation is always 

clockwise. In fig. A.3-right it is evident that the deformation of the solid’s surface, by 

Rayleigh waves, is not sinusoidal. 

• The stress component σxx has a maximum in the surface and then decreases until it cancels 

at a depth near λR/4, to change sign at deeper points. Whilst the stress component σzz is 

null in the surface, and it reaches a maximum at around 0.3 λR depth. 

The application of Rayleigh waves in NDT is for the interrogation of the presence of surface 

and near surface flaws. With the advantage of being able to propagate long distance with low 

loss thanks to the absence of any wave component propagating into the bulk of the semi-

infinite material. However these guided waves cannot give any information about the 

material elastic properties or presence of damage in the region deeper than a Rayleigh 

wavelength, and certainly they cannot provide information of the body’s thickness. 

These waves although theoretically associated to a semi-infinite body, can in practice be 

reproduced in any specimen with a thickness of the order of a few Rayleigh wavelengths. 

A.1.2.2 Layer on a semi-infinite body: Love waves 

Rayleigh waves are one of the most destructive waves generated during an earthquake as 

they propagate along the surface of the Earth. However other surface waves are also 

generated that travel faster than the Rayleigh waves and so are the first to be detected during 

an earthquake. These new waves induce a particle displacement in a direction perpendicular 

to the plane of wave propagation and parallel to the layer’s surface where they propagate, as 
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shown in figure A.51 together with the coordinate system used in this section. In 1911 a 

British mathematician developed a theoretical model of these waves so that thereafter they 

were named after him, Love waves [9]. 

Love showed that these waves can only exist on layers over a half-space of different elastic 

properties. The solution for the particles displacement of the equation of motion is in this 

case only dependent on the v variables in both mediums (layer and half-space), as shown by 

the governing equation A.16 given in ref. [9]. 
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Where nnTn
c ρµ /=  are the transversal phase velocity of the respective mediums, with the 

subindex n = 1 associated to the layer and the subindex n = 2 associated to the half-space.

Applying the boundary conditions of this problem;  at z = -d,  at z = 0 and 

 at z = 0. And considering a planar wave solution, we obtain the next particle 

displacement solutions: 

0)1( =zyσ )2()1(
zyzy σσ =

)2()1( vv =

( )[ ] ( )kxwtiedzkDv −+= 11 cosh β     at –d ≤ z ≤ 0 (A.17)

( ) ( )kxwtikzeekdDv −−⋅= 2
12 cosh ββ          at z ≥ 0 (A.18)

Where 22 /1
nTn cc−=β  and D an arbitrary constant. The Love waves’ phase velocity c is 

obtained from the Love characteristic equation: 
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The solutions to eqn. A.19 are real only if cT2>cT1 and they satisfy the condition cT1<c<cT2. 

The phase velocity is a function of the wave’s frequency so Love waves are dispersive. As 

shown in eqn. A.18, Love waves amplitude decrease exponentially with depth in the half-

space. 

Love waves are interesting for NDT applications as they create stress fields in all the 

thickness of the top layer, giving information of it all. However their propagation is also 

affected by the surface of the half-space over which the layer rests.  

Love waves opposite to surface waves can propagate in multiple modes. The bigger the 

value of the product fd, then the higher the number of existing modes.  

                                                      
1 Original extracted from http://www.geo.mtu.edu/UPSeis/waves.html. 
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Figure A.5: Shear Horizontal displacement of Love waves in a layer over a half-space. 
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These waves are not presented in our experimental work as we do not satisfy the condition of 

having the plate (layer) over a half-space. Fortunately, another kind of guided waves can 

provide also the through thickness information of the layer without being affected by any 

other media. These waves are the ones used for the present work and they are described next. 

A.1.2.3 Plate-like guided waves: Lamb waves 

When a second surface parallel to the existing one is added to the semi-infinite body, then 

the elastic waves propagate as a new kind of guided wave in the plate-like solid. These new 

waves are called Lamb waves in honour to its theoretical discoverer Horace Lamb [10]. 

As a result of having the body bounded between two infinite surfaces, the bulk waves 

propagating within the body are reflected back and forth between the upper and lower 

bounding surfaces originating multiple reciprocal mode conversion. This results in an 

interference pattern along the thickness of the plate that guides the wave in a specific 

direction within it. 

As already seen, the superposition of the transversal and compressive waves in each surface 

of the body generates Rayleigh waves. When these surfaces are close enough from each 

other, the propagating Rayleigh waves in the upper and lower surface couple, transforming 

into the new kind of elastic waves, Lamb waves. For this to happen, the thickness of the 

plate must be of the order or smaller than an ultrasonic wavelength.  

Because Lamb waves are the effect of the coupling of surface Rayleigh waves, then Lamb 

waves spreading attenuation is of a two dimensional wave, in contrast of the three 

dimensional spreading attenuation associated to bulk waves. In consequence, Lamb waves 

can propagate larger distance with very low attenuation, and because they produce stress 
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fields throughout the bulk of the plate, they provide information of the body’s entire 

thickness elastic characteristics. Although their range within the plate specimen depends on 

many parameters, interrogation distances of the order of hundreds or thousands of ultrasonic 

wavelengths can be realistically expected. 

Solution of the equation of motion 

The propagation characteristics of Lamb waves can be analysed once solved the particle 

displacement expressions associated to these waves. With this purpose in mind, the equation 

of motion must be solved under the current boundary conditions such that the associated 

traction force must cancel on the surfaces of the plate. Or equivalently that σXZ = σZZ  = 0 at z 

= ± d/2. The solution is obtained based in the expression of potentials for the equation of 

motion and following the same reasoning as we did with the Rayleigh waves. However for 

this problem, the geometry and coordinates definitions are as in fig. A.6, where an infinite 

plate of thickness d is defined. Again we consider a planar harmonic wave solution so it will 

be independent of the coordinate perpendicular to the plane of propagation (in our case 

coordinate Y). 

 Z

X
Y

d/2 

-d/2 Infinite plate body

 
d  

 

Figure A.6: Geometry of infinite free plate problem. 

We will not develop in here the solution extraction process, which has already been done in a 

very detailed way in reference [8]. It is necessary though to highlight in this appendix the 

main conclusions of this process and the properties associated to Lamb wave’s propagation 

characteristics. 

The solution of Lamb waves to the equation of motion allows two groups of waves to travel 

in the plate independently of one another. Both groups are characterized by the symmetry of 

the normal displacement of the particles relative to the plate’s neutral axis (plane z = 0). 

These groups are called symmetric mode when the displacement is symmetrical and 

antisymmetric mode where the displacement is antisymmetrical, as illustrated in figure A.7. 

In order to characterize the two groups of solution, four equations are needed to express the 

Lamb wave particle displacements; in-plane and out-plane displacements for symmetric and 

antisymmetric modes. Their expressions are given in eqn. A.20. 
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Figure A.7: Snapshot of Lamb waves particles displacements: (Left) For a symmetric So mode. 

(Right) For an antisymmetric Ao mode. 
  

The subindex A is associated with the antisymmetric modes and the subindex S is associated 

with the symmetric modes. Additionally kS, kA = ω/c with c being the Lamb wave phase 

velocity (for symmetric mode in the case of kS and for antisymmetric mode in the case of kA), 

qS, 22
, LASA kkq −= , sS, 22

, TASA kks −= . The arbitrary constants A and B will depend in 

the power density of the propagating wave.  
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It is interesting to notice that the in-plane displacement of the antisymmetric modes (uA) 

vanishes at the centre of the plate (z = 0), which characterize the predominantly out-of-plane 

component motion associated to this mode. In contrast, for the symmetric modes it is the out-

of-plane displacement which cancels at the centre of the plate, evidencing their 

predominantly in-plane component of motion. 

In Lamb waves the displacements of the particles take place both in the direction of the 

wave’s propagation and in the direction perpendicular to the plane of the plate, as it is clear 

from the expressions in eqn. A.20. This behaviour is similar to the previously described 
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Rayleigh waves, and like them for each Lamb wave mode, the particles describe elliptical 

trajectories. 

During the process of extracting the previous particle displacement expression, several 

conditions had to be satisfied. These conditions limit the values that the Lamb wave phase 

velocity c can take. And obviously, the phase velocity values must be known in advance, in 

order to get the values of the particle displacements for a specific material. The conditions 

that determine the range of c values for which Lamb waves exist in a material are given by 

the Rayleigh-Lamb characteristic equations: 
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Where the exponent +1 is associated with the roots for the symmetric modes phase velocity 

and the exponent –1 with the roots of the antisymmetric modes. We also have 

( ) Tcdfd /π= ,  and . 222 / ccT=ς 222 / LT cc=ξ

Phase and Group velocity dispersion curves 

Although eqn. A.21 looks rather simple, it only can be solved numerically. It sets the phase 

velocity at which a Lamb wave of a given frequency can propagate within the plate of a 

given thickness. As we can see from this equation the phase velocity is a function of the 

wave’s frequency, so Lamb waves are dispersive. In fact it is a function of the product 

frequency times the plate’s thickness. The numerical solution of the Rayleigh-Lamb equation 

gives the waves’ dispersion relationship in what is known as the Lamb wave dispersion 

curves. Figure A.8-left shows an example of such curves for an aluminium plate.  

Lamb waves can propagate simultaneously and independently in a different number of 

modes depending on the product of the wave frequency and the thickness of the plate, as 

shown in figure A.8. These modes belong to one of the two groups regarding the symmetry 

of their particles displacements, but they differ from one another in their phase and group 

velocity and distribution of displacement and stress through the thickness of the plate. 

For low frequency:thickness product values only one root for each characteristic equation 

exist. These are the null symmetric (S0) and null antisymmetric (A0) modes and they exist for 

all the frequency:thickness product values. It is useful to obtain the expression of their phase 

velocity in the extreme cases of very small and very high values of fd. For (fd → 0) we have: 
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Figure A.8: Lamb waves dispersion curves for the first 6 symmetric (red) and antisymmetric modes 

(black) in aluminium: (Left) Phase velocity dispersion curves. (Right) Group velocity dispersion 

curves. 

Equation A.22 shows that for low frequency:thickness product the S0 has a constant phase 

velocity and so it is non dispersive, meanwhile eqn. A.23 shows that the A0 mode’s phase 

velocity increases linearly with fd being null at fd = 0. 

As the frequency:thickness product increases to infinity, it is easy to prove mathematically 

that the null modes phase velocity tends to the Rayleigh waves value cR. Experimentally can 

be shown that when the thickness of the plate d is twice or bigger the Rayleigh wavelength 

λR then the two null Lamb wave modes (A0 and S0) start having a great similarity with the 

Rayleigh waves. They become non-dispersive with their group and phase velocity near to the 

phase velocity of Rayleigh wave, and the depth distribution of the displacements in each of 

the waves for the upper and lower halves of the plate is similar to the distribution of the 

Rayleigh wave displacement.  

In fact within the previous condition d > 2·λR the ultrasonic source excites the modes A0 and 

S0 with nearly equal amplitudes and phases, being their displacements in the same direction 

in the surface of the plate where the source is located, and in opposite direction in the other 

surface of the layer. During their propagation, A0 and S0 modes interfere with one another 

such that near the ultrasonic source their total acoustic field is similar to the Rayleigh wave 

acoustic field. In this way, the null modes behave as a quasi-Rayleigh wave propagating in 

the same surface where the source is situated. 
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As we go farther from the source the phase difference between the null modes increases, 

becoming π at a distance L, which is a function of d / λR (see [8] for an approximated 

expression). At this distance the quasi-Rayleigh wave ‘transfers over’ to the opposite surface 

where the source is located. Repeatedly this ‘transference’ of the quasi-Rayleigh wave from 

one surface to the other happens every multiple of the mentioned distance L. When d/ λR →∞ 

then L→ ∞ and the quasi-Rayleigh wave becomes a pure Rayleigh wave, which corresponds 

effectively to a half-space solid situation. 

These null modes are pure, inhomogeneous interface waves that are originated from bulk 

wave mode conversion in the surfaces of the plate. But other Lamb modes are present in 

plate-like structures as we increase the frequency:thickness product from zero. The 

additional number of new roots, of both the symmetric and antisymmetric characteristic 

equations, increases successively as the frequency:thickness product increases. These are 

called high order modes and in opposition to the null modes, they originate in the body of 

the material. These modes are not present at all frequencies, as they are originated as 

standing waves related to one of the bulk waves. The frequency:thickness product values at 

which they appear are the cut-off frequencies and their expressions are given in eqns. A.24 

and A.25. At these points, the phase velocity approaches asymptotically infinity and the 

group velocity tends to zero. This agrees with the affirmation of having the high order modes 

originated as standing longitudinal and/or transversal waves across the thickness of the plate, 

because a standing wave does not propagate energy thus its group velocity must cancel. If 

we rewrite the cut-off frequencies as a relation between thickness of plate and bulk 

wavelength (as shown in the right side of previous equations) we can clearly understand the 

transversal or longitudinal though-thickness standing wave origin of these high order modes.   

For symmetric modes: 
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For antisymmetric modes: 
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Where n = 0, 1, 2 … Notice that left and right expressions are equivalent. 

The cut-off frequencies are assigned to the Lamb waves modes, following increasing 

frequency:thickness product value with increasing mode order. However this incremental 
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order will depend on the values of the bulk waves phase velocities. For instance, in Table 

A.1 we show the cut-off frequencies associated to the first five symmetric and antisymmetric 

modes for the materials used in this thesis; aluminium, steel and Perspex. In this table we see 

that in Perspex and steel the assigned cut-off frequencies to the modes are the same, however 

they are different from the ones assigned to the symmetric modes in aluminium. 

Material Symmetric cut-off 
frequency:thickness 

Antisymmetric cut-off 
frequency:thickness 

S1 CT A1 CT/2 

S2 CL/2 A2 3CT/2 

S3 2CT A3 CL

S4 3CT A4 5CT/2 

Aluminium  
cT =3.13       
cL = 6.32 

S5 3CL/2 A5 7CT/2 

S1 CL/2 A1 CT/2 

S2 CT A2 3CT/2 

S3 2CT A3 CL

S4 3CL/2 A4 5CT/2 

Steel         
cT =3.26       
cL = 5.96 

S5 3CT A5 7CT/2 

S1 CL/2 A1 CT/2 

S2 CT A2 3CT/2 

S3 2CT A3 CL

S4 3CL/2 A4 5CT/2 

Perspex       
cT =1.43       
cL = 2.73 

S5 3CT A5 7CT/2 

Table A.1: Cut-off frequency:thickness products associated to the first five symmetric and 

antisymmetric modes for common materials. The bulk waves velocities are in km/s. 

When the high order modes begin to travel (for frequency:thickness products over their cut-

off values) they couple with the remaining bulk wave and create an inhomogeneous wave.  

As the frequency:thickness product values increases to infinity, the phase velocity of the 

high order modes (both symmetric and antisymmetric) converge to the transversal bulk wave 

velocity value cT. 

It is remarkable that the high order symmetric modes’ dispersion curves have a frequency: 

thickness product interval, just over their cut-off frequencies, where the phase velocity 

flattens. At the beginning of this region the modes’ phase velocity reaches the longitudinal 

bulk wave value (shown as a green horizontal line in Figure A.8-left). These 

frequency:thickness product intervals are broader the higher the symmetric order mode. 

Additionally, the symmetric modes group velocities reach their maximum in these intervals, 

and the out-of-plane displacement of the symmetric modes vanishes in the surface of the 
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plate. This situation contributes to the already pointed affirmation that symmetric modes 

have preferential longitudinal mode behaviour. 

The Lamb waves’ dispersion characteristic is, as previously stated, commonly displayed in 

the form of phase velocity curves. But a more important and useful concept are the group 

velocity dispersion curves (Figure A.8-right), as they provide relevant information such as 

the time of arrival of wave packets. Group velocity dispersion curves show the velocity at 

which finite-time wave packets travel in the structure. In order to avoid an unnecessary 

extension of the length of this appendix and because of the particular difficulty and 

importance of understanding what group velocity represents and its difference with the phase 

velocity, we have dedicated the full length of Appendix D to this subject. We encourage any 

interested reader to have a look at it.  

In a simple way, group velocity is defined as cg = dω/dk, with k being the Lamb wavenumber 

k = ω/c. It is easy to probe that cg can be rewritten as: 

( ) ( )

1
2

−

⎥
⎦

⎤
⎢
⎣

⎡
−=

fdd
dcfdcccg  (A.26)

Equation A.26 shows that when the phase velocity c does not change with fd then cg = c, as it 

is the case of non-dispersive systems. This happens to the S0 mode at low values of fd or at 

high values for both S0 and A0 modes, as shown in figure A.8.  
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Figure A.9: S1 mode phase velocity around its cut-off frequency:thickness value in aluminium. In 

green is the anomalous mode’s region and in dashed black the cut-off frequency. 

Finally we want to highlight the behaviour of S1 mode around its cut-off frequency:thickness 

product (see fig. A.9). This mode is defined for frequency:thickness products below its cut-

off frequency and it suffers of anomalous dispersion where dc/df  > 0 (in green in fig. A.9) 
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and the mode’s phase velocity appears to have double value. When dc/df is sufficiently 

negative, based in eqn A.26, the group velocity becomes negative, and the transportation of 

energy or information by the wave takes place in opposite direction to its phase velocity. In 

addition when rewriting the group velocity as cg = (d(1/λ)/df)-1, it is evident that a negative 

group velocity implies that the ultrasonic wavelength increases as the frequency increases, 

which is the opposite of the common situation. 

The negative group velocity phenomena was considered at the beginning of the 20th century 

as unphysical and just of only mathematical consideration [11], and it is not until the middle 

1960’s that it was experimentally verified [12]. As shown in Chapter 6, the negative group 

velocity for S1 mode in aluminium is present in our experimental work. This particularity 

although naturally associated to S1 mode for all materials, it can also be present in other 

symmetric and antisymmetric high order modes for certain elastic materials. This is 

discussed further in Chapter 7 and in Appendix D. 

The paradox of cT and cL as solutions of the Rayleigh-Lamb characteristic equation 

It is not difficult to prove that 1=ς  (which means c = cT) is a solution of the Rayleigh-Lamb 

characteristic equation for the symmetric modes, for any value of d  or alternatively for any 

value of the frequency:thickness product. Effectively for the symmetric mode we use the 

equation with positive exponent (+1). Then for 1=ς  we have that 01 2 =− ς  so 

( ) 01tan 2 =⋅− dς  and then we have 0 = 0, which is a solution of the Lamb wave equation. 

The only possibility to avoid mathematically this solution is to get an indetermination of the 

kind 0/0 in the left side of the equation. Then we need ( ) 0tan 22 =⋅− dςξ , but because for 

real materials we have that cT < cL then  and 22 ςξ < 22222 1 ξξςςξ −⋅=−⋅=− ii  is a 

complex number. Now considering the case of ς = 1, we have ( )=⋅− d22tan ςξ  

( ) ( )didi ⋅−⋅=⋅−⋅ 22 1tanh1tan ξξ . The only way to make this equal to 0 is doing 

01 2 =⋅− dξ , which implies that 0=d , option that does not have physical meaning. 

This mathematical analysis concludes that the horizontal line c = cT should be a solution in 

the symmetrical modes dispersion curves. However it does not appear experimentally and it 

neither appears in fig. A.8.  

A similar analysis over the antisymmetric characteristic equation (negative exponent -1), 

would give c = cL as a solution of the antisymmetric modes for any value of the frequency: 

thickness product. Again this solution does not appear experimentally. 
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Lamb modes are generated by interference of the transversal and longitudinal bulk modes, 

and then the bulk modes by themselves cannot be a Lamb wave solution. 

The answer to this paradox is that these solutions are a mathematical artefact. Although they 

satisfy Lamb wave characteristic equation, they do not satisfy the boundary conditions. 

When evaluating the stress field in the surface of the plate, using one of these bulk velocities, 

we find that the traction forces σXZ and σZZ are not zero, hence they cannot be Lamb waves. 

Lamb wave testing of materials 

Phase and group velocity dispersion curves are highly sensitive to the principal material 

elastic properties (Poisson’s ratio, Young’s modulus) as shown by the dependence of the 

characteristic equation on the bulk waves phase velocity and on these with E and ν as given 

on equations A.9 and A.10. Together with their highly dependence to structural loading or 

the presence of defects within the material, makes them very useful in NDT applications. 

Conventional Lamb wave testing methodology, where usually a single frequency sinusoidal 

toneburst is used, looks to the differences between the detected ultrasonic signal for the 

damaged plate and a reference ultrasonic signal associated to the certainly known 

undamaged plate. These changes are associated to the reflections of the generated ultrasonic 

signal from the presented damage. 

This conventional analysis is mainly carried on the time domain and it looks not only to 

changes in amplitude of the ultrasonic signal, but also to phase changes or even appearance 

of propagating new Lamb modes originated by mode conversion in an antisymmetric 

boundary [13]. The analysis is usually simplified by confining it to low values of 

frequency:thickness product such that only the fundamental modes S0 and A0 can propagate 

in the structure. This avoids the overlapping of high order modes arriving at same time to the 

detector, which would complicate considerably the time signals. For instance in aluminium 

the frequency:thickness product is usually restricted to be under 1.5 MHz mm (as shown in 

figure A.8). 

The most common generation techniques used in conventional Lamb waves testing are; 

angle beam transducers, comb transducer or PZT transducers. These systems can be used to 

selectively launch a single fundamental mode [14,15], which although possible in theory it is 

a bit difficult in practice but effectively helps in the time domain signal interpretation. In 

addition, it is also of great help the fact that for low frequency:thickness products (below 1 

MHz mm) the S0 mode is non-dispersive and it is the fastest of the fundamental modes, being 

able to propagate for significant distances without losing temporal pulse definition and 

without interfering with any other presented mode. However its main disadvantage is that its 
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wavelength (around 1 cm) is large in comparison with the plate thickness (1 mm), thus 

placing a limit on the far field analysis attainable defect resolution. The A0 mode in contrast 

has much smaller velocity values up to 0.5 MHz mm frequency:thickness product, however it 

is highly dispersive in this area, modifying considerably the launched signal and interfering 

with the reflections of the faster S0 mode. 

The signal processing advantage of the conventional technique proves its common uses in 

NDT applications where the damage resolution limitation is not a problem. This technique 

has been used in the experimental work of chapters 3 and 4. 

Nonetheless, the limitations of the previous singlemode inspection technique obligate to 

develop alternative inspection techniques, in order to provide a higher defect resolution. One 

of such techniques utilises a broadband excitation of the Lamb wave spectrum, providing a 

much shorter ultrasonic wavelength. As a consequence of the broadband excitation a large 

number of high order modes are excited causing a very complex overlapped time signal, 

which requires the application of more complex signal processing techniques; such as those 

presented in Chapter 5 in order to extract the dispersion curves information. The technique is 

used in the experimental work of chapters 6 and 7. 

Lamb wave mode selection 

Lamb waves displacement and pressure distribution along the thickness of the inspected 

plate is rather complicate, changing dramatically not only as the mode’s type changes, but 

also as the mode’s order does. Even when we move along the same mode, by changing the 

frequency:thickness product value, the through-thickness distribution is very different. 

Figure A.10 is a good example of this, it compares the displacement distribution of the S0 

mode along the thickness of an aluminium plate, for two different frequency:thickness 

product values. The vertical axis z/λ represents the depth normalized against the ultrasonic 

wavelength. The value 0 is associated to the centre of the plate and the maximum and 

minimum values representing its top and bottom surface. In the other hand the horizontal 

axis shows the in-plane (red) and out-of-plane (blue) displacement values normalized against 

the out-of-plane displacement in the surface of the plate. At around 0.12 MHz mm the S0 

mode behaves as a longitudinal wave with a nearly null out-of-plane displacement and with 

the in-plane displacement almost constant across the plate’s thickness, as shown in fig. A.10-

left. However at around 2.34 MHz mm the situation is totally different with the out-of-plane 

displacement in the surface being much bigger than the in-plane one, and with the in-plane 

displacement energy concentrated mainly at the centre of the plate and cancelling at a certain 

depth, as we can see in fig. A.10-right. This is in contrast to the general preferential in-plane 
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behaviour of the symmetric modes as previously commented, and it helps in understanding 

that the symmetric modes cannot be thought of just an in-plane vibration. 

 

 

 

 

 

 

 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0.3

Normalized displacement

z/
λ

 
0 5 10 15 20 25 30

-0.01

-0.005

0

0.005

0.01

Normalized displacement

z/
λz/λ 

 

Figure A.10: In-plane (red) and out-of-plane (blue) displacement values for S0 mode in aluminium: 

(Left) Frequency:thickness = 0.12 MHz mm. (Right) Frequency:thickness = 2.12 MHz mm. 

Similar can be said of the antisymmetric modes, as not being just out-of-plane vibration 

modes. As an example we have fig. A.11, where two different frequency:thickness product 

values are considered for A0 mode in aluminium. 

 

 

 

 

 

 

 

 

 

Figure A.11: In-plane (red) and out-of-plane (blue) displacement values for A0 mode in aluminium: 

(Left) Frequency:thickness = 0.0195 MHz mm. (Right) Frequency:thickness = 4.53 MHz mm. 

At low frequency:thickness product values the A0 mode behaves as a transversal mode with 

an almost null in-plane displacement and a uniform though thickness out-of-plane 

displacement. 
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In contrast, as the frequency:thickness product increases (fig. A.11-right), the in-plane 

displacement increases considerably in the surface of the plate and the out-of-plane 

displacement energy moves as well towards the surface. This behaviour is a reminder of the 

mode’s Rayleigh wave characteristic as the plate thickness is comparable to the ultrasonic 

wavelength. 

The different energy distribution and behaviour of the different modes make important to 

understand the interaction characteristics of the chosen sensors with the ultrasonic waves and 

their embedded or bonded position within the inspected structure, in order to properly choose 

a Lamb mode and frequency:thickness value that maximize the sensitivity of the sensor. For 

instance, FBGs are known to be mainly sensitive to in-plane displacements [16]. Then for a 

surface bonded FBG sensor, certainly the case in fig. A.10-left would be the most suitable. 

Meanwhile for an out-of-plane displacement interferometric sensor, the case in A.11-left 

would be preferable. 

It is also important to properly understand the interaction characteristics of the expected 

structural damage; for instance the through-thickness position of the damage should require a 

Lamb mode with considerable stress and energy distributions around the same depth as the 

damage is located. Or the affinity of the damage interaction to in-plane or out-of-plane 

displacements. For instance delaminations are known to be more sensitive to transversal 

stresses, so they will be better detected by the use of the ultrasonic wave in fig. A.10-right 

than by the wave in the left side of the same figure. 

A.1.2.4 Interface waves : Stoneley waves 

These waves exist at the interface of two half-space solids when the interface is capable of 

supporting the wave so that no energy is leaked into any of the materials. This is only 

possible for a very limited domain of material properties as given in [17].  

It was R. Stoneley who by generalization of the single interface problem (Rayleigh waves) 

first gave a mathematical model to these waves in 1924 [18]. 
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Figure A.12: Stoneley waves propagating within the interface of two half-space bodies. 
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Following the notation and coordinate system depicted on fig. A.12, and applying the 

boundary conditions for a perfect contact interface in z = 0 to the equation of motion; u(1) = 

u(2), w(1) = w(2),  and . Where the indices (1) and (2) associated to the 

upper and lower half-spaces respectively. 

)2()1(
zz σσ = )2()1(

xzxz σσ =

We obtain the Stoneley waves particles displacements: 
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Where 22 /1
nLn cc−=α , 22 /1

nTn cc−=β  and An, Bn are arbitrary constants with n = 1,2 for 

upper and lower half-space respectively. Notice that because βn must be real then Stoneley 

waves’ phase velocity c must be smaller than the smallest cTn. The displacement amplitude is 

higher in the interface (z = 0) and then it decreases exponentially with the depth in any of 

both materials. 

In order to obtain the phase velocity value of the propagating Stoneley wave and to solve the 

four arbitrary constants then the real roots of the determinant in A.29 must be obtained. 
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Where g = µ2 / µ1. Because no component of this determinant is a function of the wave’s 

frequency, then Stoneley waves are not dispersive. 

Stoneley waves are best suited for assessing the quality of bonded interfaces for bonded joint 

inspection as they are sensitive to microstructural changes and the degree of contact between 

the two media that create the interface in which they propagate [19]. However the main 

drawback of Stoneley waves is that they are inherently difficult to generate and detect. 

In the work of this thesis Stoneley waves were avoided in the interface between the 

aluminium specimen plate and the supporting optical bench, by inserting paper sheets in 

between, or leaving an air gap. The only case in which Stoneley waves could appear is in the 

interface between the aluminium plate and the Epotex mould of the optical fibre sensors 

during the wavefront integration experiments described in Chapter 4. Nonetheless this 

interface does not allow the existence of Stoneley waves. 
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A.2 CONCLUSIONS 

In this appendix we have presented the principles of the theory of elasticity, so that the 

reader could get familiar with the basic concepts of wave propagation in solid materials. We 

have introduced important concepts such as strain and stress fields, phase and group velocity, 

and we have defined the elastic properties that completely define the elastic behaviour of an 

isotropic solid material; Poisson’s ratio and Young’s modulus.  

We have seen that the bulk waves presented in all solid materials can interfere to generate 

different kinds of ultrasonic guided waves. Between them special attention has been given to 

surface and plate-like guided waves, as they are the most involved within this thesis. 

However we have not forgotten that under adequate boundary conditions other guided waves 

may be presented, and we have justified why they are not relevant in our experiments. 

Special attention has been given to the analysis of the dispersive and multimode propagation 

characteristic of Lamb waves and how this information can be used for testing of materials 

and for monitoring of its elastic properties. In addition, fundamental concepts such as phase 

and group velocity dispersion curves and high order modes cut-off frequency:thickness 

products were presented, preparing the reading for their use along the thesis. 

 

 

 

 

APPENDIX B: Equation of motion in elastic solids 

In order to develop the equation of motion we need to express the left side of Equations A.2-

A.4 as a function of the element’s displacement variables, for which we need to look at the 

stress-strain relationship of the material or Hooke’s law. Based on this law, each of the six 

components of stress in the element of material can be expressed as a linear function of six 

components of strain. This gives 36 possible independent coefficients to relate stress and 

strain, however it can be shown [35] that for isotropic elastic media only two independent 

constants remain, they are named Lamé’s constants and they are represented by the Greek 

letters λ and µ. The Lamé’s constants completely define the elastic behaviour of an isotropic 

solid by the next relationship: 
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Where ∆ = εxx + εyy + εzz represents the change in volume of a unit cube and is named 

dilatation; εxx, εyy, and εzz are the normal strain components; εxy, εyz, and εzx are the shear 

strain components. Figure A.1-right helps to understand how the strain components are 

defined as it looks to an infinitesimal translation and deformation of the two dimensional 

plane YZ of the material’s elements defined in appendix A.  

The normal strains correspond to the fractional expansions and contractions of the 

infinitesimal element’s line edges parallel to the main axis. Following the notation in Figure 

A.1-right we can express εyy and εzz by: 
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Under the approximations of small strain and deformations the normal strains can be 

rewritten as: 
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The shear strains correspond to the angular deformation of the infinitesimal elements in the 

different planes, such that following the notation in Figure A.1-right we can express εyz as: 

21 θθε +=yz  (B.4)

Again under the approximations of small deformations and by analogy with the other planes: 
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Finally the equation of motion for an elastic isotropic solid in the absence of body forces, as 

a function of the particle displacements is obtained by substituting Equations B.1, B.3 and 

B.5 in A.2-A.4, and after applying some algebraic manipulations: 
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Where )ˆˆˆ( kwjviuu ++=
r

 is the displacement vector and ∇
r

 the gradient operator. 

This expression can be simplified by the application of Helmholtz decomposition [36] over 

the displacement vector, such that it can be written in terms of a scalar potential φ  and a 

vector potential ψ
r

 as: 

ψφ
rrrr

×∇+⋅∇=u  (B.7)

If we substitute (B.7) into (B.6): 
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This equation is satisfied only if both terms are null, so the equation of motion can be 

decomposed into two uncoupled equations: 
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APPENDIX C: Most sensitive polarization state of light 
output in the polarimetric sensor 

In chapters 2 and 3 we presented the operation and set up of the polarimetric sensor system 

for ultrasonic wave detection. There it was mentioned that the ultrasonic signal amplitude 

produced by the system set-up was dependent both on the input state of polarisation of the 

light to the system, and the orientation of the polariser at the output. Here we present a 

theoretical analysis of the polarimetric system sensitivity dependency with the polarization 

state of the light at the output of the optical fibre sensor and the orientation of the linear 

polarizer. In order to do this, we compare the maximum variation of the optical intensity 

passing through the polarizer in its optimum orientation due to a small change in its 

polarization state, for the three cases in which the output light of the sensing fibre (before the 

polariser) is linear, circular and a general elliptical case. 

In this analysis we have considered several realistic simplifying assumptions; a linear 

birefringence induced by the ultrasonic wave [33], a monochromatic and plane wave light 

progressing in either direction along the z axis corresponding to the axis of the fibre, and the 

only changes in the polarization state of the light caused by the acoustic wave are changes in 

the phase difference between the two electric field components and not in their associated 

amplitude. 

The Jones’ algebra [34], developed by R. C. Jones in 1941, is specially adapted to the 

description of the polarized states of light and their coherent superposition, therefore is the 

notation chosen for this analysis. The state of polarization of a propagating light wave may 

be completely defined by stating the amplitudes and phases of the X and Y components of the 
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electric vector of the light wave. Thus at any fixed point along the Z axis, the electric field 

may be written as: 

( ) ( ) jaiaE YYXX
ˆcosˆcos δτδτ +++=

r
 (C.1)

Where aX and aY are the amplitude of the two orthogonal electric fields. δX and δY are 

arbitrary phase values of each electric field component so that we can define δ = δX - δY as 

their difference in phase. We also define τ = ωt – kz. 

Jone’s algebra represents these electric fields components in a matrix notation with an 

orthogonal base of two vectors of dimension 2x1 representing the linear states X and Y as 

given by eqn. C.2. 
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Hence any electric field (or polarization state) associated to a plane wave light can be 

expressed as a combination of these orthogonal base vectors as shown next: 

2211 eEeeEeE ⋅+⋅=  (C.3)

Where Eei represents the projection of the electric field polarization state to the base 

vector component ie with i = 1,2. The effect of any optical element (f.i. a polarizer) on the 

light can be represented as a linear operator acting upon the electric vector of the light wave. 

The operator is expressed as a 2x2 matrix in Jone’s algebra. 

Linearly polarized light 

In a linearly polarized light the two electric field orthogonal components propagate in phase 

(δ = 0) or equivalently the electric field vector evolves with time along a line in the plane of 

polarization as shown in fig. C.1-left. The linearly polarized light can be expressed in Jone’s 

algebra by eqn. C.4. 
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Where 22
YX aar += and γ is the remanent angle of polarization defined as γ = tan-1(aY/aX) 

and it represents the angle of the diagonal line of the polarization plane with respect to the 

horizontal axis as shown in fig. C.1-left. For a line polarized line this diagonal line agrees 

with the line along which the electric field vector evolves with time (in red in fig. C.1-left). 
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Figure C.1: (Left) Linear polarized light in the plane of the wave. The electric field of the light 

evolves in time along the red line. (Right) Ultrasonic wave perturbation of the linear polarization state 

into a slightly elliptical one. In blue we show an arbitrary position of the linear polarizer. 

When a polarizer acts over the electric field of the propagating light, the effect can be 

represented in Jone’s algebra as a 2x2 matrix. In the case of a linear polarizer oriented at an 

angle β respect to electric field line (shown by a blue line in fig. C.1-left) this matrix is 

defined as: 
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Therefore, following the description of Jone’s algebra presented in [34] now we can express 

the optical intensity or irradiation of the light coming out the polarizer as:  
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(C.6)

Where we have applied the property associated to a polarizer operator for which 

PPPP == 2 . 

Now when the propagating ultrasonic wave pressure field interact with the optical fibre 

sensor where the light wave is progressing, the polarization state of the light is disturbed by a 

slight change in the phase difference between the two electric field components so that δ = 

∆δ 0. As we mentioned in our assumptions the induced birefringence does not change the 

amplitude of the electric field components aX and aY and so neither the angle γ. The new 

polarization state will be slightly elliptical as shown in fig. C.1-right and it is given by: 
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The irradiation through the polarizer situated in the same orientation as before β would be 

given in this case by: 
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Thus the acoustic wave causes a variation on the optical intensity after the polarizer equal to 

the difference between eqns. C.6 and C.8: 
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We can see from this equation that the changes in the intensity will cancel if
⎪⎩

⎪
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which is logical because this correspond to the case in which aX or aY are 0. Therefore only 

one of the two components of the electric field is present and in this case δ has not meaning. 

It also cancels when
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2
  which corresponds to having the polarizer in one of the 

two main axis ( i or ). In such case there will not be changes in the optical intensity without 

changes in γ. 

ˆ ĵ

We can look to which orientation of the polarizer β we can get more sensitivity (or 

maximum value of the intensity difference in eqn. C.9). For a given value of ∆δ and γ the 

maximum happens at maximum values of ( )[ ]βγ −2sin , which corresponds to values 

( )
4

12 πγβ +−= n  or equivalently a maximum sensitivity for linearly polarized light 

occurs when the polarizer is situated at 45 degrees respect to the main axis of the plane of 

polarization. Minimum sensitivity occurs when
4

2 πγβ n−= , for ,...2,1,0=n  

Circular polarization 

In the case of a circular polarized light before the arrival of the acoustic wave perturbation, 

the two electric components of light have same amplitude aX = aY and out of phase (δ = ± 

π/2) and γ = π/4. The electric field vector evolves in time along a circumference in plane of 

the wave of light as shown in fig. C.2-left, the direction of the rotation depending in the sign 
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of δ. However this does not have any effect over the optical intensity passing through the 

polarizer. 

In Jone’s algebra the circular polarization state is given by the vector: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −

2

1

2
π

iCIR
e

rE  (C.10)

The optical intensity coming out through the polarizer situated at an angle β from the 

diagonal of the plane of the wave (as shown in fig. C.2-left) is given by eqn. C.11. 

2

2rEPEI CIRCIRPC ==  (C.11)

The intensity through the polarizer in a circular polarization is obviously constant. 

As the propagating ultrasonic wave pressure field interact with the optical fibre sensor the 

circular polarized light changes slightly its polarization state towards a elliptical polarization 

of low eccentricity, caused by a slight change in the phase difference between the two 

electric field components so that δ = ± π/2 + ∆δ, with ∆δ 0. The change in the ellipticity of 

the electric field vector trajectory is shown in fig. C.2-right, as before the amplitude of the 

electric field components is unchanged. 
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î
a

γ 
Main 

ellipse’s axis

a
ĵ
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Figure C.2: (Left) Circular polarized light in the plane of the wave. The electric field of the light 

evolves in time along the red circle. (Right) Ultrasonic wave perturbation of the circular polarization 

state into a low eccentricity elliptical one. In blue we show an arbitrary position of the linear polarizer. 

The new Jones’ vector associated to this modified polarization state is given by: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ⎟

⎠
⎞

⎜
⎝
⎛ ∆+− δ
π
2

'
1

2
iCIR

e
rE  (C.12)
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The irradiation through the polarizer situated in the same orientation as before β would be 

now equal to: 

δβπ
∆⋅⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−==

4
2

22

22
''' senrrEPEI CIRCIRPC  (C.13)

Hence the variation on the optical intensity after the polarizer caused by the acoustic wave is 

given by: 

δβπ
∆⋅⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=−

4
2

2

2
' senrII PCPC  (C.14)

The change in the optical intensity through the polarizer is null for orientations of the 

polarizer associated to , which is equivalent to putting the polarizer in one 

of the main axis. For the case of circular polarized light at the output of the optical fibre 

sensor the maximum sensitivity of the polarimetric system is achieved with the orientation of 

the polarizer at angles

⎩
⎨
⎧

±±
=

4/2/
4/
ππ

π
β

2
πβ n−= , for ,...2,1,0=n  

General elliptical polarization 

Finally we analyse the general case of an elliptically polarized plane wave light, where the 

amplitude of the electric field components can be different and with an arbitrary phase 

difference value. This general state of polarization is described by the Jone’s algebra vector: 

⎥
⎦

⎤
⎢
⎣

⎡
⋅

= − δγ
γ

iesen
rE

cos
 (C.15)

The optical intensity coming out through the polarizer situated at an angle β from the 

diagonal of the plane of the wave (as shown in fig. C.3-left) is given by: 

( ) ( ) ( ) ( )[ ]δγγβγβγγβγγβγ cos2coscoscoscos 22222 ⋅⋅−−+−+−

==

sensensensenr

EPEI PE
(C.16)

After slight perturbation of the elliptical polarization by the presence of the acoustic wave, 

we have a variation of the optical intensity through the polarizer equal to: 

( )[ ] ( )( )δδδδγγβγ ∆⋅⋅+∆⋅⋅⋅⋅−=− sin2coscossin2sin
2

2
2

' rII PEPE  (C.17)

The equation C.17 is the most general expresion for the sensitivity of the polarimetric system 

and it is a function of the three variables; β, γ and δ. We can study how to maximize this 

function respect to each of the variables independently. Thus the maximum respect to β is 
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achieved under the same conditions as with the linear polarization, that is 

( )
4

12 πγβ +−= n . After substitution of this value of β in eqn. C.17 we get a maximum of 

the function respect to γ when it is satisfied ( )
4

12 πγ += n , which represents that aX = aY. 

Again subtituting this value in eqn. C.17 gives us also the value of the variable δ that 

together with the previous values of the other two variables provide the maximum sensitivity 

of the polarimetric system, that is ( )
2

12 πδ += n  for ,...2,1,0=n , which is identical to a 

circular polarization state.  

The value of the three variables that maximize the sensitivity of the polarimetric system 

corresponds to a circular polarization state of the light at the output of the optical fibre sensor 

with the polarizer oriented at any of the two diagonals of the plane wave of light as shown in 

fig. C.3-right. 
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î

ĵ
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Figure C.3: (Left) Elliptical polarized light in the plane of the wave. The electric field of the light 

evolves in time along the red ellipse. (Right) Situation of maximum sensitivity of the polarimetric 

system; circular polarized light with the polarizer oriented at any of the two diagonals of the plane 

wave. 
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APPENDIX D: Physical interpretation of phase and group 
velocity 

The definition of the velocity of a wave could lead to confusion, not only because of the 

existence of multiple and different kind of waves but also because it depends in which 

aspects of the wave motion we try to quantify. 

There are two aspects which are of high importance when describing a wave or group of 

waves, these are; the phase velocity and the group velocity. 

D.1 PHASE VELOCITY 

The phase velocity is a definition usually associated to monochromatic waves, these are 

waves of a single constant frequency oscillation. It characterizes the velocity with which 

wave’s points of fixed phase propagate through the medium. Let us consider a plane wave 

propagating in the X direction: 

( )txkieAtxy ω−⋅−⋅=),(  (D.1)

Where the complex term φ = kx–ωt is called the phase of the wave. Then, following the 

previous definition we can obtain the phase velocity as the partial derivative of the spatial 

variable with respect to the time variable as the phase is kept constant, as shown in eqn D.2. 

( )
( ) kx

t
t
xc

t

x ω
ϕ
ϕ

ϕ

=
∂∂
∂∂−

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
/
/

 (D.2)

With ω being the angular frequency and k the wave wavenumber. From a practical 

description point of view, the phase velocity characterizes the speed at which the wave’s 

profile moves, i.e. if we consider the wave profile as a solid entity then the phase velocity is 

the speed at which this entity slides through the medium.  

 

 

 

 

 

Figure D.1: Monochromatic wave moving towards increasing x values. In blue at a particular time t0 

and in dashed red after ∆t. The points in green represent a particular phase value. 
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For instance, if we look to one particular point of the monochromatic wave profile shown in 

fig. D.1, in particular the green point corresponding to one of the peaks. As the wave moves 

through the medium, the speed at which this point propagates is the phase velocity. 

From a physical point of view, the waves considered in this work are perturbations of the 

equilibrium position of the medium’s elementary particles or oscillators as described in 

appendix A. Thus, considering the wave’s perturbation y(x,t) as the particle’s displacement 

perpendicular to the direction of propagation of a planar transversal wave, then although the 

wave propagates laterally in the X direction, no medium’s particle motion takes place in this 

direction. In this case the phase velocity does not describe a physical entity. Monochromatic 

waves, as the ones described previously, do not transmit energy or information through the 

medium because they are of infinite extent in space, so that for any value t the spatial 

variable x varies from - ∞ to ∞. Then the perturbation is always in the entire medium. The 

physical entity representing the velocity of the particles displacements is given as ∂y/∂t = - 

c·∂y/∂x and so it is different from the phase velocity c. 

Notice that in the expression of eqn. D.2 the sign of the phase velocity is positive, as in order 

the phase φ to be constant when t increases then x must also increase, therefore the wave 

moves in the direction of increasing x. Complementarily, if we express the phase as φ = 

kx+ωt, when t increases then x must decrease in order the phase to keep constant. In this case 

c = -ω/k, is negative. 

When the phase velocity is dependent of the wave’s frequency then it is said to be dispersive. 

This name is easily understood if we consider a pulse wave made up of several 

monochromatic components of different frequencies. If these components are non-dispersive 

then all of them propagate together with the same velocity, and the pulse which is their sum, 

retains its original shape as it propagates. In opposition, if the waves are dispersive, then as 

they propagate with different velocities; some components propagate faster meanwhile 

others propagate slower than the average, as a result the pulse is broadened or dispersed as it 

travels through the medium (see fig. D.2). 

 Initial pulse  

 

Non-dispersive 
mode
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mode

Direction of Propagation 
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Figure D.2: Dispersion effect over a pulse wave propagating under a dispersive mode. 
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We mentioned that monochromatic waves are infinite in extension, nonetheless waves in real 

experiments are, as the previous pulse wave, always confined in space. A wave in order to 

transmit information or energy cannot be an infinitely extended periodic signal, but a 

combination of periodic signals of different frequencies. The velocity at which the energy or 

information stored in this group of waves is transmitted is called group velocity. 

D.2 GROUP VELOCITY 

The distinction between a wave’s group velocity and its phase velocity was first proposed by 

W. R. Hamilton in 1839 [37]. However it is Stokes who in 1876 made of it a commonly used 

concept, as he proposed it as the topic of a Smith’s Prize examination paper [38]. The 

simplest way in which he presented the concept of group velocity is by considering a group 

of two monochromatic waves of same amplitude and slightly different frequencies and 

wavelengths. These waves are propagating, with different phase velocities, towards 

increasing values of x: 

[ ] [ ]txkkAtxkkAtxy )()(cos)()(cos),( ωωωω ∆+−∆++∆−−∆−⋅=  (D.3)

The expression in eqn. D.3 represents the propagating waves perturbation and by simple 

trigonometric identities it can be easily rewritten as an amplitude modulated wave: 

[ ] [ ]tkxtxkAtxy ωω −⋅⋅∆−⋅∆⋅= coscos2),(  (D.4)

Equation D.3 shows that the group of waves can be understood as a carrier of frequency ω 

and phase velocity ω/k with amplitude modulated by an envelope of frequency ∆ω and phase 

velocity ∆ω/∆k (as shown in fig. D.3, in blue the carrier wave and in dashed red line the 

envelope).  
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Figure D.3: Envelope of a superposition of two waves to define group velocity. 

It is important to notice that the peaks of the envelope wave are associated to those situations 

(proper combinations of time and position values) in which the monochromatic components 
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are in phase. Meanwhile the minimums are those cases in which their phase is in opposition. 

Therefore, the phase velocity of the modulating function or envelope describes the speed of 

any feature of a wave that relies on different frequencies remaining in phase. Hence for a 

more general situation of a pulse wave of finite width containing a packet of waves of 

similar frequencies, the envelope phase velocity defines the speed at which the peak of the 

pulse propagates. It expresses the velocity at which the group of monochromatic waves 

propagate as a whole, therefore its name of group velocity. In the present case of nearly 

equal frequency components, the group velocity can be expressed as dω/dk. Since ω = k·c 

and k = 2π/λ it can be proved that the group velocity can be related to the phase velocity by 

eqn. D.5. 

λ
λ

d
dcccg −=  (D.5)

We must notice that a wave in order to transfer energy or information, it must be modulated 

and it is this modulation that represents the signal content. 

Following with the simple case of a group constituted by a superposition of two 

monochromatic waves as shown in eqn. D.3, we can define its energy density as: 

22 /ˆ dtydE ⋅= ρ  (D.6)

Where ρ is the density of the medium in which the group of waves propagate. If the energy 

density is averaged over several periods of the carrier wave (during which the envelope does 

not change too much), then as shown in [39] we obtain for a lossless media that: 

)(cos2ˆ 222 txkAE ⋅∆−⋅∆⋅⋅⋅≅ ωωρ  (D.7)

Equation D.7 clearly suggest that the time-averaged energy density of the packet of waves 

propagates with the group velocity. 

Thus, group velocity is the speed at which the content or energy in a wave is transported. 

Therefore Lamb wave’s group velocity dispersion curves show the velocity at which finite-

time wave packets travel; they are therefore useful for the calculation of the travel times of 

the wave pulsed toneburst signals [44].  

The group velocity represent the speed of energy propagation only under the condition that 

the group velocity does not exceed the phase velocity of the waves of the group [40]. If this 

is not satisfied, the group velocity does not necessarily represent the actual propagation 

speed of any information or energy and the envelope propagation is just an artefact of the 

way the different frequencies are slipping in and out of phase. This contradicts the paradox 
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of experiments consisting on transmitting a superposition of electromagnetic waves with a 

group velocity exceeding the speed of light, advertising them as astonishing overturns of the 

theory of relativity [41,42]. 

The relation between the phase and group velocity values distinguishes three main cases; 

 c > cg, this is the conventional case of normal dispersion. Where the phase velocity is 

a function of the frequency and it decreases as the frequency increases (as it can be 

seen from another way of expressing the group velocity shown in appendix A, eqn. 

A.26). 

 c = cg, this corresponds to a non-dispersive case. From eqn. D.5 it is obvious that this 

case corresponds to a phase velocity independent of the frequency as dc/dλ = 0. 

 c < cg, this case is known as anomalous dispersion. Like the first case the phase 

velocity is now also a function of the frequency but opposite to the normal dispersion, 

now the phase velocity increases with frequency dc/df > 0. Even more, as A. Schuster 

first noted in 1904 [43], if the value dc/df is sufficiently positive, based in eqn A.26, 

the group velocity becomes negative. The implications of a negative group velocity 

are; first the ultrasonic wavelength increases as the frequency increases, which is the 

opposite of the common situation, and second the transportation of energy or 

information by the wave takes place in opposite direction to the waves’ phase velocity. 

This exciting and not always considered physically possible phenomenon of negative group 

velocities is presented in some Lamb waves’ high order modes and indeed it has been 

observed in our experimental work as shown in Chapter 6. Therefore let us have a closer 

look to it. 

D.2.1 Negative group velocity in Lamb waves high order modes 

A detailed numerical analysis of the manifestation of negative group velocity in the Lamb 

wave dispersion curves by changing the elastic properties of the material, gave me some 

interesting interpretations of the conditions under which a negative group velocity appears. 

We present here only the results of those analyses. 

It was found that negative group velocities occur for both symmetric and antisymmetric high 

order modes and only in the region of vertical asymptotic behaviour or cut-off 

frequency:thickness product values. In fact for a given set of elastic property values we have 

observed that a negative group velocity only appear when the cut-off frequency of adjacent 

modes of the same type (symmetric or antisymmetric) are proportional to different bulk 

wave phase velocity (one mode’s cut-off frequency is proportional to cL and the other to cT). 
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And only when these cut-off frequencies are close enough. The mode with the smallest cut-

off frequency:thickness product value gets negative group velocity and never the other. It 

was also found that we can never have two consecutive high order modes of the same type 

with negative group velocity. The negative group velocity is shown in the phase velocity 

dispersion curves as an elbow with the concave section pointing towards smaller 

frequency:thickness product values (as in fig. A.9). Thus having double phase velocity 

solution associated to a same frequency:thickness product value.  

A graphical explanation of these aspects of the negative group velocity is as follow. The cut-

off frequency is defined as the frequency:thickness product at which the high order modes 

tends asymptotically to infinite as the frequency:thickness product reaches that value. When 

two adjacent modes of the same type tend asymptotically to infinity in a close region, they 

would intersect in some point near the region where they behave asymptotically. This 

intersection is not allowed as that would mean that different modes of the same type (either 

symmetric or antisymmetric) would have same frequency:thickness product value and same 

phase velocity. Therefore both modes would have same particle displacements, hence they 

would be the same mode. In order to avoid this intersection both modes should tend to 

infinity from different sides of their respective cut-off frequencies as shown in the diagrams 

of fig. D.4 (where the cut-off frequency:thickness product values of two adjacent symmetric 

modes is given by the vertical dashed lines). These figures, from left to right, show the 

changes commonly experienced in the dispersion curves of two adjacent modes of the same 

type (symmetric in this example) as their cut-off frequencies get closer to each other. 

 

 

 

 

 

 

Figure D.4: Graphical interpretation of the aspects of negative group velocity. From left to right the 

cut-off frequencies of adjacent modes of the same type get closer thus accentuating the effects of 

negative group velocity. 
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In fig. D.4-left the cut-off frequencies of adjacent modes are far enough, and then no 

negative group velocity effects are experienced. The phase velocity dispersion curves of both 

modes have asymptotic tendency to their cut-off frequencies from their right (from higher 

frequency:thickness products). As the modes’ cut-off frequencies get closer (as the elastic 
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properties of the material change) to avoid intersection of the modes’ dispersion curves the 

smaller order mode takes the asymptotic tendency from the left side of its cut-off frequency 

(from smaller frequency:thickness products), which creates a small elbow (red circled area in 

fig. D.4-centre). The closer the cut-off frequencies of adjacent modes get, the more 

pronounced the elbow appears, thus the more negative the group velocity value (as shown in 

fig. D.4-right). 

It was found that the negativity of the group velocity is not only affected by how close the 

modes’ cut-off frequencies are, but also by the value of these frequencies (or mode order). 

We found that the higher the mode order, the closer the adjacent modes can get before 

interfering into a negative group velocity. A more rigorous mathematical analysis can be 

found in the references [45-47]. 

 

 

 

 

APPENDIX E: Tone burst signal 

The tone burst signal is the most common driving signal for time analysis NDT applications 

with ultrasonic guided waves, because of its localization in time and narrow frequency 

bandwidth characteristics. No wonder then that these signals appear broadly in this thesis, 

not only for damage detection and characterization as shown in Chapters 3 and 4, but also for 

measuring the Lamb waves group velocity as shown in Chapter 7. Based on this we have 

considered necessary to include the present appendix in order to properly describe this type 

of signals and explain their advantages. In addition, this appendix also describes the 

fundamental problems associated with processing finite and discrete data; such as leakage 

and scalloping loss, and the most common window function used for their correction; such as 

the Hamming and Hanning windows.  

E.1. BURST SIGNAL 

A burst is a signal constituted of a specific number of cycles of a given waveform. This 

waveform is chosen sinusoidal in most cases and certainly as well in this thesis, because as 

shown in [48] this is the pulse shape that most efficiently excites Lamb wave harmonics. 

Additionally this shape is the one that dedicates more energy to the desired driving 

frequency or carrier frequency, defined as the repetition rate of the burst waveform (fcarrier). 
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Thus providing a stronger narrow bandwidth Lamb wave in comparison with other kind of 

waveforms. Figure E.1 shows graphically this parameter in addition to the burst rate (frate), 

which specifies the interval between bursts. It usually has a small enough value such that the 

reflections on the borders of the plate from a given burst do not interfere with the signal from 

the next excited burst. 

 

 

 

 

 

 

 
1/frate

1/fcarrierBurst 

Figure E.1: Definition of the parameters of a burst. 

Burst signals are well localized in time and they are easy to identify within the sample 

record. This is a very important characteristic for time analysis in order to be able to 

distinguish the arrival time of the features not only for the different excited Lamb modes but 

also for their reflections at the geometrical borders and discontinuities or imperfections of 

the structure under test 

In order to make a properly use of the time localization benefits of these signals, an upper 

limit in the number of excited cycles should be consider, with a trade off between the 

number of cycles and the proximity of abrupt features in the structure. Also a low limit in the 

number of cycles must be considered, as the smaller the number of cycles excited then the 

broader the number of frequency components excited. Thus generating a higher number of 

Lamb modes with smaller amplitude because the energy of the excited signal must be 

distributed into the different modes, causing a reduction in the SNR of the signal and in the 

sensitivity of the system. These multiple modes propagate with different velocities, causing 

signal spreading by dispersion, which again decreases the time resolution of the system so 

that the reflection from structural features in close proximity may not be separately observed 

in the detected signal. Indeed choosing the right number of cycles for each specific case is 

one of the most complicated decisions to be made in the inspection of structures by guided 

waves. Wilcox et. al. present in [49] an analysis for the optimum number of cycles in the 

input signal that minimises the duration of the received signal and so maximises the time 

resolution. The optimum number of cycles very much depends in the propagation distance of 
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the pulse to the receiver, as well as in the frequency:thickness product of the carrier and the 

selected Lamb wave mode. 

It is very convenient to use an integer and a half number of cycles so that a symmetric 

sinusoidal pulse is generated (see fig. E.2-left), which make easier to detect visually the 

central peak that characterizes the group velocity propagation of the dispersive signal. 

Although some experiments did not require this symmetry. We have experimentally 

observed that 4.5 or 5 cycles are highly acceptable for most of the applications in this thesis. 

 

 

 

 

 

 

 

 

   

Figure E.2: Window functions applied to a sinusoidal burst signal of carrier frequency at 150 kHz in 

blue; Hamming window in red and Hanning window in black. (Left) Time domain smoothing effect of 

the window functions. (Right) Frequency domain minimization of the spillover frequencies. 

Although the burst shown in fig. E.1 are purely sinusoidal, a more common approach is to 

apply a window function to the waveform. The window function smoothly brings to zero the 

signal data at its boundaries, reducing the order of the discontinuity at the boundaries of the 

tone burst signal. Further narrowing the bandwidth of the burst signals by minimizing spill-

over components from neighbouring frequencies, as shown in fig. E.2. This helps to further 

focus the maximum energy into the actuating frequency, providing more accurate phase 

velocity calculations which help to get a more sensitive and reliable damage detection 

capability. 

Window functions have an additional beneficial effect, related with the fact that the contact 

transducer for the generation of ultrasonic waves, such as PZTs have a complex mechanical 

impedance (see Chapter 2). Its reactive component causes not only a time delay in the 

response of the transducer’s mechanical oscillation with respect to the driving signal, but it 

also causes a transitory interval of amplitude increasing mechanical oscillation from a state 

of rest till it reaches the stationary constant amplitude oscillating state of the driving electric 
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signal. Once the oscillations of the driving signal stops, the transducer still continues to 

oscillate in an amplitude decreasing transitory interval. The smooth amplitude increment at 

the start of a windowed burst and the smooth decreasing amplitude at the end, decreases 

considerably the difference between the electrical driving signal oscillations and the 

transducer’s mechanical ones. 

The most common used windows are Hanning and Hamming windows, which although very 

similar they have some slight differences making one or another more suitable for different 

applications. Next we briefly compare both windows and if the reader is interested in a more 

detailed analysis we suggest the references [50,51].  

E.2. WINDOW FUNCTIONS 

Window functions are used in the DFT spectral analysis environment in order to deal with 

problems associated to the finite extent of the data signals processed in real life situations. 

Between these problems, the two most common are spectral leakage and scalloping loss as 

briefly described next.  

E.2.1 Spectral leakage 

 

 

 

 

 

 

 

 

 

 

0 t 

Periodic signal 
of period τ 

N samples 

 N samples 

0 t 

Observed signal 
NT/ τ ≠ Integer 

NT 

NT 

Periodic 
extension  

Discontinuity  f / NT k + 1 k + 2 k  k + 3 k + 4 k + 5 k - 1 k - 2 

Sidelobes Sidelobes Mainlobe 

DFT leakage 
effect 

f / NT k + 1.5 

Figure E.3: Spectral leakage as a consequence of the discontinuities shown in the periodic extension 

of the time signal. (Left) from a time domain point of view. (Right) from a frequency domain point of 

view. 

This phenomena occurs when the periodic extension associated to the DFT of a finite length 

discrete data signal exhibits discontinuities at the boundaries of each periodic extension, as 

shown in fig. E.3-left. The discontinuity is a consequence of a finite length signal having 

frequency components that do not coincide with the FFT bin values, or are not multiples of 

the bin width given by 1/NT where N is the number of total samples for the finite signal and 
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T the sampling period. As a consequence, these frequency components will have non zero 

projections or ‘leak out’ over the entire frequency set, as shown in fig. E.3-right for an input 

signal with frequency in the middle of two frequency bins. 

The window functions smoothly bring to zero the finite length data at the boundaries, highly 

reducing the discontinuity of the periodic extension in many orders of derivative, thus 

reducing the leakage effect. This is the way in which the window functions narrow the 

apparent frequency bandwidth of the burst signals. 

E.2.2 Scalloping loss 

It is also known as the picket-fence effect, and it is a property related to the minimum 

detectable frequency signal component. This effect is related with the signal detection loss 

due to the reduction in the signal levels for those frequency components that are off the DFT 

bins 1/NT, as already seen in fig. E.3-right. The spectrum of a signal given by the DFT is 

analogous to looking at it through a ‘picket-fence’ because the exact frequency behaviour 

can only be observed at discrete points. The maximum signal loss occurs when the frequency 

components of the signal are at the frequency midway between adjacent frequency bins. 

This signal loss obviously decreases the SNR of the processed signal with respect to the SNR 

of the input signal (before calculating its DFT). In fact as mentioned in [50], the scalloping 

loss represents the maximum SNR reduction of the processed signal. 

The window functions can help to reduce these losses as they can modify the frequency 

response of the original signal. The picket-fence effect can also be reduced by increasing the 

number of points in each periodic extension through the technique called zero padding, 

where zeros are added at the end of the original finite signal, while maintaining the original 

record intact. This process artificially changes the locations of the frequency bins, as N is 

increased, without altering the continuous form of the original spectrum. In the new set of 

frequency bins, spectral components that originally were between bins now can be closer to 

the new set, reducing their scalloping losses. 

E.2.3 Window functions comparison 

In this section we present the most commonly used window functions in NDT applications. 

These are the Hamming and the Hanning windows, however as comprehensively analysed in 

[50] they are not the best of the available windows. Nonetheless because they are easy to 

generate and they have a very good performance, they have become the most popular in a 

great variety of applications. 
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Hanning window 

This window is a member of the cosα (X) window functions with α = 2. More accurately the 

Hanning window is defined as: 

( )[ ]Nnnw /2cos15.0)( π−=  (E.1)

Where n = 0, 1, 2,…, N -1 and N being the length of the window. 

The Hanning window is continuous till its first derivative so the sidelobes fall off at 18 dB 

per octave as it can be seen in fig. E.4-right in black. Notice from the time domain 

representation in the same figure that this window cancels out in its boundaries. 

Some important characteristics of the Hanning window are: Leakage factor, defined as the 

ratio of power in the sidelobes to the total window power = 0.05%, First sidelobe attenuation 

= -31.5 dB, Mainlobe width (-3dB) = 0.042969 (×π rad/sample) (for the case in the previous 

figure with N= 64). Scalloping Loss = 1.42 dB. 

 

 

 

 

 

 

 

 

 

Figure E.4: Comparison of window functions; Hamming window in red and Hanning window in 

black. (Left) Time domain weightening values of the window of length 64 points. (Right) Normalized 

frequency spectrum of the windows in a logarithmic amplitude scale. 

Hamming window 

The Hamming window is a slightly modified Hanning window, such that provides a high 

improvement in the attenuation of the first sidelobe levels.  

( )Nnnw /2cos46.054.0)( π−=  (E.2)

Where n = 0, 1, 2,…, N -1 and N being the length of the window. 

The first sidelobe attenuation is now -42.5 dB, much lower than before. However the 

Hamming window presents a small discontinuity at its boundaries resulting in only a 6 dB 
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per octave rate of fall off. In consequence the high order sidelobes are much higher in 

amplitude than for the Hanning window, as shown in red in fig. E.4-right. We may notice 

from the time domain representation that this window does not cancel in its boundaries, 

allowing more energy of the signal to which it is applied to pass into the frequency spectra. 

Finally the rest of the Hamming window characteristics are: Leakage factor = 0.03%, 

Mainlobe width (-3dB) = 0.039063 (×π rad/sample) (for the case in the previous figure with 

N= 64). Scalloping Loss = 1.78 dB. 

Comparison of both window functions 

The comparison of the values for the Hamming and the Hanning window characteristics 

makes it difficult to specify one of the windows as better than the other. For instance 

meanwhile the Hamming window has a much smaller first sidelobe magnitude, however it 

has higher sidelobe levels as a consequence of its slower sidelobes fall off rate. In 

consequence the statistical accuracy of the estimated frequencies when the Hamming 

window is applied is reduced respect to the Hanning window, due to the higher leakage 

effect of the former. This is also related with a higher scalloping loss for the Hamming 

window and so a worse SNR of the processed finite signal. In contrast the Hamming window 

has a narrower mainlobe frequency width, therefore it provides a better frequency resolution 

than the Hanning window. The selection of the window functions is a trade-off between 

spectral smoothing (for which the Hanning window is better) and frequency resolution (for 

which the Hamming window is more adequate). 

The decision of choosing one or the other will depend highly on the particular applications. 

For instance in the time analysis application of damage detection discussed in Chapter 3 a 

narrower bandwidth burst signal was desirable in order to generate a purer single frequency 

mode, then here a Hamming window is clearly more adequate. Opposite in the 2D-FT 

applications for the extraction of the dispersion curves in Chapter 6, we were more interested 

in the sidelobes effect decrement, as they would worsen the resolution of the dispersion 

curves by spreading them as a consequence of the leakage effect and affecting also the 

frequency values estimation, so a Hanning window was chosen instead. 
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APPENDIX F: Comparison of experimental and 
irresolvable error of the experimental dispersion curves 

The experimentally obtained phase velocity dispersion curves based in the 2D-FT (as shown 

in Chapter 6), have an uncertainty in the values of the curves, given by the frequency and 

wavenumber bins spacing, called irresolvable error in Chapter 7. However the obtained 

dispersion curves may have a bigger error due to the temporal and spatial experimental error 

sources. The temporal experimental error source is associated with the time sampling error, 

of which the unique origin is the oscilloscope sampling inaccuracy. A Tektronix TDS 3014 

oscilloscope was used during the experiments with a sampling rate accuracy of ±200 ppm. 

For the 100MS/s sampling rate used, it means an error of 0.02 MS/s, which corresponds to a 

sampling period error of Ts = 10 ± 0.002 nsec, or a 0.02% temporal sampling error. 

The spatial experimental error source is double; from one side we have the irregularity of the 

Q-switch laser synchronization trigger and from the other the spatial positioning error of the 

beam source. The laser synchronization trigger error of the Brilliant B Quantel used in the 

experiments is given by the laser’s Jitter with respect to the Q-switch trigger and the 

manufacturer characterizes it as being 0.25 nsec. The error in the trigger affects the time 

origin of the measured ultrasonic data. This is equivalent to have an error in the position of 

the source by a distance equal to the travelling distance of the propagating ultrasonic wave. 

The broadband ultrasonic source of our experiments has various modes propagating at 

different velocities. Nevertheless, we are not much interested on the components travelling at 

speeds over 10 km/s because the conversion error from wavenumber to the phase velocity 

information is too high for these cases. Thus considering the fastest travelling wave to have a 

speed of 7 km/s, it has a spatial sampling error associated of ∆xerror = 0.25 10-9 · 7·106 = 1.75 

10-3 mm, which for a spatial sampling period of ∆x = 0.3048 mm it corresponds to a relative 

error of approximately 0.5%. 

 In the other hand we also have to consider the spatial sampling error associated to the motor 

displacement error that positions the ultrasonic laser source. The motor used is a McLennan 

Digital Linear Actuator (DLA) L92211-P2 series, controlled by a two axis programmable 

stepper motor control board. Experimentally it was observed an error of less than 0.1% in the 

displacement. In conclusion, the spatial error is dominated by the Q-switch trigger Jitter, and 

it will be considered of being 1%. 

Let us see the effect that these experimental errors causes over the frequency bins for the 

temporal and spatial Fourier transforms, considering evenly sampled data of different 

sampling frequencies. 
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The temporal ultrasonic signals from the oscilloscope have 10000 points with a Ts = 10-8 sec. 

In the 2D-FT these are zero padded to the closest power of 2 for a faster computation of the 

FFT. This makes Nt = 16384, so the frequency bins are 6.10351
⋅= m

NT
m

ts

kHz with m = 0,1, 

2 … Nt /2. Notice that the data is filtered for frequencies over 12 MHz so the frequency bins 

plotted in the experimental dispersion curves are only until bin m = 2000. 

Now if we consider the sampling period to be Ts = 1.0002·10-8 sec so that the oscilloscope 

inaccuracy is included, then the new frequency bins are m·6.1023 kHz for m defined as 

before. The difference is only of 0.0012 kHz. We must realize that calculating the 2D-FT 

considering evenly sampled data only take into account the value of the sampling 

frequencies to define the bins. Then the spectrum is the same, it only changes the grid 

dimensions and values. In the case of bigger sampling period the temporal part of the grid 

has its bins closer to each other. But each segment of the grid agrees perfectly, so that for the 

maximum bin of consideration m = 2000, it has an associated discrepancy of only 40%. This 

obviously means that the uncertainty of the bins provides a bigger error in the dispersion 

curves than the experimental error associated with the oscilloscope. 

In relation to the spatial sampling period, we have that the number of samples is 245, which 

zero padding to the closer power of 2 gives an Ns = 256. The spatial sampling period without 

considering any error is ∆x = 0.3048 mm. Then the spatial frequency bins (in wavenumber 

dimension 1/λ) are n·0.0128 (1/mm) for n = 0,1, 2 … Ns - 1. Now we consider the new spatial 

sampling value ∆x = 0.3065 mm to include the experimental error. The space frequency bins 

are now n·0.01275 (1/mm) for n as before. Again it is a very small change in the values of 

the bins. For bin associated to the higher n = Ns – 1, we see it is moved a full distance 

between bins (0.0128 (1/mm)) toward smaller values, however we do not use information for 

n over 200, which has a coincidence between both spatial sampling values grids of 22%.  

From this analysis it is obvious that it is a good approximation to consider the measurement 

error to be dominated by the uncertainty of the Fourier transform (or distance between 

frequency bins). 
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APPENDIX G: Horizontal shift of the phase velocity 
sensitivity curves to E and ν 

In the analysis carried out in Chapter 7 about the phase velocity sensitivity curves sE and sν 

for various sets of elastic property values as pictured in fig. 7.4. We noticed that the 

sensitivity curves shifted towards lower frequency:thickness product values as the elastic 

property values decrease. In this appendix, we show that this shift is related with an 

equivalent shift of the phase velocity dispersion curves as a consequence of the changes that 

the perturbations in the elastic properties causes over their associated cut-off 

frequency:thickness product values.  

As we already defined in appendix A, the cut-off frequencies represent the 

frequency:thickness product values at which the high order modes begin. The cut-off 

frequencies are proportional to one of the bulk waves phase velocities (cT, cL) as shown in 

eqn. A.24 and A.25, which are also dependant on the elastic property values as given by eqn. 

A.9 and A.10. Thus, to understand how the sensitivity curves changes with changes in the 

elastic properties we need first to understand how the bulk waves change. 

First, we look into the perturbation that a change in E and ν given by (1+∆E)·E0 and (1+∆ν)·ν0 

respectively, causes over the inverse of the transversal mode’s phase velocity 1/cT: 
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 Where cT0 is the transversal mode phase velocity associated to E0 and ν0. The relationship 

between ∆E and ∆ν that makes cT = cT0 is given by: 
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Figure  G.1-left shows the contour plot of the inverse of eqn. G.1 as a function of (∆E, ∆ν). In 

black line it is shown the combinations of (∆E, ∆ν) that make cT = cT0 as characterized in eqn. 

G.2. An identical analysis can easily be done with the longitudinal bulk wave phase velocity 

cL, and fig.  G.1-right shows the contour plot of constant values of cL as a function of (∆E, ∆ν)  

with the black line representing those combinations that make cL = cL0. 
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Figure G.1: Change in the bulk waves phase velocities by changes in the elastic constants (E, ν) = 

[(1+ ∆E) E0, (1+∆ν) ν0]: (Left) Contour plot of cT, the black contour is cT0 associated to elastic 

constants (E0, ν0) = (64.8 GPa, 1/3). (Right) Contour plot of cL, in black the contour for cL0. 

The previous contour plots show graphically that an increment of any of the elastic property 

values individually (∆E > 0 or ∆ν > 0) will make cL to increase. Then those high order modes 

with cut-off frequency proportional to this bulk wave phase velocity will be shifted towards 

higher frequency thickness product values. With the most intensive shift associated to a 

simultaneous increment of both elastic property values as it corresponds to a perpendicular 

movement along the contour lines towards the red coloured area (higher values of cL). In the 

other hand, an increment in the value of only E will also make cT to increase and thus shift 

the dispersion curves with cut-off frequency proportional to this bulk wave phase velocity 

towards higher frequency:thickness product values. However an increment in ν would make 

cT to decrease and so cause a shift towards smaller frequency:thickness values. From fig.  

G.1-left we clearly see that cT is more sensitive to changes in E than to changes in ν, and a 

combined increment of both elastic property values will cause a very small increment of cT 

as it corresponds to a shift almost parallel to the contour lines.

To explain the different shifts of the sensitivity curves shown in fig. 7.4 for different cases of 

elastic property values, we first need to know the cut-off frequencies associated to each 

mode curve. The cut-off frequencies are given for the symmetric and antisymmetric modes 

in eqn. A.24 and A.25, however the assignment of each value to each order mode depends in 

the value of the elastic properties, as shown in table A.1. This table clearly shows that the 

antisymmetric modes cut-off frequency assignment is always the same: 

A1cutoff  = cT /2;  A2cutoff  = 3cT /2;  A3cutoff  = cL;  A4cutoff  = 5cT /2 (G.3)

  287 



                    
However the cut-off frequency thickness products associated to the symmetric modes will 

depend on the value of ν: 

 For cases with ν = 0.364: 

S1cutoff  = cT;  S2cutoff  = cL/2;  S3cutoff  = 2cT;  S4cutoff  = 3cT (G.4)

 For cases with ν = 1/3: 

S1cutoff  = cL /2 or cT;  S2cutoff  = cT or cL /2;  S3cutoff  = 2cT;  S4cutoff  = 3cL /2 or 3cT (G.5)

If we compare the figures 7.4-top where only E changes incrementally from left to right, we 

see that all the sensitivity curves are shifted towards higher frequency:thickness product 

values, as it would be expected from the associated increment of both cL and cT as previously 

discussed. The higher the order mode the bigger this shift is. Look for instance the sensitivity 

curves of modes A1 and S3. This is due to the fact that the higher the mode’s order, the 

bigger the proportional constant of the cut-off frequency values with the bulk waves phase 

velocity (as shown in eqn. G.3 and G.5). In the previous example the cut-off frequency for 

A1 is cT / 2, meanwhile for S3 it is 2cT, so the shift of the cut-off frequency in S3 will be four 

times bigger than in A1 for a similar change in the value of cT. 

It is perceivable in fig. 7.4 that as the cut-off frequency values shift, then the sensitivity 

curve’s shapes also shift in more or less similar quantity. Look for instance to the peaks of 

the sensitivity curves for order one and two. For higher order modes the sensitivity curves 

suffer important shape transformations in addition to the horizontal shift. 

In the other hand, if we compare figs. 7.4-top left and bottom right where there is a change in 

both elastic properties, then a bigger increment in the cL value than in the previous case 

should be expected, and a very small incremental change in cT. Effectively this is what we 

see, for instance looking to the sensitivity curve associated to mode A3, with cut-off 

frequency equal to cL, a bigger shift towards higher frequency:thickness values is shown in 

fig. 7.4-bottom right than in the top right one. Now if we look to the sensitivity curve of 

mode S3, with cut-off frequency proportional to cT, we notice that the shift in fig. 7.4-top 

right although being small it is bigger than in the bottom right figure, as predicted. 

Finally we notice that if only ν is increased then a decrement in cT, and an increment in cL are 

expected. Again this is what we see as we compare figs. 7.4-top left and bottom left. Where 

all the modes with cut-off frequency proportional to cL (for instance the modes S2 and A3) 

have an appreciable shift towards higher frequency:thickness product values, meanwhile the 

rest of modes with cut-off frequency proportional to cT has a smaller shift to smaller 

frequency:thickness product values (as it happens with modes S3 and A1). Notice that the 

shift towards higher frequency:thickness product values of the sensitivity curves associated 
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to cut-off frequencies proportional to cL is much bigger than the shift towards smaller 

frequency:thickness product values of those proportional to cT by a given change in ν. This is 

expected from the different changes in cT and cL as shown in fig. G.1. 
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