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Abstract	

The offshore wind industry has grown rapidly in the past decade. Hundreds of 
turbines are being built in the North Sea every year. Maintenance of offshore assets is 
often hindered by the weather, vessel limitations and resource shortages. Deciding 
which maintenance tasks to carry out on the day is challenging, particularly at large 
wind farms, where operators have hundreds of tasks to choose from. Once the tasks 
have been selected, the assignment of technicians to vessels and vessels to turbines is 
decided, usually by human decision makers.  

In this thesis, methodologies for O&M decision support were developed. Formulation 
of the problem solved in this thesis was assisted by an offshore wind farm operator 
to ensure applicability of the developed solutions in the real world. Firstly, a 
maintenance task prioritisation approach was proposed. Secondly, a tool for 
optimisation of vessel routes was developed. Given a set of vessels of varying 
specifications and a set of turbines with a range of maintenance actions to be 
completed, the tool computes and visualises effective vessel routing policies.  

The outputs of the task prioritisation model can be used as inputs to the vessel routing 
optimiser to improve the quality of policies generated by the latter. This was 
illustrated in two case studies, which provided an in-depth analysis of the outputs of 
both models. The case studies have shown that considering uncertainties when 
planning vessel routing can yield up to 14% increase in the number of maintenance 
actions completed once the uncertainties have realised (compared to a policy which 
did not take uncertain inputs into account). 

Additionally, the tool was tested during a visit to an offshore wind farm operations 
centre. It was shown that given the same choice of maintenance tasks and vessels, the 
tool exactly matched the policies created by human decision makers.  
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Definitions,	Abbreviations	and	Mathematical	Symbols	

Definitions 

Accessibility – the proportion of time a wind turbine can be accessed for a given 
duration of a maintenance window (which in turn can be defined as the sum of 
transfer time, defined below and maintenance time). Access is possible when the 
significant wave height and wind speed at a turbine do not exceed the maximum 
allowed values. 

CAPEX – Capital Expenditure – the costs incurred by a project before any revenue is 
generated. 

Class 1 & Class 2 vessels – informal nomenclature used by some wind farm operators 
to distinguish between the improved capability vessels and standard CTVs (Crew 
Transfer Vessels). Generally, Class 2 vessels are standard CTVs while Class 1 vessels 
are modern, faster CTVs with improved crew transfer capabilities in high waves. 
Examples of Class 1 & 2 vessels were provided on page 159. 

Cluster – in the context of offshore wind vessel movement planning, a cluster is a set 
of wind turbines requiring maintenance. All turbines in any given cluster are visited 
by the same vessel. 

Crew-hours – hours of work done by each crew of technicians; used as an indicator 
of the amount of useful work completed by a given policy. Used rather than man-
hours due to variable crew size depending on the task.  

Critical path – for a single cluster of turbines, once the order of visits has been 
determined, a task is said to be on the critical path if it has no slack time associated 
with it. For example, if a task was to take longer than expected, the policy duration 
(as defined below) will be delayed by the same amount of time. On the contrary, a 
task is said not to be on the critical path if an increase in maintenance time does not 
result in the same increase of policy duration.  

Levelised Cost of Energy (LCoE) – is the average price per unit of energy produced, 
which must be earned for a project to break even over its lifetime. It facilitates 
comparison of cost of producing a unit of electrical energy using different 
technologies. LCoE can be calculated by dividing the discounted total project costs 
(capital and operational) by the value of electricity produced over the lifetime of the 
project.  



 
 

Logistics – “The part of supply chain management that plans, implements, and 
controls the efficient, effective forward and reverse flow and storage of goods, 
services and related information between the point of origin and the point of 
consumption in order to meet customers' requirements” definition adapted from [1]. 

O&M – Operations and Maintenance – encompasses all activities undertaken to 
maintain wind turbine electricity generation.  

O&M Planner – the person, or team of people, responsible for creating daily O&M 
plans at an offshore wind farm. 

OPEX – Operational Expenditure – funds required to run the project once revenue 
generation has begun. In the context of the offshore wind industry, this typically 
refers to costs associated with O&M.  

Policy – (in the context of planning vessel routing) – a vessel dispatch plan, specifying 
the assignment of vessels to turbines and the order in which vessels visit individual 
turbines.  

Policy duration – time between vessel leaving and returning to the O&M base 

Probability of correct fault diagnosis – Pd(i) – occasionally, the operator may not be 
confident about the type or extent of work required on a faulty turbine. Pd(i) is a user 
input; setting it to 0.9 means that the user is 90% confident that the fault can be 
repaired in the expected time given the assumed amount of resources. This value can 
be used to influence low-risk policies, discouraging visits to turbines which may have 
been incorrectly diagnosed. 

Route – a set of ordered wind turbine visits.  

Sail day – a day when vessels can safely leave harbour and access the turbines to 
transfer technicians.   

Time window – is the amount of time technicians and vessels have for carrying out 
maintenance, in a single day. Time window begins and ends with all technicians and 
vessels at the O&M base. In this thesis, it was assumed that time window constitutes 
the time limit; i.e. the maximum policy duration (defined above). 

Transfer time – the time required to transfer technicians, tools and spare parts from 
a vessel onto a turbine and vice versa.  

Utility – value associated with a maintenance task, describing the relative benefit 
associated with completing that task on the given day, compared to other tasks. 



 
 

Weather day – also known as no sail day – a day when it is unsafe for vessels to leave 
the harbour, or attempt transfer of technicians onto turbines, due to weather 
conditions.  

Wind farm operator – person, company or entity responsible for day-to-day 
management and control of wind farm activities.  

Vessel routing – concerns deciding the route a vessel will take in terms of the turbines 
visited and the order of turbine visits. Not to be confused with the problem of 
deciding the route of the vessel between base and the wind farm (depending on the 
local sea conditions) 

  



 
 

Abbreviations: 

ALNS – Adaptive Large Neighbourhood Search 

AI – Artificial Intelligence 

BoP – Balance of Plant 

CAPEX – Capital Expenditure 

CBM – Condition-Based Maintenance 

CDF – Cumulative Distribution Function 

CMMS – Computerised Maintenance Management Systems 

CMS – Condition Monitoring System 

CTV – Crew Transfer Vessel 

GA – Genetic Algorithm 

GWO – Global Wind Organisation 

HMM – Hidden Markov Model 

HSMM – Hidden Semi-Markov Model 

KPI – Key Performance Indicator 

LCoE – Levelised Cost of Energy 

LNS – Local Neighbourhood Search 

MCDA – Multiple-Criteria Decision Analysis  

MTBV – Mean Time Between Visits  

MTTR – Mean Time To Repair   

NN – Neural networks 

OEM – Original Equipment Manufacturer 

OPEX – Operating Expenditure 

PDF – Probability Density Function 

PPE – Personal Protective Equipment 

RUL – Remaining Useful Life 

SHM – Structural Health Monitoring  

SMDP – Semi-Markov Decision Process 

SOV – Service Operations Vessels 

SWATH – Small Waterplane Area Twin Hull 

VEGA – Vector Evaluated Genetic Algorithm 

WT – Wind Turbine 

  



 
 

Mathematical symbols: 

Chapter 3 

A – number of actions available to the operator 

a – individual action identifier 

aN – “do nothing” action identifier 

C – cost matrix for the SMDP model 

D – reward matrix on the last day of SMDP simulation 

H – significant wave height 

Oa – optimal action array (per time stamp, per state) 

R – reward matrix for the SMDP model 

S – number of SMDP states 

s – individual SMDP state identifier 

T – transition matrix for the SMDP model 

U – utility value of taking an action 

V – value of an SMDP state  

Z – planning horizon (in days) 

γ – discount factor 

τ – individual time step identifier 

  



 
 

Chapters 5 and 6 

B – crew & spare parts transfer time (between turbine and vessel) 

c – cluster identifier 

Cf – cost of fuel (in £ per day) 

Ch – cost of vessel hire (in £ per day) 

Cr – cost of wind turbine repair (in £) 

E – speed correction factor 

FWT1-WT2 – distance between wind turbines WT1 and WT2 

Ge – slack time at the end of the day 

Gc – critical path slack time 

Gn – non-critical path slack time 

i – wind turbine identifier 

J – total number of vessels used in a given policy 

j – vessel identifier 

K – expected duration of maintenance action 

L – load in kg (i.e. spare parts and tools) required to carry out a maintenance action 

Lc – total load in kg (i.e. spare parts and tools) required for all turbines in a cluster  

M – number of technicians required to carry out a maintenance action 

Mc – total number of technicians required for all maintenance actions in a cluster 

P – probability of successfully maintaining all turbines within a cluster 

Pt(i,j) – probability of successfully transferring the crew onto turbine i using vessel j 

Pd(i) – probability of successful task completion, given the condition monitoring 
signal received from the turbine 

Pr(i) - probability that repairing turbine i takes less time than the time available for a 
particular repair 



 
 

Px – weighted probability of completing maintenance on all turbines within a cluster 

Q – number of turbines assigned to a cluster (or a vessel) 

Umean – mean of utility values of all maintenance actions to be carried out on a given 
day 

W – time window (in hours) 

Vcs – vessel carrying capacity (spare parts and tools) 

Vct – vessel carrying capacity (technicians) 

Vv – vessel cruise speed 

X – maximum time a maintenance task can take without breaching the time 
constraint 

Y – risk aversion factor 

α – gamma function shape parameter 

β – gamma function scale parameter 

Г – gamma function 

η – maximum number of turbines in a cluster 

φ – task slack multiplier 

ɛ – number of vessels (clusters) in a policy 

λm – random number determining the duration of maintenance action 

λt – random number determining whether crew transfer is possible 

λd – random number determining whether a turbine has been correctly diagnosed 

Ω – cluster’s value  

Ωy=0 – cluster’s value, excluding the probability calculation   
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Chapter	1.	 Introduction	

Vertical axis windmills built around 200 BC at the Persian-Afghan border are 
regarded as the first documented example of a stationary device which harnessed 
power of the wind [2]. The technology has come a long way since then; instead of 
grinding grain or pumping water, modern wind turbines convert the kinetic energy 
of moving air into electricity.  

Wind power, as a renewable source of energy, is increasingly seen as an alternative 
to fossil fuels. In 2015, installed wind capacity reached 432 GW worldwide, which 
constituted around 7% of the total global power generation capacity [3]. In years 2000-
2015, wind power accounted for one third of all new power installations in the 
European Union [4].  

Despite these developments, it is feared that future development of onshore wind 
will be thwarted by scarcity of appropriate on-land installation sites, visual and 
environmental impact, concerns on noise and the use of land [5]. The sea, on the other 
hand, offers large, continuous areas on which major projects can be undertaken [6]. 
Constructing wind farms offshore mitigates the impact of electricity generation on 
human societies. Due to higher average wind speeds, offshore wind farms can 
achieve significantly higher capacity factors [7].  

Offshore wind constitutes less than 3% of the total wind power capacity worldwide 
[3]. The first commercial offshore wind farm, Vindeby, was constructed in the Baltic 
sea off the Danish coast, in 1991. In little over 25 years, the technology has progressed 
from a small scale pilot project to playing an important part in the European Union’s 
energy mix.  

Offshore wind power is not without its disadvantages. Operations and Maintenance 
(O&M) costs associated with offshore wind farms are around double compared to 
onshore [8]; they constitute up to 30% of the total life-cycle cost [9]. Subsea 
foundations and cables, are more expensive to manufacture and install, making the 
capital costs of an offshore wind farm around twice that of an onshore farm [8]. 

Furthermore, repairs on an offshore turbine may not be possible in strong winds or 
high waves, due to vessel limitations and Health & Safety Rules. Restricted access to 
wind turbines in poor weather is one of the possible reasons for increased offshore 
failure rates, which have been shown to be up to 8 times higher for certain 
components [10]. Lower accessibility (as defined in Definitions Section) and higher 
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failure rates have an impact on the wind turbine availability, contributing to increased 
cost of energy of offshore wind.   

Contrary to new onshore wind developments in the UK, offshore wind still relies on 
government subsidies. This may change in the future: researchers argue that 
Levelised Cost of Energy (LCoE, defined in Definitions section) of offshore wind can 
be reduced by around 40% by 2026 [11]. This reduction is expected to be achieved 
despite the rise in capital expenditures (CAPEX), which has occurred in the past 15 
years, as turbines were built in deeper waters and further offshore [11].  

One of the key factors driving the cost of offshore wind power down is the increase 
in turbine size, as it can lead to cost savings in substructure, installation, O&M and 
grid infrastructure, as shown in Figure 1.1 [9]. Although the cost of turbine increases 
with rotor size, this may be party mitigated by a reduction in component costs due to 
economies of scale and increased efficiency and experience of the supply chain.  

 

Figure 1.1. General trends in costs vs. rotor size [9]. 

A definition of O&M was provided in [12], stating that it comprises of two, distinct 
streams of activity. “Operations” refers to activities contributing to the high level 
management of the asset, while “maintenance” is the up-keep and repair of the 
physical plant and systems. A recent (2014) LEANWIND report [13] stated that 
significant O&M cost savings can be made through learning and technological 
innovation. The report produced numerous recommendations for offshore O&M cost 
reductions, which included:  
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a) Multi-functional vessels adaptable to a wider variety of tasks 
b) Novel vessel designs or access system technologies to increase transfer 

capabilities in high waves (increased accessibility of turbines) 
c) Decreased transit time between O&M base and wind farm (faster vessels) 
d) Reducing vessel’s motion which incurs sea sickness, which has a detrimental 

effect on maintenance crew operational efficiency 
e) Improved weather prediction 

Application of recommendations a-d on existing wind farms would likely require 
development, or purchase, of novel vessels, which take time to build and can be 
costly. Alternatively, an attempt can be made at improving the current systems and 
processes. This view is supported by a report by Offshore Renewable Energy Catapult 
[14], in which improvements of asset management strategies through the use of 
decision making tools was deemed one of the key priorities for the industry. 
Increasing the effectiveness of maintenance scheduling and vessel routing has the 
potential to both improve wind turbine availability and decrease the costs associated 
with offshore O&M.  

In the context of offshore wind farm O&M, the term “logistics” encompasses a variety 
of activities, ranging from supply chain management, spare part management, vessel 
fleet management, and scheduling and routing vessels. Logistics constitute up to 18% 
of the total life-time costs of offshore wind farms [1]. According to Poulsen & Hasager 
[1], logistics is the “overlooked frontier in the quest for lowering the LCoE of offshore 
wind”.   

Planning maintenance at offshore wind farms is a complex process. Wind farm 
operators need to ensure the availability of resources required to carry out both 
planned and unplanned maintenance. Each day, planners need to prioritise 
maintenance tasks and decide on the assignment of technicians to tasks. Then, 
technician teams are assigned to vessels and the order of turbine visits is decided. As 
shown in Appendix A. Calculating the Number of Possible Vessel Routing Policies, 
there are more ways to solve this problem than there are stars in the observable 
universe. There are very few, if any, decision support tools which would facilitate 
making those decisions in the real world (as discussed in Section 2.1). Optimisation 
algorithms supporting day-to-day offshore wind farm decision making may enable 
operational cost decreases, increased efficiency and minimisation of human error.  
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1.1 Research	Aim	

This PhD project was initialised with the following research question: 

“How can current wind turbine O&M systems and processes be improved through 
more efficient utilisation of resources to reduce the Levelised Cost of Energy 

(LCoE1)?” 

The research that followed combined with interviews with the members of industry 
revealed a clear research gap (as discussed in Section 2.1). A need was identified for 
methodologies capable of supporting operational (day-to-day) decisions regarding 
scheduling maintenance tasks on offshore wind farms. Definition of the research gap 
enabled specifying the research objective: 

 “The objective of research is to develop methodologies for supporting operational 
logistical decisions on offshore wind farm, which are suitable for practical 

application and aim to reduce LCoE through efficient use of resources.” 

In order to achieve this research objective, the following steps were taken: 

• Research into the practicalities of planning offshore wind farm O&M and 
identification of the focus of the proposed decision support tool (Chapter 2) 

• Literature review on the existing methodologies which could be applied in 
the proposed tool (Chapters 3 and 4) 

• Development, testing and validation of the proposed methodologies for 
offshore wind farm LCoE reductions (Chapters 3, 5, 6 and 7) 

Research goals and requirements are discussed in detail in Sections 2.3 and 4.3.  

                                                   
1 As defined in Definitions Section. 
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1.2 Thesis	overview	

This thesis described the development and validation of a decision support tool for 
offshore wind farm O&M planning/vessel routing. The tool comprises of two key 
models: an SMDP prioritisation model and a vessel routing optimiser, with the 
outputs of the former being used as inputs to the latter. An overview of the two 
models, including their inputs and outputs is shown in Figure 1.2. This thesis is 
divided into eight chapters; their contents and novelty was described in the following 
sub-sections.  

 

Figure 1.2. Visualisation of the inputs and outputs of the models developed in 
this thesis. 

Chapter 2 

Chapter 2 described the practicalities associated with planning offshore wind farm 
O&M. A research gap was identified at the start of the chapter. An attempt was made 
to scope the real world problem, including relevant constraints and factors to be 
considered when modelling. This was achieved through a review of relevant scientific 
papers and industry reports. Where no literature could be found on certain topics, 
gaps in the knowledge were filled through informal interviews with an offshore wind 
farm operator.  

Chapter 2 was summarised with a list of requirements a decision support tool should 
have in order to be applied in a real world, which influenced the methodology choices 
made in latter chapters of this thesis. 
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Chapter 3 

Chapter 3 focused on the problem of task prioritisation for offshore wind farms. A 
literature review was conducted to identify the factors and constraints which need to 
be taken into account when prioritising wind turbine maintenance tasks. Since the 
literature review did not identify a method which could be directly applied to the 
problem at hand, a novel approach for task prioritisation was developed. The 
proposed solution, based on a Semi-Markov Decision Process (SMDP), assigns a 
numerical value to a task’s priority. The factors taken into account when assigning a 
task priority value include deadlines, wind and wave forecasts, turbine performance 
and future resource availabilities. The proposed SMDP method was applied to two 
case studies to evaluate its effectiveness. The results of the SMDP case studies were 
used as inputs to the tool developed in Chapter 5.  

Chapter 4 

Chapter 4 provided an in-depth literature review of approaches for solving the 
Vehicle Routing Problem (VRP); a well-researched area with numerous similarities to 
the problem faced daily by wind farm operators. An attempt was made to find a 
methodology applicable to the problem described in Chapter 2. Solutions developed 
for other industries have been considered, but none were deemed suitable for the 
problem at hand. A review of publications in the offshore wind domain was also 
conducted. In the end, it was determined that a novel methodology should be 
developed to solve the problem of offshore wind farm vessel routing. The knowledge 
gathered in the process of reviewing the literature was summarised as a set of 
requirements which a vessel routing optimiser should meet (Section 4.3).  

Chapter 5 

Chapter 5 described the development of a decision support tool for offshore wind 
farm vessel routing. The proposed approach consisted of a sub-problem solution 
approach (decision flowcharts, described in Section 5.2) and a master problem 
solution approach (a novel heuristic method, described in Section 5.3). Uncertain 
factors, such as the expected maintenance task duration, were modelled through 
incorporation of a risk aversion factor into the value function (as described in Section 
5.2.3). The user can specify the impact uncertain inputs have on the policy generated 
by the tool by defining a risk aversion factor. A methodology for evaluating the 
policies generated by the tool using a Monte-Carlo approach was developed and 
discussed in Section 5.4.  
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Chapter 6 

To demonstrate the capabilities of the tool described in Chapter 5, it was applied to 
two case studies (continuation of the case studies presented in Chapter 3). In depth 
analysis of the tool’s outputs for the Winter Day and Summer Day case studies is 
provided in Sections 6.2 and 6.3 respectively. It was shown that a 14% increase in the 
number of maintenance actions completed can be achieved by including input 
uncertainties in the optimal policy calculation.  

Chapter 7 

Chapter 7 described the process of validating the proposed tool. The tool consists of 
three key parts: task prioritisation module, sub-problem and master problem solution 
approaches. Validation of those three approaches is discussed in Sections 7.2, 7.3 and 
7.4 respectively. The entire tool was then applied to a real world case study, as 
discussed in Section 7.5. Comparison of the proposed tool’s capabilities against other 
models in the field and against previously specified requirements are discussed in 
Sections 7.7 and 7.8 respectively.  

Chapter 8 

Chapter 8 summarised the work done in this thesis, with the tool’s limitations and 
future work discussed in Section 8.3.  

1.3 Contributions	

The key contributions arising from the work done in this thesis include:  

1. Development of the SMDP model for task prioritisation, which has the 
potential to be used in a variety of engineering sectors. In the published 
literature, this is the first attempt at quantification the relative utility value of 
carrying out offshore wind turbine maintenance tasks.  

2. Development of a new heuristic algorithm, which outputs are comparable 
with the outputs of a commercial solver (for problems with 10-20 turbines). 

3. Development of a novel methodology for incorporating uncertain inputs into 
a decision support tool. Quantification of the benefits arising from 
consideration of input uncertainties.  

4. Application of the proposed decision support tool to a real world case study 
at an offshore wind farm. Definition of the real world problem from the point 
of view of a large (100+ turbines) offshore wind farm operator.  
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The publications and presentations associated with the above contributions are 
outlined below.  

SMDP model for task prioritisation 

Publication: Dawid, R, McMillan, D, Revie, M, “Time Series Semi-Markov Decision 
Process with Variable Costs for Maintenance Planning”, Risk, Reliability and Safety: 

Innovating Theory and Practice: Proceedings of ESREL 2016 (Glasgow, Scotland, 25-29 

September 2016) p. 1145-1150. 

Dissemination: Oral presentation at European Safety and Reliability Conference 
(ESREL), 25-29 September 2016, Glasgow, UK. 

Novel heuristic method 

Publication: Dawid, R, McMillan, D, Revie, M, “Heuristic algorithm for the problem 
of vessel routing optimisation for offshore wind farms”, The Journal of Engineering 

2017 (13), p. 1159–1163. 

Dissemination: Oral Presentation at the 6th International Conference on Renewable 
Power Generation (RPG), Wuhan, China, 19–20 October 2017. 

Offshore wind farm vessel routing model 

Publications:  

- Dawid, R, McMillan, D, Revie, M , “Development of an O&M tool for short term 
decision making applied to offshore wind farms”, WindEurope Summit, Online 
Proceedings, 2016. Available at: https://pure.strath.ac.uk/portal/files/56450691/ 
Dawid_etal_WES2016_Development_of_an_O_M_tool_for_short_term_decision_ma
king.pdf Accessed on: 2/11/2018 

- Dawid, R, McMillan, D, Revie, M, “Decision Support Tool for Offshore Wind Farm 
Vessel Routing under Uncertainty”, Energies Journal 11, 2190, 2018. Available at: 
http://www.mdpi.com/1996-1073/11/9/2190/pdf Accessed on: 2/11/2018 

Dissemination: Oral presentation at EERA DeepWind'2017 Conference (18-20 
January 2017) in Trondheim, Norway. 

Industrial collaboration: An offshore wind farm operator provided data and expert 
knowledge, aiding the development of the decision support tool. However, due to 
data sensitivity issues, the operator wishes to remain anonymous.  
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Chapter	2.	 Planning	Real	World	Offshore	Wind	Farm	O&M	

The aim of this chapter is to provide an outline of the practicalities associated with 
organisation of maintenance at offshore wind farms. Through a combination of 
literature review and interviews with wind farm operators (who did not wish to be 
named), this chapter attempts to: 

1) Outline decision support tools for offshore wind, in an attempt to find a 
research gap (Section 2.1) 

2) Familiarise the reader with the practicalities associated with real world 
maintenance of offshore wind turbines (Section 2.2) 

3) Identify key challenges associated with planning maintenance (Section 2.3) 

2.1 Models	for	Offshore	Wind	Farm	Decision	Making	

The decisions made by wind farm operators can be broadly split into three categories, 
as proposed by Shafiee [15]: 

a) Strategic decisions (planning horizon: 5 to 25 years) – which are often made at 
the beginning of the project. They include location of the O&M base location, 
type and layout of the wind turbines used 

b) Tactical decisions (planning horizon: months to 5 years) – which include 
charter strategy for jack-up vessels, additions/removals from vessel fleet, 
upgrades to the O&M base, planning yearly annual service campaigns 

c) Operational decisions (planning horizon: days to a month) – which include 
planning and prioritising on-the-day O&M actions and defining short term 
staffing requirements (i.e. how many technicians are required) 

According to a report prepared by ORE Catapult, improvement of O&M operations 
through the use of decision making tools is a priority for offshore wind [14]. Shafiee 
[15] provided an exhaustive literature review of models for maintenance logistics 
organization for offshore wind energy. In total, 102 publications were referenced, of 
which 48 were classified as models supporting strategic decisions, 30 for tactical 
decision support and 24 models focusing on operational decisions. O&M and 
transport logistics were both in identified in a list of the top 10 areas within offshore 
wind planning, in which the need for decision support tools was the greatest [16]. 

Shafiee & Sørensen [17] proposed a framework for classification of asset management 
approaches. This publication also contained a review of papers published on the wind 
turbine maintenance optimisation approaches. The paper’s conclusions contained 
two important points quoted below: 
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“Although many good maintenance optimization methods have been developed in literature, 

there still remains a big gap between academic models and application in practice. Many of 

the works have been published for mathematical purposes, whereas only very few number of 

industrial cases (∼6% of the total publications) have been presented.” 

“Uncertainty in weather conditions and sea state is a major factor which can affect the 

accessibility in a wind farm. Meteorological conditions have so far seldom been considered as 

a stochastic input” 

To the author’s knowledge, there is no commercial tool for day-to-day planning of 
O&M activities and vessel routing/scheduling2. Interviews with experts (summarised 
in Appendix B. Summary of Informal Interviews with Offshore Wind Farm 
Operators) revealed that most wind farms do not use operational decision making 
support tools. Out of the three decision making planning horizons outlined in a-c), 
operational decisions received the least attention in literature, as shown in Figure 2.1.  

 

Figure 2.1. A breakdown of research in the offshore wind domain by decision 
horizon (from [15]). 

2.1.1 Economic	Case	of	Operational	Decision	Support	Tools	

As discussed in the previous section, most wind farms do not use decision support 
tools for day-to-day operations. Is it possible that the potential gains, which could be 
achieved by optimising daily wind farm O&M, are insufficient to justify investment 
in this area? To answer this question, a crude calculation quantifying the potential 
benefits of improved efficiencies in wind farm O&M planning is shown below. 

Potential benefits of more efficient organisation of work are outlined in Table 2.1. 
Working on a conservative assumption that improvements in O&M work 
organisation can bring a 1% reduction in vessel use, 1% reduction in staff cost and 
0.1% of increase in power capture (due to reduced lost revenue), the yearly revenue 
of a 500MW wind farm could be increased by over £250,000. Note that the aim of this 

                                                   
2 Review of scientific publications on this topic is provided in Section 4.2.6. 
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crude calculation purely to illustrate the order of magnitude of potential benefits of 
improvements in the short term O&M decision making. A tool capable of achieving 
the above cost savings would likely be in high demand among offshore wind farm 
operators, provided it was sufficiently versatile to be applied to different sites without 
major alterations.  

Table 2.1. Summary of potential benefits of day-to-day decision support tools. 

Cost saving 
Yearly cost/revenue for equivalent 

500MW offshore wind farm 
Estimated benefits 

Reduced vessel use 
£2.5 million annually 
including charter and fuel cost (from  
[12]) 

1% cost reduction 
£25,000 

Reduced number of 
technician man-

hours 

£2.4 million annually   
assuming 30 technicians at a salary 
cost of £80,000 pa 

1% cost reduction 
£24,000 

Increase in wind 
turbine availability, 
leading to increased 

revenue 

£218 million annually 
assuming energy price of £103/MWh 
(from 3) and capacity factor of 48.3% - 
average capacity factor for Danish 
offshore wind farms in 2017 (from 4) 

0.1% revenue 
increase 
£218,000 

This section demonstrated that operational offshore wind farm O&M decision 
support tools received the least attention of the research community. There is a clear 
lack of models which have been applied to industrial cases. An O&M optimiser 
applicable to the real world problem could bring substantial cost savings to the 
offshore wind industry. Published operational decision tools for offshore wind are 
reviewed in the following section.  

2.1.2 Operational	Decision	Support	Tools	for	Offshore	Wind	

A comprehensive review of various decision support tools for offshore wind was 
conducted by Hofmann [18], who identified 49 different commercial and non-
commercial models for different stages of the wind farm life cycle. One of the key 
conclusions of this paper was that most decision support models focus on the wind 
farm life cycle and long term planning – only one model out of 49 was explicitly 
defined as operational (or short term) decision support tool.  

                                                   
3 £103/MWh comes from taking an average of the Contract for Difference prices for wind 
farms auctioned off in the UK between November 2014 and September 2017. Source: [201] 
4 Source: http://energynumbers.info/capacity-factors-at-danish-offshore-wind-farms accessed 
on 23/05/2018 



Chapter 2. Planning Real World Offshore Wind Farm O&M 

 
 

12 

In their work, Hofmann [18] named commercially available software, including 
SeaPlanner by SeaRoc and WONDER by Deutsche Windguard. These systems can 
make wind farm operators job easier by facilitating technician movement tracking, 
logging maintenance, accessing SCADA data and visualising current operations. 
However, these commercial software packages lack the capability to optimise O&M 
by prioritising maintenance tasks or ordering turbine visits. Details of the commercial 
decision support tools such as the constraints they consider and methods they use are 
scarcely available. It is therefore difficult to evaluate the capabilities of the commercial 
products. While it is possible that some wind farm operators use in house scripts for 
decision support, it is often not in their best interest to share the details of the models 
and publish their capabilities.   

Most publications on models for operational decision support for offshore wind  
focus on the problem of task scheduling [15]. In the real world, this process involves 
deciding the tasks to be carried out on the day or in near future. The choice of tasks 
depends on a number of factors, which include: 

• Resource availability (vessels and technicians) 
• Weather forecast (wind and significant wave height) 
• Types of maintenance actions to be completed (deadlines, lost revenue if 

action is not completed, time or resources required to complete maintenance 
action) 

Zhang et al. [19] proposed a Genetic Algorithm approach for optimising preventive 
maintenance actions at a small (25 turbines) wind farm. Actions are planned so that 
maintenance takes place during periods of low wind and taking into account the 
wake effects. Besnard et al. [20] showed that significant cost savings can be achieved 
by using the opportunistic maintenance approach to carry out preventative tasks 
while on a turbine carrying out a corrective action. Byon et al. [21] used discrete event 
system specification (DEVS) to simulate wind farm O&M activities, concluding that 
condition-based maintenance can lead to increased turbine availability compared to 
scheduled maintenance.  

Additionally, there are five publications on optimisation of vessel routing for offshore 
wind farms [22]–[28] (methods used in those papers are discussed in Section 4.2.6). 
However, published work in this domain fails to take uncertain inputs into account 
(the impact of uncertainties on the operational decision making is discussed in Section 
2.2.7). Only one of the papers published in the offshore wind O&M optimisation field 
has been applied to a real world case study [27]. 
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The general trend emerging from this literature is that most authors focus on a part 
of the problem (e.g. condition based vs. scheduled maintenance, benefits of 
opportunistic maintenance, solution of vessel routing problems without prioritising 
tasks or taking uncertainties into account). Research should be focused on 
development of a holistic approach, capable of supporting a wider scope of decisions, 
instead of solving operational sub-problems separately.  

Furthermore, some researchers argue that most academic models are not applicable 
to the real world problems. According to van Horenbeek, Pintelon & Muchiri [29]:   

“The gap between academic models and application in a business specific context is still the 

biggest problem encountered in the field of maintenance optimization.” 

The research gap in the field of operational O&M planning is a decision support tool 
applicable to the real world problem. Currently, no published methodology is 
capable of supporting decisions on both task prioritisation and vessel routing, while 
taking uncertainties on inputs into account. The following sections aim to describe 
the real world problem in more detail to identify constraints to be modelled and 
requirements which a method for planning O&M and vessel routing should meet.  
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2.2 The	Problem	of	Day-To-Day	Planning	of	Offshore	Wind	
Farm	Maintenance			

Wind turbines need regular maintenance to generate power. The responsibility for 
carrying out O&M activities on turbines under warranty lies with Original 
Equipment Manufacturer (OEM) [30]. Once the warranty expires, the owner/operator 
decides whether to take on planning and execution of the O&M activities themselves, 
or to subcontract the OEM/third party company. In this thesis, “wind farms operator” 
refers to the entity currently responsible for planning wind farm O&M activities – 
including ensuring maintenance is done promptly and efficiently. The wind farm 
ownership structure was briefly discussed in Appendix C. Wind farm Ownership 
Structure. 

An overview of the problem of operational planning of O&M for offshore wind farms 
is provided in Section 4.1. This section aims to provide a more detailed overview of 
the real world considerations wind farm operators need to take into account when 
planning O&M. 

2.2.1 Planning	Horizon	in	the	Context	of	Vessel	Routing	

Rolling horizon, as defined by Sethi & Sorger [31], is often used for decision making 
in a stochastic environment. The term horizon refers to the number of future time 
periods which are considered when planning maintenance. A plan for the entire 
horizon is made at each iteration. Plans are continuously updated as new information 
becomes available (e.g. realisations of uncertainties or updated forecasts).  

Offshore wind farm O&M planners tend to operate on a 3-7 day rolling horizon [15]. 
A detailed plan, including vessel assignment and the order of wind turbine visits is 
always created for the following day (day 1 of the rolling horizon). Plans for days 2-7 
tend to be less detailed, as they are heavily dependent on the work completed on day 
1.  

The rolling horizon approach suits the problem of offshore wind farm maintenance 
planning. Detailed plans for days 1-2 cover the actions to be taken, technicians who 
carry them out and vessels used for transportation. Beyond that, resources and 
manpower required in the following week are estimated and secured to ensure 
technicians will be able to complete required actions. Creating detailed vessel routing 
plans for days 3-7 would likely be counterproductive, as by the time real world 
uncertainties realise, the plans, in most cases, would be outdated. 
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In some cases, certain aspects of offshore wind turbine O&M can be planned over a 
month in advance. For example, summer annual service campaign may be planned 
in the winter. This can involve pre-allocating resources to particular turbines, at 
particular dates. However, unforeseen circumstances may mean that those plans need 
to be revised. Similarly, plans to charter a jack-up vessel may be made months in 
advance, to avoid high spot-market hire prices for this type of vessels.  

The need to create a detailed maintenance plan a day before it is to be implemented 
puts a lot of stress on the O&M planners. Interviews with offshore wind farm 
operators (summarised in Appendix B. Summary of Informal Interviews with 
Offshore Wind Farm Operators) revealed that if a change of circumstances (e.g. 
turbine failure) occurs towards the end of planner’s shift, they may be required to do 
overtime to create a plan of action for the following day. Working under pressure and 
on a tight schedule is likely to increase occurrences of human error, potentially 
leading to increased O&M costs.  

2.2.2 Types	&	Characteristics	of	Maintenance	Actions	

Maintenance actions can be divided into preventative and corrective actions. 
Corrective maintenance involves taking action once a component has failed. 
Preventive maintenance involves either periodical services or Condition-Based 
Maintenance (CBM). The latter approach utilises CM data analysis to estimate the 
condition of the component and plan maintenance accordingly to avoid expensive 
failure. Comprehensive modelling by Andrawus et al. [32] has shown that CBM 
approach is the most effective approach for wind turbine O&M.  

A number of researchers have shown the benefits of implementation of Condition 
Monitoring Systems (CMS) on wind turbines [33]–[36]. CMS usually consists of 
various sensors, which monitor the condition of a component and means of 
transferring that information to a processing unit. Additionally, modern wind 
turbines are equipped with SCADA systems, which can also aid prediction of 
incipient faults [37]. An overview of CMS for wind turbines is provided in Section 
3.2.1. 

Many modern wind farms are equipped with Computerised Maintenance 
Management Systems (CMMS), which facilitate CBM. CMMS monitor data coming 
from CMS; if parameters (such as component temperature/vibration) exceed pre-
defined thresholds, system user is automatically alerted [38]. The alarm system is 
designed to analyse multiple data sources to provide maintenance planners with the 
most likely cause of parameter deviation, enabling them to plan appropriate actions 
to prevent failure. CMMS are described in more detail in Section 3.2.2. 
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Despite wind farm operator’s efforts to prevent failures, some inevitably occur. A 
breakdown of failures by component is shown in Figure 2.2. To restore power 
generation, repairs of failed components are usually prioritised over preventative 
maintenance actions. Interviews with wind farm operators (summarised in Appendix 
B. Summary of Informal Interviews with Offshore Wind Farm Operators) revealed 
that high priority tasks are usually the first to be started on the day, to maximise the 
time available for repairs.  

If a vessel carrying multiple troubleshooting/repair teams were to break down, or if 
technicians got sea-sick and had to return to port, all corrective actions assigned to 
teams on that vessel would not be completed. To prevent this, technician teams 
assigned to corrective tasks are usually allocated on different vessels. This approach 
reduces the risk of having multiple failed turbines at the end of the day, as in an event 
of vessel failure at most one troubleshooting team won’t complete their tasks.  

A comprehensive study of offshore wind farm O&M data reported failure rates of 8.3 
component failures per turbine per year [10]. Assuming failures are distributed 
evenly, an operator of a hypothetical offshore wind farm with 100 turbines would 
experience an average of 2.3 failures a day. Wind farm operators need to have 
resources (spare parts, technicians and vessels) on stand-by to promptly restore wind 
turbine generation on affected turbines.  

The resources required to carry out corrective actions vary depending on the 
component and severity of failure. Generally, inspections and minor repairs are 
carried out by teams of 2, while medium-major repairs are conducted by 3-4 
technicians [39]. Interviews with wind farm operators (summarised in Appendix B. 
Summary of Informal Interviews with Offshore Wind Farm Operators) revealed that 
the number of technicians required to carry out a given task is not always fixed – 
certain maintenance actions are best carried out by 3 technicians, but can also be 
completed by 2. 

There are also significant differences in the volume and weight of spare parts required 
for different corrective actions, affecting the choice of vessel assigned to carry out the 
task. Most repairs can be serviced by Crew Transfer Vessels (CTVs) (discussed in 
Section 2.2.3). Spares are transferred onto the wind turbine (for example using a davit 
crane) and then into the nacelle if required (using the internal lift). Components 
required for some major replacements may be too heavy/large to be transported by a 
CTV. Generator and blade replacements are usually conducted using jack up vessels 
[30].  
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Figure 2.2. Breakdown of the wind turbine components by failure rate (adapted 
from [40]) 

There are also significant differences in the time required to complete different 
corrective actions. For example a minor repair on yaw brake pads can be executed 
two technicians in 30 minutes [15] (not counting getting the technicians to the nacelle). 
On the other hand, major repairs in the hub can take over 40 hours [10]. Replacements 
of major components such as blades and gearbox can take hundreds of hours to 
complete, however, such events are very rare [9].  

Note that the reported repair times often do not include the time required to transfer 
crew and equipment onto the turbine or the time required to move equipment from 
the bottom of the turbine to the nacelle. Interviews with wind farm operators 
(summarised in Appendix B. Summary of Informal Interviews with Offshore Wind 
Farm Operators) revealed that vessel-to-turbine base and turbine base-to-nacelle 
transfers take approximately 20 minutes each.  In this thesis, the time of repair 
includes the time required to climb/take a lift to the nacelle, but does not include the 
time required to transfer from the vessel onto a turbine (the latter is considered 
separately as “transfer time”). 

In addition to corrective actions, there are many preventative actions which are 
completed at offshore wind farms on daily basis. These include inspections, retrofit 
campaigns and annual services.  
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Statutory inspections are a legal requirement to ensure work equipment such as lifts 
and cranes are safe for use. They are undertaken by qualified engineers who follow a 
set procedure in accordance with suitable frameworks. Statutory  inspection intervals 
depend on the type of equipment; it usually ranges from 6 months for lifts/tower 
hoists and 12 months for cranes, anchor points and emergency equipment [41].  

Ad-hoc inspections of mechanical/electrical wind turbine components may also be 
carried out, for example if a component is underperforming. Visual inspections or 
crack detection sensors can provide the wind farm operator with a better 
understanding of the component’s level of deterioration, allowing them to make 
informed decision about future maintenance requirements for the component. 
Various inspection techniques, such as ultrasonic testing, thermography and 
radiographic inspection were outlined in [42]. 

Most offshore wind turbines undergo annual service, which combines preventative 
maintenance actions on multiple components into a standardised procedure. Annual 
servicing can take as long as 60 hours [39], which can translate to approximately 7 
days (depending on the procedures used/wind turbine manufacturer 
recommendations etc.). In the North Sea, annual service campaigns usually take place 
in the summer, when average wind speeds are at their lowest [43]. This minimises the 
lost revenue, as the turbines undergoing annual servicing do not generate any power. 
Summer is also the best time to carry out any retrofit campaigns, in which certain 
components are replaced/refurbished to increase safety/turbine efficiency. Annual 
services and retrofit campaigns are often carried out by supplementary teams of 
specialist staff and external service providers [43]. 

In summary, different maintenance actions are characterised by: 

• Type of action (corrective vs. preventative), which in turn affects task priority 
• Spare parts required, their weight/volume, affecting the choice of vessel (jack-

up or CTV) 
• Time required to complete maintenance 
• Statutory or internal deadlines 
• Health and safety considerations 

When planning offshore wind farm maintenance, it is important to take those factors 
into consideration.  
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2.2.3 Vessels	Used	for	Offshore	Wind	O&M	

Crew Transfer Vessels (CTVs), as shown in Figure 2.3, are used for transportation of 
equipment and technicians to carry out most wind turbine maintenance tasks. Typical 
CTVs used in offshore wind are capable of carrying up to 12 technicians (due to the 
health and safety regulations discussed in Section 2.2.5), they can operate in 
significant wave heights of up to 1.5m [12]. Cruise speed of a standard monohull CTV 
is around 20 knots (37km/h) [44]. Vessels capable of higher cruise speed reduce the 
time spent travelling to site, increasing the time available for maintenance.  

 

Figure 2.3. CTVs remain in place during crew transfers by pushing on against the 
transition piece 5. 

Catamaran and Small Waterplane Area Twin Hull (SWATH) vessels are becoming 
increasingly popular among wind farm operators; they enable turbine access in 
significant wave heights of 1.5-2.5m [45]. Although some vessels may be approved 
for transfers at Hs equal to 2.5m, interviews with offshore wind farm operators 
suggest that transferring crews in such conditions poses a significant health and 
safety risk, and it is generally avoided. Properties, advantages and disadvantages of 
the aforementioned vessels have been discussed in more detail in [46]. 

Wind turbine accessibility (as defined in Definitions Section) is season-dependent (as 
discussed in Section 2.2.8); higher significant wave heights during winter hinder crew 
transfers. Some wind farms experience almost as many weather days (days with no 
access to the wind farm due to weather) as accessible days; for example, Barrow 
offshore wind farm had an average accessibility of 52% between 2006 and 2008 [47]. 

                                                   
5 Adepted from: http://www.owjonline.com/news/view,exclusive-maib-investigates-fire-on-
crew-transfer-vessel_49130.htm. Accessed on: 18/06/2018. 
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It was shown that vessels with motion-compensation capable of crew transfers in 
2.5m Hs can decrease waiting time to carry out minor maintenance actions by 53% 
[48] (compared to a standard CTV capable of transfer in 1.5m significant wave height).  

Most offshore wind farms require multiple CTVs to carry out all their maintenance. 
The relationship between size of wind farm and the number of CTVs used is shown 
in Figure 2.4. The largest offshore wind farm in the world (at the time of writing) – 
London Array, utilises up to 8 CTVs to carry out maintenance [49], offering significant 
scope for optimisation.  

 

 

Figure 2.4. Number of CTVs required for  maintenance actions vs number of 
turbines [50]. 

Alternatively, helicopters can be used to transport technicians to the turbine. They are 
characterised by a high speed of transit (up to 135 knots – 250km/h [51]), leaving more 
time for repairs. However, helicopters tend to have limited carrying capacity for crew, 
tools and spare parts compared to CTVs. For example an EC135 helicopter, which 
was the first to be selected for offshore wind support by the Civil Aviation Authority, 
is capable of carrying 4-6  technicians [12]. Their use is limited by high winds and 
poor visibility. Operational data from Gwynt y Mor wind farm in the UK suggests 
that helicopters do not guarantee increased accessibility [52], recommending 
focussing on CTV improvements instead. The report also discussed additional 
limitations associated with the use of helicopters.   

Major repairs, such as gearbox or blade replacements, are carried out using jack-up 
vessels, as pictured in Figure 2.5. They are capable of lifting heavy components, such 
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as blades or generator and provide a stable base for crane operations by using the sea 
bed to elevate above the sea level. Detailed characteristics of different types of jack-
up vessels have been discussed in [13]. The mobilisation time on a jack-up vessels can 
be lengthy and depends on the season/current market [53]. Chartering jack-up vessels 
is very expensive; daily rates on the spot market can exceed £250,000 [53], providing 
a clear incentive for the wind farm operators to limit their use of the jack-up vessels. 

 

Figure 2.5. Jack-up vessels used for major component replacements 6. 

As near shore sites in the North Sea are becoming scarce, future wind farms will be 
built further offshore [1]. Some of the future offshore wind farms in the UK will be 
located over 100km from shore. For example the distance from shore to Hornsea 
Project Three Offshore Wind Farm will be 132.9 km7. For reference, the average 
distance to shore for European wind farms in 2016 was 44km [54]. Travelling to and 
from farms as distant from shore as the Hornsea Project Three using a standard CTV 
would take up a significant part of the available time window, restricting the number 
of maintenance actions which can be carried out (approx. one way travel time to 
Hornsea Project Three for a standard CTV: 3.6 hours).  

It was found that wind farm availability drops drastically for wind farms located 
80km or further offshore [55]. Ensuring effective O&M at far-from-shore sites will 
require a Service Operations Vessels (SOVs) (also known as walk-to-work vessel [56]). 

                                                   
6 Adepted from: https://www.windpoweroffshore.com/article/1214101/specialised-vessels-
cut-costs. Accessed on: 18/06/2018. 
7 Data from http://www.4coffshore.com/windfarms/hornsea-project-three-gb-uk1k.html 
accessed on 18/06/2018.  
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SOVs provide overnight accommodation for technicians, eliminating the need for 
daily travel between O&M base and wind farm. Walk-to-work vessels can be 
equipped with motion-compensating gangways, which enable crew transfers in 
higher significant wave heights. SOVs have significantly larger carrying capacity (can 
accommodate up to 60 technicians8). However, SOVs are still an immature solution 
(partly due to large cost); they are not widely used as default maintenance vessels at 
offshore wind farms [30].  

2.2.4 Costs	Associated	with	Offshore	Wind	Farm	O&M	

Project costs can be split into Capital Expenditure (CAPEX) incurred at start of the 
project and Operating Expenditure (OPEX), incurred during the asset’s operational 
lifetime (both defined in Definitions section). The general consensus in the scientific 
community is that offshore wind farm O&M costs constitute approx. 25-35% of the 
total project expenditure (i.e. CAPEX + OPEX) [26], [44], [57], [58]. In monetary terms, 
this can be as much as £290,000-£430,000 per turbine, per year [51]. In comparison, 
O&M costs of onshore wind projects only constitute 5-10% of the total expenditure 
[58]. Reasons for this significant difference include: 

• Harsher offshore environment, causing increased failure rates 
• Lower accessibility, due to weather/vessel restrictions on access 
• Increased travel time and costs (i.e. vessel hire) 

The cost of logistics9 (vessel hire, fuel, planning etc.) ranges, depending on the source 
and definition of the term “logistics”, from 11-32% of total OPEX [1], [51], [59]. Jack-
up vessel hire can constitute up to 25% of total OPEX [51]. Other significant 
expenditure includes parts & consumables (approx. 15% of OPEX) and technicians’ 
salaries (8% of OPEX) [51].  

A summary of published offshore wind farm O&M costs is shown in Table 2.2. While 
many of the costs shown in Table 2.2 will differ from wind farm to wind farm (or 
depending on other factors such as vessel specifications), the table shows the orders 
of magnitude of different day-to-day O&M costs. Major failures of expensive 
components can cost over 60 times more than the revenue a turbine generates in a 
day. The operators are heavily incentivised to make sure failures of 
blades/gearboxes/generators are kept to a minimum.  

                                                   
8 From https://www.4coffshore.com/windfarms/siemens-gemini-sov-christened-
nid4093.html Accessed on: 18/06/2018. 
9 Term “logistics” was defined in Definitions section. 
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Table 2.2 also sheds some light on the justification of the real world O&M decision 
making trade-offs. In the winter, it is not uncommon to wait an average of 5 days for 
an 8-hour weather window in the North Sea [48]. Neglecting to restore generation on 
one of the turbines during a winter sail day (as defined in Definitions section) means 
an average of £20,000 lost production (5 days times £4,000 lost generation). The 
potential cost saving of using one fewer vessel on a single day is approximately £3,000 
(from £2000 saving on vessel hire and £1000 saving on fuel). It is clear that in the 
winter, most operators will be incentivised to maximise restoration of wind power 
generation (or prevention of new faults) rather than attempt to cut costs by using 
fewer vessels. Further discussion on the drivers of offshore wind farm O&M policies 
is provided in Section 2.2.6. 

Table 2.2. Comparison of reported offshore wind farm O&M costs. 

Cost Monetary value Source 
Jack up vessel charter 
(on the spot market, 

including mobilisation) 
£250,000 per day [53] 

Major generator repair £200,00010 [60] 

Technician wages 
£80,000 per technician per year so 

approx. £9,000 per day for a 
medium sized wind farm11 

[39] 

24 hours of turbine 
downtime 

£4,000 [41] 

CTV hire costs £1,500-4,000 per day per vessel [61] 
Operational cost of 

structural health 
monitoring system 

£1,150 per day (for a 100 turbine 
wind farm) 

[57] 

CTV fuel cost 
£12 per km travelled so up to £1,000 

per vessel per day 

Interview with 
an offshore wind 

farm operator 

Wind farm operators may prefer to schedule maintenance actions for periods of low 
winds to minimise lost revenue. However, this approach is not common in the winter, 
as the potential benefits stemming from lost revenue reductions (thousands of 
pounds) are insignificant compared to the potential revenue losses incurred if a 
turbine ceases to generate power due to insufficient maintenance (tens of thousands 
of pounds).  

                                                   
10 Value converted from USD to GBP based on 5/07/2019 exchange rate of 0.8. 
11 Assuming 261 working days in a year and 30 technicians per wind farm.  
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Which day-to-day O&M costs should be considered in the short term O&M 
optimisation process? 

Cost minimisation is a widely used optimisation objective in various scientific 
publications on O&M optimisation. However, in the context of on-the-day decision 
making, many costs do not need to be considered, as they do not affect the choice of 
policy.  

Take cost of repair as an example; when researchers in the field refer to the costs of 
repair (i.e. Dinwoodie et al. [39]), they usually mean the cost of spares. In most cases, 
this cost is unavoidable. Naturally, such costs can be delayed, but the benefit of doing 
so would be insignificant compared to the revenue generated by the turbine, if it was 
operational.  It can be argued that the difference between spending £10,000 on a repair 
today, vs. doing so in 3 days’ time is too small to be considered in modelling.  

However, costs of failures which can be prevented should be included in the 
modelling. Take topping up lubricant as an example – neglecting to carry out this 
maintenance action can lead to a costly component damage. The cost of repair of this 
damage should be included in the analysis, to incentivise and prioritise the service 
action preventing failure.  

If a model only considers costs over a short time horizon, the “optimal” action may 
be to never carry out certain maintenance actions. Take planning an expensive repair 
in the next few days as an example; the costs associated with this action may outweigh 
any revenue the turbine could have produced in that time. Yet it is obvious that the 
repair should be carried out promptly to restore generation. In this case, maintenance 
should be incentivised either by specifying a sufficiently high reward for the action 
or by taking into account the revenues produced by a turbine in a longer time horizon 
(e.g. a year rather than the original planning horizon of a few days). 

If a vessel is chartered on a long term basis, the hire cost does not need to be 
considered when planning next day’s maintenance. The operator will suffer the cost 
regardless of whether the vessel sails or not. However, if the operator plans to hire 
vessels on the spot market, charter rates can be highly variable and should be 
included in modelling.   
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2.2.5 Health	&	Safety	Considerations		

The purpose of this section is to familiarise the reader with some practical Health & 
Safety consideration which influence the process of planning maintenance of offshore 
wind turbines.  

When assigning technicians to tasks, the maintenance planner must ensure that 
technicians have all relevant qualifications to complete the task. First and foremost, 
technicians must have an up-to-date Basic Safety Training certification provided by 
GWO (Global Wind Organisation – a certification body). Basic Safety Training 
certification is viewed as a universal seal of competence for offshore wind technicians; 
it consists of: 

• GWO Working at Heights and Rescue – includes correct use of PPE (Personal 
Protective Equipment) and evacuation devices 

• GWO First Aid – covers identification injuries, correct use of lifesaving first 
aid and use of first aid equipment 

• GWO Sea Survival – focuses on the risks of hypothermia and drowning, 
outlines correct procedures for safe transfer from vessel to turbine and vice 
versa 

• GWO Manual Handling – includes rescue techniques, procedures for lifting 
heavy objects and injured personnel 

• GWO Fire Awareness – outlines procedures for dealing with fire and correct 
use of firefighting equipment  

In addition to the basic Health and Safety training outline above, certification is 
required to carry out work on certain wind turbine components (e.g. work on certain 
electrical components requires high voltage competency training). As most Health & 
Safety certificates expire after 2-3 years, technicians are required to take refresher 
courses.  

UK regulations only allow offshore wind turbine maintenance during daytime [62]. 
Dalgic et al. [62] have shown that significant O&M cost savings could be achieved by 
implementing a day-and-night working shift pattern. However, the cost savings 
would have to be substantial to offset the operational risk associated with carrying 
out O&M at night-time. 

There are constraints on the access to certain parts of the turbine; for example for 
safety reasons, no work can be carried out in the hub if wind speed exceeds 12m/s 
[36].   
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Health & Safety considerations also influence the assignment of vessels to tasks. 
Quoting a RenewableUK report [63]: 

“The selected vessel must be capable of operations within the expected prevalent conditions 

with a safety margin to allow for changes in environmental conditions” 

Ultimate responsibility for the well-being of vessel passengers lies with the vessel 
master, however, they are obliged to work closely with marine coordinators to ensure 
health and safety standards are adhered to [63].  

Transfer of crew form vessel to turbine should only be undertaken if both the vessel 
master and maintenance technicians are satisfied with the sea conditions. Some 
vessels may be equipped with vessel motion monitoring systems, which can aid the 
decision on whether to transfer crew. A Transfer Assistant (who is not part of the 
crew transferring onto a vessel) supervises the transfer, ensuring all crew wear 
appropriate PPE and observing for potential hazards. Upon transfer completion, 
vessel master must report to the marine coordinator the names of transferred crew 
and the location at which they were picked-up/dropped-off. Vessel-to-vessel transfers 
are discouraged [64]. 

Idle vessels may be required to hold a certain position in a wind farm, so that in the 
event of emergency, all manned locations are within 20 minutes reach of an idle 
vessel. Marine coordinators may permit idle vessels to loosely moor to wind farm 
structures [64].  

To ensure no technician is accidentally left on a turbine at the end of the shift, before 
leaving the wind farm, the vessel master must confirm the location of all industrial 
personnel and passengers who were assigned to come back to base on their vessel 
[64].  

Wind farm operators very rarely use vessels capable of transporting more than 12 
technicians; such vessel would be classified as a passenger vessel, introducing 
numerous safety considerations and reducing operational flexibility [62]. 
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2.2.6 Key	Performance	Indicators	and	Optimisation	Objectives	

Key Performance Indicators (KPIs) are quantifiable measures used to evaluate the 
performance of a project. One of the most popular metrics used by the industry to 
compare different wind farms is Levelised Cost of Energy (LCoE). LCoE can be 
defined as: 

“The ratio of total lifetime expenses versus total expected outputs, expressed in terms of the 

present value equivalent” [1] 

However, LCoE is a very broad metric, often heavily dependent on the site 
characteristic (e.g. mean wind speed). LCoE it is should not be used to evaluate the 
effectiveness of the O&M planning process. In the context of the problem of planning 
offshore wind maintenance, KPIs may be used to evaluate the quality of decisions 
made by planners. KPIs relevant to the problem at hand include: 

1) Mean Time Between Visits (MTBV) 
2) Mean Time To Repair (MTTR) 
3) Percentage of reactive maintenance actions 
4) Turbine availability 
5) Man-hours worked by technicians/Turbines visited/Tasks completed 
6) Operational Expenditure (OPEX) 

Note that the wind farm operator would never choose to optimise their O&M plan 
for a single KPI. For example, availabilities of near 100% could be achieved, but the 
associated vessel and stand-by staff cost would be enormous.  

Maximisation of MTBV increases the proportion of time technicians are doing useful 
work by reducing time wasted on crew transfer and getting to/from the nacelle. 
MTBV can be maximised by bundling tasks to be carried out at a turbine and 
completing them during a single visit (opportunistic maintenance). However, setting 
maximisation of MTBV as the sole optimisation objective would result in increased 
downtime or lead to preventable failures.  

MTTR is a measure of how responsive the planners are to changing circumstances, 
but it is also heavily dependent on the skill of technicians and the weather.  

Percentage of reactive maintenance actions as a proportion of all actions is one of the 
KPIs which the operators aim to minimise by keeping components well-maintained. 
High proportion of reactive maintenance can be costly; it is usually cheaper and more 
effective to prevent failure.  
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Wind farm operators aim to maximise the energy capture by minimising the amount 
of time a turbine is not operational (either due to a fault or due to maintenance being 
carried out). Wind turbine availability (i.e. the proportion of time when the wind 
turbine is functional)12 is often used as a KPI in the offshore wind industry. 
Availability can be divided into time-based and energy-based.  

Time-based availability is a measure of the amount of time the turbine was available 
to produce energy in a given period of time. Well-maintained offshore wind turbines 
can achieve time-based availabilities of over 97% [65]. However, if an increase in 
availability is achieved at a high O&M cost, the resultant profits may actually 
decrease [30]. 

Alternatively, energy-based availability takes into account the lost production in the 
periods of unavailability (method of calculating it was proposed in [66]). This method 
of calculating availability tends to favour the operator (rather than the service 
provider) as generally, turbines are unavailable when they cannot be repaired due to 
high waves, which often coincides with high winds. Analysis of a real wind farm data 
shows that time-based availability of 97% may correspond to an energy-based 
availability of only 89% [66].    

Availability of a wind farm depends on the wind turbine failure rates and site 
accessibility. The latter can be broadly defined as a measure of the amount of time 
wind turbines can be accessed for O&M actions; a stricter definition was provided in 
[48]. Accessibility of a particular site will depend on local meta-ocean conditions, 
which are highly seasonal, and the capabilities of vessels available to the wind farm 
operator.  

Availability is often used as a key metric in maintenance contracts [17]. Maintenance 
provider may be required to specify target/minimum turbine availability (97% was 
quoted as the industry standard by Conroy et al. [66]). If the actual availability is 
below the target, service provider may be liable to contractual penalties. While this 
type of contract encourages the maintenance provider to ensure high wind turbine 
reliability, it may result in a conflict of interest. For example, the owner/operator’s 
preference is to carry most preventative maintenance during periods of low wind to 
reduce lost generation. The maintenance provider’s interest is usually to reduce costs 
and reduce the complexity of the planning process, which can lead to scheduling 
tasks in advance and having roughly the same number of staff and vessels at hand 
regardless of the weather. Note: the relationship between the wind farm 

                                                   
12 Availability = 1 – [Time unavailable/(Time available + Time unavailable)] 
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owner/operator and OEM/maintenance service provider is discussed in Appendix C. 
Wind farm Ownership Structure. 

When planning maintenance actions for the following day, one of the objectives may 
be to maximise the amount of useful work done on the day. One of the ways of 
quantifying useful work is measuring the number of man-hours worked by 
technicians on shift. Maximising man-hours worked, in most cases, minimises the 
amount time lost on travelling between turbines and the time lost on ascending 
to/descending from the nacelle. Alternatively, the operators may want to maximise 
the number of tasks completed; however, not all tasks are equal. Completing a major 
repair is a far more important milestone than conducting an inspection. When faced 
with a high number of failed turbines, the operator’s preference may be to restore 
generation on as many turbines as possible. This can be quantified by the number of 
successful repair actions carried out on the day. KPIs discussed in this paragraph all 
aim to maximise the operational efficiency (achievement of maximum amount of 
useful work given the limited resources).  

OPEX is also a KPI relevant to the problem of planning day-to-day offshore wind 
farm maintenance. While there is a multitude of factors contributing to OPEX, the key 
costs in the context of offshore wind turbine maintenance are: 

• Vessel costs (charter and fuel) 
• Staff costs (technicians, planners, vessel skippers, management) 
• Lost production  
• Contractual penalties (i.e. for missing deadlines/targets) 

Reported real world costs are provided in Table 2.2. Discussion on how some of the 
above costs affect the process of short term task prioritisation is provided in Table 3.1.  

Recommended optimisation objectives 

Following discussions with a wind farm operator, the key objectives relevant to the 
problem of planning offshore wind farm O&M are as follows: 

1) Maximisation of the number of completed high priority maintenance actions. 
Note that this combines elements of OPEX minimisation (i.e. avoidance of 
contractual penalties) and availability maximisation (minimisation of turbine 
downtime) 

2) Maximisation of the number of man-hours worked by technicians 
(maximisation of operational efficiency) 

3) Minimisation of the number of unsuccessful maintenance actions, which also 
maximises MTBV and operational efficiency 
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4) Minimisation of avoidable costs (OPEX minimisation) 
5) Maximisation of wind power generation (e.g. by delaying non-critical 

maintenance action during periods of high wind) 

Application of a multi-objective optimisation approach may be required to generate 
policies while considering all of these objectives. The complexity of the problem and 
the presence of uncertainties make it impossible to state the exact value of carrying 
out a certain action today vs. carrying out a different action (or carrying out an action 
today vs. tomorrow). The process selecting/assigning weights to objectives/KPIs is 
subjective; it depends on the circumstances and the best interest of the decision maker 
(which differs whether it’s maintenance provider or wind farm operator/owner). In 
this thesis, the author attempted to avoid the expression “optimal policy”, because 
the real world problem has no single optimality criteria.  

2.2.7 Uncertainties	Affecting	Day-To-Day	Planning	of	Offshore	Wind	Farm	
O&M	

The information available to the maintenance planner at the time of creating the 
vessel routing policy is not always 100% accurate. The process of planning real world 
wind turbine maintenance requires the decision maker to consider uncertainties, 
which can have a significant impact on the outcome of the policy. Interviews with the 
wind farm operators (summarised in Appendix B. Summary of Informal Interviews 
with Offshore Wind Farm Operators) revealed three uncertain variables which the 
planners may need to consider in order to create an effective vessel routing policy: 

a) Uncertainty on task duration  
b) Uncertainty on the expected weather conditions at the wind farm (for example 

the forecasted significant wave height affecting crew transfer) 
c) Possibility of failure misdiagnosis 

Seyr & Muskulus [67] highlighted the importance of considering the uncertainty of 
weather conditions and duration of a maintenance task when planning offshore wind 
farm maintenance. Their paper has shown that not incorporating uncertainties on 
maintenance action time into the decision making process can lead to significant 
production losses. A literature review of approaches for optimisation under 
uncertainty is provided in Section 4.2.4. Zhang et al. [19] also stressed that considering 
weather forecast while planning offshore wind O&M is crucial.   

Interviews with wind farm operators revealed that to avoid technicians having to 
work longer-than-12h shifts, tasks taking longer than expected are usually left 
unfinished (unless there is another task scheduled afterwards which can be delayed 
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or cancelled). If a task takes a shorter time than expected, wind farm operators may 
make on-the-day modifications to assign an additional task to teams.  

Depending on the weather forecast supplier, wind farm operators may have 
uncertainty bounds on values such as expected wind speed/direction and significant 
wave height. These values can be used to inform decisions on the assignment of 
vessels to tasks. As discussed in Section 2.2.3, vessels have different turbine access 
capabilities (in terms of the significant wave height). If the significant wave height 
forecast for a turbine which needs to undergo a high priority maintenance action is 
associated with high uncertainty, the operator would assign one of their most capable 
vessels to ensure maximum probability of transferring crew onto the turbine.  

Uncertainty on the time of repair can be estimated by analysing past repair durations 
for the same task. However, in most cases, values such as uncertainty on task duration 
or probability of failure misdiagnosis are not quantified by the planners. According 
to interviews with the offshore wind farm operators, if the current decision making 
process is affected by factors such as high uncertainty on a particular task’s duration, 
it is done subjectively, depending on the operator’s “gut feeling” rather than based 
on a scientific procedure.  

In summary, not including uncertainties in the process of planning offshore wind 
farm maintenance can lead to unsuccessful crew transfers, leaving unfinished tasks 
on turbines and last minute changes to the plan, which can introduce inefficiencies 
and increase maintenance costs.  

2.2.8 Seasonality	&	Problem	Size	

The difficulty of the vessel routing problem increases with the number of turbines 
which require a maintenance action. Some sources reported estimated number of 
maintenance visits per turbine per year of 6 [13], or between 4 and 6 [68]. However, 
the actual number of times technicians access a turbine each year is higher, as the 
aforementioned studies do not include retrofits and Balance of Plant (BoP) tasks13. 
Annual service on its own can take up to 60 hours [10] (turbine dependent). Industry 
reported that offshore turbines require approximately 80 hours of maintenance a year 
[69] (which translates to roughly 10 full workdays).    

It has been argued that the likelihood of turbine failure, is largest in the winter, due 
to higher wind speeds [13]. Accessing offshore wind turbines in the North Sea is most 

                                                   
13 BoP tasks include the following: work on the transition piece (e.g. painting and 
inspections), maintenance/installation of equipment cranes, wind and wave measurement 
equipment, grid connection etc. 
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difficult in the winter (due to higher significant wave heights). A graph of the wait 
time to access a turbine with a minor generator fault, with a standard CTV, based on 
real data for a wind farm in the North Sea, is shown in Figure 2.6 (adapted from [70]). 
It can be seen that the difference between waiting time in the winter (here defined as 
lasting from beginning of November until the end of January) and other seasons is 
substantial. There is approximately 30% chance that the operator will have to wait for 
more than 4 days to carry out a minor repair in the winter.  

A study by Fox & Hill [71] has shown that certain North Sea locations experienced up 
to 20 no-access days in January 2016. This can cause an accumulation of faults across 
the wind farm, resulting in shortages of maintenance assets (vessels, technicians, 
spare parts and consumables). The proportion of corrective maintenance actions is 
usually higher in the winter (due to service campaigns being planned for summer, 
reduced accessibility and higher failure rates in winter). 

 

Figure 2.6. Cumulative probability of the waiting time to repair a minor generator 
fault [70]. 

Winter is also the time of the year when the energy yield is the highest [13]. The 
combination of possible maintenance asset shortages due to multiple, accumulated 
faults across the wind farm, high uncertainty associated with winter weather, and 
threat of significant lost revenue puts enormous pressure on the maintenance 
planners. Evidence gathered during interviews with wind farm operators 
(summarised in Appendix B. Summary of Informal Interviews with Offshore Wind 
Farm Operators) suggests that it is not uncommon for a large offshore wind farm in 
the North Sea to experience days with 20+ turbines requiring varying levels of 



Chapter 2. Planning Real World Offshore Wind Farm O&M 

 
 

34 

maintenance action in the winter. The complexity of the problem wind farm 
maintenance planners face on such days is discussed in Example 2.1. 

The problem is complicated further by the multiple KPIs (discussed in Section 2.2.6) 
and uncertainties the decision maker needs to consider (Section 2.2.7). Wind farm 
maintenance planners face this difficult task of creating a policy meeting all 
constraints on a daily basis. As the time to make the decision is limited, planners can 
only commit a small proportion of their time to policy optimisation.  

Let us consider the following scenario: on a particular day, 20 turbines require a 
maintenance action. The operator has 5 unique vessels available. A decision needs 
to be made as to the assignment of turbines to vessels and the order in which 
turbines are visited. The number of possible policies (permutations of assignment 
of vessels to turbines and the order in which turbines are visited) equals 1.937*1025 

(as shown in Appendix A. Calculating the Number of Possible Vessel Routing 
Policies). This is more than the number of stars in the observable universe14. This 
does not include the assignment of technicians to tasks, which would significantly 
increase the number of permutations.  

Example 2.1. Problem size: mini case study. 

  

                                                   
14 From: https://www.space.com/26078-how-many-stars-are-there.html, accessed on: 
07/08/2018. 
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2.3 Summary	of	the	Practicalities	of	Planning	Offshore	Wind	
Farm	O&M	

Accessing offshore wind turbines for maintenance is time consuming and uncertain. 
Many offshore wind farms face severe, seasonal access restrictions. It can be argued 
that the means of accessing the turbines, the number of assets that needs to be 
maintained daily and numerous constraints make the problem of planning offshore 
wind farm maintenance unique. Tools used in other industries cannot be easily 
applied to the problem of planning offshore wind farm O&M. 

A research gap exists in operational decision support tools applicable to the real 
world problem of planning offshore wind maintenance (including planning vessel 
routing). Conclusions of Section 2.1 align with the feedback from wind farm 
operators, who confirmed the industry-wide need for operational decision support 
tools for maintenance planning. This chapter’s key findings are summarised below: 

1. Task priority depends on multiple factors, including type/characteristics of 
maintenance, deadlines, spare part availability etc. Task priority is a key factor 
in the process of planning offshore wind farm O&M; it should be quantified 
and included in the decision making process (Section 2.2.2) 

2. Wind farms use vessels of varied characteristics, assignment of CTVs to tasks 
may depend on vessel capabilities (Section 2.2.3) 

3. While maintenance costs vary significantly depending on the type of action, 
cost of spare parts/technician man-hours should not be considered when 
planning next day’s vessel routing (Section 2.2.4)  

4. Assignment of technicians to tasks depends on their Health & Safety 
qualifications (Section 2.2.5) 

5. In the problem of planning day-to-day offshore wind farm O&M, there can be 
no single optimisation objective (Section 2.2.6) 

6. Uncertainties on the weather forecast and duration of maintenance actions 
should be taken into account when planning offshore wind turbine 
maintenance  (Section 2.2.7) 

7. Many wind farms in the North Sea face an accumulation of corrective 
maintenance actions in the winter (due to reduced accessibility) which leads 
to increased problem complexity and increased need for an optimisation tool   
(Section 2.2.8) 

Conclusions from this chapter influenced methodology choices made in Chapters 3 
& 4. The resulting decision support tool is evaluated against points 1-7 in Table 7.11 
(Section 7.8).



 

36 
 

Chapter	3.	 Prioritisation	of	maintenance	action	using	a	
time-variable	Semi-Markov	Decision	Process	

Section 2.2.2 outlined the breadth of maintenance actions carried out on wind 
turbines, which range from preventative, retrofits and statutory tasks to repairs. 
While all tasks are critical to smooth running of a wind farm, some actions are more 
urgent than others. To successfully plan offshore wind O&M, this “urgency” needs 
to be quantified. This chapter tackles this problem by proposing a methodology for 
prioritising maintenance actions. 

Quantification of the incentive to carry out maintenance actions on a particular 
turbine, relative to others, is the first step in the overall process of improving the wind 
farm operational decision making. In Chapters 5-6 (description of the vessel routing 
decision support tool and the case studies) the utility value of visiting all turbines 
requiring maintenance is used as an input, enabling efficient resource allocation.  

In this chapter, a literature review of models for diagnosis and prognosis was carried 
out. Effective maintenance task prioritisation relies heavily on knowledge of the 
underlying issue and the current state of the component, as shown in Figure 3.1. As 
frequent visual inspections of offshore wind turbine components are hindered by 
access difficulties, operators rely heavily on Conditioning Monitoring Systems (CMS) 
to diagnose the problem and estimate its severity.  

 

Figure 3.1. A comprehensive task prioritisation methodology relies on accurate 
diagnosis and health estimation models. 

This chapter is structured as follows: the practicalities of task prioritisation for 
offshore wind turbines are outlined in Section 3.1. Having described the problem, 
literature is reviewed in search for a solution in Section 3.2. The proposed 
methodology is described in Section 3.3, with case studies and results presented in 
Section 3.4. Finally, Section 3.5 contains the chapter’s concluding remarks. 
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3.1 	Practical	Problem	Definition	

Researchers in other fields may define vessel routing as deciding the coordinates of 
checkpoints a vessel must travel through on their planned routes to minimise fuel 
consumption depending on the wave height and direction (for example Petrie et al. 
[72] who developed an algorithm for cost-optimisation of vessel routes depending on 
weather constraints). Since this thesis is focussed on the combinatorial logistic 
problem, not the dynamic interaction of vessel’s hull and waves, the latter problem is 
considered out of scope of this research. In the context of this thesis, vessel routing 
problem is defined as:   

“The problem of choosing the assignment of vessels to turbines requiring 
maintenance and the order of wind turbine visits, in an attempt to maximise user 

specified KPI’s.” 

It is also important to differentiate the problem of maintenance action prioritisation 
for offshore wind farms from the same problem in other engineering fields (such as 
other forms of electricity generation). It can be argued that the former problem is more 
challenging (due to the combination of factors a-f below). Decision support tools in 
this area can lead to significantly higher economic gains compared to prioritisation of 
maintenance actions in most other engineering domains for a number of reasons:  

a) Relatively high failure rates of offshore assets, possibly due to harsh 
environment and higher wind speed [10]. 

b) Wind turbines consist of a broad variety of engineering components (electrical 
hydraulic, mechanical), each requiring different skills, tools and parts to 
maintain. 

c) Significant amounts of time are spent daily on travelling to an offshore wind 
turbine, transferring crew and tools onto turbine and ascending to the nacelle. 
This limits the time available for repairs, while vessel capabilities restrict the 
amount of spare parts and tools which can be brought along for maintenance.  

d) As discussed in Section 2.2.8, sea conditions often restrict the access to offshore 
wind turbines. For example, wind farm accessibility (as defined in Definitions 
Section)  for some of the wind farms in the North Sea was reported to be below 
15% in the winter [48]. Low accessibility can lead to an increased number of 
reactive maintenance actions required on a wind farm, hindering work 
organisation.   

e) Maintenance decisions prior to long periods of inaccessibility can have a 
significant impact on LCoE. Interviews with wind farm operators 
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(summarised in Appendix B. Summary of Informal Interviews with Offshore 
Wind Farm Operators) revealed that failure to complete all necessary 
maintenance in this period can lead to turbines being inoperative for weeks.  

f) Time to make a decision is constrained: maintenance tasks are usually 
prioritised a day before, however, if failures occur overnight, wind farm 
operators have less than an hour to readjust the priority list the following 
morning. 

Interviews with an offshore wind farm operator revealed that on many days, the 
number of maintenance actions to be carried out exceeds the capabilities of 
technicians and vessels available. Inevitably, on days with resource shortages, 
carrying out all planned maintenance tasks is not possible.  Effective maintenance 
task prioritisation can ensure that the effect of delaying certain maintenance actions 
minimises the impact on the wind farm KPIs, as discussed in Section 2.2.6.  

First and foremost, O&M planners prioritise maintenance actions which ensure 
continuous running of turbines. This includes carrying out repairs on turbines which 
are not producing power, but also actions which prevent the turbine from failing in 
the near future. Wind farm operators may also be obliged to carry out turbine visits, 
which do not affect the turbine’s ability to generate power in the short term. These 
include the annual service, statutory inspections and retrofit campaigns. Priority of 
these tasks generally depends on the proximity of formal deadlines and expected 
resource bottlenecks, which the operator has to consider. An overview of the factors 
affecting prioritisation of maintenance actions is provided in the following section. 

3.1.1 Factors	Affecting	Prioritisation	of	Tasks	on	Offshore	Wind	Turbines	

Practical considerations to be taken into account when assigning priorities to turbines 
which require a maintenance action are described in detail in Table 3.1. The subjective 
importance of each factor, defined by an offshore wind farm operator, is given in the 
first column of Table 3.1 (in brackets).  

Definition of the practical problem provided the requirements a model needs to fulfil 
to aid maintenance task prioritisation in real life. A literature review was conducted 
to identify a suitable methodology for enabling automation of offshore wind farm 
maintenance task prioritisation.  
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Table 3.1. Outline of the factors affecting prioritisation of maintenance actions. 

Factor affecting 
prioritisation 

(importance: 1 - high 
to 4 - low) 

Explanation 

Type of maintenance 
action required (1) 

Carrying out repairs is generally prioritised over non-critical 
maintenance actions such as an annual service.  

Deadlines (1) 

Certain maintenance actions have hard or soft deadlines 
associated with them; for example all annual services need to be 
finished before late autumn/early winter, when access to turbines 
becomes difficult. Service providers may be bound by contracts 
obliging them to finish certain maintenance tasks by a set date.  

Availability of 
resources (1) 

Hiring external contractors is not uncommon on offshore sites 
(for example to carry out retrofits on multiple turbines). Often 
there is a limited time window when the contractors are available. 
The vessels themselves need occasional maintenance. Limited 
human resources may be available during festive periods.  

Multiple maintenance 
actions on a turbine (2) 

If maximisation of MTBV is a KPI on a given wind farm, higher 
priority may be assigned to a turbine on which a number of low-
to-medium priority actions are required compared to a turbine 
with a more serious single fault. Interviews with offshore wind 
farm maintenance planners have also revealed that maintenance 
is often delayed if a turbine only requires one, non-critical 
maintenance action. Holding off maintenance until another 
action is required aims to increase the MTBV.    

Wind speed forecast 
for the near future (3) 

If the wind speed is expected to decrease significantly in near 
future, non-critical maintenance actions may be delayed, in an 
attempt to maximise revenue generated by the turbines. 

Turbine’s power 
output compared to 

others (3) 

If a particular turbine consistently delivers a higher power output 
compared to others (e.g. due to upwind location), corrective tasks 
on that turbine will be prioritised over equivalent faults at other 
turbines to maximise revenue. 

Future sea state 
forecast (3) 

If the significant wave height is expected to increase significantly 
and remain high in the foreseeable future, reassessment of 
priorities may be necessary. Threat of limited or no access to 
turbines increases the priority of both corrective actions and 
maintenance which prevents turbine from failing in near future.   

Repair probability (3) 

Fault diagnosis is not 100% accurate; the level of confidence 
operators have on the maintenance action required varies 
depending on the quality and type of signals received from the 
CMS. Faults diagnosed with lower certainty may be assigned a 
lower priority to reduce the risk of technicians visiting the turbine 
and not being able to address the issue, due to misdiagnosis.   

Repair cost (4) The impact of the cost of repair on operational decision making 
for offshore wind is described in more detail in Section 2.2.2.  
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3.2 Literature	Review	

The aim of this section is to identify a methodology suitable for day-to-day 
prioritisation of maintenance actions on offshore wind farms. An outline of the key 
questions each section of the literature review aims to answer is provided in Figure 
3.2. 

 

Figure 3.2. Overview of the Literature Review section. 

The literature review begins by outlining the use of Condition Monitoring Systems 
(CMSs) in wind turbines (Section 3.2.1). This section provides an overview of the data 
collected by CMSs, which is one of the inputs to the task prioritisation model.  
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A review of methods used for assessment of the current state of an engineering 
component is conducted in Section 3.2.2. Knowledge of the level of deterioration 
enables the user to evaluate the extent of damage, quantify the need for resources 
(spare parts, tools and technicians) and estimate the time required to complete the 
maintenance task. Deterioration models are reviewed in Section 3.2.2, providing an 
insight into the consequences of not taking a maintenance action. Knowledge of the 
expected deterioration of a component enables the user to consider trade-offs of the 
costs associated with carrying out maintenance actions, revenues generated by the 
asset and the penalties for further deterioration if no action is taken. This is closely 
linked to estimating the Remaining Useful Life (RUL) of a component; approaches for 
RUL calculation were reviewed in Section 3.2.2. 

Methods for prioritisation of maintenance actions are outlined in Section 3.2.3. Section 
3.2.4 provides an overview of the methods of calculating the value of carrying our 
maintenance actions, which is a crucial input to the vessel routing optimiser described 
in Chapter 5. Section 3.2.5 contains a summary of the literature review and an outline 
of the recommended approach.  

3.2.1 Overview	of	Condition	Monitoring	Systems	(CMS)	for	Wind	Turbines	

Condition Monitoring Systems (CMS) consist of sensors, which monitor various 
parameters and data management software, which analyses the data extract value 
from it. As wind turbines grow larger in capacity and are located in more remote 
areas (including offshore), early detection and diagnosis of potential component 
failures is becoming increasingly important.  

In general, CMS for wind turbines can be divided into SCADA (Supervisory Control 
And Data Acquisition) and purpose-designed systems. SCADA is a combination of 
software and hardware designed for operating wind turbines and providing the user 
with a range of parameters such as properties of the power output generated by the 
turbine (power factor, reactive power, current and voltages), temperatures of gearbox 
bearings and generator windings etc. Despite the fact that resolution of the data 
produced by SCADA systems is 10 minutes, which is considered, by some 
researchers, too low for accurate fault diagnosis [73], a significant amount of research 
was produced on methods of utilisation of data produced by SCADA, as discussed 
in Section 3.2.2.  

A number of review papers were written on the use of CMS in wind turbines; trends 
in wind turbine CMS and fault diagnosis have been described in [60]. Requirements 
for modern wind turbine CMS, an outline of features and benefits of different 
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commercially available systems and a description of a range of signal processing 
techniques used in CMS were provided in [73]. Classification of the state of the art 
condition monitoring approaches and an overview of future challenges of wind 
turbine CMS were discussed in [74]. Cibulka et al. [75] provided an overview of 
approaches for monitoring electrical, mechanical and fluid parameters in offshore 
wind turbines. An extensive technical report encompassing almost all aspects of CMS 
for wind turbines can be found in [76]. CMS are generally used to: 

a) Detect problems before they occur and alert the operator in an attempt to 
prevent failure from occurring  

b) Diagnose faults to identify the remedial action to be taken and ensure correct 
spare parts and tools are brought to the turbine 

c) Forecast the remaining life of the component, enabling efficient planning of 
future maintenance strategy  

Effective use of the CMS can lead to significant O&M cost savings, as failures can be 
prevented [60] & [76]. According to [77], key benefits of using a CMS include: 

a) Avoidance of premature breakdown 
b) Reduction of maintenance costs as inspection intervals can be increased 
c) Improvement of the capacity factor, as given an early warning, operators can 

attempt to schedule maintenance during a period of expected lower wind 
speed 

d) Support for further development of the monitored component, as the 
information provided by the CMS can lead to improved design 

Naturally, the decision to invest in a CMS or not depends heavily on its performance 
[40], i.e. ability to detect issues early enough for the operator to deal with them and 
the number of false alarms. Research shows that for a CMS to be cost-effective, it must 
provide accurate diagnosis in around 60–80% of cases [36], however, this number will 
depend on the turbine used and site characteristics. Sufficiently early detection of a 
fault is also crucial; alarm triggered minutes before failure is of little value to the 
operator, who may not have sufficient time to apply the remedial action before failure 
occurs. The probability of CMS detecting a fault increases with time; the nearer a 
component is to failure the higher probability of detection, as shown in Figure 3.3. 
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Figure 3.3. a) Illustration of the process of deterioration over time. b) detectability 
of a problem over time [33]. Note: this graph is based on a mechanical component 
(gearbox) – deterioration and detectability of faults in electrical components may 
be significantly different. 

From part a) of Figure 3.3, four distinct zones can be identified: on the left the 
component is effectively in a brand new state. When the component’s condition is 
between point P (100%) and 70%, operators may choose to slow deterioration down 
by preventative measures such as precision maintenance (for example alignment and 
balance for drive shaft or effective lubrication for bearings). Effective CMS will be 
capable of identifying faults in the third zone, with the component being between 
70% and 20% of its original condition, at which point, the operators may choose to 
repair or replace the component before it fails. In the fourth zone, the component is 
nearing the end of its operational life. 

Part (b) of the graph reflects how the probability of detection γ increases as the 
component’s condition deteriorates according to [33]. The earlier CMS system is able 
to detect failure, the more value it presents to the wind turbine operator, as an attempt 
can be made to prevent or minimise the impact of component failure.  

Data collected by CMS includes a broad spectrum of signals: vibration, acoustic data, 
temperature, pressure, oil analysis data, electrical parameters, pressure, moisture, 
humidity, weather and environment data [78]. Condition monitoring data provides 
the wind farm operator with an invaluable source of information; methods for 
analysing the data to assess the state of a component are described in the following 
section. 
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3.2.2 Assessment	of	the	Current	and	Future	State	of	the	Component	Using	
CMS	Data	

Various signal processing methods can be used to extract useful information form the 
stream of data coming from a CMS. The choice of approach often depends on the 
nature of the signal and the component being monitored. A comprehensive overview 
of signal processing methods was provided in [42].  

Fault Detection 

An extensive review of fault detection systems for wind turbines was provided in 
[77]. An outline of signal processing techniques for wind turbine fault detection, 
including Cepstrum Analysis, Fast Fourier Transform and Wavelet Transforms was 
provided in [42]. A review of the use of Artificial Intelligence (AI) in diagnostics of 
induction machines was conducted in [79]. Applications of AI methods, including 
Neural Networks (NN) and evolutionary algorithms, for diagnosis were also 
summarised in [78].  

Analysing signals directly in the time domain is one of the simplest and cheapest 
detection approaches [80]. Thresholding is a commonly used method for wind 
turbine fault detection [81]. Once a given parameter is outside its normal operational 
values, an alarm is triggered, indicating a possible issue with the component. 
Thresholding using up-down counter technique was shown to be effective at 
detecting faults with minimal false alarms [81].  

Trending time domain signals and monitoring their trend parameters such as peak, 
crest factor, kurtosis, and skew can provide an early warning on the forthcoming 
failure. Temperature trend analysis has been used to assess the condition of a wind 
turbine generator in [82].  

Alternatively, signals obtained from CMS can be analysed in the frequency domain. 
This approach is particularly suitable for components containing rotational elements; 
as certain frequency ranges can be easily associated with faults which cause them, 
such as a defective bearing [42]. In commercial software for condition monitoring 
both time and frequency domain data are analysed [38]. Additionally, two 
independent studies on wind turbine gearbox fault detection were conducted in [83] 
& [84], both using time and frequency domain analysis to combine the advantages of 
both approaches. The former approach involved application of wavelet analysis to 
show that faults as small as chipping of a single tooth of a gear can be detected. The 
latter applied adaptive optimal kernel method for fault diagnosis of wind turbine 
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planetary gearboxes; effectiveness of the proposed method was demonstrated 
through experimental and the in-situ signal analyses.  

Research shown in [37] found that blade and drivetrain faults can be detected by 
using statistical techniques to find correlations between parameters recorded by 
SCADA systems. The importance of automatic interpretation of SCADA data to 
reduce its volume and condense it to key highlights to be shown to the user was 
stressed in [85], who proposed a NN approach capable of providing an early warning 
of gearbox and generator problems. NNs and clustering algorithms were used for 
wind turbine fault detection using SCADA data (albeit with additional sensors 
installed) in [86]. A comparison of three SCADA-based monitoring methods was 
provided in [87], showing that faults in major drivetrain components can be detected 
up to one year in advance, with high detection rates by using SCADA data alone.  

Models for Fault Diagnosis  

Detecting a problem with an engineering component does not always imply the 
knowledge of the underlying failure mode. Correct identification of the failure mode 
before scheduling maintenance is crucial, as it determines the remedial action to be 
carried out and therefore time, tools, skills and parts required to address the issue.  

Diagnostic approaches of offshore wind turbines, which included model based 
(physics and statistical models) and signal processing methods such as Fourier 
Transform and wavelets have been discussed in a review paper focused on 
applications of condition based maintenance [75]. A brief literature review on the 
methods used for diagnosis of wind turbine drivetrain components was also 
provided in [88], with focus on monitoring generator’s terminals. 

The use of Hidden Markov Models (HMMs) for diagnostics was reviewed in [89]. In 
HMMs, the observations (i.e. data from CMS) are used to calculate probabilities of the 
component being in certain states. States can represent normal system operation, 
individual failure modes or certain levels of degradation. The similarities between 
condition-based monitoring and speech processing (an area in which HMMs have 
been widely used) were highlighted in [90]. It was suggested that the techniques 
already proved in the speech recognition software could be successfully used in 
machine maintenance. A method for training HMMs using a Baum-Welch algorithm 
to diagnose the type of fault in large scale power transformers was proposed in [91].  

Auto-Regressive Hidden Semi-Markov Models are an extension of HMMs. The 
former approach does not follow the standard Markov memory-less approach, it also 
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relaxes the assumption of independent observations. It has been used in [92] for 
diagnosis of hydraulic pumps and shown good health state recognition rates. 

A study on wind turbine gearbox diagnosis using a fuzzy expert system based on 
fuzzy logic was conducted in [93]. Fuzzy logic departs from the Boolean approach; 
instead it assigns a “degree of truth” value, which can help to interpret more complex 
systems in which multiple factors need to be considered to classify a fault. The 
approach proposed in [93] detects symptoms of degradation and anomalies using a 
set of ‘IF’ and ‘AND’ statements, derived from expert knowledge. For example: 

IF Gearbox main bearing temperature is high 
AND Gearbox thermal difference is high 
AND Cooling oil temperature is normal 
THEN Unbalance in the gearbox main shaft is quite certain [93] 
 
The aforementioned approaches can be effective diagnosis tools when applied to real 
problems by an expert in the field or if they are incorporated in a commercial software 
package. Correct diagnosis of component failure or the root cause of an alarm signal 
is crucial for efficient organisation of maintenance activities on an offshore wind farm. 
Accurate diagnosis allows estimation of time and resources required to address the 
issue, which are necessary to create a detailed maintenance plan.  

Modelling and Quantification of the Level of Deterioration 

So far, methods of fault detection and diagnosis have been discussed. When 
prioritising maintenance actions, the ability to quantify the deterioration of a 
component using condition indices may enable improved decision making. Two 
turbines experiencing the same fault may be assigned a different priority when 
scheduling repairs due to factors such as asset’s relative performance, accessibility, 
other maintenance required on the asset etc. 

Making an informed estimation of the level of deterioration of a component can be 
achieved by the following approaches:   

a) If significant data is present on component’s past deterioration and failure 
rates, statistical methods can be used to model deterioration as a Markovian 
process, which include Gamma processes and Markov Chains 

b) Past data can be used to estimate component condition’s based on loading (i.e. 
S-N curves) or other measured quantities  



Chapter 3. Prioritisation of maintenance action using a time-variable Semi-Markov 
Decision Process 
 

 
 

47 

c) If a reliable stream of condition monitoring data is available for the wind farm 
operator to analyse, quantifiable health index of a component can be created 

d) Physical inspection can be carried out 

A short review of the stochastic methods for deterioration modelling was provided 
in [29]. In the wind power domain, Markov models are the most widely used 
probabilistic method for deterioration modelling; the use of Markov models in the 
wind power domain was outlined in [89]. 

Markov chain is a random process, wherein a probability of transition between states 
only depends on the current state, not on the sequence of previous events [89]. At this 
point, a distinction has to be made between a Markov chain and Markov process (or 
a continuous time Markov chain). In a Markov chain, which is a discrete process, the 
probability of transition to a different state depends solely on the current state and 
not the historical data (although the model parameters themselves such as the 
transition matrix may be derived from historical data). This is also true in Markov 
process; however, the time spent in a state is exponentially distributed. The transition 
can occur at any instant of time, contrary to the Markov chain, in which the transition 
can only occur in a discrete time step. This makes Markov chains simpler to construct 
and compute, however, continuous time approach is considered a more accurate 
representation of the real life deterioration process. Continuous time Markov chains 
have been used to model wind turbine blade deterioration in [94].  

Research conducted in [95] and [96] shows that HMMs have the potential for both 
diagnosis and quantification of deterioration. Authors of both papers proposed 
creating multiple HMMs, one for each failure mode, as shown in Figure 3.4. The 
HMM with the highest probability of being in a failed state was used to identify the 
failure mode. This approach is particularly useful for systems which have more than 
one likely failure mode, as is often the case with wind turbine components. Both 
studies were based on experimental data and the algorithms have also shown 
prognostic capabilities. 

Semi-Markov models relax the assumption of constant transition probabilities, which 
is more representative of most engineering systems. They have been used in 
modelling deterioration of large infrastructure assets [97] and electrical transformers 
[98]. An approach based on Markov chains with time variable transition rates was 
proposed for deterioration modelling in a study of steel structures [99]. During 
inspections of steel structures, the state of a component was classified as one of seven 
pre-defined states (higher state numbers meaning a better condition). Years of 
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inspections of multiple structures resulted in a significant amount of statistical data, 
which can be seen in Figure 3.5. As the steel structure ages, its state deteriorates. The 
average deterioration over time, along with confidence bounds are presented in 
Figure 3.5. Given a large enough pool of individual components, this data can be used 
to calculate the Markovian transition matrices, which define the probability of the 
component deteriorating to a lower state, given its current state and age. Markovian 
transition matrices can in turn be used to model component deterioration.  

 

 

Figure 3.4. The use of multiple HMM chains for diagnosis and calculation of a 
degradation index [95]. 

 

Figure 3.5. Deterioration of steel structures over time (discrete states) [99]. 
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One of the disadvantages of the discrete Markov chain approach is that the states, 
which are defined arbitrarily, may not be an effective representation of the 
deterioration process in complex cases. On the other hand, in the context of 
deterioration modelling, any continuous state space can be discretised, but not all 
discrete state spaces can be converted to a continuous domain. The versatility of 
discrete Markov chains lies in the ability to accept inputs in both continuous and 
discrete domains.   

Alternatively Gamma process can be used to model gradual degradation of a 
component. A Gamma process can be seen as a special Markov process with a 
continuous state and time space with transitions occurring only in one direction [100]. 
According to [101]:  

“The Gamma process is suitable to model gradual damage monotonically accumulating over 

time in a sequence of tiny increments, such as wear, fatigue, corrosion, crack growth, 

erosion, consumption, creep, swell, degrading health index, etc.” 

Gamma processes have been reviewed in [100] and [101]. Gamma processes are often 
used as building blocks in various inspection models, however, their application is 
restricted to components degrading in a monotonic process [100]. 

Health indices 

If no large pool of failure and deterioration data is present, data generated by the CMS 
can be used to quantify the deterioration of a component. A list of seven desirable 
qualities for condition indices was provided by [102]. The authors stressed that 
quantities defining health of the component should be selected meticulously. For 
example, it was argued that while crack width may be used as a structural condition 
index, a more comprehensive measure of the overall component’s health would be to 
consider crack width in a critical area of a structure and the level of intrusion of 
deterioration causing chemicals. According to [103], degradation of a component can 
be classified by one of three methods: 

a) Subjective overall ratings, usually based on visual assessment 
b) Overall index of degradation, an approach combining a number of indicators 

into a single value 
c) Multidimensional description, an approach similar to b), except no attempt is 

made to produce a single index. Alternatively, if two or more parameters are 
known to be a sign of impending failure, they can be used to define a 
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multidimensional zone, alarming the operator and providing the suspected 
cause of the problem when signal enters the zone.  

Out of the three approaches outlined above, only b) and c) offer a formal procedure 
of deterioration quantification which is not specific to the type of component 
analysed; examples of the use of health indices in industry and research domains are 
provided in the following paragraphs.   

British regulator of electricity markets OFGEM (Office of Gas and Electricity Markets) 
used a health index scale to quantify the condition of power networks assets, which 
was used as a proxy for failure probability [104]. In oil analysis, number of wear 
particles present in the lubricant, water contamination and oxidation can act as 
indicators which can be combined into a single health index [105]. 

For simplicity and ease of use, some researchers choose to normalize the health index 
and divide it into distinct states, allowing the use of discrete state-based 
methodologies such as Markov models. An example in which the health index value 
was normalized to a range from 0 to 10 was provided in [106], with the scale divided 
into three parts: 0-4 representing deterioration with no significant impact on the 
component’s performance, 4-7 being significant deterioration and 7-10 being states 
which pose significant risk of costly failure. A three state approach was also employed 
in [107]; a deep Bayesian network was trained to diagnose the system’s state based 
on data from two sensors. The proposed methodology compared favourably with 
other classification methods.  

A study on hydraulic pumps [108] used the amount of dust in oil as a health index. 
Three pumps were run in 4 distinct operating conditions: no contamination in oil 
reservoir, 20, 40 and 60 mg of dust in oil reservoir. Vibration signals were monitored 
during tests and used to train a Hidden Semi-Markov Model (HSMM), with each 
operating condition modelled as a distinct state. Fault recognition rates for the HSMM 
approach were up to 81% higher compared to HMM model.  

In many mechanical and electrical system applications, it is common to assume a two 
state approach – working and failed states [109]. The use of health indices provides 
additional, quantifiable information on the components health, allowing modelling 
higher number of states and potentially enabling improved prioritisation of 
maintenance actions. 
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Forecasting Component’s Deterioration and Estimating the Remaining Useful 
Life  

While previous subsections focussed on methods for evaluating the current state of a 
component, this subsection explores the field of engineering prognostics. In the 
context of planning offshore wind farm maintenance, knowledge of the expected time 
before failure can be a useful metric for comparing priority of maintenance actions on 
different wind turbines.   

Prognosis, which can be translated as “foreknowledge”, is a term borrowed from 
Greek, now widely used in the context of predicting the future deterioration of 
engineering components. Discussion on the definition of the term “prognostics” in 
the context of CBM, was provided in [110] along with a review of various prognostic 
algorithms. A comprehensive review of the use of prognostics in machinery was 
provided by Jardine [78].  

The use of machine prognostics in CBM was reviewed in [111]. A comprehensive 
summary of advantages, disadvantages and applications of major prognostic 
methods was provided. One of the key conclusions of this research was that most 
models in the field are limited to a specific domain and lack generality. The authors 
stressed the need for a general methodology, suitable for a wide variety of 
applications.  

Approaches to prognosis can be divided into three categories: statistical, Artificial 
Intelligence (AI) and model based [78]. Data based and model based approaches are 
contrasted in Figure 3.6. Generally, model based methods are more computationally 
intensive, but often necessary when attempting to predict system’s response in new 
operating conditions (or if no data on past performance is available). It was also 
argued that, ideally, a prognostic model should consist of elements of both data and 
physics-based approaches; as indicated by the links between the two in Figure 3.6. 
However, implementation and customisation of such approach to a range of 
components would be very time consuming. Typically, the choice of an approach 
depends on the amount and quality of past data and the confidence in predictive 
accuracy of a physics model in a given case [112]. 

The use of physics based models for components having multiple possible failure 
modes can be challenging, as each failure mode needs to be considered [100]. Given 
the abundance of data produced by wind turbine CMS, statistical and AI approaches 
are often favoured as they do not require detailed knowledge of the physics of failure. 
Data driven models are more versatile, as application of the same method to a wide 
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range of components and failure modes is significantly easier compared to physics 
based models. 

A review of offshore wind turbine fault prognostics methods was provided in [113], 
concluding with a set of recommended methods depending on the component in 
question. Out of the three approaches analysed (HMM, NN and particle filter 
method) HMM was applicable in the highest number of cases. HMMs were also used 
for real time failure prognosis in [114]. The authors created a belief rule base to 
incorporate expert knowledge and the influence of environmental factors into the 
model. HSMMs were also used to estimate RUL of bearings in [115], producing 
accurate results in case studies with real vibration data. However, the latter study was 
only shown to predict failure up to 10 hours in advance; such a short notice is unlikely 
to make a difference when prioritising offshore wind maintenance. 

 

 

Figure 3.6. Damage prognosis: overview of data-based and physics-based 
approaches [112]. 

Bayesian networks are a graphical method of building models based on data or expert 
knowledge. An approach for estimation of the reliability of a wind turbine blade 
using maximum likelihood method and Bayesian statistics was proposed in [116]. 
Bayesian belief networks were also used for both diagnostics and prognostics in [117]; 
the proposed approach also allowed considering instrument uncertainties, which is 
one of the advantages of Bayesian networks. For example, if one of the sensors has 
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failed and is providing false readings, a well-designed Bayesian network may be 
capable of recognising the possibility of sensor defect and providing a meaningful 
answer despite the fault.  

Alternatively, AI methods such as NNs can be used for RUL estimation. A study 
focused on SCADA data analysis of wind turbines [118] investigated the use data 
mining algorithms in an attempt to predict failure of WT components. It found that 
NNs were capable of predicting the failure 60 minutes before it happened. Research 
conducted on wind turbine bearings has shown that analysis of temperature data 
using NNs can be used to predict the bearing failure up to 90 minutes in advance 
[119].  

There are far fewer publications on prognostics compared to diagnostics [78] & [120]. 
The outline provided in this section focussed on approaches which may be applicable 
in prioritisation of maintenance actions for offshore wind turbines. For a prognostic 
model to be effective, it needs to be able to predict the component’s condition 
sufficiently far into the future to facilitate preparation of spares and human resources 
[121]. Vast majority of the models reviewed in this section are unable to use data 
provided by CMS to effectively predict failure a day, or more, in advance.  

In summary, the cost and difficulty associated with implementation of prognostics 
for a wide range of wind turbine components would not be justified by the benefits 
of the application of those systems solely for the purposes of maintenance action 
prioritisation. Given the current capabilities of the prognostics models, a more likely 
application would be to monitor critical wind turbine components such as the 
gearbox to provide an early warning of potentially expensive failures, allowing the 
operator to de-rate or shut down the component before damage is done.    

3.2.3 Methods	for	Maintenance	Action	Prioritisation		

Due to increased use of CMS in the wind domain, operators of large wind farms are 
often faced with a variety of alarms coming from multiple turbines. The operators are 
required to make a judgement whether a particular alarm warrants an immediate 
maintenance action. In addition to this, maintenance actions on offshore wind farms 
also include a plethora of non-critical activities, as discussed in Section 2.2.1. Given 
large scale retrofit campaigns, annual services, inspections and repairs, it is not 
uncommon for an operator of a 100+ turbine wind farm to be faced with 100+ different 
maintenance tasks which need to be carried out. In most cases, it will not be possible 
to carry out such high number of tasks in one day, due to real life constraints on time 
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available, number and capability of vessels and technicians. This highlights the need 
for prioritisation of maintenance actions.  

This section aims to review the approaches for prioritisation of maintenance actions, 
with focus on methods capable of answering the following question: 

“Given a list of tasks with varying difficulty, resource requirements and different 
consequences of taking an action (or not taking it), how should the resources be 

allocated to maintenance tasks to ensure user-selected KPIs are maximised? “ 

A literature search for a methodology capable of answering this question in the field 
of wind power, did not provide any results. Interviews with offshore wind farm 
operators (summarised in Appendix B. Summary of Informal Interviews with 
Offshore Wind Farm Operators) revealed the current practice is to divide the tasks 
into high and low priority tasks as shown in Table 3.2.  

Table 3.2. Prioritisation of tasks: a pragmatic approach. 

High priority maintenance actions Low priority maintenance actions 
• Turbines requiring a maintenance 

action to restore power generation 
• Turbines requiring a maintenance 

action to keep producing power 
• Maintenance actions which have to be 

carried out in near future due to 
deadlines and/or resource constraints 

• Periodic/preventative 
maintenance actions 

• Retrofits 
• Inspections 

The operators plan to carry out as many high priority tasks as possible given the 
resource constraints. Decisions on the priorities of individual actions within each 
section are made on a case-by-case basis using expert knowledge. This approach is 
crude and lacks consistency. In an attempt to improve on it and find a standardised 
method for offshore wind farm maintenance action prioritisation, literature search 
was extended beyond the wind domain.  

Fwa & Chan [122] used NNs to prioritise repairs on highway pavements in an attempt 
to mimic the thought process of an engineer in charge of maintenance planning. 
However, the model developed only considers the state of the pavement, neglecting 
factors such as time required for repairs and availability of workforce. Li & Brown 
[123] ranked different maintenance actions according to their cost-effectiveness, 
which was based on the impact of component’s failure and the repair costs. They 
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proposed a weighted average system reliability index, which takes into account 
monetary cost, duration and frequency associated with interruption of service. 

In the field of production line manufacturing, the problem of prioritising repairs has 
been tackled in [124] & [125]. Both papers used System Value Based method which 
was solved with a Genetic Algorithm (GA). The results of both these studies 
compared favourably with several other, commonly used maintenance prioritization 
policies such as: first-come-first-serve, shortest processing time first, longest 
processing time first, and static heuristic policy.  

Ambani [126] proposed a maintenance decision making methodology combining 
continuous Markov chain as a deterioration mechanism and a cost model which 
considers component costs and profits. Two prioritisation approaches were 
proposed; downtime prioritisation, which prioritises components which result in 
higher downtime and prioritisation of assets with the highest potential of decreasing 
the overall system profit. The latter was shown to perform better than the former; 
however, both approaches are very simplistic and not applicable to problems with 
additional constraints and uncertainties.  

Khanlari et al. [127] argues that verbal expressions and rules deriving from expert 
knowledge, such as the aforementioned pragmatic approach, can be quantified using 
fuzzy rules. The proposed method prioritised repairs based on MTBF, MTTR, 
availability of spare parts and personnel. Naturally, a disadvantage of such approach 
is that it is highly subjective; interviews with different experts would likely lead to 
different outcomes.   

A methodology for ranking maintenance activities by calculating the overall 
pavement serviceability index based on a combination of four health attributes using 
fuzzy set rules was presented in [128]. This, and similar health indices described in 
Section 3.2.2 are a crucial in the process of prioritisation of repairs, however in the 
context of offshore wind, the use of health indices alone is simply not sufficient. No 
methodology was found in literature capable of handling all, or most of the factors 
shown in Table 3.1. 

In the author’s opinion, the reason for scarcity of models applicable to the practical 
problem described in Section 3.1 is the specific nature of the problem. Many of the 
factors listed in Section 3.1, which drive the need for maintenance action prioritisation 
models, are unique to the offshore wind domain.  
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3.2.4 Calculation	of	Value	of	Carrying	out	Maintenance	Actions	

One of the key conclusions of Section 3.1 was that there is a need for a metric, i.e. a 
“value” or “utility”, which can combine the factors described in Table 3.1 into a single 
parameter. There are two key questions, which this section attempts to answer; in the 
context of offshore wind maintenance planning: 

1. What is the purpose of calculating this value; how can it be used to inform 
decision making? 

2. What is the definition of a value of carrying out a given maintenance action 
on a given asset? 

The answer to the former question is straightforward: a value, which considers the 
majority of factors described in Table 3.1, would be a useful metric for ranking 
maintenance actions. It would aid decisions on: 

a) Which turbines should be maintained or visited first  
b) Which turbines should the more capable vessels or qualified technicians be 

assigned to  
c) In an event of shortages of resources, which maintenance actions can be 

delayed until the following day  

Additionally, calculating value of carrying out a maintenance activity can determine 
whether it is worth taking that action at all. It is the latter of the two questions that 
poses a challenge and cannot be answered in a sentence or a paragraph.     

While it can be argued that repairing an asset presents a certain measurable value to 
its operator, definition of the value is not trivial, especially when uncertainties are 
present. It would seem that the simplest way to define the monetary gain of taking 
an action would be to subtract all costs associated with the activity from the revenue 
gained from taking the action. Even such a simple definition already begs numerous 
questions. What time horizon should be used to calculate the revenue gained from 
taking an action? The cost of electricity generated in the following week, month, or 
the entire lifetime of a wind turbine? Assuming the maintenance action has to be 
carried out sooner or later, does the cost of repair matter at all when it comes to task 
prioritisation (as discussed in Section 2.2.4)? What about factors difficult to quantify 
in monetary terms such as the probability of accessing a particular wind turbine in a 
given significant wave height?  
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Utility theory states that “although is impossible to measure the utility derived from 
a good or service, it is usually possible to rank the alternatives in their order of 
preference to the consumer”15. The utility of taking an action does not need to equal 
the monetary gain for the asset owner; it can simply be a quantity used to order 
different options. However, it is important that this quantity does take into 
consideration relevant factors, which affect the process of prioritisation. The utility, 
or reward, can be expressed using a dimensionless scale (i.e. from 0 to 100, where 0 is 
often the action of doing nothing, while 100 is the most desirable action), allowing 
ranking and comparing different actions.  

Methods for utility quantification 

Morton [129] criticised the use of interval scales (where all actions must be assigned 
a value between pre-defined boundary i.e. 0-100) as it can lead to rank reversals. Rank 
reversals occur if the order of prioritised tasks is changed when a task is added or 
removed, which is often seen as undesirable and counter-intuitive. It is recommended 
to use absolute scale or ratio scale; i.e. approaches which prevent rank reversal from 
occurring.   

Multiple-Criteria Decision Analysis (MCDA) is a structured, multi-stage approach, 
which aims to find the preferred alternative of the decision-maker, based on their pre-
defined criteria. The process is made up of several steps, ranging from structuring the 
problem, articulating the stakeholder preferences, evaluating options and making 
recommendations. MCDA aims to manage multiple, conflicting criteria to arrive at a 
logical decision [130]. Guitouni and Martel [131] categorised and briefly described a 
wide range of MCDA approaches used in a variety of fields. In the maintenance 
planning domain, the MCDA was used in [132]; the proposed approach involved 
engagement of a committee of experts, who rated different maintenance strategies on 
quantitative, weighted criteria, which the committee previously defined. However, 
the process of MCDA is time consuming and it would be difficult to streamline it 
sufficiently to be applied for day-to-day decision making for a wide range of wind 
turbine components.  

A methodology described in [38] applied cost-based criticality combined with cost-
benefit analysis for prioritising maintenance activities on assets. Utilities of different 
actions were calculated based on factors such as consequences and probability of 
failure, as shown in Figure 3.7. Utility was expressed in pounds (£), despite the fact 

                                                   
15 From: http://www.businessdictionary.com/definition/utility-theory.html Accessed on 
29/07/2017. 
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the figure is relative rather than absolute. All maintenance actions were ranked 
according to their utility, creating a prioritised list of activities. As shown in Figure 
3.7, the proposed approach has a number of layers of complexity, which are necessary 
to consider the multitude of factors affecting prioritisation of maintenance actions. 
However, application of this methodology to the offshore wind domain would likely 
require an addition of a number of “branches” to the “decision tree” shown in Figure 
3.7, which would consider external and internal deadlines, availability of resources, 
asset performance compared to others, wind and wave conditions.  

One of the disadvantages of the methods reviewed in this section is their inability to 
consider the possibility that in some cases, it may be beneficial to delay carrying out 
a maintenance action until a later date. An example of this would be delaying a non-
critical maintenance action on a wind turbine during a period of strong wind. 
Switching off the turbine to carry out maintenance on a day with low wind would 
result in reduced loss of revenue. For a methodology to be applicable for offshore 
wind maintenance action prioritisation, the capability to consider the benefits of 
delaying an action is a necessity. 

 

Figure 3.7. Cost-based criticality approach for maintenance activity prioritisation 
[38] (CBC - Cost Based Criticality). 

The literature on methodologies for calculating values of maintenance actions is 
scarce. There is no evidence on the use of decision support tools for prioritisation of 
activities in offshore wind. Apart from the methodology proposed in [38], the 
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research reviewed in this section severely lacks depth required for successful 
application to the real life problem.  

3.2.5 Summary	of	the	Literature	Review	

CMS are increasingly used in wind turbines in an attempt to gain detailed data on the 
current state of an engineering component, but also to predict the remaining useful 
life. The large volumes of data provided by CMS can be used to estimate current and 
future condition of a component. There are multiple ways in which this can be 
calculated and conveyed to the user: 

a) Alarms 
b) Diagnosis of the underlying issue  
c) Health indices 
d) RUL estimates 

Versatility is the key to successful practical application, as monitoring techniques 
vary significantly depending on the component type, OEM, software package used 
for condition monitoring data analysis. Ideally, the model should accept a variety of 
input types, as well as constraints, which may change depending on the wind farm. 
Selection or development of a versatile methodology may enable successful 
application beyond offshore maintenance task prioritisation, potentially aiding 
decision making on onshore wind farms and in other sectors of the industry. For 
successful application in the offshore wind domain, the chosen method should also 
be capable of incorporating the majority of the factors described in Table 3.1 into the 
decision making process.  

This literature review and interviews with wind farm maintenance planners 
(summarised in Appendix B. Summary of Informal Interviews with Offshore Wind 
Farm Operators) revealed that currently, there is no structured framework, which 
would fit the aforementioned requirements for prioritising maintenance actions on 
offshore wind turbines. Despite the fact no suitable modelling methodology was 
found for that specific purpose, the literature review yielded some important insights: 

a) There is a wide range of fault detection and diagnosis models suitable to a 
variety of wind turbine components. Models discussed in Section 3.2.2 can 
contribute to the process of maintenance prioritisation by providing accurate 
diagnosis and therefore expected resource and time requirements for 
maintenance action.  
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b) Literature on prognostics in the wind domain is limited. In other engineering 
fields, the models are rarely capable of providing a sufficient advance warning 
on component failure to aid the process of maintenance action prioritisation. 
The quality and quantity of the proposed approaches is insufficient to base 
any maintenance action prioritisation on it.  

c) Literature on quantification of component’s state or deterioration and 
calculation of value of a maintenance action is scarce, suggesting that real life 
decision making rarely requires quantification of incentives for carrying out a 
maintenance action.  

d) Markov models were used across all sections of this review; from detection 
through diagnosis to prognosis. Due to their versatility, they have been 
applied to a range of problems. Markov models are relatively easy to compute.  

Based on these conclusions, it was deemed that given the specific nature of the 
problem, a direct application of the methodologies reviewed in this section was 
impossible. Instead, the most suitable methodology should be selected and developed 
to fit the requirements; as discussed in the following sub-section. 

Discussion of the modelling choice 

Out of all the methodologies reviewed in Sections 3.2.2 & 3.2.3, Markov models seem 
the most versatile methodology. They have been applied for: 

• Diagnosis of: 
o Faults in large scale power transformers [91] 
o Faults in hydraulic pumps [92] 

• Modelling deterioration of: 
o Wind turbine blades [94] 
o Large infrastructure assets [97] 
o Electrical components [98] 
o Steel assets [99] 

• Estimation of RUL in hydraulic pumps [106] 
• Degradation and cost modelling of a multiple machine system [126] 

Markov models are relatively easy to compute, even for problems with multiple 
health states and/or components. Markov chains can be easily converted to HMMs, 
which provide an effective framework for handling uncertainty. For those reasons, 
Markov models have been selected as the basis of the proposed maintenance action 
prioritisation framework.  
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The literature review identified a multitude of methods for diagnosis and some 
effective approaches for quantification of component condition, but there is a clear 
research gap in prioritisation models. It is recommended that practitioners apply one 
of the existing models for steps 1 & 2 of the overall decision making process shown 
in Figure 3.8. The outputs of these models should be used as an input into the 
proposed Markov-based prioritisation method, which will compute utilities of 
maintenance actions and generate a prioritised list of activities.  

 

Figure 3.8. Proposed approach for maintenance action prioritisation.  

Note that the proposed methodology eliminates the need for a prognostic model, 
which would be contained within the Markov model itself, provided past failure data 
can be obtained to calculate failure rates. Another advantage of using a discrete 
Markov model for prioritisation of maintenance tasks is that it is compatible with both 
discrete and continuous inputs (health index or state-based classification), enabling a 
choice of using either physics-based or data driven deterioration model. 
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3.3 	Methodology	for	Calculating	Maintenance	Task	Utility	

As the proposed approach for task prioritisation was based on a Semi-Markov 
Decision Process (SMDP), it will be henceforth referred to as the SMDP model for task 
prioritisation.  

First, let us define a planning horizon Z, which is the amount of steps, or days, the 
SMDP is set to run for. The value V of the component being in each of the states on 
day Z (the last day of the simulation) is equal to the final reward matrix D (Equation 
3.2). Let S be the total number of the SMDP states for a given chain and s be the 
individual state identifier. A is the overall number of actions while a is an individual 
action identifier. Rewards and cost matrices: R and C respectively, are both three 
dimensional with a size of SxAxZ. Reward and cost matrices determine the financial 
rewards, or costs, of taking a given action at each time step. Transition matrix T, is a 
four-dimensional matrix which defines the probability of the system moving between 
states, depending on the action taken and the time step. Discount factor is denoted by 
γ. 

Standard MDPs can be solved using Bellman equation [133]: 

"($) = max
*∈,

-.($, 0) + 23 4($, 0, $′)
67∈8

∗ "($′):									(<=>0?@AB	3.1) 

where, s’ refers to the state to which the system will transition if action a is taken while 
the system is in state s. The standard solving procedure involves making an initial 
guess of the value matrix and solving the equation iteratively until convergence.  

In the proposed approach, final reward matrix D provides the starting point for the 
first iteration (Equation 3.2). The iterative process consists of stepping back one day 
at a time to compute the value vector (value for each state) at the previous time step, 
until Z iterations are computed. The final iteration represents today’s value vector. 
The modified Bellman equation is presented in Equation 3.3.  

"	F=1GGGGGGGG⃗ = IGG⃗ 												(<=>0?@AB	3.2)						 

"($, F) = max
*∈,

-.($, 0, F) − L($, 0, F) + 23 4($, 0, F − 1, $′)
$′∈M

∗ N I($′)	@O	F = 1	
"($′, F − 1)	@O	?	 ≠ 1	: (<=. 3.3)	 

Note that τ in Equation 3.3 represents the iteration counter. As the simulation runs 
backwards in time, τ ranges from 1 (for day Z) to Z (today). As a result, s’ which 
denotes the next day’s Markovian state, corresponds to τ – 1, as the next day would 
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have been computed in the latest iteration. There are two differences between the 
standard version of Bellman equation (Equation 3.1) and the equation used in the 
model proposed here (Equation 3.3). Firstly, a dimension was added to the value, 
reward, cost and transition matrices – as in the proposed methodology, values in 
these matrices can vary over time. Secondly, a condition statement was added, 
indicating that user defined matrix D is used as a seed for state values on the first 
iteration.   

Equation 3.3 enables calculation of the value of the turbine being in each of the user-
defined Markovian states, at each time in the specified time horizon. 

An overview of the proposed SMDP model is shown in Figure 3.9. A separate SMDP 
is created for each maintenance action, as cost and reward matrices vary depending 
on the type of fault. The aim of the SMDP is to calculate values for all states, for all 
days between now and the end of the time horizon. These values can be used to: 

a) Determine the optimal action for each state, on each day. This can serve as 
prediction of future vessel and technician utilisation rates.  

b) Rank all maintenance actions to be carried out on the day from the highest 
priority to lowest. This value will then be used as an input to the logistics 
model described in Chapter 5.  

The proposed SMDP methodology is an attempt to capture all factors described in 
Table 3.1. However, the inputs to an SMDP are limited to those found in the modified 
Bellman equation (Equation 3.3). The aforementioned factors need to be captured 
within the three key inputs to the SMDP: the cost matrix, reward matrix and transition 
matrix.  

An explanation of how the factors modelled, shown red boxes in Figure 3.9, are 
adapted to the three key inputs, shown in purple boxes, is provided in Table 3.3 .   
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Table 3.3. Factors affecting the priority of a maintenance action within the SMDP 
framework. 

Availability of 
resources 

Effect on cost matrix: If certain resources (i.e. vessels) are 
unavailable on some days in near future, the cost of using 
those resources on those days is set to a value sufficiently 
high to eliminate the possibility of the MDP selecting this 
action as optimal. 

Properties of 
maintenance actions 

Effect on transition rate matrix: If a certain maintenance 
action has a deadline by which it must to be carried out, the 
transition rates for that action are set to an identity matrix 
for all days succeeding the deadline.   
Effect on cost matrix: State of the component determines 
the cost associated with the maintenance action – highly 
damaged components are expected to cost more to repair 
than components featuring slight deterioration. The cost of 
resources such as vessels may vary over time; this variation 
can be modelled by specifying the expected cost of repair 
on each day throughout the time horizon. 

Turbine 
accessibility 

Effect on transition rate matrix: The transition matrix, 
originally defined by the properties of given maintenance 
action, is adjusted to include the expected probability of 
successful crew transfer from vessel to turbine. For 
example, under normal circumstances, taking action a in 
state s would result in transition to state s’ with 100% 
certainty. If the wave forecast predicts 80% chance of 
successful transfer on a given day, the transition matrix will 
be modified to 80% chance of transfer to s’ and 20% chance 
that the system will remain in state s.      

Revenue generated 
by turbine 

Effect on reward matrix: A baseline income from a turbine 
is initially defined. If a given turbine’s power production 
differs significantly from baseline, for example due to its 
location and expected wind direction, the reward matrix is 
adjusted accordingly. If the wind speed is forecasted to 
change in future, expected revenues can be adapted. The 
state a turbine is in also dictates the amount of revenue it 
produces: i.e. a broken-down turbine produces no revenue.  

Examples of the reward, cost and transition matrices, which were used as inputs to 

the SMDP, are shown in Appendix D.	SMDP	Case	study	Inputs. 



Chapter 3. Prioritisation of maintenance action using a time-variable Semi-Markov 
Decision Process 
 

 
 

65 

 

Figure 3.9. Overview of the proposed SMDP model. 

3.3.1 Calculation	of	the	Utility	for	Prioritisation	of	Maintenance	Actions	

The previous section described the use of Bellman equation for calculating the value 
of the component being in each of the states on a given day, depending on the action 
taken. Moore [38] has stated:  

“Attention must be focused on those alarms that may have the gravest effect on the 

profitability of the organisation. To determine this, the maintenance manager must be able to 

balance the cost of performing maintenance activities against the cost of not performing 

them”. 

In the approach proposed here, this balance was achieved by defining the utility of 
taking action ‘a’ today as the difference between value of taking an action and doing 
nothing, as shown in Equation 3.4.  

Q(0) = "($RST, 0) − "($RST, 0U)				(<=>0?@AB	3.4) 

where sτ=Z is the current state of the system and aN is action of ‘doing nothing’. Let us 
consider a simple case of a 2 state system (working and failed). By comparing taking 
an action to the consequences of not taking it, Equation 3.4 takes into account 
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potential lost revenue. As the MDP works “backwards” to calculate values of each 
state, on each day, the utility of taking an action today encapsulates all possible 
outcomes of tomorrow and days beyond. This is illustrated in Figure 3.10; it was 
assumed that it is certain a maintenance action can be completed today, but there is 
uncertainty on whether sailing will be possible tomorrow. Hence, if ‘do nothing’ 
action is selected today, the risk of not being able to repair the fault tomorrow is 
included in the calculation. This is indicated by the orange arrows branching out on 
day 2.   

By definition, the utility value of action ‘do nothing’ is always 0 (from Equation 3.4). 
Other actions, such as ‘repair’, can either have a positive utility, meaning choosing to 
carry those out is expected to add value to the overall state of the system, or negative, 
suggesting a given action should not be taken on that particular day. The magnitude 
of the utility value reflects the priority which should be assigned to a particular action.  

In reality, negative utility of maintenance actions may occur in cases when there are 
additional costs associated with carrying out a maintenance action on a particular 
day. Alternatively, negative utility can be a result of a significant decrease in the 
expected wind speed in near future; carrying out non-critical maintenance actions on 
a ‘windy’ day will cause higher lost revenue compared to a day with low winds.  

 

Figure 3.10. Possible outcomes of taking different actions today. 
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If more than 2 actions are possible for a given fault type, utilities for all actions can be 
calculated and compared against each other. The action with the highest utility would 
be wind farm operator’s preferred choice.  

Equation 3.4 allows calculating the utility of a single fault type on a given asset. 
However, there may be more than one maintenance actions required on a single 
turbine. If that is the case, two different scenarios are possible: 

a) Both actions can be completed within the user-specified time window, on the 
same day 

b) The time it would take to carry out both actions exceeds the time window 

If a) is true, the utilities of all maintenance actions which can be completed within the 
time window are added. This approach clearly favours carrying out multiple repairs 
on the same turbine (i.e. opportunistic maintenance). It is more efficient than visiting 
the same turbine twice, or carrying out maintenance actions using two or more teams 
of technicians, as valuable time is saved on vessel-to-turbine transfers and climbing 
up and down the nacelle.  To illustrate this, let us consider 2 different scenarios: 

i. Two repairs (lasting 80 and 140 minutes, not including climbing up and 
down the nacelle) are carried out by the same crew on the same day 

ii. The same two repairs are carried out on consecutive days 

Assuming both maintenance actions take place in the nacelle, the total time required 
to complete repairs in each case can be calculated. Interviews with offshore wind farm 
operators revealed that each transfer from vessel to turbine (and vice versa) takes 
around 20 minutes. The time taken by hoisting tools and spares to the nacelle was 
also determined to be around 20 minutes. The total time taken to complete 
maintenance actions in both cases can be calculated using Equation 3.5. 

2 ∗ (Vessel − turbine	transfer	time) + 2 ∗ (Time	to	climb	to	nacelle)
+ Repair	time																																								(Equation	3.5)	

i. Total	repair	time = 2 ∗ 20 + 2 ∗ 20 + 80 + 140 = 	300	minutes		(Equation	3.6)	

ii. Day	1 = 2 ∗ 20 + 2 ∗ 20 + 80 = 	160	minutes		

ii. Day	2 = 2 ∗ 20 + 2 ∗ 20 + 140 = 	220	minutes	

ii. Total	time	for	(ii) = 160 + 220 = 	380	minutes		(Equation	3.7)	

Comparing the results of Equations 3.6 and 3.7, the time saving due to carrying both 
repairs on the same day, by the same crew is 80 minutes. This can be seen as wasted 
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time, as it is spent on transferring technicians, tools and spares to the nacelle rather 
than carrying out maintenance. Carrying out multiple maintenance actions on the 
same turbine, on one day aids maximisation of MTBV, one of the KPIs described in 
more detail in Section 2.2.6. 

Let us now consider case b) from the previous page; wherein repairs of two or more 
different types, scheduled for a given turbine, cannot be completed in one day due to 
the time constraint. In this case, the values of individual maintenance actions can no 
longer be added together. Instead, the utility of sending technicians to such turbine is 
determined by the type of repairs. Let us divide all repairs into two types: corrective 
and non-corrective. The former is defined as an action which needs to be carried out 
to restore the turbine to the operational status (or prevent the turbine from failing in 
the short term). The latter is an action which, in the short term, does not affect the 
turbine’s ability to generate power. This can include maintenance actions such as 
annual service or retrofits. If two maintenance actions can be carried out on a turbine 
on one day with the same team of technicians, the value of utility for that turbine will 
depend on the nature of those repairs: 

1) If two or more actions to be carried out on a turbine are corrective, the utility of 
carrying out maintenance actions on that turbine is set to the lowest value of all 
the corrective repairs to be completed on that turbine.  
Example: Two corrective actions are required on a turbine: a repair, which on its 
own, has high utility and one which has a lower value. Repairing one of them will 
not make the turbine operational, as the other issue will persist, due to the 
technicians not having sufficient time to repair it. The utility for that turbine is set 
to the lower value of the two, as when ranking all turbines across the wind farm 
according to priority of visit, said turbine would come lower than a different 
turbine, which requires only the high utility corrective action.  

2) In all other cases, i.e. if a turbine requires only one, or none corrective actions, the 
utility for that turbine is set to the highest value of all maintenance actions to be 
carried out on said turbine.                
Example:  A turbine requires both a corrective and non-corrective actions. Given 
a choice between the two, the former action would likely be prioritised in real life, 
to restore turbine’s ability to generate power. In the context of revenue generated, 
the fact that the turbine also required a non-corrective action is neither here nor 
there. Therefore, the utility of repairing a turbine with these two actions is set to 
the value of carrying out the corrective maintenance. 
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Figure 3.11. Proposed method for calculating the utility of visiting a turbine to carry 
out multiple maintenance actions. 

Figure 3.11 contains the logic used in the proposed model, however, alternative logic 
flowcharts could easily be created and implemented depending on the user’s 
requirements. 

In summary, in the proposed method, utility of taking an action, which is expressed 
in monetary terms, represents the relative profit (revenue minus cost) generated by 
taking an action, compared to the profit that would be achieved if no action was taken. 
Defining the utility as such and using the proposed SMDP methodology enables 
considering all of the factors described in Table 3.1, which would not be possible if a 
simpler metric, such as actual revenue generated by a turbine, was used. Example 3.1 
provides a case study to illustrate the nature of the calculated utility value. 

The example shown in Example 3.1 illustrates how the proposed SMDP approach can 
be used to aid real life decision making. Frank calculated the utility of either action 
by contrasting the benefits of taking an action vs. costs of doing nothing. Comparing 
the utility values of the two actions allowed him to make an informed decision to 
maximise his profits. This simple example illustrates how easy it is to depart from 
using real monetary values when prioritising repairs. After all, the figure of £600 
calculated in the latter case is not revenue produced by the mini-bus. It does not 
correspond to a value Frank will be able to gain or lose. It is the incentive, or utility 
of taking an action today.  
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Frank owns a coach rental business. He has to make a decision whether to take a 
mini-bus for its MOT (Ministry of Transport roadworthiness test) or repair a 
puncture on a luxurious coach. It is assumed that today, he can achieve either one 
or the other, but not both and that each action takes a full day to complete. 
Naturally, the coach generates more revenue than the mini-bus (£500 vs. £250 for 
the mini-bus). However, the MOT certificate on the mini-bus will expire on the 
following day; if service is not carried out today, Frank will have to pay a fee to 
tow the minibus to the testing centre. Frank should therefore consider whether the 
revenue generated by the coach tomorrow, if its tyre is fixed today, will offset the 
additional cost of towing the mini-bus to the testing centre tomorrow. Costs of both 
actions, along with expected revenues are shown in Table 3.4. 

Frank decided to compare the action of fixing the puncture today (no revenue 
would be generated today, £500 of revenue tomorrow and thereafter) to not fixing 
the puncture today (no revenue today or tomorrow). It is clear that the incentive 
(or utility) of repairing the puncture on the coach in a 2-day horizon is £500. 

Table 3.4. Properties and consequences of actions available to Frank. 
 Repair 

puncture 
(coach) 

MOT (mini-
bus) 

Cost of action today | tomorrow £0 | £0 £0 | £600  
Revenue today if:  
action is taken | no action is taken 

£0 | £0 £0 | £250 

Revenue tomorrow if:  
action is taken today | no action is taken today 

£500 | £0 £250 | £0 

Sum (utility = difference between two values) £500 | £0 £250 | £-350 

If Frank chooses to take the mini-bus for its MOT today, neither cost nor revenue 
will be incurred today, but the mini-bus will generate £250 of revenue tomorrow 
and thereafter. If he chooses to do nothing, the mini-bus would generate £250 of 
revenue today, no revenue tomorrow and a towing fee of £600 would also have to 
be paid. Assuming a 2-day horizon, contrasting the effects of taking action and 
doing nothing in the case of the mini-bus yields £250 vs -£350, the difference being 
£600. Clearly, if Frank can only carry out one action today, it should be taking the 
mini-bus to the MOT test rather than fixing the puncture on the coach. 

Example 3.1. A simple example of practical implementation of the SMDP 
methodology. 
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3.4 	Task	Prioritisation	Using	the	Proposed	Approach:	Case	
Studies	

To illustrate potential application of the SMDP methodology to a real life problem, 
two case studies are proposed. Given a set of offshore wind turbines requiring a range 
of maintenance actions, the model calculates utility of all actions, allowing 
prioritisation of wind turbine visits. The utility value obtained in the case studies 
shown in this section will be carried forward to Chapter 6, where it will be used as an 
input to the vessel routing optimiser.  

3.4.1 Case	Study	Inputs		

The two case studies discussed in this section are “summer day” and “winter day” 
case studies. The former contains a larger proportion of non-critical maintenance 
actions, while the latter features a higher number of repairs.  

There are seven unique maintenance actions to be carried out, as shown in Table 3.5. 
The number of discrete Markov states for a task which takes less than one day to 
complete is two (state 1 being maintenance task completed/turbine fully functional 
and state 2 being turbine requiring maintenance). Some maintenance actions, such as 
wind turbine annual service can take multiple days to complete. For a 5 day service, 
there are 6 discrete Markov states (state 6 being service not started, state 5 being one 
day’s maintenance done, etc.). For example, if a turbine requiring an annual service 
is in state 6 on day 1, five days of maintenance are needed for the task to be completed 
(one day per transition; i.e. state 6 to 5, 5 to 4 etc.). Carrying out the service on this 
turbine on day 1 will result in its state moving to state 5 on day 2. 

Variable costs have been modelled for the annual service maintenance action; it was 
assumed that due to vessel limitation, this maintenance action cannot be completed 
on days 6 and 7. This was modelled by setting a cost of taking an action on those days 
to £1,000,000, effectively prohibiting the model from suggesting carrying out the 
annual service on those days.  

Markovian deterioration of condition was modelled for the grease top-up action; if 
no maintenance is carried out when turbine is in state 2 (early warning) or 3 (severe 
lack of grease), turbine’s condition deteriorates by one state on the following day until 
state 4 (turbine failure due to lack of lubricant) is reached, at which point turbine does 
not produce revenue and additional repair cost of £5000 is incurred. The transition 
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matrix for grease top up maintenance action was provided in Appendix D.	SMDP	
Case	study	Inputs.  

It is expected that all repairs should be completed by the end of the time horizon (day 
10), except for the high priority repair, which must be completed by the end of day 2. 
One of the practical reasons for such deadline could be the availability of external 
contractors, who are essential to carry out a given maintenance action.  

The last column of Table 3.5 outlines the impact a maintenance action has on the 
power produced by the turbine on the day the maintenance is carried out. Assuming 
all maintenance activities finish around 4PM, taking medium repair as an example, 
the turbine will be producing electricity for 8 hours on the final day of repairs (State 
2) and no power will be produced on days 1 and 2 of the three-day repair process 
(States 3 and 4). 

Table 3.5. Inputs to the MDP model: Repair type properties. 

Repair 
type 

States 
Variable 

cost 
Condition 

deterioration 
Repair 
result 

Deadline 

Power 
production  

hours on 
repair day 

Manual 
reset 

2 No No State 1 Day 10 8 

Grease 
top-up 

4 No Yes, 1 state 
each day (in 
states 2 & 3) 

State 1 Day 10 20 (States 2-
3) 
8 (State 4) 

Retrofit 2 No No State 1 Day 10 20 
Minor 
repair 

2 No No State 1 Day 10 8 

Medium 
repair (3 
days) 

4 No No One 
state 
up 

Day 10 8 (State 2)  
0 (States 3-
4) 

High 
priority 
repair 

2 No No State 1 Day 2 8 

Annual 
service 
(5 days) 

6 Yes No One 
state 
up 

Day 10 18 

The SMDP models in both summer and winter case studies were run for a 10-day 
time horizon; which is sufficiently long to allow 5-day repairs to be completed. Due 
to the relatively short time horizon, the discount factor was set to 1. If the state of the 
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system on day 10 is 1 (i.e. maintenance action completed/turbine is operational), a 
reward of £100,000 is granted. For consistency, this value is independent of the type 
of repair, its purpose solely to incentivise completion of the maintenance actions. 
Note that the magnitude of this number is not relevant as long as it is kept consistent 
for all maintenance actions (this ensures it has does not favour certain actions over 
others). If no deadline and final reward was present, the model would choose not to 
carry out non-critical maintenance actions such as retrofits. 

In some cases, two different maintenance actions on one turbine may be required. It 
was assumed that the total duration of maintenance, including transfer of technicians 
and spare parts from the vessel to the nacelle cannot exceed 7 hours16, if both actions 
are to be completed. Duration of all maintenance actions are defined in Table D.5 in 

Appendix D.	SMDP	Case	study	Inputs. Cost, reward and transition matrices 

used as inputs to the winter case study were provided in Appendix D.	SMDP	Case	
study	Inputs.   

There are three differences between the summer and winter case studies. Firstly, 
number and nature of maintenance actions required on turbines varies between the 
winter and summer case studies; these are outlined in Table 3.7 and Table 3.8 
respectively. Secondly, the current and forecasted wind speed varies between the two 
case studies; the wind is expected to pick up in near future in the summer day case 
study. The reverse is true in the winter day case study, as indicated in Table 3.6.  
Thirdly, the probability of a sail day is lower in the winter day case study, as indicated 
in Table 3.6. 

Once all inputs have been defined, the MATLAB-based model was run for both 
winter and summer case studies. Running simulations on a computer with an i7 
3.4GHz processor and 8GB RAM took less than 0.2 seconds for each of the case studies 
(only one run for each case study was required). The prioritised task list for the winter 
case study produced by the SMDP model is presented in Table 3.7, which has been 
sorted by turbine visit priority in descending order. 

  

                                                   
16 This number depends on shift duration and CTV travel time from O&M base to wind 
farm. In this case study, 11 h shift duration and approx. 90 minute CTV sail time from O&M 
base were assumed.  



Chapter 3. Prioritisation of maintenance action using a time-variable Semi-Markov 
Decision Process 
 

 
 

74 

Table 3.6. Expected revenue produced by turbines in both case studies. 

Winter Day Case Study 
 Today Tomorrow All other days 
Revenue produced by 
a turbine 

£9,600 £8,000 £8,000 

Revenue produced by 
a high performance 
turbine 

£10,560  £8,800 £8,800 

Probability of a sail 
day  

0.8 0.8 0.65 

Summer Day Case Study 
Revenue produced by 
a turbine 

£8,000 £9,600 £9,600 

Revenue produced by 
a high performance 
turbine 

£8,800 £10,560 £10,560 

Probability of a sail 
day  

1 0.9 0.8 

3.4.2 Case	Study	Results	

The “Recommended Action” column contains the suggested action to take on a given 
turbine, if only one action can be carried out on the day due to the 7h time limit. The 
values of all maintenance actions are expressed in monetary terms, for compatibility 
with the vessel routing optimiser described in Chapter 5.  

As expected, the high priority repair tops the list, followed by two turbines requiring 
two maintenance actions, both of which can be completed on day 1. These are 
followed by two high performance turbines, capable of producing increased revenue 
compared to the other turbines. The utilities of the following seven turbines do not 
differ significantly; it is worth pointing out that grease top up in state 3 is ranked 
higher than in state 4. The model recognises that if no action is taken today, the 
turbine featuring the former alarm will deteriorate to the point of failure and an 
additional repair cost will be incurred.  

Note that the additional repair cost does not affect the utility of grease top up in state 
4, relatively to other, similar maintenance actions. Once the failure has occurred, the 
repair cost has to be paid regardless of the action chosen, as discussed in Section 2.2.4. 
The value for replenishing grease on turbines with early warning (state 2) is 
significantly lower – the model recognises that taking an action can be delayed until 
day 2 without significant consequences. 
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Finally, the utility of carrying out a retrofit on the winter’s day is negative, as the 
optimal action is to wait until the following day to perform this action. If the retrofit 
was carried out today the turbine would be shut down during a period of increased 
wind speed. To minimise the lost generation, which is higher on day 1 compared to 
day 2, it is recommended to delay this non-critical maintenance action until day 2. 

Table 3.7. Winter day case study. Maintenance actions prioritised using the 
SMDP approach, sorted from highest value repairs. Legend: numbers in brackets 
indicate MDP state. High Pr. - High priority repair, GTU - Grease Top Up, AS - 
Annual Service, Med - Medium repair. 

Turbine 
ID 

Fault 1 Fault 2 High 
Performance? 

Recommended 
Action 

Value (£ 
,000) 

68 High Pr. -  No Repair High Pr. 302.9 
99 GTU (4) Manual Yes Repair both  195.4 
36 Manual Minor No  Repair both 175.6 
85 Med (4) - Yes Repair Med (4)  113.3 
45 Manual -  Yes Repair Manual 96.6 
42 Med (3) - No Repair Med (3)  94.2 
50 GTU (3) -  No  Repair GTU (3)  92.1 
19 Med (2) - No Repair Med (2)  87.8 
71 Minor Med (3) No  Repair Med (3) 87.8 
3 Minor - No Repair Minor 87.8 
51 Manual -  No Repair Manual 87.8 
92 GTU (2) - Yes Repair GTU (2) 2.1 
77 GTU (2) - No Repair GTU (2) 2.0 
21 Retrofit - No Do Nothing -2.1 

 
In some cases (i.e. turbines 71 and 42), it may be possible that carrying out the same 
maintenance action results in different values, despite the fact that the utility 
calculated by the SMDP model of both maintenance actions is the same. The reason 
for this disparity is the logic presented in Figure 3.11, which assumes that the turbine 
with multiple faults should be assigned a lower priority than a turbine with a single 
fault.  

Results of the summer day case study are shown in Table 3.8. Similarly to the winter 
case study, the top spot is occupied by the turbine requiring a high priority repair. 
The utility of this action is lower in summer than winter, as the probability of a sail 
day is higher in the former. Additional resources should be committed to addressing 
the issue on day 1 in the winter, due to the possibility that the turbine may be 
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inaccessible on days 1 and 2, which would result in missing the deadline and 
forfeiting the final reward.  

Table 3.8. Summer day case study. Maintenance actions prioritised using the 
MDP approach, sorted from highest value repairs. Legend: numbers in brackets 
indicate MDP state. High Pr. - High priority repair, GTU - Grease Top Up, AS - 
Annual Service, Med – Medium Repair. 

Turbine 
ID 

Fault 1 Fault 2 High 
Performance? 

Recommended 
Action 

Value 

72 High Pr. -  No Repair High Pr. 241.9 
55 Manual Minor No  Repair both 197.4 
29 Med (3) - Yes Repair Med (3)  127.6 
84 Med (4) - No Repair Med (4)  120.2 
76 GTU (3) -  No Repair GTU (3)  108.7 
96 Manual -  Yes  Repair Manual 108.6 
37 Manual Retrofit No Repair both 103.4 
56 AS (6) Retrofit No  Service AS (6) 101.6 
89 AS (6) -  No Service AS (6)  101.6 
4 GTU (4) -  No  Repair GTU (4)  98.7 
83 Med (2) Retrofit No  Repair Med (2) 98.7 
48 Minor -  No  Repair Minor  98.7 
70 Manual -  No  Repair Manual 98.7 
91 GTU (2) Retrofit No Repair both 15.4 
81 GTU (2) - Yes Repair GTU (2) 11.8 
16 GTU (2) AS (3) No Repair GTU (2) 10.7 
40 GTU (2) - No Repair GTU (2) 10.7 
1 AS (3) Retrofit No Service AS (3) 10.2 
64 AS (3) - No Service AS (3) 10.2 
23 Retrofit - No Retrofit 4.7 

Conversely, the utilities of other maintenance actions are higher in the summer than 
in the winter case study. This is due to the assumption of higher mean wind speed in 
the summer (Table 3.6), meaning that on average, turbines in the summer case study 
produce more revenue.  

Similar patterns emerge in both summer and winter case studies; turbines requiring 
a medium repair are assigned a high priority to ensure the 10-day deadline is met and 
to restart revenue generation as quickly as possible. High performance turbines are 
prioritised over baseline turbines with equivalent maintenance action requirements.  
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Comparing utilities for visiting turbines 40 and 91, it is clear that the SMDP model 
favours carrying out multiple repairs on the same turbine, contributing to MTBV 
increases. Unlike winter case study, the value of retrofit is positive, albeit low. As the 
wind speed is expected to increase in near future, non-critical maintenance actions 
are encouraged. Turbine 89, which requires an annual service, is ranked higher than 
some of the turbines requiring repairs. Duration of the former maintenance task in 
the case of turbine 89 is 5 days; the high utility is due to uncertainty of accessibility 
on days 2-10. If the uncertainty was removed, by setting a chance of sail day on all 
days to 1, the utility of all non-critical maintenance actions would be lower than the 
utility of visiting turbines requiring critical repairs.  

While the magnitude of utility is an important output of the SMDP model, used as an 
input to the vessel routing optimiser described in Chapter 5, it is the ordered list of 
maintenance tasks is the focal point of this section. As a tangible, easy to understand 
output, it carries more importance to potential users of the proposed SMDP 
methodology than the magnitude utility values. The order of the prioritised list of 
tasks is logical given the assumptions made, it aligns with the pragmatic approach to 
task prioritisation outlined in Table 3.2. 

3.4.3 Application	of	the	Proposed	SMDP	Methodology	for	Short	Term	
Resource	Requirement	Forecasting	and	Supporting	Vessel	Hire	
Decisions		

Dawid, McMillan and Revie [134] proposed application of the SMDP methodology 
for determining the optimal maintenance actions for a single component over a 15-
day time horizon. This was achieved by modifying Bellman Equation (as shown in 
Equation 3.8) to automate the process of optimal action selection: 

p0($R) = 0	$>qℎ	?ℎ0?max
*∈,

s
.($, 0, F) − L($, 0, F) +

23 4($, 0, F − 1, $′)
67∈8

∗ "(	F − 1, $′)t 							(<=>0?@AB	3.8) 

where Oa(sτ) is the optimal action to take in state s at time-step τ. The value of taking 
each action at each state and at each time step is calculated as it was in the SMDP 
method described in previous sections. To illustrate how the SMDP approach can be 
applied for forecasting resource requirements depending on the weather and vessel 
availability, a case study based on wind turbine gearbox is presented.  

It is assumed that the condition of gearbox can be categorised as one of four discrete 
states: “brand new”, “good”, “bad” and “failed”. The operator has the option of 
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carrying out one of three actions on each day: replace, repair and do nothing. 
Replacing a component will restore it to the brand new state. Repair results in the 
component’s state improving by one state (for example if component in a “bad” state 
is repaired, its condition is upgraded to “good” after the action is completed). Repair 
action is considered imperfect, meaning that there is a 10% chance of no improvement 
after the action is completed. A component in a failed state has to be replaced; 
repairing it will have no effect on its condition.  

If the “do nothing” action is selected by the operator, there is a 2% chance that the 
component will deteriorate from state “brand new” to “good”, 5% chance of 
deterioration from state “good” to “bad” and 15% chance of deteriorating from state 
“bad” to “failed”. These arbitrary values describe the deterioration of a fictional 
component for the purposes of this case study. The deterioration probabilities 
populate the transition matrix. Costs of maintenance actions are outlined in Table 3.9. 

There are two types of vessels available to the operator: a CTV used for repair actions 
and a jack-up vessel for replacement. Hire costs of each of the vessels are shown in 
Table 3.10. It is assumed that the CTV is capable of operating in significant wave 
heights up to 1.4m, while the jack-up vessel can be used in significant wave heights 
of up to 1.9m17. As discussed in Section 2.2.4, hiring a jack-up vessel on short notice 
can be very expensive, which is reflected in the first row of Table 3.10. 

Table 3.9. Costs of actions (in £,000) for each state. 

State/Action Do nothing Repair Replace 
Brand new 0 5 30 
Good 0 5 30 
Bad 0 5 30 
Failed 0 N/A 30 

Discount factor was set at 0.999 (per day) and the final rewards on day 16 were set at 
£150,000, £140,000, £50,000 and £0 for states “brand new”, “good”, “bad” and “failed” 
respectively.  

  

                                                   
17 Each jack-up vessel has a maximum allowable significant wave height in which it can be 
jacked up. For example, Innovation jack-up vessel can be jacked-up in Hs of up to 2m: 
http://www.crist.com.pl/jack-up-vessels-and-barges,22,en.html Accessed on 5/07/2019. 
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Table 3.10. Time-variable hire cost of vessels (£,000). Jack-up hire cost includes 
mobilisation cost. 

Days CTV Jack-up 
Days 1-2 10 350 
Days 3-9 10 150 
Days 10-12 10 100 
Days 13-15 10 80 

The significant wave height forecast over the entire 15-day time horizon is shown in 
Table 3.11. It is assumed that the significant wave height is linearly correlated with 
wind speed, which determines the revenue generated by the turbine. The highest 
amount of revenue (in the 15 day time horizon) is expected to be generated on days 
9-10, when the significant wave height is also at its peak. The revenue generated by 
the turbine on those days amounts to £10,000. Revenue on other days can be 
calculated using the formula found in Equation 3.9: 

.($, F) =
u(F) ∗ vwx

2 																		(<=>0?@AB	3.9) 

where r2m is the revenue generated by a turbine when the significant wave height is 2 
meters, H is the significant wave height. Naturally, a turbine with a failed gearbox is 
assumed to produce no revenue until the component is replaced.  

Table 3.11. Forecasted significant wave height and vessel availability. 

 

The key output of the model shown in Table 3.12 can be explained by analysing 
individual rows corresponding to four discrete states. If the gearbox is in a brand new 
state, action “do nothing” should be taken on all days. The model suggests carrying 
out repairs on days 1-4, even if the system is in a “good” state. This approach aims to 
reduce the probability of gearbox failure during a period of high waves (days 5-11), 
which would result in significant repair costs and potential lost revenue. Looking at 
the third row, it is clear that the optimal action is to repair whenever the sea 
conditions allow it, to prevent gearbox failure. Finally, when the gearbox has failed, 
it should be replaced in days 3-4 and 13-15. No replacement should take place on days 
1 and 2 as the cost of hiring a jack-up vessel on such short notice outweighs the 
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revenue which could be generated in that period. The same logic applies to days 5-
15; it is more economical to delay the replacement action until day 13, as lost revenue 
lost during this period is less than the difference in vessel hire cost.  

Table 3.12. The optimal actions depending on the day and the state of a 
component. Action 1 is “do nothing”, 2 is “repair”, 3 is “replace” [134]. 

 

The SMDP output shown in Table 3.12 provides the wind farm operator with an 
outlook of future resource requirements. The optimal actions in each state, on each 
day, would likely be similar for all wind turbine gearboxes on a wind farm. If the 
condition monitoring data suggests that a number of turbines are expected to 
experience a gearbox problem in near future, the operator should ensure sufficient 
resources and CTVs are present on days 1-4 to prevent gearbox failures. The decision 
to hire a jack up vessel for day 13 should also be considered, as volatility of the jack-
up hire market may push prices up in near future.   

The case study presented here was limited to 4 states and a single component. This 
can easily be extended to include more states and a variety of components, with no 
significant increase in computational time. The proposed SMDP methodology would 
benefit from integration with a prognostic model, capable of forecasting future 
deterioration of components on individual turbines. Combination of the SMDP 
model, a prognostic model, records of planned maintenance for the near future and 
accurate wind and wave forecast would likely prove a formidable tool for day-to-day 
maintenance task prioritisation and future vessel utilisation estimation on offshore 
wind farms.  
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3.5 	Conclusions	

Section 3.1 defined the requirements a maintenance task prioritisation methodology 
needs to fulfil for successful practical application to offshore wind farms. Literature 
review conducted in Section 3.2 found no publications offering a solution which 
satisfied all, or most, requirements. The information gathered surveying the literature 
influenced the choice of methodology: Semi-Markov Decision Process was selected 
as a versatile and computationally effective approach. The proposed SMDP model, 
described in Section 3.3, offers a structured framework for prioritisation of 
maintenance actions while taking into consideration: 

a) A variety of maintenance actions with different properties 
b) User-specified deadlines 
c) Time-variable costs, which can be used to model availability of resources 
d) Time-variable rewards due to wind forecast 
e) Uncertainty related to future accessibility of turbines 
f) Individual wind turbine performance 
g) Multiple maintenance actions on a single turbine 

To the author’s knowledge, this has not been achieved in any other work in literature. 
The proposed SMDP approach provides a framework for prioritising repairs without 
utilising human judgement or expert knowledge, removing subjectivity from the 
decision making process and ensuring consistent results. One of the key advantages 
of this methodology is the ability to specify time-variable costs, rewards and 
transition matrices, providing the model with a capability to support decisions on 
whether to carry out a given action as soon as possible or wait until a later date.  

The proposed method of task prioritisation will not result in rank reversal (described 
in more detail in Section 3.2.4), as addition or removal of turbines requiring 
maintenance does not affect the value of other repairs. The case studies, presented in 
Section 3.4 have demonstrated the model’s ability to cope with a sizeable selection of 
different maintenance actions, yielding logical and sensible results. Validation of the 
SMDP model is discussed in Section 7.2.  

The model captures some of the universal mechanisms used in real-life decision 
making as illustrated in Example 3.1. Section 3.4.3 demonstrated that the SMDP 
model can also be used for forecasting short term resource requirements and 
supporting decisions on jack-up vessel hire. While the methodology was designed for 
the offshore wind domain, failing assets, variable costs and rewards and constraints 
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on maintenance actions are present in many engineering fields. In the author’s view, 
this methodology is versatile enough to support decision making in a wide range of 
industries.  

3.5.1 Limitations	and	future	work	

The proposed methodology has been developed specifically with short-term decision 
making in mind. If the SMDP model is to be applied for real life decision making, it 
may be necessary to integrate it with current systems used by wind farm operators to 
account for medium and long-term maintenance plans. Although the SMDP 
computational time is short, task list management and inputting data into the model 
can be time consuming. Integration with CMS and alarm management systems would 
facilitate application of the proposed method to wind farms with more than 50 
turbines. Data integration is discussed in more detail in Section 8.3.3. 

The number of maintenance tasks per turbine in the case studies was limited to 2; 
however, extending the model’s capabilities to 4-5 maintenance tasks per turbine 
would not pose a significant challenge.  
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Chapter	4.	 Literature	Review	of	Methods	for	Solving	the	
Vessel	Routing	Problem	for	Offshore	Wind	Farms		

Decisions on dispatching and routing resources between geographical locations are 
made daily in almost all industry sectors. Businesses face the challenge of optimising 
the movement of couriers, engineers, taxis, planes, vessels etc. Optimal route 
planning is a common logistical problem.   

The word comes from Greek verb “logizomai”, which means to think deeply and 
calculate consequences of actions. Oxford Dictionary defines logistics as “the careful 
organization of a complicated activity so that it happens in a successful and effective 
way”18. The aim of this chapter is to review methodologies for solving logistical 
problems in a variety of domains and select the most suitable approach for 
determining vessel routing for offshore wind farms. A large proportion of the 
literature reviewed in this chapter focuses on problems outside of the wind domain, 
as vessel routing for offshore wind farms has only been tackled by a handful of 
researchers.  

This chapter is structured as follows: constraints and practical considerations of the 
problem at hand are outlined in Section 4.1. Section 4.2 contains the literature review 
of methods for solving logistical problems, with the findings summarised in Section 
4.3, which also contains a brief overview of the chosen methodology.  

4.1 	Real-World	Problem	Description	

The aim of this section is to familiarise the reader with the practicalities of planning 
vessel routing of offshore wind farms. This knowledge was gathered through 
informal interviews with operators of a major UK offshore wind farm (summarised 
in Appendix B. Summary of Informal Interviews with Offshore Wind Farm 
Operators). This section expands on Section 2.2, which described the general 
challenges of planning offshore wind turbine O&M. Here, a more detailed analysis of 
the practicalities of planning vessel routing is provided.   

El-Thalji [135] provided a comprehensive review of the O&M practices of wind power 
assets, highlighting that the main issues in offshore wind maintenance lie with site 
accessibility and environmental factors. A LEANWIND report stated that a wind 
farm with two hundred 5MW turbines would be expected to require around 3,000 
visits per year [13], which roughly translates to 8 visits a day, a proportion of which 
will be unforeseeable (i.e. unexpected failures). If a route plan is made a day early, it 

                                                   
18 http://dictionary.cambridge.org/dictionary/english/logistics accessed on 15/08/2017. 
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is likely that it will need re-calculating by the following morning due to the fact that 
a number of issues would have arisen overnight. Therefore, planning horizon for 
vessel routing decisions is very short (1-2 days, as discussed in Section 2.2.1). 
According to the interviewed wind farm operators, the current approach to solving 
the problem does not involve any decision support tools.  

The real world decision making process is outlined in Figure 4.1. Note that this 
represents the logic used by the interviewed wind farm operators. It begins by 
compiling a task list of maintenance actions to be carried out in the near future19. 
Planners then identify the high priority maintenance tasks – each of those is assigned 
a vessel and a troubleshooting team of technicians, who are skilled at carrying out 
repairs or other crucial maintenance tasks. 

 

Figure 4.1. Outline of the vessel routing decision making process for offshore 
wind farms. 

Each vessel which has been assigned a troubleshooting team is allocated additional 
maintenance tasks in the proximity of the turbine requiring a repair. The process is 
repeated until all technicians have been allocated a vessel, resulting in a list of 

                                                   
19 At large offshore wind farms (100+ turbines) listing all tasks would be time consuming – 
there may be thousands of various tasks to be carried out in the near future. Alternative 
approach is to keep a prioritised list of 30-50 tasks. New tasks are then added as completed 
actions are crossed off the list.  
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maintenance tasks to complete on the day. The order of turbine visits is determined 
by the maintenance task duration – tasks expected to take longer are visited first to 
maximise overall time to complete the action.  

A single wind turbine may require multiple maintenance tasks. If this is the case, an 
attempt will be made to complete all actions on one day, time constraint permitting.  

When planning the vessel routing, wind farm operators aim to satisfy five key 
objectives (as discussed in Section 2.2.6): 

1) Maximisation of the number of completed high priority maintenance actions. 
Note that this combines elements of OPEX minimisation (i.e. avoidance of 
contractual penalties) and availability maximisation (minimisation of turbine 
downtime) 

2) Maximisation of the number of man-hours worked by technicians 
(maximisation of operational efficiency) 

3) Minimisation of the number of unsuccessful maintenance actions, which also 
maximises MTBV and operational efficiency 

4) Minimisation of avoidable costs (OPEX minimisation) 
5) Maximisation of wind power generation (e.g. by delaying non-critical 

maintenance action during periods of high wind) 

A summary of all factors, which the decision makers need to take into consideration 
when planning vessel routing for offshore wind farms is provided in Table 4.1.  

This section presented the unique constraints and factors, which define the problem 
of scheduling vessel routing for offshore wind farm maintenance. The literature 
review presented in the following section aims to find a method capable of optimising 
vessel routing to achieve objectives 1-5) while taking into account most of the factors 
outlined in Table 4.1.  
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Table 4.1. Key factors to consider when planning real-life vessel routing for 
offshore wind farms.  

Factors to be 
considered 

Description 

1) Maintenance 
action priority  

As discussed is Section 2.2.2, stopped turbines and maintenance 
actions with nearing deadlines are examples of the high priority 
tasks. The higher the priority, the more likely that a task will be 
selected to be carried out on the day. Operators may choose to 
dispatch vessels to turbines with high priority tasks first, before 
other turbines are visited, to maximise the time on turbine. 
Maintenance action prioritisation is discussed in Chapter 3.  

2) Properties of 
all maintenance 
actions 

This includes the resources required to complete the maintenance 
action, as well as the expected task duration. The former needs to 
be considered if vessel’s capacity is limited, while the latter is 
crucial when deciding the order in which turbines are visited.  

3) Vessel 
properties and 
heterogeneous 
vessel fleet 

Carrying capability of vessels in a fleet may vary; operators may 
choose to assign higher capacity vessels to tasks which require 
heavy spare parts, tools or an increased number of technicians. 
The vessel’s speed and ability to transfer crews onto turbines in 
high waves can also vary depending on the vessel size and type. 
Operators tend to dispatch more capable vessels to turbines 
which are expected to experience higher waves. Using faster 
vessels to carry technicians to turbines with high priority 
maintenance actions can result in additional time for repairs, as 
less time is spent travelling.  

4) Variable 
vessel speed due 
to acceleration/ 
deceleration 
(speed correction 
factor) 

If the sea is calm, the vessel’s cruise speed can be used to calculate 
the time taken to travel from the O&M base to the wind farm. 
However, when the vessel is travelling between turbines, the 
captain needs to traverse the wind farm. There may be restriction 
zones which the vessel cannot enter (for example due to blade 
work overhead). To allow for the above and for acceleration/ 
deceleration, a reduced speed should be used for calculations of 
time required to travel between turbines.  

5) Time 
constraint & 
calculation of 
policy duration 

The time between vessel leaving and returning to the O&M base 
(also known as the “policy duration”) is limited by the maximum 
working hours of technicians and vessel crew. Scheduling too 
many maintenance actions in a day leads can lead to unfinished 
tasks, which was shown to be inefficient in Section 3.3. To achieve 
an accurate estimate of policy duration, it is important to consider 
factors such as the time required to transfer technicians and spare 
parts onto a turbine, the time required to ascend to the nacelle, 
expected duration of the maintenance actions and vessel travel 
time to/from wind farm and between turbines.  
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Factors to be 
considered 

Description (cont.) 

6) Wind turbine 
locations 

Wind farm operators aim to maximise the amount of time 
technicians spend on maintenance by reducing the time spent on 
travelling between turbines. Assigning vessels to clusters of 
turbines located close to each other helps to achieve this.  

7) Uncertainties 

Uncertainties associated with planning offshore wind farm 
maintenance are described in detail in Section 2.2.7. Known 
uncertainties can, and should be included in the decision making 
process.  Consider the following example: one crew of technicians 
was assigned to carry out maintenance tasks on two different 
turbines. If uncertainty on duration of both tasks is high, there is a 
risk that maintenance will take longer than expected. This may 
lead to the policy time limit being exceeded, meaning that one, or 
both tasks would not completed and would need to be attempted 
again at a later date. In this case, a better approach would be to 
assign these tasks to two different crews of technicians and 
schedule the policies so that tasks with high uncertainties are not 
on the critical path (discussed in more detail in Section 5.2.3).  

8) Problem size 

As shown in Appendix A. Calculating the Number of Possible 
Vessel Routing Policies, there are more ways to schedule visits to 
20 turbines using 5 vessels than there are stars in the observable 
universe. It is a problem impossible to solve optimally without 
the use of state-of-the-art decision support tools. Problem 
complexity and size impact the computational time; this needs to 
be considered in the process of methodology selection.  

9) Costs 
associated with 
maintenance  

If a vessel is hired on a pay-per-use basis, the hire cost should be 
taken into account when making a decision whether to use the 
vessel. Operators aim to minimise the fuel costs by optimising the 
order in which turbines are visited and encouraging use of fuel-
efficient vessels in policies involving increased travelling.  

10) Technician 
skills and 
qualifications 

Each technician has a unique skillset and background, potentially 
making them more or less effective at carrying out certain 
maintenance tasks. Some maintenance actions can only be 
completed by technicians with appropriate qualifications and 
training.  

11) Previous 
day’s assignment 
of technicians to 
vessels 

Assigning technicians to the same vessel they were on the day 
before saves time, as their tools do not need to be craned between 
vessels (note that this constraint may be specific to the site where 
the tool was validated).  

12) Time 
required to come 
to a decision 

Operators take between 1-5 hours to finalise the vessel routing 
plan. If software was used to support decision making, 
computational time would be expected to be on the lower end of 
this spectrum, to allow for managing inputs to and outputs from 
the model. 
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4.2 	Literature	Review	

A survey of literature on solving logistical problems in a variety of domains was 
conducted. Standardised logistical problems are described in Section 4.2.1, to 
familiarise the reader with the different problem categories. This was followed by a 
summary of review papers on solution methods for different problems, provided in 
Section 4.2.2. Literature focusing on solving the vessel routing problems in the 
offshore wind domain is reviewed in Section 4.2.6.  

4.2.1 Categorisation	of	the	Logistic	Problems	

In the field of logistics optimisation, the Travelling Salesman Problem (TSP) is one of 
the most studied problems, with multiple real world applications [136]. A travelling 
salesman needs to visit a collection of customers in different locations. Solving the 
TSP involves finding the shortest route in which all customers are visited. In a pure 
TSP, the only constraint is that the salesman needs to start and end their journey at 
the same point (depot). Some researchers proposed extensions of the TSP, such as TSP 
with multiple depots and salesmen; these were described in more detail in [137].  

Vehicle Routing Problem (VRP), first introduced in [138], is a generalisation of the 
TSP, in which the vehicle returns to depot before visiting all customers. While TSPs 
are mainly concerned with finding the shortest distance between customers, VRPs 
introduce additional layers of complexity, such as vehicle capacity. Variations of the 
VRP include: 

a) Capacitated VRP – each vessel has a limited capacity for carrying goods; at no 
point in the tour the vehicle is allowed to carry more goods than its capacity 
(for example: Alba & Dorronsoro [139]) 

b) VRP with heterogeneous fleet – vehicles can have different characteristics 
such as capacity and speed (for example: Dondo & Cerda [140]) 

c) Multi depot VRP – vehicles start and finish tours at multiple depots (for 
example: Dondo & Cerda [140]) 

d) VRP with Time Windows (VRPTW) – customers need to be visited at specified 
time (for example: Czech & Czarnas [141]) 

e) VRP with Pick-up and Delivery (VRPPD) – goods collected from customers 
are classified as either goods to be taken back to depot or goods to be delivered 
to another customer (for example: Ganesh & Narendran [142]) 
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f) VRP with backhauls – customers can have both positive and negative 
demand, the latter meaning goods need to be collected from the customer and 
returned to depot (for example: Gajpal & Abad [143]) 

g) Stochastic VRP – includes uncertainties, for example on the customer demand, 
travel time or the time window (for example: Tas et al. [144]) 

h) VRP with Profits (VRPP) – each customer is associated with a profit which 
will be collected when visited by the vehicle. In this variation, not all 
customers need to be visited by the vehicles (for example: Li & Lu [145]) 

Categorisation of complex problems, such as the vessel routing problem described in 
Section 4.1, is very difficult. Most real world problems will feature a combination of 
the underlying assumptions of VRPs discussed in a-h). Instead, the research 
community has created a category specifically for problems with multiple, complex 
constraints named Rich VRPs (RVRPs). RVRP consists of real-life problems featuring 
uncertainties, multi-objective optimization functions and a variety of constraints on 
time, distance and more [146]. Rich VRPs, may be especially difficult to solve as they 
can involve compound20 or antagonist21 decisions [147]. 

4.2.2 Review	Papers		

This section aims to summarise the contributions and conclusions of review papers 
on VRP solution methods. VRP is a very well-researched problem; it has been defined 
as early as 1959 [138]. More recently, Laporte [148] provided a summary of 50 years 
of research into VRP solution methods in a landmark paper, which has been cited by 
over 700 researchers22.  

Laporte [148] noted that while there are algorithms capable of producing exact 
solutions to TSPs with thousands of customers, the best exact algorithms for the VRP 
can only tackle problems with up to 100 customers, with simple constraints [146][148]. 
As solutions to most real problems must be computed quickly, the algorithms used 
in practical applications are mostly heuristic. Vidal et al. [147], who conducted an 
extensive review on approaches used for solving VRPs, arrived at the same 
conclusion; only relatively small capacitated VRPs can be solved, consistently, to 
optimality.  

                                                   
20 Comprising of multiple steps: e.g. sub-problem and outer problem.  
21 For example problems with conflicting objectives.  
22 According to https://scholar.google.co.uk, accessed on 20/01/2019. 



Chapter 4. Literature Review of Methods for Solving the Vessel Routing Problem for 
Offshore Wind Farms 
 

 
 

90 

Laporte [148] divided all heuristic methods into classical and metaheuristics; the 
former tend to be purely constructive; they do not feature an improvement phase and 
their objective function does not deteriorate from one iteration to the next. Examples 
of classical heuristic methods include the savings algorithm, set partitioning 
heuristics and cluster-first, route-second heuristics. Metaheuristics can be considered 
improvement methods; many are hybrid approaches combining two or more 
algorithms in an attempt to improve the solution quality. Examples of metaheuristic 
methods include local search, variable neighbourhood search and Tabu search. Some 
metaheuristics were inspired by natural processes; these include Genetic Algorithms 
(GAs), Ant-Colony Optimisation (ACO), Particle Swarm Optimisation and Simulated 
Annealing (these were discussed in more detail in Section 4.2.3).  

One of Laporte’s [148] conclusions was that many successful metaheuristic methods 
are over engineered, suggesting that researchers should focus on producing simpler 
and more flexible algorithms, capable of handling a wide range of constraints, even 
if this meant a small loss in accuracy. He also highlighted the need to incorporate the 
dynamic and stochastic factors into VRP solution methods.  

Vidal et al. [147] reviewed 64 VRP solution methods and categorised them according 
to the problem variation (as discussed in Section 4.2.1) and fundamental features such 
as neighbourhood properties (i.e. multiple and large neighbourhoods), use of 
hybridisation and problem decomposition. The authors provided useful tables 
allowing to easily identify the main characteristics of best solution approaches in a 
given problem category. Tabu search, genetic/evolutionary algorithm and iterated 
local search were the three most frequently used approaches. The use of these 
methods for solving various VRPs variations is described in Section 4.2.3. 

Hartl [149], noted that the solution time of standard VRPs decreased significantly 
since the problem was introduced, due to both advancement in computing power and 
improved solution algorithms. However, since most classical VRPs can now be 
considered solved, researchers have turned to problems featuring complex, practical 
constraints: RVRPs. According to Prodhon & Prins [150], there are many practical 
problems where serving all customers is impossible. This makes finding the optimal 
solution more difficult compared to a standard VRP, as selecting the nodes to be 
visited adds another layer of complexity to the problem. Li & Lu [145] stated that one 
of the key shortages in existing literature is the lack of research on solution methods 
for VRPs with profits, wherein not all customers must be visited.    
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Caceres-Cruz et al. [146] provided a comprehensive survey of methods for solving 
RVRPs, an overview of the optimisation approaches is outlined in Figure 4.2. VRP 
and all its variations are considered NP-hard (Non-deterministic Polynomial-time 
hard) [146], meaning that in theory, finding a feasible solution is as hard as finding 
the optimal one in an NP problem [151]. In practice, it is impossible to guarantee the 
mathematically optimal solution for most RVRPs [146]. To categorise models for 
solving RVRPs, Caceres-Cruz et al. [146] defined 36 unique constraints. Out of the 36 
constraints, 10 are applicable to the offshore wind maintenance planning problem as 
defined in Section 4.2.1; these are as follows:  

1) Multidimensional capacity: the vessels can carry a limited amount of 
technicians and spare parts 

2) Heterogeneous fleet of vehicles 
3) Fixed fleet of vehicles: number of vehicles is limited 
4) Fixed cost per vehicle: i.e. vessel hire cost 
5) Variable cost of vehicle: vessel fuel cost 
6) Duration constraint: maximum crew working time 
7) Asymmetric cost matrix: costs of maintenance actions may vary for different 

turbines 
8) Stochastic times: there is an uncertainty associated with maintenance action 

duration 
9) Time windows: picking up technicians should be done after maintenance 

action is complete, unless the overall time limit does not allow completing 
the task. 

10) Pick-up and delivery: each turbine is visited twice 

The 36 constraints defined by Caceres-Cruz et al. [146] are insufficient to fully define 
the real world problem of scheduling offshore wind maintenance. Additional 
constraints for the real world problem, include asymmetric rewards for visiting 
customers, technician skill requirements to complete maintenance and previous day 
assignment of technicians to vessels.    

According to the classification provided by Caceres-Cruz et al. [146], there is no 
model in literature capable of solving the RVRP for constraints 1-10) described above. 
Out of 55 models classified in  [146], the approach with the most shared constraints, 
proposed by Vidal et al. [152], has only 8 constraints in common with the offshore 
wind problem (not including the additional constraints described in the previous 
paragraph).   
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The above analysis demonstrates that each real world problem is uniquely defined 
by a set of constraints, direct application of methodologies proposed by other 
researchers always requires further modelling work to accommodate additional 
constraints.  

 

Figure 4.2. Classification of optimisation methods in the context of VRPs [146]. 

In recent years, multiple industries, including wind power generation, saw a rapid 
increase in novel telematics systems, which provide the asset operators with large 
volumes of operational data, as discussed in Section 3.2.1. Statistical analysis of the 
data can provide its user with useful stochastic information (e.g. time spent on turbine 
carrying out a maintenance task), which, if included in the decision making process, 
can lead to cost savings [153]. A new class of VRP was defined – Stochastic VRP 
(SVRP) to incorporate randomness from the aforementioned statistical analysis.  

An SVRP features at least one stochastic variable, such as travel time, customer 
demand or service time. Berhan et al. [154] surveyed 49 relevant papers on SVRP 
solution methods and found that: 
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a) Less than 10% of papers contained a methodology capable of tackling 
stochastic service time (i.e. uncertain maintenance task duration, crucial factor 
in the problem of offshore wind maintenance planning) 

b) Less than 20% of papers were based on real data 
c) Single most common methodology used across all papers were Markov chains 

(in 12% of papers) 
d) Majority of approaches focus on stochastic customer demand, capacitated 

vehicles and use cost minimisation as objective 
e) Objectives such as maximisation of vehicle utilisation, number of customers 

to be serviced and revenue earned have been effectively untouched by 
researchers  

Points a) & e) only reiterate the key message emerging from this section thus far: there 
are very few models in literature tackling problems similar to the offshore wind 
maintenance planning problem. There is also a clear lack of practical application of 
theoretical models in real-world problems.  

Oyola et al. published a two-part study; first part [155] reviews the literature on 
various problems under the SVRP umbrella. A number of useful tables were 
provided, which categorise the different approaches by the probability distribution 
function used, recourse action and the evaluation method. The second part of the 
study [156] provided a detailed description of exact and approximate solving 
procedures used for SVRPs, including branch-and-cut, local search approaches and 
evolutionary algorithms to name a few. The authors identified Tabu search as the 
most widely used and effective SVRP solution method. It was noted that heuristic 
methods are more common than exact solution approaches, as the inherent difficulty 
associated with solving VRPs is exacerbated by the addition of stochastic elements is 
SVRPs, hindering successful application of exact methods. The authors expect that in 
the future, research into SVRP solutions will increasingly focus on simple methods, 
as some of the best approaches currently available are relatively easy to construct and 
solve.  Overall, the two-part study provides an exhaustive literature review on VRP 
optimisation algorithms, clearly outlining the characteristics of different solution 
procedures. A number of the models referenced in [155] & [156] are discussed in more 
detail in Section 4.2.3.  

In dynamic VRPs, additional information is revealed as the plan is being executed. 
Dynamic SVRPs are a relatively new research area, with potential application to the 
offshore wind maintenance planning problem, in which plans need often need to be 
changed as new information becomes available. In their review of stochastic and 
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dynamic VRP solution approaches, Ritzinger et al. [153] have shown that models 
capable of handling dynamic events and stochastic information typically yield 
improved results compared to pure a-priori methods. This, however, requires a 
significant computational effort, limiting the size and number of scenarios which can 
be analysed using dynamic and stochastic approaches.  

An overview of the different optimisation methods is shown in Figure 4.2. At this 
point, a decision to narrow down the search of literature is made; the following 
section describes focuses on the most popular heuristic approaches used to solve a 
variety of VRPs. This choice was motivated by the conclusions from key review 
papers in the field ([146] & [156]), who remarked that heuristic methods seem a more 
likely candidate than exact methods to solve complex VRPs. The focus of the 
investigation carried out in this thesis is on capturing multiple real-world 
considerations (such as uncertain maintenance time or uncertain weather), which add 
complexity to the problem. Heuristic methods have a significantly higher chance of 
obtaining feasible solutions to complex problems in reasonable computational time 
[146]. 

4.2.3 Overview	of	the	Application	of	Heuristic	Methods	to	the	Vehicle	
Routing	Problem	

According to Cacerez-Cruz et al. [146], heuristics serve three main purposes:  

a) Solving problems faster (compared to exact methods) 
b) Solving larger problems or problems with many complex constraints 
c) Providing more robust algorithms 

Majority of approaches discussed in this section can be classified as metaheuristics, 
which were defined by Sorensen & Glover [157] as “a high-level problem-
independent algorithmic framework that provides a set of guidelines or strategies to 
develop heuristic optimization algorithms”. Two major strategies are used in 
metaheuristics: diversification and intensification [158]. The former aims to generate 
solutions which are significantly different to each other, in an attempt to find a 
solution close to the global optimum. The latter focuses on finding new solutions 
which are similar to known, high value solutions, in an attempt to find a local 
optimum.  

The following subsections present an outline of the notable heuristic approaches with 
the potential for application to the offshore wind farm vessel routing problem. 
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Local Search Methods 

In a standard Iterated Local Search (ILS) algorithm, a feasible solution is iteratively 
improved by introducing modifications, such as swapping and/or adding removing 
locations to be visited. The search is usually terminated when a local 
maximum/minimum is encountered. The algorithm is easy to construct and compute, 
however, the outputs of a standard ILS were described as “often a fairly mediocre 
solution” [159]. In a standard ILS, the only way of escaping the local minimum is to 
start each iteration with a different configuration. 

Large Neighbourhood Search (LNS) was applied by Ropke & Pisinger [160] to a VRP 
with backhauls. A neighbourhood is a set of solutions similar to the original solution 
(i.e. solutions which can be obtained by relatively simple modifications). The aim of 
increasing the size of neighbourhood is to attempt to escape local minima. The 
proposed approach is based on removal of nodes, or clusters of nodes, which result 
in large cost increases. As removal heuristic is varied iteratively, the search 
diversifies, or in some cases intensifies.  

Tabu search method was first proposed by Fred Glover [161] in 1986. A shortlist of 
recent search history, called a “tabu list”, is created and stored in short-term memory 
for a certain number of iterations. Tabu moves cannot be carried out, preventing 
cycling back to solutions which have been previously visited. This approach allows 
carrying out sub-optimal operations in order to escape local optimum.  

More recently, Tabu search has been applied to VRP with backhauls in [162]. Initial 
policy is found by finding nearest neighbours for consecutive nodes to be visited by 
a vehicle. Once the maximum carrying capacity of a vehicle is reached, a new route is 
started. The policy is then improved, in order to minimise the total distance travelled 
by vehicles using a two-step process. First, solution improvement is carried out using 
Tabu search. Second, the policy is further improved using frequency based memory. 
The proposed approach produced higher quality vehicle routing policies compared 
to other algorithms for VRPs with backhauls.  

However, despite the efforts of researchers referenced in this section, local search 
algorithms are generally prone to premature convergence, particularly if the state-
space is large [163].  
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Evolutionary Algorithms 

The most widely used Evolutionary Algorithm (EA) is Genetic Algorithm (GA). 
Inspired by genetic laws and natural selection, GAs cross over high quality solutions 
in order to generate new, improved policies. GA, which was first proposed by 
Holland [164] in 1973; it is now a widely used optimisation tool in a variety of fields. 

Baker & Ayechew [165] conducted a study comparing the performance of GAs to 
Simulated Annealing (SA), described in the following section and Tabu search. They 
have shown that GAs are capable of producing close-to-optimal solutions to basic 
VRPs with few constraints, however, not as consistently as the Tabu search method 
proposed in Rochat & Taillard [158]. Computational effort required to achieve close-
to-optimal solution using the proposed GA compared favourably with alternative 
approaches (Tabu search and simulated annealing). The approach proposed by 
Rochat & Taillard [158] was classified by the authors as a local search method, 
however, since creation of new solutions is driven by components of previous 
solutions, their methodology can be seen as a mix between a local search approach 
and an evolutionary algorithm.  

Alba & Dorronsoro [139] applied a GA approach to capacitated VRP, improving upon 
nine best known solutions published in literature. It is another example of a hybrid 
approach, wherein the GA is supported by a local search method. Four years later, 
Vidal et al. [166] proposed a hybrid GA which combined the exploration breadth of 
genetic algorithm and improvement capabilities of local search method. In each 
iteration, the GA offspring is enhanced by local search procedures (education and 
repair). The authors pointed out that allowing a controlled exploration of unfeasible 
solutions can lead to improved algorithm performance. Notably, the algorithm 
developed by Vidal et al. [166] outperformed other published VRP solution methods 
by producing either best known or new best solutions in all benchmark instances.  

All the publications reviewed in this section applied GAs to relatively simple VRPs 
with few constraints. GAs are rarely used for RVRPs and SVRPs – Caceres-Cruz [146], 
in their extensive survey of RVRP solution approaches, did not identify a single 
application of GA. 
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Swarm Algorithms 

Nature inspired, global optimisation algorithms such as Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO) are classified as Swarm Algorithms. 
Swarm refers to a group of agents, who follow a set of simple, user-defined rules. 
Interactions between the agents, which involve a degree of randomness, converge to 
produce efficient paths between nodes.  

In ACO, agents are referred to as ants; they lay down pheromones along their path 
between randomly selected nodes. Relating the quality of a given path to the strength 
of the pheromone trail causes ants to converge on high value/low cost paths. This 
procedure is repeated until a termination criterion is satisfied. An example of ACO 
application to the offshore wind maintenance optimisation (Zhang [23]) is discussed 
in Section 4.2.6.  

Bell & McMullen [167] applied ACO and Multiple Ant Colony Optimisation (MACO), 
to a set of standard problems. In MACO, each ant colony leaves a unique pheromone 
trail, which can either be used to create individual vehicle routes or to perform multi-
objective optimisation. Bell & McMullen [167] have shown that ACO is capable of 
producing policies within 1% and 3.9% of the known optimal for a problem consisting 
of 50 and 100 nodes respectively. MACO significantly outperformed ACO in 
instances with 100 and 150 nodes, finding solutions within 6.45% of the known 
optimal. 

Gajpal & Abad [143] used MACO to minimise the total distance travelled in a VRP 
with backhauls. Two types of ants are used: route ants, aiming minimise the route 
distance and vehicle ants, which aim to minimise the number of vehicles used. At 
each iteration, ant solutions are improved using two local search schemes (customer 
insertion/interchange and sub-path exchange). Their model produced five new best 
known solutions for the benchmark problem instances, outperforming other 
algorithms for VRP with backhauls available in the literature. The computational 
times of MACO, although reasonable (under 5 minutes in all test instances), were 
twice as long as LNS algorithm.  

Particle Swarm Optimization (PSO) is a population-based global optimisation 
algorithm, first proposed by Kennedy & Eberhart [168]. This method is inspired by 
movement of social species such as fish or birds. In PSO, individual particles’ 
movement is governed by both their past, highest value position and the best known 
global location. Over time, the swarm collectively converges on the optimal, or close-
to-optimal solution.  
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While PSOs are most widely used for problems in which the optimal solution is a 
point or a surface, they can also be adapted to solve VRPs. Marinakis et al. [169] 
proposed an approach based on PSO combined with path relinking and local search.  
Their model was applied to a VRP with stochastic demands, wherein demands 
become known as the vehicle arrives at each customer node. Comparing their 
methodology to a GA and Differential Evolution Algorithm (DEA), the authors have 
shown that their algorithm outperformed both GA and DEA. However, an 
independent study conducted by Vidal et al. [147] have shown that better solutions 
can be achieved in shorter computational time, for example by using an approach 
based on adaptive memory & Tabu search [170].  

In summary, one of the main advantages of ACO is that multi-objective optimisation 
can easily be implemented.  However, the computational time required to produce 
close-to-optimal policies using ACO can be long, especially if applied to a problem 
with complex constraints. Both ACO and PSO perform best when used in tandem 
with a local search method. There are very few examples of swarm intelligence 
approaches being used in to solve RVRPs. 

Simulated Annealing  

Simulated Annealing (SA) is a metaheuristic based on the physical analogy of cooling 
metals. As temperature decreases over time, the probability of accepting worse-than 
current solutions decreases. Initially, high probability of accepting “bad trades” 
facilitates exploration of the state-space. Towards the end of the simulation, 
depending on the user-defined settings, the algorithm may only accept better-than-
current moves, focusing on achieving the local optimum. The simulation is 
terminated when equilibrium is reached; i.e. when no improved solution is found in 
a pre-defined number of iterations.  

Aksen [171] proposed a method based on SA for VRP with profits and time deadlines. 
However, the gap between the proven optimal and output of the proposed heuristic 
exceeded 5% in half of test instances. Parallel SA was used by Czech & Czarnas [141], 
wherein a number of SA processes are run in parallel, with the probability of 
accepting lower-than-current value solutions affected by the  solutions found in 
parallel processes. Parallel SA approach improved upon a number of best-published 
results for benchmark problems.  

VRPPD solution approach described in Bent & Hentenryck [172] comprised of two 
stages: first, SA was used to reduce the number of routes. Second, LNS was applied 
to explore sub-neighbourhoods selected by SA to find the local travel cost minimum. 
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The resulting algorithm generated new best solutions to benchmark problems found 
in literature. Cases with up to 600 customers were computed in reasonable time given 
the size of the problem (most runs took between 50 to 90 minutes).  

Javid & Seddighi [173] proposed a simulated annealing heuristic, featuring three risk 
measurement policies (moderate, cautious and pessimistic). The authors 
demonstrated that incorporating risk into the model significantly lowers the total 
costs. This approach is particularly suitable for applications with high disruption risk. 
In the context of offshore wind, risks which may disrupt a policy include inability to 
transfer crew from vessel onto turbine or inability of crew to finish maintenance 
within the specified timeframe.  
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Cluster-first Route-second Approach 

The two most common clustering techniques are route-first cluster-second and 
cluster-first route-second, as shown in Figure 4.3. Prins [174] provided an in depth 
review of route-first cluster-second applications to VRPs. In this method, a “giant” 
route is created and partitioned into smaller sizes depending on the vehicle’s 
capacity. 

In cluster-first route-second, the problem is decomposed into clusters of customers, 
whose requirements do not exceed the vehicle capacity. In TSP applications, clusters 
are usually generated based on the geographical location of customers. Then, order 
of visits within each cluster is optimised. Early applications of this method to 
capacitated VRPs include Fisher & Jaikumar [175] and Bramel & Simchi-Levi [176]. 
Constructive clustering approaches seem a natural choice for the offshore wind 
problem described in Section 3.1; cluster-first route second-approach mimics the 
process wind turbine planners follow to arrive at a routing policy. 

 

Figure 4.3. VRP solution approaches: cluster-first route-second and vice versa 
[174]. 
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Dondo & Cerda [140] proposed a three-phase heuristic, based on cluster-first route-
second method, for the multi-depot routing problem with time windows and 
heterogeneous vehicles. First, cost-effective clusters are generated. In phase 2, vessels 
are assigned to clusters. The last step involves ordering nodes within each cluster, 
determining the arrival times for each customer. Expressing the model in terms of 
clusters rather than individual customers reduces the computational time drastically. 
Tests on benchmark problems resulted in a number of optimal or near-optimal 
solutions. 

Ganesh & Narendran [142] applied a multi-phase constructive heuristic to a vehicle 
routing problem with sequence-constrained delivery and pick-up. Initially, clusters 
are created based on customer’s geographical locations. Order of node visits is 
determined by a Shrink-Wrap Algorithm, which maps the nodes on polar 
coordinates, sorting them by angle and distance to create routes. Each cluster is then 
assigned a vehicle. Constructed solution is input to GA, which uses crossover and 
mutation to produce offspring iteratively until specified number of iterations. This 
method produced some best known solution to benchmark problems.  

Cluster-first route-second method is closely related to the procedure human decision 
makers follow to solve real-life routing problems [147]. This approach is very effective 
at dealing with highly constrained problems with few feasible solutions, as the 
ensuring that capacity constraint is satisfied is achieved at the first step of the process 
[147].  

This concludes the review of applications of general heuristic methods for the VRPs. 
The following section provides an overview of the approaches used for optimisation 
under uncertainty, in the context of VRPs.  

4.2.4 Review	of	Optimisation	Approaches	under	Uncertainty	

Review papers covering a range of SVRP solution methods are discussed in Section 
4.2.2. Here, approaches for optimisation problems under uncertainty are discussed in 
more detail.  

Robust optimisation is one of the methods of solving optimisation problems with 
uncertain inputs. Recent advances in robust optimisation have been discussed in 
[177]. This approach aims to arrive at solutions which are robust to input changes. 
However, it is based on planning for the worst-case scenario, assuming that 
uncertainty is the most unfavourable [177]. This can lead to low quality, pessimistic 
policies. Some researchers attempted to address this; for example Sun & Wang [178] 
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proposed a robust optimisation approach for a VRP with uncertain customer demand 
and transportation cost, allowing the user to determine varying levels of risk 
acceptance, with their model calculating an optimal solution for each value of risk 
acceptance.   

Some real world problems can be modelled by classifying the decision variables into 
two sets. The first set contains variables which are fixed before the realisation of 
uncertain parameters. The second set, contains variables which are determined once 
random events occur, allowing implementation of policy improvements. The second 
stage can be seen as a corrective measure, or recourse, hence the name of the 
approach: recourse programming [179]. An example of application of recourse 
programming was published by Haugland & Ho [180], who tackled VRP with 
stochastic demands. 

Table 4.2. Comparison of solution approaches to VRPs with stochastic variables. 

Authors Assumptions 
Solution 
method 

Distribution used 
to model service 

/travel time 
Li et al. [181] Soft time windows 

Stochastic travel time 
Stochastic service time 

Tabu search Normal 

Russell  
& Urban [182] 

Soft time windows 
Stochastic travel time 

Tabu search Shifted gamma 

Lei et al. [183] Stochastic service time LNS Normal 
Chen et al. [184] Stochastic travel time 

Stochastic service time 
Branch-and-cut 
Adaptive LNS 

Normal 

Tas et al. [144] Soft time windows 
Stochastic travel time 

Tabu search Gamma 

Gomez et al. 
[185] 

Stochastic travel time 
Stochastic service time 

Multispace 
sampling 
heuristic 

Phase-type 

Table 4.2 presents a comparison of VRP solution approaches with various 
assumptions and probability distributions used to model stochastic variables. In 
problems with soft time windows, customer visits outside of the soft time window 
are permitted, but penalised to discourage servicing a customer too early/late. In 
summary, Tabu search was the most common solution procedure for SVRP 
publications shown in Table 4.2. Normal and gamma distributions were used to 
model stochastic variables in most papers. Discussions with wind farm operators 
revealed that in the context of offshore wind turbine maintenance, a gamma 
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distribution with a long tail (positive skewness) would fit the real-world service time 
more accurately than normal distribution.  

In the approach proposed by Gomez et al. [185], a multispace sampling heuristic was 
used. In the first phase, multiple solution spaces are sampled. The optimal 
combination of the sampled solutions is then assembled in the second stage. The latter 
phase is modelled as a set-partitioning problem and solved using a commercial 
solver. Having conducted benchmark tests using a variety of probability distribution 
functions (including Erlang, Burr and lognormal distributions) Gomez et al. [185] 
concluded that since most real world travel and service times have positive skewness, 
assuming normal distributions can lead to poor routing decisions.  

4.2.5 Multi-Objective	Optimisation	

Many real world problems are characterised by conflicting objectives. For example, 
manufacturers design their products minimising cost while attempting to maximise 
quality. In non-trivial multi-objective optimisation problems, no single solution can 
satisfy all objectives.  

Multi-objective VRP solution procedures have been reviewed by Jozefowiez et al. 
[186], who provided a comprehensive overview of papers on real-life multi-objective 
VRPs. The authors listed the most common VRP objectives, which include 
minimisation of distance travelled and time spent travelling, minimisation of cost 
and/or fleet size, maximisation of profit and/or quality of service. According to 
Jozefowiez et al. [186], the three key approaches for solving multi-objective VRPs are:  

• Scalar techniques – a simple technique requiring definition of individual 
objective weights to calculate the solution’s total weighted value. This method 
does not guarantee that all Pareto optimal solutions will be found. Examples 
of the use of scalar method include optimisation of emergency evacuation 
using a combination of vehicular traffic and mass transit in [187]. 

• Pareto methods – which directly notion of Pareto dominance, as discussed 
below.  

• Alternative approaches – for example the Vector Evaluated Genetic 
Algorithm (VEGA) approach, first proposed by Schaffer [188]. In VEGA, 
solutions are produced iteratively using a GA. A set of non-dominated 
solutions23 is saved at the end of each iteration as the current-best guess.  

                                                   
23Neither objective function can be improved upon without the other functions deteriorating 
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Pareto graphs are often used to visualise the solution state-space of multi-objective 
optimisation problems. Figure 4.4 shows the Pareto front made up of non-dominated 
solutions marked by full circles. Solutions on the Pareto front are all considered 
equally good. Once a Pareto front is generated, the decision maker’ preference usually 
determines the chosen solution. Alternatively, this process can be automated; 
however, this usually requires further input from the decision maker. For example, 
in the approach proposed by Deb & Sundar [189], before the optimisation process 
commences, the decision maker is asked to define a reference point which will act as 
the optimisation goal. Once the Pareto front is generated, evolutionary multi-
objective optimization is used to identify the Pareto region closest to the reference 
point.  

 

Figure 4.4. Pareto front made up of non-dominated solutions (full circles) and 
dominated solutions (empty circles). Adapted from Ishibuchi & Murata [190]. 

This section provided a brief summary of the most common approaches for tackling 
multi-objective optimisation problems. The following section provides an overview 
of the research conducted specifically on the vessel routing problem for offshore wind 
farm maintenance. 

4.2.6 Literature	in	the	Wind	Domain	

Researchers have only started working on the offshore wind farm vessel routing 
problem recently, with the first paper published in 2014. Zhang [23] proposed an 
approach based on Ant Colony Optimization (ACO), a metaheuristic technique, to 
solve cases with up to 28 turbines and 2 vessels. A summary of constraints considered 
in this, and other models discussed in this section is presented in Table 4.3. One of the 
key limitations of the model proposed by Zhang [23] is that it does not allow a team 
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of technicians visiting more than one turbine on the same day. In practice, this may 
be encouraged for maintenance tasks of shorter duration as it increases technician 
utilisation rate.  

In the same year, Dai et al. [22] published their work on short term planning of vessel 
routing. The proposed exact solution algorithm failed to find the optimal solution 
within the time limit even in cases with as few as 8 turbines requiring maintenance. 
Despite differing methodologies, the two aforementioned papers are solving the same 
problem with very similar constraints (see Table 4.3). Both approaches have only been 
applied to cases with two vessels, while large offshore wind farms such as London 
Array have as much as 8 CTVs at their disposal [49].  

Stålhane et al. [24] proposed two alternative solution approaches to the offshore wind 
farm vessel routing problem; an exact, arc-flow model and a heuristic path-flow 
method. The latter approach is essentially an arc-flow decomposed using Dantzig-
Wolfe method. It is capable of producing close-to-optimal results in reasonable 
computational time. The main difference between the problems solved by Stålhane et 
al. [24] and Dai et al. [22], is that the former calculates the downtime cost on a more 
detailed level. The authors did not indicate whether the proposed methodology could 
be applied to cases with heterogeneous vessels and time horizons longer than one 
day.  

Irawan et al. [25] divided the problem into a master and a sub-problem. The master 
problem focuses on finding the optimal assignment of clusters to vessels so that the 
overall cost is minimised. In the sub-problem, the order of wind turbine visits is 
decided. Both problems were solved using constraint programming. Dantzig–Wolfe 
decomposition method combined with a mixed integer linear program was used to 
produce solution in a reasonable computational time. Numerous real-life constraints 
were considered and the model’s outputs compared favourably to results produced 
by Dai et al. [22].  

In the model proposed by Irawan et al. [25], the number of turbines per cluster can be 
limited to reduce computational time. This assumption is reasonable, as in most real 
life cases, it would be impractical to dispatch a single vessel to visit more than 8 
turbines. In consequence, results of the case study with 36 turbines were not proven 
optimal, even though the solution method is exact. The computational time of the 
algorithm proposed by Irawan et al. [25] is highly variable; for example the time to 
solve a 24-turbine case study ranges from 2 to 58 minutes. They also demonstrated 
that significant cost reductions can be achieved if maintenance planning on multiple 
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wind farms is done centrally, rather than generating separate routing policies for each 
individual wind farm.  

To compute the results, Irawan et al. [25] used IBM ILOG CPLEX commercial 
software, which uses branch and bound and branch and cut algorithms. In the branch 
and bound method, a total enumeration tree is created. Computing the entire tree 
would take unreasonable amounts of time for most real world problems. Instead, if it 
can be proven that descendants of a certain node in a decision tree cannot improve 
on the current best solution, the branches resulting from that node are pruned. This 
systematic process reduces the state-space to a computationally manageable size. 
Branch and bound and branch and cut algorithms are exact methods, however, 
increasing the problem size increases computational time exponentially. Producing 
an exact solution for a problem consisting of 72 turbines required 40 hours of 
computational time [25] on a desktop computer, which is beyond reasonable in the 
context of decision support for offshore wind vessel routing (unless cloud computing 
or a supercomputer is used).  

Schrotenboer et al. [28] proposed a heuristic method based on Adaptive Large 
Neighbourhood Search (ALNS) for solving the offshore wind farm vessel routing 
problem. They applied the ALNS model to benchmark problems proposed by Irawan 
et al. [25]. The proposed heuristic found near-optimal solutions in short 
computational time (under 10 seconds); a significant improvement compared to the 
exact method proposed by Irawan et al. [25].   

In their publication, Schrotenboer et al. [28] did not describe the vessel routing 
problem and assumptions used; it can be assumed that the authors used Irawan’s et 
al. [25] set of constraints. The focus of the Schrotenboer’s et al. [28] publication was 
on the potential benefits of sharing technicians between O&M bases. A two-stage 
ALNS was embedded in a Monte Carlo model to investigate the impact of technician 
sharing in different scenarios. It was shown that sharing technicians across O&M 
bases can yield 7% cost savings as fewer vessel trips are required.  
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Table 4.3. Classification of vessel routing models based on 17 constraints. Note 
that the maximum no. of vessels and turbines refers to the highest values used in 
case studies, not an inherent model limitation. * variable cost only 

Heuristic method ü  ü  ü ü ü 

Exact method  ü ü ü ü   

Limited no. of technicians    ü  ü ü 

Applied to a real world case study      ü  

Time horizon >1 day ü ü  ü ü ü ü 

Heterogeneous vessels ü ü  ü ü  ü 

Fixed & variable vessel costs ü ü * * ü  * 

Multiple O&M bases    ü  ü ü 

 Profit collection (rewards for actions)      ü  

Penalty costs (i.e. lost revenue) ü ü ü ü ü ü ü 

Uncertainties (i.e. service time)        

Variable vessel speed        

Vessel stays at turbine (some actions)  ü ü ü ü ü  ü 

Time window limit ü ü ü ü ü ü ü 

2-d vessel capacity ü ü ü ü  ü ü 

Transfer time modelled   ü ü ü ü ü 

Technician qualifications    ü   ü 

Maximum no. of vessel 2 2 5 4 2 1 10 

Maximum no. of turbines 28 8 8 36 25 9 60 
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Raknes et al. [26] formulated a mathematical model of the offshore vessel routing 
problem by defining over fifty constraints, which, for small problems, can be solved 
by commercial Mixed-Integer Programming (MIP) solvers (based on the branch-and-
bound search). To enable application of their model to cases with 20-25 wind turbines 
requiring maintenance, Raknes et al. [26] proposed two rolling horizon heuristic 
methods, which iteratively produce solutions to MIPs by considering shorter 
planning horizons.  

However, the proposed methodology is not suited to application to cases with a time 
horizon longer than one day. First, solving the model for two or more work shifts did 
not always produce a feasible result. Second, longer planning horizon increases the 
problem’s computational difficulty, lowering the quality of results; the author 
concluded it is more efficient to consider only one period when deciding on routes 
and schedules for maintenance vessels. Interviews with offshore wind farm operators 
(summarised in Appendix B. Summary of Informal Interviews with Offshore Wind 
Farm Operators) confirm that most real life routing decisions are made with one day 
planning horizon. While certain decisions should be made in advance – for example 
scheduling planned maintenance well ahead can aid resource management, the 
literature and practitioners (interviewed during the site visit described in Section 7.5) 
confirm that planning the vessel routing beyond one day is often counterproductive. 

To reduce computational time, Raknes et al. [26] introduced symmetry-breaking 
constraints. As the order in which actions are completed is fixed by the model user, 
this decision is not subject to the optimisation process, potentially yielding sub-
optimal solutions.  

Both Irawan et al. [25] and Raknes et al. [26] modelled the problem using multiple 
linear constraints, which were input to and computed by commercial solvers. 
However, the method presented in the former publication was able to produce exact 
solutions to larger, more constrained problems in shorter computational time. The 
effectiveness of the approach proposed by Irawan et al. [25] is most likely due to 
splitting the problem into master and sub-problems.  

Stock-Williams & Swamy [27] described a daily O&M planning tool developed by 
ECN (Energy research Centre of the Netherlands). Their approach, based on a Genetic 
Algorithm, handles both task prioritisation and vessel routing. Initial solutions are 
crossed over and mutated to produce new policies. Fitness of the newly created 
policies is evaluated, high quality solutions are re-inserted into the pool of candidate 
policies.   
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If maximisation of overall energy yield over the time horizon is chosen, the tool 
proposed by Stock-Williams & Swamy [27] prioritises corrective actions over 
preventative. If no corrective actions are required, the tool may recommend not 
taking any actions on a day with high forecasted wind speed, to maximise energy 
capture.  

The tool was applied to a real world case study, based on Princess Amalia Wind Park 
in the Netherlands (120MW, 60 turbines). Day-to-day O&M at this site is carried out 
using a single vessel, and this was reflected in the case study, in which the optimiser 
only had one CTV available. This reduces the problem complexity significantly, as 
the issue of assignment of tasks to vessels does not need to be considered. Application 
of this tool to more complex problems may reduce the quality of results (or increase 
the computational time required to achieve quality results).  

Having conducted an analysis of 153 days of maintenance records, Stock-Williams & 
Swamy claim that by following the tool’s proposed policies (versus the decisions 
actually taken at by wind farm operators), energy yield could have been increased by 
1.1%. However, this value seems very optimistic and is unlikely that such increase 
would be seen in reality. One of the reasons for this scepticism yields from in-depth 
analysis of the individual policy described in the paper.  

On a particular day, there were service orders on 7 preventative and 2 corrective 
tasks. The tool’s suggestion was to carry out both corrective tasks, while historic 
operational data shows that on that day only one corrective task was attempted. The 
authors’ claim that this decision to carry out both corrective actions, rather than one, 
would have prevented 10MWh of lost revenue (based on historical weather data). 
However, it is highly unlikely that the maintenance schedulers (described by the 
authors as experienced) would not consider the option of carrying out both 
maintenance tasks in such a simple scenario with only 9 service orders for the whole 
wind farm. In reality, the reason for not carrying out the second corrective action 
would probably be lack of technicians with troubleshooting skills/qualifications or 
lack of spare parts. As the study did not have access to historical operational 
information such as qualifications of technicians on shift on a given day or spare part 
requirement/availability, the estimated increase in energy yield cannot be considered 
credible.  

Ultimately, the tool developed by Stock-Williams & Swamy [27] stands out from the 
publications discussed in this section as the only tool applied to a real world case 
study. To the author’s knowledge, it also has the best user interface. As ECN is a not-
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for-profit organisation, the tool can be adopted by wind farm operators with little or 
no licence fees.  

To the author’s knowledge, there are no other published research papers focusing on 
optimisation of offshore wind farm vessel routing; it is a relatively niche and young 
research area. As shown in Table 4.3, the constraints modelled by different 
researchers vary significantly despite the fact that they are solving the same problem. 
To date, no model in the offshore wind domain has tackled stochastic service times 
or variable vessel speed, which should be addressed in future research to ensure 
successful real-world application. 

With the exception of  Raknes et al. [26], researchers presented no graphs to visualise 
the policy. Only Dai et al. [22] provided an overview of the optimal order in which 
turbines were visited in different case studies. Lack of this information makes it 
difficult to compare and contrast policies generated by different approaches. Effective 
visualisation of the policies proposed by optimisation models (as shown in Figure 4.5) 
is a crucial part of the process of transforming a theoretical methodology into a 
practical decision support tool. 

 

Figure 4.5. Visualisation of the vessel routing policy proposed by Raknes et al. [26]. 
Numbers beside the arrows define the order of visits and number of technicians 
present on a vessel (in bracket). Numbers next to turbines denote the drop off and 
pick-up times. AV – Accommodation Vessel, SES – Surface Effect Ship.  
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4.3 Summary	of	the	Literature	Review	

This review failed to find publications which successfully solve a routing problem 
while considering factors described in Table 4.1. Caceres-Cruz et al. [146] 
demonstrated that an attempt can be made at defining a real-life problem using a set 
of 36 constraints, however, even such a large amount did not include all constraints 
relevant to the offshore wind vessel routing problem. Most approaches proposed for 
real world RVRPs are solving unique problems, hindering effective comparison of 
different solution algorithms.   

In the wind domain, the literature on solution approaches for VRPs is scarce, with 
only seven publications; the most effective being the MILP model proposed by 
Irawan et al. [25]. One of the key messages from their work is that decomposition of 
the VRP into a master and a sub-problem is a common denominator in recent 
advances in VRP solution methods.  

Outside of the wind domain, a number of comprehensive review papers focusing on 
VRP solution methods are discussed in Sections 4.2.3-4.2.5. One of the main 
conclusions from Section 4.2.3: Overview of the Application of Heuristic Methods to 
the Vehicle Routing Problem was that researchers are able to achieve improved 
results by combining different heuristic methods. This was demonstrated by: 

1) Vidal et al. [166], who used a hybrid approach based on local search and GA 
2) Marinakis et al. [169], who solved VRPs using a PSO with path relinking and 

local search 
3) Bent & Hentenryck [172], who proposed an algorithm combining SA & LNS 

with all three papers achieving best known solutions to benchmark problems. Based 
on the literature review and problem description (Sections 2.2 and 4.1 respectively), 
a research gap has been identified. The offshore wind industry would benefit from a 
model with the following features: 

a) Capable of handling stochastic inputs i.e. uncertain service time, as 
recommended by Ritzinger et al. [153] and Shafiee & Sørensen [18] 

b) One day planning horizon, as recommended by Raknes et al. [26] 
c) Capable of solving heavily constrained problems with unserved customers, as 

recommended by Li & Lu [145] 
d) The approach needs to be flexible, to handle a wide range of constraints, 

including problem-specific constraints, as recommended by Laporte [148] 
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e) Capable of using a measure of risk to produce a range of policies, i.e. 
moderate, cautious and pessimistic, as recommended by Javid & Seddighi 
[173]  

f) Based on real data, as recommended by Berhan et al. [154] 
g) Probability distribution of the uncertain service time should reflect the real-

world distribution (i.e. positive skewness) to ensure high quality results, as 
recommended by Gomez et al. [185] 

h) Capable of producing clear visualisations of the recommended policies, which 
according to practitioners is essential for successful real world application 

i) Capable of modelling most factors discussed in Table 4.1 
j) Capable of producing solutions in reasonable computational time (i.e. less one 

hour for problems with ~20 customers on a desktop PC) 

Requirements a-j) will be used to evaluate the proposed methodology developed in 
latter parts of this thesis.  
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4.3.1 Discussion	of	the	Modelling	Choice	

Based on the literature review conducted in Section 4.2, a comparison of exact and 
heuristic methods is presented in Table 4.4.  

Table 4.4. Advantages and disadvantages of exact and heuristic VRP solution 
approaches in the context of the offshore wind farm maintenance planning 
problem. 

Method Advantages Disadvantages 

Exact 
methods 

- Designed to find the optimal 
solution 
- Successful application in 
Irawan et al. [25] 

- Highly variable computational 
time 
- Applications in literature utilised 
expensive  commercial software 
packages 
- Modelling stochastic and complex 
constraints is difficult [156] 
- Feasible solution is not 
guaranteed 

Heuristics 

- Consistent computational 
time - Termination criteria can 
be adapted, depending on the 
user’s needs  
- Wide choice of well 
documented heuristic and 
metaheuristic methods 
- It is possible to combine 
multiple approaches, which 
generally improves quality of 
results 
- Far more widely used for 
RVRPs compared to exact 
methods 
- Most approaches guarantee a 
feasible solution 
- More robust compared to 
exact methods 

- Optimal solution not guaranteed 
 

There are very few published applications of exact methods to RVRPs and SVRPs. 
One of the reasons for this is that the state-space of many real world problems is 
simply too large to guarantee an optimal solution in reasonable computational time 
[146]. Based on these considerations, it was decided that a heuristic approach should 
be used to solve the offshore wind farm vessel routing problem. The choice of 
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modelling approach was influenced by the key findings of Section 2.3 (Summary of 
the Practicalities of Planning Offshore Wind Farm O&M) and conclusions from the 
literature review discussed in Section 4.3.  

 

Figure 4.6. Overview of the proposed method. 

Decomposing the problem into master and sub-problems was chosen as the basis of 
the method developed in this thesis, as shown in Figure 4.6. The approach was proven 
to be effective in Irawan et al. [25], who focused on the deterministic offshore wind 
farm vessel routing problem. The proposed approach can be considered a variation 
of the Cluster-first Route-second method, which was shown to be an effective 
approach for solving VRPs outside of the wind domain (i.e. Dondo & Cerda [140]). 
Structuring the VRP as a set of independent problems, allows a choice of solution 
methods:  

i. In the master problem part 1 (left hand side of the master problem as shown 
in Figure 4.6), clusters can be generated using k-means clustering [191] or 
enumerated  

ii. In the sub-problem, routes for individual clusters can be optimised using 
approximation algorithm or a metaheuristic 

iii. In the master problem part 2 (right hand side of the master problem as shown 
in Figure 4.6), individual clusters of known value can be matched into policies 
using a heuristic method, or by formulating the problem as an integer linear 
programming problem and using a commercial solver to produce an exact 
solution 

Having a range of possible approaches makes the overall methodology robust; if 
during modelling a chosen approach does not fulfil the requirements a-j) or does not 
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meet the user’s expectations in terms of computational time or visual output, this 
particular module can be solved using a different method without impacting the rest 
of the model. Approaches provided as examples in i-iii can be “mixed and matched” 
to ensure the best overall configuration, balancing solution quality with 
computational time.  

Taking i. as an example, enumerating all clusters may be time consuming for large 
problems; it would be of interest if a high quality solution is required. However, if 
short computational time is crucial, the user could select a subset of high quality 
clusters or impose restrictions on the maximum number of turbines per cluster. 
Having the flexibility to adapt individual parts of the solution procedure depending 
on their performance is one of the key advantages of the approach shown in Figure 
4.6. The proposed initial solution methods are shown in Table 4.5.  

Table 4.5. An overview of the chosen initial solution approach. 

Problem Proposed solution 

1) Cluster generation (master 
problem part 1) 

Enumerate all clusters, imposing a limit on the 
number of turbines per clusters to reduce the 
computational time (approach similar to Irawan 
et al. [25]).  

2) Cluster route optimisation 
(sub-problem) 

Approximation algorithm, which mimics the 
decision making process followed by 
practitioners. Schedules are automatically 
created by following a pre-defined logic based 
on the expected duration of repair and distances 
between turbines.  

3) Matching clusters into 
policies (master problem part 

2) 

A novel heuristic method, wherein all clusters 
are sorted by value and policies are created using 
combinations of high-utility clusters.  

The solution to problem 1) from Table 4.5 was chosen as it has already been proven 
effective in Irawan et al. [25], which in the author’s opinion provides a good balance 
between quality of solution and computational time.   

Proposed solution to problem 2) was selected as a robust and extremely 
computationally effective method, which can easily be modified by the user 
depending on their needs (e.g. site specific constraints). Approximation algorithms 
can facilitate multi-objective optimisation, allowing minimisation of both the number 
of technicians required and minimisation of policy time. To the author’s knowledge, 
this approach is novel and has not been applied in widely cited publications on VRP 
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solution methodologies. It offers an alternative to the current solution methods, 
which in the wind domain, are mostly based on constraint programming (exact 
algorithms) or metaheuristics (i.e. GA). One of the key reasons for not applying a well-
established solution method to solve the sub-problem was that those exact methods 
suffer from disadvantages discussed in Table 4.4. However, since the proposed 
framework is modular in nature, if the proposed approach fails, it could be replaced 
by one of the more established methods.  

Problem 3) can be solved using a commercial solver as shown in Irawan et al. [25]. 
However, this exact approach is associated with the disadvantages described in Table 
4.4. Instead, a new heuristic method is proposed, as the literature review did not 
reveal any suitable heuristics for this particular problem. This is partly due to the fact 
that few researchers encounter this problem, as most approaches in literature do not 
divide the problem into a master and a sub-problem. The performance of the 
proposed heuristic is compared to that of a commercial solver to evaluate its 
effectiveness in Chapter 7.  

The following Chapter (Chapter 5) describes the solution procedures for the master 
and sub-problems. In Chapter 6, the performance of the decision making tool is 
evaluated using two case studies, which are continuations of the scenarios first 
described in Chapter 3.  
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Chapter	5.	 Solution	Procedures	for	Master	and	Sub-
Problem	

The structure of this chapter reflects the order of the solution procedure as outlined 
in Figure 5.1; first, the clusters of turbines are generated and assigned a vessel in 
Section 5.1. Second, the sub-problem is solved using an approximation algorithm in 
Section 5.2, which also contains a step-by-step solution procedure (Section 5.2.4). 
Description of the heuristic method for creating policies from individual clusters is 
provided in Section 5.3. Resulting policies are then evaluated using Monte Carlo 
analysis, as discussed in Section 5.4. Finally, this chapter’s conclusions are discussed 
in Section 5.5.   

 

Figure 5.1. Overview of the solution methodology. 
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5.1 	Generation	of	Wind	Turbine	Clusters		

A cluster consists of a set of wind turbines requiring maintenance and a vessel, which 
has been assigned to visit those turbines. At the beginning of the optimisation process, 
there is no way of knowing the combination of clusters which constitutes the optimal 
solution. Enumerating all combinations of turbine-vessel assignment would ensure 
clusters which make up the optimal solution are not discarded. However, the 
computational effort required to enumerate and process all possible clusters in a 
problem with 20+ turbines would be excessive (using the proposed solution 
procedure, the computational time would likely exceed 20 hours).  
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Equation 5.1, where η is maximum amount of turbines in a cluster and Z is the total 
number of turbines, can be used to calculate size of the cluster generation problem. 
For a case with 20 turbines requiring maintenance (Z = 20), enumerating all 
possibilities (i.e. η=20) would result in over a million unique clusters. A number this 
large would require a substantial computational effort in the following steps of the 
solution procedure. Since it is very unlikely that a single vessel would be capable of 
visiting 20 turbines in a single day, the amount of turbines in a cluster (η) can be 
limited to reduce computational time. From Equation 5.1, if η is limited to 4, the total 
number of permutations is only 6195, reducing the computational time significantly.  

Irawan et al. [25] conducted an analysis of the effect η has on the results and 
computational time of their vessel routing solution algorithm. They have showed that 
limiting η to 4 can still guarantee close-to-optimal solutions to offshore wind farm 
vessel routing problems. Depending on the dataset used, the average deviation from 
the optimal solution, when using η equal to 4, was between 0.33% and 1.9%. On 
average, the increase in computational time required to guarantee the optimal 
solution was shown to be between 159% and 304%, depending on the dataset used. 
The analysis provided by Irawan et al. [25] still holds in the context of the 
methodology proposed in this thesis, as both approaches employ the same division 
of the vessel routing problem into a master and sub-problem. 

The process of cluster generation is illustrated in Table 5.1; using an example of 5 
turbines (WT1-WT5) and η =4, which, from Equation 5.1, yields a total of 30 clusters.  
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Table 5.1. Enumeration of clusters in a case with 5 turbines requiring 
maintenance and η =4. 

Cluster 
size Possible combinations 

Total 
combinations 

1-turbine 
clusters 

WT1 | WT2 | WT3 | WT4 | WT5  5 

2-turbine 
clusters 

WT1 WT2 | WT1 WT3 | WT1 WT4 | WT1 WT5 | 
WT2 WT3 | WT2 WT4 | WT2 WT5 | WT3 WT4 | 
WT3 WT5 | WT4 WT5  

10 

3-turbine 
clusters 

WT1 WT2 WT3 | WT1 WT2 WT4 | WT1 WT2 WT5 |  
WT1 WT3 WT4 | WT1 WT3 WT5 | WT1 WT4 WT5 | 
WT2 WT3 WT4 | WT2 WT3 WT5 | WT2 WT4 WT5 |  
WT3 WT4 WT5  

10 

4-turbine 
clusters 

WT1 WT2 WT3 WT4 | WT1 WT2 WT3 WT5 |  
WT1 WT2 WT4 WT5 | WT1 WT3 WT4 WT5 |  
WT2 WT3 WT4 WT5 

5 

TOTAL: 30 

Limiting η to 4 can be justified by the practical constraints on vessel capacity and the 
maximum duration of a work shift. For example, a standard CTV is capable of 
carrying 12 technicians; many corrective actions require three or more technicians to 
carry out [39]. Most corrective actions take a full shift (or more) to complete [39], 
meaning that teams carrying out repairs are usually only able to complete 
maintenance on one turbine in a day.    

Limiting η to 5 was also considered, however, Irawan et al. [25] have shown that this 
would result in an average improvement of 0.3% in terms of total policy cost 
compared to η equal to 4. This comes at a price: a fourfold increase in computational 
time, which, in the author’s view, is excessive given the minor improvement in 
solution quality. While there are some differences in cases analysed in Irawan et al. 
[25] and the problems solved in this thesis, it is unlikely that increasing η to 5 would 
be computationally worthwhile. It was therefore decided to carry out case studies 
using η equal to 4. 

In the next step of the solution procedure, each of the clusters is paired with each of 
the vessels. For example, consider the first cluster of Table 5.1 in which only WT1 is 
visited. In the proposed procedure, this single-turbine-cluster is matched with each 
vessel available to the operator on the day. In this example, WT1 visited by Vessel 1 
and WT1 visited by vessel 2 become unique clusters, to be analysed separately in the 
latter stages of the solution algorithm. This effectively multiplies the number of 
clusters by the number of vessels. If the vessels were homogenous, there would be no 
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need to pair individual vessels with clusters. However, assuming that vessels are 
capable of travelling at different speeds, certain clusters may only be completed 
within the user-specified time constrained by the quicker vessels. Similarly, in high 
wave conditions, only the capable vessels may be able to access certain turbines. The 
resulting matrix of clusters is then used an input to the sub-problem, where each 
individual cluster is evaluated, as described in the following section. 

5.2 	The	Sub-Problem:	Optimising	the	Order	of	Wind	Turbine	
Visits		

Once turbines requiring maintenance have been assigned to vessels, the order of 
turbine visits is determined. The aim of the sub-problem solution procedure is to 
generate efficient24 routes between turbines in a given cluster, while taking constraints 
described in Table 4.1 into consideration. Stochastic inputs, such as maintenance task 
duration, are incorporated into the model at the sub-problem level, as described in 
Section 5.2.3. At the end, the relative value of visiting each cluster is calculated. A 
step-by-step example of calculating a cluster’s value using the proposed approach is 
provided in Section 5.2.4.  

5.2.1 Inputs,	Outputs	&	Assumptions	

The inputs and outputs of the sub-problem are outlined in Table 5.2. It is assumed 
that for a maintenance action expected to take two or more days, the estimated task 
duration is limited to the maximum work-shift achievable given travel and transfer 
to-and-from turbine (e.g. a 2 day task expected to take 12 hours is defined as a 6 hour 
task today and 6 hour task the following day).  

Task duration is also assumed to include the time required for technicians to climb to 
the nacelle (if that is where the maintenance action is taking place). If multiple 
maintenance actions are required on a wind turbine, individual task durations are 
added together, as is weight of spare parts.  

The vessel is assumed to leave the O&M base once a day. If a maintenance task takes 
longer than expected, recourse action is to cease work and leave the maintenance task 
unfinished, to prevent exceeding the time window. It is assumed that a single team 
of technicians can visit either one, or two turbines on the same day.  

                                                   
24 Definition of efficiency depends on the user-specified KPI’s, as discussed in Section 
2.2.6.Optimisation objectives are discussed in more detail in Section 5.2.2. 
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Table 5.2. Inputs and outputs to/from the sub-problem. For definitions of terms 
such as time window and transfer time, see Definitions Section.  

Inputs Outputs 
- Matrix of wind turbine clusters, for which 
the routes will be optimised 
- Wind turbine locations 
- Vessel properties (speed, capacity, 
probability of successful crew transfer in a 
given significant wave height etc.) 
- Maintenance action properties (estimated 
duration, spare part and technician 
requirements) 
- Transfer time 
- Time window 
- Significant wave height at individual wind 
turbines 
- Speed correction factor 

- Recommended order in which 
turbine should be visited 
- The shortest time in which all 
actions in a cluster can be 
completed (to evaluate if a given 
cluster is feasible) 
- Times of pick up and drop off, to 
be used when generating a policy 
Gantt chart 
- Number of technicians required 
for each cluster 
- Distance travelled by each vessel 
and the total fuel cost  
- Probability of completing all 
maintenance tasks within a cluster 

5.2.2 Objectives	

The solution procedure of the sub-problem aims to satisfy the following objectives: 

a) Minimise the time taken to visit all turbines in a cluster. Since clusters which 
do not meet the user-specified constraints are eliminated; and given the fact 
that the time limit is one of the key constraints in this problem, it is crucial to 
ensure the overall time to carry out all maintenance actions is minimised. The 
actual durations of maintenance tasks can differ significantly from estimates. 
Minimising the policy time maximises the slack time at the end of the day. 
Sufficient slack time at the end of the day may ensure all maintenance tasks 
are finished despite some taking more time than expected.  

b) Minimise the cost of fuel. This objective is aligned with a) as generally, less 
time spent travelling between turbines means reduced fuel costs and more 
man-hours spent on maintenance tasks.      

c) Minimise the number of technicians required to carry out all repairs in a given 
cluster. This can be achieved by assigning a single team of technicians to 
maintenance tasks of relatively short duration on multiple turbines. Reducing 
the amount of technicians required for a given cluster increases the workforce 
available to carry out maintenance on turbines outwith the cluster. 

Note that objectives may sometimes be in conflict; maintaining two turbines using a 
single team of technicians is more time consuming than carrying out the same actions 
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using two teams. An explanation of how this conundrum is addressed is provided in 
Section 5.2.4.  

5.2.3 Methodology	

An approximation algorithm was created to generate the vessel routes for individual 
clusters of turbines. The proposed approach can be described as case based reasoning 
method with elements of “longest processing time-first”25. A set of rules, which mimic 
the logic followed by wind farm operators, is used to construct individual vessel 
routes. The structure of the proposed sub-problem solution procedure is shown in 
Figure 5.2.  

 

Figure 5.2. Sub-problem solution procedure. 

The first step of the algorithm is categorisation of the input cluster. The logic used to 
optimise the order of wind turbine visits will depend on the number of turbines to be 
visited and the expected duration of all maintenance tasks. In the proposed approach, 
if the number of turbines in a cluster is limited to 4, the total number of cases is ten, 
as shown in Table 5.3. A unique logic algorithm has been developed for each of the 

                                                   
25 Generally, attending tasks with the longest processing time first minimises the overall 
policy time. While a large proportion of the proposed logic adheres to the “longest 
processing time-first” approach, there are exceptions, which include logic for Case #7 shown 
in Figure E.6.  
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10 cases (each assigned a different case identifier), to determine the order of wind 
turbine visits and produce the outputs as defined in Table 5.2. An example of a logic 
algorithm is shown in Figure 5.5 (Case #8), all remaining flowcharts can be found in 
Appendix E. Logic Flowcharts for the Sub-Problem.  

Table 5.3. Categorisation of individual clusters. 

Turbines per cluster (η) Individual cases (Case number) 

One turbine cluster One crew visits one turbine (#1) 

Two turbines cluster 
One crew visits two turbines (#2) 
OR 
Two crews visit two turbines (#3) 

Three turbines cluster 

Two crews visit three turbines, crew 
visiting two turbines is dropped off first 
(#4) 
OR 
Two crews visit three turbines, crew 
visiting one turbine is dropped off first (#5) 
OR 
Three crews visit three turbines (#6) 

Four turbines cluster 

Two crews visit four turbines (#7) 
OR 
Three crews visit four turbines, crew 
visiting two turbines is dropped off first 
(#8) 
OR 
Three crews visit four turbines, crew 
visiting two turbines is NOT dropped off 
first (#9) 
OR 
Four crews visit four turbines (#10) 

It is necessary to develop different logic flowcharts for different cases, because in the 
proposed approach, there is no “one size fits all” strategy to ordering turbine visits. 
Although different cases may share parts of the logic algorithm, it is more 
computationally efficient to categorise each cluster as a particular case and apply a 
set of rules to decide the order of visits than to attempt to create a generalisation 
which would be valid for all cases of clusters. Categorisation of the cluster’s case 
number is achieved by following the logic outlined in Figure 5.4 in Section 5.2.4.  
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Once a cluster has been categorised as one of the 10 cases, the logic defined in the 
flowchart corresponding to that case is followed to determine the order of turbine 
visits. This involves calculation of the expected time of all crew transfers, as well as 
an estimation of the total policy duration. Since the MATLAB code used to achieve 
this is over 1700 lines long, it would be impractical present equations describing this 
process in this section. Instead, a worked example of the procedure of generating a 
cost efficient vessel route for a cluster and calculating the policy time are described in 
detail in Section 5.2.4. 

Outputs from this procedure, such as the aforementioned policy time and the total 
number of technicians required are compared to the user-defined constraints, to 
evaluate whether a particular cluster is feasible. For some input clusters, there may 
not be a feasible solution in which all maintenance actions are completed. If a cluster 
breaches any constraints, the proposed algorithm will discard it from the optimisation 
process.  

The reader should bear in mind that removing clusters, which do not meet 
constraints, from further analysis does not remove the turbines constituting the 
cluster. Consider the first entry in second row of Table 5.1: a cluster of WT1 and WT2 
with Vessel 1 assigned to it. If the time required to complete maintenance tasks on 
those two turbines (including travel from base to turbines, transfers etc.) exceeds the 
maximum time limit, the cluster is removed from the solution procedure. However, 
two 1-turbine clusters in row 1 of Table 5.1 (i.e. WT1 and WT2 as separate clusters), 
remain in the solution procedure; they are assessed against constraints 
independently.  

As shown in Figure 5.2, the next step is to calculate the probability of completing all 
maintenance actions in a cluster. This probability is then used to calculate the value 
of the policy generated for the selected cluster of turbines. The proposed 
methodology for calculating the probability and cluster’s value is described in the 
following subsection. The solution procedure shown in Figure 5.2 is repeated for all 
input clusters, resulting in a list of feasible clusters and their values. Outputs of the 
sub-problem are used as inputs to the heuristic algorithm, described in Section 5.3.  
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Calculation of the Probability of Completing All Maintenance Tasks and Cluster’s 
Value 

As highlighted in Section 2.2.7, it is crucial to consider uncertainties when modelling 
real-world vessel routing. A brief example of how uncertainty may affect decision 
making was described in row 7 of Table 4.1. A literature review into approaches for 
dealing with uncertain variables in optimization problems was conducted in Section 
4.2.4.  

In this section, a framework for incorporation of uncertain crew transfer, uncertain 
maintenance action duration and the possible failure to complete a maintenance task 
is proposed. These three uncertainties were selected as they are highly relevant to the 
real-world problem and have a significant influence on the choice of optimal policy.  

In the proposed approach, the probability of completing all maintenance actions in a 
cluster is calculated. Consider the following example with two different clusters of 
turbines:  

a) Cluster A, which consists of three turbines, requires 6 technicians and takes 
10 hours, 59 minutes to complete 

b) Cluster B, which consists of two turbines, requires 4 technicians and takes 9 
hours 45 minutes to complete  

Let us assume a time window of 11 hours. Bearing in mind that, as recommended by 
the wind farm operator and Gomez et al. [185], the service time of each individual 
maintenance action should be modelled as a positive skew probability distribution, 
what is the likelihood that all repairs in Cluster A will be repaired on time? The 
answer is: very low (though it can be calculated, as shown in Section 5.2.4). Given 
multiple maintenance tasks on three different turbines and one minute of slack at the 
end of the day, the probability that some of the tasks will not be completed within 
Cluster A is high. The impact of incomplete tasks was previously described in Section 
3.3; in short, leaving unfinished tasks on a turbine is inefficient, as when technicians 
come back to the same turbine at a later date to finish the task, significant amount of 
time will be lost on transferring crews and tools onto the turbine and up to the nacelle.  

Cluster B on the other hand, does not visit as many turbines as B, but the probability 
of completing all planned maintenance actions is much higher. The user may 
therefore want to discourage clusters such as A, and encourage clusters such as B to 
promote efficient work organisation. To achieve this, and to incorporate uncertainties 
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on the crew transfer and task completion into the decision making process, the 
following four-step approach is proposed: 

- Step 1) Calculate the headroom; i.e. the slack time for each task within the 
policy (this requires analysing the order of wind turbine visits to determine 
which tasks are on the critical path26 and which are not).  

- Step 2) Using the output of Step 1 and the user-defined probability 
distribution on service times on individual tasks, calculate the likelihood of 
the user-specified time constraint being breached. 

- Step 3) Using the output of Step 2 and the user-defined crew transfer and task 
completion probabilities, calculate the overall probability of completing all 
maintenance actions in a cluster. 

- Step 4) Using the output of Step 3, the user-specified risk aversion factor and 
all costs and rewards associated with the cluster at hand, calculate the cluster’s 
value. This value is used in later stages of the process to compare the quality 
of different clusters depending on the amount of maintenance tasks 
completed, costs associated with visiting those turbines and the probability of 
actually completing all planned tasks. 

The proposed four-step approach was implemented to facilitate multi-objective 
optimisation, with the two objectives being high cluster value and high probability of 
successfully maintaining all turbines in a cluster. Discussion of the trade-offs 
associated with the choice of “optimal” policy and Pareto front graphs are provided 
in Section 6.3.2. An example numerical calculation, illustrating the procedure 
outlined in steps 1-4 is provided in Section 5.2.4.   

  

                                                   
26 Defined in the Definitions section. 
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Step 1 – calculate slack time on each task 

The aim of this step is to calculate the maximum time each task in a cluster can take, 
without breaching the overall time constraint. First, the policy slack time and the 
individual task slack times are calculated. The policy slack time, Ge is simply defined 
as the difference between the policy time and the time window. The individual task 
slack time, Gi is the maximum amount of time by which a task could overrun without 
delaying the tasks on the critical path. Note that the latter slack time applies only to 
the tasks which are not on the critical path. To illustrate this, a Gantt chart for making 
tea was created, as shown in Figure 5.3.  

 

Figure 5.3. Making tea - Gantt chart. Critical path tasks are indicated in red, tasks 
not on the critical path are in yellow. Policy slack time Ge was marked in blue, 
individual task slack time Gi in green. 

The maximum time a maintenance task on turbine i can take without breaching the 
time constraint (i.e. the user-specified time limit), X(i), is defined as: 

Ñ(@) = Ö(@) + Üáφ(i) + ÜÇ			({@B>?}$)										(<=>0?@AB	5.2) 

where K(i) is the expected task duration and φ(i) is the slack multiplier. This 
multiplier is introduced to divide the policy slack Ge among all turbines in a cluster. 
The slack multiplier values for individual cases are shown in Table F.1, Appendix F. 
Slack Time Distribution. Note that, for all ten cases:  

3φ(i)	
ÇSâ

ÇSÉ
= 1						(<=>0?@AB	5.3) 

where Q stands for the number of turbines assigned to a cluster (as defined 
previously). While dividing the slack evenly among all turbines would be possible, it 
would oversimplify the problem. Multiplier values shown in Table F.1 were tailored 
to individual cases to ensure fair distribution of policy slack, which maximises the 
overall probability of completing all tasks in a cluster Pv. Tasks on the critical paths 
are assigned a higher proportion of policy slack as they do not benefit from individual 
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slack times (Gi). The user can easily change the slack time distributions for individual 
cases to suit their needs.  

Consider the aforementioned cluster B with tasks on two different turbines. The 
policy slack time of this cluster can be calculated as 1h15min (11h time window minus 
9h45min policy time). The individual slack time for the crew picked up last is 0 (as 
it’s on the critical path). The individual slack time (Gi) for the other crew is the amount 
of time the vessel is idle after picking them up, but before picking up the last crew. It 
is the time this task could overrun, without delaying arrival at base. Numerical 
example of the procedure for calculating slack times for a cluster of 4 turbines is 
shown in Section 5.2.4.  

Step 2 – calculate the probability of completing all tasks in a cluster within the time 
limit 

Having calculated X(i), the following question can be asked:  

“Given a probability density function defining the expected task duration, how 
likely is it that the actual time required to complete the maintenance task will not 

exceed X(i)?” 

In principle, the user can specify any probability distribution to define the expected 
maintenance task durations. In this thesis, gamma distribution with positive 
skewness was used for reasons discussed in Section 4.2.4. A gamma distribution can 
be described by shape (α) and scale (β) parameters. The above question can be 
answered by solving Equation 5.4, which uses the cumulative distribution function 
of a gamma distribution to calculate the probability of the value of X(i) not being 
exceeded (denoted as Pr(i)). Pr(i) is the quantity which answers the question posed at 
the start of this subsection, i.e the probability that servicing turbine i will take less 
time than the time available for this maintenance task.  

Pr(@) = 	
1

βåΓ(α)è ÖåêÉ}
êë
í ìÖ								(<=>0?@AB	5.4)

îï

ñ
 

Where Г is the gamma function. In practice, Equation 5.4 is resolved using “gamcdf” 
MATLAB function27. Naturally, different maintenance tasks can be characterised by 
different gamma distributions, however, the mean value of each distribution should 
equal the expected duration of the particular maintenance task. Note that for tasks on 

                                                   
27 More information available on: 
https://uk.mathworks.com/help/stats/gamcdf.html?s_tid=doc_ta Accessed on 11/10/2017. 
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multiple turbines carried out by the same crew, the distributions of two tasks can be 
added together, provided the scale parameters of both distributions are the same. This 
is achieved by simply adding the shape parameters of both distributions. Finally, the 
overall probability that all maintenance tasks in a cluster will be completed on time, 
Pr(c), can be calculated from Equation 5.5: 

Pr(q) = 	óPr(@)				(<=>0?@AB	5.5)
â

ÇSÉ
 

Step 3 – calculate the probability of completing maintenance on all turbines in a 
cluster, considering all user-specified uncertainties 

So far, the probability of completing all maintenance tasks within the allowable time 
constraint has been calculated. In this step, uncertainties on crew transfer Pt (between 
vessel and turbine) and task completion, Pd (i.e. whether technicians will be able to 
complete the maintenance action) are incorporated into the model.  

Before the start of the simulation, the user is asked specify the expected significant 
wave height at each wind turbine and the vessel’s capability to transfer crew onto 
turbine in a given significant wave height. The latter is defined as a probability; for 
example there may be an 80% chance that vessel j will be able to transfer crew onto a 
turbine which is experiencing significant wave heights of 1.4-1.6 meters. This enables 
modelling uneven wave fields across the wind farm, as each wind turbine can be 
assigned a different expected significant wave height. Similarly, individual vessel 
capabilities (to cope with crew transfer in a range of significant wave heights) can also 
be modelled. The overall probability that all crew transfers attempted by a vessel 
within a given cluster will be successful, Pt(c), can be calculated using Equation 5.6.  

Pt(q) = 	óò?(@, ô)				(<=>0?@AB	5.6)
â

ÇSÉ
 

where Pt(i,j) is the individual probability of successful transfer from vessel j onto 
turbine i. Note that the user can define Pt(i,j) equal to 0, preventing a particular vessel 
from visiting a given turbine. This feature may be useful when modelling site-specific 
practical constraints.  

A similar procedure is used to calculate the total probability of all turbines being 
correctly diagnosed and therefore successfully maintained given the technicians and 
spare parts used, denoted as Pd(c). At the start of the simulation, the user is asked to 
define the probability of correct diagnosis for all turbines (as defined in Definitions 
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section), Pd(i). Its value can be set to 1 if the user is confident about the diagnosis; 
however, if the cause of condition monitoring alarm or the nature of repair required 
is unclear, the value will be set to <1, depending on the operator’s degree of 
confidence. Pd(c) can then be calculated using Equation 5.7. 

Pd(q) = 	óòì(@)				(<=>0?@AB	5.7)
â

ÇSÉ
 

Finally, the overall probability of successfully maintaining all turbines within a 
cluster, P, can be calculated by multiplying individual probabilities calculated in this, 
and previous step. 

P = Pr(q) ∗ ò?(q) ∗ òì(q)					(<=>0?@AB	5.8) 

Additional uncertainties could easily be incorporated into the proposed approach by 
multiplying right-hand-side of Equation 5.8. Note that since Pt, Pd and Pr are all 
probabilities, their values are constrained as follows: 

0 ≤ Pt(i, j) ≤ 1 

0 ≤ Pd(i) ≤ 1 

0 ≤ Pr(i) ≤ 1 

It is important to clarify that the primary reason for the calculation of P was to 
compare different clusters in terms of how likely they are to be successful in 
completing wind turbine maintenance. The calculation procedure shown in Steps 1-4 
is slightly pessimistic due to double counting28. However, since this effect is likely to 
be minor and considering the fact that it affects all clusters equally, in the author’s 
view there is no need to address it at this stage as the performance of the model is in 
no way affected by it29.  

  

                                                   
28 Double counting would occur in a case where the random numbers generated resulted in, 
for example, both “no access due to high wave” and “misdiagnosed turbine”. This would be 
logged as two failed maintenance actions, even if they both took place on the same turbine.  
29 For example, assuming 90% of failures are diagnosed correctly, and 80% transfers are 
successful, the double counting in this case would result in approx. 0.1*0.2=0.02 i.e. 2% 
reduction in the number of turbines repaired. The outputs of this procedure serve only as 
comparison of different policies, so the effect of this is negligible.  
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Step 4 – calculate the value of a cluster 

This step describes the procedure for calculating the value of a cluster, which includes 
the previously calculated P. This can be achieved by calculating the monetary value 
of servicing a set of turbines, which includes all costs and rewards associated with 
vessels and maintenance and adding a non-monetary incentive derived from P. 
However, the P cannot simply be added onto the value, for the following three 
reasons: 

i. It would skew the results, favouring clusters with a single turbine; as for 
clusters with multiple turbines, the probabilities of successfully servicing 
individual turbines are multiplied resulting in much lower P values.  

ii. Since the value of P, by definition, can only range from 0 to 1, its magnitude 
is insignificant compared to monetary value of servicing a cluster of turbines 

iii. The user would have no control over the degree to which P affects the cluster 
value calculation 

To address i., Px, i.e. weighted probability of completing maintenance on all turbines 
within a cluster, is calculated in Equation 5.9.  

òù = ò ∗
û
η 									(<=>0?@AB	5.9) 

Issue ii. was addressed by multiplying Px by the mean utility for visiting a wind 
turbine(Umean) within a given cluster. Methodology for calculating U is described in 
Chapter 3. Umean is simply a mean of utility values of all maintenance actions to be 
carried out on a given day. This step increases the value of Px to approximately the 
order of magnitude of costs and rewards.  

To address iii., risk aversion factor (Y) input was created, enabling user control over 
the degree to which Px influences the value of a cluster. The formula to calculate a 
cluster’s value (Ω) is shown in Equation 5.10. 

† =3[QÇ − LvÇ]
â

ÇSÉ
−3£LO§ + Lℎ§•

¶

§SÉ
	+ (òù ∗ Qxá*ß ∗ ®)		(® ≥ 0)						(<=>0?@AB	5.10) 

where Cri is the cost of repairing wind turbine i, Cfj is the cost of fuel incurred by 
vessel j, Chj is vessel’s hire cost and Umean is the average reward across all turbines 
considered for maintenance on the day. If the user does not wish for the uncertain 
inputs to have a n impact on the results, Y can be set to 0 to yield cluster value 
exclusive of the effects of uncertainties (Ωy=0), as shown in Equation 5.11..  
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†™Sñ =3[QÇ − LvÇ]
â

ÇSÉ
−3£LO§ + Lℎ§•

¶

§SÉ
						(<=>0?@AB	5.11) 

Specifying a moderate-to-high Y value (i.e. Y>2) favours: 

• Policies featuring more capable vessels travelling to turbines with higher 
expected significant wave height 

• Policies with an ample amount of slack time to allow for some repairs taking 
longer than expected. High Y may also favour assigning faster vessels to 
clusters with multiple time consuming maintenance actions, to increase the 
slack time 

• Policies featuring visits to turbines with high likelihood of being correctly 
diagnosed and therefore completed, are prioritised 

The effect of varying risk aversion factor is discussed in greater detail in Section 6.2 
and Appendix G. Example of Cluster Value Calculation Using Low and High Risk 
Aversion Factors. The disadvantage of specifying a non-zero risk aversion factor is 
that it may favour policies with lower actual value (Ωy=0). However, the user may wish 
to trade-off higher policy cost for the following, potential advantages of specifying a 
positive risk aversion factor: 

• Incorporating the uncertainties into the proposed decision making process is 
designed to result in fewer unfinished maintenance actions, leading to 
improved organisation of work 

• Taking into account the vessel’s capability to transfer crews onto turbines in a 
given significant wave height can lead to higher proportion of successful crew 
transfers, increased technician safety and reduced time required to transfer 
crews and spare parts onto the turbine  

• Specifying a non-zero Y may favour policies which aim to visit fewer turbines 
(compared to Y=0). However, planning to visit fewer turbines does not mean 
that fewer maintenance actions will be completed (due to uncertainties); in 
fact, the opposite may be true 

Generally, it is recommended that a single scenario is solved using a number of risk 
aversion factors, to provide the user with a choice of low-to-high risk policies. This 
process is demonstrated in Sections 6.2 & 6.3, which also contain further discussion 
on the choice of risk aversion factor. The next section provides a comprehensive 
example of application of the sub-problem solving procedure.  
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5.2.4 Step-by-step	Solution	Procedure:	An	Example	

Model inputs 

The inputs to the sub-problem were identified in Table 5.2. Numerical values of all 
inputs used in this example are shown in Tables 5.4-5.7. Vast majority of the inputs 
used in this example are similar to inputs to case studies presented in Chapter 6. 
Values were provided by the wind farm operator the author had worked with. 
However, the user can easily change all inputs to suit their needs.  

Table 5.4. General model inputs. 

Input Symbol Value 
Vessel assigned to this cluster j (vessel identifier) CTV 1 

Time window (hours) W 10 
Transfer time (between vessel and wind 

turbine, in hours) 
B 1/3 

Speed correction factor E 1.5 
“Half-day” action maximum duration N/A <=2.5 hours 

Maximum number of turbines in a cluster η 4 
Risk aversion factor Y 1 

Speed correction factor determines the increase in travel time between turbines in a 
wind farm compared to vessel’s cruise speed (discussed in more detail in Table 4.1 
factor 4). For example, a speed correction factor of 2 means that if a vessel is able to 
travel 1km in two minute when cruising, travelling 1km between turbines at a wind 
farm will take four minutes. This is to account for vessel acceleration/deceleration and 
navigation while at the wind farm. 

 “Half-day action maximum duration” is a site specific constraint; 2.5 hour limit 
means that a single crew of technicians will be able to complete maintenance tasks on 
two different turbines, provided the combined time to complete both actions does not 
exceed 5 hours. It was assumed that on this site, for a 10 hour time window, this 
would not be achievable for tasks of longer duration. This threshold is used for 
classification of a cluster into one of the ten cases defined in Table 5.3.  

Table 5.5 defines the vessel properties used in this example; data was provided by an 
offshore wind farm operator; it aligns closely with CTV properties defined in [39].  
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Table 5.5. Model inputs: vessel properties (CTV 1). 

Input Symbol Value 
Vessel speed (km/h) Vv 40 
Vessel capacity (technicians) Vct 12 
Vessel capacity (spare parts – in kg) Vcs 1200 
Fuel consumption (£ per km travelled) Vf 6 

Probability of successful crew transfer in a 
given significant wave height at turbine i 

using vessel j 
Pt (i,j) 

1 @ H(i) <=1.4m 
0.8 @ H(i) > 1.4m 
0.5 @ H(i) > 1.6m 

0 @ H(i) > 2m 

Table 5.6 defines the properties of the maintenance actions required. Discussion of 
the inputs used here and in other case studies presented in this thesis is provided in 
Section 2.2.2. Note that the utility value for carrying out maintenance actions was 
previously calculated in Section 3.4.2 (SMDP summer day case study). 

Table 5.6. Model inputs: maintenance action properties. Note: utility values come 
from the SMDP model (see Table 3.8). 

 Symbol WT 1 WT 2 WT 3 WT 4 
Significant wave 
height at turbine 
i (m) 

H(i) 
 

1.5 1.3 1.3 1.3 

Maintenance 
action required 

N/A Manual 
Reset 

Retrofit Grease 
Top-Up 

Manual 
reset 

Task duration 
(hours) 

K 2 4 3 2 

Probability of 
correct diagnosis 

Pd 1 1 1 1 

Technicians 
required 

M 2 2 2 2 

Weight of spare 
parts (kg) 

L 0 200 20 0 

Cost of repair  Cr £0 £1,000 £1,000 £0 
Utility value  U £98,700 £4,700 £10,700 £98,700 

In order to calculate the time it takes for a vessel to travel between turbines, the 
distance between turbines (and O&M base) needs to be calculated. The user can either 
specify the geographical coordinates of individual wind turbines, or define the 
distance matrix (as shown in Table 5.7). If the former option is chosen, the distance 
matrix can be calculated from the Haversine formula30, which outputs the distance 

                                                   
30 https://en.wikipedia.org/wiki/Haversine_formula 
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between two points on a sphere, in km. The distance matrix for this example, which 
also includes the distance between base and each of the turbines, is shown in Table 
5.7.   

Table 5.7. Distance matrix (in km). 

 WT 1 WT 2 WT 3 WT 4 
WT 1 0 1.1 1.1 1.6 
WT 2 1.1 0 1.6 1.1 
WT 3 1.1 1.6 0 1.1 
WT 4 1.6 1.1 1.1 0 
O&M Base 81.1 80.3 81.7 81 

Cluster categorisation 

As discussed in Section 5.2.3, the first step of the solution process is to categorise the 
cluster as one of the ten cases. The logic used for cluster categorisation is shown in 
Figure 5.4. 

 

Figure 5.4. Flowchart of case categorisation logic. 

From Table 5.6, the cluster consists of four turbines, three of those are considered 
“half-day” maintenance actions. This means that 2 out of 3 “half-day” tasks can be 
carried out by one team of technicians. The remaining two tasks will be assigned a 
crew each. In this case, maintenance on all turbines could not be completed with 
fewer than three crews.  
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Following the logic shown in Figure 5.4, with four turbines in the cluster and three 
”half-day” actions, we arrive at decision node requiring us to determine the critical 
path. This decision node requires us to answer the following question: what will take 
more time: carrying out the longest maintenance action or carrying out two “half-
day” tasks? The task(s) on the critical path determine the first turbine to be visited 
and the case number (i.e. logic to be used). Having defined task durations, transfer 
time, vessel speed and distances between turbines allows calculation of the process 
critical path. 

To determine whether it takes more time to carry out a single, “longer” maintenance 
action, or the two, “shorter” tasks, duration of the former - K(i) is compared to the 
value calculated in Equation 5.12, which yields the equivalent time of completing 
repairs on two turbines by a single team of technicians.   

<=>@´0~}B?	?0$¨	ì>v0?@AB

= Ö(≠41) + Æ +
< ∗ Ø(≠41 → ≠42)

"´ + Æ
+ Ö(≠42)			(<=>0?@AB	5.12) 

where K(WT1) and K(WT2) are the expected maintenance task durations for the two 
shortest “half-day” tasks, B is the transfer time, E is the speed correction factor (as 
defined in Table 5.4), F(WT1→WT2) is the distance between the two turbines and Vv 
is vessel speed. From the data provided in Table 5.4: 

<=>@´0~}B?	?0$¨	ì>v0?@AB = 2 +
1
3 +

1.5 ∗ 1.6
40 +

1
3 + 2 = 4.727	ℎA>v$ 

Comparing the task duration of the single longest action (4 hours) and the equivalent 
time required to complete the two shortest ”half-day” tasks (4 hours and 44 minutes), 
it is clear that the latter should be attempted first in order to minimise the total policy 
time. From Figure 5.4, this cluster is classified as Case #8.  

Figure 5.5 shows the flowchart for Case #8, defining the logic to be followed if the 
input cluster comprises of four wind turbines, with at least two "half-day" 
maintenance actions (total of three crews required) which are on the critical path.  
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Figure 5.5. Flowchart for Case #8.  
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The proposed logic was discussed with the wind farm operators, who confirmed they 
use a similar approach when deciding the order of wind turbine visits. Logic 
flowcharts for all other cases are provided in Appendix E. Logic Flowcharts for the 
Sub-Problem. 

Following the flowchart logic to determine order visit and calculate policy time 

Starting from the first decision node in Figure 5.5, a comparison needs to be made as 
to which of the shortest maintenance action in the given cluster is the closest to base. 
Manual resets are required on turbines 1 & 4; from Table 5.7, WT4 is the turbine closer 
to the O&M base. Hence, the first turbine to be visited on the day is WT4. 

In decision node 2, the closest out of the longest remaining tasks is selected to be 
visited next. Since the durations of remaining tasks are 2, 4 and 3 hours for wind 
turbines 1, 2 and 3 respectively, the next turbine to be visited is WT2. The proposed 
approach ensures minimisation of the total policy time; by dropping off technicians 
at turbines requiring maintenance tasks which are expected to take the longest first, 
reducing the overall critical path duration.  

Since the two tasks which are completed by a single team of technicians should also 
be the actions with the shortest durations: i.e. the two manual resets on WT1 & WT4, 
this leaves WT3 as the only remaining turbine where the third team of technicians can 
be dropped off. The updated order of turbine visits is now WT4, WT2, WT3.  

The vessel has now dropped off all the technicians at turbines. Depending on the 
transfer time and distances between the turbines, the vessel may be idle for some 
time, waiting for the first team of technicians on WT4 to finish the manual reset 
maintenance action. Once the action is finished and the crew is transferred back on 
the vessel, they are transported to the final turbine: WT1, where Crew 1 is dropped 
off.  

In the next step of the process, decision node 3 needs to be resolved, which requires 
calculation of the expected task completion time at each of the turbines. The 
automated process of calculating the policy duration in MATLAB is illustrated in 
Table 5.8. Since the vessel movements up to this point are known, the drop off times 
can be calculated. The duration of each vessel movement is calculated in the same 
way as shown in Equation 5.12: by multiplying the distance between turbines (or the 
O&M base) by speed correction factor (where applicable) and dividing the result by 
the vessel’s cruise speed. In Table 5.8, the results have been rounded up to the nearest 
minute for clarity. The resulting time stamps are used to automatically generate Gantt 
charts of the recommended policy in Excel.  
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Table 5.8. Estimated vessel movement times. 

Vessel Movement/Transfer Duration (minutes) Start Time End Time 
Travel from O&M base to WT4 81*60/40 = 122 7:00 9:02 
Transfer Crew 1 onto WT4 20 9:02 9:22 
Travel from WT4 to WT2 1.5*1.1*60/40 = 3 9:22 9:25 
Transfer Crew 2 onto WT2 20 9:25 9:45 
Travel from WT2 to WT3 1.5*1.6*60/40 = 4 9:45 9:49 
Transfer Crew 3 onto WT3 20 9:49 10:09 
Travel from WT3 to WT4 1.5*1.1*60/40 = 3 10:09 10:12 
Wait until Crew 1 finishes  70 (9:22+120=11:22) 10:12 11:22 
Transfer Crew 1 onto vessel 20 11:22 11:42 
Travel from WT4 to WT1 1.5*1.6*60/40 = 4 11:42 11:46 
Transfer Crew 1 onto WT1 20 11:46 12:06 

In the fourth column of Table 5.8, drop off times at each turbine, which define the 
beginning of each maintenance task, have been marked in bold. These values are used 
in Table 5.9 to estimate the maintenance action finishing time at each turbine.  

Table 5.9. Estimated task completion times. 

Turbine ID Task Duration (h) Start Time End Time 
WT1 2 12:06 14:06 
WT2 4 9:45 13:45 
WT3 3 10:09 13:09 
WT4 2 9:22 11:22 

Once the expected task completion time for each of the turbines has been calculated, 
decision node 3 from Figure 5.5 can be resolved. From Table 5.9, the next turbine to 
be visited should be WT3, as maintenance there will be completed before other 
turbines. The order of visits now becomes: WT4, WT2, WT3, WT4, WT1, WT3.  

A similar procedure is used to resolve decision node 4: there are two crews remaining 
to be picked up. Technicians working on WT2 are expected to finish 21 minutes earlier 
than WT1. This finalises the order of visits:  

O&M base, WT4, WT2, WT3, WT4, WT1, WT3, WT2, WT1, O&M base 

The calculation of the estimated vessel movement times shown in Table 5.8 can now 
be extended for the remaining movements until the end of the work shift, as shown 
in Table 5.10.   
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Table 5.10. Estimated vessel movement times: continued. 

Vessel Movement/Transfer Duration (minutes) Start Time End Time 
Travel from WT1 to WT3 1.5*1.1*60/40 = 3 12:06 12:09 
Wait until Crew 3 finishes 60 12:09 13:09 
Transfer Crew 3 onto vessel 20 13:09 13:29 
Travel from WT3 to WT2 1.5*1.6*60/40 = 4 13:29 13:33 
Wait until Crew 2 finishes 12 13:33 13:45 
Transfer Crew 2 onto vessel 20 13:45 14:05 
Travel from WT2 to WT1 1.5*1.1*60/40 = 3 14:05 14:08 
Transfer Crew 1 onto vessel 20 14:08 14:28 
Travel from WT1 to O&M base 81.1*60/40 = 122 14:28 16:30 
Total policy time: 570 7:00 16:30 

Calculating all vessel movements also yields the total policy time, as shown in the last 
row of Table 5.10. This enables resolution of decision node 5 from Figure 5.5. As the 
total policy time of 9.5 hours is shorter than the 10 hour time window, this policy will 
not be discarded. However, if the policy time exceeded the time window, a different 
flowchart would be followed (Case #10, shown in Figure E.8), in an attempt to shorten 
the policy time by utilising two more technicians. This explains how the conundrum 
of conflicting objectives, mentioned in Section 5.2.2, is resolved: first, an attempt is 
made to minimise the number of technicians by attempting to use three crews of 
technicians to service four turbines. However, if this is unsuccessful and time 
constraint is breached, the objective focus shifts to minimisation of the policy time of 
a scenario in which four turbines are serviced by four teams of technicians.  

The approximate locations of the O&M base and turbines requiring maintenance, 
along with the order of vessel movements are shown in Figure 5.6. Figure 5.7 provides 
another visualisation of the order of visits, in the form of a Gantt chart. It helps to 
identify the periods when the vessel as idle and the order of vessel movements. While 
Figure 5.7 was created manually, example of an automatically generated Gantt chart 
is shown in Figure 6.14.  
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Figure 5.6. Recommended turbine visit order. 

 

 

Figure 5.7. Gantt chart/visualisation of the order of wind turbine visits (not to 
scale). 

Determining whether the cluster satisfies constraints 

The policy must also satisfy the constraint on the vessel’s carrying capacity. The 
constraints on the carrying capacity of technicians and vessels were previously 
defined in Table 5.5. Equations 5.13 and 5.14 show that in this example, both 
constraints are satisfied as the user-specified limits are not exceeded, i.e. the cluster is 
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feasible and should be included in further analysis. Note: Lc and Mc stand for the 
total load and maximum number of technicians carried on the vessel when servicing 
a given cluster, Vcs and Vct are vessel’s load and technician carrying capacities 
respectively.  

"q$ = 1200	¨±		 

≤q =3≤(
ÇSÅ

ÇSÉ
@) = 0 + 200 + 20 + 0 = 220			(<=>0?@AB	5.13) 

"q$ ≥ ≤q	@$	4.Q<		 

"q? = 12	 

≥q = 	3≥(
ÇSÅ

ÇSÉ
@) = 2 + 2 + 2 + 2 = 8			(<=>0?@AB	5.14) 

"q? ≥ ≥q	@$	4.Q<	 

Calculation of the probability of completing all tasks and the cluster’s value 

Once it has been determined that the cluster satisfies user-specified constraints, its 
value and probability of completing all tasks can be calculated, by following the 
process outlined in Section 5.2.3. Before the start of the simulation, the user is asked 
to specify the probability distributions of expected task durations. The mean value of 
the probability density function (pdf) should correspond to the expected task 
duration. As discussed in Section 4.2.4, positive skew gamma distribution is used. A 
graph of the gamma distributions used in this example is shown in Figure 5.8.   

Step 1 

In Step 1, the time available for each maintenance action is calculated. Table 5.11 
shows the slack time for each maintenance task; these were extracted from Table 5.10. 
For the purposes of this example, let subscript cp denote the critical path tasks, g 
refers to grease top up task and r the retrofit.  
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Figure 5.8. Probability distribution functions used for different maintenance 
tasks (Manual reset - K=2h, Grease top up - K=3h, Retrofit - K=4h). 

Table 5.11. Summary of the slack time on each maintenance task. 

Quantity Label Source Value 
(minutes) 

Slack at the end of 
the day 

Ge 
Time window – 

policy time 
30 

Slack on two 
critical path 
actions (manual 
resets) 

Gcp 
No slack as both 

tasks on critical path 
0  

Slack on grease 
top up task 

Gg Table 5.10 row 5 12 

Slack on retrofit 
task 

Gr 
No slack as no wait at 

WT1 (Table 5.10) 
0 

Note that since both tasks on the critical path are the same type of maintenance action, 
they are characterised by the same gamma distribution function. Their distributions 
can be added; the sum of two gamma functions with the same scale parameter can be 
obtained by simply adding their shape parameter. Since both tasks are carried out by 
the same crew, the two manual reset actions are effectively treated as a single 
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maintenance action for the purposes of Pr(c) calculation. The maximum time for each 
maintenance action, X(i), is calculated from Equation 5.2 as shown in Table 5.12.  

Table 5.12. Calculation of X(i) for each maintenance task. 

Task(s) Label 
Proportion of 
Ge assigned 

Calculation (service time + 
task slack + proportion of 
total slack – Equation 5,2) 

Value 
(minutes) 

Critical path 
tasks 

Xcp 0.4 2*120+0+0.4*30 252 

Grease top 
up action 

Xg 0.3 180+12+0.3*30 201 

Retrofit 
action 

Xr 0.3 240+0+0.3*30 249 

Step 2 

In the next step, Equation 5.4 is used to calculate the probability of each of the tasks 
being completed within the allowed time limit. For example, inputting X(i)=201 
minutes, α=6, β=0.5 and K=180 into Equation 5.4 gives a probability of 66.6%, i.e. there 
is over 66% chance that a 3 hour task will be completed within 201 minutes. Repeating 
this procedure for the remaining maintenance actions allows calculating the overall 
probability of finishing all tasks in this cluster within the allowable limit: 

Pr(q) = Pr¥µ ∗ Pr∂ ∗ Pr∑ = 0.605 ∗ 0.666 ∗ 0.591 = 0.238 

Note that there is approx. 10% difference between the highest and lowest individual 
Pr values; keeping this difference small through the use of slack multipliers ensures 
maximisation of the total probability of finishing on time31.  

Step 3 

In Step 3, the overall probability of successfully servicing all turbines in a cluster is 
calculated by considering the other two probabilities on correct task diagnosis and 
crew transfer. The former and the latter are calculated from Equations 5.15 and 5.16 
respectively. The individual values of Pd and Pt are user inputs, as defined in Table 
5.5 and Table 5.6. Note that when considering probabilities on crew transfer and 
correct diagnosis, both critical path tasks can no longer be considered as a single 

                                                   
31 Since product of similar numbers is higher than the product of dissimilar numbers, even if 
sums in both cases are the same: for example 0.3+0.3+0.3=0.7+0.1+0.1 but 0.3*0.3*0.3=0.027 
while 0.7*0.1*0.1=0.007. 
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maintenance action; subscript cp1 and cp2 was assigned to the first (WT4) and second 
(WT1) manual reset tasks respectively.   

Pd(c) = Pd¥µÉ ∗ Pd¥µw ∗ Pd∂ ∗ Pd∑ = 1 ∗ 1 ∗ 1 ∗ 1 = 1						(<=>0?@AB	5.15)		 

Pt(c) = Pt¥µÉ ∗ Pt¥µw ∗ Pt∂ ∗ Pt∑ = 1 ∗ 0.8 ∗ 1 ∗ 1 = 0.8				(<=>0?@AB	5.16)		 

Note that the probability of successful transfer onto WT1 is lower compared to other 
turbines, as it is experiencing a higher significant wave height (defined in Table 5.6). 
The overall probability of completing all maintenance tasks in a cluster can therefore 
be calculated from Equation 5.5, as shown below.  

P(c) = òr(c) ∗ òd(c) ∗ ò?(c) = 0.238 ∗ 1 ∗ 0.8 = 0.19 

Step 4: calculate cluster’s value 

Equation 5.9 is then used to calculate the weighted probability Px, however, since the 
number of turbines in this cluster Q is equal to the limit η, the value of Px is the same 
as P: 

Px = ò ∗
4
4 = 0.19 

The cost of fuel can be calculated by multiplying the total distance travelled by the 
vessel by the fuel consumption (defined in Table 5.5). Distance travelled was obtained 
from the distance matrix (Table 5.7) and the order of wind turbine visits shown in 
Figure 5.6. This allows calculating fuel cost (Cf), as shown below. 

I@$?0Bq}	?v0´}~~}ì	|∏	´}$$}~ = 81 + 1.1 + 1.6 + 1.1 + 1.6 + 1.1 + 1.6 + 1.1 + 81.1
= 171.3¨{ 

LO = 171.3 ∗ 0.006 = £1027.80 

Normally, Umean is calculated from all turbines requiring maintenance on the day. 
However, since this example only considers four maintenance tasks, the only values 
to calculate Umean are those specified in Table 5.6.  

Qxá*ß =
98,700 + 108,700 + 4,700 + 98,700

4 =
310,800

4 = £77,700 

Finally, the cluster’s value can be calculated from Equation 5.10: 

† = (310,800 − 2 ∗ 1,000) − (1,027.8 + 5,000) + (0.19 ∗ 77,700 ∗ 1) = £317,535								 

Note that setting Y to 0 (i.e. eliminating the probability calculation) would yield: 

†™Sñ = (310,800 − 2 ∗ 1,000) − (1,027.8 + 5,000) = £302,772								 
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The outputs of the sub-problem solution procedure are summarised in Table 5.13. 
These are used as inputs to part 2 of the master problem, as discussed in Section 5.3.1.   

Table 5.13. Key properties of the four turbine cluster analysed in this example. 

Property Value 
Flowchart logic case #8 
Technicians required 6 

Time required 9.5 hours 

Cluster value 
Ω=£317,535 
ΩY=0=£302,772 

Probability of completing all 
maintenance tasks within the time 

limit 
19% 

Order of wind turbine visits 
O&M base, WT4, WT2, WT3, WT4, WT1, 

WT3, WT2, WT1, O&M base 
 

5.3 	Heuristic	Method	for	Cluster	Matching	(Master	Problem	
Part	2)	

The outputs of the sub-problem have been summarised in Table 5.2 and Table 5.13. 
Given a large set of clusters with different properties, the second part of the master 
problem aims to select a combination of those clusters which yields the highest overall 
value, while satisfying the user-defined constraints.  

Although it has been demonstrated that this combinatorial problem can be solved 
exactly, using a commercial optimiser software as shown in [25], here a heuristic 
approach is proposed32. The word “heuristic” is derived from a Greek word that 
means "to discover". Although finding the optimal solution is not guaranteed, a 
heuristic approach has a number of advantages over the exact methods, as discussed 
in Table 4.4.  

This following section describes the Cluster Matching Algorithm (CMA), developed 
specifically for the problem at hand. In the proposed method, high-value clusters are 
used to produce offspring, selected from the pool of remaining, high-value viable 
clusters. Iteratively repeating this process results in an efficient search of the state-
space, as combinations of high-quality clusters are matched into tens of thousands 
policies within seconds.   

                                                   
32 Performance of the proposed heuristic algorithm is evaluated against commercial 
optimiser software in Section 7.4.  
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5.3.1 Methodology	

The proposed CMA approach is based on matching high value clusters, processed in 
the sub-problem, with other, compatible high value clusters, creating multiple 
policies. At the end, the highest value policy is selected as the recommended vessel 
routing plan. An overview of the proposed method is shown in Figure 5.9.  

First, all clusters generated in Master problem part 1 are sorted according to their 
value (in descending order). The highest value cluster is then selected and an attempt 
is made to match it with additional clusters. To add a second cluster, all incompatible 
clusters have to be eliminated from the list of possible candidates. There are three 
cluster removal criteria: 

a) A cluster is assigned the same vessel 
b) A cluster visits the same turbine(s)  
c) Selecting given cluster would create a policy which exceeds the number of 

technicians available on the day 

Clusters which do not breach any of the criteria specified in a-c) are then sorted 
according to their value. The highest value cluster is selected to be matched with the 
original cluster. The process of is then repeated; clusters incompatible with both 
clusters, are eliminated and the highest remaining cluster is added to the policy. This 
procedure continues until either of i-iii. becomes true: 

i. All turbines are assigned a vessel 
ii. All vessels are exhausted 

iii. All technicians are exhausted 

In other words, if three vessels are available, the first policy created would composed 
of the highest value cluster (let us call it A), highest value cluster compatible with A 
(let us call it B) and the highest value cluster compatible with both A & B (let us call 
it C)33.  

However, there is no need to constrain the process by selecting only the highest value 
cluster at each stage. Since the proposed method does not require a significant 
amount of computational time, it can be repeated iteratively to generate a wide range 
of policies by allowing a wider range of highest value clusters to become parents at 
each stage. The user can select the total number of iterations to be computed by 
specifying the number of children each tier of clusters creates. For example, if a, b and 

                                                   
33 Note: This assumes sufficient number of technicians and turbines to be visited, otherwise 
the policy may only be composed of one or two clusters 
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c denote number of children at first, second and third tier respectively, the total 
number of policies created will be a product of a, b and c.  

 

Figure 5.9. Visualisation of the CMA procedure. 

Note that in a scenario with 3 tiers (i.e. 3 vessels) the children of clusters in tier 1 are 
parents of clusters in tier 3. For example, if a is set to 100, a hundred highest value 
clusters will create children. Setting b equal to 10 means that each of the 100 children 
from tier 1 will be matched with 10 highest value compatible clusters in tier 2. In a 
case with 3 vessels, c should be set to 1, as at the final tier the maximum policy value 
can only be achieved by using the highest value cluster. Clusters available for 
selection in tiers below the top one vary depending on the clusters chosen in the tiers 
above it.  

The total value of the policy can then be calculated as simply the sum of values of 
individual clusters: 

òA~@q∏	´0~>} = Ω(L~>$?}v	ª) + Ω(L~>$?}v	Æ) + Ω(L~>$?}v	L)			(<=>0?@AB	5.16) 

A step-by-step solution procedure (a simplified representation of the CMA MATLAB 
code) is shown in Figure 5.10. At the end of the simulation, once the value of all 
policies has been calculated, the policy with maximum value is selected and 
displayed to the user.  
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Sort all clusters according to value, in descending order 
Define tier limits a and b (in this example, c=1 as 3 vessels available) 
i=1 
For n=1:a  

Select nth best value cluster 
If all turbines have been assigned a vessel 

Store the policy properties based on cluster n 
PolicyValue(i)=Value(Cluster n) 
i=i+1 

    Else 
Remove clusters using the same vessel or visiting the same turbines as cluster 
n                  
For m=1:b 

Select mth best value cluster-vessel pairing 
If all turbines have been assigned a vessel 

Store policy properties based on clusters n and m 
PolicyValue(i)=Value(Cluster n)+Value(Cluster m) 
i=i+1 

Else 
Remove clusters which are incompatible with cluster m 
For p=1 

If Cluster(p) exists  
Select the highest value cluster-vessel pairing 
Store the policy properties based on clusters n, m and p 
PolicyValue(i)=Value(Cluster n) + 
Value(Cluster m)+Value(Cluster p) 
i=i+1  

Else    
Store the policy properties based on clusters n and m 
PolicyValue(i)=Value(Cluster n) + 
Value(Cluster m) 
i=i+1 

End (If)     
End (p) 

End (If) 
End (m) 

End (If) 
End (n) 
Select the highest PolicyValue 

Figure 5.10. CMA solution procedure: an example based on scenario with 3 
vessels. 

One of the advantages of the proposed CMA is that the user can determine the 
approximate computational time by setting the tier limits according to their needs. 
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The algorithm is capable of providing a feasible solution in a fraction of a second. If, 
however, the user can afford to spend more time computing the vessel routing plan, 
setting high tier limits will likely result in improved solution quality.  

This method has been developed for problems with 10+ turbines and 3+ vessels. 
Smaller problems can be solved by enumerating all possible combinations of turbine-
vessel assignment, which can be achieved in reasonable computational time.  

The proposed policy then undergoes evaluation and post-processing; visualisations 
and Gantt charts are created, key policy information is displayed to the user in 
MATLAB. The automatically generated outputs of the model are discussed in detail 
in Sections 6.2 and 6.3. One of the post-processing steps is the evaluation of the policy 
generated by the CMA, as discussed in the following section.  

5.4 	Policy	Evaluation	Using	Monte	Carlo	Analysis		

The developed tool gives the user a degree of freedom when selecting certain 
quantities, such as the risk aversion factor Y. This section is focused on the 
development of an algorithm, which determines how effective a given policy is at 
servicing wind turbines under uncertainty. This section aims to answer the following 
question: 

“Given the user-specified uncertainties, if a candidate policy were carried out 10,000 
times34, how many maintenance tasks, on average, would be completed in carrying 

out the given policy? “ 

Note: candidate policies are policies generated under different assumptions: for 
example using different risk aversion factors. To answer this question, a Monte Carlo 
simulation is run for each candidate policy. In each iteration of the Monte Carlo 
simulation, three random numbers (for each turbine) are generated: λm will be used 
to determine the estimated maintenance task duration, λt will determine whether 
crew transfer will be possible and λd will be used to decide whether diagnosis was 
correct (i.e. three random numbers correspond to three uncertainties considered).  

The number of turbines not serviced due to unsuccessful transfer, or misdiagnosis 
can then be calculated: 

@O	λt > Pt(i, j),{0@B?}B0Bq}	O0@~}ì	 

                                                   
34 This number is sufficiently large to eliminate any statistical deviation and the results can 
be computed in reasonable computational time.  
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@O	λd > Pd(i),{0@B?}B0Bq}	O0@~}ì 

Actual duration of a maintenance action is generated from the user-specified 
probability distribution and random number λm, using the inverse gamma 
cumulative distribution function (as discussed in Section 5.2.3). In practice, the 
calculation is performed using “gaminv” MATLAB function35. The resulting actual 
maintenance durations of all actions are then input into the corresponding logic 
algorithm, which was used to create the policy in the first place (i.e. for the cluster 
analysed in Section 5.2.4, updated crew pick-up order would be created using logic 
shown in Figure 5.5). The new pick up order is optimised for the actual maintenance 
task durations. Note that the order of technician drop offs is assumed to be the same; 
the operator has no way of knowing how long a task will take before it is started, but 
the pick-up order and times may differ from the original plan.  

If some tasks take longer than expected, the constraint on the maximum policy time 
may be breached. In this case, the number of tasks which can be completed, within 
the time constraint, needs to be determined. This is achieved by following the logic 
outlined in Figure 5.11. In simple terms, this logic determines the first maintenance 
task not cut short by the need to go back to the O&M base to satisfy the time 
constraint. All tasks completed prior to that task (inclusive of it) are considered 
complete.    

In the last step, the total number of tasks completed in this iteration, for a given policy 
is calculated using the following formula: 

40$¨$	qA{æ~}?}ì
= 40$¨$	æ~0BB}ì
− 40$¨$	@BqA{æ~}?}	ì>}	?A	}ùq}}ì@B±	?ℎ}	?@{}	qAB$?v0@B?
− 40$¨$	@BqA{æ~}?}	ì>}	?A	>B$>qq}$$O>~	?v0B$O}v
− 40$¨$	@BqA{æ~}?}	ì>}	?A	{@$ì@0±BA$@$ 

This procedure is repeated 10,000 times per policy, logging the number of completed 
tasks at each iteration. At the end of the Monte Carlo analysis, the average number of 
completed tasks is calculated and used to compare against policies created using 
different assumptions (e.g. risk aversion factor).  

                                                   
35 More information on: https://uk.mathworks.com/help/stats/gaminv.html Accessed on 
11/10/2017. 
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Figure 5.11. Flowchart describing the logic which determines the number of 
turbines serviced in Case #8. 

Note that this procedure does not consider recourse actions (other than giving up on 
a task and heading back to base at the latest possible time to meet the time constraint). 
For example, in the real world, if no access was possible onto one turbine, an attempt 
would likely be made to access a different turbine, which may be experiencing a lower 
significant wave height. However, these decisions are usually made on a case-by-case 
basis and generalisation of this decision making process (it would need to be 
generalised, since the procedure is repeated 10,000 times) would be a very difficult 
problem in itself. For this reason, recourse actions other than giving up on a task have 
not been considered. The Monte Carlo analysis was carried out for both Summer and 
Winter Case Studies presented in Sections 6.2 and 6.3. 
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5.5 	Conclusions	

This chapter provided a detailed description of the proposed solution procedure for 
the offshore wind farm vessel routing problem. The entire procedure is summarised 
in Figure 5.12, where the division of the entire problem into Master and Sub-
problems is visualised. Key research contributions arising from this section include: 

Development of the sub-problem solution algorithm:  

The proposed method mimics the decision making process of wind farm operators. 
It is characterised by high computational efficiency; optimising the order of visits for 
30,000 clusters takes less than a second. This approach is an alternative to well-
established solution methods such as constraint programming, which, to date; have 
not been successfully applied in the offshore wind domain.  

Development of a methodology for incorporating uncertainties into the decision 
making process: 

In real life decision making, the uncertainties have a significant impact on the choice 
of policy; yet researchers solving the vessel routing problem in the offshore wind 
domain have so far neglected this. In the proposed methodology, the user can define 
the effect uncertainties have on the final policy. The model can be run with different 
risk aversion inputs, producing a range of candidate policies. At the end, the user is 
presented with low, medium and high risk policies along with an indication of their 
expected effectiveness in terms of the number of turbines serviced. These outputs can 
facilitate real world decision making by reducing the time required to create a vessel 
routing plan and potentially improving organisation of work. 

Development of the new heuristic method (CMA): 

The proposed heuristic creates policies from individual high value clusters. A feasible 
solution is guaranteed almost instantaneously and hundreds of thousands of unique 
policies can be computed in under a minute. Benefits of the proposed CMA heuristic 
are discussed in more detail in Section 7.4, where its performance is compared to a 
commercial solver.  
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Figure 5.12. Detailed overview of the proposed approach. 

The proposed decision support tool as a whole is very versatile. Additional user-
specified uncertainties can easily be incorporated into the model. The logic 
determining the order of visits can be adapted to suit user needs or to consider 
practical, site specific constraints. While the model has been created with vessels in 
mind, helicopters could also be modelled by modifying the properties of the mode of 
transport (e.g. specifying a much faster speed, lower carrying capacity and higher fuel 
cost).  
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The framework shown in Figure 5.12 provides the user with a choice of the heuristic 
approach; both the CMA developed by the author or a commercial solver are 
compatible with the rest of the solution procedure. Discussion on how CPLEX 
software can be applied to the cluster matching problem is provided in Section 7.4. If 
the CMA is used, the user can also set the computational time required to generate 
the proposed routing policy.  

Examples of how the model’s application to real life and synthetic case studies are 
described in the following chapter. Model validation is discussed in detail in Chapter 
7.  
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Chapter	6.	 Case	Studies	

The aim of this chapter is to illustrate how the methodologies described in Chapters 
3 and 5 can be applied to aid real-world decision making. Chapter 3 provided an 
overview of the methodology for quantifying the utility of carrying out maintenance 
on turbines, depending on the type of action required, turbine’s performance and the 
weather. The utility was used as an input to the model described in Chapter 5, which 
aims to optimise the movement of vessels and technicians to maximise the rewards 
for completing the maintenance actions while minimising costs and policy time. In 
this chapter, the proposed logistics optimisation model is applied to two different 
scenarios to illustrate the process a decision maker would go through using the 
model, from inputting data to interpreting the suggested policies.  

Both Case Studies presented in this chapter are continuations of the winter and 
summer Case Studies from Chapter 3. Case Study 1 was focused on a winter scenario, 
with numerous wind turbine failures and high waves. Case Study 2, a summer day 
scenario, featured a higher overall number of maintenance actions required. The latter 
case study, consisting of many non-critical maintenance tasks, was heavily 
constrained by the number of technicians available to demonstrate how the model 
copes with resource shortages. In addition to the two Case Studies discussed in this 
chapter, the model has also been applied to a real-world problem, as discussed in 
Section 7.5). 

This chapter is structured as follows: model inputs and the user interface are 
discussed in Section 6.1, Case Studies 1 and 2 are described in Sections 6.2 and 6.3 
respectively. Case Study results are summarised in Section 6.4.  

6.1 Model	Inputs	

6.1.1 User Interface 

MS Excel was used as the main method of data input, as it is a widely used 
engineering software. Data saved in Excel can be easily imported into Matlab, where 
the optimisation code runs.  

It is recommended that the model user begins data input by defining the properties 
of maintenance actions to be carried out in near future and vessels available. Figure 
H.1 in Appendix H. Decision Support Tool User Interface shows the Excel table used 
to assign turbines to tasks, while Figure H.2 shows the table used for defining task 
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and vessel properties.  The latter spreadsheet allows the user to specify each turbine’s 
expected significant wave height, which will affect crew transfer.  

The remaining user inputs, such as the number of technicians available, length of the 
weather window and the time required to transfer crew between a vessel and a 
turbine are defined in Matlab, as shown in Figure H.3.      

6.1.2 Inputs Common to Both Case Studies 

Both Case Studies 1 and 2 were based on the same wind farm, consisting of 100 
turbines arranged on a square, ten-by-ten grid. It was assumed that the wind farm is 
serviced by a single O&M base, located 80km from the centre of the wind farm, in the 
North-Eastern direction. Table I.1 in Appendix I. Logistics Model Inputs to Case 
Studies 1 and 2 contains the coordinates of turbine and O&M base locations, allowing 
the research community to replicate the case studies described here.   

In their paper, Dinwoodie et al. [39] outlined properties of four maintenance actions 
which can be carried out by CTVs: manual reset, minor repair, medium repair and 
annual service. In this thesis, additional three actions have been added: grease top-
up, retrofit and high priority repair. Maintenance action cost and the number of 
technicians required for each task were adapted from Dinwoodie et al. [39], as shown 
in Table 6.1.  

Table 6.1. Action cost and the number of technicians required. *From discussions 
with wind farm operators, it was recommended that 3 technicians (instead of 2) 
should perform minor repair actions. 

Maintenance 
action 

Corresponding action in 
Dinwoodie et al. [39] 

Cost of 
consumables 

Technicians 
required 

Manual reset Manual reset £0 2 
Grease top up Minor repair £1,000 2 

Retrofit Minor repair £1,000 2 
Minor repair Minor repair £1,000 3* 

Medium repair Medium repair £18,500 3 
High priority 

repair 
Medium repair £18,500 3 

Annual service Annual service £18,500 3 

Interviews with wind farm operators provided the remaining required maintenance 
task properties, including task duration, probability of correctly diagnosing the fault 
(as defined in Definitions Section) and the weight of spare parts and equipment. An 
outline of task properties is shown in Table 6.2.  
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The time window (as defined in Definitions Section) was assumed to be 11 hours in 
both case studies. Time required to transfer technicians and spare parts from vessel 
onto turbine and vice versa was set at 20 minutes. 

Table 6.2. Maintenance task properties.  

Maintenance 
action 

Task 
duration (h) 

Probability of 
correct diagnosis 

Spare part and 
equipment weight (kg) 

Manual reset 2 1 50 
Grease top up 3 1 70 

Retrofit 4 1 100 
Minor repair 5 0.8 150 

Medium repair 6 0.9 450 
High priority 

repair 
5 0.95 550 

Annual service 6 1 450 

So far, only the inputs common to both case studies have been discussed; the 
following section outlines the differences between inputs to Case Studies 1 and 2.  

6.1.3 Unique Inputs 

One of the key differences between the two case studies is the number and the nature 
of maintenance actions required. Case Study 1, which takes place in the winter, 
features maintenance actions on 14 randomly selected turbines. Most actions in Case 
Study 1 are corrective. Case Study 2 comprises of tasks on 24 turbines, with a larger 
proportion of preventative actions. For continuity, the rewards for completing 
maintenance tasks used in winter and summer case studies are imported from 
Chapter 3. The rewards generated using the SMDP approach are shown in Table 3.7 
and Table 3.8 respectively36. A summary of maintenance task properties for the winter 
and summer Case Studies are shown in Table I.2 and Table I.3 respectively.  

Two dissimilar case studies were devised to demonstrate the tool’s versatility. Winter 
day case study features large uncertainties on the maintenance task durations. 
Variable wave field is also modelled in Case Study 1, with some turbines experiencing 
significant wave heights of up to 1.7m, hindering transfer of technicians and spare 
parts. The aim of this Case Study is to demonstrate how the tool copes with uncertain 

                                                   
36 Note: Table 3.8 only contains 20 unique maintenance actions. To increase the complexity of 
the problem, maintenance tasks on turbines 72, 76, 37, and 96 were duplicated, to be carried 
out on turbines 9, 28, 43 and 63 respectively. The full list of all maintenance actions in the 
Summer Case Study, including rewards is shown in Table I.3 in Appendix I. Logistics Model 
Inputs to Case Studies 1 and 2.  
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inputs and how the user can influence the degree to which uncertainties drive the 
policies recommended by the tool. Case Study 2, on the other hand, features lower 
significant wave heights and lower uncertainty on task duration, however, it is 
heavily constrained by the number of technicians available, making it impossible to 
complete all maintenance actions on day 1. This demonstrates how the logistics model 
works in conjunction with the SMDP model described in Chapter 3 to decide which 
turbines are maintained on the day and which tasks are delayed to be completed in 
the future. A summary of the differences in inputs is shown in Table 6.3.  

Table 6.3. Comparison of case study inputs. 

Input Case 1 - Winter Case 2 - Summer 
Number of turbines 

requiring maintenance 
14 24 

Vessels available to operator 5 6 
Technicians available 35 45 

Wave field Variable (Figure 6.1) Uniform 

Gamma distributions 
High uncertainty (Table 

I.4) 
Low uncertainty 

(Table I.4) 
Number of policies 

generated by the CMA 
4.8 million 4.8 million 

In the Summer Day Case Study, the wave field is uniform: expected significant wave 
height is equal to 1.2m for all turbines. Under those conditions, safe transfer can be 
achieved using both Class 1 and Class 2 (as defined in Definitions Section) vessels 
with 100% certainty. The wave field used in the winter day case study is shown in 
Figure 6.1, with high waves affecting turbines exposed to sea from the North and East 
directions.  
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Figure 6.1. Variable wave field used in Case Study 1 (winter day). 

In Case Study 1, the operators have five vessels available to them; the vessel 
properties, including speed and capacity are shown in Table 6.4. Each vessel’s 
probability of successful transfer of technicians onto a turbine in a given significant 
wave height is provided in Table 6.5.   

Table 6.4. Vessel properties used in Case Study 1. 

Vessel 
ID 

Crew 
capacity 

Speed 
(km/h) 

Fuel consumption 
(£'000/km) 

Charter cost 
(£'000/day) 

Load 
capacity (kg) 

1 12 48 0.01 0 20,000 
2 12 48 0.01 20 20,000 
3 12 37 0.006 0 15,000 
4 12 37 0.006 0 15,000 
5 12 37 0.006 10 15,000 

Note that two types of vessels are available to operators; fast and capable vessels 1 
and 2 are referred to as “Class 1” vessels and standard CTVs (vessels 3-5), referred to 
as “Class 2” vessels (as discussed in Section 2.2.3). It is assumed that three of the 
vessels were owned (or chartered on a long-term basis), meaning that no charter cost 
will be incurred if those vessels are used on the day. While Dalgic et al. [46] and 
Dinwoodie et al. [39] reported CTV charter rates of  £1,750-£3,000 per day for a 
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standard CTV, prices on the spot market (e.g. if decision of whether to use a vessel or 
not is made hours before the vessel is dispatched) will inevitably be higher. It is 
assumed that vessels 2 and 5 can be hired out at a charge of £20,000 and £10,000 for 
an additional Class 1 or 2 vessel respectively.  

Carrying capacity and speed of Class 2 vessel are based on the standard CTV widely 
used in the offshore wind industry, as described by Dinwoodie et al. [39]. Properties 
of the Class 1 vessels are based on the Seacat Intrepid 26m vessel37. Fuel consumption 
and probabilities of successful transfer inputs were provided by a major UK offshore 
wind farm operator. 

In Case Study 2, wind farm operators have an additional Class 1 vessel available to 
them. Unlike Case Study 1, cost of all vessels are set to zero to investigate the effect 
free vessel hire has on the policy recommended by the tool. All other vessel 
properties, including fuel consumption are unchanged from Case Study 1.   

Table 6.5. Probability of successful technician transfer in a given significant wave 
height, for a given vessel. 

Vessel Hs<1.4m 1.4 ≤ Hs < 1.6m 1.6 ≤ Hs < 1.8m 1.8 ≤ Hs < 2m Hs > 2m 
1 1 1 0.75 0.5 0 
2 1 1 0.75 0.5 0 
3 1 0.8 0.5 0 0 
4 1 0.8 0.5 0 0 
5 1 0.8 0.5 0 0 

Table 6.5 shows each vessel’s probability of transfer in a given significant wave 
height. These values were provided by a UK wind farm operator during a site visit 
(discussed in Section 7.5). In the winter Case Study, transfer using Class 2 vessels is 
hindered at 36 out of 100 turbines (forecasted significant wave height is shown in 
Figure 6.1). Access using more capable Class 1 vessels is only affected at 19 turbines 
experiencing significant wave heights of 1.7m. 

The user is able to define any desired normal or gamma distributions, which reflect 
the probability distributions of maintenance task durations. To illustrate the effect of 
using different gamma distributions as inputs, different shape and scale parameters 
are used in Case Studies 1 and 2. A summary of parameters used in both case studies, 
for all types of maintenance action, are shown in Table I.4 in Appendix I. Logistics 
Model Inputs to Case Studies 1 and 2. Gamma distributions with positive skewness 

                                                   
37 Details available on: http://www.seacatservices.co.uk/library/vessels/26m_spec_sheet.pdf. 
Accessed on 20/11/2017.  
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are used in both Case Studies, as discussed in Section 4.2.4. The spread on possible 
maintenance task durations in Case 1 is much larger than Case 2, as shown in Figure 
6.2, hindering the process of planning vessel routing.  

 

Figure 6.2. Comparison of the PDFs representing the expected maintenance task 
duration of manual service (left) and medium repair (right) in Case Studies 1 and 
2. 

The maximum simulation time for both Case Studies is capped at 5 minutes, which is 
short enough to be practical for real world application (considering the problem may 
need to be solved multiple times with different risk aversion factors). In this time, the 
number of policies generated can reach 5-6 million. However, to ensure that time limit 
is not breached, 4.8 million is chosen as the number of policies generated in both cases. 
The tier limits (their use is demonstrated in Figure 5.10) used to generate 4.8 million 
policies in each of the case studies are shown in Table 6.6. Taking winter Case Study 
as an example, each of the 500 highest value policies are matched with each of the 80 
highest remaining policies and each of those is matched with 30… etc. There is no 
Tier 6 limit in Case Study 1 as there are only 5 vessels available to the user on the day.  

Table 6.6. Tier limits used in both case studies. 

Case\Limit Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tier 6 
Case 1 - Winter 500 80 30 4 1 N/A 
Case 2 - Summer 100 40 25 12 4 1 

Note that to date, the only criteria for choosing individual tier limits was that they 
decrease with increasing tier number (for best algorithm performance) and that their 
product equals to 4.8 million. Performing an optimisation exercise to develop 
universal guidelines for choosing optimal the ratios between tiers may lead to 
enhanced CMA performance, as discussed in more detail in Section 8.3.2.  
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6.2 Results	for	Case	Study	1:	Winter	Day	

This case study is solved six times, using six different risk aversion factors, ranging 
from 0 to 10 (in intervals of 2). By choosing such a wide range of values, the effects of 
varying risk aversion factor on the policies produced by the model are illustrated. 
Setting a risk aversion factor as high as 10 would, in most cases, be excessive and 
result in policies which do not fully utilise the resources available. This is 
demonstrated both in Section 6.2.1, where model outputs are discussed and in 
Appendix G. Example of Cluster Value Calculation Using Low and High Risk 
Aversion Factors, where a numerical example is provided illustrating the effect high 
risk aversion factor has on cluster’s value. 

Once the user specifies all inputs, the solution procedure can be initiated. Here, a 
different simulation was run for each risk aversion factor, however the model can be 
set up to run multiple back-to-front simulations in one go. The tool was run on a 
3.4GHz i7-3770 CPU with 8GB of RAM and 64-bit Windows 7 operating system. The 
average computational time across all cases was 260.1 seconds; a breakdown of 
computational times is provided in Table 7.7.  

The first output presented to the user is a map of the wind farm showing turbines 
requiring maintenance, with colour-coded expected task durations, as shown in 
Figure 6.3. Upon each simulation’s completion, the user is presented with a range of 
outputs, which include a list of turbines to be visited by each vessel (as shown in 
Figure 6.8), a map of the vessel routing plan (Figure 6.6) and additional visualisations 
such as value functions (discussed in more detail in Section 6.2.3) and Gantt charts for 
each vessel (Figure 6.14).  

For clarity, this section is focused on cases A, C and E, computed for risk aversion 
factors of 0, 4 and 8 respectively. Outputs from those cases are summarised in Table 
6.7. Full results for all cases (i.e. A-F) are presented in Table J.1 in Appendix J. 
Logistics Model Outputs: Winter Case Study. Cases B and D were not discussed here 
as the policies generated in those runs are very similar to case C. The policy generated 
for Case F is briefly discussed in the following section, but due to its low value it 
would be an unlikely contender to be selected by the user as their preferred policy.  

The maximum number of turbines to be visited in all cases is 13, despite there being 
14 turbines requiring maintenance. This is caused by the negative reward of retrofit 
action on WT21, calculated in Chapter 3 as -£2,100. The model was discouraged from 
selecting this turbine, as maintaining it in the future, rather than today, would be 
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more beneficial in the long term (due to high wind speed today and the preventative 
nature of the task).  

 

Figure 6.3. Wind turbine status (in terms of the expected maintenance duration) in 
Case Study 1.  

As the risk aversion factor (Y) increases, the planned number of turbines to be visited 
decreases. Cases A and C aimed to visit 13 turbines, this number stood at 11 for Case 
E. With increasing risk aversion factor, the tool selects policies with higher probability 
of visiting all turbines scheduled to be maintained. This is achieved by reduction in 
the number of turbines to be visited, or by choosing to visit turbines which take a 
shorter time to maintain. As a result, the expected policy value decreases with 
increasing Y.  

The number of vessels used in Case A is four; the minimum number which enables 
visiting all 13 turbines. In Cases C and E, five vessels are used, despite the charter rate 
of £10,000 per day and the additional fuel costs associated with use of the fifth vessel. 
Visiting all the turbines with five, rather than four vessels, spreads the workload and 
increases the average slack time at the end of the day, lowering the probability of 
unsuccessful maintenance actions due to tasks taking longer than expected.  
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Table 6.7. Summary of winter Case Study results. 

 Case A Case C Case E 
Risk aversion factor (Y) 0 4 8 
Planned number of turbines to be repaired (/14) 13 13 11 
Number of vessels used 4 5 5 
Computational time (s) 250.1 255.8 243.2 
Expected policy value (not including value added 
due to a non-zero Y) (£ ‘000) 

1301.1 1289.9 1126.1 

Number of technicians required to carry out all 
maintenance actions 

31 33 27 

Mean policy time (h) 10.69 10.17 9.78 
From Monte Carlo simulation 
 (as described in Section 5.4): 

   

Average number of turbines actually maintained 
(/14) 

7.1 8.1 7.4 

Maintenance actions not completed due to 
repairs taking longer than expected 

4 3.4 2.1 

Turbines not repaired due to incorrect diagnosis 0.8 0.8 0.6 
Turbines not repaired due to unsuccessful 
transfer 

1.1 0.7 0.9 

The last 4 rows of Table 6.7 contain the results of Monte Carlo analysis, which 
estimates the average number of turbines successfully maintained once the user-
specified uncertainties are realised. This methodology used to obtain this number is 
described in Section 5.4. If the policy generated in Case A was implemented, 
maintenance would be completed on an average of 7.1 out of 13 turbines. This is the 
lowest value out of the three cases. The breakdown provided in the three last rows of 
Table 6.7 reveals that the main reason for unsuccessful maintenance across all cases 
is tasks taking longer than expected. This is expected, considering the high 
uncertainty associated with task durations (as shown in Figure 6.2). 

In the next subsection, results of the Monte Carlo analysis are discussed in more 
detail. This is followed by an in-depth analysis of policies A and C, demonstrating the 
advantages of using a non-zero risk aversion factors.  

6.2.1 Discussion of the Monte Carlo Analysis Results 

A histogram summarising the results of the Monte Carlo analysis is shown in Figure 
6.4. On the x-axis is the number of turbines maintained in a given policy, y-axis 
displays the total number of occurrences (out of 10,000 Monte Carlo iterations) of each 
x-axis quantity. Policy A has the highest number of occurrences in which between 
one and five turbines were maintained. This is a disappointing result, as in 
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approximately 20% of the Monte Carlo iterations, only 5 or less (out of 14) turbines 
are maintained. On the other end of the graph, Case C ensures the highest probability 
of maintaining 10 or more turbines. As expected, the policy created in Case E is never 
capable of maintaining more than 11 turbines, as the plan was to only visit 11 turbines.  

 

Figure 6.4. Breakdown of the total number of occurrences of each quantity of 
turbines repaired for policies with varying risk aversion factor.  

Comparing the average number of turbines maintained in Case A and E, the latter is 
more successful despite aiming to visit fewer turbines to begin with. The first reason 
for this is the use of an additional vessel. Spreading the workload across five, rather 
than four vessels creates additional slack time at the end of the day, reducing the 
impact of tasks taking longer than expected. Second reason for Case E being more 
successful is that the two turbines dropped are medium repairs. This results in 
significant reduction in crew-hours38 worked, as shown in Figure 6.5. Planning to 
complete 12 crew-hours fewer yields an improved success rate. However, this may 
not be the ideal long term strategy; continually putting off difficult maintenance 
actions can lead to accumulation of medium repairs, potentially reducing the revenue 
generated by the wind farm.  

                                                   
38 Crew-hours, as defined in Definitions Section, are calculated by summing the expected 
duration of tasks completed in a given policy.  
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Figure 6.5. Comparison of policies generated in Cases A-F. Note: Crew-hours 
worked represent the planned value, not actual. 

The reduced number of crew-hours of work planned in Case E leads to reduced 
demand for technicians: only 27 were required compared to 33 in Case C. In the long 
term, minimising the number of technicians required to complete maintenance 
actions is certainly an advantage, as overheads are reduced. However, reduction in 
Case E was achieved by delaying medium repairs until a later date, which does not 
necessarily mean long term savings could be achieved. Furthermore, as discussed in 
Section 2.2.1, planning offshore maintenance often takes place hours before the policy 
begins. In this example, it was assumed that 35 technicians would be available. Last 
minute change to reduce the number of technicians by 8, if policy from Case E was 
selected, would result in significant changes to their shift pattern.  

The Monte Carlo analysis also revealed that the number of maintenance actions failed 
due to unsuccessful transfer is highest in Case A. This is expected as using a risk 
aversion factor equal to 0 provided no incentive for using more capable vessels to 
visit turbines affected by higher waves. This is discussed in more detail in Section 
6.2.2. 

The results shown in Table 6.7, Figure 6.5 and the above discussion would suggest 
that policy created in Case C would likely be the best choice out of the six cases. 
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Although it would cost £11,300 more than Case A (£10,000 additional vessel charter 
plus £1,300 in fuel costs), it would most likely result in an additional turbine being 
successfully maintained. Policies generated using risk aversion factor of 8 or greater 
significantly under-utilise the technicians and yield policies which avoid visits to 
turbines time consuming tasks.  

6.2.2 Discussion of Case A and C Policies 

Figure 6.6 shows the vessel dispatch plan for Case A. Class 1 vessels, i.e. vessels 1 and 
2, are both assigned to visit 3 turbines each. Given that 4 vessels in total are used, the 
average number of turbines assigned to a vessel across all vessel types in Case A is 
3.25. The reason for lower utilisation rate of more capable vessels compared to Class 
2 vessels (3 vs. 3.25), is their increased fuel cost. Utilisation rate of Class 1 vessels in 
Case C is significantly higher at 3.5 turbines per Class 1 vessel, especially when 
compared to the average number of turbines per vessel which amounts to 2.6.  

 

Figure 6.6. Vessel dispatch plan for Case A. 
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In Case A, only one out of four turbines affected by high waves39 is visited by Class 1 
vessel (T3, as shown in Figure 6.6). In Case C, this number stands at three, which 
resulted in a significant decrease in the number of unsuccessful transfers (from 1.1 to 
0.7), as shown in the last row of Table 6.7. In Case C, the increased fuel cost is 
insignificant40 compared to the benefits resulting from higher utilisation of Class 1 
vessels, such as the improved transfer capability at turbines affected by higher 
significant wave height. 

 

Figure 6.7. Vessel dispatch plan for Case C. 

The number of maintenance tasks which were unsuccessful due to repairs taking 
longer than expected is higher for Case A compared to Case C (4 for the former and 
3.4 for the latter). There are two reasons for this difference. First, two additional 
technicians are used in Case C, reducing the policy time of one of the vessels. Second, 
the addition of the 5th vessel results in significant policy time decreases on the 
remaining 4 boats. This can be seen in row 7 of Table 6.7 – the average policy time in 
Case C is over half an hour shorter compared to Case A. Having additional slack time 

                                                   
39 A map of expected significant wave height for all turbines is shown in Figure 6.1.  
40 Fuel cost in Case A: £5,760; Case C: £7,190 (difference: £1,430). 
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at the end of the day means that maintenance tasks are more likely to be completed 
even if some actions take longer than expected.  

Comparing the two policies shown in Figure 6.6 and Figure 6.7, the former features 
clusters of turbines located close to each other being serviced by the same vessel 
(particularly for vessels 1 and 2, which have higher fuel costs). The latter graph 
showing Case C policy features vessels visiting turbines scattered across wind farm. 
Geographical locations of turbines are no longer a key optimisation objectives, as the 
fuel cost penalty for increased distance covered by vessels is negligible compared to 
incentives arising from non-zero risk aversion factor (Equation 5.10).   

The tool suggests an order of turbine visits, which is displayed to the user along with 
additional information, such as policy time for each vessel and the probability of 
successfully maintaining all turbines in a cluster (Figure 6.8).  

The number of technician crews each vessel is carrying can be deduced from the 
turbine visit order, as shown in Figure 6.8. Consider the recommended visit order for 
Vessel 4. The first stop is always a drop off (T92) and since the second stop is at a 
different turbine (T51), it is also a drop off. From this, it can be concluded that vessel 
4 is carrying two crews of technicians. The following order of visits: T92-T92-T51-T51 
would indicate that the second stop is a pick-up, meaning that the vessel is carrying 
only one team of technicians.  

Table 6.8. Order of technician drop offs for vessel 1 in Case C. 

Turbine Task Duration (h) Order of visit 
T36 Manual reset and minor repair 6.5 1 
T42 Medium repair 6 2 
T3 Minor repair 5 3 
T50 Grease top-up (3) 3 4 

Consider the order of turbine visits for Vessel 1 in Case C. For clarity, the order of 
drop offs is provided in Table 6.8 alongside with the expected durations of each 
maintenance task. The technicians are dropped off in an order from the longest 
expected duration to the shortest, minimising the overall policy time. A more in-
depth analysis of the order of wind turbine visits recommended by the tool, including 
the pick-up order, is provided in Section 6.3.1.  
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Figure 6.8. Matlab-generated manifest including the recommended order of wind 
turbine pick-ups and drop-offs (Case C). 
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6.2.3 Plotting Value Functions 

One of the by-products of the proposed heuristic approach is a high volume of 
policies (4.8 million generated in this Case Study; however, not all of those are 
unique41). Information contained in the sub-optimal policies may be useful to gain 
better understanding of how the heuristic arrives at the final solution.  

Policy value can be plotted against iteration number, as shown in Figure 6.9 (a) and 
(b). There are two differences between the two plots. First, the length of x-axis in (a) 
only covers the first 50 data points, while (b) zooms out to provide a view of 24,000 
policies. Second, point markers are used instead of lines in (b). The latter graph only 
contains the first 24,000 policies (out of 4.8 million); this is both for clarity and due to 
very high computational effort required to plot millions of data points on a graph. A 
different approach was chosen in (c), where policy value was plotted against the 
number of technicians used and policy time (number of points in this graph was also 
restricted to 24,000).  

It is unlikely that either plot presented in Figure 6.9 would be useful to a wind farm 
operator. There seems to be no connection between adjacent iterations; the value 
variation between iterations seems random, despite the fact that most adjacent 
policies share multiple clusters42.   

As discussed in Section 4.2.5, Pareto graphs are an effective tool for visualising trade-
offs of solutions to problems with multiple objectives. The two key objectives in the 
problem solved in this Case Study are maximisation of policy value and maximisation 
of the probability of maintaining all turbines in a policy. In the graph shown in Figure 
6.10, the two objectives are plotted on x and y-axis respectively.  The following 
procedure is used to create the Pareto graph: 

1) Take 10,000 highest value (including added term due to probability) policies 
from Cases A, C, E and F.  

2) Select every 50th policy in each of the cases, yielding 200 data points per case. 
This step reduces the number of points on the graph for clarity. 

3) Plot selected data points, using the actual value (excluding added term due to 
probability) on the x-axis and probability of maintaining all turbines in a 
policy, as defined in Equation 5.9, on the y-axis. 

                                                   
41 Consider the policy generated in Case A; another policy may exist with turbines to be 
visited by Vessels 1 and 2 swapped between them. Since both vessels are the same, the two 
policies would not differ on value, turbine assignment or time taken.  
42 The iteration generation procedure is described in Section 5.3.1. 
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Figure 6.9. Value of policies plotted against iteration number (a-b) and against the 
number of technicians used and time taken by policy (c). In c), highest value 
policy is shown in red.  

Since only every 50th point was selected to be displayed in Figure 6.10, it is unlikely 
that optimal policies for each case are present in the graph. Instead, Figure 6.10 shows 
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the breadth of policies created in each Case. A similar analysis was performed for the 
Summer Case Study (Section 6.3.2); except instead of taking every 50th point, 200 
policies with highest values for each Case were shown43. 

Actual policy value was used in the plot, rather than value which includes added 
term due to probability, as the former allows fair comparison of policies. The latter 
approach would skew the results, favouring policies created in Cases B-D due to the 
added probability value term, which is not present in Case A.  The y-axis probability 
was calculated using the following formula: 

òvA|0|@~@?∏	AO	{0@B?0@B@B±	0~~	?>v|@B}$ =óòù(q)							(<=>0?@AB	6.1)
¥Sɛ

¥SÉ
 

where c is the cluster identifier, ɛ is the number of vessels (clusters) in a policy. Px, 
the probability of completing maintenance on all turbines in a cluster was previously 
defined in Equation 5.9. Ideally, the number of turbines actually maintained, obtained 
in the Monte Carlo analysis, would be used as the y-axis of Figure 6.10. It is a better 
indicator of policy’s quality compared to the probability defined in Equation 5.9. 
However, conducting a separate Monte Carlo Analysis for each solution (i.e. each 
point on the graph) would be very computationally intensive. Alternatively, a sum, 
instead of product, of individual cluster probabilities can be plotted on the Pareto 
graph’s y-axis; this is shown in Figure 6.16 in the Summer Case study.  

                                                   
43 Meaning that the optimal solutions for each of the cases are present in Figure 6.15 but not 
Figure 6.10. 
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Figure 6.10. Policy value vs probability of maintaining all turbines in a policy. 

The graph shown in Figure 6.10 features a number of distinct clusters; three of those 
are labelled Clusters 1-3. Policies in Cluster 1 all have similar value as all of them aim 
to visit all of the high value turbines (turbines associated with a reward greater than 
£80,000). Cluster 2 comprises of policies which only aim to visit 10 out of 11 high 
reward turbines.  

X-axis span of Cluster 2 is significantly wider than Cluster 1 due to a more diverse 
population of possible turbine reward combinations. For example, Cluster 2 may 
contain two policies, one does not include a visit to Turbine 51, with a reward of 
£87,800 while the other does not include a visit to Turbine 85, with a reward of 
£113,300 (Note: these values originate from Table 3.7). Going from right to left, as the 
number of high value turbines not visited increases, the possible differences in value 
also increase, resulting in wider cluster spans.  

All of the red markers, i.e. high risk policies generated using a zero risk aversion 
factor, are located in Clusters 1-3. This is expected, as setting Y to zero encourages 
high value, low probability of success policies. The space to the left of cluster 3 is 
mostly populated by green and purple markers, i.e. low risk policies, which were 
created by incentivising policies with high probability of success. Interestingly, 
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cluster 1 contains all marker colours, demonstrating that medium-to-very low risk 
aversion factors result in solutions which probe the entire solution state space.  

Figure 6.10 features a Pareto front drawn in black, made up of five data points. These 
five non-dominated solutions (as defined in Section 4.2.5) are Pareto optimal (for the 
data points shown in the graph). However, the policies constituting the Pareto front 
cannot be easily analysed; data such as number of technicians used or vessel 
movement maps would have to be generated manually for each point. From the 
operator’s point of view, the histogram display shown in Figure 6.5 is certainly more 
useful as it provides a better overview of individual policy details. One of the 
advantages of the Pareto graph is that can be used to display the value and probability 
of hundreds of policies; histograms such as Figure 6.5 can only visualise a handful of 
policies.  

Further discussion of the Pareto graph is provided in the Section 6.3.2, which includes 
plots for data generated in the Summer Case Study.  

6.3 Results	for	Case	Study	2:	Summer	Day	

Winter Case Study shows that risk aversion factors greater than 6 produce policies 
which are unlikely to be favoured by the wind farm operator. In this case study, 
simulations were run using Y values of 0, 2, 4 and 6. The key difference between the 
winter and summer Case Studies is that the latter features more turbines needing 
maintenance (24 vs 14). There is also a severe shortage of technicians in the summer 
Case Study, making it impossible to service all turbines on day 1.    

The number of policies generated by the heuristic is kept at 4.8 million, despite the 
substantial increase in problem complexity. This causes a drop in result quality; 
however, the heuristic results were within 3.3% of optimum for all cases, as shown in 
Table 7.8. Computational time required to produce results remained under 5 minutes 
for all cases, as shown in Table 6.9.  

There are multiple similarities in winter and summer Case Study results. First, setting 
a risk aversion factor of 0 resulted in a policy which does not utilise all available 
vessels. Unlike Winter Case study, there is no additional charge for using the 6th vessel 
here. Despite this, the tool recommends only using 5 vessels in Case A in an attempt 
to reduce fuel costs.  
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Table 6.9. Summary of the summer Case Study results. 

 Case A Case B Case C Case D 
Risk aversion factor (Y) 0 2 4 6 
Planned number of turbines to be 
maintained (/24) 20 19 19 17 

Vessels used 5 6 6 6 
Expected policy value (£ ‘000) 2054.2 2043.6 1893.7 1708.9 
Policy value including value added due to 
non-zero Y (£ ‘000) 

N/A 2368.1 2758.2 3255.5 

Technicians required to carry out all 
maintenance actions 

45 45 43 37 

Crew-hours worked (h) 86.5 83.5 78.5 66.5 
Mean policy time (h) 10.9 10.5 10.2 9.9 
Simulation time (s) 280.7 264.9 240.8 235.3 
From Monte Carlo simulation 
(as described in Section 5.4): 

    

Average number of turbines actually 
maintained (/24) 

13.9 15.4 16.2 15.4 

Maintenance actions not completed due to 
tasks taking longer than expected 

5.3 2.8 2.1 1 

Turbines not maintained due to incorrect 
diagnosis 

0.8 0.8 0.7 0.6 

Turbines not maintained due to 
unsuccessful transfer 

0 0 0 0 

Further similarities between case studies are the decreasing number of crew-hours 
worked and decreasing mean policy time with increasing risk aversion factor. These 
results are expected, as setting higher Y encourages policies with additional slack time 
at the end of the day, which in turn incentivises carrying out fewer maintenance tasks.  

Let us compare the number of actions not completed due to tasks taking longer than 
expected in Case C policies from both the winter and summer Case Studies. The 
former stood at 3.4, while the latter was 2.1, despite the fact that the latter policy 
aimed to visit 6 additional turbines. This significant difference is caused by the 
definition of task duration PDF (Table I.4), which has a significant impact on the 
Monte Carlo analysis results.  
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Figure 6.11. Comparison of policies generated in Cased A-D. 

A visualisation of some of the summer Case Study results is shown in Figure 6.11. 
The mean policy time in Case A stands at 10.9, meaning that the average slack time 
at the end of the day is just 6 minutes. As a result, the number of turbines actually 
maintained is lowest in Case A; this is also the case in the Winter Case Study. Monte 
Carlo analysis also shows that no maintenance actions fail due to unsuccessful 
transfer. This is expected as the significant wave height across the wind farm is set to 
1.2m, well within crew transfer capabilities of Class 1 and 2 vessels.   

Figure 6.11 clearly shows the decreasing gap between turbines to be visited (in blue) 
and turbines actually maintained (in red). As expected, policies created using higher 
risk aversion factors are more effective at completing the planned number of 
maintenance tasks.   

Interestingly, the nature of the problem changes with the risk aversion factor used. In 
Case A, the problem is severely constrained by the number of technicians available 
(with a surplus vessel). In Case D, there is a surplus of technicians; the problem is 
constrained by the number of vessels instead. Permitting use of another vessel would 
likely see some of the 8 surplus technicians utilised to visit a higher number of 
turbines.   

A map of the wind farm showing locations of maintenance tasks and the policies 
recommended by the tool in each of the test cases are shown in Figure 6.12. 
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Figure 6.12. Summary of Case A-D vessel dispatch plans. 
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Details of turbines which were not serviced in one or more cases are shown in Table 
6.10. Neither policy recommends visiting turbines 1, 61 and 91. The former two of 
those three are annual services, without an immediate deadline44. Turbine 91 requires 
a grease top-up, which can be delayed until tomorrow and a retrofit. Those two tasks 
combined are expected to take 6.5 hours, which is the joint longest duration out of all 
turbines.  

There are two main reasons why these 3 turbines were not visited in either of four 
cases. First, they are associated with a reward equal to or lower than £15,400; 
significantly less than the average reward across all turbines (£94,421). Second, tasks 
on those three turbines are expected to take 6 hours (for annual service tasks) and 6.5 
hours for turbine 91. This is significantly higher than the average task duration of 4.5 
hours. The tool recognised that dispatching technicians to maintain those three 
turbines is poor use of technicians’ time, given the associated rewards.  

Table 6.10. Summary of dropped turbines sorted in order of ascending reward. 

Turbine ID Dropped in Reward Description 

23 Cases A & B £4,700 Retrofit 

1 All Cases £10,200 
Annual service (3 days’ work required in 
the next 10 days) 

61 All Cases £10,200 
Annual service (3 days’ work required in 
the next 10 days) 

16 Case B £10,700 Grease top-up (no immediate deadline) 

91 All Cases £15,400 
Grease top-up (no immediate deadline) & 
retrofit 

83 Cases C & D £98,700 
Medium repair (2 days’ work required in 
the next 10 days)  

56 Case D £101,600 Annual service (6 days’ work required in 
the next 10 days)  

89 Case D £101,600 
Annual service (6 days’ work required in 
the next 10 days)  

84 Case D £120,200 
Medium repair (4 days’ work required in 
the next 10 days)   

There is another factor driving the choice of policies recommended by the tool: the 
turbine’s location with respect to O&M base. Among the dropped turbines shown in 
Table 6.10, there are seven turbines requiring a maintenance task of duration equal to 

                                                   
44 Details of those maintenance actions and associated rewards are provided in Table I.3 in 
Appendix I. Logistics Model Inputs to Case Studies 1 and 2.  
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six or more hours. Six of those turbines also happen to be located furthest away from 
the O&M base45. Furthermore, out of five turbines with expected task duration of 5.5 
hours or more closest to O&M base, four are visited in all cases. It is clear that when 
the tool selects the turbines not to be visited due to resource shortages, the decision is 
driven not only by task duration and reward, but also the travel time required to reach 
the asset.  

In Case D, the tool recommends dropping seven wind turbines, including four with 
an above average reward. From Table I.3 in Appendix I. Logistics Model Inputs to 
Case Studies 1 and 2, these seven turbines are the seven lowest-reward turbines with 
expected maintenance task duration of 6 hours or more. In this Case, the results were 
driven by the following logic: 

“Do not visit turbines with the longest task duration and lowest value when risk aversion 

factor is medium-to-high” 

However, this logic was never explicitly defined in the tool. It is a result of the way 
rewards and the value function, which favours policies which are likely to be 
successful, are defined. Policies involving multiple tasks with an expected duration 
of 6 hours or more do not allow sufficient slack time46. Once the user-specified 
uncertainties are realised, insufficient policy slack leads to incomplete maintenance 
actions, as some tasks take longer than expected.    

The tool does not always decide to drop low value turbines. Turbine 40, for example, 
was selected in all cases, despite its low value (£10,700). There are three main reasons 
for this: 

• T40 is located close to the O&M base (3rd closest out of 24) 
• Its task duration is below average (3 vs 4.5 hours)  
• Only 2 technicians are required to carry out maintenance 

The Monte Carlo analysis demonstrates that the most effective policy in terms of 
turbines actually maintained once the uncertainties are realised is Case C, where the 
5 turbines dropped were all tasks with a duration of 6 hours or more. Comparing 
Case A and C policies, the latter manages to reduce the number of turbines not 
repaired due to tasks taking longer than expected by three. This is achieved despite 
only reducing the total number of turbines to be visited by one!  

                                                   
45 O&M base was located to the North-East of the wind farm. 
46 Slack time covers both spare time at the end of the day (i.e. policy slack time Ge) and 
individual task slack time Gi.  
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One of the main reasons for Case C topping the number of maintenance task 
completed in the Monte Carlo analysis is effective organisation of work, which 
maximises slack time. This is partly achieved by higher utilisation rates of the more 
capable Class 1 vessels, which stands at 4 turbines per vessel compared to 2.33 
turbines per Class 2 vessel. Class 1 vessels are assigned to 4 out of 6 longest (5.5 hours 
or more) tasks. The tool recognises that faster vessels should be assigned to visit more 
turbines, which resulted in a reduction in mean policy time as shown in Figure 6.11, 
contributing to the higher number of completed maintenance actions.  

In summary, two important conclusions can be derived from this Case Study: 

1. When faced with a resource shortage, the tool sensibly selects the maintenance 
tasks to be dropped. High priority repair, which has to be completed by the 
end of tomorrow47, is never dropped. Generally, turbines dropped were 
characterised by low rewards and high resource requirements. Increasing risk 
aversion factor encourages dropping turbines with above average rewards, 
trading off value and crew-hours worked for increased maintenance success 
rate, which is what it has been designed for.    

2. The above shows that rewards generated by the SMDP model, discussed in 
Chapter 3, are compatible with the logistics model. It is important that the 
rewards do not dominate the vessel routing decision – while they do influence 
the results significantly, the priority ranking produced by the SMDP model 
does not set in stone the turbines to be visited. Vessel dispatch plan is 
influenced by a multitude of factors, including turbine’s location (with respect 
to O&M base and proximity to other turbines) and duration of the 
maintenance task; neither of which was considered in the utility value 
calculation proposed in Chapter 3. 

6.3.1 Detailed	Analysis	of	a	Single	Vessel	Route	

This section provides a step-by-step analysis of a vessel movement plan produced by 
the tool. The route analysed was created in Case A, assigned to Vessel 5. It features a 
fairly complex order of wind turbine visits, with little slack time; a key characteristic 
defining all Case A policies. Table 6.11 contains a summary of tasks visited by Vessel 
5, while Figure 6.13 shows a visualisation of individual vessel stops, including the 
pick-up and drop-off times. Matlab-generated output summarising Case A policy 
properties is shown in Figure K.1 in Appendix K. Logistics Model Outputs: Summer 
Case Study.   

                                                   
47 As discussed in Section 3.4.1. 
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Since Case A in the Summer Case Study is severely constrained by the number of 
technicians, Vessel 5 is only carrying 3 crews of technicians. One of the teams is 
assigned to complete two tasks with the shortest maintenance duration – T70 and T96. 
A description of the individual vessel movements shown in Figure 6.13 is provided 
below. 

Table 6.11. Order of wind turbine visits: Case A. 

Turbine 
Visit 
order 

Task duration 
Technicians 

required 
Assigned Crew 

T29 1 6 3 Crew 1 
T70 2 2 2 Crew 2 
T76 3 3 2 Crew 3 
T96 4 2 2 Crew 2 

Movement 1: The first turbine visited is T29, which also happens to be closest to the 
O&M base. Expected duration of the medium repair on T29 is 6 hours, the longest of 
all four turbines. In this case, T29 had to be visited first; it is the first and last stop of 
the entire route and the policy slack time at the end of the day is only 5 minutes. Had 
T29 been visited second, or later, technicians would not have sufficient time to 
complete the medium repair. 

Movement 2: The second turbine visited is T70. The closer of the two 2-hour tasks is 
selected to ensure maintenance begins as early as possible. T76 is not selected as the 
second stop, despite being the longer task, as both T76 and T96 are to be maintained 
by the same crew. The combined duration of two 2-hour tasks is significantly longer 
than the 3 hours required for a grease top-up on T76. 

Movement 3: Vessel 5 arrives at T76 at 10:07. Since the crew and equipment transfer 
from vessel onto the turbine is assumed to take 20 minutes, they will be on the turbine 
at 10:27, over an hour later than first crew, who were dropped off at T29.  

Movement 4: It is 10:27 and Vessel 5 is expected to pick up technicians from T70 at 
11:56, when they finish the manual reset. Excluding travel time between T76 and T70, 
the vessel has an idle time of 1 hour and 18 minutes. Interviews with wind farm 
operators (summarised in Appendix B. Summary of Informal Interviews with 
Offshore Wind Farm Operators) revealed that this time may be spent on auxiliary 
tasks such as cleaning wind turbine transition pieces.   

Movement 5: Technicians are picked up from T70 and taken to T76 to complete their 
second manual reset. This procedure takes 54 minutes: two transfers of 20 minutes 
and 14 minutes travel time between turbines.  
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Movement 6: Technicians at T76 are due to be picked up at 13:27, meaning that the 
vessel will be idle for 32 minutes (excluding travel time) before crew transfer can 
occur.  

 

Figure 6.13. Step-by-step vessel movement analysis for vessel 5 in Case A. 
Legend: turbine in red: 6 hour task, in orange: 3 hour task, in yellow: 2 hour tasks.  

Movement 7: Vessel 5 has now picked up technicians from T76. There are two crews 
of technicians yet to be picked up: Crew 1 at T29, who are set to finish maintenance 
at 15:25 and Crew 2, who will finish the manual reset at T96 at 14:50. The latter is 
chosen as the next destination: maintenance at the latter turbine will be finished 
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sooner and it is closer to the vessel’s current location. Vessel 5, with one crew on-
board arrives at T96 at 13:52, 58 minutes before Crew 2 is set to finish manual reset.  

Movement 8: Crew 2 is picked up and Vessel 5 sets off towards T29, where Crew 1 is 
picked up at 15:30.  

Movement 9: Once all crews have been collected, Vessel 5 heads back to O&M port, 
arriving at 17:55, 5 minutes before the end of the shift.   

Figure 6.14 shows the Gantt chart for this policy. Two periods when the vessel is idle 
can clearly be seen; first just before 12:00 (movement 4) and second just before 15:00 
(movement 7). The Gantt chart also helps to visualise the proportion of time spent 
travelling between the O&M base and wind farm (first and last horizontal bars). An 
end-of-day Gantt chart could also be created by inputting actual pick up-and drop off 
times. This would enable comparison of planned and actual policy timings.  

 

Figure 6.14. Gantt chart visualising the expected pick-up and drop-off times. 
Note: Gantt chart, unlike Figure 6.13, is one of the tool’s automatically generated 
outputs. 

In addition to the automatically generated Gantt chart, the tool’s user is displayed 
with an animation visualising the chosen vessel’s step-by-step movement. In future 
work, the crude animation48 (screenshots provided in Figure K.2) may be improved 
to resemble Figure 6.13.  

                                                   
48 Note: Currently, Matlab is used for animating the policy, however, its capabilities are 
limited and it is not first-choice software for animation creation.  
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In total, 13 crew-hours of maintenance are completed on this cluster of 4 turbines. 
Nearly 1 crew-hour is spent on an idle on vessel. Another 0.1 crew-hour is spent idly 
at a turbine; as technicians waited to be picked up. The proportion of the idle time to 
productive time was approximately 8.5% (1.1/13), meaning that crews were carrying 
out maintenance over 90% of the time (not counting travelling on the vessel and 
climbing up to the nacelle). Since the operator knows about the idle crew-hours in 
advance, it can be prevented by assigning additional preventative tasks to idle crews, 
on the turbines they are assigned to visit.  

The sub-problem is a multi-objective optimisation problem, as discussed in Section 
5.2.2. The order of wind turbine visits discussed in this section achieved the following 
objectives: 

• Minimised the number of technicians by servicing both manual resets with 
one crew.  

• Minimised policy time by visiting turbines in the order of longest task 
duration to shortest. 

• Minimised fuel cost by minimising distance travelled by the vessel. This was 
achieved by taking into account wind turbine locations when planning the 
next stop (as discussed in Movement 2). Note that there were two “repeated” 
journeys in this policy (journeys between turbines T70 & T76 and T76 & T96 
were both covered twice, once each way). Both repeated journeys were also 
the two shortest possible turbine-to-turbine journeys.  

6.3.2 Summer	Case	Study:	Pareto	Graphs	

In the winter Case Study, a Pareto graph is plotted in Figure 6.10. It was created by 
taking every 50th policy (out of the top 10,000) created by the CMA to show the 
breadth of policies generated in each case. In this section, the Pareto graph is created 
using the same procedure described on page 171, except the top 200 value policies 
from each case were selected to be plotted. The resulting graph is shown in Figure 
6.15.  

In Figure 6.15, policies A-D indicated with arrows correspond to the optimal policies 
selected in each of the cases shown in Table 6.9. It seems that a policy superior to 
policy D exists, with a similar value but almost double the probability of maintaining 
all turbines. A comparison of policies D and X is provided in Table 6.12. 

Table 6.12 shows that despite the relatively high probability of completing all 
maintenance actions, the actual number of turbines maintained once the user-
specified uncertainties are realised is lower (15 vs 15.4). The policy values including 
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and excluding the probability term are both lower for Policy Z compared to D; clearly 
the latter policy is superior.  

 

Figure 6.15. Pareto graph, with optimal policies selected in each Case indicated 
with arrows. 

Policy X outperforms D on Pareto graph shown in Figure 6.15 as its range of values 
of individual cluster probabilities, as shown in Table 6.13, is smaller compared to 
Policy D. As discussed in footnote 31 on page 143, for two sets of numbers which have 
the same sum, product of similar numbers is higher than product of dissimilar 
numbers. This is the case here: overall probability of visiting all turbines is much 
higher for Policy Z, is much higher, but sums of individual cluster probabilities are 
similar in both policies.  

This example shows that the total probability of completing maintenance on all 
turbines in the wind farm is not an accurate indicator of policy’s real-world 
robustness to uncertainties. Its value for Policy Z is almost twice as high as Policy D, 
as shown in the last row of Table 6.13.  

Table 6.13 would suggest that a sum of probabilities of maintaining all turbines in 
individual clusters, rather than a product, may be a better candidate for the y-axis of 
Pareto graph. However, unlike product, sum of probabilities does not have any 
meaning. Additionally, policy D’s superiority to X was partly caused by the fact that 



Chapter 6. Case Studies 
 

 
 

188 

the former planned to complete 17 maintenance tasks compared to 16 for the latter. 
For an equal value of probability of completing all maintenance tasks, a policy aiming 
to carry out more tasks is bound to perform better.  

Table 6.12. Comparison of Policies D and X. 

 Policy D  Policy X 
Risk aversion factor (Y) 6 6 
Planned number of turbines to be repaired (/20) 17 16 
Number of vessels used 6 6 
Expected policy value (not including value 
added due to a non-zero Y) (£ ‘000) 

1708.9 1705.4 

Policy value (including value added due to a 
non-zero Y) (£ ‘000) 

3255.5 3223.8 

Number of technicians required to carry out all 
repairs 

37 35 

Mean policy time (h) 66.5 62.5 
Crew-hours worked 9.9 9.9 
From Monte Carlo simulation 
 (as described in Section 5.4): 

  

Average number of turbines actually repaired 
(/24) 

15.4 15 

Maintenance actions not completed due to 
repairs taking longer than expected 

1 0.4 

Turbines not repaired due to incorrect diagnosis 0.6 0.6 
Turbines not repaired due to unsuccessful 
transfer 

0 0 

A Pareto graph with a sum of individual cluster probabilities on its y-axis, rather than 
a product, is shown in Figure 6.16. The red and blue clusters are now isolated, 
suggesting the 200 highest value policies in Cases A and B were similar. Policy B can 
be considered superior to A, as a small drop in value results in a large increase in 
probability.  

Similar conclusions were drawn from Table 6.9, which showed that Policy B achieved 
an average increase of 2.5 turbines maintained by only reducing the number of crew-
hours worked by 3.  
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Table 6.13. Comparison of individual cluster probabilities. 

Probability of completing 
all actions in a cluster 

Policy D Policy X 

Vessel 1 0.63 0.72 
Vessel 2 0.52 0.52 
Vessel 3 0.90 0.51 
Vessel 4 0.89 0.89 
Vessel 5 0.25 0.68 
Vessel 6 0.87 0.87 

Sum of probabilities 4.06  4.19 
Product of probabilities 0.056  0.1 

 

 

Figure 6.16. Pareto graph with a y-axis consisting of sum of probabilities of 
maintaining all turbines in all individual clusters in a policy.  

In the context of the two Case Studies presented in this chapter, plotting Pareto 
graphs is an interesting academic exercise providing an insight into the tool’s search 
of the state space. However, in the author’s opinion, they do not increase the tool’s 
day-to-day usability, as discussed in 6.2.3. 
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6.4 Summary	

One of the key conclusions emerging from this section is the poor performance of 
policies created with a risk aversion factor equal to zero. Policies A in both Case 
Studies were the worst performers in terms of maintenance actions completed once 
uncertainties have realised, despite aiming to visit the highest number of turbines. 
Note that this approach of judging a policy purely on costs and rewards is used by all 
researchers in the offshore wind domain (as discussed in Section 4.2.6). The real-
world problems feature multiple uncertainties, which are bound to affect the choice 
of the vessel routing policy. Not including those factors in the decision making 
process is an outdated approach, deemed to produce ineffective policies.   

Taking the expected significant wave height as an example, Case Study 1 has shown 
that significant improvements in transfer success (36% reduction in unsuccessful 
transfers, as discussed in Section 6.2.2) can be achieved through higher utilisation 
rates of the more costly-to-run Class 1 vessels. Using non-zero risk aversion factor 
encourages the tool to sacrifice increases in fuel and vessel hire costs for increased 
chance of maintaining a higher number of turbines. Running the model for a range of 
risk aversion factors allows the user to choose the policy which matches their risk 
appetite (in terms of the additional cost they are willing to suffer for a given increase 
in the expected number of turbines maintained at the end of the day). 

Since the real-world problem of offshore wind farm vessel routing is characterised by 
multiple objectives, it is impossible to select a single “optimal” policy. In the two Case 
Studies presented, policies generated using a risk aversion factor equal to 4 seem to 
provide a sensible trade-off between the policy value and probability of maintaining 
a large number of turbines. However, this may not be the case for scenarios computed 
under different assumptions and inputs. Generally, in the author’s opinion, there is 
no need to exclude the human decision maker from the policy selection process. 
Presenting the tool’s user with a range of varying policies enables them to select the 
most suitable one on a given day.  

Case Studies presented in this chapter have shown that the methodologies proposed 
in Chapter 3.  and Chapter 5 are compatible. In tandem, the two approaches enable 
effective task prioritisation while considering a broad range of relevant factors. In 
cases of resource shortages, tasks to be carried out are selected taking into account the 
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weather, asset performance, completion deadlines, proximity to the O&M base, task 
duration and resource requirements49. 

Although a constraint on the vessel’s capacity to carry spare parts has been modelled, 
it was never a factor affecting the final policy (in neither of two case studies). The 
weight of spare parts and tools required for maintenance actions was low compared 
to the vessel’s capacity. This aligns with information gathered from interviews with 
offshore wind farm operators (summarised in Appendix B. Summary of Informal 
Interviews with Offshore Wind Farm Operators), who stated that it is unusual for 
them to consider component weight when planning vessel routing – it is rarely 
required to do so.  

This chapter has shown that the proposed methodology is capable of solving 
complex, multi-objective VRPs. The following chapter describes the validation 
procedure for the tool, including application to real world scenarios. In Section 7.4.2 
the performance of the proposed CMA heuristic method to a commercial solver 
(CPLEX), showing that the results produced in Case Studies 1 and 2 are all within 
3.3% of optimal. Possible improvements, future work and alternative applications of 
the tool are discussed in Section 8.3.

                                                   
49 The former 3 factors are encapsulated in the output from the SMDP model and the latter 3 
factors result from the design of logistics optimisation algorithms. 
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Chapter	7.	 Model	Validation		

This chapter describes the procedure for validation of the methodologies described 
in this thesis. This chapter is structured as follows; Section 7.1 describes the process 
of selecting validation approaches. Section 7.2 covers validation of the SMDP model 
for task prioritisation. Methodologies for solving the sub-problem and master 
problem are validated in Sections 7.3 and 7.4 respectively. Tool’s application to a real 
world case study is described in Section 7.5, followed by discussion of the expert 
interview provided in Section 7.6. Sections 7.7 and 7.8 compare the tool’s capabilities 
to other published methods and previously specified constraints respectively. Finally, 
the conclusions from this chapter are summarised in Section 7.9.  

7.1 Validation:	Definition	and	Selection	of	Approaches	

Validation is a necessary step in the process of practical tool implementation. 
Validation was defined by Schlesinger [192] as:  

“Substantiation that a computerized model within its domain of applicability possesses a 

satisfactory range of accuracy consistent with the intended application of the model” 

Note that for the tool developed in this thesis, “intended application of the model” is 
real-world decision support. Adapting the above definition to the context of decision 
support tools yields the following definition of validation:  

“Substantiation that the proposed tool produces outputs aiding wind farm operators make 

better decisions” 

One of the widely used validation approaches is comparing a model’s output to 
experimental data, or outputs of other models. However, due to differences is 
solution approaches and the constraints considered, comparison to other models was 
not carried out. Discussion on this is provided in Section 7.7, along with comparison 
of the proposed tool to published models in the field.  

Alternatively, decision support tools can be validated by real life application. While 
this has been attempted in Section 7.5, there are limitations associated with this 
approach, as discussed in Section 7.5.3. 

To evaluate the fitness of a candidate policy, effects of uncertainty realisation have to 
be explored. Input uncertainties need to be propagated through the model to ensure 
their effect on the final output is captured. According to Roy & Oberkampf [193], the 
simplest approach for propagating uncertainties through the model is Monte Carlo 
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Sampling, which was used in this work (as described in Section 5.4). Given the large 
number of policies generated using the proposed methodology, running a Monte 
Carlo Analysis for each candidate policy would take an unreasonable amount of 
computational time.  

As shown in Figure 6.9, adjacent points on the value function graph are seemingly 
unrelated. Widely used optimisation techniques based on the shape of the value 
function, such as hill climbing algorithms, are unlikely to be successful at finding the 
global optimum. It is impractical, if not impossible, to find an optimal solution to 
compare the model’s output for benchmarking purposes (for a problem with 
uncertain inputs and multiple objectives). Due to the complexity of the problem at 
hand, there is no optimal solution to compare the model’s outputs to.  

Researchers agree that in many cases, it is impossible to validate a model fully. 
Quoting Sargent [194]: 

“It is often too costly and time consuming to determine that a model is absolutely valid over 

the complete domain of its intended applicability. Instead, tests and evaluations are 

conducted until sufficient confidence is obtained that a model can be considered valid for its 

intended application” 

While most engineering models will never be considered fully valid, many can be 
deemed requisite after sufficient validation. A requisite model was defined by 
Phillips [195] as: 

“A model is requisite if its form and content are sufficient to solve the problem (…). Everything 

required to solve the problem is represented in the model or can be simulated by it” 

To find out whether the tool considers all relevant inputs, an interview with a wind 
farm operator should be conducted. Additionally, the interview should be used to 
identify any potential barriers to tool’s practical implementation. This is discussed in 
more depth in Section 7.6.  

The tool developed in this thesis comprises of several models. For example, the SMDP 
model can be seen as a standalone entity; its outputs may be used for purposes other 
than inputs to the logistics optimisation model. It was decided that in addition to 
validating the tool’s final output, i.e. the vessel routing policy, validation of the SMDP 
model, the CMA heuristic method and the proposed sub-problem solution approach 
would also discussed. A summary of the validation approaches chosen for each part 
of the tool is presented in Table 7.1. 
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Table 7.1. Validation techniques selected for the individual parts of the tool. 

Model to be 
validated 

Validation 
technique 

Definition Section 

SMDP 
(Chapter 3) 

Face validity 

“Test which is to be used in a 
practical situation should, in 
addition to having pragmatic or 
statistical validity, appear 
practical, pertinent and related to 
the purpose of the test as well” 
[196]. 

7.2 

Sub-problem 
solution approach 

(Section 5.2) 

Comparison to 
another model 

The results of the proposed 
algorithm were compared to the 
optimal solutions obtained by 
brute force analysis. 

7.3 

CMA Heuristic 
(Section 5.3) 

Comparison to 
another model 

Determination of the optimality 
gap of the heuristic method for 
different case studies. Achieved 
by comparing to a model capable 
of producing the optimum 
solution.  

7.4 

Entire logistics 
optimisation tool 

(Chapter 5) 

Historical data 
validation/ 

Decision maker 
behaviour 

reproduction 
test 

“If historical data exist (or 
data collected on a system 
specifically for building and 
testing a model), part of the data 
is used to build the model and the 
remaining data are used to 
determine (test) whether the 
model behaves as the system 
does” [194]. 

7.5 

Expert 
interviews 

 “Soft” validation technique 
involving questioning the experts 
(maintenance planners) once the 
tool has been applied to a real-
world scenario. Used to 
determine whether the model 
considers all relevant inputs and 
to identify barriers for practical 
application. 

7.6 

Validation 
against 

requirements 

“A simulation model should only 
be developed for a set of well-
defined objectives.” [194].  

7.8 
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The proposed validation process comprises of a number of diverse approaches, as 
shown in Table 7.1. As recommended by Phillips [195], requisite models should be 
validated by a mixture of “soft” (e.g. interviews) and “hard” (e.g. comparison to 
other models) techniques. Individual steps of the validation process are discussed in 
more detail in Sections 7.2-7.8.  

As suggested by Christel & Kang [197], verification of whether the tool meets the 
previously specified criteria50 should be done by using case studies, such as the ones 
described in Chapter 6. This analysis is conducted in Section 7.8. The authors of [197] 
also point out that evaluation of a model should include comparison to the alternative 
methods of solving similar problems (including existing systems), to determine 
whether employing the new methodologies leads to process improvements. The 
tool’s performance compared to existing wind farm decision making process is 
discussed in Section 7.5.3. The proposed tool’s capabilities are compared to other 
models developed for offshore wind farm vessel routing in Section 7.7.  

  

                                                   
50 Previously specified criteria come from conclusions of Chapters 2 and 4. 
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7.2 SMDP	Model	Validation	Discussion	

The SMDP model was designed to quantify the incentive of maintaining a turbine on 
a particular day, relative to other turbines requiring maintenance. As discussed in 
Section 3.2.5, literature review found no models suitable for prioritisation of wind 
turbine maintenance. Comparing the SMDP results to other models is therefore 
impossible.  

Alternatively, the SMDP results could be compared to priorities assigned to turbines 
by wind farm operators. According to informal interviews with maintenance 
planners (summarised in Appendix B. Summary of Informal Interviews with 
Offshore Wind Farm Operators), they do not currently have a methodology for 
quantifying the incentive of performing different maintenance actions. Although no 
formal procedure is for task prioritisation was implemented on the wind farm the 
author has visited, the planners generally made vessel routing decisions using the 
following logic51: 

1. Identify the high priority turbines. These include broken down assets, 
turbines which may fail in near future or turbines with tasks with a near due 
deadline 

2. Plan movements to the high priority turbines  
3. Visits to low-priority turbines are planned on an ad-hoc basis; depending on 

the proximity to high priority turbines, resource availability (for example a 
team specialising in retrofits is on shift, they may be assigned to a cluster of 
turbines requiring a retrofit) and other practical considerations.  

The two most important considerations influencing the real world turbine visit 
prioritisation are: 

• Contractual deadlines 
• Maximisation of power production 

These two factors also have the strongest influence on the outputs of the SMDP 
model, as shown in Table 3.7 and Table 3.8.  

There are additional factors which should be taken into account when prioritising 
wind turbine visits. Taking power production as an example; turbines exposed to 
higher wind speeds should be assigned a higher priority (for the same corrective 
maintenance action). Manual checking of every turbine’s recent power output is time 

                                                   
51 Note: in real life, the relative incentives of visiting turbines are not calculated. The process 
of task prioritisation is integrated with vessel routing planning procedure.   



Chapter 7. Model Validation 
 

 
 

197 

consuming and ultimately, including it in the prioritisation process may not have a 
significant effect on the final policy. Under pressure, planners do not always have 
time to consider the turbine’s power output when prioritising tasks.  

Employing the SMDP methodology can automate this process; relative incentive of 
visiting a given output can be calculated in less than a second. The advantages of 
using the SMDP, over the current approach are as follows:  

• Reduced time required to prioritise tasks (provided automated data input) 
• The SMDP model ensures unbiased, consistent results, while the current 

process may be influenced the planner’s subjective preference  
• Assuming automated data input, the SMDP model  can consider factors which 

the planners do not have the time to consider (e.g. turbine’s power 
production)  

• Process automation should result in fewer mistakes (e.g. missing a deadline 
due to misreading a due date) 

• Outputs of the SMDP (incentives to visit turbines) can be logged and used to 
create improved asset management strategies once sufficient amount of data 
is collected52. In the current system, there is no process for logging task 
prioritisation decisions. The SMDP results could be stored to provide a 
justification of past decisions  

There are numerous factors to consider when prioritising maintenance tasks. The 
degree to which each factor affects the result is subjective and therefore difficult to 
model. Additionally, there is no obvious way of using a real monetary value when 
quantifying task priorities, capable of considering all relevant factors (Table 3.1). 
Therefore, it is unlikely that a single optimal priority ranking exists for each scenario.  

Testing the SMDP model in different scenarios has shown that it meets the criteria for 
a requisite model (as defined in Section 7.1). All key factors affecting task 
prioritisation were considered. Discussion provided in Sections 3.4 and 6.3 
demonstrated that the SMDP results were coherent, sensible and aligned with the 
logic applied by wind farm operators.  Returning to the definition of face validity, 
shown in Table 7.1, the following question needs to be asked:  

                                                   
52 For example, turbines with highest cumulative sum of incentives points are likely to be to 
high performance turbines which fail often or turbines consistently close to missing 
contractual deadlines. Identifying those turbines may prompt root cause analysis leading to 
conclusions which improve maintenance practices. 
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Does the model’s output have pragmatic or statistical validity; does it appear practical, 

pertinent and related to the purpose of the test? 

Based on the evidence and discussions presented here and in Sections 3.4 and 6.3, it 
can be concluded that the SMDP model meets Mosier’s ([196]) criteria of a valid 
model.  

7.3 Validation	of	the	Proposed	Sub-Problem	Solution	Approach	

The sub-problem solution procedure is described in detail in Section 5.2. The main 
aim of the proposed algorithm is to produce an order of visits to a set of input 
turbines, which minimises the policy time while minimising the number of 
technicians required to carry out all maintenance actions.  

The proposed approach is compared to results of a brute force search, which 
considers all possible combinations of turbine visits (within a given 4-turbine cluster). 
In total, ten 4-turbine clusters were analysed. Clusters were selected at random from 
the pool of 4-turbine clusters which constituted Case Study 1, discussed in Section 
6.2.  

Each 4-turbine cluster requires eight visits – a pick-up and a drop-off at each of the 
turbines. Assuming the simplest case, wherein all drop-offs are completed before 
pick-ups commence, the number of possible combinations is (N!)2, where N is the 
number of turbines visited by a vessel. This yields 576 combinations for every 4-
turbine cluster.  

By analysing all possible combinations, the brute force algorithm always produces 
the optimal solution. The optimisation objective for the brute force algorithm was 
minimisation of total policy time. This objective aligns with minimisation of fuel cost; 
the longer a vessel spends at sea, the more fuel it will consume.  

Table 7.2 compares the results of the brute force algorithm to the outputs of the 
proposed sub-problem solution approach. The latter model found the optimal 
solution in 8 out of 10 cases. In the two remaining instances, the difference between 
the two approaches was never greater than 1% (or 7 minutes). Note that in this test, 
the number of technicians required to carry out all policies was the same for both 
solution approaches.  

The downside of the brute force approach is lengthy computational time required to 
analyse all possible combinations. Computing the solution for a single 4-turbine 
cluster took 0.07 seconds (on a computer with a 3.4GHz i7-3770 CPU, 8GB of RAM 
and 64-bit Windows 7 operating system). The approximate computational time for 
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Case Study 1 (14 turbines, 7350 clusters) would be 8.6 minutes for the sub-problem 
alone53, compared to 2.2 seconds for the proposed approach. This figure rises to an 
estimated 76 min solution time for Case Study 2 (24 turbines). Potentially increasing 
the number of turbines per cluster from 4 (576 possible combinations per cluster) to 5 
(14,400 combinations) would mean that the sub-problem alone would take days to 
solve using brute force. 

Table 7.2. Comparing outputs of the sub-problem solution algorithm (described 
in Section 5.2) to the optimal solution obtained from a brute force analysis. 

Instance Turbines 
Policy time – 
tool output 

(min) 

Policy time – 
optimal (min) 

Difference 

1 T36, T51, T68, T99 629 629 0% 
2 T19, T42, T51, T71 665 665 0% 
3 T50, T71,T85, T99 644 644 0% 
4 T19, T36, T77, T92 654 652 0.3% 
5 T42, T68, T92, T99 637 637 0% 
6 T3, T21, T42, T45 608 608 0% 
7 T42, T50, T71, T77 638 638 0% 
8 T3, T36, T71, T92 677 670 1% 
9 T19, T42, T85, T99 692 692 0% 
10 T21, T51, T68, T71 637 637 0% 

 

  

                                                   
53 From 0.07 * 7350 = 514 seconds.  
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7.4 Validation	of	the	CMA	Heuristic	Algorithm	

The validation approach selected for the CMA heuristic method was comparison with 
an existing model, which has already been validated. CPLEX software was identified 
as the best candidate to compare the CMA to. It is widely used to solve integer 
programming problems in various domains. CPLEX was also used in one of the 
publications focused on solving the offshore wind turbine vessel routing problem 
[25].   

The author has already published a paper on validation of the CMA algorithm [198]. 
Results obtained in those tests are discussed in Section 7.4.1. Additionally, similar 
tests were run for Chapter 6 Case Studies, with results shown in Section 7.4.2. 

7.4.1 Published	Results	

Tests were run on the same 10-by-10 turbines fictional wind farm, introduced in 
Section 6.1.2. Three test cases (A-C) were analysed, with 10, 15 and 20 failed turbines 
respectively. As discussed in Section 5.3.1, the user can choose the number of policies 
to be analysed by the CMA, which determines the computational time. A summary 
of the number of policies generated, along with case study properties is shown in 
Table 7.3.  

The only difference distinguishing the ten scenarios in each case are the types of 
maintenance actions and locations of turbines to be serviced. Some scenarios consist 
of a higher proportion of tasks with long durations; in those cases it may not be 
possible to visit all turbines on day 1. These cases are referred to in the latter parts of 
this section as “severely constrained”. The proportion of severely constrained tasks is 
the highest in Case B scenarios, as the number of technicians per turbine was the 
lowest of all cases, as shown in row 3 of Table 7.3.  

Table 7.3. Inputs to validation case studies. 

 Case A Case B Case C 
Turbines failed 10 15 20 
Technicians available 25 32 45 
Technicians per turbine 2.5 2.13 2.25 
Vessels Available 3 4 5 
Number of policies generated by CMA  15,000 36,000 51,840 

Results of Case A analysis are shown in Table 7.4. CMA heuristic found the optimal 
solution in 9 out of 10 cases. Value of the suboptimal solution found in scenario 2 is 
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only £4 lower compared to optimal. Computational time for both cases is similar for 
both CPLEX and CMA approaches (less than 5 seconds in all scenarios).  

Table 7.4. Case A results. 

Instance 
CMA 
value 

CPLEX Value  
(difference) 

CMA CPU 
time (s) 

CPLEX CPU 
time (s) 

#1 £88,183 £88,183 (0%) 2 0.6 
#2 £86,240 £86,244 (0.004%) 2 0.5 
#3 £88,063 £88,063 (0%) 2 4.7 
#4 £88,204 £88,204 (0%) 2 0.5 
#5 £90,198 £90,198 (0%) 2 0.5 
#6 £88,061 £88,061 (0%) 2 0.5 
#7 £92,134 £92,134 (0%) 2 0.4 
#8 £90,135 £90,135 (0%) 2 0.5 
#9 £94,144 £94,144 (0%) 2 0.5 
#10 £89,993 £89,993 (0%) 2 0.5 

Table 7.5 shows the results for Case B tests. The optimal solution was found by the 
CMA heuristic in 4 out of 10 cases, however, the difference between the optimal and 
CMA-generated policy never exceeded £173 or 0.17%. Computational times have 
increased for both approaches. CMA computational times are very consistent 
(between 30 and 36 seconds in all cases), while the CPLEX computational times varied 
between 1.5 to 438.2 seconds. The time required for the CPLEX method to compute 
instance #1 was longer than the entire CMA simulation time for all ten cases. CMA 
heuristic outperformed CPLEX in instance 4, as the optimal solution was found in 
shorter computational time.  

Table 7.5. Case B results. 

Instance 
CMA 
value 

CPLEX Value  
(difference) 

CMA CPU 
time (s) 

CPLEX CPU 
time (s) 

#1 £119,083 £119,104 (0.02%) 32.1 438.2 
#2 £116,107 £116,107 (0%) 34.5 5.3 
#3 £126,907 £126,951 (0.04%) 33.7 2.2 
#4 £116,034 £116,034 (0%) 35.2 53.5 
#5 £116,932 £117.133 (0.17%) 32.6 5.1 
#6 £114,946 £115,134 (0.16%) 34.1 27.8 
#7 £114,093 £114,093  (0%) 30.3 1.5 
#8 £124,722 £124, 945 (0.17%) 33.4 1.8 
#9 £114,871 £115,036 (0.14%) 35 27.4 
#10 £113,862 £113,862 (0%) 30.4 3.3 
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Results for Case C are shown in Table 7.6. Despite the increase in problem complexity, 
computational times in all instances, for both solution approaches, remain below one 
minute. The CPLEX solver significantly outperformed CMA in three instances (#2, #8 
and #9), in which following the policy generated by CPLEX allowed visiting an 
additional turbine.  

Table 7.6. Case C results. 

Instance 
CMA 
value 

CPLEX Value  
(difference) 

CMA CPU 
time (s) 

CPLEX CPU 
time (s) 

#1 £146,952 £147,112 (0.11%) 47 13.6 
#2 £143,126 £150,897 (5.43%) 40.4 7.6 
#3 £155,034 £155, 269 (0.14%) 48.3 8.5 
#4 £150,902 £151,010 (0.07%) 44.2 8.3 
#5 £152,883 £153,173 (0.19%) 43.4 7.9 
#6 £154,972 £155,192 (0.14%) 48.2 8.7 
#7 £145,027 £145, 200 (0.12%) 51.5 8.9 
#8 £136,157 £140,995 (3.52%) 38.7 16.3 
#9 £139,309 £147,147 (5.63%) 44.1 19.5 
#10 £151,163 £151,308 (0.1%) 47.2 8.2 

Across all 30 test cases, there were six instances where the CPLEX computational time 
exceeded 15s. Five of those scenarios were severely constrained. In total, there were 
12 (out of 30) severely constrained cases, suggesting that one of the reasons for 
increased computational time of the CPLEX solver was due to resource shortages in 
a given scenario. The computational time of the CMA method was not affected by the 
heavily constrained scenarios.  

 

Figure 7.1. Comparison of computational time and performance of CMA and 
CPLEX. 
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A graph showing computational time vs. result quality for each solution method is 
shown in Figure 7.1. The CMA produces a close-to-optimal solution (within 0.34% of 
optimal) almost instantaneously. The solution improvement rate is high initially; 
dropping as the computational time increases. Allowing additional computational 
time (by increasing the number of policies to be computed) would likely result in 
optimal, or significantly closer to optimal solution being produced by the CMA.  

A summary of these results, as well as results from the following section, is 
provided in Section 7.4.3.  

7.4.2 Results	for	Winter	and	Summer	Case	Studies	from	Chapter	6	

The policies described in Chapter 6 were generated using the CMA approach. Here, 
these problems were solved again using CPLEX. A comparison of winter and summer 
case study results is shown in Table 7.7 and Table 7.8 respectively.  

Table 7.7. Computational time and result quality comparison: Winter Case Study. 

Case 
CMA 

computational 
time (s) 

CPLEX 
computational 

time (s) 

CMA 
value 
(£,000) 

CPLEX 
value 
(£,000) 

Difference 
in value 

A 250.1 20.9 1301.1 1301.1 0% 
B 245.3 21.3 1488.3 1499.3 0.67% 
C 255.8 22.1 1702.6 1702.6 0% 
D 253.2 20.8 1909 1909 0% 
E 243.2 20.2 2118.9 2143.3 1.1% 
F 313 20.5 2452.7 2460.3 0.3% 

One of the advantages of the CPLEX solver is that it can assert whether an optimal 
solution has been found. All CPLEX solutions provided in this, and previous sections, 
were confirmed to be optimal. In the winter case study, CMA found the optimal 
solution in three out of six cases. The highest difference between CMA and optimal 
solutions was 1.1% (Case E). The CMA computational time was over 10 times higher 
than CPLEX.      

The summer case study was significantly more complex (24 turbines requiring 
maintenance vs. 14 for winter Case Study). This caused an approximately fourfold 
increase in CPLEX computational time. CMA’s computational time was not affected 
as the number of policies generated was kept constant in both Case Studies. As a 
result, the CMA did not manage to find the optimal solution in any of the four cases. 
However, the results remained within 3.3% of optimal in all four cases.    
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Table 7.8. Computational time and objective value comparison: Summer Case 
Study.  

Case 
CMA 

computational 
time (s) 

CPLEX 
computational 

time (s) 

CMA 
value 
(£,000) 

CPLEX 
value 
(£,000) 

Difference 
in value 

A 280.7 102.7 2054.2 2066.9 0.61% 
B 264.9 100.4 2368.1 2441.1 2.99% 
C 240.8 102.3 2758.2 2851.5 3.27% 
D 235.5 101 3255.5 3337.6 2.46% 

 

7.4.3 Summary	of	CMA-to-CPLEX	comparison	

In summary, CPLEX outperformed CMA in most cases, both in terms of 
computational time and solution quality. However, there are a number of advantages 
the CMA has over CPLEX: 

1) Free-to-use, whereas CPLEX 12-month licence cost54 is $9,270, with additional 
charges for multiple workstations (free for academic use) 

2) Easy to code and implement in any programming language, depending on the 
system used (entire solution procedure can be contained on a single page – as 
shown in Figure 5.10) 

3) Consistent computational time (Note: the reason for the significant 
improvement in consistency of CPLEX computational times from Section 7.4.1 
to Section 7.4.2 is unknown) 

In addition to the above, one of the problems encountered when running CPLEX from 
MATLAB (using CPLEX connector for MATLAB), were occasional MATLAB crashes 
caused by CPLEX. Crashes occurred frequently in severely constrained tests 
described in Section 7.4.1. Running CPLEX for scenarios presented in Section 7.4.2 
only resulted in one crash (in 10 runs). It is possible that the crashes were a result of 
incompatibility of the MATLAB version used (2014b) and the CPLEX version (12.7.1). 

In conclusion, CMA is a heuristic method capable of producing close-to-optimal 
solutions for most real-world-size problems in reasonable computational time (i.e. 
under 5 minutes. While it does not guarantee finding an optimal solution, it is a 
versatile, cost-effective heuristic, which may also be applicable to problems beyond 
vessel movement optimisation.  

                                                   
54 From: http://estore.gemini-systems.com/ibm/software-license/industry-solutions/cplex-
optimization-studio/ilog-cplex-optimization-studio-de/ Accessed on: 31/01/2018. 
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7.5 Practical	Tool	Application	

In an attempt to further validate the proposed tool, a visit to a major UK offshore 
wind farm operations centre55 has been arranged in February 2017. During the visit, 
the tool was tested on real-life scenarios. A report summarising the visit is shown in 
Appendix L. Report Summarising the Offshore Wind Farm Site Visit. The aims of the 
visit were to: 

1) Affirm that the tool solves the real world problem; check if the inputs and 
assumptions are correct 

2) Ensure that all practical considerations have been modelled. Identify features 
and capabilities to be added to the tool 

3) Gather feedback on the user interface, the usefulness of the tool’s outputs and 
potential interface/graphical improvements 

4) Validate the model outputs by testing the tool on real-life scenarios and 
comparing its outputs to the decisions made by planners 

Aims 1-3) were achieved through formal and informal interviews with vessel 
movement planners. A transcript of the formal interview along with a discussion of 
the operators’ comments is provided in Section 7.6. A summary of the real world case 
study conclusions, categorised by the corresponding aims (1-4) is also provided in 
Section 7.6. Sections 7.5.1 and 7.5.2 contain the description of the inputs and results of 
the real world case study.  

7.5.1 Inputs	&	Assumptions	

Since the wind farm operators did not wish to have their identity revealed, wind 
turbine locations were anonymised. The scenario analysed here occurred on a day in 
February 2017, when 14 maintenance actions were set to be carried out. Turbines to 
be visited and corresponding tasks were shown in Figure 7.2. Turbines in yellow were 
half day maintenance actions (approx. duration of 3 hours), orange stood for whole 
day tasks (approx. duration of 6 hours). High priority maintenance actions (6 hour 
duration) were marked in red.  

A table providing detailed task properties used as inputs in this case study is shown 
in Table M.1 in Appendix M: Real World Case Study Inputs. Duration of the high 

                                                   
55 They wish not to be named in this publication. As per their request, all data which could 
lead to identification of the wind farm was anonymised.  
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priority tasks was set marginally higher compared to all other tasks (6.1h vs. 6h), to 
ensure these are visited first.  

The operators noted that on that day, factors such as spare parts weight and cost of 
repair actions would not affect the process of optimal policy selection. Hence, these 
inputs were equal for all maintenance tasks.  

 

Figure 7.2. Map of wind turbines requiring maintenance. 

On that day, the significant wave height across the farm was approximately 1.2m; low 
enough not to hinder technician transfer. The operators had four vessels available to 
them. Properties of the vessels available to the operators on the day are shown in 
Table M.2 in Appendix M: Real World Case Study Inputs.  

The number of technicians available on the day was 33. The shift duration was set at 
11.5 h. Speed correction factor (as defined in Table 4.1) was set at 1.5. CMA heuristic 
method was used to match individual clusters into policies to arrive at a final solution. 
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The tier limits (defined on page 147) used were 100, 40 and 25 respectively, producing 
a total of 100,000 policies.  

The cluster value (i.e. the reward for servicing a set of turbines) was calculated using 
Equation 5.11. Added terms due to increased probability of servicing all turbines in a 
cluster were not included in this analysis, as the operators said they did not consider 
those when creating the plan. This ensures like-for-like comparison of the policy 
suggested by the tool and the policy created by the wind farm operators.  

7.5.2 Results	

The computational time required to produce the suggested policy for this scenario 
was 24.3 seconds (on a computer with a 3.4GHz i7-3770 CPU, 8GB of RAM and 64-bit 
Windows 7 operating system). Vessel dispatch policy generated by the model is 
shown in Figure 7.3. The assignment of vessels to turbines suggested by the tool 
exactly matches the plan created by the wind farm operators.  

Since significant wave height and other uncertain inputs were not considered in this 
case study, maximisation of the number of turbines visited and minimisation of travel 
cost were the key optimisation objectives. The resulting policy shown in Figure 7.3 
features four well defined clusters of turbines located close to each other. The fact that 
the policy generated by the tool is the same as the decision made by operators 
demonstrates that the objectives driving the tool’s outputs can easily be aligned with 
the user’s needs.  

Although the computational time required to produce the policy shown in Figure 7.3 
was very short (under 1 minute), inputting the data and setting model parameters at 
the start of the day took approximately 30 minutes. If the circumstances change 
during the day – for example an additional maintenance tasks need to be added, 
policy can be re-created very quickly (under 5 minutes including data input, 
assuming similar settings).  

During the visit, it was observed that the time required to create the initial policy at 
the start of the day was approximately 45 minutes, with four coordinators/senior 
technicians involved in the planning process. Changes such as addition of a 
maintenance task, which required significant re-working of the policy, would take 
approximately 30 additional minutes, with at least two people involved. However, it 
is worth noting that planners did assign individual technicians to tasks, meaning the 
policy created by coordinators and senior technicians was more complex than the one 
created by the tool. Despite this, significant time savings could be achieved by using 
the tool for decision support.  
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Figure 7.3. Vessel dispatch plan generated by the tool. 

In addition to the vessel-to-turbine assignment, the tool also recommends the order 
of turbine visits. The logic used by the model to choose the drop-off and pick-up order 
is discussed in Sections 5.2.3 & 5.2.4. The order of drop-offs recommended by the tool 
is shown in Table 7.9. The order chosen by the wind farm operators was the same 
as the tool’s output. The first stop for vessels 1 & 2 were high priority turbines – 
dropping technicians off at those turbines first maximises the time available to carry 
out urgent repairs.  

Table 7.9. Suggested order of technician drop-offs. 

Drop-off 
order 

Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1 WT 9 (high priority) WT 6 (high priority) WT 14 WT 2 
4 WT 10 WT 4  WT 11 WT 1 
3 WT 8 WT 3 WT 12  
4 WT 7 WT 5 WT 13  
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Table 7.9 does not show the recommended order of pick-ups. In most cases, wind 
farm operators decide the pick-up order once they receive an updated expected task 
finish time from technicians.  

7.5.3 Summary	of	the	Practical	Tool	Application	Case	Study	

Results of the blind case study shown in the previous section demonstrated that the 
tool’s outputs align with decisions made by wind farm operators. However, the 
scenario tested did not test the tool’s full capabilities: 

a) Scenario did not require the tool to take uncertainties on inputs into account 
b) Tool’s capability to prioritise visits was not tested, due to limited pool of 

turbines to be visited on the day 

As for point a), an attempt could have been made to conduct a blind case study based 
on a scenario with large uncertainties. However, if the tool’s output and the policy 
created by the operators differed, it would be very difficult to compare the two and 
determine which one is superior. If the operator’s decision was carried out in real life, 
the uncertainties associated with movements suggested by the tool wouldn’t have 
realised, making it difficult to quantify the effectiveness of the proposed policy. A 
single blind case study would not be sufficient to determine whether the tool’s 
outputs are superior or inferior to decisions made the operators – a larger sample size 
would be required to ensure valid conclusions. In summary, application of the tool to 
a scenario with no significant uncertainties driving the outcome allowed fair 
comparison between the two decision making processes.  

Regarding point b) from above, selection of the turbines to be visited on the day is a 
large part of the maintenance optimisation process. During the site visit, the tool user 
(the author) did not have access to the entire pool of maintenance actions required. 
Turbines to be visited were pre-selected by planners, who made decisions based on 
type of task required, maintenance task deadlines, turbine locations and resource 
availability. All these factors can be captured by the SMDP model described in 
Chapter 3, however, due to limited visit time and the complexity associated with 
interfacing MATLAB with wind farm IT systems, it has not been used in the decision 
making process.  

The main barrier to real-world application of the SMDP model is data integration: 
linking the existing wind farm data structure (task deadlines, alarm codes, weather 
forecast) to the MATLAB-based model would likely take a considerable amount of 
time. Data integration is discussed in more detail in Section 8.3.3. 
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Providing the tool with a greater choice of maintenance actions would not only test 
the tool’s ability to prioritise tasks based on their location, severity, deadlines and 
weather forecast; it would also make it possible for the tool to create a policy which 
improves on the wind farm operator’s plan. Allowing the tool to select from a larger 
pool of turbines can enable the tool to create policies which the operators did not 
consider during their decision making process.   

In summary, the optimisation objectives modelled in the tool (i.e. minimise fuel 
cost/travel time or maximise probability of completing maintenance at the highest 
possible number of turbines) align with the wind farm operator’s objectives. The real 
world blind case study has shown that the tool is capable of suggesting an order of 
wind turbine visits similar to the plan created by professional maintenance planners, 
in shorter time. The wind farm operators’ comments on the tool’s outputs are 
discussed in the following section, which provides a transcript of an interview with a 
member of the offshore wind farm maintenance planning team.  
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7.6 Expert	Interview	Discussion	

As part of the validation process, an interview has been conducted with a senior 
technician, who is routinely involved in planning vessel movements at the offshore 
wind farm where the visit was taking place. A transcript of this interview is shown in 
Table N.1 in Appendix N. 

The four key aims of the site visit are outlined in Section 7.5. Conclusions arising from 
both the formal interview and informal conversation with wind farm maintenance 
planners were summarised by the corresponding aim, as shown below.  

1) Does the model solve the real world problem? Are assumptions and inputs 
realistic? 

Feedback received: Generally, most assumptions and inputs were correct as the 
problem has been previously discussed with an engineer who was familiar with the 
practicalities of planning offshore wind farm vessel routing. During the visit planners 
provided detailed information on the site specific inputs (e.g. vessel properties). 
Inputs and assumptions used in the real world Case study are discussed in Section 
7.5.1.  

2) Ensure that all practical considerations have been modelled. Identify features 
and capabilities to be added to the tool. 

Feedback received: Wind farm operators commented on a number of the tool’s 
features, including some future work recommendations: 

• Planning horizon – one day planning horizon is realistic, as the following 
day’s plan largely depends on completion of today’s jobs. However, long term 
needs to be considered when setting turbine visit priorities (Note: this is 
captured in the tool if the SMDP model described in Chapter 3 is used to 
define rewards for visiting turbines) 

• Variable vessel speed – being able to change the vessel speed multiplier when 
at the wind farm (as defined in Table 4.1) allows setting a realistic turbine-to-
turbine travel times 

• Vessel load limit – weight of spares is rarely a factor when planning day’s 
movements; vessels have sufficient carrying capacity to cope with carrying 
spare parts and tools to multiple turbines. Maintenance planners remarked 
that it would be useful if the tool facilitated tracking of which spare parts are 
being carried by each vessel 
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• Technician grades – modelling technician grades would be a useful feature, 
enabling assignment of technicians to tasks depending on their qualifications 

• Model’s limit on the number of turbines visited by a vessel – at the wind farm 
visited, a vessel may occasionally be dispatched to 5 or more turbines to pre-
load tools or spare parts for future maintenance. For annual service 
campaigns, a vessel may be assigned solely for pre-loading, with up to 10 
turbines being visited in a day by the same vessel 

• Maintenance actions which require the vessel to remain at a turbine for the 
duration of the task are very rare; the fact that the tool does not currently allow 
modelling these task would not affect the day-to-day decision making  

In summary, the operators confirmed that most relevant factors have been modelled. 
As the wind farm in question was located far from its O&M base, dispatching vessels 
to 5 or more turbines is rare (as the sail time to and from site takes up a considerable 
portion of the workday). Increasing this limit was previously discussed in Section 5.1. 
The cost savings resulting from increasing the limit of turbines per vessel would be 
offset by the significant increase in computational time.  

A valid comment was made that modelling technician grades would facilitate 
decision making on assignment of people to tasks. The real world decision making 
process is complex, as the operators try to consider multiple factors ranging from 
qualifications to individual technician skillsets and ability to carry out certain 
maintenance actions. Documenting this process and integrating it with the decision 
support tool would take considerable time and effort; it would also add a layer of 
complexity to the optimisation problem.   

3) Gather feedback on the user interface, the usefulness of the tool’s outputs and 
potential interface/graphical improvements 

Feedback received: Wind farm operators remarked the tool has potential to make 
wind farm operator’s life easier. They found the model’s outputs easy to read and 
understand. The key output which they found particularly useful was the vessel 
dispatch plan map (as shown in Figure 6.6). Operators suggested that the map could 
be improved by having an outer circle on a turbine, identifying the type of 
maintenance action (i.e. whether it’s a corrective action, annual service etc.).   

The computational time required to produce the policy discussed in Section 7.5.2 was 
under one minute, which the operators found quick. They said the model would be 
particularly useful in cases when a decision has to be made quickly; for example if the 
routing plan has to be changed early in the morning due to turbine breakdowns 
during the night.  
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4) Validate the model outputs by testing the tool on real-life scenarios and 
comparing its outputs to the decisions made by planners 

Procedure:  The purpose of Case Studies described in Chapter 6 was to apply the tool 
to a range of complex problems and examine the results it produces. Testing the tool 
in a real-world setting, as described in Section 7.5, was aimed at verifying the 
assumptions and running the tool as the decisions were being made, to find out 
whether the tool is capable of real-world decision support. The blind case study 
showed that the tool is capable of producing the same vessel routing plans as 
maintenance planners, in a shorter computational time.  

Unfortunately, during the 3 days spent on site, there were no sail days. However, 
vessel movement plans were being continuously made and adjusted, under the 
assumption that the following day would be a sail day. The tool was being run in 
parallel to the usual decision making process. The tool’s outputs generally aligned 
with the plans made by wind farm operators.  
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7.7 Comparison	of	the	Tool’s	Capabilities	Compared	to	
Published	Research	

One of the possible means of validation of the tool developed in this thesis was direct 
comparison of its outputs to the outputs of models published by other researchers. 
Part of the tool has been validated this way; the CMA algorithm was tested against 
CPLEX software, which was used by a number of models in the offshore wind 
literature. However, a direct comparison of policies produced by this and other 
models would be difficult for the following reasons: 

1) The tool developed in this thesis calculates the optimal policy for one day horizon. 
Some published vessel routing models present case studies based solely on 
planning horizon longer than one day (e.g. Dai et al. [22] and Irawan et al. [25]). 
An optimal policy calculated on an assumption on a one day planning horizon 
will, in most cases, be different to one calculated for a two or three day horizon. 

2) Models available in literature implemented a constraint on some maintenance 
actions, which requires the vessel to be present at the turbine for the duration of 
the maintenance action. Interviews conducted with offshore wind farm operators 
(summarised in Appendix B. Summary of Informal Interviews with Offshore 
Wind Farm Operators) revealed that such repairs are fairly rare in practice, which 
is why such constraint has not been modelled here. Since there is not an easy way 
to implement this constraint, it would be very difficult to compare the tool output 
to results published by other researchers in the field.  

In the end it was deemed that the validation efforts should be focused on application 
of the tool in a real world scenario (Section 7.5), rather than modifying the tool to be 
compatible with other published models. All data required to replicate Case Studies 
shown in Chapter 6 was be made publically available, allowing researchers in the 
field to apply their models and compare results.   

Table 7.10 is an extension of Table 4.3 discussed in Literature Review Chapter (Section 
4.2.6), now including the tool developed in this thesis. The proposed tool lacks certain 
functionalities available in other models (e.g. ability to obtain an exact solution or 
modelling technician qualifications). On the other hand, there are some features 
which are only present in the proposed tool, such as a methodology for dealing with 
probabilistic inputs and variable vessel speed. 
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Table 7.10. Comparison of published models for offshore wind farm vessel 
routing optimisation (* - variable cost only). 

Heuristic method ü  ü  ü ü ü ü 

Exact method  ü ü ü ü    

Applied to a real world case study      ü  ü 

Multi-objective optimisation        ü 

Limited no. of technicians    ü  ü  ü 

Time horizon > 1 day ü ü  ü ü ü ü  

Heterogeneous vessels ü ü  ü ü  ü ü 

Fixed & variable vessel costs ü ü * * ü  * ü 

Multiple O&M bases    ü  ü ü  

 Profit collection (rewards for actions)      ü  ü 

Penalty costs (e.g. lost revenue) ü ü ü ü ü ü ü ü 

Uncertainties (e.g. service time)        ü 

Variable vessel speed        ü 

Vessel stays at turbine (some actions)  ü ü ü ü ü  ü  

Time window limit ü ü ü ü ü ü ü ü 

2-d vessel capacity ü ü ü ü  ü ü ü 

Transfer time modelled   ü ü ü ü ü ü 

Technician qualifications    ü   ü  

Maximum no. of vessels 2 2 5 4 2 1 10 6 

Maximum no. of turbines 28 8 8 36 25 9 60 24 
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Table 7.10 is an extension of Table 4.3 discussed in Literature Review Chapter (Section 
4.2.6), now including the tool developed in this thesis. The proposed tool lacks certain 
functionalities available in other models (e.g. ability to obtain an exact solution or 
modelling technician qualifications). On the other hand, there are some features 
which are only present in the proposed tool, such as a methodology for dealing with 
probabilistic inputs and variable vessel speed. 

 

Table 7.10 also contains the largest problem size tackled by each of the models. The 
proposed tool has shown to produce sensible results (although they have not been 
proven optimal) when applied to a problem with 24 turbines and 6 vessels (results 
shown in Section 6.3). The only other models capable of solving problems with similar 
complexity were the approach proposed by Irawan et al. [25]56 and Schrotenboer et 
al. [28]. 

One of the factors distinguishing the proposed tool from other models in the field is 
the choice to model rewards rather than lost revenue. The advantage of the former 
approach is that it can consider both lost revenue and other incentives to visit a 
particular turbine, such as proximity of maintenance deadlines.  

In summary, the proposed tool fills a research gap by enabling probabilistic inputs 
and enabling multi-objective optimisation. The solution methods developed in this 
thesis differ significantly from the approaches used by other researchers in the field. 
Wind farm operators’ requirements and the key real world considerations were 
identified early on in the tool’s development process (Section 2.2). Solution methods 
were designed with user friendliness, visual outputs and short computational time in 
mind. This emphasis on the wind farm operator’s perspective was lacking in the 
models developed by other researchers in the field. Focusing on these aspects 
increases the chances of the tool’s successful practical application.  

  

                                                   
56 Note: Irawan et al. [25] tackled a problem with two fewer vessels but 12 additional 
turbines; they also attempted a problem with 72 turbines but the computational time 
exceeded 40 hours.  
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7.8 Comparing	the	Tool	to	Previously	Specified	Requirements	

Christel & Kang [197] suggested that results of case studies should be used to verify 
whether the tool meets previously specified criteria. First set of criteria is presented 
in Chapter 2. , where an overview of practicalities associated with planning offshore 
wind farm O&M was provided. Chapter 2.  was summarised by a set of 
recommended factors (Section 2.3) a decision support should take into account in 
order to be applicable in the real world. The second set of criteria is provided in 
Section 4.3, which summarised the key conclusions from the literature review of 
relevant review papers and models for operational decision support.  

Based on the case studies presented in Sections 3.4, 6.2, 6.3, and 7.5, the tool was 
evaluated against the aforementioned criteria, as shown in Table 7.11 and Table 7.12



 

 
 

 

Table 7.11. Evaluation of the proposed decision support tool against recommendations from Section 2.3. 

Tool requirement (Section 2.3) Remarks Achieved? 
Task priority depends on multiple factors, including 
type/characteristics of maintenance, deadlines, spare 
part availability etc. Task priority is a key factor in the 
process of planning offshore wind farm O&M; it 
should be quantified and included in the decision 
making process (Section 2.2.2) 

As shown in Section 3.4, the proposed methodology allows the 
user to input factors such as weather forecast or task deadlines, 
which influence the reward associated with the task. High reward 
tasks were prioritised over non-critical tasks with lower rewards 
in the final policies shown in Sections 6.2 and 6.3. 

 

Wind farms use vessels of varied characteristics, 
assignment of vessels to tasks may depend on vessel 
capabilities (Section 2.2.3) 

The user can specify any number of vessels with unique 
characteristics such as speed and transfer probability in a given 
significant wave height. Vessel capabilities have an effect on the 
final policies, as shown in Section 6.2. 

 

Unavoidable maintenance costs should not have a 
significant impact on the next day’s routing plan. 
(Section 2.2.4) 

Although in the case studies presented in Sections 6.2 and 6.3, 
costs of repairs were modelled, they did not have a significant 
impact on the final policy. The user has the choice of whether to 
include maintenance task costs in the simulation.  

 

Assignment of technicians to tasks depends on their 
Health & Safety qualifications (Section 2.2.5) 

In the modelling presented in this thesis, the assignment of 
technicians to tasks was not considered, as it would increase the 
problem complexity significantly. The possibility of including 
assignment of technicians to tasks is discussed in Section 8.3.2. 

 

Uncertainties on the weather forecast and duration of 
maintenance actions should be taken into account 
when planning offshore wind turbine maintenance  
(Section 2.2.7) 

Section 6.2 demonstrated that taking uncertainty associated with 
vessel-to-turbine transfer in high waves into account when 
planning maintenance can result in improved vessel routing 
policies. Similarly, inclusion of uncertain task duration resulted 
in higher number of turbines successfully maintained as shown 
in Table 6.7. 

 



 

 
 

 

Tool requirement (Section 2.3) Remarks Achieved? 
In the problem of planning day-to-day offshore wind 
farm O&M, there can be no single optimisation 
objective (Section 2.2.6). Key offshore O&M objective 
to consider include:  
• Maximisation of the number of completed high 

priority maintenance actions 
• Maximisation of operational efficiency (e.g. the 

average number of hours technicians do useful 
work) 

• Minimisation of lost revenue 
• Maximisation of MTBV 
• Minimisation of OPEX 

The proposed methodology for calculating rewards (Section 3.3) 
was designed to favour:  
• Maintenance tasks with upcoming deadlines (penalty cost 

reduction – OPEX reduction) 
• Non-critical maintenance tasks performed during periods of 

low wind (reduced lost revenue) 
• Prioritise visits to high performance turbines (revenue 

maximisation) 
• Favour bundling different tasks on the same turbine, 

provided task duration does not exceed maximum allowable 
time (maximisation of MTBV and increasing operational 
efficiency) 

Additionally, the optimisation function used in the vessel routing 
optimiser (Equation 5.10) encourages:   
• Maximisation of the number of wind turbine visits 

(minimisation of lost revenue as restored generation is 
maximised) 

• Vessel-to-turbine assignment which maximises the 
probability of task completion (increased operational 
efficiency due to reduction in unsuccessful transfers) 

• Minimisation of vessel costs (OPEX minimisation) 
 

 

 

 



 

 
 

 

Table 7.12. Tool's assessment against requirements specified in Section 4.3. 

Tool requirement (Section 4.3) Remarks Achieved? 
Capable of handling stochastic 
inputs 

The tool was shown to be able to handle uncertain inputs, which included uncertain 
service time, probability of technician transfer in a given significant wave height and 
probability of correct problem diagnosis.  

Focus on next day planning 
horizon 

The tool’s primary objective was to facilitate “same day” or “next day” O&M 
planning, as demonstrated in Sections 6.2, 6.3 and 7.5.  

Capable of solving heavily 
constrained problems with 
unserved customers 

Case Study 2 described in Section 6.3 showed that the tool can sensibly prioritise 
maintenance tasks in a scenario with severely constrained resources and unserved 
customers.  

Able to handle a wide range of 
constraints, including problem-
specific constraints 

The tool was designed to take into consideration multiple constraints, including: 
• Vessel passenger capacity and spare part carrying capacity 
• Number of technicians available on the day 
• A limit on the time window 
Additionally, problem specific constraints modelled included crew transfer time 
(and uncertainty associated with vessel-to-turbine crew transfer) and variable vessel 
speed (to account for navigation/acceleration/deceleration when travelling between 
turbines). 

 

The approach needs to be flexible The tool has only been tested at a single offshore wind farm, it is possible that other 
wind farms have operating constraints not considered in this work. Additions to the 
model (such as new constraints, modelling SOVs/jack-up vessels or modelling 
technician qualifications) may require significant effort to implement.  

Capable of using a measure of 
risk to produce a range of 
policies, e.g. moderate, cautious 
and pessimistic 

The tool’s ability to produce a range of policies depending on the user’s risk appetite 
is demonstrated in Sections 6.2 and 6.3. 

 



 

 
 

 

Tool requirement (Section 4.3) Remarks Achieved? 
Based on real data The Case Study discussed in Section 7.5 showed that the tool performs well when 

applied to a real world case study.  
Probability distribution of the 
uncertain service time should 
reflect the real-world distribution 
(positive skewness) 

Gamma distributions with positive skewness were used to model uncertain service 
time. 

 

Capable of producing clear 
visualisations of the 
recommended policies 

At the end of each simulation, the tool automatically generates graphical outputs, 
which include vessel routing plans and Gantt charts (see Figure 6.6 and Figure 6.14 
respectively). The wind farm maintenance planner who evaluated the tool’s outputs 
remarked that the tool’s visual outputs would be useful in day-to-day decision 
making (Table N.1 in Appendix N). 

 

Capable of modelling most 
factors discussed in Table 4.1 

Ten (out of twelve) factors were modelled in the tool (excluding technician 
qualifications/health and safety certificates and the previous day’s assignment of 
technician teams to vessels).  

Capable of producing solutions 
in reasonable computational time 
(i.e. less one hour for problems 
with ~20 customers) 

The computational times required to generate policies in Winter and Summer Case 
studies in Sections 6.2 and 6.3 were no longer than 5 minutes per simulation. This is 
significantly shorter than the time required to make real-world decisions (however, 
this value does not include the time required to input data). 

 

In summary, the proposed tool met most of the previously specified requirements. With future work, the unmet criteria could be 
achieved; this is discussed in more detail in Section 8.3.2.
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7.9 Validation	Summary	

The proposed tool was validated using a wide variety of approaches. Individual 
model components were validated separately. This was followed by validation of the 
entire tool through real world scenario application. Softer validation methods 
employed included expert discussions and comparison of model capabilities to 
previously specified requirements.  

The complexity of the problem tackled in this thesis means that the term “optimal 
solution” is hardly relevant in the context of the real world vessel routing policy. 
There are multiple optimisation objectives; the choice of vessel routing plan depends 
on the weight the user assigns to each objective, which is subjective. Real world 
decisions may depend on stochastic inputs, making it difficult to quantify the value 
to a policy. Since defining a true optimal solution in itself is difficult, complete 
validation would be an even more arduous task.  

Brief note on tool’s verification 

In the context of simulation tools, model verification was defined as follows [200]:  

“The process of determining that a model implementation accurately represents the 
developer’s conceptual description of the model and the solution to the model.” 

The process of verifying the SMDP code was straightforward (as the model can be 
written in under 40 lines of code); the implementation of equations was cross-checked 
by thesis supervisors.  

The solution method for the master problem was verified by comparing the model’s 
outputs to the already verified CPLEX software (as shown in Section 7.4). The sub-
problem of the vessel route optimiser was verified by a manually working out the 
expected values of parameters and comparing them to the values calculated by the 
model. An example of this is shown in Table 5.8, where the timings of individual stops 
were calculated manually and then compared to the timings produced by the model 
to verify it.   
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Chapter	8.	 Conclusions	

Optimisation of planning offshore wind farm O&M was the focus of this thesis. A 
combination of literature review and interviews with wind farm operators allowed 
the author to gain an in-depth understanding of the real world problem. For large 
offshore wind farms (100+ wind turbines), planning day-to-day O&M is enormously 
complex (as discussed in Appendix A. Calculating the Number of Possible Vessel 
Routing Policies). The problem size and constraints make solving it difficult, both for 
human decision makers and optimisation algorithm developers. Occasional human 
error, which is inevitable where no software is present to prevent it, can lead to huge 
revenue losses. There is a clear demand for decision support tools in this area.  

Achievement of the research objective is discussed in Section 8.1. The contributions 
arising from the work done in this thesis are summarised in Section 8.2. The 
limitations of the proposed tool and future work are covered in Section 8.3.  

8.1 Research	Objective		

The research objective was defined in Section 1.1 as:  

 “The objective of research is to develop methodologies for supporting operational 
logistical decisions on offshore wind farm, which are suitable for practical 
application and aim to reduce LCoE through efficient use of resources.” 

Two methodologies for decision support were developed in this thesis: an SMDP 
model for task prioritisation and a vessel routing optimisation tool. Either model can 
be used as a standalone entity, or the two models can be combined into one by taking 
the outputs of the SMDP model as inputs to the vessel routing optimisation model. 
Testing the vessel routing optimisation tool at a wind farm using real world data 
demonstrated that the approach is suitable for practical application.  
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As demonstrated in Sections 6.2, 6.3 and 7.5 he two models can aid LCoE reductions 
by: 

• Enabling better decision making, maximising restoration of generation, 
maximising the useful time technicians spend on turbines and minimising 
lost generation 

• Reducing the number of unfinished tasks by discouraging planning work, 
which is likely to take longer than the time constraint. Higher task completion 
rates increase the effectiveness, as less time is spent on repeated transfers onto 
recently visited turbines 

• Minimising the vessel use (through optimising the ordering of turbine visits 
and possible reductions in the number of vessels required to complete 
maintenance tasks), which in turn leads to minimising fuel cost and wind 
farm carbon footprint 

• Shortening the time required to make operational decisions (time can be 
reduced form hours to minutes), freeing up planners’ time to optimise 
processes which are not covered by the tool 

• Real world decision making can be repetitive and tedious (due to frequent 
changes of circumstances). This, combined with the complexity of the 
problem can lead to costly instances of human error. The proposed tool can 
aid human error reductions as all policies generated by the tool comply with 
rigid constraints (e.g. maximum number of technicians allowed on a vessel).  

8.2 Thesis	Contributions	

The main contribution of this thesis is the development of a new heuristic 
methodology, a new task prioritisation approach and application of those novel 
approaches to a real world problem. As the work done in this thesis was partly driven 
by the industrial partners (an offshore wind farm operator), invaluable knowledge of 
the real world processes and constraints was gained. This knowledge was 
disseminated through the research articles and oral presentations outlined in Section 
1.3. 

As the work on this topic progressed, the definition of the term “optimal policy” 
became blurred. The real world problem is characterised by multiple optimisation 
objectives, such as cost reduction, maximisation of MTBV, maximisation of the 
number of man-hours spent on turbines and the number of turbines serviced. 
Furthermore, as demonstrated in Sections 6.2 and 6.3, the cost-optimal policy is not 
necessarily best in scenarios with uncertain inputs, as low cost policies are often 
characterised by low probability of completing all planned work. Additionally, it was 
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found that the uncertainty associated with estimated maintenance action time has a 
significant impact on policy effectiveness. Wind farm operators should keep a log of 
how long the tasks take to narrow down the uncertainty, enabling better decision 
making. 

This is one of the key findings of the work done in this thesis. By incorporating 
uncertain inputs into the decision making tool, a research gap was filled. Most 
researchers working in this field are still attempting to find the single cost-optimal 
vessel routing policy, which does not exist in most real world scenarios.  

In addition to the tool’s ability to lower LCoE discussed in the previous section, the 
developed decision support tool comprising of the proposed two models also has the 
following advantages: 

• Computational time is flexible: urgent decisions can be made in minutes. When 
planning vessel routing for the following day, the algorithms can be run for hours, 
increasing the quality of resulting policies.  

• Incorporation of the risk aversion factor as a user input enables generating a range 
of policies with varying likelihood of success.  The user can evaluate the proposed 
policies and use their expert knowledge to choose the one which is likely to be 
suitable in a given scenario. As demonstrated in Section 6.3.2, Pareto graphs can 
be used to visualise the trade-offs between optimisation objectives, enabling 
multi-objective optimisation.  

• Ease of use – throughout the development process, the focus has been on the end 
product usability and practical application. The user is able to define most inputs 
in Excel. Tool’s outputs include visualisations such as vessel routing maps and 
Gantt charts to facilitate understanding of the suggested policies. 

• The tool is modular (the key modules being the SMDP model, master and sub-
problem solution algorithms), meaning that a solution method of either of the 
modules can be changed without affecting the other parts of the tool. An example 
of this was presented in Section 7.4, where the master problem was solved using 
CPLEX instead of the proposed heuristic. 

• Potential applicability to other fields – there are many industries which could 
benefit from a tool able to quantify maintenance task priority (SMDP), or use the 
proposed CMA heuristic to solve an optimisation problem. 

• The tool enables a degree of flexibility, allowing the user to tweak the resulting 
policies to their needs. For example, if a certain task must be done on a given day 
for contractual reasons, the SMDP priority value can easily be overridden to 
ensure the task is chosen by the vessel routing optimiser. 
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• This thesis, along with the journal paper on the vessel routing optimiser (Dawid, 
McMillan & Revie  [199]) are the first publications in the field to offer an in-depth 
analysis of individual policies generated for complex problems. Demonstration of 
the generated policies enables the research community (and practitioners 
interested in applying those models) to evaluate the logic behind the choices and 
trade-offs made by the algorithms used. Visualising model outputs for individual 
cases facilitates understanding the assumptions used. It enables assessing the 
quality of the results produced and the applicability of the proposed solution to a 
real world scenario. 

• In contrast to the literature published in the field, the problem was presented from 
the perspective of an operator of a large (100+ turbines) offshore wind farm. 
Insights from an O&M planner were provided in Section 7.6. The large offshore 
operators need decision support tools capable of solving multi-objective problems 
with uncertain inputs, 20+ turbines and 5+ vessels, which to date in the offshore 
wind field, has only been demonstrated by the author of this thesis and 
Schrotenboer et al. [28]. 

8.3 Model	Limitations	and	Future	Work		

8.3.1 Limitations	

Currently, the proposed tool does not allow modelling the technicians’ qualifications. 
Usually, teams consist of a team lead, who tends to be more experienced and have 
additional health and safety qualifications, and a couple of technicians with standard 
offshore wind training. Team leads are distributed across teams in a process, which 
is currently done by the planners. Certain maintenance actions can only be carried 
out by staff with specific health and safety certificates (i.e. high voltage competency 
training). Modelling the assignment of technicians to tasks would require an 
understanding of the real world processes used by the planners. Planners create 
teams with technicians’ skillsets and past experience in mind. Future work should 
include documentation of the logic wind farm operators use in this process. 

Modelling health and safety certificates and technician experience could improve the 
quality of results, for example by letting the user know there is a shortage of 
technicians with certain qualifications/shortage of team leads. It would also reduce 
the O&M planner’s workload. However, the problem’s complexity would increase, 
which would have an impact on the computational time required to produce a 
policies. 
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The sub-problem solution algorithm is currently capable of assigning up to 4 turbines 
per vessel. In reality, some vessels may be required to visit 5 or more turbines in a 
day. Removing this constraint could lead to higher quality policies (up to 1.9% [25], 
as discussed in Section 5.1). This constraint may need to be removed in order to apply 
the tool at near-shore sites, where time spent travelling between the O&M base and 
the site is very short (meaning there is more time for one vessel to visit additional 
turbines).  

Scalability can also pose a challenge, if the proposed tool was to be applied to optimise 
maintenance across multiple wind farms. As the problem complexity increases 
exponentially with number of turbines visited and number of vessels available, the 
current methodology may struggle to produce close-to-optimal solutions for 
problems with 30+ turbines to be visited and 10+ vessels.  

According to an O&M planner (interview transcript can be found in Section 7.6) the 
key barrier to practical application of the proposed tool is integration with the current 
IT systems. This would include linking the Matlab-based tool to the databases and 
software currently used by the planners. This is discussed in more detail in Section 
8.3.3. 

Wind farm operators also suggested that the ability to track spare parts and toolkits 
would be a useful addition to the model. In some cases, if a team is to change vessel 
from one day to another, their tools may need to be craned over from one vessel onto 
the other. As this process can be time consuming, including toolkit locations in 
modelling may result in more efficient policies. 

8.3.2 Future	work	

The work described in this thesis could be continued to accelerate research on 
improvements of processes for offshore wind farm O&M planning. Aside from 
addressing the limitations highlighted in the previous section, future work should 
focus on: 

• Practical application of the SMDP tool for prioritising maintenance tasks. 
However, due to large volumes of active tasks (10+ per turbine, as reported 
by an offshore wind farm operator) this would require integration with the 
wind farm’s IT systems.  

• The quality of results of the proposed heuristic method may be improved by 
using a local search or a Large Neighbourhood Search (LNS). Alternatively, 
a study could be carried out to investigate the effect of tier ratios (ratio of 
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a/b, a/c and b/c from Figure 5.10) on the quality of results produced by the 
heuristic method.  

• Simplification of the sub-problem solution algorithm could be achieved by 
asking user to assign task priorities, which would determine the order of 
wind turbine visits. This would reduce the size of the sub-problem and 
extend the user’s influence on the order of wind turbine visits. 

Additionally, a number of studies could be conducted using the proposed decision 
support tool:  

• Feasibility study to investigate possible application to onshore wind O&M 
planning optimisation 

• The tool could be used to estimate future technician and vessel demands. 
Using past data on average amount of workhours required per day, plus any 
additional planned work, the staffing requirements could be estimated 

• The vessel routing optimiser could also be used to estimate staffing/vessel 
requirements of wind farms under development 

It is tempting to make an attempt at quantifying the benefits of practical 
implementation of the proposed tools. However, this would be difficult as historical 
O&M data lacks context. Operators may sometimes be forced to take a sub-optimal 
decisions, such as not to visit a not-operational turbine due to lack of spare 
parts/equipment or a temporary access restriction. These constraints are not usually 
logged anywhere, so the estimated benefits of using a decision support tool would 
likely be inflated.   

8.3.3 Integration	with	Current	Wind	Farm	Management	Systems	

Operations at large offshore wind farms are planned using a multitude of software 
packages. Weather forecasts (wind and wave), which determine future turbine 
accessibility are stored in large databases, as is wind turbine SCADA data. Wind 
turbine warnings and alarms are usually processed by turbine’s manufacturer 
software. The warning/alarm code often dictates the type of maintenance work 
required. Annual services and retrofit campaigns are usually planned in project 
management software, which can also be used for staffing requirements. 

All of the data mentioned in the above paragraph is required as input to the proposed 
vessel routing tool. Note that the real world case study presented in Section 7.5 lacked 
input on the tasks required on turbines which were not pre-selected by the planners. 
The pool of tasks to be carried out at a wind farm with 100+ turbines can easily exceed 
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1,000; it is simply not feasible to manually enter those into Excel (and then keep them 
up to date as new issues arise).  

Implementation of a short-term O&M decision support tool requires integration with 
wind farm management systems. This involves linking to multiple software packages 
and databases. It can also be achieved by creating a “data lake”, which would pull 
information from different data sources together into a single system. Once 
connections between different systems are established, they need to be monitored and 
maintained to prevent gaps in the data or corrupted data, which may lead to 
misinformed decisions.  

In summary, the task of integrating all information required for an O&M decision 
support to truly support decisions and bring significant cost savings is challenging 
and requires significant IT experience.  Note that solving this problem for one wind 
farm does not mean the end product will be applicable to other operators, who may 
use different software systems. This, and the problem complexity, are the key reasons 
for the lack of software solution in the field of short-term O&M decision support for 
offshore wind farms. 
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Appendix	A.	Calculating	the	Number	of	Possible	Vessel	
Routing	Policies	

Assumptions: 
a) There are 20 turbines requiring a maintenance action 
b) 5 vessels are used to carry out these maintenance actions, each vising 4 

turbines 
c) Vessels are unique (have different properties)  
d) Vessels drop off all teams of technicians before they start picking them up 

There are two factors determining the overall number of permutations:  
1) Number of ways 20 turbines can be assigned into 5 sets of 4 and  
2) Order in which the turbines within each set of 4 are visited for crew transfer 

The formula to calculate 1) is: 
20!

4! 4! 4! 4! 4!			 

The formula to calculate 2) is: 
((4!)()) 

Assumption d) states that all 4 crews of technicians on each vessel are dropped of 
first – this can be achieved in 4! permutations. This value is squared as there are as 
many ways in which all technicians can be picked up from the turbines once the 
maintenance actions have been finished. Finally, the entire expression is raised to 
the power of 5, as for each assignment generated in 1), there are 5 unique vessels 
carrying crews to turbines.    

For each assignment of turbines to vessels, each permutation of order of visits is 
possible; hence to obtain the total number of permutations, the two expressions are 
multiplied:  

*+,-.	/01234	+5	63410,-,7+/8 = 20!
4! 4! 4! 4! 4! ∗ 	((4!)

()) = ;. =>?@ ∗ ;A@B 

Considering that the number of stars in the observable universe is estimated to be 
between 7x1022 (according to 57) and 1024 (according to 58), the number of possible 
permutations is at least an order of magnitude higher. Note that the proposed 

                                                   
57 http://www.skyandtelescope.com/astronomy-resources/how-many-stars-are-there/ 
accessed on 15/08/2017. 
58 https://www.space.com/26078-how-many-stars-are-there.html accessed on 15/08/2017. 
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calculation of the number of permutations is an underestimation, permutations in 
which vessels visit fewer than 4 turbines are not considered. 
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Appendix	B.	Summary	of	Informal	Interviews	with	Offshore	
Wind	Farm	Operators	

Throughout this project, the author kept in touch with engineers and operators of a 
UK offshore wind farm. The problem description formulated by the practitioners 
helped structuring the methodology developed in this thesis. Below is a summary of 
the conclusions arising from informal discussions with wind farm operators: 

• Interviewed staff did not hear about decision support tools being used for 
maintenance planning/vessel routing at UK offshore wind farms.  

• In the current decision making process, uncertainties such as the weather and 
access probability, are not quantified. Operators use their expertise and 
experience to subjectively incorporate uncertainties into the decision making 
process.  

• According to maintenance planners, the top three uncertain factors to consider 
when planning vessel routing are: task duration, access probability and 
probability of correct diagnosis. 

• Most real life routing decisions are made with one day planning horizon. 
• Frequently, the number of maintenance actions to be carried out exceeds the 

capabilities of technicians and vessels available. Task prioritisation is required 
on most sail days. 

• Failure to complete all necessary maintenance in the run up to a no access 
period (i.e. due to significant wave height in the winter) can lead to turbines 
being inoperative for weeks – meaning hundreds of thousands of pounds in 
lost revenue. 

• It is not uncommon for a large offshore wind farm in the North Sea to 
experience days with 20+ turbines requiring a high priority maintenance 
action in the winter (due to a period of reduced access).  

• High priority tasks include: actions to restore power generation, actions to 
prevent failure, actions which nearing deadlines. Note that a missed deadline 
on a preventative task (i.e. equipment crane inspection) may prevent carrying 
out corrective actions (a crane which has not been inspected for over a year 
cannot be used to lift equipment). Low priority tasks include annual services, 
inspections and retrofits (provided a deadline for those actions is not 
imminent). 

• High priority tasks are usually the first to be started on the day (especially 
ones with longer expected duration), to maximise the time available for 
repairs and therefore maximise the probability that the turbine will be 
operational at the end of the day.  
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• Maintenance is often delayed if a turbine only requires one, non-critical 
maintenance action. Holding off maintenance until another action is required 
aims to increase the MTBV - a key performance indicator for some operators. 

• Inevitably, some tasks will take longer to complete than initially expected. To 
avoid technicians having to work longer-than-12h shifts, tasks taking longer 
than expected are usually left unfinished at the end of the day (unless there is 
another task scheduled afterwards which can be delayed or cancelled). If a 
task takes a shorter time than expected, wind farm operators may make on-
the-day modifications to assign an additional task to teams. If technicians have 
spare time on turbine, it may be used to carry out auxiliary tasks such as 
cleaning wind turbine transition pieces.   

• If a change of circumstances (e.g. turbine failure) occurs towards the end of 
planner’s shift, they may be required to do overtime to create a plan of action 
for the following day. 

• The number of technicians required to carry out a given task is not always 
fixed – certain maintenance actions are best carried out by 3 technicians, but 
can also be completed by 2. 

• Vessel-to-turbine base and turbine base-to-nacelle transfers take 
approximately 20 minutes each (for an average of 3 crew members).  

• Most “standard” maintenance tasks (minor corrective tasks, inspections and 
servicing) are carried out by teams of 2-4 technicians. 

• It is unusual for maintenance planners to consider component weight when 
planning vessel routing – it is rarely required to do so.  

• While there are maintenance actions which require the vessel to be present at 
the turbine for the entire task duration, these are very rare  

The above is the perspective of one operator; as wind farms vary in size, distance from 
shore, equipment (including turbine OEM) and location, their operators may see the 
problem differently.    
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Appendix	C.	Wind	farm	Ownership	Structure	

Wind farm owner is responsible for financing of the project and assigning the wind 
farm operator. Examples of owners of UK wind farms include UK Green Investment 
Bank, Innogy, Orsted (who is also an operator) and Siemens (who is also an OEM).  

Wind farm operator is responsible for managing the day-to-day running of the wind 
farm. UK wind farm operators include SSE, Equinor and Orsted. Wind farm operators 
report to the wind farm owner.  

Turbines are often sold with a 2-5 years’ full service warranty provided by the OEM  
[17]. This entails carrying out all preventive and corrective maintenance as well as 
providing qualified technicians. Some operators choose to extend this agreement 
beyond 5 years for an additional fee. Alternatively, an independent maintenance 
service provider may be hired to carry out wind farm maintenance after the initial 2-
5 years.  
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Appendix	D.	SMDP	Case	study	Inputs	
 
Table  D.1. Grease top up cost matrix for winter day case study. Values expressed 
in thousands of pounds. 

  Day 
Action State 1 2 3 4 5 6 7 8 9 10 

Do 
nothing 

1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 

Top up 
grease 

1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 
4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 

 
Table D.2. Grease top up reward matrix for winter day case study. Values 
expressed in thousands of pounds. 

  Day 
Action State 1 2 3 4 5 6 7 8 9 10 

Do 
nothing 

1 9.6 8 8 8 8 8 8 8 8 8 
2 9.6 8 8 8 8 8 8 8 8 8 
3 9.6 8 8 8 8 8 8 8 8 8 
4 0 0 0 0 0 0 0 0 0 0 

Top up 
grease 

1 8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 
2 8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 
3 8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 
4 3.2 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 

 

Table D.3. Grease top up transition matrix on day 1 of winter day case study. 

Day 1 Final State 

Action 
Original 

state 
1 2 3 4 

Do 
nothing 

1 1 0 0 0 
2 0 0 1 0 
3 0 0 0 1 
4 0 0 0 1 

Top up 
grease 

1 1 0 0 0 
2 0.8 0 0.2 0 
3 0.8 0 0 0.2 
4 0.8 0 0 0.2 
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Table D.4. Grease top up transition matrix on day 3 of winter day case study. 

Day 3 Final State 

Action 
Original 

state 
1 2 3 4 

Do 
nothing 

1 1 0 0 0 
2 0 0 1 0 
3 0 0 0 1 
4 0 0 0 1 

Top up 
grease 

1 1 0 0 0 
2 0.65 0 0.35 0 
3 0.65 0 0 0.35 
4 0.65 0 0 0.35 

 

Table D.5. Expected durations of different maintenance actions. 

Type of maintenance action Time required (hours) 
Manual reset 2 
Grease top up 3 
Retrofit 4 
Minor repair 5 
Medium repair 6 
High priority repair 5 
Annual service 6 
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Appendix	E.	Logic	Flowcharts	for	the	Sub-Problem	

Note that no logic flowchart is necessary for Case #1, as it contains a single turbine; 
no need to decide the order of visits.  

 

 

Figure E.1. Logic flowchart for Case #2. 
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Figure E.2. Logic flowchart for Case #3. 
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Figure E.3. Logic flowchart for Case #4. 
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Figure E.4. Logic flowchart for Case #5. 
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Figure E.5. Logic flowchart for Case #6. 
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Figure E.6. Logic flowchart for Case #7. 
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Figure E.7. Logic flowchart for Case #9. 
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Figure E.8. Logic flowchart for Case #10: Drop off order. 
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Figure E.9. Logic flowchart for Case #10: Pick up order. 
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Appendix	F.	Slack	Time	Distribution	
 

Table F.1. Slack time distribution for technician teams in different scenarios. 

Case End of day slack (Ge) assignment 
#1 All slack assigned to the only maintenance task 
#2 All slack assigned to tasks on critical path 
#3 70% of slack assigned to the task started first, 30% assigned to the 

remaining task 
#4 70% of slack assigned to critical path actions, 30% to the remaining task 
#5 70% of slack assigned to critical path action, 30% to two tasks serviced by 

the same crew 
#6 50% of slack assigned to the task completed last, 30% to task completed 

second last, 20% to task completed first 
#7 40% of slack assigned to two tasks carried out by Crew 1 (first to be 

dropped off), 60% to tasks carried out by Crew 2 
#8 40% of slack assigned to critical path actions, 30% to each remaining 

action 
#9 50% of slack assigned to critical path action, 40% to two tasks serviced by 

the same crew, 10% to the remaining task 
#10 40% assigned to the longest task, 20% to all remaining tasks 
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Appendix	G.	Example	of	Cluster	Value	Calculation	Using	
Low	and	High	Risk	Aversion	Factors	

 

The aim of this appendix is to demonstrate the consequences of setting a high risk 
aversion factor (Y) as model input. Recalling Equation 5.10, used to calculate cluster 
value: 

! =#[%& − ()&]

+

&,-

−#.(/0 + (ℎ03

4

0,-

	+ (78 ∗ %:;<= ∗ >)		(> ≥ 0)	 

Consider a cluster with the following properties: 

Q – Number of turbines in a cluster = 3 

∑ [%C − ()C]
+

&,-
 – sum of rewards minus repair costs for the 3 turbines in cluster = 

£210,000 

Umean – mean reward for repairing one turbine = £70,000 

Px – probability that all turbines in this cluster will be maintained = 0.3 

(/0 + (ℎ0 – cost of fuel and vessel hire = £11,300 

Inputting all of the above, and a low risk aversion factor (Y=1) yields a cluster value 
of: 

! = 210,000 − 11,300 + (0.3 ∗ 70,000 ∗ 1) = £219,700 

The artificial monetary value, which is added to favour clusters with higher 
probability of maintaining all its turbines amounts to £21,000. Using a high risk 
aversion factor (Y=10) yields: 

! = 210,000 − 11,300 + (0.3 ∗ 70,000 ∗ 10) = £408,700 

The added value due to risk aversion factor in this case is £210,000: almost 19 times 
higher than the real world costs. This not only diminishes the effect costs have on the 
policy (i.e. fuel cost which has a minimising effect on the amount of vessel travel, 
leading to reduced policy time), it also discourages visits to turbines with low 
rewards.  
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Appendix	H.	Decision	Support	Tool	User	Interface		
 

 

Figure H.1. User can select the turbines requiring maintenance and assign each 
turbine a maintenance action ID. Properties of maintenance actions are input in a 
separate table, as shown in Figure H.2. 
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Figure H.2. Vessel and maintenance action properties are defined by the user in Excel.  
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Figure H.3. Inputs such as the number of technicians available and the time limit are defined in MATLAB. 
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Appendix	I.	Logistics	Model	Inputs	to	Case	Studies	1	and	2	
 

Table I.1. Wind turbine coordinates used in Case Studies 1 & 2. (Lat: latitude, 
Lon: Longitude) 

Location Lat Lon Location Lat Lon Location Lat Lon Location Lat Lon 

Base 1.6
5 

1.65 WT26 0.5 0.7 WT51 0 0.4 WT76 0.5 0.2 

WT1 0 0.9 WT27 0.6 0.7 WT52 0.1 0.4 WT77 0.6 0.2 

WT2 0.1 0.9 WT28 0.7 0.7 WT53 0.2 0.4 WT78 0.7 0.2 

WT3 0.2 0.9 WT29 0.8 0.7 WT54 0.3 0.4 WT79 0.8 0.2 

WT4 0.3 0.9 WT30 0.9 0.7 WT55 0.4 0.4 WT80 0.9 0.2 

WT5 0.4 0.9 WT31 0 0.6 WT56 0.5 0.4 WT81 0 0.1 

WT6 0.5 0.9 WT32 0.1 0.6 WT57 0.6 0.4 WT82 0.1 0.1 

WT7 0.6 0.9 WT33 0.2 0.6 WT58 0.7 0.4 WT83 0.2 0.1 

WT8 0.7 0.9 WT34 0.3 0.6 WT59 0.8 0.4 WT84 0.3 0.1 

WT9 0.8 0.9 WT35 0.4 0.6 WT60 0.9 0.4 WT85 0.4 0.1 

WT10 0.9 0.9 WT36 0.5 0.6 WT61 0 0.3 WT86 0.5 0.1 

WT11 0 0.8 WT37 0.6 0.6 WT62 0.1 0.3 WT87 0.6 0.1 

WT12 0.1 0.8 WT38 0.7 0.6 WT63 0.2 0.3 WT88 0.7 0.1 

WT13 0.2 0.8 WT39 0.8 0.6 WT64 0.3 0.3 WT89 0.8 0.1 

WT14 0.3 0.8 WT40 0.9 0.6 WT65 0.4 0.3 WT90 0.9 0.1 

WT15 0.4 0.8 WT41 0 0.5 WT66 0.5 0.3 WT91 0 0 

WT16 0.5 0.8 WT42 0.1 0.5 WT67 0.6 0.3 WT92 0.1 0 

WT17 0.6 0.8 WT43 0.2 0.5 WT68 0.7 0.3 WT93 0.2 0 

WT18 0.7 0.8 WT44 0.3 0.5 WT69 0.8 0.3 WT94 0.3 0 

WT19 0.8 0.8 WT45 0.4 0.5 WT70 0.9 0.3 WT95 0.4 0 

WT20 0.9 0.8 WT46 0.5 0.5 WT71 0 0.2 WT96 0.5 0 

WT21 0 0.7 WT47 0.6 0.5 WT72 0.1 0.2 WT97 0.6 0 

WT22 0.1 0.7 WT48 0.7 0.5 WT73 0.2 0.2 WT98 0.7 0 

WT23 0.2 0.7 WT49 0.8 0.5 WT74 0.3 0.2 WT99 0.8 0 

WT24 0.3 0.7 WT50 0.9 0.5 WT75 0.4 0.2 WT100 0.9 0 

WT25 0.4 0.7 
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Table I.2. Properties of maintenance tasks to be carried out in the Winter Day 
Case Study. 

Turbine 
number 

Time 
required (h) 

Technicians 
required 

Probability 
of success Value Cost 

(£'000) 
Load 
(kg) 

68 5 3 0.95 302.9 18.5 550 
99 4.5 2 1 195.4 1 70 
36 6.5 3 0.8 175.6 1 150 
85 6 3 0.9 113.3 18.5 450 
45 2 2 1 96.6 0 0 
42 6 3 0.9 94.2 18.5 450 
50 3 2 1 92.1 1 70 
19 6 3 0.9 87.8 18.5 450 
71 6 3 0.9 87.8 18.5 450 
3 5 3 0.8 87.8 1 150 
51 2 2 1 87.8 0 0 
92 3 2 1 2.1 1 70 
77 3 2 1 2 1 70 
21 4 2 1 -2.1 1 100 
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Table I.3. Properties of maintenance tasks to be carried out in the Summer Day 
Case Study. 

Turbine 
number 

Time 
required (h) 

Technicians 
required 

Probability 
of success Value Cost 

(£'000) 
Load 
(kg) 

72 5 3 0.95 241.9 18.5 550 
9 5 3 0.95 241.9 18.5 550 
55 6.5 3 0.8 197.4 1 200 
29 6 3 0.9 127.6 18.5 450 
84 6 3 0.9 120.2 18.5 450 
76 3 2 1 108.7 1 70 
28 3 2 1 108.7 1 70 
96 2 2 1 108.6 0 50 
63 2 2 1 108.6 0 50 
37 5.5 2 1 103.4 1 150 
43 5.5 2 1 103.4 1 150 
56 6 3 1 101.6 18.5 450 
89 6 3 1 101.6 18.5 450 
4 3 2 1 98.7 1 70 
83 6 3 0.9 98.7 18.5 450 
48 5 3 0.8 98.7 1 150 
70 2 2 1 98.7 0 50 
91 6.5 2 1 15.4 2 170 
81 3 2 1 11.8 1 70 
16 3 2 1 10.7 1 70 
40 3 2 1 10.7 1 70 
1 6 3 1 10.2 1 450 
61 6 3 1 10.2 1 450 
23 4 2 1 4.7 1 100 
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Table I.4. Shape and scale parameters of gamma distributions for maintenance 
task duration used in Case Studies 1 and 2. 

  Expected maintenance task duration (h) 
  2 3 4 5 6 

Gamma 
distribution 

for Case 
Study 1 

Mean (h) 2 3 4 5 6 
Shape 

parameter 
4 6 8 10 12 

Scale 
Parameter 

0.5 0.5 0.5 0.5 0.5 

Gamma 
distribution 

for Case 
Study 2 

Mean (h) 2 3 4 5 6 
Shape 

parameter 
20 30 40 50 60 

Scale 
Parameter 

0.1 0.1 0.1 0.1 0.1 
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Appendix	J.	Logistics	Model	Outputs:	Winter	Case	Study		
 

Table J.1. Full results for Case Study 1. 

 Case A Case B Case C Case D Case E Case F 
Risk aversion factor 
(Y) 0 2 4 6 8 10 

Planned number of 
turbines to be 
repaired (/14) 

13 13 13 13 11 10 

Number of vessels 
used 

4 5 5 5 5 5 

Computational time 
(s) 

250.1 245.3 255.8 253.2 243.2 313 

Expected policy 
value (not including 
value added due to 
a non-zero Y) (£ 
‘000) 

1301.1 1289.8 1289.9 1289.9 1126.1 986 

Number of 
technicians required 
to carry out all 
repairs 

31 33 33 33 27 23 

From Monte Carlo simulation: 
Average number of 
turbines actually 
repaired (/14) 

7.1 8.1 8.1 8.1 7.4 8.1 

Turbines not fixed 
due to repairs 
taking longer than 
expected 

4 3.4 3.4 3.4 2.1 1.2 

Turbines not 
repaired due to 
incorrect diagnosis 

0.8 0.8 0.8 0.8 0.6 0.4 

Turbines not 
repaired due to 
unsuccessful 
transfer 

1.1 0.7 0.7 0.7 0.9 0.3 
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Appendix	K.	Logistics	Model	Outputs:	Summer	Case	Study		

 

Figure K.1. Matlab-generated policy outline for Case A of summer day Case 
Study 
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Figure K.2. Screenshots of the Matlab-generated animation visualising the 
proposed vessel routing policy. 
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Appendix	L.	Report	Summarising	the	Offshore	Wind	Farm	
Site	Visit	

Note: Confidential information have been removed from this version of report. This 
report has been signed off by the offshore wind farm manager.  

Background information: 

The aim of the visit was to apply the vessel routing model I have developed in the 
course of my PhD to real life scenarios and to assess its suitability for day-to-day 
practical use on planning site. I also hoped to gain an understanding of how decisions 
on vessel routing are made in real life and use that knowledge to improve my model.  

8th February 2017 

Introductions to the team, explanation of the decision making process, specification 
of the inputs (types of failure, properties of vessels available etc.). It was a no sail day, 
the first case study was carried out based on the planned work for the following day. 
Model’s output differed from the decision made by operators due to the model’s 
limitation on the number of turbines a vessel can visit.  

The model was also run for the case of 6th February 2017 and the results produced 
matched the decision made by operators (in terms of assignment of vessels to turbines 
and the order in which the turbines are visited).  

However, preloading tasks and technicians assigned to those tasks were not included 
in this simulation, or in the simulations that took place on the following days. These 
can be easily added manually to the policy generated by the model.   

9th February 2017 

It was another no sail day; an updated plan for the following day was generated by 
the model based on issues which arose overnight. New routing plan was presented 
to a senior technician. They were impressed by the model’s capability to recommend 
logical order of visits, automatically produce Gantt charts and take into account 
significant wave height variations across the wind farm.  

The policy generated by the model was feasible, except for ***CONFIDENTIAL***. 
Senior technicians commented that the tool has the potential to aid decision making 
in real life situations, particularly on days when 6 vessels are available.  
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A constraint was added to the model to ensure vessels do not visit turbines in both 
***CONFIDENTIAL*** on the same day. Model was run again and produced 
improved results.  

Possibility of integrating the existing alarm handling system with my model was 
discussed. Data from alarm handling system would most likely need to be input 
manually, with the user assigning a priority rating for each job.   

A meeting with marine operators was arranged. They have explained how significant 
wave height and direction affect planning and carrying out maintenance actions and 
highlighted the importance of being able to adapt the routing plan in real time, even 
once the vessels have left.  

My model allows the user to specify their risk appetite, which was discussed with a 
senior technician. The feedback was that it seems like a useful feature, provided the 
model also suggests possible technician swaps (currently the model does not have 
such capability). 

10th February 2017 

Another day with no maintenance jobs carried out. An interview was conducted with 
a senior technician to gain feedback on the applicability of my model.  

There are certain aspects which planners consider and the model does not. These 
include: 

• Composition of technicians for each action/vessel 
• Planning and routing of the preloading tasks 
• Taking into account the fact that if technicians are assigned to a vessel 

different from the one on the previous day, their equipment has to be craned 
over, wasting valuable time in the morning 

Modelling these aspects, although not absolutely necessary, would make the model 
more applicable to real life cases. 

Conclusions 

In general, the model’s outputs were feasible, but inferior to the policies created by 
the planners. For the policies generated by the model to match, or improve upon, 
those of planners, capability to dispatch a vessel to more than 4 turbines would have 
to be built into the model. Integration with current systems would also require a 
procedure for assigning a priority to a pool of turbines which are candidates to be 
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visited on a particular date. This value would have to be defined by the planners 
depending on the actions required on the turbine and whether it is operational or not.  

However, if the above could be achieved, senior technicians agree that the tool could 
add value to the current process of planning the vessel routing.  

I am very thankful to ***CONFIDENTIAL***  for organising this visit; it allowed me 
to partly validate my model and gain deeper understanding of the real life decision 
making process. I am also thankful to the planners on site who answered all my 
questions and were very helpful.  
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Appendix	M:	Real	World	Case	Study	Inputs	
 

Table M.1. Maintenance task properties used in the real world case study. 

 
High 

priority 
repair 

All day repair 
type 1 

All day 
repair 
type 2 

All day 
repair 
type 3 

Half day 
repair 

Turbines 
WT 6 & WT 

9 
WT 1 - 4, WT 

8 & WT 10 
WT 5 WT 7 

WT 11 - 
WT 14 

Time required 
(h) 

6.1 6 5.5 5 2 

Technicians 
required 

3 3 3 2 2 

Probability of 
success 

1 1 1 1 1 

Value (£'000) 100 100 100 100 60 
Cost (£'000) 1 1 1 1 1 
Load (kg) 100 100 100 100 100 

 

Table M.2. Vessel properties used in the real world case study. 

Vessel 
ID 

Crew 
capacity 

Speed 
(km/h) 

Fuel consumption 
(£'000/km) 

Charter cost 
(£'000/day) 

Load 
capacity (kg) 

1 12 36 0.006 0 12,000 
2 12 36 0.006 0 12,000 
3 12 36 0.006 0 12,000 
4 12 36 0.006 0 12,000 
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Appendix	N.	Transcript	of	the	Senior	Technician	Interview		
Table N.1. A transcript of the senior technician interview. 

Rafael Dawid (RD): Are all the relevant 
inputs considered by the model? If not, 
what additional inputs should be 
considered? 
Senior Technician (ST): It seems that 
you considered all relevant inputs. 
RD: Are all relevant constraints 
considered? 
ST: When making decisions, we split up 
the troubleshoot teams across vessels 
not to put all eggs in one basket, it 
would be good if your model 
considered it too. Considering which 
vessels have spares on them would also 
be useful.  
RD: Maximising the number of turbines 
brought back online on the day is the 
objective of my model’s optimisation 
algorithm. Was it the right choice?  Are 
there alternative objectives that should 
be considered? 
ST: Mean time between visits is another 
important metric for us, we try to make 
sure teams get as much work done as 
they can on the same asset on the day.  
RD: Are outputs presented easy to read 
and understand? 
ST: Yes, especially the nicely colour 
coded map.  
RD: Are there any other outputs the 
model should produce? 
ST: On the vessel dispatch map, it 
would be nice to see which turbines are 
stopped or whether it’s a service, end of 
warranty task or retrofit. Maybe if you 
could have an outer circle in the colour 
of the type of work required on the 
turbine and inside the circle the vessel 
number? 
RD: Are policies produced by the 
model feasible? 
ST: The policy you showed us 
yesterday looked similar to the plan we 
made, the groupings looked good.  

RD: The simulations I ran yesterday took 
under one minute. Is the computational 
time acceptable? 
ST: Yes, that’s quite quick. 
RD: Is the ability to specify the risk 
aversion factor a useful feature? 
ST: Yes, definitely. However, the format of 
it would have to be changed to account for 
swapping technicians between vessels 
depending on their qualification and 
capability.  
RD: Any overall comments about what 
would make this model better? 
ST: The ability to select teams would be 
quite useful. In addition to that, certain 
jobs on a wind farm have to be done in 
order (contractors have an ordered plan of 
visits) which gives you an idea what jobs 
will likely need doing tomorrow and the 
day after, it may be useful if your model 
captured that as well. It would be good if 
the model considered cases where one 
turbine is visited by 2 different vessels to 
carry out different jobs.  
RD: Does this model have the potential to 
make offshore wind farm operator’s life 
easier? 
ST: Yes, the visual outputs seem like they 
would be quite useful. The policy 
generated by the model could act as a 
sanity check. The model could also help 
with on the spot decisions; a turbine came 
back online, which of the remaining 
turbines should we divert the vessel to – 
with this model the coordinator does not 
have to worry about trying to find the best 
one to divert the crew to.  
RD: Are there any barriers to practical 
application of this model? 
ST: This depends on how difficult it would 
be to input the failure codes into the 
model, as transferring them directly from 
***CONFIDENTIAL*** is impossible. On busy 
days, we are very constrained by time.  
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