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ABSTRACT 

Offshore jacket platforms are commonly adopted structures for oil and gas production 

in shallow water depths. A large number of existing jacket platforms are operating 

beyond their design life due to the high cost of replacement. The safety of these 

structures is a major concern of the operators. Jacket structures are constructed as truss 

frameworks in which tubular members are welded together to create a steel frame. 

Fatigue damage in jacket structures is most probable to occur at the welded tubular 

joints due to the geometric discontinuity of the connections which produces high-stress 

concentrations in these intersections. Fatigue is a complicated phenomenon. As a result 

of the idealisations and approximations employed in the analysis process, fatigue 

analysis will be associated with some degree of uncertainty. 

The overall aim of this research work is to develop an innovative approach to improve 

the fatigue reliability assessment of jacket structures using Bayesian methods to 

incorporate new information obtained from the inspection results. 

Due to the existence of many uncertainties in the fatigue process and other 

uncertainties in loads and the resistance of the structure, a probabilistic approach for 

fatigue analysis of jacket structures is a rational and consistent basis for the inclusion 

of uncertainties. To develop a probabilistic approach for the reliability-based 

assessment, it is necessary to determine the probability of failure of each joint during 

the operational life of the structure. However, jacket platforms are redundant 

structures. Therefore, reliability analysis at a system level is more applicable than at 

the component level. In this research, the structural reliability analysis at the system 

level for a jacket platform is performed under both fatigue and extreme loading. At 

first, the probability of fatigue failure for each component is calculated by using the 

Monte-Carlo simulation. Then, important failure paths are identified by using a 

searching process. The system failure criterion is evaluated by comparing the platform 

strength and loading distributions in terms of base shear. Having calculated the 

structure strength and loading distributions, the annual probability of failure under an 

extreme wave is calculated and compared to the tolerable probability of failure.  

To maintain the safety of jacket platforms in service life concerning fatigue failure, 

inspection is an important measure. However, the significant costs of inspections, 
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particularly underwater inspections, make it important to properly prioritise inspection 

locations and inspection frequency. The cost of an inspection is directly proportional 

to the number of inspections carried out. Therefore, it is required to concentrate only 

on fatigue-sensitive locations in the structures. At the component level, fatigue-

sensitive locations are the locations that have low estimated fatigue lives. However, at 

the system level, critical components are those joints that have a big effect on system 

reliability. Due to the significant costs of inspections, the identified failure paths can 

be used as a database for the inspection plan.  

Inspection activities provide additional information, which includes detection and 

measurement of crack size. After an inspection of a structure, the perception of 

structure condition is improved. In general, a Bayesian framework is used to update 

the probability distributions of the uncertainties such as crack size in a joint. The 

updated crack size distribution can be used to update the estimation of the probability 

of failure. Different methods of Bayesian inference to update the probability 

distribution of the crack size are presented in this research.  

The credibility of the Bayesian updating process is one of the main concerns for the 

platforms’ owners. A Bayesian process is a mathematical tool that processes the inputs 

and generates the outputs based on the provided inputs. Hence, if the inputs are 

inaccurate, the updating results are worthless and can even lead to wrong decisions for 

the next inspection activity. Therefore, a novel approach is developed to assess the 

reliability of the Bayesian methods and assure the platforms’ owners regarding the 

updating results. This approach is capable to update the probability distributions of all 

uncertain parameters involved in the fatigue analysis besides the crack size. Three 

different categories of uncertainties are updated including, Fatigue crack size; POD 

curve; and uncertainties involved in the predicted model of the fatigue crack size (e.g. 

initial crack size, crack growth parameter, stress range, etc.). The presented 

methodology maximises the benefit of the inspection results by updating several 

uncertain parameters involved in the fracture mechanics approach. Moreover, 

guidance is provided to help the user to apply the proposed methodology in practice.  
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1 . INTRODUCTION 

1.1 Background and Motivations 

Offshore jacket structures have been used in the oil and gas sector for decades. They 

are one of the most common types of structures for oil and gas production in shallow 

and intermediate water depths. Due to improvements in technology to recover more 

oil and gas efficiently, the interest in using these structures beyond their initial design 

lives has been increased. Hence, a large number of existing offshore structures are 

operating beyond their design life due to the high cost of replacement. The safety of 

these structures is a major concern of the operators. 

Due to the existence of many uncertainties in loads applied to these structures and the 

resistance (strength) of the structure, a probabilistic approach for the assessment of 

existing offshore structures is a rational and consistent basis for the inclusion of 

uncertainties. Reliability assessment, which is a probabilistic approach, is often used 

to determine the probability of structural failure during the structure’s operational life. 

Fatigue failure is one of the critical failure modes in offshore structures. Offshore 

jacket platforms consist of tubular members that are welded together to form a steel 

space frame. These tubular joints are prone to fatigue damage due to the high-stress 

concentrations at the intersections; defects during the welding process and cyclic 

loading of waves apply to the structure [1].  

Field observations and laboratory tests have shown that in this type of connection, a 

fatigue crack starts at the weld toe at the hot-spot location and gradually propagates 

around the intersection and through the tubular wall [2].  

Fatigue issue in a tubular joint is a complex phenomenon governed by many factors. 

In the beginning, there may be several cracks around the intersection, but they usually 

join together and form a relatively long semi-elliptical surface crack [2]. Penetration 

of crack through the thickness causes a major reduction in joint stiffness. This stage is 

usually considered the end of the fatigue life of the joint [3]. Therefore, estimation of 

the remaining fatigue life of the joint is the main concern in the structural assessment 

of these platforms. 
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To maintain the safety of jacket platforms in service life with respect to fatigue, the 

propagation through the thickness of the wall needs to be monitored. To assess the 

state of damage, offshore platforms are periodically inspected. Regarding fatigue 

damage, the information from inspection consists mainly of detection and 

measurement of crack sizes. 

1.2 Problem Description 

Many offshore structures are operating beyond design life. Due to the high cost of 

replacement, reliability assessment is a rational and powerful tool to ensure the safety 

of a platform.  

Fatigue failure is one of the critical failure modes in jacket structures. Fatigue is a very 

complicated phenomenon. As a result of the idealisations and approximations in the 

analysis process; the existence of many uncertainties in loads applied to such structures 

and the resistance of the structure, a probabilistic approach for performing fatigue 

analysis is a rational and consistent basis for the inclusion of uncertainties. 

This study reviews a procedure to carry out a fatigue reliability analysis of welded 

tubular joints in a jacket offshore platform and also to quantify the effect of inspection. 

It introduces a probabilistic model for carrying out fatigue reliability analysis of 

structural joints based on fracture mechanics.  

It is worth mentioning that the safety requirements of offshore structures are generally 

assessed at the component level and if the safety requirements are not satisfied, the 

structure needs strengthening to meet the additional demands. However, taking into 

account the design procedures and the structural redundancy, it is seen that despite the 

failure of a few components, the structure can undergo load redistribution and thus 

avoid failure. The system reliability analysis for large structures with high redundancy, 

such as offshore jacket platforms, may be complex due to the several structural 

components.  

The inspection programs are crucial to monitor the fatigue performance of the tubular 

joints and also to extend the service life of jacket structures. Therefore, jacket 

platforms are periodically inspected to make sure that they can continue in service with 

an acceptable level of reliability. However, the significant costs of inspections, 
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particularly underwater inspections, make it important to properly prioritise inspection 

locations and inspection frequency. 

Regarding fatigue damage, the information from inspection consists of detection and 

measurement of crack sizes. Such information can be used to update the probability 

distributions of crack size in a joint and of some uncertain parameters in a fracture 

mechanics model for crack growth.  

Using the updated distributions, it is also possible to update the estimates of the time-

evolving joint reliability. In this study, the Bayesian framework is used to update the 

probability distributions of the uncertainties using information from inspection reports. 

The purpose of updating is to incorporate any available inspection history into an 

improved estimate of the parameters. 

1.3 Aim and Objectives  

The main purpose of this research is to develop an innovative approach to improve the 

fatigue reliability assessment of jacket structures using Bayesian methods to 

incorporate new information obtained from inspection results. 

To achieve this goal, the main objectives are defined as: 

1) Developing a probabilistic fatigue model based on an appropriate limit state and 

considering relevant uncertainties to obtain the component probability of failure in 

fatigue failure mode 

2) Developing a methodology to obtain the system probability of failure by 

considering both fatigue and extreme wave loads 

3) Prioritising the inspection locations by finding out the effect of each component 

failure on the system reliability 

4) Using conventional Bayesian methods to update the fatigue crack size distribution, 

and subsequently, updating the component probability of failure 

5) Proposing a novel Bayesian approach for updating the distributions of all  uncertain 

parameters involved in the fatigue analysis 

6) Investigating the credibility of the proposed approach  
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1.4 Approach 

Figure 1.1 illustrates the proposed approach for performing and updating fatigue 

reliability analysis of the jacket structures. 

 

Figure 1.1. Proposed approach flowchart for fatigue reliability analysis (PhD outline) 

The outline of this PhD research is explained briefly as: 

Modelling a specific platform 

A three-dimensional structural model of the platform is generated using SESAM 

software [4]. The model incorporates all primary members in the topside and the 

jacket. This is a geometrical space frame that integrates the jacket, the topside, and the 

foundation systems in one combined structure (Figure 1.2). The model's geometrical 

properties conform to the jacket's as-built drawings. The model also includes all 

gravitational and environmental loads. 
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Figure 1.2. Structural model of the jacket platform in SESAM software 

Global fatigue analysis 

A global spectral fatigue analysis is performed using the characteristic variables. The 

spectral fatigue analysis is used for dynamically sensitive structures in shallow to 

medium water depths. The result of this analysis is the hot spot stress transfer function 

of each joint in the structural model.  

The transfer function is obtained by finding the stress range, at the location of interest, 

for a range of wave frequencies and dividing the results by the wave height. Having 

obtained the transfer function, the hot spot stress spectrum can be achieved. 

The stress spectrum then is used in the calculation of the probability of failure of the 

tubular joints. 

Probability of failure for the tubular joints in the fatigue analysis 

Due to the existence of uncertainties involved in quantifying the fatigue process, a 

reliability approach is adopted to assess the probability of failure. In this study, fatigue 

reliability analysis is performed based on the fracture mechanics approach. In the 

fracture mechanics approach, relationships between the average increment in crack 

growth during a load cycle and a global parameter are developed [5]. It will be shown 
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that the crack size at each time is a function of several parameters such as initial crack 

size, material properties, hot spot stress range, and the number of load cycles. 

For calculation of the probability of failure for a tubular joint, the following steps 

should be considered: 

• Formulation of the uncertainties involved in the fatigue process 

Reliability analysis depends on the choice of the uncertainties and their statistical 

descriptions [6]. Therefore, uncertainty modelling becomes an important 

consideration for offshore structural analysis. In dealing with the fatigue of 

offshore structures, there are many uncertainties involved in treating the process 

deterministically, such as environmental parameters, structural response 

calculation, stress concentration factors, crack growth parameters, etc. Some of 

these uncertainties are associated with the modelling of structures and the random 

wave environment. The others represent uncertainties in the analysis of crack 

growth at the tubular joint. 

• Define a desirable limit state 

To evaluate the probability of failure of a component, failure needs to be defined. 

Failure is usually defined based on the concept of a limit state, which represents 

a boundary between the desired and undesired performance of a structural system 

or its component [6]. Several limit states such as crack size criterion, equivalent 

fatigue strength criterion, and failure assessment diagram, have been suggested 

for fatigue limit state. In this study, the crack size is considered as the failure 

criterion. Hence, failure occurs, as soon as the crack size is bigger than a critical 

value. Therefore, the probability of failure is the probability that an initial crack 

grows beyond the critical crack size. 

• Obtain the component probability of failure 

In the structural reliability theory, there are several ways of calculating the 

reliability and the corresponding probability of failure, such as FORM (First 

Order Reliability Methods), SORM (Second Order Reliability Methods), and the 

Simulation Techniques (e.g., Monte-Carlo Simulation). In this study, the Monte-

Carlo simulation is used to obtain the component probability of failure. 
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• Sensitivity analysis 

Different sources of uncertainties contribute to the fatigue reliability analysis of 

tubular joints of jacket platforms. The influence of these uncertainties on the 

overall probability of failure has been studied through sensitivity analysis. 

System probability of failure 

Jacket structures are redundant structures. A redundant structure has more structural 

members than is necessary. Therefore, if some of the structural members are damaged, 

the structure will not necessarily fail or collapse, since the load can be redistributed 

among undamaged members [7]. Calculation of system probability of failure is 

difficult because the number of possible failure paths would be enormous. It would be 

practically impossible and not necessary to identify all of them. Therefore, 

identification of the dominant failure paths is one of the major tasks in the system 

reliability analysis for such structures [8]. 

An approach for obtaining system reliability is introduced that can identify the 

dominant fatigue failure paths of the structures. In this approach, the sequence of the 

structural joints most likely to fail is established. For this purpose, the joint with the 

highest failure probability is considered to have failed. This joint and corresponding 

member is removed from the model and the next probable joint to failure is then 

searched. The procedure is repeated until a failure path is developed. A developed 

failure path will result in system failure.  

To find out a complete failure path, after removing the critical component, the system 

failure criterion is checked. The system failure criterion is evaluated by comparing the 

platform strength and loading distributions in terms of base shear. To define a 

probabilistic formula for load, the global response surface method is adopted to relate 

the environmental load to the response of the structure. Nonlinear pushover analysis 

is also carried out to determine the capacity of the platform. Having calculated the 

structure strength and loading distributions, the annual probability of failure under an 

extreme wave is calculated and compared to the maximum probability of failure. When 

this probability exceeds the maximum acceptable probability, the platform is assumed 

to fail. 
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Prioritising the inspection locations 

An inspection program is an important measure to maintain the safety of jacket 

platforms in service life concerning fatigue failure. However, the significant costs of 

inspections, particularly underwater inspections, make it important to properly 

prioritise the inspection locations. At the component level, fatigue-sensitive locations 

are the locations that have low estimated fatigue lives. However, at the system level, 

critical components are those that have a great effect on system reliability.  

Due to the significant costs of inspections, the identified failure paths can be used as a 

database for the inspection plan. By identifying the dominant failure paths, the critical 

joints that have a greater effect on the system probability of failure are selected and 

therefore inspection can be focused on these joints. Therefore, instead of inspection of 

non-critical components, the inspection can be focused on the crucial joints.  

Inspection activity 

Fatigue damage accumulates during the structure’s lifetime as the crack size increases. 

The accumulation of damage causes deterioration of the component capacity and 

increases the probability of failure. To assess the state of damage, offshore platforms 

are periodically inspected. Regarding fatigue damage, the information from inspection 

involves detection and measurement of crack size.  

Inspection activities are performed by visual checks or more sophisticated non-

destructive tests (NDT). Magnetic particle inspection (MPI), eddy current inspection 

(ECI), alternating current field measurement (ACFM), and flooded member detection 

(FMD) are the NDT methods usually used for detecting cracks in offshore structures; 

whilst ultrasonic testing (UT) and alternating current potential drop (ACPD) are the 

ones used for measuring the dimensions of the cracks [1]. The success rate of 

inspection techniques to detect and measure the crack size varies. For any given NDT 

method there is always a detectable crack size which means that smaller crack size 

may not be detected. Moreover, whenever a crack size is measured, it must be treated 

with a certain degree of uncertainty depending on the accuracy of the equipment used 

and the skills of the technicians.  
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Conventional Bayesian methods 

The provided information from the inspection activities can be used to update the 

probability distribution of the crack size in a joint. A Bayesian framework is typically 

used for updating the probability distributions of the crack size in tubular joints using 

information from inspection reports of offshore platforms. Bayesian inference 

provides a formal method of belief updating when new information becomes available. 

The purpose of updating is to incorporate any available inspection history into an 

improved estimation of the parameters. There are two main approaches for obtaining 

the updated distribution of an uncertain parameter: 

• Analytical Approach (Conjugate): 

The updated (posterior) distribution is derived in a closed-form 

• Numerical Approach 

The posterior distribution is obtained numerically, and it cannot be presented in 

an analytical form. 

For a given joint, the outcome of an inspection at any time can be: 

• No crack is detected  

• A crack is detected and measured 

Depending on the results of inspections, an expression for the updated crack size is 

obtained. After updating the crack size distribution, the probability of failure for each 

component is updated. 

After updating the distribution of the crack size, it is possible to update the estimation 

of joint reliability and also system reliability.  

Proposing a novel Bayesian approach 

The conventional Bayesian methods are used to incorporate inspection results to 

update the probability distribution of crack size in a tubular joint. However, several 

uncertain parameters exist in the estimation of the fatigue behaviour of the tubular 

joints. Therefore, a novel methodology is proposed to update the probability 

distributions of all uncertain parameters (including the crack size) when new 
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information becomes available. Three different categories of uncertainties are updated 

using this methodology: 

• Fatigue crack size; 

• POD curve; 

• Uncertainties involved in the predicted fatigue crack size (i.e. initial crack size, 

crack growth parameter, stress range, and uncertainty in the estimation of the 

geometry function). 

The credibility of the updating process is the main concern in any updating application. 

However, the credibility of the conventional Bayesian methods was not considered in 

the previous studies. The reliability of any Bayesian updating method depends on how 

reliable the inputs (e.g. inspection results) are. A Bayesian process is a mathematical 

function that processes the inputs and generates the output based on the provided 

inputs. Therefore, if the inputs are inaccurate, the updated results may be poor and can 

even lead to wrong decisions. Unlike previous studies, the reliability of the proposed 

approach is investigated to find out when the proposed approach might lead to poor 

results. 

1.5 Thesis Structure 

In this research, a procedure is developed to connect the component fatigue reliability, 

system reliability, and the mechanism to update the reliability using the inspection 

results.  

The thesis is organised into seven chapters, the first being the introduction. It also 

describes the problem, research aim, objectives, and approach as well as the thesis 

structure.  

The basic theory of probability and concept of the reliability analysis is reviewed in 

Chapter 2. Random variables and different distributions are explained. The 

fundamental concepts of the reliability analysis including load, capacity, limit state 

functions, reliability index, and probability of failure are introduced. Different 

techniques for estimation of the reliability, including First Order Reliability Method 

(FORM), Second Order Reliability Method (SORM), and Monte-Carlo simulation, 
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and advantages/disadvantages of each method are explained. Finally, some sensitivity 

measures are explained for the selection of important basic variables. 

The main purpose of Chapter 3 is to obtain the fatigue component reliability of the 

tubular joints. This chapter explains the fatigue process, fatigue analysis, and reliability 

analysis of offshore platforms, briefly. On the subject of fatigue analysis of a tubular 

joint, two approaches are considered; the S-N curve approach and the fracture 

mechanics (FM) approach. To carry out the reliability analysis it is necessary to 

develop appropriate probabilistic models for the wave loads. Probabilistic modelling 

of the sea surface is required for fatigue analysis. Stress response of individual 

members is obtained using spectral analysis of offshore structures by considering a 

narrow-banded stress process [5]. 

The proposed approach for performing fatigue reliability analysis is illustrated through 

application to a typical jacket platform. A three-dimensional structural model of the 

platform is generated using SESAM software [4]. For calculation of the probability of 

failure for a tubular joint, the following steps are considered: 

• Formulation of uncertainties involved in the fatigue failure process 

• Define a desirable limit state 

• Obtain the component reliability 

A fatigue crack growth model is developed based on the fracture mechanics (FM) 

approach. This model predicts the fatigue crack size at any time for each tubular joint 

in a jacket platform. This crack size is considered as the failure criterion and failure 

occurs when the crack size is bigger than a critical value. The estimation of the 

reliability for individual tubular joints is obtained by using FORM and Monte-Carlo 

simulation.  Sensitivity studies are also performed to find out the influence of the 

various random variables on the component probability of failure. 

Due to the high redundancy of jacket platforms, the probability of failure of the whole 

system is more applicable than the component probability of failure. A system 

reliability approach is presented in Chapter 4 of this research work to calculate the 

probability of failure of a jacket platform considering fatigue and extreme wave loads. 
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The system reliability analysis for offshore jacket platforms with high redundancy may 

be complex due to the several structural components. Important failure paths are 

identified by using a searching algorithm, in which, components with the maximum 

change in the accumulated damage are considered as the candidate joints in the path. 

By removing the candidate joint, which is assumed to fail in fatigue, the probability of 

failure of the structure under extreme wave loading increases. 

System failure criterion is evaluated by comparing the platform strength and loading 

distributions in terms of base shear. Nonlinear pushover analysis is carried out to 

determine the capacity of the platform and the annual probability of failure under an 

extreme wave is calculated. When the probability of failure exceeds the maximum 

acceptable probability, the platform is assumed to fail. 

Since the components in the failure paths have a great effect on the system reliability, 

an inspection strategy can be proposed based on the effect of each component on the 

system reliability. This is an alternative inspection plan in comparison with the regular 

inspection plan. In this plan, due to the significant costs of inspections, the inspections 

are prioritised on the critical joints (joints that lead to a higher system probability of 

failure).  

Chapter 5 shows how the inspection results can be incorporated for updating the crack 

size distribution in a tubular joint. Offshore platforms are periodically inspected to 

assess the state of damage. Regarding fatigue damage, the information from inspection 

consists mainly of detection and measurement of crack sizes. Such information can be 

used to update the probability distributions of crack size in a joint. A Bayesian 

framework is used for updating the probability distributions of the crack size in tubular 

joints using information from inspection reports.  

Two different Bayesian approaches for updating the crack size distribution are 

introduced; the analytical method (conjugate), and the numerical method. The main 

advantages and disadvantages of each method are explained. Moreover, the effect of 

different parameters and inputs on the updated distribution of the crack size is 

investigated. 
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After updating the crack size distribution, the reliability of each component can be 

updated. Depending on the results of inspections, the updated reliabilities may be 

higher or lower than the original values. 

A new methodology for updating the probability distribution of all uncertain 

parameters involved in fatigue analysis is presented in Chapter 6. A framework is 

developed for updating the probability distributions of the parameters of a fracture 

mechanics model and also crack size in tubular joints using information from 

inspection results. To find out which parameters have great influences on the updated 

distributions, sensitivity analyses are performed.  

The credibility of the updating process is the main concern in any updating application. 

Chapter 6 also investigates the reliability of the proposed approach to find out when 

the proposed approach might lead to poor results. To help the user to implement the 

proposed approach in practice, guidance for using the approach is provided by 

explaining the framework, advantages, and limitations. 

Moreover, since both Chapter 5 and Chapter 6 approaches can be used to update the 

crack size distribution, the results of these two chapters are compared. 

Finally, Chapter 7 summarises the important findings of this dissertation and discusses 

future extensions of this research. It also highlights the novelty and contributions of 

this research. 

1.6 Publications in Connection with the Research Thesis 

At the time of writing, the following papers drawn from this thesis have been published 

in scientific journals. The list below includes the most relevant chapters of the thesis 

to which the publications correspond. 

Journal papers 

• Khalili, H.; Oterkus, S.; Barltrop, N.; and Bharadwaj, U. (2021). “Different 

Bayesian Methods for Updating the Fatigue Crack Size Distribution in a Tubular 

Joint”, Journal of offshore mechanics and Arctic engineering, Vol.143 (2), DOI: 

10.1115/1.4048155  

(Related to Chapter 5 of this thesis) 
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• Khalili, H.; Oterkus, S.; Barltrop, N.; and Bharadwaj, U. (2020). “Updating the 

Distributions of Uncertain Parameters Involved in Fatigue Analysis”, Journal of 

marine science and engineering, Vol.8 (10), p.1-20, DOI: 10.3390/jmse8100778 

(Related to Chapter 6 of this thesis) 

Book Chapter 

• Khalili, H.; Oterkus, S.; Barltrop, N.; Bharadwaj, U.; and Tipping M. (2019). 

“System reliability calculation of jacket platforms including fatigue and extreme 

wave loading”, 7th International Conference on Marine Structures, Croatia. CRC 

Press, London, pp. 576-603. ISBN 9780367278090 

(Related to Chapter 4 of this thesis) 

Abstracts and Conference presentations 

• Khalili, H.; Oterkus, S.; Barltrop, N.; and Bharadwaj, U. “Different Bayesian 

Methods for Updating the Distribution of Fatigue Crack Size”, National Structural 

Integrity Research Centre Annual Conference, 23-24 July 2020, Cambridge, UK 

• Khalili, H.; Oterkus, S.; Barltrop, N.; and Bharadwaj, U. “Updating the 

Distribution of Uncertain Parameters in the Fatigue Analysis”, National Structural 

Integrity Research Centre Annual Conference, 2-3 July 2019, Cambridge, UK 
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2 . CONCEPT OF RELIABILITY ANALYSIS 

2.1 Introduction 

The main purpose of engineering design is to provide minimum levels of serviceability 

and safety during the structural lifetime. There are several sources of uncertainties 

related to loading, material properties, engineering models, etc. These uncertainties 

might lead to over-design (or under-design) solutions for the considered application. 

Therefore, this is a difficult task to consider these uncertainties properly in engineering 

applications.  

Reliability analysis methods provide a mathematical framework for considering these 

uncertainties in the design and assessment of the systems. The main objective of 

reliability analysis methods is to evaluate the ability of systems to remain safe during 

their lifetime. Different reliability methods have been established to take into account 

the uncertainties involved in an engineering problem. 

The main objective of this chapter is to introduce the concept of reliability analysis 

that can be used for engineering applications. This chapter includes fundamental 

discussions about the reliability analysis which is mainly based on the reference books 

(e.g. [6], [9], [10], and [11]). 

The chapter starts by introducing the basics of probability theory needed for reliability 

analysis (Section 2.2). Random variables and different distributions are explained in 

this section. Section 2.3 explains the fundamental concepts of the reliability analysis 

including load, capacity, limit state functions, reliability index, and the probability of 

failure. Section 2.4 introduces various techniques for estimation of reliabilities 

including First Order Reliability Method, Second-Order Reliability Method, and 

Monte-Carlo Simulation. Usually, several random variables exist in reliability analysis 

applications. To find out which of the random variables is more important in its 

contribution to the probability of failure, Section 2.5 explains the sensitivity measures. 
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2.2 Probability Theory 

 Basics 

The theory of probability is based on the set theory. A set, e.g. 𝑋, is a collection of 

sample points with a common property. The sample points may be objects or numerical 

values and are generally referred as members, 𝑥 𝜖 𝑋.  

The set of all possible members is called the universal set or sample space and it is 

shown by 𝑆. The set that contains nothing is the empty set or null set (𝛷). An event is 

defined as a subset of a sample space. Each event has a set of sample points. If the 

event is empty, i.e., contains no sampling points, it is said that this event is impossible. 

If the subset contains all sample points of a sample space, the event is certain [9]. 

Measuring the possibility that each set will happen is the main concern of the 

probability theory. The algebra of sets is carried out with the following operators: 

• Union (⋃), the OR operator 

• Intersection (⋂), the AND operator 

The complementary event to 𝐸 (which is usually shown by �̅�) contains all sample 

points in 𝑆, which are not included in 𝐸 [9]. The complement event of a set is defined 

in a way that: 

𝐸 ∪ �̅� = 𝑆 

𝐸 ∩ �̅� = ∅ 
(2-1) 

The definition of probability is based on three axioms [9]. There is no matter which 

interpretation of probability is chosen.  While it satisfies these three axioms, any results 

derived through the correct use of the probability theory will be mathematically valid. 

• Axiom 1: The probability of an event is: 

0 ≤ 𝑃(𝑋) ≤ 1 (2-2) 

• Axiom 2: The probability of a certain event (sample space) is equal to one: 

𝑃(𝑆) = 1 (2-3) 

• Axiom 3: The probability of an event which is the union of two mutually 

exclusive events is the sum of the probability of these two events: 
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𝑃(𝑋 ∪ 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) (2-4) 

Two events are mutually exclusive when: 

𝑃 (𝑋 ∩ 𝑌)  =  𝛷 (2-5) 

If two events 𝑋 and 𝑌 are not mutually exclusive, it is easy to show that the probability 

of their union is: 

𝑃(𝑋 ∪ 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) − 𝑃(𝑋 ∩ 𝑌) (2-6) 

To calculate the probability of the union of two non-exclusive events the probability 

of their intersection needs to be known. The probability of the intersection of two 

events can be calculated using the multiplication rule, which can be written as: 

𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋|𝑌) × 𝑃(𝑌) = 𝑃(𝑌|𝑋) × 𝑃(𝑋) (2-7) 

where 𝑃(𝑋|𝑌) and 𝑃(𝑌|𝑋) are conditional probabilities, i.e., the probability of 

occurrence of one event given that the other event has occurred.  

Two events are statistically independent events when the occurrence of one event does 

not depend on the occurrence of another event, i.e.: 

𝑃(𝑋|𝑌) = 𝑃(𝑋) 

𝑃(𝑌|𝑋) = 𝑃(𝑌) 
(2-8) 

Therefore, for statistically independent events 𝑋 and 𝑌, Eq. (2-7) can be rewritten as:  

𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋) × 𝑃(𝑌) (2-9) 

 The Theorem of Total Probability  

The mutually exclusive and collectively exhaustive events 𝑋1, 𝑋2, … , 𝑋𝑁 are called 

partitions of the sample space 𝑆 (Figure 2.1). The probability of any event can then be 

expressed as: 

𝑃(𝑌) = ∑𝑃(𝑋𝑖 ∩ 𝑌)

𝑁

𝑖=1

= ∑𝑃(𝑌|𝑋𝑖) × 𝑃(𝑋𝑖)

𝑁

𝑖=1

 (2-10) 

This equation represents the theorem of total probability. 
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Figure 2.1. Venn diagram for the theorem of total probability 

 Definition of Probability  

Three different definitions of probability exist in the literature [6]: 

• Classical Definition  

The classical definition goes back to Pascal and up until the 20th century. The 

probability theory was based on this definition. This definition comes from the games 

of cards and dice. According to this definition the probability of an event 𝑋, 𝑃(𝑋), is 

determined as the ratio of the number of favourable outcomes to the number of all 

possible outcomes, provided that all the outcomes are equally likely. 

𝑃(𝑋) =
𝑁𝑋

𝑁
 (2-11) 

where 𝑁𝑋 is the number of outcomes at which the event 𝑋 occurs and 𝑁 is the number 

of all possible outcomes.  

• Relative-Frequency Definition  

The relative-frequency definition was developed by von Mises about seventy years 

ago [6]. It is based on experiments and easy to understand. According to this definition 

the probability of an event 𝑋, is simply the relative frequency of occurrence of 𝑋 in 

the experiment, i.e., if the experiment under consideration is carried out 𝑛 times and 𝑋 

occurs in 𝑛𝑋 outcomes then: 

𝑃(𝑋) = lim
𝑛→∞

𝑛𝑋

𝑛
 (2-12) 

For example, to determine the probability of getting “3” as a result of dice dropping 

using this definition, it is necessary to drop a dice several times and as the number of 

dice dropping increases the probability converges to 1/6. 
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• Bayesian Definition  

Thomas Bayes developed the mathematical framework later known as Bayesian 

statistics [9]. According to this definition the probability of an event is a measure of 

belief that the event will occur expressed in quantitative terms as a real number 

between 0 and 1 [9], i.e.:  

𝑃(𝑋) = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑏𝑒𝑙𝑖𝑒𝑓 𝑡ℎ𝑎𝑡 𝑋 𝑤𝑖𝑙𝑙 𝑜𝑐𝑐𝑢𝑟 (2-13) 

The degree of belief is a reflection of the experience, expertise, and preferences of the 

person. In this respect, the Bayesian interpretation of probability is subjective or 

person-dependent [9]. This opens up the possibility that two different persons may 

assign different probabilities to a given event and thereby contradicts the frequentist 

interpretation that probabilities are a characteristic of nature [9]. 

However, the Bayesian statistical interpretation of probability includes the frequentist 

and the classical interpretation in the sense that the subjectively assigned probabilities 

may be based on experience from previous experiments [9]. For example, in the 

dropping a dice example, a person using this definition would determine the 

probability of getting “3” as 1/6 by arguing that there are six possibilities. Since there 

is no reason to give preference to any of these six outcomes the probability should be 

1/6.  

The degree of belief is also referred to as a prior belief or prior probability, i.e. the 

belief, which may be assigned before obtaining any further knowledge [9]. The 

important argument in this approach is that a subjective estimate of the probability of 

an event (which is called a prior probability) is better than no estimate. However, as 

relevant data are collected and processed using the Bayesian statistical analysis, new 

estimates of probability (called the posterior probability) become less dependent on 

the prior estimate and closer to the data which is based on the relative-frequency 

definition. 

 Bayes’ Theorem  

Using the theorem of total probability, the probability of an event Y can be calculated, 

when it depends on mutually exclusive and collectively exhaustive events 

𝑋1, 𝑋2, … , 𝑋𝑁 (with known probabilities).  
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It is useful to know the probability of one of the mutually exclusive and collectively 

exhaustive events (e.g. 𝑋𝑗) given that the event 𝑌 has occurred. By using Eq. (2-7): 

𝑃(𝑋𝑗|𝑌) =
𝑃(𝑌|𝑋𝑗) × 𝑃(𝑋𝑗)

𝑃(𝑌)
 (2-14) 

By plugging the Eq. (2-10) into Eq. (2-14): 

𝑃(𝑋𝑗|𝑌) =
𝑃(𝑌|𝑋𝑗) × 𝑃(𝑋𝑗)

∑ 𝑃(𝑌|𝑋𝑖) × 𝑃(𝑋𝑖)
𝑁
𝑖=1

 (2-15) 

The above equation is called Bayes’ theorem. The theorem is very important since it 

provides a tool for updating the probabilities of events based on new observations [6]. 

Therefore, it is widely used in the reliability assessment of existing structures. In the 

above equation: 

• 𝑃(𝑋𝑗|𝑌) is called Posterior probability of the event 𝑋𝑗; i.e. the updated probability 

of 𝑋𝑗  after observing event 𝑌. 

• 𝑃(𝑌|𝑋𝑗) is called the Likelihood function; i.e. the probability of observing event 

𝑌 given that 𝑋𝑗 is the true state. 

• 𝑃(𝑋𝑗) is called Prior probability of 𝑋𝑗; i.e. the probability of 𝑋𝑗 before observing 

the event 𝑌 (new observation). 

 Random Variables  

A random variable is a numerical variable whose specific value cannot be predicted 

with certainty before an experiment is carried out [6].  

A random variable can be either a discrete or a continuous random variable. A discrete 

random variable has a finite or infinite countable number of values, which are often 

positive integers, e.g. the number of earthquakes within a certain period of time, the 

number of cars crossing a bridge. A continuous random variable has always an infinite 

number of values and is free to take on any value on the real axis, e.g. strength of 

materials, depth of a fatigue crack. 

In this study, a random variable will be denoted by a capital letter, while a particular 

realisation of the random variable by the corresponding lowercase letter.  
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The relationship between the values of a random variable and the corresponding 

probabilities is described by the probability distribution of the random variable. 

 Probability Distributions 

The probability distribution of a continuous random variable is usually described by 

the probability density function (PDF) which is the derivative of the CDF: 

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
 (2-16) 

Therefore, the probability that 𝑋 is within a tiny interval [𝑥, 𝑥 + 𝛥𝑥] is equal to: 

𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + ∆𝑥) = 𝑓𝑋(𝑥)∆𝑥 (2-17) 

For an interval of [𝑥1, 𝑥2] the probability that X takes on a value in this interval is: 

𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥2

𝑥1

 (2-18) 

If the PDF of 𝑋 is known, its CDF can be obtained as: 

𝐹𝑋(𝑥) = 𝑃(−∞ ≤ 𝑋 ≤ 𝑥) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥

−∞

 (2-19) 

The CDF of both discrete and continuous random variables has the following 

properties: 

0 ≤ 𝐹𝑋(𝑥) ≤ 1 (2-20) 

𝐹𝑋(−∞) = 0,     𝐹𝑋(∞) = 1 (2-21) 

𝐹𝑋(𝑥 + 휀) ≥ 𝐹𝑋(𝑥)         𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 휀 (2-22) 

It is noted that the value of 𝑓𝑋(𝑥) is not itself a probability. Based on Eq. (2-20), CDF 

is a probability. Moreover, Eq. (2-22) indicates that the cumulative distribution 

function is monotonically increasing. Figure 2.2 shows the probability mass function 

and the cumulative distribution function of a discrete random variable, schematically. 
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Figure 2.2. Illustration of PDF (left) and CDF (right) for a continuous random 

variable 

 Moments of Random Variables 

Probability distributions may be also defined in terms of their moments. The ith 

moment of a continuous random variable is defined by [9]: 

𝑚𝑖 = ∫ 𝑋𝑖𝑓𝑋(𝑋)𝑑𝑋
∞

−∞

 (2-23) 

The mean value (or expected value) of a continuous random variable is defined as the 

first moment [9]. The mean value is denoted as 𝐸[𝑋] and defined as: 

𝐸[𝑋] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (2-24) 

The expected value can be interpreted as a weighting of 𝑥 by 𝑓
𝑋
(𝑥). Therefore, the 

expected value of a random variable is also called the mean value of the random 

variable. The mean value is denoted as 𝜇𝑋. 

It is noted that for obtaining the mean value for a discrete random variable, Eq. (2-24) 

is written as: 

𝜇𝑋 = ∑(𝑥𝑖 × 𝑝𝑋(𝑥𝑖))

𝑛

𝑖=1

 (2-25) 

Similarly, the variance is described by the second central moment. The variance of a 

continuous random variable is denoted as 𝑉𝑎𝑟 [𝑋] and is defined as [9]: 

𝑉𝑎𝑟[𝑋] = 𝐸[(𝑋 − 𝜇𝑋)2] = ∫ (𝑥 − 𝜇𝑋)2𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (2-26) 
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The square root from the variance is called the standard deviation of a random variable 

and is denoted as 𝜎𝑋: 

𝜎𝑋 = √𝑉𝑎𝑟[𝑋] (2-27) 

It is noted that for obtaining the variance for a discrete random variable, Eq. (2-26) is 

written as: 

𝑉𝑎𝑟[𝑋] = ∑((𝑥𝑖 − 𝜇𝑋)2 × 𝑝𝑋(𝑥𝑖))

𝑛

𝑖=1

 (2-28) 

The ratio of the standard deviation of a random variable to its mean is called the 

coefficient of variation (COV): 

𝐶𝑂𝑉(𝑋) =
𝜎𝑋

𝜇𝑋
 (2-29) 

The coefficient of variation provides a useful descriptor for the variability of a random 

variable around its expected value [9]. It is noted that the coefficient of variation is a 

dimensionless parameter. 

 Common Continuous Probability Distributions  

 Uniform Distribution  

The uniform distribution is used when an experiment has an arbitrary outcome between 

certain bounds, [𝑎, 𝑏]. The probability density function (PDF) for a uniformly 

distributed random variable is defined as: 

𝑓𝑋(𝑥) =
1

𝑏 − 𝑎
,          𝑎 ≤ 𝑥 ≤ 𝑏 

𝑓𝑋(𝑥) = 0,          𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

(2-30) 

Where 𝑎 and 𝑏 are the parameters of the probability density function. Figure 2.3 shows 

the PDF of the uniform distribution. 
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Figure 2.3. A continuous random variable with a uniform density function 

By plugging the Eq.(2-30) into Eq.(2-24) and Eq. (2-26), the mean and the variance of 

a continuous random variable with uniform distribution are obtained as: 

𝜇𝑋 =
𝑎 + 𝑏

2
 

𝜎𝑋
2 =

(𝑏 − 𝑎)2

12
 

(2-31) 

 Normal (Gaussian) Distribution 

Normal distributions are usually used to represent random variables whose 

distributions are not known. The normal distribution has two parameters, mean 

parameter (𝜇) and standard deviation parameter (𝜎). The PDF of a normal distribution 

is defined as:  

𝑓𝑋(𝑥) =
1

√2𝜋𝜎2
× 𝑒𝑥𝑝 [−

1

2
(
𝑥 − 𝜇

𝜎
)
2

] (2-32) 

The random variable 𝑋 is defined in the range of (−∞,∞). Figure 2.4 shows the PDF 

of the normal distribution. 
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Figure 2.4. The probability density function of a normal distribution 

The standard form of the normal distribution can be obtained by replacing the random 

variable 𝑋 with an equivalent normalised value 𝑈 as: 

𝑈 =
𝑋 − 𝜇

𝜎
 (2-33) 

Using the above transform, the mean and variance of the standard form of the normal 

distribution are equal to: 

𝜇𝑈 = 0,  𝜎𝑈 = 1 (2-34) 

Therefore, the PDF of the standard normal variable is equal to: 

𝑓𝑈(𝑢) =
1

√2𝜋
× 𝑒𝑥𝑝 (−

1

2
𝑢2) = 𝜑(𝑢) (2-35) 

And the standard normal CDF is: 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = Φ(
𝑥 − 𝜇

𝜎
) = Φ(𝑢) (2-36) 

where 𝜑(𝑢) is the standard normal distribution and 𝑢 is a standard normally distributed 

variable with expected value zero and unit standard deviation. A table with numerical 

values of the standard normal CDF, Φ(𝑢), is given in the literature [9]. The table can 

be used in two ways; find Φ(𝑢) given 𝑢 or find 𝑢 given Φ(𝑢). 
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 Lognormal Distribution  

A random variable has a lognormal distribution when its natural logarithm has a 

normal distribution. It is noted that the random variable 𝑋 belongs to the range [0,∞). 

The PDF of a lognormal distribution, which depends on two parameters 𝜉 and 𝜆 is:  

𝑓𝑋(𝑥) =
1

𝑥𝜉√2𝜋
× 𝑒𝑥𝑝 [−

1

2
(
ln 𝑥 − 𝜆

𝜉
)
2

] (2-37) 

Parameters 𝜆 and 𝜉 and are the mean and standard deviation of 𝐿𝑁(𝑋). These 

parameters are related to the mean and standard deviation of variable 𝑋 as: 

𝜉 = √ln (1 + (
𝜎

𝜇
)
2

) 

𝜆 = ln 𝜇 −
1

2
𝜉2 

(2-38) 

When 𝜎 𝜇⁄ <  0.3, it can be shown that: 

𝜉 ≅  
𝜎

𝜇
 (2-39) 

Figure 2.5 shows the PDF of the lognormal distribution for different amounts of 

parameters. 

 

Figure 2.5. The probability density function of lognormal distribution (λ=2 for all 

distributions) 
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 Exponential Distribution  

The exponential distribution is the probability distribution of the time between events 

in a Poisson distribution. The exponential distribution has one parameter which is 

called the rate parameter (𝜆). The PDF of the exponential distribution is defined as: 

𝑓𝑇(𝑡) = 𝜆𝑒−𝜆𝑡 ,           𝑡 > 0 (2-40) 

The mean and standard deviation of the exponential distribution are given by: 

𝜇 = 𝜎 =
1

𝜆
 (2-41) 

Figure 2.6 shows the PDF of the exponential distribution for different amounts of the 

rate parameter. 

 

Figure 2.6. The probability density function of exponential distributions 

 Multiple Random Variables 

In previous sections, it was shown how the uncertainty can be modelled by a single 

random variable. However, in many problems, uncertainties arise from several 

sources. The joint behaviour of two (or more) random variables is characterised by a 

joint probability distribution. 

 Joint Probability Distributions  

In this section, joint probability distributions of two random variables will be 

discussed. It is noted that the joint probability results can be extended to more than 

two random variables. 
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Consider two random variables X and Y. Their joint cumulative distribution function 

(CDF) is defined as: 

𝐹𝑋𝑌(𝑥, 𝑦) = P[(𝑋 ≤ 𝑥) ∩ (𝑌 ≤ 𝑦)] (2-42) 

For the continuous random variables, the joint probability density is obtained as: 

𝑓𝑋𝑌(𝑥, 𝑦) =
∂2

∂𝑥 ∂𝑦
𝐹𝑋𝑌(𝑥, 𝑦) (2-43) 

The joint PDF can also be interpreted the probability of the intersection of two events: 

𝑃[(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥) ∩ (𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦)] = 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (2-44) 

Therefore: 

𝐹𝑋𝑌(𝑥, 𝑦) = ∫ ∫ 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑦

−∞

𝑥

−∞

 (2-45) 

 Marginal Distributions  

In some cases, it is necessary to remove consideration of one variable to study only 

the behaviour of the other variable. In such cases, the marginal PDF is obtained as: 

𝑓𝑋(𝑥) = ∫ 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑦
∞

−∞

 (2-46) 

 Covariance and Correlation  

When the uncertainty is modelled by a single random variable, the most information 

about the distribution of a single random variable is provided by its mean and standard 

deviation.  

However, when there is more than one random variable, the interdependence between 

random variables in their joint probability distribution can be represented by the 

covariance as: 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] = ∫ ∫ (𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (2-47) 

It can be shown that for statistically independent parameters, the covariance is equal 

to zero. Covariance indicates the degree of linear dependency between the two random 

variables. 
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By dividing the covariance of two variables by the product of their standard deviations, 

a normalised version of the covariance which is called the correlation coefficient is 

obtained as: 

𝜌𝑋𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (2-48) 

It can be shown that: 

−1 ≤ 𝜌𝑋𝑌 ≤ 1 (2-49) 

The correlation coefficient shows the degree of linear dependency between two 

random variables.  

It is noted that 𝜌𝑋𝑌 close to zero does not mean that there is no dependency between 

two random variables; although there may be some nonlinear relationship between 

these variables (see Figure 2.7). It is important to note that the terms statistically 

independent and uncorrelated are not synonymous. If two random variables are 

statistically independent, they must be uncorrelated. However, uncorrelated random 

variables are not necessarily statistically independent [6]. Figure 2.7 shows different 

possible correlations between two random variables. 

 

𝜌𝑥𝑦 ≅ 0 

 

0 ≤ 𝜌𝑥𝑦 ≤ 1 

 

𝜌𝑥𝑦 ≅ 1 

 

−1 ≤ 𝜌𝑥𝑦 ≤ 0 
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𝜌𝑥𝑦 ≅ −1 

 

𝜌𝑥𝑦 ≅ 0 

Figure 2.7. Different correlation coefficients of two random variables  

It should be noted that it is rare to obtain a value of correlation coefficients equal to 0, 

1, and -1. Two random variables can be assumed to be statistically independent if the 

absolute value of their correlation coefficient is less than 0.3. Moreover, two random 

variables can be assumed perfectly correlated if |𝜌𝑋𝑌| ≥ 0.9 [6]. 

 Common Multivariate Distributions  

Multivariate distributions are more complex than distributions of a single random 

variable and not many of them are commonly used. One of the common multivariate 

distributions is a joint normal distribution. The joint PDF of two normally distributed 

random variables depends on five parameters which are two mean values, two standard 

deviations, and the correlation coefficient between two random variables. The PDF of 

the joint normal distribution is: 

𝑓𝑋𝑌(𝑥, 𝑦) =
1

2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌𝑋𝑌
2

× 𝑒𝑥𝑝 (−
1

2(1 − 𝜌𝑋𝑌
2 )

[
(𝑥 − 𝜇𝑋)2

𝜎𝑋
2 +

(𝑦 − 𝜇𝑌)
2

𝜎𝑌
2 −

2𝜌𝑋𝑌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)

𝜎𝑋𝜎𝑌
]) 

(2-50) 

Figure 2.8 shows the schematic shape of the PDF of the joint normal distribution for 

two variables. 
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Figure 2.8. Joint normal probability density function  

2.3 Fundamentals of Structural Reliability 

 Different Approaches to Structural Safety 

 Deterministic Approach 

For many years, for the design of the structural systems, the loads and the structures’ 

strengths are considered as deterministic values. Therefore the capacity of a system is 

determined in such a way that it exceeds the load with a certain margin [10]. The safety 

factor in this approach is defined as: 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐿𝑜𝑎𝑑
=

𝑅

𝑆
 (2-51) 

A safety factor is considered as a measure of the reliability of the structure. In codes 

of practice for structural systems values for loads, strengths and safety factors are 

recommended. These values are determined based on experience and engineering 

judgement [10]. 

The main limitation of the deterministic approach is that it does not calculate the 

probability of failure. For example, if the safety factor is reduced by 20%, this 

approach cannot provide how much the probability of failure will increase. The 

method can only say that the probability of failure will increase. 
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 Semi-Probabilistic Approach 

In new codes, the characteristic values of the uncertain loads and resistances are 

specified and partial safety factors are applied to the loads and strengths to ensure that 

the structure is safe enough. The partial safety factors are usually based on experience 

or calibrated to existing codes [10]. 

Since there is uncertainty about the ultimate strength of a structure and the maximum 

load on the structure, these parameters are considered uncertain parameters. Imagine 

the mean values and standard deviations of capacity (𝜇𝑅 , 𝜎𝑅) and load (𝜇𝑆, 𝜎𝑆) are 

available based on previous measurements of load and capacity.  

In this approach characteristic values are defined as: 

• 𝑆𝐾 :  95% Fractiles, i.e. 𝑃[𝑆 < 𝑆𝐾] = 0.95 

• 𝑅𝐾 :  5% Fractiles, i.e. 𝑃[𝑅 < 𝑅𝐾] = 0.05 

 

Figure 2.9. Characteristic values of capacity and load 

The characteristic load is multiplied by a partial safety factor (usually greater than 1.0) 

to account for uncertainty in the loading estimation. The partial safety factor for the 

strength uncertainties is usually less than 1.0 to consider the effect of quality control 

during construction. To ensure safety, it is required that: 

𝑅𝐾 × 𝛾𝑅 ≥ 𝑆𝐾 × 𝛾𝑆 (2-52) 

Where 𝛾𝑅 and 𝛾𝑆 are the partial safety factors for strength and loading variables, 

respectively. If this inequality is not satisfied then the characteristic design strength 
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𝑅𝐾 must be increased. This is known as a semi-probabilistic approach and it is the 

basis of many design codes [6]. 

 Probabilistic Approach 

It was mentioned that structural analysis has been traditionally performed based on 

deterministic or semi-probabilistic methods. However, in real engineering 

applications, there are several sources of uncertainties in the prediction of the load and 

the resistance of the structural systems. 

For example, for an offshore platform, there are considerable sources of uncertainties 

in the calculation of the hydrodynamic loading on the members due to the uncertain 

value of marine growth, surface roughness; the uncertainties in the values of drag and 

inertia coefficients required in force calculations; and the simplifications made in the 

derivation of water particle kinematics using a wave theory. Thus the predicted forces 

and stresses in the members of the structure involve uncertainties.  

On the other hand, the predicted strength of the structure is also subject to uncertainty 

due to the inherent randomness in material properties such as yield strength, fatigue 

strength; and the uncertainty in the soil parameters, etc. 

Due to the existence of many uncertainties in loads and the resistance of the system, 

there is a need for the use of a probabilistic approach to ensure that the system is safe 

at an acceptable level of probability, during its specified lifetime.  

Structural reliability analysis, which is a probabilistic approach, provides a framework 

for the rational treatment of uncertainties in a system. In this framework, the safety of 

the structure is quantified in terms of the probability of failure or reliability which is 

accepted as a rational measure of structural safety [7].  

Since the focus of this study is on offshore structures, in the following section, the 

reliability analysis of a structure will be explained. 

 Structural Reliability Analysis 

The reliability of a structural system is defined as the probability that the structure has 

a proper performance throughout its lifetime. Reliability methods are used to estimate 

the probability of failure. It is noted that the reliability models might have some errors. 
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Therefore, the estimated reliability should be considered as a measure of reliability 

and not as an absolute number [10]. 

To estimate the reliability, the following steps should be taken into account [10]: 

• Identify the significant failure modes; 

• Formulate failure functions (limit state functions) for each failure mode; 

• Identify the stochastic variables in the failure functions; 

• Specify the statistical parameters (distribution) of the stochastic variables; 

• Estimate the reliability of each failure mode; 

• Perform sensitivity analyses to evaluate the reliability results. 

The following sections explain each mentioned step, briefly.  

 Definition of Failure and Limit States 

Typical failure modes in reliability analysis for a structural system could be yielding, 

buckling, fatigue and excessive deformations [10]. The main purpose of structural 

reliability analysis is to evaluate the probability of failure of a structural system for 

these failure modes.  

For this purpose event of failure should be defined. In structural reliability, failure is 

usually defined based on the concept of a limit state, which represents a boundary 

between desired and undesired performance of a structural system or component.  

Three types of limit states are usually considered [6]: 

1) Ultimate limit state (ULS): Failure associated with the loss of load-bearing 

capacity. E.g. when the load exceeds the resistance of a structural component. 

This failure can be related to e.g. formation of a mechanism in the structure, 

excessive plasticity and buckling [10]. 

2) Serviceability limit state (SLS): Under this condition, failure is related to a 

serviceability loss that does not indicate a significant decay of structural safety, 

e.g. excessive deflections of a beam, local damage and excessive vibrations [10]. 

3) Fatigue limit state (FLS): This is associated with the loss of strength under 

repeated cyclic loads. 
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It is noted that the defined failure does not necessarily mean the collapse of a structural 

system. 

For any given realisations x of the basic variables, the structure is either in a safe region 

or in a failure region. The basic variable space is thus divided into two sets, the safe 

set and the failure set. The two sets are separated by the failure surface (limit state 

surface). It is assumed that the failure surface can be described as: 

𝑔(𝒙) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 (2-53) 

Where g(x) is the failure function. 

Usually, the failure function is defined in a way that the positive values of g(x) 

correspond to the safe area and negative values correspond to the failure area [10], i.e.: 

𝑔(𝒙) < 0: Failure area 

𝑔(𝒙) = 0: Limit state: the boundary between the safe and unsafe area 

𝑔(𝒙) > 0: Safe area 

Figure 2.10 shows the limit state function when two variables are available, 

schematically. 

 

Figure 2.10. Failure function (limit state) 

The limit state function usually includes several basic variables. A very simple limit 

state function can be defined as: 

𝑔 = 𝑅 − 𝑆 (2-54) 
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where 𝑅 denotes the capacity of a system and 𝑆 is the load acting on the system. Figure 

2.11 shows how the limit state function divides the whole area into safe and unsafe 

areas. 

 

Figure 2.11. Limit state function and safe/unsafe areas in the reliability analysis  

 Uncertainty Modelling 

The behaviour of a structural system is usually described by models (analytical, 

empirical or numerical). To take into account various uncertainties associated with 

structural properties, loads and models themselves, parameters of the models are 

represented by random variables. The uncertainties are usually described in terms of 

the probability density function of the basic variables. 

In structural reliability analysis, uncertainties should be interpreted and differentiated 

regarding their type and origin [9]. There are different types of uncertainties including: 

• Physical uncertainty (Inherent uncertainty): 

The first type of uncertainty which is also called aleatory uncertainty is 

uncertainty that arises from the inherent randomness of physical quantities, such 

as natural loads (e.g., wind, earthquake), material properties (e.g., soil, steel) [12]. 

The inherent uncertainty is caused by the fact that the universe is not 

deterministic. These uncertainties cannot be reduced through the collection of 

additional information [9]. 

• Model uncertainty; 
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The model uncertainties are uncertainties that are associated with the imperfect 

knowledge or idealisations of the mathematical models [10]. Since these 

uncertainties can be reduced by further research or the use of a more sophisticated 

model, they are called epistemic uncertainty [6]. 

• Statistical uncertainty.  

These uncertainties arise due to incomplete statistical information, e.g. due to a 

small number of material tests [9]. The collection of more relevant data via 

observations or tests usually enables to decrease this type of uncertainty. 

Therefore, the statistical uncertainty is categorised as epistemic uncertainty. 

It is noted that there are other types of uncertainties such as uncertainties related to 

human errors in design, construction, inspection, maintenance, etc. which are beyond 

the scope of this study. 

 Human Error 

Human error is another important source of uncertainty that might cause structural 

failures. The causes of these errors are psychological and social factors that are 

complex and not yet well understood [7]. Human errors, to some extent, can be 

controlled by better working conditions, rigorous quality control and training etc. [7]. 

Uncertainties due to human error are not generally accounted for in reliability analysis. 

Therefore, the result of a reliability analysis should be considered as a theoretical value 

of the reliability [7].   

 Reliability Estimation 

It was mentioned that in the probabilistic approach to structural safety, all aspects of 

uncertainty in the load and capacity can be assessed. In a very simple simplest case, 

load (𝑆) and capacity (𝑅) are modelled as two random variables with probability 

distributions of 𝑓𝑆(𝑠) and 𝑓𝑅(𝑟), respectively. The probability of failure is the 

probability of being 𝑔 ≤ 0 as: 

𝑃𝑓 = 𝑃(𝑔 ≤ 0) = 𝑃(𝑅 − 𝑆 ≤ 0) = 𝑃(𝑅 ≤ 𝑆) (2-55) 

A structure fails when the load exceeds its resistance (capacity). For example, if a load 

of a structure equals a specific value (𝑠), the structure fails when 𝑠 ≥ 𝑅. However, 𝑅 
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is a random variable, therefore, the probability of failure can be calculated as the sum 

of all possible intersections of two events, i.e.: 

𝑃𝑓 = ∑𝑃[(𝑆 = 𝑠) ∩ (𝑠 ≥ 𝑅)]

𝑠

 
(2-56) 

Using conditional probability definition: 

𝑃𝑓 = ∑𝑃(𝑆 = 𝑠) × 𝑃(𝑅 ≤ 𝑠|𝑆 = 𝑠)

𝑠

 
(2-57) 

The first expression in Eq. (2-57) can be written as: 

𝑃(𝑆 = 𝑠) = 𝑓𝑆(𝑠)𝑑𝑠 (2-58) 

The second expression in Eq. (2-57) can be written as: 

𝑃(𝑅 ≤ 𝑠|𝑆 = 𝑠) = 𝐹𝑅(𝑠) (2-59) 

By substituting Eq.(2-59) and Eq.(2-58) into Eq.(2-57) and replacing the summation 

by integration: 

𝑃𝑓 = ∫ 𝐹𝑅(𝑠) × 𝑓𝑆(𝑠)𝑑𝑠
∞

−∞

 (2-60) 

Figure 2.12 shows the probability density functions for load and capacity and how to 

calculate the probability of failure. 

 

Figure 2.12. Calculation of the probability of failure  
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As it can be seen from Figure 2.12, for obtaining the accurate reliability results, the 

left tail of the capacity distribution and the right tail of the load distribution should be 

modelled properly. 

• Special Case - Normal Distribution 

If the capacity (𝑅) and load (𝑆) are assumed as independent normal random 

variables, the probability of failure can easily be evaluated. In Section 2.2.8.2, it 

was explained that the sum of independent normally distributed random variables 

is normally distributed. Therefore, the limit state function (𝑔 = 𝑅 − 𝑆) is a normal 

random variable with the following mean and variance: 

𝜇𝑔 = 𝜇𝑅 − 𝜇𝑆 

𝜎𝑔
2 = 𝜎𝑅

2 + 𝜎𝑆
2 

(2-61) 

where 𝜇𝑅 and 𝜇𝑆 are mean values and 𝜎𝑅 and 𝜎𝑆 are standard deviations of 

capacity and load, respectively. Since the limit state function is a normal random 

variable, based on Eq.(2-36), the probability of failure can be obtained as: 

𝑃𝑓 = 𝑃[𝑔 ≤ 0] = 𝐹𝑔(0) = 𝛷 (
0 − 𝜇𝑔

𝜎𝑔
) = 𝛷 (−

𝜇𝑔

𝜎𝑔
) = 𝛷(−𝛽) (2-62) 

where 𝛽 is called the reliability index and 𝛷(. ) is the CDF of the standard normal 

distribution.  

 

Figure 2.13. Illustration of reliability index and the probability of failure 

In this case, the reliability index can be expressed through the means and 

variances of the capacity and load as: 
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𝛽 =
𝜇𝑔

𝜎𝑔
=

𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2

 
(2-63) 

The reliability index is a very important parameter in structural reliability, which 

is used as a measure of structural reliability instead of the probability of failure 

[6]. As can be seen from Eq.(2-62) there 𝛽 and 𝑃𝑓 are related to each other. Table 

2.1 shows different values of probability of failure and the corresponding 

reliability index. 

Table 2.1. Different values of probability of failure and the corresponding 

reliability index  

Probability of Failure (𝑃𝑓) Reliability Index (𝛽) 

0.5 0 

0.1 1.28 

0.01 2.33 

10-3 3.09 

10-4 3.72 

10-5 4.26 

10-6 4.75 

 

 Levels of Reliability Methods  

Methods to measure the reliability of a structure can be divided into four groups [13]: 

• Level I methods: The uncertain parameters are modelled by one characteristic 

value, as introduced in codes based on the partial safety factor concept. 

• Level II methods: The uncertain parameters are modelled by the mean values and 

the standard deviations, and by the correlation coefficients between the stochastic 

variables. The stochastic variables are implicitly assumed to be normally 

distributed. 

• Level III methods: The uncertain quantities are modelled by their joint 

distribution functions. The probability of failure is estimated as a measure of 

reliability. This level will be considered in this research. 

• Level IV methods: In these methods, the consequences of failure are also taken 

into account and the risk (consequence multiplied by the probability of failure) is 
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used as a measure of the reliability. In this way, different designs can be 

compared on an economic basis taking into account uncertainty, costs and 

benefits. 

 Techniques of Reliability Calculation 

There are several ways to calculate the reliability and the corresponding probability of 

failure, including [6]: 

• First-Order Reliability Method (FORM) 

• Second-Order Reliability Method (SORM) 

• Simulation Techniques 

In the first two methods, transformations from the original distributions to 

corresponding equivalent normal distributions of uncertainties are needed at each 

cycle of the iteration. In FORM, the limit state function is linearised and in SORM, a 

quadratic approximation to the failure function is determined and then, the probability 

of failure is estimated [10]. In simulation technique methods, samples of the variables 

are generated and the relative number of samples corresponding to failure is used to 

estimate the probability of failure. The simulation techniques are different in the way 

the samples are generated [6].  

2.4 Reliability Methods 

In Section 2.3.2.4, the load and capacity of a structure are modelled as random 

variables. However, in real applications of reliability analysis, the capacity is a 

function of material properties and structural dimensions. Moreover, the load is a 

function of applied loads and materials densities [6]. Each of these parameters may be 

a random variable. 

These random variables are called the basic random variables for the problem. In this 

context, the stochastic variables are denoted by capital letters, the realisations of basic 

variables are denoted lower case letters and vectors are denoted by bold letters. 

 The joint probability density function of the vector X of the basic random variables is 

denoted as 𝑓𝑿(𝒙). Therefore, the general form of the probability of failure can be 

written as: 
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𝑃𝑓 = 𝑃[𝑔(𝑿) ≤ 0] = ∭ 𝑓𝑿(𝒙). 𝑑𝒙

.

𝑔(𝑿)≤0

 
(2-64) 

In general, to obtain the probability of failure, the above integral should be calculated.  

Figure 2.14 shows the joint pdf of two random variables and the limit state function, 

schematically. 

 

Figure 2.14. Joint PDF of random variables and limit state function 

The probability integration in Eq.(2-64) is the volume underneath the surface of the 

joint PDF in the failure region. Figure 2.15 shows the contour of the joint PDF and the 

limit state function in 𝑋1 − 𝑋2 plane. 

 

Figure 2.15. Contours of the joint pdf and the limit state function in a 2D plane 
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The direct evaluation of the probability integration (Eq. (2-64)) is extremely difficult 

due to the following items [11]: 

• Since several random variables are involved in the reliability applications, the 

probability integration is multi-dimensional.  

• The joint pdf of X is usually a nonlinear multi-dimensional function. 

• The integration boundary (𝑔𝑿(𝒙) = 0) is multi-dimensional and a nonlinear 

function. 

• In many engineering applications, there is not an explicit form for 𝑔
𝑿
(𝒙). 

Therefore, the evaluation of the limit state function is computationally expensive. 

Since it is unpractical using numerical integration to find the solution, the 

approximation methods have been developed in the area of structural reliability: 

• First-Order Second Moment (FOSM) 

• First-Order Reliability Methods (FORM) 

• Second-Order Reliability Methods (SORM) 

• Monte-Carlo Simulation 

 First Order Second Moment (FOSM) Method 

The First Order Second Moment (FOSM) method is the first structural reliability 

method. The ‘first order’ term indicates that the method is based on a linear expansion 

using only the first derivative terms in a Taylor series. In this method, the higher-order 

derivations are neglected [6]. Due to neglecting the higher derivative terms in a Taylor 

series, the FOSM method does not provide an exact answer. However, it can usually 

give a useful approximate answer in many reliability applications [6]. 

It was mentioned that in the statistics terminology, mean is the first moment of the area 

under the probability density curve and the variance is the second moment of area 

about the mean. Therefore, the second-moment term indicates that each variable is 

described only by its mean value and variance. 
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 FOSM Method to Obtain the Reliability Index  

In Section 2.3.2.4  it was explained how the reliability index can be calculated for a 

special case. In that special case, the limit state function is a linear function of 

independent normal random variables. The FOSM method can obtain the reliability 

index when the limit state function is a nonlinear function of normal random variables 

[6].  

The limit state function can be linearised using a Taylor series expansion by neglecting 

the higher-order derivatives as: 

𝑔(𝑿) ≅ 𝑔(𝒙∗) + ∑{
𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

× (𝑋𝑖 − 𝜇𝑋𝑖
)}

𝑛

𝑖=1

 (2-65) 

Here, 𝒙∗ = {𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  } is the expansion point, i.e. Taylor series is expanded at this 

point. Moreover 
𝜕𝑔

𝜕𝑋𝑖
 denotes a partial derivative of the limit state function with respect 

to the random variable 𝑋𝑖.  This term may be a function of the random variables. The 

subscript ∗ means the random variables in this function should be replaced by their 

values at the expansion point. It is noted that in the FOSM method the linearisation is 

carried out on the mean values of the random variables [6]. Therefore: 

𝑔(𝑿) ≅ 𝑔(𝜇𝑋1
, 𝜇𝑋2

, … , 𝜇𝑋𝑛
) + ∑{

𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

× (𝑋𝑖 − 𝜇𝑋𝑖
)}

𝑛

𝑖=1

 (2-66) 

The mean value of this linear approximation of the limit state function is obtained as: 

𝜇𝑔 = 𝐸[𝑔(𝑿)] ≅ 𝐸 [𝑔(𝜇𝑋1
, 𝜇𝑋2

, … , 𝜇𝑋𝑛
) + ∑{

𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

× (𝑋𝑖 − 𝜇𝑋𝑖
)}

𝑛

𝑖=1

] (2-67) 

Since 𝐸[𝑋𝑖] = 𝜇𝑋𝑖
, term 𝐸[𝑋𝑖 − 𝜇𝑋𝑖

] = 0. Therefore, the second term on the right-hand 

side of the above equation is equal to zero. Eq.(2-67) can be written as: 

𝜇𝑔 ≅ 𝑔(𝜇𝑋1
, 𝜇𝑋2

, … , 𝜇𝑋𝑛
) (2-68) 

Eq. (2-68) indicates that for obtaining the mean value of the limit state function, the 

mean values of each random variable should be substituted in the limit state function. 

The next step for obtaining the reliability index is to find out the variance of the limit 

state function: 
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𝜎𝑔
2 = 𝐸 [(𝑔(𝑿) − 𝜇𝑔)

2
] = 𝐸 [{∑(

𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

× (𝑋𝑖 − 𝜇𝑋𝑖
))

𝑛

𝑖=1

}

2

] (2-69) 

By expanding the above equation, two types of terms will appear, the first involving 

squares and the second involving cross-products as [6]: 

𝜎𝑔
2 = 𝐸 [∑[(

𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

)

2

(𝑋𝑖 − 𝜇𝑋𝑖
)
2
]

𝑛

𝑖=1

    

+ ∑ {
𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

(𝑋𝑖 − 𝜇𝑋𝑖
) ×

𝜕𝑔

𝜕𝑋𝑗
|
𝜇𝑿

(𝑋𝑗 − 𝜇𝑋𝑗
)}

𝑛

𝑖,𝑗=1;𝑖≠𝑗

]

= {[∑(
𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

)

2𝑛

𝑖=1

] × 𝐸 [(𝑋𝑖 − 𝜇𝑋𝑖
)
2
]}

+ {[ ∑
𝜕𝑔

𝜕𝑋𝑖
|
𝝁𝑿

×
𝜕𝑔

𝜕𝑋𝑗
|
𝝁𝑿

𝑛

𝑖,𝑗=1;𝑖≠𝑗

] × 𝐸 [(𝑋𝑖 − 𝜇𝑋𝑖
) (𝑋𝑗 − 𝜇𝑋𝑗

)]} 

(2-70) 

Based on the definition of variance and covariance, Eq.(2-70) can be written as: 

𝜎𝑔
2 = {[∑(

𝜕𝑔

𝜕𝑋𝑖
|
𝝁𝑿

)

2𝑛

𝑖=1

] × 𝜎𝑋𝑖

2 } + {[ ∑
𝜕𝑔

𝜕𝑋𝑖
|
𝝁𝑿

×
𝜕𝑔

𝜕𝑋𝑗
|
𝝁𝑿

𝑛

𝑖,𝑗=1;𝑖≠𝑗

] × 𝐶𝑂𝑉(𝑋𝑖 , 𝑋𝑗)} (2-71) 

Using the definition of covariance, Eq. (2-71) can be written as: 

𝜎𝑔
2 = ∑∑[

𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑿

× 
𝜕𝑔

𝜕𝑋𝑗
|
𝝁𝑿

× ( 𝜌.𝑋𝑖𝑋𝑗
𝜎𝑋𝑖

𝜎𝑋𝑗
)]

𝑛

𝑗=1

𝑛

𝑖=1

 (2-72) 

Having obtained the mean value and variance of the limit state, the reliability index 

can be calculated as: 

𝛽 =
𝜇𝑔

𝜎𝑔
=

𝑔(𝜇𝑋1
, 𝜇𝑋2

, … , 𝜇𝑋𝑛
)

√∑ ∑ [
𝜕𝑔
𝜕𝑋𝑖

|
𝝁𝑿

× 
𝜕𝑔
𝜕𝑋𝑗

|
𝝁𝑿

× ( 𝜌.𝑋𝑖𝑋𝑗
𝜎𝑋𝑖

𝜎𝑋𝑗
)]𝑛

𝑗=1
𝑛
𝑖=1

 
(2-73) 

It should be noted that the calculated reliability index (and also the probability of 

failure) is not an exact value since the limit state function is non-linear [6].  
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 Limitations of the FOSM Method 

Since only the mean values and standard deviations are used in the FOSM method, 

this method is an easy method to calculate the reliability index. However, this method 

has some shortcomings such as: 

• Random variables are assumed normally distributed; 

• The limit state is linearised and higher derivative terms in a Taylor series are 

neglected. 

• Lack of invariance problem: 

The main issue with this method is an invariance problem, i.e. the value of the 

calculated reliability index in this method depends on a particular formulation of 

the limit state function. In the other words, the equivalent limit state functions 

have different reliability index values, whereas, changing the formulation of the 

limit state function does not change the actual border between the safe and failure 

domains [6]. It can be shown that the obtained reliability index is different for the 

following limit states: 

𝑔1 = 𝑅 − 𝑆 

𝑔2 = 𝑅2 − 𝑆2 

 

Where 𝑅 and 𝑆 are the capacity and load variables. 

 First Order Reliability Method (FORM) 

It was mentioned that the main issue with the FOSM method is the invariance problem. 

To solve this problem, the First Order Reliability Method (FORM) was developed. 

Same as the FOSM method, the limit state function is approximated by the first-order 

Taylor expansion. However, here, instead of at the mean, the limit state function is 

linearised somewhere on the limit state surface, i.e., at a point where 𝑔 = 0. 

Two steps are considered in FORM to obtain the probability of failure [11]: 

• Transferring the random variables in the original space to the standard normal 

space  

• Linearisation of the limit state function.  
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After the two steps, an analytical solution to the probability integration will be easily 

found. 

 Transformation of Variables 

Generally, the stochastic variables are not normally distributed. To calculate the 

probability of failure based on Eq.(2-64), the random variables in the original space 

(which is called X-space) are transferred to the standard normal space (which is called 

U-space). In the standard normal space, all random variables are: 

• Uncorrelated  

• Standard normal distributed 

The transformation from the original X-space to the standard normal U-space is 

performed for two reasons [11]: 

1) The joint PDF in the standard normal space is rotationally symmetric and it 

decays in the radial and tangential directions. Therefore, the point on the limit-

state surface that is closest to the origin has the highest probability density. As a 

result, the point closest to the origin is an important point for approximating the 

limit-state function, 

2) In the standard normal space, it is possible to develop a formula for the probability 

content outside a hyper-plane.  

It should be noted that after the transformation, the asymmetric joint PDF in the 

original space (Figure 2.15) is replaced with symmetric concentric circles. Figure 2.16 

shows the joint PDF contour and the limit state function in U-space. It is now easier to 

calculate the probability of failure.  
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Figure 2.16. Joint PDF contour and the limit state function in U-space 

Figure 2.17 shows the limit state functions in both X-space and U-space. 

 

Figure 2.17. Failure functions in X-space and U-space 

The transformation is based on the condition that the CDFs of the random variables 

remain the same before and after the transformation. The transformation can be 

performed in several ways, e.g. by determining eigenvalues and eigenvectors [12]. 

One of the useful transformations is the Rosenblatt transformation [11], which is 

expressed as: 

𝐹𝑋𝑖
(𝑥𝑖) = 𝛷(𝑢𝑖) (2-74) 
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Therefore, the transformed standard normal variable is then given by: 

𝑈𝑖 = 𝛷−1 (𝐹𝑋𝑖
(𝑋𝑖)) (2-75) 

After the transformation, the limit state function can be written in U-space. It is noted 

that the mathematical formulation of the original limit state will change. The 

probability of failure is: 

𝑃𝑓 = ∭ 𝜑(𝑼)𝑑𝑼

.

𝑔(𝑼)<0

 (2-76) 

where 𝜑(𝑼) is the joint PDF of random variables in the standard normal space. Since 

all the random variables are independent, the joint PDF is the product of the individual 

PDFs of standard normal distribution and is then given by: 

𝜑(𝑼) = ∏
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑈𝑖

2)

𝑛

𝑖=1

 (2-77) 

 Linearisation of Limit State Surface 

After transferring the random variables in the original space to the standard normal 

space, the limit state function in U-space should be linearised. This linearisation is 

performed to make the probability integration easier to be evaluated. In the FORM 

method, a linear approximation (the first-order Taylor expansion) same as the FOSM 

method is used. However, instead of at mean, the limit state function is linearised at 

the design point, which is denoted by 𝒖∗. The design point is unknown and it will be 

explained how to find it in Section 2.4.2.3.  

In this section, the limit state function in the original space is denoted 𝑔(𝑿) whereas it 

is denoted by 𝐺(𝑼) in the standard normal space. 

At first, let’s assume that the design point is known. The linear Taylor series expansion 

around the design point can be written as: 

𝐺(𝑼) ≅  𝐺(𝒖∗
 ) +  𝛻𝐺(𝒖∗)𝑇 . (𝑼 − 𝒖∗) (2-78) 

Where 𝒖∗ = (𝑢1
∗ , 𝑢2

∗ , … , 𝑢𝑛
∗ ) is the expansion point, superscript 𝑇 stands for a Transpose 

operator and ∇𝐺(𝒖∗) is the gradient of 𝐺(𝑼) at 𝒖∗ which is: 
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∇𝐺(𝒖∗) = (
𝜕𝐺(𝑼)

𝜕𝑈1
,
𝜕𝐺(𝑼)

𝜕𝑈2
, … ,

𝜕𝐺(𝑼)

𝜕𝑈𝑛
)|

𝑼=𝒖∗

 (2-79) 

The alpha vector which is a unit vector is defined as: 

𝛂 = −
𝛻𝐺(𝑼)

‖𝛻𝐺(𝑼)‖
 (2-80) 

Where ‖. ‖ indicates the length of a vector. 

It was mentioned that the design point is a point on the limit state surface, therefore: 

𝐺(𝒖∗
 ) = 0 (2-81) 

By plugging Eq.(2-80) and Eq.(2-81) into Eq.(2-78): 

𝐺(𝑼) ≅  [−‖𝛻𝐺(𝒖∗)‖𝜶]𝑇 . (𝑼 − 𝒖∗) = ‖𝛻𝐺(𝒖∗)‖ × (𝜶𝑻. 𝒖∗ − 𝜶𝑻. 𝑼) (2-82) 

 Finding the Design Point 

Due to the linearisation of the limit state function, the probability of failure is not 

completely accurate. To minimise the accuracy loss, 𝐺(𝑼) needs to be expanded at a 

point that has the highest contribution to the probability integration [11]. Therefore the 

Taylor series is expanded at a point that has the highest value of probability density. 

The point that has the highest probability density on 𝐺(𝑼) = 0 is denoted as the Most 

Probable Point (MPP) or the design point. Therefore, it is required to maximise the 

joint PDF introduced in Eq.(2-77), i.e.: 

max
𝑼

[∏
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑈𝑖

2)

𝑛

𝑖=1

] |

𝐺(𝑼)=0

   (2-83) 

Since:  

∏
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑈𝑖

2)

𝑛

𝑖=1

=
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
∑𝑈𝑖

2

𝑛

𝑖=1

) (2-84) 

Maximising the Eq.(2-84) is equivalent to minimising ∑ 𝑈𝑖
2𝑛

𝑖=1 . Therefore the design 

point (𝒖∗) is obtained as: 
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𝒖∗ = min
𝑼

[∑𝑈𝑖
2

𝑛

𝑖=1

] |

𝐺(𝑼)=0

 

= min
𝑼

‖𝑼‖ | 𝐺(𝑼)=0 

(2-85) 

It was mentioned that ||.|| stands for the length of a vector, i.e.: 

‖𝑼‖ = √𝑈1
2 + 𝑈2

2 + ⋯+ 𝑈𝑛
2 = √∑𝑈𝑖

2

𝑛

𝑖=1

 (2-86) 

Therefore the design point is obtained by solving the optimisation problem 

(Eq.(2-85)). 

Hasofer and Lind showed that the reliability index is the smallest distance from the 

origin in the U-space to the failure surface [14]. Therefore: 

𝛽 = ‖𝒖∗‖ = √∑(𝑢𝑖
∗)

2
𝑛

𝑖=1

 (2-87) 

 

Figure 2.18 illustrates the geometrical concept of the reliability index. 

 

Figure 2.18. Geometrical illustration of the reliability index β 

After obtaining the reliability index, the probability of failure is obtained as: 
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𝑃𝑓 = 𝛷(−𝛽) (2-88) 

Let’s have look at Eq. (2-82) again: 

𝐺(𝑼) ≅  [−‖𝛻𝐺(𝒖∗)‖𝜶]𝑇 . (𝑼 − 𝒖∗) = ‖𝛻𝐺(𝒖∗)‖ × (𝜶𝑻. 𝒖∗ − 𝜶𝑻. 𝑼)  

Since 𝜶 is a unit vector, the dot product between the parallel vectors 𝜶 and 𝒖∗ is the 

length of 𝒖∗. Based on Eq. (2-87), the length of 𝒖∗ is equal to reliability index. 

Therefore Eq. (2-82) yields to: 

𝐺(𝑼) ≅  ‖𝛻𝐺(𝒖∗)‖ × (𝛽 − 𝜶𝑻. 𝑼) (2-89) 

Eq. (2-89) shows the linearised limit state function obtained by the FORM method. 

• Optimisation Technique 

It was mentioned that to obtain the design point, an optimisation problem should 

be solved (Eq.(2-85)). A generic search technique for optimisation can be 

employed to determine the design point as [11]: 

𝒖𝑚+1  = 𝒖𝑚 + 𝑠𝑚. 𝒅𝑚 (2-90) 

where 𝑚 is the iteration counter, 𝑠𝑚 is the step size at the 𝑚𝑡ℎ iteration, and 𝒅𝑚 

is the direction vector at the 𝑚𝑡ℎ iteration. In each iteration, convergence criteria 

should be checked. The design point is selected when the convergence criteria 

are being satisfied. Two convergence criteria are considered: 

1) The trial point must be close to the limit-state surface: 

|
𝐺(𝒖𝑚)

𝐺0
| ≤ 𝑒1 (2-91) 

where 𝐺0 is a scaling factor and it is usually the value of the limit state 

function at the mean value and 𝑒1 is a is usually selected equal to 10-3 [11]. 

2) The trial point is required to be the closest point on the origin: 

If the trial point is the closest point to the origin, the gradient of the limit-

state function at the trial point should pass at the origin. In fact, at the design 

point, 𝒖𝑚+1 is parallel to the gradient vector.  

The length of the u-vector in the direction of the α-vector is equal to the dot 

product between these vectors (i.e. 𝜶𝑇 . 𝒖). As shown in Figure 2.19, the 
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difference between the vector (𝜶𝑇 . 𝒖)𝜶 and 𝒖 can be assumed a reasonable 

convergence criterion: 

‖𝒖𝑚 − (𝜶𝑚
𝑇 . 𝒖𝑚)𝜶𝑚‖ ≤ 𝑒2 (2-92) 

where 𝑒2 is usually selected equal to 10-3 [11]. 

 

Figure 2.19. Second convergence criterion 

Having obtained the design point, the reliability index can be achieved based on Eq. 

(2-87). 

 Second-Order Reliability Method (SORM) 

Compared to a FORM estimate of the reliability of a component, the Second-Order 

Reliability Method (SORM) estimated the reliability by using a second-order 

approximation of the failure surface at the design point (expansion using the first and 

the second derivative terms in a Taylor series): 

𝐺(𝑼) ≅ 𝐺(𝒖∗) + ∇𝐺(𝒖∗)𝑇(𝑼 − 𝒖∗) +
1

2
(𝑼 − 𝒖∗)𝑇 . 𝑯(𝒖∗). (𝑼 − 𝒖∗) (2-93) 

where 𝑯(𝒖∗) is the Hessian matrix of second-order partial derivatives of the failure 

surface at the design point, i.e.: 
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𝑯(𝒖∗) =

[
 
 
 
 
 

𝜕2𝐺

𝜕𝑈1
2 ⋯

𝜕2𝐺

𝜕𝑈1𝜕𝑈𝑛

⋮ ⋱ ⋮

𝜕2𝐺

𝜕𝑈𝑛𝜕𝑈1
⋯

𝜕2𝐺

𝜕𝑈𝑛
2 ]

 
 
 
 
 

𝑼=𝒖∗

 (2-94) 

The result of a SORM analysis may be given as the reliability index obtained from 

FORM multiplied with a correction factor evaluated based on the second-order partial 

derivatives of the failure surface in the design point. More details of SORM analysis 

can be found in [13]. 

It is noted that the FORM method gives sensible results when the failure functions are 

not too non-linear. If the failure function in U-space is quite non-linear, then the SORM 

method provides more accurate results [10]. 

Figure 2.20 shows the first and second-order approximations of the failure surface, 

schematically.  

 

Figure 2.20. Illustration of the first and second-order approximations of the failure 

surface 

 Monte-Carlo Simulations 

In the previous methods, iterative procedures are required to obtain the reliability 

index. Since in most engineering systems, variables are not normally distributed, these 

procedures are quite complex. For example, in both FORM and SORM, 



55 

 

transformations from the original distributions to corresponding equivalent normal 

distributions are needed at each cycle of the iteration. Moreover, the obtained solutions 

are not exact, albeit the approximations are usually reasonable.  

The Monte-Carlo simulation can obtain very accurate solutions for the probability of 

failure. With the rapid development of low cost and fast computing, Monte-Carlo 

simulation is becoming increasingly attractive [6]. Moreover, the Monte-Carlo 

simulation method is a powerful tool when the failure function in the U-space has more 

than one β-point, i.e. there are several local, probable failure regions [10].  

The name ‘Monte-Carlo’ was introduced in the 1940s by physicists (Stanislaw Ulam, 

Enrico Fermi, John von Neumann and others) working on nuclear weapon projects in 

the Los Alamos National Laboratory. The name is a reference to the Monte Carlo 

Casino in Monaco since the use of randomness and the repetitive nature of Monte 

Carlo simulation are analogous to the activities conducted at a casino [6]. 

Monte-Carlo methods are widely used to simulate engineering, physical and 

mathematical systems. Moreover, Monte-Carlo simulation methods are capable to 

perform reliability analysis regardless of the number of uncertain parameters.  

The following steps are required for performing Monte-Carlo simulation [6]: 

• Define random variables and their distributions 

• Generate sample values of the defined random variables  

• Evaluate limit state function for each set of random variables  

• Estimate the probability of failure of each component 

 Basic Steps of Monte Carlo Simulation 

In general, the process includes the following steps: 

1) Assume there are 𝑚 basic random variables 

2) Generate a random number uniformly distributed between 0 and 1 (𝑢𝑖).  Index 𝑖 

indicates the simulation number. 

3) For each basic random variable 𝑥𝑗 (𝑗 = 1, 2,… ,𝑚), find the value with the 

corresponding CDF equal to 𝐹𝑋𝑗
(𝑥𝑗) = 𝑢𝑖.  
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4) Substitute the generated values of the basic random variables into the limit state 

function. 

5) Depending on the value of the limit state function, Obtain the 𝐼(𝑿𝑖) as: 

𝐼(𝑿𝑖) = 0,       𝑖𝑓  𝑔(𝑿𝑖) > 0  

𝐼(𝑿𝑖) = 1,       𝑖𝑓  𝑔(𝑿𝑖) ≤ 0 

(2-95) 

6) Go to step one and repeat this procedure a large number of times (𝑁). 

7) Obtain the number of total simulations in which the limit state is less than zero 

(failure happens): 

𝑛𝑓 = ∑𝐼(𝑿𝑖)

𝑁

𝑖=1

 (2-96) 

8) Calculate the estimation of the probability of failure as: 

𝑃𝑓 ≅
𝑛𝑓

𝑁
=

∑ 𝐼(𝑿𝑗)
𝑁
𝑗=1

𝑁
 (2-97) 

Figure 2.21 shows the frequency of the limit state function values in addition to the 

safe and unsafe areas, schematically.  

 

Figure 2.21. Schematic distribution of the limit state function  

It should be noted that the probability of failure depends on the number of trials 

(i.e. 𝑁). Therefore the probability of failure can be assumed as an uncertain parameter. 

Hence, the calculated 𝑃𝑓 in Eq.(2-97) is an estimation of the probability of failure. It 
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can be shown that the coefficient of variation of the probability of failure is calculated 

as [6]: 

𝐶𝑂𝑉𝑃𝑓
≅

1

√𝑛𝑓

 (2-98) 

The 𝐶𝑂𝑉𝑃𝑓 represents the coefficient of variation of the estimation of the probability of 

failure. It is desirable to reduce the coefficient of variation to less than 0.1 to obtain a 

sufficiently accurate estimate of the probability of failure [6]. In most cases, this 

coefficient is even preferred to be smaller than 0.02 [1]. 

To achieve the desired level of accuracy, the number of simulations by the Monte 

Carlo method must be chosen high enough to keep the coefficient of variation of failure 

probability below 0.1.  

 Advantages and Disadvantages of Monte Carlo Simulation 

Some advantages of using the Monte Carlo simulation method are [6]: 

• Variables can have any distribution function. Even empirical distributions 

without explicit analytical forms can be used.  

• There is no need to transfer variables into standard normal space.  

• A complex limit state function can be utilised.  The Monte-Carlo method is 

considered the most powerful technique for analysing complex problems.  

• In implicit limit state functions (limit state is not expressed explicitly based on 

the random variables), using Monte-Carlo simulation is the only option [11].  

• There is no need to calculate the gradient of the limit state at the design point. 

• By increasing the number of simulations (𝑁), the estimation of the probability of 

failure becomes more accurate, whereas, in FORM and SORM methods, the 

probability of failure is approximated. 

However, this method has some disadvantages: 

• A computer is needed for performing calculations.  
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• A large number of simulations is needed to obtain a sufficiently accurate estimate 

of the probability of failure, especially when the order of the probability of failure 

is very low. Therefore, it may require significant computational time. 

• Sensitivity analysis of the reliability index to the random variables cannot be 

obtained [15]. 

 Other Monte Carlo Methods 

It was mentioned that to obtain an accurate and reliable estimation of the probability 

of failure, a large number of simulations are required especially for estimation of rare 

events to obtain a sufficient number of rarely failed samples.  

In many structural reliability problems, the probability of failure is of an order of 10-5 

to 10-4 [16]. It was mentioned that for an accurate result, the coefficient of variation of 

the probability of failure should be less than 0.1.  

If the acceptable 𝐶𝑂𝑉𝑃𝑓 is assumed equal to 0.05, based on Eq. (2-98), the number of 

failed simulations is obtained equal to: 

0.05 ≅
1

√𝑛𝑓

      ⇒      𝑛𝑓 = 400  (2-99) 

If the probability of failure is assumed equal to 10-4, based on Eq.(2-97), the total 

number of simulations required to obtain the accurate probability of failure is 

approximately equal to: 

𝑁 ≅
𝑛𝑓

𝑃𝑓
=

400

10−4
= 4 × 106 (2-100) 

Depending on the complexity of the limit state function, the computational process 

may become too time-consuming and not feasible to use.  

To reduce the number of samples, some techniques are developed to improve the 

efficiency of the Monte-Carlo simulation to generate more sample points in the failure 

region. These techniques allow decreasing the variance of the estimate of the 

probability of failure without using a very large number of simulation trials. Some of 

these modified techniques are [10]: 

• Importance sampling 
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• Adaptive sampling 

• Directional sampling 

• Latin hypercube sampling 

For example, the importance sampling method attempts to increase computational 

efficiency by generating samples in the high-probability density regions of the failure 

domain. The simplest way to perform the importance sampling is to use a design point 

obtained by the FORM as the mean of the sampling PDF. Therefore the sampling PDF 

is the original PDF shifted to be centred at the design point [6]. More details about the 

modified Monte-Carlo simulation techniques can be found in [10] and [17]. 

2.5 Sensitivity Measures 

Usually, several random variables exist in reliability analysis applications. In structural 

reliability analysis, in addition to the value of the probability of failure or reliability, it 

is crucial to know which of the basic random variables is more important in its 

contribution to the probability of failure. The main reasons for performing the 

sensitivity analysis are: 

• Identify the factors which have the most influence on reliability,  

• Identify factors that may need more research to improve confidence in the 

analysis, 

• Identify factors that are insignificant to the reliability and can be considered as 

deterministic parameters. 

Therefore, it is important to investigate the effect of each variable on the reliability 

index. A study of the sensitivity measures helps to identify the variables of the model 

that most significantly influence the reliability of the structure. Some sensitivity and 

importance measures have been reported in the literature which provides valuable 

additional information to help in decision making under uncertainty and these are 

discussed in the following [7]. 

The sensitivity of the reliability index with respect to stochastic variables can be 

evaluated by using sensitivity measures. One important sensitivity measure is the alpha 

vector (α). 
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Based on Figure 2.18, the design point vector can be written as: 

𝒖∗ = 𝛽𝜶 (2-101) 

Since 𝜶 is a unit vector, the dot product between this vector and its transpose equals 

to: 

 𝜶𝑻. 𝜶 = 1 (2-102) 

By multiplying 𝜶𝑇  into both sides of Eq. (2-101): 

 𝜶𝑇 . (𝒖∗) =  𝜶𝑇 . (𝛽𝜶) 

𝜶𝑻. 𝒖∗ = 𝛽 
(2-103) 

Therefore: 

𝜕𝛽

𝜕𝑈𝑖
|
𝑼=𝒖∗

= 𝛼𝑖 (2-104) 

Based on Eq.(2-104), the numerical value of 𝛼𝑖 is a measure of the sensitivity of the 

reliability index to inaccuracies in the value of 𝑈𝑖 at the design point. Thus the 

components in the α-vector can be considered as the relative importance of each 

stochastic variable on the reliability index [13]. 

It can be shown that the variance of the limit state function is equal to [10]: 

𝑉𝑎𝑟[𝐺(𝑼)] ≅  ‖𝛻𝐺(𝒖∗)‖2 × (𝛼1
2 + 𝛼2

2 + ⋯+ 𝛼𝑛
2) (2-105) 

Therefore, for independent stochastic variables, 𝛼𝑖
2 gives the percentage of the total 

uncertainty associated with 𝑈𝑖 (and 𝑋𝑖). 

It can be shown that if |𝛼𝑖| ≤ 0.14, the corresponding error in the reliability index is 

less than one percent. Therefore, the stochastic parameter related to this variable can 

be assumed as a deterministic parameter [10]. 

In the reliability analysis context, sometimes it can be difficult which variables 

represent load variables and which variables represent strength variables. It can be 

shown that [10]: 

𝛼𝑖 > 0 : Load parameter 

𝛼𝑖 < 0 : Resistance parameter 
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There are other sensitivity measures such as reliability elasticity coefficient and 

omission sensitivity factors. The omission sensitivity factor was introduced by Madsen 

to determine the relative error in the reliability index by treating one of the basic 

variables as deterministic [18]. 

2.6 Summary 

This chapter presents the basic concepts of the probability theory, random variables 

and commonly-used probability distributions. Then different approaches to structural 

safety are described and the concepts of structural reliability theory are explained. 

Different sources of uncertainty associated with load and resistance modelling are 

described. 

Different techniques for estimation of the reliability, including FORM, SORM and 

Monte-Carlo simulation and advantages/disadvantages of each method are explained.  

Although FORM and SORM methods estimate the probability of failure by 

approximating the nonlinear limit state function, they provide a measure of the 

sensitivity of the reliability index to the random variables considered in the analysis. 

Monte-Carlo simulation techniques, on the other hand, can estimate an accurate 

probability of failure if a large number of simulations is generated. However, a large 

number of simulations makes reliability analysis more time-consuming. 
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3 . FATIGUE RELIABILITY ANALYSIS  

3.1 Introduction  

Offshore jacket platforms are one of the most common types of offshore structures. 

They are usually constructed as truss frameworks in which tubular members are the 

structural elements [5]. These tubular members are welded together to create a steel 

frame, to transfer the gravitational and lateral loads to the pile foundations [1].  

Fatigue is defined as the failure of a component under a repeated load that never 

reaches a level sufficient to cause failure in a single application [3]. Fatigue is the 

process of damage accumulation in a member which experiences variable stresses due 

to time-varying loading [19]. Fatigue failure occurs when the accumulated damage is 

exceeding a critical level. 

Offshore jacket platforms are likely to fatigue damage due to the cyclic nature of wave 

loading on the structure. Therefore, fatigue analysis of such structures is very 

important in both the design and the assessment of platforms. Fatigue damage in 

offshore jacket platforms is most probable to occur at the welded tubular joints due to: 

• Geometric discontinuity of the connections which produces high-stress 

concentrations in these intersections 

• Presence of small initial defects at the weld toe due to the welding process 

Therefore, tubular joints of offshore platforms are susceptible to fatigue damage. Due 

to the high-stress concentration in the welded intersections, under these cyclic wave 

loads, these tiny defects gradually grow into fatigue cracks, and significantly reduce 

the capacity of the connections. The crack propagation may reach unacceptable sizes 

through thickness cracks and might lead to failure of the tubular joints.  

The main purpose of this chapter is to obtain the fatigue reliability analysis of the 

tubular joints. Section 3.2 introduces the fatigue process, how to model the wave 

loading in the sea environment, and how to obtain the response of the structure to the 

environmental loads by introducing the transfer function concept.  
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In Section 3.3, stress analysis of tubular joints is considered. Different types of tubular 

joints are introduced. The concept of hot spot stress (HSS) and stress concentration 

factor (SCF) is presented. 

For fatigue analysis of a tubular joint, two approaches are available: the S-N approach 

and the Fracture Mechanics (FM) approach [5]. Section 3.4 explains the S-N approach, 

important factors that should be taken into consideration when using the S-N approach 

(e.g., wall thickness), and fatigue damage calculation.  

Fatigue analysis based on the FM approach is explained in Section 3.5. The crack 

growth estimation, Paris law, and stress intensity factor (SIF) are introduced as well. 

It is noted that in this study, the FM approach is considered for performing the fatigue 

reliability analysis. 

Considerable research effort has been made on the probabilistic approaches to fatigue 

reliability analysis of offshore jacket platforms. Section 3.6 explains some of these 

studies. Section 3.7 describes how to perform fatigue reliability analysis for a tubular 

joint in a jacket structure. To carry out reliability analysis it is necessary to develop an 

appropriate probabilistic model. In this section, sources of uncertainties in fatigue 

analysis are explained and the limit state function is introduced. It is worth mentioning 

that in this chapter, the fatigue reliability analysis is considered at the component level, 

i.e. the probability of failure is estimated for a specific component (tubular joint). The 

system reliability calculation will be discussed in Chapter 4 of this thesis. 

Finally, the application of the fatigue reliability analysis to a jacket platform is 

provided in Section 3.8. A three-dimensional structural model of the considered 

platform is generated using SESAM software. A global fatigue analysis is performed 

by SESAM and the generated stress results are used to predict the crack size for the 

critical components in the considered platform. At any given time, the reliability of a 

tubular joint depends on the size of the fatigue crack. By performing the reliability 

analysis for the critical components, the probability of failure of each joint is obtained. 

It is worth mentioning that in this Chapter, Sections 3.2 to 3.7 describe the theoretical 

aspects of the fatigue reliability analysis, whereas, Section 3.8 demonstrates the 

application of the theoretical aspects to the considered platform and results that have 

been developed by the author.  
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3.2 Fatigue Stochastic Process 

The theory of stochastic processes is treated in several textbooks such as [20], [21] and 

[22]. The basics of stochastic process can be explained by taking into account the time 

history of a process such as shown in Figure 3.1. The value of the stochastic process 

at any specific time cannot be precisely predicted. However, it is possible to describe 

the process by its statistical properties. A process is said to be stationary if the 

statistical properties (e.g. mean value and standard deviation) do not vary with time 

[5]. 

 

Figure 3.1. Time history of a stochastic process 

Many processes can be considered stationary processes if the considered time interval 

is short enough. For example, the sea surface (water level) elevation can be considered 

to be a stationary process within time intervals of three to six hours [5].  

The main characteristic of a stationary process is that it can be considered as being 

composed of infinite harmonic components with different frequencies [5]. It can be 

shown that the energy of a harmonic wave is proportional to the square of its amplitude 

[5]. The energy spectrum shows how this energy of a harmonic wave is distributed at 

various frequencies.  
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Figure 3.2. Energy spectrum for a harmonic wave 

Figure 3.2 shows an energy spectrum for a harmonic wave, schematically. In the 

literature, the wave energy spectrum is also called wave spectral density [5]. In this 

figure, 𝜔 represents the angular frequency and 𝑆𝜂(𝜔) represents the water surface 

energy spectrum for a harmonic wave. The angular frequency is defined as:  

𝜔 =
2𝜋

𝑇𝑤
= 2𝜋𝑓𝑤 (3-1) 

where 𝑇𝑤 and 𝑓𝑤 are the wave period and wave frequency, respectively. 

The zero-order moment of the energy spectrum (which is the area under the spectrum) 

represents the total energy of the process [5]. It can be shown that the zero-order 

moment of the energy spectrum is also equal to the variance of the process [5], i.e.: 

𝑚0 = ∫ 𝑆𝜂(𝜔)𝑑𝜔
∞

0

= 𝜎𝜂
2   

  (3-2) 

where 𝑚0 represents the zero-order moment of the energy spectrum and 𝜎𝜂
2 represents 

the variance of the water surface [5]. 

The spectral width parameter (𝜖) of a process (any stochastic process in general) is 

defined as [5]: 

𝜖 = √1 −
𝑚2

2

𝑚0 × 𝑚4
 (3-3) 

where 𝑚2, 𝑚4 are the second-order and fourth-order moments of the energy spectrum 

of that process, respectively. The amount of 𝜖 varies between zero and one. When it is 
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close to zero, the spectrum is narrow and the time history of the process is relatively 

smooth and regular. Otherwise, the spectrum is broad and a time history is more 

irregular in shape [5]. 

For a narrow-band process, the average zero-crossing period for the water surface (𝑇𝑧) 

is approximated by [5]: 

𝑇𝑧 = 2𝜋 × √
𝑚0

𝑚2
 (3-4) 

In this chapter, the statistical properties of sea waves are modelled using short-term 

sea states. The duration of a sea state is normally taken as three hours [5]. Within each 

sea state, the water surface elevation (𝜂(𝑡)) is modelled by a stationary, Gaussian 

stochastic process. Therefore, the wave elevation is assumed normally distributed with 

an expected value of zero (𝜇𝜂 = 0) and standard deviation of 𝜎𝜂 [5]. 

 Response to the Environmental Loads 

In a linear system, the spectrum of the response can be obtained by using a transfer 

function. Linear systems are systems in which the relation between the input 

(excitation) and the output (response) is described by a linear differential equation [5]. 

In the North Sea, the surface waves are of major importance in the design of jacket 

structures, whereas the wind loads only represent a contribution of less than 5% of the 

total environmental loading [19]. Therefore, for an offshore structure, the ocean wave 

forces can be considered as the excitation and the stresses in a member can be assumed 

as the response. In general, the response process at the same frequency as the excitation 

process can be given by [5]: 

𝑌𝜔(𝑡) = 𝑇(𝜔) × 𝑋𝜔(𝑡) (3-5) 

where 𝑇(𝜔) is the transfer function, 𝑋𝜔(𝑡) and 𝑌𝜔(𝑡) are the excitation and response, 

respectively.  

The value of the energy spectrum at a given frequency is proportional to the square of 

the amplitude of the harmonic wave at that frequency [5]. Therefore, the energy 

spectrum of the response process is given by [5]: 
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𝑆𝑌(𝜔) = |𝑇(𝜔)|2 × 𝑆𝑋(𝜔) (3-6) 

where 𝑆𝑌 represents the response spectrum and 𝑆𝑋 represents the excitation spectrum. 

In this chapter, the water surface is the excitation (i.e. 𝑋𝜔(𝑡)) and stress is considered 

as the response (i.e. 𝑌𝜔(𝑡)). Therefore, Eq. (3-6) is written as: 

𝑆𝑆(𝜔) = |𝑇(𝜔)|2 × 𝑆𝜂(𝜔) (3-7) 

where 𝑆𝑆 represents the stress spectrum and 𝑆𝜂 represents the water surface spectrum. 

Figure 3.3 shows the water surface spectrum (𝑆𝜂(𝜔)), the stress spectrum (𝑆𝑆(𝜔)), 

and the transfer function (𝑇(𝜔)), schematically. 

 

Figure 3.3. Obtaining the stress spectrum (𝑆𝑆(𝜔)), by using the water surface 

spectrum (𝑆𝜂(𝜔)) and the transfer function (𝑇(𝜔)) 

The major task of the frequency domain analysis is the determination of the response 

of the structure for a unit sinusoidal wave as a function of the wave angular frequency 

(i.e. transfer function). 

 Modelling of Wave Loads 

The real sea does not contain the regular wave. Therefore, the sea may be described in 

terms of the statistical properties of the sea surface elevation. 

The wave period of a sea state can be defined as the time between two successive up-

crossings through the still water level (zero up-crossing period). The wave height for 

each period is defined as the difference between maximum and minimum values within 

that period [5]. Figure 3.4 shows the time history of the irregular sea surface. 
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Figure 3.4. A time history of the irregular sea surface 

In a short time interval (e.g. 3 hours), the statistical properties of the sea state may be 

considered to be constant. Therefore, the theory of stationary stochastic processes can 

be used to describe the sea state. For this stationary process, the following terms are 

defined: 

• Zero up-crossing period (𝑇𝑍):  

The average value of the wave periods as shown in Figure 3.4 

• Significant wave height (𝐻𝑆):  

The average of the highest one-third of the wave heights as defined in Figure 3.4 

• The water surface spectrum, 𝑆𝜂(𝜔): 

Wave spectra can be obtained by analyses of recorded wave-time histories. For 

design purposes, the model wave spectra are analytical expressions describing 

the spectral shape [5]. Several spectra have been developed and the most 

commonly used in the North Sea are Pierson-Moskowitz (PM) and JONSWAP 

spectrum. The PM spectrum applies to a fully developed sea, i.e. when the growth 

of waves is not limited by the size of the generation area. Therefore, the PM 

spectrum is usually used for fatigue analyses in the North Sea [5]. 
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In the PM spectrum, the wave spectral density, 𝑆𝜂(𝜔) is defined as a function of 

significant wave height (𝐻𝑆), mean zero-crossing period (𝑇𝑍) and wave angular 

frequency (𝜔), as [5]: 

𝑆𝜂(𝜔) =
4𝜋3 × 𝐻𝑠

2

𝑇𝑧 × 𝜔5
× 𝑒𝑥𝑝 [−16𝜋3 × (

1

𝑇𝑧 × 𝜔
)
4

] (3-8) 

The parameters 𝐻𝑆 and 𝑇𝑍 are constant within each sea state. 

Eq. (3-8) is obtained based on extensive oceanographic data and has been adopted 

as the most appropriate expression of sea surface behaviour for a fully developed 

sea.  

Having obtained the water surface spectrum (excitation), the stress spectrum 

(response) can be achieved by using a frequency domain analysis. In a frequency 

domain analysis (spectral approach), the stress range spectrum is obtained by using 

water surface spectrum and the transfer function as shown in Eq. (3-7). In this 

approach, the wave statistics of the random sea are considered a stationary process.  

Morison’s equation is widely used in the design of jacket structures for calculating the 

wave-induced loading. Morison’s equation provides reasonable results by careful 

selection of the drag (𝐶𝐷) and inertia (𝐶𝑀) coefficients in combination with an 

appropriate wave theory [19] as: 

𝐹 =
𝜌𝐷

2
× 𝐶𝐷 × 𝑈|𝑈| +

𝜋𝜌𝐷2

4
× 𝐶𝑀 ×

𝛿𝑈

𝛿𝑡
 (3-9) 

In Eq.(3-9): 

• 𝜌: Mass density of water 

• 𝐶𝐷: Drag coefficient 

• 𝐷: Effective diameter of the cylindrical member including marine growth 

• 𝑈:  Velocity vector of the water normal to the axis of the member 

• 𝐶𝑀: Inertia coefficient, 

• 𝛿𝑈
𝛿𝑡⁄ :   Acceleration vector of the water normal to the axis of the member 
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3.3 Stress Analysis of Tubular Joints 

Due to the uniform and symmetrical cross-section of tubular members, the stress 

concentrations are very small for these members. However tubular joints, which are 

welded connections, represent structural discontinuities that give rise to very high-

stress concentrations in the intersection area [5]. 

Fatigue failure is a major problem in welded tubular joints due to high-stress 

concentrations at the weld toes of the intersections. Therefore, the proper design of 

tubular joints against fatigue failures must be based on detailed knowledge of the 

magnitudes of the stress at the weld toes of the connections [5]. 

 Types of Tubular Joints 

Offshore structures are made from welded tubular joints which are different from each 

other with respect to size, shape, and load-carrying capacity. These joints can be loaded 

in any combination of three modes which are axial loading, out-of-plane bending 

(OPB), and in-plane bending (IPB). Due to the complexity of joint geometry and shell 

behaviour of welded tubular joints that govern load response, local stresses are non-

uniformly distributed. Figure 3.5 illustrates common loads in a tubular joint [3]. 

 

Figure 3.5. Illustration of different types of loading  

Tubular joints are made in different shapes and their configurations and dimensions 

are usually chosen based on structural requirements [5]. Tubular joints consist of joints 
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between main and secondary member tubes. The member which has a larger diameter 

is called a chord, and the smaller-sized member is denoted as a brace [5]. 

Tubular joints are classified based on the geometrical configuration, the applied load, 

and the design types. The design types are categorised as [5]: 

A) Simple welded joints: Simple (ordinary) welded joints that are used as planar or 

multi-planar designs are tubular members without overlap of the brace tubes and 

without any stiffeners or reinforcements [5]. Figure 3.6 shows some typical planar 

and multi-planar joint types. 

B) Overlapping joints: An overlapping joint is defined based on its geometry and its 

force transfer. These joints are joined together at their connection with the chord. 

Therefore, the loads are transferred between the braces through their common 

weld [5]. 

C) Complex joints: Complex joints are the joints that have internal/external 

stiffeners [5]. 
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T-Joint Y-Joint K-Joint 

                                                             (a) 

 

 
(b) (c) 

Figure 3.6. Simple welded joints, (a) planar joints, (b) a multi-planar joint, (c) 

offshore jacket platform 

The non-uniform distribution of stress occurs both on the tubular joint surface and also 

through the joint thickness. Non-uniform stress distribution leads to the existence of 

stress concentrations, mostly along with the chord and brace weld toes [3]. These stress 

concentrations cause the fatigue cracks to originate and propagate. For the design and 

assessment of structural components, stress analysis is carried out to determine both 

the location and magnitude of these critical stresses.  

The location of the most critical hot spots is usually unknown in advance. Therefore, 

several points (usually eight points) around the circumference of the tubular sections 

are checked for fatigue, both on the chord and brace sides of the weld. For each point, 

the magnitude of the critical stress is specified. Figure 3.7 shows these circumferential 

points for a tubular joint. 
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 Figure 3.7. Illustration of fatigue check points  

 Stress Definition in Welded Connections 

The presence of the weld at the complicated geometry of tubular joints causes major 

changes in the stress field in the brace and chord members. In fatigue crack growth 

analysis, critical stresses have to be determined for each joint. There are three main 

sources of stress in tubular welded joints [3]: 

1) Nominal stresses: These stresses occur in the tubular members due to the 

members behaving as beam and column elements. 

2) Geometric stresses: These stresses occur due to the deformation of the brace and 

chord walls at the connection. The difference in axial stiffness of the brace and 

bending stiffness of the chord wall, which varies along the intersection, causes 

major distortions of the stress field. The magnitude and distribution of these 

stresses are influenced by the overall geometry of the joint.  

3) Notch stresses: The stresses which happen from the geometric discontinuity of 

the tube walls introduced by an abrupt change in the section at the weld toe. 

These stresses are also commonly referred to as local stresses and are a function 

of weld size and geometry [3]. 
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Unlike nominal and geometric stresses, notch stresses are not propagated far through 

the wall thickness and, therefore, the resulting stress field is highly localised [3]. Due 

to the complexity and the variety of joint geometries used in the construction of 

offshore structures, the weld toe geometry (i.e. the weld toe radius and angle) cannot 

be made identical for each joint configuration [3]. 

Due to this difficulty in the determination of the notch stresses, a characteristic stress 

range is used for the fatigue analysis [3]. This characteristic stress range is known as 

the hot spot stress range [3]. 

 Definition of Hot Spot Stress and Stress Concentration Factors 

The Hot Spot Stress (HSS) is the most influential factor to control the fatigue strength 

of tubular joints [5]. HSS is the stress at the weld toe calculated by linear extrapolation 

to the weld toe of the geometric stresses [3]. It is noted that in the S-N method, the hot 

spot stress excludes the contribution to the stress concentration caused by the notch 

effect of the weld geometry [5]. Figure 3.8 illustrates the definition of hot spot stress.  

 

Figure 3.8. Stress distribution in chord wall 

The hot spot stress definition should be based on extrapolation from a point located 

0.25T from the weld toe on the chord side, and 0.25t on the brace side where T and t 

are the chord and brace thickness, respectively [5]. Furthermore, this distance should 

not be less than 4 mm [5]. 
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In welded joints, two different hot spots are found for the brace and the chord side. 

The maximum stress value may be on the chord side or brace side depending on the 

design and geometry of the joint [5]. The hot spot stresses must be calculated 

individually for the chord and brace. 

The stress concentration factor (SCF) is defined as the ratio of the hot spot stress to 

the nominal stress in the brace as [5]: 

𝑆𝐶𝐹 =  
𝜎𝐻𝑆𝑆

𝜎𝑁
 (3-10) 

where 𝜎𝑁 is the nominal stress and 𝜎𝐻𝑆𝑆  is the hot spot stress in the brace. 

Due to the complexity of the joint configurations, different guidelines provide different 

values for SCFs. The DNV document [23] states that stress concentration factors may 

be obtained from relevant tests or analyses. This code also requires the SCF not to be 

less than 2.5 [23]. 

Department of Energy Guidance [24] defines the hot spot stress as “The greatest value 

around the brace/chord intersection of the extrapolation to the weld toe of the 

geometric stress distribution near the weld toe. This hot-spot stress incorporates the 

overall effects of joint geometry but omits the stress concentrating influence of the 

weld itself which results in a local stress distribution”. This definition of hot spot stress 

is now accepted as an offshore standard for stress analysis of offshore tubular joints. 

The American Petroleum Institute [25] defines hot spot stress as “the stress in the 

immediate vicinity of a structural discontinuity”. This code recommends the use of the 

finite element analysis (FEA) method to obtain hot spot stress. In general, the hot-spot 

stress incorporates the effects of the overall geometry but omits the stress 

concentrating influence of the weld itself which results in a local stress concentration. 

Accurate estimation of the SCF and hot spot stresses are required to ensure adequate 

fatigue strength. The sensitivity of the fatigue strength to the values of the SCF is 

illustrated that an underestimation of 18% of the value of the SCF may cause a 100% 

overestimation of the fatigue life prediction [5].  
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 Methods of Stress Analysis 

Hot spot stress at the intersection of welded tubular joints governs fatigue strength of 

offshore structures [3]. Therefore, the determination of this value is a crucial step 

during the fatigue assessment of jacket platforms. 

Due to the complexity of joint shapes and the shell behaviour of tubular joints, stress 

analysis of tubular welded joint intersections is difficult. A wide range of techniques 

has been developed and employed in assessing offshore structures. The methods vary 

in their degree of accuracy in modelling different geometries and loading cases [3]. 

Several methods have been used over the years for the analysis of stresses in welded 

joints. The first attempts were performed to analyse tubular joints using theoretical 

methods for stresses [26]. However, the determination of stresses in tubular welded 

joints is difficult through the use of theoretical methods. As a result, the stress analysis 

is usually performed by using: 

• Finite element methods; 

• Experimental measurements; 

• Parametric equations.  

 Finite Element Methods 

Stress analysis with the finite element methods (FEM) is the most accurate approach 

to determine the stress distribution and hot spot stress in tubular joints [3]. However, 

FEM analyses are more expensive in comparison with other methods. 

 Experimental Methods 

Most of the early information on the performance of tubular joints and tubular joint 

stress behaviour was obtained by experimental measurements on steel models [3]. The 

increased offshore activity in the North Sea in the 1970s lead to an increased need to 

predict stresses in tubular joints more accurately, and different approaches [3] were 

being used to determine stresses in tubular welded joints using experimental methods. 

Experimental methods rely on the measurement of strain and hence stress 

concentration factors on scaled or full-scale models [3]. Elliot et al. [27] studied a 

range of tubular joint geometries and obtained detailed information on the distribution 
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of stresses on the surface and also through the chord and brace walls near the 

intersection.  

Experimental methods on steel models normally give accurate results. Therefore, 

results obtained using this technique are used as a benchmark for assessing the 

accuracy of other methods. However, it is a very time-consuming and expensive 

method because extensive strain gauging is required to give detailed information on 

the stress distribution in the region of interest [3]. In addition, high-capacity loading 

machines are required to provide measurable strains in full-scale specimens [3].  

Fatigue tests on large-scale tubular welded joints have been performed, for many years, 

to characterize the fatigue behaviour of steels used offshore. Although conducting 

these tests can be very expensive, crack growth behaviour in tubular welded joints is 

complex and cannot be reproduced by conducting tests on simple welded specimens. 

 Parametric Equations 

Based on several independent studies, a few sets of parametric equations have been 

published that have varying capabilities and degrees of accuracy in analysing various 

joint geometries.  

Parametric equations are those equations that are available for different joint types 

(e.g. Y-joint, T-joint, etc.). These equations estimate the SCF values based on non-

dimensional parameters of the joint geometry. These non-dimensional parameters are: 

𝛽 =  
𝑑

𝐷
              𝛾 =  

𝐷

2𝑇
              𝜏 =  

𝑡

𝑇
 (3-11) 

where: 

• 𝑑: Brace diameter 

• 𝐷: Chord diameter 

• 𝑡:  Brace thickness 

• 𝑇:  Chord thickness 

• 𝜃:  Angle between brace and chord 

There are several parametric equations such as the equations of Kuang et al. [28] and 

Efthymiou equations [29]. For example, the SCF value for a simple Y-joint under in-

plane bending moment is estimated by using the Efthymiou equation as [29]: 
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𝑆𝐶𝐹 = 1.45 × 𝛽 × 𝜏0.85 × 𝛾(1−0.68𝛽) × (sin 𝜃)0.7 (3-12) 

Parametric equations provide a suitable analysis route for obtaining SCFs. However, 

available recommended equations are only suitable for simple planar joints, and FEA 

may be required for more complicated engineering structures. Each set of parametric 

equations is limited in application in one of three ways [3]: 

• Restrictions in the types of joint geometry,  

• Restrictions on parametric validity range, 

• Restrictions on the loading configuration are covered by any set of parametric 

equations.  

Different parametric equations will yield results that vary in accuracy, depending on 

the joint geometry and the validity range. However, consistency in the predicted results 

is also important. In comparison with other parametric equations, Efthymiou equations 

have considerable advantages in consistency and coverage [3]. Efthymiou equations 

also provided a better fit to the SCF database examined when compared to other 

equations. The Efthymiou equations are recommended by different standards such as 

API [25]. 

3.4 Fatigue Analysis: The S-N Approach 

 Basics 

The S-N approach is traditionally used during the design of offshore welded tubular 

joints and connections [5]. As the design stage assumes no initial crack, the estimated 

fatigue damage based on the S-N approach is more consistent than the fracture 

mechanics approach [19]. In this approach, the fatigue life of a tubular joint is obtained 

based on a single parameter, i.e. the hot spot stress. 

In the early 1970s, American Petroleum Institute provided the first guidance on the 

design of tubular joints against fatigue using S-N curves [3]. The same data used in 

producing the API curves were also the basis of the curves in BS 6235 [30], and DNV 

rules [31]. Following the increasing availability of experimental data, design codes 

have been revised and the guidance on fatigue design has been modified, based on 

available data. 
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The hot spot stress range along the chord/brace intersection is obtained by using Eq. 

(3-10). The SCF values can be obtained through FEM, experimental tests, or 

parametric formulas.  As it was mentioned in Section 3.3.1, the fatigue life is usually 

checked at 8 points along the brace/chord intersection. For each point, the stresses due 

to the load cases (i.e. axial load, IPB, and OPB) are superimposed and the maximum 

HSS is selected for that specific joint [5]. 

Having provided the HSS range, the number of allowable cycles (N) corresponding to 

the hot spot stress range (S) can be obtained by using the relevant S-N curve for 

different structural details. Moreover, for the prediction of fatigue life of tubular joints, 

Miner’s rule with linear cumulative damage summation is used [5]. 

The S-N curves are based on a statistical analysis of experimental data. The data are 

presented as linear relations between 𝑙𝑜𝑔10(𝜎) and 𝑙𝑜𝑔10(𝑁) as [19]: 

𝐿𝑜𝑔10(𝑁) = 𝐿𝑜𝑔10(𝐾) − 𝑚 × 𝐿𝑜𝑔10(𝜎);      𝑖𝑓𝜎 > 𝜎0 (3-13) 

Where 𝑁 represents the number of cycles to failure for stress range, 𝜎, 𝐾 is a constant 

parameter in the S-N curve, 𝑚 represents the inverse slope of the S-N curve and 𝜎0 is 

the endurance limit. The stress range levels below the endurance limit do not contribute 

to fatigue damage. Figure 3.9 shows a schematic S-N curve.  

 

Figure 3.9. A schematic S-N curve 
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The numerical values for the S-N curves are summarised in several guidelines such as 

in DNV [23], API [25], ISO [32], etc. Figure 3.10 shows the suggested S-N curve by 

API for the joints in air and joints in seawater with cathodic protection [25].  

 

Figure 3.10. The S-N curve for a tubular joint with a thickness of 16mm (API [25]) 

Table 3.1 shows the value of the basic design S-N curve provided by API for a welded 

tubular joint [25]. 

Table 3.1. Values of basic design S-N curve [25] 

Environment 𝐿𝑜𝑔10(𝐾) 𝑚 𝑁 

In air   
12.48 3 𝑁 < 107 

16.13 5 𝑁 ≥ 107 

In seawater (with cathodic 

protection) 

12.17 3 𝑁 < 1.8 × 106 

16.12 5 𝑁 ≥ 1.8 × 106 

 

It is noted that in the S-N method, the number of fatigue cycles to failure is considered 

as the number of cycles that corresponds to the first through-wall cracking [5]. 

Some important factors should be taken into consideration when using the S-N curves, 

such as thickness effects, cathodic protection, corrosion fatigue, and variable 

amplitude fatigue (See [3] for more details). 
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 Fatigue Life Calculation 

In the S-N approach, the fatigue damage is estimated by using Miner’s damage 

summation. Miner’s rule assumes that every stress cycle causes some fatigue damage 

and the damages caused by various stress cycles are linearly added up together as [5]: 

𝐷 = ∑
𝑛𝑖

𝑁𝑖

𝑚

𝑖=1

 (3-14) 

where the cumulative damage, 𝐷, is determined based on the number of cycles (𝑛𝑖) 

over 𝑁𝑖  which is the number of cycles to failure at the stress range (corresponding with 

each sea state) according to the S-N curve. In Eq.(3-14) Subscript 𝑖 indicates the 

number of sea state and 𝑚 is the total number of sea states.  

The Miner-Palmgren equation assumes that the failure occurs at a damage ratio of 1. 

However, the acceptable amount for 𝐷 is usually selected between 0.5 and 1.0 [5].  

3.5 Fatigue Analysis-The Fracture Mechanics Approach 

The S-N approach is widely used to design welded tubular joints of offshore structures. 

Design standards such as API RP-2A [25] provide guidelines for fatigue analysis of 

offshore structures using this method. One of the most significant shortcomings of this 

method is that it cannot consider the changes in crack size during fatigue life and hence 

it cannot be used in assessing the structural integrity of cracked tubular joints in service 

[3]. Since the S-N approach cannot mathematically predict the changes in crack size 

during fatigue life, it cannot incorporate the results of any in-service inspection of the 

structure [1].  

On the other hand, the fracture mechanics approach (FM) can relate the increase of 

crack size to the number of fatigue stress cycles, and therefore it can be used to quantify 

the fatigue crack growth process [33]. FM approach is widely used in the fatigue 

analysis of the tubular joints in offshore platforms. The FM approach can be used 

during the operational stage of a structure, to make important decisions on inspection 

scheduling and repair strategies [3]. 

Regarding fatigue damage, the inspection results include information such as observed 

crack size which can be incorporated to update the fatigue reliability. This update is 
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convenient if the fatigue model is based on the FM approach which considers the 

physical deterioration such as fatigue crack growth [34]. 

Fracture mechanics (FM) analysis is the most powerful and useful tool available for 

solving fatigue crack problems. It is a simulation with crack growth models for 

mechanical evaluation of the strengths of cracked bodies or the behaviour of fatigue 

cracks. The use of FM in the probabilistic analysis of structural components subjected 

to fatigue loading is increasing, in the offshore oil and gas industry [3]. 

In the FM approach, some models (e.g. average stress model [35], two-phase model 

[2], and modified average stress model [36]) are developed to predict the fatigue crack 

growth in welded tubular joints, subjected to service loading. These models are based 

on results obtained from finite element analysis and also include empirical results. The 

accuracy of these models in predicting fatigue crack growth is assessed by comparing 

the predicted results (obtained from these models) with experimental results [3]. In 

general, the existing FM models rely on using the overall equivalent stress range (for 

variable amplitude loading) together with a suitable crack growth law. 

In welded structures, fatigue cracks almost always start at a weld defect. Once a crack 

is initiated, it grows slowly as the stress cycles are repeated. It was mentioned that in 

offshore structures the cyclic stress variations are primarily caused by waves loading. 

When the crack size becomes critical, an unstable fracture occurs [5]. Therefore, the 

fatigue fracture includes three main stages [5]: 

• Crack initiation 

• Crack propagation (crack growth) 

• Unstable fracture 

In welded joints, the presence of defects such as slag inclusions, porosity, undercuts, 

lack of fusion, etc. is unavoidable [7]. Since there are some defects from the 

manufacturing stage in the welded joints, the crack propagation represents a substantial 

percentage of the total fatigue life of welded joints. In tubular joints of offshore 

structures, the crack growth period accounts for around 90 percent of the fatigue life. 

The crack growth depends on the stress conditions at the crack tip. Hence, fatigue is 
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governed by geometry, especially any change in the geometry which introduces a 

concentration of the stress flow [5].  

FM methods can be divided into two general categories, namely linear elastic fracture 

mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). Only LEFM is 

considered in this study which is briefly denoted as FM. 

 Factors Affecting Fatigue Behaviour 

Several factors have effects on the fatigue behaviour of an element. These factors can 

be represented into two groups as [7]: 

• Loading: Fatigue is a cumulative, time-dependent phenomenon. Each cycle of 

load will cause some damage. Therefore, the magnitude of load cycles has a great 

effect on the fatigue performance of an element. As mentioned before, for 

offshore structures the main fatigue loading is due to ocean waves.  

• Weld Defects: Fatigue cracks in tubular joints originate from weld defects such 

as inclusions, undercuts, lack of fusion. The existence of these defects is 

unavoidable. Those defects which are present in the high-stress concentration 

regions may develop into fatigue cracks. 

 Crack Growth Estimation 

Several relations for predicting the crack growth rate have been proposed. These 

relations are divided into two main categories; Theoretical relations and empirical laws 

[5]. Many attempts have been made to develop a law of fatigue crack growth 

theoretically, but none of the proposed expressions has general applicability. On the 

other hand, the empirical expressions (which are fitted to available data) are valid to 

the extent that the applications are represented in the data [5]. The scatter in the actual 

data indicates that the empirical expressions may have satisfactory results in a limited 

region or for a limited set of data. Therefore, those expressions can be utilised for that 

specific region (or set of data) [5].  

Figure 3.11 shows a typical crack growth rate curve. This curve shows the relation of 

the crack growth rate versus the stress intensity factor on a logarithmic scale. 
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Figure 3.11. A schematic crack growth rate curve 

In Figure 3.11: 

• 𝑑𝑎/𝑑𝑁: Crack growth rate, i.e. crack growth per cycle 

• 𝛥𝐾: Stress intensity factor (SIF) range  

• 𝛥𝐾𝑡ℎ: Threshold value of 𝛥𝐾 

• 𝐾𝑐:   Critical value of 𝐾, which fracture happens 

• 𝐶,𝑚: Crack growth parameters 

The aforementioned curve is characterised by three different regions. In each region, 

the fatigue crack growth rate shows different dependencies on the stress intensity 

factor range [3]. These three regions are: 

• Region I (threshold region): 

This region is characterised by a rapid decrease in crack growth rate with 

decreasing the SIF. Behaviour in this region is dependent on microstructural 

features [3]. Parameter 𝛥𝐾𝑡ℎ is a threshold stress intensity range below which the 

crack will not grow. In this research, the threshold stress intensity is assumed to 

equal zero. The effect of the value of threshold stress intensity upon calculated 

crack size is very small [37]. 
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• Region II (intermediate region): 

The majority of fatigue life (up to 80 percent) of tubular joints in offshore 

structures can be considered to occur in this region [3]. This region is 

characterised by stable crack growth and can be described by a linear equation 

(in a logarithmic scale). 

The most common relationship in this region, in mathematical terms, is the Paris 

equation which describes the crack growth rate as introduced by Newman and 

Raju as [38]: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (3-15) 

where 𝐶 and 𝑚 are the crack growth parameters which are constants for a 

particular material and particular testing conditions and 𝑎 is the crack size [5].  

In general, the Paris equation yields conservative results [5]. As can be seen from 

Figure 3.11, the Paris law overestimates the crack growth rate in region I and 

underestimates the crack growth rate in region III. 

• Region III (failure region): 

The rate of crack propagation in this region increases rapidly until fracture. This 

region corresponds to the unstable and rapid crack growth and is characterised 

by the material’s fracture toughness [3]. 

 Stress Intensity Factor 

The fracture mechanics approach aims to define the local conditions of stress around 

a crack, in terms of the global parameters of loads, geometry, etc. [5]. Different 

approaches have been utilised in the analysis of fracture problems. These approaches 

introduce various fracture mechanics parameters, e.g. energy release rate (G), J-

integral, crack opening displacement (COD), and stress intensity factor (K). The most 

popular among these parameters is the stress intensity factor [5].  

A fundamental principle of fracture mechanics is that the stress field ahead of a crack 

can be characterised in terms of this single parameter; K [5]. 
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It should be noted that the concept of hot spot stress is inapplicable in the analysis of 

stresses near the crack tip. This is due to the existence of a stress singularity. Therefore, 

fracture mechanics rely on analysing the stress field in the vicinity of the crack tip, 

rather than the infinite stress due to the stress singularity at the crack tip. The nature 

of the stress field depends on the mode of crack extension, loading, and deformation 

of crack faces [3]. 

There are three main modes, including Mode I (opening mode), Mode II (sliding 

mode), and Mode III (tearing mode). Cracks are extended or deformed in one or a 

combination of these modes [3]. These modes are shown schematically in Figure 3.12.  

 

Figure 3.12. Different modes of a crack deformation  

In general, Mode I is the dominant mode for most practical applications and two other 

modes are less significant with negligible contributions to crack growth [3]. 

The stress intensity factor (SIF) is the parameter adopted to describe the elastic stress 

field in a cracked body around the crack tip for any given mode of crack extension. In 

general, SIF is a function of applied stress, the size and shape of the crack, and the 

geometry of the cracked component [3]. Therefore, finding an accurate solution for the 

stress intensity factor is a difficult task.  

A large number of studies have been performed to obtain the value of SIF for various 

amounts of load and crack shapes. In general, for mode I, the SIF for a centre crack of 

length 2𝑎, in an infinite plate subjected to a uniform stress field (𝜎) is given by: 

𝐾𝐼 = 𝜎√𝜋𝑎 (3-16) 



87 

 

 

Figure 3.13. A crack of the length of 2𝑎 in an infinite plate under uniform stress  

It is noted that the SIF in Eq. (3-16) is in the absence of all boundaries [3]. However, 

cracks in welded tubular joints are usually in a complex stress field that is different 

from the uniform stress field in an infinite plate. Therefore, for surface cracks in 

engineering structures, various correction factors have to be used to account for 

boundary effects, crack shape, and loading geometry [3]. SIF for mode I in the general 

case is given by: 

𝐾𝐼 = 𝑌 × 𝜎√𝜋𝑎 (3-17) 

where 𝑌 is the overall correction function which is also denoted as a geometry function 

[3].  

The correction factor can be obtained based on experimental results or empirical 

solutions. Different analysis methods have been proposed to determine the correction 

factor for cracked tubular welded joints [3]. The correction function takes into account 

several aspects such as crack shape, a free front surface, finite plate width, a non-

uniform stress field, etc. [5]. 

 Estimation of SIF for Tubular Joints 

The proposed SIF solutions in the literature are usually for plates. Therefore, they 

cannot be applied directly to tubular welded joints which have different boundary 

conditions. However, these solutions can still be used to provide estimates of stress 

intensity factors for the tubular joints by applying the appropriate boundary condition 

correction functions [3]. 
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The calculation of stress intensity factors for the cracks in tubular joints is a difficult 

task due to the complex geometry and the stress distribution. Existing analytical and 

experimental data of the geometry function for tubular joints includes a significant 

scatter. The main reason is that there is no analytical solution available for the stress 

intensity factor for a semi-elliptical surface crack in tubular joints [1].  

Several studies have been performed to use experimental solutions to calculate SIFs 

for tubular joints [39]. However, these solutions are based on several assumptions and 

are valid for specific loading joint types.  

Dover and Dharmavasan [35] presented an empirical method to compute SIF in T-

joint and Y-joint. The method was derived by calibrating the corresponding SIF range 

with the experimentally measured crack growth rate based on Paris equation for a joint 

with known fatigue material properties. Lee and Bowness [40] presented a simple 

method to estimate SIF for semi-elliptical weld toe cracks in tubular joints by 

aggregating the results of a large number of finite element analyses on un-cracked and 

cracked tubular joints. Several polynomial relations have been suggested for the 

geometry function in different tubular joints under axial load, IPB, and OPB based on 

the experimental data in [1]. 

 Fatigue Life Prediction 

In the FM approach, the average increment in crack growth during a load cycle is 

related to the range of the stress intensity factor. To predict the fatigue crack growth 

of a surface crack, in this study it is assumed that the crack growth per stress cycle 

follows the Paris equation.  

Fatigue life assessment based on FM involves calculating the fatigue crack size after 

a certain number of fatigue cycles. The stress intensity factor range is a parameter that 

expresses the effect of load range on the crack. It describes the stress field associated 

with the cracked body at the crack tip. The stress intensity factor range is obtained as 

[5]: 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 (3-18) 
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It was mentioned that Mode I is the dominant mode for most practical applications and 

the contribution of the other two modes can be ignored [3]. Therefore, Eq. (3-17) can 

be written as: 

𝐾 = 𝐾𝐼 = 𝑌 × 𝜎√𝜋𝑎 (3-19) 

By using Eq. (3-19), Eq. (3-18) can be written as: 

∆𝐾 = 𝑌 × (Δ𝜎)√𝜋𝑎 (3-20) 

By implementing a suitable crack growth law such as the Paris equation, the number 

of fatigue cycles required to extend a fatigue crack from an initial size (𝑎0) to any size 

(𝑎𝑓) can be calculated as: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 

 
𝑑𝑎

𝑑𝑁
 = 𝐶(𝑌 × (Δ𝜎)√𝜋𝑎)

𝑚
 

𝑑𝑁 =
𝑑𝑎

𝐶(𝑌 × (Δ𝜎)√𝜋𝑎)
𝑚 

𝑁 = ∫
𝑑𝑎

𝐶(𝑌 × √𝜋𝑎)
𝑚

× (Δ𝜎)𝑚

𝑎𝑓

𝑎0

  

(3-21) 

Since the stress range is not constant in different load cycles; (Δ𝜎) can be replaced 

by 𝐸[Δ𝜎], which is the expected value of the stress range [41]. 

In general, for predicting the fatigue life in the FM approach, the following steps will 

be required: 

• Selection of a suitable crack growth law;  

• Use of suitable crack growth material constants (C and m);  

• Determination of stress ranges;  

• Estimation of correction factor;  

• Determination of stress intensity factor range;  

• Integration of crack growth rate for the applied loads.  
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 Unstable Fracture 

An unstable fracture occurs when a critical combination of tensile load and crack 

length is attained [5]. The unstable fracture may represent the end of the fatigue life of 

a component. This section focuses on the main failure modes of unstable fracture and 

simple methods for calculating the critical combinations of load and crack length. 

Figure 3.14 shows the load and displacement definition. 

 

Figure 3.14. Definition of load (P) and displacement (Δ)  

There are three possible modes of fracture [5]: 

• Brittle fracture: 

The structure behaves in a linear-elastic manner right up to the point of fracture. 

In other words, the macroscopic behaviour of the body is brittle. In such cases, 

the microscopic mode of fracture is usually also brittle and is known as cleavage 

fracture [5]. Figure 3.15 shows the brittle fracture behaviour for a metal. 

 

Figure 3.15. Linear-elastic behaviour for a brittle fracture 
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• Elastic-plastic behaviour: 

In this case, the structure shows some degree of macroscopic plasticity before 

fracture. However, the final fracture, which may be preceded by a small amount 

of ductile crack growth, is by cleavage, i.e. it is microscopically brittle [5]. Figure 

3.16 shows the elastic-plastic behaviour. 

 
Figure 3.16. Elastic-plastic behaviour  

• Ductile fracture (plastic collapse): 

In this case, the fracture is ductile behaviour. As the load increases the crack 

extends stably, until a point is reached when the rate of reduction of load-bearing 

capacity due to crack growth is equal to the rate of work hardening. At this point, 

the load reaches a maximum value. If the load is not dropped, the system will 

become unstable at this point, and the structure will fail by a combination of 

unstable fracture and plastic collapse. Figure 3.17 shows the plastic behaviour. 

 

Figure 3.17. Plastic collapse behaviour  
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 Fracture Mechanics Usage in Unstable Fracture 

The stress intensity factor (𝐾) for a crack in a loaded body is a function of the stresses 

acting on the body, the size of the crack, and the geometry of the crack and the body. 

If the structure behaves in a brittle fracture or a linear-elastic fashion before fracture, 

the fracture will initiate from a pre-existing crack or sharp defect when the stress 

intensity factor reaches a critical value [5]. 

However, if the structure shows a significant amount of plasticity, the stress intensity 

factor approach becomes invalid and an elastic-plastic fracture mechanics parameter 

must be used to describe the crack tip stresses and strains. The parameters most widely 

used are the J-integral and the crack tip opening displacement (CTOD). There are 

several methods for obtaining the J-integral and CTOD. However, the calculation of 

J-integral and CTOD will not be discussed in this section. For more detail see [5], [42] 

and [43]. 

 Failure Assessment Diagram 

The presence of a crack will reduce the plastic collapse load of the structure by 

reducing the net cross-sectional area. For long cracks in rather tough materials, a 

plastic collapse will be the predominant failure mode, and this fact should be allowed 

for in defect assessment.  

The failure assessment diagram (FAD) combines the criteria for brittle fracture and 

plastic collapse into a single procedure [5]. To evaluate if a crack may cause structural 

failure, the FAD method can be used.  

Two parameters are considered in the FAD procedure; fracture parameter (𝐾𝑟) and 

plastic collapse parameter (𝑆𝑟) which are defined as [44]: 

𝐾𝑟 =
𝐾𝐼

𝐾𝐼𝑐
 (3-22) 

𝑆𝑟 =
𝜎𝑎𝑝𝑝

𝜎𝑐𝑜𝑙
 (3-23) 

where  

• 𝐾𝐼: Stress intensity factor (mode I) 

• 𝐾𝐼𝑐: Fracture toughness 
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• 𝜎𝑎𝑝𝑝: Applied stress (or load) 

• 𝜎𝑐𝑜𝑙: Collapse stress (or load) 

The FAD establishes the relationship between brittle fracture (by fracture parameter; 

𝐾𝑟) with local plasticity (plastic collapse parameter; 𝑆𝑟). The plastic collapse could be 

in the form of global or local collapse. The fracture parameter (𝐾𝑟) is an indicator of 

fracture under linear elastic conditions, while the plastic collapse parameter (𝑆𝑟) could 

be defined as the ratio of applied stress to the collapse stress, where collapse stress 

refers to the remote stress that will cause the spread of plasticity [45].  

A simple failure assessment diagram has a semi-empirical basis [5]. All points inside 

the FAD are considered safe; points outside of the diagram are unsafe [46]. Figure 3.18 

shows a simple FAD and safe/unsafe areas. 

 

Figure 3.18. A typical failure assessment diagram  

As Figure 3.18 shows for the high toughness material, the structure fails by collapse 

when 𝑆𝑟 is close to 1.0. Whereas, for a brittle material failure occurs when 𝐾𝑟 is close 

to 1.0. In intermediate cases, plastic collapse and fracture interact, and both 𝐾𝑟 and 𝑆𝑟 

are less than 1.0 at failure [46].  
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To assess a particular flaw in a structure, one must determine the toughness ratio as 

well as the stress ratio. The stress ratio for the component can be defined as the ratio 

of the applied stress to the plastic collapse stress. Alternatively, the applied Sr can be 

defined in terms of axial forces or moments. If the assessment point with coordinates 

(𝐾𝑟,𝑆𝑟) falls inside of the FAD curve, the analysis predicts that the component is safe. 

Otherwise, if it lies outside the failure curve the structure will be unsafe [46]. 

The FAD typically is given by the equation of a curve as 𝐾𝑟 = 𝑓(𝑆𝑟). For example, the 

failure curve can be expressed mathematically by [46]: 

𝐾𝑟 = √
8

𝜋2 × 𝑆𝑟
2 × ln (sec [

𝜋

2
× 𝑆𝑟]) (3-24) 

where sec represents secant function (i.e. 1 divided by the cosine). 

More detailed formulas for the failure curve are provided by BS7910:2013 [47]. 

BS7910 defines three different options for FAD. The simplest FAD in the 

BS7910:2013 does not require stress-strain data. The more complicated options 

(options 2 and 3) require more inputs in terms of material and stress analysis [47]. For 

example, option 2 requires detailed stress-strain data, especially at strains below 1% 

[47]. Option 3 requires elastic and elastic-plastic analysis to determine J-integral 

values [47].  

3.6 Previous Studies on Fatigue Reliability Analysis of Jacket Structures 

In a probabilistic approach, fatigue lives can be expressed as distributed parameters 

rather than as single nominal values, and the probability of failure of any joint before 

any particular time can then be estimated. Considerable work was carried out on 

probabilistic approaches to fatigue reliability analysis of offshore jacket platforms. In 

these studies, the following steps were taken into account: 

• Considering the uncertainties affecting the fatigue capacity of the tubular joints 

• Assigning the different distributions to the uncertain parameters 

• Calculation of the probability of failure using different reliability techniques (i.e. 

FORM, Monte-Carlo simulation). 
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Aghakouchak and Stiemer [1] presented a reliability-based LEFM (linear elastic 

fracture mechanics) approach for fatigue analysis of structural elements in jacket 

platforms. They developed a method that can be used for the reliability assessment of 

existing structures through the incorporation of the results of in-service inspections. 

They considered several uncertain parameters; including initial crack size, crack 

growth parameters, and uncertainties in the estimation of the stress range and stress 

intensity factor. They also applied their methodology to a sample tubular joint in an 

offshore structure [1].  

Rajasankar et.al [15] presented a reliability-based approach to assessing the structural 

integrity of offshore tubular joints. The reliability analysis was carried out using the 

Monte Carlo simulation technique and the first-order reliability method (FORM). The 

initial crack size, material properties, and loading of the tubular joint were considered 

as random variables in the reliability calculation. The linear elastic fracture mechanics 

approach was employed to evaluate the crack growth. The significance of each random 

variable was also investigated by performing the sensitivity analysis. The sensitivity 

analysis results showed that the reliability of the joint is significantly influenced by 

variation in the variables crack growth parameter [15].  

Ahmadi et.al [33] derived a fatigue limit state function based on the FM approach and 

investigated the effects of assigning different values to deterministic variables 

involved in this limit-state function on the results of reliability analysis. The 

deterministic variables were the material crack growth parameter (𝑚), and the critical 

crack size. It was shown that the increase of the bigger material constant (𝑚) leads to 

decrease in the reliability index. Moreover, the increase of the wall thickness of tubular 

members increases the reliability index [33]. The effects of stress concentration factors 

on the reliability of the multi-planar tubular joint were also considered. The numerical 

simulation was adopted to obtain the SCF distribution in the considered tubular joints. 

81 models of multi-planar tubular DKT-joints were generated and the SCF values were 

obtained by using the FEM software package. Based on the FEM results, a log-normal 

distribution was obtained with a mean value of 15.86 and COV (coefficient of 

variation) of 1.05. Therefore, it was concluded that the typical value of SCF for planar 

joints (which is around 2.5) is not appropriate for the multi-planar tubular joints [33]. 
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Pillai and Prasad [34] described a methodology for the estimation of reliability of fixed 

offshore structures with respect to fatigue and extreme stress. The failure criteria for 

fatigue were formulated using the fracture mechanics principle. The total life of the 

structure was divided into a set of stationary sea states, occurring during storms and 

described by directional power spectrum. The researchers showed that among the 

random variables included in the fatigue failure, the material parameter (𝐶) and stress 

concentration factor has the greatest effect on the probability of fatigue failure [34]. 

Kirkemo [48] reviewed the applications of probabilistic fracture mechanics to offshore 

structures. Several uncertainties in loading, initial and critical defect sizes, material 

parameters, and the uncertainty related to the computation of the stress intensity factor 

were considered. The failure probabilities based on FORM and obtained the sensitivity 

factors for each variable were calculated. 

Siddiqui and Ahmad [49] considered the uncertainties associated with the parameters 

for performing the fatigue reliability assessment of the tension leg platforms. They 

considered two approaches for fatigue damage estimation, the S-N curve approach, 

and the FM approach. The researchers developed the limit state functions based on 

those two approaches. To estimate the reliability, they employed FORM and the Monte 

Carlo simulation technique. They also performed a sensitivity analysis to find out the 

influence of each random variable on the probability of failure. Based on the sensitivity 

analysis results, the reliability analysis was very sensitive to the stress range and less 

sensitive to the geometry function [49]. 

Karadeniz [50] presented a procedure for modelling the uncertainties in the fatigue 

analysis of offshore structures regarding the reliability assessment. The uncertainties 

in the fatigue damage were categorised into two main groups. The first category 

originated from structural and environmental sources. All uncertainties in structural 

transfer functions and the uncertainties occurring in the wave loading were considered. 

The second category of uncertainties was related to the fatigue damage phenomenon 

(uncertainties related to the damage model). The reliability calculation for a jacket-

type structure was performed as a demonstration. It was revealed that the inertia force 

coefficient of Morison’s equation, parameters of the fatigue-damage model, and the 
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foundation seem to be the most dominant uncertainty sources in the fatigue reliability 

calculation of jacket type structures [50]. 

Lin et.al [51] presented a reliability-based approach to assessing the structural integrity 

of tubular joints with cracks in aging offshore platforms. Two different fatigue failure 

models were established regarding the crack propagation size and equivalent fatigue 

strength. The results of two reliability models were compared. It was shown that the 

reliability index obtained from the crack size model is much lower than that from the 

equivalent fatigue strength model. The reliability analysis by two different 

maintenance schedules (equal inspection interval and failure probability threshold) 

was updated. The results showed that the reliability index of tubular joints could be 

increased with enough inspection and maintenance measures [51]. 

Dong et.al [52] predicted the fatigue reliability of welded multi-planar tubular joints 

of the support structure of a fixed jacket offshore wind turbine in the North Sea. Hot 

spot stresses at the critical location by summation of the single stress components from 

axial, IPB (in-plane bending), and OPB (out of plane bending) were derived. The 

effects of planar and multi-planar braces were also considered. For this purpose, a two-

parameter Weibull function was considered to model the long-term statistical 

distribution of the hot spot stress ranges [52].   

It was mentioned that significant work was carried out on fatigue reliability analysis 

of tubular joints in offshore jacket platforms. Nevertheless, to achieve the aim of this 

research (improving reliability assessment of offshore structures using Bayesian 

methods) it is required to develop a probabilistic approach to obtain the fatigue 

probability of failure. 

3.7 Fatigue Reliability Calculation 

The tubular joints in jacket platforms are likely to fatigue damage due to high-stress 

concentration and cyclic wave loading. A fatigue crack starts at the weld toe at the hot 

spot location and gradually propagates around the intersection and through the tubular 

wall. Fatigue is a complicated phenomenon. As a result of the idealisations and 

approximations employed in the analysis process, fatigue analysis will be associated 

with some degree of uncertainty. 
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Due to the existence of many uncertainties in the fatigue calculation process, a 

probabilistic approach for fatigue assessment is a consistent basis for the inclusion of 

uncertainties. Reliability analysis, which is a probabilistic approach, has been 

extensively used in the design and assessment of offshore structures to assess the 

probability of failure. Computation of fatigue reliability is also useful for planning in-

service inspection. 

Since the FM approach considers the changes in crack size during fatigue life, the 

fatigue reliability analysis is performed based on this approach. For performing the 

reliability analysis in the FM approach, the developed crack size can be considered as 

a measure for the fatigue damage accumulation which is a physical measurable 

parameter [19]. The degree of accumulated fatigue damage in a joint can then be 

updated based on the outcome of inspections. 

This section shows how the fatigue reliability analysis for a tubular joint in offshore 

jacket platforms can be performed. For this reason, important uncertainties are 

represented by random variables based on their probability distributions such as mean 

values and standard deviations. It is noted that the obtained probability of failure is 

dependent on the chosen uncertainty modelling [19]. The probability of failure for a 

component is then defined as the probability that an initial crack grows beyond the 

critical crack size. 

 Source of Uncertainties 

Fatigue failure is one of the most important issues in offshore platforms. Since the 

environmental loading and conditions are random and time-dependent, a reliability 

approach can be employed. Since the reliability analysis depends on the choice of the 

items of uncertainty and their statistical description, uncertainty modelling becomes 

an important consideration for offshore structural analysis [50].  

There are many uncertainties involved in the fatigue reliability analysis of tubular 

joints of offshore structures. Figure 3.19 shows different sources of uncertainties in 

fatigue analysis. 
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Figure 3.19. Different sources of uncertainties in fatigue analysis 

The uncertainties in the fatigue reliability analysis can be classified into two 

categories:  

a) Uncertainties related to the global analysis: 

These uncertainties can be further subdivided into two categories: 

• Structural behaviour: These uncertainties affect natural frequencies and 

structural transfer functions. Uncertainties such as: 

➢ System stiffness: Major uncertainty sources in the system stiffness matrix 

are joint flexibilities. Several tubular members are connected together at 

joints of the structure by welding. In theory, these connections are 

assumed as rigid connections, whereas the actual behaviour of the joints 

under the wave loading displays some flexibility in the vicinity of 

connections due to local deformations of members [50]. 

➢ Mass: The mass matrix contains uncertainties due to added masses 

(structure–water interactions) and the structural mass [50]. Moreover, the 

live load of the deck during a service life is an uncertain value. 

➢ Foundation parameters: The other uncertainty source in offshore 

platforms is the foundation parameters. The soil parameters are 

introduced by lateral and axial springs with their values are obtained from 

geotechnical surveys [50].  
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• Loading and environmental origin: Uncertainties associated with wave 

loading and the modelling of random waves are considered in this category. 

Wave loading and the description of the sea state are the major uncertainty 

sources in this group. The main uncertainties in this category are: 

➢ Wave loading: The fatigue damage in offshore structures is mainly caused 

by random wave loads. In general, wave loads on tubular members are 

calculated using Morison’s equation (Eq.(3-9)). Uncertainties in the wave 

loading arise from the force coefficients (𝐶𝐷 and 𝐶𝑚) and the marine 

growth thickness. 

➢ Sea state modelling: Wave conditions are described within a set of 

stationary short-term sea states. For each short-term sea state, the water 

level can be assumed to be a stationary Gaussian process with a zero 

mean. Each sea state is characterised by the sea state parameters, i.e. 

significant wave height (𝐻𝑆), Mean zero up-crossing period (𝑇𝑍) and the 

wave spectrum. There is always uncertainty in the estimation of these sea 

state parameters. 

➢ Long-term uncertainties: The long-term stress range distribution is 

defined based on a weighted sum of Rayleigh distributed stress ranges for 

each short-term condition [19]. In the long term, the fatigue damage is 

accumulated depending on the probabilities of occurrences of each sea 

state.  For each sea state, the long-term probabilities of the different main 

wave directions are given with a wave scatter diagram for each direction. 

A wave scatter diagram defines the occurrence probability for each set of 

𝐻𝑆 and 𝑇𝑍 values.  

b) Uncertainties related to the fatigue phenomenon: 

This category of uncertainties is related to the fatigue phenomenon itself and it is 

not related to the global analysis. There is uncertainty associated with the 

modelling of the FM-fatigue approach, regarding the initial crack size and the 

fatigue crack growth material parameters. Moreover, there is uncertainty in the 

estimation of geometry function.   
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 Predicted Crack Size  

It was explained that in the linear elastic fracture mechanics approach, the Paris 

equation can be used to describe the rate of fatigue crack growth. The stress intensity 

factor range is obtained by using Eq. (3-20). By substituting this value in Paris equation 

as in Eq. (3-15), fatigue crack growth for a load cycle becomes: 

 
𝑑𝑎

𝑑𝑁
 = 𝐶(𝑌 × √𝜋𝑎)

𝑚
× (Δ𝜎)𝑚 (3-25) 

Due to the existence of several sea-state conditions, the platforms are exposed to 

several loading conditions. Therefore, the stress range in a platform is not constant and 

it varies for each sea state condition. Therefore, the stress range is replaced with the 

expected value of the stress range, i.e.:  

𝑑𝑎

𝑑𝑁
 = 𝐶(𝑌 × √𝜋𝑎)

𝑚
× 𝐸[Δ𝜎𝑚] 

𝑑𝑎

(𝑌 × √𝜋𝑎)
𝑚  = 𝐶 × 𝐸[Δ𝜎𝑚] × 𝑑𝑁 

(3-26) 

The relation between crack size and the number of cycles for the propagation of a crack 

can be obtained by integration of Eq. (3-26) as: 

∫
𝑑𝑎

(𝑌 × √𝜋𝑎)
𝑚 

𝑎𝑡

𝑎0

= 𝐶 × 𝐸[∆𝜎𝑚] × 𝑁 (3-27) 

By assuming 𝑌 does not change with crack size [51] and by integrating Eq.(3-27) from 

the initial crack size (𝑎0), to the crack size at time 𝑡 (𝑎𝑡), the crack size value at time 𝑡 

can be obtained as: 

𝑎𝑡 = {𝑎0

1−
𝑚
2  +  (1 −

𝑚

2
) ×  𝑌𝑚 ×  𝜋

𝑚
2  ×  𝐶 ×   𝐸[∆𝜎𝑚] × 𝑁 }

 
1

1− 
𝑚
2  (3-28) 

 Limit State Definition  

In a deterministic approach for the design of tubular joints against fatigue failure, all 

the loading parameters are taken at their mean values while the resistance parameters 

are taken at values corresponding to mean minus two standard deviations [47].  

Moreover, the tubular joints are designed in a way that the computed fatigue lives are 

two to ten times higher than the planned service life of the structure. Due to the 
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existence of several sources of uncertainty, both in the loading and fatigue resistance 

parameters, a probabilistic approach to fatigue design is considered appropriate. In this 

section, the fatigue limit state is presented using a fracture mechanics approach. 

To estimate the probability of failure of a component, a failure event should be defined. 

Failure is usually defined based on the concept of a limit state, which represents a 

boundary between the safe and unsafe performance of a component [41].  

A variety of criteria such as crack size criterion, equivalent fatigue strength criterion, 

damage criterion, and failure assessment diagram, have been proposed to describe the 

fatigue failure for the tubular structures with cracks [51]. Here, for the component 

reliability analysis, the crack size can be considered as the failure criterion which is 

acceptable for low toughness material [1]. This means that failure occurs, as soon as 

the crack size is bigger than a critical value. Therefore, the fatigue limit state function 

is described: 

𝑔 = 𝑎𝑐 − 𝑎𝑡 (3-29) 

where 𝑎𝑐 is critical crack size. The critical crack size could be based on serviceability 

criteria (e.g. through the thickness crack or economic repair limits) or ultimate collapse 

criteria (e.g. unstable fracture) [19]. Critical crack size is usually considered equal to 

the wall thickness [19].  

In Eq.(3-29), 𝑎𝑡 is the crack size after 𝑁 cycles of loading which is a function of the 

random variables such as initial crack size, fatigue material properties, etc. (Eq.(3-28)).  

Laboratory tests have shown that a fatigue crack starts at the weld toe at the hot spot 

location and gradually propagates around the intersection and through the tubular wall. 

In the beginning, there may be tiny cracks around the intersection, which usually join 

and form a semi-elliptical surface crack [1]. When this crack penetrates through the 

thickness of the tubular wall, a major reduction in joint stiffness is observed. The crack 

propagation through the thickness is considered as the end of the fatigue life of the 

joint based on the limit state function provided in Eq.(3-29).  

Figure 3.20 shows the crack growth stages in a tubular joint. At stage (I), a fatigue 

crack starts at the weld toe at the hot spot location. This crack propagates through the 

thickness of the tubular wall (stage II) which is assumed as the end of fatigue life of 
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the joint. It is noted that after through-thickness, the joint can still work until real 

failure (Stage III). However, this stage is not considered in the fatigue life of tubular 

joints [52]. 

 

Figure 3.20. Crack propagation stages in a tubular K-joint  

By plugging Eq.(3-28) into Eq. (3-29), the fatigue limit state function is written as: 

𝑔 = 𝑎𝑐 − {𝑎0

1−
𝑚
2  + (1 −

𝑚

2
) ×  𝑌𝑚 ×  𝜋

𝑚
2  ×  𝐶 ×   𝐸[∆𝜎𝑚] × 𝑁}

 
2

2−𝑚

 (3-30) 

Having obtained the limit state function, the failure probability (the probability that 

the crack size exceeds a critical size) is defined as:  

𝑃𝑓 = 𝑃(𝑔 ≤ 0) = Φ (−𝛽) (3-31) 

where 𝑃𝑓 represents the probability of failure, 𝛽 is called the reliability index and Φ (.) 

is the CDF (cumulative distribution function) of the standard normal distribution.  

The reliability can be calculated by using the probability of failure as: 

𝑅 = 1 − 𝑃𝑓   (3-32) 

 Reliability Calculation Methods 

There are different methods to calculate the reliability and the corresponding 

probability of failure, such as FORM [9] and Monte Carlo simulation [9]. These 

methods were explained in Chapter 2 of this study. Both methods have some 

advantages and disadvantages. For example, although FORM estimates the probability 
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of failure by approximating the nonlinear limit state function, it provides a measure of 

the sensitivity of the reliability index to the random variables [6]. Monte Carlo 

simulation techniques can estimate the accurate probability of failure; however, a large 

number of iterations is required in this method. Therefore, the reliability analysis is 

more time-consuming [6]. 

3.8 Application of the Fatigue Reliability Analysis to a Jacket Platform 

 Finite Element Model  

To demonstrate the fatigue reliability calculation of offshore structures, an example of 

a jacket offshore platform is considered. The example platform is a four-legged living 

quarter that is supported by a jacket structure with battered legs. The configuration of 

the platform is presented in Table 3.2. 

Table 3.2. The structural arrangement of the example platform 

Item Description 

Platform function Living quarter platform 

Water depth 70 m 

No. of Legs 4 

Foundation system 

- Outside diameter: 91.4 cm 

- Pile thickness: 2.54 cm 

- Pile depth: 64m  

Soil description 

- Clay:  0-18.4 m  

- Silt:    18.4-31.2 m 

- Clay:  31.2-56.1 m 

- Sand:  56.1-66.0 m 

Bracing type X brace 

Jacket levels 

- Level 1: (+) 3.0  

- Level 2: (-) 10.7 

- Level 3: (-) 24.4 

- Level 4: (-) 38.1 

- Level 5: (-) 51.8 

- Level 6: (-) 70.0 

Leg Spacing 
- 15.2m x 15.2m at level 1 

- 33.1m x 33.1m at level 6 

Material Carbon Steel Grade S355 (Yield strength 355 MPa)  

Mass of the deck 2200 ton 

100-year return period 

wave 

- Wave height: 12.2 m 

- Wave period: 11 sec 

Fatigue wave loading See Section 3.8.2 

 



105 

 

A three-dimensional structural model of the platform is generated using SESAM 

software [4]. The model incorporates all primary members in the topside and the jacket 

such as legs, vertical and horizontal bracings, piles, deck main girders, and topside 

truss members. This is a space frame that integrates the jacket, the topside, and the 

foundation systems in one combined structure.  

The members such as boat landings, stiffeners, handrails, deck grating, and barge 

bumpers that do not contribute to the structural stiffness and load-bearing have been 

modelled either as dummy elements. However, their environmental and gravity loads 

are taken into consideration. The model geometrical properties conform to the jacket 

as-built drawings. Figure 3.21 shows the finite element model of the considered jacket 

platform. 

 

Figure 3.21. Structural model of a jacket platform in SESAM software 

 Global Fatigue Analysis 

A global spectral fatigue analysis is performed using deterministic values for loading 

and structural parameters. The spectral fatigue analysis is used for structures in shallow 

to medium water depths [41]. 

The stress ranges are computed using a stochastic frequency domain approach [5]. The 

environmental loading is modelled in terms of a set of stationary sea states, each sea 
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state being characterised by a significant wave height, a mean zero up-crossing period, 

wave direction, and a wave spectrum. Here, a Pierson-Moskowitz wave spectrum [5] 

is assumed for each sea state. The probabilities of occurrence of the sea states are 

obtained by a wave scatter diagram [5]. 

Table 3.3 shows the wave probability in each direction for the considered platform. 

Table 3.3. Probability of occurrence for different directions 

Wave approaching direction Probability of occurrence 

North 0.065 

North-west 0.066 

West 0.029 

South-west 0.019 

South 0.746 

South-east 0.024 

East 0.018 

North-east 0.033 

 

Table 3.4 shows the characteristics of the sea states approaching from the northwest 

direction (scatter diagram). It is noted that the scatter diagrams are available for all 

eight directions. However, the scatter diagram of only one direction is shown in this 

section (Table 3.4). In total, 115 sea states are considered in this study for all directions 

which 11 of these sea states are from the northwest direction. 

Table 3.4. A wave scatter diagram of sea states (North-west direction) 

Sea State 𝐻𝑆 (m) 𝑇𝑧 (sec) 
Probability of occurrence 

(Fraction of time, (𝑓𝑖)) 

1 2.75 6.5 0.0019 

2 2.75 7.5 0.0265 

3 2.75 8.5 0.0054 

4 3.25 7.5 0.0060 

5 3.25 8.5 0.0123 

6 3.75 7.5 0.0001 

7 3.75 8.5 0.0087 

8 3.75 9.5 0.0009 

9 4.25 8.5 0.0013 

10 4.25 9.5 0.0019 

11 4.75 9.5 0.0006 

Total probability of occurrence: 0.0656 
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The result of the fatigue analysis is the hot spot stress transfer function of each joint in 

the structural model which is acquired by using the SESAM software. For each 

member end and wave direction, transfer functions for the forces are computed by 

software. The transfer function is obtained by finding the stress range, at the location 

of interest, for a range of wave frequencies and dividing the results by the wave height. 

Figure 3.22 shows the obtained transfer function by SESAM software for beam BM24 

(BM24 location is seen in Figure 3.24). 

 

Figure 3.22. Obtained transfer function for beam BM24 (SESAM output) 

After obtaining the transfer functions for each hot spot, these transfer functions are 

used with the sea spectrum (Pierson-Moskowitz wave spectrum) to compute a stress 

spectrum in each sea state (Eq.(3-6)). 

The wave loading for offshore jacket structures is considered narrowly banded [19]. 

For a narrow-banded Gaussian process, the stress ranges are Rayleigh distributed [5]. 

The mean value of the fatigue stress range of the ith sea state (which is a Rayleigh 

distributed variable) can be calculated as [53]: 

𝐸[Δ𝜎𝑖
𝑚] = (2√2)

𝑚
𝛿𝑖

𝑚 × 𝛤 (1 +
𝑚

2
) (3-33) 

Here, 𝑚 is the material property in Paris law, Г is the Gamma function, Δ𝜎𝑖 is stress 

range for ith sea state, 𝐸[. ] is the expected value operator, and 𝛿𝑖 is the root mean square 

value of stress under the ith sea state, i.e.: 
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𝛿𝑖 = √(𝑚0)𝑆 = √∫ 𝑆𝑆(𝜔)𝑑𝜔
∞

0

 (3-34) 

where (𝑚0)𝑆 is the zero-order moment of the stress spectrum, and 𝑆𝑆(𝜔) is the stress 

spectrum. 

For calculation of the fatigue life, the total number of stress cycles needs to be 

estimated [19]. The mean number of stress cycles for a stationary stress process can 

be obtained as [3]: 

𝑁𝑖 = 𝑇𝑠 × 𝑣0𝑖 (3-35) 

where 𝑁𝑖 is the number of waves in the ith sea state, 𝑇𝑆 is the lifetime of structure in 

year and 𝜈0𝑖 is zero mean crossing frequency of stress process in the ith sea state. The 

value of zero mean crossing frequency is obtained by using Eq. (3-4) as: 

𝜈0𝑖 =
1

𝑇𝑧
=

1

2𝜋
√

𝑚2

𝑚0
 (3-36) 

where 𝑚0, 𝑚2 are the zero-order moment and second-order moment of the stress 

spectrum, respectively [3]. 

Since there are several sea states in the sea environment (e.g. see Table 3.4), the 

concept of the equivalent stress range can be utilised. In the equivalent stress range 

approach (for the fatigue crack growth analysis of tubular welded joints subjected to 

variable amplitude loading), each individual stress range is considered based on the 

probability of occurrence of the corresponding sea state [54]. It is noted that this 

method does not account for any load sequence, i.e. it assumes that this effect is 

negligible. Using this approach, the expected value of the equivalent stress range can 

be predicted as: 

𝐸[∆𝜎𝑚] = ∑ 𝐸[Δ𝜎𝑖
𝑚] × 𝑓𝑖

𝑁𝑠𝑒𝑎

𝑖=1

 (3-37) 

where 𝐸[∆𝜎𝑚] is the equivalent total stress range, 𝑁𝑠𝑒𝑎 is the number of sea states 

(which is 115 in this study), and 𝑓𝑖  is the probability of occurrence of each sea state 

(the fraction of time in which the 𝑖𝑡ℎ sea state is observed). By plugging Eq.(3-33) into 

Eq.(3-37), the expected value of the stress range for all sea states is obtained as: 



109 

 

𝐸[∆𝜎𝑚] = ∑(2√2)
𝑚

× 𝛤 (1 +
𝑚

2
) × (𝑓𝑖 × 𝛿𝑖

𝑚) 

𝑁𝑠𝑒𝑎

𝑖=1

 (3-38) 

The SESAM software can provide the zero-order and second-order moments (𝑚0, 𝑚2) 

of stress spectrum for each sea state.  

Figure 3.23 shows the moments of the stress range for each sea state for beam BM24 

(results for sea states No.27 to No.101 are not shown in this figure). 

 

Figure 3.23. Different order moments for stress range (beam BM24-SESAM output) 



110 

 

Having obtained these moments, the root mean square value of stress (𝛿𝑖) and zero-up 

crossing frequency of stress (𝜈0𝑖) is calculated by using Eq.(3-34) and (3-36), 

respectively. Table 3.5 shows the results of fatigue analysis in terms of the stress range 

for one specific direction. 

Table 3.5. Spectral moments of stress spectrum in one specific direction (north-west) 

Sea State 
Root mean square value of 

stress, 𝛿𝑖  (MPa)  

Zero mean crossing 

frequency of stress, 𝜈0𝑖  

1 22.57 0.17 

2 20.83 0.16 

3 19.45 0.14 

4 24.62 0.16 

5 22.98 0.14 

6 28.41 0.16 

7 26.52 0.14 

8 24.97 0.13 

9 30.05 0.14 

10 28.30 0.13 

11 31.63 0.13 

 

After obtaining the root mean square value of stress for each sea state, the expected 

value of the stress range for all sea states in all directions is calculated by using 

Eq.(3-38). Having obtained the root mean square value of stress (𝛿𝑖) and zero mean 

crossing frequency (𝜈0𝑖) for each sea state, the fatigue crack size at each time can be 

obtained as: 

𝑎𝑡 = {𝑎0

1−
𝑚
2  +  (1 −

𝑚

2
) ×  𝑌𝑚 ×  𝜋

𝑚
2  ×  𝐶 ×   𝐸[∆𝜎𝑚] × 𝑁 }

 
1

1− 
𝑚
2  (3-39) 

where 𝐸[∆𝜎𝑚] and 𝑁 for a narrow banded process is defined by Eq. (3-38) and 

Eq.(3-35), respectively. By plugging Eq. (3-38) and Eq.(3-35) in Eq. (3-39), the fatigue 

crack size is obtained as: 

𝑎𝑡 = {𝑎0

1−
𝑚
2 + (1 −

𝑚

2
)𝑌𝑚 × 𝜋

𝑚
2 × 𝐶 × 𝑇𝑠 × (2√2)

𝑚
𝛤 (1 +

𝑚

2
)

× ∑(𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎

𝑖=1

}

 
2

2−𝑚

 

(3-40) 
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The value of 𝑣0𝑖 and 𝛿𝑖 is obtained by using SESAM software. The value of 𝑓𝑖 which 

is the probability of occurrence of each sea state is obtained from the available wave 

climatology data for the considered platform. 

By summation of term ∑ (𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎
𝑖=1  for all sea states, the predicted crack size 

for each tubular joint can be calculated as shown in Eq. (3-40). In Eq. (3-40), the values 

of initial crack size (𝑎0), material properties (𝐶,𝑚), and the lifetime of structure in year 

(𝑇𝑆) are the same for all tubular joints. The only difference is the value of 

∑ (𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎
𝑖=1  which is unique for each tubular joint. 

In the next step, the value of ∑ (𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎
𝑖=1  is calculated for all tubular joints in 

the considered platform to find out the most critical joints in fatigue analysis.  

Table 3.6 demonstrates the five joints with the maximum value of the 

∑ (𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎
𝑖=1   summation, i.e. the five joints which have the biggest value of 

crack size.  

Table 3.6. Five tubular joints with the maximum value of the ∑ (𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎
𝑖=1    

Member Name Joint Name ∑ (𝑣0𝑖 × 𝜎𝑖
𝑚 × 𝑓𝑖)

𝑁𝑠𝑒𝑎
𝑖=1 , MPa 

BM36 Jt3 317.4 

BM12 Jt3 303.6 

BM34 Jt14 270.8 

BM24 Jt14 258.6 

BM35 Jt4 214.2 

 

Figure 3.24 shows the location of these five components in the considered platform. 
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Figure 3.24. Location of most critical components in fatigue analysis 

 Reliability Analysis 

The purpose of this section is to calculate the fatigue probability of failure for the most 

critical joints in the considered example platform (Table 3.6). To obtain the probability 

of failure of a tubular joint, the following steps are considered: 

• Assign an appropriate distribution for each uncertainty involved in the fatigue 

process 

• Define a desirable limit state 

• Obtain the probability of failure for each joint and the corresponding reliability 

The above-mentioned steps are explained in the following subsections, separately. 

 Uncertainties in Fatigue Analysis and their Distributions 

The reliability analysis depends on the choice of the uncertainties and their statistical 

distributions [41]. Therefore, uncertainty modelling is very important for offshore 

reliability analysis. As provided in Section 3.7.1 that there are many uncertainties 

involved in treating the fatigue life prediction of tubular joints such as: 

1) Uncertainties in global analysis: 

• Structural behaviour (e.g., Mass, stiffness, foundation parameters) 
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• Loading and environmental origin (e.g., Wave loading, sea state modelling) 

2) Uncertainties related to the fatigue phenomenon: 

• Uncertainties related to the fatigue phenomenon (associated with the 

modelling of the FM-fatigue approach, e.g., initial crack size) 

To demonstrate the application of the fatigue reliability analysis, the following 

uncertainties are considered in this research: 

1) Uncertainties in global analysis 

• Uncertainties involved in global analysis (휀𝐺𝐴): 

The major task in the frequency domain analysis is the determination of the 

transfer function [5]. It is noted that the relationship between the wave 

height and wave-induced force is non-linear due to the drag term in the 

Morison equation (Eq.(3-9)). Therefore, the drag force should be 

linearised. The linearisation of the drag term introduces uncertainties in the 

response modelling for members [19]. There are also uncertainties in the 

calculation of hydrodynamic loading, finite element idealisation of the 

structure, nonlinear soil-pile interaction behaviour, etc. (Figure 3.19).  

To consider all these uncertainties in global analysis, a single variable (휀𝐺𝐴) 

is introduced. The obtained stress range from the global fatigue analysis is 

then multiplied by this variable. It is reasonable to assume 휀𝐺𝐴 to be a log-

normally distributed variable [55]. 

2) Uncertainties in the fatigue phenomenon 

• Initial crack size: 

In the FM approach, one important variable which affects the fatigue life 

of a component is the initial crack size [19]. The initial crack size which is 

denoted as 𝑎0 is not a well-known parameter and therefore there is 

uncertainty associated with the modelling of the initial crack size. The 

initial crack size is a manufacturing property. It is representing the process 

defects such as inclusions, as well as damage caused during fabrication 

[19]. Lognormal, exponential, and Weibull distributions have been used by 
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researchers to fit the initial defect data. In this study, a lognormal 

distribution is assumed for the initial crack size (Table 3.7).  

It is noted that the surface defects are usually more critical than embedded 

cracks as they are often located at stress concentrations and are normal to 

the principal stress. Experience has shown that almost all fatigue cracks 

resulted from an initial surface defect [19]. Therefore, the initial fatigue 

quality is expressed through the depth of the initial surface flaw [19]. 

• Crack growth parameter: 

Crack growth data for welded joints is expressed through the material 

parameters (𝑚 and 𝐶) in the Paris equation. Crack growth data are 

generated in the laboratory under constant cyclic loading on simple 

specimens which is different from the real situation. There is always 

uncertainty in the definition of reasonable distributions for the material 

parameters based on available laboratory test results [19]. Ideally, large 

samples of data from field measurements or full-scale experiments are 

needed to obtain the distribution of the material parameters. 

To simplify the fatigue analysis, 𝑚 is usually taken as a constant parameter 

and all the variation in crack growth rate is considered in variable 𝐶 (see 

[31], [47]). The distribution of the material parameter (𝐶) approximately 

follows a lognormal distribution [19]. 

• Geometry function 

The value of the geometry function depends on the crack shape and stress 

field geometry [3]. However, for the type of cracks in the tubular members 

of offshore structures, the variation in magnitude of the geometry function 

is not very large [35]. Therefore, the geometry function does not vary with 

crack shape or size [51]. To simplify the problem, the shape of the fatigue 

crack is assumed to be semi-elliptical and remains semi-elliptical during 

crack propagation. The geometry function is usually modelled as a 

lognormal distribution [56]. 

• Uncertainties involved in local stress analysis (휀𝑆𝐶𝐹): 
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The nominal stresses from the global analysis are multiplied with SCF to 

account for local effects. Stress concentration factors are usually obtained 

by parametric equations (see Section 3.3.4.3). Comparison of SCFs 

predicted by parametric equations with test results show considerable 

scatter (see [28], [57], [58]). Therefore, the SCF value for each joint is 

uncertain. Uncertainties associated with the modelling of the SCFs are 

considered by definition of a random variable (휀𝑆𝐶𝐹). 

Although both categories affect the reliability analysis, since this research aims to 

improve the reliability analysis using Bayesian methods to incorporate new 

information (mainly consisting of detection and measurement of crack sizes), the 

second category of uncertainties is more important. Therefore, it is convenient to 

model all uncertainties in global analysis with a single variable [55].  

Though assigning a single variable for combining all uncertainties in the global 

analysis has some limitations, sensitivity analysis results show that the uncertainties in 

the fatigue phenomenon are the most important source of uncertainty in the fatigue 

reliability calculation of this example structure (Table 3.11). 

Table 3.7 summarises the statistical characteristics of the uncertainties which are 

considered in this study. Different guidelines and studies, introduce various 

distributions for each uncertainty. For instance, the assigned distributions for the crack 

growth parameters are based on available laboratory test results. Large samples of data 

from field measurements or full-scale experiments are needed to obtain the distribution 

of the material parameters. Therefore, different statistical characteristics (i.e., mean, 

and standard deviation) have been employed by experts which are based on the 

experimental results collected in laboratory tests. 
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Table 3.7. Statistical characteristics of random variables [N, mm] 

 Random Variable Symbol Type Mean COV Ref 

Uncertainties 

in global 

analysis 

Uncertainties 

involved in global 

analysis 

휀𝐺𝐴 Lognormal 1.0 0.1 [1] 

 

Uncertainties 

in fatigue 

phenomenon 
 

Initial crack size 𝑎0 Exponential 0.11 1.0 [19] 

Crack growth 

parameters  

𝐶 Lognormal 8.1x10-12 0.6 [15], [51] 

𝑚 Fixed 3 --- [15], [51] 

Geometry function 𝑌 Lognormal 1.0 0.1 [1] 

Uncertainties 

involved in local  

stress analysis 

휀𝑆𝐶𝐹  Lognormal 1.0 0.1 [1] 

 
 Correlations between the Uncertain Parameters 

Correlation between the uncertain parameters is an important factor in performing the 

reliability analysis. Where two variables are correlated, a parameter to measure their 

correlation degree is needed. 

Crack growth parameters (i.e., 𝐶 and 𝑚) are the most important inputs in the crack 

growth model and subsequently in through life failure probability calculations of a 

structure containing a flaw [59].  

Since the proposal of the Paris-Erdogan law in 1962, several studies have been 

performed to quantify these two parameters and to find out the possible correlation 

relationship between them. Cortie and Garrett performed a comprehensive review of 

these efforts until 1988 [60]. Gurney suggested that 𝑚 can be selected in a range 

between 2.5 to 3.6 for real structural steels [61].  

There are two approaches in dealing with these two parameters [62]: 

1) In the first approach, 𝐶 and 𝑚 are considered as two correlated stochastic 

variables using a correlation equation: 

Several models are available in the literature. For instance, Tanaka and 

Matsuoka suggested the following correlation equation between 𝐶 and 𝑚 [63]: 

ln 𝐶 = −8.682 − 6.924 × 𝑚 (3-41) 
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Baker and Stanley performed a test programme of 35 welded and non-welded 

test specimens and suggested the following equation [64]: 

ln 𝐶 = −8.48 − 6.91 × 𝑚 (3-42) 

2) In the second approach, which is a common approach, 𝑚 is treated as a 

deterministic value and 𝐶 is considered as the stochastic variable, commonly 

modelled by a lognormal distribution. Different recommended practices such 

as DNV [19], and BS 7910 [47] suggest this approach. 

In this work, the second approach (i.e., a deterministic value for 𝑚 and a lognormal 

distribution for 𝐶 is considered). There is almost no correlation between material 

properties (i.e., 𝐶 and 𝑚) and initial crack size [62]. Since the focus of this research is 

on investigating the credibility of the Bayesian methods, no correlation is considered 

between the uncertain parameters. 

 Fatigue Limit State 

A variety of criteria such as crack size criterion, equivalent fatigue strength criterion, 

damage criterion, and failure assessment diagram, have been proposed to describe the 

fatigue failure for the tubular structures with cracks [51]. In this study, the crack size 

can be considered as the failure criterion which is acceptable for low toughness 

material [1].  

The fatigue limit state is defined in Eq. (3-29). According to this equation, failure 

occurs as soon as the crack size is bigger than a critical value. By applying the 

considered uncertainties in the fatigue crack size, the limit state function is written as: 

𝑔 = 𝑎𝑐 − {𝑎0

1−
𝑚
2  + (1 −

𝑚

2
) × 𝑌𝑚 × 𝜋

𝑚
2  × 𝐶 × [(휀𝐺𝐴 × 휀𝑆𝐶𝐹)𝑚 × 𝐸[∆𝜎𝑚]] × 𝑁}

 
2

2−𝑚

 (3-43) 

where the statistical characteristics of the uncertain parameters are introduced in Table 

3.7. 

 Calculation of the Component Probability of Failure 

The fatigue probability of failure for each component can be estimated by using both 

FORM and Monte Carlo simulation methods. The advantage of using FORM is 

sensitivity analysis, whereas Monte Carlo simulation is performed to check the 

obtained results from FORM. 



118 

 

There are several programs for obtaining the probability of failure of a component. 

“Rt” program [65] is a framework for utilising probabilistic models with reliability 

analysis. It also can be used in risk assessment. In this program, the considered 

uncertainties are defined based on their distributions. Then by defining the desirable 

limit state function, the probability of failure (and also the reliability) can be obtained 

based on FORM or Monte-Carlo simulation [65]. 

As was mentioned in Section 2.4.4, to obtain an accurate and reliable estimation of the 

probability of failure, a large number of simulations are required for obtaining the 

probability of failure using the Monte-Carlo simulation technique. 

The acceptable 𝐶𝑂𝑉𝑃𝑓 is assumed equal to 0.05. Therefore, based on Eq. (2-98), the 

number of failed simulations is obtained equal to: 

0.05 ≅
1

√𝑛𝑓

      ⇒      𝑛𝑓 = 400  (3-44) 

The probability of failure is on an order of 10-4. Therefore, based on Eq.(2-97), the 

total number of simulations required to obtain the accurate probability of failure is 

approximately equal to: 

𝑁 ≅
𝑛𝑓

𝑃𝑓
=

400

10−4
= 4 × 106 (3-45) 

Hence, the number of simulations is introduced equal to 107 in the Rt software. 

Table 3.8 shows the calculated probability of failure for the most critical components 

in this platform after 5 years (𝑇𝑠= 5 years).  

Table 3.8. Fatigue probability of failure for the most critical components (𝑇𝑠 = 5) 

Member Name Joint Name 
Probability of Failure 

FORM Monte Carlo Simulation 

BM36 Jt3 2.1 x 10-4 1.8 x 10-4 

BM12 Jt3 1.7 x 10-4 1.5 x 10-4 

BM34 Jt14 1.0 x 10-4  8.3 x 10-5 

BM24 Jt14 8.1 x 10-5 6.7 x 10-5 

BM35 Jt4  3.2 x 10-5  2.7 x 10-5 
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Having obtained the probability of failure, the reliability index can be calculated by 

using Eq. (3-31).  Table 3.9 shows the reliability index for the most critical components 

in this platform after 5 years.  

Table 3.9. Reliability index for the most critical components (𝑇𝑠 = 5) 

Member Name Joint Name 
Reliability Index 

FORM Monte Carlo Simulation 

BM36 Jt3 3.53  3.57  

BM12 Jt3 3.58  3.62  

BM34 Jt14 3.72 3.76  

BM24 Jt14 3.77  3.82  

BM35 Jt4 3.99  4.03 

 

It is noted that the reliability analysis can be carried out for each tubular joint in the 

considered platform. However, only the results of the five critical components (which 

were shown in Figure 3.24) are presented. 

Table 3.9 shows the reliability index for the most critical components at a specific time 

(after 5 years). This calculation can be also performed for different years in the 

platform’s lifetime.  

The reliability index for the critical component (BM36-Jt3) is calculated for different 

numbers of years as the fatigue life of the structure. Table 3.10 shows the reliability 

index for the critical component (BM36-Jt3) at different years. It can be seen that the 

reliability index decreases with time (as the structure gets older and consumes its 

design life). 

Table 3.10. Reliability index for the critical component (BM36-Jt3) at different years 

Year in Service (𝑇𝑠) Reliability Index (FORM) 

5 3.53 

10 3.21 

15 2.93 

20 2.62 

25 2.30 

30 2.18 
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 Sensitivity Measurements 

Since several random variables exist in reliability analysis applications, in reliability 

analysis, in addition to the value of the probability of failure, it is crucial to know 

which of the basic random variables is more important in its contribution to the 

probability of failure. Sensitivity analyses [12] are performed to find out the 

importance of each variable on the reliability analysis. There are several measurements 

to show the importance of each variable on the probability of failure (See Chapter 2). 

One of these measurements is 𝛼-vector measure. It was shown in Chapter 2 that the 

components in α-vector can be considered as the relative importance of each variable 

on the probability of failure. Table 3.11 shows the 𝛼-vector measures for each random 

variable. 

Table 3.11. Sensitivity measurement of the uncertain parameters on the probability of 

failure 

Uncertainty Category Random Variable α-vector 

Uncertainties in the 

global analysis 
Uncertainties involved in global analysis (휀𝐺𝐴) 0.35 

Uncertainties related 

to the fatigue 

phenomenon 

Initial crack size (𝑎0) 0.45 

Crack growth parameters (𝐶) 0.65 

Geometry function (𝑌) 0.35 

Uncertainties involved in local stress analysis (휀𝑆𝐶𝐹) 0.35 

 
 

As explained in Chapter 2, 𝛼-vector values indicate the importance of each uncertain 

parameter on the probability of failure. 

Therefore, based on the results of the sensitivity analysis (Table 3.11), among the 

considered random variables, the crack growth parameter is the most important source 

of uncertainty in the fatigue reliability calculation of this example structure. This is 

followed by the initial crack size.  

Sensitivity factors for all random variables are positive which means that these 

variables are load parameters (See Chapter 2). This is because the resistance parameter 

in this problem is a critical crack size (𝑎𝑐) which is assumed as a constant parameter 

equal to the joint wall thickness. 
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3.9 Summary 

Fatigue is an important failure mechanism in offshore structures. Fatigue damage 

occurs due to the cyclic nature of wave loading on the structure. This wave loading 

creates stress ranges at the hot spot regions and results in crack initiation. The crack 

initiation is followed by crack propagation through the thickness of the tubular wall 

which is assumed as the end of fatigue life of the tubular joints. 

To carry out a fatigue analysis for a jacket structure, some assumptions are considered 

in the fatigue model such as: 

• For a short-term period, the sea surface is considered as a realisation of a zero-

mean stationary Gaussian process. The sea surface elevation is characterised by 

the frequency spectrum and it is described by two parameters, the significant 

wave height and zero-mean up-crossing period for a given wave direction. 

• The long-term probability distribution of the sea states is known. 

• To use the frequency approach for obtaining the stress response, the wave loading 

on structural members is linearised. 

• Paris equation is assumed as the basis of the fatigue crack growth model. The 

Paris equation is recommended for the fatigue analysis of offshore structures by 

several codes of practice (e.g. [19], [47]). The crack growth exponent (𝑚) is 

considered as a constant and the threshold stress intensity is assumed to equal to 

zero. 

The fracture mechanics approach is used to obtain the crack size and the fatigue limit 

state is defined based on crack size. Several uncertainties are considered in the limit 

state function. It is noted that some uncertainties (e.g. 𝑎0, 𝐶, 𝑌) contribute in the limit 

state function explicitly whereas other uncertainties such as wave loads, sea state 

characteristics affect stress range.  

The probability of failure for each tubular joint is obtained by using FORM and Monte-

Carlo simulation. Sensitivity analyses are performed to show the effect of each 

uncertain parameter on the fatigue reliability results. Based on the analysis results, 

uncertainties in the crack growth parameter and initial crack size have a relatively 

greater effect on the reliability calculation.    
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4 . SYSTEM RELIABILITY CALCULATION 

4.1 Introduction 

In Chapter 3 of this study, only one failure mode (fatigue failure) for a single structural 

component was considered. Relevant uncertainties were introduced and a limit state 

function was defined. Then by using the different reliability methods (e.g. FORM and 

Monte-Carlo), the probability of failure for each tubular member was estimated, 

separately.  

Nevertheless, most of the offshore jacket structures in the real situation are redundant 

structures [7]. A redundant structure has more structural members than is necessary. 

Therefore, if some of the structure members are damaged, the structure will not 

necessarily fail or collapse, since the load can be redistributed among undamaged 

members [7]. In offshore structures, members are connected and therefore, each 

member has its own limit state function. In offshore structures, conventionally, system 

reliability analysis is estimated based on either fatigue loading or extreme 

environmental loading [66].  

Due to the high level of redundancy in offshore jacket platforms, the probability of 

failure of the whole system is more applicable than the component probability of 

failure. In this chapter, a system reliability approach is presented to calculate the 

probability of failure of a jacket platform considering a combination of fatigue and 

extreme wave loads. In the development of a failure tree of these structures, the initial 

failures occur by fatigue at the critical joints and the weakened structure collapses 

under the extreme wave loading. 

Section 4.2 introduces the fundamental of the structural system and the reliability 

calculation for each system.  

Considerable research effort has been made on the application of system reliability 

methods for offshore structures. Section 4.3 explains some of these studies. 

Section 4.4 explains how to obtain the system probability of failure for a jacket 

structure considering both fatigue and extreme wave load. For this purpose, at first, 

the fatigue probability of failure of each component is obtained by using the Monte-

Carlo simulation. Then, important failure paths are identified by using a searching 
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process in which, components with the maximum change in the accumulated damage 

are considered as the candidate joints in the path. Finally, the system failure criterion 

is evaluated and compared to the maximum acceptable probability of failure. 

Section 4.5 demonstrates the application of the proposed approach to a jacket platform 

and the results of the system reliability. A three-dimensional structural model of the 

considered platform is generated using SESAM software [4]. Nonlinear pushover 

analysis is also carried out to determine the capacity of the platform and the annual 

probability of failure under the extreme wave is calculated. To carry out the pushover 

analysis, USFOS software is employed [67]. Section 4.5 also describes the inspection 

plan for a jacket platform. Underwater inspection is an expensive activity and the cost 

of the inspection is proportional to the number of inspections [15]. Therefore, it is 

required to concentrate on fatigue-sensitive locations in the structures. Furthermore, 

different non-destructive (NDT) techniques are explained in this section. 

It is worth mentioning that in this Chapter, Sections 4.2 to 4.4 describe the theoretical 

aspects of the fatigue reliability analysis, whereas, Section 4.5 demonstrates the 

application of the theoretical aspects to the considered platform and results that have 

been developed by the author.  

4.2 Different Types of Systems 

A system is defined as a set of elements working together as parts of a mechanism. In 

theory, there are two fundamental systems [6]: 

• Series systems: 

A series system is a system in which failure happens when one of the elements in 

the system fails. A series system is also named the weakest link system because 

its failure corresponds to the failure of its weakest component [6]. Examples of a 

series system are chains and statistically determinate structures. If any member in 

these structures fails the structure will fail. 

• Parallel systems: 

On the other hand, in a parallel system, all elements of the system must fail for 

the failure of the system.  
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These two systems are fundamental. In reality, the failure of any complex system can 

be represented in terms of a combination of these two systems [7].  

 Modelling of Series Systems 

The combination of failure elements in a series system can be understood from the 

statically determinate (non-redundant) structure. A structure with 𝑛𝑠𝑒𝑟𝑖𝑒𝑠 elements is a 

statically determinate structure when the whole structure fails as soon as any structural 

element fails, i.e. the structure has no load-carrying capacity after failure of one of the 

structural elements [6]. The illustration of a series system is shown in Figure 4.1. 

 

Figure 4.1. Weakest link system modelled as a series system of failure elements 

Let’s consider a series system of 𝑛𝑠𝑒𝑟𝑖𝑒𝑠 elements. The failure of each element is 

modelled with its limit state function. 

𝑃𝑓(𝐸𝑖) = 𝑃(𝑔𝑖 ≤ 0),      𝑖 = 1,2, … , 𝑛𝑠𝑒𝑟𝑖𝑒𝑠 (4-1) 

where 𝐸𝑖  is the failure event of the ith element, 𝑃𝑓 represents the probability of failure 

and 𝑔𝑖 is the limit state function for the ith element. 

The series system fails if just one of the elements fails, i.e. the probability of failure of 

the series system is the union of the individual element failure probabilities: 

(𝑃𝑓
𝑠𝑦𝑠

)
𝑠𝑒𝑟𝑖𝑒𝑠

= 𝑃[(𝑔1 ≤ 0) ∪ (𝑔2 ≤ 0) ∪ …∪ (𝑔𝑛 ≤ 0)] (4-2) 

where (𝑃𝑓
𝑠𝑦𝑠

)
𝒔𝒆𝒓𝒊𝒆𝒔

 represents the system probability of failure and ∪ is the union 

operator (see Chapter 2). 

Figure 4.2 illustrates the failure domain (hatched areas) for a series system with three 

elements which is the union of the individual element failure domains. In this figure, 

X1 and X2 are uncertain parameters. 
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Figure 4.2. Illustration of the failure domains in a series system  

 Modelling of Parallel Systems 

A parallel system is a system in which all elements have to fail before the whole system 

fails. Failure of the statically indeterminate (redundant) structures can be assumed as 

a parallel system. A parallel system with 𝑛𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 elements is shown in Figure 4.3. 

 

Figure 4.3. Failure of a redundant structure modelled as a parallel system 

Now, consider a structural system where the system reliability model is a parallel 

system of 𝑛𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  elements. The parallel system fails if all of the elements fail, i.e. the 

probability of failure of the parallel system is the intersection of the individual element 

failure probabilities: 
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(𝑃𝑓
𝑠𝑦𝑠

)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

= 𝑃[(𝑔1 ≤ 0) ∩ (𝑔2 ≤ 0) ∩ …∩ (𝑔𝑛 ≤ 0)] (4-3) 

where (𝑃𝑓
𝑠𝑦𝑠

)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

 represents the system probability of failure and ∩ is the 

intersection operator (see Chapter 2). 

Figure 4.4 illustrates the failure domain for a parallel system with two elements which 

is the intersection of the individual element failure domains. In this figure, X1 and X2 

are uncertain parameters. 

 

Figure 4.4. Illustration of the failure domains in a parallel system  

 Modelling of General Systems 

In a redundant system with a large number of components, failure of the system occurs 

after a certain number of elements have failed. The failure event of such a system can 

be represented in terms of the “minimal cut-sets” of the system [6]. A real redundant 

structural system generally has many cut-sets, i.e. different sequences of element 

failure. Each cut-set can then be modelled by a parallel system. If one of these parallel 

systems fails then the whole system fails, i.e. the overall systems reliability model is a 

series system of the failure modes or parallel systems. This is schematically shown in 

Figure 4.5. 
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Figure 4.5. Illustration of the systems reliability model as a series of parallel systems 

The probability of failure of a general system is then given by: 

(𝑃𝑓
𝑠𝑦𝑠

)
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

= 𝑃 [⋃(⋂(𝑃(𝑔𝑖𝑗 ≤ 0))

𝑘𝑖

𝑗=1

)

𝑚

𝑖=1

] (4-4) 

where (𝑃𝑓
𝑠𝑦𝑠

)
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

 represents the system probability of failure, 𝑚 is the number of 

cut-sets (failure sequences), 𝑘𝑖 is the number of elements in each sequence and 𝑔𝑖𝑗 is 

the limit state function of the component jth in cut-set No. i. 

 Reliability Calculation of the Systems 

Depending on the system configuration, the system probability of failure can be 

obtained based on equations (4-2), (4-3), and (4-4). When correlation exists between 

the components, calculation of the system probability of failure (or system reliability) 

is quite difficult [6]. The estimation of system probability is dependent on the 

correlation of the elements. 

Simple bounds can be introduced to find out the upper and lower bounds of the system 

probability of failure introduced in the above equations. It is noted that there are some 

better bounds for estimation of system probability of failure such as Ditlevsen bounds 

[68]. 

For a series system, the probability of failure is within the following bounds [66]: 

max
𝑖

 [𝑃𝑓(𝐸𝑖)] ≤ (𝑃𝑓
𝑠𝑦𝑠

)
𝑠𝑒𝑟𝑖𝑒𝑠

≤ 1 − ∏(1 − 𝑃𝑓(𝐸𝑖))

𝑛

𝑖=1

 (4-5) 

The lower bound corresponds to a situation that all failure components are fully 

correlated. In this case, all the failure cases represent the same failure and all the 
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components will fail if one of them fails. Therefore the maximum probability of failure 

can be selected as the system probability of failure. The upper bound corresponds to a 

situation that all failure components are statistically independent. 

The reliability of a series system decreases with an increasing number of its elements. 

For a given system, with a fixed number of components, system reliability decreases 

with decreasing correlation between pairs of elements. 

On the other hand, the simple bounds for a parallel system can be introduced as [66]: 

∏(𝑃𝑓(𝐸𝑖))

𝑛

𝑖=1

≤ (𝑃𝑓
𝑠𝑦𝑠

)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

≤ min
𝑖

 [𝑃𝑓(𝐸𝑖)] (4-6) 

The lower bound represents the case where the components are uncorrelated and the 

system fails only when all the components fail. The upper bound represents the case 

in which all components are fully correlated. In this case, the safest component 

controls the reliability of the system. 

The reliability of a parallel system increases with an increasing number of its 

components. For a given system, with a fixed number of elements, the system 

reliability decreases with an increasing correlation between pairs of elements.  

4.3 Previous Studies on System Probability of Failure of Offshore 

Structures 

Several research studies in offshore reliability analysis have been focusing on 

component reliability analysis where a fatigue limit state or an extreme wave limit 

state was considered to calculate the probability of failure (See Chapter 3). For 

statistically determinate structures, the reliability at the component level is sufficient 

since the failure of one member will lead to the whole structure failure. However, this 

is not the case for highly redundant structures such as offshore jacket platforms. The 

failure of one or a few members does not necessarily result in the collapse of the entire 

system. Therefore, for these structures, reliability analysis at the system level is more 

applicable. Reliability analysis at the system level takes into account the failure of one 

component on others and the entire system as a whole system. 

Structural failure is a progressive process and a sequence of individual components is 

required to fail before overall failure. After the failure of the first element, the load 
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shared by this member is re-distributed to the remaining elements and the structure 

continues to support loads until a sufficient number of elemental failures occur and the 

structure fails. A failure path is defined as the failure sequence of members in the 

structure until it collapses.  

The calculation of the system reliability has many theoretical and practical challenges. 

One of the difficulties is that for a redundant structure, a large number of sequences 

leading to failure exist and it is not practical to include all of them in the analysis [69]. 

However, only a few of the failure sequences have significant contributions to the total 

failure probability. The probability of those failure paths and the method of 

determination of the important failure paths are the basis of system reliability analysis 

[69]. The system failure event is then calculated as the union of these identified 

important sequences [70]. 

Considerable research effort has been made on the application of system reliability 

methods to fixed offshore structures. However, these efforts have mainly concentrated 

on the reliability analysis of the structure under one failure mode, i.e. considering 

either fatigue loading or extreme environmental loading.  

 System Reliability Analysis Considering Fatigue Failure 

Wang and et.al considered fatigue failure as a common failure mode for offshore jacket 

platforms and calculated the system fatigue reliability analysis for this type of 

structure. They proposed a new searching method for the system reliability analysis of 

structures to identify the dominant fatigue failure paths and evaluate the probability of 

system failure through failure paths. The main feature of their method was the system 

decomposition. The system decomposition was implemented by dividing the failure 

elements into two sub-systems according to the construction and fatigue failure 

characteristics of jacket structures. It was shown that system decomposition improved 

calculation efficiency [8]. 

Marquez and Sorensen studied the system reliability for offshore wind turbines 

regarding fatigue failure. They formulated the limit state equations for components 

fatigue failure based on bi-linear S-N curves in offshore wind farms. They tried to find 

the important sequences of failure by utilising branch and bound technique and then 

they calculated system reliability through a combination of important failure paths 
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leading to system failure. The system reliability in a jacket-type wind turbine 

substructure was estimated using a series system [71]. 

Shabakhty attempted to develop a system reliability approach to monitor the safety of 

jack-up platforms under fatigue and fracture degradation. He assumed a semi-elliptic 

shape to model the crack propagation in depth and circumference of crack shape. He 

used Monte-Carlo Simulation to estimate the statistical crack size in accordance with 

the fatigue limit state. The important sequences of failure were identified using branch 

and bound technique and finally, the system reliability was estimated through a 

combination of important failure paths leading to system failure [56]. 

 System Reliability Analysis Considering Extreme Load Failure 

A simplified system approach was developed by Bomel Ltd. in a joint industry project 

to obtain environmental load factors for fixed steel offshore structures. A global failure 

function was defined by the difference between the structural reserve strength 

(resistance) and the environmental load, in which the reserve strength was evaluated 

by deterministic pushover analyses. In this project, both load and resistance refer to 

overall base shear [72].  

Kurian and et al performed the structural reliability of an existing jacket platform, by 

determining the system probability of failure and its corresponding reliability index. 

They used pushover analysis to determine possible failure paths of the structure under 

extreme wave loading. They established three failure paths of the platform under 

extreme wave loading and used the simple bound formula to determine the failure 

probability and reliability index [69].  

 System Reliability Analysis Considering both Fatigue and Extreme 

Load Failures 

In the above-mentioned studies, the focus of system reliability analysis was on 

estimating the reliability considering either fatigue loading or extreme environmental 

loading. However, for offshore structures, a combination of these two failure modes is 

more critical. Some studies were performed by considering both fatigue and extreme 

wave loadings.  
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Karamchandani et al. considered a combination of fatigue and extreme loading. They 

presented a formulation for a sequence of failures for three different failure modes; 

failure under fatigue, failure under extreme environmental loads, and combined 

sequence of failure. To obtain the system reliability, they assumed that the initial 

failures happen in fatigue and subsequent failures occur under extreme environmental 

loads. Then, they applied the approach to a steel jacket platform. They found that for 

an individual member (component level), the most probable cause of failure is fatigue, 

but for overall structural failure, overload and a combination of fatigue and overload 

are more important. However, they assumed the platform fails after only two-

component failures, which is not a correct assumption [70]. 

Oakley et al. proposed a simplified method of estimating the system reliability of a 

structure. They considered both fatigue and extreme loading. The members were 

divided into groups, each group consisting of the diagonal bracings between any two 

levels of one frame. The structure was assumed to fail when any group failed. Then, 

they compared the simplified method results with results from a rigorous analysis [73]. 

4.4 System Probability of Failure Considering Fatigue and Extreme 

Wave 

As mentioned in Section 4.1, the reliability analysis can be calculated either at the 

component level or system level. The reliability analysis at the component level cannot 

reflect the reliability of the system as a whole. For statistically determinate structures, 

the reliability of individual members is sufficient since the failure of one component 

will lead to the whole structure failure. However, for highly redundant structures, the 

failure of one or a few members does not necessarily lead to the collapse of the system. 

System redundancy is the ability of the structure to redistribute the applied load after 

the failure of one of its elements. A redundant structure is capable to continue to carry 

loads after the failure of its members. After a failure of a component, the load 

supported by the failed element will be distributed to adjacent members. A 

considerable degree of redundancy is often built into the design of jacket structures. 

The need for redundancy arises for several reasons [7]: 

• The probability of the actual loads exceeding the design loads,  
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• The inevitable nature of fabrication defects such as welding defects at the joints,  

• Deterioration during service as a result of corrosion and fatigue initiating from 

defects. 

The ultimate capacity of the structure depends on the post-failure behaviour of the 

primary members and joints, the structural configuration, and the degree of 

redundancy.  

Calculation of system reliability analysis for large structures with high redundancy 

may be complex due to an enormous number of possible failure paths. It is practically 

impossible and not necessary to identify all possible failure paths. Including all the 

possible failure paths in the analysis is not feasible, since many of these paths have a 

low probability of occurrence [69]. Therefore, identification of the dominant failure 

paths is one of the major tasks in the system reliability analysis for this type of structure 

[8]. 

 Global Fatigue Analysis 

The first step in the estimation of the system reliability is to perform the reliability 

analysis at the component level. As it was mentioned, fatigue failure is considered at 

the component level.  

To evaluate the probability of failure of a component, a failure event should be defined. 

In this study, the fatigue limit state is defined based on the crack size, which is obtained 

by the fracture mechanics approach. It is assumed that failure occurs, as soon as the 

crack size is bigger than the critical value. Therefore, the fatigue limit state function is 

described as: 

𝑔 =  𝑎𝑐  −  𝑎𝑡 (4-7) 

Where 𝑎𝑐 represents the critical crack size. Critical crack size is usually considered as 

the wall thickness [47]. Failure occurs when the crack size is bigger than the critical 

crack size, i.e. when g ≤ 0.  

By defining fatigue limit state function and uncertainties, the probability of failure can 

be obtained by performing the Monte-Carlo simulation method. In this study, Rt 

software [65] is used to perform the Monte-Carlo simulation. The calculation of the 

component reliability was explained in detail in Chapter 3. 
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For performing fatigue analysis, a spectral fatigue analysis can be employed. The 

spectral fatigue analysis is used for structures in shallow to medium water depths [74]. 

In spectral fatigue analysis, the major task is the determination of the response of the 

structure for a unit sinusoidal wave as a function of wave period (or wave frequency). 

This function is called the response transfer function [19]. In spectral fatigue analysis, 

transfer functions can be obtained for each sea state. The transfer function is 

established by finding the stress range, at the location of interest, for a range of wave 

frequencies, and dividing the stress range results by the wave height. See Chapter 3 

for more details. 

For each sea state, the sea surface elevation is characterised by the frequency spectrum 

(e.g. Pierson-Moskowitz or JONSWAP spectrum) [19]. Having the transfer function 

and wave spectrum, the response spectrum (which is the hot spot stress spectrum) can 

be obtained as: 

𝑆𝑆(𝜔) = |𝑇(𝜔)|2 × 𝑆𝜂(𝜔) (4-8) 

where 𝑆𝑠(𝜔) is the stress spectrum; 𝑆𝜂(𝜔) is water surface elevation spectrum; 𝑇(𝜔) is 

transfer function and 𝜔 is the angular frequency of the wave. Having obtained the 

stress spectrum, the stress range value can be obtained (see Chapter 3 for more details). 

 Identification of Most Probable Fatigue Failure Paths 

Complex structural systems consist of a large number of structural elements. 

Therefore, the structure can fail in several different ways. Because of the considerable 

degree of redundancy, there is usually a large number of possible combinations of 

element failures that can result in the failure of these structures. 

Usually, few of these failure sequences have significant contributions to the total 

failure probability. Therefore, in most structural reliability analyses, a searching 

process is required to identify important failure sequences, and the system failure event 

is then approximated as the union of these identified important sequences [70]. 

After each component failure, all the surviving elements can be chosen to form the 

next component to fail, the failure events can be represented in the form of a failure 

tree with each branch of the tree representing a failure sequence. 
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There are different techniques to identify the dominant failure paths. Identification of 

the failure paths can be performed using an incremental load method (Moses 1982), 

unzipping method [66], branch and bound method [75], and truncated enumeration 

method [76]. The basic concepts of these methods are similar [70]. 

The incremental load method uses an incremental elastic analysis of the structure [70]. 

Using mean values of the random variables as the analysis basis, the most highly 

stressed member is considered to have failed. It is then replaced by its post-failure 

strength and the loading is further increased until the next element fails. The procedure 

is repeated until a failure path is developed. Since the mean values of the variables are 

used, the results obtained from this method are deterministic and the stochastic 

characteristics are unable to be considered. The method is not suitable for the analysis 

of offshore structures with a large number of uncertainties. 

The branch and bound method repeats elastoplastic analysis of the structure to 

determine the sequence of structure components most likely to fail, and hence to 

develop the failure paths [70]. The main features of this method are branching and 

truncation. The branching from each node of a failure tree generates new failure paths. 

A new branch is generated by adding one more element to the selected path. Because 

all of the surviving elements considered would be the next failure element, a large 

number of failure paths will be generated. The truncation of failure paths starts after 

the first complete failure path has been identified. Almost all the possible failure paths 

can be identified in this way. However, this method, although theoretically rigorous, 

is prohibitively expensive for the analysis of complex structures with high redundancy, 

such as offshore jackets. 

However, these methods have some shortcomings. For example, Branch-and-Bound 

Method, although theoretically rigorous, is prohibitively expensive for the analysis of 

complex structures with high redundancy, such as offshore jackets [8]. Kim et al. 

proposed a new searching technique, where the dominant failure modes are rapidly 

identified through a genetic algorithm. Multiple dominant failure modes are then 

recognised in the lessening order based on their likelihood. The searching process ends 

as the contributions by newly identified modes become negligible [77]. 
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In this thesis, the sequence of structure joints most likely to fail is established. The 

probability of system failure is then estimated as the union of a finite number of critical 

failure path events. Since other paths are neglected, the resulting estimate is a lower 

bound of the probability of system failure. 

As described in Chapter 3, the crack size of each component is expressed as a function 

of basic random variables. The sequence of failures occurs if each of these individual 

crack sizes reaches critical crack size during the lifetime of the structure. Monte-Carlo 

simulation is used to compute the fatigue failure probabilities of each component. For 

identification of the important sequences, the branch and bound method is utilised. 

In this thesis, for branching from a selected incomplete failure path of length, all the 

surviving elements of the structure are candidate elements and new paths are formed 

by combining each element to the chosen path respectively. As only some of the 

branches will be developed into complete paths eventually, it is not necessary to 

combine all of the surviving elements to develop new branches. Therefore, it is 

important to select a limited number of surviving elements to develop a limited number 

of new branches to reduce calculation consumption [70]. 

The starting point is the intact structure in which none of the elements have failed. By 

performing component reliability analysis for the intact platform, the joint with the 

highest fatigue failure probability is selected as a starting component for further 

branching. After the failure of the first component, the applied loading will be 

transferred by the remaining members, i.e. redistribution of the load through the 

structure occurs.  In the damaged structure, each remaining member has already some 

accumulated fatigue damage, and due to the redistribution of the stresses in the 

structure, the rate of damage accumulation will change [19]. 

Two criteria are introduced for the selection of the next probable joint to failure which 

are the change ratio in damage and accumulated damage of surviving elements. The 

procedure is repeated until a failure path is developed. 

(I). Change Ratio in Damage 

This criterion states that only those joints, which have a large change ratio in the 

damage (after the failure of the critical component), are selected. The change 

ratio of the damage of joint 𝑖 after the failure of joint 𝑗 is defined as [8]: 
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𝑟𝑖𝑗  =  
|𝐷𝑖 𝑗⁄ − 𝐷𝑖|

𝐷𝑖
 (4-9) 

where 𝐷𝑖 is the fatigue damage of a specific member (member 𝑖) before the 𝑗𝑡ℎ 

joint fails, 𝐷𝑖 𝑗⁄  is the damage after the 𝑗𝑡ℎ joint failure.  The change ratio of the 

damage of all the intact elements is calculated. The failure paths are chosen based 

on the following criterion [8]: 

𝑟𝑖𝑗  >  𝛼𝑐  ×  𝑚𝑎𝑥
𝑖

 (𝑟𝑖𝑗)  (4-10) 

where 𝛼𝑐 is the selection ratio that is used to control the number of surviving 

elements. If 𝛼𝑐 considered equal to zero, it means that all the surviving elements 

are included; if it is assumed equal to one, only the surviving element with the 

highest change ratio of the damage rate is selected. In this study, 𝛼𝑐  is considered 

equal to 0.7. 

(II). Element Accumulated Damage 

The accumulative damage of the surviving element is a supplement to the above 

criterion for considering that some surviving elements with large accumulative 

damage but less change ratio of the damage rate would also develop a path with 

a considerable failure probability. The deterministic accumulate damage of the 

ith surviving element of the surviving structure corresponding to the failure path 

is calculated by setting all random variables to their mean values [70]. 

A failure path that results in structural collapse is called a complete failure path and 

further branching from this path is terminated while an incomplete failure path is taken 

up for further branching [7]. Figure 4.6 shows a failure tree in which various branches 

illustrate different failure paths of the structure. 
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Figure 4.6. Development of the failure-tree 

 Extreme Wave Load Analysis 

For performing extreme wave (environmental) load analysis, the load and response of 

the structure should be modelled. The extreme load can be introduced by a random 

magnitude, which relates wave load to the 100-year wave height. In this study, the 

extreme wave is a wave corresponding to an annual exceedance probability of 10-2 

(100-year return period wave). 

In this analysis framework, failure is assumed to occur by yielding at a section which 

is a function of axial force and the bending moment at the section. After the first 

failure, the force distribution in the structure changes, which leads to an increase in the 

stresses of the adjacent members of the failed member. The changes in the stress 

depend on the structure configuration, the location of the failed member, and the post-

failure behaviour of the failed member. 

Pushover analysis is established to perform extreme wave load analysis. This analysis 

provides an insight into the load-bearing performance of the platform, indicates the 

weak links, failure modes, and the post-failure behaviour of the structure. The 

procedure adopted for the pushover analysis consists of the 100-year storm load, for 
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the extreme environmental condition, which is incrementally introduced to the 

platform. The environmental load is gradually increased to induce member yielding or 

buckling and to eventually lead to the global collapse in the platform. The progressive 

collapse analysis of an offshore structure is usually carried out using a non-linear finite 

element program. 

 Probability of Failure under Extreme Wave Load Analysis 

One approach to estimate the probability of failure under extreme wave load is in terms 

of structure capacity [74]. The capacity of the structure is determined by nonlinear 

pushover analyses.  

The previous studies for jacket structures have shown that the ultimate capacity, or 

collapse capacity, of the structures, can be related directly to the total base-shear on 

the structures [19]. Therefore, the extreme limit state can be written in terms of the 

base shear demand that needs to be checked against the base shear capacity at collapse. 

Therefore, the limit state can be defined as [74]: 

𝑔 𝑒𝑥𝑡𝑟𝑒𝑚𝑒  =  𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  −  𝐵𝑆𝐿𝑜𝑎𝑑  (4-11) 

In this equation, 𝑔 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 represents the limit state function under extreme wave load,  

𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and 𝐵𝑆𝐿𝑜𝑎𝑑 are uncertain parameters that refer to the base-shear capacity 

and base-shear load, respectively. The platform fails when the exerted load is greater 

than the platform capacity. 

Therefore, the extreme probability of failure is the probability of 𝑔 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 being less 

than zero: 

𝑃𝑓 = 𝑃(𝑔 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 < 0) = 𝑃(𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 < 𝐵𝑆𝐿𝑜𝑎𝑑) (4-12) 

The structure has a random capacity (𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) which is the largest load the structure 

can withstand without system failure. The value of capacity depends on the capacities 

of the members in the system. In this study, the base shear capacity (𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) will 

be assumed as a lognormal random variable. A COV of 15-20% is consistent for jacket 

platforms [74]. In this study, COV is considered equal to 0.20. 
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 Global Response Surface 

To establish the probability distribution of the annual maximum base-shear load acting 

on a given structure, a proper description of the environmental situation is needed [19].  

The global response surface method relates the environmental load to the wave height 

[78]. For a given wave period and current speed, the base-shear load can be 

approximated as [19]:  

𝐵𝑆𝐿𝑜𝑎𝑑  =  𝛤 × (𝑐 × 𝐻𝑚𝑎𝑥
𝛼 ) (4-13) 

Here, 𝑐 and 𝛼 are deterministic constants describing how base shear varies with wave 

height [74]. To determine the response of the structure, 40 sets of environmental loads 

(wave heights) are generated based on Gumbel distribution, and structural analysis is 

carried out. From the analysis, 40 sets of base shears are obtained. The coefficients 𝑐 

and 𝛼 are determined using MATLAB Curve Fitting Tool [79]. 

The parameter 𝛤, is a factor representing the uncertainty involved in estimating base 

shear from wave height when we use deterministic amounts for 𝑐 and 𝛼. 𝛤 is modelled 

as a lognormal random variable with a mean equal to 1.0 and COV equal to 0.25 [74]. 

Having obtained the base shear capacity and base shear load, the probability of failure 

for the extreme load can be obtained by using the Monte-Carlo simulation. 

 System Failure Criterion 

An incomplete failure path will be completed when the system failure occurs. The 

common criterion of system failure is a major loss of global stiffness. The global 

stiffness is measured by the increase in deflection at the centre of the deck due to a 

unit increase in load. It is observed that usually, there is little change in stiffness during 

the first few member failures but after the failure of several members, a large change 

in stiffness often occurred. This large change in stiffness is used to detect system 

failure [78]. 

The other criterion for system failure could be using target reliability levels in design 

codes. Several codes and standards such as Eurocode [80] and DNV [81] introduce 

target reliability levels for the different types of platforms. Target reliabilities are 

required to be met in the assessment of offshore platforms to make sure that certain 
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safety levels are achieved. The values of target reliabilities depend on the consequence 

and nature of the failure. The consequence of failure is evaluated concerning human 

injury, environmental impact, and economic loss [19]. 

For example, the target annual reliability for a redundant structure with the high 

consequence of failure corresponds to the probability of failure of 10-4 [16]. Therefore, 

in this study, a maximum acceptable probability of failure (𝑃𝑚𝑎𝑥) equal to 10-4 per year 

is used. It means that at each step of failure path development (after the failure of each 

component), the annual probability of failure of the platform under an extreme wave 

is calculated and compared to the maximum acceptable probability of failure. If the 

annual probability of failure in each step of the failure path is less than 𝑃𝑚𝑎𝑥, the 

platform is considered a safe system. An incomplete failure path is assumed to fail 

when annual probability exceeds the maximum acceptable probability of failure, i.e.: 

(𝑃𝑓)
𝐴𝑛𝑛𝑢𝑎𝑙

 >  𝑃𝑚𝑎𝑥 (4-14) 

 Estimation of the System Probability of Failure  

To calculate the system probability of failure considering both fatigue and extreme 

wave load, the conditional probability of extreme loads can be used. These conditional 

probabilities are multiplied by the probability of fatigue failures, and the products are 

summed to obtain the system probability of failure [82]. Therefore, the system 

probability of failure can be obtained as: 

𝑃(𝐹𝑠𝑦𝑠)  =  ∑ 𝑃(𝐹𝑘)  ×  𝑃(𝐸𝑥𝑡 | 𝐹𝑘)

𝑛

𝑘=0

 (4-15) 

In this equation, 𝑃(𝐹𝑘) is the probability of failure of “𝑘” joints in fatigue loading; e.g. 

𝐹0 is an event in which no component fails in fatigue (Intact case); 𝐹1 is an event in 

which only one component fails in fatigue, etc. Moreover, “𝐸𝑥𝑡” is an event in which 

platform fails under an extreme wave and 𝑃(𝐸𝑥𝑡 | 𝐹𝑘) is the probability of failure under 

extreme loading given that “𝑘” joints failed in fatigue.  
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By expanding Eq. (4-15), the system probability of failure can be written as: 

𝑃(𝐹𝑠𝑦𝑠)  =  𝑃(𝐹0) × 𝑃(𝐸𝑥𝑡 | 𝐹0) + 𝑃(𝐹1) × 𝑃(𝐸𝑥𝑡 | 𝐹1) 

                                             + 𝑃 (𝐹2) × 𝑃(𝐸𝑥𝑡|𝐹2) + ⋯  
(4-16) 

Here, the probability of failure for each fatigue failure case (𝑃(𝐹0), 𝑃(𝐹1), etc.), is 

obtained based on the Monte-Carlo simulation (by using fatigue limit state function) 

and for each fatigue failure case. The conditional probability, 𝑃(𝐸𝑥𝑡 | 𝐹𝑘); is calculated 

based on extreme limit state function by using Monte-Carlo simulation. The total 

probability of system failure over the entire range of fatigue failure is then computed 

using Eq. (4-15).  

4.5 Application of the Proposed Approach to a Jacket Platform 

To apply the methodology described in Section 4.4, a jacket platform is considered. 

The considered structure is a four-legged living quarter, steel jacket platform. It is 

located in a water depth of 70 m. The choice of this platform is motivated by the degree 

of structural redundancy, which is believed to be a typical jacket platform.  

Figure 4.7 shows the flowchart of the proposed approach for a jacket platform. The 

following sub-sections explain this flowchart. 
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Figure 4.7. Flowchart of the proposed approach for the considered jacket platform 

 Platform Modelling 

The considered jacket platform in Chapter 3 is used here as shown in Figure 4.8. A 

three-dimensional structural model of the platform is generated using SESAM 

software [4]. The model incorporates all primary members in the topside and the 

jacket. This is a space frame, which integrates the jacket, the topside, and the 

foundation systems in one combined structure. The model geometrical properties 

conform to the jacket as-built drawings.  
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Figure 4.8. Structural model of a jacket platform in SESAM software  

The main characteristic of the jacket platform is given in Table 4.1. 

Table 4.1. Main characteristics of the considered jacket 

Item Description 

Platform function Living quarter platform 

Water depth 70 m 

No. of Legs 4 

Foundation system 

- Outside diameter: 91.4 cm 

- Pile thickness: 2.54 cm 

- Pile depth: 64m  

- Grouted to jacket legs 

Soil description 

- Silt:    0-1 m 

- Clay:  1-18.4 m  

- Silt:    18.4-31.2 m 

- Clay:  31.2-56.1 m 

- Sand:  56.1-66.0 m 

Bracing type X brace 

Jacket levels See Table 3.2 

Material Carbon Steel Grade S355  

Mass of the deck 2200 ton 

100-year return period wave 
- Wave height: 12.2 m 

- Wave period: 11 sec 

Fatigue wave loading See Section 3.8.2 
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 Intact Platform 

At first, it is assumed that the platform is in an intact condition, i.e. no failure happened 

and all components are in safe conditions. 

 Extreme Wave Load Analysis 

Monte-Carlo simulation is employed to calculate the probability of failure under 

extreme load in the intact case, i.e. 𝑃(𝐸𝑥𝑡|𝑖𝑛𝑡𝑎𝑐𝑡). For this purpose, the extreme limit 

state function is used (Eq. (4-11)). In this function, 𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and 𝐵𝑆𝐿𝑜𝑎𝑑 should be 

calculated. 

To obtain 𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, a pushover analysis is performed. To carry out the pushover 

analysis, USFOS software is employed [67]. USFOS is a finite element program 

specifically developed for estimating the ultimate strength of space frame structures 

and identifying the associated collapse mechanisms. The software is capable to 

perform non-linear collapse analysis, in which, the structure and members are 

incrementally loaded beyond their yielding capacity [67].  

Based on the USFOS analysis results, the collapse base shear (𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) of this 

platform (in intact case) is found as 13.1 MN. Figure 4.9 shows the finite element 

model of the platform in pushover analysis. 

  

Figure 4.9. Structural model for pushover analysis, the first step of analysis (left), 

and the collapse of the jacket in the last step of analysis (right)  
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For calculation of load base shear, Eq. (4-13) is used which relates base shear to wave 

height. To determine the response of the structure, 40 sets of wave loads are generated 

based on Gumbel distribution, and structural analysis is then carried out. From the 

analysis, 40 sets of base shears are obtained. In this thesis, a Gumbel distribution with 

µ =  12.0 and scale parameter (𝛽) of 1.2 is considered for maximum wave height, 𝐻𝑚𝑎𝑥 

[83]. 

By performing a linear regression between wave height and base shear, the amount of 

𝑐 and 𝛼 is estimated equal to: 

𝑐 =  0.035            𝛼 = 1.93 (4-17) 

Table 4.2 shows the characteristics of random variables in extreme wave load analysis. 

Table 4.2. Statistical characteristics of random variables in extreme wave analysis 

(intact case) 

Random Variable Type Mean COV 

𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 Lognormal 13.1 MN 0.20 

𝛤 Lognormal 1.0 0.25 

𝐻𝑚𝑎𝑥 Gumbel µ = 12.0, β = 1.2 --- 

𝛼 Fixed 1.93 --- 

𝑐 Fixed 0.035 --- 

 

Figure 4.10 shows the distributions of the load and capacity bases shears.  

 

Figure 4.10. Probability density functions for load and capacity base shear 
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Using defined variables in Table 4.2 and the extreme limit state function (Eq. (4-11)), 

by performing the Monte-Carlo technique with 107 simulations (using Rt software 

[65]), the probability of failure of the platform under extreme wave loading in the 

intact case is obtained as:  

𝑃 (𝐸𝑥𝑡 | 𝑖𝑛𝑡𝑎𝑐𝑡) = 4 × 10−5 (4-18) 

 Spectral Fatigue Analysis 

Spectral fatigue analysis for the jacket platform is performed using SESAM software 

[4]. The stress parameters are computed using a frequency domain approach. The 

environment is modelled in terms of a set of stationary sea states, in which each sea 

state is characterised by significant wave height, period, and direction. The 

probabilities of occurrence of the sea states are usually obtained by measurement and 

summarised as a wave scatter diagram. In each sea state, a Pierson-Moskowitz wave 

spectrum is assumed (for more detail, see Chapter 3). 

Table 3.4 shows the characteristics of the sea states approaching from the northwest 

direction. 

Table 4.3. Characteristics of sea states (Northwest direction) 

Sea State 
Significant wave  

height, 𝐻𝑆 (m) 

Dominant period, 

 𝑇𝑍 (sec) 
Fraction of time, 

𝑓𝑖 

1 2.75 6.5 0.0019 

2 2.75 7.5 0.0265 

3 2.75 8.5 0.0054 

4 3.25 7.5 0.0060 

5 3.25 8.5 0.0123 

6 3.75 7.5 0.0001 

7 3.75 8.5 0.0087 

8 3.75 9.5 0.0009 

9 4.25 8.5 0.0013 

10 4.25 9.5 0.0019 

11 4.75 9.5 0.0006 

 

For each member end and wave direction, SESAM computes transfer functions and 

spectral moments. Having obtained the spectral moments, the standard deviation and 

zero mean crossing frequency of the stress for each sea state can be calculated (see 
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Chapter 3). Table 3.5 shows the results of fatigue analysis in terms of the stress 

spectrum for one specific wave direction. 

Table 4.4. Spectral moments of stress spectrum in one specific direction (north-west) 

Sea State 
Root mean square  

stress, 𝛿𝑖 (MPa)  

Zero mean crossing 

frequency, 𝜈0𝑖 

1 22.57 0.17 

2 20.83 0.16 

3 19.45 0.14 

4 24.62 0.16 

5 22.98 0.14 

6 28.41 0.16 

7 26.52 0.14 

8 24.97 0.13 

9 30.05 0.14 

10 28.30 0.13 

11 31.63 0.13 

 

It is noted that the term ∑ (𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖)𝑖  is calculated by summing all sea states in all 

directions (see Chapter 3 for more details).  

 Calculation of Fatigue Probability of Failure for Each Joint 

Now, the probability of failure of each joint is obtained using the Monte-Carlo 

simulation. To perform the Monte-Carlo simulation, fatigue limit state function and 

fatigue uncertainties need to be defined. Fatigue limit state function is introduced in 

Eq. (4-7). Table 4.5 represents the fatigue uncertainties considered in this study. 

Table 4.5. Statistical characteristics of random variables, Units [N, mm] 

Random Variable Symbol Type Mean COV Reference 

Initial crack size 𝑎0 Exponential 0.11 1.0 [19] 

Crack growth parameters 

(Material properties) 

𝐶 Lognormal 8.1x10-12 0.6 [15], [51] 

𝑚 Fixed 3 --- [15], [51] 

Geometry function 𝑌 Lognormal 1.0 0.1 [1] 

Uncertainties involved in 

global analysis 
휀𝐺𝐴 Lognormal 1.0 0.1 [1] 

Uncertainties involved in 

local stress analysis 
휀𝑆𝐶𝐹  Lognormal 1.0 0.1 [1] 
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After performing the Monte-Carlo simulation, the probability of failure for each joint 

is obtained. Table 4.6 demonstrates the probability of failure for the most five critical 

components in this platform.  

Table 4.6. Fatigue probability of failure for the most five critical components 

Component Name ∑ 𝑣0𝑖 × 𝛿𝑖
𝑚 × 𝑓𝑖𝑖   (MPa) Probability of Failure 

BM36-Jt3 317.4 0.022 

BM12-Jt3 303.6 0.018 

BM34-Jt14 270.8 0.0100 

BM24-Jt14 258.6 0.0079 

BM35-Jt4 214.2 0.0026 

 

Figure 3.24 shows the location of critical components in fatigue analysis. 

 

 

 

Figure 4.11. Location of the most critical components in fatigue analysis (piles were 

not shown) 

 Calculation of Probability of Failure for the Intact Platform 

The platform is intact when no component (𝐶𝑖) fails in the fatigue loading. Therefore, 

the probability of being intact is: 
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𝑃(𝑖𝑛𝑡𝑎𝑐𝑡)  =  𝑃([𝐶1 𝑖𝑠 𝑠𝑎𝑓𝑒] ∩ [𝐶2 𝑖𝑠 𝑠𝑎𝑓𝑒] ∩ …∩ [𝐶𝑛 𝑖𝑠 𝑠𝑎𝑓𝑒]) 

𝑃(𝑖𝑛𝑡𝑎𝑐𝑡)  =  (1 − 𝑃1) × (1 − 𝑃2) × …× (1 − 𝑃𝑛)  = ∏(1 − 𝑃𝑖)

𝑛

𝑖=1

 

(4-19) 

In which, 𝑃𝑖 is the probability of failure of the ith component in fatigue and 𝑛 is the 

number of components in the jacket platform. After calculating 𝑃(𝑖𝑛𝑡𝑎𝑐𝑡), probability 

of failure considering both extreme wave load and fatigue load, in the intact case, is 

calculated as: 

𝑃𝑂𝐹0 = 𝑃(𝑖𝑛𝑡𝑎𝑐𝑡) × 𝑃(𝐸𝑥𝑡 | 𝑖𝑛𝑡𝑎𝑐𝑡) (4-20) 

 Failure Path Development 

 Modified Platform 

Based on Table 3.6, the most critical component (BM36-Jt3) is selected as the first 

component in the failure path. The modified platform is a platform in which this 

component (BM36-Jt3) has been removed. Figure 4.12 shows the modified platform. 

 

 

 

Figure 4.12. The modified platform (topside and piles were not shown) 

 Check the System Failure Criterion 

After removing the critical component, the system failure criteria should be checked. 

For this purpose, the probability of failure under extreme wave load (Eq. (4-12)) is 

compared to the maximum acceptable probability of failure (Eq. (4-14)). As it was 
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explained in Section 4.4.6, the maximum acceptable probability of failure for a 

redundant structure is considered equal to  𝑃𝑚𝑎𝑥 = 10-4. 

If the platform fails (i.e. the annual probability of failure is bigger than 𝑃𝑚𝑎𝑥), the 

system probability of failure is obtained based on Eq. (4-15). Otherwise, the following 

process is continued which includes: 

 Extreme Wave Load Analysis  

In this step, another extreme wave analysis is performed for the modified platform 

(platform without component BM36-Jt3) in USFOS software. The same process as 

Section 4.5.2 is repeated for the calculation of the probability of failure. The only 

difference here is that due to removing one specific component, 𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 in this step 

(12.95 MN) is less than the previous amount of 𝐵𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 in intact case (13.1 MN).  

Monte-Carlo simulation is performed and the probability of failure under extreme 

wave load given one component failed in fatigue is obtained (i.e. 𝑃(𝐸𝑥𝑡|𝐶1)). After 

obtaining 𝑃(𝐸𝑥𝑡|𝐶1), the probability of failure under both extreme wave load and 

fatigue load (in a case that only one component fails in fatigue) is calculated as: 

𝑃𝑂𝐹1 = 𝑃(𝐶1) × 𝑃(𝐸𝑥𝑡 | 𝐶1) (4-21) 

Figure 4.13 shows the probability distributions of load and capacity in the intact and 

two damaged cases. Figure 4.13 shows that the platform capacity decreases when the 

number of failed components in fatigue increases. Therefore, the conditional 

probability of failure increases by increasing the number of failed components in 

fatigue, i.e.: 

𝑃 (𝐸𝑥𝑡 | [𝐶1 ∩ …∩ 𝐶𝑛+1])  >  𝑃 (𝐸𝑥𝑡 | [𝐶1 ∩ …∩ 𝐶𝑛]) (4-22) 
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Figure 4.13. Probability density functions for load and capacity base shear in 

different damage scenarios 

 Spectral Fatigue Analysis 

The next step is finding the next critical component in the failure path. For this purpose, 

another fatigue analysis is carried out (for the modified platform). The results of the 

spectral fatigue analysis are the standard deviation and zero mean crossing frequency 

of the stress for each sea state.  

 Calculation of Probability of Failure for Each Component 

The probability of failure for each component is obtained by using a fatigue limit state 

(Eq. (4-7)) and Monte Carlo simulation. 

 Select the Next Critical Component, Ci+1 

The next critical component in the failure path is selected based on the selection criteria 

explained in Section 4.4.2. It is assumed that the probability of failure of components 

is independent of each other, i.e.: 

𝑃 (𝐶1 ∩ …∩ 𝐶𝑖 ∩ 𝐶𝑖+1) =  𝑃(𝐶1) × …× 𝑃(𝐶𝑖) × 𝑃(𝐶𝑖+1) (4-23) 

After repeating the searching process, fatigue failure paths are obtained.  

 System Probability of Failure (Specific Failure Path) 

The failure path is completed when the whole structure fails. It was mentioned that the 

platform is assumed to fail when the probability of failure of the modified structure 
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under an extreme wave (i.e. 𝑃(𝐸𝑥𝑡 | [𝐶1 ∩ … ∩ 𝐶𝑛])) is greater than the maximum 

acceptable probability of failure (𝑃𝑚𝑎𝑥). 

The probability of failure of a platform considering both extreme wave and fatigue 

loading can be obtained based on Eq. (4-15). The probability of failure of each failure 

path is obtained as: 

𝑃(𝐹𝑠𝑦𝑠) = ∑ 𝑃(𝐹𝑘) × 𝑃(𝐸𝑥𝑡|𝐹𝑘) =

𝑛

𝑘=0

 

𝑃(𝑖𝑛𝑡𝑎𝑐𝑡)  ×  𝑃 (𝐸𝑥𝑡 | 𝑖𝑛𝑡𝑎𝑐𝑡)  

+ 𝑃 (𝐶1)  ×  𝑃 (𝐸𝑥𝑡 | 𝐶1) 

      + 𝑃 (𝐶1 ∩ 𝐶2) × 𝑃(𝐸𝑥𝑡| 𝐶1 ∩ 𝐶2) + ⋯  

                         + 𝑃 (𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛𝑝𝑎𝑡ℎ
) × 𝑃 (𝐸𝑥𝑡| 𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛𝑝𝑎𝑡ℎ

) 

(4-24) 

The above equation can be written as: 

𝑃(𝐹𝑠𝑦𝑠) = 𝑃𝑂𝐹0 + 𝑃𝑂𝐹1 + 𝑃𝑂𝐹2 + … + 𝑃𝑂𝐹𝑛𝑝𝑎𝑡ℎ
 (4-25) 

In Eq. (4-25), 𝑛𝑝𝑎𝑡ℎ is the number of components in a complete failure path, i.e. number 

of components that should be failed before the system failure.  

 System Probability of Failure – All Failure Paths 

For a redundant structure, there are several alternate sequences leading to collapse. the 

event that the structure failure occurs is the event that one of these collapse sequences 

occurs [70]. 

Including all the possible failure paths in the analysis is not feasible. Therefore, only 

the dominant failure paths are considered in the system reliability estimation. 

To find out the dominant failure paths, a searching technique is required, in which, 

components with the maximum change in the accumulated damage are considered as 

the candidate joints in the path. Identification of the failure paths can be performed 

using the unzipping method [66], branch and bound method [75], and truncated 

enumeration method [76].  
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The described methodology in Sections 4.4 and 4.5 is a procedure to calculate the 

probability of failure for one specific path. To calculate the total probability of failure, 

a complete failure tree should be produced based on the sequence of the failures and 

the probability of failure of all failure paths.  

The important sequences of failure scenarios are found using the branch tree [8]. The 

branch tree is established through the failure probability determined for the fatigue 

failure mode.  

To find out the dominant failure paths: 

1) The starting point is the intact structure (none of the elements have failed). By 

performing component reliability analysis for the intact platform, the joint with 

the highest fatigue failure probability is selected as the first component in the 

sequence.  

2) After the failure of the first component, redistribution of the load through the 

structure occurs.  In the damaged structure, each remaining member has 

already some accumulated fatigue damage, and due to the redistribution of the 

stresses in the structure, the rate of damage accumulation will change. 

3) To develop the failure path, the next candidate joint in the failure path, 

components with the maximum change in the accumulated damage are 

considered.   

4) Depending on the considered value for 𝛼𝑐  which is used to control the number of 

surviving elements (Eq. (4-10), several components would be considered as the 

second component in the failure path. 

5) A failure path that results in structural collapse is called a complete failure path 

and further branching from this path is terminated. 

Figure 4.14 shows the important failure sequences identified through the branch tree. 

Each branch represents a possible failure path, and each node is the failed component. 
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Figure 4.14. Branch tree obtained for fatigue failure and system failure under 

extreme wave load 

For instance, for developing Path No.1, the critical component in the intact case is 

selected (see Table 4.6). In the next step, the failed component, and the corresponding 

member (i.e., BM36-Jt3) are removed and another fatigue analysis is performed for 

the modified platform. Table 4.7 shows how the damages for different components 

would change when the critical component in the intact case (i.e., BM36-Jt3) is 

removed. 

Table 4.7. Change in the damage ratio after removing the critical component 

Intact Case 
Modified platform 

(BM36-Jt3 was removed)  
Change in damage ratio 

Component 
Damage 

(𝐷𝑖) 

Damage 

(𝐷𝑖 𝑗⁄ ) 
𝑟𝑖𝑗  =  

|𝐷𝑖 𝑗⁄ − 𝐷𝑖|

𝐷𝑖
 

BM36-Jt3 5.76 ---- ---- 

BM12-Jt3 5.44 4.2 0.23 

BM34-Jt14 4.3 11.5 1.67 

BM24-Jt14 4.01 3.85 0.04 

BM35-Jt4 3.99 12 2.01 

BM491-Jt9 3.8 3.83 0.01 

BM11-Jt4 3.78 3.84 0.02 

BM506-Jt9 3.57 3.63 0.02 

BM47-Jt21 2.75 2.76 0.00 
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BM23-Jt15 2.58 2.64 0.02 

BM29-Jt15 2.44 1.48 0.39 

BM519-Jt21 2.29 2.32 0.01 

BM509-Jt9 1.74 1.73 0.01 

BM493-Jt8 1.68 1.7 0.01 

BM496-Jt9 1.67 1.68 0.01 

BM508-Jt8 1.61 1.64 0.02 

BM8-Jt4 1.35 1.33 0.01 

BM32-Jt4 1.27 1.38 0.09 

 

As Table 4.7 shows the next component in the sequence is BM35-Jt4 since it has the 

maximum change in the accumulated damage.   

To find out the third component in the failure path, the same calculation is performed. 

The incomplete failure path will be completed when the system failure occurs (see 

Section 4.4.6). 

Figure 4.14 shows the identified dominant failure sequences. As shown in Figure 4.14, 

for the first, second, and fourth failure paths six component failures are required for 

the system failure (𝑛𝑝𝑎𝑡ℎ = 6 in Eq. (4-24)), whereas for the third failure path, four 

component failures are required.  

For each failure path the last probability in Eq. (4-24), i.e., 

𝑃 (𝐸𝑥𝑡| 𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛𝑝𝑎𝑡ℎ
) is greater than the maximum acceptable probability of 

failure, 𝑃𝑚𝑎𝑥  as shown in Figure 4.14. 

 Dominant Failure Paths 

Four dominant failure paths are generated for the presented jacket platform in Section 

4.5. For all failure paths, the described procedure (Figure 4.7) is employed. The 

probability of failure for all failure paths is shown in Table 4.8, Table 4.9, Table 4.10, 

and Table 4.11. 
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Table 4.8. The system probability of failure for the first failure path 

Sequence Component  P (C1∩…∩Ci) 
P(Ext| 

C1∩…∩Ci) 

POFi = [P 

(C1∩…∩Ci)] x 

[P(Ext| C1∩…∩Ci)] 

No component 

failure 
---- P (intact) = 0.934 4 x 10-5 3.74 x 10-5 

One component 

fails in fatigue, 

(i=1) 

C1: 

BM36-Jt3 
P (C1) = 0.022 5 x 10-5 0.11 x 10-5 

Two components 

fail in fatigue, (i=2) 

C2: 

BM35-Jt4 

P(C1∩C2) = 0.022 

(= min[P(C1), P(C2)]) 
6.2 x 10-5 0.14 x 10-5 

Three components 

fail in fatigue, (i=3) 

C3: 

BM23-Jt15 

P(C1∩…∩C3) = 0.001 

(= min[P(C1),…, P(C3)]) 
7 x 10-5 0.007 x 10-5 

Four components 

fail in fatigue, (i=4) 

C4: 

BM24-Jt14 

P(C1∩…∩C4) = 0.001 

(= min[P(C1),…, P(C4)]) 
7.7 x 10-5 0.0077 x 10-5 

Five components 

fail in fatigue, (i=5) 

C5: 

BM11-Jt4 

P(C1∩…∩C5) = 0.001 

(= min[P(C1),…, P(C5)]) 
8.8 x 10-5 0.0088 x 10-5 

Six components 

fail in fatigue, (i=6) 

C6: 

BM12-Jt3 

P(C1∩…∩C6) = 0.001 

(= min[P(C1),…, P(C6)]) 
10.5 x 10-5 0.011 x 10-5 

𝑃(𝐹𝑠𝑦𝑠)  =  𝑃𝑂𝐹0  +  𝑃𝑂𝐹1  +  𝑃𝑂𝐹2  +  … + 𝑃𝑂𝐹6  = 4.03 x 10-5 

Corresponding reliability index (𝛽 = −∅−1[𝑃(𝐹𝑠𝑦𝑠)]) = 3.95 

 

Table 4.9. The probability of failure for the second failure path 

Sequence Component  P (C1∩…∩Ci) 
P(Ext| 

C1∩…∩Ci) 

POFi = [P 

(C1∩…∩Ci)] x 

[P(Ext| C1∩…∩Ci)] 

No component 

failure 
---- P(intact) = 0.934 4 x 10-5 3.74 x 10-5 

One component fails 

in fatigue, (i=1) 

C1:  

BM12-Jt3 
P(C1) = 0.018 5.1 x 10-5 0.09 x 10-5 

Two components fail 

in fatigue, (i=2) 

C2:  

BM11-Jt4 

P(C1∩C2) = 0.018 

(= min[P(C1), P(C2)]) 
6.1 x 10-5 0.11 x 10-5 

Three components 

fail in fatigue, (i=3) 

C3:  

BM34-Jt14 

P(C1∩…∩C3) = 0.014 

(= min[P(C1),…, P(C3)]) 
6.9 x 10-5 0.10 x 10-5 

Four components fail 

in fatigue, (i=4) 

C4:  

BM36-Jt3 

P(C1∩…∩C4) = 0.014 

(= min[P(C1),…, P(C4)]) 
7.5 x 10-5 0.11 x 10-5 

Five components fail 

in fatigue, (i=5) 

C5:  

BM23-Jt15 

P(C1∩…∩C5) = 0.003 

(= min[P(C1),…, P(C5)]) 
8.6 x 10-5 0.026 x 10-5 

Six components fail 

in fatigue, (i=6) 

C6:  

BM24-Jt14 

P(C1∩…∩C6) = 0.003 

(= min[P(C1),…, P(C6)]) 
10.3 x 10-5 0.031 x 10-5 

𝑃(𝐹𝑠𝑦𝑠)  =  𝑃𝑂𝐹0  +  𝑃𝑂𝐹1  +  𝑃𝑂𝐹2  +  … + 𝑃𝑂𝐹6 = 4.21 x 10-5 

Corresponding reliability index (𝛽 = −∅−1[𝑃(𝐹𝑠𝑦𝑠)]) = 3.93 
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Table 4.10. The probability of failure of the third failure path 

Sequence Component  P (C1∩…∩Ci) 
P(Ext| 

C1∩…∩Ci) 

POFi = [P 

(C1∩…∩Ci)] x 

[P(Ext| C1∩…∩Ci)] 

No component 

failure 
---- P(intact) = 0.934 4 x 10-5 3.74 x 10-5 

One component 

fails in fatigue, 

(i=1) 

C1:  

BM34-Jt14 
P(C1) = 0.01 5.1 x 10-5 0.051 x 10-5 

Two components 

fail in fatigue, (i=2) 

C2:  

BM36-Jt3 

P(C1∩C2) = 0.01 

(= min[P(C1), P(C2)]) 
6.2 x 10-5 0.062 x 10-5 

Three components 

fail in fatigue, (i=3) 

C3: BM491-

Jt9 

P(C1∩…∩C3) = 0.01 

(= min[P(C1),…, P(C3)]) 
8.7 x 10-5 0.087 x 10-5 

Four components 

fail in fatigue, (i=4) 

C4:  

BM47-Jt21 

P(C1∩…∩C4) = 0.01 

(= min[P(C1),…, P(C4)]) 
10.4 x 10-5 0.104 x 10-5 

𝑃(𝐹𝑠𝑦𝑠)  =  𝑃𝑂𝐹0  +  𝑃𝑂𝐹1  +  𝑃𝑂𝐹2  +  … + 𝑃𝑂𝐹4 = 4.04 x 10-5 

Corresponding reliability index (𝛽 = −∅−1[𝑃(𝐹𝑠𝑦𝑠)]) = 3.95 

 

Table 4.11. The probability of failure of the fourth failure path 

Sequence Component  P (C1∩…∩Ci) 
P(Ext| 

C1∩…∩Ci) 

POFi = [P 

(C1∩…∩Ci)] x 

[P(Ext| C1∩…∩Ci)] 

No component 

failure 
---- P(intact) = 0.934 4 x 10-5 3.74 x 10-5 

One component 

fails in fatigue, 

(i=1) 

C1:  

BM24-Jt14 
P(C1) = 0.008 4.9 x 10-5 0.039 x 10-5 

Two components 

fail in fatigue, (i=2) 

C2:  

BM23-Jt15 

P(C1∩C2) = 0.008 

(= min[P(C1), P(C2)]) 
6 x 10-5 0.048 x 10-5 

Three components 

fail in fatigue, (i=3) 

C3:  

BM36-Jt3 

P(C1∩…∩C3) = 0.008 

(= min[P(C1),…, P(C3)]) 
6.8 x 10-5 0.054 x 10-5 

Four components 

fail in fatigue, (i=4) 

C4:  

BM35-Jt4 

P(C1∩…∩C4) = 0.008 

(= min[P(C1),…, P(C4)]) 
7.4 x 10-5 0.059 x 10-5 

Five components 

fail in fatigue, (i=5) 

C5:  

BM491-Jt9 

P(C1∩…∩C5) = 0.008 

(= min[P(C1),…, P(C5)]) 
8.5 x 10-5 0.068 x 10-5 

Six components fail 

in fatigue, (i=6) 

C6:  

BM47-Jt21 

P(C1∩…∩C6) = 0.008 

(= min[P(C1),…, P(C6)]) 
10.1 x 10-5 0.081 x 10-5 

𝑃(𝐹𝑠𝑦𝑠)  =  𝑃𝑂𝐹0  +  𝑃𝑂𝐹1  +  𝑃𝑂𝐹2  +  … + 𝑃𝑂𝐹6 4.09 x 10-5 

Corresponding reliability index (𝛽 = −∅−1[𝑃(𝐹𝑠𝑦𝑠)]) = 3.94 
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 Total System Probability of Failure 

In terms of series and parallel systems, a failure path which is a sequence of individual 

failures that leads to structural collapse forms the parallel system. That means all the 

components in the failure path need to be failed before overall failure occurs.  

Due to the high redundancy of the jacket structures, several alternate sequences (failure 

paths) leading to collapse exist. The event that the structure failure occurs is the event 

that one of these collapse sequences occurs. Therefore, the combination of all these 

sequences represents a series system.  

In other words, it is assumed that the structural system is a series of parallel systems, 

in which each parallel system represents a failure path.  

Since a correlation exists between the important failure paths, the calculation of the 

exact amount of the system probability of failure is quite difficult. The estimation of 

system probability is, therefore, dependent on the correlation of the important failure 

paths. In this case, the system probability of failure is determined using the bound 

formulas (e.g., Simple bound, Ditlevsen bounds, etc.) for the series systems.  

Simple bounds are useful to find out the upper and lower bounds of the system 

probability of failure. In the simple bounds, only two situations are considered: 

• Failure paths are fully correlated. 

• Failure paths are statistically independent. 

For a series system, the probability of failure is within the following bounds [66]: 

max
𝑖

 [𝑃𝑓(𝐸𝑖)] ≤ (𝑃𝑓
𝑠𝑦𝑠

)
𝑠𝑒𝑟𝑖𝑒𝑠

≤ 1 − ∏(1 − 𝑃𝑓(𝐸𝑖))

𝑛

𝑖=1

 (4-5) 

The lower bound corresponds to a situation in which all failure components are fully 

correlated. In this case, all the failure cases represent the same failure, and all the 

components will fail if one of them fails. Therefore, the maximum probability of 

failure can be selected as the system probability of failure. The upper bound 

corresponds to a situation in which all failure components are statistically independent. 
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The reliability of a series system decreases with an increasing number of its elements. 

For a given system, with a fixed number of components, system reliability decreases 

with decreasing correlation between pairs of elements. 

The upper and lower bound of the probability of failure (simple bound) can be obtained 

based on Eq. (4-5) as: 

𝑚𝑎𝑥
𝑘=1,…,4

(𝑃𝑘(𝐹𝑠𝑦𝑠)) ≤  𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠)  ≤  1 − ∏ (1 − 𝑃𝑘(𝐹𝑠𝑦𝑠)) 

𝑘=1,…,4

 (4-26) 

Where 𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) is the total system probability of failure and 𝑃𝑘(𝐹𝑠𝑦𝑠) represents 

the probability of failure for each path.  

Using Eq. (4-26), the system probability of failure of the jacket platform is calculated 

between the below ranges: 

4.21 × 10−5  ≤  𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠)  ≤  16.4 × 10−5 (4-27) 

However, due to the existence of correlations between the failure paths, it is better to 

use other bounds formulas for estimation of system probability of failure such as 

Ditlevsen bounds [10].  

The Ditlevsen lower bound for the series system is obtained as [68]: 

𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≥  𝑚𝑎𝑥
𝑘=1,…,4

(𝑃𝑘(𝐹𝑠𝑦𝑠)) + ∑{∅ (−𝛽
𝑖
) − ∑ ∅2 (−𝛽

𝑖
, −𝛽

𝑗
; 𝜌

𝑖𝑗
)

𝑖−1

𝑗=1

}

4

𝑖=2

 (4-28) 

The Ditlevsen upper bound for the series system is obtained as [68]: 

𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≤  ∑𝑃𝑘(𝐹𝑠𝑦𝑠)

4

𝑘=1

− ∑max
𝑗<𝑖

∅2 (−𝛽
𝑖
, −𝛽

𝑗
; 𝜌

𝑖𝑗
)

4

𝑖=2

 (4-29) 

In the above equations:  

𝑚𝑎𝑥 (𝑝𝑖 ,  𝑝𝑗) ≤ ∅2(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) ≤ 𝑝𝑖 + 𝑝𝑗 

𝑝𝑖 = ∅ (−𝛽𝑖) × ∅ (−𝛾𝑗) 

𝑝𝑗 = ∅ (−𝛽𝑗) × ∅ (−𝛾𝑖) 

(4-30) 

Where: 
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𝛾𝑖 =
𝛽𝑖 − 𝜌𝑖𝑗𝛽𝑗

√1 − 𝜌𝑖𝑗
2

 

𝛾𝑗 =
𝛽𝑗 − 𝜌𝑖𝑗𝛽𝑖

√1 − 𝜌𝑖𝑗
2

 

(4-31) 

It is noted that for the lower Ditlevsen bound, the upper bounds of ∅2(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) 

are used and for the upper Ditlevsen bound, the lower bounds of ∅2(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) are 

used [10]. 

As it can be seen from the above equations, to use the Ditlevsen bound formulas, the 

correlation coefficients between the dominant failure paths are required.   

Table 4.12 shows the components in the dominant failure paths. 

Table 4.12. Components in the dominant failure paths 

Component  
Existence in failure paths 

Path #1 Path #2 Path #3 Path #4 

BM36-Jt3 ✓ ✓ ✓ ✓ 

BM35-Jt4 ✓ --- --- ✓ 

BM23-Jt15 ✓ ✓ --- ✓ 

BM24-Jt14 ✓ ✓ --- ✓ 

BM11-Jt4 ✓ ✓ --- --- 

BM12-Jt3 ✓ ✓ --- --- 

BM34-Jt14 --- ✓ ✓ --- 

BM491-Jt9 --- --- ✓ ✓ 

BM47-Jt21 --- --- ✓ ✓ 

 

Since the jacket platforms are highly redundant structures, calculation of the 

correlation coefficients between different failure paths (e.g., 𝜌12; the correlation 

between path 1 and path 2) is difficult. To estimate the correlation coefficients, the 

similarity coefficients for binary data can be used [84]. The similarity coefficients for 

binary data are calculated as the number of cases in which a component exists in both 

cases over the total number of cases [84]. For instance, the similarity coefficient for 

paths No.1 and No.2 is 5/7. 

Table 4.13 shows the similarity coefficients for the dominant failure paths. 
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Table 4.13. Similarity coefficients for the dominant failure paths 

𝜌12 𝜌13 𝜌14 𝜌23 𝜌24 𝜌34 

5
7⁄ = 0.71 1

9⁄ = 0.11 4
8⁄ = 0.5 2

8⁄ = 0.25 3
9⁄ = 0.33 3

7⁄ = 0.43 

 

Having estimated the correlation coefficients, values of 𝛾𝑖 and 𝛾𝑗 are calculated using 

Eq. (4-31). Table 4.14 shows the values 𝛾𝑖 and 𝛾𝑗 for the failure paths. The table is a 

matrix that 𝛾𝑖 is shown in the lower triangle and 𝛾𝑗 is shown in the upper triangle. 

Table 4.14. Calculated values of 𝛾𝑖 and 𝛾𝑗  

  𝛾𝑗  

 --- 1.61 3.53 2.28 

𝛾𝑖  

1.61 --- 3.06 2.79 

3.53 3.06 --- 2.50 

2.28 2.79 2.50 --- 

 

Table 4.15 shows the bounds for ∅𝟐(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) for the dominant failure paths by 

using Eq. (4-30) and (4-31). 

Table 4.15. The upper and lower bounds of the ∅2(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) 

Failure path 

𝑖, 𝑗 
𝑝𝑖 𝑝𝑗 𝑚𝑎𝑥 (𝑝𝑖 ,  𝑝𝑗) 𝑝𝑖 + 𝑝𝑗 

1, 2 9.2 × 10−6 10.5 × 10−6 10.5 × 10−6 19.7 × 10−6 

1, 3 1.6 × 10−7 2.1 × 10−7 2.1 × 10−7 3.7 × 10−7 

1, 4 8.3 × 10−7 9.2 × 10−7 9.2 × 10−7 1.7 × 10−6 

2, 3 9.0 × 10−8 9.9 × 10−8 9.9 × 10−8 1.9 × 10−7 

2, 4 2.3 × 10−6 2.0 × 10−6 2.3 × 10−6 4.3 × 10−6 

3, 4 5.1 × 10−7 4.2 × 10−7 5.1 × 10−7 9.3 × 10−7 

 

Having obtained the bounds for ∅𝟐(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗), the lower Ditlevsen bound is 

estimated using Eq. (4-28) as: 

𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≥  4.21 × 10−5 + (4.03 × 10−5 − 19.7 × 10−6)

+ (4.04 × 10−5 − (3.7 + 1.9) × 10−7)

+ (4.09 × 10−5 − (1.7 + 4.3 + 0.93) × 10−6) 

𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≥  13.6 × 10−5 
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The upper Ditlevsen bound is estimated using Eq. (4-29) as: 

𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≤  4.21 × 10−5 + 4.03 × 10−5 + 4.04 × 10−5 + 4.09 × 10−5

− (10.5 × 10−6) − 𝑚𝑎𝑥(2.1 × 10−7, 9.9 × 10−8)

− 𝑚𝑎𝑥(9.2 × 10−7, 23 × 10−7, 5.1 × 10−7) 

𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≤  15.1 × 10−5 

Therefore, using the Ditlevsen bounds formula, the system probability of failure of the 

considered jacket platform is estimated in the below ranges: 

13.6 × 10−5 ≤ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚(𝐹𝑠𝑦𝑠) ≤  15.1 × 10−5 

It is seen that the Ditlevsen bounds provide a narrower range than the simple bounds 

(Eq. (4-27). Since the Ditlevsen bounds consider the correlation between the failure 

paths, they are much more precise than the simple bounds, but require the estimation 

of ∅𝟐(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) [10]. 

 Limitations 

Jacket platforms are typically redundant structures, and structural failure is a 

progressive process. A sequence of individual member failures is required before 

overall structural failure. Usually, several sequences leading to collapse exist. 

Estimation of the system probability of failure is a difficult task due to: 

• For redundant structures, there are several sequences leading to failure  

• It is not practical to include all the sequences in the analysis 

Since a few of these failure sequences have significant contributions to the total failure 

probability, a search technique is used to identify important failure sequences. 

In general, there are some limitations in the estimation of the system probability of 

failure [8]: 

• The possible failure paths for jacket structures with high redundancy would be 

enormous. 

• Some important failure paths might be ignored if rapid truncation criteria are 

used. 

• The procedure for estimating the system probability of failure is 

computationally expensive. 

• Due to not considering all possible sequences, the system failure is 

approximated as the union of the important sequences. 
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• Due to not considering the correlation between the dominant failure paths, 

simple bounds are generally too wide. 

• To find out a narrow range for system probability, better bounds such as 

Ditlevsen bounds. However, since the second-order calculation (i.e., 

∅𝟐(−𝛽𝑖 , −𝛽𝑗; 𝜌𝑖𝑗) values) is required which is a time-consuming task. 

 Inspection Plan 

Fatigue is a complicated phenomenon and there are several sources of uncertainty in 

the fatigue calculation process. Therefore, small changes in basic assumptions can 

have a significant influence on the predicted crack size and consequently on the 

probability of failure. Due to the uncertain parameters involved in the fatigue 

calculation process, there will be uncertainty about when and where fatigue cracks will 

occur in a structure.  

Inspection activities can be performed to find out the level of degradation and to assure 

that existing defects in the structure do not exceed the critical size during the service 

life. Inspection program usually involves checking of any structural damage, adequacy 

of the cathodic protection system, corrosion damage, extent of marine growth, sea bed 

scour, damage to tubular joints due to overloading or fatigue crack growth, etc. 

Since the focus of this study is on the fatigue degradation in the tubular joints, this 

section considers the inspection methods to find out the fatigue cracks. The purpose of 

the inspection is then to detect a crack that is likely to have developed during the 

structure’s lifetime [15].  

Inspections can be divided into two categories: 

• Close visual inspection to detect hidden damage 

• Close visual and non-destructive testing to detect developing cracks or hidden 

damage 

For both categories, prior cleaning is usually carried out before performing 

inspections. 
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 Non-Destructive Test 

The inspection methods involve visual inspection or more detailed inspection methods. 

The in-service inspections are commonly carried out by applying the Non-Destructive 

Tests (NDT). 

Different NDT techniques may be relevant for different types of offshore structures. 

Magnetic particle inspection (MPI), eddy current inspection (ECI), alternating current 

field measurement (ACFM), and flooded member detection (FMD) are some NDT 

methods usually used for detecting cracks in offshore structures [1]. 

MPI is a suitable technique for detecting surface flaws. In this technique, a magnetic 

field is induced in the body to be examined, either by passing a large electric current 

through it or by attaching magnets. Iron filings in light oil or water suspension are 

applied to the surface. The iron filings will gather around the defects and make them 

visible [1].  

ECI is frequently used for inspection of fatigue cracks during service life as this 

method can detect cracks through the coating. However, if defects are detected, a 

further assessment by MPI is recommended. The practical advantage of MPI is that it 

does not require a clean surface [5]. ACFM may also be used in and out of water. The 

use of ACFM requires minimal cleaning and the method can be applied over paint and 

other coatings up to several millimetres in thickness [85]. FMD is considered efficient 

at hot spots where potential fatigue cracks are likely to grow into air-filled members. 

 Probability of Detection 

The findings and the reliability of the inspection results highly depend on the method 

employed for inspection and the quality of crew involved with [15]. The success rate 

of inspection techniques to detect and measure the crack size varies. For any given 

NDT method there is always a critical crack size below which a crack may not be 

detected. It is noted that there is a certain degree of uncertainty for a measured crack 

which depends on the accuracy of the equipment used and the skills of the operators 

[1].  
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The reliability of a specific NDT method is described by the ability to detect an existing 

crack as a function of the crack size and by the uncertainty associated with the sizing 

of an identified crack [19].  

The detection ability (quality of NDT methods for detection of cracks) of the NDT 

methods is defined through the Probability of Detection (POD) curves which 

corresponds to the distribution function of detectable crack size (𝑎𝑑). 

Different industrial projects have been carried out to obtain the POD curves for various 

NDT techniques such as [86], [87], and [88]. Some guidance on POD and uncertainty 

of sizing of defects is also included in BS 7910 [47], NORSOK N-006 [89], and 

DNVGLRP- C210 [90]. 

NORSOK N-006 presented POD curves for inspection on the following form [89]: 

𝑃𝑂𝐷(𝑎𝑑) = 1 −
1

1 + (
𝑎𝑑

𝑋0
⁄ )

𝑏 
(4-32) 

In this equation: 

• 𝑎𝑑:  Detectable crack depth 

• 𝑋0:  Median value for the POD 

• 𝑏:  Distribution parameter 

where the values for 𝑋0 and 𝑏 depend on the NDT technique. 

Table 4.16 shows the typical values for 𝑋0 and b for different inspection techniques in 

offshore platforms. The corresponding POD curves are shown in Figure 4.15. 

Table 4.16. Distribution parameter for MPI method [85] 

Description 𝑋0 𝑏 

At ground welds or similar good conditions above water 0.40 1.43 

Normal working conditions above water 0.45 0.90 

Below water or less good working conditions above water 1.16 0.90 
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Figure 4.15. POD curves for MPI method in different conditions 

Each inspection method is associated with a given probability of detection depending 

on the size of the crack and depending on whether the inspection is carried out above 

or below water. 

The distribution of the detectable crack can be also modelled by an upward bounded 

exponential distribution as [82]: 

𝑃𝑂𝐷 (𝑎𝑑)  =  1 − 𝑒𝑥𝑝 (−
𝑎𝑑

𝑎𝑚𝑑
) (4-33) 

where 𝑎𝑚𝑑 is model parameters (mean detectable size) which may be determined by 

tests and different for each technique. The value of the mean detectable size is typically 

between 1.4 to 2 mm. Mean detectable depth of 1.95 mm was considered for a POD 

curve with exponential distribution based on data from 3411 underwater NDT 

inspections of tubular joints in jacket platforms [82]. 

It is noted that the actual conditions during the inspection may be different from the 

testing conditions which are the basis of developing the POD curves. The quality of 

NDT methods depends on the conditions during the inspection. For example, the 

underwater inspections of jackets, are carried out under difficult conditions, due to the 

presence of marine growth, bad visibility, wave motions, etc. [82]. Before performing 

an underwater inspection, a time-consuming cleaning of the welded joints is needed 

which causes the high costs of underwater inspections. 
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 Use of Inspection Results  

Due to the existence of several uncertainties in the fatigue process, the predicted 

fatigue crack size might not represent the real crack size. Offshore platforms are 

periodically inspected throughout their lifetime. Regarding fatigue damage, the 

inspection results involve the detection and measurement of fatigue cracks. The 

inspection results can be used to revise and improve the estimation of the crack size. 

In general, a Bayesian procedure is utilised to update the fatigue crack size distribution 

in the light of inspection results. The Bayesian methods for updating the crack size 

distribution will be explained in Chapter 5. 

When no crack is found, there may be a case that the fatigue model is conservative, 

however, if no crack is found, there is a probability that there is a crack but it is not 

detected.  

 Inspection Time 

The object of structural inspection is to control the probabilities of failure [51]. 

Generally, two approaches exist for the inspection time (inspection intervals). The first 

approach is to set the inspection interval to a fixed and equal period value of ΔT, e.g. 

every four years. The interval is defined based on the consequence of failure of the 

platform.  

The other approach which is called the reliability-based inspection approach is to set 

the annual failure probability threshold to be a fixed value and the inspection is carried 

out when the failure probability is more than the threshold. The members of the 

structure are classified into different categories depending on their contribution to the 

system reliability. The minimum target reliability of the members of each category is 

fixed depending on their importance [15]. Several studies have been carried out in 

reliability-based inspection planning and its implementation for offshore platforms 

(See [91], [92]). 

The optimum time to make the inspection is when the probability of failure reaches 

the target annual probability of failure. Figure 4.16 shows the inspection plan for a 

tubular joint in case of no crack detection. 
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Figure 4.16. Inspection plan for a specific joint assuming no crack findings at 

inspections 

 Prioritising the Inspection Locations 

The cost of an inspection is directly proportional to the number of inspections carried 

out and the quality of personnel and equipment employed for the inspection [15]. 

Therefore, it is required to concentrate only on the fatigue-sensitive locations in the 

structures. At the component level, the fatigue-sensitive locations are the locations that 

have low estimated fatigue lives. However, at the system level, critical components 

are those that have a big effect on system reliability. 

Due to the significant costs of inspections, the identified failure paths can be used as a 

database for the inspection plan. By identifying these dominant failure paths, the 

critical joints that have a greater effect on the system probability of failure are selected 

and therefore inspection can be focused on these joints. 

For the considered platform in this study, it is observed that the most probable failure 

paths of the considered platform pass through the top bay. Therefore, the inspection 

effort should focus on the joints in the upper bay because the failure of these joints 

would initiate or propagate a failure sequence, resulting in system failure. Table 4.17 

shows the importance of each critical component on the system reliability.  
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Table 4.17. Importance of the critical components in the system failure 

Component  Location  Existence in failure paths Inspection importance 

BM36-Jt3 Top bay 
Exist in 4 possible paths  

(all paths) 
Crucial 

BM23-Jt15 Top bay Exist in 3 possible paths Important 

BM24-Jt14 Top bay Exist in 3 possible paths Important 

BM35-Jt4 Top bay Exist in 2 possible paths Relatively important 

BM11-Jt4 Top bay Exist in 2 possible paths Relatively important 

BM12-Jt3 Top bay Exist in 2 possible paths Relatively important 

BM34-Jt14 Top bay Exist in 2 possible paths Relatively important 

BM491-Jt9 Top bay Exist in 2 possible paths Relatively important 

BM47-Jt21 Top bay Exist in 2 possible paths Relatively important 

 

4.6 Summary 

In this chapter, a system reliability approach is developed to calculate the probability 

of failure of a jacket platform considering fatigue and extreme wave loads. To specify 

a formulation for the fatigue limit state, the fracture mechanics is used to obtain the 

crack size. A joint fails when the crack size exceeds the critical crack size. Different 

uncertainties in fatigue are introduced and the probability of failure of each joint is 

obtained by using the Monte-Carlo simulation. 

Due to the high redundancy of the offshore jacket platform, the probability of failure 

of the whole system is more applicable than the component probability of failure. 

Important failure paths are identified by using a searching algorithm, in which, 

components with the maximum change in the accumulated damage are considered as 

the candidate joints in the path.  

By removing the candidate joint, which is assumed to fail in fatigue, the probability of 

failure of the structure under extreme wave loading increases. 

The system failure criterion is evaluated by comparing the platform strength and 

loading distributions in terms of base shear. To define a probabilistic formula for load, 

the global response surface method is adopted to relate the environmental load to the 

response of the structure. Nonlinear pushover analysis is also carried out to determine 

the capacity of the platform. Having calculated the structure strength and loading 

distributions, the annual probability of failure under an extreme wave is calculated and 
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compared to the maximum probability of failure. When this probability exceeds the 

maximum acceptable probability, the platform is assumed to fail 

To estimate the system probability of failure, four significant failure sequences are 

identified in the branch tree leading to structural collapse. The system probability of 

failure is approximated based on the union of the probability of failure of the important 

paths using the simple bounds formula. 

The results of the system reliability analysis show that the calculated system failure 

probability in a combination of fatigue and extreme wave loads gives a much lower 

failure probability than the component probability of failure in fatigue loading. 

Since the components in the failure paths have a great effect on the system reliability, 

an inspection strategy is proposed based on the effect of each component on the system 

reliability. This allows alternative inspection plans to be evaluated and compared to 

the regular inspection plans. 
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5 . BAYESIAN INFERENCE 

5.1 Introduction 

In Chapter 2, the concept of reliability analysis is explained and the application of the 

reliability analysis at the component level and system level is demonstrated for an 

offshore platform in Chapter 3 and Chapter 4, respectively.  

Reliability analysis, which is a probabilistic approach, is a consistent basis for the 

inclusion of uncertainties. Since the reliability analysis results depend on the choice of 

the uncertain parameters and their statistical description, uncertainty modelling 

becomes an important consideration for reliability analysis [92]. 

As it is explained in Chapter 2, three different definitions of probability exist in the 

literature; classical definition, relative-frequency definition, and Bayesian definition. 

This chapter mainly focuses on Bayesian inference. Bayesian inference is a 

statistical inference in which Bayes’ theorem is employed to update the probability for 

a hypothesis when more information becomes available.  

The main purpose of this chapter is to explain Bayesian inference and to investigate 

the effects of different assumptions and methods.  

Section 5.2 introduces the Bayesian framework and the terminology in this context. 

There are two main approaches for updating the distribution of an uncertain parameter; 

the analytical approach and the numerical approach. These two approaches and their 

advantages and disadvantages are also introduced in this section.  

Section 5.3 provides some of the previous studies that have been performed to 

incorporate the information from inspection results to update the fatigue crack model 

and the reliability analysis results. 

The application of Bayesian updating is demonstrated in Section 5.4. This section 

investigates how the crack size distribution in a tubular joint can be updated when 

additional information such as inspection results becomes available. The inspection 

data is used to improve the previous estimate of an uncertain parameter which is crack 

size. The updating process is carried out in both analytical and numerical approaches 

and the results of the two approaches are compared. In real situations, due to the 

expensive cost of the underwater inspection, there are a few inspection results 
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available for each tubular joint. Section 5.4 also demonstrates how to use the 

inspection results of similar tubular joints to update the crack size distribution for 

different locations. After updating the crack size distribution, the reliability analysis 

can be updated using the crack size distribution. An application of updating the 

reliability as a function of time is also presented in Section 5.4. 

Several important parameters (e.g. selection of the prior distribution, inspection 

outcomes, POD curves, and the number of inspections) have effects on the updated 

distribution of the uncertain parameter. The sensitivity of the Bayesian updating to the 

inputs is investigated in Section 5.5. 

It is worth mentioning that in this Chapter, Section 5.2 and Section 5.3 explain the 

Bayesian framework, whereas, Section 5.4 and Section 5.5 demonstrate the application 

of the Bayesian approach to the considered tubular joint that has been developed by 

the author.  

5.2 Bayesian Framework 

 Basics 

Thomas Bayes (1702–1761) was a British mathematician who is well known for his 

paper “An essay towards solving a problem in the doctrine of chances” [93], which 

was published two years after his death. In this work, it was stated that the probability 

of an event (first event) conditional on another event (second event) is simply the ratio 

of the probability of both events to the probability of the second event, which is the 

definition of conditional probability. It was shown that conditional probability can be 

expressed regardless of the order in which the events occur. 

In the area of statistical analysis, there are three main approaches for the definition of 

probability; Classical, Relative frequency, and Bayesian inference approach. These 

approaches are explained in Chapter 2. The first two methods can be only applied to 

an event whose random experiments are available. On the other hand, Bayesian 

inference allows the definition for the probability of an event or a statement, in which 

a random experiment is not available. This offers a different dimension of probability 

for the degree of belief, which is regarded as plausibility [94]. 



173 

 

The Bayesian theory has had great advancement after the significant work by Jeffreys 

[95], Cox [96], and Jaynes [97]. Since then, different Bayesian methods have been 

developed and widely applied to many different areas of engineering, especially in 

statistical physics (e.g. [98] and [99]), structural dynamics [100], and medical sciences 

(e.g. [101] and [102]).  

Bayesian inference is very useful in structural engineering. As mentioned in Chapter 

3, there are many uncertainties in structural engineering applications such as an 

offshore platform. For example, load excitation, such as time-varying waves, cannot 

be predetermined. Material properties such as yield stress are difficult to determine to 

a precise level. The size of cracks in welded connections is also uncertain. There are 

also modelling errors, such as SCF (Stress Concentration Factor) assumptions. 

Therefore, the Bayesian method is useful for explicit action of the modelling and 

quantification of the uncertainties. 

The idea of Bayesian updating is similar to our thinking process. We have a perception 

of a specific matter based on our experience. When a new event happens (i.e., new 

data is obtained), it modifies our perception. In other words, our perception is not only 

determined by the latest piece of information but also depends on the original 

perception. In Bayesian analysis, the original perception is regarded as the prior 

information and the new piece of information is utilised to update our perception or 

mathematical model. 

In general, model updating is performed for two main purposes. The first one is to 

identify physical parameters, e.g., stiffness of a structural element. Using these 

parameters, the condition of the element can be monitored from time to time. For 

example, a reduction indicates possible damage to the member. However, reduction 

may be due to statistical uncertainty. Therefore, it is necessary to quantify the 

uncertainty of the estimation so that one can distinguish whether the parameter change 

is due to the deterioration of the structural member [94]. Another purpose of model 

updating is to obtain a mathematical model to predict the behaviour of an element (or 

system). In this case, parameters may not necessarily be physical, e.g., coefficients of 

regressive models.  
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 Conditional Probability 

Consider 𝐴 and 𝐵 as two events. The conditional probability of event 𝐴 provided the 

occurrence of event 𝐵 is given by: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
,      [𝑖𝑓 𝑃(𝐵) ≠ 0] (5-1) 

Conditional probability does not necessarily imply a reason-consequence relationship. 

However, if the conditional probability is large, there is a possibility of event 𝐴 being 

a consequence of 𝐵 or the opposite. 

The law of total probability is usually used in the context of conditional probability. If 

event 𝐴 is subdivided into 𝑛 mutually exclusive events (𝐴1, 𝐴2, . . . , 𝐴𝑛), then the 

probability of event 𝐵 is given by [103]: 

𝑃(𝐵) = ∑𝑃(𝐵 ∩ 𝐴𝑖)

𝑛

𝑖=1

= ∑𝑃(𝐵|𝐴𝑖) × 𝑃(𝐴𝑖)

𝑛

𝑖=1

 (5-2) 

Therefore, Bayes’ theorem can be obtained as: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=

𝑃(𝐵|𝐴) × 𝑃(𝐴)

∑ 𝑃(𝐵|𝐴𝑖) × 𝑃(𝐴𝑖)
𝑛
𝑖=1

 (5-3) 

The law of total probability is also used for continuous events. In this case, Eq. (5-3) 

is written as: 

𝑓(𝑥|𝑦) =
𝑓(𝑦|𝑥) × 𝑓(𝑥)

∫ 𝑓(𝑦|𝑥) × 𝑓(𝑥) × 𝑑𝑥
∞

−∞

 (5-4) 

where 𝑓(𝑥) and 𝑓(𝑦) is the probability density function that describes the random 

variable 𝑥 and 𝑦, respectively. 

 Bayesian Inference 

When additional information such as experimental data, and inspection results become 

available, the obtained information can be used to improve the previous estimate of 

uncertain parameters. The framework for updating the distribution of estimated 

parameters is called the Bayesian framework [104]. A Bayesian framework is a 

powerful tool for uncertainty management. Bayesian inference provides a normative 

and formal method of belief updating when new information, becomes available [105]. 
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In the Bayesian framework, the uncertain parameters are treated as random quantities 

[94]. 

The distribution that describes our knowledge after incorporating new data is called 

posterior distribution. The posterior distribution of the uncertain parameter given new 

information is available can be obtained by using Bayes’ theorem as [94]: 

𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃) × 𝑓(𝜃)

𝑓(𝑥)
=

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
 (5-5) 

With: 

𝑓(𝑥) = ∫  𝑓(𝑥|𝜃) × 𝑓(𝜃) × 𝑑𝜃
∞

−∞

 (5-6) 

In the Bayesian context: 

• 𝜃 represents the uncertain parameter which its probability is affected by new 

data; 

• 𝑓(𝜃) represents the prior probability distribution, and it is the estimate of the 

probability of the uncertain parameter before the new data is available; 

• 𝑥 represents the new data;  

• 𝑓(𝜃|𝑥) represents the posterior probability distribution, which is the probability 

of 𝜃 given 𝑥 (i.e., after taking account of the value of 𝑥);  

• 𝑓(𝑥|𝜃) represents the likelihood function and it is the conditional probability of 

observing 𝑥 given 𝜃 

• 𝑓(𝑥) represents the marginal probability of the data. It is obtained by integrating 

out the parameters from the joint probability. It does not depend on the uncertain 

parameter since it has been integrated out. 

In general, numerical integration is required to obtain the normalisation 

constant, 𝑓(𝑥). However, in some cases, it can be obtained analytically (See Section 

5.2.2). The normalisation constant is a constant that ensures the posterior density 

integrates equal to one [94], as it must be a valid probability density. 

Therefore, it is not necessary to calculate 𝑓(𝑥) to evaluate properties of the posterior, 

and so Bayes’ theorem in this context can be expressed simply as: 
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𝑓(𝜃|𝑥) ∝ 𝑓(𝑥|𝜃) × 𝑓(𝜃) (5-7) 

Where the proportionality is considered with relation to 𝜃. Hence, Bayes theorem 

essentially states that: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟 (5-8) 

In the Bayesian framework, the likelihood function and the prior distributions are the 

basis for parameter estimation and inference. The prior distribution, 𝑓(𝜃) expresses the 

previous knowledge about the uncertain parameter before new information is 

available. The likelihood function, 𝑓(𝑥|𝜃) is defined to describe how likely is the data 

to happen for a given uncertain parameter [106]. The likelihood function describes 

how the data depends on the parameter values. 

• Likelihood Function 

The likelihood function, 𝑓(𝑥|𝜃) represents the contribution of the measured data in 

establishing the posterior distribution of the parameter of interest. It reflects how 

likely the measurements are observed from the model with a particular set of 

parameters. The likelihood function can be constructed given the class of 

probabilistic and physical models of the problem. If a large amount of 

measurements (data) is available, the likelihood function will be the dominant 

factor for the Bayesian inference. 

• Prior Distributions 

The prior distribution indicates the prior information of the parameters of interest 

and it is based on previous knowledge or the user’s judgement. The prior 

distribution plays an essential role in Bayesian analysis.  

Prior distributions are classified as either informative or non-informative (also 

known as reference or vague). The latter is intended for use in situations where there 

is not enough knowledge about the uncertain parameter. The term non-informative 

is misleading since all priors contain some information, so such priors are generally 

better referred to as vague or diffuse [107].  

A non-informative prior distribution contains little information about the parameter 

of interest [108]. When no expert opinion is available, i.e., knowledge about the 

parameter being estimated, it is recommended to use a non-informative prior 
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distribution [109]. It should be noted that this is rarely the case in practice, and 

usage of non-informative priors in such cases can lead to poor results [108]. 

However, it can be used when the analyst wants to use a prior that has little impact 

on the posterior. Non-informative priors, in general, are intended to let the data 

dominate the posterior distribution. Using a non-informative prior distribution 

causes the Bayesian inference to rely only on the likelihood of the data. The most 

common non-informative prior for a single parameter inference is the Jeffreys prior. 

The functional form Jeffreys prior depends on the likelihood function [108]. 

In some applications, when there is not enough knowledge about the parameter, the 

non-informative prior distribution is selected as a constant. However, this type of 

prior distribution does not satisfy the required property of the PDF (Probability 

Density Function), i.e., that its integral throughout the parametric space is unity. In 

general, a prior distribution that does not satisfy this property is referred to as an 

improper prior. For example, a uniform distribution over the whole real line will 

have an infinite integral. In many circumstances, this is not a problem, as an 

improper prior can still lead to a proper posterior distribution [107]. 

In contrast, the informative priors contain substantive information about the 

possible values of the model parameter. The informative prior distribution is used 

when there is enough information about the uncertain parameter before collecting 

data. The use of informative prior distributions includes a considered judgement 

concerning plausible values of the parameters based on external information [107]. 

Informative prior distributions can be based on pure judgement, a mixture of data 

and judgement, or data alone. Of course, even the selection of relevant data involves 

a substantial degree of judgement, therefore, the specification of an informative 

prior distribution is never an automatic procedure [107]. Derivation of the 

informative prior distribution is not a straightforward task due to some potential 

biases that have been identified. In reliability problems, informative prior 

distributions can be constructed using physical theory, computational analysis, and 

expert opinions (e.g., see [106] and [110]). In assessing probability distributions 

based on expert opinion, many potential biases must be minimised [106]. 
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O’Hagan et al. emphasised that it is best to interview subjects face-to-face, with 

feedback and continual checking for biases, conducting sensitivity analysis to the 

consequence of the analysis, and avoiding verbal descriptions of uncertainty. They 

suggest using multiple experts and reporting a simple average, but it is also 

important to acknowledge imperfections in the process, and that even genuine 

expertise cannot guarantee the derivation of a suitable prior [111]. 

If there is no true prior, sensitivity analysis to alternative prior assumptions is vital 

and should be an integral part of Bayesian analysis. The phrase “community of 

priors” has been used in the clinical trial literature to express the idea that different 

priors may reflect different perspectives [101]. 

 Different Uncertainties 

When quantifying uncertainty for an unknown phenomenon or a complex system, it is 

helpful to consider such uncertainty as either epistemic or aleatory. Epistemic 

uncertainty is due to our lack of knowledge and could be reduced by extra information. 

On the other hand, the aleatory uncertainty is related to inherent chance variation in 

the system, and cannot be resolved except by direct observation. The distinction 

between aleatory and epistemic uncertainty is informal rather than precise, particularly 

within the view that all uncertainty stems from a lack of knowledge and understanding. 

Within the Bayesian formulation, the prior distribution can be considered to be an 

epistemic uncertainty whilst the likelihood function can be considered to be an aleatory 

uncertainty [112]. 

There are two main approaches for obtaining the posterior distribution of an uncertain 

parameter which are: 

• Analytical Approach (Conjugate Priors) 

• Numerical Approach 

 Analytical Approach (Conjugate Priors) 

Within the Bayesian framework, the parameter 𝜃 is treated as a random quantity and 

the posterior distribution of the uncertain parameter is obtained via Bayes’ theorem.   
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Based on Eq. (5-5), to obtain the posterior distribution, we need to compute 𝑓(𝑥) to 

normalise the posterior. For this purpose, the numerical integral in Eq. (5-6) must be 

computed which is integral with respect to the prior. 

Based on Bayes’ theorem, the posterior distribution is obtained by multiplying the 

likelihood function to the prior distribution up to a constant of proportionality. 

In this section, the idea of a conjugate prior is introduced. The basic idea is, given a 

likelihood 𝑓(𝑥|𝜃), a family of prior distributions can be chosen in a way that the 

integral in Eq. (5-6) can be solved analytically (closed-form). 

A prior distribution is said to be conjugate to a class of likelihood function if the 

resulting posterior distribution is in the same probability distribution family as the prior 

distribution [113]. This family is chosen in a way that the updating yields a posterior 

that is also in the same family as the prior. Conjugate models are convenient because 

the exact distribution of the posterior is easily obtained, and it has an analytical 

solution. The use of conjugate priors allows all the results to be derived in closed form. 

Conjugate priors have appealing computational properties and for this reason, they are 

often used in practice. Conjugate distributions are useful because the prior and 

posterior distributions have the same form so the contribution of the new data through 

the updating process can be easily quantified [94]. Since the posterior distributions are 

already known, the conjugate distributions provide tractable analytical results. 

Therefore, numerical integration to calculate Eq. (5-6) is not required. The use of 

conjugate priors allows obtaining the posterior distributions analytically. In the 

conjugate method, the posterior distribution can be easily updated when new data is 

available. Commonly used conjugate prior distributions are shown in Table 5.1 [114]. 

More discussions on the conjugate priors can be found in Appendix A.  
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Table 5.1 Common conjugate priors 

Likelihood Uncertain Parameter (θ) Prior Distribution Posterior Distribution 

Binomial Success probability (𝜋) Beta Beta 

Poisson Rate (𝜆) Gamma Gamma 

Normal Mean (𝜇) [note: 𝜎2 known] Normal Normal 

Normal 
Variance (𝜎2)  

[note: 𝜇 known] 
Inverse Gamma Inverse Gamma 

Normal Mean and Variance (µ, 𝜎2) 
Normal Inverse 

Gamma 
Normal Inverse Gamma 

Exponential Rate (𝜆) Gamma Gamma 

 

It is noted that not every aleatory model will have an associated conjugate prior, and 

it is sometimes required to use a non-conjugate prior even when a conjugate prior is 

available [108]. Although for the complex models, the computational considerations 

are more common, there may be little choice to use conjugate priors. However, there 

are other reasons not to use conjugate priors. 

It is important to note that conjugate priors involve making relatively strong 

assumptions. Indeed, conjugate priors minimise the impact of the data on the posterior. 

Therefore, it is important to perform sensitivity analysis to assess how strongly the 

posterior is influenced by the prior. If the posterior is not influenced strongly by the 

prior, then it can be used with more confidence. On the other hand, if the posterior is 

affected intensely by the prior, great care should be taken to assess whether an expert 

is comfortable with these priors. Otherwise, it is better to consider other kinds of priors 

or gather more data to lessen the effect of the prior. In practice, we rarely have 

conjugacy. 

Since in the following section, the exponential distribution is chosen for the likelihood 

function of the fatigue crack size, the conjugate prior for this distribution is explained 

in Section 5.2.2.1. See Appendix A for other common conjugate priors.  

 Exponential Model with Unknown Rate 

Suppose the likelihood of the data is exponentially distributed. The exponential 

distribution is defined as: 

𝑓(𝑥|𝜆)  =  λ 𝑒−𝜆𝑥 (5-9) 
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Which the unknown parameter here is the rate parameter (𝜆). For an exponentially 

distributed variable, the expected value (mean value) is: 

𝐸[𝑥] = µ =  
1

𝜆
 (5-10) 

Based on Table 5.1, the conjugate prior distribution of uncertain parameter (λ) is 

Gamma distribution. The probability distribution function of Gamma distribution is: 

𝑓(𝜆)  =  
𝛽𝛼

𝛤(𝛼)
 𝜆𝛼−1 𝑒−𝛽𝜆 (5-11) 

Where 𝛼 and 𝛽 are shape and rate parameters, respectively. For a Gamma distribution, 

the expected value and variance of the parameter of interest is: 

𝐸[𝜆]  =  
𝛼

𝛽
  

𝑉𝑎𝑟[𝜆] =
𝛼

𝛽2
 

(5-12) 

Now, let’s assume new data is provided (which is shown by 𝑥). By using Eq. (5-8), the 

posterior distribution is proportional to: 

𝑓(𝜆|𝑥) ∝ 𝑓(𝑥|𝜆) × 𝑓(𝜆) 

𝑓(𝜆|𝑥) ∝ [𝜆𝑒−𝜆𝑥] × [
𝛽𝛼

𝛤(𝛼)
 𝜆𝛼−1 𝑒−𝛽𝜆] 

𝑓(𝜆|𝑥) ∝ 𝜆(𝛼+1−1) 𝑒−(𝛽+𝑥)𝜆 

(5-13) 

Which indicates: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝐺𝑎𝑚𝑚𝑎 (𝛼 + 1, 𝛽 + 𝑥) (5-14) 

Based on the Bayes’ rule, the posterior distribution is affected by both likelihood and 

prior. Therefore, it is important to find out the effect of these two distributions on the 

posterior distribution. Detailed sensitivity analysis for the considered application is 

explained in Section 5.5. 

 Quantity of Additional Data 

Imagine 𝑁𝑎𝑑𝑑 additional data is provided. The posterior distribution is obtained as: 

𝑓(𝜆|𝑥) ∝ 𝑓(𝑥|𝜆) × 𝑓(𝜆) (5-15) 
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𝑓(𝜆|𝑥) ∝ [∏ 𝜆𝑒−𝜆𝑥𝑖

𝑁𝑎𝑑𝑑

𝑖=1

] × [
𝛽𝛼

𝛤(𝛼)
 𝜆𝛼−1 𝑒−𝛽𝜆] 

∝ [𝜆𝑁𝑎𝑑𝑑𝑒−𝜆(𝑥1+⋯+𝑥𝑁𝑎𝑑𝑑
)] × [

𝛽𝛼

𝛤(𝛼)
 𝜆𝛼−1 𝑒−𝛽𝜆] 

∝  𝜆(𝛼+𝑁𝑎𝑑𝑑−1) 𝑒−(𝛽+∑ 𝑥𝑖
𝑁𝑎𝑑𝑑
𝑖=1 )𝜆 

∝  𝜆(𝛼+𝑁𝑎𝑑𝑑−1) 𝑒−(𝛽+𝑁𝑎𝑑𝑑×�̅�)𝜆 

Which indicates: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝐺𝑎𝑚𝑚𝑎 (𝛼 + 𝑁𝑎𝑑𝑑 , 𝛽 + 𝑁𝑎𝑑𝑑 × �̅�) (5-16) 

Let’s assume there is an exponential likelihood with an uncertain rate parameter and 

one estimation of the rate parameter which is known as 𝜆0. Prior values of 𝛼 and 𝛽 

(which are shown by 𝛼0 and 𝛽0) are selected in a way that the expectation value 

becomes equal to 𝜆0: 

𝜆~ 𝐺𝑎𝑚𝑚𝑎 (𝛼0, 𝛽0 = 𝛼0 × 𝜇0) 

(𝐸[𝜆])𝑝𝑟𝑖𝑜𝑟 = 
𝛼0

𝛽0
= 

𝛼0

𝛼0 × 𝜇0
=

1

𝜇0
= 𝜆0 

(5-17) 

To demonstrate the effect of the number of additional data, it is assumed that: 

𝜆0 = 0.67 (𝑖. 𝑒. 𝜇0  = 1.5) 

Now, consider the quantity 𝑁𝑎𝑑𝑑 number of new additional data is provided. The 

posterior expected value for the uncertain parameter is obtained as:  

(𝐸[𝜆])𝑝𝑜𝑠𝑡𝑟𝑖𝑜𝑟 = 
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
= 

𝛼0 + 𝑁𝑎𝑑𝑑

𝛽0 + 𝑁𝑎𝑑𝑑 × �̅�
=

𝛼0 + 𝑁𝑎𝑑𝑑

𝛼0𝜇0 + 𝑁𝑎𝑑𝑑 × �̅�
 (5-18) 

The contribution of the mean value of the prior and data on the posterior mean can be 

understood from the denominator of Eq. (5-18). It can be seen that by increasing the 

quantity of new data, the mean value of the data (�̅�) has a bigger effect on the posterior 

mean value. 

Figure 5.1 shows how the posterior distribution of the unknown parameter (𝜆) changes 

when new data is available. It is assumed that the mean value of these new results in 

all cases is equal to 1.0., i.e., �̅� = 1. 
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Figure 5.1. Effect of the number of additional data 

As can be seen from Figure 5.1, the data has a great effect on the posterior. Data 

quickly dominates the prior as the quantity of additional data increases. Table 5.2 

shows how the posterior mean values shift toward the data mean value with more 

additional data. 

Table 5.2. Effect of No. of additional data on the posterior 

Mean value 

of the prior 

No. of additional 

data 

Mean value of the 

new data 

Mean value of the 

posterior 

𝜇0  = 1.5 

𝑁𝑎𝑑𝑑 = 1 

�̅� = 1 

𝜇1  = 1.26 

𝑁𝑎𝑑𝑑 = 2 𝜇1  = 1.18 

𝑁𝑎𝑑𝑑 = 5 𝜇1  = 1.11 

𝑁𝑎𝑑𝑑 = 10 𝜇1  = 1.03 

 

Moreover, the posterior value of the variance of the gamma distribution is obtained as: 

(𝑉𝑎𝑟[𝜆])𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 =

𝛼0 + 𝑁𝑎𝑑𝑑

(𝛽0 + 𝑁𝑎𝑑𝑑 × �̅�)2
 (5-19) 

Regarding the square power of the denominator, as the number of data (𝑁𝑎𝑑𝑑) increases 

the variance of 𝜆 decreases. Therefore, by providing more new data, the uncertainty of 

the parameter of interest will be decreased (the posterior becomes narrower as 𝑁𝑎𝑑𝑑 

increases). 
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 Effect of Prior Selection 

In general, the prior estimation of an uncertain parameter relies on the expert’s 

understanding of the problem. If there is not enough knowledge about the parameter 

of interest, the non-informative priors can be utilised. For using a non-informative 

prior for a gamma distribution, 𝛼0 and 𝛽0 should be chosen close to zero [112]. Figure 

5.2 shows the posterior distribution for the non-informative and informative priors 

when two additional data are available. Figure 5.2 illustrates that the posterior 

distribution is sensitive to the prior selection. 

 

Figure 5.2. Effect of prior selection on the posterior (𝑁𝑎𝑑𝑑 = 2) 

Figure 5.3 shows the posterior distributions in case of the availability of five additional 

data. This figure indicates that, although the selection of appropriate prior is important, 

if enough new data is available the posterior distribution is not very sensitive to the 

prior selection (posterior distributions converge). 
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Figure 5.3. Effect of prior selection on the posterior (𝑁𝑎𝑑𝑑 = 5) 

As it can be seen from Figure 5.2 and Figure 5.3, the posterior distribution has a bigger 

uncertainty (i.e. bigger standard deviation) in case a non-informative prior is selected 

which is reasonable.  

 Summary 

Estimating the distribution of the uncertain parameter using Bayesian inference and 

conjugate priors is popular. The use of conjugate priors allows the results to be derived 

in closed form. The exact distribution of the posterior is already known. In the 

conjugate method, the posterior distributions are obtained without requiring numerical 

calculation to determine the normalisation constant. Different conjugate models were 

introduced in the literature. Based on the Bayes’ rule, the posterior distribution is 

proportional to both prior distribution and new information. It was shown that, by 

increasing the quantity of available data, the posterior distribution shifts towards the 

new data. Moreover, uncertainty is reduced when more data is available. 

 Numerical Approach 

The main shortcoming of the conjugate method is that in some cases, the uncertainty 

parameter does not have an associated conjugate prior. For example, generic databases 

often express uncertainty in terms of a lognormal distribution, which does not have a 

conjugate prior likelihood function [108]. To use conjugate methods, the likelihood 
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function and prior distribution must have specific standard distributions as presented 

in Table 5.1. In some cases, likelihood functions do not have known distributions. 

Therefore, using the conjugate method does not provide precise posterior distributions. 

Moreover, the conjugate approach contains assumptions that can influence the results. 

This influence is more predominant, especially when there is sparse data that conflicts 

with the prior distributions [108]. 

On the contrary, the numerical method provides a more general approach for 

predicting posterior distributions. The normalisation factor in Eq. (5-6) is calculated 

numerically. In numerical methods, prior and posterior distributions do not have to 

have the same functional forms. When the prior distribution is not conjugate, the 

posterior distribution cannot be presented in an analytical form (closed-form) [108]. 

Therefore, the posterior is not a standard distribution. Sampling from a non-standard 

distribution makes the updating procedure computationally more expensive. 

However, due to not considering any assumption or simplification in performing the 

updating process, the obtained posterior distribution in the numerical method is 

usually expected to be more accurate.  

 Other Updating Approaches 

For using probabilistic models in engineering applications, it is required to consider 

the relevant uncertainties in the analysis. The probabilistic models can be updated 

when new information becomes available. Bayesian methods have been identified as 

the most suitable for evaluating the probabilistic models required for structural 

integrity management problems. 

However, there are some other approaches (non-Bayesian) for updating probabilistic 

models. Some of these approaches are: 

• Maximum Likelihood Estimation (MLE): 

MLE is a method of estimating an uncertain parameter, given some observed 

data. It is achieved by maximising a likelihood function so that, under the 

assumed statistical model, the observed data is most probable. The point in 

the parameter space that maximises the likelihood function is called the 

maximum likelihood estimate [115].  
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However, this approach has some shortcomings. For instance, imagine an 

inspector claims to be able to detect the presence of sub-surface material flaws 

from an external visual inspection. If the inspector correctly identifies the 

presence of such flaws from the first 5 trials, what probability should be 

assigned to the inspector's claim? An MLE approach would identify a point 

estimate of 100% accuracy [116]. 

• Markov Chain Monte Carlo (MCMC): 

Bayesian inference problems can sometimes be very difficult to solve 

depending on the model settings (e.g., assumptions, and dimensionality). In 

large problems, exact solutions require, heavy computations that often become 

intractable and some approximation techniques must be used to overcome this 

issue and build fast and scalable systems [117].  

Based on the Bayes theorem, to obtain the posterior, three terms are required: 

a prior distribution, a likelihood function, and a normalisation factor. The first 

two can be expressed easily as they are part of the assumed model. However, 

the third term requires to be computed as:  

𝑓(𝑥) = ∫  𝑓(𝑥|𝜃) × 𝑓(𝜃) × 𝑑𝜃
∞

−∞

 (5-20) 

Although in low dimensions this integral can be computed without 

difficulties, it can become intractable in higher dimensions. In some cases, the 

exact computation of the posterior distribution is practically infeasible, and 

some approximation techniques must be used to get solutions [117]. 

Markov Chain Monte Carlo (MCMC) approach is developed to overcome 

these numerical difficulties. MCMC approach is a sampling-based approach. 

MCMC methods create samples from a continuous random variable, 

with probability density proportional to a known function. These samples can 

be used to evaluate an integral over that variable, as its expected 

value or variance. Practically, an ensemble of chains is generally developed, 

starting from a set of points arbitrarily chosen and sufficiently distant from 

each other. These chains are stochastic processes of walkers which move 

around randomly according to an algorithm that looks for places with a 
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reasonably high contribution to the integral to move into next, assigning them 

higher probabilities. 

Random walk Monte Carlo methods are a kind of random simulation or Monte 

Carlo method. However, whereas the random samples of the integrand used in 

a conventional Monte Carlo integration are statistically independent, those 

used in MCMC are autocorrelated. Correlations of samples introduce the need 

to use the Markov chain central limit theorem when estimating the error of 

mean values. These algorithms create Markov chains such that they have 

an equilibrium distribution that is proportional to the function given [117]. 

5.3 Previous Studies on Bayesian Updating Applications in Offshore 

Structures 

It was explained that Bayesian inference is a method of statistical inference in which 

Bayes’ theorem is used to update the probability for an uncertain parameter when new 

information becomes available. 

Bayesian inference is used in many applications in medicine, insurance, finance, and 

engineering [118]. However, this section only introduces some of the previous studies 

on Bayesian updating applications in fatigue crack propagation in structures. 

Fatigue is one of the important mechanisms of deterioration in structures subjected to 

repeated or cyclic load patterns. The design fatigue reliability is usually estimated by 

combining reliability analysis methods with fatigue life or fracture mechanics models. 

To maintain structural safety and monitor the fatigue risk, in-service inspections (e.g., 

non-destructive tests) are required at regular intervals. The data obtained from the 

inspection can be incorporated with the fatigue model to update the reliability estimate 

during the service life using Bayes’ theorem. 

Several studies have been performed to combine the information from inspection to 

update the fatigue reliability model. Madsen developed the idea of updating failure 

probability using the information from non-destructive inspection with the Bayesian 

approach [119].  

Zhao and Haldar extended Madson’s method. They proposed a linear elastic fracture 

mechanics-based reliability model which would incorporate uncertainties from many 
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different sources, including uncertainty in the results obtained from the non-

destructive inspections. They investigated the effect of the uncertainties of detection 

on updating and used the updated reliability index for inspection schedule, 

maintenance, and repair decisions. The updated information on the reliability was used 

as a decision-making tool as to what to do next, in terms of whether to do nothing, 

reschedule the next inspection at an earlier date, or repair or replace the structure 

immediately [120]. 

Zhang and Mahadevan proposed a Bayesian procedure to quantify the modeling 

uncertainty, including the uncertainty in mechanical and statistical model selection and 

the uncertainty in distribution parameters. The procedure was developed using a 

simple example and then was applied to a fatigue reliability problem by considering 

the uncertainty in the statistical distribution parameters. The fatigue failure criterion 

for a structure was defined based on the crack size. The failure probability analysis 

was updated by incorporating the new information from nondestructive inspections 

performed on the structure [121]. 

Heredia-Zavoni and Montes-Iturrizaga [122] developed a Bayesian framework for 

updating the probability distributions of the uncertain parameters of a fracture 

mechanics model and crack size in tubular joints. The new information that they used 

was the information from inspection reports of a fixed offshore structure. They defined 

an error model, as the logarithmic difference between measured crack size during the 

inspection and crack size predicted by the fracture mechanics model. They assumed a 

normal distribution with a known mean and uncertain variance for the error model. 

Using conjugate models, the distribution of the error variance was modeled by an 

Inverse Gamma distribution. By considering these assumptions, they developed an 

analytical model for the updated distributions of the parameters of the fracture 

mechanics model and the crack size. They illustrated the capabilities of their model 

using examples using the fracture mechanics formulation for crack growth [122]. 

Peng et al. developed a general framework for probabilistic prognosis and uncertainty 

management under fatigue cyclic loading [123]. They considered several sources of 

uncertainties in the Bayesian updating framework. They also introduced an equivalent 

stress level model for the mechanism-based fatigue crack growth analysis, which 
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serves as the deterministic model for the lap joint fatigue life prognosis. Then, they 

designed an in-situ lap joint fatigue test with pre-installed piezoelectric sensors to 

collect experimental data. The proposed methodology was then demonstrated using 

the experimental data under both constant and variable amplitude loadings [123]. 

Garbatov and Guedes developed a Bayesian approach to update some of the uncertain 

parameters governing the reliability assessment of maintained floating structures 

[124]. They obtained the predicted fatigue crack size by expanding the Paris-Erdogan 

equation. They used a fatigue limit state based on the critical crack size. They 

considered material properties and inspection quality as the uncertain parameters in 

their study. Assuming different crack sizes as the results of the inspection, their 

approach was able to update the crack length [124]. 

Zarate et al. presented a framework to update and predict crack length as a function of 

the number of cycles in structural elements subjected to fatigue [125]. Their 

framework included two main sections: a model updating section to identify the 

probability density function of the fracture mechanics parameters, and a prognosis 

section to estimate the crack length of the specimen as a function of the number of 

cycles. The stress intensity factor range was assumed as an unknown parameter, and it 

was modelled as a polynomial equation function of the crack length. The polynomial 

coefficients were then treated as random variables and their joint probability 

distribution, together with the probability distribution of other fracture mechanics 

parameters are computed using Bayesian inference [125].  

5.4 Application of Bayesian Updating 

The purpose of this section is to apply the explained Bayesian methods (both analytical 

and numerical) to the tubular joints in a jacket platform and update the crack size 

distribution by incorporating the new information from the inspection results.  

It is worth mentioning that the considered inspection results (i.e., crack measurements) 

in this research are artificial and are used to demonstrate the different Bayesian 

approaches. Nevertheless, the proposed methods can be applied for the real inspection 

results when they are available.  

There is no need to consider further assumptions from the considered approach in case 

of accessibility to the real data. In this case, instead of using the hypothetical 
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distribution for the measured crack size, a distribution can be assigned to the real data. 

For instance, in Section 5.4.1.2, it is assumed that a normal distribution with a mean 

value of 2mm and a standard deviation of 0.2mm can be assigned to the inspection 

results. In case of accessibility to the real data, the real values for the mean and 

standard deviation will be used. 

 Crack Size Distribution in a Particular Tubular Joint 

Fatigue damage accumulates during the structure’s lifetime as the crack size increases. 

The accumulation of damage due to fatigue causes deterioration of the platform’s 

structural capacity and increases the probability of failure. Therefore, offshore 

platforms are periodically inspected to assess the state of damage. Regarding fatigue 

damage, the information from inspection consists mainly of detection and 

measurement of crack sizes.  

Regardless of the inspection outcome (detection or not detection of a crack), each 

inspection provides additional information which can be utilised to update the 

probability distribution of crack size in a joint. Using the updated distribution, it is also 

possible to update the estimation of joint reliability and consequently system 

reliability. 

The main purpose of this section is to compare the conjugate and numerical methods 

for updating the crack size distribution in a specific tubular joint when new information 

is available. For this purpose, a particular tubular joint is considered and the crack size 

distribution is updated by using both conjugate and numerical methods. 

 Crack Size Distribution 

The first step of updating the crack size distribution is to select an appropriate prior. 

The prior crack size distribution can be assumed based on theoretical considerations, 

experts’ opinions, past experiences, or data reported in the literature [126]. Among all 

the parameters influencing the reliability of a structure, the crack size distribution plays 

a dominant role. In Chapter 3, the fatigue limit state was defined based on the crack 

size as: 

𝑔 = 𝑎𝑐 − 𝑎𝑡 (5-21) 
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where 𝑎𝑐 is the critical crack size and 𝑎𝑡 is the crack size at time 𝑡. The probability of 

failure is: 

𝑃[𝑔 ≤ 0] = 𝑃[𝑎𝑐 ≤ 𝑎𝑡] (5-22) 

A reliable estimate of the real crack size distribution is almost impossible and the 

calculated failure probability is very sensitive to the selection of this distribution. The 

failure probability is influenced by the right tail of the probability density function of 

the crack size. This tail depends on the type of distribution and is sensitive to minor 

changes within the data [127]. It can be shown that calculated probabilities of failure 

differ by several orders of magnitude depending on the crack size distribution assumed 

[128]. Figure 5.4 shows different crack size distributions and the critical crack size, 

schematically.  

 

Figure 5.4. Different crack size distributions 

There is no well-established rule for the selection of the crack size distribution. 

Difficulty in the selection of the crack size distribution comes from several reasons 

such as: 

• Several sources of uncertainty in the fatigue phenomenon 

• Lack of statistical data on crack size 

• NDT devices cannot detect all cracks and they do not give the actual size of the 

cracks 
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Different distribution functions such as exponential (see [127] and [129]) or log-

normal (see [130]) have been employed by experts based on the experimental results 

collected in laboratory tests. In this study, to resolve these difficulties in the selection 

of the crack size distribution, a sampling method is used. In the sampling method, both 

detected and undetected cracks are considered. It was shown in Chapter 3 that the 

fatigue crack size at a specific time is a function of uncertain parameters such as initial 

crack size, material parameter, geometry function, and the expected value of stress 

range: 

𝑎𝑡 = {𝑎0

1−
𝑚
2  + (1 −

𝑚

2
) × 𝑌𝑚 × 𝜋

𝑚
2 × 𝐶 × (ɛ𝑠 × 𝐸[∆𝑆𝑚]) × 𝑁 }

 
1

1− 
𝑚
2  (5-23) 

where: 

• 𝑎0:   Initial crack size 

• 𝑎𝑡:   Crack size at time 𝑡 

• 𝑚 and 𝐶:  Crack growth parameters 

• 𝑌:   Geometry function 

• 𝐸[∆𝑆𝑚]:  Expected value of the stress range 

• 휀𝑠:   Uncertainties involved in the stress range 

• 𝑁:   Number of load (stress) cycles 

Distributions of the uncertain parameters were explained in Chapter 3. Table 5.3 

presents the distributions of the uncertain parameters. 

Table 5.3. Statistical characteristics of random variables [N, mm] 

Random Variable Symbol Type Mean COV 

Initial crack size 𝑎0 Exponential 0.11 1.0 

Crack growth parameters  𝐶 Lognormal 8.1x10-12 0.6 

Uncertainties involved in the 

stress range 
휀𝑠 Lognormal 1.0 0.2 

Geometry function 𝑌 Lognormal 1.0 0.1 

 

In the considered sampling method, a large number of simulations (𝑁𝑆𝑖𝑚) is generated 

using random samples from the probability density function of each uncertain 
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parameter as provided in Table 5.3. A large number of simulations are used to include 

all relevant combinations of these uncertain parameters.  

For each set of random samples (e.g. for the kth sample set: 𝑎0𝑘, 𝐶𝑘, ɛ𝑠𝑘 and 𝑌𝑘), the 

crack size (𝑎𝑡𝑘) is calculated based on Eq. (5-23). Here, the total number of simulations 

(𝑁𝑆𝑖𝑚) is selected as 105. A Python code is used to generate samples from random 

variables and to obtain crack size distributions [131].  Figure 5.5 shows the flowchart 

of obtaining the prior crack size distribution and also updating the crack size 

distribution for both analytical and numerical methods.  

 

Figure 5.5. Flowchart for updating the crack size distribution 

 Analytical Method 

After generating 𝑁𝑠𝑖𝑚 = 105 simulations for the crack size (𝑎𝑡) based on Eq. (5-23), the 

crack size cumulative distribution function (CDF) can be obtained. Having obtained 

the CDF of crack size, the best distributions for crack size can be selected using fitting 

techniques (goodness of fit). 

It is worth mentioning that 105 simulations of crack size are enough for assigning a 

distribution to the crack size. More numbers don’t make significant changes in the 

result. 
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Figure 5.6 shows the results of the cumulative distribution function (CDF) for the 

simulated crack size, exponential, and lognormal distributions by using the Rt program 

[65]. Based on Figure 5.6, the exponential distribution is selected as appropriate prior 

for the crack size distribution. 

 

Figure 5.6. CDF for the simulated cracks, exponential and lognormal distributions 

Figure 5.7 shows the histogram of simulated crack size distributions based on 105 

simulations after five years and the fitted exponential distribution. 

 

Figure 5.7. Histogram of the simulated cracks and fitted exponential distribution 
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As it can be seen from Figure 5.7, the fitted exponential distribution overestimates the 

probability of smaller cracks, whereas it underestimates the probability of bigger 

cracks. Therefore, the results of the analytical method include errors.  

The fitted exponential distribution is used as an appropriate distribution for the crack 

size (before updating) with a probability density function as: 

𝑓(𝑎𝑡|𝜆) = 𝜆𝑒−𝜆𝑎𝑡  (5-24) 

Where 𝜆 is the rate parameter that is assumed as an uncertain parameter that will be 

updated when new information is available. Based on Figure 5.7, one point estimation 

of 𝜆 is obtained as: 

𝜆𝑓𝑖𝑡 =
1

1.11
 (5-25) 

It is noted that the value of 𝜆𝑓𝑖𝑡 depends on the sample size.  

In this study, the uncertain parameter is the rate of exponential distribution (𝜆), whereas 

the new information is the inspection results which contain the measurement of the 

crack size (𝑎𝑚). Bayesian inference is employed to describe how the uncertainty in 𝜆 

changes from the prior distribution to the posterior distribution by incorporating the 

new information. As can be seen from Table 5.1, for the exponential distribution with 

uncertain parameter (𝜆), the conjugate prior and posterior distributions for 𝜆 are 

Gamma distributions. 

• Prior Distribution 

In this study, Jeffreys non-informative prior is used to describe the prior distribution 

[108]. The Jeffreys non-informative prior for the exponential likelihood is a gamma 

distribution. In Jeffreys non-informative prior for the exponential distribution, both 

shape (𝛼𝑝𝑟𝑖𝑜𝑟) and rate parameters (𝛽𝑝𝑟𝑖𝑜𝑟) are selected close to zero [108]. Moreover, 

these parameters are selected in a way that the expected value of 𝜆 becomes equal 

to 𝜆𝑓𝑖𝑡, i.e.: 

𝛼𝑝𝑟𝑖𝑜𝑟  =  0.001      𝛽𝑝𝑟𝑖𝑜𝑟  =  𝛼𝑝𝑟𝑖𝑜𝑟  ×  1 𝜆𝑓𝑖𝑡
⁄  

(𝐸[𝜆])𝑝𝑟𝑖𝑜𝑟  =  
𝛼𝑝𝑟𝑖𝑜𝑟

𝛽𝑝𝑟𝑖𝑜𝑟
 =  𝜆𝑓𝑖𝑡  =  

1

1.11
 

(5-26) 
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• New Information (Inspection Results) 

It is assumed that ten inspection results (𝑁𝑖𝑛𝑠 = 10) of crack sizes 

(i.e., (𝑎𝑚)1, (𝑎𝑚)2, … , (𝑎𝑚)10) are available. It is assumed that these inspections are 

independent of each other. A normal distribution with a mean value of 2mm and a 

standard deviation of 0.2mm is assigned to the inspection results.  

• Posterior Distribution 

Having provided new information, the distribution of the uncertain parameter can 

be updated by using the Bayesian framework. The posterior distribution of the 

uncertain parameter is obtained by using Bayes’ theorem.  

The parameters of the posterior distribution (which is a gamma distribution) are 

obtained by using Eq. (5-16) which are: 

𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  =  𝛼𝑝𝑟𝑖𝑜𝑟  +  𝑁𝑖𝑛𝑠 ;       𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  =  𝛽𝑝𝑟𝑖𝑜𝑟 + ∑ (𝑎𝑚)𝑖
𝑁𝑖𝑛𝑠
𝑖=1  (5-27) 

Figure 5.8 shows the prior and posterior distributions for the uncertain parameter 

(λ). 

 

Figure 5.8. Prior and posterior distributions for the uncertain parameter 

Based on Eq. (5-24), crack size distribution depends on the rate parameter. 

However, the rate parameter is an uncertain parameter with a distribution that 

depends on 𝛼 and 𝛽. This is schematically shown in Figure 5.9. 
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Figure 5.9. Dependency of the crack size on the distribution of the rate parameter  

• Predictive Distribution for Crack Size 

After updating the uncertain parameter (𝜆), the crack size distribution can be 

updated based on a predictive distribution. The predictive distribution for the crack 

size can be obtained as [108]: 

𝑓(𝑎𝑡) =  
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 × 𝛽

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

(𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 + 𝑎𝑡)
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟+1 (5-28) 

Figure 5.10 shows the crack size distributions before and after updating. As shown 

in the figure, the updated crack size distribution has a mean value of 1.97mm, which 

is close to the mean value of the observations (2mm). 

 

Figure 5.10. Crack size distributions before and after updating 
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Figure 5.11 summarises the conjugate method for updating the rate parameter (𝜆) 

and crack size distributions.   

 

Figure 5.11. Updating the rate parameter and crack size distributions in the analytical 

method 

 Numerical Method  

In the numerical method, the posterior is not a standard distribution and it cannot be 

presented in an analytical form. Therefore, the normalisation constant in Eq. (5-6) is 

calculated numerically. In this method, the posterior distribution is obtained by using 

Eq. (5-5). 

• Prior Distribution 

As it was earlier mentioned, a large number of crack sizes (𝑁𝑆𝑖𝑚 =105) is generated 

by using random samples of uncertain parameters. In the numerical method, instead 

of fitting any distribution, the histogram of the simulated crack size is used as a 

prior distribution. Figure 5.12 shows the histogram of the simulated data which is 

used as a prior distribution for the crack size. 
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Figure 5.12. Prior crack size distribution in the numerical method 

• Likelihood Function 

Due to the uncertainties in the fatigue phenomenon and crack size measurements, 

the crack size is not a certain parameter. The uncertainties involved in the fatigue 

process and also in the crack size measurements can be assumed based on experts’ 

beliefs. Therefore, the likelihood function is defined based on the expert’s belief to 

take into account the involved uncertainties. The likelihood function can be 

represented as a non-normalised normal distribution as [126]: 

𝐿 = exp (−
(𝑎𝑡 − 𝑎𝑚)2

2𝜎𝐿
2 ) (5-29) 

Where 𝑎𝑚 represents the measured crack size, 𝑎𝑡 is the predicted crack size and 𝜎𝐿 

is the assumed standard deviation of crack size (due to measurement and model 

uncertainty). For example, if the measured crack size is obtained equal to 𝑎𝑚 =

1.8 𝑚𝑚, it’s very probable that the actual crack size is between 1.4 mm and 2.2 

mm. In this case, it is unlikely that the actual crack size is greater than 3 mm. 

The value of 𝜎𝐿 is estimated by the expert’s judgements about uncertainty. In this 

study, two different values for 𝜎𝐿 are considered to check the effect of the likelihood 

function on the posterior results: 
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➢ Case (I): An accurate model for the predicted crack size and perfect 

measurement. In this case, it is assumed that the model can estimate the real 

crack size with reasonable accuracy. Moreover, the measurement is performed 

with a high-quality tool. Therefore, a small standard deviation (𝜎𝐿 = 0.5𝑚𝑚) 

is considered for the likelihood function. 

➢ Case (II): A less accurate model for the predicted crack size and inaccurate 

measurement. In this case, it is assumed that the model can predict the real 

crack size with less accuracy. Moreover, the measured crack sizes are not very 

reliable. Therefore, a bigger standard deviation (𝜎𝐿 = 1𝑚𝑚) for the likelihood 

function is assumed. 

Figure 5.13 shows the likelihood function for both cases when a crack is measured 

equal to 𝑎𝑚 = 2𝑚𝑚. As it was mentioned, standard deviations of 0.5mm and 1mm 

are assumed for Case (I) and Case (II), respectively.  

 

Figure 5.13. Likelihood functions for both accurate and inaccurate models  

• Posterior Distribution 

According to Bayes’ theorem, the posterior distribution is proportional to the prior 

distribution and likelihood function as shown in Eq. (5-5). Note that, in the 

analytical method, the posterior distribution is updated only once by summing all 

the crack size information as shown in Eq. (5-27). However, in the numerical 

method, the posterior distribution needs to be updated for each observed crack size. 



202 

 

Therefore, the probability distribution function of crack size is updated 𝑁𝑖𝑛𝑠 times 

sequentially by using Eq. (5-5). Following steps should be performed to obtain the 

updated crack size distribution: 

➢ Step 1: Use the crack size histogram as a prior distribution 

➢ Step 2: Choose the measured crack size No. i (i = 1), (𝑎𝑚)𝑖   

➢ Step 3: Obtain likelihood function distribution by using Eq. (5-29) 

➢ Step 4: Calculate the normalisation constant by using Eq. (5-6) 

➢ Step 5: Obtain the posterior distribution by using Eq. (5-5)  

➢ Step 6: Replace the prior with the obtained posterior and go to Step 2, (i = i +1) 

The updating procedure for the numerical method is computationally more expensive 

than the analytical method. The obtained posterior is assumed as the prior distribution 

for the next updating process.  

To demonstrate how the crack size distribution is updated in the numerical method, 

the same observations are considered (ten observations with a mean value of 2mm and 

a standard deviation of 0.2mm). Figure 5.14 and Figure 5.15 show the posterior crack 

size distributions after the updating process for both likelihood cases. 
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Figure 5.14. Sub sequentially updating of the crack size distributions for likelihood 

function, Case (I) 
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Figure 5.15. Sub sequentially updating of the crack size distributions for likelihood 

function, Case (II) 

As it can be seen from Figure 5.14 and Figure 5.15, the posterior distributions shifted 

towards the observations, i.e. the observed data dominates the posterior distributions. 

Additionally, it is also observed that the expected value for the updated crack size is 

around 2.0 mm in both figures, which is close to the mean of the observed crack sizes.  

Both figures show that after five observations, the posterior distribution approaches 

the observations. Therefore, if enough data is available, the posterior distribution is 

not sensitive to the prior selection. However, due to the high cost of underwater 

inspections, there may not be several inspections available for a specific joint. Most of 

the time, there is only one inspection result for each joint. As represented in Figure 

5.14 and Figure 5.15, especially for the first and second updates, prior distribution has 

a great impact on the posterior distribution. Therefore, the prior distribution should be 

selected based on reasonable assumptions.   
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 Comparing the Results of Two Methods 

Figure 5.16 shows the posterior distributions of crack sizes for both analytical and 

numerical methods. Although the obtained mean values for the methods are not 

substantially different (µ𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 = 1.97, µ𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 = 1.88 mm), the shape of the crack 

size distribution is different. 

The reason is that the posterior distribution is restricted to a specific distribution shape 

in the conjugate method. This is an important disadvantage of using the conjugate 

methods since the prior distributions have a great impact on the posterior distributions.  

Moreover, in the conjugate method, the simulated crack size is approximated with a 

fitted exponential distribution which is overestimating the probability of smaller 

cracks while underestimating the probability of bigger cracks. Therefore, when the 

prior distribution is not accurate, the posterior distribution may not be accurate. 

Figure 5.16 also shows that the posterior distribution shapes in the numerical method 

are very similar to the likelihood functions given in Figure 5.13. In fact, in the 

numerical method, the observed data dominates the posterior distributions. The effect 

of the likelihood function on the posterior distribution can also be understood from 

Figure 5.16, i.e. the likelihood function for Case (II) which has a bigger uncertainty 

widens the posterior distribution. Using a larger uncertainty results in a bigger 

probability of failure. In reality, the actual value of 𝜎𝐿 in the likelihood function is 

unknown and it is estimated based on the engineering judgement. 
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Figure 5.16. Posterior crack size distributions, analytical method (top), and numerical 

method (bottom) 

In the numerical method, the observed data dominates the posterior distribution shape, 

whereas in conjugate methods, the prior distribution has a great effect on the posterior 

distribution shape and the effect of observed data is minimised. Since the numerical 

method allows us to incorporate the effect of the new data (inspection results) on the 

posterior distribution, the numerical methods are preferred. However, the numerical 

method is computationally more expensive especially when several inspection results 

are available. 
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 Crack Size Distribution in Multiple Locations 

In the previous section, the crack size distribution for a particular tubular joint was 

updated by using conjugate and numerical methods. In real situations, there are a few 

inspection results available for each tubular joint due to the expensive cost of the 

underwater inspection.  

The purpose of this section is to update the crack size distribution for different 

locations that have almost the same conditions. It is assumed that these joints have 

identical configurations with the same material properties, and they are subjected to 

almost the same stress range. Therefore, a prior crack distribution can be assigned to 

these joints. When the inspection results for these similar joints are available, the 

posterior distribution can be obtained by using conjugate or numerical methods.  

 Prior Distribution 

To assign a prior distribution for the crack size, a sampling method as explained in 

Section 5.4.1.1 is used. As provided in Eq. (5-29), the final crack size is a function of 

initial crack size, crack growth parameter, geometry function, and the expected value 

of stress range. Distributions of the uncertain parameters are presented in Table 5.3. 

However, since the stress range is not the same at different locations, a bigger 

coefficient of variation is assumed for the stress range parameter, i.e. ɛ𝑆 = 0.4. 

The histogram of the simulated crack sizes and the fitted exponential distribution are 

assumed as the prior distribution for numerical and conjugate methods, respectively. 

The prior distributions shown in Figure 5.17 are obtained based on 𝑁𝑆𝑖𝑚 =105 

simulations after five years. 
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Figure 5.17. Prior crack size distributions for multiple locations in the conjugate and 

numerical methods 

 New Information (Inspection Results) 

It is assumed that there are twenty tubular joints with similar conditions. To 

demonstrate the methodology, it is assumed that five independent inspection results 

are available for each tubular joint. Therefore, in total 100 inspection results (𝑁𝑖𝑛𝑠 =

100) are available. A normal distribution with a coefficient of variation of 0.2 is 

assumed for these five inspection results. It is also assumed that the mean value of 

each tubular joint is different. 

 Posterior Distribution 

• Conjugate Method 

As mentioned in Section 5.2.2.1, the prior and posterior distributions for the 

uncertain parameter (𝜆) are represented by the gamma distribution. The parameters, 

𝛼 and 𝛽 for the prior and posterior are obtained from Eq. (5-26) and Eq. (5-27), 

respectively. After updating the distribution of the model parameter (𝜆), the crack 

size distribution is obtained by using Eq. (5-28). Figure 5.18 shows the crack size 

distributions before and after incorporating the inspection results.  
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Figure 5.18. Crack size distributions for multiple locations in the conjugate method 

• Numerical Method 

As it was mentioned in Section 5.4.1.3, the likelihood function is defined by Eq. 

(5-29). The standard deviation of crack size (due to measurement and model 

uncertainty) is assumed as 𝜎𝐿 = 0.8mm. Based on Bayes’ theorem, the posterior 

distribution is obtained by using the prior distribution and likelihood function as 

presented in Eq. (5-5). It was assumed that the inspection results are available for 

twenty tubular joints. 

Updating of the crack size distribution for each tubular joint is carried out by using 

the numerical approach which was explained in Section 5.4.1.3. Figure 5.19 shows 

the crack size distributions for some joints before and after incorporating the 

inspection results (after incorporating all five inspections).  
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Figure 5.19. Crack size distributions for four different tubular joints 

By combining all posterior distributions for each location and normalising the area 

below the combined distribution, a posterior distribution for all locations can be 

obtained. Figure 5.20 illustrates prior and posterior crack size distributions for all 

tubular joints. 

 

Figure 5.20. Crack size distributions for multiple locations in the numerical method 
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 Comparing the Results of Two Methods 

Figure 5.21 shows the posterior crack size distributions for a group of twenty similar 

joints based on the conjugate and numerical methods. It is observed that, if the results 

of several locations are combined, the posterior distribution in the numerical method 

approaches the conjugate posterior distribution. Note that the posterior distribution (in 

the numerical method) for each location is similar to a normal distribution. It is also 

found that both numerical and conjugate methods result in a similar distribution. 

Therefore, obtaining the posterior distribution by using the conjugate method might be 

preferred since it is much easier and less time-consuming for multiple locations. 

 

Figure 5.21. Posterior crack size distributions for multiple locations in both methods 

 Bayesian Updating Regarding Different Inspection Outcomes 

 Inspection Outcomes 

Let’s consider an inspection has been carried out for a specific tubular joint in a fixed 

offshore platform at the time 𝑡𝑗. Here, 𝐼(𝑗) denotes the outcome of the inspection. Two 

outcomes can be assumed as a result of the inspection: 

• 𝐼(𝑗) = 𝑁𝐶:  No crack is detected 

• 𝐼(𝑗) = 𝐶𝑀:  A crack is detected and measured 

Regarding the inspection results, the uncertainties can be divided into two categories: 



213 

 

• Detectable crack size  

• Accuracy of the measured crack (if detected) 

In the first case (i.e. 𝐼 (𝑗) = 𝑁𝐶), the uncertainty is related to the first category. This 

uncertainty can be taken into account by curves that estimate the probability of crack 

detection (POD). The POD curves depend on the quality (resolution) of the inspection 

methods and also on the existing crack size [122] (see Chapter 4). 

The detectable crack size is related to a specified inspection method and it is usually 

modelled as a stochastic variable reflecting the actual probability of detection [132]. 

Among several formulations of POD available, the commonly used exponential 

distribution is [132]: 

𝑃𝑂𝐷 (𝑎)  =  1 −   𝑒 
−

𝑎
𝑎𝑚𝑑  (5-30) 

where 𝑎 is crack size and 𝑎𝑚𝑑  is the mean detectable crack size for the specific 

inspection method. Figure 5.22 shows the POD curves for different mean detectable 

sizes. 

 

Figure 5.22. Probability of detection (POD) curves 

In the second case (i.e. 𝐼(𝑗) = 𝐶𝑀), in addition to the uncertainties involved in the POD 

curves, another uncertainty is related to the measurement error which is also dependent 
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on the inspection quality. It is noted that this error is usually modelled as a normal 

random variable with a mean of zero and unknown variance ( [122] and [132]). 

Consider 𝐴(𝑗) denotes crack size at time 𝑡𝑗. It is noted that the crack size is an uncertain 

parameter. Posterior distribution of the crack size based on the results of an inspection 

is obtained according to Bayes theorem. 

 Posterior Distribution Expression 

• No Crack Detected 

The probability of crack detection (POD) for a specific inspection tool, depends on 

the resolution of the inspection method and crack size at that time. Therefore, in 

this case, the likelihood, which is the probability of occurrence of a crack not 

detected, is presented as: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑃[𝑁𝐶|𝑎] = 1 − 𝑃𝑂𝐷(𝑎) 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑃[𝑁𝐶|𝑎] = 𝑒
− 

𝑎
𝑎𝑚𝑑  

(5-31) 

Therefore, the updated crack size distribution (given that no crack observed) is 

obtained based on Eq. (5-5) as: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
 

𝑓(𝑎|𝑁𝐶)  =
 𝑓(𝑁𝐶|𝑎) × 𝑓(𝑎)

∫ 𝑓(𝑁𝐶|𝑎) × 𝑓(𝑎)𝑑𝑎
∞

0

 

𝑓(𝑎|𝑁𝐶) =
[1 − 𝑃𝑂𝐷(𝑎)] × 𝑓(𝑎)

∫ [1 − 𝑃𝑂𝐷(𝑎)] × 𝑓(𝑎)
∞

0
𝑑𝑎

 

(5-32) 

Therefore: 

𝑓(𝑎|𝑁𝐶) ∝  [1 − 𝑃𝑂𝐷(𝑎)] × 𝑓(𝑎) (5-33) 

Eq. (5-33) shows that the posterior distribution depends on: 

➢ Inspection tool’s quality, i.e. POD curve (𝑎𝑚𝑑) 

➢ The prior distribution of crack size, 𝑓(𝑎) 
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• Crack Detected and Measured 

Predicted crack size by the fatigue model (𝑎𝑗) is obtained from Eq. (5-23). The 

predicted crack size is different from the measured crack size (𝑎𝑚) at the same time. 

Therefore the associated error, 휀 which involves both measurement and model error 

can be defined as: 

휀 = 𝑙𝑛 𝑎𝑗 − 𝑙𝑛 𝑎𝑚 (5-34) 

The associated error is assumed as a normally distributed random variable with a 

known mean equal to zero and an uncertain variance, 𝜎𝜀
2 i.e.: 

𝑓𝜀  ~  𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝜀
2) 

𝑓𝜀 =
1

√2𝜋𝜎𝜀
2
𝑒𝑥𝑝 (−

(휀 − 𝜇)2

2𝜎𝜀
2 ) =

1

√2𝜋𝜎𝜀
2
𝑒𝑥𝑝 (−

휀2

2𝜎𝜀
2) 

(5-35) 

Where 𝑓𝜀 is the probability distribution function for 휀. 

If the fatigue model is assumed unbiased to the mean value of model and 

measurement: 

𝐸[𝑎𝑗] = 𝐸[𝑎𝑚] (5-36) 

Therefore, 휀 has a known mean of zero: 

𝐸[휀] = 𝐸[ln 𝑎𝑗] − 𝐸[ln 𝑎𝑚] = 0 (5-37) 

However, the variance of the error is unknown which can be considered as an 

uncertain parameter. 

If the predicted crack size by the fatigue model is denoted by 𝑎𝑗 and the measured 

crack size denoted by 𝑎𝑚, one realisation of the error is obtained as: 

𝑒 = 𝑙𝑛 𝑎𝑗 − 𝑙𝑛 𝑎𝑚 = 𝑙𝑛  (
𝑎𝑗

𝑎𝑚
) (5-38) 

Therefore, in this case, in addition to the crack size, error variance is also assumed 

as an uncertain parameter.  In this case, the posterior distribution is proportional to: 

𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) ∝ 𝑃[𝐶𝑀|𝑎, 𝑥] × 𝑓𝐴𝑗,𝜎𝜀

2(𝑎, 𝑥) (5-39) 

where: 
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➢ 𝑥 is error variance 

➢ 𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) is the posterior joint PDF of crack size and error variance 

➢ 𝑃[𝐶𝑀|𝑎, 𝑥] is the likelihood function 

➢ 𝑓𝐴𝑗,𝜎𝜀
2(𝑎, 𝑥) is the prior joint PDF of crack size and error variance 

Likelihood Function: 

Likelihood function can be written as: 

𝑃[𝐶𝑀|𝑎, 𝑥] = 𝑃[𝑎𝑚 | {(𝐴(𝑗) = 𝑎) & (𝜎𝜀
2 = 𝑥)}] × 𝑃𝑂𝐷(𝑎) (5-40) 

The event associated with measuring 𝑎𝑚 is equivalent to event 휀 = 𝑒. Therefore, 

the likelihood function can be written as: 

𝑃[𝐶𝑀|𝑎, 𝜎𝜀
2] = 𝑓𝜀|𝐴𝑗,𝜎𝜀

2(𝑒|𝑎, 𝑥) × 𝑃𝑂𝐷(𝑎) (5-41) 

Since 휀 is normally distributed: 

𝑓𝜀|𝐴𝑗,𝜎𝜀
2(𝑒|𝑎, 𝑥) =

1

√2𝜋𝑥
𝑒𝑥𝑝 (−

𝑒2

2𝑥
) (5-42) 

Therefore, the likelihood function is obtained as: 

𝑃[𝐶𝑀|𝑎, 𝜎𝜀
2] =  

1

√2𝜋𝑥
𝑒𝑥𝑝 (−

𝑒2

2𝑥
) × 𝑃𝑂𝐷(𝑎) (5-43) 

Prior Distribution: 

By definition of conditional probability for the prior PDF: 

𝑓𝐴𝑗,𝜎𝜀
2(𝑎, 𝑥) = 𝑓𝐴𝑗

(𝑎) × 𝑓𝜎𝜀
2|𝐴𝑗

(𝑥|𝑎) (5-44) 

Where 𝑓𝜎𝜀
2|𝐴𝑗

(𝑥|𝑎) is the conditional PDF of error variance given that measurement 

is provided. This conditional PDF of error variance has a normal distribution with 

a mean equal to zero and unknown variance. The conjugate prior for this variable 

(variables with known mean and uncertain variance) is Inverse Gamma (see Table 

5.1). 

The inverse gamma distribution is a two-parameter distribution with shape 

parameter (𝛼) and scale parameter (𝛽). The PDF of this distribution is [112]: 
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𝑓(𝜃) =
𝛽𝛼

𝛤(𝛼)
× 𝜃−(𝛼+1) × 𝑒𝑥𝑝 (−

𝛽

𝜃
) (5-45) 

Therefore, the prior distribution of error variance can be written as: 

𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑟𝑖𝑜𝑟
(𝑥|𝑎) =

𝛽𝑝𝑟𝑖𝑜𝑟
𝛼𝑝𝑟𝑖𝑜𝑟

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)
𝑥−(𝛼𝑝𝑟𝑖𝑜𝑟+1)𝑒𝑥𝑝 (−

𝛽𝑝𝑟𝑖𝑜𝑟

𝑥
) (5-46) 

To let the data dominate the posterior, a non-informative prior distribution is 

selected. For usage of non-informative prior for the inverse gamma, both 

parameters are selected close to zero [112], i.e.: 

𝛼𝑝𝑟𝑖𝑜𝑟 = 𝛽𝑝𝑟𝑖𝑜𝑟 = 0.001 (5-47) 

When new data is available (a crack measured), using the conjugate approach, the 

posterior conditional distribution of the error variance is obtained as [112]: 

𝛼𝑝𝑜𝑠𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 +
1

2
 

𝛽𝑝𝑜𝑠𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 +
(𝑒 − 𝜇)2

2
= 𝛽𝑝𝑟𝑖𝑜𝑟 +

𝑒2

2
 

(5-48) 

where 𝑒 is the realisation of the error (Eq. (5-38)). It can be seen that 𝛽𝑝𝑜𝑠𝑡 is a 

function of realisation of the error (𝑒) which is a function of crack size. The 

posterior conditional distribution of the error variance is obtained as: 

𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑜𝑠𝑡
(𝑥|𝑎) =

(𝛽𝑝𝑜𝑠𝑡)
𝛼𝑝𝑜𝑠𝑡

𝛤(𝛼𝑝𝑜𝑠𝑡)
𝑥−(𝛼𝑝𝑜𝑠𝑡+1)𝑒𝑥𝑝 (−

𝛽𝑝𝑜𝑠𝑡

𝑥
) (5-49) 

Substituting Eq. (5-49) into Eq. (5-44): 

𝑓𝐴𝑗,𝜎𝜀
2(𝑎, 𝑥) = 𝑓𝐴𝑗

(𝑎) ×  [
(𝛽𝑝𝑜𝑠𝑡)

𝛼𝑝𝑜𝑠𝑡

𝛤(𝛼𝑝𝑜𝑠𝑡)
𝑥−(𝛼𝑝𝑜𝑠𝑡+1)𝑒𝑥𝑝 (−

𝛽𝑝𝑜𝑠𝑡

𝑥
)]      (5-50) 

Posterior Distribution: 

Replacing likelihood function and the prior into Eq. (5-39), the posterior 

distribution is obtained as:  

𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) ∝ 

[𝑃𝑂𝐷(𝑎) ×
1

√2𝜋𝑥
𝑒𝑥𝑝 (−

𝑒2

2𝑥
)]  × [𝑓𝐴𝑗

(𝑎) × [
𝛽𝑝𝑟𝑖𝑜𝑟

𝛼𝑝𝑟𝑖𝑜𝑟

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)
𝑥−(𝛼𝑝𝑟𝑖𝑜𝑟+1)𝑒𝑥𝑝 (−

𝛽𝑝𝑟𝑖𝑜𝑟

𝑥
)]] 

(5-51) 
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I.e.: 

𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) ∝ 

𝛽𝑝𝑟𝑖𝑜𝑟
𝛼𝑝𝑟𝑖𝑜𝑟

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)√2𝜋
𝑥−(𝛼𝑝𝑟𝑖𝑜𝑟+

3
2⁄ )𝑒𝑥𝑝 (−

𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑒2

2⁄

𝑥
) × 𝑃𝑂𝐷(𝑎) × 𝑓𝐴𝑗

(𝑎) 
(5-52) 

Therefore: 

𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) ∝ 

(
𝛽𝑝𝑟𝑖𝑜𝑟

𝛼𝑝𝑟𝑖𝑜𝑟

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)√2𝜋
) × [𝑥−(𝛼𝑝𝑜𝑠𝑡+1)𝑒𝑥𝑝 (−

𝛽𝑝𝑜𝑠𝑡

𝑥
)] × 𝑃𝑂𝐷(𝑎) × 𝑓𝐴𝑗

(𝑎) 
(5-53) 

Based on Eq. (5-49): 

𝑥−(𝛼𝑝𝑜𝑠𝑡+1)𝑒𝑥𝑝 (−
𝛽𝑝𝑜𝑠𝑡

𝑥
) =

𝛤(𝛼𝑝𝑜𝑠𝑡)

(𝛽𝑝𝑜𝑠𝑡)
𝛼𝑝𝑜𝑠𝑡

× 𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑜𝑠𝑡
(𝑥|𝑎) (5-54) 

Therefore: 

𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) ∝ 

(
𝛽𝑝𝑟𝑖𝑜𝑟

𝛼𝑝𝑟𝑖𝑜𝑟

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)√2𝜋
) × [

𝛤(𝛼𝑝𝑜𝑠𝑡)

(𝛽𝑝𝑜𝑠𝑡)
𝛼𝑝𝑜𝑠𝑡

× 𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑜𝑠𝑡
(𝑥|𝑎)] × 𝑃𝑂𝐷(𝑎) × 𝑓𝐴𝑗

(𝑎) 
(5-55) 

I.e.:  

𝑓𝐴𝑗,𝜎𝜀
2|𝐼(𝑗)(𝑎, 𝑥|𝐶𝑀) ∝ 

(𝛽𝑝𝑟𝑖𝑜𝑟
𝛼𝑝𝑟𝑖𝑜𝑟) × 𝛤(𝛼𝑝𝑜𝑠𝑡)

(𝛽𝑝𝑜𝑠𝑡
𝛼𝑝𝑜𝑠𝑡) × 𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)

× 𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑜𝑠𝑡
(𝑥|𝑎) × 𝑃𝑂𝐷(𝑎) × 𝑓𝐴𝑗

(𝑎) 
(5-56) 

Eq. (5-55) shows that the posterior joint distribution of the crack size and error 

variance. 

The marginal crack size distribution is then obtained by integrating the above 

equation over all of the possible values of 𝜎𝜀
2. It is noted 

that 𝑎, 𝛼𝑝𝑟𝑖𝑜𝑟 , 𝛼𝑝𝑜𝑠𝑡, 𝛽𝑝𝑟𝑖𝑜𝑟 , 𝛽𝑝𝑜𝑠𝑡 do not depend on the value of 𝑥, therefore: 

𝑓𝐴𝑗|𝐼(𝑗)
(𝑎|𝐶𝑀) ∝ 

(
𝛽𝑝𝑟𝑖𝑜𝑟

𝛼𝑝𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡
𝛼𝑝𝑜𝑠𝑡

×
𝛤(𝛼𝑝𝑜𝑠𝑡)

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)
) × 𝑃𝑂𝐷(𝑎) × 𝑓𝐴𝑗

(𝑎) × ∫ 𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑜𝑠𝑡
(𝑥|𝑎)𝑑𝑥

∞

0

 
(5-57) 

The area under probability distribution function is equal to one, i.e: 
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∫ 𝑓
𝜎𝜀

2|𝐴𝑗

𝑝𝑜𝑠𝑡
(𝑥|𝑎)𝑑𝑥

∞

0

= 1 (5-58) 

Therefore: 

𝑓𝐴𝑗|𝐼(𝑗)
(𝑎|𝐶𝑀) ∝ (

𝛽𝑝𝑟𝑖𝑜𝑟
𝛼𝑝𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡
𝛼𝑝𝑜𝑠𝑡

×
𝛤(𝛼𝑝𝑜𝑠𝑡)

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)
) × 𝑃𝑂𝐷(𝑎) × 𝑓𝐴𝑗

(𝑎) (5-59) 

Eq. (5-59) presented an analytical expression for the updated density function of 

crack size when a crack is detected and measured. Based on the equation, the 

updated distribution is proportional to: 

➢ Prior distribution 

➢ Probability of detection 

➢ A function that depends on the prior and posterior parameters of the density 

function of the error variance 

 Updating the Crack Size Distribution in a Tubular Joint  

To demonstrate the application it is assumed that a tubular joint is subjected to the 

stress ranges which are modelled by a lognormal distribution with a mean of 300MPa 

and coefficient of variation of 0.2. It is assumed that at the time of reference, the prior 

distribution of the uncertain crack depth (𝑎), is a lognormal distribution with a mean 

value of 5 mm and a coefficient of variation of 0.3. 

Imagine the inspection result is now available. Three different cases for the inspection 

result are considered to investigate the effect of the new data on the posterior 

distribution. These three cases are:  

• No crack detected 

• A crack is detected and measured equal to 6mm  

• A crack is detected and measured equal to 10mm  

Figure 5.23 shows the updated distributions for the crack size at the time of reference, 

for these three different results during the inspection activity. For obtaining the 

posterior distributions, Eq. (5-33) and Eq. (5-59) are used for the no crack detected 

and the crack detected cases, respectively. 
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Figure 5.23 shows that in case of no crack detected, the posterior distribution of crack 

size shifts to the left and has a smaller mean value than the prior mean value. On the 

other hand, when a crack is measured, the posterior distribution shifts to the right-hand 

side. Moreover, the mean value in the updated distribution becomes greater as the 

measured crack size increases. 

 

Figure 5.23. The updated probability density functions of the crack depth based on 

the inspection result 

As it can be seen from Figure 5.23, if the fatigue model is an accurate model for 

prediction (i.e. the measured crack size is close to the mean value of the prior 

distribution), the posterior distribution includes less uncertainty (narrower 

distribution), whereas if the model cannot predict fatigue crack size precisely 

(e.g. 𝑎𝑚 = 10𝑚𝑚), the posterior distribution is wider than the prior. In fact, in this case, 

the updated distribution involves more uncertainty. 

 Planning for Inspection  

Due to the existence of several uncertainties in the fatigue process, the predicted 

fatigue crack size might not represent the real crack size. Therefore, offshore platforms 

are periodically inspected throughout their lifetime to find out the level of degradation 

and to assure that existing defects in the structure do not exceed the critical size. 
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Regarding fatigue damage, the inspection results involve the detection and 

measurement of fatigue cracks. The inspection results can be used to improve the 

estimation of the crack size. A Bayesian procedure is utilised to update the fatigue 

crack size distribution in light of inspection results (See section 5.4). 

In Chapter 4, it was explained that two approaches exist for inspection planning. The 

first approach, which is called the time-based inspection approach, is to set the 

inspection interval to a fixed time, e.g. every five years. The other approach, which is 

called the reliability-based inspection approach, is to set the annual failure probability 

threshold to be a fixed value, and the inspection is carried out when the failure 

probability is more than the threshold. Figure 5.24 shows the reliability-based 

inspection plan for a tubular joint in case of no crack is detected during the inspection 

activity. 

 

Figure 5.24. Reliability-based inspection plan for a specific joint assuming no crack 

is found 

 Reliability-Based Inspection 

After updating the crack size distribution, the component probability of failure 

(reliability) can be updated using the fatigue limit state (Eq. (5-21)) and Monte Carlo 

simulations. Failure happens when the crack size reaches a critical size (𝑎𝑐), which is 

assumed equal to the thickness of the joint.  
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Consider 𝑎𝑘 as the crack size at time 𝑘 and 𝑓(𝑎𝑘) as the corresponding distribution. If 

𝑓0(𝑎𝑘) indicates the crack size distribution before updating and 𝑓1(𝑎𝑘) indicates the 

distribution after updating, the probability of failure before updating is estimated by: 

𝑃𝑓0  =  𝑃[𝑎𝑘 ≥ 𝑎𝑐] = 1 − ∫ 𝑓0(𝑎𝑘) × 𝑑𝑎
𝑎𝑐

0

 (5-60) 

And the probability of failure after updating is: 

𝑃𝑓1  =  𝑃[𝑎𝑘 ≥ 𝑎𝑐] = 1 − ∫ 𝑓1(𝑎𝑘) × 𝑑𝑎
𝑎𝑐

0

 (5-61) 

Figure 5.25 shows the probability of failure before and after updating, schematically. 

 

Figure 5.25. Probability of failure before and after updating 

After updating the probability of failure of the considered joint, the updated probability 

will be used for obtaining the next inspection time. Based on the crack size findings in 

the inspection activity, the next inspection activity will be performed: 

• In a shorter period of time than expected if the measured crack size is bigger than 

the predicted crack size 

• In a longer period of time than expected if no crack is found or the measured 

crack size is smaller than the predicted crack size 

Therefore, the results of each inspection activity have a crucial effect on the time 

interval for the next inspection activity.  
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 Tubular Joint Reliability Updating – Application of the Inspection Planning 

To calculate the probability of failure during the time, the fatigue proposed model 

based on the Paris law is used. By using Eq. (5-23) and the sampling method, the crack 

size distribution at each year can be obtained. Let’s assume an inspection activity is 

performed after five years (tinsp=5). For simplicity, it is assumed that the predicted 

crack size distribution at inspection time (tinsp=5) is a lognormal distribution with a 

mean value of 3mm and a standard deviation of 0.3mm. 

Two possible results are no crack is detected and a crack is detected and measured. To 

demonstrate the application, the following cases are considered for the inspection 

results: 

(I) No crack is detected at inspection time 

(II) A crack of 5mm is measured at inspection time 

Having provided new data (inspection results), the updated crack size distribution in 

case (I) and (II), is obtained by using Eq. (5-33) and Eq. (5-59), respectively. By using 

the updated distribution of the crack size at the time of inspection (tinsp=5), the joint 

reliability during the time is estimated.  

Figure 5.26 and Figure 5.27 show the variation of the joint probability and joint 

reliability as a function of time using the updated distributions at tinsp=5 years. 

 

Figure 5.26. Joint probability of failure over time (tinsp=5) 
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Figure 5.27. Joint reliability over time (tinsp=5) 

If case (I) happens as the result of the inspection, the green line in Figure 5.26 will be 

used for the next inspection activity and the time interval for the next inspection 

activity is increased. Whereas for case (II), the red line will be considered for the next 

inspection, and the time interval between inspection activities will be reduced.  

Depending on the inspection findings at inspection time (tinsp=5), the following 

decisions are made for the next inspection activity as: 

• In case of no crack is detected at inspection time (Case (I)): 

➢ The time interval is greater than the time-based inspection interval (which is 

assumed 5 years). Therefore, the next inspection will be performed at a later 

time, for instance at year 12 instead of year 10 (the inspection time will be 

based on the maximum acceptable probability of failure). 

➢ For the next updating process (when the inspection is performed at year 12), 

the green line in Figure 5.26 will be used as the prior at the inspection time 

(tinsp=12). 

• In case of a crack of 5mm is measured at inspection time (Case (II)): 

➢ The time interval is smaller than the time-based inspection interval. Therefore, 

the next inspection will be performed at an earlier time, for instance at year 8 
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instead of year 10 (the inspection time will be based on the maximum 

acceptable probability of failure). 

➢ For the next updating process (when the inspection is performed at year 8), the 

red line in Figure 5.26 will be used as the prior at the inspection time (tinsp=8). 

Figure 5.28 shows the prior probability of failure that will be used for the next 

inspection activity depending on the inspection findings at year 5. 

 

Figure 5.28. The prior probability of failure curves for the next inspection activity 

5.5 Sensitivity of the Bayesian Updating to the Input Parameters  

The Bayesian approach is explained in Section 5.2. Based on Bayes’ theorem, the 

posterior is proportional to the prior and likelihood. Therefore, the credibility of the 

posterior distribution depends on the credibility of the inputs. If the inputs are not 

reliable, the results of the Bayesian updating methods are not valid. 

Sensitivity analysis can be performed to find out which parameters have the greatest 

effect on the posterior distribution. Having found the important parameters, the user 

can focus on those parameters to obtain more data. 

When new information (inspection results) is available for the fixed offshore 

platforms, the posterior distribution of crack size for tubular joints can be updated by 

using a Bayesian approach. In this section, an expression for the posterior distribution 

based on the input parameters (e.g. prior distribution, likelihood function, POD curves, 
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etc.) is derived. After obtaining the expression, the sensitivity of the posterior to the 

inputs is developed. 

 Sensitivity of the Bayesian Updating to the Inputs - No Crack Detected 

Based on Eq. (5-33), in case of no crack detection, the posterior distribution depends 

on two parameters: 

1) The prior distribution of crack size 

2) Inspection tool’s quality, i.e. POD curve 

Therefore, in this section, the sensitivity of the posterior distribution (Bayesian 

updating) to these two inputs is investigated. 

 Sensitivity to the Prior Selection 

The prior distribution indicates the prior information of the parameter of interest and 

it is based on previous knowledge or the user’s judgement. When there is not enough 

knowledge about the parameter, the non-informative prior distribution is 

recommended. 

The prior crack size distribution can be assumed based on theoretical considerations, 

experts’ opinions, past experiences, or data reported in the literature. Different 

distributions such as exponential, normal, and lognormal are considered for the crack 

size in the literature [126].  

The following priors are considered to perform sensitivity analysis. In all cases, it is 

assumed that the expected value of the crack size is equal to 5mm. 

a) Normal distribution:      𝑓(𝑎) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(5, 1.5) 

b) Lognormal distribution:      𝑓(𝑎) ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(5, 1.5) 

c) Exponential distribution:      𝑓(𝑎) ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 

d) Uniform distribution:      𝑓(𝑎) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.4, 9.6) 

e) Sampling method:     The numerical approach presented in Section 5.4.1.3 

Figure 5.29 shows the selected prior distributions for the crack size. 
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Figure 5.29. Selected prior distributions for the crack size 

Figure 5.30 shows the posterior distribution for each prior when no crack is detected 

during the inspection activity. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 5.30. Posterior distributions of crack size for the different priors, (a) normal, 

(b) lognormal, (c) exponential, (d) uniform and (e) proposed model  

The above figures indicate that, regardless of the prior distribution, the posterior 

distributions shift to the left if no crack is detected. Therefore, the updated probability 

of failure, in this case, will be reduced which is reasonable.  

Figure 5.31 shows the posterior distributions of the crack size for different prior 

distributions. 

 

Figure 5.31. Posterior distributions of the crack size for the different priors (No crack 

detected) 
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Figure 5.31 illustrates that if the selected prior is either a normal or lognormal 

distribution, the posterior distributions still have a long tail (right tail), whereas, for 

the exponential and the proposed model distribution, the posterior distribution has a 

much smaller tail. Table 5.4 shows the probability of a crack being greater than 8mm 

before and after updating for each prior distribution. 

Table 5.4. Probability of a crack being greater than 8mm for different prior 

distributions  

Selected 

distribution 
Prior probability Posterior probability 

𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
𝑃𝑝𝑟𝑖𝑜𝑟

⁄  (%) 

Normal 𝑃𝑝𝑟𝑖𝑜𝑟  (𝑎 ≥ 8) = 0.0447 
𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  (𝑎 ≥ 8)

= 0.0069 
0.0069

0.0447⁄  (= 15%) 

Lognormal 𝑃𝑝𝑟𝑖𝑜𝑟  (𝑎 ≥ 8) = 0.0609 
𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  (𝑎 ≥ 8)

= 0.0086 
0.0086

0.0609⁄  (= 14%) 

Uniform 𝑃𝑝𝑟𝑖𝑜𝑟  (𝑎 ≥ 8) = 0.1744 
𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  (𝑎 ≥ 8)

= 0.0117 
0.0117

0.1744⁄  (= 7%) 

Exponential 𝑃𝑝𝑟𝑖𝑜𝑟  (𝑎 ≥ 8) = 0.1408 
𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  (𝑎 ≥ 8)

= 0.0033 
0.0033

0.1408⁄ (= 2% ) 

Proposed 

Model 
𝑃𝑝𝑟𝑖𝑜𝑟  (𝑎 ≥ 8) = 0.1982 

𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  (𝑎 ≥ 8)

= 0.0011 
0.0011

0.1982⁄  (= 0.6%) 

 

The last column in Table 5.4 indicates that if the prior distribution is assumed either 

exponential or based on the proposed model, the posterior distribution significantly 

will be affected in this case, e.g. the probability of a crack being greater than 8mm is 

sharply reduced. Therefore, in the not detection case, the posterior distribution is 

strongly affected by prior selection. Hence, the prior distribution should be selected 

based on reasonable assumptions. 

 Sensitivity to the POD Curves  

The posterior distribution is also being affected by the inspection tool’s quality, i.e. 

POD curve (𝑎𝑚𝑑). Three different cases are considered for the POD curve: 

• High quality inspection method:    𝑎𝑚𝑑 = 2𝑚𝑚 

• Medium quality inspection method:    𝑎𝑚𝑑 = 5𝑚𝑚 

• Low quality inspection method:      𝑎𝑚𝑑 = 10𝑚𝑚 

Figure 5.32 shows the posterior distributions for different inspection methods when 

different distributions are selected as a prior distribution.  
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(a) 

 

(b) 

 

(c) 

 

Figure 5.32. Posterior distributions for different inspection resolutions, (a) lognormal 

prior, (b) exponential prior, and (c) proposed model for prior 
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Results show that regardless of the resolution of the inspection technique, the posterior 

distributions shift to the left in case of no detection. However, when the low-quality 

inspection tool is used, the posterior is close to the prior. In fact, in this case, the prior 

dominates the posterior result. On the other hand, if the inspection tool has acceptable 

performance (high quality), data has a bigger effect on the posterior results. 

 Sensitivity of the Bayesian Updating to the Inputs- Crack Measured 

In Section 5.4.3.2, an analytical expression was presented to update the density 

function of crack size when a crack is detected and measured. Based on Eq. (5-59), the 

posterior (updated) distribution is proportional to: 

1) Prior distribution 

2) Probability of detection 

3) A function that depends on the prior and posterior parameters of the error 

variance distribution 

 Sensitivity to Prior Selection 

The same priors as those introduced in Section 5.5.1 are considered to perform 

sensitivity analysis. Again, it is assumed that the expected value of the crack size is 

equal to 5mm. However, in this section, it is assumed that a crack of 6mm is measured 

during the inspection activities. 

Figure 5.33 shows the posterior distribution for each prior when a crack of 6mm is 

measured during the inspection activity. 

 
(a) 

 

(b) 
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(c) 

 

(d) 

 
(e) 

Figure 5.33. Posterior distributions of crack size for the different priors, (a) normal, 

(b) lognormal, (c) exponential, (d) uniform and (e) proposed model  

Figure 5.33 shows that regardless of the prior distribution, the posterior distribution is 

influenced by the observed crack size which is 6mm crack. 

Figure 5.34 shows the posterior distributions of the crack size for different prior 

distributions in the case of a 6mm crack being measured. As it can be seen from Figure 

5.34, if the prior is selected either exponential distribution or based on the proposed 

model, the posterior distributions have a long tail (right tail), whereas, for the normal 

and lognormal distributions, the posterior distribution only has a small tail. 

This is completely opposite of the results obtained in the ‘No crack detected’ case. It 

was shown in Section 5.5.1 that in the ‘No crack detected’ case if the prior is selected 

as either normal or lognormal distributions, the posterior distributions have a long tail. 
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Figure 5.34. Posterior distributions of crack size for different prior distributions 

 Sensitivity to POD Curves  

Based on Eq. (5-59), the posterior distribution is also being affected by the inspection 

tool’s quality, i.e. POD curve (𝑎𝑚𝑑). Three different cases (as explained in Section 

5.5.1) are considered for the POD curve. 

Figure 5.35 shows the posterior distributions for different inspection methods when a 

lognormal distribution is selected as a prior distribution. It can be seen that, in this 

case, the posterior distribution is not sensitive to the quality of the inspection method. 

It is a reasonable result because given that a crack has been detected, the quality of the 

inspection method does not have a significant effect on the posterior. 

 

Figure 5.35. Prior and posterior distributions for different inspection resolutions 
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 Sensitivity to the Error Model 

The associated error (휀) which involves both measurement and model error was 

explained in Section 5.4.3.2. A normal distribution with a mean value equal to zero 

and an uncertain variance (𝜎2) is assumed for the associated error. The conjugate prior 

and posterior distributions for the variance of error (휀) are inverse gamma distribution. 

Two different priors are considered for the distribution of variance: 

• Non-informative prior: If the values of 𝛼 and 𝛽 are selected close to zero (e.g. 

0.01), then these values yield a non-informative prior for the variance distribution. 

• Informative prior: Expert’s knowledge is required for the selection of an 

informative prior for the error variance distribution. The informative prior can be 

selected based on the expert’s opinion about how the predicted fatigue model 

represents reality. Here, for the informative prior of the variance of the error, the 

values 𝛼 and 𝛽 are taken equal to 3 and 2, respectively.  

Figure 5.36 shows the informative and non-informative priors for the parameter of 

interest (error variance). 

 

Figure 5.36. Informative and non-informative prior distributions for error variance 

When a new inspection result is available, 𝛼𝑝𝑜𝑠𝑡 and 𝛽𝑝𝑜𝑠𝑡 can be obtained by using Eq. 

(5-48). Figure 5.37 shows the posterior distribution for error variance when a crack of 

6mm is measured. 
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Figure 5.37. Posterior distributions for informative and non-informative priors 

Figure 5.38 shows the sensitivity of the posterior distribution of the crack size to the 

error variance model when three different prior distributions are considered for crack 

size (a crack of 6mm is measured). 

 

(a) 

 
(b) 
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(c) 

Figure 5.38. Effect of error variance on the posterior distributions of crack size for 

(a) lognormal prior, (b) exponential prior, and (c) proposed model prior when a 6mm 

crack is measured 

Figure 5.38 demonstrates that if a non-informative prior for the error variance is 

chosen, the posterior distribution of the crack size is dominated by data, whereas if an 

informative prior is selected for the error variance, the posterior is much affected by 

the prior distribution of crack size. 

 Sensitivity of the Bayesian Updating to the No. of Inspections 

Regardless of the employed NDT technique (i.e. 𝑎𝑚𝑑 value), the chance of finding the 

defects increases if the inspections are independently repeated. If 𝑘 independent 

inspections are implemented, the probability of finding a crack is obtained as: 

𝑃(𝐶𝑟𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) =  𝑃(𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘) 

                                               = 1 − 𝑃(𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

                                               = 1 − 𝑃(𝐸1
̅̅ ̅ ∩ 𝐸2

̅̅ ̅ ∩ …∩ 𝐸𝑘
̅̅ ̅) 

(5-62) 

Where 𝐸𝑖 an event in which a crack is detected in the ith inspection. Moreover, 𝐸�̅� the 

complement of the event 𝐸𝑖 , i.e. the probability of not detection of a crack in inspection 

No. 𝑖.  

Assuming inspection events are statistically independent events:  

𝑃(𝐶𝑟𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − [𝑃(𝐸1
̅̅ ̅) × 𝑃(𝐸2

̅̅ ̅) × …× 𝑃(𝐸𝑘
̅̅ ̅)] (5-63) 

Using Eq. (5-30): 
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𝑃(𝐶𝑟𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − [𝑒
−

𝑎
𝑎𝑚𝑑 × 𝑒

−
𝑎

𝑎𝑚𝑑 × …× 𝑒
−

𝑎
𝑎𝑚𝑑] = 1 − 𝑒

−𝑘×
𝑎

𝑎𝑚𝑑 (5-64) 

Eq. (5-64) indicates that even with a poor inspection technique, a reasonable success 

can be expected if the inspection can be repeated several times. The equation is valid 

if the inspections are independent. In practice, it is hard to achieve by the same 

inspectors since the results probably are influenced in each inspection by what the 

inspectors had found during the earlier inspections [132]. Moreover, in reality, several 

inspections are not carried out for a particular joint at a specific time. 

 Not Detected Case 

Figure 5.39 shows the effect of the repeated inspections on the posterior for different 

prior distributions of crack size. 

 

(a) 

 
(b) 

 
(c) 

Figure 5.39. Effect of repeated inspections on the posterior distributions, (a) 

lognormal prior, (b) exponential prior, and (c) proposed model prior (no crack is 

detected) 
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The results show that even a low-quality inspection method is employed, if the 

repeated inspection results (at a particular location) reveal that no crack is detected, 

the uncertainty in the posterior distribution will be reduced. It was mentioned that the 

inspections should be independent. 

However, the prior distribution still has a great effect on the posterior. If the prior is 

selected based on the proposed model, performing several inspections (more than two 

inspections) does not change the posterior distribution significantly (right tail), 

whereas, if the prior is a lognormal distribution, performing several inspections is 

valuable because the uncertainty in the posterior will be reduced considerably. 

 Crack Measured Case 

Figure 5.40 shows the effect of the repeated inspections on the posterior distributions 

in the case of crack measurement. Here, the prior distribution is assumed lognormal 

with a mean value of 5mm. Three different situations are considered based on the 

number of repeated inspections: 

• One inspection:  𝑎𝑚 = 6 

• Two inspections: (𝑎𝑚)1 = 5,     (𝑎𝑚)2 = 7 

• Three inspections: (𝑎𝑚)1 = 5,     (𝑎𝑚)2 = 6,     (𝑎𝑚)3 = 7 

It is noted that the mean value of the measured crack size is assumed equal to 6mm in 

each situation. Figure 5.40 illustrates that by increasing the number of repeated 

inspections, the posterior distribution shifts to the inspection results. Moreover, the 

uncertainty of the posterior distribution will be reduced. 
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Figure 5.40. Effect of repeated inspections on the posterior distributions (prior: 

lognormal) 

It should be noted that if there are 𝑛1 + 𝑛2 inspections in which the first 𝑛1 inspections 

do not detect any cracks and in each of the following 𝑛2 a crack is detected and 

measured, the probability distribution of the crack size can be updated by applying 

consecutively 𝑛1 times Eq. (5-32) and then 𝑛2 times Eq. (5-59).  

 Sensitivity of the Bayesian Updating to the Prior-Data Conflict 

One important issue in the Bayesian inference is that the posterior has a strong 

dependence on the prior. In particular, when data is limited or unreliable, the actual 

estimate obtained by Bayesian techniques relies heavily on prior knowledge, expressed 

as a prior distribution. Consider a situation in which there is a prior-data conflict, i.e. 

the observed data is unexpected under the prior. Moreover, the sample size is not large 

enough to eliminate the influence of the prior [133]. 

In this section, the sensitivity of the posterior on potential prior-data conflict is 

considered. Here, it is assumed that the sample size is not sufficiently large to discard 

the possibly invalid prior knowledge and thus to rely on data only. 

It will be expected that the posterior distribution has a bigger variance (uncertainty) in 

the situation of prior-data conflict. However, it can be shown that depending on the 

prior selection, the posterior variance will be reduced even in the prior-data confliction. 

This case occurs, in particular when adopting conjugate priors. This is another 

disadvantage of the conjugate methods. As a simple demonstration that conjugate 
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models might not react to prior-data conflict reasonably, a normal model with an 

unknown mean and a known variance is described. 

To illustrate the results, it is assumed that the data is normal with an unknown mean 𝜇 

and a known variance 𝜎2. Based on Table 5.1, the distribution of the parameter of 

interest (which is 𝜇) is normal distribution as: 

𝜇 ~ 𝑁 (𝜇0, 𝜏0
2) (5-65) 

The posterior expectation is obtained as (See Appendix A): 

𝜇1 = (

1
𝜏0

2⁄

1
𝜏0

2⁄ + 𝑁
) × 𝜇0 + (

𝑁

1
𝜏0

2⁄ + 𝑁
) × �̅� (5-66) 

The posterior expectation is a simple weighted average of the prior mean (𝜇0) and the 

mean value of the new data (�̅�) with weights 1
𝜏0

2⁄  and 𝑁, respectively.  

The posterior variance is (See Appendix A): 

1

𝜏1
2 =

1

𝜏0
2 + 𝑁 (5-67) 

Eq.(5-67) illustrates that the variance of the posterior distribution is getting smaller 

automatically by providing any new information. 

Now, imagine that the data is rare but we are very confident about the prior 

information. Therefore, a small value for 𝜏0
2 is chosen. A small value for 𝜏0

2 is resulting 

in high weight for the prior mean (𝜇0) in the calculation of the posterior mean (Eq. 

(5-66)). The posterior distribution will be located somewhere around a mean between 

𝜇0 and �̅�, and it will be even more pointed as the prior, because 𝜏1
2 is smaller than 

𝜏0
2 (Eq. (5-67)). The posterior indicates that we can be quite sure that the mean is 

around 𝜇1, regardless if 𝜇0 and �̅� are near to each other or not (i.e. prior-data conflict). 

On the other hand, the posterior variance does not depend on prior-data conflict; 

therefore, the variance distribution is insensitive to prior-data conflict. Even if one is 

not confident about the prior knowledge (i.e. assigning a relatively large variance to 

the prior), the posterior mean is less influenced by the prior mean, but the posterior 

variance still is getting smaller no matter if the data support the prior information or 

not. 
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In performing the Bayesian updating process, great care should be considered in case 

of prior-data conflict. Results of the Bayesian updating will be inaccurate if the 

updating is performed regardless of the prior-data conflict, even in the case of 

reduction in the posterior uncertainty. For example, assume normal observation for 

data with an unknown mean and known variance 𝜎2 equal to one (i.e. 𝑥~𝑁(𝜇, 1)) which 

𝜇 is the parameter of interest with the following distribution: 

𝜇 ~ 𝑁 (𝜇0 = 0, 𝜏0
2 = 1) (5-68) 

Now, let’s assume there is an observation of 𝑥 = 10 which conflicts with the 

considered prior (Eq. (5-68)). The Bayesian updating process will lead to: 

𝜇1 = (

1
𝜏0

2⁄

1
𝜏0

2⁄ + 𝑁
) × 𝜇0 + (

𝑁

1
𝜏0

2⁄ + 𝑁
) × �̅� = (

1

1 + 1
) × 0 + (

1

1 + 1
) × 10 = 5 

1

𝜏1
2 =

1

𝜏0
2 + 𝑁 =

1

1
+ 1 = 2 → 𝜏1

2 = 0.5 

(5-69) 

Although the variance is reduced from 𝜏0
2 = 1 to 𝜏1

2 = 0.5, but the expected value is 

located around 𝜇 = 5, a value supported neither by prior nor data. Figure 5.41 shows 

the prior and posterior distributions for this sample. 

 

Figure 5.41. Prior and posterior distributions 

As a general practice, in the case of prior-data conflict, the data is usually given priority 

and it is the prior distribution that is called into question and rejected if necessary 
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[133]. A more sophisticated and detailed model will be needed in each case of prior-

data conflict. 

5.6 Summary 

In this chapter, the Bayesian inference for updating the uncertainties is explained. Two 

different approaches for updating the crack size distribution are introduced; the 

analytical method (conjugate) and the numerical method. The main advantage of using 

the conjugate method is having known posterior distributions. The posterior can be 

easily obtained when new information is available. However, conjugate priors contain 

substantial assumptions. In fact, in the conjugate method, priors have a strong 

influence on the posterior compared to the influence of the data. A numerical method 

is a general approach for Bayesian updating which is used to obtain the posterior by 

multiplying likelihood function and prior distribution directly. By using the numerical 

method, data dominates the posterior distribution. However, the numerical method is 

computationally expensive. 

When the inspection data is available for a particular tubular joint, it is reasonable to 

use the numerical method due to several assumptions included in the conjugate 

method. However, when the inspection data is available for several joints (with similar 

conditions), the conjugate method might be preferred.  

In this chapter, the effect of different parameters and inputs on the updated distribution 

of crack size is investigated. In general, the outcome of the inspection results is either 

no crack detected or a crack is detected and measured. Therefore, two different 

expressions for the posterior probability distribution of the crack size are obtained. If 

the result of the inspection indicates no crack detection, the posterior is dependent on 

two parameters; the prior distribution and POD curve.  

In the case when a crack is measured, an uncertain error is defined as the logarithmic 

difference between measured crack size during the inspection and crack size predicted 

by the fracture mechanics model. The uncertain error is assumed to have a normal 

distribution with a known mean and uncertain variance. Therefore, a conjugate 

distribution for the variance of the uncertain error can be considered. In this case, the 

posterior distribution depends on the POD curve, the prior distribution, and also the 

variance of the error.  
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After obtaining the posterior expression in each case, the sensitivity of the posterior 

distribution to the inputs is taken into account and the results are explained. Some 

important results are: 

• Regardless of the inspection outcome, the selected prior distribution has a great 

effect on the posterior distribution. The posterior distribution of the crack size is 

very sensitive to the prior distribution. Therefore, the prior distribution should be 

chosen based on reasonable assumptions and the expert’s knowledge. 

• The quality of the inspection methods is an important input to the posterior 

distribution in the ‘not detected’ case, whereas the posterior distribution is not 

sensitive to the POD curve in the ‘crack measured’ case. 

• The posterior distribution in the ‘crack measured’ case is also sensitive to the error 

between predicted and measured crack size. A lognormal distribution is assigned 

to the error and the variance of the error is assumed as an uncertain parameter. 

Results show that if a non-informative prior is selected for the error variance, the 

posterior distribution of the crack size is dominated by data, whereas if an 

informative prior is selected, the posterior is moved into the prior distribution of 

crack size. 

• By repeating the inspection activity for a tubular joint, the uncertainty in the 

posterior distribution will be reduced.  

Finally, time-varying reliability is assessed based on the updated distributions of the 

crack size. The results indicate that in the ‘not detected’ case, the corresponding 

reliability is increased in comparison to the prior reliability. On the other hand, when 

a crack is measured, depending on the results of inspections, updated reliabilities may 

be higher or lower than the original values. If the measured crack is bigger than the 

mean value of the prior distribution, the reliability is reduced. Depending on the 

inspection findings at inspection time: 

• The time interval for the next inspection activity is greater than the time-based 

inspection interval (in case of no crack is detected). 

• The time interval for the next inspection activity is smaller than the time-based 

inspection interval (in case of a crack is measured).  
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6 . UPDATING THE DISTRIBUTIONS OF ALL UNCERTAIN 

PARAMETERS 

6.1 Introduction 

Fatigue damage accumulates during a structure’s lifetime as crack sizes increase. The 

accumulation of damage causes deterioration of the component capacity and increases 

the probability of failure. To assess the state of damage, offshore platforms are 

periodically inspected. After an inspection of a structure, the perception of the 

structure’s condition can be improved. A Bayesian framework can be used to update 

the probability distributions of the uncertainties such as parameters of fracture 

mechanics and crack size in tubular joints using information from inspection reports.  

It was explained in Chapter 5 how to incorporate inspection results to update the 

probability distribution of crack size in a tubular joint using different Bayesian 

methods. After updating the distribution of the crack size, it is possible to update the 

estimation of joint reliability and system reliability. 

The main purpose of this chapter is to present and investigate a novel methodology to 

update the probability distributions of all uncertain parameters (including the crack 

size) when new information becomes available. Three different categories of 

uncertainties will be updated using this methodology: 

• Fatigue crack size (𝑎); 

• POD curve (𝑎𝑚𝑑); 

• Uncertainties involved in the predicted fatigue crack size (are also called “input 

variables”): 

➢ Initial crack size (𝑎0) 

➢ Crack growth parameter (𝐶) 

➢ Stress range (𝑆) 

➢ Uncertainty in estimation of the geometry function (ɛ𝑌) 

As it was explained in Chapter 5, the posterior distribution of an uncertain parameter 

is dependent on both prior distribution and new information. In this chapter: 
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Section 6.2 introduces the proposed approach for updating the distributions of all 

uncertain parameters involved in the fatigue model. Based on the provided flowchart, 

two sets of estimations are required for obtaining the updated distributions. These two 

sets are called “simulated reality” estimations and “prior” estimations. 

Section 6.3 explains how to obtain the posterior (updated) distributions of the uncertain 

parameters. To obtain the posterior distributions, two sets of estimations are required: 

Simulated reality estimations and Prior estimations.  

The credibility of the updating process is the main concern in any updating application. 

The reliability of the proposed approach is investigated in Section 6.4 to Section 6.7: 

• Section 6.4 investigates the sensitivity of the posterior distributions to the inputs. 

The posterior distributions are affected by both prior and simulated reality 

distributions. Therefore, sensitivity analysis is performed to find out the 

influence of each input on the posterior distribution.  

• In the proposed approach in Section 6.3 for obtaining the posterior distributions, 

it is assumed that several inspection results (observations) are available. Section 

6.5 explains the modification of the proposed approach when only one inspection 

result is available. 

• Section 6.6 investigates the reliability of the proposed approach in case of 

inappropriate prior selection. This section is provided to find out when the 

proposed approach might lead to poor results. 

• The proposed approach can update all uncertain parameters including crack size. 

However, the crack size distribution can be also updated by using the 

conventional Bayesian methods (i.e., analytical, or numerical) that were 

introduced in Chapter 5. Since the crack size distribution can be updated by both 

approaches (Chapter 5 and Chapter 6), Section 6.7 compares the results of these 

two methods and provides some useful suggestions for platforms’ 

operators/owners.  

To help users to implement the proposed approach in practice, Section 6.8 provides 

guidance for using the proposed approach by explaining the framework, advantages, 
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and limitations. Finally, Section 6.9 summarises the proposed approach and some 

important results.  

6.2 Proposed Approach for Updating All Uncertain Parameters - Overview 

To obtain the updated distributions for the uncertain parameters, like any Bayesian 

approach, two sets of estimations are required: 

• The previous knowledge about the uncertain parameters (i.e., prior estimation) 

• New information from the inspection activities 

Figure 6.1 shows the flowchart of the proposed approach.  

 

Figure 6.1. Flowchart of the proposed approach for updating the distributions of all 

uncertain parameters  

As can be seen from Figure 6.1, the proposed approach for updating the distributions 

of uncertain parameters consists of three main estimations: 

(I). Statistics of the simulated reality (green box) 

(II). Prior estimations of uncertain parameters (blue box) 

(III). Posterior estimates based on the application of the proposed method to update 

(II) by using (I), (red box) 
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The simulated reality distributions are useful for this research because, in reality, we 

do not have a full understanding of the Real-World statistics and a few inspection 

results (e.g., crack measurements) are the only information from the real world. 

Moreover, the updating methodology is tested using the simulated reality distributions 

to determine the effectiveness of the proposed Bayesian method and the limits beyond 

which the proposed approach results in poorer posterior estimates. The quality of the 

updating is determined in terms of how the posterior estimates become closer to (or 

possibly further away from) the simulated reality estimates.  

Within the updating methodology, the prior cracks (𝑎𝑝𝑟𝑖𝑜𝑟) obtained by sampling the 

prior distributions are compared with the simulated reality cracks (𝑎𝑟𝑒𝑎𝑙𝑖𝑡𝑦). The 

samples from the prior distributions that result in compatible cracks with the simulated 

reality cracks are used to update the prior distributions of the uncertain parameters. 

These updated distributions (which are also called posterior distributions) are then 

compared with the simulated reality distributions so that the effectiveness of the 

proposed Bayesian method can be determined. 

The proposed methodology results in all the prior distributions being updated. It would 

seem that the updating approach could work well but could also, depending on the 

prior estimates, find the posterior distributions that do not correspond well to the 

simulated reality. For instance, if the prior distribution of the crack growth parameter 

is underestimated (a very low mean value for the crack growth parameter) and the prior 

POD is overestimated (a very high resolution), then this over and underestimate may 

continue into the posterior distribution of the crack size. Therefore, for reliability 

analysis, this posterior distribution of crack size would result in an unsafe assessment 

of the considered joint. Therefore, this chapter also includes an investigation of poor 

prior estimates that may lead to these undesirable results. 

One of the main advantages of the proposed approach is future inspection planning 

and reliability analysis of the inspected platforms. Although updating crack size 

estimates is useful for a known critical location, the ability to improve estimates of 

other uncertain parameters (i.e., initial crack size, crack growth parameter, POD, etc.) 

is much more valuable. The updated distributions of the other uncertain parameters 
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can be used as the prior distributions for the next updating process (next inspection 

results). 

Note that although the proposed approach updates the uncertain parameters at one 

location, the method can be also applied to multiple locations at the same time where 

the stress range is the same. 

6.3 Proposed Approach for Updating All Uncertain Parameters 

 Simulated Reality Distributions 

 Crack Size Function 

In the Fracture Mechanics approach, the relationship between crack growth during a 

load cycle and a global parameter can be developed using the Paris law. By expanding 

the Paris law the relation between crack size and the number of cycles for the 

propagation of a crack can be obtained (for more detail see Chapter 3). The crack size 

at time 𝑡 is obtained as follows:  

𝑎𝑡 = {𝑎0

1−
𝑚
2  +  (1 −

𝑚

2
) × (ɛ𝑌𝑌 )𝑚 ×  𝜋

𝑚
2  ×  𝐶 ×  𝑁 ×  𝐸[𝑆𝑚]}

 
1

1− 
𝑚
2  (6-1) 

It can be seen that the crack size at a specific time 𝑡 is a function of uncertain 

parameters (input variables) such as: 

• Initial crack size, 𝑎0 

• Crack growth parameter, 𝐶 

• Stress range term,  𝐸[𝑆𝑚] (hereafter is shown by 𝑆) 

• Uncertainty in estimation of the geometry function (ɛ𝑌) 

When the crack size exceeds the critical crack size, it is assumed that the failure 

happens (See Section 3.8.3), i.e. the fatigue limit state function is defined as: 

 𝑔 = 𝑎𝑐 − 𝑎𝑡 (6-2) 

where 𝑎𝑐 is the critical crack size (which is considered equal to the wall thickness) and 

𝑎𝑡 is the crack size at time t. The wall thickness for the considered tubular joint is 0.875 

inches (22.22 mm).  
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Different guidelines (e.g., DNV [19], BS [47], JCSS [134]) introduce various 

distributions for the uncertain parameters. Since these distributions are obtained based 

on the experimental tests, they are not representative of the real distributions. For 

example, the crack growth parameter is estimated by fitting fatigue test data measured 

under controlled, laboratory-environment conditions which are different from the real 

conditions for offshore platforms [126]. 

The purpose of this section is to find out the simulated reality distributions for these 

uncertain parameters (input variables). 

 Previous Studies: Equivalent Initial Flaw Size  

The concept of equivalent initial flaw size (EIFS) was introduced by Gray and Rudd 

[135], and developed by Yang and Manning [136] in probabilistic risk analysis of 

aircraft structures. In the reliability analysis of aircraft structures, the distribution of 

the crack size at any given time in a joint is a highly influential parameter. In particular, 

the distribution of crack sizes at time zero (EIFS distribution) plays a critical role as it 

determines the subsequent distribution of crack sizes [135]. 

The EIFS is usually obtained by back extrapolating the observed crack sizes, together 

with the related life, to its corresponding size at time zero. This involves fitting a crack 

growth model to the crack size, hence, the EIFS is an artificial crack size. Therefore, 

for an observed crack size, the EIFS is not unique, i.e. for the same observed crack 

size, different EIFS values can be achieved by using different crack growth models 

[135]. Despite this shortcoming, the concept of the EIFS has been used by scientists to 

quantify the initial crack size distribution, due to its consistency with the crack growth 

to calculate the crack size at a given time. 

Torregosa and Hu developed a method to improve the accuracy of the probabilistic 

risk analysis of aircraft structures by updating the distribution of the initial flaw sizes 

based on the observations [137]. They used the flight hours of an aircraft to update the 

distribution of the initial flaw sizes, by using Bayesian methods. They proposed two 

Bayesian updating methods, the first one was using the flight hours of the particular 

aircraft and the second one was using the flight histories of similar aircraft in the fleet. 

In fact, in the second method, they improved the risk analysis result by utilising the 

flight histories of all aircraft in a fleet. They proposed an inexpensive method of 
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updating the PoF of a fleet of aircraft using the Bayesian approach without the use of 

NDT techniques [137]. 

Cross et al. [138] developed a Bayesian technique to improve the simultaneous 

estimation of the equivalent initial flaw size (EIFS) and crack growth rate distributions 

in fracture mechanics based on the inspection data. In their article, the crack growth 

rate parameters were sampled using the Markov chain Monte Carlo simulation method. 

Li et al. [139] used a Bayesian approach to jointly estimate the probability of detection 

(POD) and the crack size distribution at a given time. In their method, a ‘crack found’ 

signal during the inspection is used to update the POD estimate and the crack length 

distribution at a given time. 

Macheret and Teichman [140] used a Bayesian updating process to improve the 

estimate of the equivalent pre-crack size distribution. They were able to show that the 

probability of failure can be updated using only the successful flight hours of an 

aircraft, without using the inspection results themselves. 

In the EIFS approach, for a given set of crack sizes (for a particular joint at different 

years) with the corresponding crack growth curves, the EIFS distribution may be 

derived as follows:  

1) A specific crack size is defined as a baseline crack size (𝑎𝐵𝐶𝑆) 

2) For a given set of crack sizes, the crack sizes that are bigger than the baseline 

crack size are regressed using the crack growth curve 

3) For a given set of crack sizes, the crack sizes that are smaller than the baseline 

crack size are grown using the crack growth curve 

4) A time distribution for the baseline crack size is modelled by a suitable 

probability distribution 

5) A cumulative probability, FT(t), at the baseline crack size is transferred to an 

initial crack size with a cumulative probability of 1-FT(t) 

6) An appropriate distribution for the EIFS is obtained. 
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In fact, in this method, the time distribution for a specific crack size (baseline) is 

transferred to the initial crack size (EIFS) distribution. Figure 6.2 illustrates how EIFS 

distribution is obtained. 

 

Figure 6.2. Obtaining the equivalent initial flaw size (EIFS) distribution 

The EIFS distribution is determined by regressing the observed crack sizes from 

teardown inspections back to the beginning of its fatigue life or time zero [137]. 

However, to obtain a suitable distribution, sufficient data points are required, although 

the teardown inspection data are very limited and expensive to obtain. Therefore, 

obtaining an appropriate EIFS distribution is hard to achieve [137]. Since the EIFS 

distribution is derived based on the time distribution for baseline crack size, the quality 

of the EIFS distribution strongly depends on the number of available inspection results. 

For obtaining the EIFS distribution, it is assumed that the crack growth parameters are 

constant. After generating the EIFS distribution, the crack size distribution at any given 

time is achieved by growing the EIFS distribution using a crack growth law, as 

schematically illustrated in Figure 6.3. In this figure, 𝑓(𝑎0) represents the EIFS 

distribution. 
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Figure 6.3. Development of the crack size distribution using the crack growth curves 

 Derivation of Simulated Reality Distributions by Using EIFS Concept 

The concept of EIFS was explained in Section 6.3.1.2. However, this approach is used 

for the probabilistic analysis of aircraft, and it is only considered for obtaining the 

initial crack size distribution.  

In reliability analysis of the jacket platforms, the distribution of the crack size in a 

tubular joint (at any given time) is dependent on several uncertain parameters. Based 

on Eq.(6-1), the crack size is a function of initial crack size, crack growth parameter, 

stress range, and geometry function. Therefore, in this section, it is tried to obtain the 

equivalent distributions for these uncertain parameters by using the concept of EIFS. 

The obtained equivalent distributions for the uncertain parameters are hereafter called 

simulated reality distributions. 

For this purpose, it is assumed that several inspection results (let say five inspections) 

are available for a particular tubular joint at a specific time (e.g. after five years). It is 

noted that in real situations, due to the expensive cost of the underwater inspection, 

there are few inspection results available (usually one inspection) for each tubular 

joint. However, the method could be extended to results for one inspection at different 

locations that have almost the same conditions (i.e. joints that have identical 

configurations with the same material properties and are subjected to the same stress 

range). 
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For the purpose of illustration, for a particular tubular joint at a specific time (e.g. after 

five years) the observed cracks are assumed as: 

𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = {2 𝑚𝑚, 3𝑚𝑚, 4.2𝑚𝑚, 5.7𝑚𝑚, 6.7𝑚𝑚} (6-3) 

It is assumed that these inspections are independent of each other (e.g. inspections are 

carried out by different inspectors).  

The first step is to assign a distribution to the inspection results (observed cracks). The 

mean value and the standard deviation of the observed cracks are obtained as: 

(𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
𝑚𝑒𝑎𝑛

=
1

𝑛
∑(𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑖

𝑛

𝑖=1

=
1

5
∑(𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑖

5

𝑖=1

= 4.3𝑚𝑚 

(𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
𝑠𝑡𝑑

= √
1

𝑛 − 1
∑[(𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)𝑖 − (𝑎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)𝑚𝑒𝑎𝑛]2
𝑛

𝑖=1

= 1.92𝑚𝑚 

(6-4) 

In this study, a lognormal distribution with a mean value of 4mm and a standard 

deviation of 2mm is assigned to the observed cracks. This distribution is shown as: 

𝑎𝐵𝐶𝑆~𝐿𝑁(4𝑚𝑚,  𝐶𝑂𝑉 = 0.5) (6-5) 

To find out the equivalent distribution (simulated reality distribution) of each uncertain 

parameter, the same approach as explained in Section 6.3.1.2 (EIFS distribution) is 

utilised.  

• Simulated Reality Distribution of the Initial Crack Size (𝒂𝟎
𝒓) 

To obtain the simulated reality distribution for the initial crack size, the approach 

described in Section 6.3.1.2 is implemented. For this purpose, the mean values 

of the crack growth parameter, stress range, and geometry function are selected. 

Here, to derive the simulated reality distribution of the initial crack size, the 

sampling method is used. A large number of artificial cracks is generated based 

on the assigned distribution of the observed cracks (𝑎𝐵𝐶𝑆). For each randomly 

generated crack, the corresponding initial crack size (𝑎0) is obtained by the 

calculation of Eq.(6-1). 

Figure 6.4 shows how the simulated reality distribution of the initial crack size is 

obtained by using the proposed approach, schematically. As it was mentioned, a 



254 

 

large number of cracks are generated based on the assumed distribution, however, 

only three randomly generated cracks are shown in Figure 6.4. 

 

Figure 6.4. Obtaining the simulated reality (equivalent) distribution of the initial 

crack size  

Having obtained the initial crack size for each sample, the best distribution is 

fitted for the equivalent initial crack size histogram. Figure 6.5 shows the 

simulated reality distribution of the initial crack size based on the observed 

cracks. 

 

Figure 6.5. Obtained simulated reality (equivalent) distribution of the initial crack 

size 
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• Simulated Reality Distribution of the Crack Growth Parameter (𝑪𝒓) 

The next step is to find out the equivalent distribution of the crack growth 

parameter based on the observed crack. As it was mentioned, a lognormal 

distribution is assigned to the observed cracks (Eq. (6-5)).  

The same approach as described in Section  is utilised to derive the simulated 

reality distribution of the crack growth parameter. For this purpose, the mean 

value of the initial crack size and other uncertain parameters are used. 

By using the sampling method, the simulated reality distribution of the crack 

growth parameter is derived. Again, a large number of artificial cracks is 

generated based on the assigned distribution of the observed cracks (𝑎𝐵𝐶𝑆). 

For each randomly generated crack, the corresponding crack growth parameter 

is obtained by the calculation of Eq.(6-1). Figure 6.6 shows how the simulated 

reality distribution of the crack growth parameter is obtained by using the 

proposed approach, schematically. As it was mentioned a large number of cracks 

are generated based on the distribution, however, only four cracks are shown in 

Figure 6.6. 

 

Figure 6.6. Obtaining the simulated reality (equivalent) distribution of the crack 

growth parameter 

Having obtained the crack growth parameter value for each sample, the best 

distribution is fitted for the equivalent crack growth parameter distribution. 
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Figure 6.7 shows the simulated reality distribution of the crack growth parameter 

based on the observed cracks. 

 

Figure 6.7. Obtained simulated reality (equivalent) distribution of the crack 

growth parameter 

• Simulated Reality Distribution of the Stress Range (𝑺𝒓) 

The same approach as described in Section  is utilised to derive the simulated 

reality distribution of the stress range. For this purpose, the mean values of other 

uncertain parameters are used. Figure 6.8 shows the simulated reality distribution 

of the stress range based on the observed cracks. 

 

Figure 6.8. Obtained simulated reality (equivalent) distribution of the stress range 
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• Simulated Reality Distribution of the Geometry Function (𝜺𝒀
 𝒓) 

The same approach as described in Section  is utilised to derive the simulated 

reality distribution of the uncertainty in the geometry function. To obtain the 

simulated reality distribution of the uncertainty in the geometry function, the 

mean values of other uncertain parameters are used. Figure 6.9 shows the 

simulated reality distribution of the uncertainty in geometry function based on 

the observed cracks. 

 

Figure 6.9. Obtained simulated reality (equivalent) distribution of the uncertainty 

in geometry function 

Table 6.1 summarises the simulated reality distributions of the uncertain parameters. 

Table 6.1. Uncertain parameter statistics in the simulated reality case [N, mm] 

Uncertain Parameter Type Mean (2) COV (2) 

Initial crack size, 𝑎0
𝑟 (1) Lognormal 0.48 0.21 

Crack growth parameter, 𝐶𝑟 (1) Lognormal 2.4 x 10-12    0.18 

Stress range, 𝑆𝑟 (1) Lognormal 210 0.20 

Uncertainty in estimation of 

geometry function, ɛ𝑌
𝑟  (1) 

Lognormal 1.0 0.12 

Note: 

(1)  Superscript 𝑟 indicates the simulated reality distribution 

(2)  Mean and COV of the uncertain parameters are shown in Figure 6.5, Figure 6.7, Figure 6.8, Figure 6.9 
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After obtaining the simulated reality distributions for the input variables, the next step 

is to find out the simulated reality distribution of the crack size. 

 Simulated Reality Distribution of the Crack Size 

Having obtained the simulated reality distributions for the input variables, the 

simulated reality distribution of crack size can be achieved.  

Although a lognormal distribution is assigned to the observed cracks (Eq. (6-5)), a 

sampling method is used to obtain the simulated reality distribution of the crack size. 

The reason for using the sampling method is that the observations are limited to a few 

inspections. Therefore, assigning a distribution to the limited numbers of data points 

includes some inaccuracies (the assigned distribution in Eq. (6-5) is based on only five 

inspections).  

In the sampling method, 𝑁𝑟 =1000 random numbers are generated for each uncertain 

parameter based on their distributions introduced in Table 6.1. For each set of samples 

(e.g. for the kth sample set: 𝑎0𝑘
𝑟 , 𝐶𝑘

𝑟 , 𝑆𝑘
𝑟 and 휀𝑌𝑘

𝑟  ), the crack size (𝑎𝑘
𝑟𝑒𝑎𝑙𝑖𝑡𝑦

) is calculated 

based on Eq.(6-1). Although the real number of inspections may be low, using a large 

number of samples for this part of the research enables the way in which, the updating 

method deals with multiple variables to be better understood. 

A code has been written in Python to generate random samples for the uncertain 

parameters and to obtain the crack size distribution [131]. 

Figure 6.10 shows the normalised histogram of the simulated reality cracks. The 

normalised histogram is then used as a simulated reality distribution for the crack size. 

As can be seen from Figure 6.10, the obtained histogram of the crack size by using the 

sampling method has an acceptable shape since it is almost similar to the assigned 

distribution of the observed cracks. In the other words, the obtained simulated reality 

cracks (𝑎𝑟𝑒𝑎𝑙𝑖𝑡𝑦) is consistent with the observations (𝑎𝐵𝐶𝑆). 
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Figure 6.10. Obtaining the simulated reality distribution of the crack size using the 

sampling method 

 Estimation of POD Curve 

Several fatigue cracks usually exist in a welded connection such as a tubular joint in 

the offshore platforms. Not all of these existing cracks can be detectable. The 

probability of detection of a crack depends on the resolution of the inspection 

technique. There is a wide variety of NDT techniques for finding a crack. The 

probability of detection, POD, varies with crack size and the inspection technique 

employed. The probability of detection of a crack is usually given by [82]: 

𝑃𝑂𝐷 (𝑎)  =  1 −   𝑒 
− 

𝑎
𝑎𝑚𝑑 (6-6) 

where 𝑎𝑚𝑑 is the mean detectable size (mm) and it depends on the resolution of the 

inspection technique. It is noted that in general 𝑎𝑚𝑑  is an uncertain value, hence, a 

distribution can be assigned to it. 

It is assumed that the inspection activity is carried out with a specific device and the 

device manufacturer provides the resolution of the device. To demonstrate the 

approach, a lognormal distribution with a mean value equal to 2mm and a coefficient 
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of variation (COV) equal to 0.2 is assumed for the simulated reality distribution of the 

mean detectable size, i.e.: 

𝑎𝑚𝑑
𝑟 ~𝐿𝑁(2𝑚𝑚,  𝐶𝑂𝑉 = 0.2) (6-7) 

To find out which simulated reality crack can be detected, 𝑁𝑟 =1000 random numbers 

for  𝑎𝑚𝑑
𝑟  are selected based on its distribution. 

 Obtain the Detected Cracks 

In Section 6.3.1.4 and Section 6.3.1.5, a number of 1000 crack sizes (𝑎𝑟𝑒𝑎𝑙𝑖𝑡𝑦) and 1000 

mean detectable size (𝑎𝑚𝑑
𝑟 ) were generated, respectively. Therefore, for each crack 

size, a corresponding value of mean detectable size is available.  

In general, tiny cracks cannot be detected by using any NDT techniques. A criterion 

should be defined to show which crack size (with the corresponding 𝑎𝑚𝑑
𝑟 ) is detectable 

and which one is missed. The proposed criterion is described below: 

1) For each set of (𝑎𝑟𝑒𝑎𝑙𝑖𝑡𝑦, 𝑎𝑚𝑑
𝑟 )𝑗 , 𝑗 = 1, 2, … , 1000; (𝑃𝑂𝐷𝑟)𝑗  is calculated using 

Eq.(6-6) which is between zero and one. 

2) 𝑁𝑟 = 1000 random numbers are generated from a uniform distribution between 

[0,1], i.e.: 

(𝐶ℎ𝑎𝑛𝑐𝑒𝑟)𝑗 = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟,    𝑗 = 1,2, … , 1000 

3) A simulated reality crack is assumed as a detected crack; (𝑎𝑑𝑒𝑡 _𝑟𝑒𝑎𝑙)
𝑗
, if: 

(𝐶ℎ𝑎𝑛𝑐𝑒𝑟)𝑗 ≤ (𝑃𝑂𝐷𝑟)𝑗 ,    𝑗 = 1,2, … ,1000 

4) Otherwise, the simulated reality crack is assumed as a missed one. 

Figure 6.11 shows the PODs for both detected and missed cracks.  
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Figure 6.11. PODs for both detected/missed defects 

Figure 6.12 summarises the proposed approach for obtaining the detected cracks in the 

simulated reality case by using the sampling method. 
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Figure 6.12. The proposed approach for obtaining the detected cracks (simulated 

reality estimations) 

 Prior Estimations 

 Estimation of the Involved Uncertainties 

As it was shown in Eq. (6-1) the crack size at any time is a function of uncertain 

parameters (i.e., initial crack size, crack growth parameter, stress range term, and 

uncertainty in the estimation of the geometry function). 

The assumed distributions of these uncertain parameters have a great impact on the 

reliability analysis results. Therefore, it is crucial to choose the distributions for these 

parameters reasonably. In fact, the accuracy of the reliability analysis results depends 

on the assumed distributions.  

The prior distributions for the uncertain parameters can be assumed based on 

theoretical considerations, expert opinions, past experiences, or test results. Different 

distributions have been introduced in the literature.  
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In the previous studies, for the initial crack size distribution, both exponential (e.g., 

[52], [82]) and lognormal (e.g., [1], [15]) distributions were utilised whereas for the 

other uncertain lognormal distributions were used.  

Table 6.2 shows the considered prior distributions for the uncertain parameters. These 

distributions are selected to illustrate the application of the proposed approach. Section  

6.4.1 investigates the sensitivity of the proposed approach to the different prior 

distributions. 

Table 6.2. Statistics of the uncertainties [N, mm] 

Uncertain Parameter Type Mean COV(1) 

Initial crack size, 𝑎0
𝑝

 (2) Lognormal  0.4 0.35 

Crack growth parameter, 𝐶𝑝 (2) Lognormal 2.1 x 10-12 0.35 

Stress range, 𝑆𝑝 (2) Lognormal 180 (3) 0.35 

Uncertainty in estimation of the geometry 

function, ɛ𝑌
𝑝

 (2) 
Lognormal 1 0.2 

Note: 

(1) Coefficient of variation 

(2)  Superscript 𝑝 indicates the estimation of the prior distribution 

(3) Calculated for the critical component in fatigue analysis (SESAM software) 

 Prior Distribution for Crack Size 

The prior distribution of crack size can be assumed based on theoretical considerations, 

expert opinions, past experiences, or data reported in the literature.  

To generate the prior distribution of the crack size, the sampling method that is 

explained in Section 6.3.1.4 is used. A large number of random numbers (e.g. 𝑁𝑝=105) 

for each input variable (introduced in Table 6.2) is selected based on their distributions. 

For each set of samples (e.g. for the kth sample set, 𝑎0𝑘
 𝑝

, 𝐶𝑘
𝑝
, 𝑆𝑘

𝑝
 and ɛ𝑌𝑘

 𝑝
), the prior crack 

size (𝑎𝑘
𝑝𝑟𝑖𝑜𝑟

) is calculated based on Eq.(6-1). A large value of 𝑁𝑝 improves the 

probability that all relevant combinations of these uncertain parameters are included. 

Here, the number of samples is considered equal to 105. Therefore, 105 cracks are 

calculated by using Eq. (6-1). A code has been written in Python to generate random 

samples for the uncertain parameters and to obtain the prior distribution of the crack 

size [131]. 
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Figure 6.13 shows the histogram of the prior cracks after five years. The normalised 

histogram is then used as the prior distribution of the crack size.  

 

Figure 6.13. Prior crack size distribution obtained by using the sampling method 

 Estimation of POD Curves 

It was mentioned that the probability of detection of a crack depends on the resolution 

of the inspection technique. The probability of detection, POD, varies with crack size 

and the inspection technique employed. The probability of detection of a crack is 

obtained by using Eq. (6-6).  

For the prior estimation of the mean detectable size, a lognormal distribution with a 

mean value equal to 3mm and a coefficient of variation (COV) equal to 0.5 is assumed: 

𝑎𝑚𝑑
𝑝

~𝐿𝑁(3𝑚𝑚,  𝐶𝑂𝑉 = 0.5) (6-8) 

Here, a large COV is considered for 𝑎𝑚𝑑  to have the prior estimation as non-

informative as possible. Non-informative priors are intended to let the data 

(observations) dominate the posterior distribution. 



265 

 

To find out which prior crack can be detected, 𝑁𝑝 =105 random numbers for 𝑎𝑚𝑑
𝑝  is 

selected based on the defined distribution. 

 Obtain the Detected Cracks 

In Section 6.3.2.2 and Section 6.3.2.3, 𝑁𝑝 =105 simulations were generated for the 

crack size (𝑎𝑝𝑟𝑖𝑜𝑟) and the mean detectable size (𝑎𝑚𝑑
𝑝

), respectively. Therefore, for each 

crack size, a corresponding value of mean detectable size is available.  

The same criterion as introduced in Section 6.3.1.6 is considered to decide which crack 

size (with the corresponding 𝑎𝑚𝑑
𝑝

) is detectable and which one is missed: 

1) For each set of (𝑎𝑝𝑟𝑖𝑜𝑟, 𝑎𝑚𝑑
𝑝

)
𝑗
 , 𝑗 = 1, 2, … , 105; (𝑃𝑂𝐷𝑝)𝑗  is calculated using 

Eq.(6-6) which is between zero and one. 

2) 𝑁𝑝 = 105 random numbers are chosen from a uniform distribution between [0,1], 

i.e.: 

(𝐶ℎ𝑎𝑛𝑐𝑒𝑝)𝑗 = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟,    𝑗 = 1,2, … , 105 

3) A prior crack is assumed as a detected crack (𝑎𝑑𝑒𝑡 _𝑝𝑟)
𝑗
 if: 

(𝐶ℎ𝑎𝑛𝑐𝑒𝑝)𝑗 ≤ (𝑃𝑂𝐷𝑝)𝑗 ,    𝑗 = 1,2, … , 105 

4) Otherwise, the simulated prior crack size is assumed as a missed one. 

Figure 6.14 shows the PODs for both detected and missed cracks. As the figure shows, 

the majority of the missed cracks are tiny defects, which are quite impossible to detect 

using the specified NDT techniques.  
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Figure 6.14. PODs for both detected/missed defects 

Figure 6.15 summarises the proposed approach to obtain the prior distribution of the 

crack size by using the sampling method. 
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Figure 6.15. The proposed approach for obtaining the detected prior cracks 

 Posterior (Updated) Distributions of the Uncertain Parameters 

Bayes’ theorem states that the updated distribution of an uncertain parameter depends 

on two sets of information, the previous knowledge about the uncertain parameter 

(prior distribution), and the new information that is provided. Bayesian inference is a 

statistical inference in which Bayes’ theorem is employed to update the distribution of 

an uncertain parameter when new information becomes available. 

For the proposed approach in this Chapter, two sets of cracks are available. The 

detected prior cracks (previous knowledge) and detected cracks in the simulated reality 

case (new information which is obtained from the inspection results).  

To obtain the posterior distributions of the uncertain parameters, the concept of 

“Compatibility” is introduced. This is based on an idea mentioned in [141]. 

In this approach for obtaining the posterior distributions of the uncertain parameters, 

the following steps are taken: 

(I). Selection of the compatible prior cracks 



268 

 

The first step is to find out which prior estimations of cracks are compatible with 

the simulated reality cracks. For this purpose, each detected prior crack is 

compared with each simulated reality crack to determine whether it is compatible 

or not. If a prior crack is close to the simulated reality crack, that prior is accepted 

otherwise it is assumed as an unacceptable simulation.  

A prior estimation is defined as a compatible estimation if: 

|(𝑎𝑑𝑒𝑡_𝑝𝑟)
𝑖
− (𝑎𝑑𝑒𝑡 _𝑟𝑒𝑎𝑙)

𝑗
| < 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ×

(𝑎𝑑𝑒𝑡_𝑝𝑟)
𝑖
+ (𝑎𝑑𝑒𝑡 _𝑟𝑒𝑎𝑙)

𝑗

2
 (6-9) 

Where: 

• (𝑎𝑑𝑒𝑡_𝑝𝑟)
𝑖
: Detected prior crack,  𝑖 = 1,2, … , 𝑧𝑝

 

• (𝑎𝑑𝑒𝑡 _𝑟𝑒𝑎𝑙)
𝑗
: Detected crack in the simulated reality case, 𝑗 = 1,2, . . . , 𝑧𝑟 

• 𝑧𝑝: Number of detected prior cracks (is less than 105) 

• 𝑧𝑟: Number of detected cracks in the simulated reality case (is less than 

1000) 

• 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒: is assumed equal to 0.2 

Based on the compatibility definition, many prior cracks will not match any 

simulated reality crack. On the other hand, some prior cracks may match several 

simulated reality cracks. The number of possible matched simulations is: 

𝑁𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒  =  𝑧𝑝  ×  𝑧𝑟 (6-10) 

The number of compatible simulations is obtained from the code which has been 

written in Python [131].  

(II). Removing the incompatible prior estimates 

The concept of compatibility is defined by using the provided criterion 

introduced in Eq.(6-9). By using this criterion the prior cracks are divided into 

two categories: 

• Compatible prior simulations 

• Incompatible prior simulations 
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In this approach, for obtaining the posterior distributions of the uncertain parameters, 

the incompatible prior simulations are removed and the distributions of the compatible 

prior estimations are considered as the posterior distributions. 

By implementing this approach, the new data (which is the observed cracks) is used to 

obtain the simulated reality cracks (See Section 6.3). The simulated reality cracks are 

then utilised to update the prior distribution of the cracks (Section 6.3.3.1), the prior 

distribution of the uncertain parameters involved in the fatigue crack model (Section 

6.3.3.2), and the prior POD curve (Section 6.3.3.3).  

 Posterior Distribution of the Crack Size  

Figure 6.16 illustrates how to obtain the posterior cracks by using the compatible 

priors. 

 

Figure 6.16. Obtaining the posterior cracks 

The assigned distribution to the compatible prior cracks is considered as the posterior 

distribution of the crack size. Figure 6.17 shows the posterior distribution of crack size 

based on the compatible prior cracks. Although both prior cracks and simulated reality 

cracks have a great effect on the posterior distribution, it can be seen that the posterior 

distribution moves towards the simulated reality distribution.  

Moreover, as can be seen from Figure 6.17, the variance of the posterior distribution 

is reduced in comparison with the prior distribution (i.e. the posterior distribution is 

narrower than the prior distribution). Therefore, by implementing the new information 
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from the inspection results (i.e. observed cracks), the updated distribution of the crack 

size is less uncertain than the prior knowledge. 

 

Figure 6.17. Posterior distribution of the crack size 

 Posterior Distributions of the Uncertain Parameters Involved in the Fatigue 

Crack Model 

This section describes how to update the distributions of the uncertainties involved in 

the fatigue crack size. Based on Eq. (6-1), the fatigue crack size is a function of the 

following uncertain parameters: 

• Initial crack size (𝑎0) 

• Crack growth parameter (𝐶) 

• Stress range (𝑆) 

• Uncertainty in estimation of geometry function (휀𝑌) 

Therefore, each detected prior crack corresponds to a set of the above-mentioned 

parameters. For example, the kth detected prior crack (𝑎𝑘
𝑑𝑒𝑡_𝑝𝑟

) corresponds to 

𝑎0𝑘
𝑝

, 𝐶𝑘
𝑝
, 𝑆𝑘

𝑝
 and 휀𝑌𝑘

 𝑝
.  

Let’s assume a specific prior crack (e.g. 𝑎𝑗
𝑑𝑒𝑡_𝑝𝑟

) is an incompatible prior crack, i.e., it 

doesn’t satisfy the Eq.(6-9). Therefore, the combination of the corresponding input 
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variables (𝑎0𝑗
𝑝

, 𝐶𝑗
𝑝
, 𝑆𝑗

𝑝
 and 휀𝑌𝑗

 𝑝
) are not acceptable due to resulting in an invalid crack 

size (incompatible prior crack). Hence, these values are removed from the initial set of 

simulations. On the other hand, if a prior crack is compatible with the simulated reality 

crack, the corresponding input variables are appropriate values because of the result in 

a valid crack size. 

As it was mentioned, all detected prior cracks are compared to all simulated reality 

cracks. For those prior cracks that are compatible with the simulated reality, the 

corresponding input variables are considered as appropriate values and are kept to use 

for the posterior distributions. 

The following figures show the posterior distributions for the uncertain parameters. It 

can be seen from the figures that the posterior distributions of the uncertain parameters, 

move towards the simulated reality distributions. This can be seen clearly in Figure 

6.19. In this figure, in point “A” the posterior distribution is ascending, although the 

prior distribution is descending. This illustrates that the posterior distribution tends to 

shift to the simulated reality distribution.  

Moreover, in all figures, the most probable amount of the uncertain parameter (i.e. 

Mode values) shifts towards the Mode value of the simulated reality distribution, 

although the posterior distribution shape is affected by both prior and simulated reality 

shapes. 

Another important outcome of these figures is that although the posterior distribution 

shifts to the simulated reality case, the uncertainty of the posterior distributions mainly 

increases due to the involved uncertainties in both prior and simulated reality cases. 

However,  the uncertainty of the posterior distribution of the crack size decreases 

(Section 6.3.3.1). That is because the inspection results include information about the 

crack size (i.e. observed cracks). The inspection results do not provide any information 

about the other uncertain parameters such as initial crack size, etc. 
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Figure 6.18. Posterior distribution of the initial crack size (𝑎0) 

 
Figure 6.19. Posterior distribution of the crack growth parameter (𝐶) 

 
Figure 6.20. Posterior distribution of the stress range (𝑆)  
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Figure 6.21. Posterior distribution of the uncertainty in the estimation of geometry 

function (휀𝑌) 

After obtaining the posterior distributions of the uncertain parameter (i.e. initial crack 

size, crack growth parameter, stress range, and geometry function), these distributions 

can be used as the prior distributions for the next updating process when new 

inspection results become available (Figure 6.1).  

 Updated POD Curve 

The same approach as described in Section 6.3.3.2 is utilised to update the POD curve. 

Figure 6.22 shows the best fit for the POD curve based on the compatible prior 

simulations. It can be seen that the updated POD curve moves towards the simulated 

reality curve. 
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Figure 6.22. Updated POD curve 

6.4 Reliability of the Proposed Approach: Sensitivity to the Inputs 

It was shown that the posterior distributions of the uncertain parameters are affected 

by both prior distributions and the simulated reality distributions (which are obtained 

from the new information, i.e., inspection results). The sensitivity of the updating 

process is a crucial part of any updating approach. The sensitivity analysis is performed 

to find out which inputs have great influences on the posterior distribution. Knowing 

the important parameters, the user (owner) can focus on gathering more data on these 

crucial parameters. 

 Sensitivity of the Posterior Distributions to the Prior Distributions 

The prior distributions for the uncertain parameters can be assumed based on 

theoretical considerations, expert opinions, past experiences, or test results. Different 
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distributions have been introduced by recommendation guidelines. Table 6.3 shows 

the statistics of the initial crack size and crack growth parameter which have been 

proposed by different guidelines. 

Table 6.3. Statistics of the uncertain parameters [N, mm] 

Variable DNV 95-3204 [19] BS 7910 [47] JCSS [134] 

Initial crack size, 

𝑎0
𝑝

 Exp (0.11, COV = 1) --- LN (0.15, 0.66) 

Crack growth 

parameter, 𝐶𝑝 LN (1.27x10-13, 0.55) LN (5.16x10-12, 0.78) LN (5.86x10-13, 0.60) 

 

To find out the effect of the prior distributions on the posterior, different distributions 

with different COVs (in comparison with those introduced in Section 6.3.2.1) are 

considered. Table 6.4 shows the statistics of the prior distributions for performing the 

sensitivity analysis. 

Table 6.4. Statistics of the different prior distributions for input variables [N, mm] 

Variable 
Case (I) 

(Introduced in Section 6.3.2.1) 

Case (II) 

(New Prior Distributions) 

Initial crack size, 𝑎0
𝑝

 LN (0.4, COV = 0.35) Exp (0.4, COV = 1) 

Crack growth parameter, 

𝐶𝑝 
LN (2.1 x 10-12, COV = 0.35) LN (1.5 x 10-12, COV = 0.5) 

Stress range, 𝑆𝑝 LN (180, COV = 0.35) LN (210, COV = 0.5) 

Uncertainty in estimation 

of geometry function, ɛ𝑌
𝑝

 
LN (1.0, COV = 0.2) LN (1.1, COV = 0.4) 

 

 Sensitivity to the Prior Distribution of Initial Crack Size (𝒂𝟎
𝒑
) 

To take into account the effect of the selection of different prior distributions for the 

initial crack size (𝑎0
𝑝
) on the posterior distributions of all uncertain parameters, an 

exponential distribution, and a lognormal distribution (as introduced in Table 6.4) are 

considered. Figure 6.23 shows these two distributions. 
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Figure 6.23. Different prior distributions of the initial crack size  

• Sensitivity of the posterior distribution of the crack size to 𝑎0
𝑝
 

Figure 6.24 shows the posterior distributions of the crack size for both prior 

distributions of the initial crack size (by using the proposed approach). Although 

both prior distributions of the initial crack size have the same mean value (0.4 

mm), the prior distribution of the initial crack size affects the posterior 

distribution of the crack size, especially in small crack sizes.  

 

Figure 6.24. Posterior distributions of the crack size for different prior 

distributions of the initial crack size  
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Nevertheless, the shape of the posterior distributions for the larger crack sizes 

(which are important for the probability of failure calculation, see Eq. (6-2)) is 

similar. 

Since the COV of the initial crack size in the exponential distribution is greater 

than COV in the lognormal distribution, the probability of bigger initial cracks in 

the exponential distribution is greater than the lognormal distribution (Figure 

6.23). Bigger initial cracks result in bigger cracks. Therefore, the probability of 

bigger cracks (and consequently the probability of failure) in the case of the 

exponential distribution is larger than the lognormal case. 

Table 6.5 shows the probability of failure in the case of the selection of different 

prior distributions for the initial crack size. The probability of failure in each case 

is calculated by using the fatigue limit state defined in Eq. (6-2) and by 

performing the Monte-Carlo simulation. Table 6.5 shows that the probability of 

failure in Case (II) is around 2.5 times bigger than the probability of failure in 

Case (I).  

Table 6.5. Probability of failure for different prior distributions of the initial 

crack size 

Prior Distribution of Initial  

Crack Size (𝑎0
𝑝

) 

Probability of Failure 

(Reliability Index)  

Change in Probability of 

Failure (%) 

Case (I): LN (0.4, COV = 0.35) 0.00068 (3.20) 
262% 

Case (II): Exp (0.4, COV = 1) 0.00178 (2.92) 

 

In conclusion, the posterior distribution of the crack size is very sensitive to the 

selected COV of the prior distribution of the initial crack size, whereas 

distribution shape is mostly affecting the updated probability of small crack sizes. 

Therefore, for the calculation of the probability of failure, the COV of the prior 

distribution of the initial crack size is important. 

• Sensitivity of the posterior distributions of the other uncertain parameters to 𝑎0
𝑝
 

Figure 6.25 illustrates the posterior distributions of the initial crack size for 

different prior distributions. Although the posterior distributions of the initial 

crack size are affected by the prior distributions, regardless of the prior shape 
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(even for the exponential distribution), the posterior distributions move towards 

the simulated reality distribution.   

 

Figure 6.25. Posterior distributions of the initial crack size for different prior 

distributions of initial crack size  

Figure 6.26 shows the effect of different prior distributions of the initial crack 

size on the posterior distributions of other uncertain parameters (i.e. crack growth 

parameter, stress range, and uncertainty in the estimation of geometry function). 

As it can be seen, the posterior distributions of other uncertain parameters are not 

sensitive to the prior distribution of the initial crack size which seems reasonable. 

The initial crack size generally depends on the quality of the welding procedure, 

whereas the crack growth parameter is a material property and the stress range is 

dependent on the loading conditions. This is probably why the posterior 

distributions of these parameters are less sensitive to the initial crack size 

distributions. 
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(a) 

 

(b) 

 

(c) 

 
Figure 6.26. Effect of different prior distributions of the initial crack size on the 

other uncertain parameter distributions (a: Crack growth parameter, b: Stress 

range, and c: Uncertainty in the estimation of geometry function) 
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 Sensitivity to the Prior Distribution of Crack Growth Parameter (𝑪𝒑) 

To take into account the effect of the selection of different prior distributions for the 

crack growth parameter (𝐶𝑝) on the posterior distributions of all uncertain parameters, 

two lognormal distributions (introduced Table 6.4) are considered. Figure 6.27 shows 

these two distributions. 

 

Figure 6.27. Different prior distributions of the crack growth parameter  

• Sensitivity of the posterior distribution of the crack size to 𝐶𝑝 

Figure 6.28 shows the posterior distributions of the crack size for both prior 

distributions of the crack growth parameter. Since the mean value of the crack 

growth parameter in Case (II) is smaller than Case (I), the updated probability of 

smaller cracks, in this case, is larger than the probability of smaller cracks in Case 

(I) which is sensible. However, for the larger crack sizes, the posterior 

distributions are less sensitive to the prior distributions of the crack growth 

parameter. 
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Figure 6.28. Posterior distributions of the crack size for different priors of the 

crack growth parameter  

Table 6.6 shows the probability of failure in the case of the selection of different 

prior distributions for the crack growth parameter. The probability of failure in 

each case is calculated by using the fatigue limit state defined in Eq. (6-2) and by 

performing the Monte-Carlo simulation. 

Table 6.6. Probability of failure for different prior distributions of crack growth 

parameter 

Distribution of Crack Growth  

Parameter (𝐶𝑝) 

Probability of Failure 

(Reliability Index)  

Change in Probability 

of Failure (%) 

Case (I):  

LN (2.1 x 10-12, COV = 0.35) 
0.00068 (3.20) 

12% 
Case (II):  

LN (1.5 x 10-12, COV = 0.5) 
0.00076 (3.17) 

 

• Sensitivity of the posterior distributions of the other uncertain parameters to 𝐶𝑝 

Figure 6.29 shows the posterior distributions of the crack growth parameter for 

different prior distributions. The posterior distributions shift towards the 

simulated reality distribution although their shapes are affected by the prior 

distributions. Since the prior COV in Case (II) is bigger than Case (I), the 

posterior distribution, in this case, has a bigger uncertainty (i.e. is wider). 
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Figure 6.29. Posterior distributions of the crack growth parameter for different 

priors of the crack growth parameter 

Figure 6.30 shows the effect of different prior distributions of the crack growth 

parameter on the posterior distributions of other uncertain parameters (i.e. initial 

crack size, stress range, and the uncertainty in the estimation of geometry 

function).  

The crack growth parameter is a material property, whereas the initial crack size 

generally depends on the quality of the welding procedure, and the stress range 

is dependent on the loading conditions. Therefore, the posterior distributions of 

other uncertain parameters are less sensitive to the prior distribution of the crack 

growth parameter. 
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(a) 

 

(b) 

 

(c) 

 
Figure 6.30. Effect of different prior distributions of the crack growth parameter 

on the posterior distributions of other uncertain parameters (a: Initial crack size, 

b: Stress range, and c: Uncertainty in the estimation of geometry function) 
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 Sensitivity to the Prior Distribution of Stress Range (𝑺𝒑) 

Two lognormal distributions are introduced in Table 6.4 to take into account the effect 

of the selection of different prior distributions of the stress range (𝑆𝑝) on the posterior 

distributions of all uncertain parameters. These two distributions are shown in Figure 

6.31. 

 

Figure 6.31. Different prior distributions of the stress range  

• Sensitivity of the posterior distribution of the crack size to 𝑆𝑝 

Figure 6.32 illustrates that the posterior distributions of the crack size are 

sensitive to the prior distributions of the stress range (𝑆𝑝). Since the stress range 

distribution in Case (II) has a bigger mean value in comparison with Case (I), the 

probability of occurrence of larger cracks is greater than the other case which is 

sensible. Moreover, it can be seen that the shape of the posterior distribution of 

the crack size is not sensitive to the COV of the stress range. 
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Figure 6.32. Posterior distributions of the crack size for different prior 

distributions of the stress range  

Table 6.7 shows the probability of failure for different prior distributions of the 

stress range. The probability of failure in each case is calculated by using the 

fatigue limit state defined in Eq. (6-2) and by performing the Monte-Carlo 

simulation. 

Table 6.7. Probability of failure for different prior distributions of stress range 

Distribution of Stress Range 

(𝑆𝑝) 

Probability of Failure 

(Reliability Index)  

Change in Probability 

of Failure (%) 

Case (I): LN (180, COV = 0.35) 0.00068 (3.20) 
57% 

Case (II): LN (210, COV = 0.5) 0.00107 (3.07) 

 

• Sensitivity of the posterior distributions of the other uncertain parameters to 𝑆𝑝 

Figure 6.33 shows the posterior distributions of the stress range for different prior 

distributions. The posterior distributions shift towards the simulated reality 

distribution in both cases. Since the prior COV in Case (II) is bigger than Case 

(I), the posterior distribution, in this case, has a bigger uncertainty.  
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Figure 6.33. Posterior distributions of the stress range for different prior 

distributions 

Figure 6.34 shows the effect of different prior distributions of the stress range on 

the posterior distributions of other uncertain parameters. As it can be seen, the 

posterior distributions are insensitive to the prior distribution of the stress range. 

(a) 
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(b) 

 

(c) 

 

Figure 6.34. Effect of different stress range priors on the posterior distributions 

of other parameters (a: Initial crack size, b: Crack growth parameter, and c: 

Uncertainty in the estimation of geometry function) 

 Sensitivity to the Prior Distribution of Uncertainty in Geometry Function (𝜺𝒀
𝒑

) 

Two lognormal distributions for 휀Y
𝑝
 are considered (Table 6.4) to investigate the effect 

of selection of different prior distributions of the 휀Y
𝑝
 on the posterior distributions of 

all uncertain parameters. Figure 6.35 shows these two distributions. 
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Figure 6.35. Different prior distributions for uncertainty in geometry function  

• Sensitivity of the posterior distribution of the crack size to ɛY
𝑝
 

Figure 6.36 shows that the posterior distributions of the crack size have a similar 

shape. However, the probability of occurrence of larger cracks in Case (II) is 

slightly bigger than the probability of occurrence in Case (I) due to the bigger 

mean value in Case (II). Moreover, it can be seen that the posterior distribution 

of the crack size is insensitive to the COV of 휀𝑌. 

 

Figure 6.36. Updated crack size distributions for different priors of 휀𝑌 
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Table 6.8 shows the probability of failure for different prior distributions of the 

uncertainty in the geometry function. 

Table 6.8. Probability of failure for different prior distributions of geometry 

function 

Distribution of the Uncertainty 

in the Geometry Function (휀𝑌
𝑝

) 

Probability of Failure 

(Reliability Index)  

Change in Probability 

of Failure (%) 

Case (I): LN (1.0, COV = 0.2)  0.00068 (3.20) 
28% 

Case (II): LN (1.1, COV = 0.4) 0.00087 (3.13) 

 

• Sensitivity of the posterior distributions of the other uncertain parameters to ɛY
𝑝
 

Figure 6.37 shows the posterior distributions of 휀𝑌 for different prior ditributions. 

The posterior distributions shift towards the simulated reality distribution. Since 

the prior COV in Case (II) is bigger than Case (I), the posterior distribution, in 

this case, is broader than the posterior distribution in Case (I).  

 

Figure 6.37. Posterior distributions of the uncertainty in the estimation of 

geometry function 

Figure 6.38 shows the effect of different priors of  휀𝑌 on the updated distributions 

of other uncertain parameters. As it can be seen, the updated distributions of other 

distributions (i.e. 𝑎0, 𝐶, and 𝑆) are not sensitive to the prior distribution of 휀𝑌. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6.38. Effect of different prior distributions of  휀𝑌 on the posterior 

distributions of other parameters (a: Initial crack size, b: Crack growth 

parameter, and c: Stress range) 
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 Conclusion 

In Section 6.4.1, the sensitivity of the posterior distributions of all uncertain parameters 

(including crack size and other input variables) to the prior distributions is 

investigated. For each input variable (i.e. initial crack size, crack growth parameter, 

stress range, and uncertainty in the estimation of geometry function), two different 

prior distributions are introduced in Table 6.4. The main results of these analyses are: 

• The probability of big crack sizes (and subsequently the probability of failure) is 

very sensitive to the prior distributions of the initial crack size and the stress 

range whereas, it is not sensitive to the prior distributions of the other input 

variables (i.e. crack growth parameter and the uncertainty in the geometry 

function). Therefore, the prior distributions for the initial crack size and stress 

range should be assigned as accurately as possible.    

• The prior distribution of each input variable has a great effect on the posterior 

distribution of itself. Based on the Bayes’ theorem, the posterior distribution is a 

function of the prior distribution. 

• Since the source of uncertainty of these input variables is almost independent of 

each other, the prior distribution of each input variable does not have a 

considerable effect on the posterior distributions of the other variables. 

 Sensitivity of the Posterior Distribution to the POD Curves 

Based on the proposed approach, the probability of detection is employed to determine 

whether a crack is detected or missed (Figure 6.1). By using POD curves, the prior 

cracks (and also the simulated reality cracks) are divided into two categories; detected 

cracks and missed cracks. In the proposed approach for updating the crack size 

distribution, only detected cracks are used (see Section 6.3.3). Therefore, the 

sensitivity of the posterior distribution of the crack size to the POD curves should be 

considered. Based on Eq.(6-6), the probability of detection is a function of 𝑎𝑚𝑑 (mean 

detectable size) which depends on the resolution of the inspection technique. A 

lognormal distribution was assigned to the prior distribution of the mean detectable 

size (Section 6.3.2.3). 
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To find out the effect of the prior distribution of the mean detectable size on the 

posterior distribution of the crack size, three different prior distributions are 

considered. Table 6.9 shows these three cases. 

Table 6.9. Statistics of the mean detectable size for sensitivity analysis 

Case 
Prior distribution  

for 𝑎𝑚𝑑
𝑝

 

Simulated reality 

distribution for 𝑎𝑚𝑑
𝑟  

Obtained value 

for 𝑎𝑚𝑑
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

 

Case (I): High-

resolution technique 
𝐿𝑁(2 𝑚𝑚,  𝐶𝑂𝑉 = 0.5) 

𝐿𝑁(2 𝑚𝑚, 𝐶𝑂𝑉 = 0.2) 

1.58 

Case (II): Mid-

resolution technique 
𝐿𝑁(4 𝑚𝑚,  𝐶𝑂𝑉 = 0.5) 3.02 

Case (III): Low-

resolution technique 
𝐿𝑁(6 𝑚𝑚,  𝐶𝑂𝑉 = 0.5) 4.55 

 

Figure 6.39 shows the effect of the prior distributions of the mean detectable size on 

the posterior distribution of the crack size. The figure shows that the posterior 

distribution of the crack size is very sensitive to the value of the mean detectable size. 

It was explained that the probability of failure is dependent on the crack size 

distribution since the fatigue limit state is a function of crack size (Eq. (6-2)). 

Therefore, the estimated probability of failure is strongly sensitive to the prior 

distribution of the mean detectable size. 

 
Figure 6.39. Posterior distributions of the crack size for different prior distributions 

of the mean detectable size (𝑎𝑚𝑑
𝑝

) 
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Figure 6.39 also indicates that the probability of the large cracks (e.g. bigger than 

12mm) in Case (I) which is a high-resolution technique is less than the probability of 

the large cracks in Case (II) which is a mid-resolution technique.  

To explain the reason, it is assumed that there are “𝑛” and “𝑚” cracks that are bigger 

and smaller than 12mm, respectively. Both considered NDT techniques (i.e. Case (I) 

and Case (II)) are likely to find cracks that are bigger than 12mm. The probability of 

detection of a 12mm crack is obtained by using Eq.(6-6) as: 

Case (I): 𝑃𝑂𝐷 (𝑎) =  1 −   𝑒 
− 

𝑎
𝑎𝑚𝑑 = 1 − 𝑒−

12
2 = 0.99 

(6-11) 

Case (II): 𝑃𝑂𝐷 (𝑎) =  1 −   𝑒 
− 

𝑎
𝑎𝑚𝑑 = 1 − 𝑒−

12
4 = 0.95 

 

Therefore, it can be assumed that both cases can detect “𝑛” cracks. Whereas, for the 

smaller cracks, Case (I) can detect more cracks in comparison with Case (II). Now, it 

is assumed that Case (I) can detect 60% of small cracks (0.6 × 𝑚) while in Case (II) 

this percentage is reduced for example to 50% (i.e. 0.5 × 𝑚). Since only detected 

cracks are considered in this approach, the updated probability of big cracks (e.g. 

bigger than 12mm) in Case (I) is less than the updated probability of big cracks in Case 

(II), i.e.: 

Case (I): 𝑃 (𝑎 > 12) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑐𝑘𝑠 > 12𝑚𝑚

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑐𝑘𝑠 
=

𝑛

𝑛 + 0.6𝑚
 

(6-12) 

Case (II): 𝑃 (𝑎 > 12) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑐𝑘𝑠 > 12𝑚𝑚

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑐𝑘𝑠 
=

𝑛

𝑛 + 0.5𝑚
 

 Sensitivity to the Considering All Cracks (Detected/Missed) 

In the proposed approach for obtaining the posterior distribution of the crack size, 

detected prior cracks are compared with the detected cracks in the simulated reality 

case. In fact, in the definition of compatibility, the not detected (missed) cracks are 

removed from the initial list of cracks. The purpose of this section is to include all 

cracks whether they are detected or missed. In other words, all prior cracks are 

compared with all simulated reality cracks. Figure 6.40 shows the updated crack size 

distributions in two cases: 
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• Case (I): Considering only detected cracks (which is the base case) 

• Case (II): Considering all cracks (both detected and missed cracks) 

 

Figure 6.40. Posterior distribution of the crack size for detected/missed cracks 

Figure 6.40 shows that the probability of big cracks (e.g. bigger than 12mm), and 

consequently the probability of failure, in case of considering all cracks is less than the 

probability of big cracks in the only detected cracks case.  

The same explanation as Section 6.4.2 can be provided here. Case (II) can be assumed 

as a case with an extremely high resolution of crack detection (e.g. 𝑎𝑚𝑑 = 0.001) that 

can detect all tiny cracks. Therefore, as it can be seen from Figure 6.39, the probability 

of big cracks for a high-resolution NDT technique is less than the mid-resolution 

technique (Section 6.4.2). 

 Sensitivity of the Posterior Distribution to the Value of ‘Tolerance’  

In the definition of the compatible prior cracks in Section 6.3.3, it was mentioned that 

a prior crack is a compatible crack if its size is ‘close’ to the simulated reality crack 

size. To quantify the word ‘close’, the parameter of tolerance is used. If a small value 

is selected for this value, it means that the difference between the prior crack and the 

simulated reality crack should be small, whereas the bigger value for tolerance allows 
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the bigger difference between the prior and the simulated reality cracks. Figure 6.41 

shows the acceptable range for a prior crack for two different amounts of tolerance. 

 

Figure 6.41. The acceptable range for a prior crack for different amounts of tolerance 

To consider the effect of the selected tolerance on the posterior distribution of the crack 

size, two different amounts for tolerance are considered. These values are assumed 

equal to 0.1 and 0.3. Figure 6.42 illustrates the posterior distributions for both cases. 

When a smaller tolerance is selected, the posterior distribution shape is very similar to 

the simulated reality distribution. In fact, when a small tolerance is chosen, only those 

prior cracks are acceptable that are very close to the simulated reality cracks. 

Therefore, the posterior distribution shifts towards the simulated reality distribution 

(this can be seen clearly for the big crack sizes). On the other hand, for a bigger 

tolerance, further prior cracks are compatible, hence, the posterior distribution shape 

is affected by the prior distribution. 

 

Figure 6.42. Posterior distribution of the crack size for different amounts of 

Tolerance 
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As it can be seen from Figure 6.42, the posterior distribution of the crack size is 

sensitive to the selected amount of tolerance. A suitable value for the tolerance should 

be selected based on the engineering judgment and the user’s beliefs about the 

compatibility definition. 

6.5 Reliability of the Proposed Approach: A Limited Number of Inspection 

Results (Observations) 

In Section 6.3.1.3, it was assumed that there are several numbers of inspection results 

(observations) for a particular joint. Based on this assumption, a lognormal distribution 

was assigned to the crack observation (Eq.(6-5)). The proposed methodology (in 

Section 6.3.1.3) for obtaining the simulated reality distributions of the input variables 

(i.e. 𝑎0
𝑟 , 𝐶𝑟 , 𝑆𝑟 and 휀𝑌

𝑟 ) relies on the assigned distribution of the observed cracks.  

In reality, inspection results are usually limited to one inspection for each tubular joint 

(at a given time, e.g. after five years) due to the significant costs of underwater 

inspections. When only one inspection result is available for a specific joint, it is not 

logical to assign a distribution to the measured crack size. Therefore, the proposed 

method in Section 6.3.1.3 cannot be employed to obtain the simulated reality 

distributions of the input variables (i.e. 𝑎0
𝑟 , 𝐶𝑟 , 𝑆𝑟 and 휀𝑌

𝑟 ).  

Therefore, in case of the availability of only one inspection result, another method is 

considered to obtain the simulated reality distributions of the input variables. Let’s 

assume there is only one inspection result for a specific tubular joint at the given time 

(after five years). The observed crack size has been measured equal to 𝑎𝑚.  

To find out the simulated reality distributions of the input variables, a sampling method 

is used. It was shown in Section 6.4.1 that the posterior distribution of the crack size 

is more sensitive to the initial crack size and the stress range distributions. Therefore, 

it is tried to obtain the simulated reality distributions of these two random variables 

separately.  

 Simulated Reality Distributions of 𝒂𝟎 and 𝑪 

To find out the simulated reality distributions of the initial crack size and crack growth 

parameter, a large number of random samples (let say 104 samples) are generated. 

These random numbers are uniformly distributed: 
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• Between 0 and 4mm for the initial crack size  

• Between 10-11 and 10-14 for the crack growth parameter 

The reason for choosing the uniform distribution is that we don’t have any information 

about the real distribution of the uncertain parameters. Therefore, a non-informative 

distribution (i.e. uniform distribution) is selected. 

For each combination of initial crack size and crack growth parameter (𝑎0𝑗
𝑟 , 𝐶𝑘

𝑟  ;  𝑗, 𝑘 =

1,2, . . , 104) the predicted crack size is calculated based on Eq.(6-1). It is noted that the 

mean value of the other two input variables (𝑆, 휀𝑌) are considered in calculation of the 

predicted crack size. The calculated crack size for this combination is denoted 

as (𝑎𝑐𝑎𝑙)𝑘,𝑗. It is noted that the total number of combinations is equal to 104 x 104 = 108. 

Table 6.10 shows the combinations of the initial crack size and the crack growth 

parameter. 

Table 6.10. Generated samples for 𝑎0
𝑟, 𝐶𝑟and the corresponding crack sizes 

  Random numbers for initial crack size 

  (𝑎0
𝑟)1 (𝑎0

𝑟)2 … (𝑎0
𝑟)10000 

Random numbers  

for crack growth 

parameter 

(𝐶𝑟)1 (𝑎𝑐𝑎𝑙)1,1 (𝑎𝑐𝑎𝑙)1,2 … (𝑎𝑐𝑎𝑙)1,10000 

(𝐶𝑟)2 (𝑎𝑐𝑎𝑙)2,1 (𝑎𝑐𝑎𝑙)2,2 … (𝑎𝑐𝑎𝑙)2,10000 

… … … … … 

(𝐶𝑟)10000 (𝑎𝑐𝑎𝑙)10000,1 (𝑎𝑐𝑎𝑙)10000,2 … (𝑎𝑐𝑎𝑙)10000,10000 

 

Now, the calculated crack sizes can be divided into three categories: 

1) Cracks that are much larger than the observed crack size, 

2) Cracks that are much smaller than the observed crack size, 

3) Cracks that are approximately equal to the observed crack size. 

The ratio of the calculated crack size to the observed crack size is then computed for 

each combination as: 

𝑒𝑘,𝑗 =
(𝑎𝑐𝑎𝑙)𝑘,𝑗

𝑎𝑚
;       𝑘, 𝑗 = 1,2, . . , 104 (6-13) 
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If the calculated crack size is close enough to the observed crack size, that combination 

of initial crack size and crack growth parameter (𝑎0𝑗
𝑟  and 𝐶𝑘

𝑟) is kept, otherwise, it is 

removed from the samples. The acceptable combinations are those combinations that: 

0.8 ≤ 𝑒𝑘,𝑗 ≤ 1.2 (6-14) 

By using Eq. (6-14), each calculated crack size is compared with the measured crack 

size to determine whether it matches within a specified tolerance. If the calculated 

crack size satisfies Eq.(6-14), the corresponding cell in Table 6.10 is replaced with 

one, whereas it is replaced with zero if it is an unacceptable crack size. 

Figure 6.43 shows the proposed method to obtain the marginal histogram of the 

uncertain parameters (i.e. initial crack size and crack growth parameter). 

 
(𝑎0

𝑟)1 (𝑎0
𝑟)2 … (𝑎0

𝑟)10000  
 

(𝐶𝑟)1 1 0 … 1 
Sum of 

row 1 

 

(𝐶𝑟)2 1 1 … 0 
Sum of 

row 2 

 

… … … … … … 
 

(𝐶𝑟)10000 0 0 … 1 
Sum of 

row 104 

 

 
Sum of 

column 1 

Sum of 

column 2 
… 

Sum of 

column 104 

  

 

 

 

 

A 

 

 

Figure 6.43. The proposed method for obtaining the marginal histogram of the input 

variables (𝑎0
𝑟 and 𝐶𝑟) 

Having obtained the frequency of each row and column, the histogram of the simulated 

reality distribution for the initial crack size and the crack growth parameter is 

generated. By normalising the obtained histogram and fitting an appropriate 
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distribution for each uncertain parameter, the marginal PDFs of these variables are 

achieved. 

 Simulated Reality Distributions of  𝑺 and ɛ𝒀 

The same approach as explained in Section 6.5.1 is considered to find out the simulated 

reality distributions for the stress range and geometry function. Again, a large number 

of random samples (104 samples) are generated. These random numbers are uniformly 

distributed: 

• Between 50 and 500 MPa for the stress range 

•  Between 0.5 and 2 for the uncertainty in the estimation of the geometry function 

For each combination of stress range and uncertainty in the geometry function 

(휀𝑌𝑚
𝑟 , 𝑆𝑛

𝑟 ;  𝑚, 𝑛 = 1,2, . . , 104) the predicted crack size is calculated based on Eq.(6-1). 

This time, the mean value of 𝐶, 𝑎0 are considered in calculation of the predicted crack 

size. The calculated crack size for this combination is denoted as (𝑎𝑐𝑎𝑙)𝑚,𝑛.  

Table 6.11 shows the generated samples for the considered uncertain parameters. 

Table 6.11. Random samples for 휀𝑌
𝑟, 𝑆𝑟and the corresponding crack sizes 

  Random numbers for uncertainty in geometry function 

  (휀𝑌
𝑟)1 (휀𝑌

𝑟)2 … (휀𝑌
𝑟)10000 

Random numbers 

for stress range 

(𝑆𝑟)1 (𝑎𝑐𝑎𝑙)1,1 (𝑎𝑐𝑎𝑙)1,2 … (𝑎𝑐𝑎𝑙)1,10000 

(𝑆𝑟)2 (𝑎𝑐𝑎𝑙)2,1 (𝑎𝑐𝑎𝑙)2,2 … (𝑎𝑐𝑎𝑙)2,10000 

… … … … … 

(𝑆𝑟)10000 (𝑎𝑐𝑎𝑙)10000,1 (𝑎𝑐𝑎𝑙)10000,2 … (𝑎𝑐𝑎𝑙)10000,10000 

 

Again, if the calculated crack size satisfies Eq.(6-14), the corresponding cell in Table 

6.11 is replaced with one, otherwise, it is replaced with zero.  

Figure 6.44 shows the proposed method to obtain the marginal histogram of the 

uncertain parameters (i.e. stress range and uncertainty in the geometry function). 
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(휀𝑌

𝑟)1 (휀𝑌
𝑟)2 … (휀𝑌

𝑟)10000  
 

(𝑆𝑟)1 1 0 … 1 
Sum of 

row 1 
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… 

Sum of 
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Figure 6.44. The proposed method for obtaining the marginal histogram of the input 

variables (𝑆𝑟and 휀𝑌
𝑟) 

 Modification of the Proposed Method - Application 

To demonstrate the modification of the proposed method, it is assumed that there is 

only one inspection result with the measured crack equal to 𝑎𝑚 = 4𝑚𝑚. By applying 

the method, the acceptable combinations of (𝑎0
𝑟 , 𝐶𝑟) and (𝑆𝑟 , 휀𝑌

𝑟) are achieved. Figure 

6.45 shows the histograms and the fitted distributions of the input variables in the 

simulated reality case. 
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(a) (b) 

  

(c) (d) 

Figure 6.45. Histogram and the best fit distribution for (a) 𝑎0
𝑟, (b) 𝐶𝑟, (c) 𝑆𝑟 and (d) 휀𝑌

𝑟 

Table 6.12 compares the simulated reality distributions of the input variables in case 

of the availability of one inspection result or several inspection results (Section 

6.3.1.3). 

Table 6.12. Effect of the number of inspections on the simulated reality distributions 

Input Variable 
One Inspection 

 𝑎𝑚 = 4𝑚𝑚 

Several Inspections 

𝑎𝑚~ 𝐿𝑁 (4𝑚𝑚, 𝐶𝑂𝑉 = 0.5) 

Initial crack size, 𝑎0
𝑟 𝐿𝑁 (0.71𝑚𝑚, 𝐶𝑂𝑉 = 0.44) 𝐿𝑁 (0.48𝑚𝑚, 𝐶𝑂𝑉 = 0.21) 

Crack growth parameter, 𝐶𝑟 𝐿𝑁 (3.2 × 10−12, 𝐶𝑂𝑉 = 0.45) 𝐿𝑁 (2.4 × 10−12, 𝐶𝑂𝑉 = 0.18) 

Stress range, 𝑆𝑟 𝐿𝑁 (197, 𝐶𝑂𝑉 = 0.41) 𝐿𝑁 (210, 𝐶𝑂𝑉 = 0.20) 

Uncertainty in estimation of 

geometry function, ɛ𝑌
𝑟  

𝐿𝑁 (0.95, 𝐶𝑂𝑉 = 0.18) 𝐿𝑁 (1.0, 𝐶𝑂𝑉 = 0.12) 

 
Table 6.12 indicates that when only one inspection result is available, the simulated 

reality distributions include bigger uncertainty (bigger COV). In fact, only one 

inspection result cannot provide enough information about the uncertain input 
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parameters. Therefore, distributions of these input variables include bigger 

uncertainties. When inspections are independently repeated for the considered joint, 

the uncertainty of the input variables is reduced.  

Having obtained the simulated reality distributions for the input variables in both cases 

(one inspection and several inspections), the simulated reality distributions for the 

crack size are obtained by using the method described in Section 6.3.1.4. Then, the 

posterior distributions of the crack size are obtained regarding Section 6.3.3.1. 

Figure 6.46 shows the posterior distributions of the crack size in the case of one or 

several inspection results. 

 

Figure 6.46. Posterior distributions of the crack size in case of availability of one or 

several inspections 

Figure 6.46 illustrates that the number of inspection results has a great effect on the 

posterior distribution of the crack size. When only one inspection (𝑎𝑚 = 4𝑚𝑚) is 

available, the posterior distribution has a Mode value around 4mm.  

Moreover, in this case, the posterior crack size has a broader distribution (bigger 

uncertainty) which seems reasonable. By providing more inspection results, the 

uncertainty of the posterior distribution of the crack size is reduced. Therefore, the 

posterior distribution of the crack size (and the probability of failure) is very sensitive 

to the number of available inspection results.  
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When several inspection results are available, the owner (user) is more confident about 

the simulated reality distribution of the crack size. Whereas only one inspection result 

includes more uncertainty.  

Figure 6.46 also shows that when one inspection result is available, the probability of 

big crack size (and consequently, probability of failure) is bigger than when several 

inspection results exist. Therefore, the proposed method results in more conservative 

results when one inspection result exists which is rational. 

6.6 Reliability of the Proposed Methodology: Inappropriate Prior Selection 

The proposed methodology in this chapter (Section 6.3) can: 

• Obtain the posterior distribution of the crack size 

• Obtain the posterior distributions of the involved uncertainties in the fatigue 

crack model (i.e., initial crack size, crack growth parameter, stress range, and the 

uncertainty in the geometry function) 

• Update the POD curves 

Moreover, the sensitivity of the proposed methodology to the different inputs is 

discussed in Section 6.4.  

Table 6.13 summarises the considered distributions in the proposed methodology. The 

prior distributions are defined based on the previous knowledge (Section 6.3.2) and 

the simulated reality distributions are obtained by using the described approach in 

Section 6.3. 

Table 6.13. Considered distributions in the proposed approach 

Uncertain Parameter Prior Distribution 
Simulated Reality 

Distribution 

Initial crack size, 𝑎0 𝑎0
𝑝
~ LN (0.4, 0.35) 𝑎0

𝑟~ LN (0.48, 0.21) 

Crack growth parameter, C 𝐶𝑝~ LN (2.1 x 10-12, 0.35) 𝐶𝑟~ LN (2.4 x 10-12, 0.18) 

Stress range, S 𝑆𝑝~ LN (180, 0.35) 𝑆𝑟~ LN (210, 0.2) 

Uncertainty in estimation of 

the geometry function,  
ɛ𝑌
𝑝
 ~ LN (1, 0.2) ɛ𝑌

𝑟  ~ LN (1, 0.12) 

POD 𝑎𝑚𝑑
𝑝

~ LN (3, 0.5) 𝑎𝑚𝑑
𝑟 ~ LN (2, 0.2) 
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Table 6.13 shows the prior distributions were chosen rationally because the mean 

values of these distributions are close enough to the mean values of the simulated 

reality distributions. In this situation, the methodology works properly, as shown in 

Section 6.3.3.  

This section is provided to find out how reliable the methodology is under some 

extreme conditions, for instance, when a too low (or high) mean value is selected for 

a prior distribution of an uncertain parameter.   

 Effect of Considering a Very Low Mean Value for Prior Distribution 

Here, two extreme cases for the prior distributions of the uncertain parameters are 

considered to find out how the proposed methodology works: 

• Case (1): Assuming a very low mean value for the prior distribution of the initial 

crack size, for instance: 

𝑎0
𝑝
~ LN (0.1, 0.2) 

The considered mean value for the initial crack size is 0.1mm which is much 

lower than the mean value of the simulated reality (0.48 mm). Distributions of 

the other uncertainties are the same as those introduced in Table 6.13. The 

proposed methodology is applied for Case (1) and the results of the updated 

distributions are shown in Figure 6.47. 

(i)  

Crack size 

distribution 
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(ii)  

Initial crack 

size 

distribution 

 

(iii)  

Crack growth 

parameter 

distribution 

 

(iv)  

Stress range 

distribution 

 

Figure 6.47. Posterior distributions in Case (1); (i) Crack size, (ii) Initial crack 

size, (iii) Crack growth parameter, (iv) Stress range  
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As it can be seen from Figure 6.47: 

➢ For the crack size distribution (i):  

The posterior distribution of the crack size shifts toward the simulated reality 

distribution even in the case of selecting a very low mean value for the initial 

crack size distribution. 

➢ For the initial crack size distribution (ii):  

The posterior distribution of the initial crack size shifts toward the simulated 

reality distribution even in the case of selecting an inappropriate prior 

distribution, although it is still affected by the inappropriate prior. 

➢ For the crack growth parameter distribution (iii): 

Selection of a low value for 𝑎0
𝑝
, causes a higher value for crack growth 

parameter (𝐶𝑝) or stress range (𝑆𝑝) to obtain the compatible crack size with 

the simulated reality crack (𝑑𝑎
𝑑𝑁⁄ = 𝐶(∆𝐾)𝑚). 

It can be seen that the mean value of  𝐶𝑝 is bigger than the mean value of 𝐶𝑟 

(whereas the mean value of 𝑎0
𝑝
 is smaller than 𝑎0

𝑟). 

The posterior distribution of the crack growth parameter cannot shift 

substantially towards the simulated reality distribution. It can be seen that in 

this case (a very low value for the prior initial crack size), the posterior 

distribution of the crack growth parameter is stuck to the prior distribution 

instead of moving towards the simulated reality distribution. 

➢ For the stress range distribution (iv):  

Selection of a low value for 𝑎0
𝑝
, causes a higher value for the stress range (𝑆𝑝) 

to obtain the compatible crack size with the simulated reality. 

The posterior distribution of the stress range shifts towards the simulated 

reality distribution, although it is still affected by the prior distribution. 

• Case (2): Assuming a very low mean value for the prior distribution of the crack 

growth parameter, for instance: 

𝐶𝑝~ LN (6 x 10-13, 0.2) 
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The considered mean value for the crack growth parameter is 6 x 10-13 which is 

a quarter of the mean value of the simulated reality (2.4 x 10-12). Distributions of 

the other uncertainties are the same as those introduced in Table 6.13. The 

proposed methodology is applied for Case (2) and the results of the posterior 

distributions are shown in Figure 6.48. 

(i)  

Crack size 

distributions 

 

(ii)  

Initial crack 

size 

distributions 
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(iii)  

Crack growth 

parameter 

distributions 

 

(iv)  

Stress range 

distributions 

 

Figure 6.48. Posterior distributions in Case (2); (i) Crack size, (ii) Initial crack 

size, (iii) Crack growth parameter, (iv) Stress range  

As it can be seen from Figure 6.48: 

➢ For the crack size distribution (i):  

The posterior distribution of the crack size for the big cracks shifts towards 

the simulated reality distribution even in the case of selecting a very low value 

for the crack growth parameter. 

The posterior distribution obtained by this methodology doesn’t provide 

acceptable results for the small crack sizes. The probability of small cracks in 

the posterior distribution is larger than both probabilities in the prior and the 

simulated reality distributions.   
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➢ For the initial crack size distribution (ii):  

Selection of a low value for 𝐶𝑝, causes a higher value for initial crack size (𝑎0
𝑝
) 

to obtain the compatible crack sizes with the simulated reality. 

The mean value of 𝑎0
𝑝
 is bigger than the mean value of 𝑎0

𝑟 (whereas 𝐶𝑝 is 

smaller than 𝐶𝑟). 

The posterior distribution of the initial crack size cannot shift substantially 

towards the simulated reality distribution. It can be seen that in this case (a 

very low mean value for the prior distribution of the crack growth parameter), 

the posterior distribution of the initial crack size is stuck to the prior 

distribution instead of moving towards the simulated reality distribution. 

➢ For the distribution of the crack growth parameter (iii): 

The posterior distribution of the crack growth parameter shifts towards the 

simulated reality distribution even in the case of selecting an inappropriate 

prior distribution. 

➢ For the stress range distribution (iv):  

The posterior distribution of the stress range shifts towards the simulated 

reality distribution, although it is still affected by the prior distribution. 

In general, the following considerations need to be taken in case of considering an 

inappropriate prior distribution for an uncertain parameter:  

• The posterior distribution of the crack size shifts towards the simulated reality 

distribution for big cracks even in the case of selecting an inappropriate (very 

low/very high) prior distribution for an uncertain parameter. However, the 

posterior distribution for the small cracks is not acceptable (in some cases). It 

was mentioned that in this research, the probability of failure (POF) is defined as 

the probability of a crack being bigger than wall thickness (see Eq. (6-2)). i.e.: 

𝑃𝑂𝐹 = 𝑃(𝑔 ≤ 0) = 𝑃(𝑎𝑐 − 𝑎𝑡 ≤ 0) = 𝑃(𝑎𝑐 ≤ 𝑎𝑡) (6-15) 

where 𝑎𝑐 is the critical crack size and 𝑎𝑡 is the crack size at time t. The critical 

crack size in this research is considered equal to the plate thickness which is 
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0.875 inches (22.22 mm) for the considered tubular joint. Hence, Eq. (6-15) is 

written as: 

𝑃𝑂𝐹 = 𝑃(𝑎𝑡 ≥ 22.22 𝑚𝑚) (6-16) 

Therefore, the proposed methodology can properly update the probability of 

failure, even, in the case of an inappropriate prior distribution. 

• If an inappropriate prior distribution is selected for an uncertain parameter, the 

posterior distribution for that parameter doesn’t move substantially towards the 

simulated reality distribution.   

 Effect of Considering an Optimistic Prior Distribution for POD Curve 

Three different cases as shown in Table 6.14 are considered to find out the effect of 

POD curves on the posterior distributions.  

Table 6.14. Considered POD distributions in the proposed approach 

Uncertain Parameter Prior Distribution 
Simulated Reality 

Distribution 

𝑎𝑚𝑑  

Base Case 𝑎𝑚𝑑
𝑝

~ LN (3, 0.5) 

𝑎𝑚𝑑
𝑟 ~ LN (2, 0.2) Case (3) 𝑎𝑚𝑑

𝑝
~ LN (3, 0.1) 

Case (4) 𝑎𝑚𝑑
𝑝

~ LN (1, 0.1) 

 

Figure 6.49 shows the effect of the selection of different prior distributions for the 

mean detectable size on the posterior distribution of the crack size. The graphs show 

that the posterior distributions of the crack size are less sensitive to the prior 

distributions of the POD curves. 
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(i) Base case 

 

(ii) Case (3) 

 

(iii) Case (4) 

 

Figure 6.49. Posterior distributions of the crack size for different prior 

distributions of the POD curve; (i) Base case, (ii) Case (3), and (iii) Case (4) 
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Figure 6.50 shows the posterior POD curves for the considered cases. 

(i) Base case 

 

(ii) Case (3) 

 

(iii) Case (4) 

 

Figure 6.50. Updated POD curves for different POD prior distributions; (i) Base 

case, (ii) Case (3), and (iii) Case (4) 
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Figure 6.50 shows that, when a very low value of COV is selected for the prior 

distribution of the mean detectable size (Case (3) and Case (4)), the proposed 

methodology cannot update the POD curve correctly and the posterior distribution is 

completely affected by the prior distribution. 

On the other hand, when the COV of the prior distribution of the mean detectable size 

is greater than the COV in the simulated reality distribution, the posterior POD 

distribution shifts towards the simulated reality distribution (Base case). 

 Considering a Very Low Mean Value for Two Uncertain Parameters 

In the previous cases (Section 6.6.1 and Section 6.6.2), the effect of selecting a very 

low mean value (or a very low COV) for the prior distribution of one uncertain 

parameter is considered. The purpose of this section is to find out how the 

methodology works when poor prior distributions are selected for more than one 

uncertain parameter.  

• Case (5): Assuming a very low mean value for the prior distribution of the crack 

growth parameter in addition to considering an optimistic prior distribution for 

the POD curve, for instance: 

𝐶𝑝~ LN (6 x 10-13, 0.2) 

𝑎𝑚𝑑
𝑝

~ LN (1, 0.1) 

Distributions of the other uncertainties are the same as those introduced in Table 

6.13. The proposed methodology is applied for Case (5) and the results of the 

posterior distributions are shown in Figure 6.51. 
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(i) Crack size 

distribution 

 

(ii) Initial crack 

size distribution 

 

(iii) Crack growth 

        parameter  

        distribution 
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(iv) POD curves 

 

Figure 6.51. Posterior distributions in Case (5); (i) Crack size, (ii) Initial crack 

size, (iii) Crack growth parameter, (iv) POD curves  

As it can be seen from Figure 6.51: 

➢ For the crack size distribution (i):  

The posterior distribution of the crack size cannot shift towards the simulated 

reality distribution for big cracks in the case of selecting a very low value for 

the crack growth parameter and an optimistic POD curve. It seems that the 

posterior distribution of the crack size is stuck to the prior distribution instead 

of moving towards the simulated reality distribution. 

➢ For the initial crack size distribution (ii):  

The posterior distribution of the initial crack size cannot shift towards the 

simulated reality distribution (similar to the results of Case (2)). 

➢ For the distribution of the crack growth parameter (iii): 

The posterior distribution of the crack growth parameter shifts towards the 

simulated reality distribution even in the case of selecting an inappropriate 

prior distribution (similar to the results of Case (2)). 

➢ For the POD curves (iv):  

The proposed methodology cannot update the POD curve correctly and the 

posterior distribution is completely affected by the prior distribution (similar 

to the results of Case (4) and Case (5)). 
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As a result, the posterior distribution of the crack size obtained by using this 

methodology in Case (5) is not acceptable. The posterior distribution of the crack size, 

in this case, is affected by prior distribution for the big crack sizes and cannot shift 

towards the simulated reality distribution.  

6.7 Reliability of the Proposed Approach: Comparison of Results 

The main purpose of Chapter 5 and Chapter 6 is to update the distributions of the 

uncertain parameters when inspection results are available. In Chapter 5, only crack 

size is assumed as an uncertain parameter and the updated (posterior) distribution is 

obtained by different conventional Bayesian methods (i.e. analytical and numerical 

methods). In Chapter 6, the proposed approach is capable to update all uncertain 

parameters including crack size, POD curves, and uncertainties involved in the fatigue 

crack model (Eq.(6-1)). 

Since both methods in these two chapters can update the crack size distribution, the 

purpose of this section is to compare the results of these approaches. To compare the 

posterior distribution of the crack size, two cases are considered: 

 Availability of One Inspection Result  

To compare the posterior distributions of the crack size, it is assumed that there is one 

inspection result with a measured crack size equal to 4mm (i.e. 𝑎𝑚 = 4𝑚𝑚). The crack 

size distribution is updated using the approaches introduced in Chapter 5 (numerical 

method, Section 5.4.1.3) and Chapter 6 (Section 6.5.3).  

Figure 6.52 shows the posterior distributions of the crack size for both approaches 

when there is only one inspection result available. The figure illustrates a big 

difference between the two approaches.  
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Figure 6.52. Posterior distributions of the crack size (one inspection result) 

Figure 6.52 shows that when a typical Bayesian method is implemented (green line, 

Chapter 5), the probability of big cracks is sharply reduced. It was explained that in 

the Bayesian updating method, the posterior distribution is proportional to the 

likelihood function and prior distribution, i.e.: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟 (6-17) 

The likelihood function in case of a crack detection is obtained in Chapter 5 (see Eq. 

(5-59)) as:  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∝ [
𝛽𝑝𝑟𝑖𝑜𝑟

𝛼𝑝𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡
𝛼𝑝𝑜𝑠𝑡

] × [
𝛤(𝛼𝑝𝑜𝑠𝑡)

𝛤(𝛼𝑝𝑟𝑖𝑜𝑟)
] (6-18) 

A non-informative prior is selected for the error variance as: 

𝛼𝑝𝑟𝑖𝑜𝑟 = 𝛽𝑝𝑟𝑖𝑜𝑟 = 0.001 (6-19) 

The posterior parameters for the error variance are then obtained as (see Eq. (5-48)): 

𝛼𝑝𝑜𝑠𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 +
1

2
= 0.5 

𝛽𝑝𝑜𝑠𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 +
𝑒2

2
=

𝑒2

2
 

(6-20) 

 



318 

 

Where parameter 𝑒 was defined equal to (see Eq. (5-38)): 

𝑒 = 𝑙𝑛 𝑎 − 𝑙𝑛 𝑎𝑚 = 𝑙𝑛  (
𝑎

𝑎𝑚
) (6-21) 

By implementing the above equations in Eq.(6-18), the likelihood function is obtained 

proportional to: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∝
1

𝛽𝑝𝑜𝑠𝑡
0.5 =

1

√𝑒2

2

=
√2

𝑒
 

(6-22) 

Table 6.15 shows the value of the likelihood function for three different crack sizes. 

Table 6.15. Value of the likelihood function for different crack sizes 

Real crack size (𝑎) Measured crack size (𝑎𝑚) Likelihood (~√2
𝑒⁄ ) 

2 mm 

4 mm 

2.0 

4.1 mm 57.3 

10 mm 1.5 

 

Table 6.15 shows that the likelihood function value for bigger cracks is sharply 

reduced. Therefore, as can be seen from Figure 6.52, the probability of big cracks in 

the posterior distribution in this case (green line) is very low. 

On the other hand, the posterior distribution which is obtained by using the proposed 

approach in Section 6.5.3 (red line, Chapter 6), has a broader shape and the probability 

of big cracks are higher than the previous case. This is mainly because, in the proposed 

approach in Chapter 6, the measured crack size is used to obtain the simulated reality 

distributions of the uncertainties involved in the fatigue crack model (i.e. 

𝑎0
𝑟 , 𝐶𝑟 , 𝑆𝑟 and 휀𝑌

𝑟). As it was mentioned in Section 6.5.3, more uncertainty exists in this 

approach to find out the simulated reality distributions of the input variables. 

Therefore, the posterior distribution in this case (red line) is wider and lower.  

The obtained probability of failure (Eq. (6-16)) by using the proposed approach in 

Chapter 6, is higher than the other approach (green line). Therefore, the proposed 

approach in Chapter 6 is recommended, especially when we are not sure how reliable 

the inspection result is. 
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 Availability of Several Inspection Results 

Now, assume several inspection results are available for a specific tubular joint. Here, 

the same observations as introduced in Section 6.3.1.3 are considered and a lognormal 

distribution with the following properties is assigned to the crack measurements: 

𝑎𝑚~ 𝐿𝑁(4𝑚𝑚, 𝐶𝑂𝑉 = 0.5) 

Figure 6.53 shows the posterior distributions of the crack size for both approaches 

(Chapter 5 and Chapter 6) when several inspection results exist. 

 

Figure 6.53. Posterior distributions of the crack size (several inspection results) 

Figure 6.53 illustrates that the posterior distributions in both approaches are not 

substantially different. Although there are some differences in small cracks, in big 

cracks both approaches come close to each other. Therefore, both approaches result in 

a similar probability of failure (Eq. (6-16)). 

Hence, when several inspection results are available, both approaches can be utilised 

to obtain the posterior distribution of the crack size. Moreover, the similar shape of the 

posterior distributions indicates that the proposed approach in Chapter 6 can be 

confidently used for updating the crack size distribution. 
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 Benefits of the Proposed Approach 

Fatigue is an important failure mode in offshore jacket structures. To evaluate the 

fatigue damage, these structures are periodically inspected. Regarding fatigue damage, 

the information from inspection consists of crack measurement. The new information 

obtained from the inspection activity is then used to improve the previous estimate of 

the uncertain parameter which is crack size. 

However, for future inspection planning and reliability analysis of inspected and other 

platforms, updated estimates of other uncertain parameters (i.e. initial crack size, crack 

growth parameter, POD, etc.) are really useful. Just updating crack size estimates at 

one location is sometimes useful for a known critical location, but the ability to 

improve estimates of reliability and to plan better future inspections is much more 

valuable. 

Most of the previous studies implemented the conventional Bayesian methods for 

updating the crack size distribution which were explained in Chapter 5. In these 

studies: 

• A prior distribution was assigned for the crack size 

• A likelihood function was considered based on the author’s opinion 

• A posterior distribution was obtained by using the Bayesian methods (i.e. by 

using Eq. (6-17)) 

However, the credibility of the Bayesian methods has not been considered in these 

studies. The integrity of any Bayesian updating method depends on how reliable the 

inputs (e.g. inspection results) are.  

Figure 6.54 shows how a Bayesian updating method works. 
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Figure 6.54. Inputs and output for a Bayesian updating process 

As can be seen from Figure 6.54, a Bayesian method is a function that processes the 

inputs and generates the output based on the provided inputs. Therefore, if the inputs 

are inaccurate, the updated results may be poor and can even lead to the wrong 

decisions for the next inspection activity. 

Therefore, the reliability of the updating process is the main concern for the platforms’ 

owners. Due to the high cost of underwater inspection activities, in practical 

applications, the inspection result for each joint is usually limited to one inspection. 

Therefore, the reliability of the Bayesian updating is completely sensitive to the 

reliability of the measured crack size that depends on several factors such as: 

• Resolution of the inspection technique 

• Competence of the inspection technician (both technical, personal, etc.) 

Let’s consider the value of likelihood for the considered example again (Table 6.15). 

Two cases are assumed here: 

1) An accurate inspection technique and a competent inspector:   

If the crack size is measured equal to 4mm, and the real crack size is 4.1mm, then 

the posterior distribution is completely reliable. The likelihood value for this case 

is proportional to 57.3. 

2) An inaccurate inspection technique and/or an incompetent inspector: 
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Now, assume the inspection technique is not accurate and detects a crack of 4mm, 

whereas the real crack size is 6mm. The likelihood value for this case is obtained 

proportional to 3.5 which is 16 times less than the real value (i.e. 57.3). 

As can be seen from Figure 6.52, for the conventional Bayesian method (green line), 

the posterior distribution is sharply reduced for big cracks. Therefore, if the real crack 

size is 6mm, the updated probability of failure (Eq. (6-16)) is underestimated which 

leads to the wrong decisions (because the probability of failure is estimated less than 

the real value). 

It was mentioned that several studies have been performed by using the common 

Bayesian methods which were explained in Chapter 5. Therefore, the credibility of the 

posterior distribution in these studies depends on the user’s confidence in the 

inspection results.  

To overcome the issue of reliability (credibility) of the typical Bayesian methods, the 

presented approach in Chapter 6 can be employed when the inspection result is not 

reliable. Although this approach results in a broader distribution (bigger uncertainty), 

the reliability results are conservative which is acceptable in case of employing an 

inaccurate inspection technique. 

6.8 Guidance for Using the Proposed Approach 

The main objective of Chapter 6 is to propose a novel methodology for updating the 

probability distributions of the parameters in a fracture mechanics model and also 

crack size in tubular joints using information from the inspections. The explained 

methodology in Section 6.3 to Section 6.3.3 can update the distribution of the crack 

size, distributions of the involved uncertainties in the fatigue crack model (i.e. initial 

crack size, crack growth parameter, stress range, and the uncertainty in the geometry 

function), and the POD curves. The reliability of the proposed approach was discussed 

in Section 6.6, in detail. Moreover, the benefits of the proposed approach were 

explained in Section 6.7. 

This section is presented to provide guidance for the user in practice, including: 

(I) How to use the methodology to get the best results 

(II) When the methodology works best 
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(III) What are the advantages of the proposed approach 

(IV) What are the limitations of the proposed approach 

 How to Use the Methodology to Get the Best Results 

The proposed methodology for obtaining the posterior distributions of the uncertain 

parameters is explained in Section 6.3 to Section 6.3.3, in detail. For getting the best 

results, the following steps need to be taken: 

1) Select the prior distributions of the uncertain parameters involved in the fatigue 

crack model based on the previous knowledge, beliefs, and the suggested 

distributions in the recommended practices, for instance: 

➢ Use the suggested distributions in the recommended practices (e.g. DNV 95-

3204 [19], BS 7910 [47], JCSS [134], etc.) for initial crack size (𝑎0
𝑝
), and crack 

growth parameter (𝐶𝑝). 

➢ For the stress range distribution (𝑆𝑝), the mean value is obtained from the 

global fatigue analysis results (SESAM software) for the considered tubular 

joint. Select the coefficient of variation (COV) based on the experts’ beliefs 

regarding the uncertainties in the global analysis (or use e.g. DNV 

recommendations). 

➢ For the uncertainty in the estimation of the geometry function (휀𝑌
𝑝
), select the 

prior distribution based on the available literature review. Most of the 

previous studies suggest a mean value of 1 and a COV of 0.1-0.2 for the 

uncertainty in the estimation of the geometry function.  

2) Obtain the prior distribution of the crack size by using the sampling method as 

described in Section 6.3.2.2. 

3) Select a prior distribution for the POD curve based on previous knowledge and 

obtain the detected crack size as explained in Section 6.3.2.4.  

4) Use the explained method in Section 6.3.1.3 for obtaining the simulated reality 

distributions of the uncertain parameters involved in the fatigue crack model (i.e. 

𝑎0
𝑟 , 𝐶𝑟 , 𝑆𝑟 , 휀𝑌

𝑟). 
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➢ Note: if the obtained COV value of any of the uncertain parameters in the 

simulated reality distribution is bigger than the considered COV in the prior 

distribution, go to step 1 and increase the COV for the uncertain parameter 

in the prior distribution. 

5) Obtain the simulated reality distribution of the crack size by using the sampling 

method as described in Section 6.3.1.4. 

➢ Note: Make sure the obtained histogram for the simulated reality cracks in 

the sampling method is similar to the real observation distribution.  

6) Select a simulated reality distribution of the POD curve based on the available 

information for the inspection device (provided by the device manufacturer). 

Then obtain the detected simulated cracks as explained in Section 6.3.1.6. 

7) Obtain the posterior distributions of the uncertain parameters, including crack 

size; uncertainties in the fatigue crack model; and the POD curves as explained 

in Section 6.3.3. 

 When the Methodology Works Best 

Based on the considered cases in Section 6.6, the proposed methodology works 

properly when: 

• The mean values of the considered prior distributions for the uncertain 

parameters (i.e. 𝑎0
𝑝
, 𝐶𝑝, 𝑆𝑝, 휀𝑌

𝑝
) are close enough to the mean values of the 

simulated reality distributions (i.e. 𝑎0
𝑟 , 𝐶𝑟 , 𝑆𝑟 , 휀𝑌

𝑟).  

• The coefficient of variation of the above-mentioned parameters (as well as the 

POD curve) in prior distribution is bigger than the coefficient of variation in the 

simulated reality distribution. 

The proposed methodology can be led to poor results if:  

• A very low mean value is selected for a prior distribution of the initial crack size 

(𝑎0
𝑝
) or the crack growth parameter (𝐶𝑝) in comparison to the simulated reality 

distributions. A mean value for the prior is considered as a very low mean value 

if: 
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(𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒)𝑝𝑟𝑖𝑜𝑟

(𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒)𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑎𝑙𝑖𝑡𝑦
≤ 0.25 

• The coefficient of variation of the POD curve in prior distribution is smaller than 

the coefficient of variation of the POD curve in the simulated reality distribution. 

 Advantages of the Proposed Approach 

The proposed methodology has several advantages, including: 

• It maximises the benefits of the inspection results. This approach is capable of 

updating several uncertain parameters, including uncertainties involved in the 

predicted fatigue crack size, POD curves besides fatigue crack size: 

➢ Although updating crack size estimates for a known critical location is 

useful, but the ability to improve estimates of reliability and to plan better 

future inspections is much more useful. 

➢ For future inspection planning and reliability analysis of the inspected 

platform (and other similar platforms), the updated estimates of other 

uncertain parameters (i.e. initial crack size, crack growth parameter, POD, 

etc.) are valuable.  

• It is a more reliable method when only one inspection result is available and there 

is concern about the credibility of the inspection result (see Section 6.7.1). 

• It can be used to find out the importance of each uncertain parameter on the 

posterior distribution of the crack size (based on the sensitivity analysis 

performed in Section 6.4). 

 Limitations of the Approach 

Some important limitations of this approach are: 

• The prior distributions for the uncertain parameters need to be selected 

reasonably regarding the obtained simulated reality distributions. 

• The proposed methodology might be led to poor results if a very low mean value 

is selected for a prior distribution of an uncertain parameter. 
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• The proposed methodology cannot work properly when inappropriate prior 

distributions are selected for two uncertain parameters (e.g. crack growth 

parameter and POD curve), simultaneously.  

6.9 Summary 

In this chapter, a novel methodology is presented to update the probability distributions 

of the uncertain parameters (involved in the fatigue analysis) when new information 

becomes available. The considered uncertainties in this chapter are fatigue crack size, 

POD curve, and input variables involved in the predicted model of the fatigue crack 

size (initial crack size, crack growth parameter, stress range, and uncertainty in the 

estimation of the geometry function). 

Note that whilst the proposed approach considers a specific location, the method can 

be applied to multiple locations at the same time by suitably non-dimensionalising the 

variables. 

To obtain the simulated reality distributions of the input variables, the concept of 

equivalent initial flaw size distribution is utilised.  These distributions are obtained by 

back extrapolating the observed cracks. 

A sampling method is used to generate the prior distribution of the crack size. A large 

number of random samples for each input variable is generated based on their 

distributions and the crack size is calculated for each set of randomly generated 

numbers. 

For obtaining the posterior distributions, the concept of compatibility is defined. For 

this purpose, each detected prior crack is compared with each simulated reality crack. 

If the prior crack is close enough to the simulated reality crack, that prior is assumed 

as a compatible prior otherwise it is called an incompatible prior. The posterior 

distributions are then achieved by removing the incompatible priors and fitting the best 

distributions to the compatible priors. 

The results of the proposed approach show that for reasonable prior estimates, the 

posterior distributions of the uncertain parameters will shift towards the simulated 

reality distributions. It is shown that the uncertainty of the posterior distribution of the 

crack size decreases whereas the uncertainty of the posterior distribution for the input 
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variables increases. That is because the inspection results include only information 

about the crack size and do not provide any information about the input variables such 

as initial crack size. 

To find out which parameters have great influences on the posterior distributions, 

sensitivity analyses are performed. The main results of the sensitivity analyses are: 

• The probability of failure is very sensitive to the initial crack size and stress range 

distributions. 

• The posterior distribution of the crack size is sensitive to the resolution of the 

NDT technique.  

Moreover, the results of the proposed approach for updating the crack size distribution 

are compared with the results of the conventional Bayesian methods (explained in 

Chapter 5). When several inspection results are available, both approaches (Chapter 5 

and Chapter 6) can be utilised to obtain the posterior distribution of the crack size. 

However, when few inspection results are available, there is a big difference between 

the two approaches. Since the posterior distribution is sensitive to the measured crack 

size in the common Bayesian methods, the credibility of the posterior distribution 

depends on the user’s confidence in the inspection results. On the other hand, although 

the proposed approach (in Chapter 6) results in a broader distribution (bigger 

uncertainty), it can be employed when the inspection result is not reliable.  

Finally, the reliability of the proposed methodology is assessed when an inappropriate 

distribution is chosen for the prior distribution of an uncertain parameter. The 

advantages and limitations of the proposed methodology are described and guidance 

for using this approach is provided. 
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7 . CONCLUSION 

In this PhD thesis, a comprehensive approach for improving the reliability assessment 

of offshore jacket platforms is presented. Starting from the fatigue reliability analysis 

at the component level, continuing the reliability analysis at the system level, updating 

the reliability analysis by using the Bayesian approach when the inspection results are 

provided, and finally ending with proposing a new updating approach for updating all 

uncertain parameters involved in the analysis. 

The summary of the PhD research thesis and the novelty of the research are briefly 

provided in Section 7.1 and 7.2, respectively. The contributions to research, and 

industry, are explained in Section 7.3. The future work and some final concluding 

remarks are elaborated in Sections 7.4 and 7.5, respectively. 

7.1 Summary of the Chapters 

The thesis commences in Chapter 1 with an introduction to the research work. The 

background and motivations of this research are presented. The existing problems in 

the offshore structures are briefly described and the main aim and objectives of the 

thesis are defined. The considered approach to solving the described problems and the 

structure of the thesis is outlined and the publications regarding the thesis are listed. 

Chapter 2 reviews the basic concepts of probability theory, random variables, and 

commonly used probability distributions. Fundamental concepts of the reliability 

analysis including different approaches to structural safety, uncertainties related to 

loading and capacity, limit state functions, probability of failure, and reliability index 

are introduced. Different methods for estimation of the reliability, including First-

Order Reliability Method (FORM), Second-Order Reliability Method (SORM), and 

Monte-Carlo simulation are explained. The advantages and disadvantages of each 

method are described. Finally, the sensitivity measures for the selection of important 

basic variables are introduced. 

Fatigue reliability analysis at the component level for tubular joints is explained in 

Chapter 3. Jacket platforms are one of the most common types of offshore structures. 

They are usually constructed as truss frameworks in which tubular members are the 

structural elements. These tubular members are welded together to create a steel frame, 
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to transfer the gravitational and lateral loads to the pile foundations. Fatigue is an 

important failure mechanism in jacket structures. Fatigue damage occurs due to the 

cyclic nature of wave loading on the structure. This wave loading creates stress ranges 

at the hot spot regions and results in crack initiation. The crack initiation is followed 

by crack propagation through the thickness of the tubular wall which is assumed as the 

end of fatigue life of the tubular joints. 

In Chapter 3, at first, the concept of the fatigue process, and fatigue analysis is 

explained. The Chapter also describes how to model the wave loading in the sea 

environment, and how to obtain the response of the structure due to environmental 

loads by introducing the transfer function concept. Different types of tubular joints are 

introduced and the concept of hot spot stress (HSS) and stress concentration factor 

(SCF) is presented. Concerning the fatigue analysis, two approaches are introduced; 

the S-N curve approach and the fracture mechanics (FM) approach, and the reason for 

selecting the FM approach in this research is described. 

After explaining the fatigue process, fatigue reliability analysis, and different sources 

of uncertainties in fatigue analysis are addressed. To carry out the fatigue reliability 

analysis, an appropriate probabilistic model is developed and the limit state function 

is introduced. In this thesis, for the component reliability analysis, the crack size is 

considered as the failure criterion which is acceptable for low toughness material. 

Several uncertainties are considered in the limit state function and the probability of 

failure for the tubular joints is obtained by using FORM and Monte-Carlo simulation. 

Sensitivity analyses are carried out to find out the effect of each uncertain parameter 

on the fatigue reliability results.   

Finally, the application of the fatigue reliability analysis to a jacket platform is 

provided in Chapter 3. A three-dimensional structural model of the considered 

platform is generated using SESAM software. A global fatigue analysis is performed 

by SESAM software and the generated stress results are used in the probabilistic crack 

size model which is developed based on the FM approach. This model predicts the 

fatigue crack size at any given time for the tubular joints in the considered jacket 

platform. The crack size is considered as the failure criterion and failure occurs when 

the crack size is bigger than a critical value. By performing the FORM and Monte-
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Carlo simulation, the fatigue probability of failure and the corresponding reliability for 

any tubular joint are estimated. Sensitivity studies are also performed to find out the 

influence of uncertain parameters on the probability of failure. 

In Chapter 3 of this research work, only one failure mode for a specific component is 

considered. Nevertheless, jacket structures in the real situation are redundant 

structures. Therefore, failure of a few structural components doesn’t necessarily lead 

to structural failure or collapse, since the load can be redistributed among undamaged 

members. Due to the high redundancy of jacket platforms, the probability of failure of 

the whole system is more applicable than the component probability of failure. 

Chapter 4 introduces the fundamental of the structural systems and the reliability 

calculation for each system. In this chapter, a system reliability approach is presented 

to estimate the probability of failure of a jacket platform by considering fatigue and 

extreme wave loads. 

In this approach, at first, the fatigue probability of failure of each component is 

obtained by using the Monte-Carlo simulation. Then, important failure paths are 

identified by using a searching process in which, components with the maximum 

change in the accumulated damage are considered as the candidate joints in the path. 

By removing the candidate joint, which is assumed to fail in fatigue, the probability of 

failure of the structure under extreme wave loading increases. System failure criterion 

is evaluated by comparing the platform strength and loading distributions in terms of 

base shear. Nonlinear pushover analysis is also carried out to determine the capacity 

of the platform and the annual probability of failure under an extreme wave is 

calculated. When the probability of failure exceeds the maximum acceptable 

probability, the platform is assumed to fail. 

To demonstrate the application of the proposed approach in Chapter 4, a jacket 

platform is considered and the three-dimensional structural model of the considered 

platform is generated using SESAM software. Nonlinear pushover analysis is carried 

out by using USFOS software to determine the capacity of the platform. 

At first, it is assumed that no failure happened and all components are in safe 

conditions and Monte-Carlo simulation is employed to calculate the probability of 

failure under extreme load in the intact case. Spectral fatigue analysis for the jacket 
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platform is performed using SESAM software and by obtaining the stress range for 

each component, the probability of failure of each joint is obtained. In the next step, 

the component that has the highest probability of failure is selected as the first 

component in the failure path and the platform is modified by removing this 

component. By removing the candidate joint, the probability of failure of the structure 

under extreme wave loading increases. This probability of failure under an extreme 

wave is calculated and compared to the maximum probability of failure. The process 

of removing the critical components continues till the annual probability of failure 

exceeds the maximum acceptable probability which is assumed as the failure of the 

structure. 

Chapter 4 also describes the inspection plan for a jacket platform. Inspection activities 

are performed to find out the level of degradation of each component. Underwater 

inspection is an expensive activity and the cost of the inspection is proportional to the 

number of inspections. Therefore, an inspection strategy can be proposed based on the 

effect of each component on the system reliability. This is an alternative inspection 

plan in comparison with the regular inspection plan. In this plan, the inspections are 

prioritised on the critical joints in the failure path that have a great effect on the system 

reliability. 

Offshore platforms are regularly inspected during the operational lifetime to make sure 

they comply with the structural integrity requirements and to assess the state of 

damage. Fatigue damage accumulates during the structure’s lifetime as the crack size 

increases. The accumulation of fatigue damage causes deterioration of the tubular joint 

capacity and increases the probability of failure. Regardless of the inspection outcome 

(detection or not detection of a crack), inspection activities provide additional 

information which can be utilised to update the probability distribution of crack size 

in a tubular joint. 

Chapter 5 shows how the inspection results can be incorporated for updating the crack 

size distribution in a tubular joint. A Bayesian framework is typically used for updating 

the probability distributions of an uncertain parameter when new information becomes 

available. Bayesian inference provides a formal method of belief updating when new 
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information becomes available. The purpose of updating is to incorporate any available 

inspection history into an improved estimate of the parameters.  

Moreover, in Chapter 5, the Bayesian framework and the terminology in this context 

are introduced. There are two main approaches for updating the distribution of an 

uncertain parameter; the analytical approach and the numerical approach. These two 

approaches and their advantages and disadvantages are explained. In this chapter, the 

application of Bayesian inference for updating the crack size distribution is 

demonstrated. The updating process is carried out by using both analytical and 

numerical approaches and the results of the two approaches are compared. Moreover, 

in the numerical method, depending on the results of inspections, an expression for the 

updated crack size is obtained. Additionally, the effect of different parameters and 

inputs on the updated distribution of the crack size is investigated. After updating the 

crack size distribution, the probability of failure for each component is updated. 

Depending on the results of inspections, the updated probability of failure may be 

higher or lower than the original value. 

In Chapter 6, a new methodology is proposed to update the probability distribution of 

all uncertain parameters involved in the fatigue crack model when new information 

becomes available. Three different categories of uncertainties are updated using the 

proposed methodology; Fatigue crack size, POD curve, and Uncertainties involved in 

the predicted fatigue crack size (i.e. initial crack size, crack growth parameter, stress 

range, and uncertainty in the estimation of the geometry function). 

According to the proposed methodology in Chapter 6 two sets of estimations are used; 

prior estimations of the uncertain parameters, and statistics of the simulated reality. 

Two sets of cracks are compared and the posterior estimates of the crack size are 

obtained by introducing the concept of compatibility. The proposed methodology is 

tested using the simulated reality distributions to determine the effectiveness of the 

Bayesian method and also the limits beyond which the method results in poorer 

posterior estimates. To verify the proposed methodology, the posterior distribution of 

the crack size obtained by this approach is compared with the updated crack size that 

is achieved by the conventional Bayesian methods (Chapter 5). Results show that the 

proposed methodology in Chapter 6 can be used for updating the crack size distribution 
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confidently. Moreover, sensitivity analyses are performed to find out the influence of 

different parameters on the posterior distribution. 

The proposed methodology has several advantages, for instance, it maximises the 

benefits of the inspection results. This approach is capable of updating several 

uncertain parameters, including uncertainties involved in the predicted fatigue crack 

size, POD curves besides fatigue crack size. Moreover, in Chapter 6, guidance on how 

to implement the proposed methodology in practice is provided by explaining the 

framework, advantages, and limitations.   

The developed and applied approaches are disseminated through several paper 

publications in scientific journals, along with oral and poster presentations at 

international conferences, as listed in Section 1.6. 

7.2 Novelty of the Research 

The biggest novelty of the research in this thesis lies in developing a methodology to 

update all uncertainties involved in the fatigue crack model when new information 

(inspection results) is available. Moreover, investigating the credibility of the proposed 

approach is an important part of this research work.    

Most of the previous studies for updating the crack size distribution implemented 

conventional Bayesian methods (e.g., the numerical method). In these studies, a prior 

distribution was assumed for the crack size, and a likelihood function was considered 

based on the author’s opinion. The posterior distribution was then obtained by using 

the Bayesian methods and the updated results were presented.  

However, the credibility of the Bayesian methods was not considered in these studies. 

The reliability of the Bayesian updating depends on how reliable the inputs (e.g. 

inspection results) are. A Bayesian process is a mathematical function that processes 

the inputs and generates the output based on the provided inputs. Therefore, if the 

inputs are inaccurate, the updated results may be poor and can even lead to wrong 

decisions. 

Unlike previous studies, the proposed approach in Chapter 6 investigates the reliability 

of the updating method since the credibility of the Bayesian updating is an important 

issue in any engineering application including offshore structures. 
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Moreover, guidance notes are presented for the user in practice that explains how to 

use the methodology to get the best results, when the methodology works best, the 

advantages, and the limitations of the approach. 

7.3 Thesis Contributions to the Research and Industry 

The biggest contribution of this study to the research lies in expanding the application 

of the reliability analysis to an offshore jacket structure. The research includes a 

comprehensive study, starting from the reliability analysis at the component level for 

an important failure mechanism in jacket structures (i.e., fatigue failure), continuing 

to the reliability analysis at the system level, and updating the probability of failures 

when new information (inspection results) is available.  

To achieve the research aim, six main objectives are introduced in Section 1.3 which 

are: 

1) Developing a probabilistic fatigue model to obtain the component probability 

of failure  

2) Developing a methodology to obtain the system probability of failure  

3) Prioritising the inspection locations  

4) Using conventional Bayesian methods to update the crack size distribution 

5) Proposing a novel Bayesian approach for updating the distributions of all 

uncertain parameters involved in the fatigue analysis 

6) Investigating the credibility of the proposed approach  

The main contributions to the research achieved in this thesis are: 

• Component reliability analysis (Objective #1): 

A probabilistic model for fatigue crack based on the fracture mechanics approach 

is developed. The proposed model predicts the fatigue crack size as a function of 

several uncertain parameters. The crack size is considered as the failure criterion, 

i.e., failure occurs, as soon as the crack size is bigger than a critical value.  

A specific jacket platform is considered and the probability of failure of the 

tubular joints is calculated based on the introduced limit state function. To obtain 
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the probability of failure, appropriate distribution is assigned to each uncertainty, 

and the probability of failure is obtained by using both FORM and Monte-Carlo 

simulation approaches. 

• System reliability analysis (Objective #2): 

Jacket platforms are redundant structures. For redundant structures, reliability at 

the system level is more applicable. Therefore, the reliability model is expanded 

to the system level by considering both fatigue and extreme environmental 

loading.  

Due to the considerable degree of redundancy, there are several possible 

combinations of element failures that can result in the failure of the whole 

structure. Therefore, a searching process is developed to identify important 

failure sequences, and the system failure event is then approximated as the union 

of these identified important sequences. 

The same jacket structure is considered, and the system probability of failure is 

estimated. The initial failures occur by fatigue at the critical joints, and the 

weakened structure collapses under the extreme wave loading. 

• Prioritising the inspection locations (Objective #3): 

Underwater inspection is an expensive activity. The cost of the inspection is 

directly proportional to the number of inspections carried out. Therefore, it is 

required to concentrate only on the critical locations in the structures. At the 

system level, critical components are those that have a big effect on system 

reliability. 

The identified failure paths are suggested as a database for the inspection plan. 

By identifying the dominant failure paths, the critical joints that have a greater 

effect on the system probability of failure are selected and therefore inspection 

can be focused on these joints. 

• Bayesian updating methods (Objective #4): 

Different Bayesian methods are introduced for updating the distribution of any 

uncertain parameter, in general. Analytical and numerical methods are explained, 

and the advantages and disadvantages of each method are provided.  
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The explained methods are then applied to the considered jacket platform. To 

demonstrate the Bayesian methods, a tubular joint is considered and the 

distribution of the crack size is updated by using both analytical and numerical 

methods. A comparison of the results for both methods is provided. 

• Proposing a novel Bayesian approach (Objective #5): 

In the previous studies, the conventional Bayesian methods were used to 

incorporate inspection results (i.e., crack measurements) to update the probability 

distribution of crack size. I.e., both observation and the uncertain parameter are 

crack sizes. The previous studies didn’t provide any updates about the other 

uncertain parameters which are involved in the estimation of the fatigue 

behaviour of the tubular joints.  

A novel methodology is proposed to update the probability distributions of all 

uncertain parameters (including the crack size) when new information becomes 

available. Three different categories of uncertainties are updated using this 

methodology: Fatigue crack size; POD curve; and Uncertainties involved in the 

predicted fatigue crack size (i.e., initial crack size, crack growth parameter, stress 

range, and uncertainty in the estimation of the geometry function). Therefore, this 

approach maximises the benefits of the inspection activities by updating all 

uncertain parameters involved in the fatigue crack model. 

• Investigating the credibility of the proposed approach (Objective #6):  

The credibility of the updating process is the main concern in any updating 

application. However, the credibility of the conventional Bayesian methods was 

not considered in the previous studies. The reliability of any Bayesian updating 

method depends on how reliable the inputs (e.g., inspection results) are. A 

Bayesian process is a mathematical function that processes the inputs and 

generates the output based on the provided inputs. Therefore, if the inputs are 

inaccurate, the updated results may be poor and can even lead to wrong decisions. 

Unlike previous studies, in this research, the reliability of the proposed approach 

is investigated to find out when the proposed approach might lead to poor results. 
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The main contribution of this research to the industry is: 

• Proposing and applying a methodology for a reliable Bayesian updating process 

in offshore structures: 

The reliability of the updating process is the main concern of the platforms’ 

owners. Due to the high cost of underwater inspection, in practical applications, 

the inspection result for each joint is usually limited to one inspection. Therefore, 

the reliability of the Bayesian updating is sensitive to the reliability of the 

measured crack size that depends on several factors such as the resolution of the 

inspection technique, and the competence of the inspector technician (both 

technical, personal, etc.). 

• Future inspection planning: 

Another contribution of this research to the industry is future inspection planning 

and reliability analysis of the inspected platforms. Although updating crack size 

estimates is useful for a known critical location, the ability of the proposed 

approach to improve estimates of other uncertain parameters (i.e., initial crack 

size, crack growth parameter, POD, etc.) is much more valuable. The updated 

distributions of the other uncertain parameters can be used as the prior 

distributions for the next updating process (next inspection results). 

7.4 Future Work 

A novel approach is proposed in Chapter 6 of this research to maximise the benefits 

of the inspection activities by updating all uncertain parameters involved in the fatigue 

crack model.  

The proposed methodology also helps the platform operator/owner to use the Bayesian 

updating with more confidence. To help the user to implement the proposed approach 

in practice, guidance is provided for using the approach by explaining the framework, 

advantages, and limitations.  

The proposed model can open a new research direction for Bayesian updating since it 

considers the credibility of the updating methodology. As future work, the proposed 
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approach in Chapter 6 can be further developed by making efforts to overcome 

prevailing limitations. Some of the limitations of the proposed approach are: 

• To achieve the best results of the proposed methodology, the user needs to select 

the mean value of the considered prior distributions for the uncertain parameters 

close enough to the mean value of the simulated reality distributions.  

• The considered standard deviation of the uncertain parameters in the prior 

distributions needs to be bigger than the simulated reality distributions. 

The proposed methodology can properly update the probability of failure, even, in the 

case of the selection of an inappropriate prior distribution for only one uncertain 

parameter. If inappropriate prior distributions are chosen for more than one uncertain 

parameter, the methodology might lead to incorrect results. Further work is required 

to be carried out to improve the proposed methodology in the case of the selection of 

inappropriate prior distributions of two or more uncertain parameters. 

Moreover, the proposed approach updates the uncertain parameters at one location. As 

future work, the method can be developed for applying to multiple locations at the 

same time by suitably non-dimensionalising the input variables such as stress range. 

7.5 Concluding Remarks 

In this thesis, a comprehensive study is carried out, starting from the component 

reliability analysis, continuing to the system reliability analysis, and finally updating 

the reliability analysis by using Bayesian methods to incorporate the new information 

from the inspection results for offshore jacket structures: 

• The reliability analysis at the component level is carried out by considering a 

fatigue limit state based on the fracture mechanics approach, and the probability 

of failure of the critical joints are estimated.  

• A system reliability approach is presented to estimate the probability of failure 

of a jacket platform by considering fatigue and extreme wave loads. 

• Bayesian framework and the terminology in this context are defined and the 

probability of failure of a tubular joint is updated by using the common Bayesian 

approaches (analytical and numerical).  
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• A new methodology is proposed to update the distribution of all uncertain 

parameters in the fatigue crack model besides the fatigue crack size. The 

proposed methodology is verified to some extent with the conventional Bayesian 

methods and guidance is provided to help the user to implement the proposed 

approach in practice. 

• The credibility of the proposed approach is investigated to find out when the 

proposed approach works properly and when it might lead to poor results. 
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Appendix A. Common Conjugate Distributions 

A.1. Introduction 

Within the Bayesian framework, the parameter 𝜃 is treated as a random quantity. If a 

prior distribution for 𝜃, is shown by 𝑓(𝜃); the posterior distribution, 𝑓(𝜃|𝑥) can be 

obtained via Bayes’ theorem as: 

𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃) × 𝑓(𝜃)

𝑓(𝑥)
 (A.1) 

Where 𝑓(𝑥|𝜃) is the likelihood function. 

The posterior distribution itself involves computing an integral to normalise the 

posterior. To obtain the posterior, the following integral must be computed: 

𝑓(𝑥) = ∫𝑓(𝑥|𝜃)𝑓(𝜃)𝑑𝜃 (A.2) 

Which is an integral with respect to the prior. 

The basic idea of conjugate priors (given a likelihood function) is to choose a family 

of prior distributions in a way that the integral of the Eq.(A.2) can be obtained 

analytically. Based on the Bayes’ theorem, the posterior distribution is obtained by 

multiplying the likelihood function to the prior distribution up to a constant of 

proportionality. If the posterior distribution has the same distribution as the prior, it is 

said that the prior is conjugate to the likelihood. 

Conjugate models are great because the exact distribution of the posterior is easily 

obtained and it has an analytical solution. The use of conjugate priors allows all the 

results to be derived in closed form. Although for the complex models, the 

computational considerations may be important, there may be little choice to use 

conjugate priors. Moreover, there are also other reasons not to use conjugate priors. 

One of the main disadvantages of using conjugate priors is that conjugate priors 

involve relatively strong assumptions. Indeed, conjugate priors minimise the impact 

of the data on the posterior. Therefore, it is important to perform sensitivity analysis 

to assess how strongly the posterior is influenced by the prior. If the posterior is not 

influenced strongly by the prior, then it can be used with more confidence. On the 

other hand, if the posterior is affected intensely by the prior, great care should be taken 
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to assess whether an expert is comfortable with these priors. Otherwise, it is better to 

consider other kinds of priors or gather more data to lessen the effect of the prior. 

Commonly used conjugate prior distributions are shown in Table A.1. 

Table A.1. Common conjugate priors 

Likelihood Uncertain Parameter Prior Distribution Posterior Distribution 

Binomial Success probability (π) Beta Beta 

Poisson Rate (λ) Gamma Gamma 

Normal Mean (σ2 known) Normal Normal 

Normal Variance (μ known) Inverse Gamma Inverse Gamma 

Normal 
Mean and Variance (µ, 

σ2) 

Normal Inverse 

Gamma 

Normal Inverse 

Gamma 

Exponential Rate (λ) Gamma Gamma 

 

A.2. Binomial Model with Unknown Success Probability  

A.2.1. Posterior Distribution 

Let’s consider the likelihood function has a binomial distribution with an uncertain 

parameter of π (success probability). The probability mass function (PMF) of the 

binomial distribution is: 

𝑃(𝑋 = 𝑥) = (
𝑛
𝑥
)𝜋𝑥(1 − 𝜋)(𝑛−𝑥) (A.3) 

where 𝑥 is the number of successes and 𝑛 is the number of trials. 

For a binomial model with unknown success probability 𝜋, Beta distribution is selected 

as a prior since the beta distribution is conjugate to the binomial distribution. Two 

parameters are needed to specify the beta prior distribution, and these will be denoted 

𝛼 and 𝛽. Therefore, the probability distribution of the uncertain parameter (π) before 

incorporating new data is:  

𝑓(𝜋) =
Γ(𝛼 + 𝛽)

Γ(𝛼) × Γ(𝛽)
× 𝜋(𝛼−1) × (1 − 𝜋)(𝛽−1) (A.4) 

Conceptually, 𝛼 can be thought of as the number of failures and (𝛼 + 𝛽) is the number 

of trials over which these failures occurred. 

Mean value and standard deviation of the uncertain parameter (𝜋) is calculated as: 
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𝐸[𝜋] =
𝛼

𝛼 + 𝛽
;              𝑆𝑡𝑑[𝜋] = √

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
 (A.5) 

Now, assume new information is available which includes the data consisting of 𝑥 

failures in 𝑛 trials. The posterior distribution of uncertain parameter (π) can be obtained 

based on Bayes’ rule as: 

       𝑝(𝜋|𝑥) ∝ 𝑝(𝑥|𝜋)  ×  𝑝(𝜋) 

              ∝ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝜋) × 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 

∝ [(
𝑛
𝑥
)𝜋𝑥(1 − 𝜋)(𝑛−𝑥)] × [

Γ(𝛼 + 𝛽)

Γ(𝛼) × Γ(𝛽)
× 𝜋(𝛼−1) × (1 − 𝜋)(𝛽−1)] 

              ∝ 𝜋(𝑥+𝛼−1) × (1 − 𝜋)(𝑛−𝑥+𝛽−1) 

(A.6) 

Which is a 𝐵𝑒𝑡𝑎 (𝑥 + 𝛼, 𝑛 − 𝑥 + 𝛽) distribution. Therefore, when 𝑥 failure happens in 

𝑛 new trials, the posterior distribution is a Beta distribution with below parameters: 

𝛼𝑝𝑜𝑠𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑥 

𝛽𝑝𝑜𝑠𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 + (𝑛 − 𝑥) 
(A.7) 

A.2.2. Non-Informative Prior 

When there are no strong prior beliefs about the unknown parameters, the small values 

of 𝛼𝑝𝑟𝑖𝑜𝑟 and 𝛽𝑝𝑟𝑖𝑜𝑟 correspond to a broader, non-informative prior distribution. In this 

case, a prior distribution is selected in a way that gives equal weight to all possible 

values of the parameters (uniform distribution). For the binomial model, a non-

informative prior is 𝐵𝑒𝑡𝑎 (1, 1)which corresponds to a uniform distribution over the 

[0, 1] interval. 

As an example, assume the failure model of pipes under the condensation-induced 

water hammer (CIWH). A binomial model with uncertain failure probability (π) will 

be used. The value of π could be any value in the interval [0, 1]. Therefore, a non-

informative Beta prior with 𝛼𝑝𝑟𝑖𝑜𝑟 = 𝛽𝑝𝑟𝑖𝑜𝑟 = 1 is selected. Imagine, new information 

indicates that of 2 failures happened in 110 experiments. The posterior distribution for 

the uncertain failure probability (π) can be obtained based on Eq.(A.7): 

𝛼𝑝𝑜𝑠𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑥 = 3,  𝛽𝑝𝑜𝑠𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 + (𝑛 − 𝑥) = 1 + (110 − 2) = 109 
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Figure A.1  shows the prior and posterior distribution for the parameter of interest (π). 

The expected value for π after updating is obtained based on Eq.(A.5) equal to: 

𝐸[𝜋𝑝𝑜𝑠𝑡] =
𝛼𝑝𝑜𝑠𝑡

𝛼𝑝𝑜𝑠𝑡 + 𝛽𝑝𝑜𝑠𝑡
=

3

112
= 0.0268 

 

Figure A.1. Prior and posterior distribution for parameter of interest (π) 

A.2.3. Effect of Number of Additional Data 

Let’s look more closely at how the prior and the posterior expected value relate to each 

other: 

𝐸[𝜋𝑝𝑜𝑠𝑡] =
𝛼𝑝𝑜𝑠𝑡

𝛼𝑝𝑜𝑠𝑡 + 𝛽𝑝𝑜𝑠𝑡
=

𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑥

𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑛
 (A.8) 

Regarding 𝑛𝑝𝑟𝑖𝑜𝑟 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟, Eq.(A.8) can be written as: 

𝐸[𝜋𝑝𝑜𝑠𝑡] =
𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑥

𝛼𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑛
=

𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑥

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
=

𝛼𝑝𝑟𝑖𝑜𝑟

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
+

𝑥

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
  (A.9) 

In Eq.(A.9), the first and second expressions show the contribution of the prior and 

new data on the posterior, respectively. It shows that if the number of failure in new 

data (𝑥) is greater than the prior number of failure (𝛼𝑝𝑟𝑖𝑜𝑟), data has a greater effect on 

the posterior. This is a general phenomenon: as 𝑛 increases, the posterior distribution 

gets more concentrated and the likelihood dominates the prior, otherwise, the prior is 

dominant. 
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To take into account the effect of the number of additional data, imagine the prior 

parameters for the unknown parameter are 𝛼𝑝𝑟𝑖𝑜𝑟 = 2 and 𝛽𝑝𝑟𝑖𝑜𝑟 = 18. Therefore, prior 

characteristics of the uncertain parameter are:  

𝐸[𝜋𝑝𝑟𝑖𝑜𝑟] =
2

2 + 18
= 0.1;             𝑆𝑡𝑑[𝜋𝑝𝑟𝑖𝑜𝑟] = √

2 × 18

(20)2(21)
= 0.065 

In the next step, the new information is provided. Two cases are considered to take 

into account the effect of the number of additional data on the posterior. 

Case (1): One failure in five trials 

The expected value and the standard deviation for the posterior are obtained as: 

𝐸[𝜋𝑝𝑜𝑠𝑡] =
𝛼𝑝𝑟𝑖𝑜𝑟

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
+

𝑥

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
=

2

20 + 5
+

1

20 + 5
= 0.12 

𝑆𝑡𝑑[𝜋𝑝𝑜𝑠𝑡] = √
(2 + 1) × (18 + 4)

(25)2(26)
= 0.063 

Case (2): One failure in forty trials 

The expected value and the standard deviation for the posterior is: 

𝐸[𝜋𝑝𝑜𝑠𝑡] =
𝛼𝑝𝑟𝑖𝑜𝑟

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
+

𝑥

𝑛𝑝𝑟𝑖𝑜𝑟 + 𝑛
=

2

20 + 40
+

1

20 + 40
= 0.05 

𝑆𝑡𝑑[𝜋𝑝𝑜𝑠𝑡] = √
(2 + 1) × (18 + 39)

(60)2(61)
= 0.027 

Figure A.2 shows how the posterior distribution of the unknown parameter changes 

when new data is available in two considered cases. As it can be seen from the figure, 

when few observations are provided, the prior dominates on the posterior results. 

However, when the number of new information increases, the posterior distribution 

shifts toward observation (new data). Moreover, the amount of variance will be 

decreased when new data is provided. New data cause uncertainty reduces. 
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Figure A.2. Posterior distribution in Case 1 (top) and Case 2 (bottom) 

A.3. Normal Model with Unknown Mean (Known Variance) 

A.3.1. Posterior Parameters 

Suppose it is intended to estimate a model where the likelihood of the data is normal 

with an unknown mean 𝜇 and a known variance 𝜎2. The parameter of interest is 𝜇. 

A conjugate Normal prior on 𝜇, with mean 𝜇0 and variance 𝜏0
2 can be used here: 

              𝑓(𝜇|𝑥, 𝜎2) ∝ 𝑓(𝑥|𝜇,  𝜎2) × 𝑓(𝜇) 

                                   ∝ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇,  𝜎2) × 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇0, 𝜏0
2) 

(A.10) 
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Let 𝜃 represent the parameter of interest which in this case is 𝜇. 

𝑓(𝜃|𝑥) ∝ 

[∏
1

√2𝜋𝜎2
× exp (−

(𝑥𝑖 − 𝜃)2

2𝜎2
)

𝑁

𝑖=1

] × [
1

√2𝜋𝜏0
2
× exp (−

(𝜃 − 𝜇0)
2

2𝜏0
2 )] 

              ∝ exp [−∑
(𝑥𝑖 − 𝜃)2

2𝜎2
−

𝑁

𝑖=1

(𝜃 − 𝜇0)
2

2𝜏0
2 ] 

              ∝ exp [−
1

2
(∑

(𝑥𝑖 − 𝜃)2

𝜎2
+

𝑁

𝑖=1

(𝜃 − 𝜇0)
2

𝜏0
2 )] 

              ∝ exp [−
1

2𝜎2𝜏0
2 (𝜏0

2 ∑(𝑥𝑖 − 𝜃)2 + 𝜎2

𝑁

𝑖=1

(𝜃 − 𝜇0)
2)] 

              ∝ exp [−
1

2𝜎2𝜏0
2 (𝜏0

2 ∑(𝑥𝑖
2 − 2𝜃𝑥𝑖 + 𝜃2) + 𝜎2(𝜃2 − 2𝜃𝜇0 + 𝜇0

2)

𝑁

𝑖=1

)] 

(A.11) 

Now, by multiplying the 2𝜃𝑥𝑖 term in the summation by 𝑛/𝑛, the equations can be 

obtained in terms of the mean of the observations (�̅�) as: 

𝑓(𝜃|𝑥) ∝ exp [−
1

2𝜎2𝜏0
2 (𝜏0

2 ∑(𝑥𝑖
2 − 2𝜃

𝑁

𝑛
𝑥𝑖 + 𝜃2) + 𝜎2(𝜃2 − 2𝜃𝜇0 + 𝜇0

2)

𝑁

𝑖=1

)] 

      ∝ exp [−
1

2𝜎2𝜏0
2 ((𝜏0

2 ∑𝑥𝑖
2

𝑁

𝑖=1

) − 𝜏0
22𝜃𝑁�̅� + 𝜏0

2𝑁𝜃2 + 𝜃2𝜎2 − 2𝜃𝜇0𝜎
2 + 𝜇0

2𝜎2)] 

(A.12) 

Since 𝜇0
2𝜎2 and 𝜏0

2 ∑ 𝑥𝑖
2𝑁

𝑖=1  do not contain 𝜃, it can be represented as a constant k, which 

will be dropped into the normalising constant. 

𝑓(𝜃|𝑥)   ∝   exp [−
1

2𝜎2𝜏0
2
(𝜃2(𝜎2 + 𝜏0

2𝑁) − 2𝜃(𝜇0𝜎
2 + 𝜏0

2𝑁�̅�) + 𝑘)] 

                ∝   exp [−
1

2
(𝜃2 (

𝜎2 + 𝜏0
2𝑁

𝜎2𝜏0
2 ) − 2𝜃 (

𝜇0𝜎
2 + 𝜏0

2𝑁�̅�

𝜎2𝜏0
2 ) + 𝑘)] 

                ∝  exp [−
1

2
(𝜃2 (

1

𝜏0
2 +

𝑁

𝜎2
) − 2𝜃 (

𝜇0

𝜏0
2 +

𝑁�̅�

𝜎2
) + 𝑘)] 

(A.13) 

Let’s multiply by 
(

1

𝜏0
2 +

𝑁

𝜎2)

(
1

𝜏0
2 +

𝑁

𝜎2)
⁄  to simplify the 𝜃2 term: 
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    𝑓(𝜃|𝑥)  ∝  exp [−
1

2
(

1

𝜏0
2 +

𝑁

𝜎2
)(𝜃2 (

1
𝜏0

2 +
𝑁
𝜎2

1
𝜏0

2 +
𝑁
𝜎2

) − 2𝜃 (

𝜇0

𝜏0
2 +

𝑁�̅�
𝜎2

1
𝜏0

2 +
𝑁
𝜎2

) + 𝑘)] 

                    ∝  exp [−
1

2
(

1

𝜏0
2 +

𝑁

𝜎2
)(𝜃2 − 2𝜃 (

𝜇0

𝜏0
2 +

𝑁�̅�
𝜎2

1
𝜏0

2 +
𝑁
𝜎2

) + 𝑘)] 

                    ∝  exp

[
 
 
 
 

−
1

2
(

1

𝜏0
2 +

𝑁

𝜎2
)

(

 
 

𝜃 − (

𝜇0

𝜏0
2 +

𝑁�̅�
𝜎2

1
𝜏0

2 +
𝑁
𝜎2

)

)

 
 

2

]
 
 
 
 

 

(A.14) 

Eq.(A.14) looks like the density function of a Normal distribution with the following 

parameters: 

              𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑒𝑎𝑛:                   𝜇1 =

𝜇0

𝜏0
2 +

𝑁�̅�
𝜎2

1
𝜏0

2 +
𝑁
𝜎2

 

              𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒:                 𝜏1
2 = (

1

𝜏0
2 +

𝑁

𝜎2
)

−1

 

(A.15) 

The prior mean 𝜇0 and the posterior mean 𝜇1 are related to each other as: 

𝜇1 =

(
𝜇0

𝜏0
2 +

𝑁�̅�
𝜎2 )

(
1
𝜏0

2 +
𝑁
𝜎2)

   =     

𝜇0𝜎
2 + 𝜏0

2𝑁�̅�

𝜏0
2𝜎2

𝜎2 + 𝑁𝜏0
2

𝜏0
2𝜎2

   =     
𝜇0𝜎

2 + 𝜏0
2𝑁�̅�

𝜎2 + 𝑁𝜏0
2  

                                                                           = (
𝜎2

𝜎2 + 𝑁𝜏0
2) 𝜇0 + (

𝜏0
2�̅�

𝜎2 + 𝑁𝜏0
2)𝑁 

(A.16) 

A.3.2. Effect of Number of Additional Data 

Figure A.3 shows how the posterior distribution of the unknown parameter (𝜇) changes 

when new data is available. In this figure: 

• 𝜇 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇0 = 0, 𝜏0
2 = 0.2) 

• 𝜎2 = 𝑘𝑛𝑜𝑤𝑛 =  0.3 

• �̅� = 1 
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Figure A.3. Effect of the number of additional data on the posterior distribution 

It can be seen that the data quickly overwhelms the prior when the number of additional 

data increases. In fact, as 𝑁 increases, data mean dominates prior mean (Eq.(A.16)). 

Moreover, as the number of data increases, the uncertainty of the posterior is reduced 

(posterior becomes narrower). 

A.3.3. Effect of Prior Variance 

Figure A.4 shows how the posterior distribution of the unknown parameter (μ) changes 

regarding the prior estimation for variance (𝜏0
2). 

 

Figure A.4. Effect of prior variance on the posterior distribution 
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It can be seen that as 𝜏0
2 decreases (less prior variance), the prior mean becomes more 

important (Eq.(A.16)). When less prior variance is considered, the posterior 

distribution shifts to the left (𝜇0 = 0, �̅� = 1). 

A.4. Normal Model with Unknown Variance (Known Mean) 

Now it is intended to estimate a model where the likelihood of the data is normal with 

an unknown variance 𝜎2 and a known mean 𝜇. The parameter of interest is 𝜎2. 

A conjugate inverse gamma prior can be used for the unknown variance with shape 

parameter 𝛼0 and scale parameter 𝛽0. 

                     𝑓(𝜎2|𝑥, 𝜇 )  ∝  𝑓(𝑥|𝜇,  𝜎2) × 𝑓(𝜎2) 

                                     ∝ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇,  𝜎2) × 𝐼𝑛𝑣𝑔𝑎𝑚𝑚𝑎 (𝛼0, 𝛽0) 
(A.17) 

Let 𝜃 represent our parameter of interest which in this case is 𝜎2. 

𝑓(𝜃|𝑥) ∝ 

[∏
1

√2𝜋𝜃
× exp (−

(𝑥𝑖 − 𝜇)2

2𝜃
)

𝑛

𝑖=1

] × [
𝛽0

𝛼0

Γ(𝛼0)
× 𝜃−(𝛼0+1) × exp (−

𝛽0

𝜃
)] 

      ∝  [∏𝜃−
1
2 × exp (−

(𝑥𝑖 − 𝜇)2

2𝜃
)

𝑛

𝑖=1

] × [𝜃−(𝛼0+1) × exp (−
𝛽0

𝜃
)] 

      ∝   [𝜃−
𝑛
2 × exp (−

∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1

2𝜃
)] × [𝜃−(𝛼0+1) × exp (−

𝛽0

𝜃
)] 

      ∝  (𝜃−(𝛼0+
𝑛
2
+1)) × exp [−(

𝛽0

𝜃
+

∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1

2𝜃
)] 

      ∝  (𝜃−(𝛼0+
𝑛
2
+1)) × exp [−(

2𝛽0 + 2(
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1
2

)

2𝜃
)] 

       ∝   (𝜃−(𝛼0+
𝑛
2
+1)) × exp [−(

𝛽0 + (
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1
2

)

𝜃
)] 

(A.18) 

Eq.(A.18) represents the density function of an inverse gamma distribution with the 

following parameters: 
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𝛼1 = 𝛼0 +
𝑛

2
 

𝛽1 = 𝛽0 +
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

2
 

(A.19) 

A.5. Exponential Model with Unknown Rate 

Now, suppose the likelihood of the data is exponentially distributed. The unknown 

parameter here is the rate parameter (λ). In this case, a conjugate Gamma prior can be 

used for λ.  Gamma distribution has two parameters, 𝛼, and 𝛽: 

𝑓(𝜆)  =  
𝛽𝛼

𝛤(𝛼)
 𝜆𝛼−1 𝑒−𝛽𝜆 (A.20) 

The posterior distribution is obtained as: 

                   𝑓(𝜆|𝑥) ∝ 𝑓(𝑥|𝜆) × 𝑓(𝜆) 

                          ∝ 𝐸𝑥𝑝 (𝜆) × 𝐺𝑎𝑚𝑚𝑎 (𝛼, 𝛽) 
(A.21) 

Let 𝜃 represent our parameter of interest which in this case is λ. 

            𝑓(𝜃|𝑥) ∝ [∏𝜃𝑒−𝜃𝑥𝑖

𝑁

𝑖=1

] × [
𝛽𝛼

𝛤(𝛼)
 𝜃𝛼−1 𝑒−𝛽𝜃] 

                          ∝ [𝜃𝑁𝑒−𝜃(𝑥1+⋯+𝑥𝑁)] × [
𝛽𝛼

𝛤(𝛼)
 𝜃𝛼−1 𝑒−𝛽𝜃] 

                          ∝  [𝜃(𝛼+𝑁−1)]  × [𝑒−(𝛽+∑ 𝑥𝑖
𝑁
𝑖=1 )𝜃] 

                          ∝  [𝜃(𝛼+𝑁−1)] × [𝑒−(𝛽+𝑁�̅�)𝜃] 

(A.22) 

Eq.(A.22) represents the density function of a Gamma distribution with the following 

parameters: 

𝛼1 = 𝛼0 + 𝑁 

𝛽1 = 𝛽0 + 𝑁�̅� 
(A.23) 

where 𝑁 is the number of additional data and �̅� is the mean value of 𝑁 additional data. 

 

 


