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Abstract

This thesis studies induction and coinduction schemes from the point

of view of category theory. We start from the account of inductive and

coinductive types given by initial algebra semantics and final coalge-

bra semantics, respectively. We then use fibrations as a generic setting

describing a logic for a type theory to study induction and coinduc-

tion. As our starting point we consider the seminal work of Hermida

and Jacobs [Her93, HJ98], who pioneered the fibrational approach.

We extend their induction and coinduction schemes to give provably

sound generic induction and coinduction schemes for arbitrary induc-

tive and coinductive types. To achieve this we introduce the notion

of a quotient category with equality (QCE) which i) abstracts the

standard notion of a fibration of relations constructed from a given fi-

bration and ii) gives us the correct structure to compare induction and

coinduction from a categorical perspective. This allows us to broaden

the applications of the coinduction scheme, as well as present the du-

ality between coinduction and induction in a systematic way. Finally,

we consider induction and coinduction schemes in the more general

setting of fibred fibrations which is used to give sound, generic in-

dexed induction and coinduction schemes for indexed inductive and

coinductive types.
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Introduction

Iteration operators provide a uniform way to express common and naturally oc-

curring patterns of recursion over inductive data types. Expressing recursion via

iteration operators makes code easier to read, write, and understand; facilitates

code reuse; guarantees properties of programs such as totality and termination;

and supports optimising program transformations such as fold fusion and short

cut fusion.

Categorically, iteration operators arise from initial algebra semantics: the

signature of an inductive data type is given by a functor F , the constructors of

the data type are modelled as the structure map of the initial F -algebra in :

F pµF q Ñ µF , the data type itself is modelled as the carrier µF of the initial

F -algebra, and the iteration operator fold : pFAÑ Aq Ñ µF Ñ A for µF maps

an F -algebra h : FAÑ A to the unique F -algebra morphism from in to h. Initial

algebra semantics provides a comprehensive theory of iteration that is

• principled, in that it ensures that programs have rigorous mathematical

foundations that can be used to give them meaning and prove their sound-

ness;

• expressive, in that it is applicable to all inductive types — i.e., all types that

are carriers of initial algebras — rather than just to syntactically defined

classes of data types such as polynomial ones; and

• sound, in that it is valid in any model — set-theoretic, domain-theoretic,

realisability, etc. — interpreting data types as carriers of initial algebras.

Final coalgebra semantics gives an equally comprehensive understanding of

coinductive types: the signature of a coinductive data type is given by a functor
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F , the destructors of the data type are modelled as the structure map of the final

F -coalgebra out : νF Ñ F pνF q, the data type itself is modelled as the carrier

νF of the final F -coalgebra, and the coiteration operator unfold : pA Ñ FAq Ñ

A Ñ νF for νF maps an F -coalgebra k : A Ñ FA to the unique F -coalgebra

morphism from k to out . Final coalgebra semantics thus provides a theory of

coiteration which is as principled, expressive, and sound as for iteration.

Induction is often used to prove properties of functions defined by iteration,

and the soundness of induction schemes is often established by reducing it to

that of iteration. Since induction and iteration are closely linked, we might ex-

pect initial algebra semantics to give a theory of induction that is as principled,

expressive, and sound as the theory of iteration it provides. Unfortunately, most

theories of induction for inductive data types — i.e., for data types of the form

µF for an endofunctor F on a base category B— are only sound under significant

restrictions on the category B, the functor F , or the property to be established.

However, Hermida and Jacobs recently made a conceptual breakthrough in the

theory of induction [Her93,HJ98]. They start with a category B, typically thought

of as a category of types, and show how to lift an arbitrary functor F on B, to

a functor pF on a category of predicates on B. They then take the premise of

an induction scheme for µF to be an pF -algebra. Their main theorem about in-

duction shows that if pF preserves truth predicates then the resulting induction

scheme is sound. They then show that for any polynomial functors F the lifting
pF preserves truth predicates.

In the same way, coinduction and coiteration are closely linked, so we might

expect final coalgebra semantics to give a principled, expressive, and sound the-

ory of coinduction. However, most theories of coinduction suffer from the same

drawbacks that theories of induction do. In [HJ98], Hermida and Jacobs comple-

mented their theory of induction with a theory of coinduction. While induction

deals with predicates, coinduction deals with relations, so this time Hermida and

Jacobs show how to lift an arbitrary functor F on a base category B, again typ-

ically thought of as a category of types to a functor qF on a category of binary

predicates on B. (Binary predicates are the traditional representation of rela-

tions in a type-theoretic setting). Hermida and Jacobs take the premise of a
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coinduction scheme for νF to be an qF -coalgebra. Their main theorem about in-

duction dualises to show that the if qF preserves equality the resulting coinduction

scheme is sound. They then show that for any polynomial functors F the lifting
qF preserves equality.

To formally capture the informal notions of a category of types and a cate-

gory of predicates above these types, Hermida and Jacobs worked in a fibrational

setting. Fibrations support a uniform, axiomatic approach to induction and coin-

duction that is widely applicable, and that abstracts over the specific choices of

category, functor, and predicate. This is advantageous because:

• the semantics of data types in languages involving recursion, corecursion

and other effects usually involves categories other than Set;

• in such circumstances, the standard set-based interpretations of predicates

are no longer germane;

• in any setting, there can be more than one reasonable notion of predicate;

• fibrations allow induction and coinduction schemes for many classes of data

types to be obtained by instantiation of a single, generic theory rather than

developing an ad hoc, case-by-case basis.

Thus, Hermida and Jacobs overcome two of the aforementioned limitations on

induction schemes, namely the restrictions on the base category B and the re-

striction on the properties that can be established. They also provide a formal

setting in which to study induction and coinduction schemes. But since they only

prove the soundness of their induction and coinduction schemes for polynomial

data types, the limitation on the functors treated remains in their work. Their

theory therefore needs to be extended whenever a non-polynomial data type is

considered. Among the class of non-polynomial data types are the inductive data

types of rose trees and of hereditary sets as well as the coinductive data type of

non-deterministic automata.

In this thesis, we extend the existing body of work on fibrational induction

and coinduction in the following ways.
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• We show how to remove the restriction to polynomial functors and derive a

sound, generic induction scheme that can be instantiated to every inductive

type. This is important because it provides a counterpart for induction to

the existence of an iteration operator for every inductive type. We take

Hermida and Jacobs’ approach as our point of departure and show that,

under slightly different assumptions about the fibration involved, we can

lift any functor on the base category of a fibration to a functor on the total

category of the fibration that preserves truth predicates. Since we define

our lifting uniformly for all functors, the induction scheme to which it gives

rise is completely generic as well.

• We show how to remove the restriction to polynomial functors and derive a

sound, generic coinduction scheme that can be instantiated to every coin-

ductive data type, i.e., to every type that is the carrier of a final coalgebra.

This is equally important because it provides a counterpart for coinduc-

tion to the existence of a coiteration operator for every coinductive type.

Again, here we start from Hermida and Jacobs’ approach and lift any func-

tor on the base category of a fibration to a functor on the total category of

the fibration that preserves equality relations. Since we define our lifting

uniformly for all functors, the coinduction scheme to which it gives rise is

completely generic, just as our induction scheme is.

• We show how to remove a restriction appearing in [HJ98] on the notion of re-

lation involved in the coinduction scheme. We thereby derive a coinduction

scheme that treats an abstract notion of relation that is sufficiently general

to include binary predicates. This is important for two reasons. First, by

accommodating a more abstract notion of relation, it encompasses a wider

class of fibrations than fibrations of binary predicates. This allows our

coinduction scheme to be instantiated in new settings. Second, our more

abstract notion of relation gives rise to a coinduction scheme whose level of

abstraction reflects that of our induction scheme. This allows us to present

coinduction as the dual of induction in a very natural way.
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• We derive sound, generic induction schemes for inductive indexed types.

Data types arising as initial algebras of endofunctors on a category of types

are fairly simple. More sophisticated data types — e.g., untyped lambda

terms and red-black trees — are often modelled as inductive indexed types,

arising as initial algebras of functors on slice categories, presheaf categories

and similar structures. We show how to derive a sound, generic indexed

induction scheme to reason about such data types with a version of our

generic induction scheme instantiated in the more general context of fibred

fibration. Such a setting allows us to consider a logic above another fibra-

tion, this gives us the possibility to consider any indexing of types that is

captured by a fibration.

• Since we can derive sound, generic induction schemes for inductive types

and inductive indexed types, and sound, generic coinduction schemes for

coinductive types, we might expect to be able to derive sound, generic

coinduction schemes for coinductive indexed types, as well. We confirm

that this is indeed possible, and give a number of examples of such schemes.

This thesis consists in part of work done jointly with my supervisors Patricia

Johann and Neil Ghani. This work was published in [GJF10,FGJ11,GJF12], and

the journal version [GJF] of [FGJ11] was invited for submission to the CALCO

2011 special issue of LMCS. As is natural during the course of a PhD, my con-

tributions to these papers grew chronologically:

• In [GJF10] and its journal version [GJF12], my contributions were mainly

to the treatment of induction in arbitrary fibrations, particularly the use of

Lawvere fibrations to obtain a modular presentation of a generic induction

scheme. My contributions elaborated and built upon the concrete treatment

of induction and the preliminary presentation of a fibrational treatment of

generic induction schemes, both of which were reasonably well settled prior

to my involvement in this research.

• In [FGJ11] and its extended version [GJF], my main contributions were

to define the notion of quotient category with equality and to ascertain
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its relevance for coinduction and indexed coinduction. I also developed

the detailed treatment of indexed induction and coinduction in a fibred

fibrational setting. A generalisation of the notion of QCE is currently being

used as the technical basis of a categorical study of parametricity by Patricia

Johann and Neil Ghani.

The following description of the chapters of the thesis specifies the relations be-

tween these papers and the thesis.

The thesis is structured in the following way. In Chapter 1 we introduce

fibrations and some basic results about them, and describe how they can be

used to model different types of logics above type theories. No new results are

introduced in this chapter — we only recall sufficient preliminary results for a

reader not familiar with fibrations to enable them to follow the thesis. We do,

however, assume basic knowledge of category theory.

In Chapter 2 we will concentrate on two different kinds of fibrations, namely

comprehension categories with unit and quotient categories with equality. The

notion of comprehension category with unit appears when modelling dependent

type theory with category in [Ehr88a,Ehr88b] under the name D-category and is

studied as an instance of the notion of comprehension category in [Jac93]. This

is the setting in which we will study induction. We borrow most of the results

in this chapter from these papers. The new notion of quotient category with

equality arises from our intention to present coinduction as dual to induction,

and will play a role in the study of coinduction similar to the role of comprehen-

sion category with unit for the study of induction. The section of this chapter

which introduces quotient categories with equality is based on results presented

in [FGJ11] and [GJF].

Chapter 3 studies the notion of lifting of a functor with regard to a fibration.

For a fibration, the lifting of a functor on the base category is a functor on the

total category that represents, in some way, the first functor. The notion of lifting

is at the heart of the treatment of induction and coinduction in fibrations. We

present two ways to construct a canonical lifting for an arbitrary functor, one in

the setting in which we study induction and the other in the setting in which
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we study coinduction. We conclude the chapter with different properties of these

canonical liftings as well as their relationship with arbitrary liftings. This Chapter

is based on [GJF10,GJF12] for the study of general liftings and canonical liftings

in the setting in which we study induction, as well as in [FGJ11] for the study of

canonical liftings in the setting in which we study coinduction.

Chapter 4 details our fibrational approach to derive sound induction and coin-

duction schemes for arbitrary inductive and coinductive types respectively. This

chapter start with some well-known knowledge on initial algebra and final coal-

gebra semantics. We then use the different notions introduced in the previous

chapters to, first, define the notion of induction and coinduction schemes in fi-

bration. And second, show how to derive, in a generic way, such schemes in

the setting of comprehension categories with unit and quotient categories with

equality, respectively. This chapter is based on [GJF10,GJF12] for the study of

induction, and on [FGJ11] for the study of coinduction.

Chapter 5 studies sound induction for arbitrary indexed inductive types. It

demonstrates how we can exploit the generality of the fibrational setting in which

we have chosen to work to obtain interesting results about a specific setting of

interest. In this chapter we consider the notion of fibred fibration which allows us

to consider a fibration of a logic above a fibration of indexed types. We look at the

fibred notion of comprehension category with unit in which we study induction

for indexed types. This chapter is based on [GJF].

Chapter 6 studies sound coinduction for arbitrary indexed coinductive types.

We show how the notion of quotient category with equality is generalised in the

setting of fibred fibration and how this allows us to study coinduction schemes

for indexed coinductive types. This chapter is based on [GJF].
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Chapter 1

Theory of fibrations

This chapter introduces the basic notions of the theory of fibrations. In Section 1.1

we give the definition of a fibration. We then look at some examples of standard

fibrations, such as the codomain, syntactic, and simple fibrations. The syntactic

fibration will be of particular interest, as it highlights the relationship between

fibrations, type theory, and logic in order to make the connection between our

fibrational approach to induction and coinduction and the standard approach.

In Section 1.2 we present the basic tools we use to create and manipulate

fibrations and fibred structures. In particular, we investigate categorical struc-

ture in the fibrational context, the construction of new fibrations from existing

ones, and the conditions under which these constructions preserve this categori-

cal structure. The main tool defining structure in the fibrational context is the

notion of a fibred adjunction, and the main tool for constructing fibrations from

existing ones is change of base, i.e., the pullback of a fibration along a functor.

The content of this chapter is well-known; none of the results presented here

are new, unless stated otherwise. Mots of the examples that we present in this

chapter, as well as the other chapters of this thesis, are description of standard

results of the theory of fibration. We will in most cases not reproduce the associ-

ated proofs and refer to standard documents like [Jac99], from which we borrow

most of the content in this chapter, for the ones we do not provide.
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1.1 Fibrations

In this subsection we recall the notion of a fibration and the dual notion of

opfibration. Fibrations and opfibrations are special kinds of functors p : E Ñ B

which capture the idea that E is continuously indexed by B. Our interest in

fibrations lies in the fact that they provide models of a logic of predicates above a

type theory. In such models, objects of E are thought of as predicates, objects of

B are thought of as types, and p is thought to map each predicate P in E to the

type pP about which it is a predicate. The notion of opfibrations arises in our

work when we want to express the duality between induction and coinduction.

More details about fibrations, opfibrations and their relations with logic and type

theory can be found in [Jac99,Pav90] for example.

Before introducing any definitions, note that we can already see any functor

p : E Ñ B as an indexing of the category E by the category B: for X (resp., f)

in B, an object P (resp., morphism α) of E has index, or is above, X if pP � X

(resp., pα � f). The point of view of fibrations is to index morphisms of E by

objects of B instead of morphisms of B: a morphism α : P Ñ Q in E has index X

in B if pα � idX , such a morphism is called vertical. For a non-vertical morphism

α : P Ñ Q above f : X Ñ Y we then ask that α is uniquely determined by f

and another morphism with index X (or Y for p to be an opfibration). The idea

being that α has index X up to reindexing its codomain Q from Y to X along

f (or the dual for opfibration). The key concept to ensure this property is the

notion of cartesian morphisms in E . The definition of a cartesian morphism above

a morphism f guarantees that every morphism above f can be decomposed as

a vertical morphism followed by the cartesian morphism. Cartesian morphisms

can be thought of as only containing indexing information from B, and they

are the direct opposite of vertical morphisms. Dually, there is the notion of an

opcartesian morphism above f which guarantees that every morphism above f

decomposes as a vertical morphism preceded by the opcartesian morphism.

The key notions of cartesian and opcartesian morphism are defined as follows.

Definition 1.1.1. Let p : E Ñ B be a functor.

(i) A morphism g : Q Ñ P in E is cartesian above a morphism f : X Ñ Y in

9



B if pg � f , and for every g1 : Q1 Ñ P in E for which pg1 � f � v for some

v : pQ1 Ñ X there exists a unique h : Q1 Ñ Q in E such that ph � v and

g � h � g1.

(ii) A morphism g : P Ñ Q in E is opcartesian above a morphism f : X Ñ Y

in B if pg � f , and for every g1 : P Ñ Q1 in E for which pg1 � v � f for some

v : Y Ñ pQ1 there exists a unique h : Q Ñ Q1 in E such that ph � v and

h � g � g1.

We can capture cartesian and opcartesian morphisms diagrammatically as follows

(the left and right parts, respectively).

E

p

��

Q1

h

��

g1

$$

Q1

Q g
// P P

g1

33

g
// Q

h

BB

B pQ1
v
// X

f
// Y X

f
// Y v

// pQ1

Note that in this thesis we follow the convention of drawing elements above one

another in a diagram when they are "above" one another in the categorical sense.

Cartesian morphisms (opcartesian morphisms) are the essence of fibrations

(resp., opfibrations). We introduce both fibrations and their duals now since the

latter will prove useful later in our development. Below we speak primarily of fi-

brations, with the understanding that the dual observations hold for opfibrations.

Definition 1.1.2. Let p : E Ñ B be a functor.

(i) The functor p is a fibration if for every object P of E , and every morphism

f : X Ñ pP in B there is a cartesian morphism g : QÑ P in E above f .

(ii) Dually, the functor p is an opfibration if for every object P of E , and every

morphism f : pP Ñ Y in B there is an opcartesian morphism g : P Ñ Q in

E above f .
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(iii) The functor p is a bifibration if it is simultaneously a fibration and an

opfibration.

For p : E Ñ B an (op/bi)fibration, we call E the total category and B the base

category of p. For any object X of B, we write EX for the fibre above X, i.e., the

subcategory of E comprising objects above X and vertical morphisms (morphisms

above idX). In this thesis we will also use the notion of a fibre for functors that

are not necessarily fibrations, indeed this notion is well defined for any functor.

Rather than reasoning about fibrations and opfibrations separately, we will use

duality to reason about them simultaneously. The crucial lemma is the following:

Lemma 1.1.3. A functor p : E Ñ B is an opfibration if and only if the opposite

functor pop : Eop Ñ Bop is a fibration.

The proof follows from the duality between cartesian and opcartesian morphisms.

It is not hard to see that a cartesian morphism g above a morphism f with

codomain pP is unique up to isomorphism, and similarly for opcartesian mor-

phisms. It is often very useful to be able to choose a specific cartesian morphism

given a morphism f in B and P above the codomain of f . We call this specific

choice a cartesian lifting of f of codomain P . A fibration which comes with a

choice of cartesian liftings, and dually an opfibration which comes with a choice

of opcartesian liftings, are said to be cloven. In the rest of this thesis all the

(op/bi)fibrations that we consider will be assumed to be cloven. The main point

for assuming fibrations and opfibrations to be cloven is to be able to derive the

following two constructions.

For p : E Ñ B a fibration, f : X Ñ Y a morphism in B and P an object of EY ,

we write f §
P : f�P Ñ P for the cartesian lifting of f of codomain P . When clear

from the context, we might drop P and simply write f §. The function mapping

each object P of EY to f�P , the domain of f §
P , extends to a functor f� : EY Ñ EX .

The functor f� then maps a morphism k : P Ñ P 1 in EY , to the unique morphism

11



f�k making the following diagram commute

f�P

f�k
��

f§P // P

k

��
f�P 1

f§
P 1

// P 1

The universal property of f §
P 1 ensures the existence and uniqueness of f�k. We

call the functor f� the reindexing functor along f .

For p : E Ñ B an opfibration, f : X Ñ Y a morphism in B and Q an object

of EX , we write fQ§ : Q Ñ ΣfQ for the opcartesian lifting of f of domain Q.

When clear from the context, we might drop Q and simply write f§. Dually to

reindexing, the function mapping each object Q in EX to ΣfQ, the codomain of

fQ§ , extends to a functor Σf : EX Ñ EY . We call the functor Σf the opreindexing

functor along f .

We now illustrate the notions of fibration, opfibration, and bifibration with

some examples.

Example 1.1.4. Let B be an arbitrary category. Then the identity functor on

B is a fibration, called the identity fibration above B. Each fibre has exactly

one object, and the cartesian lifting of a morphism f is f itself. Moreover, the

identity fibration is an opfibration and hence also a bifibration.

The following syntactic example illustrates our use of fibrations for induction.

If we have a type theory modelled by a category B and a logic E to reason about

the type theory, then the logic is modelled by a fibration with base category B

and total category E .

Example 1.1.5. Consider a type theory such as the simply typed lambda cal-

culus. We can model this type theory with a category B whose objects are the

types of the type theory and whose morphisms are (βη-equivalence classes of)

terms of the type theory.

Now suppose we have a predicate logic on this type theory. Such a logic

is given by a collection of predicates, i.e., by a collection of propositions, each

of which is parameterised above (at most) a single type. Concretely, writing
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x : X $ P : Prop for a proposition P whose only possible free variable is x : X,

we view P as a predicate on X. Then we can construct a category E to model

this predicate logic by taking the objects of E to be predicates, and a morphism

of E from a predicate x : X $ P : Prop to a predicate y : Y $ Q : Prop to be a

term t such that x : X $ t : Y together with a logical derivation of the entailment

x : X,P $ Qry Ð ts.

If our predicate logic is closed under substitution — i.e., if y : Y $ P : Prop

and if x : X $ t : Y , then x : X $ P ry Ð ts : Prop — then the functor

p : E Ñ B mapping a predicate x : X $ Q : Prop to the type X of its free

variable(s) is a fibration. Indeed, given a term t in B such that x : X $ t : Y

and a predicate y : Y $ Q : Prop, the substitution of y in Q by t defines

reindexing of Q along t, and the cartesian lifting of t at Q is the morphism of E

from x : X $ Qry Ð ts : Prop to y : Y $ Q : Prop given by t itself together

with the obvious derivation of the entailment x : X,Qry Ð ts $ Qry Ð ts. The

fibration defined in this way is called the syntactic fibration for the type theory

under consideration.

Furthermore, if the logic has the additional property that for any term x : X $ t : Y

and predicate x : X $ P : Prop there is a predicate y : Y $ Da : X. trx Ð as�

y. P rxÐ as : Prop (with equality as described in Section 10.1 in [Jac99]) then the

associated fibration is a bifibration. Indeed the adjunction Σu % u�, for u that

captures a term x : X $ t : Y and any x : X % P : Prop and y : Y % Q : Prop,

amounts then to the correspondence

y : Y,
�
Da : X. trxÐ as�y. P rxÐ as

�
$ Q

x : X, P $ Qry Ð ts

In the next example we look at the fibration of set-indexed sets. This fibration

will help us develop intuitions on most of the fibrational constructions that we

will see in this thesis.

Example 1.1.6. The category FampSetq has as objects pairs pX,P q with X a

set and P : X Ñ Set a function. We call X the domain of pX,P q, and write P

for pX,P q when convenient. A morphism from P : X Ñ Set to P 1 : X 1 Ñ Set
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is a pair pf, f�q of functions f : X Ñ X 1 and f� : @x P X.P x Ñ P 1pf xq. The

functor p : FampSetq Ñ Set mapping pX,P q to X and pf, f�q to f is called the

family fibration of Set. If f : X Ñ Y is a morphism in Set and P : Y Ñ Set, then

reindexing of P along f is defined by f�pY, P q � pX,P � fq, and the cartesian

lifting of f at P is pf, λx. idq. In fact, this fibration is actually a bifibration: if

f : X Ñ Y is a morphism in Set and P : X Ñ Set, then opreindexing of P along

f is given by Σf pX,P q � pY, λy.
�

txPX|fx�yu Pxq, and the opcartesian lifting of

f at P is
�
f, λx P X,λp P Px.px, pq

�
.

In the following example we describes a construction that associates any cate-

gory C with a fibration of set-indexed elements of C. The fibration of set-indexed

sets presented in the previous example is an substantiation of this construction.

We keep both examples separate since the following example provides a nice inter-

mediary setting between the intuitive fibration of set-indexed sets and arbitrary

(abstract) fibrations.

Example 1.1.7. For C, a category, consider the category FampCq of set-indexed

families of objects of C. An object of FampCq is a pair pX,P q with X a set of

indices and P : X Ñ C a function mapping to each index the corresponding

indexed element of C. We write P for pX,P q when convenient. A morphism from

P : X Ñ C to P 1 : X 1 Ñ C is a pair pf, f�q of a function f : X Ñ X 1 and a

family of morphisms f�x : PxÑ P 1pf xq in C, for x in X.

The category FampCq is fibred above Set with the functor p : FampCq Ñ Set

sending a family pX,P q to the index X and a map pf, f�q to the function f . For

f : X Ñ Y in Set and P : Y Ñ C in FampCqY , define the reindexing of P along

f , f�P : X Ñ C, as P � f . The cartesian lifting f §
P : f�P Ñ P is then defined as

the pair pf, λx P X. idP pfxqq. This fibration is called the family fibration of C.

In case the category C has set-indexed coproducts
²

, the family fibration of

C is a bifibration. For f : X Ñ Y in Set and P : X Ñ C in FampCqX , define

ΣfP : Y Ñ C as λy.
²

xPpf�1yq Px, where f
�1y denote the set tx P X|fx � yu.

The opcartesian lifting fP§ : P Ñ ΣfP is then defined as the pair pf, f §q where

f §
x is the injection of Px in

²
yPpf�1pfxqq Py, for all x P X.

14



Example 1.1.8. The arrow category of B, denoted BÑ, has morphisms of B as

its objects. A morphism from f : X Ñ Y to f 1 : X 1 Ñ Y 1 in BÑ is a pair of

morphisms α1 : X Ñ X 1 and α2 : Y Ñ Y 1 in B such that the following diagram

commutes.

X

f

��

α1 // X 1

g

��
Y α2

// Y 1

The codomain functor cod : BÑ Ñ B maps an object f : X Ñ Y to Y and a

morphism pα1, α2q to α2. Its fibre above an object Y is the slice category B{Y .

The codomain functor is an opfibration: given an object g : X Ñ Y in BÑ above

Y and a morphism f : Y Ñ Z in B, the pair pidX , f � gq gives an opcartesian

morphism above f of domain g. Furthermore, if B has pullbacks then cod is

a bifibration called the codomain fibration above B. Indeed, given an object

f : X Ñ Y in B{Y and a morphism f 1 : X 1 Ñ Y in B, the pullback of f along f 1

gives a cartesian morphism above f 1.

Example 1.1.9. Let B be a category and, dually to the previous example, con-

sider the domain functor dom : BÑ Ñ B, which maps an object f : X Ñ Y to X

and a morphism pα1, α2q to α1. The domain functor is a fibration, with cartesian

morphisms given by composition. Its fibre above an object Y in B is the coslice

category Y {B. Furthermore, if B has pushouts then dom is a bifibration, called

the domain fibration above B. Indeed, the opcartesian lifting of a morphism

g : X Ñ X 1 of domain f : X Ñ Y is given by the pushout of f along g in B.

We can consider restrictions of the arrow category that provide interesting

fibrations such as the fibration of monos, epis, subobjects, and so on. We only

describe the fibration of monos:

Example 1.1.10. If B is a category, then the category of monos of B, denoted

MonopBq, has monomorphisms in B as its objects. A morphism in MonopBq

from f : X ãÑ Y to f 1 : X 1 ãÑ Y 1 is a pair of morphisms pα1, α2q in B such that

α2 � f � f 1 � α1.

The map p : MonopBq Ñ B mapping a monomorphism f : X ãÑ Y to Y

extends to a functor, which we will also call p. If B has pullbacks, then p is
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a fibration, called the mono fibration above B (note that pullbacks do indeed

give cartesian morphisms since the pullback of a mono along any morphism is

again a mono). The fibre of MonopBq above an object Y of B has as objects the

monomorphisms of codomain Y . A morphism in MonopBqY from f : X ãÑ Y to

f 1 : X 1 ãÑ Y is a map α1 : X Ñ X 1 in B such that f � f 1 � α1.

The following example is a standard construction to derive a setting of rela-

tions from a pre-existing fibration.

Example 1.1.11. Given a fibration p : E Ñ B, where B has products, we can

consider the subcategory RelpEq of E whose objects are those objects of E above

a product of the form A � A. The morphisms of RelpEq are the morphisms of

E above a product of the form f � f . The functor p1 : RelpEq Ñ B mapping an

object of E above A�A to the object A is a fibration, and is called the relations

fibration for p. If f : A Ñ B is a morphism in B and P is above B in RelpEq,

then the cartesian lifting of f at P with respect to p1 is given by the cartesian

lifting of f � f at P with respect to p.

It is not hard to see that if p is a bifibration in Example 1.1.11, then p1 is also a

bifibration. This example provides one way to construct a new fibration from an

already existing one. We will see techniques for doing this generally in the next

section.

Example 1.1.12. Let B be a category with cartesian products. The category

spBq has as objects pairs pI,Xq of objects of B, and as morphisms from pI,Xq

to pJ, Y q pairs of morphisms pu, fq in B where u is a morphism from I to J and

f is a morphism from I � X to Y . The first projection functor spBq Ñ B is a

fibration, called the simple fibration on B. Indeed, for any morphism f : I Ñ J in

B and object pJ,Xq in spBqJ , the cartesian lifting of f at pJ,Xq is pf, π2q. Note

that this fibration is not an opfibration, and therefore is not a bifibration.

We now look at some basic properties of cartesian morphisms. Bear in mind

that these results dualise for opcartesian morphisms.

Lemma 1.1.13. Let p : E Ñ B be a fibration, the following properties hold:

16



(i) the cartesian lifting of an isomorphism is an isomorphism.

(ii) all isomorphisms in E are cartesian.

(iii) for any f : X Ñ Y in B and P , Q in E, Ef pP,Qq � EXpP, f�Qq.

(iv) for α : P Ñ Q and β : Q Ñ R in E, if α and β are cartesian, so is β � α.

If β and β � α are cartesian, so is α.

Here, we write Ef pP,Qq for the subclass of morphisms from P to Q in E above f .

We then have the following very useful property on the relationship between

cartesian and opcartesian morphisms:

Lemma 1.1.14. Let p : E Ñ B be a fibration. Then p is a bifibration iff, for

every morphism f : X Ñ Y in B, f� has a left adjoint Σf .

Proof. We only describe the different constructions involved in the proof, for a

complete proof see [Jac93].

Let p : E Ñ B be a bifibration and f : X Ñ Y be a morphism in B. The

isomorphism associated to the adjunction Σf % f� is determined by the following

diagram,

P

α

��

f§ // ΣP

β

��
f�P

f§
// P

X
f // Y

where β uniquely determine α by the universal property of f § and α uniquely

determine β by the universal property of f§.

Let us now assume p : E Ñ B a fibration with, for every morphism f : X Ñ Y

in B, a left adjoint Σf of f�. For Q in EX , define f§ : QÑ ΣfQ as the composition

Q
ηQ
ÝÑ Σff

�Q
Σf pf

§q
ÝÝÝÝÑ ΣfQ, where η is the unit of the adjunction Σf % f�.

We finish this section with the definition of the Beck-Chevalley condition for

bifibrations.
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Definition 1.1.15. Let p : E Ñ B be a bifibration. We say that p satisfies the

Beck-Chevalley condition if, for any pullback square:

A
t //

s

��

_�
B

f

��
C g

// D

in B, the canonical natural transformation Σst
� .
ÝÑ g�Σf defined as

Σst
� Σst�ηfÝÝÝÝÑ Σst

�f�Σf
�
ÝÑ Σss

�g�Σf
εsg�Σf
ÝÝÝÝÑ g�Σf

is an isomorphism, with ηf the unit of the adjunction Σf % f� and εs the counit

of the adjunction Σs % s�.

Among the previous examples, we can check that the bifibrations of Exam-

ples 1.1.4, 1.1.6 and 1.1.8 satisfy the Beck-Chevalley condition, and the construc-

tion of Example 1.1.11 preserves the Beck-Chevalley condition.

We are particularly interested in the following consequence of the Beck-Chevalley

condition.

Lemma 1.1.16. Let p : E Ñ B be a bifibration that satisfies the Beck-Chevalley

condition. For any mono f : X Ñ Y in B and any P above X, the unit η : P Ñ

f�ΣfP is an isomorphism. Or, equivalently, for any mono f : X Ñ Y in B the

functor Σf : EX Ñ EY is full and faithful.

Proof. Since f : X Ñ Y is mono, the square
X

id ��

id // X

f
��

X
f

// Y

is a pullback. Therefore,

by the Beck-Chevalley condition, this implies that the composition:

Σidid
� Σidid

�ηf
ÝÝÝÝÝÑ Σidid

�f�Σf
�
ÝÑ Σidid

�f�Σf
εidf

�Σf
ÝÝÝÝÝÑ f�Σf

is an isomorphism. Now, remembering that the (op)cartesian lifting of an iso-

morphism is an isomorphism, the functors id� and Σid are full and faithful hence

the counit εid is an isomorphism. We then have that Σidid
�ηf is an isomorphism

thus, the unit ηf : idεX
.
ÝÑ f�Σf is an isomorphism, making Σf a full and faithful

functor.
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1.2 Fibred category theory

Now that we have the notion of a fibration at our disposal, we present two different

ways to construct new fibrations from existing ones, namely, change of base and

composition. We then consider fibred structure, i.e., categorical structure within a

fibration. Categorical structure is given in terms of adjunctions, which themselves

are given in term of functors and natural transformations. We find the exact

same situation with fibrations: there are notions of fibred functors, fibred natural

transformations, and, derived from these, fibred adjunctions. In this section, we

present these fibred notions. We then conclude this section by considering how

the change of base construction preserves fibred structure.

We first consider one standard way to construct fibrations. If C is a category

and if f : X Ñ Z and g : Y Ñ Z are morphisms, then write pf �Z g, f
�g, g�fq

for the pullback of g along f in C.

Lemma 1.2.1. Let p : E Ñ B be a fibration and F : B1 Ñ B a functor. The

pullback

F �B p

F�p

��

p�F //

_�
E
p

��
B1

F
// B

of p along F in Cat defines a new fibration F �p : F �B pÑ B. We say that the

fibration F �p is constructed by change of base of p along F .

The fibration F �p is described concretely in the following way. Following the

standard construction of pullbacks inCat, the total category F�Bp has as objects

pairs pY, P q, where Y is an object of B1, P is an object of E , and FY � pP , and

morphisms are given similarly. The functor F �p is then the first projection. Now,

to check that F �p is a fibration, let f : X Ñ Y be a morphism in B1, and let

pY, P q be an element of pF �B pqY . Then reindexing of pY, P q along f is given

by pX, pFfq�P q, and the cartesian lifting of f at pY, P q with respect to F �p is

the cartesian lifting of Ff at P with respect to p. Note that a morphism f is

cartesian with respect to F �p if and only if the morphism p�Ff is cartesian with

respect to p.
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We then have, using the duality between fibration and opfibration (Lemma 1.1.3),

the following corollary:

Corollary 1.2.2. Change of base preserves opfibrations and thus bifibrations.

It is not hard to see that the relations fibration p1 : RelpEq Ñ B for a fibration

p : E Ñ B presented in Example 1.1.11 can be constructed as a change of base of

p along the endofunctor ∆ : B Ñ B that maps an object X of B to the product

X �X.

As we will see in the following lemma, another way to construct a fibration is

by composition.

Lemma 1.2.3. Let p : E Ñ B and p1 : B Ñ A be fibrations, then the composition

p1 � p : E Ñ A is again a fibration.

This time a cartesian lifting of a morphism f : X Ñ Y in A at P is given by

successively lifting the morphism f with respect to p1 and then with respect to

p. More specifically, if P is such that p1pP � Y then the cartesian lifting of f

at P with respect to p1 � p is the cartesian lifting at P , with respect to p, of the

cartesian lifting of f at pP with respect to p1. In symbols, it is pf §
pP q

§
P , where the

inner cartesian morphism is taken with respect to p1 and the outer one is taken

with respect to p.

We can derive from the change of base and the composition operations more

complex constructions like the product of two fibrations with the same base cat-

egory. We have

Corollary 1.2.4. Let p : E Ñ B and p1 : E 1 Ñ B be two fibrations. The functor

p� p1 defined as follows is a fibration.

p�B p
1

p�p1

��

p1�p //

p�p1
GGG

##GGGG

E 1

p1

��
E p

// B

Here the resulting fibration has as fibre pp�B p
1qX � EX � E 1X for X in B.
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Let us now consider fibred structure. We begin with the notion of a fibred

functor.

Definition 1.2.5. Given two fibrations, p : E Ñ B and p1 : E 1 Ñ B1, a fibred

functor from p to p1 is given by a pair of functors F : B Ñ B1 and H : E Ñ E 1

such that the following diagram commutes and H preserves cartesian morphisms.

E
p

��

H // E 1

p1

��
B

F
// B1

In this situation we write pH,F q : pÑ p1.

Example 1.2.6. Any functor F : B Ñ B1 induces a fibred functor pFÑ, F q

between the two domain fibrations dom : BÑ Ñ B and dom 1 : B1Ñ Ñ B1, where

FÑ is the obvious extension of F to the arrow categories BÑ and B1Ñ. Indeed,

the cartesian morphisms in dom are pairs pα1, α2q of morphisms in B where α1 is

an isomorphism (see Example 1.1.9). Hence, FÑ preserves cartesian morphisms

since (any functor) F preserves isomorphisms.

Example 1.2.7. If B and B1 are two categories with pullbacks, and F is a functor

which preserves pullbacks, then pFÑ, F q is a fibred functor between the codomain

fibrations cod : BÑ Ñ B and cod 1 : B1Ñ Ñ B1. In this case, cartesian morphisms

are pullback squares (see Example 1.1.8) and F preserves them by assumption.

Another fibred functor arises via change of base.

Example 1.2.8. If F �p is the fibration obtained by pulling p back along F , then

pp�F, F q : F �pÑ p is a fibred functor.

Note that fibrations and fibred functors form a category Fib. In fact, the

category Fib is fibred above Cat. Indeed, the functor U mapping a fibration

p : E Ñ B to its base category B is a fibration, and reindexing and cartesian

lifting are given by change of base. That is, if p : E Ñ B is a fibration and

F : B Ñ B1 is a functor, then the cartesian lifting of F at p is given by pp�F, F q.

With the notion of fibred functor comes the following notion of a fibred natural

transformation.
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Definition 1.2.9. Given two fibred functors pH,F q and pL,Gq from p : E Ñ B

to p1 : E 1 Ñ B1, a fibred natural transformation from pH,F q to pL,Gq is given

by a pair of natural transformations η : F Ñ G and γ : H Ñ L such that every

component γP is above the component ηppP q.

It is straightforward to check that any natural transformation η : F Ñ G

induces a fibred natural transformation pηÑ, ηq : pFÑ, F q Ñ pGÑ, Gq in the do-

main fibration (following Example 1.2.6), as well as in the codomain fibration as

soon as both F and G preserve pullbacks (following Example 1.2.7).

Now that we have notions of fibred functors and fibred natural transforma-

tions, we can introduce the notion of a fibred adjunction.

Definition 1.2.10. Given two fibred functors pH,F q : pÑ p1 and pL,Gq : p1 Ñ p,

we say that pH,F q is a fibred left adjoint of pL,Gq if F is left adjoint to G, H

is left adjoint to L, and the unit, or equivalently the counit, of the adjunction

H % L is above the unit (resp., counit) of the adjunction F % G.

Example 1.2.11. Any adjunction F % G can be seen as a fibred adjunction

between the extensions of the functors F and G to their corresponding domain

fibrations.

In this thesis we will mainly use fibred functors pH,F q : p Ñ p1 where p :

E Ñ B and p1 : E 1 Ñ B have the same base category B and F is taken to be the

identity. In this case a fibred functor from p to p1 is simply a functor H : E Ñ E 1

such that the following diagram commutes and H preserves cartesian morphisms,

E

p
��>>>>>>>
H // E 1

p1��~~~~~~~

B

We say that the functor H is fibred above B, or simply fibred, if B is clear from

context. This construction determines a category FibpBq of fibrations with base

category B and fibred functors above B. In fact, FibpBq is the fibre above B in

the fibration from Fib to Cat described after Example 1.2.8. Notice then that
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every fibration p : E Ñ B is also a fibred functor:

E

p
��???????
p // B

idB���������

B

and that this makes the identity of B the terminal object of FibpBq. Furthermore,

the product fibration defined in the Corollary 1.2.4 is a cartesian product in

FibpBq.

If we restrict ourselves to fibred functors in FibpBq, the notions of a fibred

natural transformation and of a fibred adjunction are correspondingly simplified.

We then have that a fibred natural transformation above B is a natural transfor-

mation between fibred functors above B whose components are vertical. A fibred

adjunction above B is an adjunction between fibred functors above B such that

the (components of its) unit, or equivalently counit, are vertical.

Notice then that, for any X in B, we can restrict a fibred functor F : p Ñ p1

above B to a functor FX between the fibres EX and E 1X . Similarly, we can restrict

a fibred natural transformation α : F Ñ G above B to a natural transformation

αX : FX Ñ GX , for any X in B. As adjunctions are described in terms of functors

and natural transformations, there is a similar result for fibred adjunctions. The

next lemma shows how we can use these restrictions in order to have a fibrewise

presentation of fibred adjunction.

We will make good use of the following lemma in the remainder of this thesis.

Lemma 1.2.12. Let p : E Ñ B and p1 : E 1 Ñ B be fibrations, and G : p Ñ p1 be

a fibred functor above B. Then G has a fibred left (resp., right) adjoint above B

if and only if the following two conditions hold:

(i) For any b in B, Gb has a left (resp., right) adjoint Fb.

(ii) The Beck Chevalley condition holds, i.e., for every map u : a Ñ d in B

and every pair of reindexing functors u� : Ed Ñ Ea and u# : E 1d Ñ E 1a,

the canonical natural transformation Fau
# .
ÝÑ u�Fd (resp., u�Fd

.
ÝÑ Fau

#)

obtained as the transpose of the composition u# u#η
ÝÝÑ u#GdFd

�
ÝÑ Gau

�Fd

(resp., Gau
�Fd

�
ÝÑ u#GdFd

u#ε
ÝÝÑ u#) is an isomorphism.
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Now that we have a notion of a fibred adjunction, let us look at some specific

structures that we can define using it.

We first use fibred adjunctions to define the notion of a terminal object func-

tor. Terminal object functors capture the notion of truth in context when mod-

elling logic with fibration (see the following examples). This notion is then fun-

damental for the presentation of induction schemes in fibration.

Definition 1.2.13. Let p : E Ñ B be a fibration, we say that p has a terminal

object functor if the unique fibred functor from p to idB has a fibred right adjoint.

Diagrammatically we have:

E

p
��???????

p
++

K B
1

kk

idB���������

B

We denote the terminal object functor for p by 1p, or simply by 1 when p is clear

from the context.

Since the fibration idB is the terminal object of FibpBq, the terminal object

functor can be understood as a fibred terminal object.

We can deduce the following properties from this definition.

Lemma 1.2.14. Let p be a fibration with a terminal object functor. The terminal

object functor is full and faithful. Moreover, any full and faithful right adjoint to

p is a terminal object functor for p.

Proof. The key observation is that the only vertical morphisms in the fibration idB

are the identities. We then know that, first, whenever there is a fibred adjunction

p % 1 the components of the counit are necessarily identities, i.e., 1 is full and

faithful, and second, that this is a sufficient condition to have a fibred right adjoint

to p.

Using Lemma 1.2.12 on Definition 1.2.13, the terminal object functor can be

given in a fibrewise form.

Corollary 1.2.15. Let p : E Ñ B be a fibration. Assume further that, for every

object X of B, the fibre EX has a terminal object 1X such that, for any f : X 1 Ñ X
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in B, f�p1Xq � 1X 1. Then the assignment mapping each object X in B to 1X in

E, and each morphism f : X 1 Ñ X in B to the composition 1X 1 � f�1X
f§
ÝÑ 1X

in E, defines the terminal object functor 1 : B Ñ E.

Example 1.2.16. (Example 1.1.5, continued) If the predicate logic on a type

theory has a constantly true proposition true, then the syntactic fibration for

that type theory has a terminal object functor. It maps any type in the type

theory to the constantly true-valued predicate.

Example 1.2.17. (Example 1.1.6, continued) The family fibration on Set has a

terminal object functor. It maps a set X to pX,λx.1q, where 1 is the one point

set.

Example 1.2.18. (Example 1.1.7, continued) For C, a category with a terminal

object J, the family fibration of C has a terminal object functor 1 : SetÑ FampCq

defined as 1 X � pX,λx P X. Jq.

Example 1.2.19. (Example 1.1.8, continued) The codomain fibration on a cat-

egory B has a terminal object functor. It maps an object X P B to the identity

morphism idX .

Example 1.2.20. (Example 1.1.12, continued) If a category B has cartesian

products and terminal object 1, then simple fibration on it has a terminal object

functor. It maps an object X of B to pX, 1q.

Example 1.2.21. The functor mapping a category B to the identity fibration

above B is the terminal object functor for the fibration Fib above Cat.

Before looking at another structure constructed from a fibred adjunction we

present the notion of section of a fibration. The sections of a fibration will be

used to model (an abstract form of) equality in the setting of coinduction.

Definition 1.2.22. A section of a fibration p : E Ñ B is a functor e : B Ñ E

right inverse of p, i.e., such that p � e � idB.

Note that, as any right inverse functor, a section is necessarily faithful. Also,

note that the terminal object functor of a fibration p is a full, fibred section, as
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well as the terminal object of the category of sections of p and vertical natural

transformations between them.

We then have the following property.

Lemma 1.2.23. Let p : E Ñ B be a fibration with a (full) section e : B Ñ E and

F : AÑ B be a (full) functor. The fibration F �p obtained by a change of base of

p along F has a (full) section.

Proof. Construct the section e1 : AÑ E 1 of F �p as the unique morphism making

the following diagram commute:

A

idA

��

e1
@@@

  @@@

e�F

!!
E 1

F�p

��

//

_�
E

p

��
A

F
// B

Concretely, the functor e1 sends an object X in A to the pair pX, eFXq. Hence,

if e and F are full it follows that e1 is full.

Next we use fibred adjunctions to define a notion of fibred products.

Definition 1.2.24. A fibration p : E Ñ B has products if the diagonal (fibred)

functor ∆ : E Ñ E � E above B has a fibred right adjoint, i.e., if

E

p
��>>>>>>>

∆ ,,
J E � E
�

kk

p�p
||xxxxxxxxx

B

As with fibred terminal object functors, we can construct fibred products fibre-

wise.

Corollary 1.2.25. A fibration p : E Ñ B has products iff for every object X in

B, the fibre EX has a cartesian product �X , and for every f : X Ñ Y in B and

P,Q in EY the canonical map   f�π1, f
�π2 ¡: f�pP �Y Qq Ñ f�P �X f

�Q is an

isomorphism.
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Example 1.2.26. (Example 1.1.5, continued) Conjunction of predicates stable

under substitution define a fibred product in the syntactic fibration of Exam-

ple 1.1.5.

Example 1.2.27. (Example 1.2.21, continued) The product of the two fibrations

defined in Corollary 1.2.4 define a fibred product for the fibration of Fib above

Cat.

We now turn our attention to some properties of the change of base operation.

To begin with, it is worth noting the following:

Lemma 1.2.28. The operation of change of base preserves fibred adjunctions.

The change of base construction allows us to lift a natural transformation to

a fibred functor and a fibred natural transformation.

Lemma 1.2.29. Let K,L : A Ñ B be two functors, σ : K Ñ L be a natural

transformation between them, and p : E Ñ B be a fibration. Then σ lifts to a

fibred functor xσy : L�B pÑ K�B p, as well as to a fibred natural transformation

σ̄ : p�K � xσy Ñ p�L. Diagrammatically, we have

K�B p

K�p

��

p�K // E

p

��

L�B p

xσyKKKK

eeKKKK

L�p
rrr

yyrrrrr

p�L

77oooooooooooooo

A
K

**

L

44 B

σ̄  (HHHHHH

HHHHHH

σ
��

Proof. (Sketch) An object of L�B p consists of a pair pa, eq such that La � pe,

and an object of K�B p consists of a pair pa1, e1q such that Ka1 � pe1. We can

therefore define the fibred functor xσy by xσypa, eq � pa, σ�aeq. The fibred natural

transformation σ̄ can be defined by σ̄pa,eq � pσaq
§
e. See [Jac99] for a complete

proof.

This allows the derivation of the following lemma, from [Her99].
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Lemma 1.2.30. If a functor F : A Ñ B has a right adjoint G, the functor q�F

obtained from pulling F back along a fibration q : C Ñ B has a right adjoint G.

q �B F

q�F

��
%

F�q // A

F
��
%

C

G

UU

q
// B

G

UU

Proof. Here we describe the construction of the adjunction q�F % G. For a

complete proof see [Her99]. Applying Lemma 1.2.29 to the fibration q and ε the

counit for F % G gives the following diagram:

�

pF�qq�G

��

_�
G�pF�qq // B

G
��

id

tt

�

q�F
��

_� F�q // A
F
��

C

xεy

22

q
// B

ε +3

The right adjoint G to q�F is then defined by G � pF �qq�G�xεy. The adjunction

q�F % G has unit ηxεF y and counit ε.

We will need the following new elaboration on Lemma 1.2.30:

Corollary 1.2.31. In Lemma 1.2.30, if G is full and faithful then so is G. In

this case xεy, the lifting of ε the counit of F % G, is an isomorphism, and so G

can be defined to be pF �qq�G. Similarly, if F is full and faithful then so is the

functor q�F .

Proof. In the situation of Lemma 1.2.30, let ε1 and η1 be the unit and counit of

the adjunction q�F % G, and ε and η be the unit and counit of the adjunction

F % G. Notice, from the description of ε1 and η1 in the proof of the Lemma, that

the components of ε1 and η1 are cartesian liftings of the components of ε and η

respectively. Therefore, since every cartesian morphism above an isomorphism

is itself an isomorphism, if ε (resp., η) is a natural isomorphism, so is ε1 (resp.,

η1).

We finish this chapter with the following proposition about adjunctions and
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functors preserving (op)cartesian morphisms. This proposition will be of use in

the remainder of this thesis (in particular, to prove Lemmas 5.1.4 and 6.1.2). We

are not aware of any previous publication of this result.

Proposition 1.2.32. Let H : E Ñ A, L : B Ñ A, F : E Ñ B and G : B Ñ E be

functors such that H � L � F and L � H � G. If F % G with vertical unit (or

equivalently, counit) then the functor F preserves opcartesian morphisms and the

functor G preserves cartesian morphisms.

Proof. We only prove that G preserves cartesian morphisms, the second result is

then obtained by dualisation. Write φ :
FX Ñ Y

X Ñ GY
for the natural isomorphism

characterising the adjunction F % G and note that we can restrict this adjunction

to adjunctions between the fibres since the unit is vertical. Let f : X Ñ Y be a

morphism in A and u : QÑ P be a cartesian morphism above f in B. We want

to prove that Gu is cartesian above f in E . Let l : R Ñ GP be a morphism in

E above f � g for some g in A. We then have a unique morphism v : FR Ñ Q

in B above g such that u � v � φ�1l since u is cartesian. This gives us a unique

morphism φv : R Ñ GQ in E above g such that Gu � φv � l by naturality of

φ.
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Chapter 2

Comprehension and quotient

In this chapter we introduce the notions of a comprehension category with unit

and a quotient category with equality. These two notions are central to our work.

In Section 2.1 we recall the notion of a comprehension category with unit, or CCU

for short. It was introduced in [Ehr88a,Ehr88b] under the name D-category and

studied as an instance of the more general notion of comprehension category

in [Jac93]. This notion is fundamental in the fibrational treatment of induction:

It is used as a sufficient condition to guarantee the existence of induction schemes

for polynomial data types in [HJ98] and will be used to construct our canonical

liftings in the next chapter. Comprehension categories with unit where introduced

to capture the operation of context extension when using a fibration to model a

dependent type theory, as we will see in Example 2.1.7. In addition, if we see a

fibration as a model of a logic above a type theory then a CCU captures a notion

of comprehension types, as we will see in Example 2.1.2. We conclude the section

by considering which of the constructions on fibrations preserve CCUs.

In Section 2.2, we introduce our new notion of a quotient category with equal-

ity, or QCE for short. These fibrations play a role in coinduction that is similar

to that played by CCUs in induction. In [Jac94] the notion of a fibration having

quotients is introduced in order to model quotient types in a simple type the-

ory. It was later generalised to model quotient types in a dependent type theory

in [Jac99]. The notion of QCE is an abstraction of the notion of quotients for

a fibration. The idea of quotient types is that, in a predicate logic on a type
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theory (see Example 1.1.5), we can construct a new type from a relation (i.e.,

binary predicate) on an old type by identifying related elements of the old type.

Since objects of a total category are sometimes considered to be relations, quo-

tients define a functor from the total category of a fibration to its base. Equality

refers to the presence of a functor that maps an object of a category to a relation

representing equality on that object. As for CCUs, we look at instances of QCEs

in logic and type theory, and complete the section by considering which of our

constructions preserve QCEs.

2.1 Comprehension categories with unit

We start with the definition of comprehension category with unit.

Definition 2.1.1. Let p : E Ñ B be a fibration with terminal object functor

1 : B Ñ E . We say that p admits comprehension if 1 has a right adjoint. We

write this adjoint t�u and refer to it as the comprehension functor for p.

If p admits comprehension, then there is a functor π : E Ñ BÑ that maps an

object P of E to pεP , where ε is the counit of the adjunction 1 % t�u. We call

π a comprehension category with unit (CCU) for p. We say that p admits full

comprehension if π is full and faithful.

Note that, since for any fibration p with a terminal object functor 1, 1 is full and

faithful, we have that if p admits comprehension then the unit of the adjunction

1 % t�u is an isomorphism with inverse given by π1.

Example 2.1.2. (Example 1.2.16, continued) The syntactic fibration admits

comprehension if the type theory under consideration has comprehension types

for all predicates, i.e., if, for every predicate P , there exists the type tP u com-

prising pairs px, tq such that x P pP and t is a proof that P holds for x. In this

case, the comprehension functor maps a predicate P to the type tP u and the

CCU maps a predicate P to the term in context px, tq : tP u $ x : X.

If the logic of E is proof irrelevant — that is, if there is only one proof of

any true proposition — then comprehension gives subset types. Indeed, the
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comprehension of a predicate P is the subtype of pP consisting of those terms

that satisfy P .

Example 2.1.3. (Example 1.2.17, continued) The family fibration on Set admits

comprehension. The comprehension functor maps an object pX,P q of FampSetq

to the set tpX,P qu � tpx, pq|x P X, p P P xu. The CCU maps an object pX,P q

of FampSetq to the first projection π1 : tpX,P qu Ñ X in SetÑ.

Example 2.1.4. (Example 1.2.18, continued) Let C be a category with a terminal

object J and small homsets CpJ, Xq. The family fibration p : FampCq Ñ Set

admits comprehension. The comprehension functor t�u : FampCq Ñ Set maps

an object pX,P q to the disjoint union
²

xPX CpJ, Pxq.

Example 2.1.5. (Example 1.2.19, continued) The fibration cod provides the

canonical example of CCU. The comprehension functor is dom : BÑ Ñ B, and

the CCU is the identity functor on BÑ.

Example 2.1.6. (Example 1.2.20, continued) Let B be a category with product

� and terminal object 1. The simple fibration on B admits comprehension. The

comprehension functor maps pX, Y q to pX�Y q. The CCU maps an object pX, Y q

of E to the first projection π1 : X � Y Ñ X in BÑ.

CCUs capture the operation of context extension in dependent type systems.

This operation can be represented by the inference rule

Γ $ σ : Type

Γ, σ : Context

This is explored in the following example. Please refer to [Ehr88a] or [Jac99] for

further detail.

Example 2.1.7. Given a calculus with type dependency and a unit type we

can form a full comprehension category with unit in the following way. (As in

Example 1.1.5 we deal with βη-equivalence classes of terms, types, contexts, etc.)

The objects of B are contexts Γ. A morphism from Γ to ∆, where ∆ � y1 :

τ1, . . . , yn : τn, is an n-tuple of terms M1, . . . ,Mn such that Γ $ Mi : τiry1 Ð
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M1, . . . , yi�1 Ð Mi�1s. Objects of the category E are type judgments Γ $ σ :

Type. A morphism of E from Γ $ σ : Type to ∆ $ τ : Type is a pair p ~M,Nq

with ~M : Γ Ñ ∆ in B and Γ, x : σ $ N : τ r~y Ð ~M s. The functor 1 then maps an

object Γ to Γ $ 1 : Type, where 1 is the unit type. The comprehension functor

maps a type judgment Γ $ σ : Type to the context Γ, x : σ. The associated

adjoint correspondence is then given by:

pΓ $ 1 : Typeq Ñ p∆ $ τ : Typeq

Γ Ñ p∆, x : τq

This amounts to the correspondence between a context morphism from Γ to

∆, x : τ and the pair of a context morphism ~M from Γ to ∆ and a term Γ, x : 1 $

N : τ r~y Ð ~M s (straightforward from the definition of context morphisms). The

CCU maps a type judgment Γ $ σ : Type to the morphism of context Γ, x : σ Ñ Γ

that forgets the type σ, i.e., if Γ is the context x1 : τ1, . . . , xn : τn then πpΓ$σ:Typeq

is given by the n-tuple x1, . . . , xn.

Example 2.1.2 shows that comprehension can be seen as a type constructor.

Comprehension categories with unit therefore capture constructive logic by show-

ing how to represent collections of proofs as types. Concretely, the proofs of a

predicate P can be seen as terms of the type tP u. This point of view is the one

that we take in this thesis, but note that Example 2.1.7 illustrates an alternative

point of view, namely, that CCUs capture the notion of context extension.

We can see from Examples 2.1.2 and 2.1.7 that comprehension can be used to

model both logical predicates and context extension in a dependent type theory.

Of course, in some fibrations, comprehension can be (intuitively) thought of as

playing both roles. For example, using the propositions-as-types metaphor, we

can think of an object of the total category of the simple fibration as representing

both a type and a proposition. An object pI,Xq of the fibre above I can then be

thought of as the proposition X in context I, with comprehension mapping this

object to the type I �X. Alternatively, we may think of an object pI,Xq of the

fibre above I as the type X definable in context I. In this case, comprehension

maps pI,Xq to the extended context I �X. A similar analysis is possible for the
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codomain fibration on a locally cartesian closed category, the family fibration on

Set, and so on.

We now look at some properties and structures of CCUs. We start with a

notion of morphism that we can associate to CCUs, following [Jac91]:

Definition 2.1.8. Let p : E Ñ B and p1 : E 1 Ñ B1 admit comprehension with

p % 1 % t�u and p1 % 11 % t�u1. A morphism of comprehension categories with

unit from p to p1 is a fibred functor pH,F q : pÑ p1 preserving the terminal object

functor such that the canonical map F t�u Ñ t�u1H is an isomorphism. The

latter is obtained as the transpose of the composition 11F t�u � H1t�u
Fε
ÝÑ H

with ε the counit of the adjunction 1 % t�u.

This notion will be relevant in Lemma 5.1.4.

The following result from [Jac93] shows that every CCU is a fibred functor.

Lemma 2.1.9. Let p : E Ñ B admit comprehension. Then, the associated CCU

π : E Ñ BÑ sends cartesian morphisms to pullback squares.

Proof. Dual of Lemma 2.2.8.

We now consider how comprehension categories with unit behave under the

change of base operation.

Lemma 2.1.10. Let p : E Ñ B and q : C Ñ B be fibrations. If p admits compre-

hension, then so does the fibration q�p obtained by change of base of p along q.

Furthermore, if p admits full comprehension, q�p also admits full comprehension.

Proof. Let p : E Ñ B, 1, and t�u provide a comprehension category with unit 1,

and let q : C Ñ B be a fibration. By Lemma 1.2.30, the change of base of p along

q yields an adjunction q�p % 1, and by Corollary 1.2.31, 1 � pp�qq�1 is full and

faithful.

q �B p

q�p
��
%

p�q // E
p

��
%

C

1

UU

q
// B

1

UU
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Since p�q is a fibration, we can use Lemma 1.2.30 again to conclude that the

change of base of 1 along p�q yields an adjunction 1 % t�u.

�

1

��
%

// B
1
��
%

q �B p

t�u

VV

p�q
// E

t�u

UU

We therefore have the following situation:

q �B p

q�p

��
t�u

��
C

1

OO

% %

Since 1 is full and faithful, Lemma 1.2.14 ensures that 1 is a terminal object

functor for q�p. The comprehension functor t�u maps an object pc, eq in q �B p

to pπeq�c in C, where π is the CCU for p. The CCU for q�p maps an object pc, eq

in q �B p to pπeq§c : pπeq
�cÑ c in CÑ.

See [Jac93] for the sketch of an alternative proof of the lemma and a sketch

proof of preservation of fullness.

Next we will introduce the notion of Lawvere fibration. This notion comes

from the notion of hyperdoctrines that satisfy the comprehension scheme intro-

duced by Lawvere for the first description of comprehension in category the-

ory [Law70]. This notion of hyperdoctrines was then translated in the theory of

fibration in [Jac93]. Lawvere fibrations will be important when defining liftings

of functors.

Definition 2.1.11. A fibration p : E Ñ B is a Lawvere fibration if it admits

comprehension and is a bifibration.

The following equivalent presentation, which appears as Result (i) in [Jac93],

highlights a useful structure of Lawvere fibrations.

Lemma 2.1.12. Let p : E Ñ B be a bifibration. Then, p is a Lawvere fibration

iff it has a terminal object functor 1, and the functor φ : BÑ Ñ E mapping an

object f : X Ñ Y of BÑ to Σf1X has a right adjoint π with cod � π � p and
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vertical counit. In this case we have that π � pε, where ε is the counit of the

adjunction 1 % t�u, and is a CCU.

If π is a full CCU, then we call p a full Lawvere fibration. In this case, the counit

of the adjunction φ % π is an isomorphism. Let pα, βq : f Ñ g be a morphism in

BÑ.

X

f

��

α // Z

g

��
Y

β
// T

The morphism part of the functor φ maps pα, βq to the unique morphism above

β, making the following diagram commute:

1X

f1X§
��

1α // 1Z

g1Z§
��

Σf1X
φpα,βq

// Σg1Z

The morphism φpα, βq exists and is unique by the universal property of the op-

cartesian morphism f1X
§ .

Example 2.1.13. (Example 2.1.3, continued) We have seen that the family fibra-

tion on Set is a bifibration that admits comprehension, and is therefore a Lawvere

fibration. The functor φ maps a function f : X Ñ Y to the inverse image family

pY, f�1q.

Example 2.1.14. (Example 2.1.4, continued) Let C be a category with set-

indexed coproducts, a terminal object J and small homsets CpJ, Xq. The family

fibration of C is a Lawvere fibration (keep in mind Example 1.1.7 for the bifibred

structure and Example 2.1.4 for the CCU structure). The functor φ : SetÑ Ñ

FampCq then maps a function f : X Ñ Y to the family pY, λy.
²

xPpf�1yqJq.

Example 2.1.15. (Example 2.1.5, continued) The fibration cod is a Lawvere

fibration by Examples 1.1.8, 1.2.19 and 2.1.5. It is the canonical example of a

Lawvere fibration. In this case, both the functor π and the functor φ are the

identity functor on BÑ.
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As a direct consequence of the preservation of bifibrations by change of base

(see Corollary 1.2.2), together with the preservation of CCUs by change of base

(see Lemma 2.1.10), we have the following preservation property of Lawvere fi-

brations.

Corollary 2.1.16. Lawvere fibrations are stable under change of base along a

fibration. Furthermore, if the original Lawvere fibration is full, so is the one

obtained from the change of base.

2.2 Quotient categories with equality

Just as Lawvere fibrations provide us with sufficient structure to establish sound

induction schemes, so quotient category with equality (QCE for short) provide

the structure needed to give sound coinduction schemes. We define QCEs in the

following way.

Definition 2.2.1. Let p : E Ñ B be a fibration with a full (and necessarily

faithful) section e : B Ñ E . If e has a left adjoint Q, we say that p admits

e-quotients, or simply admits quotients if e is clear from the context.

%

EQ

��
p

��
B

e

??�������

idB
// B

We call Q the quotient functor for p. If p admits quotients, then there are functors

ρ : E Ñ BÑ and ψ : BÑ Ñ E defined by ρP � pηP , where η is the unit of the

adjunction e $ Q, and ψ pf : X Ñ Y q � f�eY . We call ρ the quotient category

with equality (QCE) for p.

Intuitively, the functor e is thought of as an abstract equality functor. Note that

any fibration p with a terminal object functor 1 trivially admits 1-quotients with

quotient functor p. If the functor ρ : E Ñ BÑ is full and faithful we say that p

admits full quotients. We stress that this notion of fullness of quotient will usually

imply that any relation is equivalent to a kernel relation (see Example 2.2.5 for

example) and in particular, is an equivalence relation.
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We now describe the dual construction of tC-opfibrations, which will also be

useful.

Definition 2.2.2. Let p : E Ñ B be an opfibration with a full (and necessarily

faithful) section t : B Ñ E and with C a right adjoint to t.

$

EC

��
p

��
B

t

??�������

idB
// B

We say that p is a tC-opfibration. If p is a tC-opfibration, then there are functors

π : E Ñ BÑ and φ : BÑ Ñ E defined by πP � pεP , where ε is the counit of the

adjunction t % C, and φ pf : X Ñ Y q � Σf tX.

If p is a tC-opfibration and a bifibration we will call p a tC-bifibration. If the

functor π : E Ñ BÑ is full and faithful we call p a full tC-opfibration.

As apparent, while we present QCEs as the counterpart of CCUs for coinduc-

tion, the notion of QCE is not dual to the notion of CCU (but of tC-opfibration).

As we will see in the next chapter, while QCEs have enough structure to derive

our coinduction schemes, CCUs do not have enough structure to derive our induc-

tion schemes and we need to consider Lawvere fibrations. In fact, by duality it is

enough to have the structure of a tC-opfibration, of which a Lawvere fibration is

a specific instance (see Corollary 2.2.7). The lack of symmetry in our treatment

of induction and coinduction is due to the following:

First, for our study of induction, while Lawvere fibrations are less general than

tC-opfibrations, they are known to capture a relevant setting between a logic and

a type theory (See [Jac93]). In particular they have a terminal object functor

when tC-opfibrations only have a full section. Strengthening the condition on

the full section guarantees the presence of a notion of truth in the logic.

On the other hand, for our study of coinduction we consider QCEs where

the relation between fibrations and their associated section is more lax. This is

because strengthening the condition on the equality functor (the section) to be

fibred adjoint to the fibration implies that equality relations are initial in fibres,

we can then only consider fibration of reflexive relations.
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We could of course regain symmetry in the presentation of induction and

coinduction by, either treating tC-opfibrations as the basic setting for induction

(instead of Lawvere fibrations), or asking the equality functor to be fibred (left)

adjoint to the fibration in the definition of a QCE. Note however that, while

the presentation is asymmetric, the duality between QCEs and tC-opfibrations

is behind most of our results (using the key fact that a Lawvere fibration is a

tC-opfibration).

We now look at different examples of QCEs:

Example 2.2.3. (Example 1.1.9, continued) The fibration dom : BÑ Ñ B on

a category B is the canonical example of QCE. Here, the full section is given

by the functor that maps an object X P B to the identity morphism idX . The

quotient functor is given by the codomain functor cod : BÑ Ñ B. Furthermore,

both ρ and ψ are the identity functor on BÑ. To develop intuitions, consider B

as a category of set like objects: We can then understand an element f : X Ñ Y

of BÑ as the kernel relation of f on X, i.e., two elements x and x1 of X are in

relation iff they have the same image under f . Hence the identity only relates

equal elements. The quotient (codomain) of f then contains the actual quotient

of the kernel relation of f (the image of f), while the elements in Y that are not

in the image of f can be understood as empty classes of equivalence.

To formalise this intuition using the internal language of B we can say that,

for f : X Ñ Y an element of BÑX two terms of type X in context A, given by

u, v : A Ñ X in B, are related by f if f � u � f � v. We then find back the

above mentioned intuition when B is Set. Note that if B has cartesian products

then two elements are related by f � g iff their first projections are related by f

and second projections are related by g (from the universal property of cartesian

products). However, B needs to have coproducts with the additional property

that any map f : X Ñ Y � Y 1 is either of the form X Ñ Y
inl
ÝÑ Y � Y 1 or

X Ñ Y 1 inl
ÝÑ Y � Y 1 (with inl and inr the two injections of the coproduct) in

order for f � g to capture a well behaving sum of the relations f and g.

Example 2.2.4. (Example 1.1.11, continued) Let B be a category with cartesian

products and p : E Ñ B be a bifibration satisfying the Beck-Chevalley condition
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with terminal object functor 1. We consider the relations bifibration p1 : RelpEq Ñ

B for p. Define the functor Eq : B Ñ RelpEq by X ÞÑ ΣδX1X, where δX : X Ñ

X�X is the diagonal morphism (for intuitions on this definition look at how

opreindexing is defined in Example 1.1.6 ). Note that by Lemma 1.2.14 and

Lemma 1.1.16 the functor Eq is full and faithful. The fibration p is said to have

quotients if p1 admits Eq-quotients (See Definition 4.1 in [Jac94] or Definition

4.8.1 in [Jac99]).

Example 2.2.5. (Example 1.1.6, continued) We now consider the relations bi-

fibration of the family fibration on Set from Example 1.1.6. The category of

Set-indexed relations, RelpFampSetqq, has as its objects the objects pX,P q of

FampSetq whose first components are products of the form A�A for some set A.

As its morphisms it has the morphisms pf, f�q of FampSetq whose first compo-

nents are products of the form g�g for some function g in Set. We can then see

an object pX�X,P q as a binary relation P on X where two elements x1 and x2

are in P if Px1x2 is not the empty set. As in Example 2.2.4, we can define the

functor Eq : B Ñ RelpFampSetqq mapping X to ΣδX1X, i.e. to the equality rela-

tion on X. The functor Eq has a left adjoint Q, which maps a relation pX�X,Rq

to X{R, the quotient set of X by the least equivalence relation containing R.

Therefore, the relations fibration for the family fibration admits Eq-quotients. In

such a case, we have that the QCE ρ maps a relation R above X to the quotient

map cR : X Ñ X{R that maps an element of X to its equivalence class under the

equivalence closure of R. The functor ψ maps a map f : X Ñ Y into its kernel

relation kerpfq, i.e., px, yq P kerpfq iff f x � f y.

Example 2.2.6. (Example 1.1.7, continued) Let C be a category with set-indexed

coproducts
²

and a terminal object J, such that the initial object K �
²

HJ

is strict, i.e., any morphism A Ñ K is an isomorphism. We then have that the

relation fibration of the family fibration of C admits quotients with the following

section.

The section Eq : Set Ñ Rel
�
FampCq

�
is given by EqX � λpx, x1q P X�

X.

$&
%

J if x � x1

K otherwise.
. Then, for R : X�X Ñ C in Rel

�
FampCq

�
, consider the rela-
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tion R̄ � tpx, x1q P X�X|Rpx, x1q � Ku. Define the quotient Q : Rel
�
FampCq

�
Ñ

Set of the QCE as mapping R to X{R the quotient set of X by the least equiva-

lence relation containing R̄.

Indeed, a map α : R Ñ Eq Y above f : X Ñ Y implies, by definition of Eq

and since the only maps into K are isomorphisms, that if for px, x1q P X�X,

fx � fx1 then Rpx, x1q � K. Hence R̄ is a sub-relation of the kernel relation

of f , and so is the smallest equivalence relation containing R̄. Thus, f extends

naturally to a function g : X{RÑ Y such that f � g � cR. Now, given a function

g : X{R Ñ Y , associate the function pg1, hq, where g1 � g � cR and h is the

uniquely defined family of morphisms in C mapping Rpx, x1q to J if g1x � g1y and

K otherwise. The section is full since the counitQpEqXq Ñ X is an isomorphism.

Note that Lawvere fibrations and QCEs are not dual, but QCEs are slightly

more abstract than the duals of Lawvere fibrations (see corollary 2.2.7 below).

In particular, in a QCE, the section e is not required to be left adjoint to the

fibration, whereas in a Lawvere fibrations the terminal object functor is required

to be right adjoint to the fibration. As we will see in the next chapter, QCEs form

the basis of our treatment of coinduction, and Lawvere fibrations form the basis of

our treatment of induction. In fact, we will prove that QCEs and tC-opfibrations

are enough to allow us to derive valid induction and coinduction schemes. It is

often necessary that the section associated to a QCE is not adjoint to the fibration

in order to derive interesting coinduction schemes. The analogous relaxation for t

is not, however, necessary in the inductive setting. For this reason, we derive our

induction schemes with respect to Lawvere fibrations rather than tC-opfibrations.

Nevertheless, the concept of a tC-opfibration still permits us to treat induction

and coinduction as formal duals, and so any results obtained at this level of

abstraction are directly valid for both induction and coinduction. We have

Corollary 2.2.7. Every Lawvere fibration is a tC-opfibration.

Proof. Let p be a Lawvere fibration, and take t to be the terminal object functor

and C to be the comprehension functor for p.

We now look at some properties of QCEs. We start with a couple of results

highlighting the relationship between the notion of CCU and the notion of QCE.
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In order to see this, we recall that behind the notion of CCU is the notion of

comprehension category (see [Jac93]) which can be summarised as: a functor P :

E Ñ BÑ is a comprehension category if the functor cod �P : E Ñ B is a fibration

and P sends cartesian morphisms to pullback squares. Lemma 2.1.9 insures then

that CCUs are indeed comprehension categories. Similarly, the following results

shows that QCEs are automatically opfibred (hence one could imagine a notion of

quotient category dual to the notion of comprehension category, of which QCEs

would be a specific instance).

Lemma 2.2.8. Let p : E Ñ B admit quotients. Then, the associated QCE

ρ : E Ñ BÑ sends opcartesian morphisms to pushout squares.

The proofs of Lemma 2.2.8, as well as Corollary 2.2.9 and Lemma 2.2.10 are

the exact dual of the proofs of similar results for CCUs in [Jac93] (among which

there is Lemma 2.1.9 and Lemma 2.1.12). We reproduce them here in order to

check that weakening the hypothesis (namely not asking for e to be adjoint to p)

does not affect the proofs.

Proof. Let e denote the full section of p and Q for the quotient functor. Let

f : A Ñ B be a morphism in B, R be an element of EA and l be an opcartesian

morphism above f . The image of l by ρ is then given by the following square in

B:

A

ρR
��

f // B

ρR1

��
QR

Ql
// QpR1q

(*)

Let Φ denote the natural isomorphism associated to the adjunction Q % e and

η : idE Ñ eQ for its unit. In order to prove that the square (*) is a pushout, let us

assume g : B Ñ X and h : QRÑ X two morphisms in B such that g�f � h�ρR.

We have a morphism Φh : R Ñ eX such that Φh � eh � ηR by naturality of Φ.

Hence Φh is above the composition h � ρR which is equal to g � f . Therefore,

by the universal property of the opcartesian morphism l, there exists a unique

morphism γ : R1 Ñ eX above g, such that Φh � γ � l. We then have the unique
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morphism making the square (*) a pushout square given by Φ�1γ : QpR1q Ñ X.

Indeed, the following holds by naturality of Φ:

Φ�1γ �Qplq � εX �Qγ �Qplq

� εX �QpΦhq

� Φ�1pΦhq

� h

as well as the following, by naturality of Φ and η:

Φ�1γ � ρpR1q � εX �Qγ � ppηpR1qq

� ppeεX � eQγ � ηpR1qq

� ppeεX � ηeX � γq

� pγ

� g

To conclude, the uniqueness of Φ�1γ is obtained from the uniqueness of γ.

We can then deduce the following corollary:

Corollary 2.2.9. Let p : E Ñ B be a bifibration that admit quotients with section

e : B Ñ E, quotient functor Q : E Ñ B and QCE ρ : E Ñ BÑ. For all R in E

and f : pRÑ X in B, there exists the following pushout square in B:

pR

ρR

��

f // X

ρΣfR

��
QR

QfR§

// QpΣfRq

_�

We can now present the following result that characterises bifibrations that

admit quotients.

Lemma 2.2.10. Let p : E Ñ B be a bifibration with a full section e : B Ñ E. The

bifibration p admits e-quotients with quotient functor Q : E Ñ B iff the functor

ψ : BÑ Ñ E mapping an object f : X Ñ Y of BÑ to f�eY has a left adjoint ρ
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with dom�ρ � p and vertical unit. In such a case, we have that ρ is the associated

QCE, i.e., ρ � pη where η is the unit of the adjunction Q % e.

Proof. Let p : E Ñ B a bifibration with full section e. Assume first that the

functor ψ : BÑ Ñ E has a left adjoint ρ with dom � ρ � p and vertical unit. The

functor I : B Ñ E that sends an object A in B to ψidA in E is isomorphic to e, since

I A � id�AeA � eA. Furthermore, I has a left adjoint Q � cod � ρ by composition

of adjoints: I � ψ � idp_q $ cod � ρ � Q. Hence, we also have Q % e. Now, we

have that the unit of the adjunction Q % e is, by construction, η � ψη̄ρ.η1 with

η̄ the unit of cod % idp_q and η1 the unit of ρ % ψ. Hence, considering that the

unit of the adjunction ψ $ ρ is vertical, we have that pη � ppψη̄ρq � dompη̄ρq

and since dom η̄ � id we can conclude that pη � ρ.

For the other direction of the equivalence, assume that p admits quotients

with quotient functor Q : E Ñ B. For f : A Ñ B in B, denoting A{B for the

coslice category with respect to A, we have:

BÑpρR, fq �
¤

u:pRÑA

A{BpρpΣuRq, fq (1)

�
¤

u:pRÑA

B{B
�
ρ
�
Σf pΣuRq

�
, idB

	
(2)

�
¤

u:pRÑA

EB
�
Σf pΣuRq, eB

�
(3)

�
¤

u:pRÑA

EApΣuR, f
�eBq (4)

� EpR,ψfq (5)

When (1) and (2) come from Corollary 2.2.9, (4) comes from the adjunction

Σf % f� and (5) comes from the universal property of opcartesian morphisms.

Now for (3), it is easy to check that if we restrict the isomorphism associated to

the adjunction Q % e to the fibre EB we have, for any P in EB, the isomorphism

EBpP, eBq � B{BpρR, idBq. It is easy to check from its construction that the unit

of Q % e is vertical.

Note that Lemma 2.1.12 can be presented as a corollary of the dual of Lemma 2.2.10.

We now look at two preservation properties of QCEs.
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Lemma 2.2.11. QCEs are stable under change of base of the underlying fibration

along an opfibration.

Proof. Let p, e and Q provide a QCE, and let q : E 1 Ñ B be an opfibration.

Consider the following pullback diagram.

B

idB

**

e

		
%

�oo �_
pp�qq�e

��
E

Q

II

p

��

�
p�qoo �_

q�p
��

B E 1q
oo

We have that p�e � id implies q�p�pp�qq�e � id, and Corollary 1.2.2 ensures that

change of base preserves opfibrations, we also have that p�q is an opfibration. The

dual of Lemma 1.2.30 therefore ensures that the functor pp�qq�e has a left adjoint

Q, and the dual of Corollary 1.2.31 ensures that pp�qq�e is full and faithful.

Lemma 2.2.12. Let p : E Ñ B, e : B Ñ E, and Q : E Ñ B provide a QCE.

Let I be an object of B, and let p{I : E{eI Ñ B{I be the functor that maps

an object α : R Ñ eI to pα : pR Ñ I. Then p{I admits e{I-quotients with

quotient functor Q{I � Φ, where Φ is the natural isomorphism characterising the

adjunction Q % e.

Proof. First, p{I is a fibration. Indeed, let h : f Ñ g be a morphism of B{I.

X

f ��????????
// Y

g
����������

I

and let α : P Ñ eI be a morphism above g. The cartesian lifting of h at P with

respect to p{I is the E{eI-morphism

h�P

α�h§P ""EEEEEEEE
h§P // P

α
~~}}}}}}}

eI

Here, h§P is the cartesian lifting of h at P with respect to p. Now, since p�e � id,
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we have that p{I � e{I � id. Moreover, since e is full and faithful, so is e{I.

To see that Q{I % e{I, observe that the following two diagrams are (naturally)

isomorphic by naturality of Φ:

QP

Q{Iα   AAAAAAAA
h // X

f����������
P

α
��@@@@@@@@
Φ�1h // eX

e{If}}||||||||

I eI
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Chapter 3

Lifting

A central aspect of Hermida and Jacobs’ approach to induction and coinduction

is to show how an endofunctor F acting on types can be lifted to either an

endofunctor pF acting on predicates or, an endofunctor qF acting on relations.

These liftings make it possible to derive an induction scheme for the initial algebra

of F or a coinduction scheme for the final coalgebra of F . Before looking at the

derivation of induction and coinduction schemes, which will be the subject of the

next chapter, in this chapter we concentrate on the operation of lifting.

In Section 3.1 we introduce a general notion of lifting of a functor with regard

to a fibration. From there, we derive the two notions of 1-preserving and e-

preserving liftings. We then show how to construct a canonical 1-preserving

lifting of an arbitrary functor in Lawvere fibrations as well as a canonical e-

preserving lifting of an arbitrary functor in QCEs. In Section 3.2 we look at how

the canonical liftings behave with regard to the algebraic properties of the lifted

functors. We will then conclude by linking our canonical liftings with the lifting

operation of Hermida and Jacobs.

3.1 Definitions and canonical liftings

We start with the definition of a lifting of a functor in a fibration:

Definition 3.1.1. Let p : E Ñ B be a fibration and F be a functor on B. A

lifting of F with respect to p is a functor F̄ : E Ñ E such that the following
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diagram commutes:

E F̄ //

p

��

E
p

��
B

F
// B

Categorically, a lifting can be understood as a weak notion of fibred endofunc-

tor. Indeed, for any fibred endofunctor pH,F q, the functor H is a lifting of F .

Furthermore, similarly to fibred functors, we can restrict a lifting F̄ : E Ñ E of a

functor F : B Ñ B to a functor F̄X : EX Ñ EFX between fibres, for every X in B.

With induction schemes in mind, the idea is that endofunctors on the base

category of a fibration are understood as defining the structure of (potential)

inductive and coinductive types (see Section 4.1). Therefore, a lifting of a functor

F can be seen as a predicate transformer that follows the structure defined by F .

Example 3.1.2. (Example 2.1.13, continued) Consider the family fibration on

Set and the functor F : Set Ñ Set defined as F X � 1 � A �X with 1 the one

point set. Then the functor F̄ pY, P q � 11� 1A� pY, P q is a lifting of F .

Example 3.1.3. (Example 2.2.5, continued) Consider the relations bifibration

of the family fibration on Set and the functor F : Set Ñ Set defined as F X �

1�A�X with 1 the one point set and A some set. Then the functor F̄ pX�X,Rq �

Eq1� EqA� pX�X,Rq is a lifting of F .

The next example introduces the lifting operation of Hermida and Jacobs, as

defined in [HJ98] (refer to this paper for further detail). This gives a first link

between their lifting operation and the liftings presented in this chapter. Note

that the liftings introduced in the two previous examples are instantiations of the

following.

Example 3.1.4. Let p : E Ñ B be a fibration with a terminal object functor

1, and where E is bicartesian above B, i.e., E and B are bicartesian categories

and p preserves the bicartesian structure. Consider a polynomial functor T :

B Ñ B, i.e., a functor built from the identity, constants, and finite products and

coproducts. Then:

(i) We can construct the (polynomial) functor PredpT q : E Ñ E by induction

on the structure of T . The bicartesian structure of B used in T is replaced by
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the bicartesian structure of E in PredpT q, and every constant A in B occurring

in T is replaced by the constant 1A in PredpT q.

(ii) If p is a bifibration we can construct the functor RelpT q : RelpEq Ñ RelpEq

by induction on the structure of T . The bicartesian structure of B in T is replaced

by the bicartesian structure of E in RelpT q, and every constant A in B occurring

in T is replaced by the constant Eq A in RelpT q (remember Example 2.2.4).

It is straightforward to check that the functor PredpT q and RelpT q are indeed

liftings of T .

Example 3.1.5. Let p : E Ñ B be a fibration with a terminal object functor

1 : B Ñ E . Given any functor F : B Ñ B the functor F̄ � 1 � F � p is a lifting of

F .

For a given fibration, we can group the associated liftings into a category:

Definition 3.1.6. Let p : E Ñ B be a fibration. The category of liftings with

respect to p, written Lp, has as objects pairs pF̄ , F q where F̄ : E Ñ E is a lifting

of F : B Ñ B with regard to p, and has morphisms from pF̄1, F1q to pF̄2, F2q

pairs pα, βq where α : F̄1 Ñ F̄2 is a natural transformation above the natural

transformation β : F1 Ñ F2.

In fact, while not useful to the present work, it is interesting to note that we

can organise liftings in a fibration as described in the following lemma.

Lemma 3.1.7. Let p : E Ñ B be a fibration, and write rB,Bs for the category of

endofunctors on B. The functor l : LpÑ rB,Bs that sends an object pF̄ , F q to F

is a fibration.

Proof. We only describe the construction: the reindexing of the fibration is done

pointwise, i.e., let F̄ be a lifting of F and σ : G Ñ F be a natural transforma-

tion, define σ�pF̄ , F q by pḠ, Gq where Ḡ P � pσpP q
�pF̄ P q, and similarly, define

σ§pF̄ , F q by pσ1, σq where σ1P � σ§
pF̄P q

.

Note that the fibre above a functor F is then (isomorphic to) the category of

liftings of F and vertical natural transformations between them. Furthermore, in

the case where p : E Ñ B has a terminal object functor, it is straightforward to
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check that the lifting presented in Example 3.1.5 defines a terminal object functor

for l. Note also that this reasoning dualises in the case of p being an opfibration,

and thus, if p is a bifibration, so is l.

The notion of lifting is quite general and we will need to restrict it to two

subclasses in order to use them for induction and coinduction:

Definition 3.1.8. Let p : E Ñ B be a fibration with a terminal object functor

1 : B Ñ E , let F be a functor on B, and let F̄ : E Ñ E be a lifting of F . We say

that F̄ is a 1-preserving lifting of F if we have F̄ � 1 � 1 � F .

And, similarly:

Definition 3.1.9. Let p : E Ñ B be a fibration with full section e : B Ñ E , let F

be an endofunctor on B and F̄ be a lifting of F . We say that F̄ is an e-preserving

lifting of F if we have F̄ � e � e � F .

While there is clearly redundancy in the above definitions (since a terminal object

functor is a full section) we find that distinguishing both concepts helps to clarify

the remaining of the thesis. Furthermore, a lifting can be e-preserving in different

ways (there can be different isomorphisms characterising the preservation of e), it

is 1-preserving in a canonical way. Indeed, for a 1-preserving lifting F̄ of F , the

isomorphism F̄ � 1 � 1 � F is unique since 1 maps objects to terminal objects of

fibres. Hence, saying that a lifting is e-preserving identifies an additional structure

while saying that a lifting is 1-preserving is a property (See Definition 3.1.10).

It is easy to check that the liftings from Examples 3.1.5 and 3.1.2, and from

part (i) of Example 3.1.4, are all 1-preserving, and that the liftings of Exam-

ple 3.1.3 and part (ii) of Example 3.1.4 are e-preserving.

For a given a fibration, we can group the associated e-preserving liftings as

well as 1-preserving liftings in categories:

Definition 3.1.10. Let p : E Ñ B be a fibration.

• If p has a terminal object functor 1 : B Ñ E , define the category of 1-

preserving liftings with respect to p, written 1Lp, as the obvious full sub-

category of Lp.
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• If p has a full section e : B Ñ E , define the category of e-preserving liftings

with respect to p, written eLp, as the category whose objects are triples

pF̄ , F, αq with pF̄ , F q a lifting and α a natural isomorphism F̄ � e � e � F .

A morphism from pF̄ , F, αq to pḠ, G, βq is a morphism of lifting pγ, δq :

pF̄ , F q Ñ pḠ, Gq such that the following diagram commutes:

F̄ e

γe

��

α // eF

eδ

��
Ḡe β

// eG

Note that the category 1Lp is equivalent to the category eLp when we choose the

associated full section e to be the terminal object functor. Indeed, the unicity

of the 1-preserving isomorphism will guarantee that the condition on morphisms

of e-preserving liftings is always valid. Furthermore, since reindexing preserves

terminal objects, the fibration of liftings restricts to a fibration l1 : 1LpÑ rB,Bs

of 1-preserving liftings. While there is no similar result for e-preserving liftings,

we will have to consider the following subcategory of eLp:

Definition 3.1.11. For p : E Ñ B a fibration and F : B Ñ B a functor, let

eLpF be the category whose objects are pairs pG,αq such that pG,F, αq is a e-

preserving lifting, and where a morphism γ from pG,αq to pH, βq is a vertical

natural transformation γ : GÑ H such that the following diagram commutes

Ge

γe

��

α // eF

He
β

<<zzzzzzzz

Note that if we choose e to be the terminal object functor of p then the category

eLpF is equivalent to the fibre 1LpF of the above mentioned fibration of 1-

preserving liftings w.r.t. p.

Now that we have the notion of 1-preserving and e-preserving liftings, we turn

our attention to the task of constructing such canonical liftings. Remember that

the idea is to construct a functor on the total category which behaves like the

one on the base category. First, we show how to construct a 1-preserving lifting
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for any endofunctor on the base category of a Lawvere fibration p : E Ñ B. For

this, recall from Lemma 2.1.12 that we have the two functors π : E Ñ BÑ and

φ : BÑ Ñ E which intuitively translate elements of the total category to arrows

in the base category. We can then use the morphism part of the functor that we

want to lift and these two functors to derive a lifting which would behave in the

same way on the total category:

Definition 3.1.12. Let p : E Ñ B be a Lawvere fibration and F : B Ñ B be an

arbitrary endofunctor. Define the following endofunctor on E :

pF : E Ñ E

pF � φFÑπ

We have:

Theorem 3.1.13. Let p : E Ñ B be a Lawvere fibration. For any functor F on

B, the functor pF is a 1-preserving lifting of F .

Proof. This is a consequence of Corollary 2.2.7 and Lemma 3.1.19 below.

If F is an endofunctor on the base category of a Lawvere fibration, we will call

the functor pF , the canonical 1-preserving lifting of F .

Example 3.1.14. (Example 3.1.2, continued) Recall from Example 2.1.3 and

2.1.13 that the family fibration on Set is a Lawvere fibration, that π : FampSetq Ñ

SetÑ maps an object pX,P q to the first projection πpX,P q : tpX,P qu Ñ X, and

that φ : SetÑ Ñ FampSetqmaps a function f : X Ñ Y to the inverse image family

pY, f�1q. Considering the functor F : SetÑ Set defined as F X � 1�A�X, its

canonical 1-preserving lifting is then:

pF pX,P q � φpFπpX,P qq

�
�
F X, pid1 � idA � π1q

�1
�

�
�
F X, 11� 1A� P

�

Indeed, it is straightforward to see that pidAq�1 � 1A and
�
πpX,P q

��1
� pX,P q.
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We stress that, to define our lifting, the codomain functor above the base

B of the Lawvere fibration does not need to be a fibration, i.e., B need not

have pullbacks. Also, note that this definition of our lifting is equivalent to the

definition given in [GJF10], namely, F̂ P � ΣFπP1F tP u.

We now show how to construct an e-preserving lifting for any endofunctor

on the base category of a fibration p : E Ñ B that admits quotients. For this,

recall from Definition 2.2.1 that we have the QCE ρ : E Ñ BÑ and the functor

ψ : BÑ Ñ E . This two functors will be used as translator from the total category

to arrows in the base category. We can then once again use the morphism part

of a functor and these two functors to define a lifting:

Definition 3.1.15. Let p : E Ñ B be a fibration that admits quotients and

F : B Ñ B be an arbitrary endofunctor. Define the following endofunctor on E :

qF : E Ñ E

qF � ψFÑρ

We have:

Theorem 3.1.16. Let p : E Ñ B be a fibration with full section e : B Ñ E that

admits e-quotients. For any functor F : B Ñ B, the functor qF is an e-preserving

lifting of F .

Proof. To prove p qF � Fp, note that, for each P in E , the morphism ρP has

domain pP , hence dom FÑ ρ � Fp. Also note that pψ � dom, therefore we

have p qF � pψFÑρ � Fp. To prove qFe � eF , we first assume that i) for every

X in B, ρeX is an isomorphism in B, and ii) for every isomorphism f in B,

ψ f � epdom fq. Then since pe � IdB, i) and ii) imply that qFe � ψFÑρe �

e dom FÑρe � eFpe � eF . To discharge i), note that since e is full and faithful,

ηe : e Ñ eQe is eκ for a natural transformation κ : IdE Ñ Qe, where each

κX is an isomorphism with inverse εX and ε is the counit of Q % e. Then

ρeX � pηeX � peκX � κX , so that ρeX is indeed an isomorphism. To discharge

ii), let f be an isomorphism in B. Since cartesian morphisms above isomorphisms
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are isomorphisms, we have ψf � f�pe pcodfqq � e pcod fq � e pdom fq. Here,

the first isomorphism is witnessed by f § and the second by ef�1.

If F is an endofunctor on the base category of a QCE, we call the functor qF the

canonical e-preserving lifting of F .

Example 3.1.17. (Example 3.1.3, continued) Recall from the previous example

on the relations bifibration of the family fibration on Set that this bifibration

admits quotients where the QCE ρ maps a relation R above X to the quotient

map cR : X Ñ X{R and the functor ψ maps a map f : X Ñ Y into its kernel

relation kerpfq. Now, let us consider the functor F : Set Ñ Set defined as

F X � 1� A�X, its canonical e-preserving lifting is then:

qF pX�X,Rq � ψpF pρpX�X,Rqqq

�
�
FX�FX, kerpid1 � idA � cRq

�
� Eq1� EqA� pX�X,Rq

Indeed, it is straightforward to see that kerpidAq � EqA and kerpcRq � pX�X,Rq.

Example 3.1.18. We now consider the relations fibration for the family fibration

above Class, the category of classes, i.e., p : RelpClassq Ñ Class where RelpClassq

is the category whose objects are relations of the form R : X�X Ñ Class with X

a class. This fibration admits quotients in the same way as the relations fibration

for the family fibration above Set. We then have the functor ρ that maps a

relation R above X to the quotient map cR : X Ñ X{R and the functor ψ maps

a map f : X Ñ Y into its kernel relation kerpfq.

Now consider the canonical e-preserving lifting |P of the power set functor

P : Class Ñ Class. We have that |P maps a relation R : A � A Ñ Class to the

relation |PR : PA�PAÑ Class defined by |PR � ψpPpρRqq. Thus, if X and

Y are subsets of A, then pX, Y q P |PR iff PρRX � PρRY . Since the action of

P on a morphism f maps any subset of the domain of f to its image under f ,

the relation |PR is defined as pX, Y q P |PR iff p@x P Xq.pDy P Y q. xRy ^ p@y P

Y q.pDx P Xq. xRy.
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As mentioned in the previous chapter, the dual of Theorem 3.1.16 covers Law-

vere fibrations and thus permits us to derive Theorem 3.1.13 as a corollary. The

lifting qF has as its dual the lifting pF generalised to the setting of tC-opfibrations:

Lemma 3.1.19. Let p : E Ñ B, t and C provide a tC-opfibration and F : B Ñ B

be a functor. Define the functor pF by

pF : E Ñ E

pF � φFÑ π

Then pF is a t-preserving lifting of F , i.e., p � pF � F � p and pF � t � t � F .

Proof. By dualisation of Theorem 3.1.16. The setting on the left below with p

an opfibration is equivalent to the setting on the right with p a fibration.

$

EC

��
p

��

%

EopC

��
p

��
B

t

??�������

IdB
// B Bop

t

<<yyyyyyyy

IdBop

// Bop

3.2 An algebra of liftings

We have proved that in any Lawvere fibration p : E Ñ B, every endofunctor F on

B has a canonical 1-preserving lifting pF on E , and that in any fibration p : E Ñ B

that admits e-quotients, every functor F on B has a canonical e-preserving lifting
qF on E . In this section we ask what kinds of algebraic properties the two lifting

operations have. We organise this section by first presenting the results about the

preservation properties of the two canonical liftings and then present the results

about the relationship between the two canonical liftings and other 1-preserving

(resp., e-preserving) liftings.

We start with the canonical 1-preserving lifting of constant functors in Law-

vere fibrations.
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Lemma 3.2.1. Let p : E Ñ B be a Lawvere fibration and let X be an object of

B. If FX is the constantly X-valued functor on B, then xFX is isomorphic to the

constantly 1X-valued functor on E.

Proof. For any object P of E we have

xFXP � pφpFXq
ÑπqP � φpFXπP q � ΣFXπP1FXtP u � Σid1X � 1X

The isomorphism holds because id� � Id and Σid % id�.

We have a similar result for the canonical e-preserving liftings in QCEs.

Lemma 3.2.2. Let p : E Ñ B, e and Q provide a QCE and let X be an object of

B. If FX is the constantly X-valued functor on B, then |FX is isomorphic to the

constantly eX-valued functor on E.

Proof. This is dual of Lemma 3.2.1.

We now show that the canonical 1-preserving lifting operation in Lawvere

fibrations preserves coproducts.

Lemma 3.2.3. Let p : E Ñ B be a Lawvere fibration and let F and G be functors

on B. Then {F �G � pF � pG.
Proof. We have

p{F �GqP � φppF �GqÑπP q

� φpFÑπP �GÑπP q

� φpFÑπP q � φpGÑπP q

� pFP � pGP

The isomorphism holds because φ is a left adjoint (Lemma 2.1.12) and so preserves

coproducts.

Note that the statement of Lemma 3.2.3 does not assert the existence of either

of the two coproducts mentioned, but rather that, whenever both do exist, they

must be equal. Also, note that the lemma generalises to any colimit of functors.

We have a dual result for the canonical e-preserving lifting operation in QCEs.
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Lemma 3.2.4. Let p : E Ñ B be a bifibration that admits quotients, and let F

and G be functors on B. Then �F �G � qF � qG.
Proof. This is dual of Lemma 3.2.3.

Again, here the statement of Lemma 3.2.4 does not assert the existence of either

of the two products mentioned, but rather that, whenever both do exist, they

must be equal. And once again, note that the lemma generalises to any limit of

functors.

We do not know if the canonical lifting of a product is a product in any

lawvere fibration (and hence, if the canonical lifting of a sum is a sum in any

QCE). It has however been proved in [AGJJ12] that the property holds under

the additional condition that the Lawvere fibration has very strong sums (this

amounts to ask for the comprehension category π to be opfibred). The proof

dualises to show that the canonical lifting of a sum is a sum if the QCE is fibred.

Under the additional hypothesis of fullness we know that canonical liftings in a

Lawvere fibration preserve identity:

Lemma 3.2.5. In any full Lawvere fibration, xId � Id .

Proof. By Lemma 2.1.12 we have the adjunction φ % π. Since π is full and

faithful, the counit ε of this adjunction is an isomorphism, i.e., ε : φ � π
�
ÝÑ Id.

We therefore have that

Id � φ � π � pφ IdÑ πq � xId

This is similar for canonical liftings in a full QCE.

Lemma 3.2.6. In any bifibration that admits full quotients, |Id � Id .

Proof. This is dual of Lemma 3.2.5

The last results of this section consider whether or not there is anything

fundamentally special about the canonical liftings we have constructed. In the

next chapter we will argue why these liftings are the “right” liftings for deriving

57



induction and coinduction schemes. But other 1-preserving (resp., e-preserving)

liftings might also exist and, if this is the case, then we might hope our liftings

satisfy some universal property. Unfortunately at this level of generality we are

only able to prove the following two properties.

We now look at the relationship between the canonical 1-preserving lifting

and other 1-preserving liftings in Lawvere fibrations.

Lemma 3.2.7. Let p : E Ñ B be a Lawvere fibration and let F be a functor on

B. The canonical 1-preserving lifting pF is weakly initial in the category 1LpF of

1-preserving liftings of F and vertical natural transformations between them.

Proof. Let F̄ be a 1-preserving lifting of F . We can then construct a morphism

tP : pFP Ñ F̄P for any P with the following diagram:

F̄1tP u
F̄ εP // F̄P

1F tP u

�

pFπP q§

// pFP
tP

OO

above F tP u
FπP // F ppP q , where tP exists by the universal property of the op-

cartesian morphism pFπP q§, and is above the identity. The naturality condition

comes from a straightforward diagram chasing.

We now look at the relationship between the canonical e-preserving lifting

and other e-preserving liftings in QCEs.

Lemma 3.2.8. Let p : E Ñ B, e and Q provide a QCE and let F be a functor

on B. The canonical e-preserving lifting qF is a weakly terminal object in eLpF .

Proof. Consider F : B Ñ B on the base category of a fibration, p qF , αq the

canonical lifting of F and pF̄ , βq a e preserving lifting of F . Let γ : F̄ Ñ qF be the

natural transformation defined at R as the unique vertical morphism γR making

the following diagram commutes.

F̄ eQR F̄R
F̄ ηRoo

γR
��

eFQR

βR �

qFR
pFρRq

§
oo

58



In order to obtain a map of e-preserving lifting from F̄ to qF we need to check

if β � α � γe. For this, note that by construction of α the following diagram

commutes:

F̄ eQeX F̄eX
F̄ ηeXoo

γeX

��

eFQeX

βeX �

eFX
eFρeX
oo

βX �

αX ##qFeXpFρeXq
§

VV

These two results will provide a correctness criterion for our constructions of

canonical liftings with regard to induction and coinduction. This will be discussed

after Corollary 4.3.3 and Corollary 4.3.10 respectively.

In fact, through some additional hypotheses we can show that our lifting is the

only 1-preserving (resp., e-preserving) lifting. Our proof uses a line of reasoning

which appears in Remark 2.13 in [HJ98].

Lemma 3.2.9. Let p : E Ñ B be a full Lawvere fibration and let lF be a 1-

preserving lifting of a functor F on B. If lF is opfibred — i.e., if plF qpΣfP q �

ΣFf plF qP — then lF � pF .
Proof. We have

plF qP � plF qp pIdP q
� plF qpΣπP1tP uq

� ΣFπP plF q1tP u

� ΣFπP1F tP u

� pFP

This is similar for liftings in QCE.
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Lemma 3.2.10. Let p : E Ñ B admits full e-quotients and let lF be a e-

preserving lifting of a functor F on B. If lF is fibred — i.e., if plF qpf�P q �

pFfq�plF qP — then lF � qF .
Proof. This is dual of Lemma 3.2.9.

Note that Lemma 3.2.9 tells us that the canonical lifting of F is opfibred as

soon as there is an opfibred lifting of F . We do not know if a canonical lifting

is necessarily opfibred otherwise (the dual remark applies for the Lemma 3.2.10).

However, any canonical lifting is opfibred if the Lawvere fibration has very strong

sums [AJG11, AGJJ12]. Briefly, the very strong sums property amounts to

ask that the comprehension category π is opfibred, we then have from Propo-

sition 1.2.32 that φ (the left adjoint of π) is opfibred as well as FÑ (see Exam-

ple 1.2.6), hence by composition pF � φ �FÑ �π is opfibred. The dual result tells

us that canonical liftings in QCE are fibred if the QCE itself is fibred.

Finally, we can return to the question of the relationship between the liftings of

polynomial functors given by Hermida and Jacobs (reproduced in Example 3.1.4)

and the canonical liftings derived by our methods. We have seen that for con-

stant functors, the identity functor, coproducts of functors in Lawvere fibrations

and products of functors in QCEs, our constructions agree. Moreover, as al-

ready observed in [HJ98], if Hermida and Jacobs’ liftings preserve Σ-types then

Lemma 3.2.9 guarantees that in a full Lawvere fibration their lifting (and hence

their lifting for products) coincides with ours. Lemma 3.2.10 provides the dual

result for the lifting of coproducts in a full QCE.
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Chapter 4

Induction and coinduction

In this chapter we present induction and coinduction in category theory. In Sec-

tion 4.1 we quickly go through induction and coinduction as definition principles

for types. This consists of well-known results on initial algebras and final coal-

gebras of endofunctors on a category of types. In Section 4.2, we take a detailed

look at the relationship between the inductive definition and induction scheme of

the familiar case of natural numbers. This will develop some intuition that we

will then use for the main subject of this thesis. In Section 4.3 we present induc-

tion and coinduction schemes in fibration for initial algebras and final coalgebras

respectively.

4.1 Inductive and coinductive definitions in cate-

gory theory

As previously mentioned, an endofunctor on the base category B of a fibration

specifies the signature of an inductive or a coinductive type. In this section we

recall sufficient notions of initial algebra and final coalgebra semantics to formalise

this. We begin the section with initial algebras and inductive types. We then

look at final coalgebras and coinductive types and we finish the section with a

result that links relations between the two functors and relations between the

algebras (resp., coalgebras) of the functors.

We start with the notion of algebras associated to a functor and of the mor-
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phisms between them, which together form the category of algebras of a functor:

Definition 4.1.1. Let F : B Ñ B be an endofunctor on B. The category of F -

algebras, written AlgF , as the category whose objects are pairs pX,α : FX Ñ Xq,

and whose morphisms between two objects pX,α : FX Ñ Xq and pY, β : FY Ñ

Y q are morphisms f : X Ñ Y in B such that the following square commutes in

B.

FX

α

��

Ff // FY

β

��
X

f
// Y

For F an endofunctor, we call an object pX,α : FX Ñ Xq of AlgF an algebra

of F or F -algebra, where X is called the carrier of the algebra and α is called

the structure map of the algebra. We might refer to an algebra by its structure

map. Intuitively, if an endofunctor is the signature of a structure, the carrier

of an algebra is an object that carries this structure, and the structure map

provides operations to build elements of the carrier using the structure. Algebra

morphisms are then morphisms that respect the structure defined by the functor.

See the following examples:

Example 4.1.2. Let B be a category that is a model of a simple type theory

(See Example 1.1.5), and consider the endofunctor NX � 1�X on B.

The structure map of an N -algebra pX,α : 1 �X Ñ Xq is equivalent to two

maps, α1 : 1 Ñ X and α2 : X Ñ X. Such an algebra corresponds in the type

theory to a type X that contains a specific element α1 and has a unary operation

α2. Looking now at the condition on maps of algebra, a map between two N -

algebras, pX,α : 1�X Ñ Xq and pY, β : 1� Y Ñ Y q, is a function f from X to

Y such that f � α � β � pFfq, i.e., fα1 � β1 and fpα2xq � β2pfxq.

Example 4.1.3. Let B be a category that is a model of a simple type theory and

let L : B Ñ B be the functor defined as LX � 1�A�X. This time the structure

map of an L-algebra pX,α : 1�A�X Ñ Xq is equivalent to two maps, α1 : 1 Ñ X

and α2 : A � X Ñ X. Hence, a L-algebra corresponds in the type theory to a

type X that contains a specific element α1 and that has a "type action" of A on

X given by α2. A map between two L-algebras, pX,α : 1 � A � X Ñ Xq and
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pY, β : 1 � A � Y Ñ Y q, is then a function f from X to Y such that fα1 � β1

and f
�
α2pa, xq

�
� β2pa, fxq.

Among the algebras of a functor, we are particularly interested in the initial

algebra. The initial algebra of a functor F : B Ñ B is the initial object of the

category AlgF . Explicitly it is a F -algebra, that we write pµF, in : FµF Ñ µF q,

such that for any F -algebra pX,α : FX Ñ Xq there exists a unique morphism

LαM : µF Ñ X making the following diagram commute

FµF

in
��

F LαM // FX

α

��
µF

LαM
// X

These unique morphisms are sometimes referred to as catamorphisms. With the

point of view that an F -algebra consists of an object that carries the structure

defined by F , the initial F -algebra consists of the smallest object carrying the

structure defined by F . In the category Set, this corresponds to the "smallest set

closed by ..." construction, i.e., free structures. The catamorphism LαM assigns

then to an element x P µF its interpretation in X. More generally, a key obser-

vation due to Lambek is that for any category B and endofunctor F on B, the

structure map in of the initial F -algebra is an isomorphism. We can therefore see

µF as the least fixed point of F . Following this reasoning, it is not surprising to

find that, for B a category of types, inductive types correspond to initial algebras

pµF, in : FµF Ñ µF q, where the carrier µF is the actual type, the structure map

in provides the constructors of the type, and iteration operators correspond to

catamorphisms (See [JR97] for example).

We present two examples in order to illustrate this correspondence.

Example 4.1.4. (Example 4.1.2, continued) Let B be a category that is a model

of a simple type theory, and consider the functor NX � 1�X on B. The carrier

of the initial algebra of N corresponds to the type of natural numbers in the type

theory. Indeed, first observe that the constructors of natural numbers, namely the

number Zero and the successor operation Succ : Nat Ñ Nat, define a N -algebra.

Furthermore, the iteration operator is given by the following term in the type
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theory:
foldNat : X Ñ pX Ñ Xq Ñ Nat Ñ X

foldNat z sZero � z

foldNat z s pSucc nq � s pfoldNat z s nq

This gives for any N -algebra pX,α : NX Ñ Xq, the catamorphism foldNat α1 α2

of codomain α.

Example 4.1.5. (Example 4.1.3, continued) Let B be a category that is a model

of a simple type theory, and consider the functor LX � 1 � A � X on B. The

carrier of the initial algebra of L corresponds to the type of lists of elements of

type A in the type theory. Indeed, first observe that the constructors of lists,

namely the empty list Nil and the concatenation Con : A � List Ñ List, define

a L-algebra. Furthermore, the iteration operator is given by the following term

in the type theory:

foldList : X Ñ pA�X Ñ Xq Ñ ListÑ X

foldList n f Nil � n

foldList n f pCon a l1q � f a pfoldList n f l1q

This gives for any algebra pX,α : LX Ñ Xq, the catamorphism foldList α1 α2 of

codomain α.

Note that, as a category does not necessarily have an initial object, an end-

ofunctor does not necessarily have an initial algebra. In fact, the question of

the existence of an initial algebra can be a difficult one. However, the literature

already contains abstract results guaranteeing the existence of initial algebras

for different classes of functors, see [LS81, SP77] for example, where it is shown

how to construct initial algebras in a recursive fashion provided that the category

under consideration has all the colimits of countable chains and that the functor

preserves them. For this reason, in the remainder of this thesis we assume that

the functors we are dealing with have an initial algebra. This assumption does

not result in a loss of generality but, on the contrary, it allows us to exploit the

power of abstraction of the concept of initial algebra. We will make a similar

assumption for the existence of final coalgebras.
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We will now look at the notion dual to algebra: coalgebra. This notion has

the same role for coinductive types that the notion of algebra has for inductive

types.

Definition 4.1.6. Let F : B Ñ B be a functor on B. The category of F -coalgebra,

written coAlgF , has as objects pairs pX,α : X Ñ FXq. A morphism between

pX,α : X Ñ FXq and pY, β : Y Ñ FY q is given by a morphism f : X Ñ Y in B

such that the following square commutes in B.

X

α

��

f // Y

β

��
FX

Ff
// FY

For F an endofunctor, we call an object pX,α : X Ñ FXq of coAlgF a

coalgebra of F or F -coalgebra, where X is called the carrier of the coalgebra

and α the structure map. We might refer to a coalgebra by its structure map.

Intuitively, if an endofunctor is the signature of a structure, as for algebras, a

coalgebra pX,α : X Ñ FXq consists of an object X with a structure defined by

F , but dually to algebras, the structure map does not tell us how to construct

elements following the structure, but rather how to destruct the elements to

observe the structure. This can be seen in the following example:

Example 4.1.7. Let B be a category that is a model of a simple type theory.

Consider the endofunctor LX � 1� A�X on B.

A coalgebra pX,α : X Ñ 1 � A � Xq consists of a type of X, such that for

any element x of X, we can destruct x to either �, the unique element of 1, or

a pair pa, x1q where a is some observation in A that we can do from x, and x1

is the remainder of x. Notice that by successively applying α we can observe a

potentially infinite sequence of elements of type A.

A morphism of coalgebra from pX,α : X Ñ 1 � A � Xq to pX, β : Y Ñ

1 � A � Y q is then a function f : X Ñ Y such that if an element x destructs to

�, so does fx, and if an element x destructs to a pair pa, x1q then the element fx

destructs to pa, fx1q.
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Example 4.1.8. Consider the functor SX � PpA�Xq on the category of classes,

where PpA�Xq is the powerset of A�X. A S-coalgebra pX,α : X Ñ PpA�Xqq

represents a A-labelled non-deterministic automaton. Indeed, we can see X as

the set of states of an automaton and α as the transition relation, i.e., there is a

transition x a
ÝÑ x1 in the automaton iff pa, x1q is an element of αx.

We can add B valued observations to the automaton by considering the func-

tor TX � PpA�Xq�B. This time, a T -coalgebra pX,α : X Ñ PpA�Xq�Bq

represents a set of states X, a transition relation α1 : X Ñ PpA � Xq and an

observation function α2 : X Ñ B. We then have T � S if the set of observations

is the one point set.

A morphism of T -coalgebras from pX,α : X Ñ PpA � Xq � Bq to pY, β :

Y Ñ PpA� Y q � Bq is then a morphism, f : X Ñ Y , between the set of states

that respects the transitions and observations, i.e., x a
ÝÑ x1 imply fx a

ÝÑ fx1 and

α2x � β2pfxq.

Dually to algebra, among the coalgebras of a functor we are particularly in-

terested in the final coalgebra. The final coalgebra of a functor F : B Ñ B is

the terminal object of the category coAlgF . We write pνF, out : νF Ñ FνF q to

denote the final coalgebra of F . Explicitly, the final coalgebra is a F -coalgebra

such that for any F -coalgebra pX,α : X Ñ FXq there exists a unique morphism

rpαqs : X Ñ νF making the following diagram commute

FX
F rpαqs// FνF

X

α

OO

rpαqs
// νF

out

OO

This unique morphisms are sometime referred to as anamorphisms. We saw

that a F -coalgebra consists of an object on which we can observe the structure

defined by F . So, the final F -coalgebra consists of the largest such object, which

intuitively corresponds to the object of all the possible observations. Intuitively,

the anamorphism rpαqs maps then elements of νF to the possible observations

that can be done from them. As for initial algebras, for any endofunctor F the

structure map out is an isomorphism, thus we can see νF as the greatest fixed
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point of F . Also, dually to initial algebras, for B a category of types, coinductive

types correspond to final coalgebras pνF, out : νF Ñ FνF q, where the carrier νF

is the actual type, the structure map out gives the destructors of the type, and

coiteration operators correspond to anamorphisms (See [JR97,Jac] for example).

We present two examples to illustrate this correspondence.

Example 4.1.9. (Example 4.1.7, continued) Let B be a category that is a model

of a simple type theory, and consider the functor LX � 1� A�X on B.

The final coalgebra of L is the type of possibly infinite lists, or colists, of

elements of A. Indeed, the destructors of colists, namely the map that sends

a colist l to, either � the only element of 1 if l is the empty colist, or a pair

pa, l1q with a : A and l1 the remainder of the colist, defines an L-coalgebra. Also,

given a coalgebra pX,α : X Ñ LXq, the coiteration operator unfold α that maps

any element x to the element that deconstructs into, either � if αx � �, or

pa, unfoldαx
1q if αx � pa, x1q, defines the anamorphisms.

Example 4.1.10. (Example 4.1.8, continued) While the functor TX � PpA �

Xq � B does not have a final coalgebra in the category of sets, T has a final

coalgebra in Class, the category of classes. Remember that a T -coalgebra is a

non-deterministic automaton, the final coalgebra pνT, out : νT Ñ PpA�νT q�Bq

is the non-deterministic automaton of all possible transitions labelled by A and

observations in B. The unique homomorphism rpαqs : Q Ñ νT assigns to every

state q the class of the automata that correspond to q’s nodes.

We now look at the relationship between two categories of algebras (resp.

coalgebras) induced by the relationship between the corresponding functors. The

following theorem is from [HJ98]. We will use this to link the algebras of a functor

and the algebras of a lifting of this functor.

Theorem 4.1.11. Let F : B Ñ B, G : A Ñ A, and S : B Ñ A be functors. A

natural transformation α : GS Ñ SF , i.e., a natural transformation α such that

A G //

α
�%

CCC
CCC
A

B
S

OO

F
// B
S

OO
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induces a functor

AlgF
S-Alg // AlgG

given by S-Alg pf : FX Ñ Xq � S f � αX . Moreover, if α is an isomorphism,

then a right adjoint T to S induces a right adjoint

AlgG

T-Alg
,,

J AlgF
S-Alg
ll

given by T -Algpg : GX Ñ Xq � Tg � βX , where β : FT Ñ TG is the image

of Gε � α�1
T : SFT Ñ G under the adjunction isomorphism HompS X, Y q �

HompX, T Y q, and ε : ST Ñ id is the counit of this adjunction.

We spell out the dual of this theorem as a corollary since it will be of equal

importance.

Corollary 4.1.12. Let F : B Ñ B, G : A Ñ A, and S : A Ñ B be functors. A

natural transformation α : SGÑ FS, i.e., a natural transformation α such that

A G //

S
��

A
S
��

B
F
// B

α
y� {{{{{{

induces a functor

CoAlgG
S-CoAlg// CoAlgF

given by S-CoAlg pg : X Ñ GXq � αX � S g. Moreover, if α is an isomorphism,

then a left adjoint T to S induces a left adjoint

CoAlgG

S-CoAlg--
J CoAlgF

T-CoAlg
mm

Note that a first consequence of this theorem is that, for F̄ a lifting of F with

respect to a fibration p : E Ñ B, there is a functor p-Alg : Alg F̄ Ñ AlgF and a

functor p-CoAlg : CoAlg F̄ Ñ CoAlgF . Furthermore, if p has a terminal object
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functor 1, p-Alg has a right adjoint given by 1-Alg : AlgF Ñ Alg F̄ . Hence in such

a case, if a lifting F̄ has an initial algebra pµF̄ , inq then F has an initial algebra,

which is given by p-Alg pµF̄ , inq.

4.2 A familiar induction scheme

In this section we look at the relationship between the iteration operator and the

induction scheme of natural numbers. The goal is to develop intuitions in order

to motivate the definition of induction schemes in fibrations given in the next

section. In order to simplify this a step further, we place ourselves in the setting

where the types are sets.

Consider the inductive type Nat of natural numbers and the associated iter-

ation operator foldNat , both defined in Example 4.1.4. The iteration operator

foldNat can be used to derive the standard induction scheme for Nat which co-

incides with the standard induction scheme for natural numbers, i.e., with the

familiar principle of mathematical induction. This scheme says that if a property

P holds for 0, and if P holds for n � 1 whenever it holds for a natural number

n, then P holds for all natural numbers. Representing each property of natural

numbers as a predicate P : Nat Ñ Set mapping each term n : Nat to the set of

proofs that P holds for n, we wish to represent this scheme at the object level as

a function indNat with type

@pP : Nat Ñ Setq. P Zero Ñ p@n : Nat. P nÑ P pSucc nqq Ñ p@n : Nat. P nq

Code fragments such as those above, which involve quantification over sets, prop-

erties, or functors, are to be treated as “categorically inspired”. This is because

quantification over such higher-kinded objects cannot be interpreted in Set. In

order to give a formal interpretation to code fragments like the ones above, we

would need to work in a category such as that of modest sets. While the abil-

ity to work with functors over categories other than Set is one of the motiva-

tions for working in the general fibrational setting, formalising the semantics of

such code fragments would obscure the central message of this thesis. Our deci-
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sion to treat such fragments as categorically inspired is justified in part by the

fact that the use of category theory to suggest computational constructions has

long been regarded as fruitful within the functional programming community

(see [BdM96,BM98,Mog91] for example).

A function indNat with the above type takes as input the property P to be

proved, a proof φ that P holds for Zero, and a function ψ mapping each n : Nat

and each proof that P holds for n to a proof that P holds for Succ n, and returns

a function mapping each n : Nat to a proof that P holds for n, i.e., to an element

of P n. We can write indNat in terms of foldNat — and thus reduce induction for

Nat to iteration for Nat — as follows. First note that indNat cannot be obtained

by instantiating the type X in the type of foldNat to a type of the form Pn for a

specific n because indNat returns elements of the types P n for different values n

and these types are, in general, distinct from one another. We therefore need a

type containing all of the elements of P n for every n. Such a type can informally

be thought of as the union over n of Pn, and is formally given by the dependent

type Σn : Nat. P n comprising pairs pn, pq where n : Nat and p : P n.

The standard approach to defining indNat is thus to apply foldNat to an

N -algebra with carrier Σn : Nat. P n. Such an algebra has components α :

Σn : Nat. P n and β : Σn : Nat. P n Ñ Σn : Nat. P n. Given φ : P Zero

and ψ : @n. P n Ñ P pSucc nq, we choose α � pZero, φq and β pn, pq �

pSucc n, ψ n pq and note that foldNat αβ : Nat Ñ Σn : Nat. P n. We tenta-

tively take indNat P φ ψ n to be p, where foldNat αβ n � pm, pq. But in order

to know that p actually gives a proof for n itself, we must show that m � n.

Fortunately, this follows on easily from the uniqueness of foldNat αβ. Indeed, we

have that

1� Nat //

in
��

1� Σn : Nat. P n //

rα,βs

��

1� Nat

in
��

Nat
foldNat α β

// Σn : Nat. P n
λpn,pq. n

// Nat

commutes and, by initiality of in, that pλpn, pq. nq � pfoldNat αβq is the identity
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map. Thus

n � pλpn, pq. nqpfoldNat αβ nq � pλpn, pq. nqpm, pq � m

Letting π1P be the second projection on dependent pairs involving the predicate

P , the induction scheme for Nat is thus

indNat : @pP : Nat Ñ Setq. P Zero Ñ p@n : Nat. P nÑ P pSucc nqq

Ñ p@n : Nat. P nq

indNat P φ ψ � π1P � pfoldNat pZero, φq pλpn, pq. pSucc n, ψ n pqqq

As expected, this induction scheme states that, for every property P , to construct

a proof that P holds for every n : Nat, it suffices to provide a proof that P holds

for Zero, and to show that, for any n : Nat, if there is a proof that P holds for n,

then there is also a proof that P holds for Succ n.

The use of dependent types is fundamental to this formalisation of the induc-

tion scheme for Nat, but this is only possible because the properties to be proved

are taken to be set-valued functions. In the next section we look at how to use

fibrations in order to generalise the above treatment of induction to arbitrary

functors and arbitrary properties which are suitably fibred above the category

whose objects interpret types.

4.3 Induction and coinduction schemes in fibra-

tions

In this Section we give the definitions of induction and coinduction schemes in

fibrations. We start from the intuition from Section 4.2 in order to introduce the

definition of induction schemes in fibration. We then illustrate the definition by

looking at different examples. We finish with coinduction schemes in fibrations.

In Section 4.2 we saw that we can derive the induction scheme on natural

numbers from the iteration operator foldNat when working with sets as types and

set-indexed sets as predicates. In order to deduce generic induction schemes from
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these intuitions we need to abstract away in two directions: arbitrary setting, and

arbitrary inductive type. As we saw in Chapter 1, fibrations give us the right tool

to consider the setting in a generic way. In addition, as we saw in Section 4.1 of

this chapter, initial algebra semantics gives us the right tool to consider inductive

types in a generic way.

In order to abstract the reasoning of Section 4.2, we begin by considering

what we might naively expect an induction scheme for an inductive type µF to

look like in the setting of sets. The derivation for Nat suggests that, in general,

it should look something like this:

ind : @P : µF Ñ Set. ??? Ñ @x : µF. P x

But what should the premises — denoted ??? here — of the generic induction

scheme ind be? Since we want to construct, for any term x : µF , a proof term

of type P x from proof terms for x’s substructures, and since the functionality

of the iteration operator for µF is precisely to compute a value for x : µF from

the values for x’s substructures, it is natural to try to equip P with an F -algebra

structure that can be input to the iteration operator to yield a mapping of each

x : µF to an element of P x. But a predicate P is not a set and so F cannot be

applied to P as it is needed to equip P with an F -algebra structure.

In fact, note that the setting used in Section 4.2 corresponds to the family

fibration p : FampSetq Ñ Set described in Example 1.1.6, where the types and

predicates described correspond to the elements of the base category and the total

category of p respectively. We then clearly see that we can’t directly apply an

endofunctor on the base category of the fibration to elements of the total category:

this is where we need liftings. Indeed, if we can find a functor F̄ that behaves in

the same way as F but this time, on predicates, we can then consider F̄ -algebras

of carrier P as a candidate for the premises of µF ’s induction scheme. For F̄ to

be a correct candidate we need to be able, given a F̄ -algebra γ : F̄P Ñ P , to

produce a proof that the predicate P holds for all elements of µF . Remember

from Example 1.2.16, that such a proof corresponds to a morphism t : 1µF Ñ P

above the identity. Hermida and Jacobs’ analysis is that asking for the initial
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algebra of the lifting F̄ to be the image of the initial algebra of F by 1 is the

correct way to fulfil this condition. Indeed, if this is the case then for any F̄ -

algebra γ : F̄P Ñ P the catamorphism LγM is from µF̄ to P , i.e., from 1µF Ñ P .

We then have the following definition of induction schemes in fibrations which

is a straightforward generalisation to our setting of Hermida and Jacobs’ definition

(Definition 3.1 in [HJ98]):

Definition 4.3.1. Let p : E Ñ B be a fibration with a terminal object functor

1 : B Ñ E and F : B Ñ B be a functor. We say that a 1-preserving lifting F̄ of F

defines an induction scheme for µF in p if the functor 1-Alg : AlgF Ñ Alg F̄ that

sends an F -algebra FX α
ÝÑ X to the F̄ -algebra F̄1X � 1FX

1α
ÝÑ 1X preserves

the initial object.

If F̄ is the canonical lifting pF of F , we speak of the canonical induction scheme.

The induction scheme is then given by the catamorphisms of µF̄ , i.e., F̄ -algebras

are premises of the induction scheme, and the resulting proof is the catamorphism

of codomain the given algebra. Note that if a functor F̄ defines an induction

scheme for F in p, the unique map from the initial algebra of F̄ to a F̄ -algebra β

is above the unique map from the initial algebra of F to the F -algebra α � pβ.

This is important to ensure that the proof done by induction speaks about the

correct term (see Example 4.3.4). We can present the induction scheme in a

logical fashion with the following inference rule (where all arrows are vertical):

F̄P Ñ α�P

1µF Ñ LαM�P

Which, when α is the initial F algebra in boils down to:

F̄P Ñ in�P

1µF Ñ P

From this definition, we can make the following observation for induction

schemes in CCUs.

Lemma 4.3.2. Let p : E Ñ B be a CCU. For any functor F : B Ñ B, any

1-preserving lifting F̄ of F defines an induction scheme for µF in p.
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Proof. This is dual of Lemma 4.3.9 which is proved below.

We can then derive from this lemma the fact that any endofunctor on the

base category of a Lawvere fibration has a canonical induction scheme:

Corollary 4.3.3. Let p : E Ñ B be a Lawvere Fibration. For any functor

F : B Ñ B, the canonical 1-preserving lifting pF defines a canonical induction

scheme for µF .

As we saw in Lemma 3.2.7, for F : B Ñ B a functor on the base category of a

Lawvere fibration p we can construct for any 1-preserving lifting F̄ of F a vertical

natural transformation t : pF Ñ F̄ . This means that for any algebra α : F̄P Ñ P

above β : F ppP q Ñ pP we can construct an pF -algebra α � tpP above β. Now

we have that the inductive proofs on µF are done by providing an algebra of a

1-preserving lifting of F . So, Lemma 3.2.7 provides an argument of correctness

for the canonical induction scheme by ensuring that any proof done by induction

on µF can be done with the canonical induction scheme.

We now have the promised sound generic fibrational induction scheme for

every functor F on the base of a Lawvere fibration. To demonstrate the flexibility

of this scheme, we now look at different instances of these canonical induction

schemes. The first example shows that the induction scheme on the natural

numbers discussed in Section 4.2 is an instance of Definition 4.3.1.

Example 4.3.4. (Example 4.1.4, continued) We consider the family fibration

p : FampSetq Ñ Set and the type of natural numbers, µN where N is the functor

on Set defined by N X � 1�X.

Now consider the following endofunctor N̄ on FampSetq given by

N̄P pinl �q � 1

N̄P pinr nq � P n

Since it is obtained following the method described in Example 3.1.4, it is a

1-preserving lifting of N . By Lemma 4.3.2 we then have that N̄ provides an

induction scheme for natural numbers in p. In fact, using similar reasoning to
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that in Example 3.1.14, we can show that the lifting N̄ is also the canonical

1-preserving lifting pN of N .

An N̄ -algebra with carrier P : Nat Ñ Set can be given by in : 1� Nat Ñ Nat

and in� : @t : 1 � Nat. N̄P t Ñ P pin tq. Since in pinl �q � 0 and in pinr nq �

n � 1, we see that in� consists of an element h1 : P 0 and a function h2 : @n :

Nat. P n Ñ P pn � 1q. Thus, the second component in� of an N̄ -algebra with

carrier P : Nat Ñ Set and the first component in gives the premises of the familiar

induction scheme, as described in Section 4.2.

Induction schemes in fibration can be instantiated to familiar schemes for

polynomial types, as well as to ones we would expect for types such as rose trees,

finite hereditary sets and hyperfunctions. While these types do not directly lie

within the scope of Hermida and Jacobs’ method as described in [HJ98], there

exist extensions of their method to cover them (see [HJ97] for example). The

induction schemes for Rose trees and finite hereditary sets are instantiated in the

family fibration on Set while the induction scheme for hyperfunctions need to be

instantiated with CPOs so that hyperfunctions can be formalised.

Example 4.3.5. We consider the family fibration p : FampSetq Ñ Set. The type

of rose trees is given in Haskell-like syntax by

data Rose � NodepInt ,List Roseq

The functor underlying Rose is FX � Int � List X and its induction scheme is

indRose : @ pP : X Ñ Setq ppk, k�q : p pFP Ñ P qq.

@px : Xq. P pLkMxq

As we saw in Example 3.1.14, the canonical 1-preserving lifting in the family

fibration on Set is given by pFP � pFπP q
�1 : F X Ñ Set. Then, writing xs !! k for
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the kth component of a list xs and bearing in mind that π�1
P � P , we have that

pF P pi, rsq
� tz : F tP u | Fπpz � pi, rsqu

� tpj, cpsq : Int � List tP u | FπP pj, cpsq � pi, rsqu

� tpj, cpsq : Int � List tP u | pid � List πP qpj, cpsq � pi, rsqu

� tpj, cpsq : Int � List tP u | j � i and List πP cps � rsu

� tpj, cpsq : Int � List tP u | j � i and @k   length cps . πP pcps !! kq � rs !! ku

�
�
k length rs P prs !! kq

An pF -algebra whose underlying F -algebra is k : Int � List X Ñ X is thus a pair

of functions pk, k�q, where k� has type

@i : Int . @rs : List X .
�
@k   length rs . P prs !! kq

�
Ñ P

�
k pi, rsq

�

We can then rewrite the induction scheme on rose trees as:

indRose : @ pP : X Ñ Setq

pk : Int � List X Ñ Xq�
@i : Int . @rs : List X .

�
@k   length rs . P prs !! kq

�
Ñ P

�
k pi, rsq

�	
.

@px : Xq. P
�
LkMx

�

We now look at finite hereditary sets, which, although defined in terms of

quotients, and thus lie outside the scope of previously known methods, can be

considered with ours.

Example 4.3.6. Consider the family fibration p : FampSetq Ñ Set. Hereditary

sets are sets whose elements are themselves sets, as are the core data structures

within set theory. The type HS of finitary hereditary sets is µPf for the finite

powerset functor Pf . We can derive an induction scheme for finite hereditary

sets as follows. If P : X Ñ Set, then PfπP : Pf pΣx : X.Pxq Ñ PfX maps each

set tpx1, p1q, . . . , pxn, pnqu to the set tx1, . . . , xnu, so that pPfπP q
�1 maps a set

tx1, . . . , xnu to the set Px1� . . .�Pxn. AyPf -algebra with carrier P : HS Ñ Set

76



and first component in therefore has as its second component a function of type

@pts1, . . . , snu : Pf pHSqq. Ps1 � . . .� Psn Ñ P pints1, . . . , snuq

The induction scheme for finite hereditary sets is thus

indHS :: p@pts1, . . . , snu : Pf pHSqq. Ps1 � . . .� Psn Ñ P pints1, . . . , snuqq

Ñ @ps : HSq.P s

We now derive an induction scheme for a type and properties on it that cannot

be modelled in Set. Being able to derive induction schemes for fixed points of

functors in categories other than Set is a key motivation for working in a general

fibrational setting.

Example 4.3.7. The fixed point Hyp � µF of the functor FX � pX Ñ Intq Ñ

Int is the type of hyperfunctions. Since F has no fixed point in Set, we interpret

it in the category ωCPOK of ω-cpos with K and strict continuous monotone

functions. In this setting, a property of an object X of ωCPOK is an admissible

sub-ωCPOK A of X. Admissibility means that the bottom element of X is in

P and P is closed under least upper bounds of ω-chains in X. This structure

forms a Lawvere fibration [Jac93, Jac99]. In particular, ΣfP is constructed for

a continuous map f : X Ñ Y and an admissible predicate P � X, as the

intersection of all admissible Q � Y with P � f�1Q. The terminal object

functor maps X to X, and comprehension pF maps a sub-ωCPOK P of X to P .

The lifting F maps a sub-ωCPOK P of X to the least admissible predicate on

FX containing the image of FP . Finally, the derived induction scheme states

that if P is an admissible sub-ωCPOK of Hyp, and if pFP � P , then P � Hyp.

Now that we have presented the induction schemes in fibration, let us look at

the dual: coinduction schemes in fibration.

Definition 4.3.8. Let p : E Ñ B be a fibration with a full section e : B Ñ E and

let F : B Ñ B be a functor. We say that a e-preserving lifting F̄ of F defines

a coinduction scheme for νF in p if the functor e-CoAlg : CoAlgF Ñ CoAlg F̄
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that sends an F -coalgebra X α
ÝÑ FX to the F̄ -coalgebra eX eα

ÝÑ eFX � F̄ eX

preserves the terminal object.

If F̄ is the canonical lifting qF of F , we speak of the canonical coinduction

scheme. The coinduction scheme is then given by the anamorphisms of νF̄ , i.e.,

F̄ -coalgebras are premises of the coinduction scheme, and the resulting proof is

the anamorphism whose domain is the given coalgebra. Note that if a functor F̄

defines a coinduction scheme for νF in p, the unique map into the final coalgebra

of F̄ from a F̄ -coalgebra β is above the unique map into the final coalgebra of

F from the F -coalgebra α � pβ. We can present the coinduction scheme in a

logical fashion with the following inference rule (where all arrows are vertical):

RÑ α�F̄R

RÑ rpαqs�eνF

Which, when α is the final F̄ coalgebra out boils down to:

RÑ out�F̄R

RÑ νF

From this definition, we can make the following observation for coinduction

schemes in QCEs.

Lemma 4.3.9. Let p : E Ñ B admits e-quotients. For any functor F : B Ñ B,

any e-preserving lifting F̄ of F defines a coinduction scheme for νF in p.

Proof. Let p, e and Q provide a QCE. We then have that e is right adjoint to Q.

Now, since F̄ is an e-preserving lifting, we can use Corollary 4.1.12 to deduce that

the functor e-CoAlg : CoAlgF Ñ CoAlg F̄ has a right adjoint, and thus preserves

the terminal object, i.e., the final coalgebra of qF is given by e out where out is

the final coalgebra of F .

Thus, from this lemma we can derive that (the final coalgebra of) any endo-

functor on the base category of a QCE has a canonical coinduction scheme:

Corollary 4.3.10. Let p : E Ñ B admits e-quotients. For any functor F : B Ñ

B, the canonical e-preserving lifting qF defines a canonical coinduction scheme for

νF .
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As for the canonical induction scheme, the canonical coinduction scheme

comes with an argument of correctness based on Lemma 3.2.8. Dually from

the inductive case: For F : B Ñ B a functor on the base category of a fibration

p that admits e-quotients, for any e-preserving lifting F̄ of F we can construct a

vertical natural transformation t : qF Ñ F̄ . Hence we can construct a qF coalgebra

above β : X Ñ FX from any F̄ coalgebra above β. This ensure that any proof

done by coinduction on νF can be done with the canonical coinduction scheme.

We now have the promised sound generic fibrational coinduction scheme for every

functor F on the base category of a QCE. To demonstrate the flexibility of this

scheme, we now look at different instances of this canonical coinduction scheme.

We start with a coinduction scheme for possibly infinite lists.

Example 4.3.11. (Example 4.1.9continued) Consider the fibration of relation on

Set, p : RelpFampSetqq Ñ Set and remember from Example 2.2.5 that it admits

quotients. Consider then the type of colists, νL where L is the functor on Set

defined by LX � 1� A�X.

Now consider the following endofunctor L̄ on RelpSetq given by L̄R � e1 �

eA�R. Since it is obtained following the method described in Example 3.1.4, it

is a e-preserving lifting of L. By Lemma 4.3.9 we then have that L̄ provides a

coinduction scheme for streams in p. In fact, we saw in Example 3.1.17 that the

lifting L̄ is also the canonical e-preserving lifting qL of L in the family fibration

on Set.

Let R be a relation in E and the carrier of a L̄-coalgebra pR,α : R Ñ e1 �

eA�Rq above a coalgebra pX, β : X Ñ 1�A�Xq. This mean that in the logic

we have a proof that whenever two elements x, y of X are in relation by R, either

fx � fy � �, or fx � pa, x1q, fy � pb, y1q, with a � b and x1 and y1 are again

in relation by R. Now, the coinduction scheme says that whenever we have such

a proof, we can deduce that for any two elements x and y ind X, if xRy then

rpfqsx � rpfqsy. In particular, if f is the final coalgebra out of L, this provides a

way to prove the equality of two (potentially infinite) streams.

Example 4.3.12. (Examples 4.1.9, 1.1.9 continued) Consider, dom : BÑ Ñ B,

the domain fibration on a bicartesian category B and remember that it admits
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quotients where both ρ and ψ are the identity functor on BÑ.

In this setting, every canonical lifting is given by the morphism part of a

functor, indeed qF � ψFÑρ � FÑ. We then have that a qF -coalgebra is given by

the following commuting square in B:

X

u1
��

f // Y

u2
��

FX
Ff
// FY

using the intuition given in Example 2.2.3, this coalgebra can be understood as a

function from X to FX such that any elements in relation by f are mapped into

elements in relation by Ff .

The resulting anamorphism is then given by the following commuting square:

X

u1

��

f ##FFFFFFFFF
rpu1,u2qs1 // νF

idyytttttttttt

out

��

Y

u2

��

// νF

out
��

FY // F pνF q

FX

Ff
<<yyyyyyyyy

F rpu1,u2qs1

// FνF

id
ddIIIIIIIII

the intuition being that we have a map rpu1, u2qs1 that maps any elements in

relation by f to equal elements in νF and such that out � rpu1, u2qs � F rpu1, u2qs1 �

u1.

In particular, setting F to be the functor LX � 1�A�X, the lifting of Lmaps

f : X Ñ Y to id1 � idA� f . Using the interpretation given in Example 2.2.3, pLf
relates two elements of 1�A�X iff they are either both the unique element of 1,

or pairs pa, xq and pa, x1q with x and x1 in relation by f . Hence we can understand

the associated coinduction scheme as: given f : X Ñ Y a relation on X, if there

is a function u : X Ñ 1�A�X with a proof that u maps elements related by f

to elements related by id1 � idA� f , then there is a function rpuqs : X Ñ νL such

that out � rpuqs � Lrpuqs � u and a proof that rpuqs maps elements related by f to
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equal elements in νL.

We now look at the coinduction scheme for the power set functor P. Since

P is not polynomial, it lies outside the scope of [HJ98], but it is important, since

a number of canonical coalgebras are built from it, as we saw in Example 4.1.8.

Example 4.3.13. (Example 3.1.18, continued) We now consider the relations

fibration for the family fibration above Class, p : RelpClassq Ñ Class.

Consider the power set functor P : Class Ñ Class and its canonical e-

preserving lifting functor |P : RelpClassq Ñ RelpClassq that maps a relation

R : A � A Ñ Class to the relation |PR : PA � PA Ñ Class defined by

Xp|PRqY ðñ p@x P Xq.pDy P Y q. xRy ^ p@y P Y q.pDx P Xq. xRy. We can then

look at the resulting coinduction scheme. It has as its premises a |P-coalgebra,

i.e., a relation R : A�AÑ Class and a map from R to |PR in RelpClassq. A mor-

phism in RelpClassq from pX,Rq to pX 1, R1q consists of a morphism φ : X Ñ X 1

in Class and a morphism φ� : @px, yq P X � X. xRy Ñ pφxqR1pφyq. Thus,

a |P-coalgebra consists of a function α : A Ñ PA together with a function

α� : p@a, a1 P Aq. aRa1 Ñ pαaq |PR pαa1q. If we regard α : A Ñ PA as a tran-

sition relation, i.e., if we define a Ñ b iff b P αa, then α� captures the condition

that R is a bisimulation above α. The coinduction scheme thus asserts that any

two bisimilar states have the same interpretation in the final coalgebra.

Example 4.3.14. (Examples 3.1.18, 1.1.9 continued) Consider the domain fibra-

tion on the category of classes, p : ClassÑ Ñ Class.

As seen in Example 4.3.12, any canonical lifting is given by the morphism part

of the lifted functor, we then have |P � PÑ. Now since relations are interpreted

in the domain fibration using kernel relations, we have for f : A Ñ B a relation

on A, writing |f | for the kernel relation on f :

A1 ||Pf |A2 Ø p|PfqA1 � p|PfqA2

Ø @a P A1Da
1 P A2. a |f | a

1 ^ @a P A2Da
1 P A1. a |f | a

1

Hence, a |P-coalgebra of carrier f is a proof that |f | is a bisimulation and the

coinduction scheme associates to such a proof a map from A to νP with a proof
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that any elements related by |f | are mapped to two equal elements in νP.

In summary, we have a sound generic induction scheme for Lawvere fibrations

and a sound generic coinduction scheme for QCEs. Both are valid for arbitrary

functor F on the base category. We derive a sound induction scheme for µF

from the canonical 1-preserving liftings pF , and a sound coinduction scheme for

νF from the canonical e-preserving lifting qF .
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Chapter 5

Indexed induction

Data types arising as initial algebras and final coalgebras on traditional semantic

categories such as Set and ωcpoK are of limited expressivity. More sophisticated

data types arise as initial algebras of functors on their indexed versions. To build

intuition about the resulting inductive indexed types, first consider the inductive

type ListX of lists of X. It is clear that the definition of ListX does not require

an understanding of ListY for any Y � X. Since, each type ListX is in isolation

inductive, the type List can be considered a family of inductive types. By contrast,

consider the inductive definition of the Nat-indexed type Fin : Nat Ñ Set of finite

sets given by

fz : Fin pn� 1q

x : Finn

fs x : Fin pn� 1q

and Lam : Nat Ñ Set of untyped λ-terms up to α-equivalence with free variables

in Finn given by

i : Finn

Var i : Lamn

f : Lamn a : Lamn

App f a : Lamn

b : Lam pn� 1q

Abs b : Lamn

The intuition is that for a term n : Nat, the type Finn is a type with exactly

n-elements and Lamn is the type of untyped λ-terms up to α-equivalence with

free variables in Finn. Unlike ListX, the types Finn and Lamn cannot be defined

in isolation using only the elements of Finn and Lamn that have already been

constructed. Indeed, elements of Finn are needed to construct elements of Fin pn�
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1q, and elements of Lam pn � 1q are needed to construct elements of Lamn so

that, in effect, all of the types Finn and Lamn must be inductively constructed

simultaneously. Each of the inductive indexed types Fin and Lam are thus an

inductive family of types, rather than a family of inductive types.

If types are interpreted in a category B, and if I is a set of indices considered

as a discrete category, then an inductive I-indexed type can be modelled by

the initial algebra of a functor on the functor category rI,Bs. Alternatively,

indices can be modelled by objects I of B, and inductive I-indexed types can

be modelled by initial algebras of functors on slice categories B{I. Similarly,

coinductive indexed types can be modelled by final colagebras of functors on

functor categories or functors on slice categories.

Initial algebra semantics for inductive indexed types has been developed ex-

tensively [Dyb94,GH04,AM09]. Pleasingly, no fundamentally new insights were

required: the standard initial algebra semantics only needed to be instantiated to

categories such as B{I. By contrast, the theory of induction for inductive indexed

types has received comparatively little attention.

In this chapter we will derive sound induction schemes for such types by

similarly instantiating the fibrational framework to appropriate categories. We

will then look at different examples of fibrations in which we can instantiate our

results as well as ways to derive a fibration for indexed induction from a fibration

for non-indexed induction. We finish the chapter by looking at some properties

of the different structure introduced.

5.1 The setting

In this section we look at induction schemes in an indexed setting. In order to

do this we first present how fibrations extend to a setting for reasoning about

indexed types. We then use the results from Chapter 4 to come up with the

definition of an induction scheme in this new setting.

First, bear in mind that as previously mentioned in Chapters 1 and 2, besides

their use for modelling a logic above a type theory, fibrations can be used to

model dependent types. In fact, since fibrations capture indexing closed by sub-
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stitution, we can use them to capture any such indexing of types by considering

a fibration whose total category is a category of types and whose base category

is a category of objects indexing these types. For B a category of types, tra-

ditional fibrations for representing indexed types would be the family fibration

of B (Example 1.1.7) that captures set-indexed types, but also the codomain fi-

bration on B (Example 1.1.8) that captures type-indexed types (i.e., dependent

types, see [See84,Hof94]). Given a fibration r : B Ñ A, of A-indexed types, an

inductive indexed type with index a in A is given by the initial algebra of an endo-

functor Fa : Ba Ñ Ba on the fibre Ba. The two standard approaches mentioned at

the beginning of the chapter are recovered by setting r to be the family fibration

FampBq Ñ Set and the codomain fibration cod : BÑ Ñ B, respectively. Indeed,

a fibre above a set I of the family fibration is equivalent to the functor category

rI,Bs, and, for A in B a fibre above A in cod is the slice category B{A.

Now that we are fixed on our setting for indexed types, we need to consider a

logic above it. For r : B Ñ A a fibration of types, we represent a logic on these

types with a second fibration p : E Ñ B above the total category of the fibration

of types. This seems to be the most natural setting since, even when indexed, the

types are objects of the category B. Another possibility is to consider the fibration

of predicates p as another fibration on the base category A. The latter approach

particularly makes sense if A is a category of contexts because the fibration r

is then understood as a fibration of types in context and p is understood as a

fibration of propositions in type context. This approach is notably used in [Jac99]

to model higher order predicate logic above a dependent type theory with DPL-

structure and its extensions. We will see how the two approaches are related in

Example 5.2.4.

We then work in a setting where we have a fibration of predicates p : E Ñ B

above the total category of a fibration of (A-indexed) types r : B Ñ A. Since we

still have a fibration of predicates, we would like to directly apply our theory from

Chapter 4. However, the difference with non-indexed induction schemes is that

we are not dealing with (initial algebra of) endofunctors on the base category B of

the fibration of predicates, but with endofunctors on fibres of r i.e., subcategories

of B. In this situation we cannot expect to lift a functor F : Ba Ñ Ba, for a in A,
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to the (whole) category of predicates E . On the other hand, we might be able to

lift F to a subcategory of E , provided that the fibration p restricts to a fibration

above Ba with sufficient structure to lift F . Remember that r � p is a fibration

by Lemma 1.2.3. We then have the following well-known lemma (Theorem 4.1

in [Str99] for example) which gives us a first result in that direction.

Lemma 5.1.1. Let p : E Ñ B and r : B Ñ A be two fibrations. For any object a

in A the fibration p restricts to a fibration pa : Ea Ñ Ba between Ea, the fibre above

a of the fibration r � p, and Ba the fibre above a of the fibration r. Furthermore,

if p is a bifibration so is the fibration pa, and if p has a terminal object functor

1 : B Ñ E, the terminal object functor restricts to a terminal object functor

1a : Ba Ñ Ea for the fibration pa.

Proof. The key observation is that we can obtain the fibration pa : Ea Ñ Ba
by a change of base of p along the inclusion functor ia : Ba Ñ B for any a in

A. Furthermore, since a change of base preserves bifibrations and terminal object

functors (Corollary 1.2.2 and Lemma 1.2.28) pa is a bifibration and has a terminal

object functor if p has the corresponding structure.

This Lemma shows that the basic structure of a logic (reindexing and terminal

object functors) above a fibration of indexed types restricts to a corresponding

logic above types with a specific index.

Let p : E Ñ B and r : B Ñ A be two fibrations with 1 : B Ñ E a terminal

object functor of p. For a an object of A and F : Ba Ñ Ba a functor, the fibration

pa gives us a setting to consider liftings and 1a-preserving liftings of a functor F

to the subcategory Ea of E . We are back to a setting that corresponds to the non-

indexed induction case, i.e., a fibration pa : Ea Ñ Ba and a functor F : Ba Ñ Ba
on the base category. Furthermore, since the terminal object functor 1a is a

restriction of 1, we know that any proof of the form 1aX Ñ P in Ea is the same

as a proof 1X Ñ P in E above a. We can then adapt our definition of induction

schemes in fibrations to this new setting:

Definition 5.1.2. Let p : E Ñ B and r : B Ñ A be fibrations with 1 : B Ñ E the

terminal object functor of p. For a in A and F : Ba Ñ Ba a functor, we say that a
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1a-preserving lifting F̄ : Ea Ñ Ea of F defines an a-indexed induction scheme for

µF in p if the functor 1-Alg : AlgF Ñ Alg F̄ that sends an F -algebra FX α
ÝÑ X in

Ba to the F̄ -algebra F̄1X � 1FX
1α
ÝÑ 1X in Ea, preserves the initial object.

Equivalently, the functor F̄ defines an a-indexed induction scheme for µF in

p if it defines an induction scheme for µF in pa.

Note that this definition generalises Definition 4.3.1, since setting the fibration r

to be the unique functor from B to the one object (one morphism) category gives

us the definition of (non-indexed) induction schemes in fibrations.

As for the non-indexed definition, the induction scheme is given by the cata-

morphisms associated to the initial algebra of F̄ . Note that in the indexed setting,

since F̄ is a functor on Ea, we can only apply the induction scheme to predicates

with the same index as µF . For P in Eb we can however use reindexing provided

that we have a morphism f : a Ñ b in A, as this would let us produce proof of

the form 1µF Ñ f�P
f§
ÝÑ P .

Now, let p : E Ñ B and r : B Ñ A be two fibrations such that p has a

terminal object functor 1 : B Ñ E . The next step is to consider what structures

on p and r guarantee indexed induction schemes for any indexed inductive types.

We know from the previous chapter that for a in A, a functor F : Ba Ñ Ba and

a 1a-preserving lifting F̄ : Ea Ñ Ea, F̄ defines an a-indexed induction scheme

for µF as soon as pa admits comprehension. Therefore, in order to have an a-

indexed induction scheme from any 1a-preserving functor, a minimal condition

to instantiate our results is to ask for any a in A that the fibrations pa admits

comprehension. Furthermore, to have a canonical indexed induction scheme for

any indexed inductive types in B, a minimal condition to instantiate our results

is to ask for any a in A that pa is a Lawvere fibration. However, the fact that no

coherence conditions are required between the different comprehension structures

of each pa might pose a problem at the level of types: if a fibration admits

comprehension this implies that for any proof γ : 1X Ñ P at the predicate level

there is a morphism u : X Ñ tP u such that γ is above πP � u. This morphism

u is understood as mapping any term x of X a proof that P holds at x. Now, if

we use the a-indexed inductions scheme for µF an inductive type dependent of a
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with a predicate Q depending on b through a morphism f : aÑ b, while we would

obtain a proof 1µF γ
ÝÑ f�Q

f§
ÝÑ Q, nothing guarantees the existence of an arrow

u : µF Ñ tQu, and indeed, we don’t have that p itself admits comprehension.

More generally, if we only ask that for any a in A, the fibrations pa admits

comprehension, we don’t have that p admits comprehension, not even that p is

a bifibration. The question of the corresponding logic structure of p is then not

evident. On the other hand, we can not always restrict a comprehension category

with unit to CCUs between the fibres, i.e., p admits comprehension does not

imply that pa does. We are then looking for a notion of comprehension category

with unit above a fibration which restricts to the fibres. This notion already

exists and is denoted a fibred comprehension category with unit (Definition 4.4.5

in [Jac91]):

Definition 5.1.3. Let p : E Ñ B and r : B Ñ A be two fibrations with 1 : B Ñ E

the terminal object functor of p. We say that p admits comprehension above r if

1 has a fibred right adjoint t�u : r � pÑ r:

E

r�p ��???????

t�u
++

J B
1

kk

r
��~~~~~~~

A

That 1 is a fibred functor from r to r � p follows from the fact that it is fibred

from idB to p.

A first consequence of this definition is that, if a fibration p : E Ñ B admits

comprehension above a fibration r : B Ñ A, p clearly admits comprehension. If

p admits comprehension above r, we say that the CCU associated to p is fibred

above r. Furthermore, we have from Lemma 1.2.12 that if p admits comprehension

above r, for every a in A the fibration pa admits comprehension. In fact we have

the following correspondence:

Lemma 5.1.4. Let p : E Ñ B and r : B Ñ A be fibrations. The following are

equivalent:

i The fibration p admits comprehension above r
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ii For every a in A the fibration pa admits comprehension and, for every u :

aÑ a1 in A and u� : Ba1 Ñ Ba, there is a u# : Ea1 Ñ Ea forming a morphism

of CCU pa1 Ñ pa.

iii The fibration p admits comprehension with terminal object functor 1 : B Ñ E

and comprehension functor t�u : E Ñ B, and for every a in A, the ad-

junction 1 % t�u restricts to an adjunction 1a % t�ua such that p admits

comprehension with comprehension functor t�ua : Ea Ñ Ba, the restriction of

t�u.

Proof. To verify that piiiq ñ piq, let p admit comprehension with terminal object

functor 1 : B Ñ E and comprehension functor t�u : E Ñ B, and let p be

such that for every a in A, the fibration pa : Ea Ñ Ba admits comprehension

with comprehension functor t�ua : Ea Ñ Ba given by restricting t�u to the

corresponding fibres. First, by the dual of Proposition 1.2.32 we have that t�u

is fibred from r � p to r. Then, since the adjunction t�u $ 1 restricts to the

adjunctions t�ua $ 1a, the unit of t�u $ 1 is vertical with respect to r.

piq ñ piiiqis straightforward.

For piq ô piiq see Lemma 4.4.3 in [Jac91]

This result shows that the notion of CCU above a fibration is the one we

were looking for for indexed induction. We have a structure that characterises a

collection of CCUs above each fibre of a fibration r which, taken together, gives

a CCU above the total category of r.

Definition 5.1.3 straightforwardly extends to Lawvere fibrations:

Definition 5.1.5. Let p : E Ñ B and r : B Ñ A be fibrations. We say that p is a

Lawvere fibration above r if p admits comprehension above r and is a bifibration.

The next two corollaries are immediate:

Corollary 5.1.6. Let p : E Ñ B and r : B Ñ A be fibrations. The fibration p is

a Lawvere fibration above r iff p is a Lawvere fibration and for every a in A, the

structure restricts between Ea and Ba, making pa a Lawvere fibration.
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Theorem 5.1.7. Let p : E Ñ B be a Lawvere fibration above r : B Ñ A. For

any a in A and F : Ba Ñ Ba, a 1a-preserving lifting F̄ : Ea Ñ Ea of F defines a

sound a-indexed induction scheme for µF in p.

In particular, the canonical 1a-preserving lifting pF defines a sound canonical

a-indexed induction scheme for µF .

5.1.1 More thought about fibred structures above a fibra-

tion

In this chapter, we started by discussing a fibration p above another fibration

r. The fact that this notation is similar to the notation of a fibration above a

base category B is not accidental: a fibration p : E Ñ B can be characterised by

a collection of category Eb for each b in B and reindexing functor f� : Eb Ñ Ea
for each morphism f : a Ñ b in B (see the equivalence between fibrations and

indexed categories in [Jac99] for example). In fact we have a similar description

for a fibration above a fibration, as shown in the following Lemma:

Lemma 5.1.8. Consider two fibrations q : E Ñ A and r : B Ñ A, and a fibred

functor p : q Ñ r above A. The following statements are equivalent:

(i) p is itself a fibration.

(ii) for each a in A, the restriction pa : Ea Ñ Ba of p is a fibration, and for each

morphism f : aÑ b in A and reindexing functor f� : Bb Ñ Ba (with regard

to r), there is a reindexing functor f# : Eb Ñ Ea (with regard to q) forming

a fibred functor pf#, f�q : pb Ñ pa.

In fact, it is well-known ( [Jac99,Str99] for example) that the two points of the

previous lemma are also equivalent to the definition of a fibration in the 2-category

FibpAq (using the definition of fibrations in 2-category due to [Str74,Str80]).

Similarly, we have the notion of fibred structure above the base category of a

fibration p to denote structures on the total category of p that restrict to fibres

and are stable under reindexing (as illustrated in Lemma 1.2.12 for example).

And for p a fibration above r : B Ñ A, we have the notion of fibred structures
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above r to denote structures that restrict to the fibrations pa and are stable under

the reindexing functor described in Lemma 5.1.8. For example, we have that a

terminal object functor of p implies a fibred terminal object functor, as shown in

the following lemma:

Lemma 5.1.9. Let p : E Ñ B and r : B Ñ A be two fibrations. The fibration p

has a terminal object functor above r iff

• for every a in A, pa has a terminal object functor 1a

• for every u : b Ñ a in A and every reindexing functor u� : Ba Ñ Bb, there

is a reindexing functor u# : Eb Ñ Ea such that u# � 1a � 1b � u
�.

Proof. Note that the natural isomorphism u# � 1b � 1a � u
� is necessarily the

canonical map since 1a is terminal, hence we can use Lemma 1.2.12 and the

fact that the counit of the adjunction 1 $ p corresponds to the counit of the

adjunctions 1a $ pa to conclude the proof.

The notion of fibred CCU above r can also be described in this fashion,

see [Jac91].

Another interesting fibred construction is the notion of arrow fibration:

Definition 5.1.10. Let p : E Ñ B be a fibration, and denote V pEq for the full

subcategory of EÑ with vertical arrows as objects. The functor pÑ : V pEq Ñ B,

defined as pÑ � p � cod � p � dom, is again a fibration.

In fact, we have that the arrow fibration is the arrow object of the corresponding

fibration in the 2-category FibpBq (See Lemma 9.4.2 in [Jac99]).

Dually to fibration, there is also a notion of opfibration fibred above a fibra-

tion:

Definition 5.1.11. Let q : E Ñ A and r : B Ñ A be fibrations and p : q Ñ r be

a fibred functor. We say that p is an opfibration fibred above r iff

(i) for any a in A the restriction pa : Ea Ñ Ba of p is an opfibration
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(ii) for any u : bÑ a and Q in Ea, the unique map making the following diagram

commute is an isomorphism.

u�Q

pu#fq§
��

u�pfQ§ q

&&MMMMMMMMMMM

Σu#fu
�Q // u�pΣfQq

This definition straightforwardly implies a notion of bifibration fibred above

a fibration. Note then that the Definition 5.1.5 of a Lawvere fibration above a

fibration does not correspond to the definition of a Lawvere fibration fibred above

a fibration (since we are not asking for a bifibration fibred above a fibration but

just a bifibration).

5.2 Examples and properties

Example 5.2.1. (Example 2.1.5, continued) As codomain functors provide canon-

ical examples of CCUs, fibred codomain functors, i.e.,

V pEq

pÑ
!!DDDDDDDD

codp // E

p
����������

B

provide canonical examples of fibred CCUs. Similarly to the non-fibred case, in

order for codp to be a fibration we need to have that for any vertical morphism

α : B Ñ A and arbitrary morphism f : X Ñ A in E there is a pullback square

.

f�α
��

//
_� B

α

��
X

f
// A

such that f�α is again vertical. It is then straightforward to check that codp is

a fibration and the following fibred adjunctions codp % idp % domp hold, making

codp a fibred CCU above p.

Note then that we can then associate to any category B with pullbacks the
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following fibred CCU:

V pBÑq

codÑ

��????????????

domcod

J ((

J

codcod

66 BÑidcodoo

cod

��������������

B

Example 5.2.2. (Example 2.1.2 continued) Consider a fibration r : B Ñ A that

captures a theory of indexed types. More specifically, A is a category of indices,

and B a category of indexed types where each type X has as index rX, and

types are closed under reindexing. Furthermore, any term x : X $ t : Y above a

morphism of index α : I Ñ J is equivalent to a term x : X $ t1 : α�Y which is

then said to be of index I. For example, think about a set-indexed type theory

captured by a family fibration FampCq Ñ Set (see Example 1.1.7).

Consider now a predicate logic above the theory given by a fibration p : E Ñ B.

Then p admits comprehension above r if for every predicate P above a type X

of index I there is a comprehension type tP u (see Example 2.1.2) of index I,

and comprehension types are stable under reindexing, i.e., for any morphism

u : J Ñ I in A, u�tP u � tu�P u (or equivalently the associated correspondence

py : Y $ 1 : Propq Ñ px : X $ P : Propq

Y Ñ tP u : Type
restricts to a specific index).

If we have in addition that the fibration p is a bifibration (see Example 1.1.5 for

the corresponding logical structure) for I inA, X in BI , P in EX and F : BI Ñ BI ,

we can describe the canonical lifting of F at P . Using that pF P � ΣF pπP q1F tP u,

this definition captures the predicate of index I

x : F X $ Da : F tP u. pF pπP qq a�x : Prop

Of course, the term pF pπP qqa depends on the definition of F and the structure

of E . We then have that a pF -algebra of carrier P above an algebra α : FX Ñ X

is given by the following entailment of index I:

x1 : FX, Da : F tP u. pF pπP qq a�x $ P rxÐ pαx1qs
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The induction scheme provides then the following rule, where everything is of the

same index:

x : X $ P : Prop

x : FX $ α : X

x1 : FX, Da : F tP u. pF pπP qq a�x $ P rxÐ pαx1qs

x1 : µF $ P rxÐ LαMx1s

The next example specialises the previous syntactic model to the case where

the indexed type theory is a dependent type theory:

Example 5.2.3. (Example 2.1.2 continued) In this example we consider a pred-

icate logic over a dependent type theory1. We know from Example 2.1.2 that a

dependent type theory is captured by a fibration r : B Ñ A that admits com-

prehension. We then have A a category of dependent type context Γ and B a

category of dependent types in context Γ $ t : Type. A predicate over this type

theory is understood as a proposition in a dependent type context Γ $ P : Prop.

Similarly to Example 1.1.5, such a predicate logic is captured by another fibration

p : E Ñ A.

We can find back a setting similar to the one describe in the previous example

by setting predicates above a type X in BΓ to be the predicates in EtXu. This

construction is described more generally in Example 5.2.4. If we have in addition

that the fibration p is a bifibration, we can describe canonical liftings in this

setting using the description made in previous example: For F : BΓ Ñ BΓ and P

in BΓ, pFP captures the following predicate

Γ, x : F X $ Da : F tP u. pF pπP qqa�x : Prop

Hence a pF -algebra of carrier P above an algebra α : FX Ñ X is given by the

following entailment:

Γ, x1 : FX, Da : F tP u. pF pπP qq a�x $ P rxÐ pαx1qs

1or dependent predicate logic, see 11.1 in [Jac99]
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The induction scheme provides then the following logical rule:

Γ, x : X $ P : Prop

Γ, x : FX $ α : X

Γ, x1 : FX, Da : F tP u. pF pπP qq a�x $ P rxÐ pαx1qs

Γ, x1 : µF $ P rxÐ LαMx1s

We start with an example that looks at another possible setting in which

we can study indexed induction and then discuss how it relates to the one we

considered for Definition 5.1.2.

Example 5.2.4. We will now take a look at a class of settings that are more

common from the perspective of dependent type theory: consider two fibrations

p : E Ñ A and r : B Ñ A where r admits comprehension with comprehension

functor t�ur : B Ñ A and p has a terminal object functor 1p : A Ñ E . The

idea is that r captures a dependent type theory and p a logic, i.e., A is thought

of as a category of (dependent) contexts, B is thought of as a category of types

in context and E as a category of propositions in (type) context. In order to

express induction schemes for inductive dependent types, i.e. initial algebra of

endofunctors F : Ba Ñ Ba for some a in A, consider the fibration p1 � t�u�rp

above r where t�ur is the comprehension functor of r. Diagrammatically we

have:

E 1

p1

��

//
_� E

p

��
B
r

��

t�ur
// A

A

Remember (Example 2.1.7) that the comprehension functor of a fibration of de-

pendent types performs context extension, that is, for B a type in context Γ,

tBur is the context Γ, B. Therefore, a predicate in p1 above B is a proposition

in the context Γ, B and the terminal object functor 11 : B Ñ E 1 maps the type B

to the true proposition in context Γ, B. We now have a setting in which we can

apply our definition of indexed induction schemes. The question of the existence
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of such schemes remains open since we do not know if 11 has a fibred right adjoint

(by Lemma 2.1.10, a sufficient condition is for the functor t�ur to be a fibration).

Note that the existence of such an adjoint t�u1 : E 1 Ñ B would correspond to the

presence of a notion of dependent comprehension type in B (as a straightforward

generalisation of Example 2.1.2). Indeed, by using the internal language of the

structure the adjunction is characterised by a correspondence between the pair

of a term Γ, B $ t : B1 (in B) and a proof Γ, B $ p : t�P (in E) and a term

Γ, B $ a : tP ur (in B).

As mentioned in the introduction, structure similar to this one have been in-

vestigated in [Jac99], in particular with the notion of DPL-structure where the

fibration p describes a (complete) dependent type theory and the fibration r de-

scribes a higher order (proof irrelevant) predicate logic. The notion of dependent

comprehension type restricts in this case to a notion of dependent subset-type

(see Definition 11.2.3 in [Jac99]). We then have that any DPL-structure with p,

a bifibration, and with dependent subset types has arbitrary indexed induction

schemes.

The next example shows how we can take any Lawvere fibration whose base

category has pullbacks and associate it to a fibred fibration obtained though the

method described in the previous example.

Example 5.2.5. Let p : E Ñ B be a Lawvere fibration of predicates above types

where B has pullbacks. We know from Example 2.1.5 that there is in fact already

enough information to speak about dependent types in this setting using the

codomain fibration. We then found ourselves in a setting similar to the one in

Example 5.2.4: a fibration of predicates p : E Ñ B and a fibration of dependent

types cod : BÑ Ñ B. The point of this example is that in this particular situation

BÑ has dependent comprehension types, and hence, arbitrary indexed induction

schemes.

To see this, let q : E 1 Ñ BÑ be the fibration above cod obtained from the

change of base of p along the comprehension functor of cod. See the following
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diagram:

E 1
q

��

//
_� E

p

��
BÑ

cod
��

dom
// B

B

We know that dom is also a fibration (Example 1.1.9), and hence by Corol-

lary 2.1.16, that q is a Lawvere fibration. Now bear in mind that for any I in B

the fibration qI can be obtained with the following change of base:

E{I
qI
��

//
_� E 1

q

��
B{I

iI
// BÑ

Here, iI is the inclusion functor of the slice category into the arrow category. Now,

since the composition B{I iIÝÑ BÑ dom
ÝÝÑ B is equal to the functor domI : B{I Ñ B,

which is straightforwardly a fibration, we have by Corollary 2.1.16 that for any

I in B the fibration qI is a Lawvere fibration. Hence, by Corollary 5.1.6 q is a

Lawvere fibration above cod.

We conclude this chapter with two preservation properties of change of base

for fibred CCUs and fibred Lawvere fibrations, as well as a preservation property

with composition.

Lemma 5.2.6. Let p : E Ñ B be a Lawvere fibration (admits comprehension)

above r : B Ñ A and let q : B1 Ñ B be a fibration. Let p1 : E 1 Ñ B1 be the fibration

obtained by change of base of p along q. In a diagram:

E 1

p1

��

//

_�
E
p

��
B1

r�q
  @@@@@@@@

q // B
r

��
A

The fibration p1 is a Lawvere fibration (resp., admits comprehension) above r � q.
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Proof. First, by Lemma 2.1.10 we know that p1 admits comprehension. Then,

remark that for any a in A we have p1a � pqaq
�ppaq, hence p1a also admits com-

prehension. We conclude with Lemma 5.1.4. It is straightforward to extend this

proof to cover Lawvere fibrations.

Lemma 5.2.7. Let p : E Ñ B be a Lawvere fibration (admits comprehension)

above r : B Ñ A and let s : A1 Ñ A be a functor. We then have the following

situation:

E 1

p1

��

//

_�
E
p

��
B1

r1

��

r�s //

_�
B
r

��
A1

s
// A

Here, the fibration p1 is a Lawvere fibration (resp., admits comprehension) above

the fibration r1.

Proof. Indeed, since change of base preserves fibred adjunction we have that

E

r�p

��1
111111111111

t�u

J %%

J
p

99 B1oo

r

��














A

implies

E 1

r1�p1

��2
222222222222

t�u1

J &&

J

p1

88 B111oo

r1

���������������

A1

Lemma 5.2.8. Let p : E Ñ B be a Lawvere fibration (admits comprehension)

above r : B Ñ A and let t : A Ñ D be fibration. The fibration p is a Lawvere

fibration (resp., admits comprehension) above t � r.

98



Proof. Indeed, we have the following straightforward implication:

E

r�p ��???????

t�u
++

J B
1

kk

r
��~~~~~~~

A
t
��
D

implies

E

t�r�p

��1
111111111111

t�u
++

J B
1

kk

t�r

��














D
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Chapter 6

Indexed coinduction

In this chapter we derive coinduction schemes for coinductive indexed types.

Examples of such types are infinitary versions of inductive indexed types, such as

infinitary untyped lambda terms and the interaction structures of Hancock and

Hyvernat [HH06]. As for indexed induction, we will first introduce the definition

of indexed coinduction in fibrations. We will then look at how to index the notion

of QCE in order to derive a setting admitting coinduction scheme for arbitrary

indexed coinductive types. We conclude this chapter by looking at examples and

properties of this new setting.

6.1 The setting

As in Chapter 5, the setting that we are considering is given by a fibred fibration:

we have a fibration r : B Ñ A, where we think of an object of B as a type indexed

by an object of A, and a fibration p : E Ñ B where we think of the objects of E

as relations above the indexed types. Our aim is to investigate sound coinduction

schemes for final coalgebras of functors F : Ba Ñ Ba, where a is any object of A.

Before giving a definition of indexed coinduction in this setting, first note that

by Lemma 1.2.23 a (full) section of the fibration p restricts to a (full) section of

the fibrations pa. Therefore, for any a in A, any proof of the form R Ñ eaX in

Ea is the same as a proof RÑ eR in E above a.

We can then adapt our definition of coinduction schemes in fibrations to this
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new setting with the following definition:

Definition 6.1.1. Let p : E Ñ B be a fibration with full section e : B Ñ E and

r : B Ñ A be a fibration. For a in A and F : Ba Ñ Ba a functor, we say that a

ea-preserving lifting F̄ : Ea Ñ Ea of F defines an a-indexed coinduction scheme

for νF in p if the functor e-CoAlg : CoAlgF Ñ CoAlg F̄ that sends an F -coalgebra

X
α
ÝÑ FX to the F̄ -coalgebra eX eα

ÝÑ eFX � F̄ eX preserves the terminal object.

Equivalently, the functor F̄ defines an a-indexed coinduction scheme for νF

in p if it defines a coinduction scheme for νF in pa.

As for induction, the definition of indexed coinduction schemes generalises Defini-

tion 4.3.8 by setting r to be the trivial fibration from B to the terminal category.

As with the non-indexed definition, the coinduction scheme is given by the

anamorphisms associated to the final coalgebra of F̄ . We observe a difference

with the indexed inductive case for F̄ : Ea Ñ Ea, for R in Eb and a morphism

f : a Ñ b in A: If we use the reindexing to apply the coinduction scheme to

f�R we can’t deduce a proof of the form R Ñ eνF above f since we are in a

situation where the coinduction scheme gives a morphism γ : f�RÑ eνF , while

the cartesian lifting of f goes from f�R to R. To obtain such a proof we can ask

that r � p is an opfibration and consider R
f§
ÝÑ ΣfR

γ
ÝÑ R.

Let p : E Ñ B be a fibration with a full section e : B Ñ E and r : B Ñ

A be a fibration. We now look for settings that provide indexed coinduction

schemes for arbitrary indexed coinductive types. We know from Chapter 4 that

in order to have arbitrary indexed coinduction schemes we need that for any a

in A the fibration pa : Ea Ñ Ba admits quotients. As in Chapter 5, we want to

highlight the uniformity connecting the different fibrations pa but requiring that

each fibration pa admits quotients does not automatically imply that p admits

quotients. However, by contrast with the situation in the inductive case, if p has

a full section e : B Ñ E fibred with regard to r, requiring that each fibration

pa admits ea-quotients does ensure that p admits quotients. Indeed, we have the

following result:

Lemma 6.1.2. Let r : B Ñ A be a fibration, and q : E Ñ A and e : B Ñ E

be functors such that q � e � r. The functor e has a left adjoint Q : E Ñ B
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with vertical unit (resp., counit) iff e preserves cartesian morphisms and for each

object a in A the restriction ea : Ba Ñ Ea of e to the fibres has a left adjoint Qa.

Proof. Let us assume a collection of left adjoint Qa : Ea Ñ Ba to the restriction

ea : Ba Ñ Ea of e. The proof then follows the proof of Lemma 1.8.9 of [Jac99]: we

will prove that for each a in A and R in Ea the unit component ηR : R Ñ eQaR

is a universal map from R to e (and not just to ea). Let us assume a morphism

l : R Ñ eY above h : a Ñ b, we then have l � eph§Y q � u for a unique vertical

morphism u : R Ñ eph�Y q using the fact that eph§Y q is cartesian. Now, since u

is in Ea we can use the universal property of ηR to deduce a unique morphism

g : QaR Ñ h�Y in Ba such that u � eg � ηR. Therefore, we have a unique

morphism f � h§Y � g such that l � ef � ηR.

Conversely assume a functor Q, left adjoint to e with vertical unit. We directly

obtain a collection of adjunctions between the fibres and that e preserves cartesian

morphisms from Proposition 1.2.32.

This Lemma can be compared with Lemma 1.2.12.

We then deduce the following setting.

Definition 6.1.3. Let p : E Ñ B and r : B Ñ A be two fibrations with e : B Ñ E

a full section of p. We say that p admits quotients above r if either of the following

holds:

(i) e has a left adjoint Q : E Ñ B with unit (or equivalently counit) vertical

with regard to r.

(ii) e is fibred above r and, for any a in A, pa admits ea-quotients.

Lemma 6.1.2 ensures that the two points are equivalent.

This definition corresponds to the definition of fibred comprehension in the

sense that it gives us a structure that characterises a collection of QCEs above

each fibre of a fibration r which, taken together, gives a QCE above the total

category of r. We would however not call it a fibred QCE since the definition

does not imply stability under reindexing of the quotients. If we want quotients

to be stable under reindexing we need to consider the following definition:
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Definition 6.1.4. Let p : E Ñ B and r : B Ñ A be two fibrations with e : B Ñ E

a full section of p. We say that p admits fibred quotients above r if e has a left

adjoint Q : E Ñ B and the adjunction is fibred above A:

E

r�p ��???????
Q

33J B
e

ss

r
��~~~~~~~

A

Note that if p admits fibred quotients above r, p trivially admits quotients above

r.

We then have the following corollary:

Corollary 6.1.5. Let p : E Ñ B admits e-quotients above r : B Ñ A. For any

a in A and F : Ba Ñ Ba, a ea-preserving lifting F̄ : Ea Ñ Ea of F defines an

a-indexed coinduction scheme for νF in p.

In particular, the canonical ea-preserving lifting qF defines a canonical a-

indexed coinduction scheme for νF .

6.2 Examples and properties

Example 6.2.1. (Example 2.2.3, continued) As domain functors provide canon-

ical examples of QCEs, fibred domain functors, i.e.,

V pEq

pÑ
!!DDDDDDDD

domp // E

p
����������

B

provide canonical examples of fibred QCEs. Similarly to the non-fibred case domp

is systematically a fibration, indeed reindexing is then given by the following

diagram:

X

f�α
��

f // A

α

��
ppfq�B

ppfq§
// B
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It is then straightforward to check that the following fibred adjunctions codp %

idp % domp holds, making domp a fibred QCE above p.

Note that we can then associate to any category B a fibred QCE:

V pBÑq

domÑ

��????????????

domdom

J ((

J

coddom

66 BÑiddomoo

dom

��������������

B

We start the section with an example which describes a construction similar to

the family fibration (Example 1.1.7), this time however we index a whole fibration

and present a way to index it by a category which is not necessarily Set.

Example 6.2.2. Let C be a category with a terminal object 1, and p : E Ñ B

be a fibration with a full section e : B Ñ E and quotient functor Q : E Ñ B.

For X an object of C, write GX for the discrete category whose objects are the

morphisms x : 1 Ñ X in C. Remember from Example 1.1.5 that if C is seen as a

category of types, the morphisms from 1 to X represent the closed terms of type

A, i.e., GX is to be understood as the discrete category of closed terms of type

X (also if C is Set, GX � X for any set X).

Let FamCpEq be the category with objects, pairs pX,P q where X is an object

of C and P a functor from GX to E . A morphism of FamCpEq from pX,P q to

pY,Qq is a pair pf, f�q with f : X Ñ Y a morphism in C and f� a collection of

morphisms f�x : Px Ñ P pf � xq in E , for every 1
x
ÝÑ X in GX (or equivalently,

f� is a natural transformation from P to P � f where f is seen as a functor from

GX to GY ). Let FamCpBq be the category obtained with a similar construction

on B.

Consider the functor p1 : FamCpEq Ñ FamCpBq that maps an object pX,P q to

pX, p � P q and a morphism pf, f�q to pf, p � f�q. The functor p1 is a fibration:

For a pX,P q in FamCpEq and pf, f�q : pY,Aq Ñ pX, p � P q a morphism in

FamCpBq, define pf, f�q�pX,P q to be the object pY, P 1q in FamCpEqpY,Aq where P 1 :

GY Ñ E maps y to pf�y q�P pf � yq. Define then the cartesian lifting pf, f�q§pX,P q
to be the morphism pf, lq : pY, P 1q Ñ pX,P q with ly � pf�y q

§.
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Consider the functor r : FamCpBq Ñ C that maps an object pX,Aq to X.

The functor r is a fibration: for pX,Aq in FamCpBq and f : Y Ñ X in C, define

f�pX,Aq as the pair pY,A � fq. The cartesian lifting f §
pX,Aq is given by the pair

pf, f 1q with f 1y � idApf�yq, for every y in GY . Note that since every cartesian

morphism pf, f�q is isomorphic to a cartesian lifting, all the morphisms of the

collection f� are necessarily isomorphisms (f� is a natural isomorphism).

The fibration p1 has a full section e1 : FamCpBq Ñ FamCpEq fibred above C.

The section e1 is given by e1 pX,Aq � pX, e�Aq. For a cartesian morphism ph, h�q :

pY,Bq Ñ pX,Aq above h, since we have that h�y is an isomorphism for every y

in GY then eph�y q is an isomorphism above h�y , and since every isomorphism is

a cartesian morphism then eph�y q is cartesian above h�y . This makes e1ph, h�q

cartesian above h. Note that this argument can be used to lift any functor

between E and B to a fibred functor between FamCpEq and FamCpBq.

Finally, we can define a fibred quotient functor above r for p1 to be Q1 :

FamCpEq Ñ FamCpBq given by Q1pX,P q � pX,Q � P q. Indeed, Q1 is fibred using

the argument in the previous paragraph, and we have Q1 % e1 since for any X in

C, the following adjunction holds Q1
X % e1X by a pointwise construction and by

Lemma 6.1.2.

Notice that it is straightforward to index a CCU with the method presented

in this example, however, indexing a Lawvere fibration poses a problem when

indexing the opreindexing structure.

The next example generalises the construction of a fibration of relations pre-

sented in Example 1.1.11 for fibred fibrations. As for the non-indexed case, we can

derive a fibred fibration of indexed relations from a fibration of indexed predicates

in the following way:

Example 6.2.3. (Example 2.2.4, continued) Let p : E Ñ B be a bifibration with

a terminal object functor 1 : B Ñ E that satisfies the Beck-Chevalley condition,

and let r : B Ñ A be a fibration with fibred cartesian products, i.e., products in

the fibres preserved by reindexing. Let ∆r : r Ñ r be the fibred diagonal functor

sending an object X to X�X in each fibres. The fibration of indexed relations

(above r) Rel rppq : Rel rpEq Ñ B is obtained by a change of base of p along ∆r.
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It comes equipped with a full and faithful equality functor Eqr : B Ñ Rel rpEq,

mapping an object X of B to Σδr1X, where δr : IdBr Ñ ∆r is the diagonal fibred

natural transformation (full and faithfulness comes from Lemma 1.1.16).

Furthermore, the equality functor Eqr is fibred from r to r�Rel rppq: First, note

that for any cartesian natural transformation η : F Ñ G and cartesian morphism

l the naturality square ηl is a pullback square (it is in fact straightforward to show

that any square with two parallel vertical morphisms and two parallel cartesian

morphisms is a pullback). Then since δr is a fibred natural transformation we

have that for B an object of B and f : X Ñ rB in A, the following square is a

pullback square in B

f�A

δrf�A
��

f§ //

_�
A

δrA

��
f�A�f�A

f§
// A�A

Then, from the Beck-Chevalley condition we have that for any P in E above A,

Σδrf�Af
�P � f�ΣδrAP . Hence, we have the following canonical isomorphism:

Eqrpf
�Aq � Σδrf�A1f

�X

� Σδrf�Af
�1X

� f�ΣδrA1X

� f�pEqrAq

We then have that Rel rppq has arbitrary coinduction schemes as soon as Eqr

has a left adjoint, i.e., as soon as Rel rppq admits (fibred) Eqr-quotients.

Example 6.2.4. (Example 5.2.2, continued) Consider a logic of predicates p :

E Ñ B above a theory of indexed types r : B Ñ A as described in Exam-

ple 5.2.2. Then Relppq admits quotient above r if for every relation R above

a type X of index I there is a quotient type QR (See Example 2.2.4) of in-

dex I, and quotient are stable under reindexing, i.e., for any morphism u :

J Ñ I in A, u�QR � Qpu�Rq (or equivalently the associated correspondence

py, y1 : Y $ R : Propq Ñ px, x1 : X $ EqX : Propq

QRÑ X : Type
restricts to a specific index).
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Remembering Example 5.2.2, we can then describe the lifting qF of a functor

F : BΓ Ñ BΓ with the following relation

Γ, x, x1 : F X $ EqF pQRq
�
pF pρRqqx, pF pρRqqx1

�

A qF -coalgebra of carrier R above the a coalgebra α : X Ñ FX is then given by

the following entailment:

Γ, x, x1 : X, R px, x1q $ EqF pQRq
�
pF pρRqqpαxq, pF pρRqqpαx1q

�

The coinduction scheme provides then the following logical rule:

Γ, x, x1 : X $ R : Prop

Γ, x : X $ α : FX

Γ, x, x1 : X, R px, x1q $ EqF pQRq
�
pF pρRqqpαxq, pF pρRqqpαx1q

�
Γ, x, x1 : X, R px, x1q $ EqνF prpαqsx, rpαqsx

1q

The next example combines the results from Chapter 5 on indexed induction

with Example 6.2.3.

Example 6.2.5. (Example 5.2.4, continued) Assume p : E Ñ A and r : B Ñ A,

two fibrations of predicates and types respectively. Furthermore, assume that r

admits comprehension with comprehension functor t�u : B Ñ A and has fibred

products, and p is a bifibration that satisfies the Beck-Chevalley condition and

has a terminal object functor 1 : AÑ E . We can then use the method presented

in Example 5.2.4 to derive a fibred fibration from this setting and then apply

the method of Example 6.2.3 to derive a fibration of relations fibred above r.

Diagrammatically we have:

Rel rpE 1q
Relrpqq

��

//

_�
E 1

q

��

//

_�
E
p

��
B

r
$$IIIIIIIIII ∆
// B
r

��

t�u
// A

A
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With a fibred equality functor Eqr : r Ñ r � Rel rpqq. (We implicitly used the

fact that change of base along a pullback-preserving functor preserves the Beck-

Chevalley condition, and t�u, as a right adjoint is such a functor).

We then have a setting to which we can apply our definition of indexed coin-

duction schemes. Again, the question of the existence of such schemes remains

open. Also, note that the existence of fibred quotients above r, given by a func-

tor Qr : rq Ñ r would correspond to the presence of a notion of a dependent

quotient type in B. Indeed, using the internal language of the structure, the ad-

junction Qr % Eqr is characterised by a correspondence between the pair of a

term Γ, B $ t : B1 in B and a proof Γ, px : Bq, py : Bq, R x y $ Eqr tx ty, and a

term Γ, a : QrB $ u : B1.

Again, here the notion of DPL-structure gives us an instance of the current

setting. The DPL-structures also have a corresponding notion of dependent quo-

tient types (Definition 11.2.5 in [Jac99]). We then have that any DPL-structure

with dependent quotient types has arbitrary indexed coinduction schemes.

We will now look at a construction that is similar to Example 5.2.5 and see

how we can associate any QCE above a base category with pullbacks to a QCE

above the codomain fibration. As this construction turned out to be complex, we

present this next example as a section of this chapter.

6.2.1 Lifting a QCE above the codomain fibration

Consider a bifibration p : E Ñ B with quotients, i.e., let B have products and

p be a bifibration with terminal object functor 1, such that the equality functor

Eq : B Ñ RelpEq (given by Eq � Σδ1) has a left adjoint Q : B Ñ RelpEq.

Additionally, we assume that B has pullbacks and p satisfies the Beck-Chevalley

condition. In this section we will show that the fibration Rel codpqq above the

codomain fibration, as described in the following diagram, admits arbitrary in-
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dexed coinduction schemes.

Rel codpE 1q
Relcodpqq

��

//

_�
E 1

q

��

//

_�
E
p

��
BÑ

cod
%%LLLLLLLLLLL ∆Ñ

// BÑ

cod
��

dom
// B

B

Here, since products are given by pullbacks in slices of B, the fibred functor

∆Ñ maps an object f : X Ñ I in BÑ to the composition f � i � f � j where i

and j are the projections of the pullback of f by itself. We will note f 2 for ∆Ñf

and XfX for the domain of f 2.

In order to develop some intuitions on the fibration Rel codpqq, note that in Set

the object XfX corresponds to the subset of X�X, tpx, x1q P X�X | f x � f x1u.

Then, since f represents the family f�1 : I Ñ Set of elements of X indexed by

I, an indexed relation R on f corresponds to a relation on X that only compares

elements with the same index, i.e., a family of relations Ri on f�1i for i in I.

We now fix an object I of B and consider the fibration qI : E 1I Ñ B{I and its

fibration of relations RelpqIq : RelpE 1Iq Ñ B{I. A first remark is that RelpqIq �

Rel codpqqI and RelpE 1Iq � Rel codpE 1qI . Concretely, an object of RelpE 1Iq above

f : X Ñ I is an object of E 1I above f 2 with respect to qI . This is, in turn,

equivalent to an object R of E above XfX with respect to p. Also, note that qI is

obtained by change of base of p along domI : B{I Ñ B, hence we have that qI is

a bifibration and has a terminal object functor 1I : B{I Ñ E 1I . Therefore, qI has

an equality functor EqqI : B{I Ñ RelpE 1Iq defined as EqqI � ΣδI1I . Concretely,

note that the component of the diagonal natural transformation δI : Id Ñ ∆Ñ
I

at f : X Ñ I is given by the following diagram on the left. Thus, EqqI maps an

object f : X Ñ I of B{I to the unique morphism above f 2 in the diagram on the
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right induced by the opcartesian map m above pδIqf :

X

id

##

pδIqf
""

id

  
XfX

i

��

j //
_� X

f

��

1I

X
f

// I 1X

1f

::uuuuuuuuuuu

m
// ΣpδIqf1X

EqqI f

OO

Or, considering an object of RelpE 1Iq above f : X Ñ I as an element of E above

XfX, the functor EqqI : B{I Ñ RelpEIq is defined as EqqIf � ΣpδIqf1pdomfq.

We now need to link back the equality EqqI : B{I Ñ RelpE 1Iq of qI to the

equality Eq : B Ñ RelpEq of p so that we can use the adjunction Eq $ Q to

derive the quotient functor for qI . In order to do this, note that for f : X Ñ I

in B, i and j the projections for the pullback square defining XfX, there is a

morphism vf given by

XfX
i

{{wwwwwwwww
vf

��

j

##GGGGGGGGG

X X �X
π1oo π2 // X

It is routine to check that vf is the equalizer of the parallel arrows f�π1, f�π2 : X�

X Ñ I, and that it extends to a natural transformation v : dom�∆Ñ
I

.
ÝÑ ∆�dom.

We can then prove the following lemma.

Lemma 6.2.6. For f : X Ñ I in B, EqqIf � pvf q
�EqX in E.

Proof. First, since vf is the equalizer of f�π1 and f�π2, we have that δX � vf pδIqf

and that vf is mono. Since vf is mono its pullback along itself is given by

the identity on X, hence by the Beck-Chevalley condition, the unit η1 of the

adjunction Σvf % pvf q
� is an isomorphism. We can then deduce that EqqI pf :

X Ñ Iq � ΣδI1X � pvf q
�Σvf ΣδI1X � pvf q

�Σδ1X � pvf q
�EqX.
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Now, notice that for any f : X Ñ I in B, the following diagram

XfX

f2

��

vf // X �X

f�f

��
I

δI
// I � I

commutes by the universal property of the product I � I since πn � f�f � vf �

f 2 � πn � δI � f
2 for n P t1; 2u. We can then define for any object R above f in

RelpE 1Iq a morphism h : ΣvfRÑ Eq I above f � f in E by the universal property

of the opcartesian morphism pvf q§:

R
pvf q

R
§ //

!R�1f2

��

ΣvfR

h
��

1I
pδIq

1I
§

// Eq I

From this we can deduce that:

Theorem 6.2.7. Let Φ be the isomorphism associated to the adjunction Eq $ Q,

we then have the following adjunction EqqI $ Φh.

Proof. Let R be an element of RelpE 1Iq above f : X Ñ I, let g : Y Ñ I be in B{I

and for α : f Ñ g in B{I write ᾱ for domp∆Ñ
I αq : XfX Ñ YgY . We then have:

RelpE 1IqpR,EqqIgq �
¤

α:fÑg

EᾱpR, vg�EqY q (1)

�
¤

α:fÑg

EXfXpR, ᾱ
�vg

�EqY q (2)

�
¤

α:fÑg

EYgY pΣvgΣᾱR,EqY q (3)

�
¤

α:fÑg

EYgY pΣα�αΣvfR,EqY q (4)

�
¤

α:fÑg

Eα�αpΣvfR,EqY q (5)

� RelpEq{EqIph,Eqgq (6)

� B{IpΦh, gq (7)
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Here, (1) comes from the definition of RelpE 1Iq and EqqI (2) and (5) from the

universal property of (op)cartesian morphisms, (3) from the adjunctions ᾱ� $ Σᾱ

and vf� $ Σvf (4) from the fact that the following square
XfX

vf
��

ᾱ // YgY

vg
��

X�X
α�α

// Y�Y

commutes

(since v is a natural transformation), (6) from the fact that for any morphism

γ : R Ñ EqqIg in Rel codpE 1qI above β : f Ñ g we have the following commuting

diagram in E :

R

��

γ

""EEEEEEEEE

vf § // ΣvfR

l

{{
h

��

EqqIg

||yyyyyyyyy vg§
// EqY

Eqg ##GGGGGGGGG

1I
δ§

// EqI

where the left triangle com-

mutes by definition of morphism in RelpE 1Iq. The square on the top commutes by

the universal property of vf § where l is the image of γ through the process (1)-(5).

The square on the bottom commutes since vg§ is opcartesian (since Σvg is full and

faithful) and Eq is full and faithful. The outer square commutes by construction

of h. The left triangle commutes by unicity of h and (7) by naturality of Φ.

Hence, defining QqI to send R to Φh makes RelpqIq : RelpE 1Iq Ñ B{I a QCE.

Now that we know that for any I in B RelpqIq admits quotients, we can

conclude with the following lemma:

Lemma 6.2.8. The fibration of indexed relation Rel codpqq : Rel codpE 1q Ñ BÑ of

q : E 1 Ñ BÑ admits quotients above cod.

Proof. Notice that the equality functor EqÑ : BÑ Ñ Rel codpE 1q defined as

ΣδÑK
Ñ restricts to the EqqI since δI is the restriction of δÑ to the corresponding

fibres. Thus, the conclusion follows from Lemma 6.1.2.
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Chapter 7

Conclusions

We have investigated sound induction and coinduction schemes in category the-

ory. We started with the work of Hermida and Jacobs [Her93,HJ98] which com-

bines initial algebra semantics of inductive types (resp., final coalgebra semantics

of coinductive types) and the theory of fibration to model a logic above a type

theory. Our aim was to maximise the use of the abstraction power of initial alge-

bra (resp., final coalgebra) semantics and the theory of fibration, in order to cover

as many logics, type theories and classes of inductive (resp., coinductive) types as

possible. We showed how the Lawvere fibrations provide a minimal structure to

associate any functor on its base category to a terminal object preserving lifting

and hence to guarantee sound induction schemes for any inductive types. We

introduced the notion of quotient category with equality, a generalisation of the

property of having quotients for a fibration, and showed how it provides a mini-

mal structure to associate any functor on its base category to a section preserving

functor and hence to guarantee sound coinduction schemes for any coinductive

types. We then investigated a version of Lawvere fibration and QCE above a

fibration in order to derive sound indexed induction and coinduction schemes for

indexed inductive and coinductive types respectively.
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