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Abstract

This thesis studies induction and coinduction schemes from the point
of view of category theory. We start from the account of inductive and
coinductive types given by initial algebra semantics and final coalge-
bra semantics, respectively. We then use fibrations as a generic setting
describing a logic for a type theory to study induction and coinduc-
tion. As our starting point we consider the seminal work of Hermida
and Jacobs [Her93, HJ98|, who pioneered the fibrational approach.
We extend their induction and coinduction schemes to give provably
sound generic induction and coinduction schemes for arbitrary induc-
tive and coinductive types. To achieve this we introduce the notion
of a quotient category with equality (QCE) which i) abstracts the
standard notion of a fibration of relations constructed from a given fi-
bration and ii) gives us the correct structure to compare induction and
coinduction from a categorical perspective. This allows us to broaden
the applications of the coinduction scheme, as well as present the du-
ality between coinduction and induction in a systematic way. Finally,
we consider induction and coinduction schemes in the more general
setting of fibred fibrations which is used to give sound, generic in-
dexed induction and coinduction schemes for indexed inductive and

coinductive types.
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Introduction

[teration operators provide a uniform way to express common and naturally oc-
curring patterns of recursion over inductive data types. Expressing recursion via
iteration operators makes code easier to read, write, and understand; facilitates
code reuse; guarantees properties of programs such as totality and termination;
and supports optimising program transformations such as fold fusion and short
cut fusion.

Categorically, iteration operators arise from initial algebra semantics: the
signature of an inductive data type is given by a functor F', the constructors of
the data type are modelled as the structure map of the initial F-algebra in :
F(uF) — upF, the data type itself is modelled as the carrier uF of the initial
F-algebra, and the iteration operator fold : (FA — A) —» uF — A for uF maps
an F-algebra h : FA — A to the unique F-algebra morphism from in to h. Initial

algebra semantics provides a comprehensive theory of iteration that is

e principled, in that it ensures that programs have rigorous mathematical
foundations that can be used to give them meaning and prove their sound-

ness;

e cxpressive, in that it is applicable to all inductive types —i.e., all types that
are carriers of initial algebras — rather than just to syntactically defined

classes of data types such as polynomial ones; and

e sound, in that it is valid in any model — set-theoretic, domain-theoretic,

realisability, etc. — interpreting data types as carriers of initial algebras.

Final coalgebra semantics gives an equally comprehensive understanding of

coinductive types: the signature of a coinductive data type is given by a functor



F, the destructors of the data type are modelled as the structure map of the final
F-coalgebra out : vF — F(vF), the data type itself is modelled as the carrier
vF of the final F-coalgebra, and the coiteration operator unfold : (A — FA) —
A — vF for vF maps an F-coalgebra k : A — FA to the unique F-coalgebra
morphism from k to out. Final coalgebra semantics thus provides a theory of
coiteration which is as principled, expressive, and sound as for iteration.

Induction is often used to prove properties of functions defined by iteration,
and the soundness of induction schemes is often established by reducing it to
that of iteration. Since induction and iteration are closely linked, we might ex-
pect initial algebra semantics to give a theory of induction that is as principled,
expressive, and sound as the theory of iteration it provides. Unfortunately, most
theories of induction for inductive data types — i.e., for data types of the form
wF for an endofunctor F' on a base category 5 — are only sound under significant
restrictions on the category B, the functor F', or the property to be established.
However, Hermida and Jacobs recently made a conceptual breakthrough in the
theory of induction [Her93,HJ98|. They start with a category B, typically thought
of as a category of types, and show how to lift an arbitrary functor F' on B, to
a functor I on a category of predicates on B. They then take the premise of
an induction scheme for pF' to be an F -algebra. Their main theorem about in-
duction shows that if F preserves truth predicates then the resulting induction
scheme is sound. They then show that for any polynomial functors F' the lifting
I preserves truth predicates.

In the same way, coinduction and coiteration are closely linked, so we might
expect final coalgebra semantics to give a principled, expressive, and sound the-
ory of coinduction. However, most theories of coinduction suffer from the same
drawbacks that theories of induction do. In [HJ98|, Hermida and Jacobs comple-
mented their theory of induction with a theory of coinduction. While induction
deals with predicates, coinduction deals with relations, so this time Hermida and
Jacobs show how to lift an arbitrary functor F' on a base category B, again typ-
ically thought of as a category of types to a functor Fona category of binary
predicates on B. (Binary predicates are the traditional representation of rela-

tions in a type-theoretic setting). Hermida and Jacobs take the premise of a



coinduction scheme for vF to be an F -coalgebra. Their main theorem about in-
duction dualises to show that the if F° preserves equality the resulting coinduction
scheme is sound. They then show that for any polynomial functors F' the lifting
ja preserves equality.

To formally capture the informal notions of a category of types and a cate-
gory of predicates above these types, Hermida and Jacobs worked in a fibrational
setting. Fibrations support a uniform, axiomatic approach to induction and coin-
duction that is widely applicable, and that abstracts over the specific choices of

category, functor, and predicate. This is advantageous because:

e the semantics of data types in languages involving recursion, corecursion

and other effects usually involves categories other than Set;

e in such circumstances, the standard set-based interpretations of predicates

are no longer germane;
e in any setting, there can be more than one reasonable notion of predicate;

e fibrations allow induction and coinduction schemes for many classes of data
types to be obtained by instantiation of a single, generic theory rather than

developing an ad hoc, case-by-case basis.

Thus, Hermida and Jacobs overcome two of the aforementioned limitations on
induction schemes, namely the restrictions on the base category B and the re-
striction on the properties that can be established. They also provide a formal
setting in which to study induction and coinduction schemes. But since they only
prove the soundness of their induction and coinduction schemes for polynomial
data types, the limitation on the functors treated remains in their work. Their
theory therefore needs to be extended whenever a non-polynomial data type is
considered. Among the class of non-polynomial data types are the inductive data
types of rose trees and of hereditary sets as well as the coinductive data type of
non-deterministic automata.

In this thesis, we extend the existing body of work on fibrational induction

and coinduction in the following ways.



e We show how to remove the restriction to polynomial functors and derive a
sound, generic induction scheme that can be instantiated to every inductive
type. This is important because it provides a counterpart for induction to
the existence of an iteration operator for every inductive type. We take
Hermida and Jacobs’ approach as our point of departure and show that,
under slightly different assumptions about the fibration involved, we can
lift any functor on the base category of a fibration to a functor on the total
category of the fibration that preserves truth predicates. Since we define
our lifting uniformly for all functors, the induction scheme to which it gives

rise is completely generic as well.

e We show how to remove the restriction to polynomial functors and derive a
sound, generic coinduction scheme that can be instantiated to every coin-
ductive data type, i.e., to every type that is the carrier of a final coalgebra.
This is equally important because it provides a counterpart for coinduc-
tion to the existence of a coiteration operator for every coinductive type.
Again, here we start from Hermida and Jacobs’ approach and lift any func-
tor on the base category of a fibration to a functor on the total category of
the fibration that preserves equality relations. Since we define our lifting
uniformly for all functors, the coinduction scheme to which it gives rise is

completely generic, just as our induction scheme is.

e We show how to remove a restriction appearing in [HJ98] on the notion of re-
lation involved in the coinduction scheme. We thereby derive a coinduction
scheme that treats an abstract notion of relation that is sufficiently general
to include binary predicates. This is important for two reasons. First, by
accommodating a more abstract notion of relation, it encompasses a wider
class of fibrations than fibrations of binary predicates. This allows our
coinduction scheme to be instantiated in new settings. Second, our more
abstract notion of relation gives rise to a coinduction scheme whose level of
abstraction reflects that of our induction scheme. This allows us to present

coinduction as the dual of induction in a very natural way.



e We derive sound, generic induction schemes for inductive indexed types.
Data types arising as initial algebras of endofunctors on a category of types
are fairly simple. More sophisticated data types — e.g., untyped lambda
terms and red-black trees — are often modelled as inductive indexed types,
arising as initial algebras of functors on slice categories, presheaf categories
and similar structures. We show how to derive a sound, generic indexed
induction scheme to reason about such data types with a version of our
generic induction scheme instantiated in the more general context of fibred
fibration. Such a setting allows us to consider a logic above another fibra-
tion, this gives us the possibility to consider any indexing of types that is

captured by a fibration.

e Since we can derive sound, generic induction schemes for inductive types
and inductive indexed types, and sound, generic coinduction schemes for
coinductive types, we might expect to be able to derive sound, generic
coinduction schemes for coinductive indexed types, as well. We confirm

that this is indeed possible, and give a number of examples of such schemes.

This thesis consists in part of work done jointly with my supervisors Patricia
Johann and Neil Ghani. This work was published in [GJF10,FGJ11,GJF12|, and
the journal version |GJF] of [FGJ11] was invited for submission to the CALCO
2011 special issue of LMCS. As is natural during the course of a PhD, my con-

tributions to these papers grew chronologically:

e In [GJF10| and its journal version [GJF12|, my contributions were mainly
to the treatment of induction in arbitrary fibrations, particularly the use of
Lawvere fibrations to obtain a modular presentation of a generic induction
scheme. My contributions elaborated and built upon the concrete treatment
of induction and the preliminary presentation of a fibrational treatment of
generic induction schemes, both of which were reasonably well settled prior

to my involvement in this research.

e In [FGJ11] and its extended version [GJF|, my main contributions were

to define the notion of quotient category with equality and to ascertain



its relevance for coinduction and indexed coinduction. 1 also developed
the detailed treatment of indexed induction and coinduction in a fibred
fibrational setting. A generalisation of the notion of QCE is currently being

used as the technical basis of a categorical study of parametricity by Patricia

Johann and Neil Ghani.

The following description of the chapters of the thesis specifies the relations be-
tween these papers and the thesis.

The thesis is structured in the following way. In Chapter 1 we introduce
fibrations and some basic results about them, and describe how they can be
used to model different types of logics above type theories. No new results are
introduced in this chapter — we only recall sufficient preliminary results for a
reader not familiar with fibrations to enable them to follow the thesis. We do,
however, assume basic knowledge of category theory.

In Chapter 2 we will concentrate on two different kinds of fibrations, namely
comprehension categories with unit and quotient categories with equality. The
notion of comprehension category with unit appears when modelling dependent
type theory with category in [Ehr88a, Ehr88b| under the name D-category and is
studied as an instance of the notion of comprehension category in [Jac93]. This
is the setting in which we will study induction. We borrow most of the results
in this chapter from these papers. The new notion of quotient category with
equality arises from our intention to present coinduction as dual to induction,
and will play a role in the study of coinduction similar to the role of comprehen-
sion category with unit for the study of induction. The section of this chapter
which introduces quotient categories with equality is based on results presented
in [FGJ11] and [GJF].

Chapter 3 studies the notion of lifting of a functor with regard to a fibration.
For a fibration, the lifting of a functor on the base category is a functor on the
total category that represents, in some way, the first functor. The notion of lifting
is at the heart of the treatment of induction and coinduction in fibrations. We
present two ways to construct a canonical lifting for an arbitrary functor, one in

the setting in which we study induction and the other in the setting in which



we study coinduction. We conclude the chapter with different properties of these
canonical liftings as well as their relationship with arbitrary liftings. This Chapter
is based on [GJF10,GJF12| for the study of general liftings and canonical liftings
in the setting in which we study induction, as well as in [FGJ11] for the study of
canonical liftings in the setting in which we study coinduction.

Chapter 4 details our fibrational approach to derive sound induction and coin-
duction schemes for arbitrary inductive and coinductive types respectively. This
chapter start with some well-known knowledge on initial algebra and final coal-
gebra semantics. We then use the different notions introduced in the previous
chapters to, first, define the notion of induction and coinduction schemes in fi-
bration. And second, show how to derive, in a generic way, such schemes in
the setting of comprehension categories with unit and quotient categories with
equality, respectively. This chapter is based on [GJF10, GJF12| for the study of
induction, and on [FGJ11] for the study of coinduction.

Chapter 5 studies sound induction for arbitrary indexed inductive types. It
demonstrates how we can exploit the generality of the fibrational setting in which
we have chosen to work to obtain interesting results about a specific setting of
interest. In this chapter we consider the notion of fibred fibration which allows us
to consider a fibration of a logic above a fibration of indexed types. We look at the
fibred notion of comprehension category with unit in which we study induction
for indexed types. This chapter is based on [GJF|.

Chapter 6 studies sound coinduction for arbitrary indexed coinductive types.
We show how the notion of quotient category with equality is generalised in the
setting of fibred fibration and how this allows us to study coinduction schemes

for indexed coinductive types. This chapter is based on [GJF].



Chapter 1

Theory of fibrations

This chapter introduces the basic notions of the theory of fibrations. In Section 1.1
we give the definition of a fibration. We then look at some examples of standard
fibrations, such as the codomain, syntactic, and simple fibrations. The syntactic
fibration will be of particular interest, as it highlights the relationship between
fibrations, type theory, and logic in order to make the connection between our
fibrational approach to induction and coinduction and the standard approach.
In Section 1.2 we present the basic tools we use to create and manipulate
fibrations and fibred structures. In particular, we investigate categorical struc-
ture in the fibrational context, the construction of new fibrations from existing
ones, and the conditions under which these constructions preserve this categori-
cal structure. The main tool defining structure in the fibrational context is the
notion of a fibred adjunction, and the main tool for constructing fibrations from
existing ones is change of base, i.e., the pullback of a fibration along a functor.
The content of this chapter is well-known; none of the results presented here
are new, unless stated otherwise. Mots of the examples that we present in this
chapter, as well as the other chapters of this thesis, are description of standard
results of the theory of fibration. We will in most cases not reproduce the associ-
ated proofs and refer to standard documents like [Jac99], from which we borrow

most of the content in this chapter, for the ones we do not provide.



1.1 Fibrations

In this subsection we recall the notion of a fibration and the dual notion of
opfibration. Fibrations and opfibrations are special kinds of functors p : &€ — B
which capture the idea that & is continuously indexed by B. Our interest in
fibrations lies in the fact that they provide models of a logic of predicates above a
type theory. In such models, objects of £ are thought of as predicates, objects of
B are thought of as types, and p is thought to map each predicate P in £ to the
type pP about which it is a predicate. The notion of opfibrations arises in our
work when we want to express the duality between induction and coinduction.
More details about fibrations, opfibrations and their relations with logic and type
theory can be found in [Jac99, Pav90] for example.

Before introducing any definitions, note that we can already see any functor
p: &€ — B as an indexing of the category £ by the category B: for X (resp., f)
in B, an object P (resp., morphism «) of £ has index, or is above, X if pP = X
(resp., pa = f). The point of view of fibrations is to index morphisms of £ by
objects of B instead of morphisms of B: a morphism « : P — @) in £ has index X
in B if pa = idx, such a morphism is called vertical. For a non-vertical morphism
a: P — @Q above f: X — Y we then ask that « is uniquely determined by f
and another morphism with index X (or Y for p to be an opfibration). The idea
being that a has index X up to reindexing its codomain @) from Y to X along
f (or the dual for opfibration). The key concept to ensure this property is the
notion of cartesian morphisms in £. The definition of a cartesian morphism above
a morphism f guarantees that every morphism above f can be decomposed as
a vertical morphism followed by the cartesian morphism. Cartesian morphisms
can be thought of as only containing indexing information from B, and they
are the direct opposite of vertical morphisms. Dually, there is the notion of an
opcartesian morphism above f which guarantees that every morphism above f
decomposes as a vertical morphism preceded by the opcartesian morphism.

The key notions of cartesian and opcartesian morphism are defined as follows.
Definition 1.1.1. Let p : £ — B be a functor.

(i) A morphism g : Q — P in &£ is cartesian above a morphism f: X — Y in

9



B if pg = f, and for every ¢’ : Q" — P in & for which pg’ = f o v for some
v : pQ" — X there exists a unique h : Q' — Q in £ such that ph = v and
goh=yg.

(ii) A morphism ¢ : P — @ in £ is opcartesian above a morphism f : X — Y
in B if pg = f, and for every ¢’ : P — @' in £ for which pg’ = vo f for some
v:Y — pQ there exists a unique h : @ — @' in £ such that ph = v and
hog=4¢.

We can capture cartesian and opcartesian morphisms diagrammatically as follows

(the left and right parts, respectively).

B PQ —— X Y X Y —>pQ’

Note that in this thesis we follow the convention of drawing elements above one
another in a diagram when they are "above" one another in the categorical sense.

Cartesian morphisms (opcartesian morphisms) are the essence of fibrations
(resp., opfibrations). We introduce both fibrations and their duals now since the
latter will prove useful later in our development. Below we speak primarily of fi-

brations, with the understanding that the dual observations hold for opfibrations.
Definition 1.1.2. Let p : £ — B be a functor.

(i) The functor p is a fibration if for every object P of £, and every morphism

f: X — pP in B there is a cartesian morphism ¢ : Q — P in £ above f.

(ii) Dually, the functor p is an opfibration if for every object P of £, and every
morphism f : pP — Y in B there is an opcartesian morphism g : P — @) in

& above f.

10



(iii) The functor p is a bifibration if it is simultaneously a fibration and an

opfibration.

For p : &€ — B an (op/bi)fibration, we call £ the total category and B the base
category of p. For any object X of B, we write £x for the fibre above X, i.e., the
subcategory of € comprising objects above X and vertical morphisms (morphisms
above idx). In this thesis we will also use the notion of a fibre for functors that
are not necessarily fibrations, indeed this notion is well defined for any functor.
Rather than reasoning about fibrations and opfibrations separately, we will use

duality to reason about them simultaneously. The crucial lemma is the following:

Lemma 1.1.3. A functor p: & — B is an opfibration if and only if the opposite

functor p? : EP — B is a fibration.

The proof follows from the duality between cartesian and opcartesian morphisms.

It is not hard to see that a cartesian morphism g above a morphism f with
codomain pP is unique up to isomorphism, and similarly for opcartesian mor-
phisms. It is often very useful to be able to choose a specific cartesian morphism
given a morphism f in B and P above the codomain of f. We call this specific
choice a cartesian lifting of f of codomain P. A fibration which comes with a
choice of cartesian liftings, and dually an opfibration which comes with a choice
of opcartesian liftings, are said to be cloven. In the rest of this thesis all the
(op/bi)fibrations that we consider will be assumed to be cloven. The main point
for assuming fibrations and opfibrations to be cloven is to be able to derive the
following two constructions.

For p: £ — B afibration, f : X — Y a morphism in B and P an object of &y,
we write f1§3 : f*P — P for the cartesian lifting of f of codomain P. When clear
from the context, we might drop P and simply write f%. The function mapping
each object P of & to f* P, the domain of f1§3, extends to a functor f*: & — Ex.

The functor f* then maps a morphism &k : P — P’ in £y, to the unique morphism

11



f*k making the following diagram commute

§
f*PLP

¥k k
v
f P ? P’
The universal property of f1§3, ensures the existence and uniqueness of f*k. We
call the functor f* the reindexing functor along f.
For p : £ — B an opfibration, f : X — Y a morphism in B and () an object
of £x, we write fg 1 Q — X4Q for the opcartesian lifting of f of domain Q).
When clear from the context, we might drop @ and simply write f;. Dually to
reindexing, the function mapping each object @ in Ex to X;Q), the codomain of
fg , extends to a functor X : Ex — &. We call the functor X the opreindexing
functor along f.
We now illustrate the notions of fibration, opfibration, and bifibration with

some examples.

Example 1.1.4. Let B be an arbitrary category. Then the identity functor on
B is a fibration, called the identity fibration above B. Each fibre has exactly
one object, and the cartesian lifting of a morphism f is f itself. Moreover, the

identity fibration is an opfibration and hence also a bifibration.

The following syntactic example illustrates our use of fibrations for induction.
If we have a type theory modelled by a category B and a logic £ to reason about
the type theory, then the logic is modelled by a fibration with base category B
and total category &.

Example 1.1.5. Consider a type theory such as the simply typed lambda cal-
culus. We can model this type theory with a category B whose objects are the
types of the type theory and whose morphisms are (n-equivalence classes of)
terms of the type theory.

Now suppose we have a predicate logic on this type theory. Such a logic
is given by a collection of predicates, i.e., by a collection of propositions, each

of which is parameterised above (at most) a single type. Concretely, writing

12



x: X + P : Prop for a proposition P whose only possible free variable is z : X,
we view P as a predicate on X. Then we can construct a category £ to model
this predicate logic by taking the objects of £ to be predicates, and a morphism
of £ from a predicate z : X — P : Prop to a predicate y : Y I @ : Prop to be a
term t such that x : X ¢ : Y together with a logical derivation of the entailment
z: X, PFQly <t

If our predicate logic is closed under substitution — i.e., if y : Y — P : Prop
and if z : X ¢t :Y, then v : X - Ply < t] : Prop — then the functor
p : £ — B mapping a predicate x : X — @ : Prop to the type X of its free
variable(s) is a fibration. Indeed, given a term ¢ in B such that =z : X ¢ :Y
and a predicate y : Y +— @ : Prop, the substitution of y in ) by ¢ defines
reindexing of () along ¢, and the cartesian lifting of ¢ at () is the morphism of £
fromz : X - Qly < t] : Prop toy : Y @ : Prop given by t itself together
with the obvious derivation of the entailment z : X, Q[y « t] - Q[y « t]. The
fibration defined in this way is called the syntactic fibration for the type theory
under consideration.

Furthermore, if the logic has the additional property that for any termz : X ¢ :Y
and predicate z : X -+ P : Prop there is a predicate y : Y - Ja : X. tfx <« a]=
y. Plx < a] : Prop (with equality as described in Section 10.1 in [Jac99]) then the
associated fibration is a bifibration. Indeed the adjunction ¥, 4 u*, for u that
capturesaterm z : X —t:Y andanyx : X 4 P: Propand y:Y — Q : Prop,

amounts then to the correspondence

y:Y, (EIa:X. tlx < a]l=y. P[w<—a]) - Q

z: X, P Qly < t]

In the next example we look at the fibration of set-indexed sets. This fibration
will help us develop intuitions on most of the fibrational constructions that we

will see in this thesis.

Example 1.1.6. The category Fam(Set) has as objects pairs (X, P) with X a
set and P : X — Set a function. We call X the domain of (X, P), and write P
for (X, P) when convenient. A morphism from P : X — Set to P’ : X' — Set

13



is a pair (f, f~) of functions f : X — X' and f~ : Ve e X. Px — P'(fx). The
functor p : Fam(Set) — Set mapping (X, P) to X and (f, f~) to f is called the
family fibration of Set. If f : X — Y is a morphism in Set and P : Y — Set, then
reindexing of P along f is defined by f*(Y,P) = (X, P o f), and the cartesian
lifting of f at P is (f, Az. id). In fact, this fibration is actually a bifibration: if
f: X — Y is a morphism in Set and P : X — Set, then opreindexing of P along
fis given by X+(X, P) = (Y, \y. U{xeXVx:y} Pz), and the opcartesian lifting of
f at Pis (f, A e X, \pe PSB.(ZE,p)).

In the following example we describes a construction that associates any cate-
gory C with a fibration of set-indexed elements of C. The fibration of set-indexed
sets presented in the previous example is an substantiation of this construction.
We keep both examples separate since the following example provides a nice inter-
mediary setting between the intuitive fibration of set-indexed sets and arbitrary

(abstract) fibrations.

Example 1.1.7. For C, a category, consider the category Fam(C) of set-indexed
families of objects of C. An object of Fam(C) is a pair (X, P) with X a set of
indices and P : X — C a function mapping to each index the corresponding
indexed element of C. We write P for (X, P) when convenient. A morphism from
P:X —>CtoP :X — Cisanpair (f,f~) of a function f : X — X' and a
family of morphisms f; : Px — P'(fz) in C, for x in X.

The category Fam(C) is fibred above Set with the functor p : Fam(C) — Set
sending a family (X, P) to the index X and a map (f, f~) to the function f. For
f: X —>Yin Set and P:Y — C in Fam(C)y, define the reindexing of P along
f, f*P: X — C, as Po f. The cartesian lifting f1§3 : f*P — P is then defined as
the pair (f, \x € X. idp(s,)). This fibration is called the family fibration of C.

In case the category C has set-indexed coproducts | [, the family fibration of
C is a bifibration. For f : X — Y in Set and P : X — C in Fam(C)y, define
EpP Y > Cas Ay [l
The opcartesian lifting f§P : P — ;P is then defined as the pair (f, f*) where

) Pz, where 'y denote the set {x € X|fz = y}.

/¥ is the injection of Pz in Hye(f—l(fx)) Py, for all x € X.
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Example 1.1.8. The arrow category of B, denoted B, has morphisms of B as
its objects. A morphism from f : X — Y to f/ : X’ - Y’ in B~ is a pair of
morphisms a7 : X — X’ and a3 : Y — Y’ in B such that the following diagram
commutes.

X=X

fl lg

Y —>Y
The codomain functor cod : B~ — B maps an object f : X — Y to Y and a
morphism (aq, as) to ay. Its fibre above an object Y is the slice category B/Y .
The codomain functor is an opfibration: given an object g : X — Y in B~ above
Y and a morphism f : Y — Z in B, the pair (idx, f o g) gives an opcartesian
morphism above f of domain g. Furthermore, if B has pullbacks then cod is
a bifibration called the codomain fibration above B. Indeed, given an object
f:X —>Y in B/Y and a morphism f’': X’ — Y in B, the pullback of f along [’

gives a cartesian morphism above f’.

Example 1.1.9. Let B be a category and, dually to the previous example, con-
sider the domain functor dom : B~ — B, which maps an object f : X - Y to X
and a morphism (aq, az) to a;. The domain functor is a fibration, with cartesian
morphisms given by composition. Its fibre above an object Y in B is the coslice
category Y /B. Furthermore, if B has pushouts then dom is a bifibration, called
the domain fibration above B. Indeed, the opcartesian lifting of a morphism

g: X — X' of domain f: X — Y is given by the pushout of f along ¢ in B.

We can consider restrictions of the arrow category that provide interesting
fibrations such as the fibration of monos, epis, subobjects, and so on. We only

describe the fibration of monos:

Example 1.1.10. If B is a category, then the category of monos of B, denoted
Mono(B), has monomorphisms in B as its objects. A morphism in Mono(B)
from f: X — Y to f': X’ < Y’ is a pair of morphisms («;, as) in B such that
aof=foan.

The map p : Mono(B) — B mapping a monomorphism f : X < Y to Y

extends to a functor, which we will also call p. If B has pullbacks, then p is
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a fibration, called the mono fibration above B (note that pullbacks do indeed
give cartesian morphisms since the pullback of a mono along any morphism is
again a mono). The fibre of Mono(B) above an object Y of B has as objects the
monomorphisms of codomain Y. A morphism in Mono(B)y from f: X — Y to

ffi X' Yisamap a; : X - X' in B such that f = f' o ay.

The following example is a standard construction to derive a setting of rela-

tions from a pre-existing fibration.

Example 1.1.11. Given a fibration p : &€ — B, where B has products, we can
consider the subcategory Rel(£) of £ whose objects are those objects of £ above
a product of the form A x A. The morphisms of Rel(€) are the morphisms of
& above a product of the form f x f. The functor p' : Rel(£) — B mapping an
object of £ above A x A to the object A is a fibration, and is called the relations
fibration for p. If f : A — B is a morphism in B and P is above B in Rel(£),
then the cartesian lifting of f at P with respect to p’ is given by the cartesian
lifting of f x f at P with respect to p.

It is not hard to see that if p is a bifibration in Example 1.1.11, then p’ is also a
bifibration. This example provides one way to construct a new fibration from an
already existing one. We will see techniques for doing this generally in the next

section.

Example 1.1.12. Let B be a category with cartesian products. The category
s(B) has as objects pairs (I, X) of objects of B, and as morphisms from (7, X)
to (J,Y) pairs of morphisms (u, f) in B where u is a morphism from / to J and
f is a morphism from I x X to Y. The first projection functor s(B) — B is a
fibration, called the simple fibration on B. Indeed, for any morphism f : I — J in
B and object (J, X) in s(B), the cartesian lifting of f at (J, X) is (f, m2). Note

that this fibration is not an opfibration, and therefore is not a bifibration.

We now look at some basic properties of cartesian morphisms. Bear in mind

that these results dualise for opcartesian morphisms.

Lemma 1.1.13. Let p: £ — B be a fibration, the following properties hold:
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(i) the cartesian lifting of an isomorphism is an isomorphism.
(i1) all isomorphisms in € are cartesian.
(11r) for any f: X =Y in B and P, Q in &, E(P,Q) = Ex (P, f*Q).

(iv) fora: P — Q and f:Q — R in &, if « and B are cartesian, so is (o «.

If B and B o « are cartesian, so is «.

Here, we write £¢(P, ) for the subclass of morphisms from P to @) in £ above f.
We then have the following very useful property on the relationship between

cartesian and opcartesian morphisms:

Lemma 1.1.14. Let p : € — B be a fibration. Then p s a bifibration iff, for

every morphism f: X —Y in B, f* has a left adjoint Xy.

Proof. We only describe the different constructions involved in the proof, for a
complete proof see [Jac93|.

Let p : £ — B be a bifibration and f : X — Y be a morphism in B. The
isomorphism associated to the adjunction Xy - f* is determined by the following
diagram,

f
P4§>ZP

x—1-y
where 3 uniquely determine a by the universal property of f% and a uniquely
determine 3 by the universal property of fs.
Let us now assume p : £ — B a fibration with, for every morphism f: X — Y
in B, a left adjoint ¥ of f*. For ) in Ex, define fg : ) — X ;) as the composition

§
Q 19, XrfrQ 2, 2 ¢(Q), where 7 is the unit of the adjunction ¥y — f*. n

We finish this section with the definition of the Beck-Chevalley condition for
bifibrations.
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Definition 1.1.15. Let p : £ — B be a bifibration. We say that p satisfies the

Beck-Cheuvalley condition if, for any pullback square:

A—>B
si f
C

in B, the canonical natural transformation ,t* - g*¥; defined as

_
_—
;D

#f ~ Sg¥
Dot 20 St iy, S st s L gty
is an isomorphism, with 7/ the unit of the adjunction ¥; + f* and €* the counit

of the adjunction ¥, - s*.

Among the previous examples, we can check that the bifibrations of Exam-
ples 1.1.4, 1.1.6 and 1.1.8 satisfy the Beck-Chevalley condition, and the construc-
tion of Example 1.1.11 preserves the Beck-Chevalley condition.

We are particularly interested in the following consequence of the Beck-Chevalley

condition.

Lemma 1.1.16. Let p : &€ — B be a bifibration that satisfies the Beck-Chevalley
condition. For any mono f: X — Y in B and any P above X, the unitn: P —
[*E¢P 1s an isomorphism. Or, equivalently, for any mono f: X —Y in B the
functor ¥y : Ex — Ey s full and faithful.

id,
X—X

Proof. Since f: X — Y is mono, the square |  |f is a pullback. Therefore,
XY
f

by the Beck-Chevalley condition, this implies that the composition:

€iaf*Xy
s

Yqid*® . = .
szzd* M) Eidzd*f*Ef - Zidld*f*Zf f*Zf
is an isomorphism. Now, remembering that the (op)cartesian lifting of an iso-
morphism is an isomorphism, the functors ¢d* and ¥;; are full and faithful hence
the counit €4 is an isomorphism. We then have that X;5id*n; is an isomorphism
thus, the unit ny : id., — f*¥; is an isomorphism, making ¥ a full and faithful

functor. O
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1.2 Fibred category theory

Now that we have the notion of a fibration at our disposal, we present two different
ways to construct new fibrations from existing ones, namely, change of base and
composition. We then consider fibred structure, i.e., categorical structure within a
fibration. Categorical structure is given in terms of adjunctions, which themselves
are given in term of functors and natural transformations. We find the exact
same situation with fibrations: there are notions of fibred functors, fibred natural
transformations, and, derived from these, fibred adjunctions. In this section, we
present these fibred notions. We then conclude this section by considering how
the change of base construction preserves fibred structure.

We first consider one standard way to construct fibrations. If C is a category
and if f: X — Z and g : Y — Z are morphisms, then write (f xz g, f*g,9*f)
for the pullback of g along f in C.

Lemma 1.2.1. Let p : £ — B be a fibration and F : B' — B a functor. The
pullback

*
F XBPPL)é’

F*pi - lp

B’ B

F
of p along F' in Cat defines a new fibration F*p: F xgp — B. We say that the

fibration F*p is constructed by change of base of p along F'.

The fibration F*p is described concretely in the following way. Following the
standard construction of pullbacks in Cat, the total category F' xzp has as objects
pairs (Y, P), where Y is an object of B’, P is an object of £, and F'Y = pP, and
morphisms are given similarly. The functor F*p is then the first projection. Now,
to check that F*p is a fibration, let f : X — Y be a morphism in B’, and let
(Y, P) be an element of (F' xp p)y. Then reindexing of (Y, P) along f is given
by (X, (Ff)*P), and the cartesian lifting of f at (Y, P) with respect to F*p is
the cartesian lifting of F'f at P with respect to p. Note that a morphism f is
cartesian with respect to F*p if and only if the morphism p*F'f is cartesian with

respect to p.
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We then have, using the duality between fibration and opfibration (Lemma 1.1.3),

the following corollary:
Corollary 1.2.2. Change of base preserves opfibrations and thus bifibrations.

It is not hard to see that the relations fibration p’ : Rel(£) — B for a fibration
p: € — B presented in Example 1.1.11 can be constructed as a change of base of
p along the endofunctor A : B — B that maps an object X of B to the product
X x X.

As we will see in the following lemma, another way to construct a fibration is

by composition.

Lemma 1.2.3. Letp: & — B and p' : B — A be fibrations, then the composition
pop: & — Ais again a fibration.

This time a cartesian lifting of a morphism f : X — Y in A at P is given by
successively lifting the morphism f with respect to p’ and then with respect to
p. More specifically, if P is such that p'pP = Y then the cartesian lifting of f
at P with respect to p’ o p is the cartesian lifting at P, with respect to p, of the
cartesian lifting of f at pP with respect to p’. In symbols, it is ( fsp)%, where the
inner cartesian morphism is taken with respect to p’ and the outer one is taken
with respect to p.

We can derive from the change of base and the composition operations more
complex constructions like the product of two fibrations with the same base cat-

egory. We have

Corollary 1.2.4. Letp:E - B and p' : & — B be two fibrations. The functor

p x p' defined as follows is a fibration.

/%
,0'Ep
pXgp —=¢&'

* /i \>< / i ’
pp pXxp p
\

& B

p

Here the resulting fibration has as fibre (p xpp')x = Ex x E% for X in B.
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Let us now consider fibred structure. We begin with the notion of a fibred

functor.

Definition 1.2.5. Given two fibrations, p : &€ — B and p' : & — B', a fibred
functor from p to p' is given by a pair of functors F': B — B and H : £ — &’

such that the following diagram commutes and H preserves cartesian morphisms.

In this situation we write (H, F) : p — p'.

Example 1.2.6. Any functor F' : B — B’ induces a fibred functor (F~,F)
between the two domain fibrations dom : B~ — B and dom' : B~ — B, where
F~ is the obvious extension of F' to the arrow categories B~ and B~. Indeed,
the cartesian morphisms in dom are pairs (ay, ag) of morphisms in B where a4 is
an isomorphism (see Example 1.1.9). Hence, F'~ preserves cartesian morphisms

since (any functor) F' preserves isomorphisms.

Example 1.2.7. If B and B’ are two categories with pullbacks, and F'is a functor
which preserves pullbacks, then (F~, F') is a fibred functor between the codomain
fibrations cod : B — B and cod' : B~ — B’. In this case, cartesian morphisms

are pullback squares (see Example 1.1.8) and F preserves them by assumption.
Another fibred functor arises via change of base.

Example 1.2.8. If F'*p is the fibration obtained by pulling p back along F', then
(p*F,F) : F*p — p is a fibred functor.

Note that fibrations and fibred functors form a category Fib. In fact, the
category Fib is fibred above Cat. Indeed, the functor U mapping a fibration
p : &€ — B to its base category B is a fibration, and reindexing and cartesian
lifting are given by change of base. That is, if p : &€ — B is a fibration and
F : B — B’ is a functor, then the cartesian lifting of I at p is given by (p*F, F).

With the notion of fibred functor comes the following notion of a fibred natural

transformation.
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Definition 1.2.9. Given two fibred functors (H, F') and (L,G) fromp: & — B
top' : & — B, a fibred natural transformation from (H, F) to (L,G) is given
by a pair of natural transformations n: F — G and v : H — L such that every

component yp is above the component 7,p).

It is straightforward to check that any natural transformation n : F' — G
induces a fibred natural transformation (n~,n) : (F,F) — (G, G) in the do-
main fibration (following Example 1.2.6), as well as in the codomain fibration as

soon as both F' and G preserve pullbacks (following Example 1.2.7).

Now that we have notions of fibred functors and fibred natural transforma-

tions, we can introduce the notion of a fibred adjunction.

Definition 1.2.10. Given two fibred functors (H, F') : p — p' and (L, G) : p' — p,
we say that (H, F') is a fibred left adjoint of (L,G) if F is left adjoint to G, H
is left adjoint to L, and the unit, or equivalently the counit, of the adjunction

H — L is above the unit (resp., counit) of the adjunction F' H G.

Example 1.2.11. Any adjunction F' 4 G can be seen as a fibred adjunction
between the extensions of the functors F' and G to their corresponding domain

fibrations.

In this thesis we will mainly use fibred functors (H, F) : p — p’ where p :
E — Band p' : & — B have the same base category B and F' is taken to be the
identity. In this case a fibred functor from p to p’ is simply a functor H : £ — &’

such that the following diagram commutes and H preserves cartesian morphisms,

&

H s
B

We say that the functor H is fibred above B, or simply fibred, if B is clear from
context. This construction determines a category Fib(B) of fibrations with base
category B and fibred functors above B. In fact, Fib(B) is the fibre above B in
the fibration from Fib to Cat described after Example 1.2.8. Notice then that
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every fibration p : £ — B is also a fibred functor:

£

& B
N S
B

and that this makes the identity of B the terminal object of Fib(B). Furthermore,
the product fibration defined in the Corollary 1.2.4 is a cartesian product in
Fib(B).

If we restrict ourselves to fibred functors in Fib(B), the notions of a fibred
natural transformation and of a fibred adjunction are correspondingly simplified.
We then have that a fibred natural transformation above B is a natural transfor-
mation between fibred functors above B whose components are vertical. A fibred
adjunction above B is an adjunction between fibred functors above B such that
the (components of its) unit, or equivalently counit, are vertical.

Notice then that, for any X in B, we can restrict a fibred functor F' : p — p/
above B to a functor Fx between the fibres £x and £%. Similarly, we can restrict
a fibred natural transformation « : ' — G above B to a natural transformation
ay : Fxy — Gx, for any X in B. As adjunctions are described in terms of functors
and natural transformations, there is a similar result for fibred adjunctions. The
next lemma shows how we can use these restrictions in order to have a fibrewise
presentation of fibred adjunction.

We will make good use of the following lemma in the remainder of this thesis.

Lemma 1.2.12. Letp: € - B and p' : £ — B be fibrations, and G : p — p’ be
a fibred functor above B. Then G has a fibred left (resp., right) adjoint above B
iof and only if the following two conditions hold:

(i) For any b in B, Gy has a left (resp., right) adjoint Fy.

(i) The Beck Chevalley condition holds, i.e., for every map u : a — d in B
and every pair of reindexing functors u* : € — &, and u* . &, — &,
the canonical natural transformation F,u® = u*F, (resp., u*Fy - Fau#)
obtained as the transpose of the composition u® m wWtGyF, = Guu*Fy

~

# ‘ ‘ ‘
(resp., Gou*Fy = u?GyFy ~ u* ) is an isomorphism.
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Now that we have a notion of a fibred adjunction, let us look at some specific
structures that we can define using it.

We first use fibred adjunctions to define the notion of a terminal object func-
tor. Terminal object functors capture the notion of truth in context when mod-
elling logic with fibration (see the following examples). This notion is then fun-

damental for the presentation of induction schemes in fibration.

Definition 1.2.13. Let p : £ — B be a fibration, we say that p has a terminal
object functor if the unique fibred functor from p to idg has a fibred right adjoint.

Diagrammatically we have:

p
EZ_ L B
1
X As
B

We denote the terminal object functor for p by 1,, or simply by 1 when p is clear

from the context.

Since the fibration idp is the terminal object of Fib(B), the terminal object
functor can be understood as a fibred terminal object.

We can deduce the following properties from this definition.

Lemma 1.2.14. Let p be a fibration with a terminal object functor. The terminal
object functor is full and faithful. Moreover, any full and faithful right adjoint to

p is a terminal object functor for p.

Proof. The key observation is that the only vertical morphisms in the fibration idg
are the identities. We then know that, first, whenever there is a fibred adjunction
p — 1 the components of the counit are necessarily identities, i.e., 1 is full and
faithful, and second, that this is a sufficient condition to have a fibred right adjoint
to p. ]

Using Lemma 1.2.12 on Definition 1.2.13, the terminal object functor can be

given in a fibrewise form.

Corollary 1.2.15. Let p: &€ — B be a fibration. Assume further that, for every
object X of B, the fibre Ex has a terminal object 1.X such that, for any f : X' — X
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in B, f*(1X) = 1X'. Then the assignment mapping each object X in B to 1X in
5
E, and each morphism f : X' — X in B to the composition 1X' = f*1X Tox

in £, defines the terminal object functor1: B — E£.

Example 1.2.16. (Example 1.1.5, continued) If the predicate logic on a type
theory has a constantly true proposition true, then the syntactic fibration for
that type theory has a terminal object functor. It maps any type in the type

theory to the constantly true-valued predicate.

Example 1.2.17. (Example 1.1.6, continued) The family fibration on Set has a
terminal object functor. It maps a set X to (X, A\z.1), where 1 is the one point

set.

Example 1.2.18. (Example 1.1.7, continued) For C, a category with a terminal
object T, the family fibration of C has a terminal object functor 1 : Set — Fam(C)
defined as 1 X = (X, Az e X. T).

Example 1.2.19. (Example 1.1.8, continued) The codomain fibration on a cat-
egory B has a terminal object functor. It maps an object X € B to the identity

morphism id x.

Example 1.2.20. (Example 1.1.12, continued) If a category B has cartesian
products and terminal object 1, then simple fibration on it has a terminal object

functor. It maps an object X of B to (X, 1).

Example 1.2.21. The functor mapping a category B to the identity fibration

above B is the terminal object functor for the fibration Fib above Cat.

Before looking at another structure constructed from a fibred adjunction we
present the notion of section of a fibration. The sections of a fibration will be

used to model (an abstract form of) equality in the setting of coinduction.

Definition 1.2.22. A section of a fibration p : £ — B is a functor e : B — &

right inverse of p, i.e., such that poe = idg.

Note that, as any right inverse functor, a section is necessarily faithful. Also,

note that the terminal object functor of a fibration p is a full, fibred section, as
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well as the terminal object of the category of sections of p and vertical natural
transformations between them.

We then have the following property.

Lemma 1.2.23. Let p: £ — B be a fibration with a (full) section e : B — & and
F: A — B bea (full) functor. The fibration F*p obtained by a change of base of
p along F has a (full) section.

Proof. Construct the section ¢’ : A — £’ of F*p as the unique morphism making

the following diagram commute:

eoF’

Concretely, the functor ¢’ sends an object X in A to the pair (X, eFX). Hence,
if e and F are full it follows that ¢’ is full. O

Next we use fibred adjunctions to define a notion of fibred products.

Definition 1.2.24. A fibration p : & — B has products if the diagonal (fibred)
functor A : &€ — £ x £ above B has a fibred right adjoint, i.e., if

A
E_ T TEXE

N

B

As with fibred terminal object functors, we can construct fibred products fibre-

wise.

Corollary 1.2.25. A fibration p : € — B has products iff for every object X in
B, the fibre £x has a cartesian product X x, and for every f : X — Y in B and
P,Q in Ey the canonical map < f*my, f*me >: f*(P xy Q) = f*P xx f*Q is an

1somorphism.
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Example 1.2.26. (Example 1.1.5, continued) Conjunction of predicates stable
under substitution define a fibred product in the syntactic fibration of Exam-

ple 1.1.5.

Example 1.2.27. (Example 1.2.21, continued) The product of the two fibrations
defined in Corollary 1.2.4 define a fibred product for the fibration of Fib above
Cat.

We now turn our attention to some properties of the change of base operation.

To begin with, it is worth noting the following:
Lemma 1.2.28. The operation of change of base preserves fibred adjunctions.

The change of base construction allows us to lift a natural transformation to

a fibred functor and a fibred natural transformation.

Lemma 1.2.29. Let K,L : A — B be two functors, o : K — L be a natural
transformation between them, and p : € — B be a fibration. Then o lifts to a
fibred functor (o) : Lxg p — Kxp p, as well as to a fibred natural transformation

o :p*K o{o) — p*L. Diagrammatically, we have

Kxpp

p*K €
\<a> V
~ p*L

K*p Lxgp P

Proof. (Sketch) An object of L x s p consists of a pair (a,e) such that La = pe,
and an object of K x g p consists of a pair (d¢/,€') such that Ka' = pe’. We can
therefore define the fibred functor (o) by (o )(a,e) = (a,o}e). The fibred natural
transformation & can be defined by G(,¢) = (04)8. See [Jac99] for a complete

e

proof. n

This allows the derivation of the following lemma, from [Her99|.
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Lemma 1.2.30. If a functor F : A — B has a right adjoint G, the functor ¢*F
obtained from pulling F' back along a fibration q : C — B has a right adjoint G.

qxpF a A
e F/4 G
q {1 S |
y/ /
C———B

Proof. Here we describe the construction of the adjunction ¢*F - G. For a
complete proof see [Her99|. Applying Lemma 1.2.29 to the fibration ¢ and € the
counit for F' 4 G gives the following diagram:

G*(F*q)

- B
| J
(F*i)*G GJ{
& . Fro— A =>|id

q*FiJ r|

q

The right adjoint G to ¢*F' is then defined by G = (F*¢)*G o{e). The adjunction
¢*F - G has unit 7{e¢F") and counit . O

We will need the following new elaboration on Lemma 1.2.30:

Corollary 1.2.31. In Lemma 1.2.30, if G is full and faithful then so is G. In
this case {€), the lifting of € the counit of F' - G, is an isomorphism, and so G
can be defined to be (F*q)*G. Similarly, if F' is full and faithful then so is the
functor ¢*F.

Proof. In the situation of Lemma 1.2.30, let ¢ and 7’ be the unit and counit of
the adjunction ¢*F' < G, and € and 7 be the unit and counit of the adjunction
F 4 G. Notice, from the description of ¢ and 7’ in the proof of the Lemma, that
the components of ¢ and 7’ are cartesian liftings of the components of € and 7
respectively. Therefore, since every cartesian morphism above an isomorphism

is itself an isomorphism, if € (resp., 1) is a natural isomorphism, so is €' (resp.,
). O
We finish this chapter with the following proposition about adjunctions and

28



functors preserving (op)cartesian morphisms. This proposition will be of use in
the remainder of this thesis (in particular, to prove Lemmas 5.1.4 and 6.1.2). We

are not aware of any previous publication of this result.

Proposition 1.2.32. Let H: & > A, L:B—> A, F: £ —>Band G: B — & be
functors such that H = Lo F and L = Ho G. If F 4 G with vertical unit (or
equivalently, counit) then the functor F' preserves opcartesian morphisms and the

functor G preserves cartesian morphisms.

Proof. We only prove that GG preserves cartesian morphisms, the second result is

FX Y
then obtained by dualisation. Write ¢ : == for the natural isomorphism

X - GY

characterising the adjunction /' - GG and note that we can restrict this adjunction
to adjunctions between the fibres since the unit is vertical. Let f: X — Y be a
morphism in A and u : Q — P be a cartesian morphism above f in B. We want
to prove that Gu is cartesian above f in £. Let [ : R — GP be a morphism in
& above f o g for some g in A. We then have a unique morphism v : FR — @
in B above g such that uov = ¢!l since u is cartesian. This gives us a unique

morphism ¢v : R — G@Q in £ above g such that Gu o ¢pv = [ by naturality of
0. O
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Chapter 2

Comprehension and quotient

In this chapter we introduce the notions of a comprehension category with unit
and a quotient category with equality. These two notions are central to our work.
In Section 2.1 we recall the notion of a comprehension category with unit, or CCU
for short. It was introduced in [Ehr88a, Ehr88b| under the name D-category and
studied as an instance of the more general notion of comprehension category
in [Jac93|. This notion is fundamental in the fibrational treatment of induction:
It is used as a sufficient condition to guarantee the existence of induction schemes
for polynomial data types in [HJ98| and will be used to construct our canonical
liftings in the next chapter. Comprehension categories with unit where introduced
to capture the operation of context extension when using a fibration to model a
dependent type theory, as we will see in Example 2.1.7. In addition, if we see a
fibration as a model of a logic above a type theory then a CCU captures a notion
of comprehension types, as we will see in Example 2.1.2. We conclude the section
by considering which of the constructions on fibrations preserve CCUs.

In Section 2.2, we introduce our new notion of a quotient category with equal-
ity, or QCE for short. These fibrations play a role in coinduction that is similar
to that played by CCUs in induction. In [Jac94] the notion of a fibration having
quotients is introduced in order to model quotient types in a simple type the-
ory. It was later generalised to model quotient types in a dependent type theory
in [Jac99]. The notion of QCE is an abstraction of the notion of quotients for

a fibration. The idea of quotient types is that, in a predicate logic on a type
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theory (see Example 1.1.5), we can construct a new type from a relation (i.e.,
binary predicate) on an old type by identifying related elements of the old type.
Since objects of a total category are sometimes considered to be relations, quo-
tients define a functor from the total category of a fibration to its base. Equality
refers to the presence of a functor that maps an object of a category to a relation
representing equality on that object. As for CCUs, we look at instances of QCEs
in logic and type theory, and complete the section by considering which of our

constructions preserve QCEs.

2.1 Comprehension categories with unit

We start with the definition of comprehension category with unit.

Definition 2.1.1. Let p : £ — B be a fibration with terminal object functor
1: B — &£ We say that p admits comprehension if 1 has a right adjoint. We
write this adjoint {—} and refer to it as the comprehension functor for p.

If p admits comprehension, then there is a functor 7 : £ — B~ that maps an
object P of £ to pep, where € is the counit of the adjunction 1 - {—}. We call
7 a comprehension category with unit (CCU) for p. We say that p admits full

comprehension if 7 is full and faithful.

Note that, since for any fibration p with a terminal object functor 1, 1 is full and
faithful, we have that if p admits comprehension then the unit of the adjunction

1 4 {—} is an isomorphism with inverse given by 71.

Example 2.1.2. (Example 1.2.16, continued) The syntactic fibration admits
comprehension if the type theory under consideration has comprehension types
for all predicates, i.e., if, for every predicate P, there exists the type {P} com-
prising pairs (x,t) such that z € pP and t is a proof that P holds for z. In this
case, the comprehension functor maps a predicate P to the type {P} and the
CCU maps a predicate P to the term in context (z,t) : {P} — z : X.

If the logic of £ is proof irrelevant — that is, if there is only one proof of

any true proposition — then comprehension gives subset types. Indeed, the
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comprehension of a predicate P is the subtype of pP consisting of those terms

that satisfy P.

Example 2.1.3. (Example 1.2.17, continued) The family fibration on Set admits
comprehension. The comprehension functor maps an object (X, P) of Fam(Set)
to the set {(X, P)} = {(z,p)|r € X,p € Px}. The CCU maps an object (X, P)
of Fam(Set) to the first projection m : {(X, P)} — X in Set .

Example 2.1.4. (Example 1.2.18, continued) Let C be a category with a terminal
object T and small homsets C(T,X). The family fibration p : Fam(C) — Set
admits comprehension. The comprehension functor {—} : Fam(C) — Set maps

an object (X, P) to the disjoint union [ [, C(T, Pz).

Example 2.1.5. (Example 1.2.19, continued) The fibration cod provides the
canonical example of CCU. The comprehension functor is dom : B~ — B, and

the CCU is the identity functor on B™.

Example 2.1.6. (Example 1.2.20, continued) Let B be a category with product
x and terminal object 1. The simple fibration on B admits comprehension. The
comprehension functor maps (X, Y') to (X xY). The CCU maps an object (X,Y)
of £ to the first projection m; : X x Y — X in B™.

CCUs capture the operation of context extension in dependent type systems.

This operation can be represented by the inference rule

I'+=o: Type

[',o : Context

This is explored in the following example. Please refer to [Ehr88a| or [Jac99| for
further detail.

Example 2.1.7. Given a calculus with type dependency and a unit type we
can form a full comprehension category with unit in the following way. (As in
Example 1.1.5 we deal with Sn-equivalence classes of terms, types, contexts, etc.)
The objects of B are contexts I'. A morphism from I'" to A, where A = y; :
Ty -y Yn © Tn, 1S an n-tuple of terms My, ..., M, such that T' — M; : 7;[y; <
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My, ...,y; 1 < M; 1]. Objects of the category & are type judgments I' - o :
Type. A morphism of € from I' -+ o : Type to A + 7 : Type is a pair (M,N)
with M : T - Ain Band I,z : 0 - N : 7[§f < M]. The functor 1 then maps an
object I" to I' = 1 : Type, where 1 is the unit type. The comprehension functor
maps a type judgment I' = o : Type to the context Iz : 0. The associated

adjoint correspondence is then given by:

('~ 1: Type) — (A 7 : Type)
- (Ax:7)

This amounts to the correspondence between a context morphism from I' to
A,z : 7 and the pair of a context morphism M from T to A and a term Me:1F
N : 7] < M] (straightforward from the definition of context morphisms). The
CCU maps a type judgment I' -~ ¢ : Type to the morphism of context ',z : 0 —» I
that forgets the type o, i.e., if I' is the context xy : 71,..., 2, : 7, then T mype)

is given by the n-tuple xq, ..., z,.

Example 2.1.2 shows that comprehension can be seen as a type constructor.
Comprehension categories with unit therefore capture constructive logic by show-
ing how to represent collections of proofs as types. Concretely, the proofs of a
predicate P can be seen as terms of the type {P}. This point of view is the one
that we take in this thesis, but note that Example 2.1.7 illustrates an alternative
point of view, namely, that CCUs capture the notion of context extension.

We can see from Examples 2.1.2 and 2.1.7 that comprehension can be used to
model both logical predicates and context extension in a dependent type theory.
Of course, in some fibrations, comprehension can be (intuitively) thought of as
playing both roles. For example, using the propositions-as-types metaphor, we
can think of an object of the total category of the simple fibration as representing
both a type and a proposition. An object (I, X) of the fibre above I can then be
thought of as the proposition X in context I, with comprehension mapping this
object to the type I x X. Alternatively, we may think of an object (I, X) of the
fibre above I as the type X definable in context I. In this case, comprehension

maps (I, X) to the extended context I x X. A similar analysis is possible for the
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codomain fibration on a locally cartesian closed category, the family fibration on
Set, and so on.
We now look at some properties and structures of CCUs. We start with a

notion of morphism that we can associate to CCUs, following [Jac91]:

Definition 2.1.8. Let p : £ — B and p' : £ — B’ admit comprehension with
p1-{=}and p' 41 —H{=}. A morphism of comprehension categories with
unit from p to p' is a fibred functor (H, F') : p — p’ preserving the terminal object
functor such that the canonical map F{—} — {—} H is an isomorphism. The
latter is obtained as the transpose of the composition 1/F{—} =~ H1{—} £ H
with € the counit of the adjunction 1 4 {—}.

This notion will be relevant in Lemma 5.1.4.

The following result from [Jac93| shows that every CCU is a fibred functor.

Lemma 2.1.9. Let p: & — B admit comprehension. Then, the associated CCU

m: & — B~ sends cartesian morphisms to pullback squares.
Proof. Dual of Lemma 2.2.8. O]

We now consider how comprehension categories with unit behave under the

change of base operation.

Lemma 2.1.10. Letp: & — B and q : C — B be fibrations. If p admits compre-
hension, then so does the fibration q*p obtained by change of base of p along q.

Furthermore, if p admits full comprehension, ¢*p also admits full comprehension.

Proof. Let p: € — B, 1, and {—} provide a comprehension category with unit 1,
and let ¢ : C — B be a fibration. By Lemma 1.2.30, the change of base of p along
q yields an adjunction ¢*p — 1, and by Corollary 1.2.31, 1 = (p*q)*1 is full and
faithful.
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Since p*q is a fibration, we can use Lemma 1.2.30 again to conclude that the

change of base of 1 along p*q yields an adjunction 1 — {—}.

We therefore have the following situation:

i

*

~

q —}

q %8B
(40
p (-1
\T/
C
Since 1 is full and faithful, Lemma 1.2.14 ensures that 1 is a terminal object
functor for ¢*p. The comprehension functor ﬂ maps an object (c,e) in ¢ Xg p
to (me)*c in C, where 7 is the CCU for p. The CCU for ¢*p maps an object (c, e)
in g xgpto (m)d: (me)*c — cin C~.
See [Jac93] for the sketch of an alternative proof of the lemma and a sketch

proof of preservation of fullness. O

Next we will introduce the notion of Lawvere fibration. This notion comes
from the notion of hyperdoctrines that satisfy the comprehension scheme intro-
duced by Lawvere for the first description of comprehension in category the-
ory |Law70]. This notion of hyperdoctrines was then translated in the theory of
fibration in [Jac93]. Lawvere fibrations will be important when defining liftings

of functors.

Definition 2.1.11. A fibration p : &€ — B is a Lawvere fibration if it admits

comprehension and is a bifibration.

The following equivalent presentation, which appears as Result (i) in [Jac93],

highlights a useful structure of Lawvere fibrations.

Lemma 2.1.12. Let p : £ — B be a bifibration. Then, p is a Lawvere fibration
iff it has a terminal object functor 1, and the functor ¢ : B~ — £ mapping an
object f + X — Y of B~ to X4/1X has a right adjoint m with cod o™ = p and

35



vertical counit. In this case we have that m = pe, where € is the counit of the

adjunction 1 - {—}, and is a CCU.

If 7 is a full CCU, then we call p a full Lawvere fibration. In this case, the counit
of the adjunction ¢ - 7 is an isomorphism. Let («, 5) : f — ¢ be a morphism in
B~.

X—=7Z

f |o

Y 5 T

The morphism part of the functor ¢ maps («, 3) to the unique morphism above

£, making the following diagram commute:

1X —*+17
wl
Y1X o -N17
I 3oy 79

The morphism ¢(«, 8) exists and is unique by the universal property of the op-

cartesian morphism f{¥.

Example 2.1.13. (Example 2.1.3, continued) We have seen that the family fibra-
tion on Set is a bifibration that admits comprehension, and is therefore a Lawvere

fibration. The functor ¢ maps a function f : X — Y to the inverse image family

Y, f=).

Example 2.1.14. (Example 2.1.4, continued) Let C be a category with set-
indexed coproducts, a terminal object T and small homsets C(T, X). The family
fibration of C is a Lawvere fibration (keep in mind Example 1.1.7 for the bifibred
structure and Example 2.1.4 for the CCU structure). The functor ¢ : Set” —

Fam(C) then maps a function f : X — Y to the family (Y, \y. ] T).

ze(f~1y)

Example 2.1.15. (Example 2.1.5, continued) The fibration cod is a Lawvere
fibration by Examples 1.1.8, 1.2.19 and 2.1.5. It is the canonical example of a
Lawvere fibration. In this case, both the functor 7 and the functor ¢ are the

identity functor on B™.
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As a direct consequence of the preservation of bifibrations by change of base
(see Corollary 1.2.2), together with the preservation of CCUs by change of base
(see Lemma 2.1.10), we have the following preservation property of Lawvere fi-

brations.

Corollary 2.1.16. Lawvere fibrations are stable under change of base along a
fibration. Furthermore, if the original Lawvere fibration s full, so is the one

obtained from the change of base.

2.2 Quotient categories with equality

Just as Lawvere fibrations provide us with sufficient structure to establish sound
induction schemes, so quotient category with equality (QCE for short) provide
the structure needed to give sound coinduction schemes. We define QCEs in the

following way.

Definition 2.2.1. Let p : £ — B be a fibration with a full (and necessarily
faithful) section e : B — £. If e has a left adjoint @), we say that p admits

e-quotients, or simply admits quotients if e is clear from the context.

B—B

idp

We call @ the quotient functor for p. If p admits quotients, then there are functors
p:& — B~ and ¢ : B~ — & defined by pP = pnp, where n is the unit of the
adjunction e - @, and ¥ (f : X = Y) = f*eY. We call p the quotient category
with equality (QCE) for p.

Intuitively, the functor e is thought of as an abstract equality functor. Note that
any fibration p with a terminal object functor 1 trivially admits 1-quotients with
quotient functor p. If the functor p : £ — B~ is full and faithful we say that p
admits full quotients. We stress that this notion of fullness of quotient will usually
imply that any relation is equivalent to a kernel relation (see Example 2.2.5 for

example) and in particular, is an equivalence relation.
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We now describe the dual construction of tC-opfibrations, which will also be

useful.

Definition 2.2.2. Let p : £ — B be an opfibration with a full (and necessarily
faithful) section ¢ : B — £ and with C' a right adjoint to ¢.

E
Il
v t
B———~ o B
We say that p is a tC-opfibration. If p is a tC-opfibration, then there are functors

m:& — B and ¢ : B~ — & defined by 7P = pep, where € is the counit of the
adjunction t 4 C, and ¢ (f : X - Y) = Xt X.

If p is a tC-opfibration and a bifibration we will call p a tC-bifibration. If the
functor 7 : £ — B~ is full and faithful we call p a full tC'-opfibration.

As apparent, while we present QCEs as the counterpart of CCUs for coinduc-
tion, the notion of QCE is not dual to the notion of CCU (but of tC-opfibration).
As we will see in the next chapter, while QCEs have enough structure to derive
our coinduction schemes, CCUs do not have enough structure to derive our induc-
tion schemes and we need to consider Lawvere fibrations. In fact, by duality it is
enough to have the structure of a tC-opfibration, of which a Lawvere fibration is
a specific instance (see Corollary 2.2.7). The lack of symmetry in our treatment
of induction and coinduction is due to the following:

First, for our study of induction, while Lawvere fibrations are less general than
tC-opfibrations, they are known to capture a relevant setting between a logic and
a type theory (See [Jac93|). In particular they have a terminal object functor
when tC-opfibrations only have a full section. Strengthening the condition on
the full section guarantees the presence of a notion of truth in the logic.

On the other hand, for our study of coinduction we consider QCEs where
the relation between fibrations and their associated section is more lax. This is
because strengthening the condition on the equality functor (the section) to be
fibred adjoint to the fibration implies that equality relations are initial in fibres,

we can then only consider fibration of reflexive relations.
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We could of course regain symmetry in the presentation of induction and
coinduction by, either treating tC-opfibrations as the basic setting for induction
(instead of Lawvere fibrations), or asking the equality functor to be fibred (left)
adjoint to the fibration in the definition of a QCE. Note however that, while
the presentation is asymmetric, the duality between QCEs and tC-opfibrations
is behind most of our results (using the key fact that a Lawvere fibration is a
tC-opfibration).

We now look at different examples of QCEs:

Example 2.2.3. (Example 1.1.9, continued) The fibration dom : B> — B on
a category B is the canonical example of QCE. Here, the full section is given
by the functor that maps an object X € B to the identity morphism idx. The
quotient functor is given by the codomain functor cod : B~ — B. Furthermore,
both p and v are the identity functor on B~. To develop intuitions, consider B
as a category of set like objects: We can then understand an element f: X — Y
of B~ as the kernel relation of f on X, i.e., two elements z and 2’ of X are in
relation iff they have the same image under f. Hence the identity only relates
equal elements. The quotient (codomain) of f then contains the actual quotient
of the kernel relation of f (the image of f), while the elements in Y that are not
in the image of f can be understood as empty classes of equivalence.

To formalise this intuition using the internal language of B we can say that,
for f: X — Y an element of BY two terms of type X in context A, given by
u,v : A — X in B, are related by f if fou = f owv. We then find back the
above mentioned intuition when B is Set. Note that if B has cartesian products
then two elements are related by f x g iff their first projections are related by f
and second projections are related by ¢ (from the universal property of cartesian
products). However, B needs to have coproducts with the additional property
that any map f : X — Y + Y’ is either of the form X — Y Y + Y or
XYy 2 y4y (with inl and inr the two injections of the coproduct) in

order for f + g to capture a well behaving sum of the relations f and g.

Example 2.2.4. (Example 1.1.11, continued) Let B be a category with cartesian
products and p : £ — B be a bifibration satisfying the Beck-Chevalley condition
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with terminal object functor 1. We consider the relations bifibration p' : Rel(€) —
B for p. Define the functor Eq : B — Rel(€) by X — Y5, 1X, where 6x : X —
X x X is the diagonal morphism (for intuitions on this definition look at how
opreindexing is defined in Example 1.1.6 ). Note that by Lemma 1.2.14 and
Lemma 1.1.16 the functor Eq is full and faithful. The fibration p is said to have
quotients if p’ admits Eqg-quotients (See Definition 4.1 in [Jac94| or Definition
4.8.1 in [Jac99)]).

Example 2.2.5. (Example 1.1.6, continued) We now consider the relations bi-
fibration of the family fibration on Set from Example 1.1.6. The category of
Set-indexed relations, Rel(Fam(Set)), has as its objects the objects (X, P) of
Fam(Set) whose first components are products of the form Ax A for some set A.
As its morphisms it has the morphisms (f, f~) of Fam(Set) whose first compo-
nents are products of the form g x g for some function ¢ in Set. We can then see
an object (X x X, P) as a binary relation P on X where two elements x; and z,
are in P if Pxixy is not the empty set. As in Example 2.2.4, we can define the
functor Eq : B — Rel(Fam(Set)) mapping X to X5, 1X, i.e. to the equality rela-
tion on X. The functor Eq has a left adjoint @), which maps a relation (X xX, R)
to X/R, the quotient set of X by the least equivalence relation containing R.
Therefore, the relations fibration for the family fibration admits Eg¢-quotients. In
such a case, we have that the QCE p maps a relation R above X to the quotient
map cg : X — X /R that maps an element of X to its equivalence class under the
equivalence closure of R. The functor v maps a map f : X — Y into its kernel

relation ker(f), i.e., (x,y) € ker(f) iff fx = fuy.

Example 2.2.6. (Example 1.1.7, continued) Let C be a category with set-indexed
coproducts | | and a terminal object T, such that the initial object L = ]_[Q T
is strict, i.e., any morphism A — 1 is an isomorphism. We then have that the

relation fibration of the family fibration of C admits quotients with the following

section.
The section Eq : Set — Rel(Fam(C)) is given by EqX = Mz,2') € X x
T ife=2a
X. . Then, for R : XxX — C in Rel(Fam(C)), consider the rela-

1 otherwise.
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tion R = {(z,2') € X xX|R(x,2") #¢ 1}. Define the quotient @ : Rel(Fam(C)) —
Set of the QCE as mapping R to X /R the quotient set of X by the least equiva-
lence relation containing R.

Indeed, a map a: R — EqY above f : X — Y implies, by definition of Fq
and since the only maps into L are isomorphisms, that if for (z,2') € X x X,
frx # fa' then R(z,2’) = 1. Hence R is a sub-relation of the kernel relation
of f, and so is the smallest equivalence relation containing R. Thus, f extends
naturally to a function ¢ : X/R — Y such that f = gocg. Now, given a function
g : X/R — Y, associate the function (¢’,h), where ¢ = gocg and h is the
uniquely defined family of morphisms in C mapping R(x,z’) to T if ¢’z = ¢’y and

| otherwise. The section is full since the counit Q(Eq X) — X is an isomorphism.

Note that Lawvere fibrations and QCEs are not dual, but QCEs are slightly
more abstract than the duals of Lawvere fibrations (see corollary 2.2.7 below).
In particular, in a QCE, the section e is not required to be left adjoint to the
fibration, whereas in a Lawvere fibrations the terminal object functor is required
to be right adjoint to the fibration. As we will see in the next chapter, QCEs form
the basis of our treatment of coinduction, and Lawvere fibrations form the basis of
our treatment of induction. In fact, we will prove that QCEs and tC-opfibrations
are enough to allow us to derive valid induction and coinduction schemes. It is
often necessary that the section associated to a QCE is not adjoint to the fibration
in order to derive interesting coinduction schemes. The analogous relaxation for ¢
is not, however, necessary in the inductive setting. For this reason, we derive our
induction schemes with respect to Lawvere fibrations rather than tC-opfibrations.

Nevertheless, the concept of a tC-opfibration still permits us to treat induction
and coinduction as formal duals, and so any results obtained at this level of

abstraction are directly valid for both induction and coinduction. We have
Corollary 2.2.7. Every Lawvere fibration is a tC-opfibration.

Proof. Let p be a Lawvere fibration, and take ¢ to be the terminal object functor

and C to be the comprehension functor for p. m

We now look at some properties of QCEs. We start with a couple of results

highlighting the relationship between the notion of CCU and the notion of QCE.
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In order to see this, we recall that behind the notion of CCU is the notion of
comprehension category (see [Jac93|) which can be summarised as: a functor P :
& — B is a comprehension category if the functor codoP : £ — B is a fibration
and P sends cartesian morphisms to pullback squares. Lemma 2.1.9 insures then
that CCUs are indeed comprehension categories. Similarly, the following results
shows that QCEs are automatically opfibred (hence one could imagine a notion of
quotient category dual to the notion of comprehension category, of which QCEs

would be a specific instance).

Lemma 2.2.8. Let p : £ — B admit quotients. Then, the associated QCFE

p: & — B~ sends opcartesian morphisms to pushout squares.

The proofs of Lemma 2.2.8, as well as Corollary 2.2.9 and Lemma 2.2.10 are
the exact dual of the proofs of similar results for CCUs in [Jac93] (among which
there is Lemma 2.1.9 and Lemma 2.1.12). We reproduce them here in order to
check that weakening the hypothesis (namely not asking for e to be adjoint to p)

does not affect the proofs.

Proof. Let e denote the full section of p and () for the quotient functor. Let
f A — B be a morphism in B, R be an element of £4 and [ be an opcartesian

morphism above f. The image of [ by p is then given by the following square in

B:

A B
S
QR —5~Q(R)

Let ® denote the natural isomorphism associated to the adjunction () 4 e and
n :idg — e@ for its unit. In order to prove that the square (*) is a pushout, let us
assume g : B — X and h : QR — X two morphisms in B such that go f = hopR.
We have a morphism ®h : R — eX such that ®h = eh o ng by naturality of .
Hence ®h is above the composition h o pR which is equal to g o f. Therefore,
by the universal property of the opcartesian morphism [, there exists a unique

morphism 7 : R — eX above g, such that ®h = v o[. We then have the unique
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morphism making the square (*) a pushout square given by @1y : Q(R)

Indeed, the following holds by naturality of ®:

Py oQ(l) = ex 0Qyo Q)
=€x O Q((I)h)
= &~ (dh)
=h

as well as the following, by naturality of ® and »:

d 'y o p(R) =ex o Qyop(nmy)
= pleex 0 eQy o)
= pleex o nex ©7)
= py

=9

To conclude, the uniqueness of ®~1~ is obtained from the uniqueness of 7.

We can then deduce the following corollary:

— X.

]

Corollary 2.2.9. Letp: € — B be a bifibration that admit quotients with section

e : B — &, quotient functor Q@ : € — B and QCE p : £ — B™.
and f : pR — X in B, there exists the following pushout square in B:

pR d X
pRl lpiR
I—
R——=QX/R
Q Qfg%Q( R)

For all R in &€

We can now present the following result that characterises bifibrations that

admit quotients.

Lemma 2.2.10. Letp : £ — B be a bifibration with a full section e : B — E. The

bifibration p admits e-quotients with quotient functor Q : € — B iff the functor
Y B7 — £ mapping an object f : X — Y of B~ to f*eY has a left adjoint p
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with domop = p and vertical unit. In such a case, we have that p is the associated

QCE, i.e., p = pn where n is the unit of the adjunction () - e.

Proof. Let p : £ — B a bifibration with full section e. Assume first that the
functor ¢ : B™ — £ has a left adjoint p with dom o p = p and vertical unit. The
functor I : B — &£ that sends an object A in B to ¥id 4 in £ is isomorphic to e, since
I'A =id%eA = eA. Furthermore, I has a left adjoint () = cod o p by composition
of adjoints: I =1 oid )y codop = (. Hence, we also have Q - e. Now, we
have that the unit of the adjunction () — e is, by construction, n = ¥7p.n’ with
7 the unit of cod — id( y and 7’ the unit of p 4 1. Hence, considering that the
unit of the adjunction ¢  p is vertical, we have that pn = p(¥7p) = dom(7p)
and since dom 17 = id we can conclude that pn = p.

For the other direction of the equivalence, assume that p admits quotients
with quotient functor @ : &€ — B. For f : A — B in B, denoting A/B for the

coslice category with respect to A, we have:

B”(pR. f) = u-pg% A/B(p(EuR), f) (1)
~ u_pglA B/B (p(Ef(EuR)),idB) 2)
~ u.pg% Ep (35 (S.R), eB) (3)
= u:pglA Ea(SuR, freB) (4)
= 5 (R.¥f) (5)

When (1) and (2) come from Corollary 2.2.9, (4) comes from the adjunction
Y¢ - f* and (5) comes from the universal property of opcartesian morphisms.
Now for (3), it is easy to check that if we restrict the isomorphism associated to
the adjunction ) - e to the fibre £ we have, for any P in £g, the isomorphism
Ep(P,eB) = B/B(pR,idg). 1t is easy to check from its construction that the unit
of Q) - e is vertical. O

Note that Lemma 2.1.12 can be presented as a corollary of the dual of Lemma 2.2.10.

We now look at two preservation properties of QCEs.
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Lemma 2.2.11. QCFEs are stable under change of base of the underlying fibration

along an opfibration.

Proof. Let p, e and @ provide a QCE, and let ¢ : £ — B be an opfibration.

Consider the following pullback diagram.

,/B L
Q‘—<\e i(p*q)*e
A
idg E <7|_ .
st
L 4

q

We have that poe = id implies ¢*po(p*q)*e = id, and Corollary 1.2.2 ensures that
change of base preserves opfibrations, we also have that p*q is an opfibration. The
dual of Lemma 1.2.30 therefore ensures that the functor (p*q)*e has a left adjoint
@, and the dual of Corollary 1.2.31 ensures that (p*g)*e is full and faithful. O

Lemma 2.2.12. Letp : &€ - B,e: B — &, and Q : £ — B provide a QCE.
Let I be an object of B, and let p/I : E/el — B/I be the functor that maps
an object o : R — el to pa : pR — 1. Then p/I admits e/I-quotients with
quotient functor Q/I = ®, where ® is the natural isomorphism characterising the

adjunction @ — e.

Proof. First, p/I is a fibration. Indeed, let h : f — g be a morphism of B/I.

N

and let o : P — el be a morphism above g. The cartesian lifting of h at P with

X

Y

respect to p/I is the £/el-morphism

h
h* P

5
P
N
el

Here, h%; is the cartesian lifting of h at P with respect to p. Now, since poe = id,
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we have that p/I o e/l = id. Moreover, since e is full and faithful, so is e/I.
To see that QQ/I — e/, observe that the following two diagrams are (naturally)
isomorphic by naturality of ®:

o) - X p— 2" _.x

Q/\IN / \O‘\ e/If

I el
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Chapter 3
Lifting

A central aspect of Hermida and Jacobs’ approach to induction and coinduction
is to show how an endofunctor F' acting on types can be lifted to either an
endofunctor F acting on predicates or, an endofunctor F acting on relations.
These liftings make it possible to derive an induction scheme for the initial algebra
of F' or a coinduction scheme for the final coalgebra of F'. Before looking at the
derivation of induction and coinduction schemes, which will be the subject of the
next chapter, in this chapter we concentrate on the operation of lifting.

In Section 3.1 we introduce a general notion of lifting of a functor with regard
to a fibration. From there, we derive the two notions of 1-preserving and e-
preserving liftings. We then show how to construct a canonical 1-preserving
lifting of an arbitrary functor in Lawvere fibrations as well as a canonical e-
preserving lifting of an arbitrary functor in QCEs. In Section 3.2 we look at how
the canonical liftings behave with regard to the algebraic properties of the lifted
functors. We will then conclude by linking our canonical liftings with the lifting

operation of Hermida and Jacobs.

3.1 Definitions and canonical liftings

We start with the definition of a lifting of a functor in a fibration:

Definition 3.1.1. Let p : £ — B be a fibration and F' be a functor on B. A

lifting of F with respect to p is a functor F : & — & such that the following
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diagram commutes:
c-ts¢
P ip
B—B
Categorically, a lifting can be understood as a weak notion of fibred endofunc-
tor. Indeed, for any fibred endofunctor (H, F'), the functor H is a lifting of F.
Furthermore, similarly to fibred functors, we can restrict a lifting F': £ — £ of a
functor F : B — B to a functor Fy : Ex — Erx between fibres, for every X in B.
With induction schemes in mind, the idea is that endofunctors on the base
category of a fibration are understood as defining the structure of (potential)
inductive and coinductive types (see Section 4.1). Therefore, a lifting of a functor

F' can be seen as a predicate transformer that follows the structure defined by F'.

Example 3.1.2. (Example 2.1.13, continued) Consider the family fibration on
Set and the functor F': Set — Set defined as F X =1+ A x X with 1 the one
point set. Then the functor F (Y, P) = 11 + 1A x (Y, P) is a lifting of F.

Example 3.1.3. (Example 2.2.5, continued) Consider the relations bifibration
of the family fibration on Set and the functor F' : Set — Set defined as F' X =
1+Ax X with 1 the one point set and A some set. Then the functor F' (XxX, R) =
Eql + EgA x (X x X, R) is a lifting of F.

The next example introduces the lifting operation of Hermida and Jacobs, as
defined in [HJ98| (refer to this paper for further detail). This gives a first link
between their lifting operation and the liftings presented in this chapter. Note
that the liftings introduced in the two previous examples are instantiations of the

following.

Example 3.1.4. Let p : £ — B be a fibration with a terminal object functor
1, and where £ is bicartesian above B, i.e., £ and B are bicartesian categories
and p preserves the bicartesian structure. Consider a polynomial functor 7' :
B — B, i.e., a functor built from the identity, constants, and finite products and
coproducts. Then:

(i) We can construct the (polynomial) functor Pred(T) : € — £ by induction

on the structure of 7. The bicartesian structure of B used in T is replaced by
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the bicartesian structure of £ in Pred(T'), and every constant A in B occurring
in T is replaced by the constant 1A in Pred(T).

(ii) If p is a bifibration we can construct the functor Rel(T) : Rel(E) — Rel(E)
by induction on the structure of T'. The bicartesian structure of B in 7T is replaced
by the bicartesian structure of € in Rel(T'), and every constant A in B occurring
in T is replaced by the constant Fq A in Rel(T) (remember Example 2.2.4).

It is straightforward to check that the functor Pred(T') and Rel(T') are indeed
liftings of T'.

Example 3.1.5. Let p : £ — B be a fibration with a terminal object functor
1: B — &. Given any functor F' : B — B the functor F' = 10 F op is a lifting of
F.

For a given fibration, we can group the associated liftings into a category:

Definition 3.1.6. Let p : £ — B be a fibration. The category of liftings with
respect to p, written Lp, has as objects pairs (F, F) where I : £ — £ is a lifting
of F : B — B with regard to p, and has morphisms from (£}, F}) to (Fy, Fy)
pairs (a, 8) where o : Fy — F} is a natural transformation above the natural

transformation 5 : F; — F5.

In fact, while not useful to the present work, it is interesting to note that we

can organise liftings in a fibration as described in the following lemma.

Lemma 3.1.7. Let p: & — B be a fibration, and write [B, B] for the category of
endofunctors on B. The functor | : Lp — B, B] that sends an object (F, F) to F

is a fibration.

Proof. We only describe the construction: the reindexing of the fibration is done
pointwise, i.e., let F be a lifting of F' and ¢ : G — F be a natural transforma-
tion, define o*(F, F) by (G, G) where G P = (0,p)*(F P), and similarly, define
o8(F, F) by (¢, 0) where oy = o° O

Iy
Note that the fibre above a functor F' is then (isomorphic to) the category of

liftings of F' and vertical natural transformations between them. Furthermore, in

the case where p : £ — B has a terminal object functor, it is straightforward to
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check that the lifting presented in Example 3.1.5 defines a terminal object functor
for [. Note also that this reasoning dualises in the case of p being an opfibration,
and thus, if p is a bifibration, so is [.

The notion of lifting is quite general and we will need to restrict it to two

subclasses in order to use them for induction and coinduction:

Definition 3.1.8. Let p : £ — B be a fibration with a terminal object functor
1:B — &, let F be a functor on B, and let F : £ — &£ be a lifting of F. We say

that F is a 1-preserving lifting of F if we have Fol =10 F.
And, similarly:

Definition 3.1.9. Let p : £ — B be a fibration with full section e : B — &£, let F
be an endofunctor on B and F be a lifting of F'. We say that F is an e-preserving
lifting of F if we have Foe=eco F.

While there is clearly redundancy in the above definitions (since a terminal object
functor is a full section) we find that distinguishing both concepts helps to clarify
the remaining of the thesis. Furthermore, a lifting can be e-preserving in different
ways (there can be different isomorphisms characterising the preservation of e), it
is 1-preserving in a canonical way. Indeed, for a 1-preserving lifting £ of F, the
isomorphism F o1 =~ 1o F is unique since 1 maps objects to terminal objects of
fibres. Hence, saying that a lifting is e-preserving identifies an additional structure
while saying that a lifting is 1-preserving is a property (See Definition 3.1.10).

It is easy to check that the liftings from Examples 3.1.5 and 3.1.2, and from
part (i) of Example 3.1.4, are all 1-preserving, and that the liftings of Exam-
ple 3.1.3 and part (ii) of Example 3.1.4 are e-preserving.

For a given a fibration, we can group the associated e-preserving liftings as

well as 1-preserving liftings in categories:
Definition 3.1.10. Let p : £ — B be a fibration.

e If p has a terminal object functor 1 : B — &, define the category of 1-
preserving liftings with respect to p, written 1Lp, as the obvious full sub-

category of Lp.
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e If p has a full section e : B — &, define the category of e-preserving liftings
with respect to p, written eLp, as the category whose objects are triples
(F,F,a) with (F, F) a lifting and « a natural isomorphism F oe =~ eo F.
A morphism from (F, F,a) to (G,G,f) is a morphism of lifting (v,6) :
(F,F) — (G, Q) such that the following diagram commutes:

Fe——>¢F

vel iea

Ge 5 eG

Note that the category 1Lp is equivalent to the category eLp when we choose the
associated full section e to be the terminal object functor. Indeed, the unicity
of the 1-preserving isomorphism will guarantee that the condition on morphisms
of e-preserving liftings is always valid. Furthermore, since reindexing preserves
terminal objects, the fibration of liftings restricts to a fibration I* : 1Lp — [B, B]
of 1-preserving liftings. While there is no similar result for e-preserving liftings,

we will have to consider the following subcategory of eLp:

Definition 3.1.11. For p : £ — B a fibration and F' : B — B a functor, let
eLpr be the category whose objects are pairs (G, «) such that (G, F,a) is a e-
preserving lifting, and where a morphism v from (G,«a) to (H, ) is a vertical

natural transformation v : G — H such that the following diagram commutes

Ge —"=¢cF

vel %

He

Note that if we choose e to be the terminal object functor of p then the category
eLpr is equivalent to the fibre 1Lpr of the above mentioned fibration of 1-
preserving liftings w.r.t. p.

Now that we have the notion of 1-preserving and e-preserving liftings, we turn
our attention to the task of constructing such canonical liftings. Remember that
the idea is to construct a functor on the total category which behaves like the

one on the base category. First, we show how to construct a 1-preserving lifting
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for any endofunctor on the base category of a Lawvere fibration p : £ — B. For
this, recall from Lemma 2.1.12 that we have the two functors = : &€ — B~ and
¢ : B~ — & which intuitively translate elements of the total category to arrows
in the base category. We can then use the morphism part of the functor that we
want to lift and these two functors to derive a lifting which would behave in the

same way on the total category:

Definition 3.1.12. Let p: £ — B be a Lawvere fibration and F': B — B be an

arbitrary endofunctor. Define the following endofunctor on &:

F. &€

F=¢F n

We have:

Theorem 3.1.13. Let p : £ — B be a Lawvere fibration. For any functor F' on
B, the functor Fisa 1-preserving lifting of F.

Proof. This is a consequence of Corollary 2.2.7 and Lemma 3.1.19 below. n

If F is an endofunctor on the base category of a Lawvere fibration, we will call

the functor ZAW, the canonical 1-preserving lifting of F.

Example 3.1.14. (Example 3.1.2, continued) Recall from Example 2.1.3 and
2.1.13 that the family fibration on Set is a Lawvere fibration, that = : Fam(Set) —
Set™ maps an object (X, P) to the first projection 7(X, P) : {(X, P)} — X, and
that ¢ : Set” — Fam(Set) maps a function f : X — Y to the inverse image family
(Y, f71). Considering the functor F' : Set — Set defined as FF X =1+ A x X, its

canonical 1-preserving lifting is then:

~

F(X,P) =¢(Fr(X,P))
= (F X, (idy +ida x m) ")

~ (FX, 11+ 1A x P)

1

Indeed, it is straightforward to see that (id4) ' = 14 and (7(X, P)) = (X, P).
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We stress that, to define our lifting, the codomain functor above the base
B of the Lawvere fibration does not need to be a fibration, i.e., B need not
have pullbacks. Also, note that this definition of our lifting is equivalent to the
definition given in [GJF10|, namely, F' P = Y, 1F{P}.

We now show how to construct an e-preserving lifting for any endofunctor
on the base category of a fibration p : £ — B that admits quotients. For this,
recall from Definition 2.2.1 that we have the QCE p : £ — B~ and the functor
Y B” — £. This two functors will be used as translator from the total category
to arrows in the base category. We can then once again use the morphism part

of a functor and these two functors to define a lifting:

Definition 3.1.15. Let p : £ — B be a fibration that admits quotients and

F : B — B be an arbitrary endofunctor. Define the following endofunctor on &:

F. &€

F=yFp

We have:

Theorem 3.1.16. Let p : £ — B be a fibration with full section e : B — £ that
admits e-quotients. For any functor F : B — B, the functor F is an e-preserving

lifting of F.

Proof. To prove pﬁ = F'p, note that, for each P in £, the morphism pP has
domain pP, hence dom F~ p = Fp. Also note that piyp = dom, therefore we
have pﬁ = pYF~p = Fp. To prove Fe ~ eF, we first assume that i) for every
X in B, peX is an isomorphism in B, and ii) for every isomorphism f in B,
Y f = e(dom f). Then since pe = Idg, i) and ii) imply that Fe = F~pe =~
e dom F~pe = eFpe = eF. To discharge i), note that since e is full and faithful,
ne : e — eQe is ex for a natural transformation s : Ide — Qe, where each
kx 1is an isomorphism with inverse ex and € is the counit of () - e. Then
peX = pn.x = pekx = Kx, so that peX is indeed an isomorphism. To discharge

ii), let f be an isomorphism in B. Since cartesian morphisms above isomorphisms
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are isomorphisms, we have ¢ f = f*(e(codf)) = e(cod f) = e(dom f). Here,
the first isomorphism is witnessed by f% and the second by ef~!. n

If F' is an endofunctor on the base category of a QCE, we call the functor F the

canonical e-preserving lifting of F.

Example 3.1.17. (Example 3.1.3, continued) Recall from the previous example
on the relations bifibration of the family fibration on Set that this bifibration
admits quotients where the QCE p maps a relation R above X to the quotient
map cgr : X — X/R and the functor ¢) maps a map f : X — Y into its kernel
relation ker(f). Now, let us consider the functor F' : Set — Set defined as

FX =1+ A x X, its canonical e-preserving lifting is then:

~

F(X x X, R) = %(F(p(X x X, R)))
= (FX x FX, ker(id, + ida % cg))

~ Fql + EqA x (X x X, R)

Indeed, it is straightforward to see that ker(ids) =~ EqA and ker(cg) = (XxX, R).

Example 3.1.18. We now consider the relations fibration for the family fibration
above Class, the category of classes, i.e., p : Rel(Class) — Class where Rel(Class)
is the category whose objects are relations of the form R : X x X — Class with X
a class. This fibration admits quotients in the same way as the relations fibration
for the family fibration above Set. We then have the functor p that maps a
relation R above X to the quotient map cg : X — X /R and the functor ¢ maps
amap f: X — Y into its kernel relation ker(f).

Now consider the canonical e-preserving lifting P of the power set functor
2 Class — Class. We have that & maps a relation R : A x A — Class to the
relation R : A x P A — Class defined by ZR = (2 (pR)). Thus, if X and
Y are subsets of A, then (X,Y) € PRIt PprX = PprY. Since the action of
& on a morphism f maps any subset of the domain of f to its image under f,
the relation 2R is defined as (X,Y)e PR iff (Ve e X).(FyeY).z2Ry n (Vye
Y).(3z € X). xRy.
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As mentioned in the previous chapter, the dual of Theorem 3.1.16 covers Law-
vere fibrations and thus permits us to derive Theorem 3.1.13 as a corollary. The

lifting [ has as its dual the lifting F generalised to the setting of tC-opfibrations:

Lemma 3.1.19. Letp: £ — B, t and C provide a tC-opfibration and F' : B — B
be a functor. Define the functor F by

F. &€

F=¢Fr

Then F is a t-preserving lifting of F', i.e., po F=F op and Fotx~toF.

Proof. By dualisation of Theorem 3.1.16. The setting on the left below with p

an opfibration is equivalent to the setting on the right with p a fibration.

C E c Ep

A
t t

B——>B  B?-—— B

Idg Idgop

3.2 An algebra of liftings

We have proved that in any Lawvere fibration p : £ — B, every endofunctor F' on
B has a canonical 1-preserving lifting Foné& , and that in any fibrationp: &€ - B
that admits e-quotients, every functor F' on BB has a canonical e-preserving lifting
[ on €. In this section we ask what kinds of algebraic properties the two lifting
operations have. We organise this section by first presenting the results about the
preservation properties of the two canonical liftings and then present the results
about the relationship between the two canonical liftings and other 1-preserving
(resp., e-preserving) liftings.

We start with the canonical 1-preserving lifting of constant functors in Law-

vere fibrations.
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Lemma 3.2.1. Let p : £ — B be a Lawvere fibration and let X be an object of
B. If Fx is the constantly X -valued functor on B, then 13;( 15 1somorphic to the

constantly 1.X -valued functor on &.

Proof. For any object P of £ we have
FxP = (¢(Fx)"m)P = ¢(Fxmp) = Sponp LFx{P} = Lg1X = 1X

The isomorphism holds because id* =~ Id and X,5 - id*. O

We have a similar result for the canonical e-preserving liftings in QCEs.

Lemma 3.2.2. Letp: £ — B, e and Q) provide a QCE and let X be an object of
B. If Fx s the constantly X -valued functor on B, then F;( 1s isomorphic to the

constantly eX -valued functor on £.

Proof. This is dual of Lemma 3.2.1. [

We now show that the canonical 1-preserving lifting operation in Lawvere

fibrations preserves coproducts.

Lemma 3.2.3. Letp : £ — B be a Lawvere fibration and let F and G be functors
onB. Then F+G=~F +G.

Proof. We have

(F+G)P = o((F +G)"mp)
= ¢(F~7p + G p)
= ¢(F77p) + (G Tp)
— FP+G@P

The isomorphism holds because ¢ is a left adjoint (Lemma 2.1.12) and so preserves

coproducts. O

Note that the statement of Lemma 3.2.3 does not assert the existence of either
of the two coproducts mentioned, but rather that, whenever both do exist, they
must be equal. Also, note that the lemma generalises to any colimit of functors.

We have a dual result for the canonical e-preserving lifting operation in QCEs.
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Lemma 3.2.4. Let p : £ — B be a bifibration that admits quotients, and let F
and G be functors on B. Then FxG=FxaG.

Proof. This is dual of Lemma 3.2.3. n

Again, here the statement of Lemma 3.2.4 does not assert the existence of either
of the two products mentioned, but rather that, whenever both do exist, they
must be equal. And once again, note that the lemma generalises to any limit of
functors.

We do not know if the canonical lifting of a product is a product in any
lawvere fibration (and hence, if the canonical lifting of a sum is a sum in any
QCE). It has however been proved in [AGJJ12| that the property holds under
the additional condition that the Lawvere fibration has very strong sums (this
amounts to ask for the comprehension category 7 to be opfibred). The proof
dualises to show that the canonical lifting of a sum is a sum if the QCE is fibred.
Under the additional hypothesis of fullness we know that canonical liftings in a

Lawvere fibration preserve identity:
Lemma 3.2.5. In any full Lawvere fibration, 7d = Id.

Proof. By Lemma 2.1.12 we have the adjunction ¢ 4 w. Since 7 is full and
faithful, the counit € of this adjunction is an isomorphism, i.e., € : ¢ o m — Id.

We therefore have that

Ild=¢or=(pId”7) = 1d

O
This is similar for canonical liftings in a full QCE.
Lemma 3.2.6. In any bifibration that admits full quotients, Id =~ Id.
Proof. This is dual of Lemma 3.2.5 [

The last results of this section consider whether or not there is anything
fundamentally special about the canonical liftings we have constructed. In the

next chapter we will argue why these liftings are the “right” liftings for deriving
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induction and coinduction schemes. But other 1-preserving (resp., e-preserving)
liftings might also exist and, if this is the case, then we might hope our liftings
satisfy some universal property. Unfortunately at this level of generality we are
only able to prove the following two properties.

We now look at the relationship between the canonical 1-preserving lifting

and other 1-preserving liftings in Lawvere fibrations.

Lemma 3.2.7. Let p: & — B be a Lawvere fibration and let F' be a functor on
B. The canonical 1-preserving lifting F s weakly wnitial in the category 1Lpr of

1-preserving liftings of F' and vertical natural transformations between them.

Proof. Let F be a 1-preserving lifting of F. We can then construct a morphism
tp: FP — FP for any P with the following diagram:

F1{P} s Fp
A

~

1F{P}(F—>7FP)§ la

Frp

above F{P}—= F(pP), where tp exists by the universal property of the op-
cartesian morphism (F'mp)s, and is above the identity. The naturality condition

comes from a straightforward diagram chasing. O

We now look at the relationship between the canonical e-preserving lifting

and other e-preserving liftings in QCEs.

Lemma 3.2.8. Let p: £ — B, e and Q) provide a QCE and let F' be a functor

on B. The canonical e-preserving lifting Fisa weakly terminal object in eLpp.

Proof. Consider F' : B — B on the base category of a fibration, (ﬁ,a) the
canonical lifting of F and (F, 3) a e preserving lifting of F'. Let v : F' — F be the
natural transformation defined at R as the unique vertical morphism vz making

the following diagram commutes.

FeQREnLFR

Br |~ 'YR
v
FOQR<~— 7
QR FR
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In order to obtain a map of e-preserving lifting from F to I we need to check

if = a o~e. For this, note that by construction of « the following diagram

commutes:

FeQeX Dex FeX
Bex | = Bx | = - Yex
eFQeXereX GFX
a;}"‘ N
(Fpex)® ]\:/’eX

O

These two results will provide a correctness criterion for our constructions of

canonical liftings with regard to induction and coinduction. This will be discussed

after Corollary 4.3.3 and Corollary 4.3.10 respectively.

In fact, through some additional hypotheses we can show that our lifting is the

only 1-preserving (resp., e-preserving) lifting. Our proof uses a line of reasoning

which appears in Remark 2.13 in [HJ98].

Lemma 3.2.9. Let p : € — B be a full Lawvere fibration and let [(1F be a 1-

preserving lifting of a functor F on B. If (OF is opfibred — i.e., if (OF)(X;P) =
Spr((OF)P — then OF = F.

Proof. We have

(OF)P = (OF)(IdP)
OF)(Zx,1{P})
Yprp (OF)1{ P}
Yprp 1F{P}

lle

lle

e

~

- Fp

This is similar for liftings in QCE.
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Lemma 3.2.10. Let p : & — B admits full e-quotients and let [(JF be a e-
preserving lifting of a functor F on B. If [TIF is fibred — i.e., if (F)(f*P) =
(Ff)*(OF)P — then OF = F.

Proof. This is dual of Lemma 3.2.9. O

Note that Lemma 3.2.9 tells us that the canonical lifting of F' is opfibred as
soon as there is an opfibred lifting of F. We do not know if a canonical lifting
is necessarily opfibred otherwise (the dual remark applies for the Lemma 3.2.10).
However, any canonical lifting is opfibred if the Lawvere fibration has very strong
sums [AJG11, AGJJ12|. Briefly, the very strong sums property amounts to
ask that the comprehension category m is opfibred, we then have from Propo-
sition 1.2.32 that ¢ (the left adjoint of 7) is opfibred as well as F'~ (see Exam-
ple 1.2.6), hence by composition F= ¢ o F~ or is opfibred. The dual result tells
us that canonical liftings in QCE are fibred if the QCE itself is fibred.

Finally, we can return to the question of the relationship between the liftings of
polynomial functors given by Hermida and Jacobs (reproduced in Example 3.1.4)
and the canonical liftings derived by our methods. We have seen that for con-
stant functors, the identity functor, coproducts of functors in Lawvere fibrations
and products of functors in QCEs, our constructions agree. Moreover, as al-
ready observed in [HJ98|, if Hermida and Jacobs’ liftings preserve X-types then
Lemma 3.2.9 guarantees that in a full Lawvere fibration their lifting (and hence
their lifting for products) coincides with ours. Lemma 3.2.10 provides the dual

result for the lifting of coproducts in a full QCE.
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Chapter 4

Induction and coinduction

In this chapter we present induction and coinduction in category theory. In Sec-
tion 4.1 we quickly go through induction and coinduction as definition principles
for types. This consists of well-known results on initial algebras and final coal-
gebras of endofunctors on a category of types. In Section 4.2, we take a detailed
look at the relationship between the inductive definition and induction scheme of
the familiar case of natural numbers. This will develop some intuition that we
will then use for the main subject of this thesis. In Section 4.3 we present induc-
tion and coinduction schemes in fibration for initial algebras and final coalgebras

respectively.

4.1 Inductive and coinductive definitions in cate-
gory theory

As previously mentioned, an endofunctor on the base category B of a fibration
specifies the signature of an inductive or a coinductive type. In this section we
recall sufficient notions of initial algebra and final coalgebra semantics to formalise
this. We begin the section with initial algebras and inductive types. We then
look at final coalgebras and coinductive types and we finish the section with a
result that links relations between the two functors and relations between the
algebras (resp., coalgebras) of the functors.

We start with the notion of algebras associated to a functor and of the mor-
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phisms between them, which together form the category of algebras of a functor:

Definition 4.1.1. Let F': B — B be an endofunctor on B. The category of F-
algebras, written Algr, as the category whose objects are pairs (X, a : FX — X)),
and whose morphisms between two objects (X, : FX — X) and (Y, : FY —
Y') are morphisms f : X — Y in B such that the following square commutes in
B.
Ff
FX——FY

.| E

X4f>y

For F' an endofunctor, we call an object (X, : FX — X) of Algr an algebra
of F' or F-algebra, where X is called the carrier of the algebra and « is called
the structure map of the algebra. We might refer to an algebra by its structure
map. Intuitively, if an endofunctor is the signature of a structure, the carrier
of an algebra is an object that carries this structure, and the structure map
provides operations to build elements of the carrier using the structure. Algebra
morphisms are then morphisms that respect the structure defined by the functor.

See the following examples:

Example 4.1.2. Let B be a category that is a model of a simple type theory
(See Example 1.1.5), and consider the endofunctor NX =1+ X on B.

The structure map of an N-algebra (X, « : 1+ X — X) is equivalent to two
maps, a1 : 1 —> X and ay : X — X. Such an algebra corresponds in the type
theory to a type X that contains a specific element a; and has a unary operation
as. Looking now at the condition on maps of algebra, a map between two N-
algebras, (X,a:14+ X — X)and (Y,8:14+Y —Y), is a function f from X to
Y such that foa = o (Ff),ie., fa; = p; and f(azx) = Bo(fx).

Example 4.1.3. Let B be a category that is a model of a simple type theory and
let L : B — B be the functor defined as LX = 1+ A x X. This time the structure
map of an L-algebra (X, a : 1+ Ax X — X) is equivalent to two maps, o : 1 — X
and ay : A x X — X. Hence, a L-algebra corresponds in the type theory to a
type X that contains a specific element «; and that has a "type action" of A on

X given by as. A map between two L-algebras, (X,a: 1+ A x X — X) and
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(Y,8:1+AxY —Y),is then a function f from X to Y such that fa; =
and f(ag(aﬂ;)) = Ba(a, fz).

Among the algebras of a functor, we are particularly interested in the initial
algebra. The initial algebra of a functor F' : B — B is the initial object of the
category Algr. Explicitly it is a F-algebra, that we write (uF,in : FuF — pF),
such that for any F-algebra (X, : FX — X) there exists a unique morphism

(o) : uF — X making the following diagram commute

F(a
Fur 2 px

pl ———

(a)

These unique morphisms are sometimes referred to as catamorphisms. With the
point of view that an F-algebra consists of an object that carries the structure
defined by F', the initial F-algebra consists of the smallest object carrying the
structure defined by F. In the category Set, this corresponds to the "smallest set

" construction, i.e., free structures. The catamorphism («) assigns

closed by ...
then to an element x € pF' its interpretation in X. More generally, a key obser-
vation due to Lambek is that for any category B and endofunctor F' on B, the
structure map in of the initial F-algebra is an isomorphism. We can therefore see
(1F as the least fixed point of F'. Following this reasoning, it is not surprising to
find that, for B a category of types, inductive types correspond to initial algebras
(uFyin : FuF — pF'), where the carrier pF is the actual type, the structure map
in provides the constructors of the type, and iteration operators correspond to

catamorphisms (See [JRI7| for example).

We present two examples in order to illustrate this correspondence.

Example 4.1.4. (Example 4.1.2, continued) Let B be a category that is a model
of a simple type theory, and consider the functor NX =1+ X on B. The carrier
of the initial algebra of N corresponds to the type of natural numbers in the type
theory. Indeed, first observe that the constructors of natural numbers, namely the
number Zero and the successor operation Succ : Nat — Nat, define a N-algebra.

Furthermore, the iteration operator is given by the following term in the type
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theory:
foldNat D X5 (X—>X)>Nat—> X

foldNat z s Zero = z
foldNat z s (Succn) = s(foldNat zsn)

This gives for any N-algebra (X,a : NX — X), the catamorphism foldNat o oz

of codomain «.

Example 4.1.5. (Example 4.1.3, continued) Let B be a category that is a model
of a simple type theory, and consider the functor LX =1+ A x X on B. The
carrier of the initial algebra of L corresponds to the type of lists of elements of
type A in the type theory. Indeed, first observe that the constructors of lists,
namely the empty list Nil and the concatenation Con : A x List — List, define
a L-algebra. Furthermore, the iteration operator is given by the following term

in the type theory:

foldList : X > (AxX - X)— List > X
foldListn f Nil = n
foldListn f (Conal’) = fa(foldListn f1)

This gives for any algebra (X, : LX — X), the catamorphism foldList ay cg of

codomain o.

Note that, as a category does not necessarily have an initial object, an end-
ofunctor does not necessarily have an initial algebra. In fact, the question of
the existence of an initial algebra can be a difficult one. However, the literature
already contains abstract results guaranteeing the existence of initial algebras
for different classes of functors, see [LS81,SP77| for example, where it is shown
how to construct initial algebras in a recursive fashion provided that the category
under consideration has all the colimits of countable chains and that the functor
preserves them. For this reason, in the remainder of this thesis we assume that
the functors we are dealing with have an initial algebra. This assumption does
not result in a loss of generality but, on the contrary, it allows us to exploit the
power of abstraction of the concept of initial algebra. We will make a similar

assumption for the existence of final coalgebras.
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We will now look at the notion dual to algebra: coalgebra. This notion has

the same role for coinductive types that the notion of algebra has for inductive

types.

Definition 4.1.6. Let F' : B — B be a functor on B. The category of F'-coalgebra,
written coAlgp, has as objects pairs (X, : X — FX). A morphism between
(X,a: X > FX)and (Y,5:Y — FY) is given by a morphism f: X — Y in B

such that the following square commutes in B.

FX?JC'FY

For F' an endofunctor, we call an object (X, : X — FX) of coAlgr a
coalgebra of F or F-coalgebra, where X is called the carrier of the coalgebra
and « the structure map. We might refer to a coalgebra by its structure map.
Intuitively, if an endofunctor is the signature of a structure, as for algebras, a
coalgebra (X,a : X — FX) consists of an object X with a structure defined by
F, but dually to algebras, the structure map does not tell us how to construct
elements following the structure, but rather how to destruct the elements to

observe the structure. This can be seen in the following example:

Example 4.1.7. Let B be a category that is a model of a simple type theory.
Consider the endofunctor LX =1+ A x X on B.

A coalgebra (X, : X —» 14+ A x X) consists of a type of X, such that for
any element x of X, we can destruct x to either *, the unique element of 1, or
a pair (a,z’) where a is some observation in A that we can do from x, and 2’
is the remainder of x. Notice that by successively applying o we can observe a
potentially infinite sequence of elements of type A.

A morphism of coalgebra from (X, : X - 1+ Ax X) to (X,8:Y —
1+ A xY) is then a function f : X — Y such that if an element x destructs to
*, so does fx, and if an element x destructs to a pair (a,z’) then the element fx

destructs to (a, f2').
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Example 4.1.8. Consider the functor SX = &(Ax X) on the category of classes,
where Z(Ax X) is the powerset of Ax X. A S-coalgebra (X,a: X —» Z(Ax X))
represents a A-labelled non-deterministic automaton. Indeed, we can see X as
the set of states of an automaton and « as the transition relation, i.e., there is a
transition % 2’ in the automaton iff (a, 2) is an element of az.

We can add B valued observations to the automaton by considering the func-
tor TX = P(Ax X)x B. This time, a T-coalgebra (X,a: X - Z(Ax X) x B)
represents a set of states X, a transition relation oy : X — (A x X) and an
observation function as : X — B. We then have T = S if the set of observations
is the one point set.

A morphism of T-coalgebras from (X, : X — Z(A x X) x B) to (Y, :
Y - Z(AxY) x B) is then a morphism, f: X — Y, between the set of states

that respects the transitions and observations, i.e., z % 2 imply fr % f2’ and

asr = Po(fx).

Dually to algebra, among the coalgebras of a functor we are particularly in-
terested in the final coalgebra. The final coalgebra of a functor F' : B — B is
the terminal object of the category coAlgr. We write (vF,out : vF' — FvF) to
denote the final coalgebra of F'. Explicitly, the final coalgebra is a F-coalgebra
such that for any F-coalgebra (X, « : X — FX) there exists a unique morphism

[()] : X — vF making the following diagram commute

Flla
FXL)JFI/F

QT T(m

XWI/F

This unique morphisms are sometime referred to as anamorphisms. We saw
that a F-coalgebra consists of an object on which we can observe the structure
defined by F'. So, the final F-coalgebra consists of the largest such object, which
intuitively corresponds to the object of all the possible observations. Intuitively,
the anamorphism [(a)] maps then elements of vF to the possible observations
that can be done from them. As for initial algebras, for any endofunctor F' the

structure map out is an isomorphism, thus we can see vF' as the greatest fixed
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point of F'. Also, dually to initial algebras, for B a category of types, coinductive
types correspond to final coalgebras (vF,out : vF' — FvF'), where the carrier vF
is the actual type, the structure map out gives the destructors of the type, and
coiteration operators correspond to anamorphisms (See [JR97,Jac| for example).

We present two examples to illustrate this correspondence.

Example 4.1.9. (Example 4.1.7, continued) Let B be a category that is a model
of a simple type theory, and consider the functor LX =1+ A x X on B.

The final coalgebra of L is the type of possibly infinite lists, or colists, of
elements of A. Indeed, the destructors of colists, namely the map that sends
a colist [ to, either » the only element of 1 if [ is the empty colist, or a pair
(a,l') with a : A and !’ the remainder of the colist, defines an L-coalgebra. Also,
given a coalgebra (X, a : X — LX), the coiteration operator unfold o that maps
any element x to the element that deconstructs into, either = if axz = *, or

(a, unfold x') if ax = (a,z’), defines the anamorphisms.

Example 4.1.10. (Example 4.1.8, continued) While the functor TX = (A x
X) x B does not have a final coalgebra in the category of sets, 7" has a final
coalgebra in Class, the category of classes. Remember that a T-coalgebra is a
non-deterministic automaton, the final coalgebra (vT, out : VT — P (AxvT)x B)
is the non-deterministic automaton of all possible transitions labelled by A and
observations in B. The unique homomorphism [(«)] : Q@ — vT assigns to every

state ¢ the class of the automata that correspond to ¢’s nodes.

We now look at the relationship between two categories of algebras (resp.
coalgebras) induced by the relationship between the corresponding functors. The
following theorem is from [HJ98|. We will use this to link the algebras of a functor
and the algebras of a lifting of this functor.

Theorem 4.1.11. Let F: B—-> B, G: A— A, and S : B — A be functors. A

natural transformation o : GS — SF, i.e., a natural transformation o such that

|
s| XU s
BTB
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induces a functor

Algr = Alga

given by S-Alg (f : FX — X) = S foax. Moreover, if « is an isomorphism,
then a right adjoint T to S induces a right adjoint

T-Alg

AlgG T Algp

S-Alg
given by T-Alg(g : GX — X) = Tgo Bx, where § : FT — TG is the image
of Geoay' : SFT — G under the adjunction isomorphism Hom(S X,Y) =
Hom(X, TY), and € : ST — id is the counit of this adjunction.

We spell out the dual of this theorem as a corollary since it will be of equal

importance.

Corollary 4.1.12. Let F: B—- B, G: A— A, and S : A — B be functors. A

natural transformation o : SG — F'S, 1.e., a natural transformation o such that

|
I Zr
B?B

induces a functor

C’oAlgGSﬂgCoAlg F

given by S-CoAlg (9 : X — GX) =ax oSg. Moreover, if a is an isomorphism,
then a left adjoint T to S induces a left adjoint

S-CoAlg

CoAlg, _ T~ CoAlgp
T-CoAlg

Note that a first consequence of this theorem is that, for F' a lifting of F with
respect to a fibration p : & — B, there is a functor p-Alg : Algz — Algr and a
functor p-CoAlg : CoAlgr — CoAlgp. Furthermore, if p has a terminal object
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functor 1, p-Alg has a right adjoint given by 1-Alg : Alg, — Algp. Hence in such
a case, if a lifting F' has an initial algebra (jp,4n) then F has an initial algebra,

which is given by p-Alg (up,in).

4.2 A familiar induction scheme

In this section we look at the relationship between the iteration operator and the
induction scheme of natural numbers. The goal is to develop intuitions in order
to motivate the definition of induction schemes in fibrations given in the next
section. In order to simplify this a step further, we place ourselves in the setting
where the types are sets.

Consider the inductive type Nat of natural numbers and the associated iter-
ation operator foldNat, both defined in Example 4.1.4. The iteration operator
foldNat can be used to derive the standard induction scheme for Nat which co-
incides with the standard induction scheme for natural numbers, i.e., with the
familiar principle of mathematical induction. This scheme says that if a property
P holds for 0, and if P holds for n + 1 whenever it holds for a natural number
n, then P holds for all natural numbers. Representing each property of natural
numbers as a predicate P : Nat — Set mapping each term n : Nat to the set of
proofs that P holds for n, we wish to represent this scheme at the object level as

a function indNat with type

V(P : Nat — Set). P Zero — (Vn : Nat. Pn — P (Succn)) — (¥n : Nat. Pn)

Code fragments such as those above, which involve quantification over sets, prop-
erties, or functors, are to be treated as “categorically inspired”. This is because
quantification over such higher-kinded objects cannot be interpreted in Set. In
order to give a formal interpretation to code fragments like the ones above, we
would need to work in a category such as that of modest sets. While the abil-
ity to work with functors over categories other than Set is one of the motiva-
tions for working in the general fibrational setting, formalising the semantics of

such code fragments would obscure the central message of this thesis. Our deci-
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sion to treat such fragments as categorically inspired is justified in part by the
fact that the use of category theory to suggest computational constructions has
long been regarded as fruitful within the functional programming community
(see [BAM96, BM98, Mog91]| for example).

A function indNat with the above type takes as input the property P to be
proved, a proof ¢ that P holds for Zero, and a function ¥ mapping each n : Nat
and each proof that P holds for n to a proof that P holds for Succn, and returns
a function mapping each n : Nat to a proof that P holds for n, i.e., to an element
of Pn. We can write indNat in terms of foldNat — and thus reduce induction for
Nat to iteration for Nat — as follows. First note that indNat cannot be obtained
by instantiating the type X in the type of foldNat to a type of the form Pn for a
specific n because indNat returns elements of the types P n for different values n
and these types are, in general, distinct from one another. We therefore need a
type containing all of the elements of P n for every n. Such a type can informally
be thought of as the union over n of Pn, and is formally given by the dependent
type Xn : Nat. P n comprising pairs (n,p) where n : Nat and p: Pn.

The standard approach to defining indNat is thus to apply foldNat to an
N-algebra with carrier ¥n : Nat. Pn. Such an algebra has components « :
n : Nat.Pn and 8 : ¥n : Nat. Pn — Xn : Nat. Pn. Given ¢ : P Zero
and ¢ : ¥Yn.Pn — P (Succn), we choose « = (Zero,¢) and B (n,p) =
(Sucen,np) and note that foldNat 3 : Nat — ¥n : Nat. Pn. We tenta-
tively take indNat P ¢ 1) n to be p, where foldNat o fn = (m,p). But in order
to know that p actually gives a proof for n itself, we must show that m = n.
Fortunately, this follows on easily from the uniqueness of foldNat o . Indeed, we

have that

1 + Nat 1+Xn:Nat.Pn 1 + Nat

ml [Oé,ﬁ]l lm

_— . _—
Nat ToldNal o B ¥n: Nat. Pn o) Nat

commutes and, by initiality of in, that (A(n,p).n) o (foldNat « 3) is the identity
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map. Thus

n = (A(n,p).n)(foldNat o Bn) = (A(n,p).n)(m,p) =m

Letting 7 be the second projection on dependent pairs involving the predicate

P, the induction scheme for Nat is thus

indNat . Y(P:Nat — Set). P Zero — (¥n : Nat. Pn — P (Succn))
— (Vn : Nat. Pn)
indNat P ¢ v = 7 o(foldNat (Zero,$) (A(n,p).(Succn,np)))

As expected, this induction scheme states that, for every property P, to construct
a proof that P holds for every n : Nat, it suffices to provide a proof that P holds
for Zero, and to show that, for any n : Nat, if there is a proof that P holds for n,
then there is also a proof that P holds for Succn.

The use of dependent types is fundamental to this formalisation of the induc-
tion scheme for Nat, but this is only possible because the properties to be proved
are taken to be set-valued functions. In the next section we look at how to use
fibrations in order to generalise the above treatment of induction to arbitrary
functors and arbitrary properties which are suitably fibred above the category

whose objects interpret types.

4.3 Induction and coinduction schemes in fibra-
tions

In this Section we give the definitions of induction and coinduction schemes in
fibrations. We start from the intuition from Section 4.2 in order to introduce the
definition of induction schemes in fibration. We then illustrate the definition by
looking at different examples. We finish with coinduction schemes in fibrations.

In Section 4.2 we saw that we can derive the induction scheme on natural
numbers from the iteration operator foldNat when working with sets as types and

set-indexed sets as predicates. In order to deduce generic induction schemes from

71



these intuitions we need to abstract away in two directions: arbitrary setting, and
arbitrary inductive type. As we saw in Chapter 1, fibrations give us the right tool
to consider the setting in a generic way. In addition, as we saw in Section 4.1 of
this chapter, initial algebra semantics gives us the right tool to consider inductive
types in a generic way.

In order to abstract the reasoning of Section 4.2, we begin by considering
what we might naively expect an induction scheme for an inductive type pF' to
look like in the setting of sets. The derivation for Nat suggests that, in general,

it should look something like this:

ind : YP:puF — Set. 777 - Vo :uF. Px

But what should the premises — denoted 777 here — of the generic induction
scheme ind be? Since we want to construct, for any term x : uF', a proof term
of type Pz from proof terms for x’s substructures, and since the functionality
of the iteration operator for uF' is precisely to compute a value for = : uF' from
the values for z’s substructures, it is natural to try to equip P with an F-algebra
structure that can be input to the iteration operator to yield a mapping of each
x : puF to an element of Px. But a predicate P is not a set and so F' cannot be
applied to P as it is needed to equip P with an F-algebra structure.

In fact, note that the setting used in Section 4.2 corresponds to the family
fibration p : Fam(Set) — Set described in Example 1.1.6, where the types and
predicates described correspond to the elements of the base category and the total
category of p respectively. We then clearly see that we can’t directly apply an
endofunctor on the base category of the fibration to elements of the total category:
this is where we need liftings. Indeed, if we can find a functor £ that behaves in
the same way as F but this time, on predicates, we can then consider F-algebras
of carrier P as a candidate for the premises of uF’s induction scheme. For F' to
be a correct candidate we need to be able, given a F-algebra v : FP — P, to
produce a proof that the predicate P holds for all elements of uF. Remember
from Example 1.2.16, that such a proof corresponds to a morphism ¢ : 1uF — P

above the identity. Hermida and Jacobs’ analysis is that asking for the initial
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algebra of the lifting F' to be the image of the initial algebra of F' by 1 is the
correct way to fulfil this condition. Indeed, if this is the case then for any F-
algebra y : FP — P the catamorphism () is from pF to P, i.e., from 1uF — P.

We then have the following definition of induction schemes in fibrations which

is a straightforward generalisation to our setting of Hermida and Jacobs’ definition

(Definition 3.1 in [HJ98|):

Definition 4.3.1. Let p : £ — B be a fibration with a terminal object functor
1:B — & and F : B — B be a functor. We say that a 1-preserving lifting F' of F
defines an induction scheme for pF in p if the functor 1-Alg : Algp, — Algy that
sends an F-algebra FX 5 X to the F-algebra F1X = 1FX 1o 1x preserves

the initial object.

If F is the canonical lifting Fof F , we speak of the canonical induction scheme.
The induction scheme is then given by the catamorphisms of uF, i.e., F-algebras
are premises of the induction scheme, and the resulting proof is the catamorphism
of codomain the given algebra. Note that if a functor F defines an induction
scheme for F in p, the unique map from the initial algebra of F to a F-algebra 3
is above the unique map from the initial algebra of F' to the F-algebra o = ppg.
This is important to ensure that the proof done by induction speaks about the
correct term (see Example 4.3.4). We can present the induction scheme in a
logical fashion with the following inference rule (where all arrows are vertical):

FP — a*P
1uF — (a)*P

Which, when « is the initial F' algebra ¢n boils down to:

FP — in*P
1uF — P

From this definition, we can make the following observation for induction

schemes in CCUs.

Lemma 4.3.2. Let p : £ — B be a CCU. For any functor F : B — B, any

1-preserving lifting F' of F defines an induction scheme for uF in p.
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Proof. This is dual of Lemma 4.3.9 which is proved below. ]

We can then derive from this lemma the fact that any endofunctor on the

base category of a Lawvere fibration has a canonical induction scheme:

Corollary 4.3.3. Let p : &€ — B be a Lawvere Fibration. For any functor
F : B — B, the canonical 1-preserving lifting ja defines a canonical induction

scheme for pF'.

As we saw in Lemma 3.2.7, for F' : B — B a functor on the base category of a
Lawvere fibration p we can construct for any 1-preserving lifting F' of F' a vertical
natural transformation ¢ : £' — F. This means that for any algebra a: FP — P
above 3 : F(pP) — pP we can construct an ﬁ—algebra a ot,p above 3. Now
we have that the inductive proofs on uF' are done by providing an algebra of a
1-preserving lifting of F'. So, Lemma 3.2.7 provides an argument of correctness
for the canonical induction scheme by ensuring that any proof done by induction
on puF' can be done with the canonical induction scheme.

We now have the promised sound generic fibrational induction scheme for
every functor F' on the base of a Lawvere fibration. To demonstrate the flexibility
of this scheme, we now look at different instances of these canonical induction
schemes. The first example shows that the induction scheme on the natural

numbers discussed in Section 4.2 is an instance of Definition 4.3.1.

Example 4.3.4. (Example 4.1.4, continued) We consider the family fibration
p : Fam(Set) — Set and the type of natural numbers, uN where N is the functor
on Set defined by N X =1+ X.

Now consider the following endofunctor N on Fam(Set) given by

NP(inl-) = 1
NP (inrn) = Pn
Since it is obtained following the method described in Example 3.1.4, it is a

1-preserving lifting of N. By Lemma 4.3.2 we then have that N provides an

induction scheme for natural numbers in p. In fact, using similar reasoning to
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that in Example 3.1.14, we can show that the lifting IV is also the canonical
1-preserving lifting N of N.

An N-algebra with carrier P : Nat — Set can be given by in : 1 + Nat — Nat
and in~ : Vt: 14 Nat. NPt — P(int). Since in (inl-) = 0 and in (inrn) =
n + 1, we see that in™~ consists of an element h; : PO and a function hsy : Vn :
Nat. Pn — P (n + 1). Thus, the second component in™~ of an N-algebra with
carrier P : Nat — Set and the first component in gives the premises of the familiar

induction scheme, as described in Section 4.2.

Induction schemes in fibration can be instantiated to familiar schemes for
polynomial types, as well as to ones we would expect for types such as rose trees,
finite hereditary sets and hyperfunctions. While these types do not directly lie
within the scope of Hermida and Jacobs’ method as described in [HJ98|, there
exist extensions of their method to cover them (see [HJ97| for example). The
induction schemes for Rose trees and finite hereditary sets are instantiated in the
family fibration on Set while the induction scheme for hyperfunctions need to be

instantiated with CPOs so that hyperfunctions can be formalised.

Example 4.3.5. We consider the family fibration p : Fam(Set) — Set. The type

of rose trees is given in Haskell-like syntax by
data Rose = Node(Int, List Rose)

The functor underlying Rose is F'X = Int x List X and its induction scheme is

indRose : Y (P:X — Set) (k, k™) : (FP — P)).
V(z: X). P ((k) x)

As we saw in Example 3.1.14, the canonical 1-preserving lifting in the family

fibration on Set is given by F'P = (Frp)™': F X — Set. Then, writing zs!! k for
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the k™ component of a list zs and bearing in mind that 7' = P, we have that

F P (i,rs)
— {2 PP Frye = (i, 19))
= {(j,cps) : Int x List{P} | Frp(j, cps) = (i, rs)}
= {(j, eps) : Int x List {P} | (id x List mp)(j, cps) = (i, rs)}
= {(j, cps) : Int x List{P} | j =i and List mp cps = rs}
= {(J,cps) : Int x List{P} | j =i and Yk < length cps.mp (cps !V k) = rs ! k}

= Uk<length rs P(T‘S I k)

An ﬁ—algebra whose underlying F-algebra is k : Int x List X — X is thus a pair
of functions (k, k™), where k™ has type

Vi: Int.Vrs : List X. (Vk < lengthrs. P(rs\k)) — P (k (i, 7s))
We can then rewrite the induction scheme on rose trees as:

indRose : ¥ (P : X — Set)
(k: Int x List X — X)
(Vi : Int. Vrs : List X. (Vk < lengthrs. P(rs\1k)) — P (k (4, 7’5))).

V(z: X). P ((k) z)

We now look at finite hereditary sets, which, although defined in terms of
quotients, and thus lie outside the scope of previously known methods, can be

considered with ours.

Example 4.3.6. Consider the family fibration p : Fam(Set) — Set. Hereditary
sets are sets whose elements are themselves sets, as are the core data structures
within set theory. The type HS of finitary hereditary sets is ©&?; for the finite
powerset functor &;. We can derive an induction scheme for finite hereditary
sets as follows. If P : X — Set, then Zpmp : P¢(Xx : X.Pr) » Z;X maps each
set {(z1,p1),--, (Tn,pn)} to the set {x1,...,x,}, so that (P;mp) ' maps a set
{z1,...,2,} to the set Pxy; x...x Px,. A @Tf—algebra with carrier P : HS — Set
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and first component in therefore has as its second component a function of type
V({s1,...,8n}: P;(HS)). Psy x ... x Ps, — P(in{s1,...,n})

The induction scheme for finite hereditary sets is thus

indHS :: (V({s1,...,80} : Ps(HS)). Psy X ... x Ps, — P(in{s1,...,Sn}))
—V(s: HS).Ps

We now derive an induction scheme for a type and properties on it that cannot
be modelled in Set. Being able to derive induction schemes for fixed points of
functors in categories other than Set is a key motivation for working in a general

fibrational setting.

Example 4.3.7. The fixed point Hyp = pF of the functor FX = (X — Int) —
Int is the type of hyperfunctions. Since F' has no fixed point in Set, we interpret
it in the category wC'PO, of w-cpos with L and strict continuous monotone
functions. In this setting, a property of an object X of wC' PO, is an admissible
sub-wCPO; A of X. Admissibility means that the bottom element of X is in
P and P is closed under least upper bounds of w-chains in X. This structure
forms a Lawvere fibration [Jac93, Jac99|. In particular, ¥¢P is constructed for
a continuous map f : X — Y and an admissible predicate P < X, as the
intersection of all admissible Q < Y with P < f~'@Q. The terminal object
functor maps X to X, and comprehension I maps a sub-wCPO,; P of X to P.
The lifting F' maps a sub-wC PO, P of X to the least admissible predicate on
F X containing the image of F'P. Finally, the derived induction scheme states

that if P is an admissible sub-wC PO, of Hyp, and if FPc P, then P = Hyp.

Now that we have presented the induction schemes in fibration, let us look at

the dual: coinduction schemes in fibration.

Definition 4.3.8. Let p : £ — B be a fibration with a full section e : B — & and
let F': B — B be a functor. We say that a e-preserving lifting ' of F' defines
a coinduction scheme for vF in p if the functor e-CoAlg : CoAlg, — CoAlgp
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that sends an F-coalgebra X % FX to the F-coalgebra eX =% eFX =~ FeX

preserves the terminal object.

If F'is the canonical lifting Fof F , we speak of the canonical coinduction
scheme. The coinduction scheme is then given by the anamorphisms of v F, i.e.,
F-coalgebras are premises of the coinduction scheme, and the resulting proof is
the anamorphism whose domain is the given coalgebra. Note that if a functor F
defines a coinduction scheme for ¥ F' in p, the unique map into the final coalgebra
of F' from a F-coalgebra 3 is above the unique map into the final coalgebra of
F from the F-coalgebra o = p8. We can present the coinduction scheme in a

logical fashion with the following inference rule (where all arrows are vertical):

R — o*FR
R — [(a)|*evF

Which, when « is the final F coalgebra out boils down to:

R — out*FR
R—vF

From this definition, we can make the following observation for coinduction

schemes in QCEs.

Lemma 4.3.9. Let p : £ — B admits e-quotients. For any functor F': B — B,

any e-preserving lifting F' of F defines a coinduction scheme for vF in p.

Proof. Let p, e and @ provide a QCE. We then have that e is right adjoint to Q).
Now, since F'is an e-preserving lifting, we can use Corollary 4.1.12 to deduce that
the functor e-CoAlg : CoAlgr — CoAlgj has a right adjoint, and thus preserves
the terminal object, i.e., the final coalgebra of Fis given by e out where out is

the final coalgebra of F'. m

Thus, from this lemma we can derive that (the final coalgebra of) any endo-

functor on the base category of a QCE has a canonical coinduction scheme:

Corollary 4.3.10. Let p : £ — B admits e-quotients. For any functor F' : B —
B, the canonical e-preserving lifting Ia defines a canonical coinduction scheme for

vF.
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As for the canonical induction scheme, the canonical coinduction scheme
comes with an argument of correctness based on Lemma 3.2.8. Dually from
the inductive case: For F': B — B a functor on the base category of a fibration
p that admits e-quotients, for any e-preserving lifting F' of F we can construct a
vertical natural transformation ¢ : F — F. Hence we can construct a F coalgebra
above 8 : X — FX from any F coalgebra above 3. This ensure that any proof
done by coinduction on vF' can be done with the canonical coinduction scheme.
We now have the promised sound generic fibrational coinduction scheme for every
functor F' on the base category of a QCE. To demonstrate the flexibility of this
scheme, we now look at different instances of this canonical coinduction scheme.

We start with a coinduction scheme for possibly infinite lists.

Example 4.3.11. (Example 4.1.9continued) Consider the fibration of relation on
Set, p : Rel(Fam(Set)) — Set and remember from Example 2.2.5 that it admits
quotients. Consider then the type of colists, vL where L is the functor on Set
defined by LX =1+ A x X.

Now consider the following endofunctor L on Rel(Set) given by LR = el +
eA x R. Since it is obtained following the method described in Example 3.1.4, it
is a e-preserving lifting of L. By Lemma 4.3.9 we then have that L provides a
coinduction scheme for streams in p. In fact, we saw in Example 3.1.17 that the
lifting L is also the canonical e-preserving lifting L of L in the family fibration
on Set.

Let R be a relation in & and the carrier of a L-coalgebra (R, o : R — el +
eA x R) above a coalgebra (X, : X — 1+ A x X). This mean that in the logic
we have a proof that whenever two elements x, y of X are in relation by R, either
fr = fy=x or fr = (a,2), fy = (b,y), with a = b and 2’ and 3y are again
in relation by R. Now, the coinduction scheme says that whenever we have such
a proof, we can deduce that for any two elements x and y ind X, if xRy then
[(/)lz = [(f)ly. In particular, if f is the final coalgebra out of L, this provides a

way to prove the equality of two (potentially infinite) streams.

Example 4.3.12. (Examples 4.1.9, 1.1.9 continued) Consider, dom : B~ — B,

the domain fibration on a bicartesian category B and remember that it admits
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quotients where both p and 1 are the identity functor on B™.
In this setting, every canonical lifting is given by the morphism part of a
functor, indeed F= YF~”p = F7. We then have that a F -coalgebra is given by

the following commuting square in B:

X%y

mi iw

FX = FY

using the intuition given in Example 2.2.3, this coalgebra can be understood as a
function from X to F X such that any elements in relation by f are mapped into
elements in relation by F'f.

The resulting anamorphism is then given by the following commuting square:

Kuru2)y

) G— iy
Y >pF
u1l u2 l out out
FY = F(vF)
2N
FX - = FYF

o Fluuel

the intuition being that we have a map [(u1,us)]; that maps any elements in
relation by f to equal elements in vF and such that out o [(u, us)] = F|(u, us2)]; 0
Uq.

In particular, setting F' to be the functor LX = 1+ Ax X, the lifting of L maps
f: X > Y toid, +ids x f. Using the interpretation given in Example 2.2.3, Ef
relates two elements of 1+ A x X iff they are either both the unique element of 1,
or pairs (a, ) and (a, z') with z and 2z’ in relation by f. Hence we can understand
the associated coinduction scheme as: given f: X — Y a relation on X, if there
is a function u : X — 14+ A x X with a proof that « maps elements related by f
to elements related by id; +ida x f, then there is a function [(u)] : X — vL such
that out o [(u)] = L[(u)] o u and a proof that [(u)] maps elements related by f to
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equal elements in v L.

We now look at the coinduction scheme for the power set functor &2. Since
2 is not polynomial, it lies outside the scope of [HJ98|, but it is important, since

a number of canonical coalgebras are built from it, as we saw in Example 4.1.8.

Example 4.3.13. (Example 3.1.18, continued) We now consider the relations
fibration for the family fibration above Class, p : Rel(Class) — Class.

Consider the power set functor & : Class — Class and its canonical e-
preserving lifting functor & : Rel(Class) — Rel(Class) that maps a relation
R: Ax A — Class to the relation ZR : PA x PA — Class defined by
X(PR)Y <« (VxeX).(QyeY).zRy » (YyeY).(3z € X). zRy. We can then
look at the resulting coinduction scheme. It has as its premises a g\i—coalgebra,
i.e., arelation R : Ax A — Class and a map from R to PRin Rel(Class). A mor-
phism in Rel(Class) from (X, R) to (X', R') consists of a morphism ¢ : X — X’
in Class and a morphism ¢~ : Y(z,y) € X x X. 2Ry — (¢x)R'(¢y). Thus,
a g\g—coalgebra consists of a function o : A — ZA together with a function
a~ : (Ya,d' € A).aRd' — (aa) PR (aa’). If we regard v : A — FPA as a tran-
sition relation, i.e., if we define a — b iff b € aa, then o™ captures the condition
that R is a bisimulation above a. The coinduction scheme thus asserts that any

two bisimilar states have the same interpretation in the final coalgebra.

Example 4.3.14. (Examples 3.1.18, 1.1.9 continued) Consider the domain fibra-
tion on the category of classes, p : Class™ — Class.

As seen in Example 4.3.12, any canonical lifting is given by the morphism part
of the lifted functor, we then have & = 2~ Now since relations are interpreted
in the domain fibration using kernel relations, we have for f : A — B a relation

on A, writing | f| for the kernel relation on f:

AP [l A o (P f) A= (P f) A,
o Vae Ajdd € Ay, a|f|d AVae Aydd € Ay alf|d

Hence, a g\z/—coalgebra of carrier f is a proof that |f| is a bisimulation and the

coinduction scheme associates to such a proof a map from A to v&? with a proof
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that any elements related by |f| are mapped to two equal elements in v 2.

In summary, we have a sound generic induction scheme for Lawvere fibrations
and a sound generic coinduction scheme for QCEs. Both are valid for arbitrary
functor F' on the base category. We derive a sound induction scheme for puF
from the canonical 1-preserving liftings }A?, and a sound coinduction scheme for

vF' from the canonical e-preserving lifting F.
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Chapter 5

Indexed induction

Data types arising as initial algebras and final coalgebras on traditional semantic
categories such as Set and wcpo, are of limited expressivity. More sophisticated
data types arise as initial algebras of functors on their indexed versions. To build
intuition about the resulting inductive indexed types, first consider the inductive
type List X of lists of X. It is clear that the definition of List X does not require
an understanding of List Y for any ¥ # X. Since, each type List X is in isolation
inductive, the type List can be considered a family of inductive types. By contrast,
consider the inductive definition of the Nat-indexed type Fin : Nat — Set of finite
sets given by
x:Finn

fz:Fin(n+1) fsx:Fin(n+1)

and Lam : Nat — Set of untyped A-terms up to a-equivalence with free variables

in Finn given by

i:Finn f:Lamn a:Lamn b:Lam(n+1)

Vari : Lamn App fa:Lamn Absb: Lamn

The intuition is that for a term n : Nat, the type Finn is a type with exactly
n-elements and Lamn is the type of untyped A-terms up to a-equivalence with
free variables in Finn. Unlike List X, the types Finn and Lamn cannot be defined
in isolation using only the elements of Finn and Lamn that have already been

constructed. Indeed, elements of Fin n are needed to construct elements of Fin (n+
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1), and elements of Lam (n + 1) are needed to construct elements of Lamn so
that, in effect, all of the types Finn and Lamn must be inductively constructed
simultaneously. Each of the inductive indexed types Fin and Lam are thus an
inductive family of types, rather than a family of inductive types.

If types are interpreted in a category B, and if [ is a set of indices considered
as a discrete category, then an inductive /-indexed type can be modelled by
the initial algebra of a functor on the functor category [I,B]. Alternatively,
indices can be modelled by objects I of B, and inductive I-indexed types can
be modelled by initial algebras of functors on slice categories B/I. Similarly,
coinductive indexed types can be modelled by final colagebras of functors on
functor categories or functors on slice categories.

Initial algebra semantics for inductive indexed types has been developed ex-
tensively [Dyb94, GH04, AM09|. Pleasingly, no fundamentally new insights were
required: the standard initial algebra semantics only needed to be instantiated to
categories such as B/I. By contrast, the theory of induction for inductive indexed
types has received comparatively little attention.

In this chapter we will derive sound induction schemes for such types by
similarly instantiating the fibrational framework to appropriate categories. We
will then look at different examples of fibrations in which we can instantiate our
results as well as ways to derive a fibration for indexed induction from a fibration
for non-indexed induction. We finish the chapter by looking at some properties

of the different structure introduced.

5.1 The setting

In this section we look at induction schemes in an indexed setting. In order to
do this we first present how fibrations extend to a setting for reasoning about
indexed types. We then use the results from Chapter 4 to come up with the
definition of an induction scheme in this new setting.

First, bear in mind that as previously mentioned in Chapters 1 and 2, besides
their use for modelling a logic above a type theory, fibrations can be used to

model dependent types. In fact, since fibrations capture indexing closed by sub-
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stitution, we can use them to capture any such indexing of types by considering
a fibration whose total category is a category of types and whose base category
is a category of objects indexing these types. For B a category of types, tra-
ditional fibrations for representing indexed types would be the family fibration
of B (Example 1.1.7) that captures set-indexed types, but also the codomain fi-
bration on B (Example 1.1.8) that captures type-indexed types (i.e., dependent
types, see [See84, Hof94|). Given a fibration r : B — A, of A-indexed types, an
inductive indexed type with index a in A is given by the initial algebra of an endo-
functor F, : B, — B, on the fibre B,. The two standard approaches mentioned at
the beginning of the chapter are recovered by setting r to be the family fibration
Fam(B) — Set and the codomain fibration cod : B~ — B, respectively. Indeed,
a fibre above a set I of the family fibration is equivalent to the functor category
[1,B], and, for A in B a fibre above A in cod is the slice category B/A.

Now that we are fixed on our setting for indexed types, we need to consider a
logic above it. For r : B — A a fibration of types, we represent a logic on these
types with a second fibration p : £ — B above the total category of the fibration
of types. This seems to be the most natural setting since, even when indexed, the
types are objects of the category B. Another possibility is to consider the fibration
of predicates p as another fibration on the base category A. The latter approach
particularly makes sense if A is a category of contexts because the fibration r
is then understood as a fibration of types in context and p is understood as a
fibration of propositions in type context. This approach is notably used in [Jac99]
to model higher order predicate logic above a dependent type theory with DPL-
structure and its extensions. We will see how the two approaches are related in
Example 5.2.4.

We then work in a setting where we have a fibration of predicates p : £ — B
above the total category of a fibration of (A-indexed) types r : B — A. Since we
still have a fibration of predicates, we would like to directly apply our theory from
Chapter 4. However, the difference with non-indexed induction schemes is that
we are not dealing with (initial algebra of ) endofunctors on the base category B of
the fibration of predicates, but with endofunctors on fibres of r i.e., subcategories

of B. In this situation we cannot expect to lift a functor F': B, — B,, for a in A,
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to the (whole) category of predicates £. On the other hand, we might be able to
lift F' to a subcategory of £, provided that the fibration p restricts to a fibration
above B, with sufficient structure to lift /. Remember that r o p is a fibration
by Lemma 1.2.3. We then have the following well-known lemma (Theorem 4.1

in [Str99| for example) which gives us a first result in that direction.

Lemma 5.1.1. Let p: £ - B and r : B — A be two fibrations. For any object a
in A the fibration p restricts to a fibration p, : £, — B, between &,, the fibre above
a of the fibration r o p, and B, the fibre above a of the fibration r. Furthermore,
if p 1s a bifibration so is the fibration p,, and if p has a terminal object functor
1: B — &, the terminal object functor restricts to a terminal object functor

1,: B, — &, for the fibration p,.

Proof. The key observation is that we can obtain the fibration p, : & — B,
by a change of base of p along the inclusion functor i, : B, — B for any a in
A. Furthermore, since a change of base preserves bifibrations and terminal object
functors (Corollary 1.2.2 and Lemma 1.2.28) p, is a bifibration and has a terminal

object functor if p has the corresponding structure. O

This Lemma shows that the basic structure of a logic (reindexing and terminal
object functors) above a fibration of indexed types restricts to a corresponding
logic above types with a specific index.

Let p: &€ > B and r : B — A be two fibrations with 1 : B — £ a terminal
object functor of p. For a an object of A and F' : B, — B, a functor, the fibration
Do gives us a setting to consider liftings and 1,-preserving liftings of a functor F
to the subcategory &, of £. We are back to a setting that corresponds to the non-
indexed induction case, i.e., a fibration p, : &, — B, and a functor F': B, — B,
on the base category. Furthermore, since the terminal object functor 1, is a
restriction of 1, we know that any proof of the form 1,X — P in &, is the same
as a proof 1X — P in £ above a. We can then adapt our definition of induction

schemes in fibrations to this new setting:

Definition 5.1.2. Let p: £ — Band r : B — A be fibrations with 1 : B — £ the

terminal object functor of p. For a in A and F' : B, — B, a functor, we say that a
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1,-preserving lifting F : £, — &, of F defines an a-indexed induction scheme for

wF in pif the functor 1-Alg : Alg, — Algy that sends an F-algebra FX % X in

B, to the F-algebra F1X =~ 1FX 1% 1X in &4, preserves the initial object.
Equivalently, the functor F' defines an a-indexed induction scheme for pF in

p if it defines an induction scheme for pF in p,.

Note that this definition generalises Definition 4.3.1, since setting the fibration r
to be the unique functor from B to the one object (one morphism) category gives
us the definition of (non-indexed) induction schemes in fibrations.

As for the non-indexed definition, the induction scheme is given by the cata-
morphisms associated to the initial algebra of F.. Note that in the indexed setting,
since F is a functor on &,, we can only apply the induction scheme to predicates
with the same index as puF'. For P in &, we can however use reindexing provided
that we have a morphism f : a — b in A, as this would let us produce proof of
the form 1uF — f*P EAR P.

Now, let p : &€ - B and r : B — A be two fibrations such that p has a
terminal object functor 1 : B — £. The next step is to consider what structures
on p and r guarantee indexed induction schemes for any indexed inductive types.
We know from the previous chapter that for a in A, a functor F' : B, — B, and
a 1,-preserving lifting ' : & — &,, F defines an a-indexed induction scheme
for uF' as soon as p, admits comprehension. Therefore, in order to have an a-
indexed induction scheme from any 1,-preserving functor, a minimal condition
to instantiate our results is to ask for any a in A that the fibrations p, admits
comprehension. Furthermore, to have a canonical indexed induction scheme for
any indexed inductive types in B, a minimal condition to instantiate our results
is to ask for any a in A that p, is a Lawvere fibration. However, the fact that no
coherence conditions are required between the different comprehension structures
of each p, might pose a problem at the level of types: if a fibration admits
comprehension this implies that for any proof v : 1.X — P at the predicate level
there is a morphism u : X — {P} such that v is above 7p o u. This morphism
u is understood as mapping any term x of X a proof that P holds at x. Now, if

we use the a-indexed inductions scheme for pF' an inductive type dependent of a
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with a predicate () depending on b through a morphism f : a — b, while we would
obtain a proof 1uF 5 f*Q EAN @, nothing guarantees the existence of an arrow
u: uF — {Q}, and indeed, we don’t have that p itself admits comprehension.
More generally, if we only ask that for any a in A, the fibrations p, admits
comprehension, we don’t have that p admits comprehension, not even that p is
a bifibration. The question of the corresponding logic structure of p is then not
evident. On the other hand, we can not always restrict a comprehension category
with unit to CCUs between the fibres, i.e., p admits comprehension does not
imply that p, does. We are then looking for a notion of comprehension category
with unit above a fibration which restricts to the fibres. This notion already

exists and is denoted a fibred comprehension category with unit (Definition 4.4.5

in [Jac91]):

Definition 5.1.3. Let p: £ > Band r : B — A be two fibrations with 1 : B — £
the terminal object functor of p. We say that p admits comprehension above r if

1 has a fibred right adjoint {—} : rop — r:

That 1 is a fibred functor from r to r o p follows from the fact that it is fibred
from idg to p.

A first consequence of this definition is that, if a fibration p : £ — B admits
comprehension above a fibration r : B — A, p clearly admits comprehension. If
p admits comprehension above r, we say that the CCU associated to p is fibred
above r. Furthermore, we have from Lemma 1.2.12 that if p admits comprehension
above r, for every a in A the fibration p, admits comprehension. In fact we have

the following correspondence:

Lemma 5.1.4. Let p: € - B and r : B — A be fibrations. The following are

equivalent:

it The fibration p admits comprehension above r
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it For every a in A the fibration p, admits comprehension and, for every u :
a—ad in Aand u*: By — B,, there is a u” : £y — &, forming a morphism

of CCU par = pa-

1t The fibration p admits comprehension with terminal object functor 1 : B — &
and comprehension functor {—} : € — B, and for every a in A, the ad-
gunction 1 - {—} restricts to an adjunction 1, - {—}, such that p admits
comprehension with comprehension functor {—}, : &, — By, the restriction of
{—}
Proof. To verify that (iii) = (i), let p admit comprehension with terminal object
functor 1 : B — & and comprehension functor {—} : & — B, and let p be
such that for every a in A, the fibration p, : £ — B, admits comprehension
with comprehension functor {—}, : & — B, given by restricting {—} to the
corresponding fibres. First, by the dual of Proposition 1.2.32 we have that {—}
is fibred from 7 o p to r. Then, since the adjunction {—} 1 restricts to the
adjunctions {—}, F 1, the unit of {—} I 1 is vertical with respect to r.
(1) = (i4i)is straightforward.

For (i) < (it) see Lemma 4.4.3 in [Jac91] O

This result shows that the notion of CCU above a fibration is the one we
were looking for for indexed induction. We have a structure that characterises a
collection of CCUs above each fibre of a fibration r which, taken together, gives
a CCU above the total category of r.

Definition 5.1.3 straightforwardly extends to Lawvere fibrations:

Definition 5.1.5. Let p: £ — B and r : B — A be fibrations. We say that pis a

Lawvere fibration above r if p admits comprehension above r and is a bifibration.
The next two corollaries are immediate:

Corollary 5.1.6. Let p: £ — B and r : B — A be fibrations. The fibration p is
a Lawvere fibration above r iff p is a Lawvere fibration and for every a in A, the

structure restricts between &, and B,, making p, a Lawvere fibration.
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Theorem 5.1.7. Let p : € — B be a Lawvere fibration above r : B — A. For
any a in A and F : B, — By, a 1,-preserving lifting F : £, — &, of F defines a
sound a-indezed induction scheme for pF in p.

In particular, the canonical 1,-preserving lifting a defines a sound canonical

a-indexed induction scheme for pF.

5.1.1 More thought about fibred structures above a fibra-
tion

In this chapter, we started by discussing a fibration p above another fibration
r. The fact that this notation is similar to the notation of a fibration above a
base category B is not accidental: a fibration p : &€ — B can be characterised by
a collection of category &, for each b in B and reindexing functor f* : & — &,
for each morphism f : @ — b in B (see the equivalence between fibrations and
indexed categories in [Jac99| for example). In fact we have a similar description

for a fibration above a fibration, as shown in the following Lemma:

Lemma 5.1.8. Consider two fibrations q : € — A and r : B — A, and a fibred

functor p : ¢ — r above A. The following statements are equivalent:
(i) p is itself a fibration.

(ii) for each a in A, the restriction p, : E, — B, of p is a fibration, and for each
morphism f:a — b in A and reindexing functor f* : B, — B, (with regard
to r), there is a reindexing functor f# : & — &, (with regard to q) forming

a fibred functor (f¥, f*) : py — pa.

In fact, it is well-known ( [Jac99,Str99] for example) that the two points of the
previous lemma are also equivalent to the definition of a fibration in the 2-category
Fib(A) (using the definition of fibrations in 2-category due to [Str74,Str80]).

Similarly, we have the notion of fibred structure above the base category of a
fibration p to denote structures on the total category of p that restrict to fibres
and are stable under reindexing (as illustrated in Lemma 1.2.12 for example).

And for p a fibration above r : B — A, we have the notion of fibred structures
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above r to denote structures that restrict to the fibrations p, and are stable under
the reindexing functor described in Lemma 5.1.8. For example, we have that a
terminal object functor of p implies a fibred terminal object functor, as shown in

the following lemma:

Lemma 5.1.9. Letp: € - B and r : B — A be two fibrations. The fibration p

has a terminal object functor above r iff
e for every a in A, p, has a terminal object functor 1,

o for everyu : b — a in A and every reindexing functor u* : B, — By, there

is a reindexing functor u* : & — &, such that u” o1, = 1; o u*.

Proof. Note that the natural isomorphism u* o 1, = 1, o u* is necessarily the
canonical map since 1, is terminal, hence we can use Lemma 1.2.12 and the
fact that the counit of the adjunction 1 — p corresponds to the counit of the

adjunctions 1,  p, to conclude the proof. n

The notion of fibred CCU above r can also be described in this fashion,
see [Jac91].

Another interesting fibred construction is the notion of arrow fibration:

Definition 5.1.10. Let p : & — B be a fibration, and denote V(F) for the full
subcategory of £~ with vertical arrows as objects. The functor p~ : V(&) — B,

defined as p~ = pocod = p o dom, is again a fibration.

In fact, we have that the arrow fibration is the arrow object of the corresponding
fibration in the 2-category Fib(B) (See Lemma 9.4.2 in [Jac99]).
Dually to fibration, there is also a notion of opfibration fibred above a fibra-

tion:

Definition 5.1.11. Let ¢: £ — A and r : B — A be fibrations and p : ¢ — r be

a fibred functor. We say that p is an opfibration fibred above r iff

(i) for any a in A the restriction p, : &, — B, of p is an opfibration
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(ii) for any u : b — a and @ in &,, the unique map making the following diagram

commute is an isomorphism.

u*Q

w*(f)
(u#f)§l

Zu#fu*Q e (Zf@)

This definition straightforwardly implies a notion of bifibration fibred above
a fibration. Note then that the Definition 5.1.5 of a Lawvere fibration above a
fibration does not correspond to the definition of a Lawvere fibration fibred above
a fibration (since we are not asking for a bifibration fibred above a fibration but

just a bifibration).

5.2 Examples and properties

Example 5.2.1. (Example 2.1.5, continued) As codomain functors provide canon-

ical examples of CCUs, fibred codomain functors, i.e.,

cody,

V(&)

W

provide canonical examples of fibred CCUs. Similarly to the non-fibred case, in

&

order for cod, to be a fibration we need to have that for any vertical morphism

a: B — A and arbitrary morphism f : X — A in & there is a pullback square

—_—

B

_
S
X A

—_—

f

such that f*o is again vertical. It is then straightforward to check that cod, is
a fibration and the following fibred adjunctions cod, — id, - dom,, hold, making
cod,, a fibred CCU above p.

Note then that we can then associate to any category B with pullbacks the
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following fibred CCU:

domecoqd
/F\
V (B") ':dcoa B_)
-~ T
codcoq
cod™ cod
B

Example 5.2.2. (Example 2.1.2 continued) Consider a fibration r : B — A that
captures a theory of indexed types. More specifically, A is a category of indices,
and B a category of indexed types where each type X has as index rX, and
types are closed under reindexing. Furthermore, any term x : X ¢ : Y above a
morphism of index o : I — J is equivalent to a term = : X + t' : o*Y which is
then said to be of index I. For example, think about a set-indexed type theory
captured by a family fibration Fam(C) — Set (see Example 1.1.7).

Consider now a predicate logic above the theory given by a fibration p : £ — B.
Then p admits comprehension above r if for every predicate P above a type X
of index I there is a comprehension type {P} (see Example 2.1.2) of index I,
and comprehension types are stable under reindexing, i.e., for any morphism

u:J—1in A u*{P} = {u*P} (or equivalently the associated correspondence
(y:Y+—1:Prop)— (z: X+ P: Prop)

restricts to a specific index).

Y — {P}: Type
If we have in addition that the fibration p is a bifibration (see Example 1.1.5 for

the corresponding logical structure) for I in A, X in By, Pin Ex and F' : By — By,
we can describe the canonical lifting of F at P. Using that ' P = Yrxp)lF{P},

this definition captures the predicate of index I
r:FXF3a: F{P}. (F(wP))a=x: Prop

Of course, the term (F(wP))a depends on the definition of F' and the structure
of €. We then have that a F -algebra of carrier P above an algebra a: FX — X

is given by the following entailment of index I:

o FX, 3a: F{P}. (F(rP))a=1x - Plz « (az’)]
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The induction scheme provides then the following rule, where everything is of the

same index:

x: X+ P: Prop

r: FXFa: X

¥ FX, da: F{P}. (F(nP))a=x + Pz < (az')]
' pF = Plr < (a)2]

The next example specialises the previous syntactic model to the case where

the indexed type theory is a dependent type theory:

Example 5.2.3. (Example 2.1.2 continued) In this example we consider a pred-
icate logic over a dependent type theory'. We know from Example 2.1.2 that a
dependent type theory is captured by a fibration r : B — A that admits com-
prehension. We then have A a category of dependent type context I' and B a
category of dependent types in context I' ¢ : Type. A predicate over this type
theory is understood as a proposition in a dependent type context I' — P : Prop.
Similarly to Example 1.1.5, such a predicate logic is captured by another fibration
p:&— A

We can find back a setting similar to the one describe in the previous example
by setting predicates above a type X in Br to be the predicates in & x;. This
construction is described more generally in Example 5.2.4. If we have in addition
that the fibration p is a bifibration, we can describe canonical liftings in this
setting using the description made in previous example: For F': Br — Br and P

in Br, FP captures the following predicate
I, 2: FXt 3a: F{P}. (F(wP))a=x: Prop

Hence a F -algebra of carrier P above an algebra a : FX — X is given by the

following entailment:

[, 2': FX, Ja: F{P}. (F(nP))a=xz + Plx « (az')]

Lor dependent predicate logic, see 11.1 in [Jac99)
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The induction scheme provides then the following logical rule:

I') z: X+ P: Prop

I'Nx: FXFa:X

I, 2 FX, Ja: F{P}. (F(nP))a=x+ Plz « (az')]
[, o pF - Ple < (a)2]

We start with an example that looks at another possible setting in which
we can study indexed induction and then discuss how it relates to the one we

considered for Definition 5.1.2.

Example 5.2.4. We will now take a look at a class of settings that are more
common from the perspective of dependent type theory: consider two fibrations
p:& —> Aand r: B — A where r admits comprehension with comprehension
functor {—}, : B — A and p has a terminal object functor 1, : A — £. The
idea is that r captures a dependent type theory and p a logic, i.e., A is thought
of as a category of (dependent) contexts, B is thought of as a category of types
in context and £ as a category of propositions in (type) context. In order to
express induction schemes for inductive dependent types, i.e. initial algebra of
endofunctors F' : B, — B, for some a in A, consider the fibration p’ = {—}¥p
above r where {—}, is the comprehension functor of r. Diagrammatically we

have:

_
P p

B {7}r A

&—=E

r
A

Remember (Example 2.1.7) that the comprehension functor of a fibration of de-

pendent types performs context extension, that is, for B a type in context I,

{B}, is the context I', B. Therefore, a predicate in p’ above B is a proposition

in the context I', B and the terminal object functor 1’ : B — & maps the type B

to the true proposition in context I', B. We now have a setting in which we can

apply our definition of indexed induction schemes. The question of the existence
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of such schemes remains open since we do not know if 1’ has a fibred right adjoint
(by Lemma 2.1.10, a sufficient condition is for the functor {—}, to be a fibration).
Note that the existence of such an adjoint {—}' : £ — B would correspond to the
presence of a notion of dependent comprehension type in B (as a straightforward
generalisation of Example 2.1.2). Indeed, by using the internal language of the
structure the adjunction is characterised by a correspondence between the pair
of aterm I'B +t: B' (in B) and a proof I' B  p : t*P (in £) and a term
I''Btra:{P}, (in B).

As mentioned in the introduction, structure similar to this one have been in-
vestigated in [Jac99|, in particular with the notion of DPL-structure where the
fibration p describes a (complete) dependent type theory and the fibration r de-
scribes a higher order (proof irrelevant) predicate logic. The notion of dependent
comprehension type restricts in this case to a notion of dependent subset-type
(see Definition 11.2.3 in [Jac99]). We then have that any DPL-structure with p,
a bifibration, and with dependent subset types has arbitrary indexed induction

schemes.

The next example shows how we can take any Lawvere fibration whose base
category has pullbacks and associate it to a fibred fibration obtained though the

method described in the previous example.

Example 5.2.5. Let p : £ — B be a Lawvere fibration of predicates above types
where B has pullbacks. We know from Example 2.1.5 that there is in fact already
enough information to speak about dependent types in this setting using the
codomain fibration. We then found ourselves in a setting similar to the one in
Example 5.2.4: a fibration of predicates p : £ — B and a fibration of dependent
types cod : B — B. The point of this example is that in this particular situation
B~ has dependent comprehension types, and hence, arbitrary indexed induction
schemes.

To see this, let ¢ : & — B~ be the fibration above cod obtained from the

change of base of p along the comprehension functor of cod. See the following
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diagram:

We know that dom is also a fibration (Example 1.1.9), and hence by Corol-
lary 2.1.16, that ¢ is a Lawvere fibration. Now bear in mind that for any I in B

the fibration g; can be obtained with the following change of base:

5/£—>g'

Here, i is the inclusion functor of the slice category into the arrow category. Now,
since the composition B/1 U, B~ 2 Bis equal to the functor dom; : B/l — B,
which is straightforwardly a fibration, we have by Corollary 2.1.16 that for any
I in B the fibration ¢; is a Lawvere fibration. Hence, by Corollary 5.1.6 ¢ is a

Lawvere fibration above cod.

We conclude this chapter with two preservation properties of change of base
for fibred CCUs and fibred Lawvere fibrations, as well as a preservation property

with composition.

Lemma 5.2.6. Let p : € — B be a Lawvere fibration (admits comprehension)
abover : B — A and let q : B' — B be a fibration. Let p' : £ — B’ be the fibration

obtained by change of base of p along q. In a diagram:

&—=¢

e

B/L>B

N

A

The fibration p' is a Lawvere fibration (resp., admits comprehension) above 1 o q.
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Proof. First, by Lemma 2.1.10 we know that p’ admits comprehension. Then,
remark that for any a in A we have p!, = (q,)*(pa), hence p!, also admits com-
prehension. We conclude with Lemma 5.1.4. It is straightforward to extend this

proof to cover Lawvere fibrations. O

Lemma 5.2.7. Let p : € — B be a Lawvere fibration (admits comprehension)
above r : B — A and let s : A" — A be a functor. We then have the following
situation:

E—=E

17

P p

r¥s

B'—B

(R

A’ s A
Here, the fibration p’ is a Lawvere fibration (resp., admits comprehension) above

the fibration r'.

Proof. Indeed, since change of base preserves fibred adjunction we have that

T T T
E=—1 B E=——v B
\L/ \,_.,./

p implies v
rop r T’Op’ !
A A’

]

Lemma 5.2.8. Let p : € — B be a Lawvere fibration (admits comprehension)
above r : B — A and let t : A — D be fibration. The fibration p is a Lawvere

fibration (resp., admits comprehension) above t or.
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Proof. Indeed, we have the following straightforward implication:

ET T B e —
TA / implies
./4 P torop tor
lt
D D
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Chapter 6

Indexed coinduction

In this chapter we derive coinduction schemes for coinductive indexed types.
Examples of such types are infinitary versions of inductive indexed types, such as
infinitary untyped lambda terms and the interaction structures of Hancock and
Hyvernat [HHO6]. As for indexed induction, we will first introduce the definition
of indexed coinduction in fibrations. We will then look at how to index the notion
of QCE in order to derive a setting admitting coinduction scheme for arbitrary
indexed coinductive types. We conclude this chapter by looking at examples and

properties of this new setting.

6.1 The setting

As in Chapter 5, the setting that we are considering is given by a fibred fibration:
we have a fibration r : B — A, where we think of an object of B as a type indexed
by an object of A, and a fibration p : £ — B where we think of the objects of £
as relations above the indexed types. Our aim is to investigate sound coinduction
schemes for final coalgebras of functors F' : B, — B,, where a is any object of A.

Before giving a definition of indexed coinduction in this setting, first note that
by Lemma 1.2.23 a (full) section of the fibration p restricts to a (full) section of
the fibrations p,. Therefore, for any a in A, any proof of the form R — ¢,X in
&, is the same as a proof R — eR in £ above a.

We can then adapt our definition of coinduction schemes in fibrations to this
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new setting with the following definition:

Definition 6.1.1. Let p : £ — B be a fibration with full section e : B — £ and
r: B — A be a fibration. For a in A and F : B, — B, a functor, we say that a
eq-preserving lifting F : &, — &, of F defines an a-indeved coinduction scheme
for vF in p if the functor e-CoAlg : CoAlg, — CoAlg that sends an F-coalgebra
X % FX to the F-coalgebra eX <% eF X >~ FeX preserves the terminal object.

Equivalently, the functor F defines an a-indexed coinduction scheme for v F

in p if it defines a coinduction scheme for vF' in p,.

As for induction, the definition of indexed coinduction schemes generalises Defini-
tion 4.3.8 by setting r to be the trivial fibration from B to the terminal category.

As with the non-indexed definition, the coinduction scheme is given by the
anamorphisms associated to the final coalgebra of F. We observe a difference
with the indexed inductive case for F : &, — &,, for R in &, and a morphism
f :a— bin A: If we use the reindexing to apply the coinduction scheme to
f*R we can’t deduce a proof of the form R — evF above f since we are in a
situation where the coinduction scheme gives a morphism v : f*R — evF', while
the cartesian lifting of f goes from f*R to R. To obtain such a proof we can ask
that r o p is an opfibration and consider R LN YR 5 R.

Let p : £ — B be a fibration with a full section e : B — £ and r : B —
A be a fibration. We now look for settings that provide indexed coinduction
schemes for arbitrary indexed coinductive types. We know from Chapter 4 that
in order to have arbitrary indexed coinduction schemes we need that for any a
in A the fibration p, : £, — B, admits quotients. As in Chapter 5, we want to
highlight the uniformity connecting the different fibrations p, but requiring that
each fibration p, admits quotients does not automatically imply that p admits
quotients. However, by contrast with the situation in the inductive case, if p has
a full section e : B — & fibred with regard to r, requiring that each fibration
e admits e,-quotients does ensure that p admits quotients. Indeed, we have the

following result:

Lemma 6.1.2. Let r : B — A be a fibration, and q : € - A ande : B — &
be functors such that q o e = r. The functor e has a left adjoint QQ : € — B
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with vertical unit (resp., counit) iff e preserves cartesian morphisms and for each

object a in A the restriction e, : B, — &, of e to the fibres has a left adjoint Q.

Proof. Let us assume a collection of left adjoint @), : &, — B, to the restriction
eq : By — &, of e. The proof then follows the proof of Lemma 1.8.9 of [Jac99|: we
will prove that for each a in A and R in &, the unit component ng : R — eQ,R
is a universal map from R to e (and not just to e,). Let us assume a morphism
| : R — eY above h : a — b, we then have [ = e(h}) o u for a unique vertical
morphism u : R — e(h*Y) using the fact that e(h}) is cartesian. Now, since u
is in &, we can use the universal property of nz to deduce a unique morphism
g : QR — h*Y in B, such that u = eg o ng. Therefore, we have a unique
morphism f = h%, o g such that [ = ef ong.

Conversely assume a functor @, left adjoint to e with vertical unit. We directly
obtain a collection of adjunctions between the fibres and that e preserves cartesian

morphisms from Proposition 1.2.32. O

This Lemma can be compared with Lemma 1.2.12.

We then deduce the following setting.

Definition 6.1.3. Let p: £ —» B and r : B — A be two fibrations withe : B — &
a full section of p. We say that p admits quotients above r if either of the following

holds:

(i) e has a left adjoint @ : & — B with unit (or equivalently counit) vertical

with regard to r.
(i) e is fibred above r and, for any a in A, p, admits e,-quotients.

Lemma 6.1.2 ensures that the two points are equivalent.

This definition corresponds to the definition of fibred comprehension in the
sense that it gives us a structure that characterises a collection of QCEs above
each fibre of a fibration r which, taken together, gives a QCE above the total
category of r. We would however not call it a fibred QCE since the definition
does not imply stability under reindexing of the quotients. If we want quotients

to be stable under reindexing we need to consider the following definition:
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Definition 6.1.4. Let p: £ —» B and r : B — A be two fibrations withe : B — &
a full section of p. We say that p admits fibred quotients above r if e has a left
adjoint @ : £ — B and the adjunction is fibred above A:

e
T

—— T
Q
Top T

A

ES T 2B

Note that if p admits fibred quotients above r, p trivially admits quotients above
T.

We then have the following corollary:

Corollary 6.1.5. Let p : £ — B admits e-quotients above r : B — A. For any
ain A and F : B, — By, a eq-preserving lifting F : €&, — &, of F defines an
a-indexed coinduction scheme for vF in p.

In particular, the canonical e,-preserving lifting ja defines a canonical a-

indexed coinduction scheme for vF.

6.2 Examples and properties

Example 6.2.1. (Example 2.2.3, continued) As domain functors provide canon-

ical examples of QCEs, fibred domain functors, i.e.,

domp

V(E)

N

provide canonical examples of fibred QCEs. Similarly to the non-fibred case dom,,

£

is systematically a fibration, indeed reindexing is then given by the following

diagram:
X——4
f*ozv la
(Pf)*B >
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It is then straightforward to check that the following fibred adjunctions cod, —
id, - dom,, holds, making dom,, a fibred QCE above p.
Note that we can then associate to any category B a fibred QCE:

domgom

/\
V(B™) ~—idaon—— B

codgom

We start the section with an example which describes a construction similar to
the family fibration (Example 1.1.7), this time however we index a whole fibration

and present a way to index it by a category which is not necessarily Set.

Example 6.2.2. Let C be a category with a terminal object 1, and p: &€ — B
be a fibration with a full section e : B — £ and quotient functor @ : £ — B.
For X an object of C, write GX for the discrete category whose objects are the
morphisms x : 1 — X in C. Remember from Example 1.1.5 that if C is seen as a
category of types, the morphisms from 1 to X represent the closed terms of type
A, ie., GX is to be understood as the discrete category of closed terms of type
X (also if C is Set, GX = X for any set X).

Let Fam¢(€) be the category with objects, pairs (X, P) where X is an object
of C and P a functor from GX to £. A morphism of Fam¢(€) from (X, P) to
(Y, Q) is a pair (f, f~) with f: X — Y a morphism in C and f~ a collection of
morphisms f; : Pr — P(f ox) in &, for every 1 > X in GX (or equivalently,
f~ is a natural transformation from P to P o f where f is seen as a functor from
GX to GY). Let Fam¢(B) be the category obtained with a similar construction
on B.

Consider the functor p' : Fam¢(€) — Fame(B) that maps an object (X, P) to
(X,po P) and a morphism (f, f~) to (f,po f~). The functor p’ is a fibration:

For a (X, P) in Fam¢(€) and (f, f~) : (Y,A) — (X,p o P) a morphism in
Fame(B), define (f, f~)*(X, P) to be the object (Y, P') in Fame(E)y,4) where P’ :
GY — & maps y to (f7)*P(f oy). Define then the cartesian lifting (f, f~)§

Y

to be the morphism (f,1) : (Y, P') — (X, P) with I, = (f;")".

X,P)
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Consider the functor r : Fam¢(B) — C that maps an object (X, A) to X.
The functor r is a fibration: for (X, A) in Fam¢(B) and f : Y — X in C, define
f*(X,A) as the pair (Y, Ao f). The cartesian lifting f(§X7 4 18 given by the pair
(f, ) with fy = ida(soy), for every y in GY. Note that since every cartesian
morphism (f, f~) is isomorphic to a cartesian lifting, all the morphisms of the
collection f~ are necessarily isomorphisms (f™~ is a natural isomorphism).

The fibration p’ has a full section ¢’ : Fam¢(B) — Fam¢(E) fibred above C.
The section €’ is given by e’ (X, A) = (X, e0A). For a cartesian morphism (h, h™) :

(Y, B) — (X, A) above h, since we have that hy is an isomorphism for every y

~

, » and since every isomorphism is

in GY then e(h;’) is an isomorphism above A
a cartesian morphism then e(h;) is cartesian above h;. This makes ¢'(h, h™)
cartesian above h. Note that this argument can be used to lift any functor
between &€ and B to a fibred functor between Fame(€) and Fame(B).

Finally, we can define a fibred quotient functor above r for p’ to be Q' :
Fame (&) — Fame(B) given by Q'(X, P) = (X, Q o P). Indeed, Q' is fibred using
the argument in the previous paragraph, and we have Q' - €’ since for any X in

C, the following adjunction holds Q% — €y by a pointwise construction and by

Lemma 6.1.2.

Notice that it is straightforward to index a CCU with the method presented
in this example, however, indexing a Lawvere fibration poses a problem when
indexing the opreindexing structure.

The next example generalises the construction of a fibration of relations pre-
sented in Example 1.1.11 for fibred fibrations. As for the non-indexed case, we can
derive a fibred fibration of indexed relations from a fibration of indexed predicates

in the following way:

Example 6.2.3. (Example 2.2.4, continued) Let p : £ — B be a bifibration with
a terminal object functor 1 : B — £ that satisfies the Beck-Chevalley condition,
and let r : B — A be a fibration with fibred cartesian products, i.e., products in
the fibres preserved by reindexing. Let A, : r — r be the fibred diagonal functor
sending an object X to X x X in each fibres. The fibration of indexed relations
(above r) Rel,.(p) : Rel.(£) — B is obtained by a change of base of p along A,.
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It comes equipped with a full and faithful equality functor Fg¢, : B — Rel,(£),
mapping an object X of B to ¥s5 1X, where ¢, : Idg, — A, is the diagonal fibred
natural transformation (full and faithfulness comes from Lemma 1.1.16).

Furthermore, the equality functor Egq, is fibred from r to roRel,.(p): First, note
that for any cartesian natural transformation n : F' — GG and cartesian morphism
[ the naturality square 7; is a pullback square (it is in fact straightforward to show
that any square with two parallel vertical morphisms and two parallel cartesian
morphisms is a pullback). Then since 4, is a fibred natural transformation we
have that for B an object of B and f : X — rB in A, the following square is a
pullback square in B

§
frA—L 4
o
S f*A 5 A
JrAX[ A AxA

Then, from the Beck-Chevalley condition we have that for any P in £ above A,

Yo, peaf*P = f*¥5 4P. Hence, we have the following canonical isomorphism:

Eqr(f*A) = E(Srf*Alf*X
= Egrf*Af*].X
= f*E(;TA]_X

= f* (EQTA)

We then have that Rel,.(p) has arbitrary coinduction schemes as soon as Eg,

has a left adjoint, i.e., as soon as Rel,(p) admits (fibred) Eg,-quotients.

Example 6.2.4. (Example 5.2.2, continued) Consider a logic of predicates p :
E — B above a theory of indexed types r : B — A as described in Exam-
ple 5.2.2. Then Rel(p) admits quotient above r if for every relation R above
a type X of index I there is a quotient type QR (See Example 2.2.4) of in-
dex I, and quotient are stable under reindexing, i.e., for any morphism wu :

J - I in A v*QR = Q(u*R) (or equivalently the associated correspondence
(y, v : Y + R: Prop) — (x,2' : X - Eq X : Prop)

restricts to a specific index).

QR — X : Type
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Remembering Example 5.2.2, we can then describe the lifting F of a functor

F : Br — Br with the following relation

AF -coalgebra of carrier R above the a coalgebra o : X — F X is then given by

the following entailment:
Doaas X, R (0,2') - Easan (F(oR) (@), (F(oR))(@ ")

The coinduction scheme provides then the following logical rule:

T 2,2 X+ R: Prop

Iz:XFa:FX

T, 2,2 X, R (z,2') = Eqpgry ((F(pR))(ax), (F(pR))(az'))
T z,2: X, R (z,2') = Eqr([a)lz, [(a)2)

The next example combines the results from Chapter 5 on indexed induction

with Example 6.2.3.

Example 6.2.5. (Example 5.2.4, continued) Assume p: & - A and r: B — A,
two fibrations of predicates and types respectively. Furthermore, assume that r
admits comprehension with comprehension functor {—} : B — A and has fibred
products, and p is a bifibration that satisfies the Beck-Chevalley condition and
has a terminal object functor 1 : 4 — £. We can then use the method presented
in Example 5.2.4 to derive a fibred fibration from this setting and then apply
the method of Example 6.2.3 to derive a fibration of relations fibred above r.

Diagrammatically we have:

Bxf A
A
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With a fibred equality functor Fgq, : r — r o Rel,(q). (We implicitly used the
fact that change of base along a pullback-preserving functor preserves the Beck-
Chevalley condition, and {—}, as a right adjoint is such a functor).

We then have a setting to which we can apply our definition of indexed coin-
duction schemes. Again, the question of the existence of such schemes remains
open. Also, note that the existence of fibred quotients above r, given by a func-
tor @, : rq — r would correspond to the presence of a notion of a dependent
quotient type in B. Indeed, using the internal language of the structure, the ad-
junction ), -4 Fq, is characterised by a correspondence between the pair of a
term I', B+t : B in B and a proof ', (x : B),(y : B), Rzy - Eq,txty, and a
term I'a: Q. B+ u: B.

Again, here the notion of DPL-structure gives us an instance of the current
setting. The DPL-structures also have a corresponding notion of dependent quo-
tient types (Definition 11.2.5 in [Jac99|). We then have that any DPL-structure

with dependent quotient types has arbitrary indexed coinduction schemes.

We will now look at a construction that is similar to Example 5.2.5 and see
how we can associate any QCE above a base category with pullbacks to a QCE
above the codomain fibration. As this construction turned out to be complex, we

present this next example as a section of this chapter.

6.2.1 Lifting a QCE above the codomain fibration

Consider a bifibration p : &€ — B with quotients, i.e., let B have products and
p be a bifibration with terminal object functor 1, such that the equality functor
Eq : B — Rel(€) (given by Eq = ¥51) has a left adjoint @ : B — Rel(E).
Additionally, we assume that B has pullbacks and p satisfies the Beck-Chevalley
condition. In this section we will show that the fibration Rel.q(q) above the

codomain fibration, as described in the following diagram, admits arbitrary in-
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dexed coinduction schemes.

Relopg(E) —= &' ——
J 1

E
Rezcod(q)l ql lp
B~ Bi_’ B

A™ dom
Nd
cod

B

Here, since products are given by pullbacks in slices of B, the fibred functor
A™ maps an object f : X — [ in B~ to the composition f oi = f o j where ¢
and j are the projections of the pullback of f by itself. We will note f? for A~ f
and X;X for the domain of f2.

In order to develop some intuitions on the fibration Rel.,q(q), note that in Set
the object XX corresponds to the subset of X x X, {(z,2") e XxX | fx = fa'}.
Then, since f represents the family f~! : I — Set of elements of X indexed by
I, an indexed relation R on f corresponds to a relation on X that only compares
elements with the same index, i.e., a family of relations R; on f~'i for ¢ in 1.

We now fix an object I of B and consider the fibration ¢; : £ — B/I and its
fibration of relations Rel(qr) : Rel(E;) — B/I. A first remark is that Rel(q;) =
Releoa(q)r and Rel(E]) = Releoq(E');. Concretely, an object of Rel(E}) above
f : X — I is an object of & above f? with respect to ¢;. This is, in turn,
equivalent to an object R of £ above X ;X with respect to p. Also, note that ¢ is
obtained by change of base of p along dom; : B/I — B, hence we have that ¢; is
a bifibration and has a terminal object functor 1; : B/I — &}. Therefore, ¢; has
an equality functor Eq,, : B/I — Rel(&}) defined as Eq,, = ¥s,1;. Concretely,
note that the component of the diagonal natural transformation d; : Id — A}
at f: X — [ is given by the following diagram on the left. Thus, Fq,, maps an
object f: X — I of B/I to the unique morphism above f? in the diagram on the

109



right induced by the opcartesian map m above (d;);:

—X 17
A

I 1X — S, 1X

Or, considering an object of Rel(€}) above f: X — I as an element of £ above

XX, the functor FEqq, : B/I — Rel(&r) is defined as Eq,, f = ¥(5,),1(domf).

We now need to link back the equality Eq,, : B/I — Rel(&}) of ¢q; to the
equality Eq : B — Rel(€) of p so that we can use the adjunction Fq — @ to
derive the quotient functor for ¢;. In order to do this, note that for f : X — I
in B, i and j the projections for the pullback square defining XX, there is a

morphism vy given by

Xp X
T v

X="XxX2sX
It is routine to check that vy is the equalizer of the parallel arrows fom, fomy : Xx
X — I, and that it extends to a natural transformation v : domo A7 - Aodom.

We can then prove the following lemma.
Lemma 6.2.6. For f: X — [ in B, Eq,, f = (vf)*EqX in £.

Proof. First, since vy is the equalizer of fom and fomy, we have that dx = vy (67);
and that vy is mono. Since vy is mono its pullback along itself is given by
the identity on X, hence by the Beck-Chevalley condition, the unit 1’ of the
adjunction ¥,, — (vy)* is an isomorphism. We can then deduce that Eq,, (f :
X = 1) =%51X = (vy)*5,, 551X = (v7)* 551X = (vy)* EqX. O
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Now, notice that for any f : X — I in B, the following diagram

XfXLXxX

o

]4>5] I x1I

commutes by the universal property of the product I x I since m, o fx fovy =
f?=m, 0070 f? for n € {1;2}. We can then define for any object R above f in
Rel(£7) a morphism h : ¥,, R — Eq I above f x f in & by the universal property
of the opcartesian morphism (vy)s:

C

RHZ

va
IR0l f? h
Y
——Fql
1 (ong’ 1

From this we can deduce that:

Theorem 6.2.7. Let @ be the isomorphism associated to the adjunction Eq +— Q,
we then have the following adjunction Eq,, +— ®h.

Proof. Let R be an element of Rel(E}) above f: X — I, let g:Y — I be in B/I
and for a: f — ¢ in B/I write & for dom(A7 a) : Xy X — Y,Y. We then have:

Rel(E7)(R, Eqq,9) = U Ea(R, vy EqY') (1)
a:f—g
= | J &x,x(R,a*v,*EqY) (2)
a:f—og
= | J &y (E,TaR, EqY) (3)
a:f—g
= |J &,y (CaaSe, R EqY) (4)
a:f—g
~ U Eaxa(Zo, R, BqY') (5)
a:f—g
= Rel(E)/Eql(h, Eqg) (6)
=~ B/I(®h, g) (7)
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Here, (1) comes from the definition of Rel(£;) and Eq, (2) and (5) from the

universal property of (op)cartesian morphisms, (3) from the adjunctions a* - X5
XX L v,y

and vy* = %, (4) from the fact that the following square vs | |vs commutes

XxX — YxY
axa

(since v is a natural transformation), (6) from the fact that for any morphism

v: R — Eqgqg in Rel.q(E")r above 5 : f — g we have the following commuting
vyg

R Yy, R
\ L
s
diagram in &: Eqq,9 U—q,§> EqY ‘h where the left triangle com-
/ Eqg v
17 5 Eql

mutes by definition of morphism in Rel(£}). The square on the top commutes by
the universal property of vy, where [ is the image of v through the process (1)-(5).
The square on the bottom commutes since v,° is opcartesian (since %, , 1s full and
faithful) and Fq is full and faithful. The outer square commutes by construction

of h. The left triangle commutes by unicity of h and (7) by naturality of ®. [

Hence, defining @),, to send R to ®h makes Rel(qr) : Rel(€;) — B/I a QCE.

Now that we know that for any I in B Rel(q;) admits quotients, we can

conclude with the following lemma:

Lemma 6.2.8. The fibration of indexed relation Rel.oq(q) : Releoq(E') — B~ of

q: & — B~ admits quotients above cod.

Proof. Notice that the equality functor Eq~ : B~ — Rel.q(E') defined as
Ys— K™ restricts to the Eq,, since 07 is the restriction of 6~ to the corresponding

fibres. Thus, the conclusion follows from Lemma 6.1.2. O
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Chapter 7

Conclusions

We have investigated sound induction and coinduction schemes in category the-
ory. We started with the work of Hermida and Jacobs [Her93, HJ98| which com-
bines initial algebra semantics of inductive types (resp., final coalgebra semantics
of coinductive types) and the theory of fibration to model a logic above a type
theory. Our aim was to maximise the use of the abstraction power of initial alge-
bra (resp., final coalgebra) semantics and the theory of fibration, in order to cover
as many logics, type theories and classes of inductive (resp., coinductive) types as
possible. We showed how the Lawvere fibrations provide a minimal structure to
associate any functor on its base category to a terminal object preserving lifting
and hence to guarantee sound induction schemes for any inductive types. We
introduced the notion of quotient category with equality, a generalisation of the
property of having quotients for a fibration, and showed how it provides a mini-
mal structure to associate any functor on its base category to a section preserving
functor and hence to guarantee sound coinduction schemes for any coinductive
types. We then investigated a version of Lawvere fibration and QCE above a
fibration in order to derive sound indexed induction and coinduction schemes for

indexed inductive and coinductive types respectively.
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