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Abstract

This thesis presents an innovative methodology for System Design Optimisation (SDO)
through the framework of Model-Based System Engineering (MBSE) that bridges
system modelling, Constrained Global Optimisation (CGO), Uncertainty Quantifica-
tion (UQ), System Dynamics (SD) and other mathematical tools for the design of
Complex Engineered and Engineering Systems (CEdgSs) under epistemic uncertainty.
The problem under analysis has analogies with what is nowadays studied as Generative
Design under Uncertainty. The method is finally applied to the design of Space Systems
which are Complex Engineered Systems (CEdSs) composed of multiple interconnected
sub-systems. A critical aspect in the design of Space Systems is the uncertainty in-
volved. Much of the uncertainty is epistemic and is here modelled with Dempster Shafer
Theory (DST).

Designing space systems is a complex task that involves the coordination of different
disciplines and problems. The thesis then proposes a set of building blocks, that is a
toolbox of methodologies for the solution of problems which are of interest also if
considered independently. It proposes then a holistic framework that couples these
building blocks to form a SDO procedure.

With regard to the building blocks, the thesis includes a network-based modelling
procedure for CEdSs and a generalisation for CEdgSs where the system and the whole
design process are both taken into account. Then, it presents a constraint min-max
solver as an algorithmic procedures for the solution of the general Optimisation Un-
der Uncertainty (OUU) problem. An extension of the method for the Multi-Objective
Problems (MOP) is also proposed in Appendix as a minor result. A side contribution
for the optimisation part refers to the extension of the global optimiser Multi Popu-
lation Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA) with the
introduction of constraint handling and multiple objective functions. The Constraint
Multi-Objective Problem (CMOP) solver is however a preliminary result and it is re-
ported in Appendix.

Furthermore, the thesis proposes a decomposition methodology for the computa-
tional reduction of UQ with DST. As a partial contribution, a second approach based
on a Binary Tree decomposition is also reported in Appendix.

With regard to the holistic approach, instead, the thesis gives a new definition
and proposes a framework for system network robustness and for system network re-
silience. It finally presents the framework for the optimisation of the whole design
process through the use of a multi-layer network model.
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1

Introduction

“ Begin at the beginning, the King said, gravely,
and go on till you come to an end;
then stop. ”

– Lewis Carroll, Alice in Wonderland

There is a tendency in the evolution of science and in general in our artificial world
at complexification through alternated phases of specialisation and revolution [1], the
latter as in the definition of Kuhn. This process has many analogies with what happens
in Nature. The last paradigm shift in science and technology, up to now, is happening
in these decades, but some thinkers were able to foresee it. For example, in his paper
”Science and Complexity” [2] in 1948 Warren Weaver gave a prediction of the type of
problems the next generation of scientists and engineers would have dealt with. After
solving ”Problems of Simplicity” before 1900 and, in the opposite direction, ”Problems
of Disorganised Complexity” in the first half of the 20th century, the challenge for the
coming years, he thought, would have been represented by problems of ”Organised
Complexity”. Also Stephen Hawking correctly said during an interview in 2000: ”the
next century will be the century of complexity”. Their intuition was correct and we
can acknowledge this also in what is happening nowadays within the field of Systems
Engineering (SE). Indeed, recent advances in science and technology have led to a
rapid increase in the complexity of most engineering problems and in many cases this
change has been a qualitative one rather than merely one of magnitude. As stated by
Alessandro Vespignani in ”L’algoritmo e l’oracolo” [3], two major scientific revolutions
(or paradigm’s shifts using Kuhn’s words) happened to shape our modern world: the
rise of ”Complexity” and ”Complex Science” and the ”Datification”, the accumulation
and exploitation of huge amount of data as it is continuously produced by sensors,
social platforms, etc.

Therefore, the challenge for today and the coming years is to develop a new mindset
and a new set of engineering tools and methodologies that will be able to deal and govern
this increasing complexity [4, 5]. We are however still in the infancy of this transition
since it is difficult even to give a single and accepted definition of ”Complexity” [6–8].

Engineers have to face, control and further design many different types of sys-
tems that have been accumulating in the centuries: Simple Systems, System of Sys-
tems (SoS), CEdS, Complex Engineering System (CEgS) and CEdgS. The last three
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types of these systems are the ones causing the challenge and they are also the inter-
est of the thesis. Simple systems can be understood through the lens of ’Problem of
Simplicity’ of Warren Weaver [2]. They can be modelled with few parameters and they
accept to be designed and controlled by traditional methodologies. SoS still can be
re-conducted to this category and are systems which parts can be further decomposed,
at many levels, in other (sub)systems. They are complicated and usually made by a big
number of components. However, their global behaviour can be understood as the sum
of the system’s parts. The reductionist approach based on the system decomposition
and parallel analysis of the components is suitable for them. Other engineered systems
can be included in the class of ’Disorganised Complexity’ [2] that can be thought as
the opposite of ’Problem of Simplicity’. In Weaver’s view indeed, disorganised com-
plexity results from the particular system having a very large number of parts, say
millions of parts, or many more. Though the interactions of the parts in a ”disorgan-
ised complexity” situation can be seen as largely random, the properties of the system
as a whole can be understood by using probability and statistical methods. A prime
example of disorganised complexity is a gas in a container, with the gas molecules as
the parts. Finally, there are engineered systems that can be classified as ’Organised
Complexity’ [2]. Organised complexity is primarily found in the interconnected and
non-random interactions among the components. These interrelated connections give
rise to a coordination due to hierarchies and structure and the system exhibits char-
acteristics that are not inherent in or controlled by its individual components. These
systems are made by a number of heterogeneous sub-systems that interact non-linearly
at different levels of organisations producing an emergent global behaviour that can not
be predicted by a reductionist approach. A characteristic of this new class of problems
is their evolvability in the sense that the CEdS is able to adapt after internal and/or
external variations by auto-organising itself. It is worth noting that a system doesn’t
necessarily require a large number of components to exhibit emergent properties. These
systems are usually defined CEdS, CEgS and CEdgS. As Sheard et al. describes in [9]
they can be seen at the border of the order-to-chaos spectrum.

The increase of number and types of engineered systems has proceeds at an equal
pace with the development of SE design methodologies. Chapter 2 will present the
evolution of engineering methodologies in the last centuries to cope with an increasing
body of knowledge and available tools. It will explain the progressive automation of
the design process by the inclusion of analysis tools [10], multi-disciplinari methods
as SDO and Multi-Disciplinary Optimisation (MDO) [11, 12], UQ for Design Under
Uncertainty (DUU) and OUU [13, 14], optimisation frameworks [15] and specialised
optimisation approaches based on metrics that have been studied specifically for CEdgS
as ”Robustness” in Robust Design Optimisation (RDO) [11, 16–21] and ”Reliability”
in Reliability Based Design Optimisation (RBDO) [12].

The same chapter describes however how the current technologies have reached the
limit and a qualitative shift is needed to cope with complexity. Extreme, rare and
unpredictable events are unfortunately becoming more frequent in networked systems
and as explained by Crucitti et al. in ’Model for cascading failures in complex networks’
[22] cascades of failures can be triggered in CEdS by small initial shocks when systems
are composed of interconnected sub-systems or inter-dependent networks.
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To overcome this gap, there is a sound agreement that different tools from scientific
fields have to be integrated. In [23] an analogy with biological systems is used to define
CEdS as ’living’ and adapting systems that can change and react to inputs from the
environment and also from internal unexpected events. The authors suggest an over-
arching graph theory approach on top of the engineering modelling and optimisation
process to investigate the resilience of CEdS. ”Resilience” is then a promising metric
which quantification could permit to better understand the relation between structure
and dynamics of CEdgSs. Attempts to define ’Resilience’ can be found in ’Framework
for analytical quantification of disaster resilience’ by G. P. Cimellaro et al. [24], ’A re-
view of definitions and measures of system resilience’ by S. Hosseini et al. [25], ’Essential
characteristics of resilience’ by D. Woods et al. [26] and ’Essentials of resilience, revis-
ited’ by [27], D. Woods et al. A method for incorporating ”Resilience” in the design
framework of CEdgS is then Resilience Based Design Optimisation (ReBDO) [13,23,28].

This thesis then proposes a novel methodology to cope with this problem. In agree-
ment with the research community results as discussed above, it presents a holistic
method for SDO with the final goal to do OUU and to design CEdgSs for Resilience.
In particular it is related to MBSE, that is a SE [29] methodology that uses, for bet-
ter analysis and design, models to represent the system’s components, behaviour, and
interconnections [30]. The design process is applied to both the system itself and the
engineering design process. A space mission is indeed developed progressing through
a series of macro-phases: concept exploration, detailed development, production and
deployment and operations and support [31] and this is a long process that can take
up to 10 or more years. While the process proceeds, knowledge increase, uncertainty is
reduced but also external and stake-holder conditions can change.

With this goal in mind, different tools and theories have been used and combined
in this thesis in order to build an holistic framework for SDO. The most important
are: Global Optimisation (GO) and in particular CGO, UQ with the use of DST and
network modelling approaches. The general goal is to use DST to capture and properly
model epistemic uncertainty, to use the network modelling approach through ENM
and Multi-layer Evidence Network Model (ML-ENM) to obtain a fast estimation of
the impact of uncertainty in the system model and finally to merge these components
together in an automated OUU framework to decide by design the optimal system
configuration under lack of knowledge.

GO [32–35] gives the general structure for the automation of the design process.
Meta-heuristics algorithms, in particular, will be used [36]. Requirements have also
to be included in the optimisation process and this is done with the handling of con-
straints [36–39]. The thesis will explain how the engineering problem can be translated
to a corresponding optimisation one. It will focus on CSOP but some results in the
Appendix are reported also for CMOP. The CGO method is coupled with a network
system model to perform SDO [40] dealing with different coupled disciplines through
an holistic and comprehensive point of view. CGO is also coupled with UQ to un-
derstand how uncertainty can affect the final design of the system, how this effect is
correlated with the choice of the design parameters and how to select the optimal sys-
tem configuration in the worst condition given by uncontrolled factors. This coupling,
with suitable metric definition as in the following chapters, brings to the RDO prob-
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lem which will be solved through the worst-case optimisation formulation [41–43] and
to the ReBDO for which two alternative approaches will be explained, one based on
Catastrophe Theory [44,45] and the other on Stochastic Processing.

UQ [46–48] is then an important component of this thesis. Uncertainty comes in
different forms and from different sources. There is uncertainty in the models’ pa-
rameters and variables, in the environment and in the human interventions. Two
macro-categories of uncertainties can be identified: aleatory uncertainty and epistemic
uncertainty [49]. The former is due to natural randomness which cannot be reduced
while the latter is due to the lack of information/knowledge or incomplete data. Epis-
temic uncertainty is reducible by acquiring more knowledge on the problem. Both
these categories have to be considered during the design process of a space system.
Epistemic uncertainty is particularly important in the early design phases. Knowledge
about systems and requirements is indeed only acquired incrementally during the design
process, but substantial commitments are made upfront, essentially in the unknown.
DST [50,51], within the set of Imprecise Probability (IP) theories, will be used and its
coupling with the optimisation framework will permit to perform OUU.

A network modelling approach [52, 53] is also used to do SDO, as noticed above.
It is based on what has been defined ENM and ML-ENM. The network modelling
is important because it drastically reduces the computational complexity of UQ with
DST.

The methodology is finally applied to the design of Space Systems. They are com-
plex systems since they include multiple interconnected components and disciplines
with non linear couplings: payloads, structure, thermal system, attitude, control, etc.

The remaining of this section presents the structure of this introductory chapter.
Section 1.1 explains the motivation and rationale of the thesis by presenting the lim-
itations of current engineering methodologies. Section 1.2 presents then the research
objectives and contributions of this thesis. Section 1.3 gives the list of academic pub-
lications. Finally Section 1.4 summarises the structure of the following chapters.

1.1 Motivation and rationale

Even if the research in fields such as GO, CGO, OUU, IP and SDO is very active,
industries usually have a conservative approach based on traditional methods like mar-
gins and redundancies [54]. Margins are used to break the endless loop that would be
generated trying to optimise the space system at different granularity definitions, as
knowledge increases. However, these conservative approaches introduce limitations on
the design process as explained in the previous section. In the current age of increasing
complexity, indeed, the margin approach lacks the capability to model interconnect-
edness, to understand how uncertainty propagates and how dynamics arise from the
structure of a CEdgS.

The limitations we aim to solve with the proposed methodologies in this thesis are:

1. Improper treatment of uncertainty. The lack of an appropriate quantifica-
tion of uncertainty (with the use of margins and contingencies or classical prob-
ability theory) brings to an overestimation or an underestimation of the effect of
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uncertainty. This increases costs and development time or the occurrence proba-
bility of undesirable events.

2. High computational cost of UQ. There are many reasons why proper quan-
tification of uncertainty, in particular within the framework of IP, is not imple-
mented by industries. One of the most critical is related to its computational
costs. Cost-efficient tools for UQ are indeed missing.

3. Lack of a holistic view. The reductionist approach is still dominant. Some
approaches for system-level optimisation including uncertainty exist, however,
they still present some critical limitations.

1.2 Research Objectives and Contribution

The general goal of this thesis is to help overcome the limitations described in the
section above. The thesis’ objectives are summarised in the following list.

1. Development of a modelling framework for capturing the complexity of the CEdgS.
This includes:

• a network-based modelling framework of the CEdS that should model the
dependencies between sub-systems and the system uncertainty. The model
should allow us to do UQ with DST;

• a multi-layer network-based modelling framework of the CEdgS that by ex-
tending the one at the previous point, should model both the system and its
evolution during the design process.

2. Development of algorithmic methods for UQ within the framework of DST for
the quantification of epistemic uncertainty:

• the methods should use DST to quantify epistemic uncertainty in the CEdS;

• the methods should quantify the propagation of epistemic uncertainty through
the different phases of the design process;

• the methods should exploit the network structure of the model to reduce the
computational cost of UQ with DST.

3. Development of a novel definition of ’Resilience Engineering’ and of new metrics
of ’Resilience’.

4. Development of algorithmic procedures for the solution of CGO problems:

• the thesis should develop or extend methods for single-layer global constraint
optimisation;

• the thesis should develop or extend methods for global constraint optimisa-
tion under uncertainty;

5. Development of a holistic approach for SDO which combines all the building
blocks listed above.
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• the thesis should develop a SDO framework for RDO under epistemic un-
certainty to optimise the ’Robustness’ of the system.

• the thesis should develop a SDO framework for resilient optimisation under
epistemic uncertainty.

• the thesis should develop a SDO framework for the design optimisation of
the whole process. It should take into account the system and its evolution
through the design process.

1.3 Publications

Journal Publications

1. G. Filippi, M. Vasile, D. Krpelik, P. Z. Korondi, M. Marchi, and C. Poloni, Space
systems resilience optimisation under epistemic uncertainty, Acta Astronautica,
vol. 165, pp. 195210, 12 2019, https://doi.org/10.1016/j.actaastro.2019.08.024
[13].

2. G. Filippi and M. Vasile, Global Solution of Constrained Min-Max Problems
with Inflationary Differential Evolution, in Optimisation in Space Engineering
OSE (E. Minisci, A. Riccardi, and M. Vasile, eds.), no. Optimization and Engi-
neering, Springer, 2020, https://doi.org/10.1007/s11081-021-09613-3 [55].

Book Chapters

• G. Filippi and M. Vasile, A multi layer evidence network model for the design
process of space systems under epistemic uncertainty, in Advances in Evolutionary
and Deterministic Methods for Design, Optimization and Control in Engineering
and Sciences (A. Gaspar-Cunha, J. Periaux, K. C. Giannakoglou, N. R. Gauger,
D. Quagliarella, and D. Greiner, eds.), (Cham), pp. 227243, Springer Interna-
tional Publishing, 2021 https : //doi.org/10.1007/978−3−030−57422−2 15 [56].

• G. Filippi and M. Vasile, Network resilience optimisation of complex systems in
Advances in uncertainty quantification and optimization under uncertainty with
aerospace applications (M. Vasile and D. Quagliarella, eds.), (Cham), Springer
International Publishing, 2021, https : //doi.org/10.1007/978−3−030−80542−5
[57].

• G. Filippi and M. Vasile, Introduction to Evidence-Based Robust Optimisation,
in Optimization Under Uncertainty with Applications to Aerospace Engineering
(M. Vasile, ed.), Springer Nature, 2021, https : //doi.org/10.1007/978−3−030−
60166− 9 17 [58].

• G. Filippi and M. Vasile, Inflationary Differential Evolution for Constrained
Multi-Objective Optimisation Problems, in Bioinspired Optimisation Methods
and Their Application, pp. 2942, Springer, Cham, 11 2020,
http : //link.springer.com/10.1007/978− 3− 030− 63710− 1 3 [59].
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Peer-Reviewed Conference Papers and Presentations

• C. O. Absil, M. Vasile, G. Filippi, A. Riccardi, and M. Vasile, A Variance-Based
Estimation of the Resilience Indices in the Preliminary Design Optimisation of
Engineering Systems Under Epistemic Uncertainty, in EUROGEN, (Madrid),
2017, https://www.researchgate.net/publication/323242901 [60].

• M. Vasile, G. Filippi, C. Ortega Absil, and A. Riccardi, Fast belief estimation
in evidence network models, in EUROGEN, (Madrid), 2017,
https://pureportal.strath.ac.uk/en/publications/fast-belief-estimation-in-evidence-
network-models [61].

• G. Filippi, M. Marchi, M. Vasile, and P. Vercesi, Evidence-Based Robust Opti-
misation of Space Systems with Evidence Network Models, in IEEE Congress on
Evolutionary Computation (CEC), (Rio De Janeiro), 2018 [62].

• G. Filippi, M. Vasile, P. Z. Korondi, M. Marchi, and C. Poloni, Robust de-
sign optimisation of dynamical space systems, in 8th International Systems &
Concurrent Engineering for Space Applications Conference, (Glasgow), 2018 [63].

• G. Filippi, D. Krpelik, P. Z. Korondi, M. Vasile, M. Marchi, and C. Poloni,
Space systems resilience engineering and global system reliability optimisation
under imprecision and epistemic uncertainty, in Proceedings of the International
Astronautical Congress, IAC, vol. 2018-Octob, (Bremen), 2018 [64].

• G. Filippi and M. Vasile, Evidence-based resilience engineering of dynamic space
systems, in Proceedings of the International Astronautical Congress, IAC, vol.
2019-Octob, (Washington), 2019 [65].

• G. Filippi and M. Vasile, ”A multi layer evidence network model for the design
process of Space Systems under epistemic uncertainty”, EUROGEN, 2019 [66].

• G. Filippi and M. Vasile, A Memetic Approach to the Solution of Constrained
Min-Max Problems, in 2019 IEEE Congress on Evolutionary Computation, CEC
2019 - Proceedings, (Wellington), pp. 506513, 2019 [67].

• C. Greco, L. Gentile, G. Filippi, E. Minisci, M. Vasile, and T. Bartz-Beielstein,
Autonomous Generation of Observation Schedules for Tracking Satellites with
Structured-Chromosome GA Optimisation in 2019 IEEE Congress on Evolution-
ary Computation, CEC 2019 - Proceedings, (Wellington), pp. 497505, 2019,
https://doi.org/10.1109/CEC.2019.8790101 [68].

• G. Filippi, D. Gillespie, A. Ross Wilson, and M. Vasile, A resilience approach to
the design of future Moon base power systems, in Int. Astronaut. Congr. IAC,
2020 [69].

• G. Filippi, M. Vasile, E. Patelli and M. Fossati, ”Generative Optimisation of
Resilient Drone Logistic Networks”, WCCI, 2022 [70].

• G. Filippi, M. Vasile, E. Patelli and M. Fossati, ”Multi-layer Resilience Optimi-
sation for Next Generation Drone Logistic Networks”, ESREL, 2022 [71].
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Conference Papers and Presentations

• D. Gillespie, A. R. Wilson, D. Martin, G. Mitchell, G. Filippi, M. Vasile, ’Com-
parative analysis of solar power satellite systems to support a moon base’, IAC
2020 [72].

• L. Gentile, G. Filippi, E. Minisci, M. Vasile, T. Bartz-Beielstein, and M. Vasile,
Preliminary spacecraft design by means of Structured-Chromosome Genetic Al-
gorithms, in IEEE Congress on Evolutionary Computation (CEC), Glasgow,
2020 [73].

Prizes

• First running up, World Congress on Computational Intelligence (WCCI), 2019

• Complex systems and smart cities paper award, European Conference On Safety
And Reliability (ESREL), 2022.

1.4 Thesis Structure

After this introductory Chapter 1, the thesis is divided into three main blocks, where
Parts II and III represent the main contribution. Conclusions are then in Chapter 10.
Three Appendix chapters are given for completeness at the end: Appendices A to C.

Part I presents an overview of the required theoretic background:

• (Chapter 2): Present and Future of System Engineering. This chapter gives an
introduction to System Engineering and to the history of design approaches. It
explains why in our age of complexity a qualitative shift is required about tools
and methodologies used by designers. It presents the current research direction
and focuses finally on the need of holistic approaches and on the concept of
Resilience Engineering.

• (Chapter 3): Evidence-based Uncertainty Quantification. This chapter gives an
introduction to UQ. It presents different problem formulations, the most impor-
tant theories and then the algorithmic approaches in the literature. The focus of
the chapter is on IP and in particular in DST.

• (Chapter 4): Optimisation Under Uncertainty. The chapter gives an introduction
to Optimisation. It presents the most important problem formulation for the topic
considered in this thesis. It presents the algorithmic approaches in the literature.
The most important points of this chapter are: constraint global optimisation,
optimisation under uncertainty, worst-case optimisation, multi-disciplinary opti-
misation and constraint handling.

Part II presents novel algorithmic approaches for the solution of constraint global
optimisation problems. The part includes a single chapter:
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• (Chapter 5): Global Solution of Constrained Min-Max Optimisation. It is here
presented the constraint single-objective worst-case scenario optimisation (min-
max) procedure. The methodology is coupled with a generalised version of the
global optimisation solver MP-AIDEA.

Part III proposes finally the developed holistic methods for SDO under epistemic
uncertainty with the use of DST:

• (Chapter 6): Evidence Network Model for System Design Optimisation. It is
here presented the ENM, a network model for CEdS that captures epistemic
uncertainty using DST.

• (Chapter 7): Evidence-based Robust Optimisation. It is here presented the Evidence-
Based Robust Optimisation (EBRO) approach for the optimisation for Robust-
ness of CEdS. The method includes also a network-decomposition approach that
is based on the ENM for a fast quantification of Belief and Plausibility within
DST. The method can be thought of in analogy to decomposition techniques for
MDO.

• (Chapter 8): Evidence-based Resilience Optimisation. It is here presented Evidence-
Based Optimisation for Resilience (EBORe) for the resilience optimisation of
CEdS under epistemic uncertainty. This part introduces also a new definition of
Resilience Engineering and two alternative modelling approaches of system re-
silience, based respectively on the Stochastic Processes Markov Chain and on the
Catastrophe Theory.

• (Chapter 9): Multi-layer Network Model for Design Process Optimisation Under
Epistemic Uncertainty. This chapter introduces ML-ENM, a generalisation of
ENM, and an approach for the optimisation of the CEdgS through the whole
design process. Each layer of the ML-ENM represents a different phase in the
design process, each node represents a subsystem or a component at a particular
level of granularity and each link is a sharing of information.

Other contributions to the thesis have been finally added in the Appendix:

• (Appendix A): Testing Results for the single-objective min-max problem. Includes
more detailed test results for the min-max algorithm.

• (Appendix B): Multi objective min-max approach presents a generalisation of the
min-max approach to the CMOP.

• (Appendix C): Outer Belief Estimation via Evolutionary Binary Tree. describes
an alternative decomposition approach for UQ with DST that makes use of Binary
Tree Decomposition

It has been decided to present this last material in a separate Appendix section because,
in order, (A) is merely a long list of numbers and tables, (B) needs more refinement to
be completed and (C) is not the result of my only work.
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2

Present and Future of Systems
Engineering

“ If you fail to plan, you plan to fail ”
– Bejamin Franklin

SE is a trans-disciplinary and integrative approach to enable the successful real-
isation, use, and retirement of engineered and engineering systems. It uses systems
principles and concepts, and scientific, technological, and management methods. Not
only it integrates different disciplines and analysis, but also it ’transcends’ them to
define a higher level structure and organisation, both technical and economical, used
to drive the design and production of the engineered system ’from the cradle to the
grave’. Indeed, systems engineers model and control the early concept definitions, the
design phase, the system’s operation and finally the system disposal. The SE approach
is particularly useful for identifying, at the early stages, future risks about cost, time of
the process and possible other Quantity of Interests (QoIs) [29]. This problem-solving
attitude has been applied, with an increasing level of efficiency and consciousness, since
the first human civilisations. Knowledge and expertise have been accumulated over the
centuries, making solving more complicated problems possible and being ’cheaper and
faster’. However, we have achieved in the last years the saturation of this process and
a fundamental qualitative shift in the engineering approach is now required [4, 9, 23].
Our current methodologies are indeed crashing against the increasing complexity of our
human world. Most of the problems SE is now facing are not composed anymore of
SoS for which a reductionist approach is feasible, but instead of CEdS, CEgS and in
general of CEdgS which require a holistic way of thinking.

This chapter presents the necessary background to understand SE. It focuses in
particular on MBSE [29] which makes use of models to represent the system’s com-
ponents, behaviour, and interconnections. It presents the current state of the art, the
history and the critical points of MBSE. It explains the current challenges to evolve
new methodologies to deal with an always increasing level of complexity in CEdgS.
It states then the need for an integration of optimisation, UQ and other mathemati-
cal tools. It introduces Resilience Engineering which is vastly recognised as the most
promising direction for SE.
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This chapter is a necessary introduction to the next background Chapters 3 and 4
in Part I where the aspects of UQ and optimisation are expanded respectively. The
chapter is also linked to the thesis’ contributions in Parts II and III and in particular
to the modelling framework in Chapters 6 and 9 and to the system design optimisation
approaches EBRO in Chapter 7 and EBORe in Chapter 8.

The chapter is organised as follows. Section 2.1 gives an overview of the historical
evolution of the design approaches for engineering systems. Section 2.2 gives a descrip-
tion of the project life cycle for the design of space systems. Section 2.3 lists a few
examples of disasters in CEdS showing that the traditional approaches to MBSE are
not effective anymore with the increase of complexity in the last years. Section 2.4
presents the future trend in the development of system design approaches and intro-
duces Resilience Optimisation. Section 2.5 introduces some of the mathematical tools
used in the following of the thesis. Section 2.5 focus finally on models by present-
ing modelling methodologies for engineered (but not only) systems, model typologies,
modelling and simulation paradigms and modelling languages.

2.1 History of the Systems Design

Engineering design approaches have been evolved in time at an equal pace with the
development of technology and particularly with computational power. This section
lists and briefly describes the fundamental steps in this evolution. The following meth-
ods can be viewed as an historical progression towards the most general, efficient and
powerful approach for SE. However, since no perfect methodology exists for solving
all possible problems and since engineers continuously face situations with a highly
variegated characteristics and difficulties, this list can also be understood also as the
accumulation of a set of tools that can be applied each one in a different situation.

We can define the first approach as ’Design by Formula’ which is based only on
the calculations made by the designer and possibly on the feedback given by a physical
prototype. Software support is not used. Numerical methods are instead introduced in
the ’Design by Analysis’ approach which shorten the design process and enable a better
understanding of the problem without, or reducing, the use of expensive physical exper-
iments. The design process is still based on a reductionist approach where subsystems
and components are considered separately without particular attention to their inter-
faces and reciprocal effects. With ’Design by Optimisation’ [15], instead, a system-level
design is handled with the use of numerical optimisation algorithms integrated with
analysis tools. This allows the designers to automatise some of the procedures and to
limit the human-in-the-loop. In such an integrated approach it is important to define
models of the engineered system which can be coupled with the optimisation frame-
works. This has brought to MBSE and to the algorithmic framework of Model Based
Optimisation (MBO) [74, 75]. The model highlights the specific characteristics of in-
terest and then is used as black or grey box in order to find the optimal parameter
configuration for given objective and constraint functions.

A few interdependent directions have been then explored. On one hand, there
is indeed interest in dealing with the coupling of different fields or disciplines. This
have brought to Multi-Disciplinary Design (MDD) and more specifically to mathemat-
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ical/optimisation tools such as MDO and SDO. In this respect, it has to be highlighted
that there is a fundamental difference between the two [11,12]. In MDO a small number
of different disciplines are strongly coupled while in SDO there could be many differ-
ent fields which are however partially or weakly coupled. This thesis, in particular,
is focused on SDO. On the other hand, since CEdgSs are inevitably affected by un-
certainty and imprecision, it is important to understand and capture its effect on the
system. This has brought to the Uncertainty-Based Design (UBD) approach [76, 77]
and in particular to optimisation techniques under the definition of OUU [14].

With regards to UBD, various Key Performance Indicators (KPIs) have been con-
sidered and studied. One of these is ’Robustness’ which can be defined as the property
of the system for which its structure (or topology from a network point of view) is more
important than dynamics. Optimisation techniques called RDO [11,16–21] have indeed
been developed in order to design the structure of the system such that it minimise the
risk related to uncertainty to reduce the system’s performance. An other important
metric is ’Reliability’ which is the probability that a system will perform properly for a
specified period of time under a given set of of operating conditions [78]. Optimisation
approaches have been developed for this, called RBDO [12]. ’Resilience’ is finally a new
concept that start to be investigated. It is considered as the capability of the system
to recover from expected or unexpected disturbances, bouncing back not necessarily
exactly to the previous performance. Here dynamics over the system (network) is more
important than its structure (topology). The interest in this concept has brought to
the design approaches of ReBDO [13, 23, 28]. The ReBDO is presented in more detail
in Section 2.4 and the this contribution about resilience optimisation, called EBORe,
is in Chapter 8.

Moreover, a further important step is given by the application of the coupling be-
tween the holistic MDD and UBD giving birth to Uncertainty-Based Multi-Disciplinary
Design Optimisation (UMDO) theory [79].

Despite the important progress in the methodologies for system design, it is however
common practise in the Space industry to apply the well-established safety margins
and redundancies approach. The margin approach evaluates the quantity of interest
(for example the mass) associated with a proposed nominal design solution, called
Best Estimate (BE), and adds to it, and to each subsystem quantity of interest, a
margin often called the contingency or safety factor. The safety factor accounts for
the expected variations of all uncertain components. For example, a margin is added
to the power demand when sizing the solar arrays on a spacecraft. The value of the
quantity of interest at the system level, after margins are applied, is often called the
Maximum Expected Value (BE). The difference between the Maximum Expected Value
(BE) and the Maximum Possible value (MP) is generally considered to be a further
margin that accounts for the unexpected variation of all uncertain components [54].
This traditional method, however, lacks an appropriate quantification of uncertainty.
As a consequence, there can be an overestimation or an underestimation of the effect of
uncertainty which can lead to either an increase in costs and development time or to the
occurrence of undesirable events. As it was recognised during the Columbia Accident
Investigation Board (CAIB) [80], the classic pattern that brings to failure, common
to many other tragic accidents [81], is the combination of production pressure, that
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pushes to reduce the safety margins, and a fragmented problem solving that lacks a
system-level understanding. Hence one can argue that there is the need to incorporate
a proper quantification of uncertainty and of system complexity within the systems
engineering approach [74,82].

2.2 Space Systems Project Life Cycle

The design of a space mission is a complex and time consuming process. Indeed, it can
requires up to several years from early conception to launch and commissioning. Also,
it involves different players with different goals: end users or customers, operators,
scientists, developers and sponsors. In order to decompose the whole design process
into smaller and more manageable pieces, the life cycle of a space mission traditionally
proceeds through four main phases [31]:

1. Concept exploration phase: broadly defines the space mission and its components.

2. Detailed development phase: defines more precisely system’s components.

3. Production and deployment phase: constructs and launches the system.

4. Operations and support phase: daily supports the mission and brings it to its
end of life.

Depending on the mission’s sponsor - National Aeronautics and Space Administra-
tion (NASA), European Space Agency (ESA), commercial enterprise - these phases are
further divided and labelled differently. Phases are separated by Key Decision Points
(KDPs), milestones where the authority, based on the progress state, the achieved re-
sults, the requirements and the budget, approves or rejects the project with a ”go” or
”no go” decision. For example, NASA in the ’Systems Engineering Handbook’ divides
the project life cycle into the following steps [83,84]:

1. Pre-Phase A. Initial studies and concept development are conducted to deter-
mine the feasibility of a project. This includes identifying potential missions and
defining high-level objectives, as well as assessing technical, schedule, and cost
risks.

2. Phase A. The mission concept is developed, including mission objectives, require-
ments, and constraints. The system architecture is defined, and initial analyses
and trade studies are conducted to support decision-making.

3. Phase B. The focus is on the preliminary design of the mission and its subsystems.
A detailed mission plan is developed, and requirements and specifications are
refined. The design is evaluated against technical, cost, and schedule constraints,
and risks are identified and managed.

4. Phase C. The detailed design of the mission and its subsystems is completed, and
hardware and software components are developed and tested. The mission plan
is finalised, and the system is integrated and tested to verify that it meets all
requirements.
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5. Phase D. The mission is launched and operated. Mission data is collected and
analysed, and any anomalies or issues that arise are addressed. The mission is
also evaluated against its original objectives to assess its success.

6. Phase E. Mission is decommissioned. This includes the disposal of any hardware
or software components and the closure of any facilities or resources associated
with the mission.

A similar approach is used by ESA that in the the ’Project Phasing and Planning’
document from the European Cooperation for Space Standardisation (ECSS) [85] de-
fines the following phases:

1. Phase 0: Mission Analysis/Needs Identification. This is a preliminary phase
where the different stakeholders agree on a first definition of the mission. Needs,
expected performance, operating constraints and safety goals are defined. Are
here identified possible system concepts. It is produced the assessment of project
management data (organisation, costs, schedules). At the end of the phase 0, a
Mission Definition Review (MDR) can take place.

2. Phase A: Feasibility. The feasibility phase should result in finalising the expression
of needs expressed in phase 0 and proposing solutions meeting the perceived needs.
During this phase, technical solutions for the system concept selected in phase A
are decided.

3. Phase B: Preliminary Definition (Project and Product). From a system level
point of view, the System Requirements Review (SRS) is conducted. In this
phase analysis are performed to accumulate information. First decisions on Make
or buy are done. There is also a confirmation of project feasibility.

4. Phase C: Detailed Definition (Product). There is the first production of repre-
sentative elements of the selected solution, leading to a detailed definition of the
system and its components. At the end of this phase, the Critical Design Review
(CDR) is conducted.

5. Phase D: Production/Ground Qualification Testing. This is the final stage of the
system development. Ground qualification testing are performed. Usually phases
C and D are combined. This phase ends with the Acceptance Review (AR).

6. Phase E: Utilisation. This phase comprises the launch campaign, launch and
in-flight acceptance of space elements if needed, and it corresponds to operation
and maintenance of the system, as well as the acquisition of feedback.

7. Phase F: Disposal. The disposal phase covers all events from the End-of-Life
(EOL) till final disposal of the product.

2.3 Complexity and Limits of Current Approaches

As foreseen by Warren Weaver in ’Science and Complexity’ [2] we entered in the phase
he defined of ’Organised Complexity’ where systems are qualitatively different from

23



2. Present and Future of Systems Engineering

the ones Systems Engineers used to design and ’complexity’ is the key point. What
is complexity? This section tries first to give a definition. Then it provides a non
exhaustive list of disasters in CEdS that are driven by it. The section should make
clear the need of novel methodologies for the design of CEdgS which could overcome
the problem of complexity by a qualitative shift in the engineering approaches.

It is difficult to converge to a single definition of ’Complexity’ since many of the
experts working in the filed have their own definition that often don’t even match. Seth
Lloyd came up with more than forty alternative definitions [6]. Melanie Mitchell in her
book ’Complexity: A guided tour.’ [7] describes one of the first meetings she organised
on complexity. As first question to the attendees, she asked to give a definition of the
concept. The session ended up with a long list of different and incompatible definitions.
Some characteristics can be however determined to be shared by complex systems of
various nature and accepted by experts in different fields. Indeed, David Snowden and
Mary Boone [8] describe complex systems as having the following characteristics: (i)
Large number of interacting elements; (ii) Non-linear interactions such that seemingly
minor changes can produce significant consequences; (iii) Solutions emerge from dy-
namic circumstances, that is, they are emergent; (iv) Elements of the system evolve
together in irreversible ways; (v) Hindsight cannot lead to foresight because conditions
and the system constantly change; (vi) The system and the agents operating within
it constantly operate on each other in ways that are unpredictable. It has to be no-
ticed that ’large number’ in this context has to be understood as a quantity between
the small set of ’Problem of Simplicity’ and the huge set of ’Problem of Unorganised
Complexity’ as explained in [2].

Since complexity increases in CEdgSs, extreme, rare and unpredictable events are
unfortunately becoming more frequent. These events are usually called ’Black Swans’
or ’Dragon Kings’. The former refer to events that are rare, unexpected, and have a
significant impact. The term was popularised by Nassim Nicholas Taleb in his book
’The Black Swan’ [86] and is based on the idea that, before the discovery of black swans
in Australia, it was believed that all swans were white. ’Dragon Kings’ are even more
extreme events with greater impact than Black Swans. The term was coined by Didier
Sornette and colleagues in their research on financial crashes and other extreme events.

In the following, some examples of Black Swans that happened to network systems
are described where the disasters were triggered by the failure of a single node or link:

• October 1986: during the first documented Internet congestion collapse, the data
throughput from LBL to UC Berkeley (separated by less than 400 meters and
three Interface Message Processor (IMP) hops that correspond to the modern
routers) dropped from 32Kbps to 40bps [87–89].

• August 1996: 1300-megawatt electrical line in southern Oregon sagged in the
summer heat. In an electrical grid, when for any reason a line goes down, its
power is automatically shifted to the neighbouring lines, which in most of the
cases are able to handle the extra load. Sometimes, however, these lines are also
overloaded and must redistribute their increased load to their neighbours. In this
case the failure propagated through the network eventually causing the black-out
in 11 Western States [22].
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• 14 August 2003: initial disturbance in the electrical grid in Ohio triggered a large
area black-out. People remained without electricity for as long as 15 h [22,90].

• February 2010: the snowstorms along the Eastern coast of the US caused the
cancellation of more than 20,000 ights (4.2 % of all flights) scheduled during the
month with the peak of 23 % on the 10 February. This large number was mainly
due to the near or complete closure of on a few Northeastern hub airports. The
total cost of these cancellations is unknown due to the difficulties in quantifying
the exact cost to each carrier; however, across all carriers it has been estimated
that cancellations from snowstorms over the whole month cost between $ 80100
million [91].

• 18 December 2010: Heathrow airport was closed for arrivals and departures with
only a limited number of flights operating the next day, due to 70 mm of snow
falling in one hour. This event caused the cancellation of over 4000 flights, dis-
rupting the travel plans of many passengers during what was predicted to be
Heathrows busiest weekend of the year [91].

More complex networked systems can be modelled as Inter-dependent and heteroge-
neous systems of networks [92]. The following is a list of Black Swans that happened
to these multi-layer network systems:

• 28 September 2003: an important blackout in Italy was triggered by the bidi-
rectional coupling between Information Communication Technology (ICT) and
energy networks [93,94].

• 2007: the UK floods led to the inundation of energy and water facilities in the
flood plain. This subsequently led to a regional loss of these services as well as the
loss of electricity-dependent Information Communication Technology (ICT) net-
works and reduced emergency response capacity as a result of transport network
disruption [93].

2.4 Complexity and Resilience Engineering

This section introduces to the connection between complexity and CEdgS. Then, it
presents the most promising research direction for controlling and driving complexity
through the engineering design process. This refers to the concepts of ’Resilience’ and
’Resilience Engineering’.

As explained by Crucitti et al. in ’Model for cascading failures in complex networks’
[22] large, even if rare, cascades can be triggered in CEdS by small initial shocks
when systems are composed of interconnected sub-systems or inter-dependent networks.
Indeed, the emergent behaviour of CEdgSs arising from the interaction of the many
sub-systems and components is highly non linear and impossible to predict sufficiently
with the traditional tools, as it is stated by Calvano C. et al. in ’Systems engineering
in an age of complexity’ [4]. A perfect control of the system behaviour and safety,
then, could probably never be obtained, but Complex Theory could help in increasing
the level of control we have. This is specific for CEdgSs, differently from traditional
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systems and SoS as explained by Sheard et al. in ’Principles of complex systems for
systems engineering’ [9]. The authors also argue that CEdgS stay at the border of the
order-to-chaos spectrum. Modelling the complexity within engineered systems is then
of fundamental importance. From a mathematical point of view, in [22] the authors
present a simple model based on graph theory to simulate the dynamic cascade of effects
that starting from a single node removal lead to macroscopic failures. From a more
engineering perspective, instead, Punzo G et al. in ’Engineering Resilient Complex
Systems: The Necessary Shift Toward Complexity Science’ [23], state that the solution
to the problem of the overarching growth of complexity in CEdgS can be achieved with
the new research field of ’Design for Resilience’.

The concepts of ’Resilience’ and ’Resilience Engineering’ are relatively recent and
derive from two decades of research. First scholars tried to formalise the definition of
resilience and then they developed methods to model and quantify it within the design
process of engineered systems. Attempts to define ’Resilience’ can be found in ’Frame-
work for analytical quantification of disaster resilience’ by G. P. Cimellaro et al. [24],
’A review of definitions and measures of system resilience’ by S. Hosseini et al. [25], ’Es-
sential characteristics of resilience’ by D. Woods et al. [26] and ’Essentials of resilience,
revisited’ by [27], D. Woods et al. The reader could find an overview of the ’Resilience
Engineering’ problem, current research directions and challenges in [23]. In this paper,
an analogy with biological systems is used to define CEdS as ’living’ and adapting sys-
tems that can change and react to inputs from the environment and also from internal
unexpected events. To overcome the problem of an increasing complexity, the authors
suggest an overarching graph theory approach on top of the engineering modelling and
optimisation process to investigate the resilience of CEdS, including temporal evolution,
resilience features, the management and decision layers, and the transparency of bound-
aries between interconnected systems. In ’A Review of Methods to Study Resilience
of Complex Engineering and Engineered Systems’ [28] it is recognised that uncertainty
and interconnectedness are the main drivers of complexity in modern CEdgS and that a
paradigm shift in the approach for the design is needed. Six methods, three each for un-
certainty and interconnectedness, have been identified and presented. With reference to
methods for UQ the authors suggest Bayesian Networks (BNs), Robust Bayesian Mod-
elling for severe uncertainty where families of probability distributions are propagated
and finally MDO techniques under uncertainty where decoupling methods are used to
properly decompose CEdgS together with UQ methods. In addition, the paper also
mentions three methods for modelling interconnectedness in CEdgS: Network Science,
Cellular Automaton (CA), and Agent Based Modelling (ABM). Network Science helps
understanding cascade effects and the relationships between local and global dynamics.
CA combined with re-configurable platforms offer new possibilities for resilience design
strategies. ABM integrates technical and social components in complex systems and
allows for the explicit description of autonomous and heterogeneous facets. Multiple
limitations of each method, including computational costs, scalability issues, data un-
certainties, simplification challenges, and the difficulty of predicting human behaviour
are finally presented.
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2.5 Necessary Tools for Systems Engineering

Engineering complexity by optimising resilience requires the orchestration of many and
diverse engineering and mathematical tools. This section serves as an introduction to
the ones used in this thesis.

Network Theory

Networks representations of complex systems is an interesting research topic that spans
in a wide range from pure mathematics to engineering approaches: Graph Theory,
Network Theory, Complex System Theory, ... Complex System Theory is particularly
interesting for the design of CEdgSs for it integrates network theory with system theory
and it can deal with complexity in engineered systems. The base of all these tools is the
mathematical study about graphs. A graph is an ordered pairs G=(V,E) comprising: (i)
V, a set of vertices (also called nodes or points); (ii) E ⊆ {{x, y} | x, y ∈ V and x 6= y},
a set of edges (also called links or lines), which are unordered pairs of vertices (that
is, an edge is associated with two distinct vertices). For an introduction to complex
network, please refer to [52, 53]. In the following of the thesis a particular type of
graph will also been considered: the multi-layer graph: a pair (G, C) where: (i) G =
{Gα;α ∈ {1, .., NL}} is a family of directed and weighted graphs Gα = (Xα, Eα) with
NL the number of layers; (ii) C = {Eαβ ⊂ Xα ×Xβ;α, β ∈ {1, 2, ..., NL}, β = α + 1}
is the set of interconnections between nodes of different layers. A survey of multi-layer
network can be found in [95].

Catastrophe Theory

Scientists have found that there are two basic types of processes in nature: continuous
and discontinuous. An example of a continuous process is the increase in temperature
of a gas as it is heated. As one variable is changed at a constant rate (heat is added
to the gas), a second variable also changes at a constant rate (the temperature of the
gas increases). Because continuous processes are ”smooth,” they are relatively easy to
predict. The branch of mathematics used to study continuous processes is called calcu-
lus and was developed by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716)
more than 300 years ago. Discontinuous processes are instead studied in Bifurcation
and Catastrophe theories [44]. Catastrophe theory is a branch of Bifurcation Theory,
initiated by the French mathematician Ren Thom in the 1960s and popularised by
Christopher Zeeman in the 1970s. It studies and classifies phenomena characterised
by sudden shifts in behaviour arising from small changes in circumstances. A brief
introduction to the problem can be found in ’PhD mini course: introduction to bifur-
cation analysis’ by VanVoorn [96] and in ’Dynamics and bifurcations of non-smooth
systems: A survey’ [45] by Makarenkov et al. The latter presents also some practical
implementations of bifurcation models. Sharma et al. in ’Numerical continuation and
bifurcation analysis in aircraft design: an industrial perspective’ [97] show an applica-
tion to a real engineering problem and presents progress on how bifurcation analysis
can play a role as part of the design process for passenger aircraft. Other interesting
works to approach the field are: ’Homoclinic and heteroclinic bifurcations in vector
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fields’ by Homburg et al. [98], ’Switching to nonhyperbolic cycles from codimension
two bifurcations of equilibria of delay differential equations’ by Bosschaert et al. [99],
’Hyperchaos in a spacecraft power system’ by Li et al. [100]. An example of a discon-
tinuous process involves an arched bridge to which more and more weight is added. At
first, little effect is seen as the weight on the bridge is increasedthe bridge begins to
bend almost imperceptibly. At a certain point, however, enough weight is added to the
bridge that it collapses. A steady change in one variable (the amount of weight on the
bridge) results in almost no change in a second variable (the shape of the bridge distorts
slightly) followed by a sudden change to a very different state (the bridge collapses).
A sudden change in a discontinuous process is called a catastrophe. In mathematics
catastrophes can include sudden disasters, such as a bridge collapse or an earthquake,
but they can also include much less dramatic events, such as the boiling of water or
any phase transition phenomena. For processes involving four variables, Thom discov-
ered that there are seven basic types of catastrophes. They are named for the shapes
formed when their variables are graphed: fold, cusp, swallowtail, butterfly, wave, hair,
and fountain. In practical terms, the theory examine the critical points or equilibrium
states of a dynamical system as a parameter µ is varied:

ẋ = hµ(x). (2.1)

They investigate how the system transitions from one stable state to another or un-
dergoes qualitative changes in its behaviour. In other words, it focuses on the analysis
of the structural changes that occur in a system when one or more parameters cross
certain critical values. Bifurcations can lead to the emergence of new stable states,
limit cycles, chaos, or other types of dynamic behaviour including the switch between
attraction and repulsion.

Stochastic Process

A stochastic or random process can be defined as a collection of random variables
that is indexed by some mathematical set, called the index set, which has usually the
interpretation of time:

X(t), t ∈ T ⊆ R+ (2.2)

Stochastic processes can be grouped into various categories, which include ran-
dom walks, martingales, Markov processes, Lvy processes, Gaussian processes, random
fields, renewal processes, and branching processes to cite a few. A classification can also
be made based on the nature of the state space and on the time set: discrete-time or
continuous-time stochastic processes on one side and discrete, integer-valued stochastic
process or real-valued stochastic process on the other side.

Common examples of stochastic processes are: Bernulli Process, Random walks,
Poisson Processes and Markov chain. This modelling frameworks have demonstrated
to be useful in many fields: the Wiener process (or Brownian motion process), was
used by Louis Bachelier to study price changes on the Paris Bourse, and the Poisson
process, was used by A. K. Erlang to study the number of phone calls occurring in a
certain period of time.
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Chapter 8 will build on top of this tools and, in particular, it includes a resilience
model based on the Homogeneous Continuous-Time Markov Chain (HCTMC) which is
a particular case of Markov Process. A Markov Process is a stochastic model describing
a sequence of possible events in which the probability of each event depends only on the
state attained in the previous event. This is a property called ’memorylessness’. The
model is named after the Russian mathematician Andrey Markov. Markov Chain is
then the particular case of Markov Process with a countable state space. Markov Chain
are usually classified in a Discrete-Time Markov Chain (DTMC) if discrete-time and
Continuous-Time Markov Chain (CTMC) is continuous-time process. The evolution of
the system states through different points is called ’transition’ and it follows a specified
probability distribution defined in the transition matrix P. The HCTMC have finally
the transition matrix P that is the same after each time step.

Modelling

A model in science and engineering is anything used as a representation of a law,
theory, event, object or system. It describes the real system including only the essential
features. Modelling is then the process of abstraction from reality and of definition, by
means of a particular language, of the model [30].

Real systems can be translated to an infinite number of virtual or physical models
since they can be defined at different levels of abstraction and fidelity and with different
modelling approaches and languages.

The modelling process is composed of a few important steps: the identification
of the real system under interest, its boundaries and which system’s property can
be neglected, the selection of a modelling paradigm approach and finally a modelling
language.

In general, models can be classified based on their purpose, that is the final goal
for which the model is developed. A model can be used for prediction, description,
design/optimisation, etc. Models can also be classified based on the used substrate:
a model can be for example conceptual, mathematical, or physical. Restricting our
attention to mathematical models, the ones used in the thesis, we can further con-
sider other categories. (i) Type: analytical if it is based on the pure application of a
theory, numerical if it includes also numerical approximations and simplifications, em-
pirical if it contains parameters that must be quantified by experiment or systematic
observation. (ii) Mathematical framework: differential equation, finite difference
equation, combinatorial theory, probability theory, game theory, game trees or payoff
matrices, ... (iii) Linear or Non-linear: the model can be linear or non-linear with
respect to the independent variables. (iv) Static or Dynamic: static models refers
to steady state systems or in general to systems that don’t change their properties in
time. Models are defined dynamic otherwise. The latter, in particular, are the base of
the simulation process. (v) System Knowledge: if both all the input parameters of
the model and the set of operations to calculate the model’s output are known, it is
defined a white box. Otherwise it is define as black box. Sometimes also the definition
of grey box is used. (vi) Discrete or Continuous: this refers to the independent
variables of the model. (vii) Uncertainty: a model can be deterministic if it does not
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include uncertainty. A deterministic model gives always the same result. Models can
also include uncertainty that can be treated with many different approaches. An exam-
ple of the latter is given by the stochastic models. (viii) Modelling and Simulation
Paradigm: the analysis of a dynamic model is made by means of simulations. The
most common model paradigms that allows for simulation are: ABM, Discrete Event
Simulation (DES), Dynamic Systems (DS) and SD and CA.

The simulation process of dynamic models allows us to study the system’s time
evolution. A clear comparison of ABM, DES, DS and SD is in [101]. Many other
approaches however exist. (i) System Dynamics, SD, was developed by the electrical
engineer Jay W. Forrester in the 1950s. It is based on the concepts of stocks (e.g.
of material, knowledge, people, money), flows, feedback loops and time delay. SD
was first applied only to management problems but the range of applications soon
expanded also to urban, social, ecological and other types of systems. (ii) Dynamic
Systems, DS, is actually the ancestor of System Dynamics. It is similar to SD but for
historic reason, it uses a different set of tools. It is applied for the solution of physical
and engineering problems only. (iii) Discrete Event Simulation, DES, roots to 1960s
with Geoffrey Gordon at IBM. It is based on the concepts of entities, resources and block
charts describing entity flow and resource sharing. Each event occurs at a particular
instant in time and triggers changes a change in the state of the system. Between
consecutive events, no change in the system is assumed to occur. (iv) Agent-based
Modelling, ABM, is a distributed approach that simulates the behaviour of individual
agents in a system, and the interactions between those agents. It is often used to study
complex systems in which individual agents have a degree of autonomy, such as social or
economic systems. The agents have an individual capacity of sensing the environment,
the ability to learn and react. (v) Cellular Automaton, CA, was started by John
von Newman, and is the ancestor of ABM. A CA is a modelling approach in which a
system is represented as a grid of cells, each of which can be in one of several states.
The states of the cells change over time according to a set of rules, which can be
simple or complex. CA are often used to model physical or biological systems, such
as fluid dynamics or ecological systems. (vi) Game Theory is finally a mathematical
framework for analysing the behaviour of individuals or groups in strategic situations.
It involves modelling the decisions and interactions of players in a game and predicting
the outcomes based on the assumptions of the game. Game theory is often used in
economics, political science, and other fields to model decision-making and strategic
behaviour.

Many specialised modelling languages have been finally developed. The main clas-
sification is between Graphical Languages like Bond Graph, Unified Modelling Lan-
guage (UML), Systems Modelling Language (SysML) and Textual Languages such
as formal codes based on standardised keywords and natural language terms. An im-
portant classification about specialised modelling languages refers to the possibility to
apply a causality or a-causality approach as explained in [102]. In summary, we can
say that in the causal notation, causal models have the outputs explicitly expressed
in terms of the inputs; i.e., the direction of information flow is manifest. Concretely,
such models are often represented as block diagrams. An examples is SimuLink. In the
declarative or a-causal notation, a-causal models are expressed in terms of undi-
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rected equations. This makes them much more reusable and composable, addressing
some of the challenges of large-scale modelling and simulation. In alternative, general-
purposed languages can be used to manually implement the physical equations of the
system through a Equation Based Modelling (EqBM) approach.
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Evidence-Based Uncertainty
Quantification

“ Is there more to Uncertainty than
some probability theorists might have us believe? ” [46]

– George J. Klir

Reasoning about real problems means reasoning under uncertainty since every de-
scription of the real world is necessarily incomplete and affected by a degree of un-
certainty. Within the field of MBSE it is then necessary to understand the different
sources and types of uncertainty that affect the engineered system under design and the
whole design process, to properly model them and to quantify their effect on the final
output. Also, since the classical probability framework has been demonstrated [46–48]
to capture only part of the multidimensional concept of uncertainty, IP theories can be
exploited to better model and understand reality.

This chapter introduces the concept of uncertainty, of its modelling and explains
why DST has been selected as the framework for UQ in the proposed MBSE methods for
EBRO and EBORe presented in the thesis. The chapter then moves to the presentation
of different algorithmic methodologies that are used in the literature to solve the UQ
problem.

This chapter is linked to Chapter 6 which presents a modelling framework for CEdgS
under uncertainty and to Chapter 7 which explains novel algorithmic approaches for
Belief and Plausibility approximation for computational complexity reduction. It is
also linked to all the MBSE applications presented in the following chapters Chapters 7
to 9.

In particular, Section 3.1 introduces the UQ problem. It presents the different
interpretations and types of uncertainties, lists a number of examples of uncertainty
manifestations, presents the two main problems in which UQ is involved and the most
important mathematical theories. Section 3.2 is specifically dedicated to DST, its
measures of information, its advantages and disadvantages. Section 3.3 are then focused
on the algorithmic approaches for the solution of the UQ problem for the general
probabilistic approaches and for DST.
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Figure 3.1: Main Uncertainty Interpretations

3.1 What Uncertainty Is and How to Live With It

The concept of uncertainty has been evolving, strictly interconnected to the ones of
knowledge, information and probability, along the centuries. This section gives a brief
introduction to most important aspects we can think about uncertainty. First, from
the highest level, we give the different interpretations which relates to the intuition at
the beginning of the development of the uncertainty concepts. The two most common
categories of uncertainty are then presented: aleatory (or irreducible) and epistemic
(or reducible). Some important examples of how this concepts manifests in real life
are then given. The section then gives a comprehensive, even if not complete, list of
mathematical theories to model uncertainty. Finally there is a brief description of the
problems related to uncertainty.

The main distinction of uncertainty interpretations is between empirical (or ob-
jective) and inductive (or subjective) approaches as [103] and here summarised in
Fig. 3.1. The former case can be further divided in three sub-classes. Classical in-
terpretation is based on the knowledge of all the possible outcomes and on symmetry.
Frequency interpretation is based on the repetition of a large number of experiments.
Propensity interpretation is a natural inclination or preference toward a particular
state. The inductive approach can instead be divided in two main sub-groups. Log-
ical interpretation is based on reasoning rules (as the inference rules). Belief-based
interpretation is based on the human state of mind and convictions.

Different types of uncertainty can also be identified and categorised based on the
physical properties of the available information. An important classification divides un-
certainties into aleatory and epistemic [49]. Aleatory uncertainties are non-reducible
uncertainties that depend on the very nature of the phenomenon under investigation.
They can generally be captured by well-defined probability distributions as one can
apply a frequentist approach. Epistemic uncertainties are reducible uncertainties and
are due to a lack of knowledge. Generally, they cannot be quantified with a well-defined

35



3. Evidence-Based Uncertainty Quantification

Figure 3.2: Different interpretations of uncertainty

probability distribution and a more subjectivist approach is required. Two classes: a
lack of knowledge of the distribution of the stochastic variables or a lack of knowledge
of the model used to represent the phenomenon under investigation.

Uncertainty is, however, a multidimensional concept and different taxonomies have
been developed in the last years by many scholars in order to include its different
and multiple facets: confusion, error, irrelevance, distortion, incompleteness, undecid-
ability, inaccuracy, probability, ambiguity, fuzziness, non-specificity, vagueness, igno-
rance, conflict, imprecision, ... [104]. Of particular importance is the type taxonomy
of uncertainty-based information of Generalised Information Theory (GIT) given by
Klir [47] and represented in Fig. 3.2, where information and uncertainty are complemen-
tary aspects. An other classification is from Smets [105] who builds a larger typology
of imperfection of information where imperfection has three dimensions: imprecision,
inconsistency and uncertainty.

Uncertainty can then manifests itself in many and different circumstances. Some
common examples are in the following. Structural (or model) uncertainty is a form of
epistemic uncertainty on our ability to correctly model natural phenomena, systems or
processes. If we accept that the only exact model of Nature is Nature itself, we also need
to accept that every mathematical model is incomplete. One can then use an incomplete
(and often much simpler and tractable) model and account for the missing components
through some model uncertainty. Experimental uncertainty is generally aleatory but
if one considers the uncertainty associated with measurements it can be considered
epistemic as it incorporates the possible lack of knowledge on the performance of the
sensor. Furthermore, a lack of measurements is in itself an epistemic uncertainty. When
this uncertainty is aleatory, it is probably the easiest to understand and model, if enough
data are available on the exact repeatability of measurements. Geometric uncertainty
is a form of aleatory uncertainty on the exact repeatability of the manufacturing of
parts and systems. Parameter uncertainty can be either aleatory or epistemic and
refers to the variability of model parameters and boundary conditions. Numerical (or
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algorithmic) uncertainty, also known as numerical errors, refers to different types of
uncertainty related to each particular numerical scheme, and to the machine precision
(including clock drifts). Human uncertainty is difficult to capture as it has both
aleatory and epistemic elements and is dependent on our conscious and unconscious
decisions and reactions. It includes the possible variability of goals and requirements
due to human decisions.

The concept of uncertainty has been studied for centuries, but the development of
formal theories and methods for dealing with uncertainty is a more recent phenomenon.
Here is a brief history of some key milestones in the development of uncertainty theory:

• Probability Theory [106]. Probability theory dates back to the 17th century
with the work of Blaise Pascal and Pierre de Fermat on gambling problems. It
was later formalised by mathematicians such as Jacob Bernoulli, Abraham de
Moivre, Kolmogorov and Thomas Bayes.

• Fuzzy Set Theory [107]. Fuzzy set theory was developed in the mid-20th
century by Lotfi Zadeh, who proposed the idea of representing uncertainty using
fuzzy sets, which allow for partial membership in a set. Fuzzy set theory has since
been used in a wide range of applications, including control systems, decision-
making, and artificial intelligence. Fuzzy sets theory is well suited to deal with
vague information.

• Dempster-Shafer Theory of Evidence: Evidence Theory, also known as belief
theory and DST, was developed in the 1960s by Arthur Dempster [50] and Glenn
Shafer [51] as a way of dealing with uncertain and conflicting evidence. It extends
probability theory by allowing for representing uncertain information using belief
functions, which can be combined using the Dempster-Shafer rule of combination
and further rules developed in the following years. Evidence theory has great
capacity in ignorance modelisation.

• Possibility Theory [107]. Possibility theory, which was developed by Zadeh in
the 1970s, provides a way of representing uncertain information using possibility
measures, which represent the degree to which a proposition is possible. Possi-
bility theory has been used in applications such as decision-making and pattern
recognition. Possibility theory is appropriate for incomplete information.

• Interval Analysis: Interval analysis, which provides a way of representing and
propagating uncertainty using interval arithmetic, was developed in the 1960s
and 1970s by mathematicians such as Ramon Moore and Charles Steward. Inter-
val analysis has been used in applications such as control systems and scientific
computing.

• Bayesian Inference: Bayesian inference, which provides a way of updating
probabilities based on new evidence, has been developed over the past few cen-
turies, but has seen a resurgence in popularity in recent years due to advances in
computational methods for inference.
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These are just a few of the many developments in uncertainty theory over the years,
and the field continues to evolve with new methods and applications.

Since the last decade of the 20-th century there has been then an effort to harmonise
these different theories of uncertainty in the GIT [47,48]. In GIT uncertainty is viewed
as a manifestation of information deficiency, while information is anything capable of
reducing the uncertainty. All the approaches considered in GIT were developed after
two important theories came up in the 20th century: the Theory of Capacities (1953) by
Gustave Choquet and the fuzzy set theory introduced in 1965 by Lotfi Zadeh. The first
extended the classical and additive concept of measure to the monotone measure, while
the second expanded the classical set theory. As described in [47, 48] all uncertainty
theories can be sorted and related based on these two aspects: the measure used to
quantify uncertainty and the type of set implemented.

There are finally two major types of problems in UQ that people are interested to
solve. In Forward Propagation of uncertainty, the various sources of uncertainty are
propagated through the model to predict the overall uncertainty in the system response
In Inverse Propagation there is an assessment of model uncertainty and parameter
uncertainty: the model parameters are calibrated simultaneously using test data.

3.2 Evidence Theory

DST [50, 51] can be considered as a generalisation of the classical probability theory
since it allows one to treat both aleatory and epistemic uncertainty with partial infor-
mation and lack of knowledge.

Formally, an application of DST can be defined by the triple

(Θ,Ω,m) (3.1)

The set Θ is called Frame of Discernment and it is the set of all the mutually
exclusive and collectively exhaustive elementary events (or hypothesis) θi, i = 1, ..., |Θ|:

Θ =
{
θ1, θ2, ..., θi, ..., θ|Θ|

}
(3.2)

All the possible events (or hypotheses) could be overlapping or nested, but in the frame
of discernment only the finest division of them is considered. Θ corresponds to the finite
sample space in Probability Theory.

Ω is a countable collection of subsets of Θ. It corresponds to the σ-algebra for the
Probability Theory, but it is less restrictive. Usually Ω is identified as the power set
2Θ = (Θ,∪) given by all possible combinations of the elements of Θ:

Ω = 2Θ =
{
∅, {θ1} , ...,

{
θ|Θ|
}
, {θ1, θ2} , ..., {θ1, θ2, ..., θi} , ..., {θ1, θ3} ,Θ

}
(3.3)

where the generic element ω = {θ1, ..., θj} of Ω = 2Θ is a proposition that states the
truth of only one of the events θ1, ..., θj without specifying which one.

m is weight a function called basic probability assignment (bpa) defined on the
elements of Ω.

m : Ω→ [0, 1]. (3.4)
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Given ε ∈ Ω, the m is a number characterising the amount of likelihood that can be
assigned to ε. It has to satisfy the following conditions:

m(ω) ≥ 0,∀ω ∈ Ω (3.5)

m(ω) = 0,∀ω /∈ Ω (3.6)

m(∅) = 0 (3.7)∑
A∈2Θ

m(A) = 1 (3.8)

m corresponds to the pmf in the classical probability theory.
Each subset of the power set 2Θ with a non-zero bpa is called a Focal Element (FE)

and the pair 〈F,m〉, where F is the set of all FEs and m the corresponding bpas, is
called Body of Evidence.

3.2.1 Belief and Plausibility

This section is dedicated to the definition of Belief (Bel) and Plausibility (Pl) which
are the two uncertainty measures in DST that generalise probability being respectively
its lower and upper bound. The gap between them, called Evidential Interval (EI)
[Bel P l] is a measure of the degree of ignorance on the probability of a realisation
of a general event x. When enough information is available, the distribution of x is
known and all FEs collapse to singletons converging to the state Bel = Pl = P .

Given A a subset of the power set A ⊆ Ω = 2Θ and ωi the generic i-th FE inside
〈F,m〉 the total degree of Bel on A can be computed by collecting all the pieces of
evidence that fully support that statement A:

Bel(A) =
∑
ωi⊆A

m(ωi) (3.9)

The total degree of Pl can be computed by collecting all the pieces of evidence that
either fully or partially support that statement A.

Pl(A) =
∑

ωi
⋂
A 6=∅

m(ωi) (3.10)

From Eq. (3.9) one can see that the Bel function is the sum of all the pieces of
evidence that completely support the statement x ∈ A, whereas the Pl function is the
sum of all the pieces of evidence that partially support the statement x ∈ A. This
means that m(ωi) is added to Bel only if all possible realisations of x ∈ ωi belong to
A, on the contrary m(ωi) is added to Pl if at least one realisation of x ∈ ωi belongs to
A.

The functions Bel and Pl follows a less restrictive version of Kolmogorov’s axioms:

1. Bel(∅) = 0;

2. Bel(U) = 1;
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3. For every positive integer n and every collection θ1, ...θn of subsets of Θ:

Bel(θ1∪ ...∪ θn) ≥
∑
i

Bel(θi)−
∑
i<j

Bel(θi∩ θj) +−...+ (−1)n+1Bel(θ1∩ ...∩ θn)

and

1. Pl(∅) = 0;

2. Pl(U) = 1;

3. For every positive integer n and every collection θ1, ..., θn of subsets of Θ:

Pl(θ1 ∩ ... ∩ θn) ≥
∑
i

Bel(θi)−
∑
i<j

Pl(θi ∪ θj) +−...+ (−1)n+1Pl(θ1 ∪ ... ∪ θn)

Condition (3.) for both Bel and Pl are a further generalisation with respect to
the classical probability theory since the two measures are defined as monotonic non-
additive.

A further generalisation of the classical probability theory is related to the concept
of duality:

Pl(¬A) = 1−Bel(A) (3.11)

with A the complement to A.

3.2.2 Evidence Framework for System Engineering

This section is dedicated to the combination of DST and MBSE. In the design process
of an engineered system, within the framework of MBSE, a model f is used to quantify
one important KPI. f depends on both a vector of design d and uncertain u variables
as in the following definition:

f(d,u) : D × U ⊆ Rm+n → R (3.12)

where D is the design space for the decision or design parameters d, of dimension m,
and U = 2Θ the event space for the uncertain parameters u, of dimension n, that we
call the Uncertain Space.

We are then interested in the amount of evidence associated with the event f(d∗,u) ∈
B, for a fixed d∗ and we want to quantify the level of uncertainty on the set A:

A = {u ∈ U |f(d∗,u) ∈ B} (3.13)

In other words, we are aware of the probability space (ΘA,ΩA,m) and we want to
apply a forward uncertainty propagation through the system model f to understand
the effect of uncertainty on the model output.

With reference to Eq. (3.13) we want finally to compute the cumulative Belief and
Plausibility associated with the event A:
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Bel(A) =
∑

ωi⊂Ω,ωi∈A
bpa(ωi), (3.14)

Pl(A) =
∑

ωi∩Ω6=0,ωi∈A
bpa(ωi). (3.15)

3.2.3 Advantages and Disadvantages of Evidence Theory

A discussion on the main advantages and disadvantages of DST can be found in [108] by
Liu et al. Differently from classical probability theory and from the Bayesian approach,
the epistemic framework in DST includes the concept of ignorance. The evidence
framework makes it possible, indeed, to profess zero degree of belief for any proper
subset of a set of possibilities. For instance, evidence on the event A or B does not
imply/require information on both events A and B. Similarly, the knowledge of an event
does not imply knowledge of its opposite (for the probability theory P(A)=1P(A)).

On the other hand, the Bayesian theory cannot deal so readily with the represen-
tation of ignorance. The basic difficulty is that the theory cannot distinguish between
lack of belief and disbelief. Also Probability Theory (PT) has this limitation: it assigns
equal probability to all the possible events when no information is available, what is
called the Principle of Indifference or of non-sufficient reason. Thus, PT does not make
any distinction between randomness and ignorance.

In traditional probability theory evidence is related only to a single event, instead
in DST it is associated with a set of events and the mass assigned to a general set A
gives no information about the evidence associated with the subsets of A.

On the other side, the main problem of UQ with DST, and with IP in general, is its
computational complexity. This is a limitation also for DST where the cost for exact
quantification of uncertainty grows exponentially with the uncertainty space. Indeed,
the definition of Bel and Pl requires searching for extreme events in each FE.

The solution of Eq. (3.18) is far from trivial. In fact, the computation of Bel
presents two major difficulties:

• In order for a FE ω to be included in the calculation of the belief, the following
condition must be true:

max
u∈ω

f ≤ ν (3.16)

which implies solving a number of (global) maximisation problems equal to the
number of FE.

• Because FEs can be either fully included or fully excluded from the calculation
of Belief , the function Bel(d) is generally discontinuous, non-differentiable and
presents plateaus that make it unsuitable for a gradient methods.

This explains the importance for developing algorithmic procedures to reduce the
computational cost in order to apply DST within MBSE.
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3.3 Algorithms for Uncertainty Quantification

This section presents a list of the most important approaches for forward UQ. The
problem refers to the propagation of uncertainty through a general black-box-type
performance function denoted as

y = g(x) (3.17)

where x is the n-dimensional vector of uncertain variables.
In the general probabilistic approach, where x can be described by the joint Proba-

bility Density Function (PDF) fX(x), there are basically six categories of methods for
uncertainty propagation as described in [109]. The first category includes simulation-
based methods like Monte Carlo simulations, importance sampling, adaptive sampling,
etc. [110]. The second category refers to the general surrogate-based methods. In a
non-intrusive approach, a surrogate model is learnt in order to replace the experiment
or the simulation with a cheap and fast approximation. Surrogate-based methods can
also be employed in a fully Bayesian fashion. This approach has proven particularly
powerful when the cost of sampling, e.g. computationally expensive simulations, is pro-
hibitively high. Then there are local expansion-based methods. Examples are Taylor
series and perturbation method. These methods have advantages when dealing with
relatively small input variability and outputs that don’t express high non-linearity. The
fourth category is given by functional expansion-based methods: Neumann expansion,
orthogonal or KarhunenLoeve expansion (KLE), with Polynomial Chaos Expansion
(PCE) [111] and wavelet expansions as special cases. There are then the Most probable
point (MPP) based methods as First-Order Reliability Method (FORM) and Second-
Order Reliability Method (SORM). The last category is numerical integration-based
methods: Full Factorial Numerical Integration (FFNI) and Dimension Reduction (DR).

Focusing instead on Evidence Theory approaches for UQ, the general problem
Eq. (3.17) translates to:

Bel(f(u) ≤ ν) (3.18)

for a specific ν or ∀ν ∈ [minu(f),maxu(f)] where u is defined as in Section 3.2.
In the literature one can find a handful of sampling-based methods to compute

and estimation of Belief (and Plausibility) [112–115]. As a representative example,
in [113], the authors suggest the use of the density function:

dj(uj) =

n(j)∑
k=1

δ(uj |Ijk)bpajk(Ijk)/(bjk − ajk) (3.19)

for the j-th dimension of the uncertain space, if the intervals for the uncertain param-
eters are given in the form Ijk = {uj : aik ≤ uj ≤ bjk}. Here n(j) is the number of
intervals in the j-th dimension and

δ(xj |Ijk) =

{
1 if xj ∈ Ijk
0 otherwise;

(3.20)
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then the sampling distribution is:

d(x) =
nU∏
j=1

dj(uj) (3.21)

Distribution (3.21) explores adequately the uncertain space giving more importance
to the FEs with higher bpa and then sampling uniformly inside them. Samples can be
generated with a Latin Hypercube Sampling (LHS) and propagated through the system
model in order to build a response surface, for example through a non-parametric re-
gression model, that can either directly approximate the Bel or the quantity of interest
from which one can calculate the Bel.

Sampling-based approaches are potentially efficient but produce an approximation
that can be significantly poor. Furthermore, this type of approximation provides es-
timated Belief values that are always better (more optimistic) that the actual ones,
leading to an overconfidence in the realisation of an event. Possible mitigation of this
problem was recently proposed in [116] to address the solution of optimal control prob-
lem under epistemic uncertainty. The value of the Belief was approximated with the
surrogate of a weighted integral obtained by sampling the space of the FEs. The integral
was elevated to an exponent factor k, the higher k the more the integral was resembling
the actual Bel. Furthermore, the surrogate was periodically updated to identify the
threshold values where the approximation was the closest to the true Belief . These two
improvements allows one to insert selected values of the surrogate in the optimisation
loop and improve the Bel at a discrete number of thresholds ν.

If sampling is used to build a surrogate of the quantity of interest, the computational
cost due to the maximisation over all the FEs is only partially mitigated, as the cost of
each optimisation is reduced but the number of optimisations might remain very high
and could still scale exponentially with the number of dimensions of the uncertainty
space U .

Another class of approaches then tries to reduce the number of FE upfront through a
dimentionality reduction methods. The general idea is to define criteria to sort the FEs
by their importance and then approximate the m-function in Eq. (3.4) to a m′-function
with a lower number of FEs. A few examples are presented in the following.

The Bayesian approximation proposed by Voorbraak’s [117] produces a discrete
probability distribution where the new mass function m′ considers only the singleton
subsets θi in the Power Set 2Θ. The Consonant approximations from Dubois and
Prade [118] implement and approximation through the use of consonant sets, in the
sens of randomness. This results to be equivalent to a fuzzy approach which finally
yields to a reduction of computational cost. The k-l-x method proposed by Tessem [119]
uses the bpa’s as sorting criterion. The approximating m′=mklx then includes only the
p FEs with higher bpa, where k < p < l, and such that the sum of the masses of the
deleted FEs is less than x. A normalisation method is finally used to redistribute the
total mass of the deleted FEs to the remaining ones. The summarisation method takes
the first p FEs with the highest bpa, as in [119], and lumps together all the remaining
ones in a single FE with a bpa that is the sum of their bpas. The D1 method [120] beside
the criteria of mass introduces also the cardinality. The Batch approximation method
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and Iterative approximation method [121] suggest, instead, that mass and cardinality
are not sufficient to discriminate which FE to take and which one to discard. Then in
the paper a non-redundancy measure is presented based on the definition of distance
between two FEs as proposed by Denœux in [122]. Other heuristic methods can be
found in [123]. A further approach in this category is presented as a contribution of
the thesis in Chapter 7 where a reduction of the number of FEs is derived by a system
decomposition methodology. A second method is presented instead in Appendix C.
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4

Optimisation Under Uncertainty

“ There ain’t no such thing as a free lunch ”
– Unknown

“ In a predestinate world, decision would be illusory;
in a world of a perfect foreknowledge, empty;
in a world without natural order, powerless.
Our intuitive attitude to life implies
non-illusory, non-empty, non-powerless decision...
Since decision in this sense excludes both
perfect foresight and anarchy in nature,
it must be defined as choice in face of bounded uncertainty. ”

– Shackle, 1961

In order to apply an optimisation-based MBSE approach to the design of a system,
the engineering problem needs to be translated in the optimisation problem which can
then be solved with the use of a suitable optimisation solver. The whole process re-
quires the identification of the system under analysis, the formulation of an adequate
system’s model, the identification of possible sources and types of uncertainty affecting
the system and involved in the design process, the identification of the set of optimi-
sation variables and constant problem parameters, and the definition of objective and
constraint functions. As stated in the 1997 in the No Free Lunch (NFL) Theorems
formulated by David Wolpert and William Macready in [124] all the algorithms are
equivalent if averaged over all possible problems. In other words, the perfect optimisa-
tion solver does not exist. It is therefore important to be able to develop or choose the
appropriate one based on the specific characteristics of the problem under analysis.

This chapter introduces to the field of global optimisation by giving fundamental
definitions and classifications of both problem formulations and algorithmic solvers.
Particularly important for the following of the thesis are: meta-heuristic approaches,
min-max problem, OUU with uncertainty modelled through DST framework, MDO and
SDO problems, multi-objective formulation and constraint handling. The interested
reader can find a more detailed introduction to optimisation in [33–35].

The chapter is linked to Part II where the thesis’ contribution in the field of algo-
rithmic optimisation is presented. In particular, Section 4.4 introduces to the constraint
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min-max problem that is then developed in Chapter 5. Section 4.5 defines the SDO
problem for which the thesis contribution is in Chapters 6 and 9. Section 4.2.1 presents
the Memetic Algorithms (MA) strategy that is further developed in Chapter 5. The
chapter is finally important for Part III where the thesis’ contribution about OUU with
DST and SDO is presented which uses the SDO model presented in Chapter 6.

Section 4.1 gives the general optimisation problem formulation. Section 4.2 instead
presents types and classifications of algorithmic solvers. Section 4.3 focuses on OUU
and in particular with DST. Section 4.4 presents the min-max problem. Section 4.5
introduces the MDO. Section 4.6 is dedicated to the MOP with particular emphasis
on the scalarisation approaches. Section 4.7 is finally dedicated to the methods for
handling constraints.

4.1 Problem Formulation and Classification

A generic optimisation problem assumes the following mathematical formulation:

minimisex∈X f(x) = [f1, f2, ..., fm]T

subject to ci(x) ≤ 0, i = 1, ..., n

gj(x) = 0, j = 1, ..., p

(4.1)

with f the vector of objective functions, c the vector of inequality constraint func-
tions and g the vector of equality constraint functions, X ⊂ Rn the parameter space,
{m,n, p} ∈ N and Y = {f(x) s.t. x ∈ X, gj(x) ≤ 0, j = 1, ..., n} the feasible ob-
jective space. Eq. (4.1), in particular, represents a CMOP and is the most generic
representation from which all the particular cases described in the following can be
derived.

Depending on the characteristics of the objective and constraint functions and of
the search space, the optimisation problems can be classified within many categories.
(i) Local or Global. A multi-modal problem has multiple local solutions correspond-
ing to different vectors of x. On the other side, a uni-modal problem has only one local
solution which corresponds to the global one. Examples of the latter are: Linear Pro-
gramming (LP) and convex programming problems. (ii) Single, Multi and Many
Objective. With reference to Eq. (4.1), Single-Objective Problem (SOP) have m = 1,
MOP have 1 ≤ m ≤ 3 and Many-Objective Problems (MaOP) have m > 3. (iii) Con-
strained or Unconstrained. With reference to Eq. (4.1), constrained problems have
n > 0 and/or p > 0 while unconstrained problem have m = 0 and p = 0. Constraint
problems and Multi-objective problems are two alternative representations of the same
problem linked by a adequate transformation. (iv) Continuous or Discrete. A con-
tinuous problem is defined for x ∈ D ⊆ Rn. A discrete problem instead, has x defined
in a discrete set. Examples of the latter are: Integer Programming when x ∈ D ⊆ Zn,
Binary Programming when x ∈ D = {0, 1}n and Combinatorial Optimisation where
the discrete set is a set of objects, or combinatorial structures, such as assignments,
combinations, routes, schedules, or sequences. Mixed-Integer Optimisation Problems
are also important: x = (xr,xd) ∈ D ⊆ Rnr × Znd , with nr + nd = n. (v) Linear
or Non Linear. When all objectives and constraint functions are linear functions of
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x the problem is defined as LP otherwise it is a Nonlinear Programming (NLP). A
particular case of the latter is Quadratic Programming (QP). Integer Linear Program-
ming (ILP) combines the last two classifications and is an example that shows that
they represent different aspects of the problem and are usually combined. (vi) Gray
or Black Box: sometimes the model under optimisation is known and it is possible
to apply some decomposition techniques (grey box). Other times it is just a black box.
(vii) Number of Levels. Often, an optimisation problem has a hierarchical struc-
ture: it is described by multiple optimisation tasks such that only an optimal solution
to one of them may be a feasible candidate for the others. We can then distinguish
between single-layer (standard problems), bi-level [125] (min-max, leader-follower, ...)
and multi-layer optimisation problems. (viii) Uncertainty Handling. An impor-
tant distinction is between deterministic formulations and problems that require also
UQ. Uncertainty comes in different shapes and can be modelled in different ways. (ix)
Number of disciplines. Sometimes, designers have to incorporate many relevant
disciplines simultaneously. With reference to this aspect, it is possible to define MDO
(or UMDO with the inclusion of UQ) when there are many fields weakly coupled and
SDO when, on the opposite, there are fewer but stronger coupled fields.

A specific nomenclature exists with reference to constraint handling and the pres-
ence of the objective function as summarised in Table 4.1. (i) A Constrained Optimsa-
tion Problem (COP) has one or more objective functions and one or more constraint
functions. (ii) A Constraint Satisfaction Problem (CSP) has one (or more) constraint
function but no objective functions. Any solution that satisfies the constraints is equally
good. (iii) A Free Optimisation Problem (FOP) has one (or more) objective functions
but not constraint functions.

Table 4.1: Single-Objective Problem Taxonomy.

Objective function

Constraints yes no

yes COP CSP
no FOP -

Instead, with reference to the number of objective functions and the presence or
not of a constraint function, problem classifications are in Table 4.2. (i) A CSOP is
a constraint problem with a single objective function. (ii) A CMOP is a constraint
problem with 2 or 3 objective functions. (iii) A Constraint Many Objective Problems
(CMaOP) is a constraint problem with more than 3 objective functions. (iv) A SOP
is an un-constraint problem with a single objective function. (v) A MOP is an un-
constraint problem with 2 or 3 objective function. (vi) A MaOP is finally an un-
constraint problem with more than 3 objective functions.

This rich classification framework of optimisation problem formulations allows us
finally to abstract, model and solve many practical problems arising in engineering:
Travelling Salesman Problem (TSP), Vehicle Routing Problem (VRP), Knapsack prob-
lem and all their variants for example in Operational Research (OR).
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Table 4.2: Multi-Objective Optimisation Problem Taxonomy.

N obj

Constraints 1 2 or 3 4 or more

yes CSOP CMOP CMaOP
no SOP MOP MaOP

4.2 Algorithmic Solvers Classification

This section introduces to the structure and classification of optimisation solvers, fo-
cusing on global meta-heuristic methodologies and in particular on MA. For a compre-
hensive introduction to the field, please refer to [32].

Most of the optimisation algorithms, from an high level point of view, are struc-
turally similar since they share the same components or operators. (i) The Initialisa-
tion block includes the procedures for the definition of the search space and of the first
solution(s). (ii) The Generation block includes the methodologies for the generation
of the new solution based on the previous one(s) or on the history. (iii) The Eval-
uation block quantifies the candidate solution(s). It is also responsible to take into
consideration, if applicable, the handling of uncertainties, of multiple objectives and of
constraints. (iv) The Selection block selects a subset of solution (if population-based)
for the generation of the next candidate solutions. (v) The Control block, finally,
includes the methodologies for the control and tuning of the algorithm parameters.

Optimisation solvers can then be classified based on many criteria. The ones pre-
sented in the previous section about the optimisation problem formulation are still
applicable here for the algorithmic optimisation solvers. (i) Besides them, an algorithm
can be Deterministic or Stochastic. The former group provides consistent and
predictable results, while the latter introduces randomness or probabilistic elements,
leading to potentially varied outcomes. (ii) An algorithm can also be Exact, Heuristic
or Meta-heuristic. Exact algorithms are a special class of systematic or exhaustive
optimisation techniques. They guarantee, for specific types of optimisation problems,
to find the optimal solution with a predictable amount of computational resources.
Heuristics are designed and tuned for specific problems and they are usually greedy.
Meta-heuristics [36] are nature-inspired and are structured in such a way to be general
enough to be applied to multiple problem instances.

The following of this section focuses on meta-heuristic algorithms which are the most
widely used and promising. They represent also the building blocks of the methodolo-
gies presented in the following of the thesis. Extending [35], a possible classification of
meta-heuristics approaches considers 5 main categories as in Fig. 4.1: (i) Hill-climbing,
(ii) Trajectory, (iii) Population, (iv) Surrogate and (v) Hybrid. Category (i), ”Hill-
climbing” is based on the analogy of ”The Mountaineer”: as a climbing mountaineer,
it tests many possible future moves and choose only the most locally advantageous. It
focuses the search strategy on greedy exploitation with minimal exploration permitting
then a fast convergence to the local optimum. Category (ii), ”Trajectory”, is based
on the analogy of ”The Sightseer”: the sightseer is looking for the best place to visit
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Figure 4.1: Taxonomy of Optimisation Algorithms
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but in such a journey he is moving through many and diverse directions. This cat-
egory can be further decomposed in: (a) Exploring and (b) Systematic Methods.
Type (a) includes a combination of exploration and exploitation methods to allow for a
global search. For example, Simulated Annealing (SA) is based on the analogy with the
engineering process of the annealing. It is an extension of the basic Hill Climbing proce-
dures where an acceptance function allows to choose a solution with a lower performance
during the selection step. The probability of choosing a less promising solution is then
tuned during the optimisation run time. Type (b) instead explores globally the search
space by subdividing it in sub-areas. Examples are Tabu Search (TS) and Variable
Neighbourhood Search (VNS). Category (iii), ”Population”, can be understood with
the analogy of ”The Team” or the Darwin’s evolutionary theory. As a working team,
they are formed by a group of individuals which team-up to achieve their mutual goal
together. They split up to explore different locations and share their knowledge with
other members of the team. As a biological species evolving in its environment, also,
the genetic information is passed through artificial generations eventually converging to
the global optimum. This group can be further divided in three branches: (a) Regular,
(b) Swarm Intelligence and (c) Model-Based. Type (a) is the closest to Darwin’s
theory. Important example are: Evolutionary Algorithms (EAs), Genetic Algorithm
(GA) and Differential Evolution (DE). Type (b), Swarm Intelligence (SI), is based
on the interaction of many agents with both individual and group behaviours which
gives rise to an emergent intelligence of the swarm. Examples are: Ant Colony Op-
timisation (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimisation (PSO)
and Physarum. Type (c) uses instead a mathematical/statistical model to calculate
the most promising regions where to sample for the new candidate solutions. Examples
are: Estimation of distribution algorithm (EDA) and Covariance Matrix Adaption-
Evolution Strategy (CMA-ES). Category (iv), ”Surrogate”, is based on the analogy
of ”The Surveyor”. The Surveyor is a specialist who systematically measures a land-
scape by taking samples of the height to create a topological map. This map resembles
the real landscape with a given approximation accuracy and is typically exact at the
sampled locations and models the remaining landscape by regression. It can then be
examined and utilised to approximate the quality of an unknown point and further be
updated if new information is acquired. Ultimately it can be used to guide an indi-
vidual to the desired location. This category substitute or integrate the model of the
problem under optimisation with a less computationally expensive surrogate model.
This group can be further divided in (a) Surrogate-Based for which two examples
are Efficient Global Optimisation (EGO) and Bayesian Optimisation (BO), and (b)
Surrogate-Assisted. Category (v), ”Hybrid” is finally based on the analogy of ”The
Chimera”. As the Chimera is a mixture, composition, or crossover of other individuals,
this group of algorithms uses a combination of the previous methodologies as building
blocks to generate a more complex algorithmic structure. It can be decomposed in two
further types: (a) Predetermined and (b) Automated. Type (a) makes an a-priori
combination of the different algorithmic parts. An important example is the group
of MAs which combines EAs and local search and for which different approaches are
defined as Darwinian, Baldwinian or Lamarchian. MAs are based on the concept of
’meme’ which was introduced by Richard Dawkins in ’The Selfish Gene’ [126]. Type (b)
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instead automatically select and tune, through a list of alternatives, the best promising
optimisation technique for each specific optimisation operator and part of the problem.
An examples is given by the Hyper-Heuristics.

4.2.1 Memetic Approaches Based on Differential Evolution

This sub-section recalls the working principles of DE, a strategy introduced by Storn
and Price in [127] that exhibits very good performance over a wide variety of optimisa-
tion problems [128]. It then introduces to MP-AIDEA a memetic hybridisation of DE
with local search. An extension of MP-AIDEA will be presented and used in Chapter 5.

Following the notation introduced in [129], we can express the general DE process
as a discrete dynamical system. The governing equation, for the i-th individual at
generation k, is:

xi,k+1 = xi,k + S (xi,k + ui,k,xi,k) ui,k (4.2)

with
ui,k = e [Gxr1,k + (1−G)xi,k + F (xr2,k − xr3,k)

+(1−G)F (xbest,k − xi,k)]
(4.3)

where G can be either 0 or 1 (with G=1 corresponding to the DE strategy DE/rand and
G=0 corresponding to the DE strategy DE/current-to-best. In Eqs. (4.2) and (4.3),
r1, r2 and r3 are integer numbers randomly chosen in the population, and e is a mask
containing random numbers of 0 and 1 according to:

et =

{
1⇒ U ≤ CR
0⇒ U > CR

t = 1, . . . , nD (4.4)

U is a random number taken from a random uniform distribution [0, 1]. The product
between e and the term in square brackets in Eq. (4.3) has to be intended component-
wise. In this work, given ut,i,k, the t-th component of the trial vector ui,k, the following
correction is applied to satisfy the box constraints:

ut,i,k =

{
(xt,i,k + xt, lower ) /2, if ut,i,k < xt, lower

(xt,i,k + xt, upper ) /2, if ut,i,k > xt, upper

(4.5)

The selection function S is defined as:

S (xi,k + ui,k,xi,k) =

{
1 if f (xi,k + ui,k) < f (xi,k)

0 otherwise
(4.6)

In the general case in which the indices r1, r2 and r3 can assume any value, in [129]
it was demonstrated that the population can converge to a fixed point different from
a local minimum or to a level set. Furthermore, in [130] it was demonstrated that DE
can converge to a hyperplane that does not contain the global minimum.

As explained above, a MA is a particular case of Predetermined Hybrid algorithm
which combine EA and local search. An example of MA with the use of DE is given
by MP-AIDEA [131]. A first generalisation of DE to overcame its limitation was pro-
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posed in [129] with Adaptive Inflationary Differential Evolution Algorithm (AIDEA)
where DE and Monotonic Basin Hopping (MBH) [132] approaches are combined. The
performance of AIDEA is however dependent upon the parameters controlling both
the DE and MBH heuristics. These parameters are the crossover probability CR, the
differential weight F, the radius of the local restart bubble δlocal and the number of
local restarts nLR, whose best settings are problem dependent. A further algorithmic
evolution was presented in [131] with MP-AIDEA. In this paper, a simple mechanism
is presented to adapt CR and F within a single population and a multi population
strategy to adapt δlocal and nLR. MP-AIDEA will be further developed in Chapter 5
and Appendix B in order to deal respectively with constraint handling and MOP.

4.3 Robust Optimisation

It is often very important to include a quantification of uncertainty within the problem
formulation in Eq. (4.1). Then, if we define the uncertainty vector u ∈ U , with U the
uncertainty space, the CSOP can be translated in:

minimised∈D φ(d,u)

subject to γj(d,u) ≤ 0, j = 1, ..., r

ηj(d,u) = 0, j = 1, ..., p

u ∈ U

(4.7)

where φ, γj and ηj are some measures that account for the effect of u respectively
on the quantities of interest f , cj and gj .

For Eq. (4.7) to be solved, two possible frameworks can be used: deterministic or
probabilistic [11]. The best choice between probabilistic and deterministic approaches
is case specific. However, as a general statement, the former could give good solution
on average but lead to failures for some specific uncertain values while on the other
hand, the latter is more conservative. The deterministic approach solves the problem by
optimising for the worst possible condition. The set of possible scenarios can be defined
explicitly using a discrete and then combinatorial formulation [133, 134] or implicitly
where interval-valued variables can vary continuously within their lower and upper
bounds. For the latter problem formulation [134] presents two important mathematical
representations: min-max (presented in Section 4.4) and min-max regret. With the
deterministic approach, functions φ, γ and η in Eq. (4.7) are considered at a particular
value:

Fφ(d) =φ(d,u∗) = supu∈Uf(d,u)

Cγ(d) =γ(d,u∗) = supu∈Uc(d,u)

Gη(d) =η(d,u∗) =supu∈U‖g(d,u)‖
(4.8)

where u∗ is the uncertain vector for which f , c and ‖g‖ attain the maximum value.
In the probabilistic problem there is enough information to model uncertainty with
probability distributions. Two examples of probabilistic measures of robustness are:
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1. The conditional expectation E of a utility function φ(f):

Fφ(d) = E[φ(f)|d] (4.9)

where the value of the expectation is conditional to the choice of the design (or
decision) vector d. Different definitions of the function φ have been proposed in
the literature, see [135] for some examples. When the utility function is simply
f one can account for both the expected value of f and its variance σ with the
two-objective problem:

mindE(f |d)
mind σ(f |d)

(4.10)

Methods for solving problem (4.10) can be found in [135–139].

2. The probabilistic threshold, where, for a given threshold q, the conditional prob-
ability that the function f assumes values lower than q is maximised:

max
d

Pr(f < q|d). (4.11)

This approach can be easily extended by adding q as an objective function to be
minimised.

Note that these two approaches are in fact equivalent if one takes the utility function
φ = f < q. In this case the utility function is the indicator function and the expectation
of the indicator is the probability that f < q.

Robust Optimisation with Evidence Theory

This section presents an extension of the problem formulation for OUU with the prob-
abilistic approach in Section 4.3 for conditions when there is not enough information
to quantify uncertainty with a probability distribution. The probabilistic condition has
then to be relaxed and IP theories used for UQ. We will focus here on the use of DST for
OUU introduced by previous authors in the context of engineering applications [140].
The reader can finds a short introduction of DST in Chapter 3. This section will be
the base for EBRO method presented in Part III.

The central idea is to maximise the belief in statement Eq. (3.13). This condition
alone, however, is not enough to qualify the realisations of the performance indicator
f . In fact, the condition f ∈ Φ alone would not say much on the optimality of the
values of f .

Consider now the simple case in which Φ = {f |f ≤ ν} and f : U × D → R is a
function of some decision vector d ∈ D ⊆ Rnd and some uncertain vector u ∈ U ⊆ Rnu .
If f is a performance index it is now easy to define the optimality condition:

minν∈R ν
s.t.
f(d,u) ≤ ν

(4.12)
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that leads to the robust optimisation problem

maxd∈D Bel(f(d,u) ≤ ν)
minν∈R ν

(4.13)

Problem (4.13) can be extended to include constraints in three different forms:

maxd∈D Bel(f(d,u) ≤ ν)
minν∈R ν
s.t.
c(d,u) ≤ νc

(4.14)

maxd∈D Bel(f(d,u) ≤ ν)
minν∈R ν
s.t.
Bel(c(d,u) ≤ νc) > 1− ε

(4.15)

maxd∈D Bel(f(d,u) ≤ νf )
maxd∈D Bel(c(d,u) ≤ νc)
minνf∈R νf
minνc∈Rnc νc

(4.16)

Eq. (4.14) introduces the deterministic constraint vector function C, Eq. (4.15)
introduces a set of constraints on the belief that the constraints are satisfied, while
Eq. (4.16) tries to maximise the belief that the constraints are satisfied. Note that
Eq. (4.15) might not have any solution even if Eq. (4.14) has a solution because the
constraint on the belief of the satisfaction of the constraints implies that constraints
need to be satisfied for a set of values and not for a single one. Because of condition in
Eq. (3.11) it is clear that one can derive an equivalent formulation with Plausibility.

Optimisation Algorithms with Evidence Theory

This section is dedicated to the algorithmic solvers for OUU for UBD with the use
of DST. DUU makes designers able to handle a higher degree of complexity but, on
the other hand, it is particularly challenging due to its high computational cost. Par-
ticularly important is the effort to include the different types of uncertainty, aleatory
and epistemic, in the design process. Also restricting our attention to the use of only
epistemic uncertainty, the task is challenging and at the moment not completely solved.
Recent examples of the application of system-level optimisation principles, including
uncertainty, to the design of space systems, can be found in [141] and [142]. Note, how-
ever, that the former proposes an exponentially complex computational method that
cannot be used for large-scale systems and the latter does not include epistemic uncer-
tainty. Approaches specifically for UQ with DST have been presented in Section 3.3.
Here the problem is expanded to solve the UQ within the optimisation framework. In
the literature on Reliability-Based Optimisation some authors proposed methods to ef-
ficiently solve the constraint in Eq. (4.15) by introducing hypotheses on the local differ-
entiability of the constraint functions, the existence of a Most Probable Focal Element
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(MPFE) or by a form of probabilistic approximation of the belief functions [143–145]
to speed up the calculation of an approximation of Bel. In [77] the authors present
three approaches to solve problem in Eq. (4.13):

• The direct approach uses a multi-objective optimiser to find the trade-off between
the threshold ν and corresponding Bel(f < ν) where the standard dominance
index is defined as:

Ii = |{j|Bel(dj) > Bel(di) ∧ νj < νi, j = 1, ..., npop ∧ j 6= i}| (4.17)

with |.| the cardinality and npop the number of design vectors. But this approach
has two main problems: each design vector in (4.17) is related to a Belief - ν
curve, and different design vectors could give the same Pareto front.

• The step method reduces the computational effort solving a single objective prob-
lem: an initial d is chosen that corresponds to a threshold ν1 with Bel = 1 and
then the threshold is reduced step by step running, for each new νk, local optimi-
sation and maximising the corresponding Belief. The new optimisation is started
from the previous optimal d configuration and a local optimiser is used; this re-
duces the possibility to evaluate the real global optimum, but it is on the other
hand a necessary simplification to avoid the explosion in computational time.

• The cluster approximation, finally, looks at the whole search space (design and
uncertainty) and for different thresholds νi clusters all the possible sets, in D×U,
that satisfy the condition: f < νi. For each νi and design, then, the belief can be
easily evaluated by adding the FEs included in the cluster and finally, the d that
maximise the belief approximation is chosen.

4.4 Min-Max

A min-max optimisation aims at minimising, with respect to a vector d defined in
some space D, the maximum value of a given cost function with respect to a vector u,
different from d. In its constraint version, the constraints have to be always satisfied
for all values of u in a given set U . More formally, the multi-objective constrained
min-max problem can be formulated mathematically as:

min
d∈D

max
u∈U

fi(d,u) ∀i ∈ If = [1, ...,m]T

s.t.

ci(d,u) ≤ 0 ∀u ∈ U,∀i ∈ Ic = [1, ..., s]T

(4.18)

where fi is the i-th objective function and ci is the i-th constraint function. Both
fi and ci are defined on the space D×U and depend on a vector of design (or decision)
variables d ∈ D ⊂ Rn and a vector of uncertain (or environmental) variables u ∈ U ⊂
Rm. The solution dopt of Eq. (4.18) has two properties: it satisfies all the constraint
functions ci over the whole uncertain domain U and minimises the worst realisation of
the objective function f over U .
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This type of problem arises in various fields, such as game theory, economics, en-
gineering, and computer science. For example, it has been used for the study and
solution of famous board games such as the Egyptian ancient game Seega [146], the
game of checkers [147] and chess [148]. It is also used for the design of the robustness
of engineered systems affected by uncertainty: design of electric circuits [149], design
of online controllers [150], of aerodynamic shapes [151], of the location of sensors [152]
and pursuit-evasion games between missile and target [153].

The min-max optimisation problem can be interpreted in different ways:

• a bi-level problem as described in Section 4.1 where two agents quantify their
utility with opposite fitness functions.

• a single-level problem where the feasible domain due to constraint satisfaction is
the result of a further optimisation problem.

• a limit condition of the OUU where the most conservative approach is applied.
This approach is called robust regularisation in [154] where the function φ is
defined as the worst case scenario in a neighbourhood U(ε) where ε is called the
regularisation parameter. This approach can also be found in [114, 155, 156] and
its generalisation brings to the global worst-case scenario.

• a two-player zero-sum game within the game theory framework where the optimal
strategy brings the two agents to a Nash equilibrium.

• a deterministic approach to decisions making under uncertainty. In this case,
which is connected to the previous two points, one can understand the engineering
problem as a zero-sum game where the two antagonist players are respectively the
designer, handling the decision variables, and Nature, handling the uncertainty
variables.

Optimisation Algorithms

Many algorithmic paradigms can be found in the literature to solve the min-max prob-
lem. One example is given by mathematical programming methods [149] for which
an overview can be found in [134]. The use of Mathematical Programming, however,
requires strong assumptions on the nature of the problem and tends to be problem
specific. On the other hand meta-heuristic approaches [157–159] and in particular evo-
lutionary based algorithms [42,152,157,158,160] and co-evolutionary approaches [133]
appear to be more flexible. For example one can find a form of Genetic Algorithm (GA)
in [157], a special version of the DE called Crowding Differential Evolution (CrDE)
combined with the Nash ascendancy relation in [158] and a form of Particle Swarm
Optimisation (PSO) in [160]. As stated in [42] we can divide the class of evolutionary
approaches for min-max problems in three branches. The first one includes problems
with a discrete set of possible scenarios U . In [160] U is by definition discrete and
small, in [152], initially continuous, it is instead discretised by a uniform grid while
in [157] it is reduced to be discrete by a random selection. The second branch considers
a continuous space U and directly solves a sequence of nested problems [149,150]. This
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approach could be computationally intractable if no strategy is implemented to alleviate
the cost. One interesting procedure for decoupling the min-max problem formulation
in Eq. (4.18) has been suggested by Shimizu and Aiyoshi [41] and further elaborated
in [42, 43]. The idea is to alternate a minimisation and a restoration (or maximisa-
tion) process. As the alternation of these two processes progresses, we incrementally
build a discrete representation of the space of the maxima in U . This representation is
then used in the minimisation process to converge to an approximation of the desired
min-max solution. This mechanism takes into memory the previous solutions avoiding
the optimiser to follow the same path again and again. For this reason, the proposed
algorithm does not suffer from the Red Queen Effect. Finally, a third category uses
a form of co-evolution optimisation [153,157,161,162] where two separate populations
evolve simultaneously with a predator-prey interaction in D and U separately each
one being a competitor and environment to the other. As demonstrated in [163] how-
ever most of the co-evolutionary algorithms for min-max have to satisfy a symmetric
assumption known as Issac’s condition [164]. A class of problems that can be prop-
erly modelled under this assumption exists [161, 165] and for them, the co-evolution
approach is proved to converge to the global solution [166]. However, this is not the
general case and new methods to overcome this limitation are presented in [167]. In
the interest of completeness, we include also the Best Replay approach cited by [168]
where two optimisation problems are alternated until convergence, one minimising over
D and the other maximising over U . It has been proven, however, that this approach
often does not converge or it cycles through wrong design candidates, a problem known
as the Red Queen Effect.

Another research line, applicable to any previously presented method, deals with the
reduction of computational complexity. It makes use of surrogates which approximate
the fitness function [42,43,158]. In particular, [42,43] consider response surfaces within
an EGO framework where they alternate the minimisation in D of the surrogate of the
maxima in U and the maximisation in U of the real function for the obtained optimal
solution in D.

When it comes to constraint handling, in the existing literature, only a few papers
could be found that have explored how to deal with constraints in min-max optimi-
sation. Most of them need to start from some strong assumptions on the nature of
constraints and cost functions and have been developed for constrained bi-level prob-
lems and not specifically for the treatment of min-max problems [169,170]. In [153] the
duality between the primal constrained min-max problem and dual unconstrained min-
max problem with the Lagrange multipliers is demonstrated for both separable and
non-separable constraints under Issac’s condition. The constrained problem is then
translated in the unconstrained one and a co-evolutionary algorithm is finally used to
converge to the saddle point. Interestingly, this link is bi-directional: other works in-
deed translate a single-level constrained problem in an unconstrained min-max problem
and use the co-evolution approach to solve it [161,162].

59



4. Optimisation Under Uncertainty

4.5 Multi Disciplinary Optimisation

Often engineers have to address the optimisation of complex systems consisting of
multiple interconnected components or disciplines. Two optimisation methodologies
that have been developed for this porpoise are SDO and MDO. The former is applied
to problems with many disciplines weakly coupled while the latter on the other side
is used to problems with fewer disciplines but more strongly connected. Both these
approaches recognise that the performance of such systems depends not only on the
individual disciplines but also on their interactions.

The origins of MDO can be traced back to the work of Schmit, Haftka, and their
collaborators, who expanded structural optimisation to include other disciplines. Early
applications were in aircraft wing design, which involves the interplay of aerodynam-
ics, structures, and controls. Since then, MDO and SDO have been applied to various
engineering systems, such as complete aircraft, bridges, buildings, railway cars, mi-
croscopes, automobiles, ships, propellers, rotor-craft, wind turbines, and spacecraft to
name a few.

MDO and SDO problems are usually modelled with the following well-defined math-
ematical formulation [40]:

min f0(x,y) +
∑N

i=1 fi (x0,xi,yi)
w.r.t. x, ŷ,y,y
s.t. c0(x,y) ≥ 0

ci (x0,xi,yi) ≥ 0 for i = 1, . . . ,N
cci = ŷi − yi = 0 for i = 1, . . . ,N
Ri (x0,xi, ŷj 6=i,yi,yi) = 0 for i = 1, . . . ,N

(4.19)

which is known as the All-At-Once (AAO) problem. In Eq. (4.19), N is the number
of disciplines, xi are the discipline variables, x0 are variables shared by more than one
discipline, yi are the coupling variables (output from a single discipline analysis), yi
are the state variables (used only inside one discipline analysis), x is the concatenation

of all the discipline variables, x =
[
xT0 ,x

T
1 , . . . ,x

T
N

]T
,y is the concatenation of all the

coupling variables, y =
[
yT0 ,y

T
1 , . . . ,y

T
N

]T
, f0 is the global objective function, c0 are the

global constraints, fi are the discipline objectives, ci are the discipline constraints, cci are
the consistency constraints, and Ri are the discipline analysis constraints. This form
of the design optimization problem includes all coupling variables, coupling variable
copies, state variables, consistency constraints, and residuals of the governing equations
directly in the problem statement.

As presented in [40], the usual approach for the solution of the AAO in Eq. (4.19)
is by means of a suited problem decomposition. The paper lists the most common
decomposition problem formulations.
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Problem Eq. (4.19) can be generalised by introducing the uncertainty handling:

min Ξ0 [f0(x,u,y)] +
∑N

i=1 Ξi [fi (x0,xi,u0,ui,yi)]
w.r.t. x, ŷ,y,y
s.t. Λc,0 [c0(x,u,y) ≥ 0]− ΛReqc,0 ≥ 0

Λc,i [ci (x0,xi,u0,ui,yi) ≥ 0]− ΛRec,i ≥ 0 for i = 1, . . . ,N
Λcc,i [ŷi(u)− yi(u) = 0]− ΛReqcc,i ≥ 0 for i = 1, . . . ,N
ΛR,i [Ri (x0,xi,u0,ui, ŷj 6=i,yi,yi) = 0− ΛReqR,i ≥ 0 for i = 1, . . . ,N

(4.20)
where in addition to what was described before, Ξ0 and Ξi are operators over the

uncertainty variables, u0 are the components of the uncertain vector shared by more
than one discipline and ui are the discipline’s uncertain variables.

Optimisation Algorithms

Implementing MDO requires careful organisation of discipline-analysis models, approx-
imation models, and optimisation software to achieve an optimal design, which is called
MDO architecture. The architecture can be either Monolithic or Distributed. In
a monolithic approach, a single optimisation problem is solved, while in a distributed
approach, the problem is divided into multiple sub-problems. A review of the most
common architectures is in [40].

Recent examples of the application of system-level optimisation principles, including
uncertainty, to the design of space systems, can be found in [79,141,142,145,171,172].
[145] makes the assumptions of normally distributed epistemic parameters. [141] is
focused on RBDO and suggests a sequential method that incorporates mixed aleatory-
epistemic uncertainty. The computational cost remains however exponentially complex
with the problem dimension. [142] does not include epistemic uncertainty. [171] also
could be intractable with high-order problems.

4.6 Multi Objective Optimisation

There are mainly three approaches for Multi-Objective Optimisation (MOO) [173,174].

• The a posteriori methods, based on the definition of a partial order, calculate
a set of equally valuable solutions. The decision maker then, informed of this
trade-off, chooses within the set. In the posterior approaches the whole set of
possible solutions can be generated by two algorithmic methods: the direct multi-
objective approach [175,176] or the parameter-based scalarisation procedure. By
scalarisation we mean that the different objectives are aggregated and then a
SOP is solved. By using different parameters of the aggregation function finally
the MOP is translated to a number of SOPs and the set of optimal solutions is
reconstructed [177].

• In the a priori methods the decision maker is required to specify additional pref-
erences to define a total order between different options, for example by defining
an utility function. The optimisation eventually finds a single minimal solution.
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• The interactive methods finally require feedback and preferences from the user
multiple time during the execution of the algorithm.

Finally, the assessment of the quality of a MOO algorithm is a delicate matter.
Useful indications on how to categorise difficulties in MOPs have been described in [178].
A benchmark based on these information has been defined in [179] while the complexity
introduced by a constrained search space has been included in [180].

4.6.1 Normalisation

In case of prior knowledge about the reference points z∗ (best) and z∗∗ (worst), the
objective functions f can be normalised in order to reduce the difference in the order
of magnitude between the components fi:

f̄ =
f − z∗

z∗∗ − z∗
. (4.21)

z∗ and z∗∗ can be defined as reference solutions by the decision maker. However z∗

usually corresponds to the ideal point zideal or to the utopian point zutopian while z∗∗

corresponds to the nadir point znadir.

4.6.2 Scalarisation Strategies

This section reviews the most important parameter-based scalarisation approaches:
Epsilon-Constraint Scalarisation (ECS), Weighted-Sum Scalarisation (WSS), Benson
Scalarisation (BS), Weighted Chebichev Scalarisation (WCS) and Pascoletti-Serafini
Scalarisation (PSS).

We consider a generic preference vector ω = [ω1, ..., ωm]T for the objective functions
f = [f1, f2, ..., fm]T and a generic reference point a = z∗. The values of ω and a can be
either defined as a priory by the decision maker or made varying in order to reconstruct
the entire efficient set.

The scalarisation methods are compared in Table 4.3 as in [181] where the follow-
ing criteria have been considered: the possibility to use different ordering cones, the
necessity or not of boundedness and convexity conditions, the provability for obtaining
properly efficient solutions, the use of reference and preference information and the
introduction by the method of additional constraint functions.

Epsilon Constraint Scalarisation

The ECS was introduced by Haimes et al. in 1971 [182]. In this approach, one of the
functions in f in Eq. (4.1) is maintained as the objective while the remaining functions
are treated as inequality constraints

min
x∈X

fi

s.t. fk ≤ εk k ∈ {1, ...,m} \ {i}
cj ≤ 0 ∀j ∈ {1, ..., n}

(4.22)
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Table 4.3: Characteristics of six scalarisation methods

Method WSS ECS BS WCS PSS CS

Ordering cone any Rm+ Rm+ Rm+ any any
Boundedness from below − − − + − −
Convexity + − − − − −
Proof of properly efficient solutions + − − − − +
Preference weights + − − + − +
Reference points − − − − + +
Additional constraints or variables − + + + + −

The boundedness from below for the ECS is not an essential condition. However,
the set of thresholds εk has to be decided carefully by the decision maker. A wrong
selection, indeed, could bring to a not finite optimal solution or to an infeasible so-
lution. The ECS can be applied only in the case when the ordering cone equals Rm+ .
The method does not require convexity condition on the problem under consideration.
It generates weakly efficient solutions and does not provide conditions for generating
properly efficient solutions. Decision makers preferences, namely weights of objectives
and reference points, are not taken into account. Finally, the problem size increases
due to adding the constraints.

Weighted-Sum Scalarisation

The WSS was suggested by Gass and Saaty [183] in 1955 and it is probably the most
commonly used scalarization technique for MOP. Here the Eq. (4.1) translates to:

min
x∈X

n∑
i=1

ωifi (4.23)

As for the ECS the boundedness below is not required but in that case the weights
ω have to be chosen carefully. Weakly and properly efficient solutions are guaranteed
under the convexity condition. Weights of objectives are used but reference points are
not considered. The method does not introduce additional constraints.

Benson’s Scalarisation

The method was introduced in [184]. Here an initial guess x0 is given by the decision
maker. The sum of the deviations li is maximised to find a new dominating point:

max
x∈X

∑n
i=1 li

s.t. fi(x0)− li − fi(x) = 0 i = 1, ...,m
l ≥ 0
cj ≤ 0 ∀j = 1, 2, ..., n

(4.24)

The BS requires the ordering cone K to equal Rm+ . The boundedness below is
not a requirement, however if the condition is not satisfied, more attention has to be
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put on the selection of x0. There is no necessity for the problem to be convex. BS
provides necessary and sufficient conditions to converge to efficient solutions, but not
to properly efficient solutions. Preferences from the decision maker are not taken into
account. Finally, besides functions cj , additional constraints are considered.

Weighted Chebyshev Scalarisation

The idea of the WCS is first presented in [185]. The Eq. (4.1) translates to:

min
x∈X
‖f − zideal‖ω∞

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(4.25)

where ‖f − zideal‖ω∞ is the weighted Chebyshev distance maxi{ωi(fi − zideal,i)} be-
tween f(x) ∈ Y and the ideal point zideal.

The linearisation is often considered:

min
x∈X,t∈R

t

s.t. ωi(fi − zideal,i) ≤ t, ∀i = 1, 2, ...,m
cj ≤ 0, ∀j = 1, 2, ..., n

(4.26)

The WCS requires the cone K to be Rm+ . The bondedness below is a necessary
condition for the existence of zideal. Instead the convexity assumption is not needed.
The method assures generation of weakly efficient solutions and efficient solutions.
However it is not guaranteed to generate properly efficient solutions. The preference
vector ω over the objective space is considered. The ideal point could be considered
as a special case for the reference point. However the solutions are not guaranteed to
be close to the reference point. In the linearised version, the size of the problem is
increased by new constraints.

Pascoletti-Serafini Scalarisation

A first description of the PSS is given by Gerstewitz in [186]. As stated in [187], the
PSS is a generalisation of ECS, WSS and WCS and it can be represented as:

min
x∈X

t

s.t. a+ tr − f(x) ∈ K
cj ≤ 0, ∀j = 1, 2, ..., n

(4.27)

Eq. (4.27) can be interpreted as the process where the ordering cone K is moved in
the direction −r along the line a+ tr minimising the intersection (a+ tr −K) ∩ f(X)
until it becomes the empty set.

An arbitrary ordering cone can be adopted. The boundedness below and the con-
vexity are not required conditions. The method guarantees to get at least weakly
efficient solutions but it does not provide conditions to generate properly efficient solu-
tions. It does use reference points but not preference vectors. Finally it uses additional
functional constraints.
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Conic Scalarisation

The Conic Scalarisation (CS) method was first introduced by Gasimov in [188] where
beside the preference weighted vector ω and the reference point a, the augmentation
parameter α is considered:

min
x∈X

∑
i ωi(fi − ai) + α

∑
i |ωi(fi − ai)|

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(4.28)

As stated in [181], CS is a generalisation of WSS, BS and PSS. An arbitrary ordering
cone can be used. The boundedness below is not an essential condition. No convexity
is required. There are also conditions that guarantee to generate properly efficient
minimal points. Preference and reference information is used. Finally, no additional
constraints are required.

4.7 Constraint Handling

Many of the engineering problems we want to solve have restrictions and requirements
that have to be satisfied which can be translated into constraints in the optimisation
formulation. The goal of the solver is then to separate the space of potential solu-
tions S into two or more disjoint regions, the feasible region (or regions) F containing
those candidate solutions that satisfy the given constraints, and the infeasible region U
containing those that do not satisfies the constraints.

Many and different methods to deal with constraints have been developed depend-
ing on the class of the optimisation solver, the nature of the optimisation variables and
the constraint itself. [37] presents an overview of constraint handling for population
based algorithms. Very specialised methodologies can be developed for each partic-
ular algorithm type. In [38], for example, the constraint handling in particle swarm
algorithms is considered. [39] goes deeper on the penalty function approach. As stated
in [36], constraint handling approaches can be categorised based on two main criteria:
(i) Direct or Indirect and (ii) where they are applied. Regarding (i), in the case of
indirect constraint handling, constraints are transformed into optimisation objectives.
After the transformation, they eectively disappear, and all we need to care about is
optimising the resulting objective function. This type of constraint handling is done
before the EA run. In direct constraint handling, the problem oered to the EA to solve
has constraints (is a COP) that are enforced explicitly during the EA run. Regard-
ing (ii), the constraint handling procedure can be applied on the Genotype, on the
Phenotype, on the Map from Genotype to Phenotype or on the Fitness Function.

In [36] there is also a review of the possible approaches to COP in the EA framework.
The methods that are compared are: (i) Penalty Functions, (ii) Repair Functions, (iii)
Restricting Search to the Feasible Region (iv) Decoder Functions.

For what concerns type (i), Penalty Functions, as Eq. (4.29) shows, they modify
the fitness function f with a penalty P :

P (x̄) =

{
0 if e(x̄) ≤ 0

w · e(x̄) if e(x̄) > 0.
(4.29)
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where w is a pre-defined or adapted parameters and e is a measure of constraint vi-
olation. The parameter w is particularly important because a proper setting should
allow for a trade-off between exploration of the unfeasible region and not wasting time.
A wrong setting of the parameter would lead to one of the two extremes causing sub-
optimal performance of the optimisation solver. We can classify between exterior and
interior penalty function. The former is applied only when the candidate solution be-
longs to U and no modification is applied instead when it is included in F . The interior
penalty function instead modifies the fitness function f also in the case it belongs to F .
This is done to push the search in a suitable neighbour of the border between feasible
and unfeasible regions. An other important distinction is between static, dynamic and
adaptive penalty function approaches. Method (ii), Repair Functions, can be seen as a
case where a local search is added to the main optimisation process. Based on the so-
called Baldwinian versus Lamarkian learning approach discussed above, the mapping
between Genotype and Phenotype is modified differently. In the Baldwinian case, the
tness of the repaired solution is allocated to the infeasible point, which is kept, whereas
with Lamarckian learning, the infeasible solution is overwritten with the new feasible
point. Method (iii), Restricting Search to the Feasible Region is instead applied on
Genotype only. Method (iv), Decoder Functions, finally, replace the original mapping
from Genotype to Phenotype so that all solutions (i.e., phenotypes) are guaranteed to
be feasible.
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Global Optimisation Solver
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5

Global Solution of Constrained
Min-Max Optimisation

“ Now, here, you see, it takes all the running you can do, to keep in the same place,
if you want to get somewhere else,
you must run at least twice as fast as that! ”

– Lewis Carroll, Through the Looking-Glass

The content of this chapter was published in:

• G. Filippi and M. Vasile, A Memetic Approach to the Solution of Con-
strained Min-Max Problems, in 2019 IEEE Congress on Evolutionary
Computation, CEC 2019 - Proceedings, (Wellington), pp. 506513,
2019 [67].

• G. Filippi and M. Vasile, Global Solution of Constrained Min-Max
Problems with Inflationary Differential Evolution, in Optimisation in
Space Engineering OSE (E. Minisci, A. Riccardi, and M. Vasile, eds.),
no. Optimization and Engineering, Springer, 2020,
https://doi.org/10.1007/s11081-021-09613-3 [55].

• G. Filippi and M. Vasile, Inflationary Differential Evolution for Con-
strained Multi-Objective Optimisation Problems. BIOMA 2020 [55]

The min-max (or minimax) problem is an optimisation problem with the goal to
minimise the maximum possible loss or regret. In other words, in a min-max problem
the objective is to find the best decision or strategy that minimises the maximum
possible loss that could occur under any circumstance or scenario.

This chapter proposes a novel algorithm for the solution of the class of CSOP min-
max. Appendix B further extends the methodology for the solution of CMOP. The
proposed algorithm is inspired by the procedure suggested by Shimizu and Aiyoshi [41]
and further elaborated by Zhou and Zhang in [42] and by Marzat et al. in [43]. The
idea is to alternate a minimisation and a restoration (or maximisation) process. As
the alternation of these two processes progresses, we incrementally build a discrete rep-
resentation of the space of the maxima in U . This representation is then used in the
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minimisation process to converge to an approximation of the desired min-max solution.
This mechanism takes memory of the previous solutions avoiding the optimiser to follow
the same path again and again. For this reason, the proposed algorithm does not suffer
from the Red Queen Effect. Differently from [42,43] the method here presented inten-
tionally avoids the use of surrogates for the reduction of the computational cost. The
two approaches are however compatible and could be combined. Furthermore, a proce-
dure for constraint relaxation for possible trade-offs between objective and constraint
functions is here proposed. This chapter also presents an extension of MP-AIDEA [131]
which is an hybrid memetic algorithm that combines DE and hill climbing methodolo-
gies with automatic control of algorithm’ parameters. Two extensions are proposed in
this context. The main contribution is the extension of the MP-AIDEA approach for
handling constraints for which we propose here an indirect approach with an adaptive
exterior penalty function for hard constraint handling. A further, preliminary, result is
the adaptation of MP-AIDEA for the solution of MOP for which we propose a combi-
nation of WCS and PSS methods (in Appendix B). Finally, a benchmark for the testing
of the method is developed and used.

Summarising, in this chapter we provide six main contributions to the min-max
problem solution: i) a detailed algorithmic presentation of a memetic approach, ii) a
constraint handling procedure, iii) a constrained relaxation strategy, iv) a scalarisation
strategy for MOP (Appendix B), v) an algorithmic complexity analysis and vi) an
extensive benchmark for SOP min-max on which our proposed solver has been tested.
Points i), ii) and iv) apply for both the optimisation solver and the min-max procedure.

The reader can find the necessary background about the definition of the Optimi-
sation problems and the algorithmic solvers in Chapter 4. In particular Section 4.4 is
specifically dedicated to the min-max problem solution. It is also explained the current
state of the art about MOP, MOO and constraint handling.

The remaining of this section presents the structure of the chapter. Section 5.1
introduces the formulation of the constrained min-max problem of interest. Section 5.2
then presents the proposed algorithm for SOP. Section 5.3 presents a complexity anal-
ysis. Section 5.4 then introduces a benchmark of synthetic functions with increasing
complexity. Section 5.5 describes the results of the simulation on the proposed bench-
mark. The proposed method is tested on a realistic application case of space systems
engineering under epistemic uncertainty in Section 5.6. Finally, conclusions are in
Section 5.7. Appendix A presents all the tabulated results of the tests. Appendix B
generalises to MOP by means of scalarisation approach.

5.1 Problem Definition

A min-max optimisation problem aims at minimising, with respect to a vector d defined
in some space D, the maximum value of a given cost function f with respect to a vector
u, different from d. In particular, we are interested in a class of constrained min-max
problems where the constraints have to be always satisfied for all values of u in a given
set U . More formally, the CMOP min-max can be formulated mathematically as:
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min
d∈D

max
u∈U

fi(d,u) ∀i ∈ If = [1, ...,m]T

s.t.

ci(d,u) ≤ 0 ∀u ∈ U,∀i ∈ Ic = [1, ..., s]T

(5.1)

where fi is the i-th objective function and ci is the i-th constraint function. Both
fi and ci are defined on the space D×U and depend on a vector of design (or decision)
variables d ∈ D ⊂ Rn and a vector of uncertain (or environmental) variables u ∈ U ⊂
Rm. The solution dopt of Eq. (5.1) has two properties: it satisfies all the constraint
functions ci over the whole uncertain domain U and minimises the worst realisation of
the objective function f over U . Furthermore, we assume that both fi and ci are locally
C2. This assumption can be relaxed if the local search can handle non-differentiable or
discontinuous problems.

This chapter presents the methodology for the solution of the CSOP min-max for
which Eq. (5.1) can be translated to:

min
d∈D

max
u∈U

f(d,u)

s.t.

ci(d,u) ≤ 0 ∀u ∈ U,∀i ∈ Ic = [1, ..., s]T

(5.2)

The reader finds the generalisation to the CMOP formulated in Eq. (5.1) in Appendix B.

5.2 A Memetic Single Objective Constrained Min-Max
Approach

The proposed algorithm is a bi-level optimisation procedure based on the alternation
of a minimisation and a restoration step. The minimisation step searches for a global
solution to the constrained min-max problem:

mind∈D maxuaf∈Āuf f(d,uaf )

s.t.
maxuac∈Āuc maxi∈Ic ci(d,uac) ≤ 0.

(5.3)

While the restoration step searches for a solution to the following two global maximi-
sation problems, given the solution d̄ coming from Eq. (5.3):

maxu∈U f(d̄,u)
s.t.
maxi∈Ic ci(d̄,u) ≤ 0

(5.4)

max
u∈U

max
i∈Ic

ci(d̄,u) (5.5)

The two archives Āuf and Āuc contain respectively the solutions of Eqs. (5.4) and (5.5).
By iteratively alternating the minimisation and restoration steps, one fills the two
archives with the maxima found in Eq. (5.4) and Eq. (5.5). Thus we can say that
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Eq. (5.3) searches for an optimal d over a discrete representation of the space of the
maxima of objective and constraint functions.

The approach is summarised in Algorithms 1 to 9 and 15 and explained in the
following subsections with the help of the flow diagrams in Figs. 5.1 and 5.2 and the
examples in Figs. 5.3, B.1 and B.2. In particular, Fig. 5.1 includes both SOP and MOP.
The former problem is described in this chapter while the latter is in Appendix B.

Figure 5.1: Flow diagram of the constrained min-max alternative approaches
described in Sections 5.2.1 to 5.2.4 and Appendix B and summarised in Al-
gorithms 1 to 7 and 15. In particular, this diagram describes the sequence
of optimisation problems applied for the standard approach and its alternative
strategies: the constraint relaxation and the scalarisation. The first optimisation
problem is defined in block A and it refers to the general constrained min-max in
Eq. (5.1) and Fig. 5.2 . If a solution exists for this problem, no further analysis
is required (link 1). If differently, two alternatives are given. The first (link
2) brings to the relaxation strategy (block B). Here an unconstrained min-max
problem is solved to find ε. The relaxed constrained min-max problem is then
solved (Section 5.2.3). Link 3 instead brings to the scalarisation strategy (Ap-
pendix B). Block C is first solved to find the reference points in the Pareto front
(ideal and nadir). Finally, the scalarisation procedure is activated (block D).
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Figure 5.2: Flow diagram of the constrained min-max algorithm for the stan-
dard approach in block A in Fig. 5.1. The relaxation and scalarisation alterna-
tives (blocks B,C and D) follow however the same logic. Algorithms 1, 2, 4, 6
and 7 and Sections 5.2.1, 5.2.2 and 5.2.4 explain in detail all the represented
blocks. Each of them lists the main operations that are performed: the optimi-
sation problems and the archives updating. The algorithm is initialised. Then
there is the iteration between blocks ’Restoration’ and ’Minimisation’. Finally
the ’Cross Check’ is performed and the solution is chosen.

5.2.1 Initialisation

The algorithm is initialised either by selecting a random value d̄ or with a warm start
for given first guess and then by searching for a first solution to Eq. (5.4) and Eq. (5.5).
These first solutions are then saved into the two archives Auf and Auc. Eq. (5.4)
and Eq. (5.5) are global optimisation problems in general. In the following, we will
propose the use of a memetic global optimiser which combines DE with a multi-restart
mechanism and local search. Given the global nature of the search for a solution,
one needs to set the amount of computational resources allocated to the solution of
each of the minimisation and maximisation problems. We quantify this resource in
terms of objective function evaluations. More specifically, with reference to Eq. (5.4)
the maximum number of function evaluations nfeval,max is the number of calls to the
objective function f(d̄,u) while for Eq. (5.5) we count the function calls to maxi ci(d̄,u).
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Once the maximum number of function evaluations per sub-problem is defined one needs
to define the maximum number of iterations nloop,max of minimisation/restoration.

The steps for the initialisation are summarised in Algorithm 1. Line 1 presents how
to define the problem in order to be solved by Algorithm 2: the required information on
objective function f(d,u), set of constraint functions c(d,u), dimensions nD and nU
of the design and uncertain vectors d ∈ D ⊂ RnD and u ∈ U ⊂ RnU and the bounds of
each variable in d and u. Line 2 defines the constraints on the computational resources
for the single sub-problems in Eqs. (5.3) to (5.5). They are the maximum number of
function evaluations nouter

feval,max for Eq. (5.3), ninner
feval,max for Eq. (5.4) and ninner,c

feval,max for
Eq. (5.5). Line 3 defines the threshold σstop below which Algorithm 2 is considered
to have converged. Line 4 defines the limit on the computational cost for the whole
procedure in Eq. (5.1) with its maximum number of function evaluations nfval,max and
maximum number of iterations nloop,max between minimisation and restoration. Line 5
defines the optimisation algorithms and its parameter settings that are used to solve the
sub-problems in Eqs. (5.3) to (5.5). On line 6 the initial design vector is defined by the
user or initialised randomly with a hyper-cube sampling procedure. In the case some
important uncertain scenarios in U or design configurations in D are already known,
the initial archives can be seeded with these scenarios, otherwise they are initialised as
empty sets (line 7). Similarly, it is done for the archives relative to functions f and
c (line 8). Lines 9 and 10 initialise the counters of the number of function evaluation
nfeval and the iteration nloop between minimisation and restoration processes. The
initial accepted constraint violation ε (line 11) is initialised to zero.

Algorithm 1 Initialisation

1: Define the problem: objective function f , constraint function c, dimension (nD and
nU ), lower and upper bounds for both design space D and uncertain space U .

2: Define computational limits to the sub-problems: ninner,f
fval,max, ninner,c

feval,max, nouter
fval,max

3: Define algorithm convergence threshold σstop.
4: Define computational limits to the whole algorithm: nfval,max and nloop,max

5: Define optimiser(s) and its (their) parameters setting for all optimisation steps
6: Define/initialise design vector d̄ (latin hypercube sample or input)
7: Define/initialise vectors archives: Auf , Auc, Ad, Au (∅ or input)
8: Define/initialise functions archives: Af , Acf , Ac (∅ or input)
9: Initialise number of function evaluation nfeval = 0

10: Initialise number of loops nloop = 0
11: Initialise accepted violation ε = 0

5.2.2 Minimisation-Restoration Loop

The main algorithm is summarised in Algorithm 2. Using the first design guess d̄ from
the initialisation, Eqs. (5.4) and (5.5) are solved in parallel (lines 4 and 5) within the
first restoration, or inner, loop (lines from 2 to 8). With d̄ fixed, the former equation
evaluates the feasible worst case condition of f while the latter determines the worst
constraint violation. In the following we will adopt a variation of MP-AIDEA [131] to
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solve both Eqs. (5.4) and (5.5). The contribution to the algorithm is described in the
Section 5.2.5. Since MP-AIDEA is a multi-population procedure, multiple solutions
are returned. The solution uaf is selected following Algorithm 3. In particular, if none
of the outputs from the optimiser is feasible (no elements in no one of the populations),
the uncertain vector with the lowest constraint violation is chosen (lines 2 to 3 of
Algorithm 3). Otherwise, within the set of feasible solutions, the uncertain vector
with the highest value of f is selected (line 5 of Algorithm 3). The uncertain vectors
solutions are then stored in the archives as illustrated in Algorithm 4. Consider first
lines 9 to 11 of Algorithm 4: the uncertain vector solutions uaf corresponding to the
feasible maximum of f for the fixed d̄ is saved in Auf , the corresponding f(d̄,uaf ) and
maxi∈Ic ci(d̄,uaf ) are saved in Af and Acf respectively. Consider now lines 12 and
13 of Algorithm 4: the uncertain vector solutions uac that maximises the constraint
violation for the same fixed design vector is saved in Auc, while the corresponding
maxi∈Ic ci(d̄,uac) is saved in Ac. Finally, on lines 14 and 15 of Algorithm 4 the archives
Āuf and Āuc are created by removing from Auf and Auc all the repeated elements
(with a selected tolerance of 1e-8 on the euclidean distance between two elements in
the archive).

The main loop is then started (line 9 of Algorithm 2 and Eq. (5.3)) with an alterna-
tion of the minimisation, or outer, step (lines 10, 11 and 12) and restoration, or inner,
step (lines from 13 to 17). The latter has been already described. A further check is,
however, performed in lines 1 to 8 of Algorithm 4 before the updating procedures of
the archives. If the condition in line 2 holds, indeed, the inner loop in Eq. (5.4) has
failed. Then the solution generated in this loop is discarded and the one of the previous
outer loop is maintained. This condition follows the same criterion used in Algorithm 3
by giving priority to the constraint satisfaction. Similarly the condition in line 6 for
Eq. (5.5).

The outer step, on the other hand, addresses the solution of the constrained min-
imisation in Eq. (5.5). For each new design vector generated by the optimiser, the
objective and constraint functions are evaluated for all the u vectors in Āuf and Āuc
and the worst cost function and constraint violation values are retained (line 11). Note
that in some cases it is desirable to run a local search every time a vector in the two
archives Āuf and Āuc is evaluated (see for example [189]). This added local search
significantly increases the computational cost of each single evaluation of the outer
loop but in some cases improves convergence to the point that the overall cost of the
algorithm is reduced. For this reason we inserted this option in the algorithm although
it is not tested in this paper. It was, however, tested, for the case of unconstrained
min-max problems, in a previous work by the authors [189]. At the end of the min-
imisation process, the archive Ad of the design configurations is updated with the new
design solution d̄.

If the condition in line 18 of Algorithm 2 holds, the constraint relaxation strategy
described in Algorithm 5 is activated. An alternative option, the trade-off strategy in
Algorithm 15, can instead be activated if condition in line 21 is true. These alternatives
can be visualised in Fig. 5.1. If the former condition holds, problem A is stopped, the
relaxation step in the first block in B is performed finding ε and finally the constrained
min-max problem is updated as in the second block in B. If instead the second condition
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hold, block A is stopped and then blocks C and D are solved (blocks C and D are related
to the MOP and then they are linked to Appendix B).

The minimisation and restoration steps are alternated until condition in line 9 is
satisfied. In particular, the iteration holds until the number of calls to the function
has not reached the maximum allowed (nfeval < nfeval,max), the number of iterations
is below the upper bound (nloop < nloop,max) and the solutions saved in archives have
not converged (maxA(σ) > σstop) where maxA(σ) is the maximum standard deviation
between all the archives in the last 3 iterations. The violation of at least one of these
conditions corresponds to the termination criterion.

Then, the cross-check between all the design vectors archived in Ad is performed
(line 26). The cross-check procedure is explained in Section 5.2.4 and summarised in
Algorithm 6. Finally, the solution is chosen following Algorithm 7 (line 28).

An example of the application of Algorithm 2 to the two functions MWP10 and
GFc1 (see Section 5.4.1), without constraint relaxation and trade-off, can be visualised
in Fig. 5.3. In sub-figures (c) and (d) an initial design guess d̂ and each new design d̄
proposed by the minimisation step are represented as vertical lines. The corresponding
worst-case scenario for f and c are plotted, with the same colour, as dots and stars
respectively. Sub-figure (e) shows sections of f and c over U for different design config-
urations. Sub-figure (f) shows how the space of the maxima of f and c as it appears in
the minimisation process. In particular, sub-figure (c) shows that the algorithm is able
to find at the first iteration, for this test case, the subspace D̂ ∈ D in which the design
solutions are feasible for any uncertain scenario. The first design guess d̂ (blue line)
finds the worst scenario for u = 10. In (b) indeed, the maximum constraint violation
is brought to zero at the second iteration and all the other iterations are then used to
minimise the worst case of f working within the design domain D̂.

5.2.3 Constraint Relaxation Strategy

The min-max problem proposed in this paper imposes quite stringent conditions on
the satisfaction of the constraints as they need to be satisfied for all possible values of
u ∈ U . It is, therefore, possible that no solution dopt is feasible in all U . Since we are
interested in the worst case solution for both constraints and objective function, when
no feasible d is possible we introduce an automatic relaxation of the constraints.

The relaxation strategy then translates Eq. (5.2) to a slightly different optimisation
problem where the constraint function has to be smaller than ε with this value to be
determined:

min
d∈D

max
u∈U

f(d,u)

s.t.

ci(d,u) ≤ ε ∀u ∈ U,∀i ∈ Ic = [1, ..., s]T

(5.6)

In order to find a set X ⊂ D that is feasible for all u ∈ U , we first solve the following
minmax problem:

min
d∈D

max
u∈U

max
i∈Ic

ci(d,u) (5.7)

Eq. (5.7) minimises the maximum violation of the constraints and returns a solution
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Algorithm 2 Constrained min-max

1: Initialisation: Algorithm 1
2: if Āuf = ∅ ∧ Āuc = ∅ then
3: Initialisation loop:
4: Run uaf = arg maxu∈U f(d̂,u) s.t. maxi∈Ic ci(d̂,u) ≤ ε
5: Run uac = arg maxu∈U maxi ci(d̂,u)
6: if multiple outputs, choose best uaf as in Algorithm 3
7: Update archives as in Algorithm 4
8: end if
9: while nfeval < nfeval,max ∧ nloop < nloop,max ∧maxA(σ) > σstop do

10: Minimisation loop:
11: d̄ = arg mind∈D{maxua∈Āuf f(d,ua)} s.t. maxua∈Āuc maxi∈Ic ci(d,ua) ≤ ε
12: Update global archive Ad = Ad ∪ {d̄}
13: Restoration loop:
14: Run uaf = arg maxu∈U f(d̄,u) s.t. maxi∈Ic ci(d̄,u) ≤ ε
15: Run uac = arg maxu∈U maxi ci(d̄,u)
16: if multiple outputs, choose best uac: Algorithm 3
17: Update archives: Algorithm 4
18: if relaxation flag ∧ not convergence ∧ satisfy limits on nfeval and nloop then
19: Stop Algorithm 2 and apply the constraint relaxation strategy: Algorithm 5
20: end if
21: if trade-off flag ∧ convergence on d, fmax, cmax ∧ satisfy limits on nfeval and

nloop then
22: Stop Algorithm 2 and apply the trade-off strategy: Algorithm 15
23: end if
24: end while
25: for all d ∈ Ad do
26: Cross-check: Algorithm 6
27: end for
28: Select which solution [dopt,uopt] to return: Algorithm 7

vectors dmin,c and umin,c. Vectors dmin,c satisfies the constraint:

cε ≤ 0 (5.8)

for all u ∈ U , where:
cε = c− ε (5.9)

and
ε = max

i∈Ic
ci(dmin,c,umin,c) (5.10)

The relaxation strategy is explained in Algorithm 5. If condition on line 18 of Algo-
rithm 2 is satisfied then Algorithm 5 is triggered. Once in Algorithm 5, until condition
in line 2 holds, Eq. (5.7) is solved (see lines 3 to 8 of Algorithm 5), with the iteration
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Algorithm 3 Solution Selection - Inner loop

1: for all output uaf of the restoration level do
2: if @uaf → maxi∈Ic ci(d̄,uaf ) ≤ ε then
3: select u with minimum violation
4: else
5: select between the feasible u the one with the highest objective function f.
6: end if
7: end for

Algorithm 4 Archive Updating

1: if in the main loop then
2: if (fout > fin ∧ cout < 0) ∨ (0 < cout < cin) then
3: update ua,f = u from outer loop
4: end if
5: if cout > cin then
6: ua,c = u from outer loop
7: end if
8: end if
9: Auf = Auf ∪ {uaf}

10: Af = Af ∪ {f(d̄,uaf )}
11: Acf = Ac,f ∪ {maxi ci(d̄,uaf )}
12: Auc = Auc ∪ {uac}
13: Ac = Ac ∪ {maxi ci(d̄,uac)}
14: Āuf = Auf \ repeated solutions
15: Āuc = Auc \ repeated solutions

between the following minimisation

min
d∈D

max
uac∈Āuc

max
i∈Ic

ci(d,uac), (5.11)

and restoration step
max
u∈U

max
i∈Ic

ci(d̄,u) (5.12)

This is an unconstrained min-max formulation where the optimised function is the
vector of constraints c. The solution at convergence is the minimum over D of the
worst constraint violations in U . In line 10 that value is associated to the relaxation
parameter ε.

5.2.4 Cross-Check

All the optimisation problems in the minmax algorithm require the identification of a
global maximum or a global minimum. Since it is proposed to use a memetic algorithm
it is possible that some of the maxima or minima in the archive are only locally optimal.
Note that the use of a deterministic global optimiser would remove this problem but
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Algorithm 5 Constraint Relaxation

1: Inherit vectors from Algorithm 2
2: while not convergence of relaxation do
3: Minimisation loop:
4: d̄ = arg mind∈D{maxuac∈Āuc c(d,uac)}

with the cross-check as in Algorithm 6.
5: Restoration loop:
6: Run uac = arg maxu∈U maxi ci(d̄,u)
7: if multiple outputs, choose best uac: Algorithm 3
8: Update archives Auc and Ac: Algorithm 4
9: end while

10: set ε = maxu∈U maxi ci(d̄,u)
11: Restart Algorithm 2

would introduce a tractability problem due to the potential NP-hard nature of some
optimisation problems.

In order to mitigate the occurrence of local minima/maxima in the archives we in-
troduce a cross-check of the solutions following the procedure explained in Algorithm 6.
It is performed for each design vector d̄ that can be proposed by the optimiser during
the minimisation step and at the end of the whole algorithm (respectively in line 9 and
19 of Algorithm 2). Referring to Algorithm 6, lines 1 to 7 regard the objective function
f while lines from 8 to 14 regard the constraint function c. In both cases, for a given
d̄ objectives and constraints are evaluated for all the u vectors in the archives Āuf and
Āuc. We also introduced an option (through local flag) to run a local search from each
new pair [d̄, u]. This option slows down Algorithm 2 but improves the quality of the
solution if the functions present nested minima/maxima. Finally, line 15, retains the
worst values of f and c for the archives Āuf and Āuc for each d̄.

After the termination criterion in Algorithm 2 is applied and the cross-check over
the archives is performed (line 21), the solution for the min-max problem is selected
following Algorithm 7. In particular, if a feasible subset Âd of the archive Ad of the
design vectors exists (line 1) the selected solution vector is the one, within Âd, min-
imising the worst value of f (line 2). If, on the other hand, Âd is an empty set, the
design vector that minimises the constraint violation is selected (line 4).

5.2.5 A Memetic Strategy for Constrained Global Optimisation Prob-
lems

The whole procedure for the solution of the global min-max problem is agnostic to
the optimisation solver used for the single problems in Eqs. (5.3) to (5.5) within Al-
gorithm 2. However, when problems in Eqs. (5.3) to (5.5) are global optimisation
problems we propose the use of a generalisation of the memetic optimisation algorithm
MP-AIDEA [131]. This section briefly explains the contribution done in the gener-
alisation to the handling of constraints while the generalisation to MOP is explained
instead in Appendix B. The optimisation problem we are interested to solve is the
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Algorithm 6 Cross-Check

1: for all elements uaf ∈ Āuf do
2: if local flag then
3: Compute local maximum f(d̄,u∗a) s.t. maxi∈Ic ci(d̄,u

∗
a) ≤ ε from uaf

4: else
5: Compute f(d̄,ua) s.t. maxi∈Ic ci(d,uaf ) ≤ ε
6: end if
7: end for
8: for all elements uac ∈ Āuc do
9: if local flag then

10: Compute local maximum maxi∈Ic ci(d̄,u
∗
a) from uac

11: else
12: Compute maxi∈Ic ci(d̄,uac)
13: end if
14: end for
15: For each d̄ save worst vectors uaf and uac in the archives Āuf and Āuc.

Algorithm 7 Select Solution - Output

1: if Âd = {d|maxuac∈Auc maxi∈Ic ci(d,uac) ≤ ε} 6= ∅ then
2: take d ∈ Âd that minimise maxuaf∈Auf f(d,uaf )
3: else
4: take d ∈ Ad that minimise maxuac∈Auc maxi∈Ic ci(d,uac)
5: end if

general CSOP minimisation problem:

min
x∈X

φ(x)

s.t.

γi(x) ≤ ε ∀i ∈ Ic = [1, ..., s]T

(5.13)

where Eq. (5.13) incorporates the three distinct Eqs. (5.3) to (5.5) and the mapping is
explained in the following of the section.

The memetic solver combines the Darwinian evolution of a number of populations
of candidates through a DE strategy with the Lamarckian evolution of the best agent
in each converged population through a local search algorithm. In particular, the local
refinement is performed if the converged solution is not in the basin of attraction of
previous local minima. A number of local restarts are then performed before globally
restarting. The general structure of the optimisation solver for CSOP is summarised
in Algorithm 8.

First there is the initialisation of algorithm’s parameters: the maximum number of
function evaluation nfeval,max, the number of populations npop, the number of agents in
each population Npop, the convergence threshold ρ of DE and the radius of the global
restart bubble δglobal. nLR and δlocal can also be defined or, alternatively, auto-adapted
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Algorithm 8 MP-AIDEA (Constraint handling)

1: Initialisation: nfeval,max, npop, Npop, ρ, δglobal (optional: nLR δlocal).
2: while nfeval < nfeval,max do
3: Run the DE step (Algorithm 9)
4: for p ∈ [1, 2, ..., Npop] do
5: if xp,best not in the basin of attraction of previous solutions then
6: Run local search
7: update xp,best from the local search.
8: end if
9: end for

10: Initialise populations for local or global restart in the next DE step.
11: end while

Algorithm 9 DE step (Constraint handling)

1: for p ∈ [1, 2, ..., Npop] do

2: Initialise at generation G = 1 the genotype x
(G)
p,q ∀ p-agents and q-populations

3: Evaluate the phenotype of each candidate solution: f
(G)
p,q Eq. (5.14)

4: while the population is not contracted do
5: Select parents: all generation G;
6: Variate the parent’s genotype: two strategies randomly alternated

(DE/Rand/1/bin, DE/CurrentToBest/2/bin)

7: Evaluate new candidates f
(G+1)
p,q Eq. (5.14).

8: Select between parents and children with a greedy criterion
9: update generation: G = G+1.

10: end while
11: return xp,best;
12: return f(xp,best);
13: end for

by the solver.
The optimisation process then hybridises the DE step (line 3) where the Npop pop-

ulations are evolved and the local search (line 6) where their best candidate solutions
are refined. The number of local refinements is adapted within MP-AIDEA allowing
them to be run only if the converged solution in the DE is outside the basins of at-
traction of the previous recorded local minima which depend on the distances between
previous best solutions of the DE and best solutions of the local search. The DE is
then locally and globally restarted (line 10) until the maximum number of evaluations
nfeval,max (considering both DE and local search) of the objective function is achieved
(termination condition in line 2).

More details about the DE step for the CSOP are in Algorithm 9. Following the
building blocks that make any EA, the DE step can be divided in: initialisation (line
2), variation (line 6), evaluation (lines 3 and 7), selection (line 8) and termination
(line 4). Within the main loop (lines 4-10) all the agents at the current generation
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G are selected as parents and are subjected to the variation step for the definition
of generation G+1. The two schemes DE/Rand/1/bin and DE/CurrentToBest/2/bin
[190] have been implemented for the parent’s variation. The best for each agent between
the corresponding parent at generation G and offspring at generation G+1 is finally
selected.

An important aspect of the optimisation solver is the handling of constraints. This
is done at the level of function evaluation and explained in Section 5.2.5.

An example of a run of MP-AIDEA with npop = 2 for problem MWP-1 &GFc-1
is in Fig. 5.4 which shows, for the evolving populations, the alternations of DE steps
together with the local refinements. For this test case the MATLAB function solver
fmincon has been used for the local search. Given the constraint on the maximum
number of function evaluations, the algorithm is able to perform only one local restart
in each population. Colours red, blue and green refer to the first population while
colours orange, yellow and brown refer to the second population. As shown in the
figure, first the two populations are initialised randomly and evolved independently
until convergence is achieved (being the parameter ρ one of the termination criteria).
In particular the red (orange) area represent the evolution of the best agent in the
population while the blue (yellow) represent the mean value and the green (brown)
the worst agent. From the two converged solutions a local search is performed with
fmincon until the green and brown points are obtained. From these two local minima
then the two populations are locally reinitialised. The overall process is then repeated
till convergence.

Constraint Handling

It is here described the approach to handle the constraints as in line 6 of Algorithm 8.
Since the optimisation solver is a memetic approach, the constraint handling procedure
needs to be included in both global evolutionary exploration and local exploitation.

Regarding the former, the DE step, and with reference to [36, 39] we propose the
following indirect approach with an adaptive exterior penalty function for hard con-
straint handling where hardness refers to the absolute satisfaction of the constraint.
By ’indirect approach’ we mean that the COP is translated to a FOP: this type of
constraint handling is applied within the evaluation step in DE: line 7 of Algorithm 9.
The following mapping is used:

f(xp,q) =

{
f(xp,q) if maxi ci(xp) ≤ 0

maxq{fs(xp,q)}+ maxj{cj(xp,q)} else
(5.14)

where, for a generic population f is the value of the objective function for the
given agent q in the population p, maxq{f(xp,q)} is the maximum of f over the current
population and maxj{cj(xp,q)} is the maximum constraint violation for the considered
agent q.

For the local search (line 6 of Algorithm 8) instead the constrained formulation in
Eq. (5.13) is directly handled within the nonlinear programming solver fmincon.
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5.3 Computational Complexity

The computational cost of Algorithm 2 is measured in terms of number of func-
tion calls. With reference to the minimisation step, the counter nouter

feval takes into ac-
count, for both the constrained and the unconstrained min-max problems, the calls
to maxu∈Āuf f(d,uaf ) in Eq. (5.3). The same criterion, then, holds for the constraint

relaxation step in Eq. (5.11) and for the two trade-off steps in Eqs. (B.6) and (B.17).
It has to be noted that, as the algorithm proceeds in the search of the global optimum
solution, the archives Āuf and Āuc of the uncertainty vectors increase progressively
in dimension. Each minimisation step explores a maximum number of possible design
configurations which is limited by the input parameter nouter

feval,max. However, due to the
growth of the archives of the solutions coming from the restoration step, each evaluation
of the minimisation loop becomes increasingly more expensive.

With reference to the maximisation step, instead, the cost of the two separate
problems in Eq. (5.4) and Eq. (5.5) has to be considered. For the former ninner,f

feval counts
the number of calls to the objective function f(d̄,u) and it is limited by the input

ninner,f
feval,max. This holds true also for the two steps in the trade-off strategy in Eqs. (B.11)

and (B.12) and for the relaxation step in Eq. (5.12) where the function c is considered
instead of f . For the latter, ninner,c

feval counts the number of calls to maxi ci(d̂,u) in

Eq. (5.5) where the input ninner,c
feval,max is the upper limit.

Finally, the parameters nfeval,max and nloop,max give an upper limit on the whole cost
of Algorithm 2. Note that nfeval,max and nloop,max represent an upper limit because, as
it is shown in line 9 of Algorithm 2, we use an additional termination criterion that
looks at the convergence of the solutions in the archives.

The computational complexity of the different parts of the overall algorithm is as
follows:

1. Local Search: the local search uses the Matlab fmincon function. All the alter-
native algorithms (interior-point, trust-region-reflective, sqp, sqp-legacy, active-
set) can be selected. We use here interior-point that works well with both large
sparse and small dense problems. The complexity is O(n3

D) or O(n3
U ) depending

on which step between minimisation and restoration is considered, where nD is
the design and nU the uncertain vector’s dimension.

2. Adaptation of CR and F: The DE parameters CR and F in MP-AIDEA are
auto-adapted for each element of each population. For npop evolving populations
with Npop agents, the complexity isO(npopNpopn

2
D) andO(npopNpopn

2
U ) for inner

and outer problem respectively [131].

3. Restart mechanisms. The populations evolve with a DE approach which is
restarted, locally and globally, a number of times. The local restart has a cost
proportional to npopNpop. The cost for the global restart, instead, has a compo-
nent related to the clustering procedure O(NpopnDniter) or O(nLMn

2
Uniter) with

niter the required number of iteration for the clustering and nLM the number of
local minima, and a component related to the verification that the new population
is far from the clusters O(NpopnLM ) [131].
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4. Outer-Loop. During the minimisation step there is a cost related to the testing
of each design vector suggested by the optimiser in combination with all the un-
certain vectors saved in the archives Āuf and Āuc and there is a cost due to the
selection of their maximum. In both cases the complexity is O(||Āuf ||nouter

fval,max) ≤
O(nloopn

outer
fval,max) for the objective function f andO(||Āuc||nouter

fval,max) ≤ O(nloopn
outer
fval,max)

for the constraint function c.

5. Cross-Check. As in the outer loop there is here a cost for the cross-check and
a cost for the selection of the maxima. In both cases it is: O(||Ad||||Āuf ||) ≤
O(n2

loop) and O(||Ad||||Āuc||) ≤ O(n2
loop) for f and c respectively because each

design vector d ∈ Ad is considered.

6. Select Solution. After the final cross-check, the archives are updated and the
set of design vectors Âd feasible in all the uncertain domain can be defined. The
min-max solution is selected following Algorithm 7 sorting the feasible solutions
f (O(||Âd||)) or minimising the constraint violation c (O(||Ad||)).

5.4 Testing Procedure

Algorithm 2 has been tested on the benchmark described and explained in this section.
Each test case is a combination of an objective function f and a constraint function c.
Depending on the mathematical features of each problem, a local optimiser or a global
optimiser have been used for the three problems in Eqs. (5.3) to (5.5). The criteria
used to choose the right optimiser is explained in Section 5.4.3.

Given the stochastic nature of MP-AIDEA, each optimisation for each problem has
been repeated 100 times. Results are then reported in Section 5.5. For the evaluation
of the algorithm’s performance, the Success Rate (SR) is used instead of the best value,
mean, and variance. The SR was suggested in [129] for a generic problem minf and a
generic algorithm. It is here generalised to consider also the handling of constraints.
The definition of SR is in Section 5.4.2.

5.4.1 Benchmark

The equations of f and c are listed in Tables 5.1 and 5.2 respectively. The constraint
functions c are more extensively presented in the following Section 5.4.1 and visualised
in Figs. 5.5 to 5.11 for the case nD = nU = 1. Table 5.3 lists lower and upper bounds,
dimensions and optimal solutions for the unconstrained problems in Table 5.1. The
same solutions holds also for the constraint min-max problems for which the constraint
does not change the global optimum. Table 5.4 presents instead the reference solutions
for the constraint min-max problems for which the constraint function changes the
position of the global optimum.

MWP-1,2,...,7 are convex-concave test functions taken from chapter 5 of [191].
Objective functions MWP-8,...,11 are first introduced in [166] and then used also in
[42, 157, 158] while MWP-12,13 are instead selected from [42, 157, 158]. They have
been used all together in [43] as benchmark for the unconstrained min-max problem.
Functions GFf-1,2 and GFc-1,2,...,8 have been specifically designed for the testing of
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Algorithm 2, given the lack of a benchmark in the literature for the constrained version
of the min-max problem.

Both f and c are designed to include different structures that can be encounter in
practice [192]. In particular, they exhibits the following features:

1. Modality: number of local optima that try to trap the algorithm in the wrong
peak.

2. Basin or plateau: a relatively steep decline that surrounds a large area. There
is no information to drive the algorithm.

3. Valley: similar to the basin but it is narrow area.

4. Non separability: property related to the coupling between parameters. Non-
separable functions are in general more difficult to optimise.

5. Dimensionality: property related to the number of parameters or dimension of
the problem. The search space increases with the dimension, increasing then also
its difficulty.

6. Non differentiability: cuspids, corners, tangents and discontinuities are fea-
tures that make functions non differentiables in some points. Some of the con-
straint functions present cuspids, corners and discontinuity. In particular discon-
tinuity is an abrupt change in the function values. Discontinuities are classified in
jump, infinite, removable, endpoint, or mixed. Some of the constraint functions
c present jump discontinuities.

MWP-9 is not differentiable. MWP-1,8,9,12,13 are uni-modal in both D and U .
On the other hand MWP-4,5,6,7,10,11 are multi-modal in both D and U . MWP-
2,3 are multi-modal in D only. The new test cases GFf -1, 2 and GFc-1, ..., 8 are
explained in the following. They depend on the components di of the design vector d,
the components ui of the uncertainty vector u and the combined vector x = [d,u]T .

GFf-1

GFf-1 is a modifications of the Rastrigin function where half of the variables are design
parameters and the others are uncertain variables.

c(d,u) = 10(nD + nU ) +

nD∑
i=1

(d2
i + u2

i − 10
[

cos(2πdi) + cos(2πui)
]
− 5 (5.15)

It is continuous, differentiable, scalable, without valleys and basins, and highly
multi-modal with hundreds of local peaks.

GFf-2

GFf-2 is a variation of the saddle-point function MWP-8 :

86



5. Global Solution of Constrained Min-Max Optimisation

c(d,u) =

n∑
k=1

[(dk,R − 5)2 − ((uk,R − 5)2] (5.16)

where both components dk,R and uk,R are obtained rotating dk and uk respectively
by the angle

θk =

{
π/8 + 1kdk+1/20 + uk+1/20 if k < n

π/8 + 1kdk/20 + uk/20 else
(5.17)

GFf-2 is continuous, differentiable, non-separable, scalable, without valleys and
basins, and uni-modal.

GFc-1

GFc-1 is a hyper-plane and it is a linear function in both d and u:

c(d,u) =

n∑
i=1

di + ui +K (5.18)

where K = −
∑

i di −
∑

i uu,i − 0.05 with uu,i the upper bound for the i-th uncertain
variable. GFc-1 is continuous, differentiable, separable, scalable, without valleys and
basins, and uni-modal.

GFc-2

GFc-2 is a modification of GFc-1. It is a continuous piece-wise linear function where
the feasible region is a plateau. It is the intersection of two hyper-planes, the second
being at the border between of feasible and infeasible regions.

max
[
0,

n∑
i=1

di + ui +K
]

(5.19)

with K as in Eq. (5.18). GFc-2 is continuous, non differentiable, separable, scalable,
with a plateau, without valleys and uni-modal.

GFc-3

In GFc-3 there are a jump discontinuities, valleys and plateaus. The feasible area
is a narrow multidimensional circle. The function is not differentiable, scalable and
uni-modal:

c(d,u) =

{
0 if maxi(di − dopti ) ≤ 0.1

1 else
(5.20)

GFc-4

GFc-4 is a modification of the Rastrigin function where a jump discontinuity is intro-
duced:
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c(d,u) =

0 if maxi(di − dopti ) ≤ 0.1

30n+
n∑
i=1

[x2
i − 30 cos(2πxi)]− 30 else

(5.21)

It is highly multi-modal, discontinuous, not differentiable with valleys and plateaus,
separable and scalable.

GFc-5

GFc-5 is a modifications of Eq. (5.21). Here a rotation of the vectors d and u is also
introduced.

c(d,u) =

0 if maxi(di − dopti ) ≤ 0.1

30n+
n∑
k=1

[x2
k,R − 30 cos(2πxk,R)]− 30 else

(5.22)

The rotated components dk,R and uk,R are given by the angle θk = di + 2ui.
GFc-5 is discontinuous, not differentiable, with valleys and plateaus, scalable, sep-

arable and multi-modal.

GFc-6

GFc-6 is a multi-dimensional peak function with high coupling between D and U. It
is unfeasible in most of the domain while it is satisfied only in few narrow non linear
valleys varying with d.

c(d,u) =
[ 2n∑
i=1

(xi − xopti )
∑
i

(d2
i − 2ui)

∑
i

(di − dopti )
](2/7)

(5.23)

It presents very narrow non-linear valleys. It is continuous, locally non differen-
tiable, without plateaus, scalable, non separable and multi-modal.

GFc-7

GFc-7 is a multi-dimensional peak functions with high coupling between D and U and
narrow unfeasible areas varying with d.

A =
∑nD

i=1((3/2di − (du,i − dopt,i)/2)(sin(di)/di)− dopt,i/2)1/5+∑nU
i=1((3/2ui − (uu,i − uopt,i)/2)(1− uopt,i/2)1/5

B =
∑nD

i=1(du(sin(du,i)/du,i)− dopt,i/2)1/5+∑nU
i=1(uu(1− uopt,i/2)1/5

C = (d1 − dopt,1)2/5

D = (du,1 − dopt,1)2/5

c(d,u) = 1−AC/BD

(5.24)
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where du,i and uu,i are the upper bounds for di and ui respectively. GFc-7 has very
narrow non-linear peaks with large plateaus. It is continuous, locally non differentiable
(for the cuspids), without valleys, scalable, separable and multi-modal in D.

GFc-8

GFc-8 is a rotated versions of MWP-8 :

c(d,u) =
n∑
i=1

[(di,R − 5)2 − (ui,R − 5)2] (5.25)

where di,R and ui,R are obtained from di and ui respectively with the rotation angle
in Eq. (5.17). It is non-separable, scalable, continuous, differentiable and uni-modal
and without valleys and plateaus.

Table 5.1: test cases for the objective function f

ID objective functions
MWP-1 5(d21 + d22)− (u21 + u22) + d1(−u1 + u2 + 5) + d2(u1 − u2 + 3)
MWP-2 4(d1 − 2)2 − 2u21 + d21u1 − u22 + 2d22u2
MWP-3 d41u2 + 2d31u1 − d22u2(u2 − 3)− 2d2(d1 − 3)2

MWP-4 −
∑3

i=1(u1 − 1)2 +
∑2

i=1(d1 − 1)2 + u3(d2 − 1) + u1(d1 − 1) + u2d1d2
MWP-5 −(d1 − 1)u1 − (d2 − 2)u2(d3 − 1)u3 + 2d21 + 3d22d

2
3

MWP-6 u1(d21 − d2 + d3 − d4 + 2) + u2(−d1 + 2d22 − d23 + 2d4 + 1)+

d3(2d1 − d2 + 2d3 − d24 + 5) + 5d21 + 4d22 + 3d23 + 2d24 −
∑3

i=1 u
2
i

MWP-7 2d1d5 + 3d4d2 + d5d3 + 5d24 + 5d25 − d4(u4 − u5 − 5)+

d5(u4 − u5 + 3) +
∑3

i=1(ui(d
2
i − 1))−

∑5
i=1 u

2
i

MWP-8 (d1 − 5)2 − (u1 − 5)2

MWP-9 min(3− 0.2d1 + 0.3u1, 3 + 0.2d1 − 0.1u1)

MWP-10 sin(d1−u1)√
d2
1+u2

1

MWP-11
cos(
√

d2
1+u2

1)√
d2
1+u2

1+10

MWP-12 100(d2 − d21)2 + (1− d1)2 − u1(d1 + d22)− u2(d21 + d22)
MWP-13 (d1 − 2)2 + (d2 − 1)2 + u1(d21 − d2) + u2(d1 + d2 − 2)
GFf-1 10(nD + nU ) +

∑nD

i=1(d2i + u2i − 10
[

cos(2πdi) + cos(2πui)
]
− 5

GFf-2
∑

[(Rdi+1,ui+1(di)− 5)2 − ((Rdi+1,ui+1(ui)− 5)2]

5.4.2 Success Rate

The SR is adopted here for the performance assessment of Algorithm 2. Its definition
is given in Algorithm 10 for a generic algorithm A applied to a generic constrained
problem CP on the D × U space. It is defined as the ratio js

n between the index of
performance js and the number of independent experiments n.

First, all the parameters required by Algorithm 2 are fixed (refers to the initialisation
in Algorithm 1). The following parameters are then defined: the number of repetition

89



5. Global Solution of Constrained Min-Max Optimisation

Table 5.2: test cases for the constraint functions c

name constraint functions

GFc-1
∑
di + ui +K

GFc-2 max
[
0,
∑
di + ui +K

]
GFc-3

{
0 if maxi(di − dopti ) ≤ 0.1

1 else

GFc-4

{
0 if maxi(di − dopti ) ≤ 0.1

30n+
∑

[x2
i − 30 cos(2πxi)]− 30 else

GFc-5

{
0 if maxi(di − dopti ) ≤ 0.1

30n+
∑

[x2
i,R − 30 cos(2πxi,R)]− 30 else

GFc-6
[∑

(xi − xopti )
∑

(d2
i − 2ui)

∑
(di − dopti )

](2/7)

GFc-7 1−AC/BD
GFc-8

∑
[(di,R − 5)2 − (ui,R − 5)2]

of the experiments n, the tolerances tolf , told and tolu on the solution error for the
objective function f , the design vector d and the uncertain vector u respectively. The
formula for SR is in line 15. It depends on the tolerances and on the errors δkc , δkf , δkd
and δku with respect to the reference solutions fref, dref and uref in Tables 5.3 and 5.4. In
particular, δkc depends on the uncertain vector uopt,c that is the worst for the constraint
function c while δkf depends on the vector uopt,f that makes worst the objective functions
f . δu is necessary to verify the convergence on the maximisation in the inner loop
(restoration in Section 5.2) and then to avoid counting as success solution an fkopt close
to fref that is coming from a lucky combination of a wrong maximisation and a wrong
minimisation in the outer loop (optimisation in Section 5.2).

5.4.3 Algorithm Settings

An important feature of the proposed approach is its modularity in the sense that any
optimiser can be plugged in and used for the single optimisation problem in Eqs. (5.3)
to (5.5). To enhance efficiencies of Algorithm 2, then, the right combination of optimi-
sation solvers should be selected. An optimal choice would require a prior knowledge
of the main features of a given problem. For complex multi-modal functions, we sug-
gest the use of the modified memetic optimisation solver MP-AIDEA because it has
shown to be efficient and effective, on average, on a wide range of problems mixing dif-
ferent characteristics. For continuous uni-modal functions we use instead the Matlab
fmincon solver with an interior-point scheme. We give here the parameter settings of
MP-AIDEA that have been used for all tests. The number of agents for each popula-
tion Npop and the maximum number of function evaluations were set to be respectively

Npop = max[5, nD], nouter
feval,max = 500nD, ninner,f

feval,max = 500nU and ninner,c
feval,max = 500nU . The

dimension of the bubble for the global restart is δglobal = 0.1, the number of populations
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Table 5.3: Reference solutions for the test cases in table Table 5.1

ID D U d min-max u min-max f min-max

MWP-1 [-5; 5]2 [-5; 5]2 -0.4833 0.0833 -1.6833
-0.3167 -0.0833

MWP-2 [-5; 5]2 [-5; 5]2 1.6954 0.7186 1.4039
-0.0032 -0.0001

MWP-3 [-5; 5]2 [-3; 3]2 -1.1807 2.0985 -2.4688
0.9128 2.666

MWP-4 [-5; 5]2 [-3; 3]3 0.4181 0.709 -0.1348
0.4181 1.0874

0.709
MWP-5 [-5; 5]3 [-1; 1]3 0.1111 0.4444 1.345

0.1538 0.9231
0.2 0.4

MWP-6 [-5; 5]4 [-2; 2]3 -0.2316 0.6195 4.543
0.2228 0.3535
-0.6755 1.478
-0.0838

MWP-7 [-5; 5]5 [-3; 3]5 1.4252 0.5156 -6.3509
1.6612 0.8798
1.2585 0.2919
-0.9744 0.1198
-0.7348 -0.1198

MWP-8 [0; 10] [0;10] 5 5 0
MWP-9 [0; 10] [0;10] 0 0 3
MWP-10 [0; 10] [0;10] 10 2.1257 9.7794 × 10−2

MWP-11 [0; 10] [0;10] 7.0441 10 4.2488 × 10−2

MWP-12 [-0.5; 0.5]×[0; 1] [0;10]2 0.5 0 0.25
0.25 0

MWP-13 [-1; 3]2 [0;10]2 1 Any 1
1 Any

GFf-1 [-5.14; 5.14]nD [-5.14; 5.14]nU 0 ± 4.5230 10(nD + nU )− 10nD+
... ... +30.3533nU − 5
0 ± 4.5230

nD = 2 nU = 2 75.7066
GFf-2 [0; 10]nD [0;10]nU [5]nD [5]nU 0

is npop = 2 and the convergence threshold of DE is ρ = 0.25.

5.5 Results

The results are presented and explained in this section. In particular, four sets of tests
have been performed. In the first, Algorithm 2 has been combined with the optimiser
fmincon, while in the other cases MP-AIDEA has been used. First, we consider one uni-
modal problem. The performance of the algorithm is assessed increasing the dimension
of the problem. Then we consider the worst-case complexity analysis on the benchmark
presented in Section 5.4.1 with a wide variety of difficulties. A complexity analysis of the
algorithm convergence is then presented for a selected test case for different problem
dimensions. Finally we apply Algorithm 2 to solve a real engineering problem: the
design for robustness of a communication satellite.
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Table 5.4: Reference solutions for the test cases in Table 5.1 with the constraint
changing the global optimum

ID nD nU d min-max u min-max f min-max

GFf-2 & GFc-8 10 10 [4]10 [6.1712]10 1.4261
20 20 [4]20 [6.1712]20 2.8522
30 30 [4]30 [6.1712]30 4.2784
40 40 [4]40 [6.1712]40 5.7045
50 50 [4]50 [6.1712]50 7.1306

Algorithm 10 Success Rate

1: Define the parameters for algorithm A to solve the constrained problem CP ;
2: Define the number of repetition n;
3: Define tolerances tolf , told and tolu;
4: Initialise the index of performance js = 0;
5: for k = [1,2,.., n] do
6: Run A on CP with the defined settings;
7: Compute fkopt ← A(CP (d,u));

8: Compute ckopt ← A(CP (d,u));

9: Compute dkopt: optimal solution for the design vector

10: Compute ukopt: optimal solution for the uncertain vector

11: Compute δkf = |fref − fkopt|;
12: Compute δkd = ||dref − dkopt||;
13: Compute δku = ||uref − ukopt||;
14: Compute δkc = max(0, ckopt);

15: if δkc ≤ 0 ∧ δkf < tolf ∧ δkd < told ∧ δku < tolu then
16: js = js + 1
17: end if
18: end for
19: SR = js

n

5.5.1 Uni-Modal Test Problem

For the first set of results, the test case used is given by the combination of the ob-
jective function GFf-2 and the constraint function GFc-8. They are both continuous,
differentiable, unimodal and non-separable. With these features a local optimiser is
sufficient to solve Eqs. (5.3) to (5.5) at each iteration. The constraint function c admits
only one feasible design vector, which is different from the unconstrained optimum of
GFf-2. The local optimiser we used in this test is fmincon. The test functions are
devised to be scalable with a predictable value of the exact min-max solution. Results
are collected in Table 5.5 for a number of function evaluations up to 7e6. The table
shows up to dimension nD = 40 and nU = 40 the algorithm can achieve SR = 1 within
the maximum number of function evaluations. For nD = 50 and nU = 50, 7e6 is not
enough and the best result is a success rate of 30%.
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Table 5.5: Success Rates of GFf-2 and GFc-8 for different problem dimensions
(rows) and limits on the maximum number of function evaluations (columns).
Optimiser: fmincon. δd = δu = δf = 0.1, δc = 0

dim 2e5 4e5 6e5 8e5 1e6 2e6 3e6 4e6 5e6 6e6 7e6

10 × 10 0.03 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 × 20 - - - - 0.28 1.00 1.00 1.00 1.00 1.00 1.00
30 × 30 - - - - - 0.14 0.92 1.00 1.00 1.00 1.00
40 × 40 - - - - - 0.7 0.8 0.34 0.79 0.97 1.00
50 × 50 - - - - - - - - 0.04 0.16 0.30

5.5.2 Multi-Modal Test Problems

For the second set of experiments, Tables A.3, A.5, A.7, A.9, A.11, A.13 and A.15
collect the results for all the test cases given by the combination of objective functions
f from Table 5.1 and constraint functions c from Table 5.2. The last two columns
of each table, niter,min and niter,max, collect the minimum and maximum number of
loops for which the algorithm achieves SR=1 (rows with the symbol − correspond to
problems for which SR=1 has not been obtained for any of the 100 runs). For almost
all the problems Algorithm 2 converges to the correct solution with an SR=1 within the
maximum number of function evaluations. For some problems (namely GFF1-GFC1,
MWP10-GFC4, MWP11-GFC5, MWP11-GFC2 ) few of the runs did not converge to
the correct minimum of f but the SR is still reasonably high.

5.5.3 Convergence Complexity

Sections 5.5.1 and 5.5.2 show the performance of Algorithm 2 with respect to the
worst-case computational complexity where an upper bound on the number of function
evaluations (nfeval,max) is fixed for each optimisation step of the approach: nouter

feval,max,

ninner,f
feval,max and ninner,c

feval,max. It is here interesting to show an other computational com-
plexity analysis that is related to the order of magnitude of the number of function
evaluations needed to converge to the optimal solution. In particular, Table 5.6 sum-
marises the results for the test case GFf -1&GFc-1. This test case has been selected
as representative because it is scalable in both design D and uncertain U spaces and
it is also one of the most difficult within the proposed benchmark. Each row in Ta-
ble 5.6 corresponds to a different problem dimension: n = nD = nU = 2, 3, ..., 10.
The columns represent the average costs at convergence over 10 repetitions for the
constrained minimisation in the outer loop in Eq. (5.3) (nout,ffeval), the constrained max-

imisation in the inner loop in Eq. (5.4) (nin,ffeval), the maximisation of the constraint

function in the inner loop in Eq. (5.3) (nin,cfeval) and finally the average cost for the

whole algorithm (nfeval). The quantities nout,ffeval, n
in,f
feval and nin,cfeval have been deter-

mined averaging the sum, for the different algorithm’s iterations, of the number of
function evaluations at convergence. The optimiser MP-AIDEA has been used. In
order to assure convergence in each optimisation step in Algorithm 2, the number of
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populations has been set equal to the problem dimension npop = n (the problem is
highly multi-modal) and the maximum allowed number of function evaluations of each

step has been fixed at nouter
feval,max = ninner,f

feval,max = ninner,c
feval,max = 1e4n while for the whole

algorithm it is nfeval,max = 2e6n. The remaining input parameters for MP-AIDEA have
been fixed as in Section 5.4.3.

Table 5.6: Problem GFf -1&GFc-1. Convergence complexity

dim nout,ffeval nin,ffeval nin,cfeval nfeval

2 667.1 493.5 162.5 1323.1
3 2631.8 1232.2 200.5 4064.5
4 9607.1 2229.9 241.0 12078.0
5 17405.2 3151.2 254.5 20810.9
6 74085.8 13971.8 645.0 88702.6
7 86616.2 16354.2 992.6 103963.0
8 184190.9 29084.7 1337.4 214613.0
9 211740.5 43107.5 1591.9 256439.9
10 234045.3 51374.4 1765.1 287184.8

5.6 Application: Robust Space System Design

The min-max approach in Algorithm 2 is finally tested on the design for robustness
of a CEdS under uncertainty. The system under analysis is an observation spacecraft
and the goal of the mission is the fire detection within a belt centred at the latitude
of 50 deg. The spacecraft is modelled as the network shown in Fig. 5.12 where the
nodes correspond to its subsystems and the links to the coupling between them. The
mathematical models that have been used for the nodes are a modification of the ones
the authors extensively presented in [13]. The differences are described in the following
and are in the explicit definition of a node for the orbital dynamic and in the payload
subsystem. Design and uncertain variables are listed in Tables 5.7 and 5.8 respectively.

Within the orbit node, considering a circular Low Earth Orbit (LEO), the altitude
h, inclination i, the minimum elevation angle εmin at which the ground station is able
to see the orbiting satellite and the magnetic latitude latm are used to evaluate the
coupling variables with the Attitude and Orbit Control System (AOCS), the TTC, the
Power System and the Payload System (Fig. 5.12). These coupling variables are: the
period of each orbit Po, the number of orbits No the satellite perform due to the shift of
the longitude of the ascending node, the time of eclipse for each orbit Tecl, the dynamic
pressure pdyn, the mean Earth magnetic field strength Km, the gravitational field Kg,
the maximum distance to the target Dmax, and the access time Tac (or total time in
view) between the target and the satellite, where the target is the ground station at 22
deg of latitude used for down-link and up-link. With exception of Tac the formulas can
be found in [55]. Instead, considering that the satellite ground track is determined by
the inclination i and by the longitude of the ascending node Lnode and that the latter
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increases by 360 deg in 1346 min (the rotation of the Earth relative to the stars), Tac

is calculated considering the total number of orbits i that happens during this period
Tac =

∑
i Tac,i. Following [31], that describes the motion of the satellite as seen from a

point on the Earth (the ground station), Tac,i is evaluated as:

Tac,i =
P

180deg
arccos

cosλmax,i

cosλmin,i
(5.26)

with λmin,i and λmax,i the minimum and maximum Earth Central Angle for the i-th
orbit.

The Payload System is an infrared camera that is used to detect possible fires
and its target is the belt at 50 deg of latitude. Within the payload node the model’s
parameters are h (shared with the orbit node), Po (coupling parameter), the width
for square detector d, the quality factor Q, the operating wavelength λ, the maximum
incidence angle of the instrument IAmax and the maximum ground sampling distance
Ymax. The model evaluates the following coupling variables: the data volume DV
shared with OBDH and the power requirement P shared with the Power System. The
model evaluates also the payload mass and the percentage of coverage area PC of
each orbit during which the payload target is seen. In particular, PC is calculated
following [31] as function of λmax, i and the latitude of the target Lat = 50 deg:

PC =


0 if Lat > λmax + i

φ1/180 if i+ λmax > Lat > i− λmax

(φ1 − φ2)/180 if i− λmax > Lat > 0

(5.27)

where

cosφ1 =
− sinλmax + cos i sinLat

sin i cosLat
(5.28)

and

cosφ2 =
sinλmax + cos i sinLat

sin i cosLat
(5.29)

The remaining couplings between nodes are the compressed data volume DV c that
OBDH send to TTC for down-link to the ground station and the power requirements
P of all the nodes (orbit excluded) that the Power sub-system has to make available.
Finally, the global outputs of the network are the overall mass M of the satellite, sum
of the masses of the components, and the percent coverage PC of payload target land.
In the optimisation framework, M is considered to be the performance indicator while
PC is the constraint to be satisfied. This mission design problem is translated into the
following constrained min-max problem:

mind∈D maxu∈U M(d,u)
s.t.
PC(d,u) ≥ ν ∀u ∈ U

(5.30)

In order to explore the conflict between f and c, the corresponding Pareto front
has been reconstructed. We want to apply here the main min-max method presented
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in Algorithm 2. The algorithm has then been repeated using 30 different values for the
threshold ν through an ECS approach.

The results of Eq. (5.30) are shown in Fig. 5.13 for which the optimiser MP-AIDEA
has been used with the setting specified in Section 5.4.3. In particular, Fig. 5.13(a)
presents the Pareto front reconstructed for the different values of ν, while the shape of
the front can be understood looking at Fig. 5.13(b,c,d). There are indeed two different
geographical targets on the Earth for the defined mission: the ground station (22 deg of
latitude) used for up-link and down-link by TTC and the area that has to be monitored
by the payload for possible fire detection (50 deg of latitude).

These two targets are quantified in the respectively node’s models by Tac and PC,
the latter being the constraint function c and the former having an high impact on
the final mass M of the overall spacecraft that is the objective function f . The most
influential design parameters with regard to PC and Tac in the trade-off within the set
of optimal Pareto points are the altitude h = d1 and the inclination i = d3. Fig. 5.13(b)
shows their optimal values while moving in the front, while Fig. 5.13(c,d) show finally
the corresponding values of Tac and PC. For low values of ν in the constraint function
(left side of the Pareto front) the design solution selects the orbit inclination that
maximise the amount of time for the link between the spacecraft’ antenna and ground
station. This configuration reduces the overall mass M at the expense of the capacity
of detect fires (PC). As ν increases, the solutions becomes sub-optimal for Fig. 5.13(c)
while maximises the area in Fig. 5.13(d).

Table 5.7: Spacecraft model - design parameters

design parameter symbol units id LB UB sub-system

altitude h km d1 1000 1400 orbit
min elevation angle ground station εmin deg d2 15 20 orbit
inclination i deg d3 0 90 orbit
width for square detector d µm d4 20 40 payload
quality factor for imaging Q - d5 0.5 2 payload
operating wavelength λ µm d6 3 6 payload
obdh type τobdh - d7 0 1 obdh
compression factor C - d8 0.2 0.6 obdh
slew angle sl deg d9 10 60 aocs
time for slew manuvers tsl s d10 10 20 aocs
frequency f GHz d11 7 10 ttc
modulation β - d12 0 1 ttc
amplifier type τamp - d13 0 1 ttc
cell type τcell - d14 0 1 power
bus voltage Vbus V d15 3 5 power
allowed bus drop Vdrop V d16 1 3 power

96



5. Global Solution of Constrained Min-Max Optimisation

Table 5.8: Spacecraft model - uncertain parameters

uncertain parameter symbol units id LB UB sub-system

magnetic latitude latm deg u1 0 10 orbit
maximum incidence angle IAmax deg u2 60 80 payload
max ground sampling distance Ymax m u3 60 80 payload
∆ mass ∆m % u4 0 20 obdh
∆ power ∆p % u5 0 20 obdh
antenna efficincy ηant - u6 0.6 0.9 ttc
antenna gain Gant dB u7 1 5 ttc
mass distribution network mrfdn kg u8 0.1 0.5 ttc
cell packing efficiency ηpack - u9 0.8 0.9 power
harness mass factor kharn % u10 1 10 power
worst case angle of incidence θ deg u11 20 40 power
reflectance factor q - u12 0.5 0.7 aocs
residual dipole m Am2 u13 0.0005 0.0015 aocs
delta inertia δI - u14 2 10 aocs

5.7 Conclusion

The chapter has presented a new algorithm for the solution of a class of constrained min-
max problems. The class of min-max problems emerges naturally from the need to make
robust decisions under uncertainty in the case in which constraints need to be always
satisfied. The method is based on the alternation of minimisation and a restoration step.
This scheme is fairly optimiser agnostic and we demonstrated its applicability even in
the case a simple gradient search is used. For the case in which the min-max solution
requires the global exploration of a complex solution space, we have proposed the use
of a memetic approach based on Inflationary Differential Evolution. Our complexity
analysis has revealed that the algorithm is overall of polynomial complexity with a
maximum exponent equal to 2.

The combination of the proposed solution strategy and memetic global optimiser
was extensively tested on a new benchmark of objective and constraint functions with
a variety of features that can be encountered in real-life applications.

Results show that the algorithm we propose is successful at identifying the con-
strained min-max solution with a limited number of calls to objective functions and
constraints. Such a solution minimises the worst-case realisation of the objective func-
tion in the uncertain space while guaranteeing its feasibility in all possible scenarios.
The benchmark is complemented by a real case of robust optimisation of space systems.

In the case in which a feasible solution in all the uncertain domains could not
be found, we proposed a constraint relaxation procedure to automatically adapt the
admissible region.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Algorithm 2 applied to test case MWP10&GFC1. Sub-figure (a)
shows the test case’s characteristics by plotting both the objective function f
and the constraint function c. Sub-figure (b) shows the convergence of both
the worst case conditions max f and max c for the design solutions found at
each iteration. Sub-figures (c) and (d) plot the functions c and f respectively
in the coupled space D × U , all the design solutions at the different iterations
(vertical lines) and the corresponding worst case for f and c (dots and stars).
The white areas correspond to feasible solutions c ≤ 0 in (c) and unfeasible
solutions f s.t. c > 0 in (d). Sub-figure (e) represents, for each explored design
configuration, the corresponding f (continuous lines) and c (dotted lines). Sub-
figure (f), represents the space of the maxima of f and c over the design space.98
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Figure 5.4: Convergence of MP-AIDEA with two populations in the outer
loop of Algorithm 2 for test problem MWP1&GFc1. Coloured areas represent
the convergence of the differential evolution steps (different set of colours for
different populations) while dots represents optimal solutions of the local search.

(a) (b)

Figure 5.5: GFf-1 in the case nD = nU = 1
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(a) (b)

Figure 5.6: GFf-2 in the case nD = nU = 1

(a) (b)

Figure 5.7: GFc-4 applied to MWP-11 in the case nD = nU = 1. Feasible
areas are white.

(a) (b)

Figure 5.8: GFc-5 applied to MWP-11 in the case nD = nU = 1. Feasible
areas are white.
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(a) (b)

Figure 5.9: GFc-6 applied to MWP-10 in the case nD = nU = 1. Feasible
areas are white.

(a) (b)

Figure 5.10: GFc-7am applied to MWP-10 in the case nD = nU = 1. Feasible
areas are white.
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(a) (b)

Figure 5.11: GFc-8 applied to MWP-10 in the case nD = nU = 1. Feasible
areas are white.

AOCS

Orbit

TTC PAYLOAD OBDH

POWER

M =
∑5

k=1Mk

PC

[Po,Km, pd,Kg]

[h, εmin, Tac, Dmax]

[h, Po]

[No, Po, Tecl]

P

P
P P

DV c

DV

M
M

M
M

M

DV c

Figure 5.12: Representation of the spacecraft as a complex system. The two
quantities of interest are the mass of the M and the percent of coverage are
PC for the payload.
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(a) (b)

(c) (d)

Figure 5.13: Optimal Pareto points for the spacecraft design problem in
Eq. (5.30) calculated with Algorithm 2 and applying the EC approach, run-
ning 30 optimisations with different thresholds ν in the constraint function c.
Sub-figure (a) shows the Pareto Front representing the tension between max c
and max f . Sub-figures (b,c,d) explain the shape of the Pareto Front. The
most important design parameters leading the trade-off between f and c are
the altitude H = d1 and the inclination I = d3. Sub-figure (b) shows the
increase of altitude (points) and inclination (stars) for the different solutions in
sub-figure (a). Sub-figure (c) presents the time in view between the satellite and
the ground station for a series of revolutions as a function of the inclination.
Sub-figure (d) finally shows the per cent of land coverage by the payload.
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Part III

System Optimisation Under
Epistemic Uncertainty
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6

Evidence Network Model for
System Design Optimisation

“ Remember that all models are wrong;
the practical question is how wrong do they have to be to not be useful. ”

– George Box

The content of this chapter was published in:

• G. Filippi and M. Vasile, Introduction to Evidence-Based Robust
Optimisation, in Optimization Under Uncertainty with Applications to
Aerospace Engineering (M. Vasile, ed.), Springer Nature, 2020 [58]

• M. Vasile, G. Filippi, C. Ortega Absil, and A. Riccardi, Fast belief
estimation in evidence network models, in EUROGEN, (Madrid), 9
2017 [61]

The main challenge of MBSE and SDO in the design optimisation of CEdS is related
to the increasing complexity of the system under design. Inter-connectivity between
sub-systems and uncertainty forces the engineer modeller to abandon reductionism and
embrace instead a holistic approach. Modelling these interactions and couplings is
indeed of fundamental importance, much more than pushing the fidelity of the single
components’ models.

This chapter presents a modelling framework to capture CEdgS in the presence of
uncertainty and within the framework of SDO for MBSE. The developed approach is
called ENM: a holistic network modelling procedure which captures the interdepen-
dence and the sharing of information between sub-systems and also can be used to
quantify epistemic uncertainty. As the name suggests, DST of Evidence is adopted
to quantify uncertainty as explained in the following chapter. The ENM was first
introduced in [193]. The method was extended in [61] to make UQ through ENM com-
putationally more efficient. [62] introduced a time-dependent reliability measure in the
ENM and finally [13] introduced the concept of resilience in a higher level optimisation
framework.
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The necessary background on system modelling has been presented in Chapter 2.
The methodology will be further extended in the following chapters for uncertainty
quantification and optimisation under uncertainty with DST.

The modelling approach of ENM is presented in Section 6.1. A simple example of the
network model is then given in Section 6.2. Section 6.3 define our problem formulation
with regards to SDO under epistemic uncertainty. Conclusions of the chapter are finally
presented in Section 6.4.

6.1 Evidence Network Model

Consider a generic complex system with N sub-systems and suppose a single QoI has
been defined for which we give a mathematical formulation f : Ω→ R. For each of its
sub-systems, a model gi can be generated that describes the contribution of the i−th
subsystem to the global metric f . The models in general accept as inputs a vector of
decision (or design) variables d and a vector of uncertain (or environmental) variables
u. The proposed modelling approach is called ENM and translates the complex system
into a non-directed graph (or network) where the corresponding N sub-systems’ models
are the nodes of the graph. The topology of the network represents the sub-system
inter-relations and the exchange functions h are used to quantify them. The ENM of
the generic metric f can then be represented as:

f(d,u) =

N∑
i=1

gi(d,ui,hi(d,ui,uij)) (6.1)

In Eq. (6.1) each node i is characterised by the value function gi and exchanges
information with node j via the exchange function hij . Functions f , g and h depends
on design d and uncertain u vector. hi(d,ui,uij) is the vector of scalar functions
hij(d,ui,uij), j ∈ Ji and Ji is the set of indexes of nodes connected to the i-th node;
ui are the uncertain variables of subsystem i not affecting any other subsystems and uij
are the uncertain variables affecting both subsystems i and j. Note that accordingly
to this notation uij = uji. We then call ui uncoupled variables because they influence
only subsystem i and uij coupled variables because they influence subsystems i and j.
If the same parameters are shared between nodes i, j and k, it is: uij = uik = ujk. It
is also important to note that if values of hij functions were known with certainty the
nodes composing the network would be decoupled and statistically independent.

ENM has been developed under some properties as explained in the following. Con-
sider the pair (f,Ω) where f : Ω→ R is the global model. Furthermore, we introduce
the two sets Ωx and Ωy such that Ω = Ωx × Ωy. Consider now two partitions Dx and
Dy respectively of Ωx and Ωy. Given δΩp

x ∈ Dx and δΩq
y ∈ Dy we compute:

y0 = arg max
δΩqy

f(x0,y) (6.2)
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for an arbitrary initial x0 ∈ Ωx and the iteration:

xk = arg max
δΩpx

f(x,yk−1) (6.3)

yk = arg max
δΩqy

f(xk,y) (6.4)

We say that the pair (f,Ω) is M-decomposable if, given an M ≥ 0, for k > M we have
that:

(xk,yk) = arg max
δΩpq

f(x,y) (6.5)

with δΩpq = δΩp
x × δΩq

y.
The ENM properties are then:

1. The contribution of the coupled variable uij to the value f manifests through the
scalar functions hij and hji.

2. The pair (f,Ω) is M-decomposable. In particular, we consider the case in which
M = 0.

6.2 Evidence Network Model Example

As an example, a generic system with 3 sub-systems is considered where the global
network QoI f is supposed to be the cumulative sum over the subsystems quantities
gi. The system can then be modelled as:

f(d,u) = f1(d,u) + f2(d,u) + f3(d,u)
= d1d2 + u1 + u1 sin(d2u4) + u1 cos(u1u6)+

d1 + u2 + u4 sin(u2 + u4) + u5 sin(u2u5)+
d1
d2

+ u3 + u6 sin(u3 + u6) + u5 sin(u3u5).

(6.6)

It is possible to classify the uncertain vectors as coupled uij and uncoupled ui:
u1 = u1, u2 = u2, u3 = u3, u12 = u4, u23 = u5 and u13 = u6.

The corresponding ENM consists of a fully connected network with 3 nodes as in
Fig. 6.1 and in the following formulation:

f(d,u) = g1(d,u1, h12(d,u1,u12), h13(d,u1,u13)))+
g2(d,u2, h21(d,u2,u12), h23(d,u2,u23)))+
g3(d,u3, h31(d,u3,u13), h32(d,u3,u23)).

(6.7)

where f is the global network quantity dependant on the full vectors d and u. The
functions gi with i = 1, 2, 3 are the specific functions of sub-systems 1,2,3. Similarly,
ui is the vector of the uncertain components affecting only subsystem i. Finally hij

pertain to the coupling vectors uij with i = 1, 2, 3.
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g1(d,u1,u12,u13)

g2(d,u2,u12,u23) g3(d,u3,u13,u23)

u12 u13

u23

Figure 6.1: Evidence Network Model of a generic system F composed of three
sub-systems with coupled variables u12, u13 and u23.

6.3 System Design Optimisation Under Epistemic Uncer-
tainty

It here is suggested to extend the general formulation of OUU in Eq. (4.7) with the
SDO framework in Eq. (4.20) where UQ is modelled with DST:

max Belief
(∑N

i=1 [fi (d,ui,hi(d,ui,uij))] ≤ ν
)

minν∈R ν
w.r.t. d,ui,uij

s.t. Belief
(
ci(d,ui,hi(d,ui,uij)) ≤ νc

)
≥ 1− ε for i = 1, . . . ,N

(6.8)

Finally, Eq. (6.8) can be restricted to the most conservative condition, given by the
minimum ν such that Belief(f < ν) = 1 and by ε = 0. Eq. (6.8) then translates into
the deterministic bi-level min-max problem:

mind∈D maxu∈U f(d,u)
s.t.
maxu∈U c(d,u) ≤ νc.

(6.9)

6.4 Conclusion

This chapter introduced the reader to the ENM framework developed for the modelling
of CEdS under epistemic uncertainty. It has been explained how the ENM can be
constructed starting from the basic models of the sub-systems. A simple example has
been given. The contribution of this framework will be exploited more in the next
chapters.
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Evidence-Based Robust
Optimisation

The content of this chapter was published in:

• C. O. Absil, M. Vasile, G. Filippi, A. Riccardi, and M. Vasile, A
Variance-Based Estimation of the Resilience Indices in the Prelimi-
nary Design Optimisation of Engineering Systems Under Epistemic
Uncertainty, in EUROGEN, (Madrid), 2017 [60]

• M. Vasile, G. Filippi, C. Ortega Absil, and A. Riccardi, Fast belief
estimation in evidence network models, in EUROGEN, (Madrid), 9
2017 [61]

• G. Filippi, M. Marchi, M. Vasile, and P. Vercesi, Evidence-Based
Robust Optimisation of Space Systems with Evidence Network Mod-
els, in IEEE Congress on Evolutionary Computation (CEC), (Rio De
Janeiro), 2018 [62].

• G. Filippi, M. Vasile, P. Z. Korondi, M. Marchi, and C. Poloni, Ro-
bust design optimisation of dynamical space systems, in 8th Interna-
tional Systems & Concurrent Engineering for Space Applications Con-
ference, (Glasgow), 2018 [63].

• G. Filippi and M. Vasile, Introduction to Evidence-Based Robust
Optimisation, in Optimization Under Uncertainty with Applications to
Aerospace Engineering (M. Vasile, ed.), Springer Nature, 2020 [58]

In the early phase of the design of an engineering system, there is a degree of
uncertainty on its parts and configurations. This uncertainty is often epistemic in
nature and translates into an uncertainty in the performance of the system as a whole.
With this regard, this chapter explores two problems and proposes algorithmic solution
methodologies. The first problem is the definition of an holistic formulation and solution
methodology for OUU with epistemic uncertainty in the filed of SDO. The second
problem, included in the former, is related to the computational complexity associated
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with UQ within SDO under uncertainty and UMDO [79]. This is particularly important
when non-probabilistic uncertainty theories, DST as an example, are adopted.

The chapter introduces EBRO, a methodology to account for epistemic uncertainty
in the design for robustness of CEdSs. Epistemic uncertainty is modelled with DST
which offers a natural way to assign degrees of belief to the expected performance of a
system and to rigorously quantify the impact of epistemic uncertainty on the associated
QoI. In EBRO the system design is optimised to maximise performance under epis-
temic uncertainty. The resulting system OUU process is composed of the solution of
a constrained bi-level min-max optimisation problem followed by the reconstruction of
the Belief and Plausibility on the value of the performance metric. The methodology for
the solution of CSOP and CMOP min-max are presented in Chapter 5 and Appendix B.

We also present two novel methodologies for UQ with DST that reduce the com-
plexity time for the evaluation of Belief and Plausibility within the framework of DST
and make possible their application to MBSE. The first methodology is an outer
approximation via decomposition approach and is here presented in detail. The sec-
ond methodology is a binary tree approach and is explained in Appendix C. We can
identify five main contributions given by the proposed methodologies. (i) They both
drastically reduce the computational cost making then accessible the use of DST within
the framework of SDO and MBSE in general. This is important because UQ within
the framework of MBSE is intractable even for simple problems when no proper com-
putational reduction techniques are implemented. (ii) The decomposition approach
presents a compact graph representation of CEdgS. It is customary in MDO to rep-
resent a system as a set of connected components that exchange information through
connecting links. An example of UMDO with Evidence Theory can be found in [171]
and an application of the Design Structure Matrix (DSM) is in [142]. However, in
an ENM the specific properties of the nodes and the form in which they exchange in-
formation is such that Belief functions can be computed in polynomial time. Within
ENM the correlations between nodes are represented by scalar values that model in
a compact way the influence of many uncertain parameters and weight the different
links. Also ENM allows for an easier representation of sub-networks and clusters. (iii)
It is proposed a quantification of the computational complexity. (iv) They are both
outer approximations. This means that they are conservative iterative procedures that
produce estimated values of Belief and Plausibility which are lower than the actual
ones. Conservative methods are privileged since it is better to overestimate uncertainty
than underestimate it. (v) The methods iteratively converge to the exact solution with
a sequence of outer approximations. Further computational time can then be spent to
refine the solution if needed.

The framework presented in this chapter finds applicability in the design and op-
timisation of complex aerospace systems, composed of a number of interconnected
components, the behaviour of which can not be inferred only by the behaviour of each
of its parts.

The reader can find the necessary background in Chapter 3 for the UQ problems
and algorithms. The reader finds an overview of the different sources and forms of
uncertainty, explains the difference between aleatory and epistemic uncertainty and
focuses the attention on DST. It also gives an overview of the existing algorithms
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for the solution of the UQ problem. Section 4.5 are important for an introduction to
respectively the SDO problem and the related solvers in the literature. Chapter 5 is
important for the worst case optimisation approach that has been developed. A further
developed methodology for which I gave a partial contribution, is instead presented in
Appendix C. It presents a technique based on an Evolutionary Binary Tree approach
(more details are in [60]). It is explained the method’s philosophy, the heuristics im-
plemented and finally in Appendix C.2.1 the method is applied for verification to the
preliminary reliability-based design of the solar array of a small spacecraft. Results are
then presented and discussed.

Section 7.1 provides the mathematical formulation of the general EBRO problem.
Section 7.2 presents the outer approximation via decomposition approach methodology
which is based on the ENM procedure. A set of benchmark functions is proposed and
used for testing. The results are finally presented and discussed. Section 7.3 presents
a engineering application problem. The system’s and sub-system’s models and the
application of the method is described. Section 7.4 finally presents the conclusion.

7.1 Problem Formulation and Solution Methodology

This section explains the EBRO approach used to incorporate epistemic uncertainty in
the optimisation process and to design the system for robustness.

In the general formulation, we want to minimise the threshold ν and maximise the
belief in the statement f(d,u) ≤ ν while maintaining a hard condition on the constraint
satisfaction:

maxd∈D Bel(f(d,u) ≤ ν)
minν∈R ν
Bel(c(d,u) ≤ νc) > 1− ε

(7.1)

Eq. (7.1) requires the evaluation of the belief curve for both the functions f and c
and it becomes easily intractable. In fact, there is a dependence of the belief to the
design vector d and the thresholds ν and νc thus for each new value of d, ν and νc the
belief has to be revalued.

Among all vectors d that solve problem (7.1) the most critical one, d∗, corre-
sponds to the minimum values of ν and νc such that Bel(f(d,u)) is maximum and
Bel(C(d,u) ≤ νc)) = 1. We call the search for d∗, worst-case scenario optimisation
and it can be formulated as the deterministic min-max optimisation problem [11]:

mind∈D maxu∈U f(d,u)
s.t.
∀u ∈ U : c(d,u) ≤ 0.

(7.2)

Solving for the worst-case scenario makes the optimisation problem independent of the
uncertainty quantification method, has a complexity that is independent of the number
of FEs and does not require any particular assumption on the constraint functions.

The approach then involve the solution of a constrained min-max problem, to de-
liver a robust design point. Starting from this robust design point a sequence of evolu-
tionary optimisation steps are used to reconstruct an approximation of the Belief and

115



7. Evidence-Based Robust Optimisation

Plausibility curves associated to a particular design solution.

7.2 Outer Approximation via Decomposition

In some cases the structure and nature of the function f can be exploited to drastically
reduce the computation of Bel(f ≤ ν) in (4.13). The following approach is based on the
possibility of decomposing the uncertainty space of some UQ problems that happen to
be a common situation in SDO. The decomposition method is based on the modelling
approach presented in Chapter 6.

The decomposition algorithm aims at decoupling the sub-systems over the uncertain
variables in order to optimise only over a small subset of the FEs (Algorithm 11). The
procedure requires the following steps:

1. Solution of the optimal worst-case scenario problem:

min
d∈D

max
u∈U

f(d,u) (7.3)

2. Maximisation over the coupled variables and computation of Belc(A).

3. Sample of the partial Belief curves.

4. Maximisation over the uncoupled variables.

5. Reconstruction of the approximation B̃el(A).

Point 1 has been already discussed in Chapter 5. In the following, the solution of
problem (7.3) is represented by the values d̃ and u and it is assumed that d̃ is already
available.

For each coupled vector uij a maximisation is run over each FE θk,ij ⊆ Θij ⊆ U ,

given d̃ and keeping fixed all the other components to uk and ulm ∀k, l,m \ {l,m} =
{i, j}. Taking again the example in Figure 6.1 we have:

ûk,12 = arg max
u12∈θk,12

f(d̃,u1,u2,u3,u12,u13,u23), ∀θk,12 ⊂ Θ12

ûk,13 = arg max
u13∈θk,13

f(d̃,u1,u2,u3,u12,u13,u23), ∀θk,13 ⊂ Θ13

ûk,23 = arg max
u23∈θk,23

f(d̃,u1,u2,u3,u12,u13,u23), ∀θk,23 ⊂ Θ23 (7.4)

For easiness in the notation we will indicate with

f(uij) := f(d̃,u1, ...,uij , ...,ui+1j , ...).

We can then compute the partial belief associated only to the coupled variables with
index ij:

Bel(f(uij) < ν) =
∑

θk,ij |maxuij∈θk,ij F (uij)≤ν

bpa(θk,ij) (7.5)
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The calculation of the partial belief can be found in Algorithm 11, line 6. Once the
partial belief curve, for each coupled vector, is available, one can sample these curves, by
taking a succession of {ν1, ..., ν

q, ..., νNS = ν} values, and find the corresponding values
of the coupled vectors ûqk,ij . These values will be used in the next step to decouple the
functions gi (gj) and compute the maxima of each gi (gj) with respect to the uncoupled
variables ui (uj).

For each level q, given a fixed value of the coupling functions, one can study each
gi independently of the others. The idea is to run an optimisation for each function gi
over only the uncoupled vector ui. With the example in Figure 6.1 in mind, having

ĥqij(ui) := hij(d̃,ui, û
q
ij) (7.6)

where ûqij := ûqk∗,ij : k∗ = arg maxk f(ûqk,ij), is one of the maxima attained by the
coupled variable uij . For every FE θk,i ∈ Θi we have:

ûqk1,1
= arg max

u1∈θk,1
g1(d̃,u1, ĥ

q
12(u1), ĥq13(u1)),∀θk1,1 ⊂ Θ1

ûqk2,2
= arg max

u2∈θk,2
g2(d̃,u2, ĥ

q
21(u2), ĥq23(u2)), ∀θk2,2 ⊂ Θ2

ûqk3,3
= arg max

u3∈θk,3
g3(d̃,u3, ĥ

q
31(u3), ĥq32(u3)), ∀θk3,3 ⊂ Θ3 (7.7)

with the corresponding values ĝqk1,1
, ĝqk2,2

and ĝqk3,3
.

Once all the maxima over the FEs of the uncoupled variables are available for each
sample q one can calculate an approximation of Bel(f(d,u) < ν) as follows.

From Eq. (7.7), for each sample q the maximum associated to the FE θk = θk1,1 ×
θk2,2× θk3,3, for k = 1, ...NFE,1 ·NFE,2 ·NFE,3, given the condition of positive semidef-
inition of gi, is:

max
(u1,u2,u3)∈θk

f(d̃,u1,u2,u3, û
q
12, û

q
13, û

q
23) = ĝqk1,1

+ ĝqk2,2
+ ĝqk3,3

(7.8)

with associated basic probability assignment:

bpaq(θk) = bpa(θk1,1)bpa(θk2,2)bpa(θk3,3)∆Belq (7.9)

where ∆Belq =
∏
ij ∆Belqij are the contributions of the partial belief curves in (7.5):

the generic ∆Belqij is the difference of belief between sample q and q − 1 in the partial
belief curve Belc about the coupled uncertain vector uij. In other words, the bpa of
each θk is the product of all the bpa’s of the FE of each uncoupled variable scaled with
the product of the belief values of the samples drawn from the partial belief curves
(Line 18). The approximation of the belief is then computed as:

B̃el(f(d,u) ≤ ν) =
∑
q

∑
k

bpaq(θk) (7.10)
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7.2.1 Complexity Analysis

The number of optimisations for the exact curve reconstruction (equal to the total
number of FE) for a problem with m uncertain variables, each defined over Nk intervals,
is:

NFE =
m∏
k=1

Nk. (7.11)

In terms of coupled and uncoupled uncertain vectors we can write:

NFE =

mu∏
i=1

pui∏
k=1

Nu
i,k

mc∏
i=1

pci∏
k=1

N c
i,k

 (7.12)

where pui and pci are the number of components of the i − th uncoupled and coupled
vector, respectively, and Nu

i,k and N c
i,k are the number of intervals of the k − th com-

ponents of the i− th uncoupled and coupled vector respectively. The total number of
FE that needs to be explored in the decomposition is instead:

NDec
FE = Ns

mu∑
i=1

Nu
FE,i +

mc∑
i=1

N c
FE,i (7.13)

considering the vector of uncertainties ordered as

u = [u1, ...,umu︸ ︷︷ ︸
uncoupled

,u1, ...,umc︸ ︷︷ ︸
coupled

]

where Ns is the number of samples of the partial belief curves, N c
FE,i =

∏pci
k=1N

c
i,k and

Nu
FE,i =

∏pui
k=1N

u
i,k. This means that the computational complexity to calculate the

maxima of the function F within the FEs is polynomial with the number of subsystems
and remains exponential for each individual uncoupled or coupled vector.

7.2.2 Method advantages

This section better clarifies with an example the advantages of the proposed method
stated in the introduction of this chapter.

Consider the equation f = g1 + g2 where

g1(d,u) = 10u2
1 + |u2|u2

5 +
u4

6

100
+ d1|d2| (7.14)

g2(d,u) = |u3|+ u2
4

|u5|
10

+ u2
6 + |d1| (7.15)

with two uncoupled vectors (u1 = (u1, u2) and u2 = (u3, u4)) and one coupled vec-
tor (u12 = (u5, u6)). Consider also each uncertain variable to be defined over three
uncertain intervals, giving as result a total of 36 = 729 FE.

Fig. 7.1 shows the exact Belief curve together with the approximated one calculated
with an increasing number of samples (parameter of the process).
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Algorithm 11 Decomposition

1: Initialise
2: Uncoupled vectors uu = [u1,u2, ...,ui, ...,umu ]
3: Coupled vectors uc = [u12,u13, ...,uij , ...,umc ]

4: for a given design d̃ do
5: Compute (d̃,uu,uc) = arg maxF (d̃,uu,uc)
6: for all uij ∈ uc do
7: for all Focal Elements θk,ij ⊆ Θij do

8: F̂k,ij = maxuij∈θk,ij F (d̃,uu,uij)
9: ûk,ij = argmaxuij∈θk,ijF

10: Evaluate bpa(θk,ij)
11: Evaluate partial Belief curve Bel(F (uij) ≤ ν)
12: end for
13: for number of samples do
14: Evaluate ∆Belq, ûk,ij and F̂k,ij
15: end for
16: end for
17: for all the combinations of samples do
18: for all ui ∈ uu do
19: for all Focal Elements θk,i ⊆ Θi do
20: Run

Fmax,k,i = maxθk,i F (d̃, ûc,ui)
21: Evaluate bpa(θk,i)
22: end for
23: end for
24: for all the combinations of Focal Elements

θt ∈ Θ1 ×Θ2 × ...×Θmu do
25: Evaluate Fmax,k ≤ ν
26: Evaluate bpak
27: end for
28: Evaluate the Belief for this sample by constructing collection Γν
29: end for
30: Add up all belief values for all samples
31: end for

The exact curve evaluation requires an optimisation for each FE. With a fraction
of optimisation, instead, an approximated Belief curve can be reconstructed with the
proposed evidence-network decomposition approach. With reference to Section 7.2.1, it
is possible to show the advantage of the method in terms of computational complexity.
The complexity is shown in Table 7.1 with respect to the different number of samples
and with reference to the number of optimisations required for the exact Belief curve.

As a further advantage, as Fig. 7.1 shows, all the calculated solutions are outer
belief approximations since they are a lower bound of the exact one.

Finally, with an increase in the number of samples (proportional to computational
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Table 7.1: Complexity comparison of approximated and exact Belief.

n sample complexity (n opt.) complexity (%)

1 27 3.7
2 45 6.1
3 63 8.6
4 81 11.1
5 99 13.58
6 117 16.05

Table 7.2: design variables bounds

dim LB UB

1 -5 5
2 -5 5
3 -5 5

time) the approximation improves until convergence.

7.2.3 Method Tutorial

The following example serves as a step by step tutorial for the ENM-based decomposi-
tion and it is based on the procedure explained in Section 7.2. The test case function
is based on topology (b) in Fig. 7.9, reported here in Fig. 7.2 for clarity.

The quantity of interest f is modelled as the sum of three components, f1, f2 and
f3, all of them depending on both the design vector d and the uncertain vector u:

f(d,u) = f1(d,u) + f2(d,u) + f3(d,u). (7.16)

where:

f1 = d1 + (sin(u1) + sin(u2))− (|u1 + u2|+ φ1 + φ2)3 (7.17)

f2 = d2 + (sin(u3) + sin(u4))− (|u3 + u4|+ φ1)3 (7.18)

f3 = d3 + (sin(u5) + sin(u6))− (|u5 + u6|+ φ2)3 (7.19)

φ1 = sin(u7) + sin(u8) + u7 + u8 (7.20)

φ2 = sin(u9) + sin(u10) + u9 + u10 (7.21)

The problem consists of 3 design and 10 uncertain variables. The required infor-
mation is presented in Tables 7.2 and 7.3 respectively. In particular, Table 7.3 list, for
each uncertain variable, which of the functions fi is affected, the domain bounds for
each imprecise interval and the corresponding bpa.

In order to apply the decomposition method, it is important first to define the
network-based formulation of the model and the partition of the uncertain space into
coupling and uncoupling variables. As shown in Fig. 7.2, there is a coupling between
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Figure 7.1: Simple example of application of the decomposition approach

Table 7.3: uncertain variables bounds

dim function interval 1 bpa 1 interval 2 bpa 2

1 1 [0, 0.5] 0.5 [0.5, 1] 0.5
2 1 [1, 1.5] 0.4 [1.5, 2] 0.6
3 2 [2, 2.5] 0.4 [2.5, 3] 0.6
4 2 [3, 3.5] 0.4 [3.5, 4] 0.6
5 3 [4, 4.5] 0.4 [4.5, 5] 0.6
6 3 [5, 5.5] 0.4 [5.5, 6] 0.6
7 [1, 2] [6, 6.5] 0.4 [6.5, 7] 0.6
8 [1, 2] [7, 7.5] 0.4 [7.5, 8] 0.6
9 [1, 3] [8, 8.5] 0.3 [8.5, 9] 0.2
10 [1, 3] [9, 9.5] 0.2 [9.5, 10] 0.8
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Figure 7.2: topology of the network-model formulation for the tutorial example.

f1 and f2 and a further coupling between f1 and f3. These couplings are modelled
respectively with the exchange functions φ1 and φ2. The uncoupling uncertain space
includes the vectors: u1 = [u1, u2], u2 = [u3, u4] and u3 = [u5, u6] affecting respectively
the functions f1, f2 and f3. The coupling uncertain space instead includes the vectors:
u1,2 = [u7, u8] and u1,3 = [u9, u10] affecting respectively the couples of functions [f1,
f2] and [f1, f3].

The model formulation in Eq. (7.16) can then be extended further by making explicit
the dependence of f1, f2 and f3 from uncoupled vectors (u1, u2 and u3) and coupling
functions (φ1 and φ2). Also, it is possible to define the dependency of the coupling
functions from the coupling uncertain components:

f = f1(d,u1, φ1(u1,2), φ2(u1,3)) + f2(d,u2, φ1(u1,2)) + f3(d,u3, φ2(u1,3)) (7.22)

Once the problem has been properly formulated, it is possible to start with the
decomposition process as described in Section 7.2. The first step for the evaluation of
the approximated Belief curve requires the solution of the optimal worst-case scenario
problem for the definition of the ”anchor point”. The solution can in general be cal-
culated using the min-max algorithm presented in Chapter 5. For this tutorial, the
solution is straightforward: d∗ = [-5, -5] and u∗ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The second step requires the Maximisation over the coupled variables and the com-
putation of Belc(A). This part refers to Eq. (7.4). As shown in Fig. 7.2, there are two
coupling functions (φ1 and φ2) depending respectively on the vectors u1,2 and u1,3.
Two partial Belief curves need then to be calculated. In particular, Belc,1 (that refers
to φ1) requires the maximisation of f over all the FE in Θc

1 that comes from the Carte-
sian product of the intervals of variables in u1,2 = [u1, u2]. Since for both u1 and u2

two intervals have been defined in Table 7.3, there are a total of 4 FEs to optimise.
All the other uncertain variables - the uncoupled vectors (u1, u2, u3) and the coupled
vector u1,3 of φ2 - are fixed to the anchor point defined above. Numeric results of the
optimisations over the considered FEs for Belc,1 are summarised in Table 7.4. Here, ’id
fe’ is the identification number for the FE in Θc

1, ’sub-id fe’ indicates for each element
of the vector u1,2 which imprecise interval is considered, ’bpa fe’ is the bpa of the FE,
’bpa fe (cum.)’ is its cumulative value considering the FE sorted on ’max f fe’ (their
worst-case value of f) and ’max u fe’ is the value of u1,2 corresponding to ’max f fe’.
Likewise, Belc,2 is calculated based only on the 4 FEs in Θc

2 with all other vector com-
ponents fixed to the anchor point. Numeric results for the second partial Belief curve

122



7. Evidence-Based Robust Optimisation

Table 7.4: results of the optimisation of the coupled uncertain components for
Belc,1

id fe sub-id fe bpa fe bpa fe (cum.) max f fe max u fe

1 [1,1] 0.16 0.16 54 [6.5, 7.5]
2 [2,1] 0.24 0.40 54.5 [7, 7.5]
3 [1,2] 0.24 0.64 54.5 [6.5, 8]
4 [2,2] 0.36 1 55 [7, 8]

Table 7.5: results of the optimisation of the coupled uncertain components for
Belc,2

id fe sub-id fe bpa fe bpa fe (cum.) max f fe max u fe

1 [1, 1] 0.06 0.06 54 [8.5, 9.5]
2 [2, 1] 0.14 0.20 54.5 [9, 9.5]
3 [1, 2] 0.24 0.44 55 [8.5, 10]
4 [2, 2] 0.56 1 55 [9, 10]

are summarised in Table 7.5. The calculated Belc,1 and Belc,2 curves are then plotted
in Fig. 7.3. In the figure, the blue lines correspond to Belief and Plausibility of the
contribution of φ1 to f while the red ones refer to the contribution of φ2 to f . It has
to be noticed that the worst condition of both Belc,1 and Belc,2 in Fig. 7.3 correspond
to the solution of the min-max optimisation.

The third step is the Sampling of the partial curves Belc,i. This is described in
Eq. (7.6). In this example, 2 samples have been used for both the curves Belc,1 and
Belc,2 in Fig. 7.3. The approach selects the points in Fig. 7.3 starting from the worst-
case solution (Belief = 1) and then moving down with a reduction of the threshold in the
belief. Given the sample in Fig. 7.3, it is then possible to determined the corresponding
FE as in Tables 7.4 and 7.5, and in particular, the values for the worst case f and the
corresponding uc that makes f maximum inside the FE.

The fourth step implies the maximisation over the uncoupled variables as described
Eq. (7.7). A belief (resp. plausibility) curve is computed for each function fi and each
combination of samples. From the previous step, 2 samples are given for each Belc,i,
for a total of 4 combinations. Fig. 7.4 shows 4 plots, each one obtained for a different
sample. Each plot shows belief and plausibility of the 3 functions fi. In this test-case
two of these curves happens to be coincident. As can be noted from the pictures, the
cumulative values of the bpa are scaled. The scaling coefficient for the q-th sample is
the ∆Belq explained in Eq. (7.9) calculated as the product of the differences in Fig. 7.3
between the belief value of the sample and the previous sample.

Finally, the last step requires the reconstruction of the approximation B̃el(A). This
is explained in Eqs. (7.8) and (7.9). The reconstructed outer approximation for both
belief and plausibility is in Fig. 7.5. In Fig. 7.6 also shows the exact belief and plausi-
bility calculated with a optimisation (maximisation for the Belief and minimisation for
the Plausibility) for each FE.
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Figure 7.3: Simple example of application of the decomposition approach

7.2.4 Benchmark and test results

Finally, this section presents the benchmark that has been developed for the testing of
Belief and Plausibility outer approximation. The set of test cases is shown in Fig. 7.9
and Eq. (7.23). The results are listed in Table 7.6.

The benchmark is defined based on the analytical function f : f =
∑

i gi.
The i-th node’ performance and the generic coupling function hij between couples

of nodes are respectively formulated as:

gi = di +

Nu
FE,i∑
k=1

sinuik −
(∣∣∣Nu

FE,i∑
k=1

uik

∣∣∣+

mc∑
k=1

hik

)3
(7.23)

hik =

Nu
FE,i∑
k=1

sin
(
uik
)

+ uik

f is multi-modal with respect of Θu and Θc separately while monotonic with respect
of the coupling functions h.

The scaling behaviour of the method is tested by applying f to the different network
topologies represented in Fig. 7.9. In particular, each i-node depends on a pair of
uncoupling uncertain variables uu,i = [u1

u,i, u
2
u,i] and each link shares between two

nodes a pair of coupling uncertain variables uc,ij = [u1
c,ij , u

2
c,ij ]. Then, being n the

number of nodes and l the number of links for a selected topology, the total number of
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(a) (b)

(c) (d)

Figure 7.4: Belief curves due to the uncoupled uncertain vectors for each of
the 4 combinations of samples.

uncertain variables is: nu,tot = 2(n+ l).
First, the optimal design configuration dopt is calculated by solving the constrained

min-max optimisation problem described by Eq. (5.1) by means of Algorithm 2. Fig. 7.8
presents, as an example, the convergence of the algorithm for f applied to topology (c)
where the constraint function has been defined as:

C(d,u) = −
∑
i

di + 5
∑
i

(
sin(diui)

)
≤ 0 (7.24)

The figure shows the convergence of the algorithm to the optimal solution trading the
conflict between the performance indicator

fmax = max
u∈U

f(d,u) (7.25)
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Figure 7.5: Simple example of application of the decomposition approach

Figure 7.6: Simple example of application of the decomposition approach
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(a) (b)

(c) (d)

Figure 7.7: Belief and Plausibility curves for f . Sub-figures (a,b) refer to
topology (c) while sub-figures (c,d) refer to topology (d). Sub-figures (a,c)
plot the partial curves evaluated only in the subspace of the coupling uncertain
variables. Each colour corresponds to a single link in the network. Sub-figures
(b,d) show the final curves calculated with the decomposition approach where
each colour refers to a different sampling. They show also the exact belief and
plausibility evaluated running an optimisation for each focal element.

and the constraint function

cmax = max
u∈U

c(d,u) ≤ 0 (7.26)

At convergence, dopt gives the minimum worst case value of fmax while pushing cmax
at the edge of the feasible set ] −∞, 0]. The curve c, instead, represents the value of
the constraint function corresponding to dopt and the worst uncertain scenario for f .

The network topology is then exploited with Algorithm 11 to propagate epistemic
uncertainty and calculate at a reduced computational cost the Belief and Plausibility
curves corresponding to dopt. For this purpose, the Frame of Discernment is constructed
by assigning to each uncertain variable u two possible intervals and their bpa. The total
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Figure 7.8: Convergence to the optimal solution of the constrained min-max
problem for Algorithm 2 with f applied to topology (c). For each design solution
proposed by the algorithm at each new iteration, it is here plotted the worst-
case scenario in the uncertain space for the objective function fmax and for
the constraint violation cmax. It is also plotted the value of the constraint c
corresponding to the worst scenario for fmax.

number of focal elements is then nfe = 2nu,tot . The number of optimisations required
for exact quantification of the Belief curve is nopt,exact = nfe while the number required
by the decomposition approach follows Eq. (7.12).

Table 7.6 collects the results of the simulations for the different network topologies.
It shows the gain in computational cost offered by the decomposition approach together
with the generated error. The error has been evaluated as the ratio (Aexact−Adec)/Adec
where Aexact and Adec are the integral of the exact and decomposition curve respectively.
For problems satisfying the conditions in Section 6.1, the decomposition approach as-
sures quantifying exactly the DST’ measures of probability when the partial curves are
entirely sampled. For example, considering the topology (c) and using 64 samples (all
the combinations for the 4 samples for each of the 3 coupled curves), we obtain an error
equal to zero running a number of optimisations that is 19% of a total number of focal
elements. Furthermore, the smaller the number of samples, the lower the computa-
tional cost but the higher the error. For example for the same problem, a single sample
brings to a cost that is 0.59% of the exact evaluation increasing the error however to
187%. Between these two extreme positions, we can make a trade-off between cost and
accuracy.

Fig. 7.7 shows instead the plots of the partial curves and the final curves calcu-
lated with the decomposition strategy and also the exact curves calculated running an
optimisation for each focal element for f applied to topology (c).

It has been noticed that sampling very close points in the space of the maxima in
Fig. 7.7(a) brings to negligible contribution to the error reduction in Fig. 7.7(b). Then,
future works will show how a careful selection of the samples can improve the algorithm
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(a) (b) (c)

(d)

Figure 7.9: Network topology applied to TC1 and TC2 for the study of the
scalability of the decomposition method. (a): simple graph with a dimension of
the uncertain space dimu = 6. (b): triad ∧ with dimu = 10. (c): triangle K3

with dimu = 12. (d): graph with dimu = 22.

performance mitigating both the error (possibly bringing it to zero) and the cost under
the condition that the user is not interested in the entire curve but only in the value
assumed by belief and plausibility at some specific thresholds. This is particularly
important when the decomposition strategy is nested within an optimisation loop as in
Eq. (7.1).

7.3 Case Study: Optimal Battery Sizing

The EBRO is here tested on a realistic case study of space systems engineering. This
case study will address the battery sizing in order to assure autonomy of a spacecraft
in the transfer to a Geostationary Orbit (GEO).

The mass of the battery is dependent on the following design, uncertain and fixed
parameters:

• 3 design parameters. Time of orbit insertion t, type of battery γ and bus
voltage ∆Vbus:

d =
[
t, γ,∆Vbus

]T
.

Table 7.7 shows the design parameters with their associated range of variability:
t is given in Modified Julian Date (MJD) - for more details see [194] - and can
be any day of 2019 at 7 a.m.; γ ranges in four possible intervals - [0, 0.25) , [0.25,
0.5), [0.5 0.75) and [0.75, 1] - corresponding to 4 battery types (see Table 7.8).

• 31 uncertain parameters. Orbital parameters of five orbits α - semimajor
axis, a, eccentricity, e, Inclination, i, right ascension of the ascending node, Ω,
Argument of Perigee, ω and True Anomaly, θ (for more details see [194])- and
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Table 7.6: ENM decomposition results

topology nfe nsamp,i nsamp,tot nopt nopt/nfe cpu f (s) cpu fmincon (s) cpu Alg. (s) Belief error

(a) 26 = 64 1 1 12 0.1875 0.008 0.341 0.4265 0.46635

2 2 20 0.3125 0.01 0.312 0.4685 0.40311

3 3 28 0.4375 0.018 0.377 0.5570 0.20439

4 4 36 0.5625 0.019 0.448 0.6415 2e-7

(b) 210 = 1024 1 1 20 0.0195 0.014 0.387 0.662 1.524

2 4 56 0.0546 0.031 0.692 0.930 4.344

3 9 116 0.1133 0.053 1.137 1.435 0.1618

4 16 200 0.1953 0.089 1.896 2.288 0.0001

(c) 212 = 4096 1 1 24 0.0059 0.017 0.428 0.732 1.8705

2 8 108 0.0264 0.0525 1.061 1.353 0.59611

3 27 336 0.0820 0.151 2.95 3.492 0.14550

4 64 780 0.1904 0.346 6.62 7.650 0.00004

(d) 222 = 4194304 1 1 44 1.049e-05 0.0495 0.694 1.17 2.6101

2 32 788 1.878e-04 0.611 7.202 10.717 0.5776

3 243 5852 1.395e-03 4.32 48.50 73.38 0.1870

4 1024 24596 5.864e-03 17.88 200.28 299.21 0.0002

Table 7.7: design parameters

variable symbol lower bound upper bound var. type

insertion time t 6939.8 7304.8 continuous
battery type γ 0 1 discrete
Bus voltage ∆VBUS 0 5 discrete

Table 7.8: lookup table of batteries

BATTERY A B C D

Cell capacity Ccell (Ah) 4.5 1.7 1.5 3.7
Cell voltage ∆Vcell (V) 4.1 4.2 4.2 4.1
Cell Mass m(γ) (kg) 0.63 0.2 0.21 0.23
Max DoD DoDmax (%) 80 75 75 75

130



7. Evidence-Based Robust Optimisation

efficiency of the battery η:

u =
[
α, η

]
=
[
a, e, i,Ω,ω,θ, η]

with:
a = [a1, a2, a3, a4, a5]T ,
e = [e1, e2, e3, e4, e5]T ,
i = [i1, i2, i3, i4, i5]T ,
Ω = [Ω1,Ω2,Ω3,Ω4,Ω5]T ,
ω = [ω1, ω2, ω3, ω4, ω5]T ,
θ = [θ1, θ2, θ3, θ4, θ5]T .

For each uncertain variable, two possible intervals are given, both with 50% of
probability. They are symmetrically arranged on either side of the nominal values
in Table 7.10; the interval dimensions are given by Table 7.9.

Table 7.9: uncertain intervals

a (km) e (-) i (°) Ω(°) ω (°) θ (°)
∆u ±20 km ±0.0012 ±0.07° ±30° ±0.5° ±0.025°

• 10 fixed parameters. Engine ignition time and Liquid Apogee Engine (LAE)
burn time per orbit (Table 7.11).

The input is the time of insertion by the launcher in MJD, plus a table with as many
rows as LAE firings plus one (Table 7.10) - the first row corresponds to insertion by the
launcher. Columns specify the orbital parameters after the burn, the time of arrival,
in hours from launch and the duration of burn. The spacecraft is assumed to follow
Keplerian motion between burns. Note that the consistency of the input is not checked,
i.e. it is assumed that the specified burn can deliver to the specified ephemerides within
the specified time

The overall mass M depends on the mass of the cell (Table 7.8) and on the total
number of cells of the battery:

M = m(γ)Ntot (7.27)

and Ntot is the product of the number of cells in series Ns and in parallel Np:

Ntot = NsNp =
∆VBUS
∆Vcell

E

DoDmax∆VBUSCcell
+ 1 (7.28)

where E, the Energy requirement, depends on the length of the eclipse periods evaluated
from the input data, ∆VBUS is the Bus voltage, ∆Vcell the cell voltage, DoDmax the
maximum allowed Depth of Discharge, Ccell the Cell Capacity [195]. It is considered
that the battery is ON during eclipse and LAE burns and OFF otherwise.

7.3.1 Problem Formulation

The optimisation problem is formulated as the constrained minimisation of the mass
M of the battery under epistemic uncertainty.
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Table 7.10: Nominal value of the epistemic parameters for SSTL problem

orbit a (km) e (-) i (°) Ω (°) ω (°) θ (°)
1 68500.3 0.90 22.81 86.63 180.10 0.00
2 73250.2 0.77 9.12 86.79 180.6 180.08
3 86065.5 0.51 1.09 85.96 180.81 180.84
4 49646.4 0.15 0.36 86.85 180.97 4.25
5 42049.0 0.001 0.05 270 0.00 359.95

Table 7.11: Fixed parameters

orbit Time of Arrival [hrs.] Burn duration [hrs.]

1 0.00 0.0
2 24.7 0.6
3 79.9 0.8
4 114.7 0.6
5 145.2 0.3

First the constraint min-max problem is solved were M is the total mass:

mind∈D maxu∈U M(d,u)
s.t.
∀u ∈ U : c(d,u) ≤ 0.

(7.29)

where the constraint is given by the maximum allowed Depth of discharge for each
type of battery (Table 7.8):

c(d,u) = DoD(d,u)−DoDmax (7.30)

Then the Belief and Plausibility curves are reconstructed to quantify the effect of
uncertainty on the solutions.

7.3.2 Evidence Network Model of the Battery Sizing Problem

The above-described battery sizing problem is modelled with an ENM assuming that
each of the five orbits is a node of the network and all five nodes are connected to a 6th

node, the battery. The scheme of Fig. 7.10 illustrates this simple topology:

u16 u26 u36 u46 u56

g6

h16 h26 h36 h46 h56

Figure 7.10: Evidence Network Model of the optimal battery sizing problem.
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M(d,u) =

6∑
i=1

gi(d,ui,hi(d,ui,uij)) (7.31)

• 5 nodes evaluate the energy required by the spacecraft in the given orbits:
Ei(d, ai, ei, ii,Ωi, ωi, θi) and have gi = 0 for i = 1, 2, ..., 5

• The 6th node sizes the mass of the battery: g6(d, η, h16, h26, h36, h46, h56) where
hi6 = Ei.

The epistemic vector has been organised as:

u = [ u6︸︷︷︸
uncoupled

,u16,u26,u36,u46,u56︸ ︷︷ ︸
coupled

]

where: u6 = η and ui6 = [ai, ei, ii,Ωi, ωi, θi]
T with i = 1,...,5.

Θ6 = ∪kθk,6 3 u6 is the set of all the FE of the uncoupled vector u6 and Θi6 =
∪kθk,i6 3 ui6 is the set of all the FE of the coupled vector ui6 for i=1, 2, ..., 5.

In the ENM model of this problem, the five orbits independently contribute to
the mass as the uncertainty on the energy requirement manifests only through node
6. Furthermore, node 6 is monotone with respect to the energy requirement of each
orbit, independently of the uncertainty in the other orbits. Finally, the mass of the
battery M is proportional to the maximum energy requirement that depends on the
maximum period of battery discharge. Because of the monotonic dependency of the
discharge period on the uncertainty in each orbit, the maximum energy demand can
be calculated directly from the min-max solution. Thus:

M ∝ Emax ⇒M ∝ max(Emax1 , Emax2 , Emax3 , Emax4 , Emax5 ). (7.32)

With the specific orbital parameters used in this case study, the min-max algorithm
always converges to a solution where the maximum energy requirement derives from
the second orbit; thus only the second node of the presented ENM influences the sixth,
the battery, through the exchange function h26: g6(d, η, h26) where h26 = E2.

7.3.3 Results

The software MP-AIDEA [131] has been used to provide the solution of both the min-
max and the h-decomposition problems. The inner loop (maximisation over u), the
outer loop (minimisation over d) and also each optimisation for the decomposition
approach have been set with a single population and a maximum number of function
evaluations Nmax

F = 1000 while the total number of function evaluations for whole the
min-max loop is Nmax,tot

F = 105; the problems have been run multiple times obtaining
the same results.

Min-Max

The minmax solution for the optimal battery sizing is d̃ = [59, D, 36.9]T with a cor-
responding battery mass of 126.3 kg. For t = 59 the mission is most affected by
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uncertainty, as shown in Figs. 7.11a and 7.11b. The Figures show the influence of the
uncertainty for all the possible missions in the year 2019. The blue curves correspond
to the nominal orbits in Table 7.10, while the red ones represent the maximisation over
the uncertain parameters of the energy requirement (Fig. 7.11a) and time of eclipse
(Fig. 7.11b).

From the analysis results that the total required energy is not affected by the uncer-
tain parameters for a number of dates. In fact, for a mission that starts on a day ∈ [1,
33] ∪ [90, 225] ∪ [276, 365], nominal energy is equal to the maximum energy (1540 Wh)
and they depend only on the LAE burn duration. However, from day 34 to day 89 and
from day 226 to 275 the energy requirement is strongly influenced by the uncertainties
on the orbits and day 59 is certainly the most affected. From the minmax solution
battery D results to be the best one for all the possible mission times. Fig. 7.12 shows
that the mass (nominal and maximum) of battery D is the lowest for all days of the
year.

H-Decomposition

The full Belief curve of the battery sizing problem requires 231 = 2.1475 · 109 max-
imisations (one for each FE), thus it is intractable. The computational cost of the
decomposition approach, as explained in Eq. (7.13), is:

NDEC
FE = Ns

mu∑
i=1

Nu
FE,i +

mc∑
i=1

N c
FE,i = 320 + 2Ns. (7.33)

Fig. 7.13a shows the partial Belief curve of the mass M considering all the FE
θk,26 ∈ Θ26 of the coupled variables u26 that influence both sub-systems two and six;
the other partial curves are not significant for the final reconstruction because, as ex-
plained in Section 7.3.2, the uncertainty on the nodes one, three, four and five (and the
corresponding orbits) have no influence on the value of the objective function M . Fi-
nally Fig. 7.13b shows the reconstructed Belief curve obtained with the h-decomposition
approach with five samples in the space of the coupled vectors ui6. Thus, according to
Eq. (7.33), 330 different optimisation have been run, strongly reducing the computa-
tional cost of the exact evaluation.

7.3.4 Validation

A validation of the correctness of the results can be obtained in this way. Decompose
the min-max problem in three steps:

• Fix a starting day for the mission: t̂;

• Maximise the energy requirement over the orbit uncertainty:

max
u∈U

E(t̂,a, e, i,Ω,ω,θ)

• Minimise the mass over the design parameters (type of battery and voltage):
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(a)

(b)

Figure 7.11: First analysis: each day of 2019 has been considered for the
satellite launch; for each day, the nominal and worst case scenario have been
evaluated for the energy requirement(Figure 7.11a) and time of eclipse (Figure
7.11b).

min
d∈D
t=t̂

M(d,a, e, i,Ω,ω,θ, η̂)

with η̂ = min(η).
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Figure 7.12: Comparison of the nominal and maximum masses obtained with
the four different batteries for each day of 2019.

For t̂ = 59 and evaluated arg maxu∈U E (the red curve in Fig. 7.11a, the minimum
Mass of the battery (Fig. 7.12) corresponds to battery D and it is 126.3 kg.

7.3.5 Comments

In this case study the energy requirement and the corresponding mass of a battery
have been analysed in order to assure autonomy of a spacecraft in the transfer to a
geostationary orbit GEO. The mission is composed of five different orbits and four
LAE firings. Our model, with the given information, is able to evaluate the periods of
time when the satellite is in eclipse and then the mass of the battery in order to assure
enough storage of energy. Firstly, the energy requirement has been studied for each day
of the year 2019 on the nominal given data and on the worst case over the uncertainty
on the orbits of the satellite. It was noticed that there are two periods in the year, 28.5%
of the entire period, where the uncertainty plays an important role in the determination
of the mass of the battery. For the remaining 71.5% of the time, instead, given the
previously described information and evidence, the uncertainty does not influence the
quantity of interest and the mass of the battery can be evaluated deterministically.
In order to make an interesting analysis, we decided to choose, for the launch, two
days when the uncertainty on the position of the spacecraft during the orbits could
be dangerous for the mission: day 59 and day 261. For both days we evaluated the
worst-case scenario, that is the best configuration over the design parameters d that
minimises the negative effects of the uncertainty u. Finally, fixed the design variables
(type of battery and bus voltage) from the min-max solution, we reconstructed the
Belief (lower probability) that the battery, with a mass M < η, is able to satisfy the
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(a)

(b)

Figure 7.13: Partial Belief curve, Figure 7.13a, of the coupled vector u26 and
Belief curves, Figure 7.13b, of the spacecraft’ mass for the day 59 obtained with
5 samples and then 330 optimisations.

energy requirement. Our analysis shows that, given the information and the evidence
described in the previous sections, battery D has the minimum mass for each day of the
year (Figure 7.12). Due to supplier confidence issues rather than technical performance
the actual SSTL design is battery A. Figure 7.14 shows two comparisons. The first is
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between the belief curve of battery A and the belief curve of battery D in the day 59
(resp. yellow and purple curves): for that day, when the influence of uncertainty is
important, the mass of battery A has to be much heavier than battery D in order to be
successful in the worst case scenario. The second comparison regards battery A: red,
blue and purple curves represent respectively: the belief curve in the 72% of the days
(of the year 2019), the actual design choice and the belief curve of battery A in day
59. The red Belief is simply a line because in these configurations (days 1-33, 90-225
and 276-365) the uncertainty doesnt influence the mass of the battery. Red and purple
curves are the lower and upper bounds for the belief of battery A during the year. In
the 72% of the days the belief curve for battery A is the red plot, in the 5% of the day
the belief curve of battery A is to the right of the red plot but still to the left of the
blue threshold while only in the 23% of the days the belief curve is to the right of the
actual design (blue); in the worst day, 59, it is the purple one. This means that the
actual design (blue) has a Belief=1 to be successful for each mission starting on the
77% of the days of the year 2019.

Figure 7.14: Comparison between the SSTL design (battery A, blue curve),
the worst case scenario for the battery A in the 72% of the time of the year (red
curve) and the belief curves for both batteries A and D in day 59 (purple and
yellow curves).

7.4 Conclusion

The chapter presented an application of EBRO to the optimisation of a complex space
system affected by epistemic uncertainty. We used DST of Evidence to model uncer-
tainty and ENM to model the system and its interconnections. From the battery sizing
problem one can see that: the proposed constrained min-max scheme produces correct
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results and the decomposition approach delivers an approximation of the Belief nearly
in polynomial time with a low exponent. Once the computational cost of individual
subsystems become important compared to the overall evaluation of system perfor-
mance and reliability, an approach based on hierarchical surrogate models can be used,
as demonstrated in [116].

The chapter presented also a novel tool for UQ in the framework of DST which
is useful when IP is used to model lack of knowledge and imprecision. The proposed
approach is iterative, produces a conservative approximation (converging from below)
and drastically reduces the computational complexity. The method is based on the
system decomposition where the whole system model is decomposed in coupled sub-
modules with exchanging functions. It is based on the ENM which translates a complex
engineering system into a non directed graph. In this graph each node represents a
sub-system or component and the associated uncertainty is quantified with basic belief
assignments. Exploiting the ENM properties, a decomposition procedure is explained
that reduces the computational cost to a polynomial complexity with respect to the
number of interacting components. An extensive description of the procedure has been
presented. A benchmark of increasing complexity has also been proposed with which
the approach has been tested.
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Evidence-Based Resilience
Optimisation

“ It is not the most intellectual of the species that survives;
it is not the strongest that survives;
but the species that survives is the one that is able best to adapt and adjust
to the changing environment in which it finds itself. ”

– Charles Darwin, On the Origin of Species, 1859

The content of this chapter was published in:

• G. Filippi, M. Vasile, D. Krpelik, P. Z. Korondi, M. Marchi, and C.
Poloni, Space systems resilience optimisation under epistemic uncer-
tainty, Acta Astronautica, vol. 165, pp. 195210, 12 2019,
https://doi.org/10.1016/j.actaastro.2019.08.024 [13].

• G. Filippi and M. Vasile, Network resilience optimisation of com-
plex systems in Advances in uncertainty quantification and optimiza-
tion under uncertainty with aerospace applications (M. Vasile and D.
Quagliarella, eds.), (Cham), Springer International Publishing, 2020,
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• G. Filippi, D. Krpelik, P. Z. Korondi, M. Vasile, M. Marchi, and C.
Poloni, Space systems resilience engineering and global system reliabil-
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ceedings of the International Astronautical Congress, IAC, vol. 2018-
Octob, (Bremen), 2018 [64].

• G. Filippi and M. Vasile, Evidence-based resilience engineering of dy-
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• G. Filippi, D. Gillespie, A. Ross Wilson, and M. Vasile, A resilience
approach to the design of future Moon base power systems, in Int.
Astronaut. Congr. IAC, 2020 [69].

As the complexity of a system grows - being it a natural, engineering or organisa-
tional system - the associated risk of bad performances, failures and even disasters will
increase as well. After an hazardous events, the (complex) system survives if it is able
to absorb disturbances and shocks and then to adapt itself to the new environment. In
the attempt to solve these problems within the engineering field, Design for Resilience
in the context of systems engineering is acquiring continuously more attention in these
last years. Resilience Engineering is a relatively recent field of research that has blended
together different disciplines [24–27]. Like all the new research directions, its terminol-
ogy and definitions are still in their infancy [23,28]. Having experts from many different
fields with highly variegate backgrounds also don’t help in finding easily an agreement.
This slow progression is however important due to the very nature of resilience which
is strictly connected to the concepts of complexity and holism. Resilience is indeed an
emergent property of complex systems which exhibits similar aspects in much different
applications. It requires then the development of strong multidisciplinary theoretical
foundations to be used successfully in practice.

The chapter proposes a novel algorithmic methodology for the resilience optimi-
sation of a CEdS called EBORe. Our proposed concept extends and integrates the
concepts of Design for Reliability and Design for Robustness and introduces the use
of DST to model epistemic uncertainty. The idea is that a resilient system should be
able to endure disturbances and recover from shocks [24, 26, 27, 81] while maintaining
an optimal level of performance and functionalities. In other words, the system is ex-
pected to transition between different potentially degraded states but without losing
the ability to maintain or recover, in full or in part, its functionalities and performance.
In this framework, the aim of resilience engineering is to maximise performance and
resilience at the same time. This can be translated into finding the design solution
that maximises the level of performance and active functionalities under the effect of
uncertainty that affects the transition to multiple states. The ability to endure dis-
turbances can be engineered by maximising robustness. In particular, one could be
interested in the worst case scenario in which the effect of uncertainties is maximum.
In mathematical terms, robustness can be translated into a deterministic min-max op-
timisation problem [11] that aims at optimising performance in the worst case scenario.
This aspect is here complemented with the ability to recover after shocks. A shock can
be seen as a probabilistic transition to a degraded state. A system reliability model is
then introduced to quantify these transitions and relate them to the design solutions.

Two mathematical modelling framework are then presented to quantify the system
resilience. The first is based on stochastic processes and it is in particular a HCTMC
approach that discretise a finite set of possible system’s states. The second is based on
bifurcation theory and it is able to continuously model the dynamics of the system’s
functionality.

The applicability of the proposed method to space systems engineering is demon-
strated through the preliminary design of a small satellite in Low Earth Orbit (LEO).
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The goal of the satellite is to take pictures of the Earth and send them to a ground-based
station. The system is supposed to be affected by epistemic uncertainty.

Summarising, the contribution of this chapter is: i) a definition of Resilience En-
gineering, ii) a mathematical framework for EBORe, iii) two mathematical models
to quantify resilience and iv) an algorithmic procedure for resilience engineering that
combine methodologies previously presented in earlier chapters.

The reader can find the necessary background for this chapter in Chapters 2, 5
and 6. Chapter 2 introduces to engineering approaches for design optimisation and to
resilience engineering in particular. The chapter introduces also to stochastic processes
with focus on Markov Chain and to the Bifurcation Theory. Chapter 5 presents the
algorithmic methodology for the solution of the constraint min-max problem. Chapter 6
presents the modelling framework based on the ENM.

The remaining of this section presents the structure of the chapter. Section 8.1
defines our approach to resilience engineering. Section 8.2 defines the mathematical
formulation of the problem. Sections 8.3 and 8.4 then present two alternative mathe-
matical models of system resilience: the former is based on a HCTMC while the latter
uses Bifurcation Theory. Section 8.5 is an application to a realistic test-case with the
fist resilience model. Section 8.6 presents instead an application for the second resilience
model. Results are discussed. Section 8.8 finally concludes the chapter.

8.1 Resilience Engineering

Resilience is here defined as the ability of a system to endure disturbances or regain a
desirable operational state after the occurrence of a shock. The former characteristic of
resilience is directly connected to the robustness of the system. Hence in the following,
we will propose an approach to enhance robustness when the possible disturbances are
captured by a model of epistemic uncertainty. The latter characteristic of resilience
can be quantified by measuring the degree of recovery of a system indicator, over time,
after a failure [24]. We will propose a global system reliability model that relates the
epistemic uncertainty in system and environmental parameters and the design choices
to the transition between different functioning states. Thus, our concept of Resilience
Engineering, combines robustness and reliability with a time component that accounts
for the temporal variation of system performance and the response to disturbances and
shocks.

The uncertainties in system characteristics and environment are deemed to be epis-
temic in nature and are modelled with DST as the underlying assumption is that they
cannot be captured by a known probability distribution. This uncertainty model is
applied to a graph representation of the space system, i.e. the ENM. We then quantify
the values of the performance indexes of the ENM by propagating the effects of the
epistemic uncertainties through the network and the global reliability model.

We finally apply an optimisation framework to identify, under uncertainty, those
design choices that maximise performance, and the time dependent reliability when
disturbances and possible multiple disruption and recovery events occur. The max-
imisation of system’s resilience implies the minimisation of the risk of occurrence of
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catastrophes while leaving the possibility, during the mission time, to have partial fail-
ures.

8.2 Problem Formulation

Two types of metrics are considered in EBORe. One is the performance function f :

f : Rn+m+1 → R
[d,u, t]T 7→ f(d,u, t)

(8.1)

The other is the system functionality g:

g : Rn+m+1 → R
[d,u, t]T 7→ g(d,u, t).

(8.2)

Both the performance f and the functionality g depend on the time t ∈ T ⊂ R, a
design vector d ∈ D ⊂ Rn and a uncertain vector u ∈ U ⊂ Rm.

We propose to formulate the resilient design problem of a generic CEdS as a con-
strained worst-case optimisation where f is the objective function and g the constraint:

mind∈D maxu∈U f(d,u)
s.t.
ν −minu∈U g(d,u) ≤ 0.

(8.3)

In Eq. (8.3) uncertainty is treated with a deterministic worst-case approach. Follow-
ing the modelling framework in Chapter 6, the mathematical models f and g of the
CEdS can be formulated as a ENM. The robustness is guaranteed by the min-max
optimisation of the performance f under epistemic uncertainty. The problem is then
constrained with the satisfaction, in the worst scenario, of the functionality g which
incorporate the global reliability model. The combination of robustness and reliability,
finally, guarantees the resilience of the solution.

8.3 Markov Chain-Based Resilience Model

In this section we introduce a stochastic method for modelling possible functionality
impairments and restorations based on a HCTMC approach. The method can be used
to study the resilience of complex systems and will be here applied, in particular, to
space systems. We assume a random occurrence of both disasters and repairs during
the satellite mission. The satellite is modelled as a (finite) multi-state system and its
performance, both instantaneous and cumulative, depends on its state and trajectory.

We denote the set of possible states of the satellite by X and the satellite trajectory
in this state space by a stochastic process X : T→ X , where T is the temporal dimen-
sion. A stochastic process is uniquely determined by an initial distribution over the
state space, say P0, and a family of conditional distributions, the transition operators,
{P (X(t)|X(s))} where {s, t} ∈ T.
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In the case of HCTMC processes, the specification can be simplified [196]. HCTMC
is uniquely determined by its transition rate matrix, Q ∈ R|X |×|X |, which is an analogue
to the derivative in the theory of ordinary differential equations. If the non-diagonal
elements of a transition rate matrix are non-negative and the sum of elements in each
row is zero, it induces a family of transition operators of the form:

P (X(t) = x|X(s) = y) = exp(Q(t− s))(y, x), (8.4)

where exp denotes a matrix exponential. The probability of obtaining state x at time
t, can then be evaluated by:

P (X(t) = x) =
∑
y∈X

P0(y) exp(Qt)(y, x). (8.5)

Suppose that our functionality measure, which is to be optimised, is a cumulative
functionality, VT =

∫ T
0 V (t)dt, over the mission time T , and that the immediate func-

tionality V (t) depends on the state of the satellite at the respective time, X(t). Since
X is a stochastic process, V (t) and the cumulative functionality VT become random
variables. In order to formulate a real valued function for the optimisation problem,
we need to take the stochastic character of VT into account. The function can be re-
placed by a real functional on the underlying probability space. We choose it to be the
expected value, thus the functionality g becomes:

g(d,u) := E
{∫ T

0
V (t,X(t); d,u)dt

}
, (8.6)

where V (t,X(t); d,u) emphasises the dependency of the immediate performance on the
system state, a set of design parameters (or design choices) d, and a set of uncertain
parameters u. Due to the Fubini’s theorem [197], we can switch the order of integration
to obtain:

g(d,u) =

∫ T

0
E {V (t,X(t); d,u)} dt. (8.7)

Because the set of system states, X , is finite, Eq. (8.7) attains its final form:

g(d,u) =

∫ T

0

∑
x∈X
{V (t, x; d,u)P (X(t) = x)} dt. (8.8)

Eq. (8.8) implies that we can calculate the function g in two steps. First, solve
the stochastic process X(t), and second, integrate the performance with pre-calculated
values of P (X(t)). If the immediate performance function is defined to be discrete in
time, the integration into the expected cumulative performance in Eq. (8.8) will become
a summation with respect to a counting measure.
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8.4 Catastrophe Theory-Based Resilience Model

As presented in Chapter 6, we suggest to model the CEdS using the ENM approach
where the system is translated into a graph, the p sub-systems to its nodes and the
system’s structure to the network’s topology.

Then, our goal is to study the coupling between topology and system dynamics.
We suggest modelling the dynamics of each component’s functionality with Bifurcation
Theory [198,199]:

ẋ = hµ(x). (8.9)

Indeed, Eq. (8.9) allows us to capture the continuous transition between fully function-
ing and degraded states and the occurrence of disruptions and shocks that perturb the
system. The bifurcation parameter µ in Eq. (8.9) is responsible for qualitative changes
in the dynamics.

Such a model can be developed for each node in the network (sub-system of the
CEdS). Finally, all these models can be coupled to understand the global dynam-
ics of the system. One possible coupling approach [200] directly creates a functional
dependency between states of different nodes. For the generic component i,

ẋi = Wµi (xi(t)) +

p∑
j=1

AijQνij (xi(t), xj(t)) (8.10)

provides a rather general deterministic description of systems governed by pairwise
interactions. The first term on the right-hand side of Eq. (8.10), Wµi(xi), describes
the self-dynamics of xi, accounting for processes such as influx, degradation or repro-
duction. The second term captures the interactions of node i with its neighbours.
In particular, Aij is the adjacency matrix and Qνij (xi, xj) describes the dynamical
mechanism governing the pairwise interactions. In Eq. (8.10), both Wµi and Qνij are
bifurcation models.

A different approach could instead define the bifurcation parameters µi or the initial
condition x0,i of the Ordinary Differential Equations (ODEs) as function of the output
of a different node j:

µi = R(fj(d,u)) (8.11)

or
x0,i = R(fj(d,u)) (8.12)

with fj the output of system j.
Then, by using one of this coupling mechanisms, the whole system of ODEs from

in Eq. (8.10) can be summarised as:

ẋ = hµµµ(x). (8.13)

with x,µµµ ∈ Rp. Both x0 and µµµ in Eq. (8.13) depend in general on the design vector
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d ∈ Rn, the uncertain vector u ∈ Rm and time t. For the simple case p = q = 1, it is:

x, x0, µ : Rn+m+1 → R
[d,u, t]T 7→ x(d,u, t)

[d,u, t]T 7→ x0(d,u, t)

[d,u, t]T 7→ µ(d,u, t),

(8.14)

The reliability function ρ is then evaluated by normalising the solution x in Eq. (8.13)
as it is explained in Section 8.4.2:

ρ : Rn+m+1 → [0, 1]T

[d,u, t]T 7→ ρ(d,u, t),
(8.15)

where ρ = 1 indicates a system fully functioning and ρ = 0 a system with a non
recoverable failure. More precisely, the functionality g combines the selected QoI with
the dynamics of ρ:

g(d,u, t) =

∫ TM

T0

QoI(d,u, t)ρ(d,u, t)dt. (8.16)

In the following, the bifurcation approach for the resilience modelling will be applied
only to one node (sub-system). This implies that we are solving a simplified version of
Eq. (8.13) that is Eq. (8.9). Future work will extend the approach to the solution of a
system of ODEs as suggested in Eqs. (8.10) and (8.12).

8.4.1 Autonomous Bifurcation

We present here some basic one-dimensional bifurcation models. Plots are in Fig. 8.1.
The behaviour of real dynamical systems can be captured by a combination or variation
of these elementary building blocks.

• Tangential bifurcation. A tangential bifurcation happens when one stable and
one unstable equilibria points collide and annihilate when varying the bifurcation
parameter µ:

ẋ = µ− x2 (8.17)

Eq. (8.17) presents the critical point at µc = 0. For µ > 0 there are two equilibria:
x = ±√µ with the positive one stable and the negative one unstable. For µ <
0 instead, there are no stable equilibria. x∗ = 0 is finally a non-hyperbolic
equilibrium. Looking at the bifurcation diagram in Fig. 8.1a we can however say
that it is a saddle point and then it is unstable.

• Trans-critical bifurcation. With a trans-critical bifurcation, the equilibria of the
system exchange stability as the parameter µ crosses the critical value µc = 0.
Consider the equation:

ẋ = µx− x2 (8.18)

It has two equilibria points: x∗ = 0 and x∗ = µ. The former is stable if µ < 0
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and unstable if µ > 0. The latter is stable if µ > 0 and unstable if µ < 0. µ = 0
is a critical saddle unstable point.

As for the tangential bifurcation, also for the trans-critical one it holds fµc(x
∗) = 0

with f ′µc(x
∗) = 0. However it is also:

∂fµ
∂µ (xc) = 0. The bifurcation plot is in

Fig. 8.1b.

• Pitchfork bifurcation. There are two types of pitchfork bifurcations. In the super-
critical one,

ẋ = µx− x3. (8.19)

a stable equilibrium, passing through the critical point µc = 0, becomes unstable
generating other two stable equilibrium points as shown in Fig. (8.1c). Instead,
in the sub-critical Pitchfork bifurcation,

ẋ = µx+ x3 (8.20)

when µ < 0 the dynamical system presents one stable and two unstable equilibria
that, passing through the critical point µc = 0, collapse generating an unstable
equilibrium as shown in Fig. 8.1d.

• Bifurcation with Hysteresis. An interesting phenomenon in Bifurcation theory is
the hysteresis. It happens when, for a fixed parameter µ there exist more than
one attractors. Consider, for example, the family of differential equations

ẋ = µ+ x− 1

3
x3. (8.21)

It presents two stable equilibrium sets for −5 ≤ µ ≤ 2
3 and for 2

3 ≤ µ ≤ 5 and
one unstable equilibria set for −2

3 ≤ µ ≤ 2
3 . As Fig. (8.1e) shows, there is an

overlapping between the three sets. In particular, for a fixed µ s.t.− 2
3 ≤ µ ≤ 2

3 ,
the system converges to different stable solution depending on the initial state
x0.

• Hopf bifurcation: A Hopf Bifurcation occurs when a periodic solution or limit
cycle, surrounding an equilibrium point, arises or goes away as a parameter µ
varies. When a stable limit cycle surrounds an unstable equilibrium point we
have a super-critical Hopf bifurcation. When, instead, an unstable limit cycle
surrounds a stable equilibrium point we have a sub-critical Hopf bifurcation.
With a change of coordinates from Cartesian to polar, the super-critical and the
sub-critical Hopf bifurcations can be represented by Fig. 8.1c, 8.1d respectively.
Fig. 8.1f is instead a 3D phase plot of the super-critical Hopf bifurcation given
by the Lienard equation:

ẍ− (µ− x2)ẋ+ x = 0. (8.22)
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Figure 8.1: Sample of local autonomous bifurcations diagrams.
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Table 8.1: normalisation parameters

parameter description examples

xinf fully functional state -5.5
xsup total failure state 5.5
K−∞ form factor -1e2
K∞ form factor 1e2
ερ minimum survival state 1e-2

8.4.2 Normalisation

This section describes the normalisation procedure used to map x(t) in Eq. (8.13) to
ρ(t) in Eq. (8.15). We first have to define which value xinf corresponds to the total
failure ρ = 0 and which value xsup corresponds to a total functional state ρ = 1:

xinf = min
d∈D,u∈U

x0(d,u) +Kinf (8.23)

xsup = max
d∈D,u∈U

x0(d,u) +Ksup. (8.24)

with Kinf and Ksup form factors that allow us to adapt the reliability function ρ(t)
shifting and stretching it. We define also for which values (K−∞ and K∞) the solution
is considered to diverge. In particular:

x(t)

{
is divergent if x(t) < K−∞ ∧ x(t) > K∞

is not divergent if K−∞ ≤ x(t) ≤ K∞
(8.25)

The following equation is finally used to evaluate the function ρ:

ρ(t) = min

[
max

[
x(t)k(t)− xinf , 0

]
xsup − xinf

, 1

]
b(t) (8.26)

where k(t) is a correction factor that modifies the solution when the state x diverges
to +∞:

k(t) =

{
1 if x(t) < K∞

-1 if x(t) ≥ K∞
(8.27)

and b(t) take into account the minimum accepted level for ρ:

b(t) =

{
1 if ρ(t) > ερ

0 if 0 ≤ x(t) ≤ ερ
(8.28)

Summarising, the approach has the following characteristics: (i) it normalises the
dynamics x mapping it to ρ in the interval [0, 1]; (ii) in both cases when x diverges to
+ inf or − inf, the reliability ρ goes to zero; (iii) the threshold εp has a similar effect to
the non-recovery state in HCTMC: when ρ < εp it is not possible to recover the system
state and we consider this as the total failure.
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(a) state equation x(t), µ= −5. (b) reliability ρ(t), µ= −5.

(c) state equation x(t), µ= 5. (d) reliability ρ(t), µ= 5.

Figure 8.2: Evolution in time of the state x (a,c) and the normalised state ρ
(b,d) with different initial points x0. The plots correspond to the super-critical
pitchfork bifurcation in Eq. (8.19) with different values of the parameter µ.

Table 8.1 lists the parameters and values used for the normalisation in Figs. 8.2
to 8.7. The results have been calculated for x0 ∈ [−5, 5]T and for the two extreme
values of the parameter µ = [−5, 5]T . From the figures, we see that the scalarisation
preserves the qualitative behaviour of the curve. The reliability function assumes values
0 ≤ ρ ≤ 1. When the solution x diverges for both positive or negative values, ρ becomes
zero. If the system reduces ρ below the minimum accepted ερ, then there is no possibility
to recover.

8.4.3 Non Autonomous Bifurcation: µ(t)

The autonomous bifurcation models presented in Section 8.4.1 can be generalised. As
an example, this section shows four non-autonomous models for which the bifurcation
parameter µ(t) is time-dependent. The reader can find more details in [65].

1. Smooth Degradation and Recovery Model. The reliability ρ is modelled with the
super-critical pitchfork bifurcation in Eq. (8.19), where the parameter µ is:

µ(t) = 13.8µ0t sin (10t)sign(x0) (8.29)

with µ0 = µ(t = 0) the initial value of the parameter µ. As µ assumes a new
value, the stable and unstable equilibria change according to Fig. 8.1c. The model
is plotted in Fig. 8.4 with a set of different initial conditions.
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(a) state equation x(t), µ= −5 (b) reliability ρ(t), µ= −5

(c) state equation x(t), µ= 5 (d) reliability ρ(t), µ= 5

Figure 8.3: Evolution in time of the state x (a,c) and the normalised state ρ
(b,d) with different initial points x0. The plots correspond to the sub-critical
pitchfork bifurcation in Eq. (8.20) with different values of the parameter µ.
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2. Shock Model. This model is also a generalisation of the super-critical pitchfork
bifurcation in Eq. (8.19), for which a discontinuity in ρ for both loss or recovery is
introduced. The effect of a shock on the system can be simulated with an abrupt
variation of the value of µ over time:

µ(t) =

{
µ0 if t < max (10, 30|x0|)
−x2

0µ0 if t ≥ max (10, 30|x0|).
(8.30)

The model is plotted in Fig. 8.5. We can see that the parameter µ(t) allows us
to a switch between the different equilibrium points of Fig. 8.1c. This switch can
be slow or fast depending on the magnitude of the discontinuity introduced by
µ(t). The variation of the state can go in both the directions modelling both
degradation and recovery.

3. Shock and Recovery Model. We model here a shock followed by a recovery where
the recovery is still possible iff the shock does not bring to a total failure (ρ >
ερ after the shock). Considering again the Eq. (8.19), the parameter µ is here
modelled as

µ(t) =

{
µ0 if t < 20 ∨ t > 20 + |x0 − 5|
−2x0|5 + x0||µ0| if 20 ≤ t ≤ 20 + |x0 − 5|

(8.31)

4. Shock and Repair Model. The use of Eqs. (8.29) to (8.31) to model µ(t), brings to
a limitation. The dynamics of the equations define some closed areas from which
the states x and ρ can not escape: as in Fig. 8.4b, a system with an initial state
0.5 ≤ ρ ≤ 1 will always remain in that interval while a total failure can happen
only if the initial state is 0 ≤ ρ < 0.5. This limit can be overcome with the use
of a bifurcation with hysteresis. Considering Eq. (8.21), we can model µ as

µ(t) =

{
µ0 if

−2x0|5 + x0||µ0| if
(8.32)

The results are plotted in Fig. 8.7.

A further generalisation of these non-autonomous bifurcation models, used in the
following test cases, is given by the dependency of the bifurcation parameter µ from
the design d and the uncertain u vectors of variables: µ(d,u, t).

8.5 Test Case Application (Markov Model)

This section presents the application of EBORe to the preliminary design of a small
satellite in LEO where the resilience model is based on HCTMC as explained in Sec-
tion 8.3. The goal of the satellite is to take pictures of the Earth and transmit them
to a ground based receiver. The satellite is assumed to be composed of 5 subsystems:
AOCS, TTC, OBDH, Power and Payload. Each component has multiple functional-
ities and both the performance of a component and the reliability associated to each
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(a) state equation x(t), µ=5 (b) reliability ρ(t), µ=5

Figure 8.4: Smooth Degradation/Recovery Model. Evolution in time of the
state x (a) and the normalised state ρ (b) with different initial points x0. It
is based on the super-critical pitchfork bifurcation in Eq. (8.19) with time-
dependent µ following Eq. (8.29).

(a) state equation x(t), µ0=5 (b) reliability ρ(t), µ0=5

(c) state equation x(t), µ0=−5 (d) reliability ρ(t), µ0=−5

Figure 8.5: Shock Model. Evolution in time of the state x (a,c) and the
normalised state ρ (b,d) with different initial points x0. The plots are based on
the super-critical pitchfork bifurcation in Eq. (8.19) with time-dependent µ in
Eq. (8.30).
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(a) state equation x(t), µ0=5 (b) reliability ρ(t), µ0=5

Figure 8.6: Shock and Recovery Model. Evolution in time of the state x (a) and
the normalised state ρ (b) with different initial points x0. The plots are based
on the super-critical pitchfork bifurcation in Eq. (8.19) with time-dependent µ
following Eq. (8.31).

(a) state equation x(t), µ0=5 (b) reliability ρ(t), µ0=5

Figure 8.7: Shock and Repair Model. Evolution in time of the state x (a) and
the normalised state ρ (b) with different initial points x0. The plots are based
on the bifurcation with hysteresis in Eq. (8.21) with time-dependent µ following
Eq. (8.32).
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functionality are assumed to depend on a number of uncertain and design system pa-
rameters. In the preliminary design phase, this uncertainty is epistemic in nature and
thus is here modelled with DST.

The reliability model mixes random occurrences (aleatory) of both disaster and
repair events, during the satellite lifetime, and transitions from fully functional to
degraded states (and back) that depend on design solution and epistemic uncertain
parameters. The satellite is modelled as a finite multi-state system and the stochastic
transitions between states are described as a HCTMC [196]. The reliability model is
then integrated into the worst-case scenario optimisation problem by formulating and
solving a constrained min-max problem under epistemic uncertainty. Then, an ENM
is proposed to represent a complex space system with multiple, coupled subsystems
and disciplines. This representation allows one to explore techniques to reduce the
computational complexity of evaluating the resilience and robustness of the system.

8.5.1 Optimisation Problem Definition

The goal of the considered optimisation problem is the minimisation of the system
mass MTOT under the constraint satisfaction of the expected transmitted data volume
fV . The expected immediate performance E {V (t,X(T ); d,u)} is defined in Eq. (8.84).
The uncertainty affects both the probability of transitioning between partial and/or
total failure modes and the system mass. With reference to Eq. (8.3), the objective
function f corresponds to the total satellite mass MTOT and the constraint function
c to the functionality related to the Data Volume transmitted fV . Problem Eq. (8.3)
then translates to:

mind∈D maxu∈U MTOT (d,u)
s.t.
ν −minu∈U fV (d,u) ≤ 0.

(8.33)

It has to be noted that the recovery from a partial failure is driven by the value of the
design vector d which, in turns, affects the value of the system mass. The uncertainty
domain U is defined by the Cartesian product of the intervals in Table 8.3. In order
to facilitate the search for an optimal solution we apply an affine transformation that
maps the uncertainty space into a unit hyper-cube where all the uncertainty intervals,
along each dimension, are ordered and adjacent [193]. The decision domain D, instead,
is defined by the Cartesian product of the intervals in Table 8.2. Where a continuous
parameter is used in discrete or binary form, to select a particular component, its value
is automatically rounded to the closest integer within the subsystem model.

8.5.2 System Models

It is here presented the mathematical model of the space system, composed of 5 inter-
faced sub-systems: TTC, OBDH, AOCS, Payload and Power. The ENM framework
presented in Section 6.1 has been applied as explained in Section 8.5.4 where the 5
subsystems are translated to nodes and their interconnections to links. A plot of the
network is in Fig. 8.8.
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Two QoI are here considered: the overall mass of the satellite MTOT (d,u) and the
total amount of data sent to the ground station V (d,u, t)∀t ∈ [T0, T ]:

MTOT (d,u) =

5∑
i=1

Mi = Mttc +Mobdh +Maocs +Mpl +Mp (8.34)

V (d,u, t) = V c
i +

V c
i+1 − V c

i

ti+1 − ti
(t− ti) i = 0, ..., No − 1. (8.35)

Both Eqs. (8.34) and (8.35) depend on a vector of decision parameters d and a vector
of epistemic uncertain variables u. Eq. (8.35) is a linear piece-wise interpolation of the
components of the vector Vc = [V c

1 , ..., V
c
No

]T of compressed data volumes sent to the

ground station for each of the To = [T1, ..., TNo ]
T periods of the No orbits during the

total mission time T , such that Ti+1 = ti+1 − ti and T =
∑No

i=1 Ti.
The calculation of the subsystem masses Mttc, Mobdh, Maocs, Mpl, Mp and of the

data volumes V c
i will be described in more detail in the following sections.

Payload

The payload is a camera that takes images of the Earth during daylight-time Tdl and
send them to the OBDH sub-system for compression. Since there is not an orbital
dynamics node in this example we calculate all the orbital quantities in the payload

node. More specifically, the orbit period Torb(h) = 2π
√

(RE+h)3

µ , the eclipse time

Tecl(h) = DEA(h)Torb(h)
360° and the daylight time Tdl(h) = Torb − Tecl [201], that are used

by the Payload and the Power nodes, are functions of the uncertain altitude h, where
DEA = 2 arcsin( RE

h+RE
) is the Earth Angular Diameter, RE = 6.3782 ·103 km the Earth

radius and µE = 3.986 · 1014 m3s−2 the Earth gravity constant. The access time to the
ground station Tac, that is shared with the TTC node, is defined as:

Tac =
Torb
180°

arccos
cos (ζmax)

cos (ζmin)
(8.36)

where

ζmax =90°− εmin − ηmax (8.37)

sin (ηmax) = sin
DEA

2
cos εmin (8.38)

sin (ζmin) = sin (Lpol) sin (LGS)+ (8.39)

cos (Lpol) cos (LGS) cos (∆L) (8.40)

with ε the elevation angle, η the nadir angle, Lpol = 90°− I with I the inclination
(I = I0+δinc with I0 = 0), LGS the latitude at the ground station and ∆L the difference
in longitude between orbit pole and ground station [202].

For each completed orbit the payload generates Npic
i images, with i ∈ [1, No].

Over several orbits the numbers of images are stored in the vector Npic(FR, h) =
[Npic

1 , Npic
2 , ..., Npic

No]
T , where the number of images per orbit is the product Npic

i =
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FRTdl between daylight time and frame rate FR. The frame rate FR is evaluated with
a piece-wise interpolation of the values {6.6, 26.6, 26.6, 26.6} s−1 over the design pa-
rameter τpl ∈ {1, 2, 3, 4}. The corresponding amount of data generated by the payload
system for each orbit is stored in the vector VPL:

VPL =
ImSBDNpic

233
, (8.41)

which is passed on to the OBDH subsystem. The image size ImS is piece-wise inter-
polated using the data {1280 × 1024, 640 × 480, 2592 × 1944, 1280 × 1024} pixel, over
τpl. The bit depth BD is a design parameter and the value at denominator is used to
change units from bits to Giga bytes.

Mass and power of the payload are derived from a a look-up table of available
cameras. As for the frame rate and image size, by inserting a value of the design
parameter τpl, the model does a piece-wise interpolation returning a mass value from the
vector Mpl = [1.1, 1.1, 0.256, 1.1]T kg, a power value in daylight from the vector Ppl,dl =
[4, 4, 2.5, 4]T W and a power value in eclipse from the vector Ppl,ecl = [0, 0, 1.75, 9.75]T

W [203–205].

On-Board Data Handling

In this system model, it is assumed that the main purpose of the OBDH is to com-
press and store the images coming from the payload. According to [206], the total
compression rate for JPEG compression is C=0.0434. Thus, the volume of data after
the compression, that is used in the Eq. (8.35) for the second quantity of interest, is:

Vc = VPLC. (8.42)

The design parameter τobdh does a piece-wise interpolation of the type of OBDH within
a list of four available systems. The model takes the value of τobdh and linearly in-
terpolates the specific mass and power for the single OBDH module from the vectors:
md
obdh = [2.3, 2, 1.5, 3]T kg and pdobdh = [15, 20, 22, 30]T W. The maximum data storage

is vdobdh = 4 Gbytes [207]. The total mass Mobdh and the power Pobdh of the OBDH
are then functions of the compressed data volume V max

c = max(Vc), and the uncertain
parameters δPobdh and δMobdh:

Mobdh = md
obdh

V max
c

vdobdh
(1 + δMobdh) (8.43)

Pobdh = pdobdh
V max
c

vdobdh
(1 + δPobdh) (8.44)

Telecommunication System

The TTC is composed of an antenna, an amplified transponder and a Radio Frequency
Distribution Network (RFDN). TTC connects the transmitter antenna on the CubeSat
with the receiving antenna on the ground station. A patch antenna is considered. The
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mass Mant of the antenna depends on the diameter D:

D =
λant
π

√
Gt
ηant

(8.45)

with ηant the uncertain antenna efficiency and λant the wave length.

Mant = π
D2

4
(0.0005ρc + 0.0015ρd) (8.46)

with ρc = 8940 kg/m2 and ρd = 2000 kg/m2 respectively the density of copper and the
density of dielectric material. Eq. (8.46) can be found in [208]. The RFDN mass Mrfdn

is an uncertain variable while the amplified transponder mass Mamp and the power
requirement Pamp are derived from available data as described in [209], as a function
of the transmitter power Pt (power in output from the antenna)

Pt =
Eb
N0
−Gt − Lt − Ls − Lp −

Gr
Tn,s

+ 10 log10R− 228.6 (8.47)

and of the amplifier type τamp (design parameter in Table 8.2). The relations can be
found in [209] and are defined from data derived from actual flight hardware. The ratio
of received energy-per-bit to noise density, Eb

N0
, is a function of frequency fttc, modula-

tion τmod and required Bit Error Rate (BER) = 10−5 as in [210] where fttc and τmod
are design parameters. For each modulation type from the list {PSK, BPSK, CFSK,
BFSK, FSK, DPSK, QPSK, NRZ} a different formula to evaluate Eb

N0
[210] is given.

A linear pairwise interpolation is done of the Eb
N0

values over the τmod parameter. The
quantity Lt is the uncertain on-board loss, while Ls = 92.44 + 20 log10 dA + 20 log10 fttc
is the free space path loss with dA the distance between the transmitter and receiving
antennas [210]. The distance dA is here assumed to be equal to the altitude h for sake
of simplicity. The term Lp is the propagation loss and it collects atmospheric attenua-
tion, rain attenuation, pointing loss and other losses that are taken into account in the
uncertain parameter Lother. Gr = 60dB is the receiver antenna gain. The temperature
Tn,s is the system noise temperature. R = Vmaxc

Tac
is the data rate, where V max

c , in bits,
is the maximum transmitted data volume across all orbits and Tac is the access time
to the ground station.

Finally, the mass of the TTC system is the sum of its components:

Mttc = Mant +Mamp +Mrfdn. (8.48)

The power of the TTC is a function of the transponder only. In particular, the value in
decibel of Pttc is linearly interpolated using the vector [0.0792, 0.5441]T over the range
[0.1461, 1.9031]T [209]. Pttc is then used as input for the Power subsystem.

Attitude and Orbit Control System

The AOCS is in charge of controlling the orientation of the CubeSat with a three axis
stabilisation system. The actuators are reaction wheels and magneto-torquers.
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During the mission, the CubeSat is assumed to be affected by a number of distur-
bances and it is expected to perform some slew manoeuvres. In particular, the solar
radiation pressure Ts, the magnetic torque Tm, the torque due to aerodynamic drag
Ta and the gravity gradient torque Tg. The torque due to solar radiation pressure is
defined as:

Ts = l
Is
c
Asc(1 + rf ) (8.49)

with Is = 1420 W/m2 the incident solar radiation, c the speed of light, Asc the
uncertain area of the surface normal to the sunlight, l the offset between the centre of
gravity and centre of pressure of the satellite (a design parameter in Table 8.2) and rf
the uncertain reflectance factor. The torque due to the magnetic field is:

Tm = mdipB (8.50)

with mdip the uncertain spacecraft residual dipole and B the planet magnetic field
strength:

B =
B0R

3
E

(RE + h)3

√
3 sin2 (lM ) + 1 (8.51)

where lM is the magnetic latitude. The torque due to drag is defined as:

Ta = pdynCdAscl. (8.52)

In Eq. (8.52) pdyn = 1
2ρv

2 is the the dynamic pressure, where ρ = ρ0e
−h/Hsh is the

atmospheric density, with ρ0 = 1.2250 kg/m3 and Hsh = 8.6 km, and v the velocity
on a circular orbit at altitude h. Cd is the uncertain drag coefficient of the spacecraft.
Asc is the uncertain area of the surface normal to the velocity vector considered equal
to the surface area in Section 8.5.2 (please refers to Table 8.3 for the value of this
uncertain parameter). Note that we assume that both the area of the surface normal
to the sunlight and the one normal to the velocity are the same. The torque due to the
gravity gradient is:

Tg =
3µE

2(RE + h)3
|Iz −min(Ix, Iy)| sin 2ψ (8.53)

where Iz = 0.1417(1 + δI) kg m2, Iy = 0.1083 kg·m2 and Ix = 0.0417 kg·m2 are the
principal moments of inertia of the satellite and ψ = 8.7266 · 10−2 radiant is the angle
between the spacecraft z-axis and the nadir vector [193]. The total disturbance is the
sum:

Td = Ts + Tm + Ta + Tg (8.54)

The momentum due to Td that is stored in the reaction wheels, Hd, and the momentum
required for the slew manoeuvres, Hsl, are defined as:

Hd =
TdTorb

4e
(8.55)

Hsl =
4φslIz
tsl

(8.56)
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with e = 8.7266 · 10−2 radiant the pointing accuracy, φsl the slew angle and tsl the
time allowed for the manoeuvre (design parameters in Table 8.2). The mass, Mrw, and
power, Prw, of the reaction wheels are computed by interpolation from available real
data [209], as functions of the maximum between Hd and Hsl:

Mrw ∝ max (Hd, Hsl) (8.57)

Prw ∝ max (Hd, Hsl) (8.58)

In particular, for momentums of [0.0016, 400]T Nms, the masses are respectively [0.072,
20]T kg and the power consumptions are [0.465, 110]T W. It is assumed that the
momentum stored in the reaction wheels is unloaded with magneto-torquers. The
mass and power of the magneto-torquers are interpolated as functions of the required
magnetic dipole Dmag as in [209]:

Mmt ∝ Dmag (8.59)

Pmt ∝ Dmag (8.60)

where

Dmag =
Td
B

(8.61)

with B given in Eq. (8.51). In particular, for dipoles Dmag of [0.06, 4000]T Am2, the
masses are respectively [0.0835, 50]T kg and the power consumptions are [0.155, 16]T

W.
Finally, the outputs of the AOCS node are:

Maocs = Mrw +Mmt (8.62)

Paocs = Prw + Pmt (8.63)

Power System

The Electrical Power System (EPS) is composed of a solar array, a battery pack, and
a Power Conditioning and Distribution Unit (PCDU). The mass of the power system
is the sum of the individual masses of its components

Mp = Msa +Mbp +Mpcdu (8.64)

The power produced by the system in daylight is the one generated by the solar array
Psa. The design of the solar array is a function of the power requirements during light-
time Plt and eclipse Pecl that are calculated from the power requirements of the other
subsystems:

Plt = 16 + Paocs + Pttc + Pobdh + Ppl,lt. (8.65)

Pecl = 16 + Paocs + Pttc + Pobdh + Ppl,ecl. (8.66)

where the number 16 is the base power that accounts for the maintenance of the basic
functionalities of the satellite. Given Pecl as well as the duration Tecl of the night, the
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energy capacity requirement of the battery system is

Ereq =
PeclTecl
ηb−lDOD

(8.67)

where ηb−l is the transfer efficiency between battery and loads and it is the product of
the efficiencies of the battery discharge regulator ηbdr, the distribution unit ηdu, and
the harness ηhar:

ηb−l = ηbdrηduηhar (8.68)

The efficiency ηbdr of the battery discharge regulator is a function of the bus voltage
Vbus and is calculated using a linear interpolation of available data [210]. In particular
we linearly interpolate the efficiencies [0.90, 0.97] over the voltage range [20, 100] V.
The harness efficiency ηhar is

ηhar = 1− Vdr
100

(8.69)

and is, therefore, dependent on the allowable voltage drop Vdr given as a percentage of
the bus voltage. The Depth Of Discharge (DOD) is a function of the number CL = Ttot

Torb
of charge/discharge cycles, that is dependent on the fixed mission time and on the
uncertain altitude h. Their relationship is defined as in [210]:

DOD = −36.76 log
CL

207800
(8.70)

Given the energy requirement for the battery, the mass of the battery pack is

Mbatt =
Ereq
Ec

(8.71)

where the energy density Ec (in Wh/kg) is selected from a list of available battery types

depending on the capacity CB =
Ereq
Vbus

. The capacities CB is used to select the energy
density Ec from a look-up table. The model enters with the value CB to the vector
[1.5, 5.8, 10, 16, 28, 39, 50]T Ah and finds the closest approximation. The corresponding
value of the energy density is read from the vector [115, 133, 139, 155, 118, 126, 165]T

Wh/kg [210].
The power Psa required from the solar array is computed considering the duration

of the daylight Tdl:

Psa =
PeclTecl

ηa−bηb−lTdl
+

Plt
ηa−l

(8.72)

where ηa−b is the transfer efficiency between solar array and battery pack, ηa−l is the
transfer efficiency between solar array and loads. Although the uncertainty on the
power requirements comes from all the loads it is assumed that a further epistemic
uncertainty exists on the total demand. Therefore an uncertainty factor δPp is applied
to Plt and Pecl: Plt = Plt(1 + δPp) and Pecl = Pecl(1 + δPp). The transfer efficiencies
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can be expressed as the product of the efficiencies of the components:

ηa−b = ηsarηbcrηbatt (8.73)

ηa−l = ηsarηdistηhar (8.74)

In Eqs. (8.73) and (8.74)) ηbcr is the efficiency of the battery charge regulator and, as
for the discharge regulator, it is a function of the bus voltage Vbus. Also in this case we
interpolate the efficiency [0.90, 0.97] over the voltage range [20, 100] V. The parameter
ηsar is the efficiency of the solar array regulator, and it is a linear interpolation between
0.94 at 20 V and 0.99 at 100 V when the design parameter τconf selects the Direct Energy
Transfer (DET) configuration, or between 0.93 at 20 V and 0.97 at 100 V when τconf
selects Maximum Power Point Tracker (MPPT) configuration. The efficiency of the
distribution unit is ηdist = 0.99. The charging efficiency of the battery is ηbatt = 0.96.
The array pointing loss factor is

ηp = cosα (8.75)

where α is the solar incidence angle. The distance rS , measured in Astronomical Unit
(AU), from the Sun involves a loss, or gain, that is

ηr =
1

r2
S

(8.76)

Furthermore, cells degrade with time mainly due to radiation fluence, and such degra-
dation can be estimated as:

ηlife = (1−Dc)
T (8.77)

where Dc is the cell degradation per year and T is the cell life time (the mission time).
A further important factor affecting the efficiency of the solar array is the uncertain
assembly efficiency ηa. The efficiency of the array is lower than the efficiency of the
single cells because of a loss due to assembly. The total cell efficiency is, therefore,
ηtot = ηaηpηrηlife. The specific power (in Wh m−2) of the array is

Pcell = 1370ηcηtot (8.78)

where ηc is the efficiency of the single solar cell. From this, the required area of the
array is computed:

Asa =
Psa
Pcell

(8.79)

and finally the mass of the solar array

Msa = Asaρsa. (8.80)

The values of Dc, ηc and ρsa are chosen by the design parameter τp. More precisely
they are evaluated by a piece-wise interpolation of the following data over the design
parameter τp ∈[0, 0.5, 1]T : ρsa ∈ [32 · 10−2, 116 · 10−2, 86 · 10−2] kg/m2, Dc ∈ [0.0375,
0.0275, 0.0275]T and ηc ∈[0.1555, 0.2744, 0.2862]T . The uncertainty factors δDc and
δρsa are applied: Dc = Dc(1 + δDc) and ρsa = ρsa(1 + δρsa).
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The PCDU is a modular unit composed of modules such as battery charge and
discharge regulators, solar array regulators, maximum power point tracker, shunt reg-
ulator, distribution unit (latching current limiters), telemetry interface. The number
of modules, and thus the mass of the unit, depends on τconf . Indeed, if τconf is DET,
there is no maximum power point tracker, and the PCDU is lighter. On the other
hand, an MPPT configuration extracts maximum power from the solar array, therefore
the array size decreases, but the presence of the MPPT module decreases the transfer
efficiency and increases the PCDU mass. The configuration parameter τconf is used
to trade-off between different components and, thus, is a design parameter. The mass
Mpcdu can be estimated as the sum

Mpcdu = µpcdu(2Psa + Plt + Pecl + cPsa) (8.81)

where µpcdu = 0.001 kg/W and c = 0 for DET and c = 1 for MPPT. The factor 2
multiplying the first term in brackets accounts for a telemetry and a distribution unit.

8.5.3 Cube-Sat Resilience Model

We assume that the CubeSat system can be in 3 distinct operational states. State 0:
total system failure x0; state 1: partially functional system x1; state 2: fully functional
system x2. Each state is associated with a different value of the performance function
V (t, x; d,u).

The assumption underneath the modelling of the resilience of the CubeSat is that
a fully, or partially, functional system can deteriorate and a partially functional system
can recover but once a total failure of the system occurs the system is not able to
recover anymore and the satellite is lost. When the satellite is lost the data volume is
zero. At the start of the mission the CubeSat is assumed to be fully functional, which
corresponds to a probability of being in state x2, P (X(0) = x2) = 1. The further
assumption is that the occurrence of a complete failure is independent of the occurrences
of the partial failures and their recoveries and does not depend on decision and uncertain
variables. This is a simplification that will be removed in future developments and does
not impair the validity of our results. Thus, following [211], we model the probability of
a complete failure of the whole satellite at time t with the Weibull distribution p0(t) =∏
s p0,s(t), where p0,s is the Weibull distribution defining the probability of a failure of

subsystem s. The individual Weibull density function and associated parameters were
taken from [211].

Until a complete failure occurs, the HCTMC in Section 8.3 is used to model the
transition between states x1 and x2 and back. The stochastic dynamics of this process
is given by the transition operator given in Eq. (8.4) with a transition rate matrix

Q(d,u) =

(
−µ µ

λ(d,u) − λ(d,u)

)
, (8.82)

where the first line and column refer to state x1 and the second ones to state x2, µ
is constant and λ is a function of both design and uncertain parameters. The state of
the Cube-Sat changes from x2 to x1 with rate λ and with rate µ in the opposite way. A
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general solution for the distribution of the system states at any time, conditional upon
that the fatal failure has not yet occurred, is given by Eq. (8.5). The simple Markov
Chain model we have chosen is well-known within reliability theory as the alternating
system with constant rates [78]. Considering our initial conditions (P (X(0) = x2) = 1),
conditional on that the fatal failure has not occurred by time t, the probability that
the system is in state x2 at time t can be expressed explicitly as

p2(t) := Pr(X(t) = x2|Tfail > t,X(0) = x2) =

=
µ

µ+ λ
+

λ

µ+ λ
exp(−t(µ+ λ)). (8.83)

The probability that the system is in state x1 at time t, conditional upon that the
fatal failure has not occurred by time t, will be denoted p1(t) = 1 − p2(t). It is the
complement of p2 because of the law of total probability.

The expected value of the instantaneous data increment, which is needed to evaluate
the expected total volume of transmitted data Eq. (8.7)), is

E {V (t,X(T ); d,u)} =[
V2(t; d,u)p2(t) + V1(t; d,u)p1(t)

]
(1− p0(t))+

+ V0(t; d,u)p0(t), (8.84)

where V0, V1 and V2 represent the instantaneous data increment respectively for states
x0, x1 and x2. V2(t) = V (t) is the data volume for a completely functional satellite.
V1(t) is the data volume of a satellite in the degraded state x1, and is here computed
as:

V1(t) =
V2(t)

2
(8.85)

When the satellite is in state x0, total failure, the corresponding data volume is V0(t) =
0.

The parameters µ in Eq. (8.82) is set to the value 1/365 while parameter λ has a
base value λ0 = 1/365 and is related to the design and uncertain parameters through
the expression

λ(d,u) := λ0

∏
i

[ru,i(ui)]
∏
j

[rd,j(dj)] , (8.86)

where the two functions ru,i and rd,j represent the relative influence of each of the
uncertain or design parameters. This form was chosen because it corresponds to Cox’s
proportional hazard model [212] with covariates d and u. If some observations of the
process were available, the relative influences could be inferred by statistical methods.
In the absence of data, we have chosen an expert estimates for the relations based on
linear interpolations between the estimated influences at the lower and upper bound-
aries of the respective parameter spaces. For ui, ui, denoting the lower and upper bound
for an uncertain parameter ui, the respective relative influences at the boundary are
denoted Ru,i, Ru,i and the relative influence of ui on the failure transition rate is
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ru,i(ui) := Ru,i +
Ru,i −Ru,i
ui − ui

(ui − ui) . (8.87)

An analogous expression is used to relate rd,i to each di. For the sake of the simple
exercise presented in this paper, these linear relationships and expression in Eq. (8.86)
were purposely constructed to allow the design process to change the rate of transition
from x2 to x1 in one direction and to allow the uncertain variables to change in the
opposite direction. This choice provides a verifiable result. In a more general context,
appropriate relationships will need to be defined for each subsystem and component.

We chose the values of Ru,i and Ru,i in such a way that each design and uncertain
parameter has a different influence on the system degradation and recovery rates.All the
values of Ru,i and Ru,i are reported in Tables 8.2 and 8.3. The level of influence of each

parameter is proportional to Ri − Ri. When this difference is zero, the corresponding
parameter is expected to have no effect on the degradation and recovery rates. During
the development of the method presented in this chapter, different combinations of
parameters and intervals were tested. The particular values reported in Tables 8.2
and 8.3 are only an illustrative example of the many we tested and do not represent
any particular system or space mission.

8.5.4 Evidence Network Model and Belief Function Estimation

This section shows how the models previously described are combined to define the
ENM framework in Fig. 8.8.

The five sub-systems are translated into 5 network nodes. The two QoI MTOT

and V (t) in Eq. (8.33) depend on the 12 design parameters listed in Table 8.2 and
the 20 uncertain parameters listed in Table 8.3. Table 8.3 reports the intervals of
uncertainty for each parameter with associated bpa in brackets. Part of the bpas
was taken from [193] where the authors elicited the opinion of ESA specialists. The
remaining were chosen by the author to illustrate the difference between deterministic
and resilient solutions.

Table 8.2: Design parameters.

SYSTEMS d LB UB Rd Rd

AOCS tsl (s) 30 90 1 1
φsl (deg) 10 60 0.899 1.097

TTC fttc (GHz) 7 10 0.85 1.2
τmod 0 1 0.95 1.05
τamp 0 (TWTA) 1 (SSA) 0.95 1.05

Power Vbus (V) 3 5 0.9 1.1
Vdr (%) 1 5 1 1
τconf 0 (DET) 1 (MPPT) 1 1
τp 0 1 1 1

Payload BD 1 5 0.9 1.2
τpl 1 4 0.9 1.1

OBDH τobdh 1 6 0.8 1.2
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Figure 8.8: Evidence Network Model of the CubeSat. The two quantities
of interest are the mass of the CubeSat MTOT and the total amount of data
transmitted to the ground station V ; MTOT is the sum of the mass of the 5
subsystems and V is the quantity of data sent by the TTC after the compression
in OBDH.

Table 8.3: Uncertain parameters.

Systems u interval 1 (bpa) interval 2 (bpa) Ru Ru
Payload h (km) [600 800] (0.4) [800 1000] (0.6) 0.9 0.967

ε (deg) [0 5] (0.4) [5 10] (0.6) 1 1
δinc (deg) [0 5] (0.3) [5 10] (0.7) 1 1

OBDH δPobdh [0 0.1] (0.5) [0.1 0.2] (0.5) 1 1
δMobdh [0 0.1] (0.8) [0.1 0.2] (0.2) 1 1

AOCS l (m) [0.005 0.01] (0.5) [0.01 0.02] (0.5) 0.94 1.2
Asc (m2) [0.034 0.0885] (0.5) [0.0885 0.15] (0.5) 1 1
rf [0.5 0.6] (0.5) [0.6 0.7] (0.5) 1 1
mdip (mA ·m2) [0.5 1] (0.5) [1 1.5] (0.5) 0.85 0.98
CD [2 2.2] (0.4) [2.2 2.5] (0.6) 0.9 1.1
δI [-0.1 0.05] (0.5) [0.05 0.1] (0.5) 0.85 1

TTC ηant [0.6 0.8] (0.3) [0.8 0.9] (0.7) 1 1
Gt (dB) [1 3] (0.3) 3 5 (0.7) 1 1.15
Lt (dB) [0.1 0.5] (0.3) [0.5 1] (0.7) 1 1.05
Lother (dB) [0.5 1.5] (0.4) [1.5 2.0] (0.6) 0.85 1
Mrfdn (kg) [0.1 0.3] (0.4) [0.2 0.5] (0.6) 1 1

Power δDc [0.025 0.0275](0.4) [0.3 0.0375] (0.6) 1 1
ηa [0.8 0.85] (0.4) [0.85 0.9] (0.6) 0.8 1
δρsa (kg/m2) [3.5 3.6] (0.3) [3.6 4] (0.7) 1 1
δPp [0 0.1] (0.5) [0.1 0.2] (0.5) 0.95 1.05
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The ENM is built to model only the influence of the uncertain parameters. This
influence is transmitted via a scalar positive quantity. Hence all solid links in Fig. 8.8
represent the propagation of the effect of the most influential uncertain parameters.
Indeed, after a preliminary sensitivity analysis, the dependency between Payload and
TTC through δinc and ε was found to be poorly influential. As a reasonable approx-
imation, it has been removed from the link. In the figure, the dashed lines indicate
the contributions of all the subsystems to the total system mass and the total data
volume. Given the ENM in Fig. 8.8, the uncertain vector u can be partitioned into the
uncoupled vector:

uu = [δMobdh, rf ,mdip, ηant,Mrfdn, δDc, ηa, δρsa, δPp]
T (8.88)

and the coupled vector:

uc = [l, Asc, CD, δI,Gt, Lt, Lother, δPobdh, h, ε, δinc]
T . (8.89)

Once the uncertain parameters are partitioned into coupled and uncoupled, one can
write the total mass as an explicit function of the two groups of parameters and of the
scalar exchange functions ϕij (namely scalar quantities V max

c , Tac, V
max
pl , Paocs, Pttc,

Pobdh, Tecl, Tdl and h as represented in Fig. 8.8):

MTOT = Maocs(h, rf ,mdip, l, Asc, CD, δI)+
Mttc(V

max
c (h), Tac(h), ηant,Mrfdn, Gt, Lt, Lother)+

Mpl +Mobdh(V max
pl (h), δMobdh)+

Mp(Paocs(h, l, Asc, CD, δI), Pttc(V
max
c (h),

Tac(h), Gt, Lt, Lother), Pobdh(V max
c (h), δPobdh),

Tecl(h), Tdl(h), δDc, ηa, δρsa, δPp)

(8.90)

where only the dependencies on the uncertain parameters are made explicit. Note that
Mpl does not depend on any uncertain parameter and that the values of δinc and ε in
the calculation of the access time were fixed to the value coming from the worst case
analysis, due to their low influence on the calculation of mass and power. Furthermore,
five exchange functions, Tac, Tecl, Tdl, V

max
pl and V max

c , all depend on the same uncertain
parameter h, hence in the following all these links will be treated as one and a partial
belief curve will be computed for the overall influence of h on the calculation of the
system mass.

With this ENM and related partitioning of the uncertain vector, one can apply the
decomposition proposed in Algorithm 11 and generate a lower estimation of the Bel
with a total cost of 28 + 26Ns optimisations, where the parameter Ns is the number
of FEs samples from the partial curves (see Eq. (7.13)). In comparison, an exact

calculation of the Bel would require a total of Nfull
FE = 220 = 1048576 optimisations.

The number of influential links that we propose for the construction of the specific
ENM in Fig. 8.8 only serves the scope to develop an exercise that proves the effectiveness
of the methodology we described in previous sections. More complex and realistic
interactions among subsystems are clearly possible but do not imply a modification of
the method. They would simply scale the computational complexity as in Eq. (7.13).
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8.5.5 Results

The computer used for the simulations is a Microsoft Windows 10 Pro, x64-based,
Intel(R) Core(TM) i7-6700 CPU, 3.40 GHz, 3408 MHz, 4 cores, 8 Logical Processors,
8 GB (RAM) and the software is implemented in MATLAB R2018b.

Consider first the min-max problem in Eq. (8.33). The results are represented in
Fig. 8.9 for 4 different values of the threshold ν (represented by a vertical line): 500,
600, 700 and 800. For each ν the figure shows the optimal mass that corresponds to
the robust design vector dminmax, which satisfies the reliability constraint in Eq. (8.33)
for all values in the uncertain domain U .
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Figure 8.9: Results for the constrained min-max optimisation: each point repre-
sents the minimum worst-case value in the uncertain space for both objective and
constraint functions. It is the projection of the two worst cases as in Fig. 8.10.

Fig. 8.10 further explains the results in Fig. 8.9. Each optimal solution is represented
now by two points and a line that connects them. The two points correspond to the
same design solution dminmax but to two different uncertain vectors u. The circle is
the worst-case value for the mass MTOT

umax,M = arg max
u∈U

MTOT (d,u) (8.91)
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and the diamond is the worst-case value for the constraint

umax,V = arg max
u∈U

(
ν − fV (d,u)

)
. (8.92)

In all four cases, the maximum constraint violation is equal to zero, thus all decision
vectors d are always feasible. This figure also shows that the mass is maximised for a
u vector that is inside the feasible domain.
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Figure 8.10: Results for the constrained min-max optimisation. Each optimal
solution is represented by two points and a line that connects them. The two
points correspond to the same design solution dminmax but to two different
uncertain vectors u. The circle is the worst-case value for the mass MTOT and
the diamond is the worst-case value for the constraint fV . The projection of the
circle on the corresponding vertical line produces the summary plot in Fig. 8.9.

Fig. 8.11 compares a particular solution from Fig. 8.9 (the one with ν = E(V ) =
600) with the solution of the following deterministic optimisation problem, where the
uncertain vector u was set to the value unom (the mean value of the intervals defined
in Table Table 8.3):

mind∈DMTOT (d,unom)
s.t.
ν − fV (d,unom) ≤ 0.

(8.93)

The red point is the optimal resilient solution (dminmax,uminmax) calculated with
the EBORe approach proposed in this paper, where dminmax is in Table 8.4 and uminmax
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= [2.0000·10−2, 1.5000·10−1, 7.0000·10−1, 1.5000·10−3, 2.3447, 2.6608, 6.0000·10−1,
1.0000, 1.0000, 2.0000, 5.0000·10−1, 8.0000·10−1 2.0000·101, 3.0000·101, 1.0000·102,
1.0000·103, 1.0000·101, 1.0000·101, 2.0000·101, 2.0000·101]T . The blue square is the
solution to the problem in Eq. (8.93); the green hexagram is the worst possible mass
due to uncertainty, given the solution of the problem in Eq. (8.93), doptnom; the yellow
pentagram is the minimum value of fV due to uncertainty, given the design vector
doptnom. From this figure, one can see that by not accounting for the full variability of
the uncertain parameters, problem Eq. (8.93) returns a solution that has a lower mass
than the resilient one but violates the constraint on the data volume for some values of
the uncertain parameters (yellow pentagram) and produces a worst-case mass increase
that also violates the constraint on the data volume (green hexagram).
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Figure 8.11: Comparison, with ν = 600, of constrained and unconstrained
min-max and deterministic approach.

Fig. 8.12 shows the Belief curve for the solution corresponding to ν = 600. It shows
in particular, the convergence of the algorithm for the quantification of Belief. Two
samples from each partial Bel curve correspond to a total of Ns = 24 = 16 samples
and NDec

FE = 450 optimisations. With a maximum time-cost of 10−3s for each function
evaluation (because each subsystem function is called individually), each full belief
curve requires 7 minutes. It is worth reminding at this point that the decomposition
approach used to reconstruct the belief curves starts from the solution of the min-max
problem which is assumed to have Bel = 1. The reconstruction of the curves confirms
the correctness of the min-max as no worse solution in the U space is found. Note
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also that a full exact reconstruction of the belief curves would require 220 optimisations
against the 450 required with the decomposition.

Figure 8.12: Convergence of the belief curves calculated with the decomposi-
tion approach.

In Fig. 8.13 we compare the resilient solution dminmax corresponding to fV =
600 from Fig. 8.9 with a non-resilient solution darchive = [1.0007·101, 4.8123·101,
9.7875, 1.4981·10−4, 4.0505·10−1, 9.9803·10−1, 4.7210, 2.4052·10−1, 1.1660, 1.0057,
2.5439·10−1, 7.3898·10−1]T that is feasible in all the uncertain space U . The resilient
solution corresponds to the dotted Bel curve in blue, while the non-resilient solution,
with u = unom, corresponds to the dashed vertical line. Following the normal prac-
tice [54] and considering the satellite as an item to be developed, a 20% margin was
added to each subsystem mass of the non-resilient solution. Also, a 20% margin was
added to the power requirements of the TTC, OBDH, AOCS and Payload subsystems.
The non-resilient solution plus margins is the solid vertical line.

One can then build the Bel curve also for the non-resilient solution (dotted line
in Fig. 8.13). From this simple comparison one can see that the non-resilient solution
without margins has Bel = 0 to be realised. The one with margins does not achieve
Bel = 1 but only Bel = 0.05 to be realised and is oversized compared to the resilient
solution. Although the non-resilient solution in this example is arbitrary, the result
demonstrates that an improper quantification of uncertainty can lead to an undesirable
design solution even if the recommended subsystem and system level margins are used.
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Figure 8.13: The plot shows two comparisons. First, the nominal solution
(dashed vertical red line) and the nominal plus margin (vertical red line) are
compared with the propagated uncertainty in the same design solution (red
belief curve). Then, the nominal solution (red lines) is compared with the
resilient solution (blue belief curve).

Fig. 8.14 shows the Belief surface that corresponds to the condition:

Bel(MTOT < νM ∧ fV > νV ) (8.94)

where the two thresholds νM and νV are assumed to be independent from each other.
While the cumulative belief distribution in Fig. 8.13, blue dotted line, represents the
effect of uncertainty on the system mass MTOT for fV = 600, one could be interested
in the belief that both (MTOT and fV ) satisfy condition in Eq. (8.94) at the same time.
The resulting Belief-surface in Fig. 8.14 extends the Belief-curve in Fig. 8.13 by adding
the evidence in support of the achievement of the values of fV . By sectioning the
surface with cuts parallel to the axes one can find, for any fixed value of fV or MTOT ,
the corresponding Belief-curve (Bel(fV > νV ) or Bel(MTOT < νM ). Fig. 8.14 shows
that, in order to have a joint Bel > 0.8 that both expected data volume and mass are
correct, one needs to assume a mass larger than 12.9 kg and a data volume lower than
620 GBit. However, it has to be noted that the Belief values on the expected data
volume were computed still using the ENM in Fig. 8.17. Thus one has to interpret the
result in Fig. 8.14 as the evidence in support to the expected data volumes associated
to the values of the mass that can be computed with the ENM.
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Figure 8.14: Belief surface for the constrained problem formulation with the
design vector dminmax. Both mass MTOT and expected data volume fV are
considered.

In Fig. 8.15 and Fig. 8.16, finally, only the constraint function fV is considered. Five
deterministic solutions, including the optimal-deterministic solution with unom, and
the resilient solution [dminmax,uminmax] with the constraint fV > 600 are compared.
Table 8.4 lists the design vectors. The histograms show the normalised results for 10000
simulations where the time span covered by each mission is 365 days. In particular,
Fig. 8.15 compares the total number of transitions from one state (0, 1 and 2) to another
while Fig. 8.16 shows the cumulative time spent in each spacecraft state divided by 365
times the number of simulations.

The comparison proves that the resilient design solution increases the probability
of the whole system of being in the fully functional state x2 and decreases the number
of transitions from state x2 to the partial functioning state x1. It also shows that
the resilient solution is always the best in terms of time spent in state x2. On the
contrary, a random design solution may lead to a much longer time spent in the partially
functioning state x1. Note that all bars in the histogram correspond to the worst
uncertainty vector for the expected data volume.

The optimal deterministic solution was computed using 50000 function evaluations,
compared to the 200000 used to compute the resilient solution. However, the higher
computational cost of the min-max solution is repaid by a lower failure rate as shown
in Fig. 8.15 and Fig. 8.16. More importantly, Fig. 8.11 has shown that the effect
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Table 8.4: Design vectors of Fig. 8.15 and Fig. 8.16

parameter design 1 design 2 design 3 design 4 dminmax dopt
tsl (s) 41.730 10.000 10.081 10.000 10.000 10.000
φsl (deg) 41.954 50.685 78.239 52.453 53.631 75.157
fttc (GHz) 8.413 10.000 9.946 10.000 10.000 10.000
τmod 0.602 1.000 0.331 1.000 0.333 0.333
τamp 0.049 0.500 0.500 0.500 0.499 0.500
Vbus (V) 0.400 0.000 0.000 0.000 0.000 0.000
Vdr (%) 3.026 5.000 4.307 5.000 5.000 5.000
τconf 0.374 0.413 0.146 0.486 0.201 0.278
τp 2.380 1.000 1.069 1.000 1.000 1.000
BD 3.837 1.000 1.075 1.000 1.000 1.000
τpl 0.852 0.343 0.045 0.259 0.061 0.022
τobdh 0.815 0.750 0.750 0.750 0.749 0.750
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Figure 8.15: Comparison of five deterministic design solutions and the resilient
solution (minmax) over the number of transitions between the three system’s
states (0,1,2).

of uncertainty leads to a considerable increase in mass with respect to the min-max
solution and a substantial violation of the reliability constraint.
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Figure 8.16: Comparison of five deterministic design solutions and the resilient
solution (minmax) over the time spent in each system’s state (0,1,2).

8.6 Test Case Application (Catastrophe Theory Model)

A similar test problem to the one presented in Section 8.5 is here used for the EBORe
approach with Catastrophe Theory for the resilience model.

The system under design is a satellite in LEO. The goal is to take pictures of the
Earth’s surface and transmit them to a ground-based receiver. The satellite is assumed
to be composed of 6 subsystems: AOCS, TTC, OBDH, Power, Orbit and Payload
subsystems. The space system is modelled as a network: each subsystem corresponds
to a node and each dependency to a link. The ENM is represented in Fig. 8.17.

The design d and uncertain u variables are finally listed in Tables 8.5 and 8.6
together with the corresponding sub-systems.

8.6.1 Optimisation Problem Definition

We apply here the general EBORe problem formulation presented in Eq. (8.3):

min
d∈D

max
u∈U

MTOT (d,u)

s.t.

νi −min
u∈U

fV (d,u) ≤ 0 ∀i ∈ Iν = [1, ..., s]T
(8.95)
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Table 8.5: Spacecraft model - design parameters

design parameter N sub-system

width for square detector d1 Payload
quality factor for imaging d2 Payload
operating wavelength d3 Payload
obdh type d4 OBDH
compression factor d5 OBDH
slew angle d6 AOCS
time for slew manuvers d7 AOCS
frequency d8 TTC
modulation d9 TTC
amplifier type d10 TTC
cell type d11 Power
bus voltage d12 Power
allowed bus drop d13 Power

Table 8.6: Spacecraft model - uncertain parameters

uncertain parameter N sub-system

altitude u1 Orbit
elevation angle u2 Orbit
inclination u3 Orbit
maximum incidence angle u4 Payload
max ground sampling distance u5 Payload
∆ mass u6 OBDH
∆ power u7 OBDH
antenna efficincy u8 TTC
antenna gain u9 TTC
mass distribution network u10 TTC
cell packing efficiency u11 Power
harness mass factor u12 Power
worst case angle of incidence u13 Power
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where MTOT is the total mass of the satellite and fV is the volume of data transmitted
to the ground station. A set of thresholds νi, will be used in the following in order to
reconstruct the trade-off between performance f = MTOT and functionality g = fV .
This can be considered as CMOP approach to min-max where a ECS is used.

In Eq. (8.95), the objective function is the time-independent mass MTOT

f := MTOT (d,u) =
6∑
i=1

massi(di,ui, hi(dij ,uij)) (8.96)

where hi is the set of coupling functions between node i and all the nodes that are
linked to it. The quantity fV is calculated instead integrating over time the product of
the compressed data volume DV c and system state function ρ:

g := fV (d,u, t) =

∫ TM

T0

DV c(d,u, t)ρ(d,u, t)dt. (8.97)

where DV c(d,u, t) represents the QoI and ρ(d,u, t) is the global reliability model
obtained by normalisation of the dynamics x(d,u, t) as explained in Section 8.4.

Following Eq. (8.95), we want to optimise the satellite considering the worst case
in the uncertainty for both performance and functionality. In other terms, we want
to minimise the satellite mass while ensuring a minimum amount of compressed data
volume for any possible scenario in the uncertain space. This could bring to a penal-
isation of the QoI if it means a significant increase for the reliability ρ, or vice versa.
Also, a design configuration that could bring shocks in the resilience function ρ, can be
an optimal solution if it guarantees a recovery and a good functionality state after the
shock.

For the sake of simplicity and clarity, we study only the dynamics of the node
OBDH x = xOBDHµ (d,u, t). The function x describes the process of continuous degra-
dation and recovery of the system that we are optimising within the EBORe approach.
Furthermore, we consider x as a function of two variables: the compression factor
d5 ∈ [0.2, 0.6] (design) and of the ∆mass u6 ∈ [0, 20] (uncertain): x(d5, u6, t). In par-
ticular, the functions µ and x0 depend on d5 and u6 as explained in the following. The
global reliability model ρ(d5, u6, t) is then obtained by normalisation of x as described
in Section 8.4.2. The following set of problems has been solved:

• unconstrained SOP min-max

• CMOP min-max with super-critical Pitchfork bifurcation, µ(d5) and x0(u6);

• CMOP min-max with super-critical Pitchfork bifurcation, µ(u6) and x0(d5);

• CMOP min-max with sub-critical Pitchfork bifurcation, µ(d5), x0(u6)

• CMOP min-max with shock and recovery on the hysteresis bifurcation, µ(d5, t)
and x0(u6).

The parameter µ and the initial value x0 in the following subsections have been
defined to have a trade-off between f and g.
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Figure 8.17: Representation of the spacecraft as a complex system. The two
quantities of interest are mass and the total amount of data compressed by the
OBDH sub-system DV c.

8.6.2 Results

This subsection presents the results of the EBORe approach to the design for resilience
of a satellite in LEO for Earth imaging with problem formulation in Eq. (8.95) and
bifurcation theory used to model global reliability. Results are reported based on the
classification explained in the previous section.

Unconstrained Problem

The unconstrained min-max problem

min
d∈D

max
u∈U

Mass(d,u) (8.98)

is first solved. The solution of Eq. (8.98) gives d5 = 0.2 with d5 ∈ [0.2, 0.6] and u6 = 20
with u6 ∈ [0, 20]. This will be important in the following to compare the results of the
different problems.

Super-Critical Pitchfork Bifurcation, µ(d5), x0(u6)

The super-critical pitchfork bifurcation model in Eq. (8.19) is used here for the dy-
namics x (and then for the global reliability function ρ). In particular, we consider
the parameter µ ∝ d5 to be a design variable and the initial condition x0 ∝ u6 to be
uncertain:

180



8. Evidence-Based Resilience Optimisation

µ(d5) = −12.5d5 + 7.5

x0(u6) = 0.5u6 − 5
(8.99)

In Eq. (8.99) the parameter µ interpolates the values {5, 0} over the design parameter
d5 ∈ [0.2, 0.6]T . The parameter x0 interpolates the values {−5, 5} over the uncertain
parameter u6 ∈ [0, 20]T . In this way, the model has been set such that µ(d5 = 0.2) = 5,
is the best for the mass and the worst for the reliability function. On the other side,
µ(d5 = 0.6) = 0 becomes optimal for ρ but the worst for the mass.

Following the Eq. (8.19), the dynamics x becomes:

ẋ = µ(d5)x− x3

x0 = x0(u6)
(8.100)

The global reliability ρ(d,u, t) is calculated from the solution x of Eq. (8.100) through
the normalisation process explained in Section 8.4.2.

The function ρ(d,u, t) is finally used to define the functionality g = fV in Eq. (8.97)
that represents the constraint in the Optimisation Problem Formulation in Eq. (8.95).
In all the scenarios, the worst condition on the uncertainty for ρ is given by x0(u6 =
0) = −5. This can be understood from Figs. 8.2a and 8.2c. They show indeed that
for both negative and positive values of µ the worst case for the reliability (minimum
area below the curve) is always given by x0 = −5. The pictures show the particular
cases µ = −5 and µ = 5 but the curves change monotonically as it can be understood
in Fig. 8.1c. The maximum area in the worst scenario, then, always corresponds to the
minimum µ.

Due to the tension between performance and functionality, constraining the satellite
to have an increasing g with different thresholds νi in Eq. (8.95), forces the solution
to progressively move from d5 = 0.2 to d5 = 0.6. In this way the constraint can be
satisfied but on the other hand the mass increases. This trade-off is well represented in
Fig. 8.18a. The results with different values for the threshold νi are plotted in Fig. 8.18.

Super-Critical Pitchfork Bifurcation, µ(u6), x0(d5)

This problem is the symmetric of the previous one. The super-critical pitchfork bifur-
cation model in Eq. (8.19) is still used for the global reliability function ρ. However,
the parameter µ(u6) and the initial point x0(d5) are treated as uncertain and decision
variable respectively:

µ(u6) = 0.25u6

x0(d5) = 25d5 − 10
(8.101)

In Eq. (8.101) the parameter x0 interpolates the values {−5, 5} over the design pa-
rameter d5 ∈ [0.2, 0.6]T . The parameter µ interpolates the values {0, 5} over the
uncertain parameter u6 ∈ [0, 20]T . In this way, the model has been set such that
x0(d5 = 0.2) = −5, is the best for the mass and the worst for the reliability function.
On the other side, x0(d5 = 0.6) = 5 becomes optimal for ρ but the worst for the mass.
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Figure 8.18: Results of the CMOP minmax in Eq. (8.95) where the super-
critical pitchfork bifurcation model in Eq. (8.19) modified as in Eq. (8.100) is
used for the system dynamics. Its normalisation based on Section 8.4.2 defines
the global reliability function ρ. We consider: µ ∝ d5 and x0 ∝ u6.
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With regard to the uncertainty for µ(u6): for x0 < 0 the worst condition is µ = 5 while
for x0 > 0 it is µ = 0.

Following the Eq. (8.19), the dynamics x becomes:

ẋ = µ(u6)x− x3

x0 = x(d5)
(8.102)

The global reliability ρ(d,u, t) is calculated from x through the normalisation process
explained in Section 8.4.2. The function ρ(d,u, t) is used to define the functionality
g = fV in Eq. (8.97) which is finally the constraint in Eq. (8.95).

The Pareto front with the corresponding values of d5 and the reliability curves ρ
are presented in Fig. 8.19.

Sub-Critical Pitchfork Bifurcation, µ(d5), x0(u6)

In this problem, the sub-critical pitchfork bifurcation model in Eq. (8.20) is used for
the global reliability function ρ. In particular, the parameter µ(d5) is treated as design
and the initial point x0(µ, u6) is function of both µ and u6:

µ(d5) = −25d5 + 10

x0(µ, u6) = −|µ|
20
u6

(8.103)

In Eq. (8.103) the parameter µ interpolates the values {5,−5} over the parameter d5 ∈
[.2 .6]T , while the initial state x0 interpolates the values {0,−|µ|} over the parameter
u6 ∈ [0 20]T . As d5 leave the optimal value for the unconstrained problem d5 = 0.2
and moves to d5 = 0.6 worsening the mass, the reliability ρ increases linearly shifting
the plot from Fig. 8.3d to Fig. 8.3b. However, as |d5| increases, also the uncertainty on
the initial point grows.

Following the Eq. (8.20), the dynamics x becomes:

ẋ = µ(d5)x+ x3

x0 = x0(µ, u6)
(8.104)

The global reliability ρ(d,u, t) used in Eq. (8.19) is finally calculated from x through
the normalisation process explained in Section 8.4.2. The function ρ(d,u, t) is used to
define the functionality g = fV in Eq. (8.97) which is finally the constraint in Eq. (8.95).

The results are plotted in Fig. 8.20. Up to a certain threshold ν < 0.25, the optimal
solution is found for values of d5 that are close to the optimal unconstrained solution
d5 = 0.2 and that generate a positive µ. For bigger thresholds, instead, the optimiser
is forced to choose values of d5 far from the optimal unconstrained solution that also
increases the uncertainty on the initial point x0 with a further increase in the mass.

183



8. Evidence-Based Resilience Optimisation

(a) Pareto front between mass and the compressed data volume DV ctot

(b) Reliability curve ρ in the worst case for the uncertainty variable u6.

Figure 8.19: Results of the CMOP minmax in Eq. (8.95) where the super-
critical pitchfork bifurcation model in Eq. (8.19) modified as in Eq. (8.102) is
used for the system dynamics. Its normalisation based on Section 8.4.2 defines
the global reliability function ρ. We consider: µ ∝ u6 and x0 ∝ d5.
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(a) Pareto front between mass and the compressed data volume DV ctot

(b) Reliability curve ρ. Only the red curve corresponding to a negative µ is a stable solution,
while the other diverge.

Figure 8.20: Results of the CMOP minmax in Eq. (8.95) where the sub-critical
pitchfork bifurcation model in Eq. (8.20) modified in Eq. (8.104) is used for the
system dynamics. Its normalisation based on Section 8.4.2 defines the global
reliability function ρ. We consider: µ ∝ d5 and x0 ∝ u6.
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Shock and Recovery with the Hysteresis Bifurcation, µ(d, t), x0(u)

The non-autonomous bifurcation model with hysteresis in Eq. (8.21) is used here to
model the global reliability function ρ. We consider the parameter µ(t, d5) to be de-
pendent on time and on the design variable d5 and to follow the Eq. (8.32). The initial
condition x0(u6) is considered instead to be uncertain:

x0(u6) = 0.5u6 − 5 (8.105)

Following Eq. (8.21) then the dynamics x becomes:

ẋ = µ(d5, t) + x− 1
3x

3

x0 = x0(u6)
(8.106)

The global reliability ρ(d,u, t) is calculated from x through the normalisation process
explained in Section 8.4.2. The function ρ(d,u, t) is used to define the functionality
g = fV in Eq. (8.97) which is finally the constraint in Eq. (8.95).

Differently from the previous sub-problems, we propose here a single objective ver-
sion of Eq. (8.95). We compare however the calculated resilient solution with the ones
one would obtain without the EBORe approach. Indeed, we make a comparison be-
tween the solution of Eq. (8.95) with a single threshold ν = 0.2 (optimal-resilient)
and the optimal solution calculated with nominal values for the uncertain variables
(optimal-nominal): {

d∗ = arg mind∈DMass(d,unom)

s.t. DV c
tot(d,unom, t) ≥ 0.2

(8.107)

Eq. (8.107) is calculated considering the nominal values unom for the uncertain pa-
rameters equal to the mean between their lower and upper bounds. We can however
explore the uncertain space to understand better the worst possible scenarios in the un-
certain space. Fixing d∗ we then calculate the worst condition in terms of performance
f :

max
u∈U

Mass(d∗,u) (8.108)

and the worst condition in terms of functionality g:

min
u∈U

DV c
tot(d

∗,u). (8.109)

These two solutions are plotted respectively in green and red in Fig. 8.21. We see that
the optimal-nominal solution has an associated risk of not satisfying the requirements
in the data volume and also causing an increase in the mass of the final satellite during
the design process.

We propose, finally, in orange in Fig. 8.21, the resilient solution from Eq. (8.95).
It gives the minimum mass of the satellite in the worst condition while satisfying the
constraint over all the possible uncertain scenarios. Looking at Fig. 8.21, the orange
mass is considerably bigger than the blue one and even bigger than the green one.
However, the orange design assures to satisfy the constraint, while the blue solution can
lead to a drastic reduction of the data volume produced by the satellite. Furthermore,
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looking at Fig. 8.21b, the resilient solution can absorb the shock in the worst scenario
and recover after that, while the blue design brings to the red curve in the worst
condition and represents a total failure without the possibility to recover after the
disruption.

8.7 Complexity Analysis

This section gives a high-level comparison and complexity analysis of the two methods
proposed for modelling resilience in the context of EBORe: HCTMC in Section 8.3 and
Catastrophe Theory in Section 8.4. Both approaches model the possible transition of
the system between different states, where this trajectory depends on the selected design
configuration d, the uncertain variables u and time t. The two modelling frameworks
are connected, indeed the Catastrophe Theory model is smooth and continuous while
HCTMC can be considered as a possible discretisation within the state space.

The computational complexity of the Catastrophe Theory approach includes the
solution of the ODE in Eq. (8.9) (but in general of a system of ODEs in Eq. (8.13)),
the generation of ρ by normalisation of x as in Section 8.4.2, the calculation of the
QoI and finally the integration as in Eq. (8.16). With regards to HCTMC instead, the
computational cost follows the expression in Eq. (8.8).

8.8 Conclusion

The chapter presented a new definition of System Resilience and Resilience Engineering.
Our resilience approach combines elements of robustness and global reliability. In
particular, the dynamic part of resilience is incorporated into the global reliability
model. It then presented a mathematical formulation including resilience into the
system optimisation under epistemic uncertainty. The method is called EBORe. The
chapter then proposed two different approaches for the modelling of system resilience:
the first is a discrete-state stochastic process based on HCTMC while the second is a
continuous-state dynamic system model based on Catastrophe Theory.

It has been shown how system resilience emerges from the combination of robustness
and global system reliability.

The method has been finally applied to the design optimisation of space systems.
It has been tested with a range of different sub-problems and with both resilience
models. The solutions demonstrate that a design configuration can be found that
is feasible, performance-optimal and resilient for all the possible realisations of the
uncertain variables. This design configuration, furthermore, minimises the worst value
of the objective function over the uncertain variables. Compared to a solution that uses
standard safety margins, the resilient solution is better both in terms of resilience and
performance. Furthermore, compared to an optimised solution that does not account
for uncertainty, the resilient solution improves the number of transitions to a fully
functional state.

It was also shown that the computational cost is affordable provided that subsystem
performance and reliability metrics can be evaluated in a short time on a standard
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Figure 8.21: Comparison of the resilient solution and the nominal one. The
former is the solution of the CSOP min-max in Eq. (8.95) where the hysteresis
bifurcation model in Eq. (8.21) modified in Eq. (8.106) is used for the system
dynamics. Its normalisation based on Section 8.4.2 defines the global reliability
function ρ. We consider: µ(t, d5) and x0(u6). The nominal solution is obtained
from Eqs. (8.107) to (8.109). 188
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Multi-Layer Network Model for
Design Process Optimisation
Under Epistemic Uncertainty

The content of this chapter was published in:

• G. Filippi and M. Vasile, A multi-layer evidence network model for
the design process of space systems under epistemic uncertainty, in Ad-
vances in Evolutionary and Deterministic Methods for Design, Opti-
mization and Control in Engineering and Sciences (A. Gaspar-Cunha,
J. Periaux, K. C. Giannakoglou, N. R. Gauger, D. Quagliarella, and
D. Greiner, eds.), (Cham), pp. 227243, Springer International Pub-
lishing, 2021 https : //doi.org/10.1007/978−3−030−57422−2 15 [56].

• G. Filippi and M. Vasile, ”A multi layer evidence network model
for the design process of Space Systems under epistemic uncertainty”,
EUROGEN, 2019 [66].

This chapter introduces a new approach to the design process optimisation of com-
plex systems affected by epistemic uncertainty. In particular, a multi-layer network
called ML-ENM, is proposed to model the whole design process and the transition be-
tween adjacent design phases. Each layer represents a design phase where each node is
a subsystem and each link is a sharing of information. The network is used to quantify
and propagate uncertainty through the different layers (design phases). At each phase,
from phase A to phase F, the fidelity of the mathematical model describing each subsys-
tem and component is increased. Thus, it can be considered a multi-fidelity approach
for the design of a complex system affected by epistemic uncertainty. The framework
of DST is used to model epistemic uncertainty. We are here particularly interested
in space systems. They are complex systems involving multiple interconnected com-
ponents and disciplines with complex couplings: payload, structure, thermal analysis,
attitude, control, etc. A system-level optimal solution cannot be found by optimis-
ing the single subsystems independently. Furthermore, the design and optimisation of
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space systems have to account for epistemic uncertainty, in particular in the early design
phase. In fact, knowledge about systems and requirements is only acquired incremen-
tally, but substantial commitments are made upfront, essentially in the unknown. Even
if the research field is demonstrated to be very active in proposing new and promis-
ing methodologies for the DUU of CEdS, the space industry, on the other side, has a
conservative approach that is based on traditional methods. In fact, the most common
and well-established approach to handling uncertainty in space systems engineering
is to use safety margins and redundancies [54]. These traditional methods, however,
present two critical problems that affect the result of the design process. There is a
lack of an appropriate quantification of uncertainty that brings to an overestimation
or an underestimation of the effect of uncertainty (increase in costs and development
time or occurrence of undesirable events). There is also a lack of a holistic view of the
system’s performance and evolution.

In this chapter, then, we propose a methodological advancement to solve those two
problems with specific applications to the design of space systems. The novelty is
given by a mathematical model, in the form of a multi-layer graph, that simulates the
evolution in time of the space system during the design process and is able to quantify
and propagate epistemic uncertainty through the different design phases. In particular,
this chapter proposes a method to propagate uncertainty through the ML-ENM from
the last design phase to the first one. Then the system is optimised for robustness with
a min-max algorithm [55, 67]. Evidence Theory is applied to quantify uncertainty on
the optimal solution [58, 60, 61]. It is finally shown that the optimal solution at phase
A is robust against the uncertainty in the next design phases. The model, ML-ENM
is a generalisation of the ENM presented in Chapter 6. The ML-ENM allows for a
rigorous and fast propagation of epistemic uncertainty and gives a holistic view of the
whole design process. Each layer represents a different phase in the design process,
each node represents a subsystem or a component at a particular level of granularity
and each link is a sharing of information. The proposed contribution consists of a
holistic modelling and optimisation approach for the whole design process of CEdgS
which includes both CEdS and CEgS. The method takes into consideration epistemic
uncertainty and decisions. Different algorithmic approaches developed in the previous
chapters are here combined. The method extends the benefits presented in Chapter 7
for ENM in a multi-layer environment.

The reader finds the necessary background in Chapter 2 for a definition and de-
scription of MBSE and in particular for an explanation of the different design phases
in which the design process of a CEdS is decomposed and for a description of the tra-
ditional methodology implemented by space industries, that is the margin approach.
Further important information can be recovered in the previous chapters of this the-
sis: Chapter 5 for the bi-level optimisation approach developed and here implemented,
Chapter 6 for the single-layer ENM used for UQ with DST.

The ML-ENM is proposed to model the system and the whole design process with
the transition between adjacent phases and the uncertainty involved in the models. The
framework of DST is used to model epistemic uncertainty. A test case is formulated
and the results are presented.

Section 9.1 presents the ML-ENM and explains how it generalises ENM in Chap-
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ter 6. Section 9.2 presents the optimisation method. Section 9.3 introduces to a test-
case. Section 9.4 shows the results. Finally, Section 9.5 concludes the chapter.

9.1 Multi-Layer Evidence Network Model

This section introduces the concept of ML-ENM that can be used to quantify and
propagate epistemic uncertainty through the complex system and the different phases of
the whole design process. ML-ENM is a framework for a decomposition procedure that
evaluates Belief and Plausibility curves with a computational cost that is polynomial
and not exponential with the problem dimension.

ML-ENM is a multi-layer network where each layer represents a different phase
in the design process, each node represents a subsystem or a component at a specific
level of granularity and each link is a sharing of information. As the design process
proceeds from pre-phase A to phase D, an increasing level of detail is needed in the
analysis, the focus is shifted from the subsystem level to the component level, more
precise mathematical models are implemented and the number of nodes increases. On
the other side, studying how real projects evolve, there is a high level of confidence that
between a phase and the following one, unforeseen circumstances require a modification
of the design requirements and goals. Furthermore, different players collaborate on the
project and, usually, good communication between them is not an easy task. Based
on the results of the single design phase and on the uncertainty of the whole process
evolution, the designers make decisions that bring them to the next phase and that will
drive the design process.

Looking at Section 9.1, for example, during phase A three subsystems are consid-
ered and optimised. During phase B the number of considered components is increased.
The point is that the number of sub-divisions and the types of the components in phase
B depend on the designers’ choices and each decision brings the design process to a
different final solution. Also, the number of possible final configurations increases ex-
ponentially with the number of layers and possible choices that can be selected between
each couple of layers.

More formally, a ML-ENM with NL layers is a pair (G, C) where G = {Gα;α ∈
{1, .., NL}} is a family of directed and weighted graphs Gα = (Xα, Eα) and C = {Eαβ ⊂
Xα ×Xβ;α, β ∈ {1, 2, ..., NL}, β = α+ 1} is the set of interconnections between nodes
of different layers. The intralayer links in Eα represent the sharing of information
between subsystems and components of the space system (complex system). The in-
terlayer links in Eαβ model the decision process tree between different design phases.

Design d and uncertain u vectors are decomposed in two components: d = [dd,ds]T

and u = [ud,us]T where the former ([dd,ud]T ) are related to the interlayer decision
process, between a layer and the next one, and the latter ([ds,us]T ) describe the in-
tralayer physical model of the space system at a particular level of resolution.

At each layer α ∈ {pre-A,B, ..., F} of the ML-ENM, the performance index can be
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Figure 9.1: Evolution of the ENM between phase A and B: each node in phase
A is decomposed into two or more nodes in phase B. The number of nodes and
the mathematical model associated with them depend on the designers’ choices.
The process is then repeated for the next phases.

defined as:

fα(d,u) =

N∑
i=1

gαi (dαsi ,u
αs
i ,ϕ

αs
i (dαsi ,u

αs
i ,d

αs
ij ,u

αs
ij )), (9.1)

In Eq. (9.1) N is the number of nodes of the network in layer α and ϕαi (dα,uαi ,d
αs
ij ,u

α
ij)

is the vector of scalar exchange functions ϕαij(d
α,uαi ,d

αs
ij ,u

α
ij) that represent the in-

put/output of the nodes, with j ∈ Jαi , and Jαi the set of indexes of nodes connected
to the i-th node of that layer. Eq. (9.1) decomposes the uncertain components us in
two categories: the uncoupled components uαsi that affect only subsystem i, and the
coupled variables uαsij shared among subsystem i and one or more subsystems j.

9.2 Optimisation Approach

For the defined ML-ENM, the Body of Evidence presented in Sec. 3.2.2 can be populated
at the last phase of the ML-ENM, here phase C, by a process of knowledge elicitation.
For the proposed application, available data from previous publications has been used
[193].

In this example there are only two possible paths that the design process can explore
from phase A to phase C. They correspond to the choice between node 7 (Magnetor-
quers) and 8 (Thruster) at phase B. The choice brings, respectively, to node 19 and 20
at layer C.

For each chosen path the uncertainty structure at phase C is propagated back to
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phase A exploiting the inter-layer dependencies A → B and B → C. A minimisation
and a maximisation have been run to reconstruct the lower and upper bounds of each
uncertain parameter at layer α that incorporate two or more parameters of layer α +
1. In this manner, the reconstructed Body of Evidence at phase A incorporates the
uncertainty that affects the more complex and detailed models at phase B and C.

Then, the system is optimised for robustness at phase A. In particular, the min-max
algorithm is used to evaluate the optimal design vector d∗A.

For the evaluated optimal design solution d∗A, the decomposition approach based on
the ENM has been applied to the ML-ENM in order to propagate uncertainty through
the spacecraft model and reconstruct a good approximation of the belief curve with a
fraction of the computational cost required for the exact one (Fig. 9.12).

The effect of uncertainty at phases B and C is finally analysed in correspondence
with the robust design solution d∗A.

9.3 Test Case

The ML-ENM has been here applied to the design for robustness of a spacecraft through
the phases A, B and C (pre-phase A is considered in the figures for clarity). Each node
of the ML-ENM is associated to a mathematical function modelling a subsystem or a
component. Their list and the classification between the different phases is presented
in Tab. 9.1. The quantity of interest is the overall mass of the satellite and it is
given by the sum of the masses of all the subsystems (phase A) or components (phase
B and C). The network can be visualised in Figs. 9.2, 9.3, 9.4 and 9.5: the nodes
correspond to the models of the system (node 1 at pre-phase A), sub-systems (nodes 2-
6 at phase A) and components (nodes 7-18 at phase B and nodes 19-30 at phase C). The
links, instead, correspond to their intra-layer and inter-layer connections. In particular
coloured arrows define inter-layer (hierarchical) dependencies while grey lines indicate
intra-layer dependencies. Red lines show the dependence of nodes at layer A from the
node at layer pre-A (pre-A → A), yellow lines show the dependence of nodes at layer
B from nodes at layer A (A → B) and purple lines of nodes at layer C from layer B
(B → C). Each node in a generic layer, in fact, can be decomposed in two or more
nodes in the next layer. Furthermore, the number of parameters and the complexity
increase through the process as Tab. 9.2 shows. Gray lines instead represent couplings
between nodes in the same layer α through the linking functions ϕαi as in Eq. (9.1).

9.4 Results

Considering the first path in the ML-ENM (node 7 at phase B and node 19 at phase
C), the worst case optimal solution (d∗1,u

∗
1) gives a mass of 166.43 kg. Figs. 9.6 to 9.8

show the effect of uncertainty at phases A, B and C for the fixed d∗1. The second path
(node 8 at phase B and node 20 at phase C) brings to the robust solution (d∗2,u

∗
2)

with a corresponding mass of 230.12 kg. Figs. 9.9 to 9.11 show the effect of uncertainty
at phases A, B and C for the fixed d∗2. In particular, Figs. 9.6 and 9.9 concern the
system level (the whole mass of the satellite), Figs. 9.7 and 9.10 the sub-systems level
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Table 9.1: ML-ENM nodes

Node Pre-Phase A

1 Spacecraft

Phase A

2 Attitude and Orbit Control (AOCS)
3 Payload
4 Power
5 Thermal
6 Telemetry and Telecommand (TTC)

Phase B

7 Magnetorquers
8 Thrusters
9 Reaction Wheels
10 Payload
11 Batteries
12 Harness
13 Power Conditioning and Distribution Unit (pcdu)
14 Solar Array
15 Thermal
16 Antenna
17 Radio Frequency Distribution Network (rfdn)
18 Transponder

Phase C

19 Magnetorquers
20 Thrusters
21 Reaction Wheels
22 Payload
23 Batteries
24 Harness
25 Power Conditioning and Distribution Unit (pcdu)
26 Solar Array
27 Thermal
28 Antenna
29 Radio Frequency Distribution Network (rfdn)
30 Transponder
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Table 9.2: Model dimension

Path 1 Path 2
Phase dimd dimu dimd dimu

A 6 16 6 17
B 13 35 14 34
C 21 43 21 47

Figure 9.2: 2D representation of the design process as a decision tree. The
phases (A, B and C) are indicated with different colours. Subsystem’s and
component’s models are represented as nodes.

and Figs. 9.8 and 9.11 the components level. The box-plots have been evaluated with
a Monte Carlo simulation over the uncertain space with 106 function evaluation. For
each box a maximisation and a minimisation have been run in order to be sure that the
boxes include all the possible values of the mass for the given uncertainty structure.
These figures show that the spacecraft model at phase A with the back-propagation of
uncertainty, incorporates for the chosen path all the uncertainty in phases B and C.
The worst case optimal solution d∗ at phase A, then, results to be robust through the
design process.

For d∗1, finally, the decomposition approach has been applied to the ML-ENM and
Fig. 9.12 presents the reconstructed belief curve. The decomposition method allows to
fast and good evaluation of the belief. In this problem, in fact, the exact evaluation
of the belief curves require 65536 maximisations (one for each focal element). Instead,
the curve in Fig. 9.12 has been evaluated with 234 maximisations (0.36 %).
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Figure 9.3: 3D representation of the design process as a tree.

Figure 9.4: Representation of the design process as a graph. Coloured arrows
define inter-layer dependencies while grey lines indicate intra-layer dependencies
within the same design phase.

9.5 Conclusion

This chapter proposes a new approach for the design process of a space system af-
fected by epistemic uncertainty. The main novelty is given by the use of the ML-ENM
to quantify and propagate uncertainty between different phases of the design process.
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Figure 9.5: Circular representation of the ML-ENM with both inter-layer and
intra-layer dependencies.

ML-ENM is a multi-layer network representation of the complex system where each
layer takes into account the couplings between subsystems (or components) at a par-
ticular design phase. The evolution of the design process is then modelled by the
sequence of layers.

It is here presented a method for the definition of uncertainty at the first phase
(phase A) of the process such that the optimal solution at that phase is robust against
the uncertainty in the following phases.

The method is applied to the design of a space system. The model is optimised
for robustness and finally a decomposition methodology is applied to the network in
order to reduce the computational cost of the epistemic uncertainty propagation and
the belief reconstruction with the use of Evidence Theory.

It has be shown that the optimal design solution at phase A defined in such a way,
is robust against the propagation of uncertainty through the design process.
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Figure 9.6: Effect of uncertainty at the system’s level in phases A, B and C for
the first considered path. The design vector is fixed at the optimal solution.
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Figure 9.7: Effect of uncertainty at the sub-system’s level in phases A, B and C
for the first considered path. The design vector is fixed at the optimal solution.
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Figure 9.8: Effect of uncertainty at the component’s level in phases A, B and C
for the first considered path. The design vector is fixed at the optimal solution.
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Figure 9.9: Effect of uncertainty at the system’s level in phases A, B and C for
the second considered path. The design vector is fixed at the optimal solution.
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Figure 9.10: Effect of uncertainty at the sub-system’s level in phases A, B and
C for the second considered path. The design vector is fixed at the optimal
solution.
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Figure 9.11: Effect of uncertainty at the component’s level in phases A, B and
C for the second considered path. The design vector is fixed at the optimal
solution.
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Figure 9.12: Cumulative Belief curve of the optimal worst case solution at
phase A for the first considered path.
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Conclusion

“ Begin at the beginning, the King said, gravely,
and go on till you come to an end;
then stop. ”

– Lewis Carroll, Alice in Wonderland

This thesis had the goal of developing a novel SDO approach for the design of
CEdgS under epistemic uncertainty that can be applied within the MBSE framework.
We defined the CEdgS as the combination of CEdS and CEgS being the former the
physical system and the latter the design process used to produce it. As explained in
Part I, we are currently in the age of complexity and we need a paradigm shift from
traditional methodologies to more suitable ones. The work presented in the thesis went
in this direction and its contribution was twofold. On one side we developed a set of
new tools to solve specific problems in system modelling, CGO, UQ and OUU. On the
other side, we presented a holistic SDO framework that couples and orchestrates the
different building blocks. The reader can find the list of objectives of the thesis in the
introductory Chapter 1.

With regard to the first objective in Chapter 1, our contribution on the modelling
framework for CEdgSs was presented in Chapters 6 and 9.

We showed in Chapter 6 the ENM for the modelling of a generic CEdS. Then, we
generalised the ENM to cope with the CEdgSs by including also the evolution of the
CEdS through the different phases of the design process (the CEgS). We called this
generalisation ML-ENM and we presented it in Chapter 9.

We demonstrated the capability of the framework to capture the complexity of a
generic CEdgS. Complexity here was considered to derive from the combined effect
of interconnections between subsystems and their dependency on uncertain variables.
The proposed framework reached this objective thanks to a network structure where
sub-systems were modelled as nodes of the graph and their inter-relation and inter-
correlation were translated into links. Also, to both nodes and links a function was
defined that depended on the uncertain vector of variables.

We found that the network structure of ENM is efficient for the application of SDO
and decomposition methods for UQ as presented later in Chapter 7. Indeed the ENM
splits uncertain variables in ’coupled’ and ’uncoupled’ vectors and represents relations
between nodes through coupling functions.
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Compared to traditional MDO methods, we showed that within an ENM the cor-
relations between nodes are represented by scalar values that model in a compact way
the influence of many uncertain parameters and weight the different links. We also
found that the ENM permits an easier representation of sub-networks and clusters.

We demonstrated the feasibility of both ENM and ML-ENM with realistic bench-
marks and test cases.

Even if real engineering problems are more complicated and complex than the ones
here developed and used, we consider the objective to be achieved since it referred to
the feasibility proof of the methodology.

The proposed method did not present direct limitations. Since it was open and
agnostic to the specific models used for each sub-system, the limitations could come
only from these models.

With regard to the second objective, the main contribution of this thesis was pre-
sented in Section 7.2. It was a new algorithmic approach for UQ to quantify epistemic
uncertainty modelled with DST. It was obtained through an iterative SDO decomposi-
tion procedure coupled with the ENM in Chapter 6. A partial and side contribution is
also presented in Appendix C and refers to an alternative decomposition method based
on an evolutionary Binary Tree. The following comments will only refer to the first
method.

We demonstrated in Eq. (7.13) that our decomposition approach in Section 7.2
coupled with the ENM reduces the computational complexity of UQ with DST from
exponential to polynomial with respect to the number of interacting sub-system’s com-
ponents. The reduction of computational complexity is the major challenge of UQ with
DST for real systems and in general for high dimensional models. As stated in Chap-
ter 3 indeed, the computational cost arises from the total number of FE (optimisation
runs) that needs to be performed.

We showed that both approaches are outer approximations, meaning that they
produce conservative results.

We also showed that they are iterative procedures that produce estimated values of
Belief and Plausibility which eventually converge to the exact solution with an appro-
priate number of iterations.

We demonstrated the feasibility of the method on a set of test cases and on a
realistic problem application.

We showed the scalability behaviour of the approach by increasing the number of
sub-systems (nodes in the network) and the number of variables.

The main limitation of the presented decomposition approach for UQ with DST
based on the ENM was related to the restriction of its applicability to the class of
M-decomposable problems with M = 0 as stated in Chapter 6. This class of problems
is however frequent in aerospace engineering.

With regard to the third objective, we presented our contribution in Chapter 8. It
included original definitions and metrics.

We presented a novel definitions of ’Resilience’ and ’Resilience Engineering’ and we
explained how and why they combined both the concepts of ’Reliability’ and ’Robust-
ness’.

We presented two novel modelling frameworks for the Resilience metric. The first

211



10. Conclusion

was based on a stochastic process and in particular on HCTMC. The second was based
on Catastrophe Theory.

We demonstrated that both approaches are able, in different ways, to model the
system dynamics and its dependency on design and uncertain variables. We showed
indeed that the HCTMC-based model considered a discrete transition between possible
states while the catastrophe-based one could be seen as a generalisation of the former
where the number of system’s states became infinity, or alternatively, the transition
was smooth.

We demonstrated that the use of Catastrophe Theory is able to model ’Black Swan’
events where a drastic qualitative change in the dynamics of the system can be driven
by a small change in one (or more) internal or external factors. We coupled this with
epistemic uncertainty since part of the model variables was of irreducible uncertainty.

We demonstrated the feasibility of both Resilience models through realistic engi-
neering test problems.

Concerning the limitations of the methodology, the HCTMC approach was re-
stricted to employing only three possible states for the system: fully functioning, par-
tially functioning, and failed. While a greater number of states could enhance the
precision and fidelity of the model, it is crucial to note that this wouldn’t deviate from
our primary objective, which was to showcase a method for discrete state modelling of
the system dynamics influenced by both design and epistemic uncertainty variables.

The HCTMC model was constructed based on the homogeneity property, meaning
that the transition probability does not change in time. This condition was important in
order to avoid over-complication of the metric derivation. However, it is not necessary
a realistic one since it is possible for real applications to be better modelled by non-
homogeneous chains.

With the HCTMC method, the global metric was evaluated through the expected
value operator. However, for an entirely IP-based method, this aspect should be gen-
eralised.

Both the Resilience models were applied to a single subsystem in the ENM. We
found that even in this case the result of the OUU was of interest. Such a defined
approach is however limited and not entirely realistic since it is missing the study of
the whole system dynamics emerging from the interaction of the dynamics of all the
nodes based on the network topology. This generalisation would however introduce
computational problems and require further methodological research.

Finally, the global quality of the approach was dependent on the accuracy of the
models for each single sub-system or discipline. For the approach to be more realistic,
future research effort needs to be put on their definition.

With regard to the fourth objective, our contribution about the optimisation meth-
ods was presented in Part II (Chapter 5). We demonstrated a new procedure for
constrained OUU for CGO.

We worked on one of the possible approaches for OUU by formulating a min-max
COP where the worst-case condition given by uncertainty is optimised over the design
space. We stated that this approach is equivalent to the search of a Nash equilibrium
in a two-players zero-sum game.

We showed that the min-max procedure is the most conservative approach in pres-
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ence of uncertainty.
We demonstrated the feasibility of our min-max algorithm through synthetic test

functions and a realistic engineering problem. The strategy was based on the break-
ing of the original AAO nested problem into a bi-level decomposition procedure. We
indeed proved that the tension between the two different levels with opposing goals,
one working on the design space and the other on the uncertain one brings to an itera-
tive refinement that eventually converges the global optimum. We also found that for
reasonably complex problems, the approach avoid the Red Queen Effect.

We developed such a min-max framework to be optimiser-agnostic. Indeed, we
tested it with both local and global optimisation solvers.

The most important contribution about this objective, was the introduction of the
constraint handling in the problem formulation. This point required an algorithmic
procedure for both the overarching bi-level min-max framework and the single layer
optimisation solver used within the framework. For the latter, in particular, we pre-
sented an extension of a previously developed GO solver MP-AIDEA by including a
constraint handling approach. We demonstrated that the technique was able to handle
constraints and satisfy them globally.

With regard to the min-max framework, we presented a constraint relaxation method
that automatically updates the problem in case no feasible solution exists with the ini-
tial constraint definition.

We developed a new benchmark that can be used for the testing of the globally
constrained min-max problem. The entire set of results can be found in Appendix A.
With reference to the testing procedure, we proposed a generalisation of the SR metric
in Section 5.4.2.

We demonstrated the feasibility of the method on a realistic engineering problem.
A further contribution refers to the computational complexity analysis of the algo-

rithm given in Section 5.3.
As a side and partial result, we also demonstrated in Appendix B the extension of

the min-max approach for the CMOP.
Concerning the method limitations, the OUU approach considered only the opti-

misation of the worst case scenario while other UQ metrics, such as the Belief and
Plausibility were calculated as a post-processing. We demonstrated however these two
methodologies (min-max and Belief quantification) independently and their coupling is
left for a possible future research project.

With regard to the last objective, our contribution on the holistic framework for
CEdgSs was presented in Part III. It combined the building blocks presented above
to generate a SDO approach for MBSE. In particular, Chapters 7 to 9 introduced
respectively to EBRO, EBORe and the optimisation method of the design process.

We showed how the ’Design for Robustness’ of a CEdS can be translated in a global
constraint OUU and how it can be solved by means of the developed min-max strategy.
This brought to our EBRO method in Chapter 7.

We found then that the application of the developed UQ methodology allows us
to understand properly the effect of uncertainty on the optimal solution when there is
lack of knowledge.

Chapter 8 extends Chapter 7 by introducing the concepts of ”Resilience”, ”Re-
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silience Engineering” and ”Resilience Optimisation”. The chapter proved that the
methodology called EBORe is able to merge UQ with CGO in the context of the CEdS
dynamics to drive the design decision to an optimal solution that takes into consider-
ation the complexity of the system under design.

We finally demonstrated that the modelling framework and the developed algo-
rithms for UQ and OUU can be coupled to understand how uncertainty propagates
through the evolution of the design process.

10.1 Future Works

The main goal of this thesis, as stated above and in the introduction, was to propose a
new method and to prove its feasibility for the SDO of CEdgSs with epistemic uncer-
tainty. Under the limitations explained above, the goal was achieved and the objectives
were completed. The following of this chapter will state the main directions of future
research.

Higher fidelity and more complex models of the CEdS can be developed to stress-
test the methodology and use it in real engineering context. This includes two aspects.
On one side, for a single design phase, we will increase the number of alternative
engineering technologies and sub-systems. On the other, we will develop more fidelity
levels to cope with all the phases of the design process.

Our UQ approach can be generalised to further reduce the computational com-
plexity and to overcome the current limitations. Possible directions would include the
integration of our method with MDO approaches in the literature, the use of techniques
to reduce the number of FE based on their impact on the final Belief and the coupling
of the two decomposition methodologies proposed in this thesis (one in Appendix). In
this regard, some preliminary results have been already obtained. They were however
not included in the thesis because they needed some further refinement. An other im-
portant generalisation will refer to the merging of epistemic and aleatory uncertainty
and to the fusion of different, discordant and heterogeneous sources of evidence. Fur-
thermore, since much of the inputs at least in the first preliminary phases of a design
process come form experts knowledge, it would be interesting to develop and couple
methods for knowledge elicitation.

The models for resilience for each of the sub-systems can be further refined. They
can also be applied to all nodes of the ENM to study the emergence of the system
dynamics.

With reference to the optimisation approaches, the algorithms for the solution of
CMOP within the SDO approach are open to further developed. The worst-case optimi-
sation, even if highly informative can be generalised or combined with less conservative
methods. Surrogates are finally very important tools when dealing with computation-
ally demanding simulations and they will also have an important role to play in the
future development of this thesis’ concepts.

Finally, it would be interesting, but certainly not within the scope of this thesis
work, to build a set of benchmark problems for robust and resilience optimisation with
epistemic uncertainty to allow the comparison of the methodologies available in the
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literature and future ones. The test problems presented in the thesis can serve as a
first step in this direction.
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Appendix A

Testing Results for the
Single-Objective Min-Max
Problem

Table A.1: GFc-1, only fmincon, δd = δu = δf = 0.1, δc = 0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

tc-1 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tc-2 0.23 0.25 0.51 0.78 0.92 0.95 0.96 0.99 0.99 1.00 1.00 1.00
tc-3 0.01 0.12 0.43 0.56 0.85 0.98 0.99 0.99 1.00 1.00 1.00 1.00
tc-4 0.01 0.03 0.23 0.42 0.73 0.93 0.99 1.00 1.00 1.00 1.00 1.00
tc-5 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tc-6 0.00 0.00 0.06 0.15 0.31 0.44 0.63 0.79 0.90 0.94 0.97 0.98
tc-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tc-8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tc-9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tc-10 0.16 0.22 0.30 0.36 0.44 0.51 0.53 0.55 0.56 0.58 0.60 0.65
tc-11 0.09 0.14 0.17 0.21 0.24 0.26 0.28 0.29 0.30 0.32 0.32 0.32
tc-12 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tc-13 0.00 0.66 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.2: GFc-1, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.56 1.00 1.00 1.00 1.00 1.00 6.00 9.00
MWP-2 0.00 0.00 0.40 0.98 1.00 1.00 1.00 1.00 6.00 29.00
MWP-3 0.00 0.00 0.06 1.00 1.00 1.00 1.00 1.00 9.00 26.00
MWP-4 0.00 0.00 0.00 0.88 1.00 1.00 1.00 1.00 9.00 15.00
MWP-5 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 7.00 10.00
MWP-6 0.00 0.00 0.00 0.52 1.00 1.00 1.00 1.00 10.00 22.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.10 1.00 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 21.00
MWP-10 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 12.00 29.00
MWP-11 0.00 0.06 0.06 0.12 0.14 0.14 0.14 0.14 - -
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.04 1.00 1.00 1.00 1.00 1.00 8.00 29.00
GFf-1 0.00 0.00 0.68 1.00 1.00 1.00 1.00 1.00 6.00 29.00

Table A.3: GFc-1, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.56 1.00 1.00 1.00 1.00 1.00 6.00 9.00
MWP-2 0.00 0.00 0.40 0.96 1.00 1.00 1.00 1.00 6.00 29.00
MWP-3 0.00 0.00 0.04 1.00 1.00 1.00 1.00 1.00 9.00 18.00
MWP-4 0.00 0.00 0.00 0.88 1.00 1.00 1.00 1.00 11.00 18.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 8.00 10.00
MWP-6 0.00 0.00 0.00 0.56 1.00 1.00 1.00 1.00 10.00 22.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.10 1.00 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11.00 12.00
MWP-10 0.00 0.02 0.02 1.00 1.00 1.00 1.00 1.00 13.00 29.00
MWP-11 0.00 0.14 0.20 1.00 1.00 1.00 1.00 1.00 11.00 29.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.08 1.00 1.00 1.00 1.00 1.00 29.00 29.00
GFf-1 0.00 0.00 0.68 0.98 0.98 0.98 0.98 0.98 - -
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Table A.4: GFc-2, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.64 1.00 1.00 1.00 1.00 1.00 7.00 9.00
MWP-2 0.00 0.00 0.44 1.00 1.00 1.00 1.00 1.00 6.00 12.00
MWP-3 0.00 0.00 0.10 1.00 1.00 1.00 1.00 1.00 9.00 15.00
MWP-4 0.00 0.00 0.00 0.82 1.00 1.00 1.00 1.00 10.00 15.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 9.00
MWP-6 0.00 0.00 0.00 0.70 1.00 1.00 1.00 1.00 10.00 15.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.12 0.98 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 21.00
MWP-10 0.00 0.02 0.02 1.00 1.00 1.00 1.00 1.00 13.00 24.00
MWP-11 0.00 0.02 0.02 0.20 0.22 0.22 0.22 0.22 - -
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.18 1.00 1.00 1.00 1.00 1.00 7.00 9.00
GFf-1 0.00 0.00 0.46 0.96 1.00 1.00 1.00 1.00 14.00 29.00

Table A.5: GFc-2, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.54 1.00 1.00 1.00 1.00 1.00 6.00 9.00
MWP-2 0.00 0.00 0.50 1.00 1.00 1.00 1.00 1.00 6.00 15.00
MWP-3 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 9.00 15.00
MWP-4 0.00 0.00 0.00 0.82 1.00 1.00 1.00 1.00 8.00 14.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 9.00
MWP-6 0.00 0.00 0.00 0.64 1.00 1.00 1.00 1.00 9.00 15.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.08 1.00 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00
MWP-10 0.00 0.02 0.02 1.00 1.00 1.00 1.00 1.00 12.00 29.00
MWP-11 0.00 0.14 0.18 0.98 0.98 0.98 0.98 0.98 - -
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.14 1.00 1.00 1.00 1.00 1.00 7.00 9.00
GFf-1 0.00 0.00 0.62 1.00 1.00 1.00 1.00 1.00 28.00 29.00
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Table A.6: GFc-3, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 6.00 9.00
MWP-2 0.00 0.00 0.50 1.00 1.00 1.00 1.00 1.00 6.00 14.00
MWP-3 0.00 0.00 0.10 0.94 1.00 1.00 1.00 1.00 9.00 29.00
MWP-4 0.00 0.00 0.04 1.00 1.00 1.00 1.00 1.00 8.00 11.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 8.00 9.00
MWP-6 0.00 0.00 0.00 0.54 1.00 1.00 1.00 1.00 10.00 16.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.26 0.76 0.80 - -
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 0.90 0.98 1.00 1.00 1.00 1.00 1.00 9.00 29.00
MWP-10 0.00 0.02 0.02 1.00 1.00 1.00 1.00 1.00 11.00 29.00
MWP-11 0.00 0.02 0.28 1.00 1.00 1.00 1.00 1.00 9.00 29.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.42 1.00 1.00 1.00 1.00 1.00 7.00 10.00
GFf-1 0.00 0.00 0.44 0.94 0.98 1.00 1.00 1.00 19.00 29.00

Table A.7: GFc-3, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 6.00 9.00
MWP-2 0.00 0.00 0.44 1.00 1.00 1.00 1.00 1.00 7.00 16.00
MWP-3 0.00 0.00 0.00 0.94 1.00 1.00 1.00 1.00 9.00 21.00
MWP-4 0.00 0.00 0.10 1.00 1.00 1.00 1.00 1.00 7.00 11.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 9.00
MWP-6 0.00 0.00 0.00 0.68 1.00 1.00 1.00 1.00 8.00 15.00
MWP-7 0.00 0.00 0.00 0.00 0.02 0.54 1.00 1.00 18.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 18.00
MWP-10 0.00 0.02 0.02 1.00 1.00 1.00 1.00 1.00 12.00 29.00
MWP-11 0.00 0.16 0.28 1.00 1.00 1.00 1.00 1.00 10.00 29.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.34 1.00 1.00 1.00 1.00 1.00 7.00 10.00
GFf-1 0.00 0.00 0.60 0.96 1.00 1.00 1.00 1.00 19.00 29.00
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Table A.8: GFc-4, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.86 1.00 1.00 1.00 1.00 1.00 6.00 19.00
MWP-2 0.00 0.00 0.64 1.00 1.00 1.00 1.00 1.00 6.00 29.00
MWP-3 0.00 0.00 0.00 0.84 1.00 1.00 1.00 1.00 10.00 29.00
MWP-4 0.00 0.00 0.02 0.98 1.00 1.00 1.00 1.00 8.00 29.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 13.00
MWP-6 0.00 0.00 0.00 0.44 0.98 1.00 1.00 1.00 11.00 18.00
MWP-7 0.00 0.00 0.00 0.00 0.04 0.32 0.98 1.00 19.00 19.00
MWP-8 0.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 6.00 29.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 27.00
MWP-10 0.00 0.64 0.82 0.94 0.94 0.94 0.94 0.94 - -
MWP-11 0.00 0.34 0.50 0.94 0.96 0.96 0.96 0.96 - -
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 24.00
MWP-13 0.00 0.00 0.20 1.00 1.00 1.00 1.00 1.00 7.00 29.00
GFf-1 0.00 0.00 0.76 1.00 1.00 1.00 1.00 1.00 9.00 29.00

Table A.9: GFc-4, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 7.00 18.00
MWP-2 0.00 0.00 0.56 1.00 1.00 1.00 1.00 1.00 8.00 29.00
MWP-3 0.00 0.00 0.00 0.94 1.00 1.00 1.00 1.00 11.00 29.00
MWP-4 0.00 0.00 0.02 0.98 1.00 1.00 1.00 1.00 8.00 29.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 13.00
MWP-6 0.00 0.00 0.00 0.62 1.00 1.00 1.00 1.00 11.00 19.00
MWP-7 0.00 0.00 0.00 0.00 0.02 0.22 1.00 1.00 19.00 19.00
MWP-8 0.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 6.00 29.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7.00 14.00
MWP-10 0.00 0.68 0.90 0.98 0.98 0.98 0.98 0.98 - -
MWP-11 0.00 0.64 0.92 1.00 1.00 1.00 1.00 1.00 9.00 29.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 12.00
MWP-13 0.00 0.00 0.68 1.00 1.00 1.00 1.00 1.00 7.00 29.00
GFf-1 0.00 0.00 0.54 0.96 1.00 1.00 1.00 1.00 13.00 29.00
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Table A.10: GFc-5, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 6.00 20.00
MWP-2 0.00 0.00 0.70 1.00 1.00 1.00 1.00 1.00 7.00 21.00
MWP-3 0.00 0.00 0.02 0.78 1.00 1.00 1.00 1.00 11.00 29.00
MWP-4 0.00 0.00 0.00 0.96 1.00 1.00 1.00 1.00 9.00 27.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 8.00 22.00
MWP-6 0.00 0.00 0.00 0.48 1.00 1.00 1.00 1.00 11.00 18.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.12 0.96 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 29.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9.00 27.00
MWP-10 0.00 0.74 0.96 1.00 1.00 1.00 1.00 1.00 7.00 29.00
MWP-11 0.00 0.32 0.50 0.74 0.74 0.74 0.74 0.74 - -
MWP-12 0.00 0.02 1.00 1.00 1.00 1.00 1.00 1.00 6.00 12.00
MWP-13 0.00 0.00 0.10 1.00 1.00 1.00 1.00 1.00 7.00 29.00
GFf-1 0.00 0.00 0.62 0.98 1.00 1.00 1.00 1.00 9.00 29.00

Table A.11: GFc-5, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 6.00 28.00
MWP-2 0.00 0.00 0.76 1.00 1.00 1.00 1.00 1.00 7.00 29.00
MWP-3 0.00 0.00 0.00 0.96 1.00 1.00 1.00 1.00 12.00 29.00
MWP-4 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 8.00 29.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 27.00
MWP-6 0.00 0.00 0.00 0.38 1.00 1.00 1.00 1.00 11.00 20.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.04 0.96 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 29.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 15.00
MWP-10 0.00 0.66 0.86 1.00 1.00 1.00 1.00 1.00 8.00 29.00
MWP-11 0.00 0.90 0.96 1.00 1.00 1.00 1.00 1.00 10.00 29.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 7.00
MWP-13 0.00 0.00 0.22 1.00 1.00 1.00 1.00 1.00 7.00 29.00
GFf-1 0.00 0.00 0.58 0.96 1.00 1.00 1.00 1.00 6.00 29.00
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Table A.12: GFc-6, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.98 1.00 1.00 1.00 1.00 1.00 7.00 16.00
MWP-2 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 8.00 29.00
MWP-3 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 10.00 26.00
MWP-4 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 9.00 20.00
MWP-5 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 8.00 20.00
MWP-6 0.00 0.00 0.00 0.44 1.00 1.00 1.00 1.00 12.00 22.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.58 1.00 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 11.00
MWP-9 0.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 13.00 29.00
MWP-10 0.00 0.94 0.98 1.00 1.00 1.00 1.00 1.00 7.00 18.00
MWP-11 0.00 0.86 0.98 1.00 1.00 1.00 1.00 1.00 7.00 23.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 13.00
MWP-13 0.00 0.00 0.98 1.00 1.00 1.00 1.00 1.00 7.00 20.00
GFf-1 0.00 0.00 0.54 0.98 1.00 1.00 1.00 1.00 22.00 29.00

Table A.13: GFc-6, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 7.00 20.00
MWP-2 0.00 0.00 0.96 1.00 1.00 1.00 1.00 1.00 7.00 24.00
MWP-3 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 11.00 22.00
MWP-4 0.00 0.00 0.04 1.00 1.00 1.00 1.00 1.00 9.00 23.00
MWP-5 0.00 0.00 0.06 1.00 1.00 1.00 1.00 1.00 7.00 18.00
MWP-6 0.00 0.00 0.00 0.48 1.00 1.00 1.00 1.00 11.00 22.00
MWP-7 0.00 0.00 0.00 0.00 0.04 0.62 1.00 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 14.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.00 25.00
MWP-10 0.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 7.00 16.00
MWP-11 0.00 0.68 0.94 1.00 1.00 1.00 1.00 1.00 7.00 20.00
MWP-12 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 14.00
MWP-13 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 7.00 18.00
GFf-1 0.00 0.00 0.64 1.00 1.00 1.00 1.00 1.00 6.00 29.00
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Table A.14: GFc-7, only AIDEA, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.56 1.00 1.00 1.00 1.00 1.00 6.00 11.00
MWP-2 0.00 0.00 0.12 0.96 1.00 1.00 1.00 1.00 6.00 17.00
MWP-3 0.00 0.00 0.00 0.96 1.00 1.00 1.00 1.00 11.00 15.00
MWP-4 0.00 0.00 0.00 0.98 1.00 1.00 1.00 1.00 8.00 13.00
MWP-5 0.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 7.00 9.00
MWP-6 0.00 0.00 0.00 0.12 1.00 1.00 1.00 1.00 10.00 14.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.10 1.00 1.00 18.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 14.00 29.00
MWP-10 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 20.00
MWP-11 0.00 0.06 0.18 1.00 1.00 1.00 1.00 1.00 9.00 24.00
MWP-12 0.00 0.02 1.00 1.00 1.00 1.00 1.00 1.00 6.00 8.00
MWP-13 0.00 0.00 0.24 1.00 1.00 1.00 1.00 1.00 7.00 12.00
GFf-1 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 10.00 29.00

Table A.15: GFc-7, MP-AIDEA, 2 populations, δd = δu = δf = 0.1, δc = 0

1000 5000 10000 50000 100000 200000 500000 1000000 niter,min niter,max

MWP-1 0.00 0.00 0.60 1.00 1.00 1.00 1.00 1.00 7.00 14.00
MWP-2 0.00 0.00 0.14 1.00 1.00 1.00 1.00 1.00 11.00 23.00
MWP-3 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 11.00 16.00
MWP-4 0.00 0.00 0.00 0.94 1.00 1.00 1.00 1.00 10.00 18.00
MWP-5 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 7.00 9.00
MWP-6 0.00 0.00 0.00 0.22 1.00 1.00 1.00 1.00 11.00 16.00
MWP-7 0.00 0.00 0.00 0.00 0.00 0.18 1.00 1.00 19.00 19.00
MWP-8 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 6.00
MWP-9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 18.00
MWP-10 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 18.00
MWP-11 0.00 0.08 0.14 1.00 1.00 1.00 1.00 1.00 9.00 27.00
MWP-12 0.00 0.02 1.00 1.00 1.00 1.00 1.00 1.00 6.00 11.00
MWP-13 0.00 0.00 0.26 1.00 1.00 1.00 1.00 1.00 7.00 10.00
GFf-1 0.00 0.00 0.82 1.00 1.00 1.00 1.00 1.00 6.00 29.00
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Appendix B

Multi-Objective Min-Max
Approach

It is often important to the decision maker, who is the final user of this methodology, to
perform a trade-off analysis between the different QoIs. Sometimes the decision maker
is able to define precisely a weight vector to rank by importance the QoIs. Sometimes,
instead, this is not possible. The scalarisation approach is a well-known methodology
to solve the MOP formulation by reducing it to a SOP. We prefer the scalarisation
approach to the direct multi-objective optimisation because more flexible to be applied
to both conditions in which objective weights are predefined or not. When the set of
weights is given, the scalarisation approach finally reduces the computational cost.

This chapter presents a generalisation of the methodology proposed in Chapter 5 to
CMOP min-max. We propose a Chebychev/Pascoletti-Serafini Scalarisation (CPSS),
a combination of WCS [185] and PSS [186], to translate the CMOP in a SOP. We
also suggest a generalisation of MP-AIDEA [131] to CMOP. A test case is analysed
for which three different scalarisation approaches are compared: ECS, WSS [183] and
CPSS where the last one is a smooth combination of WCS and PSS. A comparison of
the different approaches can be found in [55].

This chapter is linked to Chapter 4 where it is given the definition of optimisation
problems: the generic SOP, MOP, CSOP, CMOP, and in particular the min-max
problem. Chapter 4 gives also the definition of the most used scalarisation approaches:
WCS and PSS are here used and combined. This chapter is finally linked to Chapter 5
to which it represents a generalisation.

The rest of the chapter is organised as it follows. Appendix B.1 first presents the
general problem formulation. Appendix B.2 explains the min-max method for the solu-
tion of the relaxation problem in Chapter 5. Appendix B.3 presents the generalisation
of MP-AIDEA to CMOP. Appendix B.4 introduces to the test case. Appendix B.5
concludes the chapter.
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B.1 Problem Formulation

The general problem we are interested to solve in this chapter is a CMOP min-max.
The mathematical formulation Eq. (5.1) is here reported for clarity:

min
d∈D

max
u∈U

fi(d,u) ∀i ∈ If = [1, ...,m]T

s.t.

ci(d,u) ≤ 0 ∀u ∈ U,∀i ∈ Ic = [1, ..., s]T

(B.1)

We propose CPSS, a new scalarisation approach that combines WCS and PSS, to
solve Eq. (B.1). The CMOP then can be translated to a CSOP:

min
d∈D

[
max
u∈U

f̄ω(d,u)

]
s.t.

ci(d,u) ≤ 0 ∀u ∈ U,∀i ∈ Ic = [1, ..., s]T

(B.2)

in which f̄ω is the normalised and scalarised transformation of ~f . Problem in Eq. (B.2)
can then be solved with the method presented in Chapter 5.

This chapter focuses on a specific sub-class of Eq. (B.1) that arises as an alternative
to the relaxation problem in Eq. (5.6) as explained in Fig. 5.1. The problem under
analysis is then the unconstrained MOP min-max:

min
d∈D

[
max
u∈U

f(d,u),max
u∈U

max
i∈Ic

ci(d,u)

]
(B.3)

The constraint relaxation presented in Section 5.2.3 for the solution of Eq. (B.3) can
be thought as a ECS approach [55, 182]. We suggest here instead a CPSS in order to
be able to reconstruct the whole Pareto front for the bi-objective problem. Indeed, one
could be interested in a trade-off between f and ε and accept larger relaxations of the
constraints in favour of a better objective. Note that in the context of UQ this implies
accepting a higher probability of violating the constraints in favour of a better cost
function.

B.2 A Memetic Multi-Objective Alternative to the Re-
laxation Approach

We now introduce the assumption that a preference vector ω = [ωf , ωc]
T can be defined

a priori and explain the scalarisation approach summarised in Algorithm 15. By varying
the values of ω then the Pareto Front can be reconstructed.

In the first part (line 2 to 10) of Algorithm 15 the reference points cideal, fnadir,
fideal and cnadir are calculated. cideal is the minimum (best) over D of the worst case
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constraint violations in U :

cideal = min
d∈D

max
u∈U

max
i∈Ic

ci(d,u) (B.4)

and it is equal to the relaxed constraint ε. For the corresponding design vector dc-ideal

the worst scenario for the objective function is fnadir (lines 3 to 8):

fnadir = max
u∈U

f(dc-ideal,u) (B.5)

In line 9 the unconstrained min-max problem

fideal = min
d∈D

max
u∈U

f(d,u) (B.6)

is solved to define the best design configuration df -ideal that minimises the worst scenar-
ios of the objective function f regardless the constraint violation. df -ideal is then used
in line 10 to calculate the corresponding worst condition for the constraint violation:

cnadir = max
u∈U

max
i∈I

ci(df -ideal,u) (B.7)

An example of the reference points for a generic Pareto front applied to the min-max
problem is in Fig. B.1 where zideal = [fideal, cideal] and znadir = [fnadir, cnadir]. In the
second part (lines 13 to 27) it is instead described the scalarisation procedure. Nadir
and ideal points are here used to normalise f and c:

f̄ =
f − fideal

fnadir − fideal
(B.8)

c̄ =
maxi∈Ic ci − cideal

cnadir − cideal
. (B.9)

Once the reference points are calculated, the algorithm follows a generalisation of
what presented in Chapter 5 by alternating a minimisation and a restoration step. The
minimisation step searches for a global solution to the constrained min-max problem:

mind∈D maxuaf∈Āuf f̄
ω(d,uaf )

s.t.
maxuac∈Āuc maxi∈Ic ci(d,uac) ≤ 0.

(B.10)

While the restoration step searches for a solution to the following two global maximi-
sation problems, given the solution d̄ coming from Eq. (B.10):

maxu∈U f̄
ω(d̄,u)

s.t.
maxi∈Ic ci(d̄,u) ≤ 0

(B.11)

max
u∈U

max
i∈Ic

ci(d̄,u) (B.12)
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The two archives Āuf and Āuc are defined as in Chapter 5.
The contribution given for the solution of Eq. (B.2) is included in the procedure for

the solution of the single-layer problems in Eqs. (B.11) and (B.12) and it is explained
in the following section.

Figure B.1: A generic Pareto front for the min-max problem. In this case
the functions max f and max c are considered as conflicting objectives. The
ideal zideal, nadir znadir and utopian zutopian points are represented. They are
theoretic points that collapse the extreme behaviour of the different solutions in
the Pareto front. zideal is the combination of the best solutions for the different
objectives. znadir represents instead the worst possible combination of points.
zutopian is finally defined by means of an ε from zideal.

B.3 A Memetic Scalarisation Approach for Multi-Objective
Optimisation

This section explains the novelties introduced to MP-AIDEA to solve the CMOP. The
algorithm is presented in Algorithms 12 to 14. The contribution refers to the evaluation
part of the candidate solutions and is twofold: within the DE step and within the local
search part.

Within the DE, to translate the MOP to a single objective problem we propose to
apply the WCS:

min
x∈X

maxi{ωi(fi − zideal,i)} ∀i = 1, 2, ...,m

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(B.13)

when the problem is not normalised, and

min
x∈X

maxi{ωif̄i} ∀i = 1, 2, ...,m

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(B.14)
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when it is normalised. During the local search, instead, the PSS is implemented because
a differentiable fitness function is required. The following constrained minimisation
problem is then considered

min
x∈X,t∈R

t

s.t. ωi(fi − zi) ≤ t, ∀i = 1, 2, ...,m
cj ≤ 0, ∀j = 1, 2, ..., n

(B.15)

when the problem is not normalised and

min
x∈X,t∈R

t

s.t. ωi(f̄i − z̄i) ≤ t, ∀i = 1, 2, ...,m
cj ≤ 0, ∀j = 1, 2, ..., n

(B.16)

when it is normalised. In Eqs. (B.15) and (B.16) zi (z̄i) is the best candidate solution
fi (f̄i) obtained in the previous DE. As stated in [187], Eqs. (B.15) and (B.16) could be
considered as a reformulation (a linearisation) of the WCS where an additional variable
is introduced and where the direction ri = 1/ωi. However we consider here a different
reference than the ideal point zideal.

Algorithm 12 MP-AIDEA (Multi-Objective, Constraint handling)

1: Initialisation
2: while nfeval < nfeval,max do
3: Run the DE step (Algorithm 13)
4: for p ∈ [1, 2, ..., Npop] do
5: if xp,best not in the basin of attraction of previous solutions then
6: Run local search (Eq. (B.15)) with x0,p = xbest,p, t0,p = 0 and the reference

vector zp: min
x∈X,t∈R

t s.t. ωi(fi(x) − zi) ≤ t ∧ cj(x) ≤ 0, ∀i = 1, 2, ...,m,

∀j = 1, 2, ..., n
7: update xp,best from the local search.
8: end if
9: end for

10: Initialise populations for local or global restart in the next DE step [131].
11: end while

B.4 Test Case

The approach is here tested to the combination of the objective function GFf1 in
Table 5.1 and the constraint function GFc1 in Table 5.2 for the solution of the CMOP
min-max and the reconstruction of the Pareto Front for the minimisation trade-off
between the worst case scenarios max f and max c.

Three scalarisation procedures ECS, WSS and CPSS are used and compared. With
reference to WSS, the minimisation over the design space D of the weighted sum of the
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Algorithm 13 DE step (Multi-Objective, Constraint handling)

1: for p ∈ [1, 2, ..., Npop] do

2: Initialise (input) the genotype x
(G)
p,q for the p-population at generation G = 1

where q = 1, 2, ..., npop

3: Evaluate the phenotype of each candidate solution: f
(G)
s,p,q (Algorithm 14)

4: while the population is not contracted do
5: Select parents: all generation G;
6: Variate the parent’s genotype: two strategies randomly alternated

(DE/Rand/1/bin, DE/CurrentToBest/2/bin) define generation G+1;

7: Evaluate new candidates f
(G+1)
s,p,q (Algorithm 14):

8: Select between parents and children with a greedy criterion
9: update generation: G = G+1.

10: end while
11: xp,best = arg mini f

(end)
s,p,q (xp,q);

12: zp = {f1(xp,best), f2(xp,best), ..., fm(xp,best)}.
13: end for

Algorithm 14 DE Evaluation (Multi-Objective, Constraint handling)

1: for each q-agent in the population, with q ∈ [1, 2, ..., npop] do
2: fs,p,q = maxi{ωi(fi(xp,q)− zideal,i)}, i ∈ [1, 2, ...,m]
3: cp,q = maxj{cj(xp,q)}, j ∈ [1, ..., n]
4: end for
5: for each q-agent with k ∈ [1, 2, ..., npop] do
6: if cp,q > 0 then
7: fs,p,q = maxi{fs,p,q}+ cp,q
8: end if
9: end for

worst case scenarios for f and c in the respective archives (line 18) of Algorithm 15 is:

min
d∈D

[
ωf max

u∈Āuf
f̄(d,u) + ωc max

u∈Āuc
c̄(d,u)

]
(B.17)

We used the modified version of MP-AIDEA with the following settings: maximum
number of function evaluation nfeval,max = 3000, number of populations npop = 2, num-
ber of agents in the population Npop = 5, dimension of the bubble for the global restart
δglobal = 0.1 and DE threshold for each population ρ = 0.1. The whole constrained
min-max algorithm has then been run until convergence. For ECS the algorithm has
been run for 60 different thresholds ranging between 1 and 6.2 (calculated minimum
and maximum constraint violation). For WSS and CPSS, instead, the trigonometric
weights

wf = cos θ
cos θ+sin θ

wc = sin θ
cos θ+sin θ

(B.18)

have been used letting θ varying from 0 to π
2 and using a discretisation of 60 interval
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as well.
The results are in Fig. B.2 which shows a comparison of the three methods. Fig. B.2

shows that WSS is not capable of finding optimal Pareto points in the non convex part
of the Pareto front [213] and also, using equally spaced weights, it finds non-equally
spaced points in the front. The ECS strategy gives better results. The best performance
is, however, obtained with the CPSS. Indeed it allows the user to express a preference
through the selection of the weights and, as shown in Fig. B.2, with the same number
of simulations (60 different descent directions for the CPSS and epsilon values for the
ECS) it is able to find more Pareto optimal solutions than ECS. For these reasons
CPSS was chosen and implemented in Algorithm 2.

Figure B.2: Pareto front corresponding to the trade-off between the two con-
flicting goals max f and max c. The results refer to test case GFf1&GFc1.
In particular, the ε-constraint (EC) approach has been applied with different
thresholds while the Chebychev/Pascoleti Serafini (CPSS) and the Weighted-
Sum (WSS) scalarisations have been applied with different preference vectors.

B.5 Conclusion

This chapter presented a methodology for the solution of CMOP min-max. We propose
to reconduct the multi-objective formulation to a single-objective formulation through
a scalarisation approach and in particular, with CPSS.

A particular sub-problem of CMOP min-max has been used to explain the method-
ology. The problem arises as an alternative to the relaxation method presented in
Chapter 5. This approach is promising for cases in which a user-defined relaxation of
the constraint is possible as it allows one to explore the optimal trade-off curve between
optimality and reliability. The use of this approach will be further developed in future
work.
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Algorithm 15 Scalarisation Strategy

1: Inherit vectors from Algorithm 2
2: Normalisation points:
3: if Algorithm 2 not converged then
4: run relaxation strategy in Algorithm 5

cideal = ε = mind∈D maxu∈U maxi∈Ic ci(d,u)
5: fnadir = maxu∈U f(dc-ideal,u)
6: else
7: cideal and fnadir from Algorithm 2.
8: end if
9: run Algorithm 2 for the unconstrained problem on f :
fideal = mind∈D maxu∈U f(d,u)

10: cnadir = maxu∈U maxi∈I ci(df -ideal,u)
11: Scalarisation step:
12: while satisfy limits on nfval, nloop ∧ not convergence do
13: Minimisation loop:
14: if Weighted-sum scalarisation then
15: mind∈D

[
ωf maxu∈Āuf f̄(d,u) + ωc maxu∈Āuc c̄(d,u)

]
with the cross-check as in Algorithm 6,
f̄ and c̄ defined in Eqs. (B.8) and (B.9)

16: else if Chebyshev Pascoletti-Serafini scalarisation then
17: during the Differential Evolution step:
18: mind∈D

∥∥ωf (maxu∈Auf f̄(d,u), ωc maxu∈Auc c̄(d,u)
∥∥
∞

19: during the Local Search step:
20: mind∈D,t<0 t

s.t.
ωf
(

maxuaf∈Auf f̄(d,uaf )− zf
)
< t

ωc
(

maxuac∈Auc c̄(d,uuc)− zc
)
< t

f̄ and c̄ defined in Eqs. (B.8) and (B.9)
21: end if
22: Update global archive Ad = Ad ∪ {d̄}
23: Restoration loop:
24: Run uaf = arg maxu∈U f(d̄,u)
25: Run uac = arg maxu∈U maxi∈I ci(d̄,u)
26: if multiple outputs, choose best uac: Algorithm 3
27: Update archives: Algorithm 4
28: end while
29: for all d ∈ Ad from phase 2 do
30: Cross-check: Algorithm 6
31: end for
32: Select which solution [dopt,uopt] to return: Algorithm 7
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Appendix C

Outer Belief Estimation via
Evolutionary Binary Tree

The content of this chapter was published in:

• C. O. Absil, M. Vasile, G. Filippi, A. Riccardi, and M. Vasile, A
Variance-Based Estimation of the Resilience Indices in the Prelimi-
nary Design Optimisation of Engineering Systems Under Epistemic
Uncertainty, in EUROGEN, (Madrid), 2017 [60]

The chapter presents the results of the work published in the paper above
for which the main author is Carlos Ortegga and I partially contributed.

For an exact reconstruction of the Belief (resp. Plausibility) curve, the determi-
nation of the worst event (resp. best-case event) is necessary over every subset of the
uncertainty space that has a non-null bpa. In the general case, this translates into a
number of global maximisations (resp. minimisations) of the quantity of interest F (u).
This section will focus on the estimation of the Belief curve

Bel(F (u) ≤ ν) =
∑

Ω

m(Ω) ,

Ω = {Ω ⊂ Θ| max
u∈Hl⊆Ω

(F (u)) ≤ ν }

of a design over all possible values of ν. Note the exact computation of the entire curve
can be conducted by a cumulative sum of bpa over the sorted maxima

F = { max
u∈Hl⊆Ω

F (u) , Ω ⊂ Θ , m(Ω) > 0} .

The extension to the calculation of Plausibility is immediate, and the ideas exposed
hereby can easily be applied to the computation of propositions stated otherwise.

In the algorithm proposed, the whole computation of Belief proceeds by building a
tree that has at its root the whole uncertainty space with the associated global worst-
case optimisation solution, and at its terminal nodes the whole set of focal elements,
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each one with an associated maximum of the quantity of interest. The heuristic that
drives how the tree is built and explored is key to the rapid convergence of the correct
Belief and Plausibility values. The overall procedure is schemed in Algorithm 16 and
detailed in the following subsections.

C.1 Truncated Estimation

The truncated estimation process begins with a global maximisation over the whole
uncertainty space U as a zeroth iteration

S0 := U , F̄0 = max
u∈S0

0

F (u) .

This allows one to assert that

Bel(F (u) ≤ ν) = 1 ν ≥ F̄0 ,

Bel(F (u) ≤ ν) ≥ 0 ν < F̄0 ,

and is equivalent to propagation of the vacuous Belief function [50] to quantity F over
U .

Then a s-subdivision of the search space is proposed,

S1
1 ∪ S2

1 ∪ · · · ∪ Ss1 = S0
0 ,

where s is a hyper-parameter of the process. Since this split happens recursively, at
iteration i ≥ 1 one has a set

Si = {Ski , 1 ≤ k ≤ si}

of subsets under consideration. Global optimisation is used to obtain the set of maxima

F̄i = {F̄ ki = max
u∈Ski

F (u) , 1 ≤ k ≤ si} .

Let us assume for the sake of simplicity that k is redefined here so that the maxima
are sorted F̄ ki ≤ F̄

k+1
i . Then it stands

u ∈
k⋃

κ=1

Sκi =⇒ F (u) ≤ F̄ ki

which allows one to compute the si-truncated approximation of the Belief curve

B̃el(F (u) ≤ ν) =
∑

Ω̃

m(Ω) ,

Ω̃ = {Ω ⊆
k⋃

κ=1

Sκi |F̄ ki ≤ ν }
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by cumulative sum of bpa over F̄i . This sum can usually be simplified by considering
degenerate bpa structures [112]. Such approximation is conservative by construction,
i.e.

Bel(F (u) ≤ ν) ≥ B̃el(F (u) ≤ ν) ,

If all the domain is plausible, i.e. if

U =
⋃

Ω , Ω ⊂ Θ , m(Ω) > 0 ,

then
Bel(F (u) ≤ ν) = B̃el(F (u) ≤ ν) = 1⇐⇒ ν ≥ F̄0 .

Furthermore, if it holds that

u ∈ Hl ⊆
k⋃

κ=1

Sκi ⇐⇒ max
u∈Hl

(F (u)) ≤ F̄ ki

then
Bel(F (u) ≤ F̄ ki ) = B̃el(F (u) ≤ F̄ ki ) .

Assuming the exactitude of the global optimisation, it is clear that F̄i ⊂ F̄i+1 , it will
nonetheless be assumed that it is necessary to repeat these optimisations; this assump-
tion will help contain the computational cost and is coherent with the conservative-
approximation objective of this work. Thus, the cost of the overall process running for
0 ≤ i < imax is at most simax−1

s−1 global maximisations. Up to this point, the parti-
tioning algorithm is equivalent to the binary tree approach proposed in [214] with the
exception that at each level i more than two subsets are possible. The critical point is
now to properly partition the U space and its subsets at every level i.

C.2 Heuristics for Minimisation of the Error

Even if we limit the domain subdivision procedure to a simple heuristic such as division
over all the intervals of one and only one uncertain variable for the whole iteration, there
are δ! possible variations of the aforementioned tree, where δ ≤ dim(U) is the number
of uncertain variables that have more than one interval with non-zero bpa.

The algorithm proposed in this paper stores proposes a breadth-first approach in
successive iterations. It stores in an archive AS the pairs (u, F (u)) evaluated by the
optimisation process every time it is run over a subdomain S to compute

max
u∈S⊆U

F (u) .

The archive can include information of previous iterations too. In the case that a
deterministic optimisation algorithm is employed, a pre-sample of U can be used to
increase the information available during the first iterations.

After the optimisation, AS is used to decide on a s-subdivision the current space.
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A function σ is defined

σ : AS −→ {S1, S2, · · · , Ss} , S1 ∪ S2 ∪ · · · ∪ Ss = S .

An appropriate choice of σ will lead to the construction of a tree such that it can be
truncated at the desired depth with minimum approximation error of the Belief curve.

The heuristics proposed hereby will consider dividing S along one direction of un-
certainty uj at a time. Furthermore, it will be considered that

Sk =
⋃

(Hl |Hl ⊂ S ∧ lj = k) ,

which is equivalent to subdivide S along all intervals [al, bl] | bpal,j > 0 for one of the
non-singleton variables uj |Lj > 1 .

The statements in C.1 stand by considering

s ≥ max
j

(Lj) .

This will from now on be referred to as breadth-first exploration of the truncated
estimation tree.

Under such premises, defining σ reduces to selecting the direction uj along which
next split will take place. Since the truncated estimation is conservative by construc-
tion, σ is chosen hereby so to partition S along the direction that, according to AS ,
captures the highest variability of the system budget with respect to the worst case in S.
The idea of systematic partition along the uj by sensitivity analysis on F is introduced
in [112] . Here we consider, for each non-singleton uj of S, the list of maxima

F̃j = {F̃ kj = max
(u,F (u))∈AS

u∈Skj

F (u) , 1 ≤ k ≤ Lj} ,

which constitutes a prediction of the next-iteration maxima in S if that direction is
selected for subdivision. Let us assume once again that k is redefined so that the
maxima are sorted F̃ kj ≤ F̃

k+1
j . The direction selected will then be

j = arg max
j

∑Lj−1
k=1 (F̃

Lj
j − F̃ kj )2

Lj − 1
,

which, by analogy with a variance measure, gives the variance-based designation.
This heuristics is designed as to favour a desirable estimated Belief curve over

S , i.e. one that grows slowly in the high robustness values. If the maxima in F̃
constitute a good approximation of the actual maxima over the Sk, which will be the
case if the global optimiser explored S effectively, this will compensate the conservative
approximation of the truncated estimation. Otherwise, the possible effects of under-
exploration of some regions during the previous global maximisations will be mitigated
for subsequent iterations.

It is noteworthy that the selection does not account for the bpa distribution among
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Algorithm 16 Variance-based breadth-first reconstruction of the truncated Belief
curve

1: Initialise S = U , S0 = {S} and i = 0

2: while i < imax do

3: F̄ ← {Ø} , Si+1 ← {Ø}
4: for S ∈ Si do

5: F̄ ← F̄ ∪ {max
u∈S

F (u)}
6: AS ← global optimisation history sample

7: Si+1 ← Si+1 ∪ σ(AS)

8: end for

9: Reconstruct B̃el curve from sorted(F̄ ) and bpa

10: Apply termination condition if any

11: i← i+ 1

12: end while

13: Return Last B̃el curve

the Sk. If subdivisions can be selected that are very heterogeneous in bpa, then other
σ options are preferable for a fast convergence of B̃el(F ≤ ν) to Bel(F ≤ ν). In fact,
a strongly uneven distribution of bpa’s can lead to substantial underestimations of the
Belief if only the pure variance of the maxima is considered. The authors propose for
instance maximising the area under the next-iteration prediction of the overall curve.

Note also that the purpose is here to obtain a good approximation of the Belief curve
at a given cost. The designer might be interested in a higher detail for the pessimistic
cases, for example, or be only interested in Bel(F ≤ ν) for a given ν; then one should
explore the tree otherwise than breadth-first. Combining the ideas exposed in [214]
with a σ(AS) subdivision function to accelerate convergence will be the focus of future
research.

Apart from the discussion on using the subdivision selection function σ as a heuris-
tic to accelerate convergence to the exact Belief curve instead of a more traditional
sensitivity analysis, the model reduction methodology of Algorithm 16 can be assimi-
lated to a generalisation to arbitrary partitions of the step-wise construction algorithm
proposed in [215] . There are however two more core novelties. First, the partitions
considered are not obtained systematically per variable after an initial sensitivity anal-
ysis, but selected on-line, which allows the algorithm to better represent the coupling
between sensitivities when exploring different regions of U . Secondly, the available data
of a global optimisation history over each subspace visited is included in the analysis.

C.2.1 Evolutionary Binary Tree Application

The method is here applied and verified in the preliminary reliability-based design of
the solar array of a small spacecraft.
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The Problem

This section presents the application of the algorithm presented to the reliability-based
sizing of the solar array of a small spacecraft power system, to be optimised in terms
of construction cost and total power-generating surface. Three different formulations
of increasing complexity will be proposed in the following sections, where each one is a
particular case of the next. In all of them, a design will consist on a certain choice of
the quantities:

• A ∈ [Amin, Amax], the power-generating surface of the solar panel, [m2].

• µ ∈ [0, 1], defines the proportion of cells of type I used in the solar panel. Each
type, I and II, has its:

– Best and worst-case solar efficiencies and failure profile, modelled as expert-
provided probability assignments to efficiency intervals.

– Cost per square meter of power-generating surface.

Hence the construction cost of a design C(µ,A) can be computed independently of
the uncertainties. The sources of risk are, besides the solar cell efficiencies:

• Uncertainty on the power consumption of each of the subsystems, mostly due to
lack of definition of the exact mission requirements, modelled as expert-provided
probability assignments to power requirement intervals.

• Uncertainty on the power generation, mostly due to sparse background data
on components recently adopted by the satellite provider, modelled as expert-
provided probability assignments to power efficiency intervals.

The model considers 11 power consumptions of low design margin defined over an
only interval, 14 power consumptions of high design margin defined over two intervals
with distinct probability assignments, and 6 efficiency power ratios also defined over
two intervals. Hence dim(U) = 31 and there are δ = 20 non-singleton directions uj .
The uncertainty space is composed of 220 adjacent focal elements.

Note that it is the epistemic uncertainty that is predominant in all cases at this
stage of the design. Hence all uncertainties have been modelled as epistemic and will
be propagated through the system model by means of Evidence Theory. The reliability
index selected is:

Bel(Pgen ≥ Preq)

Where Pgen is the power generated by the solar array and Preq is the power level re-
quired by the system, both uncertain. Thus, Bel(Pgen ≥ Preq) is the most conservative
probability estimation associated to the event of satisfying the power requirements of
the system that can be inferred from the available evidence, and one will be interested
in its maximisation or equivalently in the minimisation of the risk index

Pl(Pgen < Preq) .
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Risk Assessment of the Worst-Case Solution

With this formulation the worst-case-scenario optimum d∗wcs is sought for the construc-
tion cost C(µ,A) by solving the problem:

min
d∈D

C(µ,A)

s.t. : Pgen ≥ Preq ∀u ∈ U

This is equivalent to requesting from the system a reliability index of 100% or risk
index of 0% an can be solved analytically in this case by fixing A|Pgen ≥ Preq ∀u ∈ U
and minimising over µ.

For this design solution, the proportion of solar cells of each type µ∗wcs is fixed and a
risk analysis is then conducted varying the power-generating surface A. The reliability
index

Bel(Pgen ≥ Preq) = 1− Pl(Pgen < Preq)

is presented against C(µ∗wcs, A). This curve is estimated within 11 subsequent itera-
tions of the variance-based algorithm proposed hereby. Since the maximisations are
analytical over any subset of focal elements considered, a global optimisation log is not
available and is hence mimicked with an initial latin hypersquare sample of cardinality
64. The curves thus obtained are compared to the exact curve computed in an ex-
haustive fashion requiring maximisation over all the focal elements of uncertainty – 220

analytical maximisations in this case.
By construction this curve acts as a lower bound for the maximum reliability index

of any design d∗ that lays in the risk-budget Pareto set. In other words, it constitutes
a lower bound to the overall reliability-budget trade-off curve whose computation is
presented in C.2.1. Besides, its rightmost point corresponds to the worst case of the
worst-case optimum and is thus assured to belong to the risk-budget trade-off Pareto
front.

Bi-Objective Formulation

With this formulation the computation of the whole risk-budget trade-off Pareto front
is tackled for the construction cost of the solar array C(µ,A). This can be expressed
as:

min
d∈D

{
C(µ,A)
Pl(Pgen < Preq)

This is analogous to solving the family of evidence-based reliability-constrained
optimisation problems

minC(µ,A)

s.t. : Pl(Pgen < Preq) ≤ ε

ε ∈ [0, 1]

The problem above is solved by means of a single run of the multi-objective optimi-
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sation algorithm Multi-Agent Collaborative Search (Multi Agent Collaborative Search
(MACS) [216]), using 7 iterations of the variance-based algorithm proposed hereby for
the approximation of the risk index at each function evaluation. No additional heuris-
tics are added. Note that this formulation is as of today practically intractable without
an approximation method for the risk index even for a problem that allows analytical
maximisation over the focal elements, since it would require global optimisation over
the design space on top of the exhaustive computation of the index over all the focal
elements of uncertainty.

Three-Objective Formulation

With this formulation the computation of the whole risk-budget trade-off Pareto front
is tackled for the construction cost of the solar array and its power-generating surface
simultaneously. This can be expressed as

min
d∈D


C(µ,A)
A
Pl(Pgen < Preq)

and is analogous to solving the family of bi-objective evidence-based reliability-
constrained optimisation problems

min
d∈D

{
C(µ,A)
A

s.t. : Pl(Pgen < Preq) ≤ ε

ε ∈ [0, 1]

The solar array cells are such that type II have lower construction cost per kW of
power generated but require higher power-generating surface. This holds both when
comparing each type’s best-case and worst-case parameters. Hence it is expected to
find designs with µ = 0 and µ = 1 at the minimal-budget and minimal-surface extrema
of the Pareto front, respectively. This problem is solved with the same set-up described
in C.2.1.

C.2.2 Results

Risk Assessment of the Worst-Case Solution

Figure C.1 shows the increasing quality of the estimations obtained in 11 successive it-
erations of the variance-based approximation algorithm. The convergence to the exact
curve on the conservative side is assured by construction of the algorithm, but it is still
noteworthy that in this case the convergence rate is large enough as to obtain more
precision than is necessary for the purposes that occupy the designer, while achiev-
ing a reduction of four orders of magnitude in the computational cost (wrt its exact
computation). The heuristics used constitute a model reduction technique in the sense
that they compile information represented along some directions of uncertainty, deemed
less relevant. Hence these results are not generic, but the convergence speed will be
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directly related to the reducibility properties of the index to estimate with respect to
the problem uncertain variables in a given probability segment. In other words, the
maximum estimation error will be obtained when the effect of every uncertain variable
is homogeneous and there is no partitioning more significant than another amongst
the considered. The problem defined hereby is found to be dominated by the effect of
the uncertainty defined on the 6 power efficiencies, of which only the 3 of them corre-
sponding to cells of type II are relevant hereby. Thus 7 iterations of the algorithm are
henceforth deemed sufficient to capture most variability.

Figure C.1: Progressive approximation of the exact reliability-budget curve of
a design solution composed entirely of cells of type II (µ = 0). Highlighted,
the approximation corresponding to 7 iterations yielding 127 maximisations, i.e.
0.0121% of the computational cost of obtaining the exact curve.

Bi-Objective Formulation

Figure C.2 illustrates the Reliability Pareto Front obtained for the problem in its bi-
objective formulation. As discussed in section C.2.1, the curve in figure C.1 constitutes
a lower bound for the complete reliability-budget trade-off curve and its rightmost point
is coincident. In this particular case, since cells of type II have lower construction cost
per kW of power generated both in the best and worst case, the leftmost point is also
coincident. In this situation one could expect the front to be completely coincident,
nevertheless the results show that solving the evidence-based reliability-constraint op-
timisation problem with a requirement in the reliability index between 0.5 and 0.75
would lead to optimal solutions composed by around 50% of cells of each type.

Figure C.3 proves that the reliability-budget curve varying A of a solution with
µ = 0.5 (dashed line) has both a best case and worst case suboptimal to those of a
solution with µ = 0 (solid line), but the former presents two plateaus instead of one
and offers thus a higher lower bound on the cdf of the system at a lower construction
cost in this reliability range. In this case the designers are more interested in the upper
range of reliability and might focus their interest in the budget difference between
worst-case cost, nonetheless the availability of this information provides a powerful
decision-making tool in a generic scenario.

It can be noted that the quality of the approximation is worse for the design with
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Figure C.2: Reliability Pareto front obtained for the design problem in its bi-
objective formulation superposed to the exact Belief curve of the worst-case
optimum (black line). Colours relate to the proportion of cells of type I and II.

mixed types of cells using the same estimation set-up. This is due to the fact that each
of the maxima used to reconstruct the curve captures, in 7 iterations, the information
as divided along 6 of the δ = 20 non-singleton directions of epistemic uncertainty
defined. For a design with µ = 0.5, the indices will be more or less equally sensitive
to the uncertainty in the parameters of cells of type I and type II, resulting in an
homogenisation of the problem landscape. The algorithm, forced to account for more
cell-type-related parameters, generates less or no subdivision along the subspace of U
corresponding to the uncertainties in the power consumption, resulting in lower detail.
Despite this fact, it has been shown that the quality of the approximation is enough for
the bi-objective approach to spot the different behaviour of the solutions and attract
attention towards a potentially interesting mixed-type solution.

Figure C.3: Reliability-budget curves of design solutions with µ = 0 and µ =
0.5. Both the exact curves and those obtained with 7 iterations of the variance-
based estimation algorithm are shown.
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Three-Objective Formulation

Figure C.4 shows the family of optimal-budget Pareto fronts obtained in the three-
objective formulation for every possible level of reliability requested from the design
solution. Of course the fronts with a higher reliability associated are dominated by
those that allow a higher risk index. The uppermost front corresponds to the worst-
case Pareto optimal solutions. This front can be obtained at a reduced cost using
multi-objective worst-case optimisation heuristics such as the ones integrated in MAC-
Sminmax. Note that, whereas low and high-reliability solutions constitute almost-linear
fronts in the budget space, requesting reliability values between 25 and 75% will lead
to more exotically shaped Pareto fronts. In particular, the front becomes non-convex
under 50% reliability index, indicating an abrupt change in the properties of the prob-
lem landscape. Figure C.5 presents the exact same information in a three-dimensional
fashion, plus colours relate to the proportion of cells of type I and II used. It can be
observed that, as predicted, there is one type of cell that will generally lead to reduction
of the cost whereas the other will lead to reduction of the solar array power-generating
surface.

Figure C.4: Reliability-budget Pareto Front obtained for the design problem in
its three-objective formulation projected to the budget axis, colours relate to the
reliability index.

C.2.3 Conclusions

A methodology has been presented for the fast and conservative estimation of the Belief
and Plausibility curves associated to a system budget of quantity of interest. This finds
application in Evidence-Theoretic Uncertainty Quantification. The proposed algorithm
relies on breadth-first partitioning of the uncertain space and model reduction after
analysis of data coming from a global optimisation history. Heuristics to relate the
partitioning scheme to the optimisation archive have been proposed and discussed.

The overall procedure has been put to the test by means of application in the Expert-
Based Reliability Design Optimisation of the solar array of a small spacecraft. For this
application, several formulations are proposed of increasing computational complexity
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Figure C.5: Risk-budgets Pareto front obtained for the design problem in its
three-objective formulation, colours relate to the proportion of cells of type I
and II.

to obtain reliability-budget trade-off solutions. Such a detailed analysis is as of to-
day intractable in large-scale engineering problems without a suitable approximation
method for the system indices, even if simplified models are in use.

The results show that the proposed methodology can, under suitable model reduc-
tion assumptions, provide a large cut-off in computational cost with respect to the
exact computation of the Belief and Plausibility curves, while maintaining a minimal
approximation error.

It is nonetheless noteworthy that to tackle some of the formulations presented,
namely those that involve multi-objective optimisation, only a value of the curve is of
interest to drive the search. A preliminary discussion on heuristics to further reduce
the cost in such applications has been led. A broader view on efficient robustness and
reliability optimisation algorithms will constitute the focus of future research.
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in the New Millennium (M. Köksalan, ed.), pp. 189–198, Berlin, Heidelberg:
Springer-Verlag, 2001.

[189] M. Vasile, “On the solution of min-max problems in robust optimization,” in
The EVOLVE 2014 International Conference, A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computing, (Jian-Guo Hotel), Jian-Guo
Hotel, 2014.

[190] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces,” Journal of Global Optimiza-
tion, vol. 11, no. 4, pp. 341–359, 1997.

[191] R. Baxter, N. Hastings, A. Law, and E. J. Glass, Algorithms for worst-case design
and applications to risk management, vol. 39. 2008.

[192] M. Jamil and X.-S. Yang, “A Literature Survey of Benchmark Functions For
Global Optimization Problems,” Journal of Mathematical Modelling and Numer-
ical Optimisation, vol. 4, no. 2, pp. 150–194, 2013.

[193] S. Alicino and M. Vasile, “An evolutionary approach to the solution of multi-
objective min-max problems in evidence-based robust optimization,” in Proceed-
ings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, 2014.

[194] D. Vallado and W. McClain, Fundamentals of Astrodynamics and Applications.
Fundamentals of Astrodynamics and Applications, Microcosm Press, 2001.

[195] M. Patel and O. Beik, Spacecraft Power Systems. CRC Press, 2023.

[196] J. R. Norris, Markov Chains. New York: Cambridge University Press, 2009.

[197] G. Fubini, “Sugli integrali multipli,” in Rend. Acc. Naz. Lincei, pp. 608–614,
1907.

[198] G. Benettin, “Una passeggiata tra i Sistemi Dinamici,” 2012.

[199] R. Seydel, “Basic Bifurcation Phenomena,” Computer, vol. 49, no. June, 1999.

[200] B. Barzel and A. L. Barabási, “Universality in network dynamics,” Nature
Physics, vol. 9, no. 10, pp. 673–681, 2013.

[201] R. M. Sumanth, “Computation of eclipse time for low-earth orbiting small satel-
lites,” International Journal of Aviation, Aeronautics and Aerospace, 2019.

[202] G. Gordon and W. Morgan, Principles of communication satellites. John Wiley
and sons, Inc., 1993.

[203] “Features Heritage:-3 units for world’s fastest communication satellite ”KIZUNA”
(WINDS)-8 units for greenhouse gas observation technology satellite ”IBUKI”
(GOSAT)-3 units for Quasi-Zenith Satellite ”MICHIBIKI” (QZSS)-6 units for
Global Change Observation Mission 1st-Water SHIZUKU” (GCOM-W1),” tech.
rep.

265



Bibliography

[204] “Features Heritage:-3 units for world’s fastest communication satellite ”KIZUNA”
(WINDS)-8 units for greenhouse gas observation technology satellite ”IBUKI”
(GOSAT)-3 units for Quasi-Zenith Satellite ”MICHIBIKI” (QZSS)-6 units for
Global Change Observation Mission 1st-Water SHIZUKU” (GCOM-W1),” tech.
rep.

[205] “ECAM-DVR4 Digital Video Recorder, 4-Port Features ECAM-DVR4 Applica-
tion ECAM-DVR4 Malin Space Science Systems Exploration Through Imaging
Space Cameras and Systems,” tech. rep.

[206] C. M. Evan Clinton, Andris Jaunzemis and F. Wang, “Satellite downlink.”

[207] VECTRONIC-Aerospace, “Payload data handling system vpdhs-vectronic
aerospace [online],” 2024.

[208] C. Brown, Elements of Spacecraft Design. AIAA Education Series, 2002.

[209] J. Wertz and W. Larson, Space Mission Analysis and Design. 3rd ed., Microcosm
Press, 1999.

[210] W. Ley, K. Wittmann, and W. Hallmann, Handbook of Space Technology. 2009.

[211] J. F. Castet and J. H. Saleh, “Satellite and satellite subsystems reliability: Sta-
tistical data analysis and modeling,” Reliability Engineering and System Safety,
vol. 94, no. 11, pp. 1718–1728, 2009.

[212] D. R. Cox, “Regression models and life-tables,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 34, no. 2, pp. 187–220, 1972.

[213] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing weighted sums
of objectives for Pareto set generation in multicriteria optimization problems,”
Structural Optimization, vol. 14, no. 1, pp. 63–69, 1997.

[214] M. Vasile and E. Minisci, “Approximated computation of belief functions for
robust design optimization,” pp. 1–18, 2012.

[215] J. C. Helton, J. D. Johnson, and W. L. Oberkampf, “An exploration of alter-
native approaches to the representation of uncertainty in model predictions,” in
Reliability Engineering and System Safety, vol. 85, pp. 39–71, 2004.

[216] F. Zuiani and M. Vasile, “Multi Agent Collaborative Search based on Tchebycheff
decomposition,” Computational Optimization and Applications, vol. 56, pp. 189–
208, sep 2013.

266



Bibliography

267


	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation and rationale
	Research Objectives and Contribution
	Publications
	Thesis Structure

	I Background
	Present and Future of Systems Engineering
	History of the Systems Design
	Space Systems Project Life Cycle
	Complexity and Limits of Current Approaches
	Complexity and Resilience Engineering
	Necessary Tools for Systems Engineering

	Evidence-Based Uncertainty Quantification
	What Uncertainty Is and How to Live With It
	Evidence Theory
	Belief and Plausibility
	Evidence Framework for System Engineering
	Advantages and Disadvantages of Evidence Theory

	Algorithms for Uncertainty Quantification

	Optimisation Under Uncertainty
	Problem Formulation and Classification
	Algorithmic Solvers Classification
	Memetic Approaches Based on Differential Evolution

	Robust Optimisation
	Min-Max
	Multi Disciplinary Optimisation
	Multi Objective Optimisation
	Normalisation
	Scalarisation Strategies

	Constraint Handling


	II Global Optimisation Solver
	Global Solution of Constrained Min-Max Optimisation
	Problem Definition
	A Memetic Single Objective Constrained Min-Max Approach
	Initialisation
	Minimisation-Restoration Loop
	Constraint Relaxation Strategy
	Cross-Check
	A Memetic Strategy for Constrained Global Optimisation Problems

	Computational Complexity
	Testing Procedure
	Benchmark
	Success Rate
	Algorithm Settings

	Results
	Uni-Modal Test Problem
	Multi-Modal Test Problems
	Convergence Complexity

	Application: Robust Space System Design
	Conclusion


	III System Optimisation Under Epistemic Uncertainty
	Evidence Network Model for System Design Optimisation
	Evidence Network Model
	Evidence Network Model Example
	System Design Optimisation Under Epistemic Uncertainty
	Conclusion

	Evidence-Based Robust Optimisation
	Problem Formulation and Solution Methodology
	Outer Approximation via Decomposition
	Complexity Analysis
	Method advantages
	Method Tutorial
	Benchmark and test results

	Case Study: Optimal Battery Sizing
	Problem Formulation
	Evidence Network Model of the Battery Sizing Problem
	Results
	Validation
	Comments

	Conclusion

	Evidence-Based Resilience Optimisation
	Resilience Engineering
	Problem Formulation
	Markov Chain-Based Resilience Model
	Catastrophe Theory-Based Resilience Model
	Autonomous Bifurcation
	Normalisation
	Non Autonomous Bifurcation: (t)

	Test Case Application (Markov Model)
	Optimisation Problem Definition
	System Models
	Cube-Sat Resilience Model
	Evidence Network Model and Belief Function Estimation
	Results

	Test Case Application (Catastrophe Theory Model)
	Optimisation Problem Definition
	Results

	Complexity Analysis
	Conclusion

	Multi-Layer Network Model for Design Process Optimisation Under Epistemic Uncertainty
	Multi-Layer Evidence Network Model
	Optimisation Approach
	Test Case
	Results
	Conclusion

	Conclusion
	Future Works

	Testing Results for the Single-Objective Min-Max Problem
	Multi-Objective Min-Max Approach
	Problem Formulation
	A Memetic Multi-Objective Alternative to the Relaxation Approach
	A Memetic Scalarisation Approach for Multi-Objective Optimisation
	Test Case
	Conclusion

	Outer Belief Estimation via Evolutionary Binary Tree
	Truncated Estimation
	Heuristics for Minimisation of the Error
	Evolutionary Binary Tree Application
	Results
	Conclusions


	Bibliography


