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Abstract

Lately we are witnessing a rapid improvement in the performance of artificial
intelligence (Al) for tasks that are time consuming or challenging for humans.
However, Al typically relies on large datasets and high-quality labels. Data
collection itself is often relatively straightforward, while labelling poses a
challenge. Additionally, once deployed, algorithm performance deteriorates
if the underlying conditions (i.e. data statistics) change. Moreover, there
is a strong initiative for lawful, ethical and robust AI algorithms instead of
black-box systems.

To address these challenges, human-in-the-loop approaches such as active
learning, interactive learning, and machine teaching have been proposed to
optimise handling of training data, i.e., minimise the amount of data that
needs labelling without compromising the performance, while including hu-
man in the design cycle of algorithms.

In this thesis we first design and test oracle-based active learning frame-
works, including various ways of selecting data samples for algorithm train-
ing, transferability of algorithms to new environments, and using simplified
labels that apply to larger parts of signals instead of per-sample labels. Opti-
mal trade-off between algorithm performance and labelling effort is achieved
with the amount of labelled data reduced by 85-95% for the non-intrusive
load monitoring problem with regular, fine grained labels; by 82.6-98.5% with
simplified labels covering larger signal parts, and 83% for the micro-seismic
event detection problem.

Next, we move towards human-in-the-loop active learning approaches,
including domain experts in the labelling task during active learning. We
address practical considerations of active learning, i.e., existence of an oracle
providing absolutely correct labels, variable difficulty of labelling available
data samples, and errors introduced during labelling if there is no oracle.
We design a stopping mechanism for the active learning process, to avoid



unnecessary labelling. We propose several ways to mitigate introduced er-
rors - using expert’s confidence to suppress the effects of labels which are
difficult to assign, and using a mechanism to detect potentially wrong la-
bels and send them for re-labelling. We validate the proposed solutions for
the non-intrusive load monitoring problem in experiments with three do-
main experts. The results show that the proposed methodology significantly
improves model transferability with labelling effort reduced by 61-93%.

Lastly, we design a machine teaching framework with a hybrid human-
machine teacher. The domain expert (human teacher) makes a selection
of just several representative data samples to lead the algorithm training
process, based on which the machine teacher creates labels and curates the
training dataset for learning in stages, resembling real-world teaching. Ap-
plied for the problem of micro-seismic event classification, we demonstrate
the efficiency of the approach, outperforming the random teacher (F} score
of 0.64) and active learning (F; score of 0.71) approaches with the same
labelling effort, achieving F} score of 0.78.

The work presented in this thesis aligns with several of the United Na-
tions Sustainable Development Goals (SDGs), promoting peace and prosper-
ity for people and the planet. Research applied to the non-intrusive load
monitoring problem aligns with goals 7 - “Ensure access to affordable, re-
liable, sustainable and modern energy for all” and 12 - “Ensure sustain-
able consumption and production patterns” by providing users with a clear
and easy-to-understand summary of their energy expenses. This will help
them see when and how much energy is consumed as well as how its carbon
footprint. With this information, users can change their habits and adopt
more sustainable practices, ultimately reducing CO2 emissions from their
homes. Research on micro-seismic event classification with human oversight
will strengthen resilience and adaptive capacity to climate-related hazards
and natural disasters such as landslides, supporting SDG 13 - “Take urgent
action to combat climate change and its impacts”.
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Preface

This thesis presents an exploration of deep learning approaches with human
oversight, aiming to reduce the amount of labelled data needed for algorithm
training while securing human autonomy over Al system lifecycle. The thesis
spans the concepts of active learning and machine teaching.

The first contribution chapter presents the foundational work of this the-
sis on oracle-based active learning, exploring how to efficiently train deep
learning models achieving good performance with as little labelled data as
possible. This approach is tested with different types of labels and for differ-
ent types of time-series signals, including energy disaggregation and micro-
seismic event monitoring. Building on this foundation, the second contri-
bution chapter delves into the human-in-the-loop concept within an active
learning framework for energy disaggregation. It addresses practical consid-
erations regarding when to stop the learning process and how to manage the
imperfections of human-provided input. The third contribution chapter ex-
plores the machine teaching concept, with a hybrid human-machine teacher.
This innovative approach allows a domain expert to guide the training of a
deep learning model for micro-seismic event classification with the help of a
machine teacher, to maximally reduce burden on the expert.

I hope that this work contributes to the ongoing discourse in the field and
inspires further research on deep learning approaches with human oversight.
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Chapter 1

Introduction

As Al algorithms become more available and widely used, and integrated
in many aspects of our lives, ethical concerns are rising. To ensure that Al
causes no harm to those using it, European Commission has adopted seven
principles for trustworthy Al: (1) human agency and oversight, (2) technical
robustness and safety, (3) privacy and data governance, (4) transparency,
(5) diversity, non-discrimination and fairness, (6) societal and environmental
wellbeing, and (7) accountability [I].

Human agency and oversight are achieved through human-in-the-loop,
human-on-the-loop and human-in-command approaches, ensuring that hu-
man autonomy is not undermined. Human-in-the-loop-based Al systems
assume that human is involved in every decision cycle in the system; human-
on-the-loop approaches assume that human is involved in the design cycle
and in monitoring system operation; and human-in-command approaches
assume that human oversees the overall working of an Al system, includ-
ing economic, societal, legal, and ethical aspects [I]. These human agency
and oversight approaches are usually implemented so that algorithm training
works in an iterative fashion, via active learning, interactive learning, and
machine teaching [2].

Active learning (AL) is a paradigm that optimises the amount of data
that needs to be labelled while not compromising the performance of an Al
algorithm [3]. It relies on the assumption that not all data samples bring
the same amount of information to model training, so some data samples are
more worth labelling and including in the training set than the others. It is
implemented in an iterative fashion, choosing the most informative samples
in each iteration, and the algorithm improves rapidly in the first several



iterations, ensuring high accuracy with low labelling effort. After the initial
jump in performance, the labelling cost usually exceeds the performance gain,
so further labelling is not needed. In literature, an oracle is often assumed
to provide data labels throughout the process, however, there are several
challenges arising from that: a labelled dataset is not available in advance;
assuming an oracle usually implies availability at any time, and that all the
labels provided are equally easy to get, and also absolutely true. Instead of
oracle-based approaches, humans (domain experts or end users) naturally fit
into the AL concept — they can be included in the loop to provide labels
for informative data samples. However, when domain experts or end users
provide labels, they can introduce unintentional mistakes, which hinder the
algorithm performance.

Machine teaching (MT) is a paradigm where knowledge is transferred
from (human) teacher to an Al algorithm [2]. Similarly to AL, MT works
iteratively, but the teacher is in control of the training process. The idea is to
mimic how learning works in a classroom - the teacher knows which concepts
and in which order to teach to a learner to help them acquire knowledge
efficiently. Usually, the teaching starts from clear, concrete, and reliable ex-
amples, moving towards more complex ones. Sometimes, teaching a machine
can be challenging due to the amount of data that needs scanning and la-
belling in order to decide what data and in what order should be included in
training.

Interactive learning (IL) lies between AL and MT — the control of the
learning process belongs to both the algorithm and the teacher, and there is
a closer interaction between users and learning systems [2].

AL, IL and MT are especially relevant in applications where raw data can
be easily recorded, but labelling poses a challenge. Domain experts are often
the only ones who can annotate the data, which can be time consuming and
costly, thus hindering the use of data. Also, once trained and deployed, the
performance of a deep learning algorithm remains stable for a short period of
time in a dynamic environment [4], and then starts deteriorating, usually due
to changes in data statistics over time, requiring more labelling and mainte-
nance. Additionally, when transferred to a new environments, performance
usually drops due to differences in data statistics.

In this thesis, novel AI with human oversight approaches are proposed.
First, an oracle-based AL framework is designed to explore different ways
of selecting informative data samples and improving model transferability
via AL. The optimal balance between labelling effort and performance is



defined, and a way to determine when to stop selecting data samples is
proposed. In addition, the use of weak labels, that are easier to collect as
they apply to larger parts of input signals instead of per-sample labels is
examined to simplify the labelling process. Then, the focus moves towards
replacing an oracle and involving domain experts in the loop. Since experts’
labels are imperfect, the effect of errors is assessed, and several ways to
mitigate them are proposed - attenuating the effect of labels that are provided
with low expert confidence, and detection of potentially wrong labels and
returning them for re-labelling. In all these approaches, even though a human
is in the loop, the control over the process is with the algorithm - that
is, the algorithm chooses samples and leads the training process, and the
expert only provides labels. Lastly, a human-on-the-loop MT approach is
proposed, giving the expert control over the training without the need for
labelling beyond providing several representative data samples, making use
of a combination of a human and a machine teacher.

The deep AL approaches presented are developed for applications in
climate change mitigation, more precisely, for Non-intrusive load monitor-
ing (NILM) from low-frequency smart-meter measurements, and for micro-
seismic event monitoring. In both of these application areas, the data is
relatively easily collected. NILM offers detailed insights into electricity con-
sumption, enabling users to adjust their habits to reduce energy usage, and
consequently lower greenhouse gas emissions. Data collection is done by
conventional smart meters installed in homes, recording aggregate electricity
consumption of a household. However, labels, pointing when each appliance
is used and how much it consumed, are not so easily obtained. One approach
involves installation of submeters for individual appliances, which is expen-
sive and often impractical. Alternatively, an expert with the knowledge of
many different consumption patterns of appliances, and the ability to recog-
nise them within a noisy recording, can perform labelling manually, but it is
also an expensive and time consuming option.

Micro-seismic event monitoring allows for detection and localization of
seismic events potentially causing harm to both people and infrastructure.
By providing critical information, it supports management strategies to min-
imise the risks. Data is gathered by seismometers deployed near the active
site. A domain expert then has to manually check all recordings to find and
label seismic events, which is an extremely hard task - since the events can
be very sparse within a recording, and some of them can be missed due to
high levels of noise. Therefore, both areas would benefit from methods to re-



duce the amount of labelling needed to create well-performing AT algorithms.
Open access, real-world datasets are used in the studies presented to ensure
the reproducibility of the research.

The work in this thesis applied to the problem of NILM resonates with the
UN Sustainable Development Goals (SDGs) 7 (Affordable and Clean Energy)
and 12 (Responsible Consumption and Production) by providing users with
a clear and easy-to-understand summary of their energy expenses. This will
help them see when and how much energy they use, as well as whether it’s
from renewable or non-renewable sources. With this information, users can
change their habits and adopt more sustainable practices, ultimately reducing
CO2 emissions from their homes. The work applied to micro-seismic event
monitoring resonates with SDG 13 (Climate Action), strengthening resilience
and adaptive capacity to climate-related hazards and natural disasters such
as landslides.

Even though the applications to NILM and micro-seismic event moni-
toring are considered in this thesis, the proposed approaches can be applied
to a wide range of time-series signals where data collection is relatively not
expensive, but labelling poses challenges.

1.1 Research motivation and aims

The motivation of this research lies in exploration of how human-in-the-
loop approaches can be utilized to improve data efficiency for training and
transfer of Al algorithms applied to climate change-related problems, i.e.,
NILM and micro-seismic event monitoring, while ensuring human autonomy
is not undermined during algorithm’s life cycle.

Our early work on NILM for dairy farms [5] revealed challenges in the
transfer of NILM algorithms across different environments, emerging from
different labelling approaches of farmers, for example, one farmer labels one
big piece of equipment as one appliance, while another farmer labels it as
multiple small subcomponent appliances. In addition, some appliances with
the same name have distinct signatures in different locations.

Although transfer learning is a popular approach in NILM, the challenges
posed by different labelling practices and distinct appliance signatures across
different locations highlight the need to explore additional approaches. In
this context, data-efficient human-in-the-loop methods, such as AL, pose a
promising solution. AL allows for targeted selection of the small amount



of the most informative data samples which can be labelled by data owners
at each location, and then used to update and improve performance of the
transferred models.

However, AL comes with its own challenges, such as oracle assumption,
unintentional errors introduced during labelling in the absence of an oracle,
and availability of the person providing labels. Moreover, in AL the algorithm
has full control over the training process, and labelling even a small amount
of data in AL can be tedious for the human included in the loop. There is
an initiative to give humans more creative and meaningful tasks, and this is
where MT can become the preferred choice.

This leads to the following research questions:

RQ1 Can oracle-based deep active learning be useful for efficient training
and transfer of Al algorithms applied to time-series data classification?

RQ2 When and how to optimally stop the active learning process? Can an
acquisition function with an inbuilt stopping mechanism be designed
to be used within an active learning framework?

RQ3 How do errors that humans unintentionally introduce during the AL
process affect the performance of the Al model being trained? What
can be done to mitigate these errors - can labeller’s confidence be uti-
lized? Can incorrect labels be detected and corrected?

RQ4 Can expert’s knowledge be used more efficiently through machine teach-
ing with a hybrid human-machine teacher, i.e., can experts be included
in the process with a higher level of control over the process, and with
less labelling effort?

Chapter [3] addresses by designing AL frameworks, exploring if it
can improve model transferability; how choice of acquisition function affects
the performance, and whether training from scratch of fine-tuning the model
yields better results. [RQ2 and [RQ3J are discussed in Chapter [} is
addressed by designing an acquisition function based on hypothesis testing,
with a region of uncertainty whose emptiness indicates the end of the AL
process; by exploring how different amounts and different types of la-
belling errors affect model performance, by setting sample weight during
training based on the expert’s confidence when providing labels, and by de-
signing a mechanism to return wrongly labelled samples for re-labelling based




on match between provided label and model output after training. Chap-
ter [5] addresses by designing an MT framework for micro-seismic event
monitoring with a hybrid human-machine teacher, leveraging on automatic
labelling, and allowing domain expert to efficiently lead algorithm training
by choosing representative anchor samples based on which training dataset
contents are controlled.

1.2 Contribution of Thesis

This research begins with oracle-based AL approaches, followed by human-
in-the-loop AL. In both cases, the algorithm is in control over the training
process. The thesis ends with an MT approach, giving domain experts more
autonomy. In summary, the main contributions are as follows:

e Design and evaluation of the first AL frameworks for the low-frequency
model-based NILM and for micro-seismic event detection.

e Definition of the optimal point of an AL process based on performance
and labelling effort trade-off, and an acquisition function based on hy-
pothesis testing, with a stopping mechanism to avoid labelling that
does not bring significant performance improvement.

e Proposing several ways to deal with errors introduced during labelling
by humans included in the AL process: utilizing expert’s confidence to
weigh data samples for training, and detecting and re-labelling poten-
tially wrongly labelled samples based on match rate between provided
label and algorithm output after training.

e Designing a MT framework for micro-seismic event classification with
a hybrid human-machine teacher, leveraging both on expert knowledge
and automatic labelling, to efficiently transfer knowledge to an algo-
rithm with minimal labelling effort.

1.3 Organisation of Thesis

Chapter [2| provides background on Al with human oversight, active learn-
ing and machine teaching, state-of-the-art on NILM and micro-seismic event



monitoring, description of datasets used in this thesis, and definition of eval-
uation metrics used to measure algorithm performance. Chapter [3| presents
research on oracle-based Al approaches applied to NILM and micro-seismic
event monitoring, exploring transfers to new environments, evaluating per-
formance of different acquisition functions and training from scratch vs fine-
tuning approaches. Chapter [4] presents the next step - human-in-the-loop AL
with three NILM experts involved in labelling, exploration of labelling error
effects and proposing two ways for their mitigation: weighing training sam-
ples based on expert’s confidence about provided labels, and detection and
correction of wrongly labelled samples based on mismatch between provided
label and algorithm output. Chapter |5| presents a study moving towards giv-
ing human more control over the process - instead of only providing labels
for samples asked by the algorithms, the expert actively leads the training by
setting anchors based on which the training set is curated; and the approach
leverages on a hybrid human-machine teacher, to efficiently use expert’s time
to only select anchors, and the tedious work of labelling is performed auto-
matically, by the machine part of the teacher.
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Chapter 2

Prelimiaries and Background

2.1 Introduction to Artificial Intelligence and
Machine Learning

Artificial intelligence (AI) and machine learning (ML) are transformative
technologies that have rapidly evolved, redefining how we interact with data
and automation. Al encompasses a wide range of techniques designed to
mimic human cognition, enabling machines to perform tasks that typically
require human intelligence. ML, a branch of Al, focuses on the develop-
ment of algorithms that allow computers to learn from and make predictions
based on data. Deep learning, an advanced subset of ML, utilises neural
networks with many layers to model complex patterns within large datasets,
significantly advancing fields such as computer vision and natural language
processing.

In ML, there are several key paradigms that dictate how models learn
from data. Supervised learning requires labeled data, where the model learns
to map the input data to known outputs. Common applications include clas-
sification (categorising data) and regression (predicting continuous values).
Unsupervised learning involves training models on data without labels. The
goal is to uncover hidden patterns or intrinsic structures within the data,
such as clustering similar data points together. Combining aspects of both
supervised and unsupervised learning, semi-supervised learning uses a small
amount of labeled data alongside a larger pool of unlabeled data, striking a
balance that improves learning efficiency.

To enhance the performance of ML models, several key techniques are em-
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ployed. Re-training involves training a model from scratch on a new dataset,
allowing it to adapt to changing conditions or requirements. Fine-tuning
modifies an already trained model on a new task or dataset with a smaller
learning rate, optimising its parameters without starting the training process
anew. Incremental learning, also known as online learning, allows a model
to continually learn from new incoming data without needing to retrain from
the beginning. This is particularly useful in dynamic environments where
data evolve over time.

Within ML, active learning (AL) serves as a specialized approach that op-
timises the training process by selectively querying informative data points,
thus improving model performance with fewer labeled examples. Machine
teaching (MT) is another approach that enhances ML, allowing domain ex-
perts to guide and structure the learning process, ensuring that ML models
align more closely with specific tasks and objectives. These approaches are
often used to achieve human agency and oversight, as one of the main prin-
ciples of trustworthy Al

AL is described in detail in Section 2.3, and MT in Section [2.4]

2.2 Al with human oversight

Human agency and oversight are achieved through human-in-the-loop, human-
on-the-loop and human-in-command approaches, ensuring that human au-
tonomy is not undermined during the design and testing of machine learning
algorithms. Human-in-the-loop-based Al systems assume that human is in-
volved in every decision cycle in the system; human-on-the-loop approaches
assume that human is involved in the design cycle and in monitoring system
operation; and human-in-command approaches assume that human oversees
the overall working of an Al system, including economic, societal, legal, and
ethical aspects [2].

These approaches can be implemented such that algorithm training works
in an iterative fashion, via AL, IL, or MT [2]. These approaches differ on who
is in control of the learning process: from AL [3], where the algorithm that
is being trained, i.e., the learner, is in full control of the learning process
requesting labels from the domain expert, i.e., the teacher, based on the
learner’s confidence; to IL [6], where both the teacher and the learner are
in control, and in MT [4] [7], where control lies fully with the teacher, i.e.,
the teacher selects the most reliable labels to be used for training. Besides
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providing human agency and oversight, these methods also enhance data
efficiency - being designed to intelligently choose training samples so that
the amount of data to be labelled and used for training is optimised.

Conventional machine learning approaches with human oversight, such
as [§], include domain experts (humans) in the process of data labelling, ex-
plaining decisions of the AI algorithm and refining the AI algorithm through
post-processing. However, there is growing interest in going beyond this, and
giving humans more meaningful, creative and concise tasks, which would
allow for wider human participation in the overall Al system design and
maintenance [2]. A promising ways of achieving this are active learning, an
approach where the AI algorithm identifies the most informative data sam-
ples for human labelling, optimising the labelling process and focusing human
effort where it is most needed, enhancing the quality of the training data; and
machine teaching, an approach where human teacher selects, orders and la-
bels data samples, using domain knowledge to optimise the training dataset.
By integrating active learning or machine teaching into the workflow, a more
dynamic and collaborative environment that leverages both human exper-
tise and machine efficiency can be created. It is important to acknowledge
that, even though domain knowledge is often used to denote knowledge of
labels in human-in-the-loop approaches, it truly extends far beyond mere la-
beling, encompassing deep insights into data distributions, feature relevance,
task-specific constraints, and underlying generative processes.

2.3 Active learning

The main goal of active learning (AL) [9] is to reduce the amount of labelled
data needed to train models. It is an iterative process, where an initial model
my is trained using a limited set of labelled data D,. The prediction is then
performed on a large pool of data D,., where labels are not available, and
the acquisition function ¢(-) is used to select samples @ C D, that are
worth including in training, i.e., that satisfy some informativeness criteria,
as in [10], diversity criteria [11], or both [12], [13]. Labels are requested for
the chosen samples, and after they are available, those samples are included
into a new fine-tuning (or re-training) set Dg. When retrained or fine-tuned
on Dy, the model uses new knowledge to query more data. The loop runs
until a stopping criterion has been met, as shown in Algorithm [I| where
algorithm train performs either re-training or fine-tuning of the model.
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An overview of deep AL, explored recently for various types of problems,
such as medical image analysis [14], and natural language processing [15], is
provided in a recent survey [3].

Algorithm 1 Active learning

1 = 1 - active learning iteration
m; - DNN-based model at iteration ¢ > mg - pre-trained DNN model
q(+) - acquisition function
Q; - set of samples queried at iteration 7
D, - query pool
Dy, = () - fine-tuning set
S - stopping criterion met (Boolean flag)
while not S do

Qi < q(mi—1,Dpoo1)

Dpool A Dpool \ Qz

Dy + Dy UQ;

m; < train(mg, Dy)

14 1+1
end while

Acquisition functions

Acquisition function is used to select the most worthy data samples from
D, to be queried, labelled and added to Dy, by ranking samples belonging
to query pool D, based on informativeness or diversity criteria [3]. For the
classification problem, the model produces a vector containing probabilities
that a data sample belongs to each of the possible classes/labels. Common
approaches use those class probabilities to estimate model uncertainty (e.g.,
as in [I0]). This approach is commonly referred to as least confidence uncer-
tainty sampling, and can be implemented in pool- and stream-based fashion.
In the pool-based fashion, all samples from query pool D, are evaluated
and then the best subset, ), is selected. That is, it is assumed that the whole
query pool is available at the moment of query. In the stream-based fashion,
data samples are considered to arrive in a stream, and the whole query pool
is not available at query time - only the arriving sample can be evaluated,
and it can be viewed as operating without a pool since data samples are not
saved as they arrive. However, for simplicity, the term query pool is kept
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to denote the arriving data stream. Therefore, a predefined informativeness
threshold is applied to each data sample as it arrives, and if informativeness
of the sample exceeds the threshold, then the sample is considered infor-
mative enough and it is included in query @, and otherwise it is not. An
example in Figure shows how uncertainty sampling works in the pool-
and stream-based fashion - the task in the example is binary classification,
query pool contains 10 samples out of which 4 are selected for the query.

D0 samples

predictions: | 0.23 |012 078 |0.96

033 098 [004 [042 [085 [050 |

prediction, prediction > 0.5

confidence = {1 — prediction, prediction < 0.5

confidence: | 0.77 | 088 078 [0.96 [067 [098 [096 |058 |085 050 |

// Least confidence uncertainty sampling, N = 4: \

Pool-based: Stream-based:
Collect confidence from the whole D,,,, — sort As samples from D, arrive (leftmost first),
— choose Q: compare their confidence with confidence

threshold (here 0.9) - if below; include in Q:

l 0.77[ ﬂ.ﬂﬂ[ 0.78 [ 0.96 [ 0.57[ 0.98 [ a%[ 0.55[ agsl 050 [ [ 077 [ 0.88 [ 0.75[ 0.96 [ 0.57[ asq[ 0.96 [ 0.55[ 085 [ 0.50 [

Figure 2.1: Difference between pool- and stream-based uncertainty sampling
on an example of binary classification with 10 data samples in the query
pool out of which 4 should be selected for query. Samples belonging to @ are
highlighted in green.

Selecting a batch of data samples to label independently leads to re-
dundancy because many similar highly-correlated samples would be queried.
Therefore, acquisition strategies that account for both informativeness and
diversity among queried data samples have been developed. For example,
BatchBALD [16] looks at mutual information between a sequence of samples
and model parameters. Although it works well with small datasets, it un-
derperforms for large ones [17, [10]. BADGE [11] queries samples that give
high-magnitude penultimate layer gradients of different directions if the pre-
dicted label would be the true one (i.e., if pseudo-labels are used to compute
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gradients). Samples are chosen via k-means++ initialization algorithm on
the obtained gradient embeddings. This approach needs computation of gra-
dients for each sample in the query pool, which is resource-intensive. CLUE
[12] scales the activations of the penultimate layer of the network with the
entropy of the output as uncertainty measure. Obtained embeddings are clus-
tered using k-means algorithm, and then samples closest to cluster centers
are chosen. This method depends heavily on the clustering algorithm initial-
ization, and also on the convergence of the clustering algorithm. Acquisition
function used in SALAD [I3] combines 1-2 norms of gradients computed us-
ing pseudo-labels as in BADGE [I1], and entropy of the prediction as an
uncertainty measure. Sum of the two components is greedily maximized to
choose samples for query. This approach avoids clustering, but the whole
SALAD framework contains pre-trained network, target network, as well as
guided attention transfer network, which are all used throughout the process,
and which can be demanding.

Stopping criterion

AL is usually performed in an iterative manner, where, in each iteration,
the user provides a set of new labels that are used to retrain the model.
At some point, newly labelled data supplied to the model will either not
anymore improve the performance, or even worse it can start degrading the
performance due to overfitting. Hence, it is important to stop the iterative
labelling process on time. Setting a threshold on the achieved performance,
or observing performance improvement smaller than a threshold [I§], can be
used to determine when to stop if this is practically possible. Also, confidence
levels of the model can be exploited [19], or agreement between the models
from a couple of previous iterations [20].

If AL is conducted in small steps (i.e., in each iteration a small number of
labelled samples are passed to the model), which is the case in near real-time
applications and is the case in this thesis, it is difficult to use stopping crite-
ria based on measuring the improvement between two successive iterations,
because small to no improvement can be observed long before the optimal
point of AL is achieved. Furthermore, measuring model agreement requires
saving either several models from previous iterations, or their outputs for the
data used to determine when to stop, which is resource inefficient.
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2.4 Machine teaching

Machine teaching (MT) works in an iterative manner, similar to AL, but the
training process is led by the teacher, not the model itself as in AL. The
teacher is responsible for organising, i.e., selecting, ordering and labelling of
the training data set. MT is the preferred technique in applications where
labelling is prone to errors, e.g., when it is difficult for a domain expert to
confidently assign a correct label, due to noise and interference. In this case,
the teacher would label only clean samples instead of, as in AL, providing
unreliable labels for the samples that may confuse the learner. The teacher
can be a human or a machine [2]. In the former approach, human, i.e., a
domain expert, teaches the algorithm high-level knowledge, which is not nec-
essarily an inherent property of the data, but of the human observer, and
the learner gets a replica of that knowledge, which is not necessarily com-
plete. In the latter, another machine is the teacher, using an alternative
automated method to label data samples, focusing, through an iterative pro-
cedure, on finding the minimal number of reliable training examples needed
to achieve convergence.

Different implementations of the machine-as-the-teacher framework exist
in literature, depending on the level of access the teacher has to the learner’s
model, i.e., whether the teacher can access the feature space, the loss function
and/or the optimisation algorithm of the learner [2]. An Omniscient Teacher
can access all the mentioned characteristics, while an Active Teacher has no
access to those characteristics, and does not examine the learner directly,
but rather queries its performance during the training process and concludes
the learner’s current status based on the responses, akin to standard human
teaching and assessment [2]. A black-box MT paradigm as proposed in [21]
assumes the teacher has no access to the learner’s model, nor do they share
the same feature space, but the teacher makes an estimation of the learner
performance instead, and then acts as an Omniscient Teacher. The approach
is presented for Least Square Regression, Logistic Regression and Support
Vector Machine learner algorithms, however, the optimisation problem used
to estimate the learner would be unfeasible for deep learning neural network
based learners.
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2.5 Areas of application: Non-intrusive load
monitoring and Micro-seismic analysis

2.5.1 Low-frequency Non-Intrusive Load Monitoring

NILM [22] consists of breaking down the total power consumption of a build-
ing into individual loads. That is, the task of NILM is to estimate the
power consumption of individual appliances given only the aggregate power
consumption. Formally, the problem of NILM can be described using the
following equation:

y(t) =Y walt) +et) (2.1)

where y(t) denotes aggregate power consumption of a building, x,,(t) power
consumption of n'* appliance, and €(t) measurement noise. The task of NILM
is then to estimate x,(t) from y(t).

With increased availability of data due to large-scale smart metering roll-
out world-wide, low-frequency NILM, where measurements are collected at
frequencies below 1Hz, has been dominant in the recent literature, as ob-
served in recent reviews (see [23] for challenges, methods and perspectives
for NILM, [24] for a review of deep neural network (DNN) approaches ap-
plied to low-frequency NILM, and [25] for NILM solutions for very low-rate
smart meter data) due to practicality and low complexity in terms of data
management and communication resources.

Low-frequency NILM is a multi-source separation problem [22] in a very
low signal-to-noise ratio environment, and hence is particularly challenging in
real-case scenarios, due to many similar loads running in parallel in a house,
numerous unknown loads, loads changing over time, and measurement noise.
Hence, though introduced over 30 years ago, NILM remains a significant
research challenge.

NILM methods can be event-based or model-based. In event-based NILM,
events, e.g., the moment an appliance is switched on or off, are detected in
the aggregate signal in an unsupervised manner (e.g., using adaptive thresh-
olding as in [26] and [27]), and then assigned to known appliances by a
supervised classifier (see [28] for a recent review). In contrast, in model-
based NILM, a separate model that takes aggregate measurements as input
and consumption or on/off state of an appliance as output, is created for ex-
tracting power consumption of each appliance, without relying on prior event
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detection (see [29] for ana pproach based on factorial hidden Markov mod-
els, or [24] for a review of DNN-based approaches.). Although event-based
approaches are easier to implement and deploy due to data reduction via
extraction of events, they rely heavily on accurate edge detection, and hence
are, in practice, susceptible to measurement noise and unknown appliances,
causing misclassification of appliances with similar operational power range,
as reported in [30] and [31].

From a ML perspective, NILM can be approached as a classification (de-
termining on/off state of individual appliances) or a regression problem (pre-
dicting power consumption of individual appliances). In this context, aggre-
gate electricity consumption signals (combined energy usage of all electrical
appliances within a household) are used as input to ML models. Input signals
are split into windows and fed into machine learning models. Overlapping
windows are commonly used (for example, 50% overlap). This improves data
utilization, as each timestamp contributes to multiple windows. Also, this
helps to capture smoother transitions between different states or load pat-
terns, helping models learn complex behaviors more accurately. Window
length depends on the type of the appliance and its cycle length - for ex-
ample, kettle has a short running time and therefore shorter windows are
required (usually a couple of minutes), while washing machine cycle lasts
longer, and hence longer signal windows are needed (usually a couple of
hours). The way the model processes this input can vary: if a model works
in a sequence-to-point fashion, then the output is a single value represent-
ing the per-appliance signal for the specific input window; if a model works
in a sequence-to-subsequence fashion, then the output is the corresponding
sub-window of the per-appliance signal; and if a model works in a sequence-
to-sequence fashion, then the output is the whole corresponding window of
the per-appliance signal. The output varies depending on the approach -
for classification, the output is binary values indicating the on/off state of a
single appliance; for regression, the output is the predicted electricity con-
sumption of that appliance.

In classification approaches, NILM classifiers can be implemented as bi-
nary or multi-label classifiers. Binary classifiers predict state of only one
appliance, while multi-label classifiers predict states of multiple appliances.
Binary classifiers are generally more robust - they focus on a single task and
operate in a simpler hypothesis space, minimizing potential complications
arising from managing multiple labels and their interdependencies. Specif-
ically in the case of NILM, binary classifiers are preferred because of the
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nature of data. Each of the appliances present in a household has a unique
signature, and the model can focus on that one signature without interfer-
ence from others. Additionally, when a new appliance is introduced, only
one new model for that one appliance needs to be created, without the need
to retrain the big multi-classifier model for all appliances. Also, considering
transferability, not all houses have the same set of appliances present, making
it more practical to have one binary classifier per appliance.

The above described ML-based NILM is illustrated in Figure for the
example of disaggregation of washing machine electricity consumption, in-
cluding windowing, processing of the input window, and outputs in case of
regression and classification. Overall, the end-to-end processing capabilities
and flexibility of machine learning approaches enable effective analysis and
prediction of individual appliance behavior based on aggregate electricity
consumption data.

Aggregate measurements
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Figure 2.2: Illustration of working of a model-based NILM.

2.5.2 Micro-seismic signal analysis

The usual goal of microseismic monitoring is to detect, locate and characterise
microseismic events to provide geometric and more general information about
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the considered subsurface processes [32]. Continuous monitoring produces
extensive seismic records that may include multiple sources, which require
classification. Since many applications require real-time processing, machine
learning plays an important role in micro-seismic event classification (see a
recent review [32] for a summary of machine learning approaches in micro-
seismic monitoring and analysis).

The task of micro-seismic event detection is to find when an occurred, and
the task micro-seismic event classification is to assign a categorical label, i.e.,
event class to a detected event. From a machine learning perspective, the
problem of micro-seismic event detection and classification is similar to the
problem of NILM - it can also be described as a blind source separation
problem. Long recordings from seismic arrays are split into windows and
fed to machine learning models as input. Window length depends on the
characteristics of the signals that need be captured - for micro-seismic events
several seconds is usually enough [33], while, for example, for earthquakes
a window length of a minute is frequently used [34]. In case of detection,
the output is a binary signal indicating where an event occurred. In case of
classification, the output is a class to which the input signal belongs (e.g.,
quake, rockfall, noise). The task of event detection can be described as:

)1 fw) >0
y‘{o flw) < 6 (22)

where y is the output, w is the input signal window, f(-) is a discriminative
statistic (i.e., STA/LTA ratio, or neural network score), and 6 is a detection
threshold. The task of event classification can be described as:

y = argmax p(c | w; f) (2.3)
ceC

where y is the output class label, and p(c | w; f) is the posterior probability
of class ¢ given the input signal window w, parametrized by f (e.g., neural
network weights).

The above described ML-based micro-seismic detection and classification
are illustrated in Figure including windowing, processing of the input
window by a ML model, and outputs in case of detection and classification.
Although similar to the NILM problem, this is a more complicated case due
to very high sampling frequencies. Higher sampling frequency captures wider
bandwidth, integrating more total noise power. This causes very low signal-
to-noise ratios, making it easy to overfit machine learning models to noise
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instead of useful signal patterns. Also, labels are usually created by search-
ing through recordings and manually assigning classes to detected events,
producing very unreliable and sparse labels.
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Figure 2.3: Illustration of working of ML-based micro-seismic event detection
and classification.

2.6 State-of-the-art: Active learning for time
series data

This section provides a general state-of-the-art in AL for time series data.
Then, background and state-of-the-art in deep learning approaches, transfer-
ability, and AL for NILM is given, followed by background and state-of-the-
art in deep learning and AL for seismic signal analysis.

2.6.1 Active learning for time series data

AL has only recently been introduced for time series data to solve anomaly
detection tasks [35] and [36]. Two publicly available time series datasets used
in [35] have significantly shorter lengths of recordings (5 weeks and 7 days,
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respectively) than those used in our study (approximately 2 years). Acqui-
sition functions used in [35] include uncertainty sampling, interval random
sampling, and top-k sampling based on abnormality score, and a combination
(union) of them all. Stream-based sampling was not investigated.

Anomaly detection with AL and two contrast variational autoencoder
(VAE)-based models is proposed in [36]. Combination of anomaly scores and
standard deviation of posterior distribution at each point for both models is
used for choosing samples in the AL process. However, VAEs do not capture
time dependencies in data, which makes them not optimal for time series
data. Moreover, this method trains three models in total - two VAEs and
one query model which is trained to choose samples based on autoencoders’
outputs, which makes the method complex, and hence, training phase is
done offline. Our methods use a single DNN model, capable of capturing
temporal patterns, that performs both time-series classification and selection
of samples to be queried, which makes it more convenient for full online
deployment - for both inference and fine-tuning phases.

An integration of transfer and active learning for time series prediction
is presented in [37]. The settings are different to ours - in [37], AL is used
to choose samples from source domains, which are most suitable for transfer
to a target domain with known data distribution, while we consider a more
realistic scenario, when source domain data are labelled and available, and
we adapt the model to a new environment with unknown data distribution,
and labels have to be queried since they are not available in advance. Time
series classification with AL for applications in learning of driving trajec-
tories is presented in [38]. A support vector machine (SVM) and a fully
connected neural network were used, for classification of a data point in a
latent space for each trajectory. Classes used are balanced, while in this
thesis, highly imbalanced datasets are used. Although data used in [38] is
time-series, stream-based acquisition functions suitable for online learning
were not considered. In this thesis, in Chapter [3] and [4], we explore stream-
based uncertainty sampling, which, besides being convenient for time series,
has the advantage of online implementation since it does not require the
whole query pool to be available in advance.
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2.6.2 Non-intrusive load monitoring
DNN-based low-frequency NILM and model transferability

Numerous machine learning approaches have been used in the past (see Intro-
duction and survey papers such as [39] and [40]), with DNN-based methods
dominating current literature, due to their very good performance (see e.g,
[41] and [42] for comparisons between traditional and DNN-based NILM ap-
proaches), flexibility and ease of use (once the models are trained).

A recent review paper [24] summarizes DNN-based low-frequency NILM
approaches, concluding that the use of convolutional layers in neural networks
has gained in popularity recently - [43] proposes a fully convolutional DNN for
a fast sequence-to-point implementation; [44] proposes a convolutional neural
network (CNN) architecture, designed to be a generalized network which
performs well when transferred to a new domain; [45] proposes a sequence-to-
subsequence learning using a CNN; [46] proposes a scale- and context-aware
neural network containing convolutional layers; and [47] proposes a CNN
and multilabel classification. Recurrent neural network elements in [44] and
[48], and newer concepts, such as generative adversarial networks (GANs)
in [45] and [46] and attention mechanisms in [49] and [50] have also been
attempted. The best performing approaches are the ones using convolutional
layers, adversarial losses, multi-task learning and post processing techniques.

Transferability of DNN-based NILM models, i.e., their adaptability to
new conditions using user feedback and continuous learning approaches, as
well as privacy preserving issues are identified to be key challenges of the cur-
rent NILM state of the art [23]. The ability to use existing models, or adapt
them efficiently to new, unseen environments with dynamic environmental
factors and end-user patterns of use, is very important to enable large-scale
NILM applications.

Transferability of two DNN architectures across three publicly available
datasets - REDD [51], REFIT [52] and UKDALE [53] is explored in [44], with-
out adaptation to new environments. Transferability was successful, though
a drop in performance was observed compared to when training and testing
with the data from the same dataset. Transferability with adaptation to a
new environment is explored in [54], as well as in [55] and [50] - DNN models
are fine-tuned using labelled data from new datasets. In [50], cross-domain
and cross appliance transferability is investigated, concluding that if statis-
tics of power consumption are similar between different domains, fine-tuning
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is not required. Transferability of NILM model in industrial settings, on
dairy farms, is tested in [5], concluding that different labelling practices and
different appliance signatures in different farms hinder model transferability.

Although transfer learning for NILM has drawn attention recently, many
challenges still remain. When transferring a pre-trained DNN-based NILM
model to a new environment, the performance is likely to drop significantly.
On the other hand, availability of good quality and large amount of labelled
data from new domains is assumed when using fine-tuning approaches. In
practice, obtaining such labelled data from a new environment requires sub-
metering or manual annotation via a time diary, both of which are resource in-
tensive.

Active learning for NILM

Recent reviews of NILM, including state-of-the-art NILM data sets, fea-
ture engineering, as well as learning approaches for NILM, are presented
in [28, 24]. Although new and relevant techniques such as transfer learning
and federated learning are discussed, AL has not been mentioned. This is
mainly due to the very limited amount of work on the topic of AL for NILM
with only few initial studies published so far, all focusing on the methodologi-
cally very different, high-frequency NILM problem. One of the first attempts
to apply AL to high-frequency NILM [57] uses a k-nearest neighbors (kNN)
classifier trained on BLUED dataset [58] to identify which activation belongs
to which appliance. An AL framework where the algorithm intelligently se-
lects instances for queries based on an informativeness measure, Euclidean
distance of the samples in the feature space, is compared to the scenario
where the algorithm randomly selects instances to query. The impact of dif-
ferent probability- and distance-based query strategies as well as the choice
of the initial training set for event-based high-frequency NILM is investi-
gated in [59]. The performance is evaluated using cross-dataset validation
with BLUED dataset [58]. A combination of semi-supervised learning and
AL is proposed for training a random forest (RF) classifier for event-based
high-frequency NILM on high frequency BLUED dataset [58] in [60]. The re-
sults show that including AL outperforms the used semi-supervised learning
approach. An active deep learning approach is used in [61], also for an event-
based NILM, where a combination of three high-frequency NILM datasets,
PLAID [62], WHITED [63] and COOLL [64] with discrete wavelet trans-
form are used to extract high-dimensional appliance features from original
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current signals.

From the above, one can notice that the AL approaches for high-frequency
NILM (sampling rate in order of kHz) yield promising results, but under
some impractical constraints, e.g., AL frameworks for event-based NILM
using high-frequency measurements are proposed with the assumption that
perfect event detection exists.

The work presented in this thesis in Chapter (3] is the first approach of
AL for model-based low-frequency NILM, which are more popular now due
to their good performance and practicality due to smart metering roll-out,
as per [24] and [28]. The approach presented in Chapter [3| (and in the pa-
pers reviewed above) is designed for residential NILM. A recent paper [65]
follows this research and proposes an AL approach for NILM in industrial
settings, using HIPE dataset. This new contribution broadens the applicabil-
ity of AL in NILM, and highlights the growing importance of efficient energy
management in industrial environments.

2.6.3 Micro-seismic signal analysis: Deep learning-based
human-in-the-loop approaches

Deep neural networks tend to be dominating recent literature for micro-
seismic analysis due to their ability to perform tasks in an integrated, end-
to-end manner [32], as opposed to pipeline-based traditional algorithms (e.g.,
hidden Markov models, support vector machines, random forests - see [66]).
For example, of relevance to this thesis, three CNN-based multi-label classi-
fier architectures, based on time-domain, short-time Fourier transform and
continuous wavelet transform, are described in [33], for classification of earth-
quake, rockfall and low signal-to-noise ratio quake events. To leverage on
both temporal and spectral features, an auto-encoder-based deep neural net-
work with attention mechanism, fusing time- and spectral-domain features
for rockfall and earthquake detection is proposed in [67]. These approaches
try to embed the temporal and spectral features geoscientists consider jointly
when labelling, but without involving geoscientists in the Al system design.
While such approaches report high classification performance, all operate as
black-boxes and all require large labelled datasets for training.

There are only a few early attempts of machine learning approaches with
human oversight for seismic signal analysis, mainly for seismic image in-
terpretation. Approaches for time-series signal analysis are rather limited,

25



based on expert-labelled datasets. A human-on-the-loop approach for seis-
mic recording labelling, verification and re-labelling via a multi-class CNN
supported by explainable Al tools is presented in [§]. Training samples are
manually chosen by a domain expert, resembling MT with a human teacher;
however, the main role of the domain expert is in refining the event cat-
alogue after the model is trained using all the training data at once. It
does not avoid the issue for the requirement of a large labelled dataset. An
AL approach for seismic stratigraphic interpretation [68] (specifically seis-
mic image semantic segmentation) uses a combination of deep clustering and
uncertainty sampling to choose data samples which are then annotated by
geological expert, and included in training of an autoencoder deep neural
network. Although an improvement in performance is demonstrated with
limited data, label queries are made to an oracle (i.e., a simulated expert),
whose task is to provide annotations, and who has no control over which data
samples are included in the training set, so, domain knowledge is not fully
and efficiently utilized. An AL framework for micro-seismic event detection
from time-series seismometer measurements is presented in Chapter [3], aim-
ing to reduce labelling effort for training of deep learning-based seismic event
detection algorithms. The method is developed for time-series seismic signal
analysis; even though it is shown that labelling effort is significantly reduced
via AL (up to 83%), an oracle is assumed again to provide labels for data
samples queried by the model. So, in a real-case scenario, a domain expert
would annotate data samples without any control over the contents of the
training dataset. Another AL method, for volcano-seismic event classification
from time-series measurements via a CNN, is proposed in [69]. Performance
gain when using AL compared to randomly selecting training data samples
is achieved for one of the two datasets used in experiments, concluding that
AL brings more benefits for datasets with less separable classes, and, as in
other reviewed approaches, an oracle provides sample labels without control
over contents of the training data set, and the order of training data samples.

In summary, only AL approaches for seismic signal analysis have been
proposed so far, all with the same limitations - the domain expert is only
asked to label the samples during the learning process, but has no other
means of control over the training. This way, the domain knowledge is not
used efficiently - there is lack of control over the algorithm training, and the
expert still needs time to provide all the needed labels. To the best of our
knowledge, no attempts of M'T with a human-on-the-loop oversight approach
for seismic signal analysis have been attempted.
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2.7 Datasets

2.7.1 Non-intrusive load monitoring

Low-frequency smart meter datasets provide insight into energy consumption
patterns, offering great potential to reduce electricity usage. The signals in
these datasets are characterized by sampling frequencies of 1 Hz or less. This
low temporal resolution means that rapid changes in electricity consumption
cannot be captured, causing confusion between appliances (e.g. dishwasher
activation mistaken for washing machine) and poor transferability. Assuming
that confused appliances are predicted with higher uncertainty, these cases
pose a valuable source of model improvement though AL.

REFIT and UK-DALE: Smart meter datasets

To facilitate reproducibility of our research, we use the well documented pub-
lic REFIT [52] and UK-DALE [53] real-world electrical load measurements
datasets as these two datasets are among the most widely used datasets for
evaluation of NILM algorithms mimicking well real-world conditions [28, 24]
23]. For example, both REFIT and UK-DALE datasets are used in [70] for
complexity reduction and transferability via transformer-based architecture,
in [56] for cross-domain and cross-appliance transfer, and in [44] for eval-
uation of transferability of DNN architectures. These datasets are used in
Section [3.2] and in Chapter 4] REFIT is also used in Section

REFIT consists of 2-year long (2013-2015) continuous time series elec-
tricity consumption recordings from 20 houses in the United Kingdom. Each
house data contains aggregate electricity consumption time series measure-
ments (see Fig. , as well as consumption of 9 individual appliances, mea-
sured at an 8-sec interval. The large number and diversity of appliance
waveforms or signatures across 20 houses makes the REFIT dataset one of
the most challenging NILM datasets and a good exemplar for robust evalu-
ation of AL methodologies. An example of recordings from REFIT House 2
is shown in Figure [2.4]

UK-DALE contains recordings from 5 houses in the United Kingdom.
Aggregate power is sampled at 16kHz, while appliance power is sampled at
an 6-sec interval. Four houses were monitred for a year and a half, and the
fifth house was monitored for 655 days.

To align with the widespread smart meter roll-out with in-house recording
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Figure 2.4: Example of electricity consumption recordings from REFIT
House 2.

granularity of about 10 sec [71], the data is re-sampled to 10-sec sampling
interval for experiments in this thesis. Appliance types used in this study
are kettle, microwave and toaster - resistive loads with short activation times
- as well as washing machine and dishwasher - inductive (and also resistive)
loads, with long cycle duration and multiple states. Examples of typical load
profiles for these appliances are shown in Figure [2.5

Measured aggregate electricity consumption expressed in Watts (W) is
normalized using Z-normalization technique: Z = *=#, where x denotes the
original measurement, and p and o stand for mean value and standard devia-
tion of x across the training dataset, respectively. To determine the ON-OFF
state of appliances, thresholds are applied to measured electricity consump-
tion of each appliance, according to Table 2.1 That is, if the appliance
consumption value is above this on-power threshold, then the appliance is
considered to be turned on, and otherwise it is considered to be turned off.
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Figure 2.5: Example load profiles for washing machine, dishwasher, kettle
and microwave from REFIT House 5.

Appliance “On-power” threshold [W]
Kettle 2000
Microwave 200
Toaster 50
Washing machine 20
Dishwasher 10

Table 2.1: On-state power thresholds [W] for each target appliance.

2.7.2 Micro-seismic signal datasets

Compared to the smart meter datasets described above, for the NILM prob-
lem, the following datasets of micro-seismic signals are more challenging due
to high sampling rates used - high-frequency data is more susceptible to noise,
which complicates the learning process - deep learning algorithms may overfit
to noise instead of learning meaningful signals. Due to the fact that these
signals are generally noisy and that the vast amount of data is generated
from seismic recordings, labelling is often incomplete and inaccurate, as it
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often has to be done manually.

A study evaluating model transferability between Résif and a geograph-
ically distinct seismically active site in Larissa (Greece) [33] demonstrates
good transfer for catalogued earthquakes, however, it revealed missed earth-
quakes and false positive quakes and rockfalls among additional, manually
checked events. Assuming that the model shows uncertainty for missed or
false positive events, they pose a valuable source for improving the model
through AL, making it more robust to noise and variations in the data.

Utah-FORGE: Human-induced seismic signals

The dataset used in Chapter is recorded as part of the Utah Frontier
Observatory for Research in Geothermal Energy (FORGE) project, designed
for research on creating, sustaining, and monitoring enhanced geothermal
systems (EGS) [72]. Hydraulic stimulation was conducted in the target heat
reservoir to create fractures and increase the rock permeability in the hot
dry rock. Pressurised fluids are injected into the deviated stimulation well
16A-32 at a depth of around 2.4 km at three different stimulation stages.
The stimulation at Utah FORGE is monitored via seismic instrumentation
deployed in deep boreholes. During the last stimulation, three deep vertical
monitoring wells (58-32, 56-32, and 78B-32) distributed in different azimuths
were in place to capture the stimulated fractures, i.e., induced microseismic
events. Well 58-32 and well 78B-32 contain 8-level 3-component digital geo-
phones (represented as G1 to G8), with each level separated by 100 feet.
In well 56-32, however, measurements are acquired using a two-level analog
seismic monitoring tool (G1 and G2). In this paper, we analyse one hour of
continuous data recorded at a sampling rate of 4 kHz (from 20:00 to 21:00
on 21 April 2022) recorded by the 18 sensors from the three monitoring wells
during the third stimulation stage.

Monitored events are of induced microseismic nature, they are pulse-like
and have high-frequency components. To remove low-frequency noise from
machinery at the site, and also high-frequency measurement noise, obtained
signals are filtered using a fourth-order Butterworth band-pass filter, with
the passband between from 100 to 1800 Hz. An example of an event from
well 58-32, the bottom geophone (G8) is shown in Figure Data is filtered
as described above. FP1 and FP2 are horizontal, and FPZ is the vertical seis-
mogram component. Horizontal axis represents time (in samples; 1 sample =
0.25msec), and vertical sensor measurements in mm/sec. Ground truth indi-
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cates the time between P and S wave arrivals, marked red in Figure An
event catalog [73] is generated with the EQ-Transformer of [74], pretrained
using a global distribution of earthquakes. It contains timestamps of P and S
wave arrivals associated with each event for each sensor where it was picked,
together with corresponding signal-to-noise (SNR) values. After automatic
label generations with Earthquake Transformer, the predicted labels were
validated by seismologists via visual inspection.
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Figure 2.6: A micro-seismic event example. FP1 and FP2 are horizontal,
and FPZ is the vertical seismogram component. P and S wave arrivals are
marked in red.

Résif: Naturally occurring landslides

An open access dataset from the Résif Seismological Data Portal, recorded
by the French Landslide Observatory Observatoire Multidisciplinaire des In-
stabilités de Versants (OMIV) [75] is used in Section[f] The data is acquired
by Super-Sauze C station (from MT network), located east and west of the
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Super-Sauze landslide in Southeast France (lat. 44.34787, long. 6.67805).
The signals are recorded during 3 periods: 11 October - 19 November 2013;
10 - 30 November 2014; and 9 Jun - 15 August 2015. Data from 3-component
sensors are used, originally at a sampling frequency of 250Hz. To filter out
noise from human activities, animals and rain, seismograms are filtered using
4" order Butterworth band-pass filter ranging from 3 to 40Hz. Data is nor-
malized using z-score technique (subtracting mean and dividing by standard
deviation).

The dataset is accompanied by an event catalogue created by [76]. There
are 4 event classes present in the dataset - low-magnitude earthquake (de-
noted as S) - 335 instances, quake (Q) - 207 instances, rockfall (R) - 351
instances and noise (N) (of anthropogenic/natural origin) - 302 instances.

2.8 Evaluation metrics

Deep learning algorithms used in experiments in this thesis are designed for
classification tasks, so their performance is evaluated using the standard Fj
score, which is calculated as the harmonic mean of precision and recall:

precision - recall TP

F1 =2 A - 1
precision +recall TP+ 5 - (FP+ FN)

(2.4)

where TP denotes true positives - both model prediction and ground truth
are positive; FP for false positives - prediction is positive but ground truth
is negative; and FN for false negatives - prediction is negative while ground
truth is positive.

If multiple classes are present in the dataset, weighted F; score can be
used as an overall performance measure across all classes present, accounting
for class imbalance, as per Equation [2.5}

E : ‘Dces
Fl,weighted = % : Fl,c (25)
ceC test

where D,.; denotes samples belonging to the test set, Dj ., denotes test

samples belonging to class ¢, F} . denotes F; score for class ¢, and C' denotes
all classes present in the dataset.

Also, micro-F} score, considering the total of true positives, false negatives
and false positives (doesn’t matter to which class each of them belongs) can
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be used if multiple classes are present, as per Equation [2.6}

ZCEC TPC
ZCGC TPC + % ’ <ZC€C FPC + ZCEC FNC)

where T'P,. denotes true positives for class ¢, F'P,. false positives for class c,
and F'N, false negatives for class c.

(2.6)

Fl,micro -
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Chapter 3

Oracle-based active learning for
time-series classification

This chapter presents research on AL with an oracle assumption, that is,
ground-truth labels are used throughout the AL process. The significance
of this approach is in the potential to improve model performance with very
small amounts of labelled data and enhance transferability across new do-
mains.

First, in Section [3.1] an oracle-based AL framework is developed for time
series classification, demonstrating the effectiveness of the approach for the
NILM problem, with low sampling frequency (0.1 Hz). In this section, the
labels provided by the oracle are of the same granularity as the input signal
(i.e., each timestamp of the input signal is labelled). The framework is tested
with various acquisition functions. In addition, the transferability of models
through AL is demonstrated, and optimal point of the AL process is defined.
Building on this foundation, in Section [3.2] the framework is applied to the
NILM problem with weak labels, i.e. labels that apply to a larger part of
the signal (one label covers multiple timestamps). Weak labels are easier to
obtain, as they do not require domain knowledge, and can be set by end-
users in practice. Section [3.3] extends the framework to the problem of
micro-seismic event detection, demonstrating effectiveness of the approach
for much more challenging high-frequency data (sampling frequency 4 kHz)
with low signal-to-noise ratio, which brings risks of models overfitting to noise
instead of learning useful signal patterns.

The framework is shown to be effective, robust, improving the trans-
ferability of models to new, unseen domains, and available to use with
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weak labels.

3.1 An active learning framework for the low-
frequency non-intrusive load monitoring
problem

In this section we propose the first active-learning based method for low-
frequency model-based NILM, that can operate at scale using smart meter
measurements. As opposed to the research already conducted on AL for
NILM reviewed in Chapter [2, our approach uses low-frequency measure-
ments and model-based NILM method, with a separate model trained for
each appliance disaggregated, eliminating the need to introduce impractical
assumptions of perfect event detection. In particular, we leverage on the
Wave-net NILM approach of [43], as one of the currently best performing
models reported in the recent comparative study [24]. We note that though
[43] is used to showcase the proposed methodology, other DNN-based NILM
solutions, such as deep neural networks from [77], sequence-to-point con-
volutional neural networks from [78], recurrent neural network from [79],
convolutional and gated recurrent unit-based neural networks from [44], a
hybrid of a convolutional and a recurrent neural network from [48], or one-
to-many CNN architecture from [80], can be used instead with the proposed
AL methodology.

We explore different approaches of selecting the most critical samples
to label, i.e., acquisition functions, and discuss their limitations and effect
on accuracy and transferability. In the aforementioned AL approaches - [57]
using a kNN classifier, [59] with an SVM classifier, [60] using an RF classifier,
and [61] using a DNN, high-frequency, event-based NILM methods are used
with classic uncertainty-based acquisition functions, which yield one data
sample at a time. Since DNN methods process a batch of data samples at a
time, it is necessary to group the samples before labelling. Creating a batch
of samples by simply joining individually queried samples will likely result in
samples that are very correlated; this reduces the effectiveness of learning,
since for the model to learn more effectively, it is important that it learns from
diverse data. For that reason, we explore BatchBALD [16] which can choose
a diverse batch of samples but can be computationally demanding [81].

We consider three practical scenarios in terms of availability of labelled
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data, and analyse how the proposed methods perform in various scenarios.
We perform a sensitivity analysis w.r.t pre-set hyper-parameters. We discuss
optimal performance-complexity trade-off and determine whether complex-
ity can be reduced without performance loss by not re-training the entire
model after each interaction, as is commonly done in existing approaches -
re-training a k-NN classifier in [57], an SVM classifier in [59], an RF classifier
in [60], or a DNN in [61].

3.1.1 Methodology

In this section, the proposed workflow of the AL framework for the model-
based low-frequency NILM is described. Given a dataset of aggregate elec-
tricity consumption measurements, the goal is to train a DNN-based model
(active learner) to predict the on/off state of an appliance at each timestamp
while using a minimal number of informative labelled data samples. The
framework comprises: (i) the formulation of the training set, query pool and
testing set, (ii) the various acquisition functions being explored and (iii) the
DNN-based NILM model used to showcase the proposed AL methodology.
These are each discussed next.

Proposed active learning workflow for NILM

The proposed AL workflow follows the same steps as described in Section [2.3]
Algorithm[I] As shown in Figure[3.1] the dataset is divided into an initial and
very small training set (Diyain), a query pool (Do) and a test set. Samples
from the query pool are considered unlabelled and comprise a representative
set of typical on/off samples. A deep learning NILM algorithm is first trained
using Dy,.i,. After the initial training, the obtained model makes predictions
on the data from the query pool. The model uses an acquisition function to
choose which samples from the query pool should be used for further learning
(the set of chosen samples is denoted as Q). Having estimated confidence
of predictions on data from the query pool, the algorithm queries samples
that it was most uncertain about, i.e., the samples that would improve the
performance of the model the most, by asking for their corresponding labels.
Then these queried samples and their corresponding labels are added to the
training data set and they are removed from the query pool. After this step,
in the next iteration, the model is trained again with the extended data
set that includes newly queried samples. New predictions are made for the
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samples left in the query pool, and samples that are chosen for querying
are added to the training set and removed from the query pool, and so on.
This procedure is repeated until all the samples are queried or a stopping
criterion met. The stopping criterion can be, for example, the number of
queried samples in total, or the estimated achieved accuracy.

DNN-based
NILM model
training

Training set
Queried samples + labels
i
I

Stopping
criterion
met?

Query pool
|
|

Acquisition
function

Figure 3.1: The workflow of the proposed active learning framework for
model-based low frequency NILM.

Acquisition functions

Acquisition functions are used to choose which samples to query. The goal
is to trade-off between the achieved accuracy and the number of queried
samples. The acquisition functions are mainly based on estimated model
uncertainty, which is assessed through its output, but other approaches are
used as well — for example, the distance of a sample from the other available
samples, or a combination of the former two methods. In the following
the acquisition functions considered are described, adapted here to the low-
frequency DNN-based NILM problem.

Uncertainty sampling - least confidence A classification algorithm re-
turns a vector consisting of probabilities of the input samples belonging to
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each of the classes present in the data set. This vector can be used to as-
sess the confidence of the algorithm in making its prediction by looking at
the probability of the predicted class (the highest probability in the vector).
If this value is close to 1, then the model is confident about its prediction.
Otherwise, i.e., if none of the class probabilities is significantly larger than
others, then the algorithm is not confident in its prediction. That is, for each
sample, the highest prediction probability among all the classes can be taken
as a measure of confidence.

Since the DNN-based model used for NILM usually process multiple
points at a time, returning predictions over a target field, a pooling func-
tion that aggregates the model’s per-sample probability outputs into a single
confidence value for the entire field is defined. In particular, since the state of
the whole target field is considered to be on if it contains at least one sample
labeled as on-state (i.e., appliance is on at any time inside the target field,
and the length of activation does not matter), the maximum probability value
of the target field (the maximum among all samples in the field) is used as a
confidence measure. If the maximum prediction for the target field is above
the decision threshold, the target field is considered positive, and negative
otherwise, and the distance from the threshold tells about the model’s confi-
dence. This pooling function is used in pool-based or stream-based sampling
fashion, as described next.

e Pool-based sampling

In pool-based sampling, the algorithm makes predictions on the whole
query pool (all samples from the pool have to be evaluated), and then
a fixed number of predictions that have the lowest confidence values
for the predicted class are queried, expertly labelled and added to the
training set. The other samples remain in the pool for querying in the
next iteration. An example of pool-based sampling is shown in Figure
with query pool set D001 of ten samples and four samples @ chosen
for query. The numbers represent the output of the model, which can
be treated as the certainty of the model (its confidence) when making
predictions for each sample from the query pool.

e Stream-based sampling
In stream-based sampling, samples arrive one by one in a sequence. The
decision whether a sample should be queried is made by comparing the
probability of the predicted class with a predefined threshold — if the
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probability is lower than the threshold, the sample is queried and added
to the training set, otherwise, it remains in the pool for querying in the
next iteration. An example of stream-based sampling from the same
query pool Do, with threshold T = 0.9 E| and four samples chosen
for query @ is shown in Figure [3.2b. If there are less samples than
a predefined number of samples whose values fall below the threshold
(four in the example in Figure , the AL process stops, meaning
that the model reached high confidence for most the samples.

BatchBALD Deep learning models typically process a batch of input sam-
ples at a time. When using pool- and stream- based uncertainty sampling
described above, similarity between chosen samples is not taken into account.
If the model is uncertain about one sample, the chances are high that it will
be uncertain about other very similar samples (likely to be from the same
appliance). That can lead to high redundancy in the chosen samples for
querying. In order for learning to progress faster, choosing more diverse
batches is necessary.

The BatchBALD [16] acquisition function searches for the optimal batch
of samples among all available samples using a greedy approach, based on the
joint mutual information between the current batch of samples and the model
parameters. In this case, the DNN model needs to be Bayesian, which means
that its weights are probability distributions instead of single values. This
allows estimating model uncertainty based on the variance in the outputs of
multiple runs of a model - the greater the variance, the greater the uncertainty
of the model, and vice versa. The score of a batch of samples is calculated
according to:

aBatchBALD({ml---mb}ap(w | Dtrain)) = [(ylzb;w | xl:baDtrain)

- H(:lh;b | xl:b’Dtrain) - Ep(w\Dtrain)H<y1:b ’ xl:b7w7Dtrain)7
(3.1)

where, 1., is a batch of b samples drawn from the query pool D1, Y11 is
the corresponding batch of model predictions, and w denote the DNN model

!The threshold value is not derived from domain-specific knowledge; it is a methodolog-
ical hyper-parameter that controls the informativeness of the queried samples. There is not
a single correct value to be used; please see Figure [3.8 in Section [3.1.3] under Experiment
3 results for a sensitivity analysis.
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parameters. [ stands for mutual information, H entropy, ' mathematical
expectation, and p probability density function.

Bayesian approximation for a standard DNN model can be made using
the Monte Carlo (MC) dropout technique [82]. Dropout layers are added
to the neural network, and multiple stochastic forward passes are simply
collected and averaged. The diversity of prediction probabilities of different
forward passes reveals how confident the model is about the sample — the
higher the variance the lower the confidence. Importantly, the neural net-
work itself remains unchanged. An example of a batch of samples chosen by
the BatchBALD algorithm is illustrated in Figure [3.2c. Note that a batch
containing a sample with confidence value of 1 can be selected to be queried,
if the diversity of the model output is high among the results of different
forward passes.

Random sampling Random sampling, or random query strategy, is the
case when a number of samples to be queried is randomly chosen from the
query pool - there is no special rule for selecting them, and the model’s
output for the samples from the query pool is not considered when drawing
samples from the pool. This strategy is used as a baseline strategy, and all
other strategies which include computing informativeness of samples from the
query pool are expected to exceed the prediction performance of the random
sampling strategy.

Low-frequency NILM algorithm

For demonstration purposes, the WaveNet-based NILM approach of [43] is
selected, which is highlighted [24] as one of the best performing algorithms
for low-frequency NILM. A separate model is created for disaggregating each
appliance, which facilitates transferability. One of the model’s major benefits
is that it has a large field of view. It produces concatenated and processed
outputs from multiple layers in the network, each with different fields of view,
enabling this model to recognise patterns at multiple scales. Since duration of
active use times of loads can vary significantly, this feature is favorable. The
algorithm performs binary classification in a sequence-to-sequence fashion -
that is, it slides a window of input aggregate energy consumption measure-
ments to predict whether an appliance is turned on or off at each point of
the sliding window.
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Figure 3.2: Pool-based uncertainty (a), stream-based uncertainty (b) and
BatchBALD (c) sampling strategy examples. Each number represents the
predicted class probability - certainty of the model when making prediction
for each sample in Dy, . In this example, four samples are queried per
one AL iteration. The used threshold for stream-based uncertainty is T=0.9.
The used number of MC dropout iterations (stochastic forward passes) for
BatchBALD is 3.

3.1.2 Experimental setup: Dataset, Evaluation met-
rics and parameter selection

This section provides descriptions of the dataset, evaluation metrics and pa-
rameter settings used for demonstration of the proposed methodology. Three
experiments are designed to explore the key contributions of this paper. This
is followed by the evaluation methodology used to assess the performance of
the proposed AL approach.

Dataset

A publicly available electrical load measurement dataset - REFIT [52], as
described in Section [2.7.1] was used to showcase the AL methodology in this
study.
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Appliance models for which AL is developed are kettle, microwave, toaster
and dishwasher, due to their high frequency of use, high consumption, and
their presence in most houses. As there is imbalance in the on- and off-time
for the 4 appliances chosen, data balancing is performed when training, i.e.,
the same amount of on and off samples is included when generating one batch
of data samples to mitigate bias.

Experiments

1. In the first experiment, we assess whether the AL approach can be
successfully applied to model-based low-frequency NILM when train-
ing and testing domains are the same (i.e., the same house is used for
training and testing, albeit with different train, query pool and test
sets). Practically, in this scenario, only a small set of labelled measure-
ments is available for initial training of the model. For example, this
can be achieved using time-diaries for a short period of time, where
householders will keep a time-of-use record of their appliances. Dur-
ing the inference-making process, labelling of queried samples can be
achieved as follows: via a domain expert and/or the householder will
occasionally be asked to confirm when a particular appliance was run,
e.g., via an app.

2. In the second experiment, we test whether AL can enhance the perfor-
mance of the model when transferred to a new, unseen house. Thus,
in practice, time diaries are not needed, since initial training is per-
formed on a publicly accessible dataset. As in Experiment 1, a human
will be asked occasionally to label the selected samples from the query
pool. We use the data from several houses (excluding the test house)
for the initial training set, and the data from the test house for query
pool and testing set. Since after each AL iteration, the model is fully
retrained using the initial training samples plus all the samples that
were queried, the initial training set has to be kept small. Hence, only
few REFIT houses are used for training (see Table [3.1)).

3. In the third experiment, we use a large pre-training dataset comprising
all REFIT houses containing appliances of interest (excluding the test
house), instead of a small set of houses as in Experiment 2] When
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such a large pre-training dataset is used, it is infeasible to perform full
retrain of the model after each AL iteration. Instead, in this experi-
ment, we use AL together with incremental learning [83] to explore if a
larger pre-training dataset combined with fine-tuning the model with
the samples queried from the unseen house gives better results than us-
ing a smaller pre-training dataset and fully retraining the model after
each AL iteration. It is important to note that complexity of fine-
tuning approach does not depend on the size of pre-training dataset,
so it can be arbitrarily large - only newly labelled samples are used
when fine-tuning, which is not the case with the full-retrain approach
of Experiment 2. In this experiment we also test different settings of
AL hyper-parameters - the number of samples queried for a complete
AL iteration for pool- and stream-based uncertainty acquisition, and
the confidence threshold value for stream-based acquisition function.

In all these experiments various acquisition functions are used and their ef-
fectiveness is evaluated. The random query strategy is always used as a
baseline.

Parameters

Houses selected for pre-training for each appliance in the second experiment,
exploring transferability, are shown in Table [3.1 The choice was made fol-
lowing the example of [44], and by calculating noise-aggregate ratio (NAR)
for all houses, so that there are houses with low, middle, and high NAR
present in the pre-training data set, given by:
NAR — ZtT:l |y — Zf\ilxy) |
23:1 Yt

Here, y; denotes the total aggregate energy consumption at time instant ¢,
xy) is the consumption of appliance ¢, T" is the monitoring time period, and
M denotes the number of known appliances in the house.

REFIT House 2 is chosen for evaluation due to the fact that it is com-
monly used for testing in NILM literature - [44, [56], hence it is suitable for
validation and benchmarking. In addition, it contains all the appliances of
interest, and has a mid-range NAR of 0.67.

(3.2)
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All the parameters used for the training of the DNN, as well as in the
AL loop, are shown in Table The parameters are kept the same as in
[43] or are obtained heuristically using the training set. In particular, the
input window lengths for kettle and microwave are set to 27 — 1 samples
and for dishwasher to 2'° — 1, based on the results reported in [43]. The
same window length is set for toaster, since it has similar operation time
as kettle and microwave. Target field size of 100 samples is selected as the
the best performing in [43]. Training is limited to 20 epochs maximum,
because of numerous re-training required during the iterative AL process, and
early stopping with patience of 5 epochs is introduced to prevent overfitting.
The fine-tuning learning rate is set an order of magnitude lower than the
original learning rate used for pre-training, because the weights are already
adjusted during pre-training, and although they are tuned, they should not be
impacted significantly. In Experiment 3], all trainable network layers are fine-
tuned.

The number of samples that are queried for one AL iteration is kept the
same as the batch size used in the training process. Data from the target,
evaluation house is split into training set (for Experiment , query pool and
test set so that each set is a representative set of typical on/off samples from
the target house. The initial training set size in Experiment [1|is set to only
213 samples, based on the practical assumption that only a small labelled
dataset is available (via a small time-diary); a small initial training set also
makes the AL process feasible, since the initial training set plus queried
samples are all used for model training at each AL iteration. The query pool
size is set to 26 samples, to be reasonably larger than the initial training set
- to keep the ratio of the labelled and unlabelled number of samples low, and
to allow the model to have a variety of samples to choose from, compared to
the initial training set. For the BatchBALD acquisition function, the query
pool is subsampled to 2'2 samples, because of the computational demands
of the algorithm. The maximum number of queried samples is set to 25%
of the whole query pool (i.e., 2!*), since this number is sufficient for the
performance to stop increasing rapidly (as shown in results, Section ,
and to keep the time needed for conducting experiments reasonably short.
Only for BatchBALD acquisition function, it is set to the whole sub-sampled
query pool, considering its size (i.e., 2!2).

The confidence threshold for stream-based uncertainty acquisition func-
tion is set to 0.9, except for microwave in Experiment [1| and toaster in Ex-
periment [2|it is increased to 0.95, because all the predicted class probabilities
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are above 0.9 at the beginning of the AL process, which causes the process
to stop without querying any samples. The number of Monte Carlo (MC)
dropout iterations that are used in BatchBALD acquisition function is set to
5, which is enough to get a sense of the consistency of model outputs through
multiple stochastic forward passes [84) [82].

The performance of the deep learning NILM algorithm is evaluated using
Fy score (Equation [2.4).

AL performance is usually presented as a curve showing model accuracy
against the number of labelling iterations, i.e., the number of samples queried
and labelled. If a point with no labelling effort (i.e., iteration 0; 0 labelled
sata samples), and the maximum possible model performance (i.e., Fj-score
equal to 1) is considered as an "ideal” point, then the optimal point of the
AL process can be calculated as the point with minimum Euclidean distance

from the ideal point:
D 2
e 53)
[ Dpool

The improvement w.r.t the initial model performance - F} initia1, When
none of the samples from the query pool are labelled and added to training,
and a gap to the heuristic bound performance - F} pounq, achieved when the
whole query pool is labelled, are calculated according to the following equa-
tions:

Fy - F initia/
improvement = ———+ "t (3.4)
Fl initial
Fl bound — Fl
gap=—p——— (3.5)
1 bound

It is expected that by adding new samples to the initial training set, the
performance will improve. However, the improvement could be negative if
the performance drops, due to, for example, adding non-informative samples
to the training set from the query pool. On the other hand, the results are
expected to be worse compared to the heuristic bound Fj poung, but the re-
sults could exceed this bound, due to, for example, overfitting the model with
a very large training dataset, which would lead to the gap being negative.

Specifications of the PC used for experiments are: Intel(R) Core(TM)
i7-7800X CPU @ 3.50GHz, 32GB RAM, and a NVIDIA TITAN Xp GPU.
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Table 3.1: On-state power threshold in [W] and training houses in Experi-
ment [2| for each target appliance.

Appliance  Training houses NAR On power threshold [W]

House 6 0.69
Kettle House 8 0.78 2000
House 17 0.58
House 6 0.69
Microwave House 8 0.78 200
House 17 0.58
House 6 0.69
Toaster House 7 0.58 50
House 8 0.78
House 3 0.56
Dishwasher House 6 0.69 10
House 9 0.61

3.1.3 Results & Discussion

In this section we present results from each of the three experiments described
in Subsection [3.1.2] We discuss the performance of AL, transfer learning of
DNN-based NILM models with AL, retraining the whole model using the
entire training dataset or only fine-tuning using the new labelled samples
after each iteration, as well as the effect of different acquisition functions on
performance and transferability in a realistic scenario - using real, dynamic
household measurements. In addition, we discuss sensitivity to AL hyper-
parameters. All the curves in the plots are smoothed using Savitsky-Golay
filter of order 3 and window length 11.

Experiment [1] Results

The results from the first experiment - demonstrating that AL can be suc-
cessfully applied to model-based low-frequency NILM by taking data from
a single REFIT house, House 2, for the initial training, query pool and test
sets, are shown in Figure [3.3] The horizontal axis shows the percentage of
samples from the query pool that are labelled, and the vertical axis shows
I score achieved by the model. The red dotted line reports F| pounq, When
model is trained on the initial training data set and the whole query pool
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Table 3.2: Model training and active learning hyper-parameters. 1 sample

= 1 window.
Parameter Value
. . kettle, microwave, 21 —1
Input window size
toaster
dishwasher 210 1
Target field 100
Batch size 27
Number of maximum epochs 20
Early stopping patience )
(epochs)
Learning rate 1073
Fine-tuning learning rate 1074
Number of samples queried 27
per active learning iteration
Initial training set size for 213
Experiment [1] (samples)
Query pool size (samples) BatchBALD 2
other query strategies 216
Number of maximum queried 214
samples
Confidence threshold Exp. [l - microwave & 0-95
Exp. [2| - toaster
all other experiments 0.9
Number of MC dropout )

iterations
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(100%) together. Those performance bounds are inline with those reported
in [43]. The black dotted line shows the initial F} score obtained by using
the initial training set only.

Note that the experiments were not run until the whole query pool is
added to the training data set, but were stopped after 25% of the query pool
is added, so the plots show the performance up to that point. For the stream-
based uncertainty acquisition function, the AL process can stop earlier if the
stopping criterion is met, i.e., there are insufficient samples with probability
of the predicted class below the threshold to form a batch.

The optimal points calculated according to are also marked in the
AL curves for each appliance and query strategy explored in corresponding
colours in Figure 3.3 showing the best trade-off between labelling effort and
accuracy achieved. As expected, the performance of all methods increases
with the number of samples added to the training set, and it increases faster
for the pool- and stream-based uncertainty acquisition functions than it does
for random sampling. Therefore, AL gives promising results for the training
models to disaggregate kettle, microwave and toaster.

It can be seen from Figure [3.3] that pool-based and stream-based sam-
pling achieve the optimal performance-complexity point very early (after as
little as 5% for kettle and 15% for toaster and microwave, of labelled samples
added to the training set), and much before the random sampling baseline
except for dishwasher.

For dishwasher there is an increase in performance with samples being
labelled, mainly in the range between 1% and 17% of the query pool samples
labelled; the increase of random sampling is the same as that of the pool-
based strategy, implying that the contribution of all samples in the query
pool is similar, or that the pool-based query strategy cannot identify the
most informative samples. The stream-based sampling, however, consistently
outperforms the other two methods.

Table [3.3] shows the portion of the query pool that needs to be added
to the training set so that the model exceeds 90% of the heuristic bound
performance. If 90% was not achieved, the maximum F} score and the corre-
sponding portion of query pool are shown. It is worth noticing that with only
up to 20% of the query pool samples being labelled and added to the training
set, the performance is close to the bound for all appliances, which indicates
that the labelling effort could be reduced by as much as 80%. The smallest
labelling effort is required for kettle, whose performance is very good to start
with, and is of short duration (hence, with a small number of queried samples,
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Figure 3.3: Experiment : Models trained and tested on REFIT House 2 for
kettle (a), microwave (b), toaster (c) and dishwasher (d). The red broken line
shows the Fj score bound obtained by using the entire query pool (100%) for
training. The dots represent the optimal points obtained using . The
black broken line is the result obtained with initial training only (0% query
pool labelled).

many activations can be processed). On the other hand, the most labelling
effort is required for toaster and microwave, due to the fact that the model
does not disaggregate these two appliances well, as can be seen from the final
performance bound, which is around 0.6 for both these appliances. This can
also be due to the fact that microwave and toaster have a more statistically
complex load profile compared to kettle and are used with different settings,
hence more samples are needed to capture the statistics. Interestingly, both
pool-based and stream-based sampling achieve similar performance, indicat-
ing that off-line labelling is not needed and samples can therefore be labelled
as they arrive.
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Table 3.3: Experiment : Labelling effort, i.e., % of the labelled query pool
samples, | @ |, needed to exceed 90% of the bound Fj score (if possible).
The bound F1 corresponds to the results when the entire query set (100%)
is used for training.

Kettle Microwave Toaster Dishwasher

Q| /| Qoo | 1.6% 10.2% 18.5% 15.8%

Pool-based Fi/ Fiooma  92% 90% 90% 90%
based | @1/ 1@ | LO%1033% 121%8.4%
Stream-based Fi [ Fiooma  90% 91% 82% 90%

Experiment [2| Results

The results of Experiment [2] are shown in Figure 3.4l A pre-trained model is
transferred to unseen REFIT House 2, and the samples from this house are
gradually labelled and added to the training set. The black dotted line rep-
resents the disaggregation performance of the pre-trained model on House 2
data without any data from that house added to the training set (0% of
the query pool sampled labelled), i.e., before any adaptation to the new
environment. The red dotted line reports the heuristic bound F} score as
in Experiment [l Even though the query pool for BatchBALD acquisition
function is sub-sampled from the original larger pool, curves are shown with
respect to the larger pool, to line up the number of queried samples with
other acquisition functions.

As can be seen from the plots in Figure [3.4] the proposed AL approach
yields promising results for all four appliances tested. As expected, strategi-
cally selecting the samples to query significantly improves the performance
w.r.t random sampling. Pool- and stream-based uncertainty acquisition func-
tions perform similarly, with pool-based being slightly better for kettle and
microwave, and stream-based being slightly better for dishwasher until it
reaches high confidence for all samples belonging to the pool. This can also
be observed by the optimal points that are reached very early (after only
5-10% samples labelled). The performance of dishwasher has the steepest
increase over a number of iterations. This is expected due to dynamic nature
of dishwasher loads within the house - newly added samples provide new in-
formation due to variation in dishwasher power patterns over different runs.
This is less pronounced with kettle and microwave since newly added sam-
ples after 5-10% of query pool samples being added do not enlarge anymore
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Figure 3.4: Experiment : Models pre-trained with small dataset transferred
to REFIT House 2 for kettle (a), microwave (b), toaster (c¢) and dishwasher
(d). Full retrain of the model is performed in each AL iteration. The red
broken line shows the F; score bound as per Experiment [1} The broken black
line shows the initial F; score obtained using pre-training set only. The dots
represent the optimal points obtained using .

the informativeness of the training pool. Regarding the toaster, there is a
huge jump immediately when fine-tuning is performed due to a large differ-
ence between the toaster signature in the target domain (House 2) and those
available in the training set. However, after that, the newly added samples
do not improve the performance anymore, which can be attributed to the
fact that disaggregating toaster is in general very challenging and the results
have already come closer to the bound in Figure (3.3

The BatchBALD acquisition function performs similarly to the random
acquisition function, which can be explained by the very limited size of the
query pool. The BatchBALD acquisition function is very computationally
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expensive and could not handle a large query pool due to memory constraints.
It is not used for dishwasher due to the extremely small query pool size, and
hence observed lack of improvement beyond the initial training.

Table [3.4] shows the improvement w.r.t the initial performance and the
gap to the heuristic bound as defined in Equations and (3.5). The best
results are shown (maximum performance) within the first 25% of samples
added to training, as well as the results with the optimum trade-off points.
The results show a high level of improvement for all appliances, bearing in
mind that a much higher improvement is desired for lower-performing initial
models, i.e., microwave and toaster, since the initial results for kettle and
dishwasher were already high. A very small gap for kettle, dishwasher and
toaster with pool- and stream-based sampling indicates that there is very
little room for improving querying strategies. The optimal trade-off points
are generally close to the maximum performance.

Table 3.4: Experiment : The improvement of the initial performance of the
NILM model transferred to a new house using AL when labelling at most
25% of the query pool, and the gap to the heuristic bound. The results are
given for the optimal trade-off point as well as for the best performance.

Kettle Microwave Toaster Dishwasher

Maximum performance

Improvement  8.68% 79.23% 104.00% 19.42%

Pool-based Gap 1.02%  14.34%  15.31%  1.95%
Stremmbased  TWPTOVEIment  6.77%  73.63%  122.11%  18.59%
Gap 0.75%  17.02%  10.14%  2.64%

Improvement 1.70%  22.51% 72.38% -

BatchBALD Gap 5.47%  41.45%  28.43% ;

Optimal trade-off points

Pool-based Improvement  7.85% 76.26% 97.711% 13.63%

Gap -0.25% 15.76% 17.92% 6.71%
Stream-based Improvement  6.77% 73.63% 122.11% 13.17%
Gap 0.75% 17.02% 7.79% 7.09%

Table shows the comparison of Fj score when initially training the
model using data from the same house where the model will be deployed (no
transfer), and when a pre-trained model, trained with already available data
from multiple houses is transferred to the new house. One can see that both
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sampling strategies show very small drop in performance when transferred to
a new target domain, indicating very fast adaptation due to effectively using
the query pool.

Note that the models pre-trained with data from multiple houses can
perform better than models trained and tested using data from the same
house. This is due to the fact that, as per Experiment [1| settings, initial
training set is of very limited size when training and testing with data from
the same house, as in a practical scenario, those data will be obtained from
time-diaries kept by householders. On the other hand, in Experiment [2]
larger amount of data from multiple houses, from an already available, public
dataset containing submeter measurements is used, which offers a better
variety of data samples for the model to learn.

Table 3.5: Comparison of the transfer learning results (Experiment |2)) and no-
transfer learning (Experiment (1)) in terms of the maximum F} score achieved
when labelling at most 25% of query pool. The best results are shown in
bold.

Kettle Microwave Toaster Dishwasher
Maximum performance
No-transfer 0.8511 0.5756 0.5626 0.8860
Transfer  0.8587 0.4968 0.5251 0.8922
No-transfer 0.8241 0.5254 0.5142 0.8897
Transfer 0.8436 0.4813 0.5717 0.8860
Optimal trade-off points
No-transfer 0.8217 0.5591 0.5501 0.8046
Transfer  0.8521 0.4886 0.5089 0.8489
No-transfer 0.8291 0.5254 0.5142 0.8324
Transfer 0.8436 0.4813 0.5717 0.8455

Pool-based

Stream-based

Pool-based

Stream-based

Considering the presented results of this experiment, it can be concluded
that AL can be used to effectively enhance the performance of pre-trained
AL models when transferred to a new environment, whose appliance profiles
(e.g., toaster) are statistically different. Similarly to Experiment [1} stream
based sampling shows no performance loss compared to pool based sampling,
thereby indicating that online learning is possible.
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Experiment [3| Results

In Experiment [2] after each iteration, when new samples are added to the
training set, the entire model is retrained, as is commonly performed in the
AL literature. However, due to these frequent re-training process, the initial
training set has to be kept very small, and therefore the execution time to
obtain improvements is high. To attempt to mitigate the aforementioned
problem, in Experiment [3, we do not retrain the entire model after each
iteration, which enables us to increase the size of the initial training set. The
results of this experiment - i.e., transfer of a DNN-based NILM model to
a new house with a large pre-training dataset and fine-tuning are shown in

Figure [3.5] and Table [3.6]

Table 3.6: Experiment[3} F} score achieved by the NILM model transferred to
a new house using the large pre-training dataset and the fine-tuning approach
to AL when labelling at most 25% of query pool.

Kettle Microwave Toaster Dishwasher

Maximum performance

Improvement 12.79%  122.69%  4475.845% 16.84%

Pool-based Gap 458%  -19.98%  -9.97% -2.56%
Streambased Improvement 9.71%  103.55%  4226.17% 13.95%
Gap -1.72% -9.67% -3.97% -0.02%

Improvement  3.58% 35.23% 1090.60% -

BatchBALD Gap 3.96%  27.14%  71.39% .

, Improvement  7.26% 71.55% 2752.35% -

Modified BatchBALD Gap 0.55%  T57%  31.45% :

Optimal trade-off points

Improvement  9.62% 116.48% 4243.62% 12.97%

Pool-based Gap 1.64%  -16.64%  -4.39% 0.84%
Stream-based Improvement  9.71% 103.55%  4226.17% 12.47%
Gap 172%  -9.67%  -3.97% 1.27%

Improvement  3.88% 62.30% 2752.35% -

Modified BatchBALD Gap 3.68%  12.55% 31.45% -

It can be seen from Figure [3.5] that the AL process in this experiment
is more stable - AL curves do not deviate with fine-tuning, especially in
the beginning of the process, which is expected since the models are not
fully retrained. The optimal trade-off points are again achieved early, with
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Figure 3.5: Experiment : Models pre-trained with large datasets transferred
to REFIT House 2 for kettle (a), microwave (b), toaster (c¢) and dishwasher
(d). Fine-tuning of the model is performed in each AL iteration without
retraining. The red broken line shows the F} score bound as in Experiment [I]
The broken black line shows the initial F} score obtained using pre-training
set only. The dots represent the optimal points obtained using .

only 5-15% of added labelled samples, and as observed in previous exper-
iments before, pool-based and stream-based uncertainty sampling lead to
similar performance.

In Table 3.6, gap values are negative both for maximum performance
(for all appliances) and optimal points (for all appliances except dishwasher,
where it is still very small) when using pool- and stream-based sampling
strategies, meaning that bound performance is exceeded, implying that it is
worth to use large pre-training datasets and fine-tuning approach.

For toaster, the pre-trained model performs poorly in the new house,
but despite that, a higher Fj score is achieved compared to Experiment [2]
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Poor initial performance is attributed to the statistical diversity in toaster
models, and the fact the House 2 toaster model, and hence load profile, is
not available in other houses; however, the AL approach with fine-tuning
overcomes this problem, as shown in Figure [3.5¢ and negative gap values in
Table 3.6

Due to the high computational demands of retraining, BatchBALD in
Experiment [2| could handle only a limited number of samples from the query
pool. In this experiment, since re-training is not performed after each label is
added, but only fine-tuning, we adapt BatchBALD such that the query pool
updates each time a batch of samples is drawn out of it and newly arrived
samples are put in the pool to replace the drawn ones. Thus, this could be
considered as a hybrid of a pool- and stream-based acquisition and is referred
to modified BatchBALD.

The proposed modified BatchBALD method with the introduced adapta-
tion performs better than random sampling for kettle and microwave, com-
pared to the bound performance. In general, BatchBALD performs worse
than pool- and stream-based uncertainty sampling, which can be explained
by the fact that all samples in the query pool are not highly correlated and
it is sufficient to look at their importance and not mutual correlation.

A comparison of full retrain (Experiment [2|) and fine-tuning (Experiment
3) in terms of F} score is presented in Table . Looking at the plots in
Figure [3.5] and at Table [3.7] it can be observed that the performance of
the model that is pre-trained using a very large dataset and fine-tuned with
queried samples reaches higher Fj score for all appliances tested than the
model that is pre-trained using a smaller dataset and fully retrained at each
iteration (i.e, Experiment?).

Using models pre-trained with large datasets and fine-tuning, instead of
full retrain, yields the best results among all 3 experiments, with an im-
portant benefit that should not be neglected - a significant decrease in time
needed for completing the AL process. An insight in speed-up that the
fine-tuning approach enables is shown in Figure for various sizes of the
pre-training dataset, by using the number of samples included in training as
an indicator of time needed for training. The speed-up S is computed as a
ratio of samples included in the model training with the full retrain approach
(pre-training samples + queried samples) denoted as | Dyre—train |, and sam-
ples included in the model training with the fine-tuning approach (queried
samples only, | @ |), according to:
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Table 3.7: Comparison of full retrain (Experiment [2) and fine-tuning (Ex-
periment |3|) - for each appliance the best I} score the model achieved when
at most 25% of the query pool is labelled.

Kettle Microwave Toaster Dishwasher
Maximum performance
Full retrain ~ 0.8587 0.4968 0.5251 0.8922
Fine-tuning 0.8889  0.6959  0.6818 0.9333
Full retrain ~ 0.8436 0.4813 0.5571 0.8860
Fine-tuning 0.8646 0.6361 0.6446 0.9102
Full retrain ~ 0.8035 0.3396 0.4437 -
BatchBALD  po timing  0.8163 04226 0.1774 .
Optimal trade-off points
Full retrain ~ 0.8521 0.4886 0.5089 0.8489
Fine-tuning 0.8639 0.6765  0.6472 0.9024
Full retrain ~ 0.8436 0.4813 0.5717 0.8455
Fine-tuning 0.8646 0.6361 0.6446 0.8984

Pool-based

Stream-based

Pool-based

Stream-based

_ ’ Dpreftrain ‘ + ’ Q ’

Q|

As it can be seen from Figure [3.6] the larger the pre-training dataset, the
higher the speed-up of the fine-tuning approach. The fine-tuning approach
offers significant time savings, most of which happens in the early AL process,
which is when the model’s performance increase is most rapid, as per the
results of all aforementioned experiments. Moreover, as mentioned before,
with fine-tuning, the size of pre-training dataset can be arbitrarily large,
since only the queried samples are used during training.

The results of sensitivity analysis regarding the number of samples queried
for one iteration for random, pool- and stream-based uncertainty are shown
in Figure Note that the horizontal axis of the plot shows the percent
of the query pool labelled, i.e., the labelling effort. It can be seen from the
figure that the performance is not sensitive to the number of queries per
iteration.

Results of sensitivity analysis with regards to the confidence threshold
used for stream-based uncertainty acquisition function are presented in Fig-
ure [3.8 A lower confidence threshold leads to more challenging samples

S (3.6)
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Figure 3.6: The speed-up of fine-tuning compared to the full retrain approach
to AL for various sizes of the pre-training dataset (in the number of samples).
The horizontal axis shows the number of labelled samples from the query
pool.

added to the training set, and hence faster improvement in performance com-
pared to higher thresholds. On the other hand, a higher confidence threshold
implies that more samples are going to be considered, so the process runs for
longer. For dishwasher, all confidence threshold levels provide equally steep
performance increase, which is likely due to a large number of samples with
the confidence level below the lowest threshold (0.9), caused by other loads
with similar wattage present in the training dataset, for example, dishwasher
is often confused with washing machine [27].

Results Summary

e AL can be successfully applied to model-based low-frequency NILM to
reduce labelling effort, and to enhance performance of models trans-
ferred to new environments.

e Performance of stream-based acquisition function, that can be per-
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Figure 3.7: Experiment [3| - Sensitivity analysis: Models pre-trained with
large datasets transferred to REFIT House 2 for kettle (a), microwave (b),
toaster (c) and dishwasher (d). Fine-tuning of the model is performed in each
AL iteration with a variable number of samples queried - 128 (solid line), 256
(dash-dotted line) and 384 (dotted line).

formed online, is on par with pool-based one that requires presence of
the whole query pool in advance and hence cannot be used online.

e Batch-aware acquisition function (BatchBALD [16]) was inferior to
other acquisition functions explored, due to its high computational de-
mands. To mitigate the complexity and low accuracy of the original
BatchBALD, a modification of it has been introduced.

e Optimal trade-off between accuracy and labelling effort is achieved with
5-15% of query pool labelled in most of the cases.

e Fine-tuning offers a good trade-off between accuracy and labelling effort

59



| oo

— THR=0.9 — THR=0.9
THR=0.95 THR = 0.95
—— THR=0.975 —— THR =0.975
—— THR=0.9875 —— THR =0.9875
~=- initial F1 score ==~ initial F1 score
=== F1 score bound - === F1 score bound

F1 score
°
®
2
F1 score

°
2

0.80

20 25 5 25

10 15 10 15
% of query pool labelled % of query pool labelled

(a) Kettle (b) Microwave

—— THR=0.9

07 THR=0.95
~—— THR= 0.975
F— THR=0.9875
=== initial F1 score
=== F1 score bound

F1 score
F1 score

0.84 — THR=0.9
THR=0.95

—— THR=0.975

—— THR=0.9875

-=- initial F1 score

0.0 ~== F1score bound 7|

15 20 25

20 25 0 10
% of query pool labelled

10 15
% of query pool labelled

(c) Toaster (d) Dishwasher

Figure 3.8: Experiment [3| - sensitivity analysis: Models pre-trained with
large datasets transferred to REFIT House 2 for kettle (a), microwave (b),
toaster (c¢) and dishwasher (d). Fine-tuning of the model is performed in
each AL iteration using the stream-based uncertainty acquisition function
with different confidence thresholds (THR).

and therefore full retrain at each iteration may not be necessary.

e Performance of AL with pool- and stream-based acquisition functions is
not sensitive to the number of samples queried per iteration - same la-
belling effort yields same performance, but if more samples are queried
in one iteration, fewer iterations are required.

e The lower the confidence threshold for stream-based uncertainty acqui-
sition function, the faster the improvement of the model in the begin-
ning of the AL process; the higher the confidence threshold, the longer
the process runs.
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3.1.4 Summary

In order to take advantage of large scale smart meter rollout and NILM to be
deployed widely to get itemized electricity consumption reports for improved
energy management, it is important to have a way to adapt NILM algorithms
to new houses efficiently, to get best-performing algorithms with as little
labelled data as possible. This paper demonstrated the viability of AL to
reduce labelling effort, as well as to improve transferability of deep learning
models to statistically different and dynamic electrical measurements. Three
different experiments were conducted - first, to show that labelling effort can
be significantly reduced by using AL and providing labels only for valuable
samples; second, to show that the performance of DNN-based NILM models
with AL, can be enhanced when transferred to a new environment by labelling
reasonably small amount of new samples that are informative; and third,
to show that full retrain of deep learning models after each AL iteration
may not be necessary - fine-tuning with only newly labelled data from the
new environment can produce satisfactory results, offering a good trade-off
between performance achieved and computational resources needed.
Different acquisition functions were explored, including pool- and stream-
based uncertainty, and batch-aware BatchBALD acquisition function along
with a modified BatchBALD to address complexity of the original Batch-
BALD. Worth noting is that the performance of the stream-based uncer-
tainty, which can be implemented online, was on par with pool-based uncer-
tainty, which requires availability of the whole query pool in advance, and
hence cannot be implemented online. BatchBALD acquisition function can
consider only small query pool sizes, because of its high computational re-
quirements, and therefore its performance was inferior to other acquisition
functions. To overcome this, a modification is introduced to update the query
pool in a stream-like fashion, to obtain a hybrid of pool- and stream-based
strategy. Though the modified BatchBALD outperformed the original Batch-
BALD, its performance is still inferior to pool- and stream-based uncertainty
strategies. Optimal trade-off between labelling effort and accuracy was dis-
cussed - in most of the cases, the optimal point was achieved with 5-15% of
query pool labelled, which indicates that labelling effort could be reduced by
as much as 85%. Changing number of samples queried per AL iteration offers
achieving the same performance in lower number of iterations, but with the
same labelling effort. Setting lower threshold for stream-based uncertainty
acquisition function provides steeper increase in performance, while setting
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higher threshold offers a longer lasting AL process process.

3.2 A weakly supervised active learning frame-
work for non-intrusive load monitoring

In the previous section on AL for the NILM problem, labels provided during
the AL process are of the same granularity as recordings of electricity con-
sumption. In practice, this kind of label can be acquired via submetering,
i.e., installation of an individual meter for each appliance. When there is
no submetering, this high granularity is only possible if a NILM expert is
providing labels, because such fine-grained labelling requires knowledge of
consumption signatures of different types of appliances, and the ability to
recognise them within a noisy recording. On the other hand, weak labels
are given per window of the electricity consumption signal, indicating if an
appliance is active inside that window. This kind of label can be provided
by an end user, through an app, based on the time of use of individual ap-
pliances, without requirements for specific knowledge of appliance signatures
and their extraction from noisy aggregate recordings.

3.2.1 Methodology

The AL framework used in this study is presented in Figure The process
follows the same steps as described in Section Weak labels are provided
by an oracle, and they are used to fine-tune the model, but evaluation is
performed using strong labels. Acquisition function used in this study is
uncertainty based. Weak level prediction w of the model is a vector contain-
ing probabilities of each appliance being in an active state inside the input
signal window. These values are used to estimate uncertainty of the model.
Namely, to finally determine the state of an appliance k, it’s soft prediction
Wy is compared to a threshold S - if it is greater that the threshold, the ap-
pliance is considered to be active, and otherwise it is considered to be turned
off. The closer the value of wy to [, the more uncertain the model is about
the prediction. Therefore, we define uncertainty 9, of the model about the
prediction for appliance k as follows:

5 = {“”f b < B (3.7)

-y wp>p
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Figure 3.9: Weakly supervised AL scheme.

Since the problem considered in this study is a multi-label classification,
where the state of K appliances is predicted by the model at the same time,
the following two strategies are considered to estimate the overall uncertainty
0 of the model:

e maximizing uncertainty level across all appliances:

J= max Ok (3.8)

e averaging uncertainty across all appliances:

1 K
6= g;ak (3.9)

In each AL iteration, a batch of signal windows with the highest uncertainty
level is selected to be weakly labelled and included in the fine-tuning set.
The DNN model used within the framework is a multi-label classification
CRNN from [85], proven to perform well when trained with weak labels [85].
The two datasets used in experiments of this study are REFIT and UK-
DALE, as described in Section [2.7.1]
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Experimental setup

UK-DALE houses 1, 3 and 5 were used for pre-training of the model (refer

o [85]), while REFIT houses 2, 4, 5 and 19 are used for fine-tuning during
the AL process. Aggregate and appliance-level signals from REFIT are up-
sampled uniformly to 1/6 Hz, to align with UK-DALE used for pre-training.
Window length is set to 2550 samples, which equals 4.15 hours. The number
of signal windows from REFIT dataset per appliance from each house used
is shown in Tabld3.8] The query pool is composed of 30% of REFIT signal
windows from each house, and test set of the remaining 70%.

House KE MW WM DW | Total # of windows
House 2 | 2.9 - 29 29 2.9
House 4 12 12 - - 12
House 5 | 9.5 - 0.5 0.5 9.5
House 19 | 13.6 13.6 - - 13.6

Table 3.8: Number of sample windows for each appliance from each REFIT
house (given in thousands).

In this study, two experimental scenarios are considered:

1. Active learning with the CRNN model pre-trained with only weakly
labelled data from UK-DALE dataset.

2. Active learning with the CRNN model pre-trained with both weakly
and strongly labelled data from UK-DALE dataset.

In Scenario 1, fine-tuning bi-directional and instance layers of the CRNN
yielded best results, while in Scenario 2, fine-tuning only the instance layer
performed the best. The threshold 3 used to determine the state of appliances
is calculated using the optimal thresholding strategy for each pre-training
condition. Adam optimizer is used with a learning rate of 0.002. Batch size
used is 64. Metrics used to evaluate the CRNN performance are F; and
micro-F} score (Equations and [2.6] respectively).

AL performance is usually presented as a curve showing model accuracy
against the number of labelling iterations, i.e., the number of samples queried
and labelled. If a point with no labelling effort (i.e., iteration 0; 0 labelled
sata samples), and the maximum possible model performance (i.e., Fj-score
equal to 1) is considered as an "ideal” point, then the optimal point of the
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AL process can be calculated as the point with minimum Euclidean distance
from the ideal point (see Eq. [3.3).

The performance of the proposed framework is compared to “No Fine-
Tuning” model [85], i.e., the model before adding any weakly labelled data
from the target environment, as well as to the “Weak Transfer Learning”
model [85], with the whole weakly labelled query pool added. Moreover, the
proposed method is compared to the semi-supervised method of [86] based
on knowledge distillation, pre-trained with strongly labelled data, and fine-
tuned with unlabelled data from the target environment (labelled data from
the target domain are considered unavailable). During the AL process, the
unlabelled signal windows associated with the highest uncertainty level are
selected for fine-tuning.

3.2.2 Results & Discussion

Results of the semi-supervised benchmark method [86] are presented first, in
Table[3.9] This is a challenging setting since no labelled data from the target
domain are provided - fine-tuning is done with unlabelled data only. Even
though some improvement can be achieved compared to the case when no
data from target domain is used at all, e.g., in House 4, it is not sufficient,
and adding labelled data is advantageous. Thus, results from AL scenarios
with weakly labelled data from the target domain are presented next.

Scenario 1 results, with only weakly labelled data available during both
pre-training and the AL phase, are presented in Table [3.10] This scenario is
challenging due to the fact that the model never sees strong labels, neither
during the pre-training, nor during the AL stage. Kettle has a short acti-
vation time, which makes it more likely to coincide with other appliances,
and therefore it needs a larger number of queries to get enough kettle acti-
vations within different aggregates. Similar holds for microwave. Washing
machine has a more complicated signature, and therefore does not improve
with adding weak labels. Dishwasher, however, has more high-power sam-
ples in an activation, which makes it easier to improve with adding weakly
labelled data samples. House 2 has the lowest noise-aggreagte ratio (NAR,
[87]) of 0.79. House 4 is noisier, with NAR equal to 0.91, hence the starting
performance is worse. House 5 has NAR of 0.84, therefore, better starting
performance is observed. House 19 has the highest NAR value, 0.93, how-
ever, the starting performance is good, indicating similarity of the appliances
in House 19 to the ones seen during the pre-training phase.
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‘ Method ‘ KE MW WM DW ‘ micro F}
No Fine-Tuning 0.55 - 0.48 0.58 0.50
Unsup. Transfer 0.55 - 0.48 0.58 0.50
. opt. | 0.55(13.3%) - 0.41(6.7%) 0.58(6.7%) | 0.50(6.7%)
H2 | AL(max) 0.56(80%) - 0.41(6.7%) 0.58(6.7%) | 0.50(6.7%)
AL(mean) P 0.54(13.3%) - 0.41(6.7%) 0.58(6.7%) | 0.50(6.7%)
best | 0.56(73.3%) - 0.41(6 %) 0.58(6 7%) | 0.50(6.7%)
No Fine-Tuning 0.42 0.38 0.39
Unsup. Transfer 0.44 0.44 - - 0.44
opt. | 0.44(13.8%) 0.41(10.3%) - - 0.42(13.8%)
He | AL(max) o | 045(20.7%)  0.44(38%) - - 0.44(38%)
opt. | 0.45(1.7%) 0.41(12.1%) - - 0.41(12.1%)
Al(mean) oo | 0.45(1.7%)  0.44(98.2%) : . 0.44(98.2%)
No Fine-Tuning 0.86 - 0.02 0.04 0.05
Unsup. Transfer 0.86 - 0.02 0.04 0.05
opt. | 0.86(4.3%) - 0.02(22%) 0.04(2.2%) | 0.05(2.2%)
H | ALmax) o | 0.87(60.9%) - 0.02(2.2%) 0.04(2.2%) | 0.05(2.2%)
AL(mean) P 0.86(4.3%) - 0.02(2.2%) 0.04(2.2%) | 0.05(2.2%)
best | 0.87(97.8%) - 0.02(2.2%) 0.04(2 2%) | 0.05(2.2%)
No Fine-Tuning 0.82 0.61 - 0.69
Unsup. Transfer 0.82 0.61 - - 0.69
opt. | 0.82(3.1%) 0.63 (1.5%) - . 0.70 (1.5%)
HIOPAL(max) poo | 0:82(3.1%)  0.64(89.2%) - - 0.70(1.5%)
opt. | 0.82(3.1%) 0.62(1.5%) - - 0.69(1.5%)
Al(mean) yooe 1 0.83(43.1%)  0.63(60%) - - 0.70(60%)

Table 3.9: Results of the semi-supervised benchmark [86].

query pool used to achieve the F score is given in brackets.
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| Method | KE MW WM DW | micro Fy
No Fine-Tuning 0.73 - 0.62 0.70 0.67
Weak Transfer 0.59 - 0.42 0.73 0.58
0 - 0 [ 0
H2 | AL(max) P 0.74(13.3@ 0.62(6.7?) 0,71(13.30/0) 0.67(6.70/0)
best | 0.79 (73.3%) - 0.62(6.7%) 0.74(33.3%) | 0.67(6.7%)
AL(mean) opt. | 0.80 (20%) - 0.62(6.7%) 0.71 (6.7%) | 0.67 (6.7%)
best | 0.80 (20%) - 0.62(6.7%)  0.73(20%) | 0.67(6.7%)
No Fine-Tuning 0.54 0.53 - - 0.53
Weak Transfer 0.59 0.65 - - 0.63
opt. 0.61(1.7%)  0.64(1.7%) - - 0.63 (1.7%)
He | AL@max) oo | 061(1.7%)  0.72 (67.2%) - - 0.65(67.2%)
opt. | 0.58(8.8%)  0.63(10.5%) - - 0.61 (10.5%)
Almean) oo | 0.60(52.6%)  0.70(66.7%) - - 0.65(66.7%)
No Fine-Tuning 0.78 - 0.24 0.28 0.51
Weak Transfer 0.79 - 0.32 0.28 0.55
G N 0 0 0
H5 | AL(max) opt. 0.80(2.2?) 0.30(6.5?) 0.27(10.3%;) 0.56(10.7%)
best | 0.80(2.2%) - 0.36(95.6%)  0.28(50%) | 0.57(54.3%)
AL(mean) opt. | 0.80(2.2%) - 0.34(26.1%) 0.28(4.3%) | 0.56 (6.5%)
best | 0.80(2.2%) - 0.34(26.1%) 0.29(52.2%) | 0.56(6.5%)
No Fine-Tuning 0.66 0.68 - - 0.67
Weak Transfer 0.75 0.69 - - 0.71
0.80(3.1%)  0.70(1.5%) - - 0.73(1.5%)
HI9)  AL(max) 0.81(64.6%)  0.71(29.2%) - - 0.73(1.5%)
0.78 (2.7%)  0.70(8.1%) - - 0.73(2.7%)
AL(mean) | 70 13 5%)  0.71(27%) - - 0.74(13.5%)

Table 3.10: Results of experimental Scenario 1.
used to achieve the F) score is given in brackets.

Percentage of query pool
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The results of Scenario 2, with both strongly and weakly labelled data
available during pre-training, and only weakly labelled data available during
AL, are presented in Table [3.11] As expected, performance is improved
over the baseline for all appliances in all of the houses. This is due to the
presence of strong labels during the pre-training phase, ensuring that the
model acquired more knowledge of appliance signatures, and consequently
achieving better results with less weakly labelled samples added int he AL
phase.

| Method | KE MW WM DW | micro F}
No Fine-Tuning 0.78 - 0.78 0.84 0.82
Weak Transfer 0.83 - 0.82 0.83 0.82

opt. | 0.82(6.7%) - 0.80(6.7%) 0.83(6.7%) | 0.82(6.7%)
H2 | AL(max) ) | o83 (13.3%) - 0.82(46.7%) 0.84(93.3%) | 0.82(6.7%)
AL(mean) P | 053 (6.7%) - 0.80(6.7%) 0.83 (6.7%) | 0.82 (6.7%)
best | 0.84 (86.7%) - 0.82(26.7%) 0.84(33.3%) | 0.83(66.7%)
No Fine-Tuning 0.71 0.69 - - 0.69
Weak Transfer 0.73 0.73 - - 0.73
opt. | 0.76(6.9%)  0.84(5.2%) - - 0.81(5.2%)
He P ALmax) o | 0.77(14%)  0.86(73.7%) - - 0.81(5.2%)
opt. | 0.78(1.7%)  0.85(1.7%) - - 0.83(1.7%)
AL(mean) oo | 0.78(17%)  0.86(28.1%) - - 0.83(1.7%)
No Fine-Tuning 0.94 - 0.20 0.43 0.60
Weak Transfer 0.95 - 0.41 0.55 0.70
opt. | 0.96(4.3%) - 0.41(26.1%) 0.54(17.4%) | 0.69(17.4%)
Ho | Alfmax) e | 0.06(4.3%) - 0.42(76.1%)  0.57(60.9%) | 0.72(65.2%)
AL (mean) P 0.96(2.2%) - 0.36(28.3%) 0.51(2.2%) | 0.67 (2.2%)
best | 0.96(2.1%) - 0.40(39.1%)  0.58(28.3%) | 0.71(28.3%)
No Fine-Tuning 0.88 0.75 - - 0.80
Weak Transfer 0.76 0.69 - - 0.71
opt. | 0.91(7.7%)  0.73(1.5%) - - 0.78(1.5%)
HI9T AL(max) | 0.04(72.3%)  0.73(20.2%) - - 0.78(1.5%)
opt. | 0.89 (4.6%) 0.76(7.7%) - - 0.80(1.5%)
AL(mean) o | 0.89 (4.6%)  0.76(7.7%) - - 0.81(7.7%)

Table 3.11: Results of experimental Scenario 2. Percentage of query pool
used to achieve the F} score is given in brackets.

Observed levels of uncertainty during the AL process are discussed next.
Observed uncertainty levels of the whole query pool in House 4 are presented
in histograms in Figure [3.10] In Scenario 1, only weak labels are available
in the pre-training phase, and the model tends to be either very certain or
very uncertain in its predictions. On the other hand, in Scenario 2, strong
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labels are shown to the model during the pre-training phase, and the observed
uncertainty levels are not as concentrated as in Scenario 1 - histogram for
Scenario 2 is more flat, indicating more levels of uncertainty present. This
is due to the fact that the model has seen multiple overlapping appliance
activations in strong labels in the pre-training phase.

Scenario 1
2000
Il kettle
" 1500 A microwave
()]
(o]
2 1000 -
o
H#
500 A
0' —— T T  — T
0.25 0.30 0.35 0.40 0.45 0.50
Uncertainty
Scenario 2
2000
Il kettle
» 1500 7 microwave
(@)}
©
21000 -
o
3
500 A I I
o .
0.25 0.30 0.35 0.40 0.45 0.50

Uncertainty

Figure 3.10: Uncertainty levels observed for the whole query pool for House
4 in Scenario 1 (top) and Scenario 2 (bottom).

Ratio of uncertainty levels for kettle and microwave appliances signal win-
dows queried from House 4 at the beginning of AL process is shown in Figure
[B.1T} Scenario 1 with mean uncertainty across appliances used in acquisition
function - top left; Scenario 1 with maximum uncertainty across appliances
used in acquisition function - top right; Scenario 2 with mean uncertainty
across appliances used in acquisition function - bottom left; Scenario 2 with
maximum uncertainty across appliances used in acquisition function - bot-
tom right. The uncertainty levels associated with microwave (light green)
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are stacked to the uncertainty levels associated with kettle (dark green). Un-
certainty is shown on the y-axis, while the x-axis presents signal windows
present in a batch of 64 samples. Since kettle has more high-uncertainty
signal windows, according to Figure [3.10] if using maximum uncertainty as
an overall uncertainty measure in the acquisition function, signal windows
are queried so that they have high uncertainty for kettle, but not necessarily
for microwave. In opposition, if mean uncertainty is used as an overall un-
certainty measure in acquisition function, then signal windows are queried so
that they have high uncertainty for both appliances - kettle and microwave.
Thus, mean uncertainty is a more reliable uncertainty measure, as described

in Section B.2.1]
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Figure 3.11: Observed ratio of uncertainty between kettle and microwave
from House 4. Top row - Scenario 1; bottom row - Scenario 2; left column
- mean uncertainty used in acquisition function; right column - maximum
uncertainty used in acquisition function.
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From the presented results, adding less data is sometimes better than
adding more - with significantly reduced labelling effort at optimal points,
performance is close to the best F} score. So, AL approaches are very useful
in identifying high uncertainty data to include in fine-tuning and efficiently
reduce labelling effort. Most importantly, weak labels can be successfully
used to fine-tune pre-trained models with AL, and they can be easily ob-
tained from end users based on the time when they used particular appliance,
without the need for specific knowledge of appaliance signatures.

3.2.3 Summary

In this study a weakly supervised AL framework is proposed to successfully
adapt pre-trained NILM models to new environments. Weak supervision of-
fers the possibility of collecting labels from end users, through a dairy of
appliance running times, as no sample-by-sample annotations are needed.
AL ensures that as few queries as possible are made, which further reduces
the labelling effort. We prove the efficiency of the proposed method un-
der multiple experimental scenarios, with multiple appliances, across 4 test
houses. Benchmark performance is exceeded with labelling effort reduced
by 82.6-98.5%.

3.3 An active learning framework for micro-
seismic event detection

Microseismic monitoring has been gaining attention over the past few years
to further illuminate regional-scale induced earthquakes, termed microseis-
mic events, to enable monitoring of subsurface projects, such as oil and gas
production, hydraulic fracturing for unconventional resources, e.g., geother-
mal energy, or the reaction of the Earth’s crust to impoundment and storage
of water in dams. The injection of fluids into the ground during geothermal
energy exploitation fractures the surrounding rock thereby inducing small
earthquakes. These microseismic signals are characterised by very low sig-
nal to noise ratio (SNR) and hence, unlike earthquakes with relatively higher
magnitude and SNR, these signals are challenging to detect in the presence of
ambient noise from fluid injection and machinery. With computing resources
becoming more and more available, deep neural network-based approaches
on data from borehole arrays over the area of underground operations have
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gained importance in induced microseismic event monitoring, as detailed in
recent review paper [32]. These methods are used to provide better insights
into underground processes for optimisation of the hydraulic fracturing dur-
ing injection, as well as for real-time risk evaluation of induced seismicity.
Microseismic monitoring starts with detection of microseismic events, which
in turn enables localisation of hypocentres, and further characterisation of
source mechanisms of microseismic events. The main issue of powerful deep-
learning based detection methods, e.g., [33], [67] is that they require a large
number of labelled samples, which is time-consuming and requires specialised
knowledge. To alleviate this issue, in this study, we propose an AL strategy
that works in conjunction with a deep learning-based algorithm, to include
only most informative samples in the training set and thus reduce the la-
belling time. This in turn results in improving the speed and consistency
of the base detection algorithm, which is a key requirement for microseismic
applications [32]. Specifically, we adapt an AL framework described earlier in
this chapter (Section , originally proposed for energy dissagregation, to
microseismic event detection which creating high-quality training data sets
in a data- and time-efficient way, by labelling only most informative samples.
Furthermore, we transfer pre-trained models to new locations and different
sensor types (where labelled data unavailable for pre-training), exploiting re-
liable predictions from multiple sensors at a time to make a final decision.
Results show that AL brings improvement to the detection algorithm per-
forming on both a new location and different sensor type, while saving 83%
of labelling effort.

3.3.1 Methodology

The AL framework scheme used in this study is shown in Figure The
process works as described earlier, in Section The acquisition function
used is based on optimal thresholding, with stopping criterion as proposed in
[T0]. Namely, the deep learning model returns a prediction window containing
values between 0 and 1, indicating if the event is detected at each timestamp
inside the window. Then, the maximum of all prediction values in the window
determines a single prediction value for the window. To determine if an event
is detected or not, we set a threshold 0 < 7" < 1. The interval (0, 1) is split
into three regions: a region [0,7'/2) where the model is certain that the
window does not contain events, i.e., a negative prediction; a region where
the model is uncertain about its prediction [7'/2,(1 + T')/2); and a region
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[((1+7/2),1] where the model is certain that the window contains an event,
i.e., positive prediction. Then, samples belonging to the uncertain prediction
region are ranked based on their distance from the decision threshold 7', and
a number (batchsize/2) of all these uncertain samples that are the closest
to T is queried. Additionally, a number of samples (batchsize/4) is queried
randomly from predictions that fall into certainly negative and a number
(batchsize/4) from certainly positive prediction regions. This constitutes a
batch of samples that is queried, labelled and included in fine-tuning dataset.
The largest number of samples is chosen from the uncertain region because
those samples are supposed to bring the most information to the model.
However, to prevent the model from overfitting and forgetting patterns of
positive and negative samples for which it is typically certain about, samples
are chosen from certain predictions as well. AL stops when there are three
consecutive epochs with empty uncertain region.

-

RockNet model
training

criterion
met?

Acquisition
function Stopping

Figure 3.12: Active learning framework

To demonstrate efficiency of the proposed AL process, we use a popular
RockNet network [67]. RockNet is a fusion model, taking both 3-channel
time series window, and a spectrogram of the vertical channel of the window
as inputs, and making a fusion of features extracted from both inputs. The
model returns masks showing detected events - earthquakes and rockfalls.
For earthquakes, masks are positive between P and S wave arrivals, and neg-
ative elsewhere. The model demonstrates excellent performance for detecting
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earthquake and rockfall events [67]. In this study, we apply it to detect in-
duced microseismic events, of much shorter duration and lower amplitudes,
and also higher noise levels.

The dataset used in this study is recorded as part of the Utah Fron-
tier Observatory for Research in Geothermal Energy (FORGE) project, as
desribed in Section 2.7.2

Experimental setup

Available recordings are divided into two periods - the last 15 minutes is
reserved for testing, while the first 45 minutes are used as training set if pre-
training, or query pool if performing AL. This 45-15 min split is the same
for all sensors. Since for induced microseismic events time between P and
S phase arrivals is very short (less than 100 ms), the input window length
that is used in this study is 400 ms, or W = 1600 samples. Spectrograms are
generated from vertical seismogram component of the input window, with
the FFT length N = 128, and a step of H = 10 samples between STFT
segments. So, the input dimensions are (3, 1600) for time-series input and
(2, N/2+1 =65, W/H+1 = 161) for the spectral domain input - one channel
for real and one for imaginary spectrogram component. Since there is only
one type of event in the dataset, at the output we only have one binary mask,
of dimensions (1, 1600), which is positive between P and S wave arrivals, and
negative elsewhere. Training windows overlap by 1/3, while testing windows
do not overlap. For each sensor, there is 24,779 samples used as training set
if the sensor is used for pre-training, or as query pool if AL has been applied
to the sensor; and 2253 test samples. In the pre-training phase, training data
was balanced by keeping an equal number of windows that do and do not
contain an event. Excessive windows with no events present are discarded.
Testing data was not balanced to reflect real-world recordings. Query pool
data was also not balanced.

Three experiments were conducted in this research, to demonstrate value
of proposed AL framework across different levels of generalisation to exploit
multiple sensors in the borehole arrays on the site: (1) The deep learning
model is pre-trained with data from two sensors from the well 78B-32 (sensors
G7 and G8), and AL is performed with another sensor data from the same
well (Gb), to verify the AL approach. (2) The deep learning model is pre-
trained with data from four sensors from the well 78B-32 (G5-8), and AL
is performed with the data from a sensor from the well 58-32 (G5), to test
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generalisation across different wells with the same instrument types - the two
wells are distributed in different azimuths which can impact the signals. (3)
The deep learning model is pre-trained with the data from 8 sensors from the
wells 78B-32 (G5-8) and 58-32 (G5-8), and AL is performed with the data
from a sensor from the well 56 (G2). This is to test generalisation across
different wells and different instrument types, since well 56-32 has different
instrumentation than the other two wells.

Model performance is evaluated using Fi-score as per Equation from
Section 2.8

The stopping criterion as defined in [I0], is based on the uncertain region
of the acquisition function - if the region is empty for three consecutive AL
iterations, it means that the model reached high levels of certainty and the
AL process can be stopped.

Batch size used is 128, learning rate le—3, and decision threshold 7" = 0.5
for Experiments 1 and 3, and T" = 0.6 for Experiment 2. These model
thresholds are heuristically set based on the testing data during the pre-
training phase and are not further tuned during the AL phase. In the pre-
training phase, training is performed for a maximum of 50 epochs with early
stopping patience of 5. In the AL phase, each training is performed for 15
epochs, and the best model is used to make queries.

3.3.2 Results & Discussion

The results are presented in Figure for the three experiments discussed
in Subsection [3.3.1] AL iterations are presented on the horizontal axis, while
the vertical axis shows the resulting Fj-score. Optimal points are marked by
red dots.

In Experiment 1, where AL is used in the same well as the pre-training
data comes from, AL curve rises the slowest - the data comes from the same
source and is of similar quality as pre-training data, and there was enough
pre-training data for the model to learn well. However, the performance
does improve compared to the baseline model, and with significantly less
data than if the whole query pool was labelled - only 15.5% of query pool
is labelled (3840 out of 24779 samples, labelled over 30 iterations), saving
84.5% of labelling time. This indicates that microseismic event detection
can benefit from AL to reduce labelling effort and improve performance.

In Experiment 2, which transfers a pre-trained model to a different well
with the same type of sensors, AL gives promising results - F'1-score is im-
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Figure 3.13: Results: Experiment 1 - top left; Experiment 2 - top right;
Experiment 3 - bottom.

proved from 0.78 before any fine-tuning to 0.86 at the and of fine-tuning
with AL, with only 18.6% of query pool labelled, reducing labelling effort by
81.4%. This scenario benefits more from AL because the new data used for
fine-tuning during the AL phase is more informative due to environmental
differences in two wells.

In Experiment 3, which transfers a pre-trained model to a different well
with different measuring equipment, performance is the most improved. It
was poor at the beginning (F; = 0.36), but with AL it is quickly improved
after only a couple of iterations, reaching F; = 0.68 with 17% of data samples
labelled, reducing labelling effort by 83%. This is due to the fact that newly
introduced data is very different from the data used for pre-training, and AL
provides significantly new information.

An example of model performance on a data sample from sensor G8 from
well 58-32 in Experiment 2 is shown in Figure [3.14 The model has 92696
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Figure 3.14: Model performance example - time-series input (FP1, FP2,
FPZ), spectral input (STFT map), and ground truth and prediction for a
data sample from sensor G8, well 58-32, Experiment 2.
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trainable parameters, and processes on average 12.7 batches (12.7%128=1625.6
samples) per second in evaluation mode on a PC with 32GB RAM and an
NVIDIA Titan Xp graphic card.

3.3.3 Summary

We demonstrated efficiency of AL for detection of induced micro-seismic
events. We showed that by using the proposed approach to selecting most in-
formative samples to be labelled, the labelling effort can be reduced by 80-84
% without affecting the performance. The proposed method is very efficient
when transferred to a very different environment with different measuring
equipment. It would be worth exploring AL with clustering approaches in
future work, as well as usage of explanation tools which could inform the
expert about the reasoning behind model decision and aid labelling.
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Chapter 4

Human-in-the-loop active
learning for time-series
classification

As commonly done in the literature (and in the previous chapter), oracles
are assumed within AL frameworks to provide absolutely true labels, with-
out any errors, all with the same effort and at the same cost (see [14] for
a review of AL approaches for medical image analysis - most of AL meth-
ods assume an oracle). This is a very unrealistic assumption - human error
during labelling will be (unintentionally) introduced, especially for challeng-
ing to label samples (e.g., noisy samples) and time-series samples that are
not always visually interpretable. Only a few studies have reported AL sys-
tem results where users/experts are recruited to provide labels during the
AL process. For example, [88] includes people in the labelling process, for
an income prediction task using linear regression, investigating if AL could
boost their trust and confidence in Al, depending on their level of familiarity
with AI, and their willingness to engage with the process. However, studies
that actually deploy AL concept focus mainly on social aspects of AL and
human-computer interaction, e.g., trust, while using toy AL algorithms.
Human-in-the-loop approaches have not been explored in energy man-
agement related applications despite the acknowledged role of consumers on
energy end use in order to meet European Green Deal Ambition goals related
to bringing greenhouse gas emissions to the levels of 1990 by 2030 [89].
Building on the prior work described in Section that proposes a
framework for AL for low-frequency model-based NILM, assuming perfect
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error-free labelling, in this study we propose a novel human-in-the-loop ap-
proach which sits between active and interactive learning, where the machine
selects examples to query, then through a user interface which shows the
time-series electrical signal under questions, a human expert manually labels
such examples. Due to the nature of the variable electrical signals belong-
ing to the same class, we show that human uncertainty is possible and the
model learns incrementally until a stopping criterion is met. Our approach
is demonstrated for the problem of energy disaggregation from widely avail-
able smart meter aggregate measurements, i.e. NILM, which suffers from
unavailability of labelled samples (i.e., labelled appliances contributing to
the aggregate at each sampling point).

4.1 Methodology

In this section we describe the proposed AL approach, illustrated in Figure
4.1 As in Chapter [3] Algorithm [T} described in Section [2.3] is used to select
samples to query. Four main contributions to work reported in Chapter
are made. First, a new acquisition function ¢(-) is proposed based on
hypothesis testing to ensure diversity of labels in terms of reliability and
classes (see Subsection . Second, a stopping criterion is introduced
when all “uncertain” samples are exhausted (see Subsection [4.1.2). Third,
confidence levels are included during model learning within the fine-tuning
step (Subsection , to account for experts’ confidence about provided
labels and mitigate the effect of errors introduced for hard-to-label samples.
Finally, after the fine-tuning step, an additional step for returning potentially
wrongly labelled data samples back to experts for re-labelling is proposed

(Subsection |4.1.4]).

4.1.1 Acquisition function

Traditional uncertainty-based acquisition strategies for selecting samples to
label tend to first query windows of samples containing appliance activations,
i.e., positive samples [I0]. This leads to a very unbalanced set after labelling,
containing predominantly positive samples. To keep the diversity of queried
samples, both in terms of classes (all classes should be well represented) and
model uncertainty (most uncertain samples should be queried), a new acqui-
sition function based on maximum a posteriori (MAP) hypothesis testing is
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Figure 4.1: Active learning framework.

proposed next.

Let § be a realisation of a random variable Y € [0, 1] denoting the model
output (O=appliance if off; 1=appliance is on). Let us consider two hypothe-
ses: hypothesis Hy corresponding to the appliance being in off-state, and
hypothesis H; corresponding to the appliance being in on-state. Suppose
that prior probabilities of both states are known, i.e., P(Hy) and P(H;), as
well as probability density distributions of model output y under the two
hypotheses, i.e., fy-(y|Ho) and fy(9|Hy).

Then, after applying Bayes’ rule, posterior probabilities of hypotheses H
and H; are obtained as:

[y (91H;) - P(H;)
fy ()
Using the MAP test, the winning hypothesis will be the one that max-
imises (4.1]). Since the denominator is the same for both hypotheses, hypoth-
esis Hy is chosen if and only if:

P(H,|Y =) = ,i€{0,1}. (4.1)

[y (§Ho) - P(Ho) > f(§|Hy) - P(Hy). (4.2)
Otherwise, hypothesis H; is chosen.
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The model output value §* for which posterior probabilities of the two
hypotheses, Hy and H;, are the same, i.e.,

fy (47| Ho) - P(Ho) = fy-(§°|Hy) - P(Hy) (4.3)

is considered the most challenging model output value to make a decision.
Therefore, model output space [0, 1] is divided into three regions: likely neg-
ative model predictions (Hy chosen; model output value close to 0), likely
positive model predictions (H; chosen; model output value close to 1), and
uncertain model predictions (model output value close to ¢* where posterior
probabilities for Hy and H; are equal). See Figure for illustration. Each
point in the model output space is assigned to one of three regions depending
on its proximity to 0, *, and 1. Samples to be queried are taken from all
three regions as per equation:

Qi = Qi, likely negative U Qi, uncertain U Qi, likely positive

%k

Yy
Qi, likely negative < {S € Dpool|y = mi—l(s) € (07 _)}

2
g1+ (4.4)
Qi, uncertain {S S Dpoolly = mi—l(s) S (?7 9 )}
1+ 9"

Qi, likely positive C {3 € Dpoolly = mi—l(s) € ( 9 71)7}

where query from the current iteration i is denoted by @Q;. Dy, is query
pool, s denotes samples belonging to the query pool, m;_; is the model from
previous AL iteration, and y is the model output for sample s. The number
of samples from each region is controlled by hyper-parameters.

Since off-state of an appliance is more frequent than on-state (that is,
most appliance are not used continuously), point §* is expected to be closer
to 1 than to 0 (see the example in Figure , so samples containing mea-
surements while appliance is turned on are favoured by this strategy, which
is beneficial to NILM algorithms, as discussed later in Section [£.3.1] Most of
queried samples therefore come from the uncertain region as defined above
(the number is controlled by a hyper-parameter), but to prevent model from
forgetting, samples are also taken from the two likely (positive/negative) re-
gions.
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fo(y|H1) - P(H1)
fo(¥|Ho) - P(Ho)

Likely . Likely
negative Uncertain positive
0.0 v* 0.5 y* 1+y* 1.0

2 2

<>

Figure 4.2: Acquisition strategy - an illustration (for appliance kettle): Dis-
tributions of the model output under hypotheses Hy and H;, and three model
output space regions.

4.1.2 Stopping criterion

Stopping criteria, as discussed in Chapter[2] Section [2.3] usually rely on com-
parison of performance across subsequent AL iterations (e.g., in [I8]) or on
agreement of models in subsequent iterations (e.g., in [20] and [19]). To avoid
the need to store the models from multiple iterations and compare them, or
to store the model outputs or uncertainty levels from multiple iterations,
which can be resource-intensive, a stopping criterion relying on confidence of
the model from a single, current iteration is designed.

When using the proposed acquisition function, as described in Subsection
there is a region in the model output space where model predictions
are considered uncertain. During the AL process, the uncertain region is
quickly exhausted, but, as the model changes during the process, the model
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output for some samples can shift from likely positive or negative regions
to uncertain. When samples from the uncertain region are exhausted, the
process is meant to stop - it means that the uncertain samples have been
already included in training and only samples for which the model has high
level of certainty remain. To ensure that the model is consistently certain
in its predictions, patience for a few epochs can be introduced - i.e., AL can
stop when the uncertain region is empty, or does not contain enough samples
to fill @ for a few consecutive epochs, as per Equation [4.5]

: _ J° 1+ \Y
patience, — patience;—1 + 1, {s € Dpoorly = m;_1(s) € (Z?’ 1+2Z)} =0
0, {s € Dyootly = mi-1(s) € (%7, =5-)} # 0
g False, patience; < max_patience
True, patience; > max_patience
(4.5)

Patience in current iteration ¢ is denoted by patience;, while patience;_4
denotes the patience from the previous AL iteration. S is a boolean variable
denoting if the stopping criterion has been met or not. This strategy offers
timely stopping of the AL process without the need to store and compare
performance of the models from earlier stages of the process. In addition,
this strategy eliminates the need for setting a predefined threshold on model
performance, which can be a challenging task since it is not always straight-
forward to estimate the level of expected performance if the model is deployed
in a new previously unseen environment.

4.1.3 Exploiting experts’ confidence

To account for possible wrong labels introduced by humans during labelling,
a method to incorporate their confidence about a label is introduced. Expert
confidence levels are used to set weights inside the loss function during train-
ing - instead of treating all samples equally - by applying weighted average
when calculating the loss as:

N
1
Loss = N ; ¢i - Loss;. (4.6)

Here, N denotes the total number of samples, and Loss; is the model’s
loss value for the ¢-th sample. The higher the expert certainty, the higher
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the sample confidence weight ¢;. A lower weight means that the effect of
a sample to the calculated loss is attenuated, thus it contributes less to
model learning. []

4.1.4 Re-labelling samples

To reduce likelihood of training the model with wrong labels, a mechanism
for returning samples with possibly erroneous labels, R, for re-labelling is
implemented as:

R={se@Q: MR(y,y) < Tieturn} (4.7)

where N )
MR(y7 :g) = Z]ZV:l mln{y“ yj} 5 (48)
> imy max{y;, Ui}
and N is the signal window length.

Namely, after the loss function has been applied to each newly added
sample s; € @, match rate (MR, Equation between the correct label
y; of sample s; and soft model prediction y; is calculated - if MR is below
a threshold T, even after the loss function is applied, it means that the
sample possibly deviates from the rest of the training set, and that the label
is possibly wrong; thus this sample is sent back for re-labelling, enabling the
expert to re-consider and change their original decision.

4.2 Experimental Setup

4.2.1 Data & DNN model

To facilitate reproducibility, we use the well documented public REFIT [52]
and UK-DALE [53] real-world electrical load measurements datasets, as de-
scribed in Section R.7.11

In all experiments, as in [70], REFIT house 5, and UK-DALE house 1,
which contain all four targeted appliances with many activations, are used for
testing. A continuous period without missing data from 1st March 2014 to
1st September 2014 is chosen - first 2 months for the query pool and the rest

IThe exact way of setting labels and confidence levels through a user interface for the
application considered in this study is described in Section
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Appliance Training houses (REFIT)
6 (28.11.2013-28.06.2015.)

Kettle 8 (01.11.2013-10.05.2015.)
17 (06.03.2014-19.06.2015.)

6 (28.11.2013-28.06.2015.)

Microwave 8 (01.11.2013-10.05.2015.)
17 (06.03.2014-19.06.2015.)

2 (17.09.2013-28.05.2015.)

Washing machine 3 (25.09.2013-02.06.2015.)
16 (10.01.2014-08.07.2015.)

2 (17.09.2013-28.05.2015.)

Dishwasher 3 (25.09.2013-02.06.2015.)
16 (10.01.2014-08.07.2015)

Table 4.1: REFIT houses and time periods used for training for each tar-
get appliance.

for testing, to ensure that there is enough diversity among testing data, and
that the query pool is of reasonable size since manual labelling is included
in experiments. Continuous recordings from the query pool and testing data
are sliced into non-overlapping windows before being fed to the model. As
explained in Subsection [2.3] labels are not available for the query pool data,
so, in the query pool, only aggregate electricity consumption measurements
are used. Labels are provided later after the model makes a query, either
by an oracle (Experiment 1), or by an expert (Experiment 2). For testing,
submetering measurement labels are used to quantify model performance.
Houses and time periods used for pre-training of each appliance are shown in
Table [4.1]- for washing machine and dishwasher as in [70], and for microwave
and kettle as in [44]. It is worth mentioning that in NILM, like in many
other real-world applications based on time-series data where class-balance
depends on the frequency of events, even though raw measurements are highly
imbalanced (home appliances are turned off most of the time), it is possible
to create balanced training datasets through continuous recording over long
periods of time, without data augmentation.

The DNN model used in this paper is the ELECTRIcity transformer [70],
designed to work well with unbalanced data. The model architecture is pre-
sented in Figure[4.3] It is trained in two phases: an unsupervised pre-training
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phase followed by a supervised training phase. The model shows superior
performance to other state-of-the-art algorithms [70]. In experiments in this
paper, for creating pre-trained models to be transferred to a new house, both
training phases are used, but during the AL process, only supervised fine-
tuning phase is used. A sigmoid activation function has been added to the
final layer of the network to perform on/off-state binary classification (in-
stead of regression as in [70]). One DNN model is created per monitored
appliance - for example, if 4 different appliances are monitored in a house,
then 4 different models will be created, for determining the state of each
appliance separately. Therefore, each DNN model performs classification to
2 classes - on and off state. Since the model works in a sequence-to-sequence
fashion, a pooling function is applied to the model output to get a single
uncertainty value, by taking the maximum value of the model prediction
window, with a reasoning that signal window is considered positive if there
is at least one sample in that window where the appliance is active.

Inéut

Positional
Embeddin

Transformer layer

Transformer layer

Decoder

Normalization

Normalization

Power-Average
Poling

Encoder

Position-Wise Feed
Forward Network

Normalization

Position-Wise Feed
Forward Network

Normalization

+

:
il

Scaled Dot-Product Attention

Normalw

1
(Trear)) (tinear J

Figure 4.3: Architecture of ELECTRIcity transformer model [70].

The classification performance of the DNN-based NILM algorithm is eval-
uated using the standard Fi-score, as per Equation

AL performance is usually presented as a curve showing model accuracy
against the number of labelling iterations, i.e., the number of samples queried
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and labelled. If a point with no labelling effort (i.e., iteration 0; 0 labelled
sata samples), and the maximum possible model performance (i.e., Fj-score
equal to 1) is considered as an ”ideal” point, then the optimal point of the
AL process can be calculated as the point with minimum Euclidean distance

from the ideal point (see Eq. [3.3)).

4.2.2 Experiments

Two experimental settings were considered in this study, as described next.

e Experiment 1: Transfer learning with labels obtained via submeter-
ing, with simulated labelling errors and re-labelling mechanism, and
simulated confidence levels

In this experiment, samples from the query pool are labelled using sub-
metering electricity consumption measurements. The effect of balanc-
ing of queried batches using different acquisition functions is explored
using several balanced acquisition functions. Stopping criterion is also
applied to reduce labeling effort after the optimal point is achieved, as
explained in Subsection 4.1.1] To study the effect of possible labelling
errors and mimic a real-world AL process when labels are provided by
humans, different levels of false positive and false negative errors are
simulated. Namely, if the model prediction for a sample in the query
pool contains appliance activation, but the ground truth does not, false
positive error is introduced to that sample by accepting model predic-
tion as ground truth label, with a predefined probability. On the other
hand, if model prediction for a sample does not contain appliance acti-
vation, but the ground truth does, false negative error (missing appli-
ance activation; setting ground truth label to 0) is introduced with a
predefined probability. The proposed re-labelling mechanism (Section
4.1.4)) is then applied to detect possibly wrong labels and send them
back for re-labelling. Also, simulated confidence levels in correlation
with simulated errors were utilized throughout the process to attenuate
negative effects of errors (Section [4.1.3).

e Experiment 2: Transfer learning with expert labelling, exploiting ex-
pert confidence levels

In this experiment, the best setup obtained from the first experiment is
verified in a real-world scenario, where experts provide labels during the

87



AL process. As those labels can be erroneous, expert’s confidence level
is considered during the training phase, assuming that if an expert
is not confident about a label, the label is more likely to be wrong,
and should be used with caution. A graphical user interface enabling

experts to quickly provide labels together with their confidence was
developed and used (see Section [4.2.3]).

All DNN and AL hyper-parameters are shown in the Table [4.2] Parame-
ters for the DNN used are set as in [70]. Although in [70], a window length
of 480 samples is used for all appliances, here the window length is shortened
for kettle and microwave to 120 samples instead of 480, because those appli-
ances have very short activation times. Therefore query pool sizes differ for
kettle and microwave (4416 samples) from those for washing machine and
dishwasher (1104 samples), although the same time period of two months is
used for the query pool. Learning rate and the number of epochs are dif-
ferent in the pre-training and fine-tuning phases - they are set lower in the
fine-tuning phase within the AL process to mitigate effects of overfitting due
to a small number of labelled samples, especially in the beginning. At each
labelling iteration, one batch of samples is queried. Confidence threshold
for stream-based uncertainty acquisition function is set to be the same as in
Section 3.1, The number of uncertain samples coming from the uncertain
region for the proposed acquisition function is set to 56 so that the majority
of queried samples come from the uncertain region, and the rest - 8 samples
per iteration from the likely positive and likely negative prediction regions -
for the purpose of preserving diversity among queried data and preventing
forgetting of the model. A PC with the following specifications is used in the
experiments: Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz, 32GB RAM,
and a NVIDIA TITAN Xp GPU.

4.2.3 User interface

In order to facilitate experts’ participation in the AL process, a graphical user
interface, shown in Figure , is developed. E| Queried samples (windows
of electric load measurements) from one labelling iteration are shown to the
expert in a sequence, one by one. The aggregate signal in Watts is shown

2The user interface described here is designed specifically for the problem of NILM
considered in this paper. General idea and methodology of using expert-provided labels
and confidence is given in Section m
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DNN model

kettle, microwave: 120

input window size washing m., dishwasher: 480

heads, hidden, layers 2, 256, 2
dropout rate 0.2
tau 0.1

pre-training: le-3

learning rate fine-tuning: le-4

pre-training: 100

epochs fine-tuning: 10
batch size 64
model threshold 0.3
Active learning
queries per iteration 64
2 month worth of samples:
query pool size kettle, microwave: 4416
washing m., dishwasher: 1104
confidence threshold 0.9
(stream-based unc. acq. function; Exp.1) '
# of samples 4 likely neg.
for the proposed 56 uncertain
acquisition function 4 likely pos.

Table 4.2: Hyper-parameters used in the experiments.
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on the left vertical axis - this value can help experts decide if the appliance
in question is on or off. Model prediction is shown together with aggregate
signal (the values of the prediction can be seen from the right vertical axis,
in range 0-1), to inform experts of model’s behaviour and possibly help them
make a decision. Horizontal axis shows time, which also can help an expert
make a decision - e.g., some appliances are more likely to be operated during
a particular time of a day. Experts are asked to mark the part of the window
where they think the appliance of interest is active, by simply drawing a
rectangle over that area, as shown in Figure [£.4] Apart from labels, experts
are asked to provide their confidence level associated with each label - i.e.,
they are asked to select one of three offered options - low confidence, medium
confidence or high confidence. High confidence is then mapped in the back
end to a coefficient £ = 3, mid confidence to £ = 2, and low confidence to
k =1, which are then converted into sample weight according to:

N
N
Zj:l kj

calculated at a batch level. This way, the samples with higher confidence
have triple the weight of samples with lower confidence, and samples with
mid confidence double, but the sum of weights in a batch remains the same
as before the weights were adjusted. Obtained weights are then included in
the loss function (see Eq. [4.6]), as described in Section [1.1.3]

Nonetheless, experts using the interface may inadvertently introduce label
noise—such as misclicks or ambiguous interpretations—while assigning labels
or confidence scores to each data sample, potentially negatively affecting
model’s training and the active learning process.

< ki, (4.9)

C; =

4.3 Results & Discussion

In this section we report our experimental results. The goal of the experi-
ments is to: (1) evaluate performance of the proposed acquisition function
against state-of-the-art benchmarks without labelling errors; (2) test effec-
tiveness of the proposed stopping criteria; (3) test if the proposed re-labelling
leads to performance gains, and (4) show usefulness of the introduced expert
confidence scores.

We organise the section into two parts: first we report the results related
to Experiment 1 as described in the previous section; then, we evaluate the
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Figure 4.4: User interface that facilitates quick labelling by experts partici-
pating in the AL process.

proposed system with three NILM experts using the designed user interface.

4.3.1 Experiment 1
Acquisition function

In this subsection we compare the performance of the proposed acquisition
function against state-of-the-art benchmarks. Acquisition functions used for
benchmarking are pool- and stream-based uncertainty acquisition functions,
as they are lightweight algorithms and demonstrate good performance for
the NILM problem (see Section [3.1).

For the stream-based uncertainty acquisition function an informativeness
threshold is used to make a decision if samples are sent for labelling or not
(see Section [2.3). Since in Section [3.1] it was demonstrated that low values
of informativeness threshold provide higher improvement in the beginning of
the AL processes, the starting threshold is set to 0.9, and then as the process
progresses, it is increased if the number of selected samples is lower than the
batch size. This way the AL process experiences both high performance im-
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provement in the beginning and longer lasting process which includes samples
with a higher confidence at later stages.

Two additional benchmarks are used that attempt to diversify samples
and balance the classes: BADGE acquisition function [I1] that diversifies
queried samples to avoid redundancy by looking at gradient embeddings, and
CLUE acquisition function [12], that diversifies queried samples by looking at
penultimate layer activations, but also includes least confidence uncertainty,
i.e., it takes advantage of both uncertainty and diversification of queried
batch of samples.
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Figure 4.5: Comparison between different acquisition functions - transfer
to REFIT house 5: the proposed one based on the optimal thresholding
strategy; pool-based uncertainty (as in [10]); stream-based uncertainty [10];
BADGE [11]; CLUE [12]. Dots denote the optimal points and stars the
stopping point for the proposed strategy.
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Figure 4.6: Comparison between different acquisition functions - pre-training
on the REFIT dataset and transfer to UK-DALE house 1: The proposed
acquisition function based on the optimal thresholding strategy; pool-based
uncertainty (as in [10]); stream-based uncertainty [10]; BADGE [11]; CLUE
[12]. Dots denote the optimal points and stars the stopping point for the
proposed strategy.

Results of the comparison for the four appliances from REFIT house 5 are
shown in Figure 4.5, and from UK-DALE house 1 in Figure [4.6] Horizontal
axis shows the AL, i.e., labelling iteration, and vertical axis the achieved
Fi-score. Optimal points calculated based on Eq. are marked as dots,
and stopping points for the proposed acquisition function as proposed in
Subsection are marked with stars. Results for BADGE [I1] and CLUE
[12] acquisition functions are averaged over 3 independent runs, because those
algorithms depend on cluster initialisation.

Numerical results of this experiment for REFIT house 5 - achieved Fj-
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scores and percentage of query pool samples queried at optimal point, max-
imum performance point and stopping point (for the proposed acquisition
function) - are presented in Table 4.3} and for UK-DALE house 1 in Ta-
ble [4.4]

As shown in Figures and (and in accordance with the findings from
Section , pool- and stream-based acquisition functions both demonstrate
high and stable performance. Batch-aware acquisition function BADGE [11]
performs slightly worse than pool- and stream-based uncertainty (except for
dishwasher in Figure , and washing machine in Figure , which in-
dicates that the dataset does not benefit from batch balancing during ac-
quisition, and that some types of samples (windows containing activations
in this case) are more significant for model improvement. Although CLUE
[12] diversifies queried samples as well, it exploits model uncertainty, so its
performance is on par with pool-based acquisition function.

It is observed that with pool- and stream-based uncertainty acquisition
functions, in the beginning of the process, mostly samples containing appli-
ance activations are being queried and added to the training set, due to high
uncertainty associated with them. That usually results in a large jump in
performance. After all samples containing activation have been exhausted,
samples without activation, but with high aggregate consumption, are be-
ing queried, and finally, samples without appliance activation and with low
aggregate values are being queried.

Our proposed acquisition function favours low- and mid-certainty signal
windows containing appliance activation, but also chooses samples without
appliance activation, as well as high-certainty samples containing activation.
That way, it keeps diversity among queried data, but also ensures that suffi-
cient number of samples important for learning of new patterns are regularly
selected. This strategy performs the best for kettle and microwave in RE-
FIT house 5 (Figures |4.5a| and [4.5b]), since these two appliances are often
confused with washing machine, since they have similar wattage. Moreover,
those two appliances have very short duration times, hence a small number
of samples within a window contain an activation. Thus, it is important
to choose enough samples where the model predicts there is an activation,
but also high-certainty samples help in preventing forgetting of patterns of
interest, and correcting wrong behaviour caused by confusions with other
appliances as described above.

For washing machine and microwave in REFIT house 5, with multi-state
relatively more complex signatures, high-certainty samples are usually cor-
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rectly predicted and the model benefits mostly from low-certainty samples.
Therefore, the pool-based acquisition function performs well. Transferability
of the washing machine and microwave models, compared to more distinct
kettle signature, is relatively poor in general [50, 80] and often excluded in
the NILM literature.

However, for washing machine in UK-DALE house 1, initial performance
is very good, due to much lower background noise levels in this house. The
AL curve, hence, does not have the usual shape, but its range covers only
the Fj-score from 0.96 to 0.97 - there is not much room for improvement if
starting performance is so good, as opposed to other appliances from this
house and from REFIT house 5.

For the dishwasher, the starting performance is poor in REFIT house 5
and UK-DALE house 1, indicating that the dishwasher model in the test
houses is very different from those present in the pre-training dataset, but
only two (Figure[d.5d)) and three (Figure[4.6d) AL labelling iterations are suf-
ficient to significantly improve the performance. All query strategies perform
equally well in REFIT house 5 - due to a very low starting performance, all
acquisition functions provide a highly informative fine-tuning set that con-
tributes to significant model improvement. Nevertheless, it can be seen that
the proposed strategy (purple star in Figures and led to the highest
performance in both test houses.

Based on the proposed stopping criterion, stopping is applied after 3
consecutive iterations with less than a half of the required high-uncertainty
samples present in the query pool, to ensure consistent certainty of the model.
Stopping points are therefore always located several iterations after the op-
timal points. It can be seen from Figures and [£.6] as well as from the
numerical results presented in Tables and [£.4] that the proposed early
stopping significantly saves the labelling effort with negligible performance
loss. Indeed, the gap between the point where the maximum performance is
achieved and the stopping point is always very small.

The impact of errors and re-labelling mechanism

Next, we evaluate the performance when labelling errors are present in RE-
FIT house 5 and assess usefulness of the proposed re-labelling strategy with
the proposed acquisition function and the proposed stopping criteria.
Figure shows the results when false negative errors are introduced
into labels, i.e., positive labels are set as negative. Blue line corresponds to
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Acquisition Kettle Microwave  Washing M.  Dishwasher

function F [Di] F [Di] F [Di F [Di]
1 ‘Dpooll 1 |Dpool‘ L IDpool‘ L IDpooll

Pool Opt. 0.71 4% 045 16% 046 17% 060 11%
based Max 0.76  96% 0.49 100% 0.47 100% 0.66 78%
unc.
Stream Opt. 0.72 4% 041 6% 043 22% 0.60 12%
based Max 0.76  35% 047 22% 048 83% 0.66 100%
unc

BADGE Opt. 0.72 12% 042 16% 038 12% 0.60 12%

[11] Max 0.75  55% 047 81% 0.47 100% 0.66 100%
CLUE Opt. 073 6% 043 13% 045 18% 0.61 12%
[12] Max 0.75 36% 048 91% 047 71% 0.67 53%
PRO- Opt. 0.73 9% 048 13% 044 11% 0.61 11%

Stop 0.73  12% 047 19% 046 28% 0.66 39%

POSED Max 0.75 43% 049 80% 048 83% 0.66 50%

Table 4.3: Comparison between five acquisition functions for 4 appliances
from REFIT house 5: kettle, microwave, washing machine and dishwasher.
The optimal points (Opt.), stopping points (Stop) and maximum perfor-
mance (Max) are all included. Note that Maximum point is a point where
the curves reach their maximum, which is unknown in practice and cannot

be used to stop. | [|)th\1‘ is the percentage of samples being labelled.
poo.
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Acquisition Kettle Washing M. Dishwasher

function o | £Dp (f:o|1| F |L|>[;—3Jm F %
Pool Opt. 0.87 4% 0.96 0% 0.75 17%
based Max  0.88 80% 0.97 56% 0.77 89%
unc.

Stream Opt. 0.81 1% 0.96 0% 0.68 6%
based Max  0.86 17% 0.96 33% 0.76 33%
unc.

BADGE Opt. 0.84 3% 0.96 0% 0.72 18%
[11] Max  0.87 78% 0.97 88% 0.80 100%
CLUE Opt. 0.86 6% 0.96 0% 0.72 12%
2] Max 087  70% 097  94% 077  47%
PRO- Opt. 0.83 1% 0.96 0% 0.65 6%

Stop  0.86 7% 0.96 22% 0.75 17%

POSED Max  0.86 % 0.96 11% 0.75 17%

Table 4.4: Comparison between five acquisition functions for 3 appliances
from UK-DALE house 1: kettle, washing machine and dishwasher. The
optimal points (Opt.), stopping points (Stop) and maximum performance
(Max) are all included. Note that Maximum point is a point where the
curves reach their maximum, which is unknown in practice and cannot be

used to stop. | ll)D“ |1| is the percentage of samples being labelled.
poo
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Figure 4.7: AL with simulated false negative errors in the labels for kettle
(a), microwave (b), washing machine (c) and dishwasher (d) from REFIT
house 5

correct labels, without any errors introduced. Note that the number of iter-
ations differ across the appliances due to the proposed stopping criteria. As
expected, as error probability p increases, the performance decreases - lower
Fi-score is achieved. Kettle is sensitive to high levels of error, especially at
later stages - it has a signature of short duration that is easily forgotten by
the model if the error rate is high. Lower error rates do not impact the per-
formance significantly. Microwave and washing machine are sensitive to this
type of labelling errors even with lower error probabilities, which is reason-
able since they have signatures that are already challenging to disaggregate
even without any errors in labels.

Figure |4.8[shows the results when false positive errors are introduced into
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labels, i.e., negative labels are set as positive. Since samples with appliance
activations are more likely to be queried first as described above, the impact
of false positive errors is expected to be less pronounced than the impact of
false negative errors, at least in the beginning, which can be confirmed in
Figure Namely, since the dataset is already highly imbalanced in favour
of sample windows without appliance activation, with false negative errors,
we introduce even more negative samples, and the model starts to ‘forget’
the pattern it learned to recognise. On the other hand, false positive errors
are likely to be introduced for samples where the aggregate signal looks as
if there is appliance activation, so the model retains the ability to recognise
important patterns.
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Figure 4.8: AL with simulated false positive errors in the labels for kettle
(a), microwave (b), washing machine (c) and dishwasher (d) from REFIT
house 5.

Figure demonstrates the usefulness of the proposed re-labelling mech-
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anism. Performance is compared between the case with and without re-
labelling, with false negative errors occurring with the probability of 0.3.
Match rate threshold T}eturm in Eq. is heuristically set to 1e — 4 for kettle
and microwave, and be — 5 for washing machine and dishwasher, since these
appliances have longer lasting cycles and the match rate is expected to be
lower even for the good predictions. The assumption is that once a sam-
ple is returned for re-labelling, a correct label is provided. Improvement in
performance when using the re-labelling mechanism is observed for all four
appliances, and it is most pronounced for washing machine, which is very
sensitive to this type of error (see Figure . This means that the mech-
anism successfully captures the samples which were wrongly labelled, and
enables correcting labels by taking another look at them.

Results show that more samples are returned in AL iterations where a
drop in performance is observed (e.g. iterations 6 and 7 for kettle, iterations
6-9 for microwave), indicating that the model started to adopt wrong labels,
but still has not forgotten the pattern of interest, and still can detect sus-
picious labels. Due to the complex pattern of washing machine, the model
is less confident in its predictions, and relies more and adapts to provided
labels, making the predictions similar to labels, even if those are wrong. How-
ever, samples re-labelled in the beginning do improve the performance, and
the improvement achieved in the beginning does not decline in later stages.

Exploiting confidence during training

Figure shows the usefulness of the proposed modification of loss function
(Eq. to take into account confidence levels related to labels. False neg-
ative errors with probability of 0.5 are simulated. Based on the assumption
that confidence level is correlated with the quality of label, two confidence
levels are assumed - high confidence for samples without labelling errors and
low confidence for samples containing a labelling error. The improvement in
performance when using confidence levels during training compared to not
using them is observable for kettle, washing machine and dishwasher from
the very beginning. Even though proposed strategy improves performance
for microwave and washing machine, clear convergence is not reached as with
kettle and dishwasher. This is due to the complex, multi-state signatures of
microwave and washing machine, as opposed to distinct patterns of kettle
and dishwasher.
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Figure 4.9: The proposed AL method with and without the re-labelling mech-
anism for kettle (a), microwave (b), washing machine (c¢) and dishwasher (d)
from REFIT house 5.

4.3.2 Experiment 2

In this subsection we report the results when three experts are asked to label
the samples using the user interface presented in Fig. 4.4l Each expert was
asked to label one or more appliances. We used the proposed acquisition
function, the stopping criteria and re-labelling mechanism.

Figure shows the results with and without using expert confidence
levels. Horizontal axis represents the number of AL labelling iterations, and
vertical F}-score achieved. The blue line corresponds to the case when labels
are provided by an expert familiar with NILM, but without his/her confi-
dence levels related to each label taken into account during training (i.e., all
confidence levels are set to ‘high’); and the orange line corresponds to the
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Figure 4.10: AL with and without confidence taken into account during
training for kettle (a), microwave (b), washing machine (c¢) and dishwasher
(d) from REFIT house 5.

case when labels are provided by an expert, and their confidence levels are
included into the loss function (Eq. during training.

Examples of signal windows from REFIT house 5 labelled for washing
machine by expert #3 and tagged with low and high confidence levels are
shown in Figure [4.13] showing that more noisy samples, with not so distinct
signatures, are more challenging to be labelled by naked eye.

The quality of expert-provided labels, in terms of hit, miss and false
alarm, compared to the submetering ground truth is shown in Tables and
[4.6] Hit is defined as the case when the expert-provided label is overlapping
with the submetering label (equivalent to TP); Miss as the case when the
submetering label has an activation, but the expert-provided label does not
(equivalent to FN); and False alarm as the case when the submetering label
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Figure 4.11: Experiment 2, REFIT house 5: Three experts asked to provide
labels, where each expert labels one or two appliances. The performance
curves are shown with and without expert confidence taken into account.

does not have an activation, but the expert-provided label does (equivalent
to FP). In cases when there is an activation both in submetering and expert-
provided label, but they do not overlap, the label falls under the Miss & False
alarm category. A histogram of expert confidence levels is given next to the
number of labels belonging to each of the four categories, where red denotes
low confidence, yellow middle, and green high confidence levels.

For kettle from REFIT house 5 in Figure [l.11a] using confidence levels
did not improve the results - the labels are already of high quality, the num-
ber of misses and false alarms is very low compared to the number of hits,
which is expected since the kettle has a single state, easily recognisable sig-
nature. Moreover, the expert assigned to most of the labels high confidence,
as in the no-confidence level benchmark. However, a couple of mistakes have
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Figure 4.12: Experiment 2, UK-DALE house 1: Experts asked to provide
labels, where each expert labels one or two appliances. The performance
curves are shown with and without expert confidence taken into account.

high confidence levels, which probably caused the confidence level curve to be
slightly worse than no confidence level in Figure [f.1Tal The same situation
is observed in UK-DALE house 1 in Figure . For microwave (Figure
, which is a challenging appliance to label since activations are sparse
and fluctuating, the power/watt level is lower compared to kettle, and there
are different modes of running the appliance, expert-provided labels contain a
significant number of mistakes. However, those mistakes are tagged with low
confidence levels, so utilising user confidence levels did improve the results
compared to the benchmark. For washing machine REFIT house 5, Figure
4.11c, which was labelled by another expert, there is a larger percentage of la-
belling mistakes, some of which have high confidence levels. However, there
are low and mid-confidence levels among wrongly labelled samples, which
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was enough to lead to performance improvement compared to no confidence
level case. For washing machine in UK-DALE house 1, Figure [4.12b] a vast
majority of samples are correctly labelled, and tagged with high confidence.
This causes weights to be very similar as in the case when confidence levels
are not accounted for. Even though in Figure it looks like there is a
significant gap between the two curves, note that the difference is at most
0.001 in Fj-score, so performance is practically the same. For dishwasher
from REFIT house 5, Figure [£.11d], labelled by another expert, the provided
labels are of higher quality since they have a more distinct signature than
microwave. In addition, the correct labels mostly have high confidence val-
ues, which increased the contribution of confidence exploitation, and led to
minor differences between the two curves. In UK-DALE house 1, Figure
[4.12d there are very few activations among queried samples before the AL
process stopped, and therefore there is almost no difference between the two
curves - there are many correctly labelled negative examples tagged with
high confidence levels.

Kettle Microwave Washing M. Dishwasher
Expert #1 #3 #3 #2
Hit 113 & 26 ' 46 d 87 -
Miss 36 L 28 b 25 26 .
False alarm 32 .6 30 | 7 6 [
Miss & False alarm | 5 I 2 0 0
Total # of labels | 320 «f 768 384 ; 448 g’

Table 4.5: Quality of expert-provided labels compared to ground truth for
REFIT house 5. Red denotes low confidence, yellow middle, and green colour
high confidence levels.

The main challenges encountered in this experiment are the cases when
an expert assigns the same confidence value to almost all samples - then
the proposed weighing of samples based on expert’s confidence approaches
the case when no confidence is accounted for (the vast majority of samples
get the same weight). This is not the problem in datasets with low noise
levels, when labels are of very high quality (for example, washing machine in
UK-DALE house 1, see Table - the most of high-confidence samples are
correctly labelled; but this is a problem in very noisy datasets where there
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Kettle Washing M. Dishwasher
Expert #1 #3 #3
Hit 99 I 78 17
Miss 2 I 4 | 6 |
False alarm 7T . 1 I
Miss & False alarm | 3 0
Total # of labels | 320 »f 256 . 192 §

Table 4.6: Quality of expert-provided labels compared to ground truth for
UK-DALE house 1. Red denotes low confidence, yellow middle, and green
colour high confidence levels.

are both correct and wrong labels, but the expert is either over-confident
(many wrong labels tagged by high confidence) or under-confident (many
correct labels tagged with low confidence). Therefore, skill level of experts
poses a limitation to this approach to some extent.

4.4 Summary

This paper proposes a human-in-the-loop AL methodology for time series
data, demonstrated and evaluated for the non-intrusive load monitoring prob-
lem. Novel contributions to enable the proposed overall AL methodology
comprise: design of an acquisition function based on maximum a posteri-
ori hypothesis testing, accounting for both model uncertainty and balancing
classes; a stopping criterion once optimal performance is achieved, to min-
imise resource-intensive labelling effort; mitigating the effect of wrong labels
possibly provided by users throughout the process via two mechanisms by
returning possibly wrongly labelled samples for re-labelling, and accounting
for user’s certainty level about provided labels, respectively.

Two experiments are conducted, applying novel AL-based approaches
to the problem of time series classification of individual loads in aggregate
smart meter measurements, leveraging on publicly available REFIT [52] and
UK-DALE [53] datasets, and transformer-based deep learning ELECTRIcity
model [70]. The first set of experiments show that the proposed acquisition
function achieves similar performance to state-of-the-art methods, but with
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smaller number of samples labelled due to balancing better classes and clev-
erly stopping when good performance is reached. Labelling effort is reduced
by between 61% (in the case of dishwasher) and 88% (in the case of kettle)
in REFIT house 5, and between 78% (in the case of washing machine) and
93% (in the case of kettle) in UK-DALE house 1. Furthermore, even with
errors introduced throughout the labelling process, the proposed AL method
enhances the model to be generalised for various profiles for the same label.
The proposed re-labelling mechanism is shown to be effective in detection of
mistakes during the labelling process, and offers the possibility to improve
the performance by providing new labels for uncertain data samples. Finally,
including confidence levels of human experts, especially in cases where sam-
ples are noisy, is beneficial as it prevents a drop in performance caused by
accumulation of wrong labels. The second experiment verifies the use of pro-
posed AL approaches in real-world scenarios, where despite unintentionally
introduced errors, model performance is still boosted, especially with the use
of the proposed methods for error effect mitigation.

The proposed AL approach demonstrated improved performance when
pre-trained NILM models are transferred to new, unseen homes. Even when
the initial performance prior to AL is poor, the proposed approach can largely
improve performance by labelling a considerably small amount of data. The
method can scale to many houses (hundreds, thousands) - algorithms are
adjusted to each house separately - no data needs to be exported, and users
(house owners) can help label their own data based on time when specific
appliances are used, until the algorithms become well tuned and high per-
forming. Considering recordings from a long period of time ensures hetero-
geneity of data and stability of the model. Even if circumstances in their
house change (e.g., an appliance is replaced or a new high-consuming load is
introduced), which impact the aggregate measurements and hence the NILM
algorithm performance, the AL process can adjust the model, ensuring per-
formance stability.

The proposed approach is demonstrated to be applicable to sensor mea-
surements where the data being measured is fluctuating, varies across houses
(domains), is noisy, and labelling is challenging. Furthermore, the very chal-
lenging nature of the load disaggregation problem is akin to the broader
single source separation problem arising often from environmental sensing
and therefore the method’s efficacy in NILM stretches to other application
domains based on solving single source separation problem from noisy time-
series reading.
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As some types of labels are very hard to be provided by users (for example,
regression labels for the problem of load disaggregation, or strong labels
for time-series windows in general), it would be worth exploring the use of
Siamese networks in future work, that could be pre-trained for both regression
and classification tasks at the same time, or with both strong and weak labels
at the same time. Furthermore, user-provided confidence levels could be used
to further train the model to learn its own confidence level. Moreover, along
with model prediction, some explanation tools could be used to inform the
expert of the reasoning behind the prediction to help labelling.
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Chapter 5

Hybrid machine teaching for
time-series classification

While previous chapters focused on AL, here we transition to MT, giving the
teacher (human) more control over the training process, without the need for
labelling beyond selecting several representative data samples.

As described in Section 2.4 MT can encompass a human or a machine
teacher. A clear advantage of the human-as-the-teacher method under the
MT paradigm is human control, including the ability to correct and inter-
pret data labels. However, this would often require significant labelling ef-
fort. Moreover, in geoscience and environmental time-series recordings, un-
certainty of human labelling is high. On the other hand, the machine-as-the-
teacher method has the advantage of fast, automated labelling that does not
require any domain expert input, but can lead to issues of trust and labelling
error propagation. To take advantage of both methods, in this study, we pro-
pose a hybrid machine learning method that involves both human domain
experts and machine (a semi-supervised Siamese deep learning network) as
teacher, teaching the learner (a multi-label supervised deep learning based
classifier) to classify a time-series multiple class dataset.

The human teacher annotates a few labels for the most reliable represen-
tative of each class, based on which the machine teacher, acting as “active
teacher”, selects and labels training examples for the learner. The human
teacher monitors the learner’s performance and selects a new sample rep-
resentative if needed so that different examples are taught. So, with the
proposed hybrid human-machine teacher model we benefit from both human
and machine as teacher - domain expert’s knowledge of high-level concepts is
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embedded in the choice of class representatives; but the burden of evaluation
of all available data, choosing and labelling all the best examples through
the training stages lies on the machine teacher. Our approach is a complete
black-box MT - the teacher has no access to the learner’s characteristics as
in [21], but in contrast to [2I] does not estimate them, so the learner can be
any deep learning algorithm, and the same teaching model can be used to
teach multiple possible diverse learners. Even though the proposed approach
has some similarities to semi-supervised learning described in Section -
a subset of the data samples (anchors) are labelled and the rest are not, in
the proposed MT approach the algorithm learns gradually, and the order of
samples determined based on the anchors is important.

MT, within the human-on-the-loop capability, is especially valuable to
support Earth scientists to make decisions for hazard assessment, such as
forecasting landslides or geothermal exploration. Landslides, which are be-
coming more frequent as we face the consequences of climate change, are
associated with low-magnitude (micro-seismic) quakes [90], rockfalls [90] and
tremor-like signals [91]. Particularly, endogenous seismicity is induced by
the deformation of slow moving clay rich landslides. Slidequakes have been
recorded on such unstable slopes due to the presence of material failures and
shearing at the contact with the bedrock or directly within the moving mass.
Locally, rockfalls can also be recorded on steep slopes while tremor-like sig-
nals may be linked to fluid transfer or transient slip. Accurate algorithms
for automatic detection and classification of landslide-associated precursory
events [02] are needed, so that timely action and effective management mea-
sures can be undertaken to reduce risk to life and infrastructure. Similarly,
accurate micro-seismic detection that detects small fractures at sub-surface
is needed to inform and guide pumping operations during geothermal explo-
ration [93]. Unlike earthquakes, micro-seismic events are challenging to be
analysed manually and algorithmically, due to the short duration and low
signal-to-noise ratio in continuous seismic recordings. Indeed, it was shown
recently that domain experts often miss events while cataloging large volumes
of continuous data, and need the helping hand of a machine in detecting and
classifying potential events, which can subsequently be verified by domain
experts [§].

There has been considerable progress in the past few years in ML al-
gorithms, achieving excellent performance for micro-seismic event monitor-
ing - see [32] for a recent review. However, performance and usability of
these methods largely depend on availability of good-quality, large, labelled
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datasets. Since the data can only be annotated by domain experts (who
are usually not ML experts), despite availability of seismic recordings, cre-
ation of large labelled datasets, necessary for training of Al algorithms is an
expensive and time-consuming task.

In this chapter, we propose a hybrid MT approach for trustworthy seis-
mogram classification. We propose an approach where a domain expert, i.e.,
a geoscientist, acts as a human teacher by controlling the content of the train-
ing dataset. This is achieved with relatively minimal effort, by only choosing
representative data samples for each class, referred to as anchors.

These anchors serve two purposes: (i) to curate the training dataset by a
machine teacher, by incrementally adding samples that are closest to the an-
chors, mimicking the way humans learn - starting from simple, more obvious
examples and moving towards more challenging ones. Thus, our approach
falls under the sequential MT paradigm [7]; (ii) to automatically label the
training dataset without requesting a domain expert to label all training
samples. The classifier neural network, acting as a learner, is then trained
incrementally using the training samples provided. After setting the anchors,
the domain expert can monitor the classifier performance and eventually in-
tervene and change the anchors as and when needed.

We leverage upon the multi-label classifier CNN of [33], which operates
on seismometer measurements in the time domain, and is proven to achieve
state-of-the-art performance if trained with a large labelled dataset. We use
the same publicly available dataset as [33], namely the Résif [75] dataset
containing seismic records from the Super-Sauze landslide to support repro-
ducibility of our research. The latter is characterised as a slow-moving clay-
rich landslide, where analysis of microseismicity is a challenging task because
the signals are of low magnitude (ML < 1), low amplitude (< 10000nm/s),
and are generally highly attenuated at short distances (< 200m) [76].

5.1 Methodology

This section describes the proposed hybrid MT framework for seismic event
classification, shown in Figure 5.1} The task is to classify samples from an
unlabelled time-series dataset, Dy, referred to as sampling set, using (any)
state-of-the-art deep learning-based model m, such as [33, 8, [94], 67].

The proposed solution is to pass a small set of samples (i.e., events to clas-
sified) to a domain expert, who is assumed not to have any machine learning
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expertise. The domain expert, acting as the human teacher, identifies dis-
tinct classes in the provided set of samples and selects an example for each
class, he/she is confident to label. The domain expert-labelled samples (one
per class) are then fed into the machine teacher, implemented as a Siamese
deep neural network, which labels all remaining samples present in the sam-
pling set. The Siamese network-labelled samples are then ranked based on
their distance to the expert-labelled samples, and gradually, batch by batch,
starting from the top ranked samples, they are fed into the classification
algorithm (i.e., the learner) for training.

Thus, the proposed hybrid MT framework consists of three steps that are
performed iteratively: (i) A human teacher, domain expert, chooses a set of
samples (called anchors) from Dy, each representing one distinct class. (ii)
a machine teacher (Siamese deep neural network) ranks and labels training
samples based on the domain expert-provided anchors, and (iii) a learner,
i.e., a seismic event classification algorithm, is trained based on the provided
labelled samples. In the remainder of this section, we describe each of these
steps, one by one.

Class identification and

Event Sample Anchor anchor selection
detection windows selection
- Label
Machine teacher: monitoring uman teacher:
Sample windows Domain expert
Unlabelled ranking and labelling oversight
dataset
= Performance
Classp‘ler monitoring
machine

teaching

Figure 5.1: The proposed hybrid MT framework.
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5.1.1 Human teacher: Anchor selection

The human teacher, i.e., the domain expert, starts the learning process by
selecting distinct anchors from the unlabelled sampling set D,. In particular,
D, is a set of micro-seismic events obtained from raw seismometer measure-
ments using STA/LTA algorithm as described in [76]. The extracted events
are shown to the domain expert who identifies the initial number of classes
present in the dataset, and selects class representatives, called anchors. Note
that new classes can be added during the iterative learning process. The
expert can either set the first sample of each class as anchor, or can quickly
scan through the dataset and pick the most reliable sample as anchor.

Visualization approaches, such as the one proposed in [95] can be used
to make more accurate and faster selections. The best anchor choice can
be made using the cosine distance values between pairs of samples in the
sampling set D,. Based on these distances, all samples can be clustered
using, for example, an agglomerative clustering algorithm. The events are
then sorted by cluster labels and visualized in a heatmap as in Figure [5.2]
The darkest values in the heatmap indicate lower cosine distances, and the
lighter values indicate greater distances. Dark triangular areas on the vertical
axis indicate parts of the sampling set that are good anchor candidates for the
label on the horizontal axis. However, light horizontal /vertical lines inside the
dark triangles correspond to samples that have a high distance to events in
the same cluster, and dark lines in the lighter part of the heatmap correspond
to samples that have a low distance to samples outside their clusters. This
can happen due to interclass similarity or high noise levels, and these events
should not be selected as anchors.

Another way to assist human expert in anchor selection, is estimating
Signal-to-Noise Ratio (SNR) defined in [66] to filter detected events and
present only high SNR ones to the expert, reducing the number of samples
the expert needs to scan through, and helping them select reliable, high SNR
anchors containing representative, clean events:

L )2
SNR = M (5.1)

l 2
> iz (1)
where [ is the number of samples in a window, s and n are, signal and noise

windows, respectively, obtained after denoising with band-pass filtering.
Each anchor, a., selected by the expert, represents one class ¢. Let C be
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Figure 5.2: A visualization tool to help with anchor selection.

the set of all classes identified in this way. The task is then to automatically
label all remaining samples into |C| classes, each represented by a domain
expert-selected anchor.

5.1.2 Machine teacher: Sample ranking and labelling

The next step is labelling the sampling set D, by the machine teacher, im-
plemented by a Siamese neural network. Siamese networks are based on the
concept of similarity learning, performed by comparing two network inputs
and calculating the difference between their encoded network representations
(embeddings).

Let s;, s; be two input samples from D. Siamese networks perform metric
or similarity learning, i.e., they learn a function my(s;,s;) that compares
two input samples (one input being the anchor a. and the other is each
unlabelled sample in Dy). Specifically, the networks first perform identical
transformation of the two input samples and then apply a distance metric to
estimate similarity, i.e., ms(s;, s;) = d(7(s;),7(s;)), where function d is the
distance metric and the transform 7 is applied to both input data samples
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for identical representation learning. The function 7 is usually implemented
as a deep CNN.

The main advantage of Siamese networks compared to other metric learn-
ing approaches, lies in its ability to perform jointly feature representation and
metric learning. A recent survey [96] of Siamese networks highlights the ben-
efits these networks provide and their ability to learn with unlabelled data,
by comparing directly embeddings rather than relying on labels.

The Siamese networks comprise: feature extractor, comparison head, and
decision-making head. Typically, the feature extractor (that implements
function 7) contains two identical branches used to learn the best feature
representation for the two input samples (s; and s;). The comparison head
applies a distance metric d to compare similarity between the two embed-
dings, while in the final steps the decision-making head performs classification
by comparing the output of the comparison step with a pre-set threshold.

Specifically, our Siamese neural network m, computes the distance of each
sample s in the sampling set D,, to each of the anchors, according to:

et ey T8 7(6)
melte ) = A TN = ey e 62

where my(a., s) denotes Siamese neural network output for the two inputs
- anchor a. and a sample from the sampling set s. Vector embeddings of
the two inputs are denoted as 7(a.) and 7(s). Function d represents cosine
distance. 7(a.) - 7(s) is the dot product of the two embeddings, and ||7(a.)||

and ||7(s)]| are their Euclidean norms. Note that cosine similarity —”Ta(fi)':ﬁf(l)“

ranges from —1 to 1, so d(7(a.), 7(s)) ranges from 0 to 2.

The samples are ranked based on the calculated distances, and only top
ranked samples (i.e., those with least distance to the anchors), are included in
the training set D, together with their estimated class membership defined as:

I(s) = arg min ms(ac, s). (5.3)
ceC

This way, the classification model m learns gradually, starting with the
simplest (most confident) and moving towards more complex concepts. Namely,
the samples that are the closest to anchors are chosen in the first stage, and
then more samples that are further from anchors are added incrementally
at later stages. See Figure for an example of sample selection with two
classes and batch size of 8. An equal number of top-ranked samples are taken
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per anchor, i.e., n = batchsize/ | C' | at each stage, ensuring that all classes
are represented at early stages of MT even if there is class imbalance in the
dataset (see example in Figure . The selection is made class by class,
and there is no repetition among the selected samples, i.e., if sample s is the
top-n ranked sample for multiple anchors, its label is calculated using ,
and the sample is removed from the ranked lists of all the classes ¢ # I(s)
before the top n selection is made (in Algorithm , for loop in line 16 runs
class by class, and selection for one class is removed from the sampling set
in line 19 before the selection for the next class is made).

d,
anchor
stage 1
a () O stage 2
stage 3
O O O ni)tielected
o O
O O
@) O © 0 @)
o © oNe
N ) O
N\ N\

O
d,
a;

Figure 5.3: Sample selection example - a 2-dimensional feature space; there
are 2 classes, i.e., two anchors (blue; a; and as); 8 samples are selected per
stage. Green samples are selected in the first stage, yellow in the second, red
in the third and gray are not selected.

5.1.3 Learner: Iterative learning

As described previously, machine-labelled sample windows are fed into the
learner, i.e., classifier CNN, for training in stages. At each stage, new samples
(closest to the anchors) are added to the training set, and the classifier model
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is fine-tuned using the new, extended training set. At each stage, the classifier
CNN’s learning rate is decreased by 5%, so that the best quality samples have
the highest impact on the model weights, and the more complex ones, which
have a higher chance of being wrongly labelled, have less impact on the
model weights.

The human teacher oversees the process - having an option to monitor
labels created by the machine teacher as well as the performance of the
classifier CNN, and select new anchors. The human expert will automatically
be asked to change the anchors once all the distances of the samples from the
sampling set D, to the current anchors become greater than the threshold T’
defined at the beginning of the process as:

(ac, S) (5.4)

ceC
S

The rational behind this selection of T', is that once the samples become
far from the initial anchors (the distance is above the average value across
all samples), their machine-teacher set labels are unreliable, and could dete-
riorate the learning process. Hence, the human teacher is asked to provide
new anchors from the reaming set of unlabelled samples.

The overall framework described above is presented in Algorithm

The training can continue until all available samples from the sampling
pool D, are labelled and included in the training set, or until a stopping
criterion is met - e.g., the learner performance does not improve for certain
number of training stages, or after all remaining samples in the sampling
pool D, are further from anchors than a threshold.

The proposed approach differs from Active Teacher model defined in [2],
where the Active Teacher is a machine that does not examine the learner
directly, but rather checks the learner’s performance to determine its status.
In the proposed approach, the hybrid teacher consists of a human teacher
who steers training of the learner by setting anchors, and is aided by a ma-
chine teacher who ranks samples to feed them to the learner in stages, and
labels them based on provided anchors. The human teacher is in control of
checking learner’s performance instead of the machine teacher. Since in the
proposed approach, the learner is a complete black-box to the teacher, the
hybrid human-machine teacher can be used with any deep learning model as
a learner, such as [33], 8, 04, [67], which is in contrast to [97, 21].
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Algorithm 2 Hybrid MT framework

Variables:

A« > Set of anchors to be chosen by human teacher
C <« 0 > Set of classes identified by human teacher
m > the learner - classifier
My > machine teacher
batch_size > Batch size for training of m
D, > Sampling set, unlabelled
D, + 0 > Training set
D« 0 > Selected samples
T+ 0 > Threshold for replacing anchors based on (5.4)
Procedure:

A —{a.}, selected by human teacher

- 1 i
T =17 ) minmi(a s)
s€Dg
while D, # () or early stopping criteria reached do

for ce C do
D, = sort(Dg, by ms(a., Dy)) given by
D = D,[: batch_size | | C ||
D,=D,\D

Dlabelled — (D, arg min(ms(ac, D)))
ceC
Dt _ Dt U Dlabelled

end for
fine-tune(m, Dy)

if de, m})n ms(ae, s) > T then
seDs

A « {a.}, selected by human teacher
C {c Va. € A}

T = |D| E mlnms (ac, s

s€Dg
end if
end while
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5.2 Experimental design

This section describes the dataset used to showcase the proposed method
(including selected anchors), the machine teacher implementation, i.e., the
Siamese neural network, the seismic event classification model used as a
learner within the framework, and evaluation metrics used.

5.2.1 Dataset

An open access dataset from the Résif Seismological Data Portal, recorded
by the French Landslide Observatory Observatoire Multidisciplinaire des In-
stabilités de Versants (OMIV) [75], described in Section is used in this
paper.

Original data are resampled to 100Hz to comply with pre-trained, off-
the-shelf Siamese neural network used within the framework. Window length
used is 10 seconds, thus dimensions of one sample are 1000 x3. For each event,
the sample window starts one second before the start of an event (detected
using STA/LTA algorithm as described in [76]) e.g., if the timestamp is
2013-10-23 15:34:24, then the window starts at 2013-10-23 15:34:23. Sample
windows are split as follows: 60% for the sampling set D, - used without
labels, 10% for the validation set D,,;, and 30% for the test set D, for each
class, chronologically. The number of events per class is given in Table [5.1]

Class ‘ Total ‘ Test

Earthquake (S) | 335 | 113
Quake (Q) 207 | 69
Rockfall (R) 351 | 116
Noise (N) 302 | 105

Table 5.1: Dataset structure - number of samples per class.

At the start of the experiments, a domain expert was asked to select a
set of anchors after being presented with unlabelled sample windows from
the sampling set D,. The timestamps of events selected by micro-seismic
expert for this set are as follows: 2013-10-23 15:34:24.340 for earthquake (S);
2013-11-09 00:54:45.060 for quake (Q); 2014-11-22 16:48:19.390 for rockfall
(R); and 2013-11-03 03:43:12.500 for noise (N). We refer to this set of anchors
as Aj.

120



5.2.2 Machine teacher implementation: Siamese neu-
ral network

A pretrained Siamese neural network [95], composed of two-branch fully con-
volutional feature extractor and a comparison head is used to curate the
training set for the classifier CNN and automatically label it. Each feature
extractor branch processes one input of size 1000 x 3, and comparison head
computes Cosine distance between obtained encodings, as given by .
That is, for two signals that are the same, the output is 0, and for two very
distinct signals, the output should be close to 1. The architecture is shown
in Figure[5.4 Convolutional layers use ‘relu’ activation function, while dense
layers use ‘sigmoid’ activation function. The Siamese neural network is pre-
trained using the Résif dataset, with the same train-test split as in [95] to
avoid data leakage. Training is performed with a 5-fold cross-validation.
Adam optimizer is used with a learning rate of 5e — 4, and the batch size
used is 256 [95]. This neural network shows robust generalisation capabili-
ties, as demonstrated in [92], where it is trained with the Résif dataset, and
successfully transferred to the Hollin Hill dataset. Full training details of the
used Siamese neural network can be found in [95].

The Siamese neural network is used to determine the distance between
each selected anchor and every sample from the sampling set, based on ((5.2)),
where the anchor is the input to the Siamese neural network and a sample
from the sampling set is the test input. Cosine distance is not sensitive to
magnitude distances, and hence is a reliable metric for the application being
considered [95]. Then, the training set is gradually expanded with a number
of samples that are closest to each of the anchors, and those samples are
given labels based on .

A plot of the distances of sample windows from the test set to the four
anchors A;, calculated by Siamese neural network using , is shown in
Figure [5.5. Each subplot corresponds to one class from the test set, and
each colour corresponds to one anchor. Median distance between each of
the anchors and all test sample windows is shown in Table [5.2] grouped by
labels of the test sample windows (each row of the table corresponds to sam-
ple windows from one class). It can be seen from these distance plots that
the sample windows belonging to the earthquake class (S) are close to the
anchor representing that class, and they are far from anchors representing
other classes (Figure , bottom histogram - S; Table - median S-S dis-
tance 0.06). Similar observation holds for the rockfall sample windows (R),
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Figure 5.4: Siamese neural network. n; - number of filters in convolutional
layers, n, - number of neurons in linear layers; k - kernel size; p - dropout
rate.

except that some of them are close to the anchor representing the earthquake
class. On the other hand, the quake (Q) and noise (N) class samples are not
always close to their respected anchors. Due to the short duration of quakes,
and false alarms during detection phase, they can be harder to distinguish
from noise [66]. Indeed, some of the noise sample windows are very close
to the anchor representing the quake class (Figure [5.5 second plot - Q),
which is expected to impact the performance not only for these two classes,
but also for the earthquake class, since quakes and earthquakes can appear
similar, especially in the case of low-magnitude earthquakes, attenuated at
short distance, as present in slow-moving clay-rich landslides [76](Figure[5.5]
top plot S - some quake sample windows are close to the anchor represent-
ing earthquakes).

Labels generated according to for the test set using the Siamese
neural network and the four anchors have weighted Fj score of 0.70 compared
to the catalogue (S:0.79, Q:0.51, R:0.81, N:0.58). Therefore, automatically
generated labels are imperfect, but the proposed MT approach is expected
to mitigate the effects of labelling mistakes. For comparison, if the classifier
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Figure 5.5: Histograms of Siamese distances of test samples from anchors A;
representing each class. Note that y-axis is in log scale.

Anchor
Label S Q R N
S 0.064353 0.943853 0.992817 0.995988
Q 0.907087 0.216816 0.995869 0.885996
R 0.864959 0.975084 0.069447 0.991390
N 0.958279 0.447776 0.983292 0.489018

Table 5.2: Median Siamese distance of the test set sample windows from
anchors A; representing each class.

CNN is trained using a classical ” black-box” machine learning approach, with
the whole sampling set at once (not in stages) and the catalogue labels, it
reaches I} score of 0.86 (S:0.91, Q:0.76, R:0.90, N:0.82).
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5.2.3 Learner implementation: Seismic event classifi-
cation model

Within the proposed framework, a CNN for seismic event classification in-
spired by [33] is used as learner. Originally, the network was designed to
process 6-channel input windows (from one 3-channel and 3 single-channel
sensors), 10 seconds long, sampled at 250Hz (which gives an input dimension
of 2500 x 6). Since an off-the-shelf pre-trained Siamese neural network with
3-channel (from a 3-channel sensor only) and 10 seconds long input at a sam-
pling frequency of 100Hz is used as machine teacher, CNN for seismic event
classification is adjusted to process inputs of the same dimensions, 1000 x 3.
The output of the classifier CNN is a 4 x 1 vector, containing probabilities
of the input sample belonging to each of the 4 classes. The architecture of
the classifier CNN is shown in Figure |5.6
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Figure 5.6: Seismic signal classification model [33]. ny - number of filters in
convolutional layers, n, - number of neurons in linear layers; k - kernel size.

All experiments start with an untrained learner model. At each stage, the
learner, classifier CNN, is trained for a maximum of 15 epochs, keeping the
model that performs the best on the validation set, and after each stage, the
learning rate is reduced by 5%. Hyper-parameters used for model training
are summarized in Table [5.3] Classification performance of the CNN model
for the seismic event classification is measured using F} score and weighted
F as described in Section Equation [2.4]
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Parameter ‘ Value

Batch size 16
Learning rate Te-4
Learning rate decay 5%
Epochs per iteration | max 15

Table 5.3: Hyper-parameters for the CNN model training

5.3 Results & Discussion

In this section, we present and discuss experimental results. We compare
complexity and classification performance of the following schemes:

1. Random selection: The training samples are chosen randomly - there is
no ranking based on anchors; anchors only serve for automatic labelling,
and they are set by the domain expert as good representatives of classes
present (anchor set A;, see Section . This scheme is used to
demonstrate that the order of samples from which the classifier CNN
gradually learns is important.

2. AL: The learner, i.e., the classifier CNN, is in control of the learning
process. The anchors set by the domain expert (A;, see Section
are used for labelling only, and sample windows are selected at each
training stage by the classifier CNN based on the least confidence when
classifying samples from the sampling set. Classifier confidence is cal-
culated as predicted class probability: max.cc m(s),s € Ds. The idea
behind this is that the samples with the least confidence bring the most
information to model training, and if they are included in the train-
ing set, the classifier performance is expected to improve rapidly. The
classifier CNN is initialised in one iteration as in the proposed scheme,
using the anchors and the machine teacher (Siamese neural network) to
ensure it acquires some knowledge to start with, for fair comparison to
other schemes. This scheme is to show that using teacher-driven learn-
ing (i.e., ranking and selecting samples based on teacher’s confidence)
is essential in challenging datasets, and that AL is less robust to wrong
labels compared to the proposed hybrid MT approach.

3. Hybrid MT (the proposed scheme): In this scheme, anchors that are
set by the domain expert serve both for sample windows ranking and
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labelling, as described in Section [5.1] This scheme demonstrates the
efficiency of the proposed methodology - the classifier CNN can learn
fundamental concepts with imperfect labels if the training dataset is
well organised - samples ranked according to similarity to class repre-
sentative samples, i.e., according to label confidence.

5.3.1 Classification performance

The average performance measure in terms of F} score per class of the
schemes described above is shown in Table [5.4] while Table [5.5| shows confu-
sion matrices.

Figure[5.7|shows performance of the Siamese network only as the accuracy
of the generated labels after each stage (cumulative, taking into account all
labels generated at each stage) in terms of Fj score for each class (colored),
and weighted F} score (black). Labels for quake (Q) and noise (N) samples
are more inaccurate than for earthquake (S) and rockfall (R) samples, which
was expected based on the distance of anchors from the test set sample win-
dows as discussed earlier and shown in Figure[5.5 The results are inline with
those reported in [95] where a semi-supervised Siamese-based network with
Short-Time Fourier Transform (STFT) input is used on the same dataset,
and the averaged reported Fl-scores were 0.81, 0.88, 0.63, and 0.7, for R, S,
Q, and N classes, respectively.

Scheme ‘ S Q R N Weighted F} Avg F}

[1]- Random | 0.69 0.57 0.70 0.56 0.64 0.63
2-AL  [0.82 055 0.80 0.61 0.71 0.70
3-MT 086 0.61 0.87 0.70 0.78 0.76

Table 5.4: F; score of the classifier CNN model for the experimental schemes
with automatic labelling - random teacher (Scheme , AL (Scheme , and
the proposed MT (Scheme (3)).

When the Random scheme is used, the accuracy of the labels generated
by the Siamese neural network quickly converges to the final F} score and
no further improvement occurs (Figure , which is expected since the
samples are selected randomly. This machine-teacher labelling performance,
is reflected into the learner’s performance, as can be seen from Table [5.4
as this scheme has the poorest average performance among all the schemes.
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Label ‘ S Q@ R N Label ‘ S Q R N
S 101 7 0 5 S 107 5 0 1
Q 20 42 1 6 Q 12 46 3 8
R 36 1 65 14 R 24 5 8 4
N 22 29 3 51 N 5 42 6 52
(a) Random - Scheme (b) AL - Scheme

Label\S Q R N
S 9 9 1 4

Q 10 44 3 12
R 4 1 98 13
N 3 22 8 72

(c) MT - Scheme

Table 5.5: Confusion matrices of Random, AL and MT schemes.

In the corresponding confusion matrix (Table , there is a bias towards
S class, due to earthquake events occurring more frequently compared to
quake and noise events (see Table ; hence, when randomly choosing sam-
ples to include in the training set, earthquake samples are more dominant.
Furthermore, some of the rockfall samples have a low Siamese distance from
the anchor representing earthquakes, as discussed before and shown in Figure
5.5l These results demonstrate that using randomly selected samples to train
the classifier is ineffective, since many wrongly labelled samples are used for
training from the start, preventing further improvements.

The AL scheme outperforms the Random scheme in terms of the classifier
F} score (Tables and. However, the accuracy of the labels generated
by Siamese neural network, decreases first in the early stages of training, and
then increases and reaches the final label Fy score (Figure[5.7b]). This is due
to the fact, samples that were challenging for the learner (i.e., the classifier
CNN) to predict (i.e., that are predicted with the least confidence), were
also challenging for the teacher (i.e., Siamese neural network) to classify -
therefore, samples included in the training set early, contain high amount
of labelling errors. Thus, the AL approach is not very robust to potentially
noisy labels.

The proposed MT Scheme |3| yields a better overall result than the AL
scheme - the quality of selected anchors, especially those representing earth-
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Figure 5.7: Cumulative F} score of labels generated by the Siamese neural
network when samples are selected randomly (a), by the classifier CNN (b),
and by the teacher (c).

quake and rockfall classes, contributed to training a well-performing CNN
classifier for these classes. In this scheme, the best quality labels are pro-
vided for all classes in the beginning, and as the process progresses, and
samples further from anchors (and with lower SNR) are included in training,
the label quality deteriorates (Figure . But, since good quality and cor-
rectly labelled samples are presented to the classifier CNN at the beginning
of the training, with a higher learning rate, they pose the basis of the clas-
sifier CNNs knowledge, and this secures a high model performance, despite
unclear and potentially wrongly labelled samples at later stages. Due to the
closeness of noise samples to the anchor representing the quake class, mis-
classification between these two classes can be observed (Table [5.5d). Figure
[5.8shows a progression of model performance with the proposed MT Scheme
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3] in terms of histograms of Siamese distances between correctly (blue) and
incorrectly (orange) classified samples from each class (note that the his-
tograms are stacked, not overlapped) and the anchor representing that class,
for the several training stages (0, 2, 5 and 10) when the most of the model
performance improvement occurs. As the training progresses, the classifier
CNN improves its classification performance, especially for the samples close
to the anchors; learning is the slowest for the quake and noise classes, inline
with observations about closeness of the quake anchor to noise samples from
Figure [5.5) and Table [5.2] At Stage 10 already, most samples close to the
respective anchors are classified correctly for all classes, and for some classes,
such as the earthquake class, even samples away from the anchors are mostly
correctly classified.

The MT results are similar to those reported in [98] (Figure 5.4), where,
for the same dataset, the highest class-average Fy score of 72% was reported
for unsupervised classification, and performance improvement of up to 10%
required 10% of data labels. As per Table[5.4] Scheme [3] achieves average F}
score of 0.76.

5.3.2 Complexity

The used Siamese neural network has 1,052,320 trainable parameters, while
the classifier CNN has 3,944,836 trainable parameters. Running times of all
the schemes are measured on an Apple M1 Max chip, with 32GB RAM, and
results from the first iteration, (i.e., stage) including ranking of samples be-
longing to Dy, labelling of one batch of sample windows, and classifier CNN
training for 15 epochs with one batch of sample windows, with sampling
set Dy size of 789 and batch size of 16 are summarized in Table 5.6, Note
that the Random scheme does not involve sample ranking. AL scheme re-
quires running the CNN model on the sampling set D, in the sample ranking
step, while the proposed MT scheme involves running the Siamese neural
network on D, against each of the anchors in the sample ranking step, but
only at the beginning of the process and every time the anchors are changed.
There is no need to re-sort D, if anchors stay the same. The Random and
AL schemes require running the Siamese neural network within the labelling
step, however, for the porposed MT scheme, labelling is included in the sam-
ple windows ranking step since the Siamese model is already run at that
step. In conclusion, the proposed MT scheme brings performance improve-
ment at additional sample ranking running time compared to the Random
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Figure 5.8: Histograms of Siamese distances of correctly (blue) and incor-
rectly (orange) classified test sample windows by the CNN classifier from the
anchor from A; representing the corresponding class.

scheme, but at less running time compared to the AL scheme. The proposed
scheme can rank and label around 256 samples per second and therefore can
be used in real-time applications even if the sampling set D is constantly
updated with new samples. Training of the classifier CNN consumes the
largest amount of time among all steps within one iteration (i.e., stage) and
is therefore the biggest bottleneck.

Scheme ‘ Sample ranking ‘ Labelling ‘ Training

Random — 66ms 22.225s
AL 3.100s 66ms 22.225s
MT 3.072s — 22.225s

Table 5.6: Running times of the three experimental schemes
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As the sampling set can grow rapidly when the framework is used in
real time, leading to increased sample ranking time, the sampling set can be
implemented as a circular buffer. The buffer would maintain a fixed size,
and if the limit is reached, the oldest samples would be overwritten as the
new ones arrive.

Note that, the above comparison does not include anchor selection and
possible re-selection, since all three methods require this identical step. An-
chor selection can be likened to labelling, but through the proposed approach,
the human expert would only need to label /select one anchor or representa-
tive signal per class. This should not take long for a human expert. Please
refer to Section [5.1.1] where we discuss how to facilitate anchor selection.

5.3.3 Ablation study 1: Robustness to anchor selection

To test the robustness of the proposed approach, we ask domain expert to
choose two more sets of anchors - another set of good-quality anchors, As,
with the following events included: 2015-06-20 20:11:56.140 for earthquake
(S), 2013-11-13 17:12:23.180 for quake (Q), 2014-11-10 19:07:00.830 for rock-
fall (R), and 2013-10-17 13:40:05.570 for noise (N); and a set of noisy anchors,
As, with the following events included: 2013-11-09 03:34:27.620 for earth-
quake (S), 2013-11-02 03:01:03.480 for quake (Q), 2014-11-10 23:19:58.660
for rockfall (R), and 2013-10-20 20:03:17.180 for noise (N). Please note that
noise in the noisy set of anchors is not artificially introduced; it is a natu-
ral characteristic of signals. Then, we test the robustness of the proposed
framework to anchor selection with the following anchor settings:

1. Using the same noisy anchors (A3) throughout the whole process, with-
out updating;

2. Noisy anchors (Aj3) are updated with the good quality anchors (A;) as
described in Section [5.1]} when the conditions of (5.4) are met;

3. Good-quality anchors (A7) are updated with another set of good-quality
anchors (Az); and

4. Using average distance from good quality anchors (A1) and noisy an-
chors (As).

Results in terms of F} score are presented in Table[5.7] and confusion ma-
trices are shown in Table 5.8 Figure [5.9 shows performance of the Siamese
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network only as the accuracy of the generated labels after each stage (cumu-
lative, taking into account all labels generated at each stage) in terms of F1
score for each class (colored) and weighted F1 score (black), as in Section

b3l
Anchor setting | S Q R N Weighted F} Avg Fy
1 0.78 047 0.82 0.64 0.70 0.68
2 0.80 0.53 0.86 0.63 0.73 0.71
3 0.84 0.56 0.82 0.72 0.76 0.74
4 0.78 0.50 0.84 0.54 0.69 0.67

Table 5.7: Results of anchor sensitivity analysis - F score.

Label ‘ S Q R N
S 9 9 0 5
Q 13 31 1 24
R 20 0 84 12
N 9 24 3 69
(a) Anchor setting

Label ‘ S Q R N
S 9% 7 0 10
Q 10 32 2 25
R 6 1 84 25
N 4 6 2 93

(c¢) Anchor setting

Label ‘ S Q R N
S 101 9 0 3
Q 15 39 3 12
R 12 1 93 10
N 11 29 5 60

(b) Anchor setting

Label ‘ S Q R N
S 97 12 1 3
Q 14 43 2 10
R 15 3 88 10
N 9 46 3 47

(d) Anchor setting

Table 5.8: Results of anchor sensitivity analysis - confusion matrices.

With Anchor setting [I where noisy anchors are used throughout the
process, the generated labels (Figure are not as accurate in the early
learning stages as those with MT (Scheme [3)) in Section , where clear,
good quality anchors are used. Although noisy anchors do not necessarily
mean that the overall F)| score of all generated labels will be significantly
worse than in the case of clear anchors (see the final values in Figures [5.7(
and[5.9a)), they lead the training process by introducing noisy samples instead
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Figure 5.9: Anchor sensitivity analysis: Cumulative F; score of labels gen-
erated by the Siamese neural network with anchor settings [1] (a), 2] (b), [3|(c)

and (d)

of clear ones into the training set first. Thus, there are more labelling errors
in the early stages of the process. Consequently, it is harder for the classifier
CNN to extract characteristic features of events, and the final performance of
the classifier trained with noisy anchors is worse compared to the case when
clear anchors are used, as shown in Table |5.4].

Anchor setting[2]results show that, even if the teaching process starts with
unreliable anchors, the final performance of the classifier can be improved by
replacing them with better, more representative anchors - see Table for a
comparison between Anchor settings[I]and 2] Anchors for N, Q and R classes
are replaced at training set sizes 304, 320, and 656, respectively. Figure [5.9b
shows the label accuracy improvement after noisy anchors are replaced with
good-quality ones.
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Anchor setting [3| demonstrates the robustness of the proposed approach
if the starting good quality anchors are replaced with another set of anchors
- performance is very similar to MT (Scheme [3) results reported in Section
as shown in Table and also the label accuracy (Figure [5.9¢)) is
similar to Figure [5.7c, implying that performance is stable as long as good
class representatives are set as anchors.

Anchor setting [4] results show that noisy anchors can negatively affect the
performance even if they are used together with good quality anchors and the
distance from them is averaged for every sample and for every class. The label
accuracy in Figure is better compared to Anchor setting (1| (Figure
in the beginning, but worse for N class in the end. Labels are less accurate
compared to the results presented in Section and Anchor setting
where good quality anchors are used. This again emphasizes the importance
of choosing anchors that are good class representatives, and domain experts
can undoubtedly do this successfully.

According to the confusion matrices in Table quake class (Q) is very
sensitive to the choice of anchor - the performance for ) class results pre-
sented in Section is better compared to other anchor settings, which
is expected since these events are characterised by low magnitude and short
duration. Further, as discussed in Section[5.2.2] Siamese neural network does
not distinguish well quakes and noise even with good quality anchors, and
this is reflected in the classifier CNN performance in Table [5.8f When us-
ing noisy anchors, rockfalls (R) are mistakenly classified as earthquakes (S).
Samples belonging to earthquake class are not confused with other classes
even if noisy anchors are used, indicating that this class is the most robust,
due to its distinctive waveform.

5.3.4 Ablation study 2: Cosine distance threshold for
anchor update

To evaluate the sensitivity to the cosine distance threshold for anchor changes,
we conduct additional experiments. In these experiments, the anchors are
adjusted when the closest data sample reaches distances of 0.2, 0.5, and 0.8
from the anchor, and according to (5.4). The results are shown in Table .

Low threshold values cause change of anchors very soon after the start of
the process, while higher threshold values lead to a very late or no change
of anchors. If the anchors are not good enough, changing them too late
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limits the benefits of the change, since the learning rate decreases during
the process, and the model weights are already heavily impacted by the old
anchors.

Good threshold values depend on the data, and even though manually set
low threshold values perform similar to the one set using in this case,
the latter provides a data-driven approach and hence is more favorable - it
follows the data and eliminates the need for manual threshold setting.

Threshold ‘ S Q R N Weighted F; Avg F}

0.2 0.83 048 0.83 0.67 0.73 0.70
0.5 0.79 040 0.81 0.64 0.69 0.66
0.8 0.79 043 0.82 0.67 0.70 0.68
1} 0.80 0.53 0.86 0.63 0.73 0.71

Table 5.9: Results of ablation study on cosine distance threshold for anchor
update.

5.3.5 Transferability testing: different dataset and dif-
ferent learner

Dataset: To test the transferability of the proposed framework to another,
unseen environment, we test it with Stanford Earthquake Dataset (STEAD)
[34], a large-scale global data set of local earthquake and non-earthquake
signals recorded by seismic instruments. The dataset contains local earth-
quake waveforms, recorded within 350 km of earthquakes, and seismic noise
waveforms that do not contain earthquake signals.

Chunks 0 and 1 of the dataset are used, containing seismic noise signals
and local earthquake signals, respectively. Each data sample window in the
dataset is a 3-channel seismogram, 1 min long at a sampling frequency of 100
Hz (each sample window has dimensions 6000 x 3). Each sample window is
associated with metadata providing information related to measuring instru-
ments and detected event (in case of local earthquake samples), including P
and S wave arrival, coda-end (i.e., the late-arriving, low-amplitude tail of seis-
mic waves on a seismogram, which consists of energy that has been scattered
multiple times by Earth’s heterogeneities) and SNR. Since the Siamese neu-
ral network used in this study processes inputs of dimensions 1000 x 3, which
corresponds to the sample window length of 10 seconds (s), local earthquake
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data samples are filtered to discard events longer than 9 s. Only samples
where coda-end comes at most 9 s after P wave arrival are kept, and new
windows are created by cutting the original windows from 1 s before P wave
arrival, to 9 s after P wave arrival. For samples containing seismic noise, the
middle of the original window is kept, i.e., the original window is cut from 25
s to 35 s. After filtering, there are 61,323 local earthquake sample windows
and 235,426 seismic noise sample windows. To speed up the testing, this
filtered dataset is subsampled with a factor of 0.2, preserving the ratio of the
number of local earthquakes and seismic noise sample windows, resulting in
47,085 seismic noise and 12,265 local earthquake sample windows. The query
pool / validation / test split used is 60/10/30%.

Anchor: Since there are only two classes in the dataset - local earth-
quake and seismic noise, only one anchor is selected for the local earthquake
class. Then, the Siamese neural network calculates cosine distance between
a sample and the anchor, and compares the result to a threshold - if it is
lower than the threshold, the sample is classified as a local earthquake, and
if it is greater, the sample is classified as seismic noise. The anchor is se-
lected using the SNR values present in the metadata for each event sample
- the one with a high SNR values across 3 channels is selected, with trace
name B014.PB_20150929033005_EV. The threshold for classification by the
Siamese model is set at 0.1, heuristically, based on the histogram of the co-
sine distances for all query pool data samples, as shown in Figure [5.10] The
I score of labels generated automatically using Siamese neural network and
the selected anchor on the test set is 0.85. A number of noise samples ap-
pears very close to the local earthquake anchor, possibly indicating missed
events. Since there is only one type of seismic event in this dataset, in the
sample selection step during MT, one half of batch is selected as sample win-
dows closest to the anchor, and the other half is selected from the query pool
randomly:.

Learner implementation: In this transferability testing scenario, in-
stead of [33], we use the ConvNetQuake deep neural network, a popular
open-source model used for seismogram classification [99]. It is a lightweight
model composed of eight convolutional layers followed by a linear layer, whose
architecture is shown in Figure [5.11] Training hyperparameters are summa-
rized in Table .10l

Results: MT is run for 20 iterations in this transferability testing sce-
nario, since the query pool is very large. The ConvNetQuake model trained
using the proposed framework reaches a Fj score of 0.91, with the highest
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Figure 5.11: Learner architecture for transferability testing scenario.

improvement at the beginning, and the performance remains steady in later
iterations. As shown in Figure 5.10] the cosine distances of samples classi-
fied as local earthquake class from the specified anchor are predominantly
centered around 0, indicating that these samples are closely aligned with the
anchor point, and they do not bring much information as MT progresses.

The confusion matrix is presented in Table [5.11]
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Parameter ‘ Value

Batch size 16
Learning rate Te-4
Learning rate decay 5%
Epochs per iteration | max 15

Table 5.10: Hyper-parameters for the ConvNetQuake model training

Label ‘ Noise Local earthquake
Noise 13922 204
Local earthquake | 468 3212

Table 5.11: Confusion matrix of the ConvNetQuake model trained with the
proposed MT framework.

The above presented results demonstrate the transferability of the pro-
posed MT framework. Furthermore, the observed high F} score and the low
confusion rate for local earthquake samples suggest that the model effectively
distinguishes between local earthquake events and noise. The consistent per-
formance across iterations reinforces the robustness of the framework, in-
dicating that early training iterations yield the most informative updates.
However, as the cosine distances from the anchor are not very diverse, future
iterations may benefit from tuning or strategic sampling to capture additional
diversity in the query pool. The results also demonstrate that the proposed
methodology is applicable to different networks, including lightweight models
such as ConvNetQuake.

5.3.6 Summary of the results

In summary, the proposed MT framework with a hybrid human-machine
teacher outperforms Random and AL schemes for training a micro-seismic
event classifier CNN in a setup where labelled data is not available, and anno-
tations are generated automatically based on domain expert input (labelling
only one sample per class). The following key observations are made:

1. MT is essential to rank training samples based on their label reliability,
estimated by the distance from the anchors, i.e., by label reliability.

2. AL, where a learner queries samples of least confidence, is not robust
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when training set is noisy and hard to label.

3. Human input is critical to select good anchors, since performance for
some classes is sensitive to the anchor quality. However, if the initial
poor anchor choice is corrected, classifier performance quickly improves.
The framework is shown to be robust to changing anchors throughout
the process as long as they are good class representatives.

4. The schemes show high performance even with only four labelled sam-
ples with a help of machine teacher.

5. Hybrid MT outperforms AL despite lower computational complexity.

5.4 Summary

This chapter proposes a novel hybrid MT framework for seismic event clas-
sification with expert oversight. The teacher is of hybrid nature - a human
teacher (i.e., a domain expert) is aided by a machine teacher. The human
teacher steers the learning process by setting anchor signals representing each
class present in the dataset, based on which the machine teacher ranks the
training samples for learning in stages, and labels them. It is demonstrated
that the proposed hybrid MT methodology is effective for training a clas-
sifier CNN for seismic event classification. Expert’s workload is minimal,
and training in stages teaches the classifier CNN gradually, managing the
effect of potential errors in automatic labelling. The approach is validated
in several experimental scenarios, and it outperformed the random teacher
and AL approaches, demonstrating that embedding human oversight and
domain knowledge beyond labelling is essential in developing accurate and
trustworthy deep learning algorithms.

Limitations of the proposed approach include difficulties in selection of
high-quality anchor signals, due the high volume of data that needs scanning,
and low signal-to-noise ratio in the recordings, where visualisation approaches
as in [95] can be beneficial. Future work includes investigation on efficient
strategies to aid the human teacher in selection of high-quality anchors, and
to embed explainable AI techniques in classifier’s performance monitoring to
further inform the human teacher of the training progress, as well as refining
sampling strategy in cases when all data samples are very close to the anchors
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and ranking by distance does not offer substantial advantages for improving
model training.
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Chapter 6

Conclusion

6.1 Summary

The thesis explores challenges related to utilising labelled data to efficiently
train AI models. Moreover, it tackles the problem of model deterioration over
time. Additionally, it incorporates human agency and oversight as one of the
fundamental trustworthy AI principles. To this end, several approaches for
integrating human agency and oversight, while minimising the amount of
data that needs labelling without compromising the performance, are exam-
ined. These range from active learning (AL), which involves experts partici-
pating directly in the labeling process, to machine teaching (MT), where an
expert is asked only to select representative samples to guide and monitor
the learning process.

In Chapter 3], oracle-based AL approaches are explored for the NILM and
micro-seismic event detection problems. Various acquisition functions, trans-
ferability, different training modes, and use of weak labels are considered.
The labelling effort is reduced by 85-95% in the case of the NILM problem
with strong labels, 82.6-98.5% in the case od NILM with weak labels, and
83% in the case of micro-seismic event detection. This chapter answers the
first research question of the thesis - ‘Can oracle-based deep active learning
be useful for efficient training and transfer of Al algorithms applied to time-
series data classification?’, demonstrating effectiveness of AL approaches to
reduce the amount of labelled data needed for the two problems, and is the
basis upon which the rest of the thesis is built.

Chapter [4] introduces the first human-in-the-loop AL framework for the
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NILM problem. The effects of human-introduced errors are studied and
strategies for their mitigation are proposed. This is important since the chal-
lenges of real-world implementation of AL are addressed - there is no oracle
and the AL process is imperfect. In these real-world settings, model transfer-
ability is significantly improved with labelling effort reduced by 61-93%. This
chapter answers research questions 2 and 3 - ‘When and how to optimally stop
the active learning process? Can an acquisition function with an inbuilt stop-
ping mechanism be designed to be used within an active learning framework?’
and ‘When and how to optimally stop the active learning process? Can an
acquisition function with an inbwilt stopping mechanism be designed to be
used within an active learning framework?’. An acquisition function based
on hypothesis testing is designed to timely stop the active learning process
when additional labelling is unlikely to bring a significant performance im-
provement. Experiments indicate that the proposed strategies designed to
mitigate effects of imperfect labels (based on expert confidence and detection
of possibly wrong labels) are effective in an AL framework for NILM.

In Chapter 5, a MT framework for micro-seismic event detection is de-
signed, with a hybrid human-machine teacher, giving the human more mean-
ingful task of steering the training process of the algorithm by anchor selec-
tion, and using the machine part of the teacher for the task of labelling and
training set curation. This gives human a higher degree of control over the
algorithm life cycle while minimizing the amount of time required from an
expert. The proposed approach outperformed the random teacher and AL
scenarios (Fy score 0.64 and 0.71, respectively) achieving an F} score of 0.78.
This chapter answers the last research question of the thesis - ‘Can expert’s
knowledge be used more efficiently through machine teaching with a hybrid
human-machine teacher, i.e., can experts be included in the process with a
higher level of control over the process, and with less labelling effort?’. The
proposed MT framework enables an expert to guide and oversee the train-
ing of a deep learning model while labelling only a few representative data
samples, reaching performance that is on par with models trained using fully
labelled datasets.

The work in this thesis applied to NILM resonates with the UN Sustain-
able Development Goals 7 (Affordable and Clean Energy) and 12 (Responsi-
ble Consumption and Production) by providing users with a clear and easy-
to-understand summary of their energy expenses, helping them see when
and how much energy they use, as well as whether it’s from renewable or
non-renewable source. Work applied to micro-seismic event classification
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resonates with SDG 13 (Climate Action) by strengthening resilience and
adaptive capacity to climate- related hazards and natural disasters such as
landslides.

Whereas the methods proposed in this thesis are applied to the challenges
of NILM and micro-seismic event classification, they are versatile and can be
extended to other time-series signals characterized by large volumes of data
and difficulty of labelling. In scenarios where human agency and oversight
are essential, these approaches can provide valuable solutions.

While the thesis presents innovative frameworks for active learning (AL)
and machine teaching (MT), there are some limitations. Taking part in model
training requires knowledge about how AI algorithm training works, and lay
users may not know which samples bring the most information to model
training, as this might differ from what is intuitive in some cases. Also,
the proposed methods rely on experts’ skill level - in Chapter experts
can be under- or overconfident, making it harder to estimate label accuracy
and take it into account in training. In Chapter [5 experts need to choose
good quality anchors for the MT process, otherwise performance is sacrificed.
Additionally, the proposed methods for engaging domain experts and end
users in algorithm maintenance may face challenges related to user adoption.

6.2 Future work

Future research can focus on several key areas to improve AL and MT frame-
works for time-series data developed in this thesis.

One possible future research direction is the integration of explainable
AT (XAI) methods into both AL and MT frameworks, enabling more trans-
parent and trustworthy interactions between human experts and models in
time-series domains such as NILM and microseismic analysis. For instance,
experts could be presented with saliency maps during the AL query selection.
These maps assign an importance score to each temporal point in the input
signal (e.g., power consumption waveforms in NILM or seismic waveforms in
microseismic data), highlighting regions where the model focuses its atten-
tion for appliance disaggregation or event detection. This visualization not
only reveals where the model “looks” but also aids in diagnosing misclassi-
fications, such as confusing similar appliance signatures in NILM. Shapley
values offer another complementary XAl approach, quantifying the marginal
contribution of each signal point to the model’s prediction. In a microseis-

143



mic context, for example, Shapley values could attribute higher weights to
P-wave arrivals or high-amplitude bursts, helping experts verify if the model
correctly prioritizes seismically relevant phases over noise. Beyond these,
Layer-wise Relevance Propagation (LRP) could be adapted to propagate rel-
evance scores backward through the network, producing heatmaps that are
particularly interpretable for recurrent or convolutional architectures com-
mon in time-series modeling. For AL, this might involve selecting queries
not only based on uncertainty but also on regions of high relevance disagree-
ment between model and expert, fostering targeted teaching in MT. Counter-
factual explanations represent yet another avenue: generating ‘what-if’ per-
turbations to the time-series input (e.g., minimally altering a seismic trace
to flip an event classification) to illustrate decision boundaries. Integrating
these XAl techniques—potentially in an interactive dashboard—would pro-
vide deeper insights into the model’s reasoning processes, such as identifying
systematic biases in handling variable-length events or noisy baselines. This
transparency can empower users to better understand the model’s strengths
(e.g., robust handling of periodic patterns) and weaknesses (e.g., vulnera-
bility to sensor drift), thereby informing more precise decisions during AL
querying or MT guidance. Ultimately, such enhancements could lead to accel-
erated convergence, reduced labeling efforts, and superior model performance
in real-world deployments.

Another area of exploration is the development of more engaging meth-
ods for involving domain experts and end users in the ongoing maintenance
of algorithms. This could include creating collaborative platforms that fa-
cilitate real-time feedback and input from users, with intuitive, user-friendly
interfaces, ensuring that the models remain relevant and effective in dynamic
real-world environments. Engaging users in this manner not only enhances
the model’s adaptability but also fosters a sense of ownership and investment
in the technology.

Another promising direction for future work is the adaptation of AL
strategies for deployment on edge devices, where computational resources,
energy consumption, and latency are severely constrained. This involves
developing lightweight query selection mechanisms that operate efficiently
in low-power environments, such as embedded systems or IoT sensors pro-
cessing time-series data in real time. For instance, edge-based AL could
prioritize uncertainty sampling or diversity-based criteria using quantized
models or approximate inference to minimize communication with central
servers while maintaining labeling efficiency. Additionally, exploring feder-
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ated AL paradigms where edge devices collaboratively select informative sam-
ples without sharing raw data could enhance privacy and reduce bandwidth
requirements. Such advancements would enable the proposed frameworks to
support on-device continual learning, making them viable for resource-limited
applications like remote environmental monitoring, or NILM, particularly
through integration with edge-centric NILM methods that perform real-time
appliance disaggregation directly on smart meters or gateway devices [100].

Furthermore, future work will investigate the scalability of the proposed
frameworks to various households within NILM environments, as well as
across different domains and applications involving other types of time-series
signals. Understanding how these approaches can be generalised or tailored
to such varied contexts will be crucial for their widespread adoption.
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