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Abstract

This Thesis describes research aimed towards the realisation of an embedded ultrasonic monitoring
system for operation in a smart structure environment. Alien fibres embedded within carbon fibre
reinforced composite plates could be utilised to guide ultrasound to strategic release points for the
interrogation of the test sample, with minimal structural degradation. In particular, an array of fibre
waveguides could be utilised to deliver periodic stresses to a plate-type structure to excite Lamb
wave propagation. With such a system several problems need to be addressed. Firstly, identification
of an appropriate mode of propagation to transport the acoustic energy along the waveguide and
meet the requirements of the system 1s required. Theoretical analysis of elastic wave propagation in

cylinders 1s provided to establish the characteristics of the various supported modes. Subsequently,
the longitudinal (axisymmetric) modes are highlighted as being the most appropriate for the

proposed system. Ideally, such a mode should be singly generated to provide increased control on
the coupling of ultrasound from the waveguide to the desired Lamb wave mode. Therefore, the

transducer-fibre interface utilised for efficient single mode generation in the fibre waveguides is
essential. This Thesis investigates a novel, cheap, simple, and robust coupling strategy, which
employs a conical polymer bond to behave as a mechanical transformer efficiently coupling the
lateral displacements of a piezoceramic transducer into longitudinal displacements in the waveguide.

Theoretical and experimental analysis of this technique are described and design guidelines detailed.

The Thesis then goes on to provide experimental and theoretical evidence of the fibre waveguide’s

ability to transport acoustic energy to and from plate-type structures for subsequent Lamb wave
generation and detection. Initially, a surface mount strategy is adopted, whereby the ends of several
thin cylindrical waveguides are bonded to the surface of aluminium plates to behave as a line array.
Generation and detection of the fundamental symmetric (Sg) and asymmetric (A,) Lamb wave

modes is demonstrated. Following this, the Thesis details considerations concerning the realisation

of an embedded fibre waveguide monitoring system. Here, the choice of waveguide material and
geometry 18 crucial to ensure the guided ultrasound does not leak into the structure at undesirable
locations and that the structural integrity of the test sample is maintainable. Consequently, various
waveguide configurations are investigated to establish an arrangement capable of meeting the system
requirements. An embedded fibre waveguide Lamb wave system is then presented in a hard-setting
polymer plate confirming the basic design methodology. Finally, S; Lamb wave generation and

detection in a carbon fibre reinforced composite plate is demonstrated utilising embedded acoustic

waveguides sensors.
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Chapter 1

Introduction



1.1. Background

With increasing requirements for relatively remote and less invasive ultrasonic systems,
this Thesis endeavours to highlight the potential of ultrasonic delivery via embedded
fibre waveguides for subsequent non-invasive structural condition monitoring. The
concept of transporting mechanical energy along a cylindrical (or other) waveguide is
well established [1]. With regard to ultrasonic systems, such waveguides normally

comprise of an inner core, along which the wave energy 1s confined, and an outer

cladding that is designed to minimise acoustic leakage and offer a degree of mechanical

protection.  Important application issues include the wave mode dispersion
characteristics, the waveguide geometry and materials, and the electro-mechanical

interface required to generate the particular mode of interest.

Incorporating continual monitoring capabilities, and therefore a degree of intelligence
into structures 1S of considerable current interest to the aerospace, hydrocarbon, and
automobile industries. Moreover, ultrasound is a prime candidate to perform this
monitoring function, since it has a well-established track record in NDT [2]. In
addition, the associated sensor technology has reached a relatively high degree of
refinement due to advances in material science and improved modelling techniques [3].
However, it 1s essential that any instrumentation does not detract from the integrity of

the structure and is cost effective in terms of implementation and subsequent operation.

Consequently, optical fibre sensors offer distinct advantages for integration into certain

structures, due to their immunity to electrical interterence, resistance to corrosion, and
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relatively small unobtrusive dimensions [4]. The implementation of this sensor
technology into so-called smart structures has reached a significant level of maturity.
However a limitation of optical fibre sensors is that they are essentially passive devices
and consequently do not possess the resolution and discrimination afforded by
alternative, ultrasonic techniques. That 1s, an optical fibre will take a measurement local
to 1ts sensor gauge region, whereas an ultrasonic equivalent could actively introduce
mechanical energy to a structure to interrogate areas that are not in contact with the

sensor itself. This introduces significant advantages for the monitoring of large

structural areas.

Consequently, 1t will be demonstrated that fibres can be utilised to guide ultrasound to

load structures for their subsequent interrogation. The inspection of plate-type
geometries 1s of specific interest since they form many practical structural components.
An appropriate monitoring technique for this geometry, with recognised potential for
smart structure applications 1s the generation and detection of Lamb waves [5], which

are guided acoustic plate waves capable of propagating over large distances.

Consequently, the major thrust of this Thesis is to propose and evaluate a novel sensor
system utilising embedded fibre waveguides to transport acoustic energy to and from

plate-type structures for subsequent Lamb wave excitation and detection. Nevertheless,

the technology discussed in the course of the Thesis is not limited to this particular

waveguide application.
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1.2. Aims and Contributions of Thesis

1.2.1. Aims of Thesis

e Investigate contemporary sensor technology currently receiving interest for smart
structure applications. Consequently, establish the context of an unobtrusive

acoustic fibre waveguide system for condition health monitoring within this field of

research.

e Investigate elastic wave propagation in isotropic cylinders, obtaining information on
the character of the vartous modes that can be supported, and the associated

dispersion relations, thereby determining a suitable waveguide mode for ultrasonic

delivery.

e Investigate an appropriate coupling technique to generate and detect the desired fibre

waveguide mode in terms of efficiency and mode selectivity.

e Establish the capability of fibre waveguides to deliver acoustic energy to plate-type

structures for subsequent Lamb wave generation and detection.

e Explore the feasibility of an embedded fibre waveguide Lamb wave monitoring

system, 1n terms of the waveguide and system requirements.
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Demonstrate Lamb wave generation and detection in a carbon fibre reinforced

composite plate utilising embedded fibre waveguides to transport the mechanical

energy to and from the structure.

1.2.2. Contributions of Thesis

A comprehensive literature review on smart structure sensor research is provided.
This review is particularly concerned with experimental research on sensor
technologies suitable for integration into structural components for so-called smart

structures. In addition, a review of waveguide applications is provided to

demonstrate the novel nature of the proposed system.

A detailed theoretical discussion of elastic wave propagation in isotropic cylinders is
presented, outlining the pertinent relations for dispersion analysis.  The
characteristics of the various acoustic mode types that are supported by such a

geometry are detailed, and the axisymmetric longitudinal modes are highlighted as

being particular suited to the requirements of the proposed monitoring system.

Theoretical modelling and experimental verification of a mechanism to couple
ultrasonic energy from a piezoceramic transducer, into a longitudinal fibre
waveguide mode, via a simple conical polymer interface is introduced. Close

correlation between the resonant characteristics of the ceramic and frequency

response of the coupled acoustic energy is demonstrated. Moreover, activation of
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the lateral resonances of the transducer, which are associated with the width (for a
plate) or radial (for a disc) dimensions are shown to provide the most efficient

coupling response. As such, the polymer cone coupling mechanism is shown to
behave as a mechanical transformer, efficiently converting lateral displacements at

its base 1nto longitudinal displacements at its apex. A systematic theoretical

analysis 1s subsequently presented to evaluate the influence of the various design
parameters on the coupling efficiency, and an experimental analysis is detailed to
investigate uni-modal operation. In reaction to this, design guidelines are outlined

for efficient, uni-modal coupling into the fundamental longitudinal fibre waveguide

mode utilising this technique.

A review of Lamb wave excitation methodology is provided to establish the
significance of a non-invasive fibre waveguide delivery system. Subsequently, a
novel acoustic, fibre waveguide, sensor system, capable of generating and detecting
Lamb wave propagation in plates is established. An initial surface mount strategy

for operation in metallic plates 1s adopted to confirm the viability of the concept.

An embedded fibre waveguide system for operation in non-metallic plates is

discussed and demonstrated. Here the requirements of the waveguide are
considered, and homogeneous, clad, and tube-fibre waveguides are investigated.
Consequently, tube-fibre waveguides are embedded within an epoxy plate, and

Lamb wave generation and detection 1s demonstrated.
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e Finally, the construction of a carbon fibre reinforced composite plate with embedded
tube-fibre waveguides i1s detailed. Lamb wave generation and detection 1S

demonstrated revealing the potential of a fibre waveguide system for the condition

monitoring of practical structural components.

1.2.3. Publications and Conference Papers Arising From Thesis

Journal Publication

D. Atkinson and G. Hayward, “Fibre Waveguide Transducers For Lamb Wave NDE”,

IEE Proc.-Sci. Meas. Technol., Vol. 145, No. 5, 1998, pp 260-268

D. Atkinson and G. Hayward, “The Generation and Detection of Longitudinal Guided

Waves in Thin Fibres Using a Conical Transformer”, submitted to IEEE Transactions

on Ultrasonics Ferroelectrics and Frequency Control

D. Atkinson and G. Hayward, “An Active Fibre Waveguide Sensor for Embedded

Structural Condition Monitoring”, submitted to IEEE Transactions on Ultrasonics

Ferroelectrics and Frequency Control

Conference Papers

D. Atkinson, A. Cochran, and G. Hayward, “Lamb Wave Generation and Detection via

Propagation of Ultrasound Along Fibres”, Presented at Ultrasonics International, 2-4

July 1997, Het Aula Congrescentrum, TU Delft, The Netherlands

Chapter 1: Introduction 7

L%



D. Atkinson, and G. Hayward, “Propagation of Ultrasound along Fibres for the Non-

Destructive Testing of Plates”, Proceedings of the IEEE Ultrasonics Symposium,

Toronto October 1997, pp 797-800

D. Atkinson, A. Gachagan, and G. Hayward, “Transducers for Guided Wave NDE",

Presented at 1998 Office of Naval Research Transducers Materials and Transducers

Workshop, 12-14 May 1998, The Penn Stater Conference Centre, State College,

Pennsylvania, USA.

D. Atkinson, and G. Hayward, “Coupling of Ultrasonic Energy to and from Fibres for

the Non-Destructive Testing of Plates”, Presented at the 4™ European and 2" MIMR

Conference, 6-8 July 1998, Harrogate, UK.

D. Atkinson, and G. Hayward, “Embedded Acoustic Fibre Waveguides For lamb Wave
NDE”, Presented at the British Institute of Non-Destructive Testing, NDT '99 and UK

Corrosion '99, 14-16 September, 1999, The Sandbanks Hotel, Poole Dorset, UK.

D. Atkinson, and G. Hayward, “Embedded Fibres Waveguides for Lamb Wave

Condition Monitoring™”, Proceedings of the IEEE Ultrasonics Symposium, Lake Tahoe,

Nevada, October 1999, (in press).
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1.3. Overview of Thesis

Chapter 2

An ntroduction to the concept of smart structures 1s provided in Chapter 2 detailing
what they are and pertinent considerations concerning their implementation. Particular
attention 1s paid to contemporary sensor technology suitable for integration into host
materials for subsequent structural monitoring. Suitable optical fibre sensors merit
detailed consideration since they are arguably the most mature smart structure sensor
and also due to their geometrical similarity to the proposed acoustic fibre waveguide
option. Furthermore, a review ot current applications employing cylindrical acoustic

waveguides 1s provided to demonstrate the novel nature of the work presented within

this Thesis.

Chapter 3

This Chapter details the relevant theory associated with elastic wave propagation in
homogeneous, 1sotropic cylinders. Initially, a simplified analysis is presented on the
fundamental waveforms that propagate in the low frequency regime. Following this, the

exact equations of motion for elastic wave propagation are provided and solved to

demonstrate dispersion information on the various supported modes. Finally, the

characteristics of each mode type and their suitability for the proposed monitoring

system are considered.
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Chapter 4

The development of a coupling mechanism for longitudinal ultrasonic propagation along
fibre waveguides 1s discussed. Here electric stimulation of a piezoceramic transducer
generates the initial mechanical energy, which ts subsequently coupled into the fibre
waveguide via a polymer cone. This technique 1s considered 1n terms of its ability to
couple the various resonances of the piezoceramic into the waveguide. It is revealed

through spectral analysis that the lateral harmonics of the transducer (those normal to

the thickness mode) are coupled most efficiently into the waveguide. Consequently, the
nature of the coupling mechanism i1s theoretically investigated utilising finite element

analysis (FEA) and experimental verification is provided, revealing that the polymer
cone behaves as a mechanical transformer. Further FEA demonstrates the significance

of the polymer cone dimensions on the coupling efficiency.

The requirement for unimodal axisymmetrical propagation along fibre waveguides is
then considered. An experimental programme is described, which initially investigates
ultrasonic propagation along a steel rod. Here uni-modal longitudinal and flexural
propagation 18 demonstrated using various transducer configurations. The rod
experiments reveal considerations applicable to uni-modal longitudinal propagation
along fibre waveguides. Following this design guidelines are provided for efficient,

Jongitudinal uni-modal coupling into the waveguide utilising the described polymer

cone technique.

Chapter 1: Introduction 10



Chapter 5

This Chapter discusses elastic wave propagation in plates (Lamb waves), describing
relevant theory and current Lamb wave excitation methodology, revealing the
significance of a fibre waveguide based Lamb wave monitoring system. The realisation
of such a system is subsequently described, and experimental and modelling results are
presented. The design concept utilises a line array of waveguides surface bonded to an
aluminium plate to deliver a series of periodic stresses for the generation of a particular
Lamb wave mode. Similarly, surface bonded fibre waveguides are utilised to detect the
generated Lamb wave. These preliminary surface mount results provide a proof of

concept, showing that fibre waveguides can be utilised to transport mechanical energy to
and from structures for the remote generation and detection of ultrasonic signals with
structural health monitoring capabilities. As such these results provide the first step to

establishing the feasibility an embedded ultrasonic fibre waveguide sensor system.

Chapter 6

This Chapter investigates the feasibility of an embedded fibre Lamb wave system.
Firstly, the requirements of the waveguide are stated for successful implementation of
the proposed Lamb wave monitoring system. Various waveguide geometries are
considered through theoretical, modelling, and experimental analysis. Experimental
results are then presented for an embedded waveguide Lamb wave system. Initaly, the
waveguides are embedded within a hard-setting polymer plate to confirm the basic
design methodology. Subsequently, an embedded fibre waveguide monitoring system in

a carbon fibre reinforced composite plate is described. Here successful generation and
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detection of the fundamental symmetric Lamb wave mode is demonstrated. Finally,

implementation considerations are discussed and conclusions drawn.

Chapter 7
To conclude this Thesis an overview of the findings and achievements is provided.
Additionally, suggestions for further work are detailed to illustrate the potential the

system and other avenues of investigation still to be addressed.
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2.1. Overview of Chapter

A major aim of this Thesis 1s to demonstrate an innovative sensor technology,
utilising ultrasonic fibre waveguides embedded within composite materials to

perform condition monitoring. Sensors with the ability to be successfully embedded

within structures commonly fall into an area of research termed smart structures.
Subsequently, this Chapter will introduce the concept of smart structures, describing
what they are and the current sensor technologies relevant to their implementation.
Particular attention will be paid to contemporary optical fibre and piezoelectric

devices suitable for embedding into structures, to quantify the value of non-invasive

ultrasonic fibre waveguide sensors. In addition, this Chapter will review applications
that have utilised cylindrical ultrasonic waveguides, including wire delay lines,

acousto-optic modulators, medical instrumentation, process monitoring and non-

destructive testing.

2.2. Smart Structure Overview - What are they?

The natural world provides innumerable examples of living things with the ability to
sense, react, and adapt to their immediate environment. Over the last decade or so a

new interdisciplinary field of research termed smarr structures has emerged, which
strives to mimic this intrinsic biological survival quality in order to optimise
operational conditions and enhance the functionality of structural designs. This area

of research evolved from the development of smart skins in the US in the mid 1980s,
which aimed to integrate radar antennas into the skins of military aircraft [6]. The

idea of further developing the smart skin concept into something that included the
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entire structure has been attributed to Eric Udd of Blue Road Research, formerly of

McDonnell Douglas [6]. The 1dea of health monitoring and other functions inherent

to structural design took hold within the Air Force and the smart structure field was

born.

By 1992, the field had achieved much global interest and the first European
conference on smart structures and materials was held in Glasgow [7]. In 1993
Rogers [8] pointed out that smart structure research to date was often described by
one of two prevalent paradigms. The first he described as a technological paradigm:
“the integration of actuators, sensors, and controls with a material or structural
component”. This description offers the technological method to achieve a smart
structure but provides no actual goal or design guidance. The second definition was
termed a science paradigm: “material systems with intelligence and life features
integrated 1n the microstructure of the material system to reduce mass and energy and
produce adaptive functionality”. Importantly, this description focuses on the goals of
the smart structure, but offers little guidance on the technology required to achieve
the goals. This seems to provide a more useful basis for a definition since, once

decided on, the goals should be longer lasting than the required technology, which

will necessarily evolve over the years.

More recently (1996), a formal definition for smart structures was provided by

Spillman et al. [9], in an attempt to focus the attention of the research field and

stimulate an assessment on the commercial potential of smart structures. The

definition offered was as follows:
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“A smart structure is a non-biological physical structure having the following
attributes:

(1) a definite purpose;

(11) means and imperative to achieve that purpose;

(111) a biological pattern of functioning.”

It can be seen that this definition falls into the science paradigm category but more

importantly yields a design philosophy. Considering a biological method of
functioning provides a working model for the focus of smart structure technology.
Take for example the case of the human being: the sensing capabilities include, sight,
hearing, smell, and touch; data links are provided by nerves; actuation by muscles
and hormones; and data processing via the brain. Therefore, it is evident that an

interdisciplinary integration of technologies is required to emulate a biological

pattern of functioning.

Furthermore, to follow the outlined design philosophy it is crucial to evaluate how

biology would overcome a problem and follow this approach rather than a
conventional engineering solution. For example Rogers [8] considers the case of
drawing a straight line on a piece of paper placed on an unstable table. He points out
that a standard engineering approach to this problem would be to mathematically
model the dynamics of the table, establish the mechanism to be used to draw the line,
and the various interactions between paper, pen and table, and any other issues

considered relevant. A control algorithm would then be established to move the pen
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across the paper while calculating the expected response of the unstable table at each

pen location. This plan would provide a solution that would yield the same response
time and time again, never getting better nor worse. A smart structure solution to the
same problem would first consider the biological approach. For example a human
drawing a straight line usually only needs to employ one muscle, however, on a
rickety table would use co-contraction of the tricep and bicep muscles to gain control.
This is highly energy intensive as the muscles are acting against each other to do no
work. As the human draws more lines, the dynamics of the table would be
increasingly understood and therefore, the body would increasingly conserve energy
tending towards no co-contraction of the muscles. However, the introduction of an
unknown parameter, such as a small child entering the room would once again induce

co-contraction to gain control. It is this dynamic learning approach that needs to be
considered at the design stage of a smart structure. Following this, decisions can be
made on what technology should be utilised to best perform each of the various

sensing, actuating, controlling, communicating and processing functions.

Therefore, smart structures provide the opportunity to access new sensing, signal

processing, data interpretation, and material technologies in an integrated fashion at a

structural design level. This introduces a major impact on conventional design
philosophies, for example: the maintenance of a structure would be carried out on
demand rather than scheduled to meet conservative estimations of failure {10]. The
structure could also be designed to anticipate varying loading conditions to actively

provide structural modifications as and when required. Such factors are evidently
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cost driven, both reducing unnecessary maintenance, and increasing the structure’s

life cycle time.

A smart structure will theretore monitor itself, or perhaps its immediate environment,

so that it may respond to changes 1n order to optimise its operation conditions. The

response of the structure could take many forms depending on the nature of its
operation. For example: a structure could respond by calling an external ‘doctor’ to
repair damage; it may be self-repairing e.g. a healing fluid released from a corroded
container, or a mechanical arm induced to weld a cracking joint; or embedded
actuators being utilised to control abnormal vibrational conditions, say in a building

during an earthquake or perhaps in a rocket during lift-off [10]. Ideally, the progress
of smart structure methodology will create structures that are capable of learning,

growing, surviving, and even retiring at the end of their life cycle through continual

intrinsic monitoring [8].

The multifunctional nature of this field has naturally led to the majority of smart
structure work being carried out in a modular fashion, i.e. research establishments
tend to solve individual smart structure related problems or forward novel smart
structure components such as suitable sensors or actuators. Obviously, the realisation
of smart structures demands focused research in each area to be performed thereby

arming the structural design engineer with a diverse arsenal of technologies for each
set of problems. This Thesis looks at developing a novel sensor system suitable for

embedding into composite materials for structural health monitoring in a smart
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structure environment. Consequently, the following Section will discuss the sensor

technologies currently receiving the most attention from the smart structure

community.

2.3. Contemporary Smart Structure Sensor Technology

For a structure to be able to react to its environment it must be capable of obtaining
information on how its environment i1s affecting that structure. Therefore, sensor
technology is the starting point of any smart structure design. Obviously different
types of structures, or even similar structures under diverse conditions, will encounter
different problems requiring differing sensing systems matched to the structural
requirements. For example concrete structures require sensors that can withstand a
very high pH environment, and in some cases sensors that can be pretensioned to

allow for compressive loading [10]. On the other hand, sensors embedded within

carbon or glass fibre composite materials must be able to withstand the curing
process, be unobtrusive to the host, and also allow the material to maintain its
characteristic elastic properties. Metallic structures pose yet another set of problems,

in that generally embedded sensors are impractical, and so a surface mount strategy

needs to be adopted. Here the sensor may be required to endure a harsh environment,

e.g. on an oil rig in the north sea, deeming a robust choice of sensor paramount.

Therefore, it 1s clear that there 1s no generic smart structure technology, and each
smart structure requires specific sensor capabilities designed for its individual needs.

These requirements can be extremely wide ranging, demanding compatibility with

the operating environment.
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2.3.1. Optical Fibres

2.3.1. 1. Overview

Optical fibre sensor development 1s arguably the most mature area of research within

the smart structure field. Their evolution as a smart structure sensor can be largely

attributed to the following characteristics [4].

¢ Small overall diameters (often less than 125um), providing them with the

potential to be embedded with no overall structural degradation.

e Ability to withstand environmental factors such as the high temperatures and

pressures assoctated with composite manufacture.

e Immunity to electromagnetic interference.

o They are passive dielectric devices, which is of importance when operating in

an electrically hazardous environment.

e High bandwidth.

e They can be multiplexed to form a distributed sensor along one fibre.

e The increased interest in fibre optic technology within the

telecommunications industry is driving down the cost of components.

Furthermore, optical fibres are conceptually attractive since they provide a structural
analogue to a biological nervous system, thereby conforming to the biological pattern

of functioning specified by the formal definition. More importantly, continual
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reduction in component prices, coupled with improvements in quality, has led to the
development of fibre optic sensors capable of monitoring a number of parameters
including: acceleration, electric and magnetic field measurement, temperature,
pressure, acoustic waves, vibration, linear and angular position, strain, humidity,

viscosity, and chemical measurements [11]. The reader is referred to Udd [11] for a

detailed review of these various sensor configurations. With this variety in
measurement capability, their employment within industry is fairly diverse, and with
respect to smart structures, their sensing functions fall into four categories [4]. These

dare.

(1) Manufacturing process monitoring; here parameters such as pressure,

viscosity, water content and temperature can be measured to improve

structural manutacture quality.

(2) Non destructive evaluation of fabricated parts; where an external source, for

example acoustic or electromechanical, may be utilised in conjunction with

an embedded optical fibre sensor to measure say, acoustic si gnature changes,

or delamination.

(3) Continual health monitoring; where the structural integrity of a system is

assessed through the integration of optical fibre sensors.

(4) Active control sensors, environmentally induced structural changes are

monitored and utilised to activate a reaction in real time. For example
sensing vibration, to induce suppression actuation, or sensing structural

variations in an aeroplane to induce automatic changes in the flight envelope.
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There are, in general, a number of different strategies that can be employed to sense a
desired parameter with optical fibres [12]. The sensor may be configured as a point
sensor, monitoring a sample of the measurand at a specific point defined by the

effective cross-sectional area of the sensing element. A larger area can be monitored

using an integrated sensor, where the sensor takes an average measurement over its
active length. Such sensors may measure integrated strain or an average temperature

over a significant length of a structure. Sensing can also be carried out by distributed
sensors, which evaluate the parameter of interest throughout the geometry of the
sensor element as a function of position [10]. Multiplexed sensors can also be
realised by combining a number of point, integrated, or distributed sensors into a

single system. Multiplexed integrated sensors are often termed quasi-distributed

SENSOTS.

Out of the various options available for fibre optic sensing, three configurations of
strain sensor are currently attracting the most attention within the smart structure

field [12]. These are Fibre Fabry-Perot Interferometers (FFPI), Fibre Bragg Grating
sensors (FBGS), and very long gauge length sensors. The first two sensor

arrangements have received particular interest and are therefore worthy of further

consideration.

2.3.1.2. Fibre Fabry-Perot Interferometer

The FFPI sensor can be configured in either an extrinsic or intrinsic fashion, as

1Hlustrated 1n Figure 2.1. The extrinsic sensor utilises a hollow glass sleeve to align a
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single mode and multimode optical fibre. An air gap separates the reflective cleaved
ends of the two optical fibres to form a cavity region. Each fibre is free to move
longitudinally 1n the region near the cavity, but is constrained at some point along its
length by bonding to the glass tube. The distance between the bonding points is
known as the gauge length, since perturbations over this region will affect the cavity

length (L) and consequently the sensor output. Longitudinal strain, or temperature

variation can be measured local to the gauge length since 1t will introduce changes in

length L, resulting in shifts in the cavity mode frequencies [13]. This sensor is more

typically utilised for surface mount experiments.

The intrinsic form i1s known to have the advantage for smart structure applications

since it 1s more robust and less obtrusive [13]. In this case, internal mirrors parallel
to each other, and perpendicular to the fibre axis, form an integral part of the

continuous length of fibre, thereby creating a cavity region of length L and refractive
index n. The gauge length of this sensor is the distance L, since changes in the

optical path between the mirrors leads to detectable shifts in the cavity mode
frequencies. Longitudinal (parallel to fibre axis) strain (&) measurements can
therefore be calculated from a knowledge of this change in cavity length (AL) using
the relationship, & = AL/L. € is a unitless parameter, which is often referred to in
terms of microstrain (ug) due to the small strains being measured. Here, the change

in gauge length, AL, 1s measured in micrometers (uLm), and the original gauge length,

L., 1s measured 1n metres (m).
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Figure 2.1: Fabry-Perot Sensor Configurations

The first reported example of an FFPI embedded within a composite structure was

provided in 1989 by Lee et al. [14], who utilised the sensor to measure temperature.

The constructed composite was a 15cm square, 1.1mm thick, graphite epoxy plate
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comprising of eight layers with the FFPI sensor, parallel to adjacent reinforcement
fibres, embedded at half its thickness. Considering 0° and 90° to indicate parallel
and perpendicular orientation of the graphite fibres in each layer respectively then the
composite arrangement can be described as {0°/90°/0°/90°/(FFPI)/90°/0°/90°/0°}.
The fibre optic sensor was reported to withstand the curing process (180°C under
5.3atm pressure for 2 hours), and displayed a uniform linear phase response with
temperature from 20°C to 200°C. Another early example 1s provided by Alcoz et al.
[15] who also demonstrated embedding a FFPI sensor within a graphite epoxy panel.
Again, an eight layered {0°/90°/0°/90°/(FFPI)/90°/0°/90°/0°} configuration was
employed with the optical fibre orientated parallel to the graphite fibres of the
contiguous layers. The constructed plate had a final thickness of 1.1mm, and the
sensing cavity length of the FFPI was Smm. This sensor was utilised to detect
longitudinal ultrasonic signals generated normal to the optical fibre by a
piezoceramic (PZT-4) disk, positioned directly above the sensor. The range of
frequencies for which a response was obtained extended from 100kHz to SMHz. It
was noted that the ability to perform time multiplexing would permit the

incorporation of several sensing cavity regions into one fibre for a pseudo-distributed

acoustic sensor.

Strain measurements made by embedded FFPIs in both, graphite, and Kevlar

composites have also been described by Valis et al. [16]. The sensors were shown to
display a linear response over the range, O to 500ue when a flexural force was

applied to the structure under test. Further experiments were described for a 16-layer
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graphite composite panel incorporating an embedded FFPI between the second and
third layers [17]. To provide a comparison with conventional techniques an electric
strain gauge (ESG) was bonded to each side of the composite, above and below the
FFPI. Strains were introduced via an applied load to the centre of the sample and
strain measurements were recorded. The embedded sensor was demonstrated to

perform as well as the ESGs at 200°F, and to outperform the ESGs at 300°F,

displaying a superior stable linear response. In addition, FFPl strain sensors
embedded within composites such as Kevlar/epoxy, and graphite/epoxy are
demonstrated by Measures [18] who discusses the devices high strain sensitivity,

linear response, low hysteresis, and ability to match ESG responses.

Finally, it is worth mentioning that Lee et al. have successfully embedded FFPI
sensors into metallic structures [19]. Here such devices were embedded within

aluminium and utilised to measure both temperature and ultrasonic signals. Graphite
moulds were used In air to cast the aluminium parts. Stainless-steel stress relief
tubes were extending a short distance into the cast in order to pass the fibres though,
thereby avoiding breakage at the air-metal interface. The embedded FFPI was shown
to be 2.9 times more sensitive to temperature than when operated in air due to
thermal expansions in the alumintum. The same sensor was utilised to detect
ultrasonic signals launched into the aluminium via a surface mounted piezoceramic

transducer over the frequency range of 100kHz to 8MHz, and to detect a noise burst

generated by breaking a pencil on the surface of the cast aluminium.
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2.3.1.3. Fibre Bragg Grating Sensor

Consider the Fibre Bragg Grating Sensor (FBGS), shown in Figure 2.2, which is also
being intensively developed for smart structure applications. This sensor utilises a
single mode optical fibre which has a grating written into its core by high intensity,
short wavelength optical radiation, with a periodic intensity distribution [12]. The
grating creates a region of periodic variation in the index of refraction, which
generates a narrowband reflection. The reflected signal has a centre wavelength,
termed the Bragg wavelength, which is linearly dependent on the period of the
grating and the mean core index of refraction. Therefore, the Bragg wavelength 1s
shifted when the fibre grating is subjected to varnations in strain (or temperature),

which results in a wavelength encoded optical measurement [13].

FBGS have a few advantages over other fibre optic sensing techniques, particularly
their ability to make localised, distributed and absolute measurements with good
linearity [20], as well as offering the potential of a low cost sensor that can be mass
produced during the standard manufacturing process [21]. However, to ensure that
an embedded FBGS demonstrates a linear relation between Bragg wavelength shifts,
and longitudinal strain in the host, two assumptions have to be made [20]. Firstly,
the fibre’s axial strain is equal to that of the host material in the optical fibre
direction; and secondly, there 1s no transverse strain coupled from the host to the
optical fibre. Work published by Tang ef al [20] investigates these issues of

measurement effectiveness through numerical analysis, and concludes that a thick
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host, large embedded length of fibre, and optimum elastic modulus for the coating all

improve the effectiveness of this sensor.
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Figure 2.2: Fibre Bragg Grating Sensor

While dynamic measurements with FBGS yield very high strain detection
sensitivities, accurate quasi-static strain measurements provide a significant
challenge [21]. This i1s further complicated by the requirement to compensate for
inevitable temperature variations. However, an example of a hybrid in-line fibre
Etalon/Bragg grating sensor (ILFE/BG) that can simultaneously measure strain and
temperature 1S provided by Jin et al. [22]. This sensor uses a ILFE sensor (essentially

an intrinsic fibre Fabry-Perot) cascaded with a Bragg grating in one fibre. This

enables the different sensing capabilities of each sensor to be combined into one
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transducer capable of decoding temperature and strain information simultaneously.
The sensor was demonstrated by embedding it into a unidirectional graphite/epoxy
composite cantilever beam. The beam was of dimensions, 150mm x 25mm x
1.8mm, and the sensor was embedded O0.5mm from the surface parallel to the
reinforcement fibres. A semi-conductor thermistor, and a resistance strain gauge
were adhered to the surface of the beam, directly above the embedded sensor, to
provide measurement verification. Once constructed the beam was subjected to a

simultaneous combination of both strain and temperature fields. The embedded

sensor was considered to achieve a measurement accuracy of 0.5°C for temperature

and Spe for strain. It was also proposed that this sensor arrangement could be

configured as a quasi-distributed sensor by introducing several gratings, with

different Bragg wavelengths, along the length of one fibre. Here, identification of
information from each grating would be achieved using wavelength mutilplexing

techniques.

Furthermore, in work carried out by Udd et al. [23], four FBGS were embedded into

a 22 ft fibre glass utility pole. The pole consisted of three 8ft sections that were

tapered and bonded together after insertion. The successfully embedded sensors
were utilised to measure tension and compression above and below one of the joints.

Surface mount strain gauges were also used to enable a comparison. A variety of
three-point bend loading conditions were applied to the 22 ft fibre glass utility pole.
Extremely good agreement was demonstrated between the embedded sensors and

surface mount strain gauges up to an 8000lbs load. The pole was designed to fail at
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25,000ibs and was tested to failure, which occurred at 25,7001bs. It was therefore,
concluded that the fibre gratings had been successfully embedded within the utility
pole with no structural degradation. It was also highlighted that the environmentally

robust nature of these sensors allows them to be successfully embedded at

temperatures that would destroy conventional electrical strain gauges.

In addition to the utility pole experiments, Udd et al. [23] describe work carried out
by Blue Road Research, and Production Products on embedding FBGSs into a
cylindrical carbon epoxy, simulated missile casing. Here, three FBGSs were
embedded approximately 2mm under the surface of the test structure, and again two

electrical strain gauges were surface mounted for comparison. The structure was
subjected to three-point bend tests and the embedded fibre optic grating sensor, in

conjunction with a sophisticated demodulation system was shown to provide a
performance equivalent to the conventional stain gauge demodulation system

utilised.

In addition to integration into advanced composite materials, these devices have
drawn considerable attention from civil engineers. For example, Maaskant et al. [24]
describe a FBGS array that has been installed in the Beddington Trail Bridge in

Calgary (Alberta, Canada) to monitor prestressing tendons. The strain sensors are

attached to both steel and carbon-fibre-reinforced plastic (CFRP) prestressing
tendons, which are embedded in the precast girders of the bridge. Measurement of

traffic loads and the relaxation behaviour of the tendons are presented, revealing
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significant differences in the behaviour of the two tendon materials. Another

example is provided by Davis et al. [25] who describe the use of a prototype FBGS
array system by successfully embedding sensors into reinforced concrete beams and

deck panels to monitor the strain at several locations. The system demonstrated

approximately 1ue resolution and about a 10,000ue range. The concrete samples
were tested to failure and 1t i1s reported that all the FBGS survived, continuing to

measure even after failure had occurred.

2.3.1.4. Mach-Zender and Michelson Interferometers
As previously mentioned other types of optical sensor that have received interest
from the smart structure field are those in the very long gauge length category, which

include interferometer fibre sensors such as the Mach-Zender, and Michelson. Both
these sensors display an extremely flexible geometry, high sensitivity, and ease of

fabrication and demodulation. However, in order to implement them effectively it is

often necessary to optimise the coating with respect to acoustic, electric or magnetic

field responses [11].

The Mach-Zender interferometer utilises both a sensing and a reference leg (see
Figure 2.3) where the entire length of the embedded sensing leg acts as the sensor.
This leg, which 1s subjected to the parameter of interest, generates detectable optical
phase shifts, which are compared with the reference leg to provide a measurement.

An example of a Mach-Zender fibre configuration embedded in a 3mm, carbon fibre

reinforced composite plate is provided by Pierce er al. [26]. Here the embedded fibre
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optic sensor was utilised to detect guided acoustic plate waves (Lamb waves)
propagating along the structure. Detection of Lamb waves was demonstrated and

shown to be up to 20 times more efficient than a similar surface bonded device.

Sensing Leg

o |5 co #

Reference Leg

—=ZA¢ : Phase Shift

Figure 2.3: Mach-Zender Interferometer

The Michelson sensor configuration also employs two fibre legs, where one beam
coupler is utilised to both split, and combine the propagating signals, as depicted in
Figure 2.4. Both fibres, which are of differing lengths, are terminated with highly

reflective ends to generate return signals. The gauge region of the sensor is

determined by the difference in length of the two fibre legs, which when subjected to

the parameter of interest introduces a detectable optical phase shift. Such Michelson
sensors have also been embedded within composite materials for acoustic related

measurements. For example, Measures [18] describes such a sensor utilised to detect
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acoustic emission (AE) in both Kevlar/epoxy, and graphite/epoxy multilaminated
panels, which is of interest since this phenomena can result from matrix cracking,
fibre breakage, or delamination. Moreover, Measures illustrates examples of
delamination, and matrix cracking resulting from out-of-plane loading. However,
more recently Measures [13] has commented that the two-optical-fibre arrangement
of the Michelson deems it quite unsuitable for smart structure applications since it
displays greater intrusiveness, and poorer common mode rejection than single fibre

arrangements such as the Fabry-Perot and Bragg grating sensors.
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Figure 2.4: Michelson Interferometer

2.3.1.5. General Considerations when Embedding Optical Fibres

To avoid inducing degradation in structural strength, several important factors must
be considered when embedding any form of fibre optic sensor into a composite.
These include the coating of the fibre (which is crucial to successful sensing), and
placement of the fibre [4]. Carmen and Sendeckyj [27] have comprehensively
reviewed the pertinent literature concerning the obtrusiveness of embedded optical

fibres, and more recently this area has been discussed by Jeon et al. [28]. There are
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two fundamental static mechanical properties that can be affected by embedded

optical fibres, namely longitudinal compressive strength, and transverse tensile
strength. The introduction of optical fibres into host composites, in general has little
influence on the tensile strength of the structure, however it does often degrade the

compressive strength [28]. When optical fibres are embedded non-parallel to the

reinforcement fibres a local disturbance i1s introduced into the fibre geometry
resulting in resin rich regions where large strain concentrations can take place when

subjected to a load. The size of the perturbed strain region and, therefore, the

magnitude of the stress concentration i1s largely dependent on the optical fibre
diameter and the stiffness of the host composite [29]. Although negligible tensile
strength degradation occurs when embedding a small number of optical fibres into
unidirectional, or cross-ply glass fibre reinforced epoxy composites [28], a significant
reduction in fatigue life is observed, especially for the cross-ply configuration. When
optical fibres are embedded non-parallel to the reinforcement fibres, undulation is
created in the matrix, which reduces the buckling strength of the host under
compression. The extent of this effect is widely varied, depending on the host
material, matrix configuration, and optical fibre diameter. For example, near to no
buckling strength degradation has been reported for unidirectional Kevlar/epoxy

plates [30], while degradation up to and 1n excess of 60% has been demonstrated for

cross-ply graphite/bismaleimide composites [27, 31]. Here, the degree of
degradation was shown to be linearly proportional to the number of embedded optical

fibres. In addition, the low-velocity impact and delamination buckling behaviour of

composite laminates with embedded optical fibres has been studied [28]. It has been
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reported that the presence of embedded optical fibres in cross-ply glass fibre/epoxy

matrices has negligible effect on the shape of the impact damage, irrespective of the

orientation or number of optical fibres. However, the extent of the damage 1s

influenced significantly by fibre orientation, with fibres embedded at 45°, producing

far more damage than those embedded in-line with adjacent reinforcement fibre

layers.

Furthermore, Haslach and Whipple [32] discuss coating (which acts as the interface
between the fibre core/cladding and the host) considerations for the design of
embedded fibre optic strain and load sensors. The material properties ot the coating,
the fibre, and the host are all shown to have an influence on the fibre’s optical

response. It was shown, using a mathematical model, that the proper choice of
coating eliminates detection of transverse strains, thereby permitting a single fibre to
be used to confidently measure axial strain. In addition, it was shown that for one
fibre not to induce a significant stain 1n a neighbouring fibre they should be separated
by at least four coating diameters. Furthermore, modelling has shown that a careful
selection of coating for an embedded fibre can minimise its obtrusive characteristics
[33, 34]. It was demonstrated that for a given host and fibre material, optimal

thickness and material properties exist for the coating to reduce the stress

concentration in the host material surrounding the fibre.
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2.3.2. Piezoelectric Sensors

Piezoelectric materials have found a variety of sensor applications within smart
structure systems due to their ability to produce measurable electrical charges in
response to mechanical stresses. These materials can generally be categorised into
one of two groups, namely piezoceramics, such as Lead Zirconate Titanate (PZT),
and piezopolymers such as polyvinyldenefluoride (PVDF). Piezoceramics typically
display high stiffness characteristics, and are capable of generating large
displacements with quick response times, making them more suited to actuator
applications [8]. The brittleness of these materials does place restrictions on their
minimum thickness, which can be of significance for embedded systems. On the
other hand, materials such as PVDF are flexible, can be configured as thin films to
conform to a variety of shapes, have low stiffness, display high damping and are
wideband making them a better sensor candidate [35]. The majority of research
performed on piezoelectric smart structure applications has involved theoretical or

modelling analysis, and a good review of such work is provide by Chee et al. [35],

however, experimental investigation has been more limited.

While piezoceramics are more sutted to actuation than sensing, in some cases they
have been shown to perform both functions. For example, Kumar et al. investigate a
piezoceramic system for broadband vibration control [36], where a collocated

piezoceramic sensor and actuator 1s utilised to sense and react to pressure

fluctuations and actively dampen vibration. A critical parameter of such a system is

the feedback circuitry, which ensures a 180° phase shift between the sensing voltage
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and the voltage applied to the actuator over the frequency range of interest. The

described system utilised Modified Lead Titanate (MPT) as the sensor material and

was demonstrated reducing pressure fluctuation induced on a steel block (by a

shaker) over a frequency bandwidth of 3.5kHz.

Yang and Bian report an experimental analysis of the effectiveness of vibration
suppression by embedded piezoelectric sensor/actuators in composite laminated
plates [37]. In this study two fibre-glass-reinforced composite samples of dimensions
300mm x 140mm x 1.2mm were constructed, with ply configurations of {0/90}; ,
and {45/-45}¢s, where the subscript ‘6s’ indicates that the plate 1s symmetrical about
its central axis with six layers on either side, as depicted in Figure 2.5(a). Each plate

had 6 PZTS5H elements of size 25mm x 25mm X 0.3mm embedded within them, 3 on
each side of the central axis. Square cut-outs were fabricated into the plates to

accommodate the transducers in the 3™ to 5™, and 8" to 10" plies. Figure 2.5(a) and
(b) reveals the layout as an elevation cross-section and plan cross section
respectively. The PZT5H material was utilised for both sensing and actuation due to
its low temperature sensitivity, high strain sensitivity, and quick response. The
embedded piezoelectric elements were shown to display approximately linear
actuation from O to 110pe for a direct voltage (DC) range of 0-500 Volts.
Additionally, Finite Element Analysis indicated that the influence of the embedded
transducers on the natural bending and torsional frequencies of the plates is
negligible. Moreover, experimental results demonstrated that the embedded devices

increase the structural damping by a factor of 7 for the [0/90]¢s plate and a factor of 9
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for the [45/-45])¢s when configured with one of the six piezoelectric elements as a
sensor and the other five as actuators. Furthermore, torsional vibration suppression

was shown to be most effective when two elements were utilised as sensors, and two

as actuators with a 180° phase difference. Here damping was increased by a factor of

90 in the [0/90]¢s plate, and a factor of 70 in the [45/-45];.

Central Axis

Figure 2.5(a): Elevation: Composite Plate Layout with Embedded PZT Elements

Embedded

Elements 140m

300mm >

Figure 2.5(b): Plan: Composite Plate Layout with Embedded PZT Elements
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As mentioned previously, piezopolymers (such as PVDF) make a more suitable
piezoelectric sensor since they can be fashioned into thin sheets and formed to adhere
to most surfaces. Moreover, they exhibit a flat response over a wide frequency range
and possess excellent mechanical strength [38]. Importantly, they display low
acoustic impedance, which enables a number of devices to be distributed over a
structure with minimal impact on its mechanical properties. Chui et al. describe
research on the characterisation of piezoelectric thin films, and i1ts use for crack
growth monitoring in metallic structures, and damage detection in composite plates
[38]. Experimental results were presented for a 12.5mm thick Aluminium Alloy

centre-cracked (6mm diameter hole with two 4mm notches protruding from 1t)

specimen, which had a number of 28um thick, by 4mm x 20mm Nickel Chromium
(NiCr) sputtered PVDF thin films adhered to it. The specimen, which was clamped
at one end, was subjected to constant amplitude cyclic loading and the resultant crack
growth was measured using a vernier microscope. Repeated comparisons were made

between the measured crack length and the recorded peak-peak sensor voltage after a

specified number of loading cycles. It was shown that the sensitivity of the devices
(defined as the measured peak-peak voltage, divided by the peak-peak voltage across
a reference device adhered away from the crack) increases with crack growth, and
that the gradient of the response changes as the crack passes under, and beyond the
sensor. The sensors were therefore shown to be capable of detecting changes in the

strain field due to the presence cracks. Furthermore, Chiu et al. go on to report

damage detection in a cross-ply graphite/epoxy sample with two, 30mm ‘barely

visible impact damages’ (BVID). In this experiment comparisons were made
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between measurements from PVDF sensors (28um thick NiCr sputtered) adhered to
damaged and undamaged regions of the sample. It was shown that under cyclic
loading conditions the sensors behaved differently revealing their capacity to detect

BVID. Similarly, PVDF thin film sensors were utilised to detect BVID 1n a carbon

fibre/epoxy resin skin, honeycomb core structure, which represented a “realistic”

aircraft component.

A further piezoelectric sensor option for structural heaith monitoring is that of
piezoelectric paint, which has been evaluated by Egusa and Iwasawa [39]. The paint
is prepared using PZT ceramic powder as a pigment and epoxy resin as a binder, and
can be cured at room temperature to establish films as thin as 25um. This sensor can
therefore be conveniently applied to large structures without drastically affecting
their mechanical properties. The paint i1s then poled at room temperature under
electric fields of up to 450kVem™'. Compared with piezopolymers the paint film
sensor has the advantage of being even more suitable for complex structural shapes.
Egusa and Iwasawa go on to describe experimental results that reveal the paint’s

ability to sense the vibration modes of an underlying aluminium cantilever beam.

When inspecting large structures an attractive approach is to utilise piezoelectric
sensors configured to generate and detect ultrasonic waves that can propagate large

distances in the structure. For example, of particular interest to this Thesis are Lamb

waves (guided acoustic plate waves discussed in detail in Chapter 5), which are

capable of propagating over large distances in plate-type structures [S]. Here
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interaction with mechanical flaws in the structures affects the wave propagation
allowing one sensor to inspect several metres, along the acoustic path. This approach
maximises the area monitored, to the number of sensors utilised, which 1s obviously
a desirable feature for smart structure monitoring since it enables a significant
reduction in the number of embedded sensors required. Ideally, one transducer
would be able to send, and receive a particular Lamb wave mode for the interrogation

of a section of the structure, and also be capable of operating in a number of

directions [3].

To permit unobtrusive integration into a host material, the Lamb wave transducer
requires to be both thin, and flexible. Two transducer technologies have emerged
with this in mind, namely flexible low profile piezoplatelet devices [40]}, which
incorporate active piezoceramic platelets embedded within a lithe epoxy matrix; and
flexible piezopolymer devices made of materials such as PVDF [5]. Both designs
display controlled wavelength bandwidths through interdigital (ID) electrode
patterns, and controlled frequency bandwidths through narrowband excitation to
enable uni-modal operation, which is required for unambiguous data interpretation.
A comparative study of the two technologies is provided by Gachagan er al. [40],
who show that the piezopolymer devices are cost effective, simple to manufacture,
and exhibit good uni-modal operation, however, the piezoplatelet configuration is far
more efficient. This factor 1s of particular significance when operating in highly

attenuative composite materials. Gachagan et al. [41] demonstrate the low profile

piezoplatelet configuration surface mounted to carbon fibre reinforced composite
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plates. Here, efficient Lamb wave generation and detection was presented with

propagation distances of approximately 1m reported. An example of an embedded
piezoelectric transducer for Lamb wave generation in composite plates is provided by
Moulin et al. [42]. Here two piezoceramic (PZT) disc transducers of diameter Smm
and thickness 2mm were embedded 1n a 3.85mm cross ply composite plate. The
devices were embedded by simply machining two 3mm deep blind holes into the
plate, placing the discs in the holes then filling the remaining void with epoxy. It was
reported that the radial vibration modes of the embedded piezoceramic discs

provided the most efficient coupling for Lamb wave excitation.

Unlike these discussed active Lamb wave devices, Wenger et al. report on the
evaluation of a passive composite piezoelectric Lamb wave sensor, which is
proposed for in-situ acoustic emission (AE) detection in plate-type structures [43].
The devices consist of a piezoelectric powder dispersed in a polymer matrix, which
takes advantage of the mechanical strength and low dielectric permittivity of the
polymer and the strong piezoelectric and electromechanical properties of the ceramic.
A single film of this composite material 1s often referred to as a monomorph. Two
such layers can be configured into one device to form a bimorph, which provides the

ability to operate in one of two modes (thickness or bending) depending on the
relative polarisation and electrode configuration of the constituent monomorphs.

Wenger et. al report on two 25-ply unidirectional S-glass fibre/epoxy composite

plates of thickness 3mm, constructed with bimorphs embedded within them. The

sensors were investigated with respect to their ability to detect an AE source, which
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can result from matrix cracking, fibre breakage, or delamination. In this case a

simulated AE source was realised by snapping a pencil lead on the surface of the
plate to induce a sudden release of stress, which subsequently stimulates Lamb wave

propagation in the plate. The sensors were demonstrated detecting the acoustic

activity in the plates 100mm from the source, indicating their potential as passive AE

SCNSOIS.

Another sensor that utilises the generation and detection of acoustic waves is the
surface acoustic wave (SAW) device. Here changes in the surface wave’s travelling
time between the SAW device and a reflector are used to indicate changes in the
physical variable of interest. The operating frequency of such devices is generally
from ten megahertz to a few gigahertz, which interestingly matches the radio and
radar frequency range. As a result of this, Varadan er al. [44] have demonstrated a
passive SAW strain sensor, which uses electromagnetic waves to wirelessly excite
the device. This sensor 1s being developed for the realisation of a new smart material
system for wireless sensing and control of helicopter rotor blades. This passive
device resembles a large credit card and 1s constructed from a piezoelectric lithium
niobate crystal and an integral silk-screened antenna. The antenna captures an
incoming electromagnetic signal and propagates it across the lithium niobate crystal,
which efficiently converts it into a surface acoustic wave. Each sensor reflects the
surface wave off a uniquely pattered layer of aluminium to create an identifiable
phase modulated encoded signal. The retlected signal is retransmitted and is utilised

to measure strain vartations. Demonstration of such devices adhered to a Plexiglass
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cantilever beam (to approximate a helicopter blade) for strain measurement was
presented. A linear response between measured phase angle shift and applied strain
was presented, with a resolution of 0.0009mm/mm strain per degree of phase angle

change.

2.3.3. Inherent Reinforcement Fibre Sensors

An area of common concern for all sensor technologies to be embedded within
composite materials is that of resultant structural degradation. Therefore, one very

attractive concept is to utilise the inherent material, for example the reinforcement
fibres within the composite structure, to also behave as the sensor. Techniques

employing this concept have been devised and shall be discussed in this Section.

2.3.3.1 Reinforcement Fibres as Ultrasonic Waveguide Sensors

Kent and Ruddell [45, 46, 47] describe a system utilising the reinforcement fibres of,
glass/matrix composites (GMC), ceramic/matrix composites (CMC), and
metal/matrix composites (MMC) as acoustic waveguides to monitor the fibre/matrix
interface during the manufacturing process. This concept utilises direct monitoring

of the ultrasonic signal propagating in the fibre, to provide an indication of the

mechanical integrity of the interface along the fibre’s length. As such, the
reinforcement fibre provides a channel for the exchange of ultrasonic information
transfer. Consider an embedded reinforcement fibre that is constrained at its axial-

radial boundaries, here some of the ultrasonic energy propagating in the fibre will
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leak into the surrounding media across the fibre/matrix interface. Therefore, this rate
of leakage provides a direct indication of the stress wave transfer from the fibre to the
matrix within the elastic regime, which in turn determines the mechanical
characteristics of the composite material. In this work, both piezoceramic and laser
methods for generation and detection of the ultrasonic energy were described. The
results presented reveal that the both the velocity, and the frequency content of the
propagating ultrasound, can provide a direct indication of the pertinent interface
characteristics during the manufacturing process cycle. Therefore, it was proposed

that this in-situ technique be utilised on-line for improved interfacial properties and

performance.

2.3.3.2. Reinforcement Fibres as Electrical Resistance Sensors
At a more clementary level, the electrical resistance of carbon fibres has been

measured and used to successfully detect damage in unidirectional carbon fibre
reinforced plastic (CFRP) laminates [48]. There are three conduction direction paths
formed in such composites, namely: (1) the Longitudinal direction, along the carbon
fibres; (2) the transverse direction, by fibre-to-fibre contact paths between adjacent
fibres; and (3) in the thickness of the sample, by contacts between plies of the
laminates. These various electrical conductivity paths permit the measurement of

damage evolutions such as fibre fractures, matrix cracking, and delamination.

2.3.3.3. Reinforcement Fibres as Optical Waveguide Sensors
In Section 2.3.1 the potential for optical fibre sensors to be embedded in composites

was highlighted. Although the optical fibres do not degrade the tensile strength of
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the composite when properly embedded, concerns still remain on the resultant

structure’s ability to withstand compressive loading [29]. This is largely due to the

diameter mismatch between the optical fibres (typically 125um), and the reinforcing

fibres such as glass or carbon (typically 7-12um). A possible solution to this
problem is to use the reinforcement fibre as the light guiding medium. Recent
developments in the manufacture of quartz reinforcement fibres, which offer low

dielectric constant, high heat resistance, and importantly the ability to guide light

when properly coated, has initiated Hayes et al. {49] to develop the realisation of this

very concept. Bundles of quartz reinforcement fibres were coated with silicone resin

to form self-sensing 70um thick layers. Composite panels were then constructed
from 16 plies of Ciba/Geigy carbon fibre prepregs in the sequence
{0°/90°/90°/0°/0°/90°/0°/90° }, to produce a 300mm square panel. The self-sensing
fibres were embedded within the composite between layers 1 and 2, and layers 15
and 16. Similar composites were also constructed with conventional optical fibres
embedded within them to provide a comparison. It was demonstrated that, unlike the
plates incorporating the conventional embedded optical fibres, the self-sensing fibre
composite plates produced no undesirable resin rich areas. Furthermore, it was
proposed that the self-sensing fibres should induce no detrimental effect on the

properties on the composite, due to diameter compatibility, and the ability to engineer

the interface as required. In addition, the fibres were demonstrated to detect impact
damages as low as 2 Joules, out performing the conventional optical fibres, which

were only capable of detecting impacts greater than 4 Joules.
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2.4. Acoustic Fibre Waveguide Applications

Section 2.3. discussed various contemporary sensor technologies being considered
for smart structure applications. This Thesis introduces a new sensor technology
concept based on the delivery of ultrasonic energy to a structure via embedded
acoustic fibre waveguides. Consequently, to put this application into context, the
following Section will describe the various areas of technology that have previously

employed cylindrical acoustic waveguides.

2.4.1. Delay Lines

In the early days of telephony, electric circuits were required to introduce short time

delays. However, increasing demands made on these circuits to achieve higher

bandwidths, and longer delay times resulted in the development of acoustic delay

lines. Systems based on ultrasonic propagation along wires were considered
particularly attractive because, they were relatively simple structures, and could be
made of inexpenstve materials compared with acoustic solid or liquid delay lines
[50]. This early application for acoustic wire waveguides was widely investigated in
the 1950s and 1960s, [51, 52, 53], and subsequently in the 1970s for clad waveguides

[1, 54, 55], where the cladding offered a loss-free mechanical support enabling long

delay lines to be coiled.
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The transducers used to induce ultrasonic propagation along wire delay lines are
usually based on magnetostriction in the wire itself, or in a short length of different

material joined to the wire. Consider a delay line of a magnetostrictive wire material
with a small coil of conducting wire wound round a section of it as depicted in Figure

2.6. When a current is passed though the coil, the waveguide section beneath it 1s

magnetised, and by magnetostriction an extensional packet of strain is produced,

which propagates along the delay line [50].

Figure 2.6: Extensional wave generation using magnetostrictive transduction

However, torsional propagation is most frequently used in wire delay lines because of
its non-dispersive qualities, (i.e. all frequencies propagate at the same velocity). This
type of waveform is typically generated by attaching two separate wires or tapes to

the delay line at right angles, as in the Scarrott and Naylor transducer, as depicted in
Figure 2.7. Here longitudinal tension i1s generated in the separate wires or strips

using magnetostrictive methods, which in turn applies torque to the main wire, thus

generating torsional motion. Another magnetostrictive method, which directly
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generates torsional propagation in the wire delay line, relies on the Wiedemann etfect

[50]. Here a helical magnetic field is produced in the delay line wire by combining
an axial field (generated by a current flowing in a coil wrapped around the wire) with

a circumferential field (generated by a current flowing in the delay wire 1tself) to

induce a twisting strain.

Figure 2.7: Scarrott and Naylor generation of torsional modes in a wire delay line

2.4.2. Acousto-Optic Modulators

In optical engineering there is much interest in devices that provide coupling between

two orthogonally polarised modes of a birefringent optical fibre [56]. Acoustic
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energy is often used in such devices to apply uniform stress to optical fibres at
periodic intervals. Frequency shifters [57, 58], polarisation couplers [56], and
tuneable optical fibres [59] have all used acoustic energy for this function.

Travelling surface acoustic waves are typically used to stress the fibre periodically,

producing a frequency shift in the light by causing phase-matched coupling between

two orthogonally polarised modes of the birefringent optical fibre. Phase matching
requires that an acoustic wave propagating along the direction of the fibre has a

periodic length equal to the fibre beat length (Lg) [57]. The beat length of the fibre 1s

given by Lg = Lo/An, where Ly is the optical wavelength in free space and An is the

birefringence of the fibre [56].

The periodic stress required for fibre-optic tfrequency shifters has also been realised
using acoustic flexural modes propagating in the optical fibre. Kim et al. [60] have
demonstrated an all-fibre optical frequency shifter using mode coupling between the
two lowest-order optical modes in a weakly guiding fibre (that 1s LPo; and LPy)).
These two optical modes are orthogonal to one another in an unperturbed straight
fibre and consequently will not exchange optical power as they propagate along 1t.
However optical coupling between these modes can be induced by periodic

microbending, at a distance given by the beat length of the fibre. This i1s achieved by

exciting an acoustic flexural mode to propagate in the fibre.

The coupling method used to introduce flexural motion into the optical fibre involves

the employment of an acoustic horn attached at one end to an unclad section of the
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optical fibre and at the other end to a piezoceramic transducer, as revealed in Figure
2.8. The plastic jacket 1s removed from the section in which the flexural wave is to
propagate to reduce attenuation of the acoustic wave to insignificant levels.
Theoretical studies of acoustic horns have been extensively undertaken, for example
see Mason [61]. Such structures transform low amplitude acoustic waves at their
base into high amplitude acoustic waves at the apex via a change in the cross section.
Silica horns are typically used in fibre-optic applications for good acoustic matching
to the fibre. The tip of the horn, which is bonded to the fibre, should be of
approximately the same diameter as the fibre for a good acoustic transfer of energy

[60]. Acoustic dampers are often wrapped around the fibre at one side of the horn to

prevent acoustic energy propagating in both directions.

Unclad Section of Optical Fibre

\ Fibre Jacket

/£ \ Flexural Acoustic Wave

L
»

Acoustic Horn

Piezoceramic

\ Transducer

Figure 2.8: Coupling of a Flexural Acoustic Mode into an Optical Fibre
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Theoretical and experimental investigations into the coupling of acoustic energy from
acoustic horns into optical fibres have been carried out in an effort to improve

frequency shifters [62]. New configurations of acoustic horn optical fibre coupling
have also been examined where the acoustic horn is collinearly, rather than

transversely, bonded to the optical fibre [63]). Such a configuration is reported to
improve the robustness of the fibre-to-horn bond, the compactness, efficiency at a

given RF power level, and acoustic bandwidth.

2.4.3. Medical Applications

Acoustic waveguides have been used in the design of several medical instruments,
including, sonically sensitive needles and catheters used in tissue biopsy, and very
small hydrophones necessary for plotting high frequency beams [{64]. Woodward and
Allen [65] discuss the suitability of various acoustic waveguide configurations to
generate simple intensity fields, thereby permitting improved interpretation of
medical ultrasonic experiments.  Additionally, Woodward [66] describes a
waveguide system designed to measure ultrasonic absorption in suspensions of

biological cells. The design tfeatures a waveguide tube, which prevents beam

diffraction to ensure that all the ultrasonic energy is constrained between a single

transducer and a moveable air-backed reflector, and is lost only by absorption into

the sample.
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Figure 2.9: Sonically sensitive biopsy needle

Furthermore, Figure 2.9 shows a sonically sensitive biopsy needle discussed by
Nicholson et al. [64], which consists of an inner length of solid stainless steel wire
known as the stylet, encapsulated in a hollow outer biopsy needle. The stylet is
wrapped in a very low impedance material (except at its tip) and is clamped to an
ultrasonic transducer at its top end. A brass horn 1s used to couple mechanical energy
from the transducer into the stainless steel wire with an epoxy resin layer providing

electrical insulation. The stylet 1s glued to the horn and the horn is mechanically

clamped onto the transducer. The needle 1s used in conjunction with an ultrasonic
imaging system, which introduces ultrasound to the tip of the stylet. This acoustic

energy is transported by the waveguide to the transducer where it is converted into an
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electrical signal. Subsequently, a flashing spot is superimposed onto the real-time

image to reveal the position of the tip of the stylet inside the patient [67].

2.4.4. Process Monitoring and Non-destructive Evaluation

The requirement for on-line in-situ monitoring of industrial material processes is well
recognised. Ultrasonic solutions are often well suited to this environment because of
their capability to probe the interior of parts being manufactured, coupled with their
non-destructive qualities [68]. In addition, conventional piezoelectric ultrasonic
transducers are simple, sensitive, cost-etfective devices, displaying fast response
times, and high signal strengths, which encourages their use whenever possible.
However, manufacturing processes that operate at elevated temperatures pose a
significant problem to such transducers, which display performance degradation or
even complete failure. Here an attractive option 1s to employ a clad waveguide as a
buffer rod, which isolates the piezoelectric element from the process being
monitored, see Figure 2.10 [68]. In such a configuration one end of the buffer rod is
brought into contact with the high temperature environment to be monitored, while
the other end is attached to a piezoelectric transducer to excite guided waves in the
rod. The transducer end 1s air or water cooled to permit the use of conventional high
performance ambient temperature piezoelectrics and couplants. The buffer cladding
provides mechanical isolation for the ultrasonic energy propagating in the rod’s core,
and is typically made of a material that can be readily machined for ease of
incorporation into the process environment. These devices tend to be utilised in

pulse-echo mode (one transducer transmits and receives) with reflection times and
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magnitudes delivering the required information on the material under investigation.
Examples of processes that have demonstrated these devices for high-temperature on-
line ultrasonic monitoring include, aluminium die-casting [69], graphite/epoxy

composite curing [70], polymer extrusion [70, 71], and flow measurement [72].
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Figure 2.10: Clad Buffer Rod For High Temperature Process Monitoring

Unclad ultrasonic waveguides have also been utilised for process monitoring
applications. For example Journeau and Ducret [73] describe a feasibility study on a
waveguide device capable of performing ultrasonic characterisation of liquid metals.
Here two stainless steel waveguides (of diameter 3mm) are utilised, one to deliver
ultrasound to the test sample and the other to receive. The feasibility of the probe

was demonstrated in solidifying lead and liquid mercury. The device, which is very

much in its embryonic state, 1S being developed for operation at 2000°C for the

characterisation of the liquid metal mix that would result from a severe nuclear
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reactor accident where the core itself would melt. The behavioural characteristics of

this melt would provide valuable safety information for the nuclear industry.

Wire waveguides have also been adopted to perform in-situ measurements of
polymeric cure procedures. When such a waveguide is embedded in epoxy, or a

fibre-reinforced/epoxy composite, the surrounding media acts as an infinite cladding.
Therefore, as it cures the viscosity and temperature vary, which directly influence the
attenuation and velocity of ultrasonic propagation in the guide yielding information
on the state of cure. Sun and Winfree [74], and Harrold and Sanjana [75] provide

experimental examples of such techniques for epoxy, and graphite fibre/epoxy
composite cure procedures respectively. Furthermore, Costley et al. [76] discuss a
robust acoustic wire waveguide sensor for measuring the viscosity of highly viscous
liquids. This sensor utilises torsional wave propagation, generated in the waveguide

by the Wiedemann effect (discussed in Section 2.4.1), and was reported to take

viscosity measurements of molten glass at temperatures up to 1060°C.

In addition, waveguide rods have been demonstrated with non-destructive evaluation

(NDE) applications. For example Yamaguchi er al. [77] utilise a fused quartz rod of
length 50cm, and diameter Imm as a waveguide, excited by a PZT piezoceramic

transducer, to deliver longitudinal waves to aluminium and glass test samples for

subsequent NDE. The waveguide was adhered to each sample via a matching layer
at various locations and detection of hidden flaws close to the surface was

demonstrated by monitoring the variance in acoustic impedance. Furthermore, a
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movable, dry-contact, waveguide transducer design has been developed at Stanford
University for the NDE of plate-type structures [78]. Here longitudinal waves are
generated in a steel rod by a piezoceramic element while the other end, which is

tapered, is brought into contact with the test plate under force to generate a Lamb
wave. These devices are described 1n detail in Chapter 5, which investigates Lamb

wave technology.

2.5. Proposed Acoustic Fibre Waveguide Sensor for

Smart Structures

It has been shown in this Chapter that the implementation of optical fibre sensor
technology into smart structures has reached a significant level of maturity, with their

small, lightweight nature enabling them to be successfully integrated into composite
structural components. Nevertheless, a limitation of optical fibre sensors for
condition monitoring applications is that they are essentially passive devices, only

capable of inspecting regions local to their sensing gauge. Consequently, many
embedded optical fibre sensors would be required to monitor the health of a large

structural area, thereby increasing the likelihood of structural degradation.

As previously discussed, a solution to this problem is to utilise an active sensor that

can generate and detect ultrasonic waves capable of propagating over large distances
(i.e. several metres), such as Lamb waves in plate-type structures. Unfortunately,
such acoustic sensors have yet to be successfully integrated into composite materials.

However, it has been shown in this Chapter that acoustic fibre waveguides can be
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utilised to deliver ultrasonic energy to and from test samples. Therefore, 1t 18
proposed that an embedded active acoustic fibre waveguide sensor be developed,
which is capable of transporting ultrasonic energy to and from structures to induce
and detect ultrasonic propagation within the structure. Such a sensor would combine
the geometrical and low cost advantages of the optical fibre sensors, with the
resolution and long distance monitoring capabilities offered by alternative ultrasonic
techniques. Furthermore, a group of such embedded fibre waveguide sensors could
be utilised as an ultrasonic array with the ability to focus or beam steer for greater
structural coverage and improved resolution. The realisation of such a diverse,

flexible, low cost, long range, active (or passive) sensor would be a significant

contribution to the field of continual structural health monitoring.

2.6. Conclusions

This Chapter has introduced the concept of smart structures and discussed vartous

applicable contemporary sensor technologies. In particular, experimental work on
suitable embedded optical fibre configurations, such as the FFPI and FBGS has been
presented. The influence of embedded optical fibres on the host structure has also
been discussed indicating that while the compressive strength often degrades the
tensile strength remains largely unatfected. Various piezoelectric sensors appropriate

for integration into smart structure components have been reviewed. Additionally,
the attractive option of utilising an inherent structural component (such as the

reinforcement fibres) as the sensor has been highlighted, and several systems utilising

this concept have been discussed.
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Moreover, this Chapter has reviewed a diverse range of technologies that employ
cylindrical acoustic waveguides, thereby establishing the novel nature of the
proposed monitoring system application, which utilises embedded acoustic fibre
waveguides to transport ultrasonic energy to and from a structure for its interrogation.

As such, the proposed technique strives to introduce a low cost remote active sensor

that combines the advantages of optical fibres, i.e. small size for potentially
unobtrusive integration into a host, immunity to electromagnetic interference, and the
ability to withstand environmental factors such as high temperatures and pressures

associated with composite manufacture, along with the advantages of acoustic wave

propagation sensors, which permit large areas of a structure to be monitored with a

minimal number of sensors.
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3.1. Overview of Chapter

There are three families of waves that can propagate in solid isotropic cylinders,
these are called: longitudinal; torsional; and flexural. In the longitudinal case,
elements of the rod extend and contract, and there 1s no lateral motion along the axis
of the rod. For torsional vibrations, each transverse section of the rod remains in its
own longitudinal plane and rotates about its centre, the axis of the rod remaining
undisturbed. Finally, flexural vibrations correspond to the flexure of portions of the
rod, with elements of the central axis moving laterally during the motion [79]. This
Chapter provides a review of relevant theory on the propagation of such stress waves

in cylindrical bars as outlined by Kolsky [79], Redwood [80], Morse and Freshback

[83], and Meeker and Meitzer [53].

Firstly, an introduction to the relationships between stress and strain, and equations
of motion in an isotropic solid will be provided for clarity. This leads on to a
simplified examination of cylindrical bars for the case when the propagating
wavelength is large compared with the lateral dimensions of the bar. The problem is
then considered in terms of the exact elastic equations. Dispersion curves will be
presented and modal characteristics discussed. Consequently, the mode most suited

to the requirements of the proposed Lamb wave monitoring system will be discussed.
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3.2. Basis for Mechanical Wave Propagation

The propagation of elastic waves in solid 1sotropic cylinders derives from knowledge

of the stress-strain relationships and equations of motion in an infinite isotropic solid.

3.2.1. Stress, Strain and Displacement Relations
Consider a point 1n a solid body at location (x, y, z) which is displaced to location
(x+u, y+uy z+u,). This will result in a neighbouring point (x+dx, y+3dy, z+ &) being

displaced to location (x+u,+0x+Ou,, y+uy+0y+0u,, z+u,+doz+0du;) [79] where:

du du du
Su = y Y 8 _
U, = 5x+—ay Oy + o Z 3.1
du du ou
ou, = —=-0+—=0y +—=02
% 0x l dy 0z

The partial derivatives in Equation 3.1 may be defined such that:

£ ou £ =€ = ou, + ou,
T ox T ox 9y
£ —% £ =¢ —au"‘+au" 3.2
Y gy Y 9y 9z '
. du, e —p - ou. N du,
2L, az X X az ax
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The quantities &, &, and &, represent extensional strains in the x, y, and z axes

respectively, while &,, &, €. correspond to components of shear strain.
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O
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Figure 3.1: Infinitesimal cubic element

Now consider an infinitesimal cubic element in a solid body under static equilibrium
(Figure 3.1). Stress on a surface of the element comprises both a normal stress
component perpendicular to the surface and shear stress components in plane with

the surface. Therefore, there are nine components of stress acting on the element:

Oxx, Oyx, Ozx, Oxy, Oyy, Ozy, Oxz, Oyz, Ozz, Where the first subscript denotes the direction of

the stress and the second subscript defines the axis normal to the plane on which the
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stress is acting. If it is assumed that the cubic volume element is small enough that
there is negligible stress change over the faces, then the summation of moments

about the various axes reduces the nine components of stress to six (0;; = ©; where

17#]).

3.2.2. Generalised form of Hooke’s Law and Elastic Constants

From the general form of Hooke’s law, it 1s assumed that each of the six components
of stress is a linear function of the six components of strain resulting in 36 elastic

constants c¢;; [80].

Gu = CHIEH T 6128)')* + Cijgz.z T CME)*Z + C!SSM T C!ﬁgx_r

O w =€) €. T Cy€,, +CE, +C,E V2 +C, €, +Cy gxy

O, =CyE, tCpHE  +CyE, +C €, +Ci€, +CyE,

2z

3.3
O, = C4je_u + C428 yy t 6438:{2 + C448 yZ + c4582.x + C46€.r_1'

yZ
o.zx = cﬂe.u + C52£}’)‘ T C53£zz + C548}‘Z + C558zx + C.‘iégxy

G,ry = Céie-u + 0628 Yy + Ctﬁj'gzz + c64£ VZ + Cﬁ.‘igu + Cﬂésx}*

Love[81] shows that if the elastic energy is to be a single valued function of the strain
any coefficient ¢; must be equal to the coefficient c¢;;, therefore the 36 elastic

constants reduce to 21. Furthermore, for an isotropic solid the coefficient values

should be independent of the set of axes chosen, therefore, only two constants are

required to define the elastic properties. These are known as the lamé constants A

and W (shear modulus), therefore:
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Cig =Css =Cos = H 3.4

The other 24 coefficients all become zero and theretfore Equation 3.3 reduces to:

o, . =AA+2UE o, =Ad+2ue o, =AA+2ue,

3.5
O-_rz = u'eyz Gz,x = ﬂeu O,.= ugx}.

Xy

or, in shorthand notation O; =AA+2ue;,and o, = UE;

i’

Here A = &, + €, + & this quantity 1s termed dilation and represents volume

change over a unit cube. Although A and p completely define the elastic behaviour

of an isotropic solid, three other constants are often utilised. These are: Poisson’s

ratio (v) which 1s the ratio of lateral contraction to longitudinal extension (-€,/&,,);

Young’s Modulus (E) which is the ratio between applied stress and resultant strain on
a bar specimen; and Bulk Modulus (B) which 1s the ratio between applied pressure

and the fractional change in volume when a solid is subjected to a uniform

hydrostatic compression (-0y/4). From Equation 3.5 these can be defined in terms of

A and u [79]:

A E=/.t(3l+2u) !

V=2(7t+u) A+ L 3 >0
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3.2.3. Equations of Motion in an Isotropic Solid

The elastic equations of motion for a solid are obtained by considering the variation

of stress across the faces of a small cubic element, and take the following form [79]:

v 9%y 9%y 90 3.7

Equation 3.7 holds true for both isotropic and anisotropic media. For the case of an

isotropic solid, substitute Equation 3.5 into Equation 3.7:

’u, 0 d J

P 3¢2 =E(M+2p8n)+$@8xy)+a_z(u€xz)

pazuy =i(,us )+—8—(M+2ue )+—a--01£ ) 3.8
ot: ox 77 dy W9z Y '
°u, 0 0 %,

P E)tz. _?mezx)+$0iezy)+$(m+2uezz)

Therefore, from the relations of Equation 3.2, the equations of motion for an

unbound isotropic solid may be defined as:
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p atz :(A"'ﬂ)'é"‘;*‘ﬂvzux
azuy IA
0’ u oA

o at; =(A+u)§;+uV2uz

0> 9° 9’
b —t—.
ox’ dy° 0z

The Laplacian operator V* denotes

3.3. Simplified Analysis of Elastic Wave Propagation in Solid

Cylinders

For the theoretical study that will follow 1t 1s prudent to state the one dimensional
(1D) wave equation (Equation 3.10) which describes linear time varying wave

propagation in the x-direction [82].

0°y 1 Yo%y
37'"'(?}37 510

Here y is a linear function and C 1s a constant of the propagation medium. A general

solution to this equation is described by Equation 3.11.

y=f,(Ct-=x)+ f,(Ct+x) 3.11
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where f; and f, are distinct solutions to the wave equation and describe waves

travelling in the positive and negative x directions respectively. Therefore, the

general solution corresponds to two waves travelling in opposite directions.

3.3.1. Longitudinal motion in a bar

Consider a bar to be made up of a number of planar cross-sections. Now if, during
motion, each section has uniform stress over 1t and remains planar, then the equation
of motion may be obtained [79]. Consider Figure 3.2, which shows a small element

PQ of length ax, where the cross-sectional area of the rod is A.

P Q
00
o +—%90,
G, - —_— ox

- QX —

Figure 3.2: Element of a bar with longitudinal forces acting on it

Now if G,, 1s the stress acting on the face passing through P, then the stress on the

other face will be given by 0., + (36, / dx) dx. Therefore, from Newton’s second law

of motion (the change of momentum per second is proportional to applied force in

the direction of the force),

0‘u o0
A Ox L 1=A XX )
P ( pYE ] ( I F‘ 3.12
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Here p is the density of the rod and the displacement of the element is given by u,.

Young’s modulus, E, is defined as the ratio between stress ¢,, and strain (du,/dx).

Therefore Equation 3.12 may be written as:-

0°u, 0°u,
Al o =" ox’ >-13

Now this equation can be seen to be of the form of the 1D wave equation (Equation

3.10), a solution of which 1s:

=B(Cyt—x)+F(Cyt+x) 3.14
therefore,
E
Co — - 3-15
P

B and F are arbitrary functions dependant on initial conditions. F corresponds to a
forward travelling wave (increasing x) and B to a backward travelling wave

(decreasing x). Thus this form of motion has a propagation velocity corresponding to

the bar velocity of the material, Cy, given by Equation 3.15.

The analysis so far has not assumed that the rod is cylindrical, and holds true for any
uniform cross-section. It assumes that stress acts uniformly over each section, and
that plane transverse sections of the rod remain plane during the passage of the stress

waves. It is, therefore, only approximate since longitudinal strains on the rod will
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result in lateral strains governed by Poisson’s ratio (v). The effect of this lateral

motion in cylindrical bars becomes significant when the operative wavelengths are of

the same order as the diameter of the bar.

3.3.2. Torsional motion in a bar

Consider torsional motion within a cylindrical bar, where each transverse section

remains in its own plane and rotates about its centre. The equation of motion may be

obtained from analysis of such a section, PQ, of length x (see Figure 3.3) as &x —0

(D

-q—Sx—l-—

[ 79].

Figure 3.3: Element of a bar in torsional motion

With a couple (or torque), C, acting on the element through P, an opposing couple
C+(dC/ox)ox will result on the element through Q. For a solid rotating body the

resultant couple 1s equal to the product of moment of inertia (/), and angular

acceleration. Theretore, if the moment of inertia of this section is I’, the mean angle

through which the element rotates 1s8, and the resultant couple (dC/dx)éx then:
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oC (9%
(5;}& =1 (aﬁ ] 3.16

Consider two opposing couples, both of magnitude C, acting on both ends of a

cylinder of length x’, and of radius r. A relative angular rotation will be produced

between the two end faces of value @’, where

mur’e’
2x'

C 3.17

and p is the shear modulus. Therefore, if 00 is the relative rotation between the

sections through P and Q then in the limat:

4
c=| T |09 3.18
2 |ox

Now the moment of inertia, I’, of the cylindrical element PQ about its axis is given

by the product of mass and radius squared:

4
I '=(”"Zr )bx 3.19

Substituting C and I" from Equations 3.18 and 3.19 into Equation 3.16 the following

1s obtained:

920 20 \
u( ]= p(a ? 3.20
ot )
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It can be seen that Equation 3.20 is of the form of the 1D wave equation (Equation

3.10), and therefore, torsional waves propagate down a cylinder with the velocity

J;t/p.

3.3.3. Flexural motion in a bar

The theory for this type of wave 1s more complex than that of the other two. Even

the elementary theory, described here, will show that the velocity is dependent on the
wavelength. In this simplified analysis of flexural motion in bars of arbitrary, but
uniform cross-section, 1t 1s assumed that the motion of each element of the bar is

purely one of translation in a direction perpendicular to the bar.

Consider a small element of the bar, PQ, of length dx which has been bent in the xz

plane (see Figure 3.4). The bending moment will vary along the length of the bar,

and if the moment at P 1s defined as M, then the value at Q 1s (M + (M / dx) &x) [79].

~— Sx

Figure 3.4: Element of a bar in flexural vibration
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Shearing forces acting parallel to the z-axis will balance the bending moment. The
shearing force on the section through P is taken to be F, and that through Q is given
by (F + oF / 0x)dx. Therefore, from Newton’s second law, the equation of motion of

the element in the z-direction 1s,

giving,

0°u oF
A “ = = 3.21
P [ ot } (ax]
If F is expressed in terms of u, and the elastic constants of the maternal, then

Equation 3.21 can be solved. Taking moments round an axis in the y-direction,

through the centre of the element, Equation 3.22 1s obtained.

a—M— +1 2F + 95— -‘-5-"5:0 3.22
ox ox 2

In the limit as ox — 0 this becomes:

oM

F=-"— _
- 3.23

It is necessary to obtain a relation tfor M in terms of «,. Therefore, the element of the

bar is considered to comprise a number of parallel filaments, some stretched and
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some compressed. For a radius of curvature of the neutral surface R, and a second

moment of the cross-section about a diameter in this surface /,

M=(EI/R). 3.24

I/R is given by 9°u, / dx* for small deformations, and so Equation 3.23 becomes:

ox’

3
F = —El[a a ] 3.25

Now on the substitution of Equation 3.25 into Equation 3.21,

0‘u 0% u
A L \=—EI £ 3.26
which can be written as,
(Du, )\ O 3.27
\ ot* ° ox’ '

Here, K is the radius of gyration of the cross section about an axis in the neutral

surface perpendicular to the axis of the bar. For cyhindrical bars of radius a,

K = a/2 which is related to the moment of inertial by the relationship I = K*A.
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Equation 3.27 shows the wave equation for flexural vibrations. Since it 1s not of the

familiar one 1D wave equation form, the substitution of a solution of the form
u,=F(x—Ct),oru, =F (x + Ct)is not sufficient. It can, therefore, be deduced that

flexural motion of arbitrary shape propagating along the rod will be frequency

dependent. Consider now a flexural wave that 1s sinusoidal in nature propagating

along the bar.

U, = D cos(pt — fx) 3.28

Where D is the amplitude, f = 2W/A (A being wavelength), and p = 2nC/A.

Substitution of Equation 3.28 into Equation 3.27 and performance of the appropriate

differentiation yields:

p2 — C02K2f4
Thus,
2nC K
C = 0 3.29
A

Equation 3.29 is only valid for waves with large A compared with a, the radius of the
bar. The simplified treatment breaks down when the wavelength and radius are of
the same order for two reasons: (1) for short wavelengths, rotary motion of the

sections of the bar must be considered and so the assumption that the motion is
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purely translation in the z-direction 1s not valid; (2) it is invalid to assume that

longitudinal sections of elements of the bar remain uniform in shape during motion.

Equation 3.29 defines a linear relationship between C and (1/A), which is only valid

at low frequencies where A is large compared with a. Rayleigh, who took rotary

inertia into account obtained an improved approximation and Redwood [80] shows

this to yield the following relationship.

C =————— 3.30
A2

I+ -
4T K*

Timoshenko further modified the elementary theory by adding a correction for shear
deformations resulting in a dispersion relation that was very accurate over the entire

range [1]. Equation 3.31 shows this dispersion relationship.

2
C? _(;K)Z(Cz-cj)R,—CCT-J = 0 3.31

A

Here ¥y =/ C, which 1s described as the propagation constant, and R’ is a constant

that depends on the shape of the cross section (10/9 for a circle).
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3.4 Exact Solution of Elastic Wave Propagation in Solid

Cylinders

To obtain a solution for elastic wave propagation in solid cylinders it is convenient to

define the relevant relations in cylindrical co-ordinates r, 8, and, z that is radial,

angular, and axial components respectively, see Figure 3.5.

P

Figure 3.5: Cylindrical Co-ordinate System

For such a co-ordinate system Love[81] defines the relationship between strain and

particle displacements.

grr -_-?.E‘_!‘_ gre :%_.{‘i.{._{ au"
or ar r r| 06
du, l{ du dug
£, =— Eg = —| —= |+ —= :
22 az 74 r( ae ]+ az 3 32
e, =it Ity £ _ 9, +auz
" r r{ o6 T 9z or
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In Section 3.3.2 the relationship between stress and particle displacement for an
infinite isotropic solid was derived (Equation 3.5). It would be beneficial to relate
these quantities in cylindrical co-ordinates, therefore substitution of Equation 3.32

into Equation 3.5 using cylindrical co-ordinates (r, 6, z) yields that stress, and particle

displacement are related thus:

ou L ( du ou
'—:M 2 . —_— A 8
O-rr + u’ ar Grﬁ r (89 uB ]*’ﬂ( ar )
2u({ du ] { Ju ou
O 0 =M+Tu(—a?9+u,) O, = u(;( aez )+—ézi} 3.33
ou ou. Jou
= AA+2p— = | =L+
O Hage D ﬂ( 3z or ]

Dilation in cylindrical co-ordinates 1s defined as A=¢,, + €, +€,,, therefore, from

zZzZ ?

Equation 3.32.

du, |1 du, | Jdu
A= ——+— — < .
o +r(u’+ Y, )+ >, 3.34

The pertinent relationships in Equation 3.33 are ©,, Oy and o,,, which, for an

isotropic cylinder, must equate to zero at the cylinder’s surface to satisfy the

boundary condition that the surface is traction free, therefore:

O'rr — 0-99 — O'ZZ =0 |r=a 3-35

where a = radius of the cyhinder.
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If displacement is defined as a finite, uniform and continuous vector field which
vanishes at infinity, then the Helmholtz theorem [83] allows 1t to be expressed as the

sum of the gradient of a scalar ¢ and the curl of a zero-divergence vector y .

Therefore, in vector notation displacement may be written as:

u =Y+ Vxy 3.36

where, Vy =0

Here ¢ andy are termed the scalar and vector potential functions respectively.

Cylindrical displacements are obtained from Equation 3.36 using the relevant vector

identities in cylindrical co-ordinates (see Appendix A) to provide the following

components:

i =§£+i(a'¥1z )_a‘:‘/e
07

3.37

To solve for wave motions propagating in the positive axial direction of a cylinder an

appropriate set of solutions of the form shown in Equation 3.38 can be assumed for

the vector and scalar potential functions [85]:
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¢ = f(hr)cos(nb Je' )
v, =g, (kr)sin(no o'l 7ar)

3.38
Vv, = 8,.(kr).5‘in(n9 )e"f?z‘“ﬁl')

W, = go( kr )cos(n@ )e' ¥’

Here 7y is the propagation constant (y=2m/A, where A denotes wavelength), @ 1S
angular frequency, n is an integer in the range 0,1,2,...,, and the quantities 4 and k

are related to yand w through the following identities.

he = —— k= — - 3.39

C. and C; are the shear and longitudinal wave velocities respectively and are defined

in Equation 3.40.
c’=£ Ci°= At 2H 3.40
p P
The differential equation determining f{(hr) of Equation 3.38 is defined as:
2 2
? f(zh ) L) f e s (ur)=0 3.41
or r or r

Here, the appropriate solution to Equation 3.41 is:
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f(hr)=AJ (hr) 3.42

Similarly the differential equation and solution for g,(kr) are:

g (kr) 10g,(kr) (,, n’

— k* —— hr)=0 4
arZ + r ar + r2 z( !‘) 3 3
g,(kr)=C,J (kr) 3.44

The two remaining differentials g,{kr), and ge(kr) are coupled and of the form:

{ 0” +-—1—i+(k2 — (n +21)2 ﬂ(gr (kr)-— g, (kr))::O 3.45

or° ror r

2 A \
0 : ML LI 2’) (g, (kr)+ g, (kr))=0 3.46
ar< ror r )

The solutions to Equations 3.45 and 3.46 are, theretore, as follows:

g (kr)—g,lkr)=2C,J,,, (kr) 3.47

g (kr)+g,lkr)=2C,J _,(kr) 3.48
hence,

g (kr)=C,J, _(kr)+C,J,  (kr) 3.49

8ol kr)=CJ, ,(kr)—-C,J,, (kr) 3.50
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The potential function solution (Equation 3.38) therefore provides 4 arbitrary
constants A, C; C, C; However, only 3 constants are required to specify an
arbitrary displacement vector [53], and therefore, any of the C; constants can be

equated to zero without loss of generality. Therefore setting C; = O provides the

following equality from Equations 3.49, and 3.50.

g,(kr)=—gy(kr) 3.51

Therefore, in summary:

f(hr)=AJ (hr)

g (kr)=C,J (kr)
g, (kr)= CZ‘]nH(kr)
go(kr)=—g (kr)

3.52

It is useful to note (for the purpose of reduction in subsequent calculations) that

substitution of Equation 3.51 into Equation 3.45 yields the following relationship:

o +ii+(k2 _ + ) ﬂ(gr(kr))=0 3.53

Now, if Equation 3.38 is substituted into Equation 3.37 then the displacement can be

defined in the following format.

u =U(r)cos(nB Je!7)
u, =V(r)sin(n6é )ef(’“*“') 3.54

u =W(r)cos(nb Je!(r-x)
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where,
U(r)=f'( hr)+—n g.(kr)+ivg (kr)
r

n

r

V(r)=—( }/(hr)ﬂygr(kr)—gz'(kr) 3.55

W(r)=irf(hr)—gr'(kr)—(n”)g,.(kr)

r

In order to satisfy the boundary conditions at the traction-free surface, Equation 3.35
must hold true. Therefore, substitution of Equation 3.54 into the relevant relations

of Equation 3.33 provides the following. (Note that Equations 3.43, 3.53 and the
relation A=V?°¢ = -—(hz +y° )f (hr)cos(n6 )e"(’“”“’)are utilised in the calculation for

reduction, where V?is defined for cylindrical co-ordinates in Appendix A)

—Ak? +72)f (br) ‘
i +2u[f”(hr)+%(g;(kr)— g‘(kr)]ﬂygr'(kr)} cos(n0 )"

y

__2..’}_(1“ (hr)-- f(hr)]_ (Zgz” (kr)+ kzg , (kr))

r r

-fy[ ’*"g,(kr>-g,:(kr)]

r

g,=H sin(n@ )e'-) 3.56

2f " (hr )+ =L g, (kr) -2 g, (k)

.
O =F l:n2 +n

cos(n@ ' =)
5 +k2_y2]gr(kr)

r
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Therefore, on substitution of the values of f(hr), g{kr), and g,(kr) from Equation 3.52
into Equation 3.56, and application of the boundary condition (Equation 3.35), the

following set of simultaneous equations are obtained.

{
U il },,(ha 2./,;'(;161)}
{ = 0

| +alw, (ka) nal, (kr)]-C,liva’J,., (ka )]

{A[2n(]n (ha)-al " (ha))]- C,[2a?7 " (ka)+ (ka) J, (ka)]} _ 3.57

—-C, [iya((l + n)J"H( ka)—al ., '(ka ))]

Al2iayJ,'(ha)]  + = C|niy,(ka)]

-—-Cz[ . (ka)-l——]—(n +n+a’lk 2+72))In+,(ka)”

da

|
S

For subsequent reductions it is convenient to express J, ° (ha)and J " (ka) in terms

of J 'and J_, therefore, the following relationship (Equation 3.58) was deduced

from first principles (see Appendix B, Part I for derivation).

reJ " (hr) = ln2 — (hr)z l]n (hr)— r ' (hr) 3.58

Equation 3.57 can therefore be expressed as follows.
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J A[ (M%m)z —n’ }l (ha)+aJ '( ha )]

2u
+C,[nJ (ka)-nal,' (kr)]-C,liya’J,,, (ka)]

1
S

{A[Zn(J"(ha)—aJ"'(ha))h Cj[((ka)z~2n2)I,,(ka)+2aJ"'(ka)]} _ o 359
-C, [i'ya((l +")Jn+;(ka )—al,,, (ka ))]

j Al2iayJ,'(ha)l  +  C,lniy,(ka)]

o L e ) 0]

a

The coefficients of the 3 quantities A, C;, and C; of Equation 3.59 form a
determinant, which when set equal to zero results in the general frequency equation

describing the modes of elastic wave propagation in a cylinder [53]. Hudson [86]

reduces this frequency equation into the following format.

1= Gaf| o] 1= Gaf 2’ - 1) (ka)- (ko)

2b—1
-y bo (ka)-1  n*-2¢ (ka)-(ka) | =0 3.60
¢, (ha) U-b),ka) n’
Where,
I{ o’ J '(ka)
b=— and, \ka )= ka )=~
Z(Yzqz} ¢, (ka) (“)J,,(ka)
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Equation 3.60 relates three vanables, any one of which may be determined from the

other two. In dimensionless form, these three variables are Poisson’s ratio (v ),

dimensionless angular frequency (£2=wa/C ), and dimensionless propagation

constant (1 ).

3.5. Modes of Propagation

The following discussion involves the consideration of a number of different modes
of propagation, and therefore a standard shorthand notation is adopted [S1].
Longitudinal and torsional modes have n = 0 and subsequently L(0,q) is used to
denote longitudinal modes and T(0,q) torsional modes, where q is the branch number
of the given family. F(n,q) will be used to denote flexural modes (where n > 1); and

again q represents the branch number of the given family. For example L(0,1)

defines the lowest longitudinal mode, and F(1,1) defines the lowest flexural mode.
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3.5.1. Dispersion Characteristics

In the context of elastic wave propagation, the phenomenon of dispersion refers to
the distortion of a sound pulse as it propagates through a medium. Consider a
wideband pulse propagating in a dispersive medium. The various frequency
components of the signal will propagate at different velocities and be subject to

various degrees of attenuation. This results in a distortion of the original pulse shape.

The velocity at which a pulse as a whole propagates is termed the group velocity, C .

while points of equal phase propagate at the phase velocity, C=w/y. A system is

said to be dispersive when these two velocities are unequal. Normal dispersion refers

to a system where the phase velocity is greater than the group velocity while, the
contrary is termed anomalous dispersion. The group velocity is related to phase

velocity by the following relationship [79].

C,=C—-A§—g- 3.61
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3.5.2. Longitudinal Modes

The condition for purely longitudinal modes is that n = 0, and u, =0. Application of

this condition results in a reduced frequency equation describing longitudinal modes
only. The solution to this problem was first solved by Pochhammer [87] and

independently by Chree [88]. The relevant displacement equalities are obtained from

Equation 3.37 with u, =0.

y = a9  dy,
" odr 02
3.62
o _00 . (1)9,r)
© 0z r| or
Equation 3.38 provides the following where n = 0.
o = AJ,(hr)e" ™
3.63

Ve = CzJJ(kr)?im‘m)

Therefore, substitution of Equation 3.63 into Equation 3.62, and utilisation of the

relations J,'(hr)=—hJ }(hr) (Equation B11, derived in Appendix B, Part II), and

J ,'(kr)= kJ ,(kr)—r~'J ,(kr) (Equation B13, derived in Appendix B, Part IIl) yields

the following.

u, = [—— AhJ,(hr)— Ciyl, (kr)]e‘(n““”)

3.64
U, = [AiyJa(hr)+ CkJ, (kr)kf("“"“")
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The boundary condition states that at the cylindrical surface (r = a) the stresses must

be zero. Therefore, substitution of Equation 3.64 into the values of o, and o, of

Equation 3.33 and application of the boundary condition provides the following two

simultaneous equations (note that the identity, ———(h2 +7y° )+ h’ —-—1-—(k2 -—'yz) can be

2U 2

deduced from Equations 3.39 and 3.40, and 1s utilised 1n this calculation).

A[—é(h"—yz).lo(ha)+g-f,(ha)] + Cz[-iyuo(ka)+%1,(ka)] =0
ARiyhi,(ra)] - C |k -7? ), (ka)] = 0 3.65

The coefficients of the 2 quantities, A and C, form a determinant, which when set

equal to zero yields the Pochhammer frequency equation describing longitudinal

modes of elastic wave propagation in a cylinder.

2k 47, (ha)  (ka)

- (k2 _72 )]G(ha)‘ll (ka) - 472kh‘]1(ha)"a(ka)

3.66

0

Equation 3.66 was coded and solved using the maths package MATLAB [90] to yield

dispersion curves in terms of phase velocity (C) versus dimensionless frequency
(2 = wa/C;). Curves of group velocity, C,, versus {2 were also calculated from the
phase velocity curves using Equation 3.61. Examples of the first four longitudinal
dispersion curves for phase and group velocities are shown in Figure 3.6 for v = 0.34

(Copper). There are slight distortions in the group velocity curves, because of the
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error introduced by differentiating the phase velocity data, which 1s a set of discrete

points.

The lowest branch of the longitudinal family extends to zero frequency (see Figure
3.6). This is the familiar longitudinal mode whose propagation velocity in the low-
frequency limit is governed by Young's modulus. As the frequency is increased, the
phase velocity drops to a minimum value that is slightly below the Rayleigh velocity,
then approaches the Rayleigh velocity asymptotically from below [1].  The
displacement distribution changes with increased frequency, and at very high

frequencies the disturbance is concentrated near the surface, like a Rayleigh wave

[91].

The dispersion curves for longitudinal modes are dependent not only on Young’s

modulus, but also on Poisson’s ratio. Bancroft [91], and Hudson [86] both give data

for the fundamental longitudinal mode L(0,1) for various values of v, and show that

it has a significant effect. The lowest longitudinal mode which i1s often called
“Young’s modulus mode” extends to zero frequency. All other longitudinal modes
have a finite cut-off point, that is a frequency at which the motion is independent of z,
and so only at frequencies above this point will there be propagation of that mode in
the z-direction. The form of motion at cut-off can be split into two types, in the first
case the z-independent motion 1s axial shear of concentric cylinders, and in the
second case it is purely radial [1]. Note that all cut-off frequency equations and

values shown in this Chapter were presented by Thurston [1], however, a selection of

them has been verified using MATLAB.
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The cut-off values for the axial shear modes are given by Equation 3.67.

-71,(Q2)=0 3.67

The first three values of £2 are therefore 3.832, 7.016, and 10.173.

For the modes whose motion 1s purely radial at cut-off, the cut-off frequencies are

obtained from Equation 3.68 [1].

Jo@) _,C° _1-2v

(), —
Jl(cb) Clz I-v

3.68

Where

C C,

These cut-offs are, therefore, dependent on Poisson’s ratio. The first two cut-offs

have been calculated for v=0.34 using MATLAB, Q2 = 4413, 7.773. From

Equations 3.67 and 3.68 it can be seen that the first 3 cut-off values for v =0.34, are

3.832, 4413, and 7.016. These correspond to the cut-offs of modes 1.(0,2), L(0,3)

and L(0,4) ot Figure 3.6.
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Figure 3.6(a): Phase velocity dispersion curves of the first four longitudinal modes
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Figure 3.6(b): Group velocity dispersion curves of the first four longitudinal modes

(v =0.34)
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3.5.3. Torsional Modes

The equations of motion for time-harmonic waves propagating in the axial direction

along a cylinder may be written as [92]

i M, _2(0u,\ 1 _dA_ I ¥y,
r‘\ 00 1 ov or C at

U, [au ) 1 104 I 0d’u, 360

Viu, ——-—-+
00 | 1-2vrae C* ot

| aa_1 o
I-2v oz C° ot

Viu, +

The condition for torsional modes 1s that n = 0, u, = u, = 0, and that u, is finite and

independent of 8. Therefore, only one equation of motion remains.

azua du, \ u, Juy, 1 d°u,
+= —0 4 =—
or’ ( dr ] r’ 0z ¢’ o’ - 310

An appropriate solution to this 1s {53],
= BJ (ka)e' ") 3.71

The only non-trivial boundary condition (Equation 3.35) is that,,, =0 at r = a.

Therefore, from Equation 3.33,

Chapter 3: Theory of Elastic Wave Propagation in Cylinders 93



Wy T, - 3.72

or a

Substitution of Equation 3.71 into Equation 3.72, and application of the identity
given by Equation B13 (Appendix B, Part III) delivers the following frequency

relationship,

(ka)J ,(ka)—-2J,(ka)=0 3.72

Note that ka =0, is a solution to Equation 3.72. Theretore, it Equation 3.39 is
recalled (k° =(a)2/ C_f)-—- (a)z/ C’ )), it can be seen that ka=0 when C=C..

Therefore, the fundamental torsional mode T(0,1) propagates with a phase and group

velocity of C regardless of frequency. The non-dispersive nature of this mode is

extremely useful and has been exploited for delay lines where undistorted pulse

propagation is required [80]. Equation 3.72 also permits the deduction that all

torsional modes are dependent only on the shear modulus u.

Equation 3.72 was solved using MATLAB and phase velocity dispersion curves for

the first three torsional modes are presented in Figure 3.7(a). Group velocity

information is calculated from these curves using Equation 3.61 and is shown in
Figure 3.7(b). The fundamental T(0,1) mode extends to zero frequency while all

higher order modes have finite cut-off points where C goes to infinity and C, to zero.
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Figure 3.7(b): Group velocity dispersion curves for the first three torsional modes

(v=0.34)
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3.5.4. Flexural Modes

Flexural modes are described for values of n > 1. Here the motion occurs in the 6, r,
and z directions. The lowest branch of the family of modes given by n = 1, that is

F(1,1), extends to zero frequency. It is this mode whose motion at low frequency

displays bending or flexing properties. For higher frequencies the wavelength is

much smaller than the diameter of the bar, and so higher branches for values of n = 1
may be described as shear waves that are nearly linearly polarised [1]. Here the

motion is not really flexural, but the name 1s used to describe all these modes.

Modes for values of n> 1 are often called “screw modes” or “flexural modes of

higher circumferential order”, again clearly being tagged as flexural.

Dispersion curves for flexural modes have been calculated from the general
frequency equation (Equation 3.60) using MATLAB. Figure 3.8 shows the first four

flexural modes with » = 1 and a Poisson’s ratio v= 0.34. Figure 3.9 shows a

selection of flexural modes of higher circumferential order, again with v = 0.34.

The fundamental mode with n =1, i.e. F(1,1), is characterised at low frequency by a

flexing motion, where one side of the rod i1s stretched in the axial direction while the
other side is compressed. It can be shown, from the general frequency equation
(Equation 3.60), that at the low frequency limit this mode is correctly described by
the elementary theory of flexure (Equation 3.29) previously outlined [79]. From

Figure 3.8(a) it can be seen that the velocity i1s zero atw =0, and increases

monotonically with increasing frequency, tending asymptotically to the Rayleigh

velocity. Like the longitudinal modes, flexural mode dispersion curves vary with
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Poisson’s ratio, and Hudson [86] has plotted F(1,1) for various values of v to show

its effect.

In the low frequency limit, when the theory of flexure applies, the axial component of
displacement varies linearly with perpendicular distance from the neutral plane and

the cross section oscillates essentially rigidly [1]. As the frequency increases the
displacement distribution associated with this mode becomes increasingly

concentrated near the surface, and the velocity tends to the Rayleigh velocity, Cy.

All other flexural modes with n = 1 have cut-offs where C goes to infinity and C,
goes to zero. At cut-off the motion is either axial-shear or plane strain with no axial

component. The modes with axial-shear motion at cut-off have cut-off frequencies

given by Equation 3.73.

=] 3.73

The first 3 values of (2 are: 1.84118, 5.33144, and 8.53632.

The modes whose motion has no axial component at cut-off, have cut-offs given by

Equation 3.74.

20@)+2(Q)+ Q2% -8=0 374
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Typically there are one or two modes with this type of cut-off between those with
axial-shear cut-offs. With increasing frequency, the phase and group velocities of

these higher modes tend to C_ .

The flexural modes with n > 1 have no real branches that extend to zero frequency,
therefore all the branches have cut-offs. Again, the motion at cut off is either axial-
shear or plain strain with no axial component. The cut-off for axial-shear modes

satisfies Equation 3.75.

_'QJn-I('Q) -
@)

v, (‘Q ) n 3.75

The cut-off frequencies of the modes for which the motion at cut-off has no axial

component is given by Equation 3.76.

QZ
- 22— 1), (R)-n)- Q7
" 2 =10, (2)=-r) = 0 3.76

8, (@)-n—-1  2n° -2(8,(Q)-n)-Q°

For any n, the lowest branch of the dispersion relation has a high frequency

asymptote that corresponds to propagation at the Rayleigh velocity Cg, and all other

branches tend asymptotically to the shear velocity C,. This is seen in Figure 3.9

where F(2,1) and F(3,1) tend to Cg, while F(2,2) and F(3,2) tend to C..
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with n=1 (v=0.34)
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3.6. Anomalous Interference Effects

3.6.1. End Resonance

When calculating dispersion curves it is assumed that the rod is infinitely long. That
is, the boundary conditions at the end faces are ignored. Therefore, there is not

necessarily a direct relationship between the dispersion curves that have been

presented and the frequencies of resonance of a rod of finite length. However it has
been shown elsewhere that end effects are relatively small when Q < 2.6 [91, 93].

Since the work described here 1s concerned only with this region, end effects can be

safely 1gnored.

3.6.2. Mode Coupling

The phenomenon of mode coupling occurs 1n numerous areas of physics, and the
general theory indicates that independent to the coupling mechanism, a combination
of the following conditions will cause modes of propagation to couple most strongly:

(1) that the two modes have equal phase velocities; (2) the medium has low

attenuation per wavelength; (3) the coupling is uniform, that is independent of

position.

Meeker and Meitzler [51, 53] discuss the case of mode coupling in cylindrical
acoustic waveguides. Here they suggest that since 1deal elastic waveguide modes of
propagation are independent, coupling 1s a result of wave scattering by imperfections
in the interior, or at the surface of the guide. An experimental example of mode

coupling is discussed for the case of a 365.8 cm long, 0.178 cm diameter aluminium
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wire. Here the L(0,1) mode was generated via a piezoelectric transducer excited by a
Gaussian enveloped tone burst, and received via a similar transducer. Initially the
L(0,1) mode was generated at a frequency where no mode coupling would occur
resulting in a clean unimodal signal being received. The L(0,1) mode was then
excited at a frequency for which the wave motion 1n the mode had an identical phase

velocity to that of the F(2,1) mode. At this frequency mode coupling occurred

resulting in the following effects:

e A reduction in the peak amplitude,
e Significant lengthening of the duration of the pulse,

e A pronounced beat pattern distortion in the trailing edge. That is, an

interference pattern similar to that displayed by two sound waves of
slightly different frequency, which results in a signal with periodic

variations in amplitude, or beats.

The critical frequency for mode coupling between these two modes was just above
the cut-off frequency of the F(2,1) mode, where its phase velocity is in an area of
rapid change, while its group velocity is relatively low. This is considered to play an
important role in the extension of the pulse duration and the trailing edge beat pattern

interference.

A useful way to determine the critical frequencies of a waveguide is to plot frequency
against propagation constant. Figure 3.10 shows such a graph for v =0.34, calculated

from the frequency equations previously discussed. Critical frequencies exist where
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modes cross, that is at point of equal phase velocity. It can be seen that modes of the

same family and order do not couple, for example coupling can occur between L(0,q)
and F(n,q) modes, and between F(n,q) and F(m,q) modes, where m=n. It can be seen

that the two lowest critical frequencies are a result of coupling to the F(2,1) mode.

Therefore, mode coupling effects can safely be ignored when operating at frequencies

below which this mode exists. Figure 3.10 shows this value to be approximately

2=235.
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Figure 3.10. Frequency Spectrum of the Propagation Constant of Various

Cylindrical Waveguide Modes with v=0.34
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3.7. Requirements of Mode for Proposed Monitoring System

With regards to the application proposed in this Thesis, the envisaged monitoring
system employs an array of embedded fibre waveguides to deliver ultrasonic energy
to plate-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>